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Preface

The 5th International Conference Numerical Analysis and Applications was held
in the hotel ‘Ambelitz’, Lozenetz, Bulgaria, June 15–20, 2012. The conference
was organized by the Department of Applied Mathematics and Statistics at the
University of Ruse in cooperation with Union of Mathematicians of Bulgaria,
section Ruse. The conference continued the tradition of 4 previous ones (1996,
2000, 2004 and 2008) as a forum, where scientists from leading research groups
from the “East” and “West” were provided with the opportunity to meet and
exchange ideas and establish research cooperation. More than 100 scientists from
all over the world participated the conference. A wide range of problems con-
cerning recent achievement on numerical analysis and its applications in physics,
chemistry, engineering, and economics were discussed. The key lectures reviewed
some of the advanced achievements in the field of numerical methods and their
applications. Four special sessions were organized:

- G. Shishkin, Computational Methods for Boundary and Interior Layers;
- A. Smirnov, Numerical Modeling of Shell-like Structures and their

Applications;
- N. Nefedov, Asymptotic Approximation Methods for Non-local Reaction-

Diffusion-Advection Problems;
- N. Yamanaka, Verified Numerical Computations.

The conference was opened by the lecture of Prof. M.J. Gander: From Euler,
Ritz and Galerkin to Modern Computing.

The success of the conference and the present volume in particular are the
outcome of the joint effort of many colleagues from various institutions and orga-
nizations. First, we are indebted to all members of the Scientific Committee for
their valuable contribution forming the scientific level of the conference, as well
as their help in reviewing contributed papers. We thank the Local Organizing
Committee and especially M. Koleva for the help in putting together the book.

The 6th International Conference on Numerical Analysis and Its Applications
will be held in June 2016.

June 2013 Ivan Dimov
István Faragó
Lubin Vulkov
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Note on the Convergence of the Implicit Euler

Method

István Faragó

Eötvös Loránd University, Institute of Mathematics
and

MTA-ELTE “Numerical Analysis and Large Networks” Research Group
Pázmány P. s. 1/c, 1117 Budapest, Hungary

Abstract. For the solution of the Cauchy problem for the first order
ODE, the most popular, simplest and widely used method are the Euler
methods. The two basic variants of the Euler methods are the explicit Eu-
ler methods (EEM) and the implicit Euler method (IEM). These methods
are well-known and they are introduced almost in any arbitrary text-
book of the numerical analysis, and their consistency is given. However,
in the investigation of these methods there is a difference in concern-
ing the convergence: for the EEM it is done almost everywhere but for
the IEM usually it is missed. (E.g., [1, 2, 6–9].)The stability (and hence,
the convergence) property of the IEM is usually shown as a consequence
of some more general theory. Typically, from the theory for the implicit
Runge-Kutta methods, which requires knowledge of several basic notions
in numerical analysis of ODE theory, and the proofs are rather compli-
cated. In this communication we will present an easy and elementary
prove for the convergence of the IEM for the scalar ODE problem. This
proof is direct and it is available for the non-specialists, too.

Keywords: Numerical solution of ODE, implicit and explicit Euler
method, Runge-Kutta methods, finite difference method.

1 Introduction

Many different problems (physical, chemical, etc.) can be described by the initial-
value problem for first order ordinary differential equation (ODE) of the form

du

dt
= f(t, u), t ∈ (0, T ), (1)

u(0) = u0, (2)

We note that, using the semidiscretization, the time-dependent partial dif-
ferential equations also lead to the problem (1)-(2). Hence, the solution of such
problem plays a crucial role in mathematical modelling. (For simplicity, in sequel
we consider only the scalar problem, i.e., when f : IR2 → IR.) We know that
under the the Lipshitz conditon, i.e., in case

|f(t, s1)− f(t, s2)| ≤ L|s1 − s2|, for all (t, s1), (t, s2) ∈ dom(f) (3)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 I. Faragó

with the Lipschitz constant L > 0, the problem (1)-(2) has unique solution. How-
ever, for general form of function f the solution cannot be defined analytically, it
can be done only for a very few f . Therefore, we apply some numerical method.
Hence, the numerical integration of the problem (1)-(2) -under the condition (3)-
is one of the most typical tasks in the numerical modelling of real-life problems.

For the solution of the above Cauchy problem, the most popular, simplest and
widely used method are the Euler methods. The two basic variants of the Euler
methods are the explicit Euler methods (EEM) and the implicit Euler method
(IEM). These methods are well-known and in the next section we give their
description. These methods are introduced almost in any arbitrary textbook of
the numerical analysis, and their consistency is given. Since the direct proof of
convergence is typically given for the EEM, only, therefore our aim is to give an
easy and elementary prove for the convergence of the IEM, too. This proof is
direct and it is available for the non-specialists, too.

The paper is organized as follows.
In Section 2 we formulate the basic Euler methods, namely, the EEM and

IEM, and we analyze their consistency. In Section 3 we give the proof of the
convergence of the EEM. In Section 4 we give an overview of the traditional
proof of the convergence for the IEM. The Section 5 contains the simple and
compact proof of the convergence of the IEM, and we define the order of its
convergence, too. Finally, we finish the paper with giving some comments.

2 The Euler Methods

Our aim is to define some numerical solution at some fixed point t� ∈ (0, T ) to
the Cauchy problem (1)-(2). Therefore, we construct the sequence of the uniform
meshes with the mesh-size h = t�/N of the form

ωh = {tn = n · h, n = 0, 1, . . . , N},

and our aim is to define at the mesh-point t� = tN a suitable approximation yN
on each fixed mesh.

This requires to give the rule how to define the mesh-function yh : ωh → IR.
Using the notation yh(tn) = yn, we introduce the following two methods, called
Euler methods:

1. Explicit Euler method (EEM):

yn+1 = yn + hf(tn, yn), n = 0, 1, . . . , N

y0 = u0.
(4)

2. Implicit Euler method (IEM):

yn+1 = yn + hf(tn+1, yn+1), n = 0, 1, . . . ,

y0 = u0.
(5)
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In mathematics and computational science, these methods are most basic
explicit and implicit method for numerical integration of ordinary differential
equations and they are the simplest Runge-Kutta methods.

Remark 1. The Euler methods are named after Leonhard Euler (1707-1783),
who treated it in his book Institutionum calculi integralis (published 1768-70) [4].
We note that Euler developed the explict method to prove that the initial value
problem (1)-(2) had a solution.

Let us define the local truncation error for these methods, under the assump-
tion that f continuously differentiable, and hence the solution u(t) has second
continuous derivative.

For EEM, the local truncation error l(h) can be defined as

l(h) = u(tn+1)− u(tn)− hf(tn, u(tn)), (6)

where u(t) stands for the solution of the problem (1)-(2). Therefore, the relation

u(tn+1) = u(tn + h) = u(tn) + hu′(tn) +
h2

2
u′′(ϑEEM

n ) (7)

holds with some ϑEEM
n ∈ (tn, tn+1). Using the equation (1) at the point t = tn,

and then the truncated Taylor expansion (7) for the local truncation error l(h)
in (6), we obtain

l(h) = u(tn+1)− u(tn)− hu′(tn) =
h2

2
u′′(ϑEEM

n ). (8)

For the local truncation error l(h) of IEM we have the relation

l(h) = u(tn+1)− u(tn)− hf(tn+1, u(tn+1)), (9)

and hence the relation

u(tn) = u(tn+1 − h) = u(tn+1)− hu′(tn+1) +
h2

2
u′′(ϑIEM

n ) (10)

holds with some ϑIEM
n ∈ (tn, tn+1). Using the equation (1) at the point t = tn+1,

and then the truncated Taylor expansion (10) for the local truncation error l(h)
in (9), we obtain

l(h) = u(tn+1)− u(tn)− hu′(tn+1) = −h2

2
u′′(ϑIEM

n ). (11)

The order of a numerical method is defined by the local truncation error: when
l(h) = O(hp+1) then the method is called consistent of order p. This means that
for both Euler methods the order of consistency is equal to one.

We also introduce the notation en = u(tn)−yn for the global error at the mesh-
point tn. The convergence at the point t = t� means the relation lim

h→0
|eN | = 0,

where N · h = t�. (Obviously, n = N(h) and limh→0N(h) = ∞.) When eN =
O(hp) with some p > 0 then the convergence is of p-th order. Our aim is to show
the convergence and its order.
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3 Convergence of the Explicit Euler Method

For sake of completeness, in the sequel we consider the convergence for the EEM.
We note that in the textbooks the proof is given only for this case, and it is not
considered for the IEM directly. (See e.g. [1, 2, 6–9] and many others.)

First we formulate a useful statement.

Lemma 1. Let a > 0 and b > 0 given numbers, and si (i = 0, 1, . . . , k− 1) such
numbers that the inequalities

|si| ≤ a|si−1|+ b, i = 1, 2, . . . , k − 1 (12)

hold. Then the estimations

|si| ≤ ai|s0|+
ai − 1

a− 1
b, i = 1, 2, . . . , k (13)

are valid.

(The proof is done by induction, and, as an easy exercise, it is left to the
Reader.)

Corollary 1. When a > 1 then obviously we have

ai − 1

a− 1
= ai−1 + ai−2 + · · ·+ 1 ≤ iai−1.

Hence, for this case the Lemma 1, instead of (13) yields the estimation

|si| ≤ ai|s0|+ iai−1b, i = 1, 2, . . . , k. (14)

Let us consider the EEM, which means that the values yn at the mesh-points
ωh defined by the one-step recursion (4).

Since for the local truncation error l(h) of EEM we have the relation (6).
Re-arranging this formula, we have

u(tn+1) = u(tn) + hf(tn, u(tn)) + l(h). (15)

Based on the expressions (4) and (11), we get the error equation in the form

en+1 = en + h (f(tn, u(tn))− f(tn, yn)) + l(h). (16)

Hence, using the Lipschitz property (3), we obtain

|en+1| ≤ |en|+ hL|en|+ |l(h)|, (17)

which implies the relation

|en+1| ≤ (1 + Lh)|en|+ |l(h)|. (18)
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Therefore for any index n = 0, 1, . . .N we have the relation

|en| ≤ (1 + Lh)|en−1|+ |l(h)| < exp(hL)|en−1|+ |l(h)|. (19)

Let us apply Lemma 1 to the global error en. Choosing a = exp(hL) > 1,
b = |l(h)| > 0, due to (19) we can use Corrolary 1. Hence, based on (14) we get

|en| ≤ [exp(hL)]n |e0|+ n [exp(hL)]n−1 |l(h)|. (20)

Due to the obvious relations

[exp(hL)]
n
= exp(Lhn) = exp(Ltn),

and

n [exp(hL)]n−1 |l(h)| < nh exp(Lhn)
|l(h)|
h

= tn exp(Ltn)
|l(h)|
h

,

the relation (20) results in the estimation

|en| ≤ exp(Ltn)

[
|e0|+ tn

|l(h)|
h

]
, (21)

which is hold for every n = 1, 2, . . . , N .
Using the expression for the local truncation error in the form (7), the esti-

mation (21) can be rewritten as

|en| ≤ exp(Ltn)

[
|e0|+ tn

h

2
u′′(ϑEEM

n )

]
, (22)

where, as before ϑEEM
n ∈ (tn, tn+1) is some fixed number. Hence, introducing the

notation M
(n)
2 = max

[tn−1,tn]
|u′′(t)|, for the global error at any mesh-point t = tn

we get the estimation

|en| ≤ exp(Ltn)

[
|e0|+

M
(n)
2

2
htn

]
, (23)

for any n = 1, 2, . . . , N .
Putting n = N into (23), and taking into the account the equality t� = Nh,

with the notation M2 = max
[0,t�]

|u′′(t)| we get

|eN | ≤ exp(Lt�)

[
|e0|+

M2

2
t�h

]
. (24)

Since e0 = 0, therefore, finally we get

|eN | ≤ CEEM · h, (25)

where CEEM =
M2

2
t� exp(Lt�) = constant. This proves the first order conver-

gence of the EEM.
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4 Convergence of the Implicit Euler Method–Traditional
Approach

The convergence of the IEM cannot be proven directly as it was done in the
Section 3. The main reason is that the basic inequality (12) of the Lemma 1
cannot be obtained for any h. (For the EEM we have got it in the form (19) for
arbitrary h.)

First we summarize the usual way of proving the convergence of the IEM.
Let us consider the so called linear multi-step methods, which are defined by the
k-step recursion:

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(tn+j , yn+j), (26)

where the coefficients α0, . . . , αk and and β0, . . . , βk are real fixed constants.

Remark 2. We always assume that αk �= 0. When βk = 0 then yn+k is obtained
explicitly from previous values of yj and f(tj , yj), and the k-step method is then
said to be explicit. On the other hand, if βk �= 0 then yn+k appears not only
on the left-hand side but also on the right, within f(tn+k, yn+k), and due to
this implicit dependence on yn+k the method is then called implicit. We note
that the numerical method (26) is called linear because it involves only linear
combinations of the yn and the f(tn, yn).

The starting values for the method (26) are defined as follows: y0 is given from
the initial condition, y1, . . . , yk−1 are computed by some suitable RungeKutta
methods. This means that the starting values will contain numerical errors and
it is important to know how these will affect further approximations yn, n > k,
which are calculated by means of (26). Thus, we wish to consider the ”stability”
of the numerical method with respect to ”small perturbations” in the starting
conditions.

Definition 1. A linear k-step linear multi-step method for the ordinary differ-
ential equation (1) is said to be zero-stable if there exists a constant K such
that, for any two sequences (yn) and (ỹn) which have been generated by the same
formulae (26) but different initial data y0, y1, . . . , yk−1 and ỹ0, ỹ1, . . . , ỹk−1, re-
spectively, we have

|yn − ỹn| ≤ Kmax{|y0 − ỹ0|, |y1 − ỹ1|, , ..., |yk−1 − ỹk−1|}, (27)

for tn ≤ t� and as h tends to 0.

Given the linear k-step method (26) we consider its first characteristic poly-

nomial, defined as �(z) =

k∑
j=0

αjz
k−j .

Theorem 1. A linear multi-step method is zero-stable for any ordinary differ-
ential equation of the form (1) where f satisfies the Lipschitz condition (3), if
and only if its first characteristic polynomial has zeros roots inside the closed
unit disc, with any which lie on the unit circle being simple.
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The proof of the Theorem 1 is complicated, and it can be found in [5, 10]. We
mention that the algebraic stability condition contained in this theorem, namely
that the roots of the first characteristic polynomial lie in the closed unit disc
and those on the unit circle are simple, is often called the root condition.

For the convergence of the linear k-step linear multi-step method we have the
following statement.

Theorem 2. The linear k-step linear multi-step method (26) applied to the ini-
tial value problem (1)-(2) the zero stability and the consistency are necessary
and sufficient condition of the convergence.

The proof of this theorem is can be found in [3].
Let us notice that IEM, defined by (5) can be considered as a one-step (k = 1

linear multi-step method of the form (26), where α0 = −1, α1 = 1, β0 = 0
and β1 = 1. Therefore, its characteristic polynomial has the unique root z = 1.
Hence, according to the Theorem 1, this method is zero-stable. However, we
already know that it is consistent, too. Hence, based on Theorem 2, we get

Theorem 3. The implicit Euler method is convergent.

However, we emphasize that the ”proof” of Theorem 3 is incomplete: it uses
two statements (Theorem 1 and Theorem 2) which were not proven, and their
proofs are rather difficult. Moreover, this classical statement doesn’t give infor-
mation about the rate of the convergence. Therefore, we are going to prove the
convergence of the IEM in another way, which is compact and short.

5 Convergence of the Implicit Euler Method- Another
Approach

We consider the IEM, which means that the values yn at the mesh-points ωh

defined by the one-step recursion (5). Rearranging the local truncation error for
IEM of the form (9) we have

u(tn+1) = u(tn) + hf(tn+1, u(tn+1)) + l(h). (28)

Based on the expressions (5) and (11), we get the error equation in the form

en+1 = en + h (f(tn+1, u(tn+1))− f(tn+1, yn+1)) + l(h). (29)

Hence, using the Lipschitz property (3), we obtain

|en+1| ≤ |en|+ hL|en+1|+ |l(h)|, (30)

which implies the relation

(1− Lh)|en+1| ≤ |en|+ |l(h)|. (31)
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Assume that h < h0 :=
1

2L
. Then (31) implies the relation

|en+1| ≤
1

1− hL
|en|+

1

1− hL
|l(h)|. (32)

We give an estimation for
1

1− hL
. Based on the assumption, hL ≤ 0.5, therefore

we can write this expression as

1 <
1

1− hL
= 1 + hL+ (hL)2 + · · ·+ (hL)n + · · · =

1 + hL+ (hL)2
(
1 + hL+ (hL)2 + . . .

)
= 1 + hL+ (hL)2

1

1− hL
.

(33)

Obviously, for the values Lh < 0.5 the estimation
(hL)2

1− hL
< hL holds. There-

fore, we have the upper bound

1

1− hL
< 1 + 2hL < exp(2hL). (34)

Since for the values Lh ∈ [0, 0.5] obviously
1

1− hL
≤ 2, therefore for the global

error the substitution (34) into (32) results in the recursive relation

|en| ≤ exp(2hL)|en−1|+ 2|l(h)|. (35)

Let us apply Lemma 1 to the global error en. Choosing a = exp(2hL) > 1,
b = 2|l(h)| > 0, and owning the relation (35), based on (14) we get

|en| ≤ [exp(2hL)]
n |e0|+ n [exp(2hL)]

n−1
2|l(h)|. (36)

Due to the obvious relations

[exp(2hL)]
n
= exp(2Lhn) = exp(2Ltn),

and

n [exp(2hL)]
n−1

2|l(h)| < 2nh exp(2Lhn)
|l(h)|
h

= 2tn exp(2Ltn)
|l(h)|
h

,

the relation (36) results in the estimation

|en| ≤ exp(2Ltn)

[
|e0|+ 2tn

|l(h)|
h

]
, (37)

which is hold for every n = 1, 2, . . . , N .
Using the expression for the local truncation error in the form (10), the esti-

mation (37) can be rewritten as

|en| ≤ exp(2Ltn)

[
|e0|+ 2tn

h

2
u′′(ϑIEM

n )

]
, (38)
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where, as before ϑIEM
n ∈ (tn, tn+1) is some fixed number. Hence, introducing the

notation M
(n)
2 = max

[tn−1,tn]
|u′′(t)|, for the global error at any mesh-point t = tn

we get the estimation

|en| ≤ exp(2Ltn)
[
|e0|+M

(n)
2 htn

]
, (39)

for any n = 1, 2, . . . , N .
Putting n = N into (39), and taking into the account the relation t� = Nh,

with the notation M2 = max
[0,t�]

|u′′(t)| we get

|eN | ≤ exp(2Lt�) [|e0|+M2t
�h] . (40)

Since e0 = 0, therefore, finally we get

|eN | ≤ CIEM · h, (41)

where CIEM = M2t
� exp(2Lt�) = constant. This proves the following statement.

Theorem 4. The implicit Euler method is convergent and then rate of conver-
gence is one.

6 Concluding Remarks

Finally, we give some comments.

♦ The convergence on the interval [0, t�] yields the relation
lim
h→0

maxn=1,2,...,N |en| = 0. As one can easily see, based on the rela-

tions (21) (for the EEM) and (37) (for the IEM) the local truncation error
|en| can be bounded by the expression CEEM ·h (for the EEM) and CIEM ·h
(for the IEM). This means that both methods are convergent on the interval
[0, t�] in the first order.

♦ The general (not necessarily linear) multi-step methods can be written in
the form

k∑
j=0

αjyn+j = hΦf (yn+k, yn+k−1, . . . , yn, tn;h), (42)

where the subscript f on the right-hand side indicates that the dependence
of Φ on yn+k, yn+k−1, . . . , yn, tn is through the function f(t, u). We impose
the following two conditions on (42):

Φf≡0(yn+k, yn+k−1, . . . , yn, tn;h) ≡ 0,

|Φf (yn+k, yn+k−1, . . . , yn, tn;h)− Φf (ỹn+k, ỹn+k−1, . . . , ỹn, tn;h)|

≤ M
k∑

j=0

|yn+j − ỹn+j |,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(43)
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where M is a constant. (These conditions are not very restrictive, e.g., the
second one is automatically satisfied if the initial value problem to be solved
satisfies a Lipschitz condition.)

Theorem 5. The necessary and sufficient conditions for the method (42)
to be convergent are that it be both consistent and zero-stable.

The necessary and sufficient conditions for consistency can be expressed by
the first characteristic polynomial: the method (42) is consistent if and only
if

�(1) = 0 (44)

and

Φf (y(tn), y(tn), . . . , y(tn), tn; 0)/�
′(1) = f(tn, y(tn)), (45)

see [7], p. 30.

To verify the zero-stability, we refer to root condition in Theorem 1.
Hence, we can check the convergence directly for both the EEM and IEM.
Clearly, for these methods k = 1, and

ΦEEM
f (yn+1, yn, tn;h) = f(tn, yn), for the EEM,

and

ΦIEM
f (yn+1, yn, tn;h) = f(tn + h, yn+1), for the IEM.

Moreover, �(z) = z − 1. Hence the properties (43), (44), (45) and the root
condition can be checked directly. These together result in the convergence
of the Euler methods.

♦ As (44) shows, for the consistent methods z = 1 is always the root of the first
characteristic polynomial. Since for the one-step methods this polynomial is
of first order, therefore for this case the polynomial has only one root, thus,
such methods are always zero-stabile. Hence, we can conclude the following
statement.

Theorem 6. The consistent one-step methods are convergent.

♦ For the general linear multi-step method we can get more sharp result than
the statement of Theorem 3. Namely,

Theorem 7. For a linear multi-step method that is consistent with the or-
dinary differential equation (1) where f is assumed to satisfy a Lipschitz
condition, and starting with consistent initial data, zero-stability is neces-
sary and sufficient for convergence. Moreover if the solution has continuous
derivative of order p + 1, and the local truncation error O(hp+1), then the
global error en is of order O(hp).

This theorems is due to Dahlquist (the proof can be found e.g. in [10]), and
it says that the orders of consistency and convergence are coincided.
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♦ In our paper we did not consider roundoff error,which is always present in
computer calculations. At the present time there is no universally accepted
method to analyze roundoff error after a large number of time steps. The
three main methods for analyzing roundoff accumulation are the analytical
method, the probabilistic method and the interval arithmetic method, each
of which has both advantages and disadvantages.

♦ In the IEM is implicit, in each step we must solve a -usually non-linear-
equations, namely, the root of the equation of the form g(s) := s−hf(tn, s)−
yn = 0. This can be done by using some iterative method such as Newton
method.

♦ In this paper we have been concerned with the stability and accuracy prop-
erties of the Euler methods in the asymptotic limit of h → 0 and n → ∞
here n ·h fixed. However, it is of practical significance to investigate the per-
formance of methods in the case of h > 0 and fixed and n→ ∞. Specifically,
we would like to ensure that when applied to an initial value problem whose
solution decays to zero as t→ ∞, the Euler methods exhibit a similar behav-
ior, for h > 0 fixed and tn → ∞. This problem is investigated on the famous
Dalquaist scalar test equation, and it requires the so called A-stability prop-
erty. As it is known, from this point of view the IEM is much more better: it
is A-stable without any restriction w.r.t. h (”absolute stable”), however the
EEM is bounded only under some strict condition for h. The latter makes
the EEM unusable for several class of the problem, like stiff problems.

Acknowledgement. The work supported by the Hungarian Research Grant
OTKA K 67819.
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Abstract. Let Ω ⊂ R
d, d � 1, be a bounded domain with piecewise

smooth boundary ∂Ω and let U be an open subset of a Banach space
Y . Motivated by questions in “Uncertainty Quantification,” we consider
a parametric family P = (Py)y∈U of uniformly strongly elliptic, second
order partial differential operators Py on Ω. We allow jump discontinu-
ities in the coefficients. We establish a regularity result for the solution
u : Ω × U → R of the parametric, elliptic boundary value/transmission
problem Pyuy = fy , y ∈ U , with mixed Dirichlet-Neumann bound-
ary conditions in the case when the boundary and the interface are
smooth and in the general case for d = 2. Our regularity and well-
posedness results are formulated in a scale of broken weighted Sobolev
spaces K̂m+1

a+1 (Ω) of Babuška-Kondrat’ev type in Ω, possibly augmented
by some locally constant functions. This implies that the parametric,
elliptic PDEs (Py)y∈U admit a shift theorem that is uniform in the
parameter y ∈ U . In turn, this then leads to hm-quasi-optimal rates
of convergence (i. e., algebraic orders of convergence) for the Galerkin
approximations of the solution u, where the approximation spaces are
defined using the “polynomial chaos expansion” of u with respect to a
suitable family of tensorized Lagrange polynomials, following the method
developed by Cohen, Devore, and Schwab (2010).

1 Introduction

Recently, questions related to differential equations with random coefficients have
received a lot of attention due to the practical applications of these problems
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[2,7,9,16,17]. Our paper is motivated by the approach in [6,13], where families
of differential operators on polyhedral domains indexed by y ∈ U , were studied.
As in those papers, U is an open subset of a Banach space Y , which allows us
to study the analyticity of the solution in terms of y ∈ U .

We here study the properties of solutions to a family of strongly elliptic, mixed
boundary value/transmission problems

Pyuy(x) = Pu(x, y) = fy(x) = f(x, y), x ∈ Ω, y ∈ U (1)

on a domain Ω ⊂ Rd, d ≥ 1. The domain Ω is assumed to be piecewise
smooth and bounded. Thus, for each y ∈ U , we are given a second order,
uniformly strongly positive, parametric partial differential operator Py on Ω
whose coefficients are functions of (x, y) ∈ Ω × U and are allowed to have
jump discontinuities across a fixed interface Γ . More precisely, we assume that
Ω = ∪K

k=1Ωk, where Ωk are disjoint domains with piecewise smooth boundaries
and Γ :=

(
∪K
k=1 ∂Ωk

)
� ∂Ω.

Under suitable regularity assumptions on the coefficients of P and on the
source term f : Ω × U → R, we establish in Section 5 a regularity and well-
posedness result for the solution u : Ω×U → R of the parametric, elliptic bound-
ary value/transmission problem (1) with mixed Dirichlet-Neumann boundary
conditions. Our regularity result is formulated in a scale of broken weighted
Sobolev spaces K̂m+1

a+1 (Ω) = ⊕K
k=1Km+1

a+1 (Ωk) of Babuška-Kondrat’ev type in Ω,
for which we prove that our elliptic PDEs (Py)y∈U admit a shift theorem that
is uniform in the parameter y ∈ U . We deal completely in this paper with the
cases when the boundary ∂Ω and the interface Γ are smooth and disjoint. We
also indicate how to proceed in the general case for d = 2. Our results gener-
alize the results of [13] by allowing jump discontinuities in the coefficients and
by allowing adjacent edges to be endowed with Neumann-Neumann boundary
conditions. We will be therefore brief in our presentation, referring to [13], as
well as [6,7] for more details.

The main contribution of this paper is to study the regularity of the solution
of a (non-parametric) transmission/boundary value problem with rather weak
smoothness assumptions on the coefficients. As far as we know, this paper is the
only place where a complete proof for the regularity of transmission problems is
given, even in the case of smooth coefficients. The results are general enough so
that one can use the approach in [6,13] to obtain regularity results for families
and then to obtain optimal rates of convergence for the Galerkin method. An
abstract version of this method is explained in [3]. These issues will be discussed
in more detail in a forthcoming paper.

The paper is organized as follows. In Section 2 we formulate our parametric
partial differential boundary value/transmission problem and introduce some
of our main assumptions. We also discuss the needed notions of positivity for
families of operators and derive some simple consequences. In Section 3, we
review the “broken” version of usual Sobolev spaces, and then formulate and
prove the main results, Theorem 1, which is a regularity and well-posedness
result for non-parametric solutions in smooth case. In Section 4, we recapitulate
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regularity and well-posedness results for the non-parametric, elliptic problem
from [4,5,10], the main result being Theorem 2. This theorem is then generalized
to families in Section 5, thus yielding our main regularity and well-posendess
result for parametric families of uniformly strongly boundary value/transmission
problems, namely Theorem 3. As mentioned above, this result is formulated in
broken weighted Sobolev spaces (the so called “Babuška-Kondrat’ev” spaces).
As in [6,7,13] these results lead to hm-quasi-optimal rates of convergence for a
suitable Galerkin method for the approximation of our parametric solution u.

Acknowledgements. VN acknowledges the support of the Hausdorff Institute
for Mathematics (HIM) in Bonn during the HIM Trimester “High dimensional
approximation,” where this work was initiated. We also thank Christoph Schwab
for several useful discussions.

2 Ellipticity, Positivity, Solvability for Parametric
Families

We now formulate our parametric partial differential boundary value/
transmission problem and introduce some of our main assumptions.

2.1 Notation and Assumptions

By Ω ⊂ R
d, d ≥ 1, we shall denote a connected, bounded piecewise smooth

domain, which we assume is decomposed into finitely many subdomains Ωk

with piecewise smooth boundary, Ω = ∪K
k=1Ωk. We obtain results on the spatial

regularity of PDEs whose data depend on a parameter vector y ∈ U ⊂ Y , where
U is an open subset of a Banach space Y . By aijpq, b

i
pq, cpq : Ω × U → R, 1 ≤

i, j ≤ d, we shall denote bounded, measurable functions satisfying smoothness
and other assumptions to be made precise later. We denote by A = (aijpq, b

i
pq, cpq).

Let us denote by ∂i =
∂

∂xi
, i = 1, . . . , d. We shall then denote by PA = [PA

pq] a
μ× μ matrix of parametric differential operators in divergence form

PA
pqu(x, y) :=

⎛⎝−
d∑

i,j=1

∂i
(
aijpq(x, y)∂j

)
+

d∑
i=1

bipq(x, y)∂i + cpq(x, y)

⎞⎠ u(x, y), (2)

where x ∈ Ω and y ∈ U . Note that the derivatives act only in the x-direction
and y is just a parameter. The matrix case is needed in order to handle the case
of systems, such as that of (anisotropic) linear elasticity.

A matrix P = [Ppq]
μ
p,q=1 of differential operators acts on vector-valued func-

tions u = (uq)
μ
q=1 in the usual way (Pu)p =

∑μ
q=1 Ppquq, for u = (uq) ∈

C∞(Ω × U)μ. We recall that H−1(Ω) is defined as the dual of H1
0 (Ω) := {u ∈

H1(Ω), u|∂Ω = 0} with pivot L2(Ω). Occasionally, we shall need to specialize a
family P for a particular value of y, in which case we shall write Py : C∞(Ω)μ →
H−1(Ω)μ for the induced operator. We emphasize that we allow P to have non-
smooth coefficients, so that Pu may be non-smooth in general.
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2.2 Boundary and Interface Conditions

We impose mixed Dirichlet and Neumann boundary conditions. To this end, we
assume there is given a closed set ∂DΩ ⊂ ∂Ω, which is a union of polygonal
subsets of the boundary and we let ∂NΩ := ∂Ω � ∂DΩ. The set ∂DΩ will be
referred to as “Dirichlet boundary” and ∂NΩ as “Neumann boundary,” accord-
ing to the type of boundary conditions that we associate to these parts of the
boundary. The case of cracks is also allowed, provided that one treats different
sides of the crack as different parts of the boundary, as in [10], for instance,
but we choose not to treat this case explicitly in this paper. We then define the
conormal derivatives

(∇A
ν u)p(x, y) =

μ∑
q=1

d∑
i,j=1

νia
ij
pq(x, y)∂juq(x, y), x ∈ ∂NΩ, y ∈ U, (3)

where ν = (νi) is the outward unit normal vector at x ∈ ∂NΩ. The conormal
derivatives ∇A

ν u
± at the interface Γ are defined similarly, using an arbitrary but

fixed labeling of the two sides of the interface into a positive and a negative part.
We shall also need the spacesH1

D(Ω) andH−1
D (Ω) for vector-valued functions:

H1
D(Ω) := {u ∈ H1(Ω)μ, u = 0 on ∂DΩ} and H−1

D (Ω), defined to be the dual
of H1

D(Ω) with pivot space L2(Ω). Note that we assume here as in [13] that we
have the same type of boundary conditions for all components uq of the solution
vector u.

Recall that our domain Ω is decomposed into K subdomains of the same
type (with piecewise smooth boundary), Ω = ∪K

k=1Ωk. We then denote by Γ :=(
∪K
k=1 ∂Ωj

)
� ∂Ω the interface of our problem. We also fix arbitrarily the sides

of the interface, and we thus denote by u+, respectively u− the non-tangential
limits of u at the two sides of the interface. We define similarly the conormal
derivatives ∇A

ν u
+ and ∇A

ν u
− at the interface, but using the two sided limits

of the coefficients aijpq at Γ . We consider the parametric family of boundary
value/interface problems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

PAu(x, y) = f(x, y) x ∈ Ω,
u(x, y) = 0 x ∈ ∂DΩ,
∇A

ν u(x, y) = g(x, y) x ∈ ∂NΩ
u+(x, y)− u−(x, y) = 0 x ∈ Γ
∇Au+(x, y)−∇Au−(x, y) = h(x, y) x ∈ Γ

(4)

where PA is as in Equation (2), ∇A
ν is as in Equation (3), and y ∈ U . We stress

that for us the dependence of PA on its coefficients, that is on A, is important,
which justifies our notation.

2.3 Ellipticity and Positivity for Differential Operators

In this subsection we recall the definition of the positivity property for parametric
families of differential operators. Let us therefore consider, for any y ∈ U , the
parametric bilinear form B(y; · , · ) defined by
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B(y; v, w) :=
∫
x∈Ω

∑μ
p,q=1

(∑d
i,j=1 a

ij
pq(x, y)∂ivp(x, y)∂jwq(x, y)∑d

i=1 b
i
pq(x, y)∂ivp(x, y)wq(x, y) + cpq(x, y)vp(x, y)wq(x, y)

)
dx , y ∈ U. (5)

Definition 1. The family (Py)y∈U is called uniformly strictly positive definite
on H1

0 (Ω)μ ⊂ V ⊂ H1(Ω)μ if the coefficients aijpq are symmetric in i, j and in p, q

(that is, aijpq = ajipq = aijqp, for all i, j, p, and q), and if there exist 0 < r < R < ∞
such that for all y ∈ U , and v, w ∈ V , we have

|B(y; v, w)| ≤ R‖v‖H1(Ω)‖w‖H1(Ω) and r‖v‖2H1(Ω) ≤ B(y; v, v).

If U is reduced to a single point, that is, if we deal with the case of a single
operator instead of a family, then we say that P is strictly positive definite.
Throughout this paper, we shall assume that (Py)y∈U is uniformly strictly pos-
itive definite. Positivity is closely related to ellipticity.

Definition 2. The family (Py)y∈U is called uniformly strongly elliptic if the
coefficients aijpq are symmetric in i, j and in p, q and if there exist 0 < re < Re <

∞ such that for all x ∈ D, y ∈ U , ξ ∈ Rd, and η ∈ Rμ

re|ξ|2|η|2 ≤
μ∑

p,q=1

d∑
i,j=1

aijpq(x, y)ξiξjηpηq ≤ Re|ξ|2|η|2 . (6)

In case one is interested only in scalar equations (not in systems), then for
V = H1

D(Ω), the assumption that our family Py is uniformly positive definite
can be replaced with the (slightly weaker) assumption that the family Py is

uniformly strongly elliptic, that
∑d

i=1 ∂ib
i = 0 in Ω,

∑d
i=1 νib

i = 0 on ∂NΩ,
c ≥ 0, and ∂DΩ �= ∅ (in which case it also follows that ∂DΩ has a non-empty
measure). In general, a uniformly strictly positive family P will also be uniformly
strongly elliptic.

2.4 Consequences of Positivity

The usual Lax-Milgram lemma gives the following result as in [6]. Recall the
constant r from Definition 1.

Proposition 1. Assume that fy := f( · , y) ∈ H−1
D (Ω), for any y ∈ U . Also,

assume that the family P is uniformly strictly positive definite. Then our family
of boundary value problems Pyuy = fy, uy ∈ H1

D(Ω), i. e., Equation (4), admits
a unique solution uy = P−1

y fy. Moreover, ‖P−1
y ‖L(H−1

D ;H1
D) ≤ r−1, for all y ∈ U.

The parametric solution uy ∈ H1
D(Ω) of Proposition 1 is then obtained from

the usual weak formulation: given y ∈ U , find uy ∈ V := H1
D(Ω) such that

B(y;uy, w) = (fy, w) +

∫
∂NΩ

gywdS +

∫
Γ

hywdS, ∀w ∈ V, (7)

where (fy, w) denotes the L2(Ω) inner product and dS is the surface measure
on ∂Ω or on Γ . Also, fy(x) = f(x, y), and similarly for uy, gy, and hy.
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3 Broken Sobolev Spaces and Higher Regularity
of Non-parametric Solutions in the Smooth Case

One of our main goals is to obtain regularity of the solution u both in the space
variable x and in the parameter y. It is convenient to split this problem into two
parts: regularity in x and regularity in y. We first address regularity in x in the
case when the boundary ∂Ω and the interface Γ are smooth and disjoint. We also
assume that each connected component of the boundary is given a single type
of boundary conditions: either Dirichlet or Neumann. This leads to Theorem 1,
which states the regularity and well-posedness of Problem (4) in this smooth
case (∂Ω and Γ smooth and disjoint). This is the main result of this paper,
and, as far as we know, no complete proof was given before. We also consider
coefficients with lower regularity than it is usually assumed, which is needed to
treat the truly parametric case. (We are planning to address this question in a
future paper.)

We assume throughout this and the following section that we are dealing with
a single, non-parametric equation (not with a family), that is, that U is reduced
to a single point in this subsection. We also assume that μ = 1, to simplify the
notation.

We shall need the “broken” version of the usual Sobolev spaces to deal with
our interface problem. Recall the subdomains Ωk ⊂ Ω, 1 ≤ k ≤ K, we define:

Ĥm(Ω) := {v : Ω → R, v ∈ Hm(Ωk), ∀1 ≤ k ≤ K} (8)

Ŵm,∞(Ω) := {v : Ω → R, ∂αv ∈ L∞(Ωk), ∀1 ≤ k ≤ K, |α| ≤ m}.

For further reference we note that the definitions of these spaces imply that
the multiplication and differentiation maps Ŵm,∞(Ω)× Ĥm(Ω) → Ĥm(Ω) and
∂i : Ĥ

m(Ω) → Ĥm−1(Ω) are continuous.
One of the difficulties of dealing with interface problems is the more compli-

cated structure of the domains and ranges of our operators. When m = 0, we
define Dm = D0 = H1

D(Ω) = V and Rm = R0 = H−1
D (Ω) = V ∗. Then we define

P̃A in a weak sense using the bilinear form B introduced in Equation (5) (see
the discussion around Equation (2.12) in [10] for more details or the discussion
around Equation (20) in [11]). Assume now that m ≥ 1. We then define

Dm := Ĥm+1(Ω) ∩ {u = 0 on ∂DΩ} ∩ {u+ − u− = 0 on Γ} and

Rm := Ĥm−1(Ω) ⊕Hm−1/2(∂NΩ)⊕Hm−1/2(Γ ).

In particular, Dm = Ĥm+1(Ω) ∩H1
D(Ω). Let A = (aij , bi, c) ∈ Ŵm,∞(Ω)d

2+d+1

and PAu =
∑2

i,j=1 ∂i(a
ij∂ju) +

∑2
i=1 b

i∂iu + cu, as before. Then the family of

partial differential operators P̃A
m : Dm → Rm,

P̃A
mu =

(
PAu,∇A

ν u|∂NΩ, (∇A
ν u

+ −∇A
ν u

+)|Γ
)

(9)

is well defined. Note that the domain Dm and codomain Rm are independent of
y ∈ U , which justifies why we do not consider homogeneous Neumann boundary
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conditions. We are now ready to state and prove our main theorem. Let us denote

‖u‖Ĥm(Ω) :=
(∑K

k=1 ‖u‖Hm(Ωk)2

)1/2
and ‖v‖Ŵm,∞(Ω) :=

∑K
k=1 ‖v‖Wm,∞(Ωk)

the resulting natural norms on the spaces introduced in Equation (8).

Theorem 1. Let us assume that Ω ⊂ Rd is smooth and bounded, that the inter-
face Γ is smooth and does not intersect the boundary, and that to each compo-
nent of the boundary it is associated a single type of boundary conditions (either

Dirichlet or Neumann). Assume that A = (aij , bi, c) ∈ Ŵm,∞(Ω)d
2+d+1 and that

PA is strictly positive definite on H1
D(Ω), then P̃A

m : Dm → Rm is invertible.
Moreover, let ‖P−1‖ denote norm of the inverse of the map P : H1

D(Ω) →
H1

D(Ω)∗ =: H−1
D (Ω). Then there exists a constant C̃1 > 0 such that the solution

u of (4) satisfies

‖u‖Ĥm+1(Ω)+‖u‖H1(Ω) ≤ C̃1

(
‖f‖Ĥm−1(Ω)‖g‖Hm− 1

2 (∂NΩ)
+‖h‖

Hm− 1
2 (Γ )

)
, (10)

with the constant C̃1 = C̃1(m, ‖P−1‖, ‖A‖Ŵm,∞).

Proof. In the case of the pure Dirichlet boundary conditions for an equation and
without the explicit bounds in Equation (10), this lemma is a classical result,
which is proved using divided differences and the so called “Nirenberg’s trick”
(see [8,12]). Since we consider transmission problems and want the more explicit
bounds in the above Equation (10), let us now indicate the main steps to treat
the interface regularity following the classical proof and [13]. The boundary
conditions (i. e., regularity at the boundary) were dealt with in [13]. In all the
calculations below, all the constants C in this proof will be generic constants
that will depend only on the variables on which C̃1 depends (i. e., on the order
m, the norms ‖P−1‖ and ‖A‖Ŵm,∞(Ω)). We split the proof into several steps.

Step 1. We first use Proposition 1 to conclude that P : H1
D(Ω) → H1

D(Ω)∗ is
indeed invertible. This provides the needed estimate for m = 0 (in which case,
we recall, our problem (4) has to be interpreted in a weak sense).

Step 2. For m > 0 we can assume g = 0 and h = 0 by using the extension
theorem as in [13].

Step 3. We also notice that, in view of the invertibility of P for m = 0 and
since u ∈ H1

D(Ω), it suffices to prove

‖u‖Ĥm+1(Ω) ≤ C
(∑

k

‖f‖Hm−1(Ωk) + ‖u‖Ĥm(Ω)

)
. (11)

Indeed, the desired inequality (10) will follow from Equation (11) by induction
on m. Since Equation (11) holds for P if, and only if, it holds for λ+P , in order
to prove Equation (11), it is also enough to assume that λ+P is strictly positive
for some λ ∈ R. In particular, Equation (11) will continue to hold–with possibly
different constants–if we change the lower order terms of P .

Step 4. Let us assume that Ω = Rd with the interface given by Γ = {xd = 0}.
Let Ω1 = Rd

+ and Ω2 = Rd
− be the two halves into which Rd is divided (so

K = 2). Then we prove Equation (11) for these particular domains and for
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g = 0 and h = 0 by induction on m. As we have noticed, the Equation (11) is
true for m = 0, since the stronger relation (10) is true in this case. Thus, we
shall assume that Equation (11) has been proved for m and for smaller values
and we will prove it for m+ 1. That is, we want to prove

‖u‖Ĥm+2(Rd) ≤ C
(
‖f‖Ĥm(Rd) + ‖u‖Ĥm+1(Rd)

)
. (12)

To this end, let us first write

‖u‖Ĥm+2(Rd) ≤
d∑

j=1

‖∂ju‖Ĥm+1(Rd) + ‖u‖L2(Rd) . (13)

We then use our estimate (11) for m (using the induction hypothesis) applied
to the function ∂ju for j < d. This gives

‖∂ju‖Ĥm+1(Rd) ≤ ‖P∂ju‖Ĥm−1(Rd) ≤ ‖∂jf‖Ĥm−1(Rd) + ‖[P, ∂j ]u‖Ĥm−1(Rd)

≤ ‖f‖Ĥm(Rd) + C‖u‖Ĥm+1(Rd) (14)

since the commutator [P, ∂j ] = P∂j − ∂jP is an operator of order ≤ 2 whose
coefficients can be bounded in terms of ‖A‖Ŵm,∞(Ω). We now only need to

estimate ‖∂du‖Hm+1 , we do that on each half subspace.

‖∂du‖Ĥm+1(Rd) ≤
∑d

j=1 ‖∂j∂du‖Ĥm(Rd) + ‖∂du‖L2(Rd)

≤
∑d−1

j=1 ‖∂ju‖Ĥm+1(Rd) + ‖∂2du‖Ĥm(Rd) + ‖u‖Ĥ1(Rd). (15)

The right hand side of the above equation contains only terms that have already
been estimated in the desired way, except for ‖∂2du‖Hm . Since m ≥ 0, we can
use the relation Pu = f to estimate this term as follows. Let us write Pu =∑
∂i(a

ij∂ju)+
∑
bi∂iu+ cu. This gives add∂2du = f −

∑
(i,j) 	=(d,d) a

ij∂i∂ju+Qu,

where Q is a first order differential operator. Next we notice that add is uniformly
bounded from below by the uniform strong positivity property (which implies
uniform strong ellipticity): (add)−1 ≤ r−1. Note that by Proposition 1, we have
‖P−1‖ ≤ r, and hence r−1 is an admissible constant. This gives ∂2du = (add)−1f−∑d−1

j=1 B
j∂ju +Q1u where Bj and Q1 are first order differential operators with

coefficients bounded by admissible constants, which then gives

‖∂2du‖Ĥm(Rd) ≤ C
(
‖f‖Ĥm(Rd) +

d−1∑
j=1

‖∂ju‖Ĥm+1(Rd) + ‖u‖Ĥm+1(Rd)

)
(16)

≤ C
(
‖f‖Ĥm(Rd) + ‖u‖Ĥm+1(Rd)

)
by Equation (14). Equation (15) and (16) then give

‖∂du‖Ĥm+1(Rd) ≤ C
(
‖f‖Ĥm(Rd) + ‖u‖Ĥm+1(Rd)

)
. (17)

Combining Equations (17) and (14) with Equation (13) gives then the desired
Equation (12) for m replaced with m+ 1.
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Step 5. We finally reduce to the case of a half-space or a full space using
a partition of unity as in the classical case, as follows. We choose a smooth
partition of unity (φj) on Ω consisting of functions with small supports. The
supports should be small enough so that if the support of φj intersects the
boundary of Ω or the interface Γ , then the boundary or the interface can be
straightened in a small neighborhood of the support of φj . We arrange that the
resulting operators are positive and we complete the proof as in [13].

See also [14,15].

4 Weighted Sobolev Spaces and Higher Regularity of
Non-parametric Solutions

We now assume d = 2, so Ω is a plane domain. We allow however Ω to be
piecewise smooth. We also consider coefficients with lower regularity than the
ones considered in [10]. This leads to Theorem 2, which will be then generalized
to families in a forthcoming paper, which will contain also full details for the
remaining results. We continue to assume that we are dealing with a single,
non-parametric equation and that μ = 1.

To formulate further assumptions on our problem and to state our results,
we shall need weighted Sobolev spaces, both of L2 and of L∞ type. Let V be
the set of singular points, where Q ∈ V if one of the following is satisfied: (1) it
is a vertex, (2) it is a point where the boundary condition changes type (from
Dirichlet to Neumann), (3) it is a point where the interface meets the boundary,
or (4) it is a non-smooth point on the interface of the subdomains Ωk. Let us
denote from now on by ρ : R2 → [0, 1] a continuous function that is smooth
outside the set V and is such that ρ(x) is equal to the distance from x ∈ R2 to V
when x is close to the singular set V . The function ρ will be called the smoothed
distance to the set of singular points. We can also assume ‖∇ρ‖ ≤ 1, which will
be convenient in later estimates, since it will reduce the number of constants (or
parameters) in our estimates. We first define the Babuška-Kondrat’ev spaces

Km
a (Ω) := {v : Ω → R, ρ|α|−a∂αv ∈ L2(Ω), ∀ |α| ≤ m} (18)

Wm,∞(Ω) := {v : Ω → R, ρ|α|∂αv ∈ L∞(Ω), ∀ |α| ≤ m}. (19)

We shall denote by ‖ · ‖Km
a (Ω) and ‖ · ‖Wm,∞(Ω) the resulting natural norms

on these spaces. We shall need also the “broken” version of these Babuška-
Kondrat’ev spaces for our interface problem. Recall the subdomains Ωk ⊂ Ω,
1 ≤ k ≤ K. In analogy with the smooth case, we then define: K̂m

a (Ω) := {v :
Ω → R, v ∈ Km

a (Ωk), ∀1 ≤ k ≤ K}, and Ŵm,∞(Ω) := {v : Ω → R, v ∈
Wm,∞(Ωk), ∀1 ≤ k ≤ K}. If V is empty (that is, if the domain Ω is smooth
and the interface is also smooth and does not touch the boundary), then we
set ρ ≡ 1 and our spaces reduce to the broken Sobolev spaces Ĥm(Ω) and
Ŵm,∞ introduced in the previous section, Equation (8). As in the smooth case,
the multiplication and differentiation maps Ŵm,∞(Ω) × K̂m

a (Ω) → K̂m
a (Ω) and

∂i : K̂m
a (Ω) → K̃m−1

a−1 (Ω) are continuous. Let S ⊂ ∂Ωk. Also as in the smooth
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case, we define the spaces Km+1/2
a+1/2 (S) as the restrictions to S of the functions

u ∈ Km+1
a+1 (Ωk). These spaces have intrinsic descriptions [1,11] similar to the

usual Babuška-Kondrat’ev spaces. Note that no “hat” is needed for the boundary

version of the spaces K̂. Also Km+1/2
a+1/2 (S1 ∪ S2) = Km+1/2

a+1/2 (S1) ⊕ Km+1/2
a+1/2 (S2), if

S1 and S2 are disjoint.
We need to consider the subset Vs of V consisting of Neumann-Neumann

corners (i. e., corners where two edges endowed with Neumann boundary con-
ditions meet) and non-smooth points of the interface, which can be described
as Vs := V � {Q ∈ V , Q ∈ ∂DΩ}. Note that, if a point Q at the intersection
of the interface Γ and the boundary falls on an edge with Neumann boundary
conditions, then Q is also included in Vs. In order to deal with the singularities
arising at the points in Vs (which behave differently than the singularities at the
other points of V), we also need to augment our weighted Sobolev spaces with
a suitable finite-dimensional space. Namely, for each point Q ∈ Vs, we choose a
function χQ ∈ C∞(Ω̄) that is constant equal to 1 in a neighborhood of Q. We
can choose these functions to have disjoint supports. Let Ws be the linear span
of the functions χQ for any Q ∈ Vs. We now define the domains and ranges of
our operators. Assume first that m ≥ 1.

Da,m := (K̂m+1
a+1 (Ω) +Ws) ∩ {u = 0 on ∂DΩ} ∩ {u+ − u− = 0 on Γ}

Ra,m := K̂m−1
a−1 (Ω)⊕Km−1/2

a−1/2 (∂NΩ)⊕Km−1/2
a−1/2 (Γ ).

Let us observe that, by definition, the functions in Ws satisfy the interface and
boundary conditions (so Ws ⊂ V := H1

D(Ω)). Moreover, for a ≥ 0, we have

Da,m = (K̂m+1
a+1 (Ω) +Ws) ∩H1

D(Ω). Denote A = (aij , bi, c) ∈ Ŵm,∞(Ω)d
2+d+1,

d = 2, and PAu =
∑2

i,j=1 ∂i(a
ij∂ju) +

∑2
i=1 b

i∂iu + cu, as before. Then the

family of partial differential operators P̃A
a,m : Da,m → Ra,m

P̃A
a,mu =

(
Pu,∇A

ν u|∂NΩ, (∇A
ν u

+ −∇A
ν u

+)|Γ
)

(20)

is well defined and the induced map Ŵm,∞(Ω)(d
2+d+1) � A = (aij , bi, c) →

PA
a,m ∈ L(Da,m,Ra,m) is continuous (recall that d = 2). The continuity of this

map motivates the use of the spaces Ŵm,∞(Ω).
When m = 0, we define

Da,m = Da,0 = K1
a+1(Ω) ∩ {u = 0 on ∂DΩ} +Ws

Ra,m = Ra,0 = (K1
−a+1(Ω) ∩ {u = 0 on ∂DΩ})∗,

where in the last equation the dual is defined as the dual with pivot L2(Ω). Then
we define P̃a,0 in a weak sense using the bilinear form B introduced in Equation
(5), as in the smooth case.

Recall the constant 0 < r in the definition of the uniform strict positivity
(Definition 1) and Proposition 1. We now state the main result of this section.
Recall that U is reduced to a point in this section.
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Theorem 2. Assume that A = (aij , bi, c) ∈ Ŵm,∞(Ω)d
2+d+1, d = 2, and that

PA is strictly positive definite on V = H1
D(Ω). Then there exists 0 < η such

that for any m ∈ N0 and for any 0 < a < η, the map P̃A
a,m : Da,m → Ra,m is

boundedly invertible and ‖(P̃A
a,m)−1‖ ≤ C̃, where C̃ = C̃(m, r, a, ‖A‖Ŵm,∞(Ω))

depends only on the indicated variables.

A more typical formulation is given in the following corollary.

Corollary 1. We use the notation and the assumptions of Theorem 2. If f ∈
K̂m−1

a−1 (Ω), g ∈ Km−1/2
a−1/2 (∂NΩ), and h ∈ Km−1/2

a−1/2 (Γ ), then the solution u ∈ H1
D(Ω)

of Problem (4) can be written u = ur + us, with ur ∈ K̂m+1
a+1 (Ω) and u ∈ Ws,

such that

‖ur‖K̂m+1
a+1

+ ‖us‖L2 ≤ C̃
(
‖f‖K̂m−1

a−1
+ ‖g‖Km−1/2

a−1/2
(∂NΩ)

+ ‖h‖Km−1/2

a−1/2
(Γ )

)
,

with C̃ as in Theorem 2.

5 Applications

We keep the settings and notations of the previous section. In particular, d = 2
and we are dealing with equations (not systems). One can proceed as in [6,7,13] to
obtain hm-quasi-optimal rates of convergence for the Galerkin un approximations
of u. Namely, under suitable additional regularity in the y ∈ U variable one can
construct a sequence of finite dimensional subspaces Sn ⊂ L2(U ;V ) such that

‖u− un‖L2(U ;V ) ≤ C dim(Sn)
−m/2‖f‖Hm−1(Ω). (21)

This is based on a holomorphic regularity in U and on the approximation prop-
erties in [10]. We now state a uniform shift theorem for our families of boundary
value/transmission problems.

Let us denote by Ck
b (U ;Z) the space of k-times boundedly differentiable func-

tions defined on U with values in the Banach space Z. By Cω
b (U ;Z) we shall

denote the space of analytic functions with bounded derivatives defined on U
with values in the Banach space Z. Recall that r is the constant appearing in
the definition of uniform positivity of the family (Py)y∈U . Theorem 2 extends to
families of boundary value problems as in [13] as follows. Let us denote by η(y)
the best constant appearing in Theorem 2 for P = Py and η = infy∈U η(y).

Theorem 3. Let m ∈ N0 and k0 ∈ N0 ∪ {∞, ω} be fixed. Assume that A =

(aij , bi, c) ∈ Ck0

b (U ; Ŵm,∞(Ω))d
2+d+1, d = 2, and that the family PA

y is uni-

formly positive definite. Then η = infy∈U η(y) > 0. Let f ∈ Ck0

b (U ; K̂m−1
a−1 (Ω)),

g ∈ Ck0

b (U ;Km−1/2
a−1/2 (∂NΩ)), h ∈ Ck0

b (U ;Km−1/2
a−1/2 (Γ )), and 0 < a < η. Then the so-

lution u of our family of boundary value problems (4) satisfies u ∈ Ck0

b (U ;Da,m)).
Moreover, for each finite k ≤ k0, there exists a constant Ca,m > 0 such that

‖u‖Ck
b
(U ;Da,m) ≤ Ca,m

(
‖f‖Ck

b (U ;K̂m−1
a−1 (Ω))

+‖g‖Ck
b (U ;Km−1/2

a−1/2
(∂NΩ))

+ ‖h‖Ck
b (U ;Km−1/2

a−1/2
(Γ ))

)
.



Uniform Shift Estimates for Parametric Transmission Problems 23

The constant Ca,m depends only on r, m, a, k, and the norms of the coefficients

aij , bi, c in Ck
b (U ; Ŵm,∞(Ω)), but not on f or g.
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Galerkin FEM for Fractional Order Parabolic

Equations with Initial Data in H−s, 0 ≤ s ≤ 1

Bangti Jin, Raytcho Lazarov, Joseph Pasciak, and Zhi Zhou

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

Abstract. We investigate semi-discrete numerical schemes based on the
standard Galerkin and lumped mass Galerkin finite element methods for
an initial-boundary value problem for homogeneous fractional diffusion
problems with non-smooth initial data. We assume that Ω ⊂ R

d, d =
1, 2, 3 is a convex polygonal (polyhedral) domain. We theoretically justify
optimal order error estimates in L2- and H1-norms for initial data in
H−s(Ω), 0 ≤ s ≤ 1. We confirm our theoretical findings with a number
of numerical tests that include initial data v being a Dirac δ-function
supported on a (d− 1)-dimensional manifold.

1 Introduction

We consider the initial–boundary value problem for the fractional order parabolic
differential equation for u(x, t):

∂αt u(x, t) + Lu(x, t) = f(x, t) in Ω, T ≥ t > 0,

u(x, t) = 0 in ∂Ω, T ≥ t > 0, (1)

u(x, 0) = v(x) in Ω,

where Ω ⊂ Rd (d = 1, 2, 3) is a bounded convex polygonal domain with a bound-
ary ∂Ω, and L is a symmetric, uniformly elliptic second-order differential op-
erator. Integrating the second order derivatives by parts (once) gives rise to a
bilinear form a(·, ·) satisfying

a(v, w) = (Lv, w)∀v ∈ H2(Ω), w ∈ H1
0 (Ω),

where (·, ·) denotes the inner product in L2(Ω). The form a(·, ·) extends con-
tinuously to H1

0 (Ω) × H1
0 (Ω) where it is symmetric and coercive and we take

‖u‖H1 = a(u, u)1/2, for all u ∈ H1
0 (Ω). Similarly, L extends continuously to

an operator from H1
0 (Ω) to H−1(Ω) (the set of bounded linear functionals on

H1
0 (Ω)) by

〈Lu, v〉 = a(u, v)∀u, v ∈ H1
0 (Ω). (2)

Here 〈·, ·〉 denotes duality pairing between H−1(Ω) and H1
0 (Ω). We assume that

the coefficients of L are smooth enough so that solutions v ∈ H1
0 (Ω) satisfying

a(v, φ) = (f, φ)∀φ ∈ H1
0 (Ω)

with f ∈ L2(Ω) are in H2(Ω).

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 24–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Here ∂αt u (0 < α < 1) denotes the left-sided Caputo fractional derivative of
order α with respect to t and it is defined by (cf. [1, p. 91] or [2, p. 78])

∂αt v(t) =
1

Γ (1− α)

∫ t

0

(t− τ)−α d

dτ
v(τ) dτ,

where Γ (·) is the Gamma function. Note that as the fractional order α tends
to unity, the fractional derivative ∂αt u converges to the canonical first order
derivative du

dt [1], and thus (1) reproduces the standard parabolic equation. The
model (1) captures well the dynamics of subdiffusion processes in which the mean
square variance grows slower than that in a Gaussian process [3] and has found
a number of practical applications. A comprehensive survey on fractional or-
der differential equations arising in viscoelasticity, dynamical systems in control
theory, electrical circuits with fractance, generalized voltage divider, fractional-
order multipoles in electromagnetism, electrochemistry, and model of neurons is
provided in [4]; see also [2].

The goal of this study is to develop, justify, and test a numerical technique for
solving (1) with non-smooth initial data v ∈ H−s(Ω), 0 ≤ s ≤ 1, an important
case in various applications and typical in related inverse problems; see e.g.,
[5], [6, Problem (4.12)] and [7,8]. This includes the case of v being a delta-
function supported on a (d−1)–dimensional manifold in Rd, which is particularly
interesting from both theoretical and practical points of view.

The weak form for problem (1) reads: find u(t) ∈ H1
0 (Ω) such that

(∂αt u, χ) + a(u, χ) = (f, χ) ∀χ ∈ H1
0 (Ω), T ≥ t > 0, u(0) = v. (3)

The folowing two results are known, cf. [6]: (1) for v ∈ L2(Ω) the problem
(1) has a unique solution in C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩ H1

0 (Ω)) [6,
Theorem 2.1]; (2) for f ∈ L∞(0, T ;L2(Ω)), problem (1) has a unique solution in
L2(0, T ;H

2(Ω) ∩H1
0 (Ω)) [6, Theorem 2.2].

To introduce the semidiscrete FEM for problem (1) we follow standard no-
tation in [9]. Let {Th}0<h<1 be a family of regular partitions of the domain Ω
into d-simplexes, called finite elements, with h denoting the maximum diameter.
Throughout, we assume that the triangulation Th is quasi-uniform, i.e., the di-
ameter of the inscribed disk in the finite element τ ∈ Th is bounded from below
by h, uniformly on Th. The approximation uh will be sought in the finite element
space Xh ≡ Xh(Ω) of continuous piecewise linear functions over Th:

Xh =
{
χ ∈ H1

0 (Ω) : χ is a linear function over τ ∀τ ∈ Th
}
.

The semidiscrete Galerkin FEM for problem (1) is: find uh(t) ∈ Xh such that

(∂αt uh, χ) + a(uh, χ) = (f, χ) ∀χ ∈ Xh, T ≥ t > 0, uh(0) = vh, (4)

where vh ∈ Xh is an approximation of v. The choice of vh will depend on the
smoothness of v. For smooth data, v ∈ H2(Ω) ∩ H1

0 (Ω), we can choose vh to
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be either the finite element interpolant or the Ritz projection Rhv onto Xh. In
the case of non-smooth data, v ∈ L2(Ω), following Thomée [9], we shall take
vh = Phv, where Ph is the L2-orthogonal projection operator Ph : L2(Ω) → Xh,
defined by (Phφ, χ) = (φ, χ), for all χ ∈ Xh. In the intermediate case, v ∈ H1

0 (Ω),
we can choose either vh = Phv or vh = Rhv. The goal of this paper is to study
the convergence rates of the semidiscrete Galerkin method (4) for initial data
v ∈ H−s(Ω), 0 ≤ s ≤ 1 when f = 0.

The rest of the paper is organized as follows. In Section 2 we briefly review
the regularity theory for problem (1). In Section 3 we motivate our study by con-
sidering an 1-D example with initial data being a δ–function. Then in Theorem
2 we prove the main result: for 0 ≤ s ≤ 1, the following error bound holds

‖u(t)− uh(t)‖+ h‖∇(u(t)− uh(t))‖ ≤ Ch2−st−α�h‖v‖−s, �h = | lnh|.

Further, in Section 4 we show a similar result for the lumped mass Galerkin
method. Finally, in Section 5 we present numerical results for test problems
with smooth, intermediate, non-smooth initial data and initial data that is a
δ–function, all confirming our theoretical findings.

2 Preliminaries

For the existence and regularity of the solution to (1), we need some notation
and preliminary results. For s ≥ −1, we denote by Ḣs(Ω) ⊂ H−1(Ω) the Hilbert
space induced by the norm

|v|2s =

∞∑
j=1

λsj〈v, ϕj〉2 (5)

with {λj}∞j=1 and {ϕj}∞j=1 being respectively the Dirichlet eigenvalues and the
L2-orthonormal eigenfunctions of L. As usual, we identify functions f in L2(Ω)
with the functional F in H−1(Ω) defined by 〈F, φ〉 = (f, φ), for all φ ∈ H1

0 (Ω).

The set {ϕj}∞j=1, respectively, {λ
1
2

j ϕj}∞j=1, forms an orthonormal basis in L2(Ω),

respectively, H−1(Ω). Thus |v|0 = ‖v‖ = (v, v)
1
2 is the norm in L2(Ω) and

|v|−1 = ‖v‖H−1(Ω) is the norm in H−1(Ω). It is easy to check that |v|1 = a(v, v)
1
2

is also the norm in H1
0 (Ω). Note that {Ḣs(Ω)}, s ≥ −1 form a Hilbert scale of

interpolation spaces. Motivated by this, we denote ‖ · ‖Hs to be the norm on the
interpolation scale between H1

0 (Ω) and L2(Ω) when s is in [0, 1] and ‖ · ‖Hs to
be the norm on the interpolation scale between L2(Ω) and H−1(Ω) when s is in
[−1, 0]. Thus, ‖ · ‖Hs and | · |s provide equivalent norms for s ∈ [−1, 1].

We further assume that the coefficients of the elliptic operator L are suffi-
ciently smooth and the polygonal domain Ω is convex, so that |v|2 = ‖Lv‖ is
equivalent to the norm in H2(Ω) ∩H1

0 (Ω) (cf. the proof of Lemma 3.1 of [9]).
Now we introduce the operator E(t) by

E(t)v =
∞∑
j=1

Eα,1(−λjtα) (v, ϕj)ϕj , where Eα,β(z) =
∞∑
k=0

zk

Γ (kα+ β)
. (6)



Galerkin FEM for Fractional PDE’s with Non-smooth Data 27

Here Eα,β(z) is the Mittag-Leffler function defined for z ∈ C [1]. The operator
E(t) gives a representation of the solution u of (1) with a homogeneous right
hand side, so that for f(x, t) ≡ 0 we have u(t) = E(t)v. This representation
follows from eigenfunction expansion [6]. Further, we introduce the operator
Ē(t) defined for χ ∈ L2(Ω) as

Ē(t)χ =

∞∑
j=1

tα−1Eα,α(−λjtα) (χ, ϕj)ϕj . (7)

The operators E(t) and Ē(t) together give the following representation of the
solution of (1):

u(t) = E(t)v +

∫ t

0

Ē(t− s)f(s)ds. (8)

Motivated by [5,6], we will study the convergence of semidiscrete Galerkin
methods for problem (1) with very weak initial data, i.e., v ∈ H−s(Ω), 0 ≤ s ≤ 1.
Then the following question arises naturally: in what sense should we understand
the solution for such weak data? Obviously, for any t > 0 the function u(t) =
E(t)v satisfies equation (1). Moreover, by dominated convergence we have

lim
t→0+

|E(t)v − v|−s =
(

lim
t→0+

∞∑
j=1

(Eα,1(−λjtα)− 1)2λ−s
j (v, ϕj)

2
) 1

2

= 0,

provided that v ∈ H−s(Ω). Here (v, ϕj) = 〈v, ϕj〉H−s,Hs is well defined since
ϕj ∈ H1

0 (Ω). Therefore, the function u(t) = E(t)v satisfies (1) and for t → 0 it
converges to v in H−s–norm. That is, it is a weak solution to (1); see also [5,
Proposition 2.1].

For the solution of the homogeneous equation (1), which is the object of our
study, we have the following stability and smoothing estimates.

Theorem 1. Let u(t) = E(t)v be the solution to problem (1) with f ≡ 0. Then
for t > 0 we have the the following estimates:

(a) for � = 0, 0 ≤ q ≤ p ≤ 2 and for � = 1, 0 ≤ p ≤ q ≤ 2 and q ≤ p+ 2

|(∂αt )
u(t)|p ≤ Ct−α(
+ p−q
2 )|v|q, (9)

(b) for 0 ≤ s ≤ 1 and 0 ≤ p+ s ≤ 2

|∂αt u(t)|−s ≤ Ct−α|v|−s and |u(t)|p ≤ Ct−
p+s
2 α|v|−s. (10)
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Proof. Part (a) can be found in [6, Theorem 2.1] and [10, Theorem 2.1]. Hence
we only show part (b). Note that for t > 0,

|u(t)|2p ≤
∞∑
j=1

λpj |Eα,1(−λjtα)|2|(v, ϕj)|2 ≤ C
∞∑
j=1

λpj
(1 + λjtα)2

|(v, ϕj)|2

≤ Ct−(p+s)α
∞∑
j=1

(λjt
α)p+s

(1 + λjtα)2
λ−s
j |(v, ϕj)|2

≤ Ct−(p+s)α
∞∑
j=1

λ−s
j |(v, ϕj)|2 = Ct−(p+s)α|v|2−s,

which proves the second inequality of case (b). The first estimate follows similarly
by noticing the identity ∂αt Eα,1(−λtα) = −λEα,1(−λtα) [1].

We shall need some properties of the L2-projection Ph onto Xh.

Lemma 1. Assume that the mesh is quasi–uniform. Then for s ∈ [0, 1],

‖(I − Ph)w‖Hs ≤ Ch2−s‖w‖H2∀w ∈ H2(Ω) ∩H1
0 (Ω),

and
‖(I − Ph)w‖Hs ≤ Ch1−s‖w‖H1∀w ∈ H1

0 (Ω).

In addition, Ph is stable on Hs(Ω) for s ∈ [−1, 0].

Proof. Since the mesh is quasi-uniform, the L2–projection operator Ph is stable
in H1

0 (Ω) [11]. This immediately implies its stability in H−1(Ω). Thus, sta-
bility on H−s(Ω) follows from this, the trivial stability of Ph on L2(Ω) and
interpolation.

Let Ih be the finite element interpolation operator and Ch be the Clement or
Scott-Zhang interpolation operator. It follows from the stability of Ph in L2(Ω)
and H1

0 (Ω) that

‖(I − Ph)w‖L2 ≤ ‖(I − Ih)w‖L2 ≤ Ch2‖w‖H2∀w ∈ H2(Ω) ∩H1
0 (Ω),

‖(I − Ph)w‖H1 ≤ C‖(I − Ih)w‖H1 ≤ Ch‖w‖H2∀w ∈ H2(Ω) ∩H1
0 (Ω),

‖(I − Ph)w‖L2 ≤ ‖(I − Ch)w‖L2 ≤ Ch‖w‖H1∀w ∈ H1
0 (Ω),

‖(I − Ph)w‖H1 ≤ C‖w‖H1∀w ∈ H1
0 (Ω).

The inequalities of the lemma follow by interpolation.

Remark 1. All the norms appearing in Lemma 1 can be replaced by their corre-
sponding equivalent dotted norms.
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3 Galerkin Finite Element Method

To motivate our study we shall first consider the 1-D case, i.e., Lu = −u′′, and
take initial data the Dirac δ-function at x = 1

2 , 〈δ, v〉 = v(12 ). It is well known

that H
1
2+ε
0 (0, 1) embeds continuously into C0(0, 1), hence the δ-function is a

bounded linear functional on the space H
1
2+ε
0 (Ω), i.e., δ ∈ H− 1

2−ε(Ω).
In Tables 1 and 2 we show the error and the convergence rates for the semidis-

crete Galerkin FEM and semidiscrete lumped mass FEM (cf. Section 4) for ini-

tial data v being a Dirac δ-function at x = 1
2 . The results suggest an O(h

1
2 )

and O(h
3
2 ) convergence rate for the H1- and L2-norm of the error, respectively.

Below we prove that up to a factor | lnh| for fixed t > 0, the convergence rate is
of the order reported in Tables 1 and 2. In Table 3 we show the results for the
case that the δ-function is supported at a grid point. In this case the standard
Galerkin method converges at the expected rate in H1-norm, while the conver-
gence rate in the L2-norm is O(h2). This is attributed to the fact that in 1-D the
solution with the δ-function as the initial data is smooth from both sides of the
support point and the finite element spaces have good approximation property.

Table 1. Standard FEM with initial data δ( 1
2
) for h = 1/(2k + 1), α = 0.5

time k 3 4 5 6 7 ratio rate

t = 0.005 L2-norm 3.95e-2 1.59e-2 6.00e-3 2.19e-3 7.89e-4 ≈ 2.75 O(h
3
2 )

H1-norm 1.21e0 8.99e-1 6.52e-1 4.66e-1 3.33e-1 ≈ 1.40 O(h
1
2 )

t = 0.01 L2-norm 2.85e-2 1.13e-2 4.26e-3 1.55e-3 5.58e-4 ≈ 2.77 O(h
3
2 )

H1-norm 8.66e-1 6.39e-1 4.62e-1 3.31e-1 2.35e-1 ≈ 1.40 O(h
1
2 )

Table 2. Lumped mass FEM with initial data δ( 1
2
), h = 1/2k α = 0.5

time k 3 4 5 6 7 ratio rate

t = 0.005 L2-norm 7.24e-2 2.66e-2 9.54e-3 3.40e-3 1.21e-3 ≈ 2.79 O(h
3
2 )

H1-norm 1.51e0 1.07e0 7.60e-1 5.40e-1 3.81e-1 ≈ 1.41 O(h
1
2 )

t = 0.01 L2-norm 5.20e-2 1.89e-2 6.77e-3 2.40e-3 8.54e-4 ≈ 2.79 O(h
3
2 )

H1-norm 1.07e0 7.59e-1 5.37e-1 3.80e-1 2.70e-1 ≈ 1.41 O(h
1
2 )

The numerical results in Tables 1–3 motivate our study on the convergence
rates of the semidiscrete Galerkin and lumped mass schemes for initial data
v ∈ H−s(Ω), 0 ≤ s ≤ 1.
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Table 3. Standard semidiscrete FEM with initial data δ( 1
2
), h = 1/2k, α = 0.5

Time k 3 4 5 6 7 ratio rate

t = 0.005 L2-norm 5.13e-3 1.28e-3 3.21e-4 8.03e-5 2.01e-5 ≈ 3.99 O(h2)

H1-norm 4.29e-1 3.09e-1 2.21e-1 1.56e-1 1.11e-1 ≈ 1.41 O(h
1
2 )

t = 0.01 L2-norm 3.07e-3 7.70e-4 1.93e-4 4.82e-5 1.21e-5 ≈ 3.98 O(h2)

H1-norm 3.04e-1 2.19e-1 1.56e-1 1.11e-1 7.87e-2 ≈ 1.41 O(h
1
2 )

Theorem 2. Let u and uh be the solutions of (1) and the semidiscrete Galerkin
finite element method (4) with vh = Phv, respectively. Then there is a constant
C > 0 such that for 0 ≤ s ≤ 1

‖uh(t)− u(t)‖+ h‖∇(uh(t)− u(t))‖ ≤ Ch2−s �h t
−α|v|−s. (11)

Remark 2. Note that for any fixed ε there is a Cε > 0 such that |δ|− 1
2−ε ≤ Cε.

Thus, modulo the factor �h = | lnh|, the theorem confirms the computational

results of Table 1, namely convergence in the L2–norm with a rate O(h
3
2 ) and

in H1–norm with a rate O(h
1
2 ).

Proof. We shall need the following auxiliary problem: find uh(t) ∈ H1
0 (Ω), s.t.

(∂αt u
h(t), χ) + a(uh(t), χ) = (f(t), χ) ∀χ ∈ H1

0 (Ω), t > 0, uh(0) = Phv.

(12)

We note that the initial data uh(0) = Phv ∈ H1
0 (Ω) is smooth.

Now we consider the semidiscrete Galerkin method for problem (12), i.e.,
equation (4) with vh = Phv. By Theorem 3.2 of [10] we have

‖uh(t)− uh(t)‖+ h‖∇(uh(t)− uh(t))‖ ≤ Ch2 �h t
−α‖Phv‖. (13)

Now, using the inverse inequality ‖Phv‖ ≤ Ch−s‖Phv‖−s, for 0 ≤ s ≤ 1, and
the stability of Ph in H−s(Ω) (cf. Lemma 1), we get

‖uh(t)− uh(t)‖+ h‖∇(uh(t)− uh(t))‖ ≤ Ch2−s �h t
−α‖v‖−s. (14)

Now we estimate u(t)−uh(t) = E(t)(v−Phv). To this end, let {vn} ⊂ L2(Ω)
be a sequence converging to v in H−s(Ω). Noting that the operators Ph and
E(t) are self-adjoint in (·, ·) and using the smoothing property (9) of E(t) with
� = 0, q = 0 and p = 2, we obtain for any φ ∈ L2(Ω)

|(E(t)(I − Ph)vn, φ)| = |(vn, (I − Ph)E(t)φ)| ≤ |vn|−s|(I − Ph)E(t)φ|s
≤ Ch2−s|vn|−s|E(t)φ|2 ≤ Ch2−st−α|vn|−s‖φ‖.

Taking the limit as n tends to infinity gives

‖u(t)− uh(t)‖ = sup
φ∈L2(Ω)

|(E(t)(I − Ph)v, φ)|
‖φ‖ ≤ Ch2−st−α|v|−s. (15)
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Then by the triangle inequality we arrive at the L2-estimate in (11).
Next, for the gradient term ‖∇(u(t) − uh(t))‖, we observe that for any φ ∈

Ḣ1(Ω), by the coercivity of a(·, ·), we have

C0‖∇(E(t)(I − Ph)vn)‖2 ≤ a(E(t)(I − Ph)vn, E(t)(I − Ph)vn)

≤ sup
φ∈H1

0 (Ω)

a(E(t)(I − Ph)vn, φ)
2

a(φ, φ)
.

(16)

Meanwhile we have

|a(E(t)(I − Ph)vn, φ)| = |((I − Ph)vn, E(t)Lφ)| = |(vn, (I − Ph)E(t)Lφ)|
≤ C|vn|−s|(I − Ph)E(t)Lφ|s ≤ Ch1−s|vn|−s|E(t)Lφ|1
≤ Ch1−st−α|vn|−s|Lφ|−1 ≤ Ch1−st−α|vn|−s|φ|1.

Passing to the limit as n tends to infinity and combining with (16) gives

‖∇(u(t)− uh(t))‖ ≤ Ch1−st−α|v|−s. (17)

Thus, (15) and (17) lead to the following estimate for 0 ≤ s ≤ 1:

‖u(t)− uh(t)‖+ h‖∇(u(t)− uh(t))‖ ≤ Ch2−st−α|v|−s. (18)

Finally, (14), (18), and the triangle inequality give the desired estimate (11) and
this completes the proof.

4 Lumped Mass Method

In this section, we consider the lumped mass FEM in planar domains (see,
e.g. [9, Chapter 15, pp. 239–244]). An important feature of the lumped mass
method is that when representing the solution ūh in the nodal basis functions, the
mass matrix is diagonal. This leads to a simplified computational procedure. For
completeness we shall briefly describe this approximation. Let zτj , j = 1, . . . , d+
1 be the vertices of the d-simplex τ ∈ Th. Consider the following quadrature
formula and the induced inner product in Xh:

Qτ,h(f) =
|τ |
d+ 1

d+1∑
j=1

f(zτj ) ≈
∫
τ

fdx, (w, χ)h =
∑
τ∈Th

Qτ,h(wχ)

Then lumped mass finite element method is: find ūh(t) ∈ Xh such that

(∂αt ūh, χ)h + a(ūh, χ) = (f, χ) ∀χ ∈ Xh, t > 0, ūh(0) = Phv. (19)

To analyze this scheme we shall need the concept of symmetric meshes. Given
a vertex z ∈ Th, the patch Πz consists of all finite elements having z as a vertex.
A mesh Th is said to be symmetric at the vertex z, if x ∈ Πz implies 2z−x ∈ Πz ,
and Th is symmetric if it is symmetric at every interior vertex.

In [10, Theorem 4.2] it was shown that if the mesh is symmetric, then the
lumped mass scheme (19) for f = 0 has an almost optimal convergence rate in
L2-norm for nonsmooth data v ∈ L2(Ω).
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Now we prove the main result concerning the lumped mass method:

Theorem 3. Let u(t) and ūh(t) be the solutions of the problems (1) and (19),
respectively. Then for t > 0 the following error estimate is valid:

‖ūh(t)− u(t)‖+ ‖∇(ūh(t)− u(t))‖ ≤ Ch1−s�ht
−α‖v‖−s, 0 ≤ s ≤ 1. (20)

Moreover, if the mesh is symmetric then

‖ūh(t)− u(t)‖ ≤ Ch2−s�ht
−α‖v‖−s, 0 ≤ s ≤ 1. (21)

Proof. We split the error into ūh(t)− u(t) = ūh(t)− uh(t) + uh(t)− u(t), where
uh(t) − u(t) was estimated in (18). The term ūh(t) − uh(t) is the error of the
lumped mass method for the auxiliary problem (12). Since the initial data Phv ∈
L2(Ω), we can apply known estimates on ūh(t)−uh(t) [10, Theorem 4.2]. Namely,
(a) If the mesh is globally quasiuniform, then

‖ūh(t)− uh(t)‖ + h‖∇(ūh(t)− uh(t))‖ ≤ Cht−α�h‖Phv‖;

(b) If the mesh is symmetric, then

‖ūh(t)− uh(t)‖ ≤ Ch2t−α�h‖Phv‖.

These two estimates, the inequality ‖Phv‖ ≤ Ch−s‖v‖−s, 0 ≤ s ≤ 1, and esti-
mate (14) give the desired result. This completes the proof of the theorem.

Remark 3. The H1-estimate is almost optimal for any quasi-uniform meshes,
while the L2-estimate is almost optimal for symmetric meshes. For the standard
parabolic equation with initial data v ∈ L2(Ω), it was shown in [12] that the

lumped mass scheme can achieve at most an O(h
3
2 ) convergence order in L2-

norm for some nonsymmetric meshes. This rate is expected to hold for fractional
order differential equations as well.

5 Numerical Results

Here we present numerical results in 2-D to verify the error estimates derived
herein and [10]. The 2-D problem (1) is on the unit square Ω = (0, 1)2 with
L = −Δ. We perform numerical tests on four different examples:

(a) Smooth initial data: v(x, y) = x(1 − x)y(1 − y); in this case the initial data
v is in H2(Ω)∩H1

0 (Ω), and the exact solution u(x, t) can be represented by
a rapidly converging Fourier series:

u(x, t) =

∞∑
n=1

∞∑
m=1

4cncm
m3n3π6

Eα,1(−λn,mtα) sin(nπx) sin(mπy),

where λn,m = (n2 +m2)π2, and cl = 4 sin2(lπ/2)− lπ sin(lπ), l = m,n.
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(b) Initial data in H1
0 (Ω) (case of intermediate smoothness):

v(x) = (x− 1
2 )(x− 1)(y − 1

2 )(y − 1)χ[ 12 ,1]×[ 12 ,1]
,

where χ[ 12 ,1]×[ 12 ,1]
is the characteristic function of [12 , 1]× [ 12 , 1].

(c) Nonsmooth initial data: v(x) = χ[ 14 ,
3
4 ]×[ 14 ,

3
4 ]
.

(d) Very weak data: v = δΓ with Γ being the boundary of the square [ 14 ,
3
4 ]×[ 14 ,

3
4 ]

with 〈δΓ , φ〉 =
∫
Γ
φ(s)ds. One may view (v, χ) for χ ∈ Xh ⊂ Ḣ

1
2+ε(Ω) as

duality pairing between the spaces H− 1
2−ε(Ω) and Ḣ

1
2+ε(Ω) for any ε > 0

so that δΓ ∈ H− 1
2−ε(Ω). Indeed, it follows from Hölder’s inequality

‖δΓ ‖
H− 1

2
−ε(Ω)

= sup
φ∈Ḣ

1
2
+ε(Ω)

|
∫
Γ φ(s)ds|

‖φ‖ 1
2+ε,Ω

≤ |Γ | 12 sup
φ∈Ḣ

1
2
+ε(Ω)

‖φ‖L2(Γ )

‖φ‖ 1
2+ε,Ω

,

and the continuity of the trace operator from Ḣ
1
2+ε(Ω) to L2(Γ ).

The exact solution for each example can be expressed by an infinite series
involving the Mittag-Leffler function Eα,1(z). To accurately evaluate the Mittag-
Leffler functions, we employ the algorithm developed in [13]. To discretize the
problem, we divide the unit interval (0, 1) into N = 2k equally spaced subinter-
vals, with a mesh size h = 1/N so that [0, 1]2 is divided into N2 small squares.
We get a symmetric mesh for the domain [0, 1]2 by connecting the diagonal of
each small square. All the meshes we have used are symmetric and therefore both
semidiscrete Galerkin FEM and lumped mass FEM have the same theoretical
accuracy. Unless otherwise specified, we have used the lumped mass method.

To compute a reference (replacement of the exact) solution we have used two
different numerical techniques on very fine meshes. The first is based on the
exact representation of the semidiscrete lumped mass solution ūh by

ūh(t) =
N−1∑

n,m=1

Eα,1(−λhn,mtα)(v, ϕh
n,m)ϕh

n,m,

where ϕh
n,m(x, y) = 2 sin(nπx) sin(mπy), n,m = 1, . . . , N − 1, with x, y being

grid points, are the discrete eigenfunctions and

λhn,m =
4

h2

(
sin2

nπh

2
+ sin2

mπh

2

)
are the corresponding eigenvalues.

The second numerical technique is based on fully discrete scheme, i.e., dis-
cretizing the time interval [0, T ] into tn = nτ , n = 0, 1, . . . , with τ being the
time step size, and then approximating the fractional derivative ∂αt u(x, tn) by
finite difference [14]:

∂αt u(x, tn) ≈
1

Γ (2− α)

n−1∑
j=0

bj
u(x, tn−j)− u(x, tn−j−1)

τα
, (22)
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where the weights bj = (j + 1)1−α − j1−α, j = 0, 1, . . . , n − 1. We have used
this approximation on very fine meshes in both space and time to compute a
reference solution. This fully discrete solution is denoted by Uh. Throughout,
we have set τ = 10−6 so that the error incurred by temporal discretization is
negligible (see Table 6).

We measure the accuracy of the approximation uh(t) by the normalized error
‖u(t) − uh(t)‖/‖v‖ and ‖∇(u(t) − uh(t))‖/‖v‖. The normalization enables us
to observe the behavior of the error with respect to time in case of nonsmooth
initial data.

Smooth initial data: example (a). In Table 4 we show the numerical results for
t = 0.1 and α = 0.1, 0.5, 0.9. Here ratio refers to the ratio between the errors
as the mesh size h is halved. In Figure 1, we plot the results from Table 4 in a
log-log scale. The slopes of the error curves are 2 and 1, respectively, for L2- and
H1-norm of the error. This confirms the theoretical result from [10].

Table 4. Numerical results for smooth initial data, example (a), t = 0.1

α h 1/8 1/16 1/32 1/64 1/128 ratio rate

0.5 L2-norm 1.45e-3 3.84e-4 9.78e-5 2.41e-5 5.93e-6 ≈ 4.02 O(h2)
H1-norm 5.17e-2 2.64e-2 1.33e-2 6.67e-3 3.33e-3 ≈ 1.99 O(h)

0.9 L2-norm 1.88e-3 4.53e-4 1.13e-4 2.82e-5 7.06e-6 ≈ 4.00 O(h2)
H1-norm 6.79e-2 3.43e-2 1.73e-2 8.63e-3 4.31e-3 ≈ 2.00 O(h)

Fig. 1. Error plots for smooth initial data, Example (a): α = 0.1, 0.5, 0.9 at t = 0.1

Table 5. Intermediate case (b) with α = 0.5 at t = 0.1

h 1/8 1/16 1/32 1/64 1/128 ratio rate

L2-error 3.04e-3 8.20e-4 2.12e-4 5.35e-5 1.32e-5 ≈ 3.97 O(h2)

H1-error 5.91e-2 3.09e-2 1.56e-2 7.88e-3 3.93e-3 ≈ 1.98 O(h)

Intermediate smooth data: example (b). In this example the initial data v(x) is
in H1

0 (Ω) and the numerical results are shown in Table 5. The slopes of the error
curves in a log-log scale are 2 and 1 respectively for L2- and H1-norm of the
errors, which agrees well with the theory for the intermediate case [10].



Galerkin FEM for Fractional PDE’s with Non-smooth Data 35

Nonsmooth initial data: example (c). First in Table 6 we compare fully discrete
solution Uh via the finite difference approximation (22) with the semidiscrete
lumped mass solution ūh via eigenexpansion to study the error incurred by time
discretization. We observe that for each fixed spatial mesh size h, the difference
between ūh, the lumped mass FEM solution, and Uh decreases with the decrease
of τ . In particular, for time step τ = 10−6 the error incurred by the time dis-
cretization is negligible, so the fully discrete solutions Uh could well be used as
reference solutions. In Table 7 and Figure 2 we present the numerical results for
problem (c). These numerical results fully confirm the theoretically predicted
rates for nonsmooth data.

Table 6. The difference ūh−Uh, nonsmooth initial data, example (c): α = 0.5, t = 0.1

Time step h 1/8 1/16 1/32 1/64 1/128

τ = 10−2 L2-norm 2.03e-3 2.01e-3 2.00e-3 2.00e-3 2.00e-3
H1-norm 9.45e-3 9.17e-3 9.10e-3 9.08e-3 9.07e-3

τ = 10−4 L2-norm 1.81e-5 1.79e-5 1.79e-5 1.79e-5 1.79e-5
H1-norm 8.47e-5 8.22e-5 8.15e-5 8.13e-5 8.13e-5

τ = 10−6 L2-norm 1.80e-7 1.78e-7 1.78e-7 1.78e-7 1.78e-7
H1-norm 8.42e-7 8.17e-7 8.10e-7 8.10e-7 8.09e-7

Fig. 2. Error plots for lumped FEM for nonsmooth initial data, Example (c): α = 0.5

Table 7. Error for the lumped FEM for nonsmooth initial data, example (c): α = 0.5

Time h 1/8 1/16 1/32 1/64 1/128 ratio rate

t = 0.001 L2-norm 1.55e-2 3.99e-3 1.00e-3 2.52e-4 6.26e-5 ≈ 4.01 O(h2)
H1-norm 6.05e-1 3.05e-1 1.48e-1 7.29e-2 3.61e-2 ≈ 2.00 O(h)

t = 0.01 L2-norm 8.27e-3 2.10e-3 5.28e-4 1.32e-4 3.29e-5 ≈ 4.01 O(h2)
H1-norm 3.32e-1 1.61e-1 7.90e-2 3.90e-2 1.93e-2 ≈ 2.02 O(h)

t = 0.1 L2-norm 2.12e-3 5.36e-4 1.34e-4 3.36e-5 8.43e-6 ≈ 3.99 O(h2)
H1-norm 8.23e-2 4.01e-2 1.96e-2 9.72e-3 4.84e-3 ≈ 2.01 O(h)
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Table 8. Error for standard FEM: initial data Dirac δ-function, α = 0.5

Time h 1/8 1/16 1/32 1/64 1/128 ratio rate

t = 0.001 L2-norm 5.37e-2 1.56e-2 4.40e-3 1.23e-3 3.41e-4 ≈ 3.57 O(h1.84)

H1-norm 2.68e0 1.76e0 1.20e0 8.21e-1 5.68e-1 ≈ 1.45 O(h
1
2 )

t = 0.01 L2-norm 2.26e-2 6.20e-3 1.67e-3 4.46e-4 1.19e-4 ≈ 3.74 O(h1.90)

H1-norm 9.36e-1 5.90e-1 3.92e-1 2.65e-1 1.84e-1 ≈ 1.46 O(h
1
2 )

t = 0.1 L2-norm 8.33e-3 2.23e-3 5.90e-3 1.55e-3 4.10e-4 ≈ 3.77 O(h1.91)

H1-norm 3.08e-1 1.91e-1 1.26e-1 8.44e-2 5.83e-2 ≈ 1.46 O(h
1
2 )

Table 9. Error for lumped mass FEM: initial data Dirac δ-function, α = 0.5

Time h 1/8 1/16 1/32 1/64 1/128 ratio rate

t = 0.001 L2-norm 1.98e-1 7.95e-2 3.00e-2 1.09e-2 3.95e-3 ≈ 2.75 O(h
3
2 )

H1-norm 5.56e0 4.06e0 2.83e0 2.02e0 1.41e0 ≈ 1.42 O(h
1
2 )

t = 0.01 L2-norm 6.61e-2 2.56e-2 9.51e-3 3.47e-3 1.25e-3 ≈ 2.78 O(h
3
2 )

H1-norm 1.84e0 1.30e0 9.10e-1 6.40e-1 4.47e-1 ≈ 1.42 O(h
1
2 )

t = 0.1 L2-norm 2.15e-2 8.13e-3 3.01e-3 1.09e-3 3.95e-4 ≈ 2.75 O(h
3
2 )

H1-norm 5.87e-1 4.14e-1 2.88e-1 2.03e-1 1.41e-1 ≈ 1.43 O(h
1
2 )

Fig. 3. Error plots for Example (d): initial data Dirac δ-function, α = 0.5

Very weak data: example (d). The empirical convergence rate for the weak data
δΓ agrees well with the theoretically predicted convergence rate in Theorem 2,
which gives a ratio of 2.82 and 1.41, respectively, for the L2- and H

1-norm of the
error; see Table 9. Interestingly, for the standard Galerkin scheme, the L2-norm
of the error exhibits super-convergence; see Table 8.
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Abstract. Fractional order partial differential equations are considered.
The main attention is devoted to fractional in time diffusion equation.
An interface problem for this equation is studied and its well posedness
in the corresponding Sobolev like spaces is proved. Analogous results are
obtained for a transmission problem in disjoint intervals.

Keywords: Fractional derivative, fractional PDE, initial-boundary value
problem, interface problem, transmission problem, finite differences.

1 Introduction

The use of fractional partial differential equations in mathematical models has
become increasingly popular in recent years. Such equations are used for the de-
scription of large classes of physical and chemical processes (anomalous diffusion,
turbulent flow, chaotic dynamics etc.) that occur in media with fractal geome-
try, disordered materials, amorphous semiconductors, viscoelastic media, as well
as in the mathematical modelling of economic, biological and social phenomena
(see e.g. [2, 3, 5, 11, 16–20, 23]).

Because of the integral in the definition of the fractional order derivatives, it is
apparent that these derivatives are nonlocal operators. This explains one of their
most significant uses in applications: non-integer derivatives possess a memory
effect which it shares with several materials such as viscoelastic materials or
polymers. On the other side, this feature of the fractional derivatives makes the
design of accurate and fast numerical methods difficult.

In this paper we present some examples of fractional PDE and highlight the
main theoretical and numerical problems appearing. In particular, we emphasize
some interface and transmission problems related with fractional PDE.

2 Fractional Integrals and Derivatives

The most often used definition for integration of arbitrary real positive order
comes from the extension of the formula for n-fold integration

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 38–49, 2013.
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∫ x

a

dx1

∫ x1

a

dx2 · · ·
∫ xn−1

a

f(xn) dxn =
1

(n− 1)!

∫ x

a

(x − ξ)n−1f(ξ) dξ , n ∈ N.

Replacing n by real positive parameter α and factorial by Gamma function one
obtains so-called left Riemann-Liouville fractional integral:

(Iαa+f)(x) =
1

Γ (α)

∫ x

a

(x− ξ)α−1f(ξ) dξ , x > a.

The right Riemann-Liouville fractional integral is defined analogously:

(Iαb−f)(x) =
1

Γ (α)

∫ b

x

(ξ − x)α−1f(ξ) dξ , x < b.

For α = 0 one sets: I0a+f = I0b−f = f .
Fractional integral possess the following basic properties [12]:

QIαa+ = Iαb−Q , QIαb− = Iαa+Q, (Qf)(x) = f(a+ b− x),

Iαa+I
β
a+ = Iα+β

a+ , Iαb−I
β
b− = Iα+β

b− .

Analogously, inspired by the formula

dnf(x)

dxn
=

dn+1

dxn+1

(∫ x

a

f(ξ) dξ

)
,

the left and right Riemann-Liouville fractional derivatives are defined by

Dα
a+ =

d[α]+1

dx[α]+1
I
[α]+1−α
a+ , Dα

b− = (−1)[α]+1 d
[α]+1

dx[α]+1
I
[α]+1−α
b− ,

i.e.

(Dα
a+f)(x) =

1

Γ (n− α)

dn

dxn

(∫ x

a

(x− ξ)n−α−1f(ξ) dξ

)
, x > a,

(Dα
b−f)(x) =

(−1)n

Γ (n− α)

dn

dxn

(∫ b

x

(ξ − x)n−α−1f(ξ) dξ

)
, x < b,

where n− 1 ≤ α < n and n ∈ N.
Notice that if function f(x) has n-order continuous derivative in [a, b], then

as α tends to n or n − 1, the left (right) Riemann-Liouville derivative becomes
a conventional n- or (n− 1)-order derivative of f(x).

An alternative definition of fractional derivatives (named after Caputo) one

obtains by commuting d[α]+1/dx[α]+1 and I
[α]+1−α
a+ (I

[α]+1−α
b− ):
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cDα
a+ = I

[α]+1−α
a+

d[α]+1

dx[α]+1
, cDα

b− = (−1)[α]+1I
[α]+1−α
b−

d[α]+1

dx[α]+1
.

For n− 1 < α < n and n ∈ N we have

(Dα
a+f)(x) = (cDα

a+f)(x) +

n−1∑
j=0

f (j)(a+ 0)
(x − a)j−α

Γ (j − α+ 1)
.

In the framework of generalized functions from D′
+, fractional integrals and

fractional derivatives are interpreted as convolutions [25]:

Iα0+f = f ∗ ψα , Dα
0+f = f ∗ ψ−α , α ≥ 0 ,

where ψα ∈ D′
+ is defined in the following way:

ψα(x) =

⎧⎨⎩
θ(x)

Γ (α)
xα−1, α > 0,

ψ′
α+1(x), α ≤ 0.

In particular, ψ1(x) = θ(x) is the Heaviside function, while ψ0(x) = δ(x) is
Dirac distribution.

Fractional derivatives satisfies semigroup property in D′
+:

Dα
0+D

β
0+f = Dβ

0+D
α
0+f = Dα+β

0+ f , f ∈ D′
+ .

For continuous functions the same is valid under some additional assumptions,
for example [21]:

(Dα
a+D

β
a+f)(x) = (Dα+β

a+ f)(x) , 0 < α, β < 1, f(a) = 0, x > a .

For the functions of many variables partial derivatives of fractional order are
defined in analogous manner, for example:

(Dα
x,a+f)(x, t) =

1

Γ (n− α)

dn

dxn

(∫ x

a

(x − ξ)n−α−1f(ξ, t) dξ

)
, x > a,

(Dβ
t,c+f)(x, t) =

1

Γ (m− β)

dm

dtm

(∫ t

c

(t− τ)m−β−1f(x, τ) dτ

)
, t > c,

where n− 1 < α < n, m− 1 < β < m and n, m ∈ N.
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3 Some Function Spaces

First, we introduce some notations and define some function spaces, norms and
inner products that are used thereafter. Let Ω be an open domain in Rn. As
usual, by Ck(Ω) and Ck(Ω) we denote the spaces of k-fold differentiable func-
tions. By Ċ∞(Ω) = C∞

0 (Ω) we denote the space of infinitely differentiable func-
tions with compact support in Ω. The space of measurable functions whose
square is Lebesgue integrable in Ω is denoted by L2(Ω). The inner product and
norm of L2(Ω) are defined by

(u, v)Ω = (u, v)L2(Ω) =

∫
Ω

uv dΩ, ‖u‖Ω = ‖u‖L2(Ω) = (u, u)
1/2
Ω .

We also use Hα(Ω) and Ḣα(Ω) = Hα
0 (Ω) to denote the usual Sobolev spaces

[14], whose norms are denoted by ‖u‖Hα(Ω).
For α > 0 let us set

|u|Hα
+(a,b) = ‖Dα

a+u‖L2(a,b) , |u|Hα
−(a,b) = ‖Dα

b−u‖L2(a,b)

and

‖u‖Hα
±(a,b) =

(
‖u‖2L2(a,b) + |u|2Hα

±(a,b)

)1/2
.

Then we define the spaces Hα
±(a, b) and Ḣα

±(a, b) as the closure of C∞[a, b]

and Ċ∞(a, b), respectively, with respect to the norm ‖ · ‖Hα
±(a,b). Because for

α = n ∈ N fractional derivative reduces to standard integer order derivative, we
have Hn

±(a, b) = Hn(a, b).
From Theorem 2 in [15] follows:

Lemma 1. Let 0 < α < 1, u ∈ Hα
+(a, b) and v ∈ Hα

−(a, b). Then

(Dα
a+u, v)L2(a,b) = (u, Dα

b−v)L2(a,b) .

From Lemma 2.4 in [4] immediately follows:

Lemma 2. Let α > 0 , u ∈ Ċ∞(R) and suppu ⊂ (a, b). Then

(Dα
a+u, D

α
b−u)L2(a,b) = cosπα ‖Dα

a+u‖2L2(a,+∞) .

For α > 0, α �= n+ 1/2, n ∈ N, we set

|u|Hα
c (a,b) = |(Dα

a+u, D
α
b−u)L2(a,b)|1/2, ‖u‖Hα

c (a,b) =
(
‖u‖2L2(a,b)+|u|2Hα

c (a,b)

)1/2
and define the space Ḣα

c (a, b) as the closure of Ċ
∞(a, b) with respect to the norm

‖ · ‖Hα
c (a,b).

Lemma 3. (see [13]) For α > 0, α �= n + 1/2, n ∈ N, the spaces Ḣα
+(a, b),

Ḣα
−(a, b), Ḣ

α
c (a, b) and Ḣ

α(a, b) are equal and their seminorms as well as norms
are equivalent.
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For the functions of two variables, x and t, defined in the rectangle Q =
(0, 1) × (0, T ), we introduce anisotropic Sobolev spaces Hα,β(Q), α, β ≥ 0, in
the usual manner [14]:

Hα,β(Q) = L2((0, T ), Hα(0, 1)) ∩Hβ((0, T ), L2(0, 1)) .

Analogously we define

Hα,β
± (Q) = L2((0, T ), Hα(0, 1)) ∩Hβ

±((0, T ), L
2(0, 1)) .

Notice that for 0 ≤ β < 1/2

Hα,β
+ (Q) = Hα,β

− (Q) = Hα,β(Q) .

4 Time Fractional Diffusion Equation

Let α ∈ (0, 1). In Q = (0, 1)× (0, T ) we consider the following fractional in time
diffusion equation

Dα
t,0+u− ∂2u

∂x2
= f(x, t), (x, t) ∈ Q, (1)

subject to homogeneous initial and boundary conditions

u(x, 0) = 0, x ∈ (0, 1), (2)

u(0, t) = u(1, t) = 0, t ∈ (0, T ). (3)

Problem (1)-(3) is often called subdiffusion problem.
Taking inner product of equation (1) with function v and using Lemma 1 and

properties of fractional derivatives one obtains the following weak formulation
of the problem (1)-(3) (see [13]): find u ∈ Ḣ1,α/2(Q) such that

a(u, v) = l(v) , ∀ v ∈ Ḣ1,α/2(Q) , (4)

where
Ḣ1,α/2(Q) = L2((0, T ), Ḣ1(0, 1)) ∩ Ḣα/2((0, T ), L2(0, 1)) ,

the bilinear form a(·, ·) is defined by

a(u, v) =
(
D

α/2
t,0+u, D

α/2
t,T−v

)
Q
+

(
∂u

∂x
,
∂v

∂x

)
Q

,

and the linear functional l(·) is given by

l(v) = (f, v)Q .

Now, from lemmae 1-3 and Lax-Milgram lemma, we immediately obtain the
following result:
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Theorem 1. (see [13]) For all α ∈ (0, 1) and f ∈ L2(Q) the problem (4) is
well posed and its solution satisfies a priory estimate

‖u‖H1,α/2(Q) ≤ C ‖f‖L2(Q) .

Here and in the sequel C denotes positive generic constant which may take
different values in different formulas.

Analogous result holds in the case when the right-side part of (1) has the form

f(x, t) = f0(x, t) +
∂f1
∂x

+D
α/2
t,0+f2 ,

where fi ∈ L2(0, 1). In this case the linear functional l(·) in weak formulation
(4) is given by

l(v) = (f0, v)Q −
(
f1,

∂v

∂x

)
Q

+
(
f2, D

α/2
t,T−v

)
Q
. (5)

Using Lax-Milgram lemma, Cauchy-Schvarz inequality and lemmae 1-3 one ob-
tains the following result:

Theorem 2. Let α ∈ (0, 1) and fi ∈ L2(Q), i = 0, 1, 2. Then the problem
(4)-(5) is well posed and its solution satisfies a priory estimate

‖u‖H1,α/2(Q) ≤ C
(
‖f0‖L2(Q) + ‖f1‖L2(Q) + ‖f2‖L2(Q)

)
.

In analogous way one obtains the following result:

Theorem 3. Let α ∈ (0, 1) and f ∈ L2(Q). Then the problem (1)-(3) is well
posed in the space H2,α

+ (Q)∩Ḣ1,α/2(Q) and its solution satisfies a priory estimate

‖u‖H2,α
+ (Q) ≤ C ‖f‖L2(Q) .

5 Finite Difference Approximation

In the rectangle Q̄ = [0, 1]×[0, T ] we introduce the uniform mesh Q̄hτ = ω̄h×ω̄τ ,
where ω̄h = {xi = ih | i = 0, 1, . . . , n; h = 1/n} and ω̄τ = {tj = jτ | j =
0, 1, . . . , m; τ = T/m}. We will use standard notation from the theory of finite
difference schemes [22]:

v = v(x, t), v̂ = v(x, t + τ); vj = v(x, tj), x ∈ ω̄h ,

vx=
v(h+ h, t)− v(x, t)

h
= vx̄(x+h, t), vt=

v(h, t+ τ)− v(x, t)

τ
= vt̄(x, t+τ).

We approximate the initial-boundary value problem (1)-(3) with the following
weighted finite difference scheme:
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Δα
t,0+v

j − σ vj+1
x̄x − (1 − σ) vjx̄x = ϕj , x ∈ ωh, j = 1, 2, . . . , m− 1 (6)

v(x, 0) = 0, x ∈ ωh, (7)

v(0, t) = v(1, t) = 0, t ∈ ω̄τ , (8)

where σ ∈ [0, 1] is free weight parameter, ϕj = f(x, tj + τ/2), ωh = ω̄h ∩ (0, 1)
and

Δα
t,0+v

j =
1

Γ (2− α)

(
j∑

k=0

(
t1−α
j−k+1 − t1−α

j−k

)
vk

)
t

is difference analogue of the left Riemann-Liouville fractional time derivative.
Notice that the finite difference scheme (6)-(8) on the each time level tj reduces

to a three-diagonal system of linear equations. On the other hand, the solution
vj on time level tj explicitly depends on the solutions at all previous time levels
tk, k < j. Thus, numerical effort is O(nm2) (instead of O(nm) for α = 1). All
values vk must be permanently stored, which can be expensive, especially in the
multidimensional case.

Let us define discrete inner products and norms

(v, w)h = (v, w)L2(ωh) = h

n−1∑
i=1

v(xi)w(xi) , ‖v‖h = ‖v‖L2(ωh) = (v, v)
1/2
h ,

(v, w]h = (v, w]L2(ωh) = h

n∑
i=1

v(xi)w(xi) , ‖v]|h = ‖v]|L2(ωh) = (v, v]
1/2
h ,

‖v‖L2(Qhτ ) =

(
τ

m−1∑
j=0

‖vj‖2h

)1/2
, ‖v]|L2(Qhτ ) =

(
τ

m−1∑
j=0

‖vj ]|2h

)1/2
,

‖v‖B1,α/2(Qhτ ) =

(
‖σv̂x̄ + (1− σ)vx̄]|2L2(Qhτ )

+

m−1∑
j=0

(t1−α
m−j − t1−α

m−j−1)‖v̂j‖2h

)1/2
.

The following result holds true (see [1]):

Theorem 4. Let 0 < α < 1 and σ ≥ 1/(3 − 21−α). Then finite difference
scheme (6)-(8) is absolutely stable and its solution satisfies the following a priori
estimate:

‖v‖B1,α/2(Qhτ ) ≤ C ‖ϕ‖L2(Qhτ ).

Let us assume that the solution of the initial-boundary value problem (1)-(3)
belongs to the space C4,3(Q̄). Then from the theorem 4 one immediately obtains
the following convergence rate estimate for finite difference scheme (6)-(8)

‖u− v‖B1,α/2(Qhτ ) ≤ C (h2 + τ). (9)
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In [24] it is proved that the finite difference scheme (6)-(8) is stable in discrete
C-norm

‖v‖C(Q̄hτ ) = max
(x,t)∈Q̄hτ

|v(x, t)|

if

τα ≤ C(α)h2

1− σ
,

where C(α) is computable constant depending on α. In this case the estimate
holds

‖u− v‖C(Q̄hτ ) ≤ C
τ + h2

τ1−α
,

whereby, assuming τα � h2, follows convergence for 1/2 < α < 1.
Norm ‖v‖B1,α/2(Qhτ ) is the discrete analogue of the norm

‖u‖B1,α/2(Q) =

(∥∥∥∥∂u∂x
∥∥∥∥2
L2(Q)

+

∫ T

0

(T − t)−α‖u(·, t)‖2L2(0,1)

)1/2
which is weaker than ‖u‖H1,α/2(Q). It would be interesting to prove discrete
analogues of theorems 1-3 for the finite difference scheme (6)-(8) and to derive
convergence rate estimates consistent with the smoothness of the solution of
boundary value problem (1)-(3).

6 Interface Problem for Fractional in Time Diffusion
Equation

Let α, ξ ∈ (0, 1) and K = const > 0. In Q = (0, 1) × (0, T ) we consider the
following fractional in time diffusion equation

[1 +Kδ(x− ξ)]Dα
t,0+u− ∂2u

∂x2
= f(x, t), (x, t) ∈ Q, (10)

where δ(x− ξ) is Dirac distribution concentrated at x = ξ. We assume that the
solution to (10) satisfies homogeneous initial and boundary conditions (2)-(3).

Notice that in the case when f(x, t) does not contain singular terms equation
(10) reduces to

Dα
t,0+u− ∂2u

∂x2
= f(x, t), (x, t) ∈ Q1 ∩Q2, (11)

where Q1 = (0, ξ)×(0, T ), Q2 = (ξ, 1)×(0, T ), subject to conjugation condition

K
(
Dα

t,0+u
)
(ξ, t) =

[
∂u

∂x

]
x=ξ

≡ ∂u

∂x
(ξ + 0, t)− ∂u

∂x
(ξ − 0, t) . (12)

Problems of similar type are usually called interface problems. Analogous
problem for integer order diffusion equation is considered in [7, 8]. Another
interface problem for fractional in space diffusion equation is studied in [6].
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Let L̃2(0, 1) be the space of functions defined on the interval (0, 1), with the
inner product and norm

(v, w)L̃2(0,1) =

∫ 1

0

v(x)w(x) dx + v(ξ)w(ξ), ‖v‖L̃2(0,1) = (v, v)
1/2

L̃2(0,1)
.

For the functions defined in the rectangle Q = (0, 1) × (0, T ), we define the
space L̃2(Q) = L2((0, T ), L̃2(0, 1)), with inner product and associated norm:

(v, w)L̃2(Q)=

∫∫
Q

v(x, t)w(x, t) dxdt+

T∫
0

v(ξ, t)w(ξ, t) dt, ‖v‖L̃2(Q)= (v, v)
1/2

L̃2(Q)
.

Finally, for α, β ≥ 0, we introduce anisotropic Sobolev type spaces:

H̃α,β(Q) = L2((0, T ), Hα(0, 1)) ∩Hβ((0, T ), L̃2(0, 1))

and
H̃α,β

± (Q) = L2((0, T ), Hα(0, 1)) ∩Hβ
±((0, T ), L̃

2(0, 1)).

Notice that for 0 ≤ β < 1/2: H̃α,β
+ (Q) = H̃α,β

− (Q) = H̃α,β(Q).

The weak formulation of the problem (10), (2), (3) is: find u ∈ ˙̃H1,α/2(Q)
such that

a(u, v) = l(v) , ∀ v ∈ ˙̃H1,α/2(Q) , (13)

where
˙̃H1,α/2(Q) = L2((0, T ), Ḣ1(0, 1)) ∩ Ḣα/2((0, T ), L̃2(0, 1)) ,

the bilinear form a(·, ·) is defined by

a(u, v) =
(
D

α/2
t,0+u, D

α/2
t,T−v

)
L2(Q)

+K
(
D

α/2
t,0+u(ξ, ·), D

α/2
t,T−v(ξ, ·)

)
L2(0,T )

+

(
∂u

∂x
,
∂v

∂x

)
L2(Q)

,

and the linear functional l(·) is given by

l(v) = (f, v)L2(Q) .

Similarly as in the previous section, one obtains the following results:

Theorem 5. For all α ∈ (0, 1) and f ∈ L2(Q) the problem (13) is well posed
and its solution satisfies a priory estimate

‖u‖H̃1,α/2(Q) ≤ C ‖f‖L2(Q) .

Theorem 6. Let α ∈ (0, 1) and f ∈ L2(Q). Then the problem (10), (2), (3)

is well posed in the space H2,0(Q1) ∩ H2,0(Q2) ∩ H̃0,α
+ (Q) ∩ ˙̃H1,α/2(Q) and its

solution satisfies a priory estimate∥∥∥∥∂2u∂x2

∥∥∥∥
L2(Q1)

+

∥∥∥∥∂2u∂x2

∥∥∥∥
L2(Q2)

+
∥∥Dα

t,0+u
∥∥
L̃2(Q)

+ ‖u‖L2(Q) ≤ C ‖f‖L2(Q) .
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7 Transmission Problem in Disjoint Intervals

Let Qi = (ai, bi) × (0, T ), i = 1, 2, where −∞ < a1 < b1 < a2 < b2 < +∞
and α ∈ (0, 1). We consider the following system of fractional in time diffusion
equations

Dα
t,0+ui −

∂2ui
∂x2

= fi(x, t), (x, t) ∈ Qi, i = 1, 2, (14)

subject to nonlocal internal boundary conditions of Robin-Dirichlet type

∂u1
∂x

(b1, t) + p1u1(b1, t) = q1u2(a2, t), t ∈ (0, T ), (15)

−∂u2(a2, t)

∂x
+ p2u2(a2, t) = q2u1(b1, t), t ∈ (0, T ), (16)

and homogeneous initial and external boundary conditions

ui(x, 0) = 0, x ∈ (ai, bi), i = 1, 2, (17)

u1(a1, t) = 0, u2(b2, t) = 0. t ∈ (0, T ). (18)

We also assume that

pi > 0 , qi > 0, i = 1, 2 and q1q2 ≤ p1p2. (19)

Analogous problem for integer order diffusion equation is considered in [9, 10].
Problems of such type are known as transmission problems.

Let us introduce the product space

L2 = L2(Q1)× L2(Q2) =
{
v = (v1, v2) | vi ∈ L2(Qi), i = 1, 2

}
,

endowed with the inner product and norm

(v, w)L2 = q2(v1, w1)L2(Q1) + q1(v2, w2)L2(Q2) , ‖v‖L2 = (v, v)
1/2
L2 .

Analogously, we introduce the spaces

Hα,β = Hα,β(Q1)×Hα,β(Q2) and Hα,β
± = Hα,β

± (Q1)×Hα,β
± (Q2).

In particular, we set

H
1,α/2
0 =

{
v = (v1, v2) | v1 ∈ L2((0, T ), H1(a1, b1)) ∩ Ḣα/2((0, T ), L2(a1, b1)),

v2 ∈ L2((0, T ), H1(a2, b2)) ∩ Ḣα/2((0, T ), L2(a2, b2)), v1(a1, t) = v2(b2, t) = 0
}
.

The weak formulation of the problem (14)-(18) has the form: find u ∈ H
1,α/2
0

such that
a(u, v) = l(v) , ∀ v ∈ H

1,α/2
0 , (20)

where
a(u, v) = a1(u1, v1) + a2(u2, v2) + a3(u, v),
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ai(ui, vi) = q3−i

(
D

α/2
t,0+ui, D

α/2
t,T−vi

)
Qi

+ q3−i

(
∂ui
∂x

,
∂vi
∂x

)
Qi

, i = 1, 2,

a3(u, v) =

∫ T

0

[
q2p1u1(b1, t)v1(b1, t) + q1p2u2(a2, t)v2(a2, t)

−q1q2u2(a2, t)v1(b1, t)− q1q2u1(b1, t)v2(a2, t)
]
dt,

and
l(v) = (f, v)L2 = q2(f1, v1)Q1 + q1(f2, v2)Q2 .

Now, using lemmae 1-3, Cauchy-Schwarz and Poincaré inequalities and condi-
tion (19) we convince that bilinear form a(·, ·) and linear functional l(·) satisfy
requirements of Lax-Milgram lemma. Hence, one obtains the following assertion:

Theorem 7. Let α ∈ (0, 1), f ∈ L2 and let the conditions (19) are satisfied.
Then the problem (20) is well posed and its solution satisfies a priory estimate

‖u‖H1,α/2 ≤ C ‖f‖L2 .

In analogous way one obtains the following results:

Theorem 8. Let the assumptions of Theorem 7 are satisfied. Then the initial-

boundary value problem (14)-(18) is well posed in H2,α
+ ∩H1,α/2

0 and its solution
satisfies a priory estimate

|u|H2,α
+

≡
[

2∑
i=1

(∥∥∥∥∂2ui∂x2

∥∥∥∥2
L2(Qi)

+
∥∥Dα

t,0+ui
∥∥2
L2(Qi)

)]1/2
≤ C ‖f‖L2 .
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Abstract. A second-order singularly perturbed parabolic equation in
one space dimension is considered. For this equation, we give computable
a posteriori error estimates in the maximum norm for two semidiscreti-
sations in time and a full discretisation using P1 FEM in space. Both the
Backward-Euler method and the Crank-Nicolson method are considered.
Certain critical details of the implementation are addressed. Based on
numerical results we discuss various aspects of the error estimators in
particular their effectiveness.
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1 Introduction

The authors’ recent paper [4] gives certain maximum norm a posteriori error es-
timates for time-dependent semilinear reaction-diffusion equations in 1-3 space
dimensions, applicable in both regular and singularly perturbed regimes. The
purpose of the present paper is to numerically investigate the sharpness and
robustness of the theoretical results [4] when applied to a relatively simple equa-
tion. Our test problem will be a singularly perturbed equation in the form

Mu := ut + Lu = f in Ω × (0, T ], Ω := (0, 1), Lu := −ε2uxx + ru, (1a)

with a small positive perturbation parameter ε and functions r : Ω̄ → R, r ≥ �2,
� > 0, f : Ω̄×[0, T ] → R, subject to the initial and Dirichlet boundary conditions

u(x, 0) = ϕ(x) for x ∈ Ω̄, u(0, t) = u(1, t) = 0 for t ∈ [0, T ]. (1b)

Solutions to (1) typically exhibit sharp layers of width O
(
ε ln ε−1

)
at the two

end points of the spatial domain. Interior layers may also be present depending

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 50–61, 2013.
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on the right-hand side and on the initial condition. These layers form challenges
for any numerical method; see [9] for an overview.

Recently much attention has been paid to the design of adaptive methods for
partial differential equations that automatically adapt the discretisation to the
features of the solution, see e.g. [10]. The main ingredients of such methods are
reliable a posteriori error estimators.

In [4,5] error estimators in the maximum norm for singularly perturbed
parabolic problems like (1) have been derived. The crucial issue when analysing
methods for such problems is to carefully monitor any dependence of constants
on the perturbation parameter. In the present paper we shall numerically inves-
tigate the sharpness of the a posteriori error bounds derived in [4].

The outline of the paper is as follows. In §2 we review properties of the Green’s
function of (1) which are the basis for the analysis in [4]. Semidiscretisations in
time are studied in §3. Both the implicit Euler method and the Crank-Nicolson
method will be considered. §4 is concerned with full discretisations which are
obtained by applying a FEM to the semidiscretisations. Finally, in §5 the effects
of changing the spatial mesh are studied.

2 The Green’s Function

The main tool for deriving a posteriori error estimators in [4] is the Green’s
function G associated with the differential operator M of (1). It can be used to
express the error of a numerical approximation in terms of its residual.

For definitions and properties of fundamental solutions and Green’s functions
of parabolic operators, we refer the reader to [2, Chap. 1 and §7 of Chap. 3].
Any given function v of sufficient regularity can be represented as

v(x, t) =

∫
Ω

G(x, t; ξ, 0) v(ξ, 0) dξ +
∫ t

0

∫
Ω

G(x, t; ξ, s)
(
Mv

)
(ξ, s) dξ ds. (2)

Theorem 1 ([5, Th. 2.1]). Let r ∈ C1(Ω̄). Assume �2 ≤ r on Ω̄ with some
constant � > 0. Then, for the Green’s function G one has∫

Ω

|G(x, t; ξ, s)| dξ ≤ e−�2(t−s),∫
Ω

∣∣∂kξ G(x, t; ξ, s)∣∣ dξ ≤ γk e
−�2(t−s)

εk(t− s)k/2
+O

(
εk−1

)
, for k = 1, 2,

and ∫
Ω

|∂sG(x, t; ξ, s)| dξ ≤
(

γ2
t− s

+ ‖r‖∞
)
e−�2(t−s) +O (ε)

with constants γ1 = 1/
√
π and γ2 =

√
2/(πe).
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Let ũ be an approximation of the exact solution u of (1). Replacing v by u− ũ
in (2), we get the error representation

(u− ũ) (x, t) =

∫
Ω

G(x, t; ξ, 0) (ϕ− ũ) (ξ, 0) dξ

+

∫ t

0

∫
Ω

G(x, t; ξ, s)
(
f − ũs + Lũ

)
(ξ, s) dξ ds.

(3)

The main idea when deriving a posteriori error estimates is the use of the Hölder
inequality, the L1-norm bounds for the Green’s function in Theorem 1 and
maximum-norm bounds for the residuum.

In the case of the backward-Euler discretisation the approximation ũ is con-
sidered to be piecewise constant in time. Therefore, ũ will be discontinuous in
time and ũs has to be read in the context of distributions. Further discontinuities
will occur when the spatial discretisation mesh changes between time levels.

To deal with these discontinuities, integration by parts is applied to the second
integral in (3):∫ t

0

G(x, t; ξ, s) ũs(ξ, s) ds = G(x, t; ξ, s) ũ(ξ, s)
∣∣∣t−τ

s=0

−
∫ t−τ

0

Gs(x, t; ξ, s) ũ(ξ, s) ds+

∫ t

t−τ

G(x, t; ξ, s) ũs(ξ, s) ds.

For the L1 norm of Gs, Theorem 1 yields the bound∫ t

0

∫
Ω

|Gs(x, t; ξ, s)| dξ ds ≤ γ2�(τ, t) + �̄+O (ε) , 0 < τ < t ≤ T,

where �(τ, t) :=
∫ t

τ s
−1e−�2s/2 ds ≤ ln(t/τ) and �̄ := �−2‖r‖∞.

3 Semidiscretisation in Time

Let ωt : 0 = t0 < t1 < t2 < · · · < tM = T , be an arbitrary nonuniform mesh in
time direction with step sizes τj := tj − tj−1 and mesh intervals Jj := (tj−1, tj),
j = 1, . . . ,M . Set f j := f(·, tj).

Given an arbitrary function v : ωt → H1
0 (Ω) : tj �→ vj , we introduce its stan-

dard piecewise linear interpolant

(I1,tv) (·, t) :=
tj − t

τj
vj−1 +

t− tj−1

τj
vj for t ∈ J̄j , j = 1, . . . ,M,

and the piecewise-constant interpolant

(I0,tv) (·, t) := vj for t ∈ (tj−1, tj ], j = 1 . . . ,M ; (I0,tv) (·, 0) := v1;

so I0,tv is continuous on [t0, t1]. Furthermore, introduce the difference quotient

δtv
j :=

vj − vj−1

τj

as an approximation of the first-order time derivative.
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3.1 Backward Euler

We associate an approximate solution U j ∈ H1
0 (Ω) with the time level tj and

require it to satisfy

δtU
j + LU j = f j in Ω, j = 1, . . . ,M ; U0 = ϕ, (4)

Using (3) with ũ = I0,tU , the following a posteriori error estimate was obtained
in [4].

Theorem 2. For m = 1, . . . ,M , the maximum-norm error satisfies∥∥Um − u(·, tm)
∥∥
∞,Ω

≤ ηbE := ηbEosc + ηbEt + ηbEt,∗ (5)

with

ηbEosc :=

m∑
j=1

τje
−�2(tm−tj)

∥∥f − I0,tf
∥∥
∞,Ω×Jj

, ηbEt,∗ := 2τm
∥∥δtUm

∥∥
∞,Ω

,

ηbEt :=
(
γ2 ln

tm
τm

+ �̄+O (ε)
)

max
j=1,...,m−1

τj
∥∥δtU j

∥∥
∞,Ω

.

Remark 1. In practice, for a singularly perturbed problem the O (ε) term is
small (compared to �̄). Therefore, it will be neglected.

The term ηbEosc captures the data oscillations. Therefore, it cannot be evaluated
exactly and needs to be approximated. In our experiments this is done as follows:∥∥f − Iν,tf

∥∥
∞,Ω×Jj

≈ max
k=0,...,3

∥∥(f − Iν,tf) (·, tj−1 + kτj/4)
∥∥
∞,Ω

, ν = 0, 1, (6)

i.e., the difference between the right-hand side f and it piecewise constant (and
later linear) interpolant is sampled at 4 equally spaced points per time interval.

We present numerical results for the following test problem:

ut − ε2uxx + (1 + x)u = 1− cos 10xt2, in Ω × (0, T ],

u(x, 0) = sinπx, x ∈ [0, 1], u(0, t) = u(1, t) = 0, t ∈ (0, T ],
(7)

with ε = 10−6. This is a sufficiently small value to bring out the singular-
perturbation nature of the problem. The exact solution is not available. Instead
the true errors are approximated by means of a numerical solution on a very
fine layer-adapted mesh. Errors arising from the spatial discretisation can be
neglected.

In Table 1 we present results for the semi-discretisation error at final time
T = 1 and compare it with the a posteriori error estimator of Theorem 2. In
time we use a mesh with M mesh intervals and varying step sizes:

τj =

{
2

3M if j is odd,
4

3M if j is even.
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Table 1. Semidiscretisation by the backward Euler method, ε = 10−6

M ‖u− U‖∞ rate ηbE Ceff
ln(1/τM )

ηbE
osc ηbE

t ηbE
t,∗

211 1.401e-4 1.00 3.793e-3 2.35 1.091e-4 2.767e-3 9.171e-4
212 7.006e-5 1.00 1.981e-3 2.46 5.455e-5 1.468e-3 4.586e-4
213 3.503e-5 1.00 1.032e-3 2.56 2.727e-5 7.758e-4 2.293e-4
214 1.751e-5 1.00 5.371e-4 2.67 1.363e-5 4.088e-4 1.147e-4
215 8.757e-6 1.00 2.790e-4 2.77 6.817e-6 2.149e-4 5.733e-5
216 4.379e-6 — 1.447e-4 2.88 3.408e-6 1.127e-4 2.867e-5

The table contains the maximum errors at time T = 1, the error bounds obtained
by the error estimator ηbE, the efficiency index

Ceff := ηbE
/∥∥UM − u(·, T )

∥∥
∞,Ω

and the various parts of the error estimator. The dominant term ηbEt in the
estimator is highlighted in the table. It does not converge with first order because
of the presence of the ln(1/τm) term (which also appears in [5]). Also, note
that the efficiency slightly deteriorates with increasing M . Ceff is approximately
proportional to ln(1/τM ). We conjecture that the factor ln(1/τm) appearing in
ηbEt,∗ is merely an artifact of the analysis. Apart from this the estimator is quite

efficient with Ceff

ln(1/τM ) ≈ 2.5 . . . 3.0.

3.2 Crank-Nicolson

An approximate solution U j ∈ H1
0 (Ω) is associated with the time level tj . It

satisfies

δtU
j +

LU j + LU j−1

2
=
f j−1 + f j

2
in Ω j = 1, . . . ,M ; U0 = ϕ.

For the Crank-Nicolson method the following error bound is given in [4]:∥∥Um − u(·, tm)
∥∥
∞,Ω

≤ ηCN := ηCN
osc + ηCN

t + ηCN
t,* (8)

where

ηCN
osc :=

m∑
j=1

τje
−�2(tm−tj)

∥∥f − I1,tf
∥∥
∞,Ω×Jj

, ηCN
t,* :=

5τm
8

∥∥δtψm
∥∥
∞,Ω

,

ηCN
t :=

1

8

(
γ2 ln

tm
τm

+ �̄+O (ε)
)

max
j=1,...,m−1

τj
∥∥δtψj

∥∥
∞,Ω

and ψj := LU j − f(·, tj).
The term ηCN

osc captures the data oscillations and needs to be approximated.
This is done by means of (6). The results of our test computations can be found
in Table 2. They are in agreement with the theoretical results. Again, we have
highlighted the dominant term of the estimator in the table. Its second order
convergence is affected by the presence of the ln(1/τm) term.
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Table 2. Semidiscretisation by the Crank-Nicolson method, ε = 10−6

M ‖u− U‖∞ rate ηCN Ceff
ln(1/τM )

ηCN
osc ηCN

t ηCN
t,∗

27 4.108e-6 2.00 2.231e-4 6.23 2.486e-5 9.239e-5 1.058e-4
28 1.028e-6 2.00 5.755e-5 6.42 6.189e-6 2.494e-5 2.642e-5
29 2.570e-7 2.00 1.484e-5 6.62 1.544e-6 6.695e-6 6.600e-6
210 6.427e-8 2.00 3.824e-6 6.82 3.856e-7 1.789e-6 1.649e-6
211 1.607e-8 2.00 9.846e-7 7.02 9.635e-8 4.760e-7 4.123e-7
212 4.018e-9 — 2.533e-7 7.23 2.408e-8 1.262e-7 1.031e-7

4 Full Discretisations

In this section we describe our results for full discretisations of the parabolic
problem (1). To this end we apply piecewise linear P1 finite elements to the
semidiscrete backward Euler and Crank-Nicolson methods.

4.1 The Spatial Discretisation

Consider a steady-state version of the abstract parabolic problem (1):

Lv = −ε2vxx + rv = g in by, v(0) = v(1) = 0, (9)

with 0 < ε � 1 and r ≥ �2 on Ω, � > 0. The corresponding variational formu-
lation is: Find u ∈ H1

0 (0, 1) such that

a(u, v) := ε2〈ux, vx〉+ 〈ru, v〉 = 〈f, v〉 ∀w ∈ H1
0 (Ω),

where 〈·, ·〉 is the standard inner product in L2(Ω).
An approximate solution of (9) is obtained by means of the P1-Galerkin FEM.

Let Vh be the space of continuous piecewise-linear finite element functions on
an arbitrary nonuniform mesh ω̄x = {xi}Ni=0 with 0 = x0 < x1 < · · · < xN = 1,
hi := xi − xi−1 and Ii := (xi−1, xi). Note that here we make absolutely no mesh
regularity assumptions. As solutions of our problem typically exhibit sharp layers
so a suitable mesh is expected to be highly-nonuniform; see, e.g., [7].

Our discretisation of (9) is: Find vh ∈ V̊h := Vh ∩H1
0 (Ω) such that

aVh
(vh, wh) := ε2 〈v′h, w′

h〉+ 〈rvh, wh〉Vh
= 〈g, wh〉Vh

∀wh ∈ V̊h, (10)

where 〈ψ,w〉Vh
:= 〈I1,xψ,w〉 with the standard piecewise-linear nodal interpola-

tion I1,x : C(Ω̄) → Vh. For the resulting FEM we cite the following a posteriori
error bound from [7].

Theorem 3. Let v be the solution of (9) and vh its finite element approximation
defined by (10). Then the maximum-norm error satisfies.

‖v − vh‖∞,Ω ≤ ηε
(
Vh, rvh − g

)
with the a posteriori error estimator

ηε
(
Vh, q

)
:= max

i=1,...,N

{
h2i
4ε2

‖I1,xq‖∞,Ii

}
+ �−2 ‖q − I1,xq‖∞,Ω . (11)
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4.2 Fully Discrete Backward Euler Method

A spatial mesh ω̄j
x : 0 = xj0 < xj1 < · · · < xjNj

= 1, a finite-element space V j
h of

piecewise-linear functions and a computed solution ujh ∈ V̊ j
h := V j

h ∩H1
0 (Ω) are

associated with the time level tj . By Ij1,x : C(Ω̄) → V j
h we denote the nodal

interpolation in V j
h and by P j

h : L2(Ω) → V j
h the L2 projection onto V j

h . Given

the computed solution ujh, we set ûj−1
h := P juj−1

h and

δ∗t u
j
h :=

ujh − ûj−1
h

τj
.

Note that ûj−1
h = uj−1

h if V j−1
h ⊂ V j

h , i.e. when the mesh is purely refined. Oth-

erwise, when parts of the mesh are coarsend, one typically has ûj−1
h �= uj−1

h .

We apply the FEM (10) to (4) and obtain the full discretisation: Find ujh ∈ V̊ j
h ,

j = 0, . . . ,M , such that〈
δ∗t u

j
h, wh

〉
+ aV j

h

(
ujh, wh

)
=
〈
f j, wh

〉
Vh

∀wh ∈ V̊ j
h , j = 1, . . . ,M, (12)

with some initial value u0h, for example u0h = I01,xϕ.

Elliptic Reconstruction. For each time level tj , j = 1, . . . ,M , we follow an

idea from [8] and introduce the elliptic reconstruction Rj ∈ H1
0 (Ω) of ujh, which

is uniquely defined by

a(Rj, w) = 〈f j − δ∗t u
j
h, w〉 ∀ w ∈ H1

0 (Ω). (13)

In view of (12), ujh can be interpreted as the finite-element approximation of Rj

obtained by (10). Therefore, Theorem 3 applies and yields∥∥ujh −Rj
∥∥
∞,Ω

≤ ηj := ηε
(
V j
h , q

j
)
, j = 1, . . . ,M, (14a)

with

qj := rujh − f j + δ∗t u
j
h, (14b)

Remark 2. (i) The second term in the error estimator ηε, see (11), simplifies to

�−2
∥∥qj − I1,xq

j
∥∥
∞,Ω

= �−2
∥∥rujh − f j − I1,x

(
rujh − f j

)∥∥
∞,Ω

,

because Ij1,xδ
∗
t u

j
h = δ∗t u

j
h.

(ii) The first term of ηε requires to evaluate qj in the mesh nodes xji . For
small ε, its evaluation using (14b) is numerically unstable because rounding
errors are amplified. A stable alternative is to determine qj ∈ V j

h such that
qj(0) = f j(0), qj(1) = f j(1) and〈

qj , vh
〉
V j
h

= −ε2
〈
ujh,x, vh,x

〉
∀ vh ∈ V̊ j

h .

This requires to invert the standard mass matrix.
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A Posteriori Estimator for the Parabolic Problem. Consider the error at
time tm. By the triangle inequality, we have

‖umh − u(·, tm)‖∞,Ω ≤ ‖umh −Rm‖∞,Ω + ‖Rm − u(·, tm)‖∞,Ω

≤ ηm + ‖Rm − u(·, tm)‖∞,Ω .

The difference Rm − u(·, tm) is represented using (3) with ũ = I0,tR. The recon-
struction R can be completely eliminated using (13) and (14a). We arrive at the
following a posteriori error bound [4].

Theorem 4. For m = 1, . . . ,M , the maximum-norm error satisfies∥∥umh − u(·, tm)
∥∥
∞,Ω

≤ ηbE := ηinit + ηbEosc + ηproj + ηbEt + ηbEt,∗ + ηbEell + ηbEell,∗

with

ηinit := e−γ2tm
∥∥u0h − ϕ

∥∥
∞,Ω

, ηbEosc :=

m∑
j=1

τje
−�2(tm−tj)

∥∥f − I0,tf
∥∥
∞,Ω×Jj

,

ηproj :=

m∑
j=1

e−γ2(tm−tj)
∥∥ûj−1

h − uj−1
h

∥∥
∞,Ω

, ηbEt,∗ := 2τm
∥∥δ∗t umh ∥∥∞,Ω

,

ηbEt :=

(
γ2 ln

tm
τm

+ �̄+O (ε)

)
max

j=1,...,m−1
τj
∥∥δ∗t ujh∥∥∞,Ω

,

ηbEell :=

(
γ2 ln

tm
τm

+ �̄+O (ε)

)
max

j=1,...,m−1
ηj and ηbEell,∗ := 2ηm.

Remark 3. Comparing with Theorem 2, we notice four new terms.

– ηinit: the error in approximating the initial condition,

– ηproj: the accumulated erros due to projections when the mesh is coarsend,

– ηbEell and ηbEell,∗: elliptic error estimates for the spatial discretisation.

Numerical Results. In order of balancing the accuracy in space and time, we
use a Bakhvalov mesh with N = [

√
8M ] mesh points in space. We do so, because

the method is formally 1st order in time and 2nd order in space. The Bakhvalov
mesh [1] is given by

xji = xi = μ(ξi), ξi = i/N

with the mesh generating function

μ(ζ) =

⎧⎪⎪⎨⎪⎪⎩
ϑ(ζ) :=

σε

�
ln

α

α− ζ
ζ ∈ [0, ζ∗],

ϑ(ζ∗) + ϑ′(ζ∗)(ζ − ζ∗) ζ ∈ [ζ∗, 1/2],

1− μ(1 − ζ) ζ ∈ [1/2, 1].
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Table 3. Backward Euler and linear FEM, ε = 10−6

M N error rate ηinit rate ηbE
t rate ηbE

t,* rate

ηbE Ceff
ln(1/τM )

ηbE
osc rate ηbE

ell rate ηbE
ell,* rate

211 362 1.401e-4 1.00 2.283e-5 1.00 2.767e-3 0.91 9.171e-4 1.00
1.062e-2 6.59 1.091e-4 1.00 4.998e-3 0.92 1.803e-3 1.00

212 512 7.006e-5 1.00 1.142e-5 1.00 1.468e-3 0.92 4.586e-4 1.00
5.534e-3 6.87 5.455e-5 1.00 2.643e-3 0.92 8.985e-4 1.00

213 724 3.503e-5 1.00 5.709e-6 1.00 7.758e-4 0.92 2.293e-4 1.00
2.881e-3 7.15 2.727e-5 1.00 1.394e-3 0.93 4.483e-4 1.00

214 1024 1.751e-5 1.00 2.854e-6 1.00 4.088e-4 0.93 1.147e-4 1.00
1.497e-3 7.44 1.363e-5 1.00 7.335e-4 0.93 2.238e-4 1.00

215 1448 8.757e-6 1.00 1.427e-6 1.00 2.149e-4 0.93 5.733e-5 1.00
7.775e-4 7.72 6.817e-6 1.00 3.852e-4 0.93 1.118e-4 1.00

216 2048 4.379e-6 — 7.135e-7 — 1.127e-4 — 2.867e-5 —
4.031e-4 8.01 3.408e-6 — 2.018e-4 — 5.584e-5 —

The transition point ζ∗ satisfies (1 − 2ζ∗)ϑ′(ζ∗) = 1 − 2ϑ(ζ∗) which implies
μ ∈ C1[0, 1]. For the mesh parameters are chosen we take σ = 4 and α = 1/4.

Table 3 displays the results of our test computations for (7). It contains the
error at final time T = 1, the a posteriori error estimator, the efficiency index
and the various components of the error estimator together with their respective
rate of convergence.

While the results are in aggreement with Theorem 4, we observe that the terms
ηbEt and ηbEell (highlighted in the table) dominate and converge slower than all other
terms. This is because of the factor ln tm

τm
in their definition. As for the semidiscreti-

sation we conjecture that this factor is an artifact of the error analysis in [4].
Note that ηproj ≡ 0 because the mesh does not change with time. The effect

of mesh adaptivity will be discussed in more detail in §5.
In Table 4 we present computational results for a uniform mesh in space.

The method does not converge. This has to be expected because the mesh is
not adapted to the layer structure. Examining the various terms of the error
estimator, we see that the terms ηbEell and ηbEell,* dominate. Thus, the source of the
bad behaviour is correctly attributed to a wrong spatial resolution.

4.3 Fully Discrete Crank-Nicolson Method

With each time level tj , j = 0, . . . ,M , we associate an approximation ujh ∈ V̊ j
h

of u(·, tj) that satisfies〈
δ∗t u

j
h, wh

〉
+ 1

2aV j
h

(
ujh + ûj−1

h , wh

)
= 1

2

〈
f j + f j−1, wh

〉
Vh

∀wh ∈ V̊ j
h ,

j = 1, . . . ,M,

with some initial value u0h, e.g., u
0
h = I01,xϕ.

Using elliptic reconstructions and piecewise linear interpolation in time, the
following a posteriori error bound was derived in [4].



Maximum Norm a Posteriori Error Estimation 59

Table 4. Backward Euler and linear FEM, ε = 10−6, uniform mesh

M N error rate ηinit rate ηbE
t rate ηbE

t,* rate

ηbE Ceff
ln(1/τM )

ηbE
osc rate ηbE

ell rate ηbE
ell,* rate

211 362 5.371e-2 0.00 5.710e-6 1.00 3.208e-3 0.91 1.157e-3 1.00
33.98 55.03 1.091e-4 1.00 24.97 -0.09 9.006 0.00

212 512 5.363e-2 0.00 2.854e-6 1.00 1.705e-3 0.92 5.796e-4 1.00
35.50 57.58 5.455e-5 1.00 26.49 -0.08 9.006 0.00

213 724 5.359e-2 0.00 1.428e-6 1.00 9.021e-4 0.92 2.901e-4 1.00
37.01 60.08 2.727e-5 1.00 28.01 -0.08 9.006 0.00

214 1024 5.357e-2 0.00 7.136e-7 1.00 4.758e-4 0.93 1.451e-4 1.00
38.53 62.57 1.363e-5 1.00 29.52 -0.07 9.006 0.00

215 1448 5.356e-2 0.00 3.569e-7 1.00 2.502e-4 0.93 7.261e-5 1.00
40.04 65.03 6.817e-6 1.00 31.03 -0.07 9.006 0.00

216 2048 5.355e-2 — 1.784e-7 — 1.312e-4 — 3.632e-5 —
41.55 67.50 3.408e-6 — 32.54 — 9.006 —

Theorem 5. For m = 1, . . . ,M , the maximum-norm error satisfies∥∥umh − u(·, tm)
∥∥
∞,Ω

≤ ηCN := ηinit + ηCN
osc + ηproj + ηCN

t + ηCN
t,∗ + ηCN

ell + ηCN
ell,∗

with ηinit and ηproj as in Theorem 4, and

ηCN
osc :=

m∑
j=1

τje
−�2(tm−tj)

∥∥f − I1,tf
∥∥
∞,Ω×Jj

, ηCN
t,∗ :=

5τ2m
8

∥∥δ∗tψm
∥∥
∞,Ω

,

ηCN
t :=

1

8

(
γ2 ln

tm
τm

+ �̄+O (ε)
)

max
j=1,...,m−1

τ2j
∥∥δ∗t ψj

∥∥
∞,Ω

,

ηCN
ell := 2

(
γ2 ln

tm
τm

+ �̄+O (ε)
)

max
j=1,...,m−1

ηj and ηCN
ell,∗ := 5ηm,

where ψj , ψ̂j−1 ∈ V̊ j
h solve〈

ψj , wh

〉
V j
h

= aV j
h

(
ujh, wh

)
−
〈
f j, wh

〉
V j
h

∀ wh ∈ V j
h , (15a)〈

ψ̂j−1, wh

〉
V j
h

= aV j
h

(
ûj−1
h , wh

)
−
〈
f j−1, wh

〉
V j
h

∀ wh ∈ V j
h . (15b)

Furthermore,

ηj := max
{
ηε
(
V j
h , ru

j
h − f j + ψj

)
, ηε
(
V j
h , rû

j−1
h − f j−1 + ψ̂j−1

)}
.

Remark 4. The evaluation of the error estimator requires the solutions of the
two auxiliary problems (15a) and (15b). With regard to the numerical stability
of computing η, Remark 2(ii) applies.

Numerical Results for our test problem (7) are contained in Table 5. The
Crank-Nicolson method with linear FEM in space is formally 2nd order both in
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Table 5. Crank-Nicolson and linear FEM, ε = 10−6

M N error rate ηinit rate ηCN
t rate ηCN

t,* rate

ηCN Ceff
ln(1/τM )

ηCN
osc rate ηCN

ell rate ηCN
ell,* rate

27 211 1.362e-5 1.99 7.135e-7 2.00 9.239e-5 1.89 1.058e-4 2.00
5.938e-4 5.00 2.486e-5 2.01 2.304e-4 1.88 1.396e-4 2.00

28 212 3.421e-6 2.00 1.784e-7 2.00 2.494e-5 1.90 2.642e-5 2.00
1.554e-4 5.21 6.189e-6 2.00 6.277e-5 1.89 3.486e-5 2.00

29 213 8.570e-7 2.00 4.459e-8 2.00 6.695e-6 1.90 6.600e-6 2.00
4.052e-5 5.42 1.544e-6 2.00 1.692e-5 1.90 8.712e-6 2.00

210 214 2.145e-7 2.00 1.115e-8 2.00 1.789e-6 1.91 1.649e-6 2.00
1.054e-5 5.64 3.856e-7 2.00 4.532e-6 1.91 2.177e-6 2.00

211 215 5.365e-8 2.00 2.787e-9 2.00 4.760e-7 1.92 4.123e-7 2.00
2.739e-6 5.85 9.635e-8 2.00 1.207e-6 1.91 5.443e-7 2.00

212 216 1.342e-8 — 6.967e-10 — 1.262e-7 — 1.031e-7 —
7.103e-7 6.07 2.408e-8 — 3.202e-7 — 1.361e-7 —

Table 6. Euler method on two nested Bakhvalov meshes

M error rate ηinit rate ηbE
t rate ηbE

t,* rate ηbE
proj rate

ηbE Ceff
ln(1/τM )

ηbE
osc rate ηbE

ell rate ηbE
ell,* rate

211 2.577e-4 0.91 5.709e-6 1.00 2.767e-3 0.91 9.171e-4 1.00 2.765e-4 0.98
9.609e-3 3.24 1.091e-4 1.00 4.998e-3 0.51 5.357e-4 0.97

212 1.369e-4 0.93 2.854e-6 1.00 1.468e-3 0.92 4.586e-4 1.00 1.401e-4 0.99
5.914e-3 3.76 5.455e-5 1.00 3.516e-3 1.33 2.744e-4 0.97

213 7.183e-5 0.95 1.427e-6 1.00 7.758e-4 0.92 2.293e-4 1.00 7.069e-5 0.99
2.638e-3 3.20 2.727e-5 1.00 1.394e-3 0.93 1.396e-4 0.98

214 3.711e-5 0.97 7.135e-7 1.00 4.088e-4 0.93 1.147e-4 1.00 3.556e-5 0.99
1.378e-3 3.23 1.363e-5 1.00 7.335e-4 0.93 7.065e-5 0.99

215 1.900e-5 0.97 3.568e-7 1.00 2.149e-4 0.93 5.733e-5 1.00 1.786e-5 1.00
7.181e-4 3.29 6.817e-6 1.00 3.852e-4 0.93 3.564e-5 0.99

216 9.708e-6 — 1.784e-7 — 1.127e-4 — 2.867e-5 — 8.958e-6 —
3.736e-4 3.35 3.408e-6 — 2.018e-4 — 1.795e-5 —

space and in time. Therefore, N should be chosen proportional to M . We have
chosen N = 16M to balance the accuracy. The results are in agreement with
our theoretical findings. Again they suggest that the logarithmic term is a mere
artifact of the error analysis.

5 Mesh Adaptivity, Projection Errors

So far we have considered discretizations where the spatial mesh remains un-
changed while we integrate in time. In this final section of the paper we will
investigate some effects of changing the spatial discretisation.
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A typical approach in mesh adaptivity is enrichment of the spatial discretisa-
tion by adding mesh points whenever required. At stages when the discretisation
becomes too big it is reduced by removing mesh points where they are not needed
anymore. Thus, typically the refinement steps outnumbers the coarsening steps.
There are two adavantage of this approach

– no projection errors are introduced during refinement and
– the L2 projection has to be computed only when the mesh is coarsened.

We model this strategy in our next experiment.
Starting from a Bakhvalov mesh with 2N mesh points we coarsen the mesh

at time T/8 by removing every other mesh point. At time T/4 we switch back
the mesh with 2N points then coarsen again at time 3T/8 etc. Table 6 gives
the results for the backward Euler method, N = [

√
8M ]. Again, the estimator

predicts the actual errors very well.
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Abstract. In the present paper we discuss father development of the
general scheme of the asymptotic method of differential inequalities and
illustrate it applying for some new important cases of initial boundary
value problem for the nonlinear singularly perturbed parabolic equa-
tions,which are called in applications as reaction-diffusion-advection equa-
tions. The theorems which state front motion description and stationary
contrast structures formation are proved for parabolic, parabolic-periodic
and integro-parabolic problems.

Keywords: singularly perturbed problems, comparison principle,
reaction-diffusion-advection equations.

1 Introduction

Nonlinear singularly perturbed PDE’s which have solutions with boundary and
internal layers are of increasing interest because of many applications of practi-
cal importance. This work is devoted to nonlinear singularly perturbed parabolic
and integro-parabolic equations. In applications, these problems may be inter-
preted as models for local and non-local reaction-diffusion and reaction-diffusion-
advection processes in chemical kinetics, synergetic, astrophysics, biology, et. al.
The solutions of these problems often feature a narrow boundary layer region
of rapid change as well as internal layers of different types (stationary internal
layers - contrast structures, moving internal layers - fronts and moving spikes).
It is well-known that such problems are extremely complicated for numerical
treatment as well for asymptotic investigations and it needs to develop new
asymptotic methods to investigate them formally as well as rigorously.

We present our recent extension of the well-known boundary layer functions
method to construct the formal asymptotics of solutions of different classes of
problems with internal layers. These results is father development of our inves-
tigations of contrast structures which were published in the review paper [1].

Our rigorous investigation is based on modern development of comparison
principle for elliptic and parabolic problems. The basic ideas of this approach
where suggested in the papers of H.Aman and D.Sattinger (see [2,3]) and recently
got a father development in the works of P. Hess [4] and H.Aman [5]. These works

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 62–72, 2013.
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are essentially using so called Krein-Ruthman theorem ( see, for example, [4])
and basic results of M.A. Krasnoselskij on positive operators theory ( see, for
example, [6] and references threin).

In the present paper we discuss father development of the general scheme
of asymptotic method of differential inequalities, the basic ideas of which were
proposed in [7] and illustrate it applying for some new important cases of initial
boundary value problem for the equation

ε2Δu − ∂u

∂t
= f(u,∇u, x, ε), x ∈ D ⊂ RN , t > 0, (1)

which plays important role in many applications and is called reaction-diffusion-
advection equation. For these problems we state the conditions which imply
the existence of contrast structures - solutions with internal layers. Particularly
the cases when equation (1) is semilinear or quasylinear are considered. The
results for equation (1) are extended for periodic parabolic problems and for
some classes for nonlocal reaction-diffusion-advection equations. Among others
we discuss the following problems:

1.Existence and Lyapunov stability of stationary solutions.
2. The analysis of local and global domain of stability of the stationary

contrast structures.
3. The problem of stabilization of the solution of initial boundary value

problem.
Our investigation uses so-called positivity property of the operators producing

formal asymptotics and is based on some recent extensions of Krein-Ruthman
theorem. The basic idea of this approach is to construct lower and upper solutions
to the problem by using formal asymptotics. By using these we state the existence
of the solutions, estimate the accuracy of the asymptotics. The new significant
result of our work is that we propose a new approach to investigate asymptotic
stability of the stationary and periodic solutions in the sense of Ljapunov.

Another aspects of this work is to emphasize the possibility of use this ana-
lytical treatment for numerical approaches. Some examples with moving fronts
are presented.

2 General Scheme of Asymptotic Method of Differential
Inequalities for Reaction-Advection-Diffusion
Equations

We consider some cases of initial boundary value problem

ε2Δu − ∂u

∂t
= f(u,∇u, x, ε), x ∈ D ⊂ RN , t > 0,

Bu = h(x), x ∈ ∂D, t > 0,
(2)

where ε is a small parameter, f , h, and ∂D are sufficiently smooth, B is a
boundary operator for Dirichlet, Neumann or third order boundary conditions.
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Denote by N the nonlinear operator in (2)

Nu ≡ ε2Δu− f(u,∇u, x, ε)

We introduce the following definition for an upper and a lower solution, which
is more strong than classical definition.

Definition. We call an upper solution β and a lower solution α asymptotic of
order q > 0 of problem (2) if they satisfy the inequalities

Nβ ≤ −cεq, Nα ≥ cεq, x ∈ D (3)

Bα ≤ h(x) ≤ Bβ (4)

where c is a positive constant.
Denote by L the linear operator which we get from N by linearizing f on the

stationary solution, and by H the following characteristic of the nonlinearity

H ≡ f(β,∇β, x, ε)− f(α,∇α, x, ε) − Lf(β − α),

where Lf is the linearization of f on the stationary solution. Suppose we know
how construct the asymptotic lower and upper solutions. Note that one of the
most important our achievements is the method to construct them by using the
formal asymptotic expansion. In what follows we describe this approach. Our
assumption is

(A1). There exist asymptotic of order q an upper solution β and a lower so-
lution α such that β > alpha and |β − α| ≤ cεr.

From assumption (A1) it follows the existence of the stationary solution u(x, ε)
of problem (2)satisfying the inequalities inequalities α ≤ u(x, ε) ≤ β and there-
fore we also have the asymptotic estimate for the solution. It differ from the
upper or lower solution on the value of order O(εr).

We also assume
(A2). |H | ≤ cεp

(A3). p ≥ q
It is clear that the estimates of the assumptions (A2) (A2) depend on the

properties of the nonlinearity f and the lower and Under the assumptions above
the following theorem take place.

Theorem 1. Suppose the assumptions (A1) − (A3) to be valid. Then, for suffi-
ciently small ε there exists a solution u(x, ε) of (2) which differ from the upper
or lower solution on the value of order O(εr) and is asymptotically stable in
Lyapunov sense with the local domain of stability [α, β]

Proof
The proof of Theorem 1 is based on the revised maximum principal, which used
Krein-Ruthman theorem.

¿From (A2), (A3) it is follows that L(β − α) < 0, B(β − α) > 0 and therefore
the principal eigenvalue which exists and real satisfy the estimate λp < 0, which
imply the asymtotic stability of the stationary solution in the sense of Ljapunov.
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The analogues of Theorem 1 are valid for periodic-parabolic problems and
nonlocal reaction-advection-diffusion equations.

In order to get the upper and lower solutions satisfying the assumptions of
Theorem 1 we use the formal asymptotics, which can be constructed in a lot
of cases by our method, proposed in [1,8]. Under quite natural assumptions the
formal asymptotics of internal layer solution is produced by the boundary layer
operators LB, regular expansion operators LR and by the operators describ-
ing the location of transition layer AΓ . To construct the formal asymptotic we
assume that the operators are invertible.

For the construction of asymptotic lower and upper solutions we require
that these operators have positive inverse when they act in the same classes
of functions in which we construct the asymptotic expansions by means of these
operators.

Finally we get α ≡ αn, β ≡ βn – modified n-th order formal asymptotic.
We illustrate our approach by two examples.

3 Periodic Solutions with Boundary Layers

We consider the boundary value problem

Nε(u) := ε

(
∂2u

∂x2
− ∂u

∂t

)
−

A(u, x, t)
∂u

∂x
−B(u, x, t) = 0 for x ∈ (0, 1), t ∈ R

u(0, t, ε) = u(−)(t), u(1, t, ε) = u(+)(t) for t ∈ R,

u(x, t, ε) = u(x, t+ T, ε) for t ∈ R,

(5)

where ε is a small parameter, A, B, u(−) and u(+) are sufficiently smooth and
T -periodic in t.

If we put ε = 0 in equation (9) we get the so-called degenerate equation

A(u, x, t)
∂u

∂x
+B(u, x, t) = 0, (6)

where t has to be considered as a parameter. Equation (6) is a first order ordi-
nary differential equation and can be considered with one of the following initial
conditions from problem (9)

u(0, t) = u(−)(t), (7)

u(1, t) = u(+)(t). (8)

(A1). The problems (6),(7) and (6),(8) have the solutions u = ϕ(−)(x, t) and
u = ϕ(+)(x, t), respectively, which are defined for 0 ≤ x ≤ 1, t ∈ R and which
are T -periodic in t. Additionally we assume

ϕ(−)(x, t) < ϕ(+)(x, t) for x ∈ [0, 1], t ∈ R,
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A(ϕ(+)(x, t), x, t) < 0, A(ϕ(−)(x, t), x, t) > 0,

x ∈ [0, 1], t ∈ R.

To formulate the next assumptions we introduce the function I(x, t) by

I(x, t) :=

∫ ϕ(+)(x,t)

ϕ(−)(x,t)

A(u, x, t)du.

(A2). The equation
I(x, t) = 0 (9)

has a smooth solution x = x0(t) which is T -periodic and obeys the conditions

0 < x0(t) < 1 for t ∈ R,∫ s

ϕ(−)(x0(t),t)

A(u, x0(t), t) du > 0

for any s ∈
(
ϕ(−)(x0(t), t), ϕ

(+)(x0(t), t)
)

and for t ∈ R.

(A3). The root x0(t) of equation (9) satisfies the condition

∂I

∂x
(x0(t), t) < 0 for t ∈ R,

that is, x0(t) is a simple root.

Construction of the Formal Asymptotics. To characterize the location of
the interior layer we introduce the curve x = x∗(t, ε) as locus of the intersection
of the solution u(x, t, ε) of (2) with the surface

u =
1

2

(
ϕ(−)(x, t) + ϕ(+)(x, t)

)
=: ϕ(x, t).

In what follows we construct the asymptotic expansion of x∗(t, ε) in the form

x∗(t, ε) = x0(t) + ε x1(t) + ..., (10)

where x0(t) is the solution of equation (9) and xk(t), k = 1, 2, ..., are T -periodic
functions to be determined. For the following we use the notation

ξ :=
x− x∗(t, ε)

ε
,

D(−)
:= {(x, t) ∈ R2 : 0 ≤ x ≤ x∗(t, ε), t ∈ R},

D(+)
:= {(x, t) ∈ R2 : x∗(t, ε) ≤ x ≤ 1, t ∈ R}.
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First we consider in D(−)
the boundary value problem

ε

(
∂2u

∂x2
− ∂u

∂t

)
−A(u, x, t)

∂u

∂x
−B(u, x, t) = 0

for (x, t) ∈ D(−)
,

u(0, t, ε) = u0(t), u(x(t, ε), t, ε) = ϕ(t, ε)

for t ∈ R,

u(x, t, ε) = u(x, t+ T, ε) for t ∈ R.

(11)

We look for the formal asymptotic expansion of the solution U (−)(x, t, ε) of this
problem in the form

U (−)(x, t, ε) = Ū (−)(x, t, ε) +Q(−)(ξ, t, ε) =
∞∑
i=0

εi
(
Ū

(−)
i (x, t) +Q

(−)
i (ξ, t)

)
,

(12)

where Ū (−) and Q̄(−) denote the regular and the interior layer parts. Next we

study in D(+)
similar problem to construct U (+)(x, t, ε).

By using the standard procudure of boundary layer function method we can
constuct these expansions and to show that operators L±

R, produsing regular
part of the asymptotics have the form

L±
R ≡ −A(ϕ(±)(x, t), x, t)

∂

∂x
−
(
Au(ϕ

(±)(x, t), x, t)
∂U

(±)

0

∂x

+Bu(ϕ
(±)(x, t), x, t)

)
,

(13)

and therefore positivelly invertible for a negative wrigte hand part - inequality
L±
Ru < 0 has a positive solution.
The periodic functions xi(t) are deternined from C1-matching conditions

(see [8]).
∂I

∂x
(x0(t), t)xk(t) = hk(t), k = 1, 2, ..., t ∈ R.

We see that in our case AΓ = ∂I
∂x (x0(t), t) and inequality AΓ (δx(t)) < 0 has a

positive solution.

Existence Results. We denote by D(−)
n and D(−)

n the domains

D(−)
n := {(x, t) ∈ R2 : 0 ≤ x ≤

n+1∑
i=0

xi(t)ε
i, t ∈ R},

D(+)
n := {(x, t) ∈ R2 :

n+1∑
i=0

xi(t)ε
i ≤ x ≤ 1, t ∈ R}
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and denote by U
(±)
n the partial sums of order n of the expansions , where ξ is

replaced by
(
x−

∑n+1
i=0 xi(t)ε

i
)
/ε.

We introduce the notation

Un(x, t, ε) =

{
U

(−)
n (x, t, ε) for (x, t) ∈ D(−)

n ,

U
(+)
n (x, t, ε) for (x, t) ∈ D(+)

n .

Then we have the following existence theorem

Theorem 2. Suppose the assumptions (A0) − (A3) to be valid. Then, for suffi-
ciently small ε there exists a solution u(x, t, ε) of (9) which T -periodic in t, has
an interior layer and satisfies

|u(x, t, ε)− Un(x, t, ε)| ≤ cεn+1 (x, t) ∈ D

where the positive constant c does not depend on ε.

Construction of the Upper and Lower Solutions. The proof of the theorem
presented in the previous section is based on the technique of lower and upper
solutions.

The upper and lower solutions satisfying the definition above are constructed
by means of the modification of the formal asymptotics. In order to describe
them we introduce the periodic curves x = xβ(t, ε) and x = xα(t, ε) as the
n+1-th partial sums of the asymptotics of x∗(t, ε) with a small shifts at the last
term

xβ(t, ε) = x0(t) + εx1(t) + ...+ εn+1(xn+1(t)− δ)

and
xα(t, ε) = x0(t) + εx1(t) + ...+ εn+1(xn+1(t) + δ)

where δ > 0 is an independent of ε number. These curves divide our domain D
into two subdomains D(−)

β , D(+)

β and D(−)

α , D(+)

α where

D(−)

β := {(x, t) ∈ R2 : 0 ≤ x ≤ xβ(t, ε), t ∈ R},

D(+)

β := {(x, t) ∈ R2 : xβ(t, ε) ≤ x ≤ 1, t ∈ R}.

The domains D(±)

α are defined similarly.
Now we can define the upper solution β(x, t, ε) = βn(x, t, ε) and the lower

solution α(x, t, ε) = αn(x, t, ε) by the expressions

βn(x, t, ε) = β(±)
n (x, t, ε) = Ū

(±)
0 (x, t) + εŪ

(±)
1 (x, t)

+...+ εnŪ (±)
n (x, t) + εn+1(Ū

(±)
n+1(x, t) + v(x))

+Q
(±)
0 (ξβ , t) + εQ

(±)
1 (ξβ , t) + ...

+εn+1Q
(±)
(n+1)β(ξβ , t) + εn+2Q

(±)
(n+2)β(ξβ , t, ε)
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and

αn(x, t, ε) = α(±)
n (x, t, ε) = Ū

(±)
0 (x, t) + εŪ

(±)
1 (x, t)

+...+ εnŪ (±)
n (x, t) + εn+1(Ū

(±)
n+1(x, t)− v(x))

+Q
(±)
0 (ξα, t) + εQ

(±)
1 (ξα, t) + ...

+εn+1Q
(±)
(n+1)α(ξα, t) + εn+2Q

(±)
(n+2)α(ξα, t, ε),

where v(x) = exp(mx) and m > 0 is an independent of ε sufficiently large num-

ber, ξβ = (x− xβ)/ε, ξα = (x− xα)/ε,, the function βn(x, t, ε) = β
(±)
n (x, t, ε)

in D(±)

β and similarly we define αn(x, t, ε).
The existence theorem and its estimate for the solution follows from the dif-

ferential inequalities theorem and from the structure of the upper and lower
solutions.

Lemma 1. The functions βn(x, t, ε) and αn(x, t, ε) satisfies the following uni-
form in D estimates:

βn(x, t, ε)− αn(x, t, ε) = O(εn),

|αn(x, t, ε)− up(x, t, ε)| = O(εn),

|βn(x, t, ε)− up(x, t, ε)| = O(εn)

∂αn

∂x
=
∂up
∂x

+O(εn−1),
∂βn
∂x

=
∂up
∂x

+O(εn−1).

(14)

where up(x, t, ε) is the periodic internal layer solution of problem (9), stated in
the Theorem 2.

The estimates of this proposition follows from the structure of the functions
βn(x, t, ε) and αn(x, t, ε).

Stability Results. In this section we investigate the stability (in the sense of
Lyapunov) of the periodic solution up(x, t, ε) established by Theorem 2. It is
known that the nonlinear stability problem under consideration can be solved
by means of the linearized problem. For this purpose we study the following
linear eigenvalue problem

Lεv := ε

(
∂2v

∂x2
− ∂v

∂t

)
−A(up(x, t, ε), x, t)

∂v

∂x

−
[
Au(up(x, t, ε), x, t)

∂up
∂x

+Bu(up(x, t), x, t)
]
v = μv

for x ∈ (0, 1), t ∈ R,

v(0, t, ε) = v(1, t, ε) = 0 for t ∈ R,

v(x, t, ε) = v(x, t+ T, ε) for t ∈ R,

(15)

If μ satisfies μ < 0, then the periodic solution up(x, t, ε) is asymptotically stable,
if μ satisfies μ > 0, then up(x, t, ε) is unstable.



70 N. Nefedov

It is shown by P.Hess that under our smoothness assumptions the operator
Lε is such that the Krein-Rutman theory can be applied. With slight extension
of the results of Hess we can show that if we consider the auxiliary problems for

Lεw = −h w(0, t) = w(1, t) = 0 t ∈ R, (16)

then the following theorem holds.

Lemma 2.
(i).If μ < 0, then problem (16) has a unique strictly positive solution.
(iI).If μ > 0, then problem (16) has no positive solution.
(iii).If μ = 0, then problem (16) has no solution.

Corollary. If problem (16) has for some positive h a positive solution, then the
principal eigenvalue μ of (15) and is negative.

We have from the construction of the lower and upper solutions

Nε(βn) ≡ ε
(∂2βn
∂x2

− ∂βn
∂t

)
−A(βn, x, t)

∂βn
∂x

−B(βn, x, t)

= −gβn(x, t, ε)εn+1

Nε(αn) = gαn(x, t, ε)εn+1,

where
gβn(x, t, 0) > 0 and gαn(x, t, 0) > 0 x ∈ [0, 1], t ∈ R,

and therefore, αn and βn are the asymptotic lower and upper solutions order of
q = n+ 1.

Using the notation wn = βn − αn we get

Nε(βn)−Nε(αn) = ε
(∂2wn

∂x2
− ∂wn

∂t

)
−
[
A(βn, x, t)

∂βn
∂x

−A(αn, x, t)
∂αn

∂x

]
−[

B(βn, x, t)−B(αn, x, t)
]
= −g(x, t, ε)εn+1

(17)

Taking into account the estimates of Lemma 1 we obtain

A(βn, x, t)
∂βn
∂x

−A(αn, x, t)
∂αn

∂x
=

A(up(x, t, ε), x, t)
∂wn

∂t
+Au(up(x, t, ε), x, t)

∂up
∂x

wn

+O(ε2n−1) x ∈ [0, 1], t ∈ R.

Furthermore, we have

B(βn(x, t, ε), x, t) −B(αn(x, t, ε), x, t) =

Bu(up(x, t, ε), x, t)wn +O(ε2n).
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From these estimates it follows that the estimate of the Assumption A2 of the
Theorem 1 is satisfied with p = 2n− 1

Therefore, from we get the auxiliary problem

Lεwn = h,

where h = −g(x, t, ε)εn+1+O(ε2n−1)+O(ε2n). If we choose n such that n > 2,i.e.
the Assumption A3 of the Theorem 1 p > q is satisfied and we have h < 0.

Theorem 3. Suppose the assumptions (A0) − (A2) to be satisfied. Then for
sufficiently small ε the periodic solution of problem (9) with interior layer is
asymptotically stable with a local region of attraction [α3(x, t, ε), β3(x, t, ε)].

4 Moving Fronts in Nonlocal Reaction-Diffusion-
Advection Equations

Another classes of problems where our approach is successfully applicable are
integro-parabolic equations. Recently the problem of asymptotic description of
front motion for the problem

L[u] ≡ −ε∂u
∂t

(x, t, ε) + ε2
∂2u

∂x2
(x, t, ε)− εA(x, ε)

∂u

∂x
(x, t, ε)−

−
b∫

a

g(u(x, t, ε), u(s, t, ε), x, s, ε) ds = 0, a < x < b, (18)

∂u

∂x
(a, t, ε) = 0,

∂u

∂x
(b, t, ε) = 0, u(x, 0, ε) = u0(x, ε) (19)

was investigated in [9]. Under some natural assumptions where the crucial is

Condition I. There exist two functions

ϕ(−) ∈ C(Ω(−)), where Ω(−) ≡ {(x, y) : a ≤ x ≤ y ≤ b},

ϕ(+) ∈ C(Ω(+)), where Ω(+) ≡ {(x, y) : a ≤ y ≤ x ≤ b},

which for every y ∈ (a, b) satisfy ϕ(−)(y, y) < ϕ(+)(y, y) and the system of the
two coupled integral equations

y∫
a

g(ϕ(−)(x, y), ϕ(−)(s, y), x, s, 0) ds+

+
b∫
y

g(ϕ(−)(x, y), ϕ(+)(s, y), x, s, 0) ds = 0, a < x < y,

y∫
a

g(ϕ(+)(x, y), ϕ(−)(s, y), x, s, 0) ds+

+
b∫
y

g(ϕ(+)(x, y), ϕ(+)(s, y), x, s, 0) ds = 0, y < x < b.
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We state the existence of moving fronts at this problem. This results have an
important applicability to describe the formation of stationary contrast
structures.

Acknowledgement. This work is supported by RFBR, pr. N 13-01-00200.

References

1. Vasilieva, A.B., Butuzov, V.F., Nefedov, N.N.: Contrast structures in singularly
perturbed problems. Fundamentalnaja i Prikladnala Matemat. 3(4), 799–851 (1998)
(in Russian)

2. Amann, H.: Periodic Solutions of Semilinear Parabolic Equations. In: Nonlinear
Analysis: a Collection of Papers in Honor of Erich Rothe, pp. 1–29. Academic, New
York (1978)

3. Sattinger, D.H.: Monotone Methods in Elliptic and Parabolic Boundary Value Prob-
lems. Indiana Univ. Math. J. 21(11), 979–1001 (1972)

4. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Re-
search Notes in Math. Series, vol. 247. Longman Scientific&Technical, Harlow (1991)

5. Amann, H.: Maximum priciples and principal eigenvalues. In: Ten Mahtmatical
Essays in Analysis and Topology. Elsevier (2005)

6. Zabrejko, P.P., Koshelev, A.I., Krasnoseiskij, M.A et al.: Integral equations. M.:
Nauka (1968) (in Russian)

7. Nefedov, N.N.: The Method of Differential Inequalities for Some Classes of Nonlinear
Singularly Perturbed Problems with Internal Layers. Differ. Uravn. 31(7), 1142–1149
(1995)

8. Vasileva, A.B., Butuzov, V.F., Nefedov, N.N.: Singularly Perturbed problems with
Boundary and Internal Layers. Proceedings of the Steklov Institute of Mathmat-
ics 268, 258–273 (2010)

9. Nefedov, N.N., Nikitin, A.G., Petrova, M.A., Recke, L.: Moving fronts in integro-
parabolic reaction-diffusion-advection equations. Differ. Uravn. 47(9), 1–15 (2011)



Multiscale Convection in One Dimensional

Singularly Perturbed Convection–Diffusion
Problems

E. O’Riordan and J. Quinn

School of Mathematical Sciences, Dublin City University, Dublin 9, Ireland

Abstract. Linear singularly perturbed ordinary differential equations of
convection diffusion type are considered. The convective coefficient varies
in scale across the domain which results in interior layers appearing in
areas where the convective coefficient decreases from a scale of order one
to the scale of the diffusion coefficient. Appropriate parameter-uniform
numerical methods are constructed. Numerical results are given to illus-
trate the theoretical error bounds established.

1 Continuous Problem Class

In this paper, we examine singularly perturbed ordinary differential equations
of the form

−εu′′ + aε(x)u
′ + b(x)u = f(x), aε(x) > 0; x ∈ (0, 1),

where the magnitude of the convective coefficient aε(x) varies in scale across the
domain. Problems of this type may arise when linearizing certain nonlinear sin-
gularly perturbed problems or when generating approximations to the solution
of a coupled system of singularly perturbed equations.

Define the subdomains Ωi, i = 1, 2, 3 of [0, 1] to be

Ωi := (di−1, di), 0 = d0 ≤ d1 < d2 ≤ d3 = 1; Ω := ∪3
i=1Ωi.

The points d1, d2 are points where the convective coefficient is of the same or-
der as the diffusion coefficient ε in the following class of singularly perturbed
problems: find u ∈ C3(Ω) ∩C1(Ω̄) such that

Lεu := −εu′′ + aε(x)u
′ + b(x)u = f(x), x ∈ Ω, (1.1a)

u(0) = u(1) = 0, (1.1b)

b(x) ≥ β > 0, x ∈ Ω, (1.1c)

1 = ‖a‖ ≥ aε(x) > ε, x ∈ Ω2, (1.1d)

ε ≥ aε(x) ≥ αε > 0, |a′ε(x)| ≤ Cε, x ∈ Ω1 ∪Ω3, (1.1e)

where 0 < ε ≤ 1 is a singular perturbation parameter and aε, f, b are smooth.
The points d1, d2 are assumed to be independent of the singular perturbation
parameter ε. For all x ∈ [d1, d2], define the limiting function a0(x) by

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 73–85, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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a0(x) := lim
ε→0

aε(x), x �= d1, d2;

a0(d1) := lim
x→d+

1

a0(x), and a0(d2) := lim
x→d−

2

a0(x).

Observe that a0(x) ≡ 0, x ∈ [0, d1)∪ (d2, 1], a0(x) > 0, x ∈ (d1, d2). The different
cases of a0(x) being either continuous or discontinuous at the point d1 will be
examined.

The nature of the growth (decay) of the convective coefficient in the vicinity
of the point d1(d2) will be restricted by the following constraints on the problem
class: assume also that for a given constant 0 < θ ≤ 0.5 independent of ε, there
exists two points γ1, γ2 ∈ Ω2, γ1 < γ2 such that∫ d2

γ2

aε(t)dt ≥ θ(d2 − d1) > 0; (1.1f)

aε(x) ≥ θ > 0, |a′ε(x)| ≤ C, γ1 ≤ x ≤ γ2; (1.1g)

εa′ε(x) ≤ θ1a
2
ε(x), θ1 < 1, x ∈ (d1, γ1); a′ε(x) ≤ 0, x ∈ (γ2, d2); (1.1h)

aε(x) − a0(x) =

3∑
i=1

ξi(x; ε), x ∈ Ω2; (1.1i)

where for k = 0, 1 and all x ∈ Ω2

|ξ1(x)|k ≤ Cε−k/2e−θ1(x−d1)/
√
ε, |ξ2(x)|k ≤ Cε−ke−θ(d2−x)/ε, |ξ3|k ≤ Cε2.

Note that γi, θi, i = 1, 2 are independent of ε. Specific choices for the convective
coefficient are taken in the test examples examined in §5.

In this paper, our interest is focused on the interior layers appearing in the
interior region Ω2. To exclude the appearance of reaction-diffusion type layers
in the region Ω1 ∪Ω3, we impose the following restriction on the forcing term f

|f(x)| ≤ C1a0(x), x ∈ Ω̄. (1.1j)

As f ∈ C2(0, 1) and |f(x)| ≤ Ca0(x), then (1.1j) implies that f(x) ≡ 0, x ∈
Ω̄1 ∪ Ω̄3. To exclude any layer emerging in the vicinity of the point d1 and
consequently being convected throughout the domain, we impose the additional
constraint on the forcing term, that

f(x) ≡ 0, x ∈ (d1, 2γ1]. (1.1k)

A significant effect of interest in this problem is that the problem is singularly
perturbed only in the subdomain Ω2 ⊂ Ω. Within the literature on singularly
perturbed convection-diffusion equations, it is normally assumed that a(x) ≥
α > 0 everywhere. In this paper, we examine the effect of 0 < aε(x) ≤ Cε in an
O(1)-neighbourhood of the outflow boundary point x = 1.

In [1,3], the case of a discontinuous coefficient a(x) (independent of ε) was
examined under the assumption that a(x) > α > 0 away from points of disconti-
nuity. Weak internal layers [3] will form in the vicinity of points of discontinuity
in a if u ∈ C1(0, 1).
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In §5 we present a numerical algorithm, which is applicable to problems of
the form (1.1). However, in §4, we present an asymptotic error bound for this
algorithm under the additional restriction that

aε(x) ≥ αε(x) + Cε, γ2 ≤ x ≤ d2 αε(x) :=
θ

2
(1− e−θ(d2−x)/ε). (1.2)

In [4], a boundary turning point problem was studied, where an equivalent condi-
tion on aε was assumed such that a boundary layer of width O(ε) was supported
near the boundary.

Notation. Throughout the paper C denotes a generic constant that is inde-
pendent of both the singular perturbation parameter ε and the discretization
parameter N . The semi-noms | · |k are defined by

|g|k := ‖g(k)‖ =
∥∥dkg
dxk

∥∥, where ‖g‖ := max
x∈Ω

|g(x)|.

2 Solution Decompositions

We begin by stating a standard comparison principle associated with the differ-
ential operator in problem (1.1).

Lemma 1. [1] Suppose that a function ω ∈ C0(Ω̄) ∪ C2(Ω \ {p1, p2}) , where
p1, p2 ∈ Ω, satisfies ω(0) ≥ 0, ω(1) ≥ 0 Lεω(x) ≥ 0, x ∈ Ω \ {p1, p2} and
[−εω′] (pi) ≥ 0, i = 1, 2 then ω(x) ≥ 0, x ∈ [0, 1].

Hence, the solution is uniformly bounded from the assumption b(x) ≥ β > 0.

Lemma 2. We have the following stability estimate

‖u‖Ω ≤ ‖f‖
β

.

From the argument in [2, Lemma 3.2], it follows that for all x ∈ Ω

‖u(k)‖Ω ≤ Cε−k max{‖f‖, ‖u‖}, k = 1, 2 (2.1a)

‖u(3)‖Ω ≤ Cε−3 max{‖f‖, ‖f ′‖, ‖u‖}. (2.1b)

The reduced solution v0 is the potentially discontinuous solution of

a0v
′
0 + bv0 = f ; d1 < x < d2 v0 ≡ 0, x ∈ Ω̄ \Ω2.

On the interior interval Ω2 and noting (1.1j), we have that

v0(x) =

∫ x

t=d1

f(t)

a0(t)
e
−

∫
x
s=t

b(s)
a0(s)

ds
dt, |v0| ≤ C.

If a0(x) > 0, x ∈ Ω̄2, then it immediately follows that |v0|k ≤ C, k ≤ 4.
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Lemma 3. Based on the assumptions (1.1k), (1.1h), it follows that (for ε suf-
ficiently small)

|u(x)| ≤ Cε2, x ≤ d1.

Proof. On the interval [0, 2γ1], consider the following barrier function

ψ(x) = e−
∫

2γ1
x

(1−θ1)aε(t)
ε dt, 0 < θ1 < 1.

Then, using (1.1h),

−εψ′′ + aεψ
′ + bψ =

(1− θ1)

ε

(
a2εθ1 − εa′ε

)
ψ + bψ ≥ 0.

Thus, by applying the maximum pronciple over the subinterval [0, 2γ1],

|u(x)| ≤ |u(2γ1)|e−
∫

2γ1
x

(1−θ1)aε(t)
ε dt, x ∈ (0, 2γ1);

and, so by (1.1g),

|u(d1)| ≤ Ce
−

∫ 2γ1
γ1

(1−θ1)aε(t)
ε dt ≤ Ce−

(1−θ1)θγ1
ε ≤ Cε2.

The regular component v associated with (1.1) is defined to be the solution
of the problem: find the function v such that

Lεv = f(x), x ∈ Ω1 ∪ Ω3,

−εv′′ + a0v
′ + bv = f(x), x ∈ Ω2,

v(0) = 0, v(d1) = u(d1), v(d
−
2 ) = v(d−2 ), v(d

+
2 ) = v(1) = 0;

where v(d−2 ) is specified below. In general, this function will be discontinuous at
the point d2. Recall assumption (1.1e) and using the argument from [2, Lemma
3.2], we have that v ≡ u, x ∈ Ω1 and

|u| ≤ Cε2, |u′| ≤ Cε, |u′′| ≤ Cε, |u′′′| ≤ C, x ∈ Ω1, v ≡ 0, x ∈ Ω3.

In the interior region Ω2, consider the further sub-decomposition of v = v0 +
εv1 + ε2v2 + u(d1). The first correction v1 to the reduced solution v0 satisfies

a0v
′
1 + bv1 = v′′0 , v1(d1) = 0, x ∈ Ω2;

and, the second correction v2 satisfies

−εv′′2 + a0v
′
2 + bv2 = v′′1 , v2(d1) = 0; v2(d2) = 0.

Taking v(d−2 ) = v0(d
−
2 )+εv1(d

−
2 )+u(d1), one can then deduce (assuming (1.1k))

that for k = 0, 1, 2, 3,

|v(x)|k ≤ C(1 + ε2−k), x ∈ Ω̄2, if a0(d2) ≥ α > 0.

Assumption (1.1k) implies that v
(k)
i (d+1 ) = 0, 1 ≤ k ≤ 5, i = 0, 1. If a0(d2) = 0,

then additional restrictions will be implicitly placed on the data by assuming
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that |v0|k ≤ C, |v1|k ≤ C, k = 0, 1, 2, 3. Hence, under assumption (1.2) (which
implies that a0(d2) ≥ 0.5θ2 > 0), we can deduce the following bounds on the
derivatives of the regular component

|v(x)|k ≤ C(1 + ε2−k); x ∈ Ω1 ∪Ω2 ∪Ω3. (2.2)

In the case of problem (1.1), we identify two interior layer functions w, y defined
respectively as the solutions of: Find a discontinuous w such that

Lεw = 0, x ∈ Ω, (2.3a)

w(0) = w(d−1 ) = 0, w(d+2 ) = u(d2), w(1) = 0, (2.3b)

w(d+1 ) = 0, w(d−2 ) = (u− v)(d−2 ). (2.3c)

Find y ∈ C0(0, 1) such that

Lεy = (a0 − aε)v
′, x ∈ Ω2, y ≡ 0, x ∈ Ω̄1 ∪ Ω̄3. (2.4)

We can establish the following bounds on the first layer function w

|w(x)| ≤ Ce−
∫

d2
x

gε(t)
ε dt =: Cφ1(x), x ≤ d2 (2.5a)

|w(x)| ≤ Ce−
√

β
2ε (x−d2), x > d2, (2.5b)

where gε : [d1, d2] → [0, 1] is defined so that

gε(x) = aε(x), γ2 ≤ x ≤ d2, gε(x) = 0, d1 ≤ x ≤ 0.5(γ2 + γ1);

and in the interval [0.5(γ2+γ1), γ2)] the function gε(x) = p(x) is a polynomial so
that min{β, ‖a′ε‖[γ1,γ2]} ≥ p′ ≥ 0, p(0.5(γ2 + γ1)) = 0, p(γ2) = aε(γ2). Observe
that by this choice, using assumption (1.1h), we have that

− εg′ε + gε(aε − gε) + εb ≥ 0, x �= γ2; [−φ′1 ](γ2) = 0. (2.5c)

By the Mean Value Theorem, there exists a point z ∈ (d1, d1 + ε) such that

|w′(z)| ≤ |w(d1 + ε)|
ε

≤ Cε−1e
−

∫ d2
d1+ε

gε(t)
ε dt

and

εw′(z) = εw′(d1) + aε(z)w(z) +

∫ z

d1

(b− a′ε)wdt.

Hence,

|w′(d1)| ≤ Cε−1e
−

∫ d2
d1

gε(t)
ε dt

as z ∈ (d1, d1 + ε) ⊂ (d1, γ1) and∫ z

d1

|a′ε|dt = aε(z)− aε(d1) ≤ C.
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We can then deduce that: w ≡ 0 on Ω1 and

|w(x)|k ≤ Cε−ke−
∫ d2
x

gε(t)
ε dt, k = 1, 2, 3, x ∈ Ω2, (2.5d)

|w(x)|k ≤ Cε−k/2e−
√

β
2ε (x−d2), k = 1, 2, 3, x ∈ Ω3. (2.5e)

In bounding the second layer function y we note (1.1i) and the following three
cases:

(a) If |a0(x) − aε(x)|k ≤ Cε2, x ∈ Ω2, k = 0, 1 then

|y|k ≤ Cε2−k, 0 ≤ k ≤ 3. (2.6a)

(b) If

|a0(x) − aε(x)|k ≤ Ce−θ1(x−d1)/
√
ε, x ∈ Ω2, k = 0, 1;

then by assumption (1.1k), the decomposition v′(x) = (v0 + εv1)
′(x) + ε2v′2(x)

and (v0 + εv1)
(k)(d+1 ) = 0, 0 ≤ k ≤ 5, we can obtain the bound

|(a0 − aε)v
′(x)| ≤ |(a0 − aε)((v0 + εv1)

′(x)− (v0 + εv1)
′(d+1 ))|+ Cε2

≤ C(x− d1)
4|(a0 − aε)|+ Cε2 ≤ Cε2, x ∈ Ω2.

Using this bound, we again deduce that the derivatives of y satisfy the bounds

|y|k ≤ Cε2−k, 0 ≤ k ≤ 3 (2.6b)

(c) If
|a0(x)− aε(x)|k ≤ Ce−θ(d2−x)/ε, x ∈ Ω2, k = 0, 1

then for all x ∈ Ω2 and 0 ≤ k ≤ 3,

|y(x)|k ≤ Cε−ke−θ(d2−x)/ε, |y′(d1)| ≤ Cε. (2.6c)

Note that v + w + y ∈ C0(Ω̄); L(v + w + y) = f in Ω; by construction
v + w + y = u, x ∈ Ω̄ \ Ω; and so u = v + w + y, x ∈ Ω̄. The bounds on the
derivatives of these components are given in (2.2), (2.5) and (2.6)

3 Discrete Problem

For any mesh function Z(xi), we introduce the finite difference operators

D+Z(xi) :=
Z(xi+1)− Z(xi)

hi+1
, D−Z(xi) :=

Z(xi)− Z(xi−1)

hi
,

δ2Z(xi) :=
D+Z(xi)−D−Z(xi)

h̄i
.

Here the mesh step is hi := xi − xi−1 and h̄i := (hi + hi+1)/2 for each i.
Define the transition parameter τ implicitly using∫ d2

d2−τ

aε(t)dt = 2ε lnN. (3.1)
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On Ω a piecewise-uniform mesh of N mesh intervals is constructed as follows.
The subdomain Ω2, is further subdivided into

[d1, d2 − σ] ∪ [d2 − σ, d2], σ = min {θ(d2 − d1), τ} (3.2)

Note that, by (1.1f), γ2 ≤ d2 − τ. In the subdomain Ω3 a piecewise-uniform is
also employed. The subdomain is subdivided into

[d2, d2 + σ∗] ∪ [d2 + σ∗, 1] (3.3a)

where

σ∗ = min {0.5(1− d2), τ
∗} , τ∗ :=

√
2ε

β
lnN. (3.3b)

On each of the five subintervals

[0, d1] ∪ [d1, d2 − σ] ∪ [d2 − σ, d2] ∪ [d2, d2 + σ∗] ∪ [d2 + σ∗, 1]

a uniform mesh with N
8 ,

N
8 ,

N
4 ,

N
4 ,

N
4 mesh-intervals is placed. The resulting fitted

piecewise uniform mesh is denoted by ΩN
ε . Note that the points d1, d2 are mesh

points. Consider the following upwind finite difference method

LNU := −εδ2U(xi) + aD−U(xi) + bU(xi) = f(xi), xi ∈ ΩN
ε , (3.4a)

U(0) = U(1) = 0. (3.4b)

4 Error Analysis

In this section, we restrict the discussion to the case of (1.2), where the convective
coefficient decreases exponentially in the vicinity of the point d2.

Theorem 1. Assume (1.2). Then,

|(U − u)(xi)| ≤ CN−1(lnN) + Cε2, xi ∈ ΩN
ε

where u is the solution of problem (1.1) and U is the numerical solution generated
by the numerical method constructed in §3.

Proof. We outline the proof. To begin, note that ‖U‖ ≤ C. We confine the argu-
ment to the case where the mesh is piecewise-uniform in each of the subdomains
Ω2, Ω3. The case of a uniform mesh (when ε is sufficiently large relative to N−1)
is handled by a classical argument. In an analogous fashion to the decomposi-
tion of the continuous solution, the discrete solution can be decomposed into
subcomponents. That is, U = V +W +Y where the discrete regular component
V is multi-valued at d2 and satisfies

LNV = f, xi ∈ Ω1 ∪Ω3, (4.1a)

(−εδ2 + a0D
− + b)V = f, xi ∈ Ω2, (4.1b)

V (0) = V (d1) = 0, V −(d2) = v(d−2 ), V
+(d2) = V (1) = 0. (4.1c)
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The discrete layer components are defined as follows:

LNW− = 0, xi ∈ (0, d2), W−(0) = 0,W−(d2) = (U − V −)(d2); (4.1d)

LNW+ = 0, xi ∈ Ω3, W+(d2) = U(d2),W
+(1) = 0; (4.1e)

LNY = (a0 − aε)D
−V (xi), xi ∈ Ω2, (4.1f)

Y (d1) = Y (d2) = 0, Y (xi) = 0, xi ∈ Ω1 ∪Ω3. (4.1g)

Observe that the discrete layer component W is multivalued at d2, where W :=
W−, 0 ≤ xi ≤ d2, W := W+, d2 ≤ xi ≤ 1. Consider the following discrete
barrier function for W−

Ψ(xi) :=
Πi

j=1(1 +
g(xj)hj

2ε )

Π
3N/4
j=1 (1 +

g(xj)hj

2ε )

which has the properties

D−Ψ(xi) =
g(xi)

2ε(1 +
g(xj)hj

2ε )
Ψ(xi), D+Ψ(xi) =

g(xi+1)

2ε
Ψ(xi).

Then

LNΨ(xi) =
(g(xi)

4ε

(h̄i2aε(xi)− g(xj)hj)

h̄i(1 +
g(xj)hj

2ε )
+
g(xi)− g(xi+1)

2h̄i
+ b(xi)

)
Ψ(xi).

Using this barrier function, the bound (2.5) and the definition (3.1), we deduce
that

|W (xi)− w(xi)| ≤ CN−1, 0 ≤ xi ≤ d2 − τ.

Using the bounds (2.2), a decomposition of the form V = V0 + εV1 + ε2V2 and
a standard stability and consistency argument one can derive the error bound

|V − v| ≤ CN−1 + Cε2.

As in [4, Lemma 2.2] one can also establish that |D−V | ≤ C. Analagous ar-
guments to bounding |W − w| may be used to bound the errors |Y − y| for
xi ≤ d2 − τ . Hence we have established that

|(U − u)(xi)| ≤ CN−1 + Cε2, xi ≤ d2 − τ.

From the bounds (2.5) and assumption (1.2), we deduce that

|w(x)|k ≤ Cε−ke−
∫

d2
x

αε(t)
ε dt; γ2 ≤ x ≤ d2.

Using standard truncation error analysis and the bounds on the derivatives of
the components v, w and y given in §2, we have that

|LN (U − u)(xi)| ≤ CN−1 + C
N−1 logN

ε
e
−

∫
d2
xi+1

(
θ+αε(t)

ε

)
dt
, xi ∈ (d2 − τ, d2);

|LN(U − u)(d2)| ≤ C
N−1 logN√

ε
+ CN−1;

|LN (U − u)(xi)| ≤ CN−1 logN, xi ∈ Ω3.
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Consider the discrete barrier function,

Φ(xi) :=

⎧⎪⎪⎨⎪⎪⎩
Πi

j=1(1+
αε(xj−1)hj

2ε )

Π
3N/4
j=1 (1+

αε(xj−1)hj
2ε )

, d2 − τ ≤ xi ≤ d2

1−xi

1−d2
, d2 ≤ xi ≤ 1.

Then, using the arguments in [4, Lemma 2.3], we deduce that

LNΦ(xi) ≥
θ2

4ε
Φ(xi), d2 − τ ≤ xi ≤ d2.

Combine these bounds with the truncation error bounds to complete the proof,
using the barrier function

CN−1 lnN + Cε2 + CN−1 lnNΦ(xi),

to bound the error, since b ≥ β > 0.

5 Numerical Experiments

We present an algorithm for which to calculate the transition parameter τ in
(3.1) in the following: Using a numerical integration routine (Simpson’s rule used
here), approximate the integral in (3.1) over increasing intervals whose end point
are all d2, increasing with an initial step size of δ := ε lnN , until the value 2ε lnN
is exceeded at some point a. From the point a, integrate over decreasing intervals
whose end points are all d2, decreasing with a step size 1

2δ, until a value less than
2ε lnN is reached at some point b. From that point b, integrate over increasing
intervals whose end points are all d2, increasing with a step size 1

4δ, until the
value of 2ε lnN is exceeded at some point c. Continue this process, halving the
interval step size each time, until a desired tolerance is reached (10−6ε lnN used
as the tolerance here).

For the purposes of constructing test problems, we split the definition of aε
into three parts

aε(x) = εx, x ≤ d1, aε(x) = ε(1− x), x ≥ d2; (5.1)

and in the interval Ω2 we examine two different choices. In each of the following
examples d1 = 0.25 and d2 = 0.75.

Test Example 1: a0(d1) = 0, a0(d2) �= 0

aε(x) = x− d2 + (ε(d1 + d2 − 1) + d2 − d1)
1− e−(d2−x)/ε

1− e−(d2−d1)/ε
+ ε(1− d2),

a0(x) = x− d1, b(x) = 1, f(x) = 5a0(x)(d2 − x).
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0
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ε = 2−8

ε = 2−2

ε = 2−6

ε = 2−4

Fig. 1. Plots of the convective coefficient aε(x) for several values of ε in the case of
Example 1

Table 1. Computed double mesh rates of convergence pNε and computed uniform rates
of convergence pN in the case of Example 1, where τ ≈ 4.1ε lnN

pNε

ε N=32 N=64 N=128 N=256 N=512 N=1024 N=2048

2−0 1.78 1.64 1.22 1.12 1.07 1.03 1.02
2−2 1.67 1.21 1.10 1.05 1.03 1.01 1.01
2−4 0.95 0.97 0.98 0.99 0.99 1.00 1.00
2−6 1.05 0.99 0.98 0.98 0.99 0.99 1.00
2−8 1.12 1.06 1.02 1.02 1.00 1.00 1.00
2−10 1.04 1.02 1.00 1.00 1.00 1.00 1.00
2−12 1.00 1.01 1.00 1.00 0.99 0.99 0.99
2−14 1.00 1.00 1.00 1.00 1.00 0.99 0.99
2−16 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2−18 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2−20 1.00 1.00 1.00 1.00 1.00 1.00 1.00

pN 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Test Example 2: a0(d1) �= 0, a0(d2) �= 0

aε(x) = C1(x− d1) + C2(d2 − x)− e
− x−d1√

ε − e−
d2−x

ε , aε(d1) = εd1,

aε(d2) = ε(1− d2), b(x) = 1, f(x) = 10a0(x)(x − d1)(d2 − x).

Plots of the convective coefficient aε(x) in both test examples are displayed in
Figures 1 and 3, respectively, for a range of values of ε. In both cases, the con-
vective coefficient has a layer to the left of the point d2. For test example 2, the
convective coefficient has an additional layer to the right of d1. The computed
solutions for both test examples are displayed in Figures 2 and 4, with zooms of
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Fig. 2. Plot of the numerical solution, with d2 = 0.75, for sample values of ε over the
axis (a) [0, 1], (b) [0.7, 0.85] and (c) [0.7, 0.75] using N = 1024 points for Example 1

0 0.25 0.5 0.75 1
0

0.5

1

ε = 2−15

ε = 2−10

ε = 2−5

ε = 2−0

Fig. 3. Convective coefficient aε for sample values of ε for Example 2

the layer structure in the vicinity of d2 given. Observe the absence of layers in
the vicinity of the point d1 in both figures. Table 1 and 2 display the computed
rates of convergence pNε and the uniform rates of convergence pN , using the
double mesh principle (see [2]). The numerical results for both test examples
suggest that the method is first order uniformly convergent and that the error
bound given in Theorem 4.1 is not sharp, as the term Cε2 is not evident in these
tables when ε is large and, in addition, the factor lnN is not visible.
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Table 2. Computed double mesh rates of convergence pNε and computed uniform rates
of convergence pN in the case of Example 2, where τ ≈ 2.1ε lnN

pNε

ε N=32 N=64 N=128 N=256 N=512 N=1024 N=2048

2−0 1.77 1.60 1.21 1.12 1.06 1.03 1.02
2−2 1.20 1.09 1.04 1.02 1.01 1.01 1.00
2−4 0.93 0.91 0.94 0.97 0.98 0.99 1.00
2−6 1.27 1.12 1.04 1.01 1.00 1.00 1.00
2−8 1.22 1.21 1.18 1.11 1.06 1.04 1.03
2−10 1.19 1.12 1.10 1.07 0.94 0.98 0.99
2−12 1.22 1.09 0.95 0.97 0.96 0.96 0.98
2−14 1.27 0.91 0.96 0.98 0.99 0.98 0.98
2−16 1.26 0.88 0.95 0.98 0.99 1.00 0.99
2−18 1.25 0.87 0.94 0.97 0.99 1.00 1.00
2−20 1.25 0.87 0.94 0.97 0.99 0.99 1.00

pN 1.19 0.94 0.94 0.97 0.98 0.99 1.00

0 0.25 0.5 0.75 1
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0.15
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ε = 2−14

ε = 2−12

ε = 2−14

ε = 2−12

(a)

(b)

(c)

Fig. 4. Plots of numerical solution for sample values of ε over the axis (a) [0, 1], (b)
[0.74, 0.81] and (c) [0.74, 0.75] using N = 1024 points in the case of Example 2
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Abstract. A numerical method for solving nonlinear initial-value prob-
lems is proposed. The Lane-Emden type equations which have many
applications in mathematical physics are then considered. The method
is based upon hybrid function approximations. The properties of hy-
brid functions of block-pulse functions and Bernoulli polynomials are
presented and are utilized to reduce the computation of nonlinear initial-
value problems to a system of equations. The method is easy to
implement and yields very accurate results.
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1 Introduction

The available sets of orthogonal functions can be divided into three classes. The
first class includes sets of piecewise constant basis functions (e.g., block-pulse,
Haar, Walsh, etc.). The second class consists of sets of orthogonal polynomials
(e.g., Chebyshev, Laguerre, Legendre, etc.). The third class is the set of sine-
cosine functions in the Fourier series. While orthogonal polynomials and sine-
cosine functions together form a class of continuous basis functions, piecewise
constant basis functions have inherent discontinuities or jumps.

Orthogonal functions have been used when dealing with various problems of
the dynamical systems. The main advantage of using orthogonal functions is that
they reduce the dynamical system problems to those of solving a system of alge-
braic equations. The approach is based on converting the underlying differential
equation into an integral equation through integration, approximating various
signals involved in the equation by truncated orthogonal functions, and using
the operational matrix of integration to eliminate the integral operations. This
matrix can be uniquely determined based on the particular orthogonal functions.
Among piecewise constant basis functions, block-pulse functions are found to be
very attractive, in view of their properties of simplicity and disjointedness and
among orthogonal polynomials, the shifted Legendre polynomials is computa-
tionally more effective [1]. The Bernoulli polynomials and Taylor series are not
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based on orthogonal functions, nevertheless, they possess the operational matrix
of integration. However, since the integration of the cross product of two Taylor
series vectors is given in terms of a Hilbert matrix [2], which are known to be
ill-posed, the applications of Taylor series are limited.

In recent years the hybrid functions consisting of the combination of block-
pulse functions with Chebyshev polynomials [3],[4] Legendre polynomials [5],[6]
or Taylor series [7],[8] have been shown to be a mathematical power tool for
discretization of selected problems.

Many problems in the literature of mathematical physics can be formulated
as equations of the Lane-Emden type defined in the form

y′′ +
2

x
y′ + g(y(x)) = 0, 0 < x < ∞, (1)

subject to
y(0) = A, y′(0) = 0, (2)

where prime denotes differentiation with respect to x. The solution of the Lane-
Emden equation, as well as those of a variety of nonlinear problems in quantum
mechanics and astrophysics such as the scattering length calculations in the
variable phase approach, is numerically challenging because of the singular point
at the origin. Eqs. (1) and (2) with specializing g(y(x)) and A occurs in several
models of mathematical physics and astrophysics [9]-[16]. For g(y) = yα, h(x) =
0, and A = 1 in Eqs. (1) and (2), we obtain the Lane-Emden equation of index α
which has been the object of much study [13]-[15]. It was physically shown that
interesting values of α lie in the interval [0, 5], and this equation has analytical
solutions for α = 0, 1 and 5.

In the present work, we first consider the nonlinear ordinary differential equa-
tions of the form

f
(
t, x(t), ẋ(t), ẍ(t)

)
= 0, 0 ≤ t < ∞, (3)

with initial conditions
x(0) = x0, ẋ(0) = 0, (4)

where dots denote differentiation with respect to t. We assume that Eqs. (3)
and (4) have a unique solution x(t) to be determined. We then solve a variety of
Lane-Emden equations which fall into this category. Here, we introduce a new
direct computational method for solving Eqs. (3) and (4). This method consists
of reducing the solution of Eqs. (3) and (4) to a set of algebraic equations by
first expanding ẍ(t) in terms of hybrid functions with unknown coefficients.
These hybrid functions, which consist of block-pulse functions and Bernoulli
polynomials, are presented. The operational matrix of integration is given. This
matrix, together with the properties of hybrid functions, are then utilized to
evaluate the unknown coefficients for the solution of Eqs. (3) and (4).

This paper is organized as follows: in section 2, we describe the basic properties
of the hybrid of block-pulse functions and Bernoulli polynomials required for
our subsequent development. Section 3 is devoted to the solution of nonlinear
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initial-value problems given with Eqs. (3) and (4) by using hybrid functions. In
section 4, the present method is applied to different Lane-Emden equations as
well as Lane-Emden equation of index α. The numerical solutions are compared
with some exact or approximate solutions in order to assess the accuracy of the
proposed method.

2 Hybrid Functions

2.1 Properties of Bernoulli Polynomials

The Bernoulli polynomials of order m, are defined in [17] by

βm(t) =

m∑
k=0

(
m
k

)
αkt

m−k,

where αk, k = 0, 1, ...,m are Bernoulli numbers. These numbers are a sequence
of signed rational numbers, which arise in the series expansion of trigonometric
functions [18] and can be defined by the identity

t

et − 1
=

∞∑
n=0

αn
tn

n!
.

The first few Bernoulli numbers are

α0 = 1, α1 = −1

2
, α2 =

1

6
, α4 = − 1

30
,

with α2k+1 = 0, k = 1, 2, 3, . . ..
The first few Bernoulli polynomials are

β0(t) = 1, β1(t) = t− 1

2
, β2(t) = t2 − t+

1

6
, β3(t) = t3 − 3

2
t2 +

1

2
t.

According to [19], Bernoulli polynomials form a complete basis over the interval
[0,1].

For approximating an arbitrary time function, the advantages of Bernoulli
polynomials βm(t), m = 0, 1, 2, ...,M where 0 ≤ t ≤ 1, over shifted Legendre
polynomials pm(t), m = 0, 1, 2, ...,M , where 0 ≤ t ≤ 1, are given in [20].

2.2 Hybrid of Block-Pulse and Bernoulli Polynomials

Hybrid functions bnm(t), n = 1, 2, . . . , N, m = 0, 1, . . . ,M are defined on the
interval [0, tf ] as

bnm(t) =

{
βm(Ntf t− n+ 1), t ∈ [n−1

N tf ,
n
N tf ],

0, otherwise,

where n and m are the order of block-pulse functions and Bernoulli polynomials,
respectively.
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2.3 Function Approximation

Let H = L2[0, 1], and assume that {b10(t), b20(t), ..., bNM (t)} ⊂ H be the set of
hybrid of block-pulse and Bernoulli polynomials, and

Y =span{b10(t), b20(t), ..., bN0(t), b11(t), b21(t), ..., bN1(t), ..., b1M (t), b2M (t), ..., bNM (t)},

and f be an arbitrary element in H . Since Y is a finite dimensional vector space,
f has the unique best approximation out of Y such as f0 ∈ Y, that is

∀y ∈ Y, ‖ f − f0 ‖≤‖ f − y ‖ .

Since f0 ∈ Y, there exist unique coefficients c10, c20, ..., cNM such that

f � f0 =

M∑
m=0

N∑
n=1

cnmbnm(t) = CTB(t),

where

BT (t) = [b10(t), b20(t), ..., bN0(t), b11(t), b21(t), ..., bN1(t), ..., b1M (t), b2M (t), ..., bNM (t)],
(5)

and
CT = [c10, c20, ..., cN0, c11, c21, ..., cN1, ..., c1M , c2M , ..., cNM ].

2.4 Operational Matrix of Integration

The integration of the B(t) defined in Eq. (5) is given by∫ t

0

B(t′)dt′ � PB(t), (6)

where P is the N(M + 1) × N(M + 1) operational matrix of integration. The
matrix P for tf = 1 is given in [20] by

P =
1

N

⎡⎢⎢⎢⎢⎢⎣
P0 I O ... O
−1
2 α2I O 1

2I ... O
...

...
...

. . .
...

−1
M αMI O O ... 1

M I
−1

M+1αM+1I O O ... O

⎤⎥⎥⎥⎥⎥⎦ ,

where I and O are N ×N identity and zero matrices respectively, and

P0 =

⎡⎢⎢⎢⎢⎢⎣
−α1 1 ... 1 1
0 −α1 ... 1 1
...

...
. . .

...
...

0 0 ... −α1 1
0 0 ... 0 −α1

⎤⎥⎥⎥⎥⎥⎦ .
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It is seen that P is more sparse than operational matrices of integration for the
hybrid of block-pulse with Chebyshev polynomials [3], with Legendre polynomi-
als [5] and Taylor series [7].

3 Solution of Nonlinear Initial-Value Problems

In order to solve Eqs. (3) and (4) with a hybrid of block-pulse functions and
Bernoulli polynomials, we first choose an interval [0, tf). By expanding x0 in
terms of hybrid functions we get

x0 = [x0, 0, . . . , 0, . . . , x0, 0, . . . , 0]B(t) = eTB(t). (7)

Let
ẍ(t) = CTB(t), (8)

Integrating Eq. (8) from 0 to t and using Eqs. (4) and (7), we obtain

ẋ(t) = CTPB(t), (9)

x(t) =
(
CTP 2 + eT

)
B(t), (10)

where P is the operational matrix of integration given in Eq. (6). By substituting
Eqs. (8)-(10) in Eq. (3), we get

f
(
t,
(
CTP 2 + eT

)
B(t), CTPB(t), CTB(t)

)
= 0. (11)

We now collocate Eq. (11) at MN points tnm, n = 1, . . . , N , m = 0, 1, . . . ,M−1,
as

f
(
tnm,

(
CTP 2 + eT

)
B(tnm), CTPB(tnm), CTB(tnm)

)
= 0. (12)

For a suitable collocation points tnm, we use Gaussian nodes which are given
in [21]. Using Eq. (12), we obtain a system of MN nonlinear equations which
can be solved by the Newton’s iterative method. It is well known that the initial
guess for Newton’s iterative method is very important especially for complicated
problems. To choose the initial guess for our problem, in the first stage we set
N = 1. When selecting M we choose an arbitrary low number depending on
the problem and apply the Newton’s iterative method for solving M nonlinear
equations by choosing x0 in Eq. (4) as our initial guess. We then set N = 2 and
use the approximate solution in stage one as our initial guess in this stage. We
continue this approach until the results are similar up to a required number of
decimal places for the same N and two consecutive M values.

4 Illustrative Examples

In order to assess the applicability, efficiency and accuracy of our method, we
applied the proposed method to a variety of singular Lane-Emden equations as
indicated in the following examples.



Hybrid Functions for Nonlinear Differential Equations 91

4.1 Example 1 (Linear, Non-homogeneous Lane-Emden Equation)

This example corresponds to the following Lane-Emden equation [13]

y′′ +
8

x
y′ + xy = x5 − x4 + 44x2 − 30x, 0 < x ≤ 1, (13)

with

y(0) = 0, y′(0) = 0. (14)

To solve Eq. (13) with initial conditions in Eq. (14) by the present method, we
first rewrite it in the following equivalent form

f
(
t, x(t), ẋ(t), ẍ(t)

)
= tẍ(t)+8ẋ(t)+ t2x(t)− t

(
t5 − t4 + 44t2 − 30t

)
= 0, (15)

x(0) = 0, ẋ(0) = 0.

We then apply the method presented in this paper and solve Eq. (15) with tf = 1
for N = 1 and M = 4. For this equation we obtain

x(t) = t4 − t3,

which is the exact solution.

4.2 Example 2 (Linear, Non-homogeneous Lane-Emden Equation).

This example corresponds to the following Lane-Emden equation [13]

y′′ +
2

x
y′ = 2(2x2 + 3)y, 0 < x ≤ 1,

with

y(0) = 1, y′(0) = 0.

The equivalent form is

f
(
t, x(t), ẋ(t), ẍ(t)

)
= tẍ(t) + 2ẋ(t)− 2t(2t2 + 3)x(t) = 0,

with

x(0) = 1, ẋ(0) = 0,

which has the following exact solution:

xe(t) = et
2

.

Table 1 shows that high accuracy that has been obtained by the proposed method
for N = 2 and M = 8 with tf = 1 together with the exact solution xe(t).
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Table 1. Estimated and exact values of x(t) for Example 1

t x(t) xe(t)
0 0 0
0.1 1.01005016712 1.01005016712
0.2 1.04081077418 1.04081077419
0.3 1.09417428370 1.09417428371
0.4 1.17351087101 1.17351087099
0.5 1.28402541675 1.28402541669
0.6 1.43332941453 1.43332941456
0.7 1.63231621996 1.63231621996
0.8 1.89648087932 1.89648087930
0.9 2.24790798667 2.24790798668
1 2.71828182846 2.71828182846

4.3 Example 3 (Lane-Emden Equation of Index α)

Consider the Lane-Emden equation of index α given by

y′′ +
2

x
y′ + yα = 0, 0 < x < ∞,

with
y(0) = 1, y′(0) = 0.

The equivalent form is

f
(
t, x(t), ẋ(t), ẍ(t)

)
= tẍ(t) + 2ẋ(t) + txα(t) = 0, (16)

with
x(0) = 1, ẋ(0) = 0. (17)

This equation is linear for α = 0 and 1, nonlinear otherwise, and exact solutions
exist only for α = 0, 1 and 5 and are given in [13], respectively, by

x(t) = 1− 1

6
t2, x(t) =

sin(t)

t
, x(t) =

(
1 +

t2

3

)− 1
2

.

It was physically shown that interesting value of α lie in the interval [0, 5].
Moreover, Bender et al. [12] determined the zeros of x(t) asymptotically, here
denoted by ξ, and found that

ξ = π + 0.885273956 δ+ 0.24222 δ2,

for δ = −0.5, 0, 0.5, 1.0 and 1.5 which correspond to α = 0, 1, 2, 3, and 4,
respectively. We applied the method presented in this paper and solved Eqs.
(16) and (17) and then evaluated the zeros of x(t), which also are evaluated in
[10], by using perturbation methods and a (1-1) Pade approximation, and in [15]
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by linearization technique. In Table 2, the resulting values of the zeros of x(t)
for α = 0, 0.5, · · · , 4.5 using the present method with N = 2 and M = 4, with
the results obtained in [10] and [15], together with exact values given in [21]
are presented. Table 2 shows that the present method provides more accurate
predictions of the zeros of x(t)

Table 2. Comparison of numerical results for ξ (x(ξ) = 0) for Example 3

α Method in [10] Method in [15] present method Exact [21]
0.0 2.4465 2.44899 2.44948972 2.44948972
0.5 - - 2.75269805 2.75269805
1.0 - 3.14048 3.14159265 3.14159265
1.5 - - 3.65375373 3.65375373
2.0 4.3603 4.35086 4.35287459 4.35287459
2.5 - - 5.35527545 5.35527545
3.0 7.0521 6.89312 6.89684861 6.89684861
3.5 - - 9.53580534 9.53580534
4.0 17.976 14.96518 14.97154634 14.97154634
4.5 - - 31.83646324 31.83646324

5 Conclusion

In the present work the hybrid of block-pulse functions and Bernoulli polyno-
mials together with the operational matrix of integration P are used for solving
nonlinear second-order initial value problems and the Lane-Emden equation.
The matrix P has many zeros which make this method computationally very
attractive without sacrificing the accuracy of the solution. Illustrative examples
are given to demonstrate the validity and applicability of the proposed method.
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Necessary to Fit the Mesh to Boundary Layers
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Abstract. We demonstrate for two typical model problems that one
observes uniform convergence of the Galerkin FEM on standard meshes
with respect to the perturbation parameter in energy norms if the energy
norm of the layers is small. Moreover, it is also possible only to resolve
the strong layer using a layer adapted mesh but to do nothing concerning
the weaker layer.

Keywords: boundary layer, energy norm, Galerkin FEM.

1 Reaction Diffusion

1.1 Introduction

Consider the singularly perturbed reaction-diffusion problem

Lu := −ε2Δu + cu = f in Ω ⊂ IR2, (1a)

u = 0 on ∂Ω, (1b)

where Ω is polygonal and convex, 0 < ε � 1 and f ∈ L2(Ω), c ∈ C(Ω) with
c ≥ c0 > 0.

Then (1) has a unique solution u ∈ H1
0 (Ω)∩H2(Ω). Furthermore typically u

exhibits sharp boundary layers near ∂Ω.
For the numerical solution of (1) we introduce a shape-regular mesh Th with

discretisation parameter h := maxT∈Th
diamT and the space Vh ⊂ H1

0 (Ω) of
linear or bilinear elements. The Galerkin approximation uh ∈ Vh satisfies

ε2(∇uh,∇vh) + (cuh, vh) = (f, vh) for all vh ∈ Vh. (2)

Here (·, ·) denotes the inner product in L2(Ω). Moreover we use C to denote a
generic constant that is independent of ε and the mesh. It is said that the family
of approximations uh converges uniformly in ε in the norm ||| · ||| of order μ if,
with a constant C independent of ε, h,

sup
0<ε≤ε0

|||u− uh||| ≤ Chμ.

Schatz and Wahlbin [10] stated without a rigorous proof that the Galerkin finite
element method on a shape-regular mesh cannot converge uniformly in ε in

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 95–109, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the global L∞(Ω) norm. They proved interior uniform convergence in L∞(Ω̃),
(Ω̃ ⊂ Ω) but also the uniform result

‖u− uh‖0 ≤ Ch1/2 (3)

in the L2(Ω) norm assuming f ∈ H1/2,∞(Ω) and ∇c ∈ L∞(Ω). In several
papers [1,3,4,13] the authors study the finite element method for (1) on special
anisotropic meshes and prove error estimates in the energy norm

‖v‖2ε := ε2|v|21 + ‖v‖20. (4)

A natural question is: can one prove a similar result as (3) also in the energy norm
(4)? So far such an estimate is only known for LDG least-squares method, see
[5]. Based on a priori estimates of u we will do that and support our theoretical
findings by a detailed numerical study of the behaviour of ‖u− uh‖0, ‖u− uh‖ε
and ε|u− uh|1.

Our results confirm the observation in [6,9] that error estimates in the energy
norm are not fitted to the behaviour of the solution and should be replaced by
estimates in a stronger balanced norm.

1.2 Error Estimation in the Energy Norm

First we prove a priori estimates for u. Denote by u0 = f/c the solution of the
“reduced” problem to (1).

Lemma 1. Assume u0 ∈ H1(Ω). Then

ε3|u|22 + ε|u|21 ≤ C
(
ε|u0|21 + ‖u0‖20,∂Ω

)
, (5)

moreover,

‖u− u0‖20 ≤ C
(
ε2|u0|21 + ε‖u0‖20,∂Ω

)
. (6)

Proof. The equation

−Δu = ε−2(f − cu) = ε−2c(u0 − u)

implies

|u|2 ≤ Cε−2‖u0 − u‖0.

Thus from (6) follows the estimate for ε3|u|22.
We have

ε2
(
∇u,∇v

)
+
(
c(u− u0), v

)
= ε2

∫
∂Ω

∂u

∂n
v for all v ∈ H1(Ω).

Setting v := u− u0 we get

ε2
(
∇u,∇(u− u0)

)
+
(
c(u− u0), u− u0

)
= −ε2

∫
∂Ω

∂u

∂n
u0
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or

min{1, c0}
(
ε2|u|21 + ‖u− u0‖20

)
≤ −ε2

∫
∂Ω

∂u

∂n
u0 + ε2(∇u,∇u0).

Next we use several times∣∣∣∣∫ h1h2

∣∣∣∣ ≤ α

2

∫
h2
1 +

1

2α

∫
h2
2

and choose α adequately. Combined with a trace inequality we get, for instance,∣∣∣∣ε2 ∫
∂Ω

∂u

∂n
u0

∣∣∣∣ ≤ αε

2

∫
∂Ω

u2
0 +

Cε3

2α
|u|1|u|2

≤ αε

2
‖u0‖20,∂Ω +

C

2α

(
β

2
ε2|u|21 +

1

2β
ε4|u|22

)
≤ αε

2
‖u0‖20,∂Ω +

Cβ

4α
ε2|u|21 +

C

4αβ
‖u− u0‖2.

Summarizing, we get

ε2|u|21 + ‖u− u0‖20 ≤ C
(
ε2|u0|21 + ε‖u0‖20,∂Ω

)
,

which proves (5) and (6). ��
Remark 1. Lin and Stynes [6] assume c ∈ C(Ω), c ≥ c0 and prove

ε3/2‖Δu‖0 + ε1/2|u|1 + ‖u‖0 ≤ C (‖f‖1 + ‖f‖∞) . (7)

It turns out that it is possible to weaken the assumptions a bit and to replace
(7) by (5) (the estimate ‖u‖0 ≤ C‖f‖0 is trivial). Lin and Stynes also present a
nice example showing that

ε|u|21 + ‖u‖20 ≤ C‖f‖20
cannot be true, in general.

For estimating the finite element error, we have only to estimate the projection
error ‖u − πu‖ε with πu ∈ Vh. Our technique requires the L2 and H1 stability
of the projection: on a shape regular mesh we would use the L2 projection or
the Clément’s interpolant.

We get

‖u− πu‖20 ≤ 2
(
‖u0 − πu0‖20 + ‖u− u0 − π(u− u0)‖20

)
≤ Ch2|u0|21 + Ch|u− u0|1‖u− u0‖0
≤ Ch2 + Chε−1/2ε1/2 ≤ Ch

if |u0|1 and ‖u0‖0,∂Ω are bounded. Similarly,

ε2|u− πu|21 = ε2|u − πu|1|u− πu|1
≤ Cε2h|u|2|u|1 ≤ Cε2hε−3/2ε−1/2 ≤ Ch,

if |u0|1 and ‖u0‖0,∂Ω are bounded.



98 H.-G. Roos and M. Schopf

Theorem 1. If |u0|1 amd ‖u0‖0,∂Ω are bounded, the error of the finite element
method with linear or bilinear finite elements on a shape-regular mesh satisfies
the uniform in ε estimate

‖u− uh‖ε ≤ Ch1/2. (8)

Remark 2. As our numerical experiments show, the error in the energy norm is
for h � ε dominated by the L2(Ω) error, the influence of ε|u − uh|1 is small.
This is theoretically clear because

ε|u− uh|1 ≤ Cε1/2 + ε|uh|1 ≤ Cε1/2 + C
ε

h
.

In both, the L∞(Ω) and the discrete L∞(Ω) norm we observe stagnation of the
error as long as h > ε. As for convection-diffusion problems one can prove (see
[8, Remark I.2.85]), that uniform convergence in the discrete maximum norm
requires a mesh width of order O(ε) in the layer region.

2 A Convection-Diffusion Problem: Characteristic Layers
and Neumann Outflow Condition

Consider

−εΔu− bux + cu = f in Ω = (0, 1)2, (9a)

∂u

∂x

∣∣∣∣
x=0

= 0, u|x=1 = 0 and u|y=0 = u|y=1 = 0. (9b)

We assume b ∈ W 1,∞(Ω), c ∈ L∞(Ω), b ≥ β > 0 with some constant β,
0 < ε � 1 and

c+
1

2
bx ≥ γ > 0. (10)

The problem is characterized by characteristic (or parabolic) boundary layers
at y = 0 and y = 1, moreover due to the Neumann condition on the outflow
boundary there exists a weak exponential layer.

We assume additionally: u can be decomposed as

u = v + w1 + w2 + w12, (11)

where we have for all (x, y) ∈ Ω and 0 ≤ i+ j ≤ 2 the pointwise estimates∣∣∣∣ ∂i+jv

∂xi∂yj
(x, y)

∣∣∣∣ ≤ C,

∣∣∣∣∂i+jw1

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε1−ie−βx/ε,∣∣∣∣∂i+jw2

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−j/2
(
e−y/

√
εe−(1−y)/

√
ε
)
,∣∣∣∣∂i+jw12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−(i+j/2−1)e−βx/ε
(
e−y/

√
ε + e−(1−y)/

√
ε
) (12)
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(see [7]). w1 is the weak exponential layer, the other terms cover characteristic
layers and corner layer.

The solution decomposition implies following estimates:

Corollary 1. u and u− v satisfy the following a priori estimates:

|u|1 ≤ Cε−1/4, |u|2 ≤ Cε−3/4 (13)

and

‖u− v‖0 ≤ Cε1/4,
∣∣(u − v)x

∣∣
1
≤ Cε−1/2,

∥∥(u − v)x
∥∥
0

≤ Cε1/4. (14)

Next we discretize (9) on a shape-regular mesh with linear or bilinear elements
and denote as in Section 1 by πu ∈ Vh some L2 and H1 stable projection.

The projection error satisfies as in Section 1

‖u− πu‖ε ≤ Ch1/2. (15)

Note that the energy norm associated with problem (9) is now given by ‖v‖2ε :=
ε|v|21 + ‖v‖20. To estimate the error, we have additionally to estimate

(
(u −

πu)x, vh
)
. But we can directly use Cauchy-Schwarz and

‖(u− πu)x‖30 ≤
8

3

(
‖(v − πv)x‖30 +

∥∥((u − v)− π(u− v)
)
x

∥∥3
0

)
≤ Ch3 + ‖(u− v)x‖20

∥∥((u− v)− π(u − v)
)
x

∥∥
0

≤ Ch3 + Cε1/2h
∣∣(u− v)x

∣∣
1

≤ Ch3 + Ch.

Summarizing we get

Theorem 2. The error of the finite element method with linear or bilinear finite
elements on a shape-regular mesh satisfies the uniform in ε estimate

‖u− uh‖ε ≤ Ch1/3.

3 Characteristic Layers But a Fitted Mesh only for the
(Strong) Exponential Layer

3.1 Introduction

Consider

−εΔu− bux + cu = f in Ω = (0, 1)2,

u|∂Ω = 0,
(16)

assuming b ∈ W 1,∞(Ω), c ∈ L∞(Ω), b ≥ β > 0 with some constant β, 0 < ε � 1
and

c+
1

2
bx ≥ γ > 0. (17)
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The presence of the small parameter and the orientation of convection give rise
to an exponential layer in the solution near the outflow boundary at x = 0 and
two parabolic layers near the characteristic boundaries y = 0 and y = 1.

The error of the Galerkin finite element method using bilinear elements on
appropriately constructed Shishkin meshes satisfies

‖u− uN‖ε ≤ CN−1 lnN, (18)

here ‖v‖2ε := ε|v|21+‖v‖20. Remark that the mesh used is fine as well at x = 0 as at
y = 0, y = 1. Because the characteristic layers are weaker than the exponential
layers (see the next Subsection for details) we are interested to use a fine mesh
only at x = 0 and to ignore the characteristic layers. The question is: what error
behaviour can we expect on such a mesh?

3.2 Error Estimation

Our error analysis is based on the asymptotic approximation

uas = v + w, (19)

where v is the smooth solution of the reduced problem

−bvx + cv = f in Ω, v|x=1 = 0

and w corresponds to a layer term at x = 0 such that uas|x=0 = uas|x=1 = 0
and ∣∣∣∣ ∂i+jw

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−ie−βx/ε for (x, y) ∈ Ω and 0 ≤ i+ j ≤ 2. (20)

We do not use the solution decomposition which contains the characteristic layer
term wp with∣∣∣∣∂i+jwp

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−j/2
(
e−y/

√
ε + e−(1−y)/

√
ε
)

for (x, y) ∈ Ω, 0 ≤ i+ j ≤ 2

(21)

and, additionally, a corner layer term (see [2]). Because, for instance,
∂wp

∂y =

O
(
ε−1/2

)
but ∂w

∂x = O
(
ε−1
)
we call the characteristic layers “weaker” than the

exponential layer.
Schieweck [12, Remark 5.4.] proved the estimate

‖u− uas‖ε ≤ Cε1/4 (22)

which reflects the fact that measured in the norm ‖ · ‖ε the characteristic layer
terms are of order O

(
ε1/4

)
(in contrast to the exponential layers which are of

order O(1)).
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We use a Shishkin mesh typically for exponential layers:

xi = ih for i = 0, 1, . . . ,
N

2
with h =

4ε

β
N−1 lnN,

xi = τ +

(
i− N

2

)
H for i =

N

2
+ 1, . . . , N with H = (1 − τ)

2

N

and τ = 2ε
β lnN . In the y-direction the mesh is uniform with yj = jN−1, j =

0, 1, . . . , N .

Ωf Ωc Ωb

τ

1
N

Fig. 1. domain decomposition

Let V N ⊂ H1
0 (Ω) denote the space of bilinear finite elements on that mesh.

Then the Galerkin approximation uN of u satisfies

a(uN , vN ) = (f, vN ) for all vN ∈ V N (23)

with the bilinear form

a(w, v) := ε(∇u,∇w)− (bwx, v) + (cw, v).

For estimating u− uN , we use the splitting

u− uN = u− uas +
(
uas − uN

)
(24)

and use some projection πuas ∈ V N :

uas − uN = (uas − πuas) +
(
πuas − uN

)
. (25)
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The expression ξ := πuas − uN ∈ V N is estimated based on

α‖ξ‖2ε ≤ a(ξ, ξ) = a(πuas − u, ξ) = a(πuas − uas, ξ) + a(uas − u, ξ). (26)

Because

|a(uas − u, ξ)| ≤ Cε1/4‖ξ‖ε, (27)

as also already shown by Schieweck [11] we have to estimate uas − πuas and
a(uas − πuas, ξ).

We define the projections πv and πw by piecewise bilinear interpolation and,
for instance,

(πv)(xi, yj) :=

{
v(xi, yj) for 0 ≤ i ≤ N , 1 ≤ j ≤ N − 1

0 otherwise.

Because (v + w)|x=0 = (v + w)|x=1 = 0, we have πuas = πv + πw ∈ V N .
On Ωf := {(x, y) ∈ Ω : x < τ}, cf. Figure 1, one can use standard arguments

[8] to get

‖uas − πuas‖ε,Ωf
≤ CN−1 lnN and

∣∣a(uas − πuas, ξ)Ωf

∣∣ ≤ CN−1 lnN‖ξ‖ε.

Similarly, in Ωc (here x ≥ τ , y1 ≤ y ≤ yN−1) standard arguments can be used.
It remains to estimate in Ωb := {(x, y) : τ ≤ x ≤ 1, 0 ≤ y ≤ y1 and yN−1 ≤

y ≤ 1}, here the projection of v and w is nonstandard because the values at the
boundaries are ignored and replaced by zero.

First we consider the smooth v. As well v as πv are bounded, consequently

‖v − πv‖0,Ωb
≤ ‖v − πv‖∞,Ωb

(measΩb)
1/2 ≤ CN−1/2. (28)

Next we estimate similarly

‖(v − πv)x‖0,Ωb
and ‖(v − πv)y‖0,Ωb

Because (πv)x is bounded but (πv)y = O
(
H−1

)
, we get

‖(v − πv)x‖0,Ωb
≤ CN−1/2 but ‖(v − πv)y‖0,Ωb

≤ CN1/2.

Therefore, we have

‖v − πv‖ε,Ωb
≤ C

(
N−1/2 + (εN)1/2

)
(29)

and, similarly, ∣∣a(v − πv, ξ)Ωb

∣∣ ≤ C
(
N−1/2 + (εN)1/2

)
‖ξ‖ε.

The w component is small for x ≥ τ and of order (pointwise) O(N−2).
Consequently

‖w − πw‖ε,Ωb
≤ C

(
ε1/2N−1 +N−2

)
.
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Similarly,

|a(w − πw, ξ)Ωb
| ≤ C

(
ε1/2N−1 +N−1

)
‖ξ‖ε.

Summarizing we obtain

‖u− uN‖ε ≤ C
(
ε1/4 +N−1/2 + (εN)1/2 +N−1 lnN

)
or

‖u− uN‖ε ≤ C
(
N−1/2 + (εN)1/2 +N−1 lnN

)
(30)

because

ε1/4 =
(
N−1/2(εN)1/2

)1/2
≤ 1

2

(
N−1/2 + (εN)1/2

)
.

Theorem 3. If a Shishkin mesh is used to fit the exponential layer but close to
characteristic layers no layer adaption takes place, the error of the finite element
method with bilinear elements satisfies

‖u− uN‖ε ≤ C
(
N−1/2 + (εN)1/2 +N−1 lnN

)
.

Remark 3. If ε is small in comparison to N−1, i.e. ε ≤ CN−2 theorem 3 states
convergence of order 1/2. Our numerical examples show that this result is in
fact optimal. However a relation between ε and N appears to be not substantial
and uniform convergence is observed.

Remark 4. Schieweck proved a similar result using exponential splines in Ωf .

4 Numerical Experiments

4.1 Reaction Diffusion

Consider the test boundary value problem

−ε2Δu+ u = f in Ω = (0, 1)2,

u = 0 on ∂Ω

where ε ∈ (0, 1] and f is chosen in such a way that

u(x, y) = û(x)û(y), û(t) = −1− e−1/ε

1− e−2/ε

(
e−t/ε + e−(1−t)/ε

)
+ 1

is the exact solution, which exhibits typical boundary layer behavior. Let ΩN

denote the uniform mesh that is generated as the tensor product of two uniform
1D meshes dissecting the interval (0, 1) into N elements. Moreover we define V N

as the FE-space of bilinear functions on ΩN . We denote by uN the solution of the
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Table 1. ε = 1

N
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞
error rate error rate error rate error rate

8 3.92e-3
1.00
1.00
1.00
1.00
1.00
1.00

1.22e-4
2.00
2.00
2.00
2.00
2.00

3.57e-3
2.08
2.02
2.01
2.00
2.00
2.00

1.66e-4
2.01
2.00
2.00
2.00
2.00

16 1.96e-3 3.05e-5 8.41e-4 4.12e-5
32 9.78e-4 7.63e-6 2.07e-4 1.03e-5
64 4.89e-4 1.91e-6 5.16e-5 2.57e-6
128 2.45e-4 4.77e-7 1.29e-5 6.42e-7
256 1.22e-4 1.19e-7 3.22e-6 1.60e-7
512 6.11e-5 2.98e-8 8.06e-7 4.01e-8

Table 2. ε = 10−1

N
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞
error rate error rate error rate error rate

8 1.27e-1
0.94
0.98
1.00
1.00
1.00
1.00

4.08e-2
1.92
1.98
2.00
2.00
2.00
2.00

9.54e-2
1.53
1.74
1.86
1.93
1.96
1.98

4.74e-2
2.24
2.05
2.01
2.00
2.00
2.00

16 6.65e-2 1.08e-2 3.29e-2 1.00e-2
32 3.36e-2 2.73e-3 9.87e-3 2.41e-3
64 1.69e-2 6.84e-4 2.72e-3 5.98e-4
128 8.44e-3 1.71e-4 7.15e-4 1.49e-4
256 4.22e-3 4.28e-5 1.83e-4 3.73e-5
512 2.11e-3 1.07e-5 4.64e-5 9.31e-6

Table 3. ε = 10−2

N
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞
error rate error rate error rate error rate

8 1.30e-1
0.14
0.37
0.69
0.90
0.97
0.99

2.96e-1
0.84
1.21
1.63
1.88
1.97
1.99

8.19e-1
0.42
0.87
1.35
1.46
1.69
1.83

5.65e-1
0.30
0.88
1.68
2.34
2.01
2.02

16 1.18e-1 1.65e-1 6.13e-1 4.57e-1
32 9.17e-2 7.11e-2 3.36e-1 2.48e-1
64 5.69e-2 2.30e-2 1.32e-1 7.70e-2
128 3.06e-2 6.24e-3 4.81e-2 1.53e-2
256 1.56e-2 1.60e-3 1.49e-2 3.78e-3
512 7.84e-3 4.01e-4 4.20e-3 9.30e-4
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Table 4. ε = 10−4

N
ε|u− uN |1 ‖u− uN‖0 ‖u− uN‖∞ ‖uI − uN‖∞
error rate error rate error rate error rate

8 1.41e-2
0.00
0.00
0.00
0.01
0.02
0.03

3.72e-1
0.49
0.50
0.51
0.52
0.55
0.60

9.99e-1
0.00
0.00
0.00
0.01
0.04
0.10

6.08e-1
0.00
0.00
0.00
0.00
0.01
0.03

16 1.41e-2 2.65e-1 9.99e-1 6.07e-1
32 1.41e-2 1.88e-1 9.97e-1 6.07e-1
64 1.41e-2 1.32e-1 9.94e-1 6.07e-1
128 1.40e-2 9.17e-2 9.86e-1 6.07e-1
256 1.38e-2 6.27e-2 9.60e-1 6.03e-1
512 1.35e-2 4.13e-2 8.97e-1 5.90e-1
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Fig. 3. 1D problem: errors for ε = 10−4
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Galerkin FE-method. We use some adaptive quadrature algorithm to compute
all integrals with a tolerance of 10−10.

In Table 1 we see the performance of the method in the setting ε = 1. In
agreement with classical analysis one observes convergence of second order in the
L2(Ω) norm as well as in the L∞(Ω) norm and its discrete version. However,
the error of the method measured in the energy norm is O(N−1) because its
H1(Ω) semi norm component is only first oder convergent and dominates the
L2(Ω) error (even for small N). Remark that similar results will follow if for the
element diameter h(N) it holds h(N) ≤ ε, see Table 2.

If ε is small in comparison to h(N) — as is the case in Table 3 — one observes
that the rates of converges decline. Furthermore the error in the energy norm
is dominated by the L2(Ω) norm component for small values of N where the
H1(Ω) semi norm component attains convergence rates smaller than 1/2.

Finally Table 4 shows that if the ratio ε/h(N) is further decreased one observes
no error reduction in the H1(Ω) semi norm or the L∞(Ω) norm. However the
L2(Ω) error seems to be O(N−1/2). In fact we have ‖u − uN‖0 ≤ 1.06N−1/2.
Since the L2(Ω) error dominates the error in the H1(Ω) semi norm the energy
norm error is O(N−1/2), as well. Note that in order for the L2(Ω) error to
reach the same magnitude as the H1(Ω) semi norm, namely 1.4e− 2, we would
need N > 5000 elements reducing the critical ratio ε/h(N) and resulting in
convergence rates similar to those of Table 3 (with N > 32).

The different phases described above can nicely be seen in Figure 2. Here a
1D reaction-diffusion problem similar to the original test problem with ε = 10−4

is considered. Hence, a broader interval for the parameter h = h(N) can be
studied. Figure 3 shows that the approximations uN do not converge uniformly
in ε to the solution of the problem u neither in the L∞(Ω) norm nor in its
discrete counterpart. An initial phase of error stagnation (until h(N) ≤ ε and
the layers are resolved) can also be observed in the stronger balanced norm ‖·‖b,
i.e. ‖v‖2b := ε|v|21 + ‖v‖0.

4.2 A Convection-Diffusion Problem: Characteristic Layers and
Neumann Outflow Condition

For the numerical verification of the results of Section 2 we consider the problem

−εΔu− 2ux + u = f in Ω = (0, 1)2,

∂u

∂x

∣∣∣∣
x=0

= 0, u|x=1 = 0 and u|y=0 = u|y=1 = 0,
(31)

with 0 < ε ≤ 1 and f chosen in such a way that

u(x, y) =
(
cos

πx

2
− 2x+ 2− ε

(
e−2x/ε− e−2/ε

))(
1− e−y/

√
ε
)(

1− e−(1−y)/
√
ε
)

is the exact solution of (31). It exhibits typical boundary layer behavior for this
kind of problem. We denote by uN the finite element solution determined by

ε(∇uN ,∇vN ) + (uN − 2uN,x, vN ) = (f, vN ) for all vN ∈ V N .
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Here V N is the FE-space of bilinear functions on a uniform mesh with N2

elements like in the previous Subsection.
In Table 5 we see the error of the method measured in the

√
ε-weightedH1(Ω)

semi norm. For the last two columns in that table (ε = 10−8 and ε = 10−12)
we observe no significant error reduction. In fact the error behaves almost like
≈ 1.8ε1/4 independently of N . Since u is of the same quality (according to (13):
|u|1 ≤ Cε−1/4) this indicates that for

√
ε � hN := N−1 bilinear functions are

not able to yield good approximations for a sharp layer function. For a bigger
value of ε, namely ε = 10−4 we find that the rates of convergence increase
significantly if some hundred elements are considered. Hence, the ratio

√
ε/hN

appears to be significant. Remark that a parabolic boundary layer has a width
O(

√
ε). If

√
ε/hN ≥ 1 we observe first order convergence.

The L2(Ω) errors and corresponding rates are depicted in Table 6. For√
ε/hN ≥ 1 second order convergence can be observed. If that ratio is smaller

than one the rates start to fall but 1/2 appears to be a lower bound for all L2(Ω)
rates, independently of the quotient

√
ε/hN . Remark also that for

√
ε/hN � 1

the L2(Ω) error dominates the corresponding
√
ε-weighted H1(Ω) seminorm er-

ror. Hence, in this case the energy norm error is essentially given by its L2(Ω)
component.

Table 5.
√
ε|u− uN |1 for different values of N and ε

N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12

error rate error rate error rate error error

8 6.98e-2
1.00
1.00
1.00
1.00
1.00

2.04e-1
0.94
0.98
0.98
0.99
1.00

1.73e-1
0.13
0.34
0.68
0.91
0.98

1.86e-2 1.86e-3
16 3.49e-2 1.06e-1 1.58e-1 1.86e-2 1.86e-3
32 1.74e-2 5.37e-2 1.25e-1 1.85e-2 1.86e-3
64 8.72e-3 2.72e-2 7.78e-2 1.85e-2 1.86e-3
128 4.36e-3 1.37e-2 4.13e-2 1.84e-2 1.87e-3
256 2.18e-3 6.89e-3 2.09e-2 1.82e-2 1.87e-3

Table 6. ‖u− uN‖0 for different values of N and ε

N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8

error rate error rate error rate error rate

8 2.23e-3
2.00
2.00
2.00
2.00
2.00

5.89e-2
1.99
1.99
1.98
1.98
1.99

4.00e-1
0.86
1.24
1.71
1.97
2.01

4.98e-1
0.50
0.51
0.51
0.52
0.55

16 5.56e-4 1.49e-2 2.20e-1 3.52e-1
32 1.39e-4 3.74e-3 9.34e-2 2.48e-1
64 3.47e-5 9.47e-4 2.85e-2 1.74e-1
128 8.68e-6 2.39e-4 7.30e-3 1.21e-1
256 2.17e-6 6.01e-5 1.82e-3 8.25e-2
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4.3 Characteristic Layers But a Fitted Mesh only for the (Strong)
Exponential Layer

Table 7.
√
ε|u− uN |1 for different values of N and ε

N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12

error rate error rate error rate error rate error rate

8 2.21e-2
1.00
1.00
1.00
1.00
1.00
1.00

2.59e-1
0.60
0.68
0.74
0.78
0.81
0.83

3.61e-1
0.62
0.74
0.80
0.81
0.83
0.84

3.90e-1
0.52
0.58
0.60
0.61
0.61
0.63

3.90e-1
0.52
0.57
0.59
0.59
0.58
0.56

16 1.10e-2 1.70e-1 2.35e-1 2.71e-1 2.72e-1
32 5.52e-3 1.06e-1 1.41e-1 1.82e-1 1.82e-1
64 2.76e-3 6.35e-2 8.10e-2 1.20e-1 1.21e-1
128 1.38e-3 3.70e-2 4.60e-2 7.86e-2 8.01e-2
256 6.90e-4 2.11e-2 2.59e-2 5.14e-2 5.36e-2
512 3.45e-4 1.18e-2 1.44e-2 3.31e-2 3.64e-2

Table 8. ‖u− uN‖0 for different values of N and ε

N
ε = 1 ε = 10−2 ε = 10−4 ε = 10−8 ε = 10−12

error rate error rate error rate error rate error rate

8 6.55e-4
2.00
2.00
2.00
2.00
2.00
2.00

2.57e-2
2.07
2.00
1.92
1.87
1.84
1.81

1.53e-1
0.87
1.24
1.71
1.96
2.00
2.00

1.91e-1
0.51
0.51
0.51
0.52
0.55
0.60

1.91e-1
0.51
0.50
0.50
0.50
0.50
0.50

16 1.63e-4 6.12e-3 8.40e-2 1.34e-1 1.34e-1
32 4.09e-5 1.53e-3 3.56e-2 9.42e-2 9.50e-2
64 1.02e-5 4.05e-4 1.09e-2 6.60e-2 6.72e-2
128 2.55e-6 1.11e-4 2.80e-3 4.59e-2 4.75e-2
256 6.38e-7 3.11e-5 6.99e-4 3.14e-2 3.36e-2
512 1.60e-7 8.85e-6 1.75e-4 2.07e-2 2.37e-2

In the problem of Section 3 the energy norm associated with (16) is strong
enough to capture the exponential layer in contrast to the previous problems.
The numerical results reflect this exceptional feature. Let uN denote the solution
of (23) on the tensor product mesh composed by a Shishkin mesh in x-direction
and a uniform mesh in y-direction introduced in Section 3. As in the previous
Subsection we choose b = 2 and c = 1. Moreover we determine f in such way
that

u(x, y) =

(
cos

πx

2
− e−2x/ε − e−2ε

1− e−2ε

)(
1− e−y/

√
ε
)(

1− e−(1−y)/
√
ε
)

is the exact solution of (16).
In Table 7 and Table 8 the

√
ε-weightedH1(Ω) semi norm errors and the errors

in L2(Ω) are presented, respectively. In contrast to previous numerical results
both components are almost of the same magnitude if ε is very small. For the
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√
ε-weighted H1(Ω) semi norm error we observe first order convergence in the

non-perturbed case and |u − uN | ≤ CN−1 lnN if the singular perturbation is
mild (ε ≥ 10−4). In the case of a very small perturbation parameter convergence
with a rate slightly greater than 1/2 can be observed uniformly in ε. For the
L2(Ω) error the rates of convergence are close to two for ε ≥ 10−4 and N ≥ 64.
If
√
ε � N−1 we observe uniform convergence of order 1/2. Hence, the method

is of order 1/2 in the energy norm and our theoretical findings are sharp.
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Abstract. A boundary value problem is said to possess strong singu-
larity if its solution u does not belong to the Sobolev space W 1

2 (H
1) or,

in other words, the Dirichlet integral of the solution u diverges.
We consider the boundary value problems with strong singularity and

with double singularity caused the discontinuity of coefficients in the
equation on the domain with slot and presence of the corners equal 2π
on boundary of this domain.
The schemes of the finite element method is constructed on the basis of

the definition on Rν -generalized solution to these problems, and the finite
element space contains singular power functions. The rate of convergence
of the approximate solution to the Rν -generalized solution in the norm of
the Sobolev weighted space is established and, finally, results of numerical
experiments are presented.

Keywords: Finite element method, the Rν-generalized solution, singu-
larity of solution.

1 Introduction

Boundary value problems with strong singularity caused by the singularity in the
initial data or by internal properties of the solution are found in the physics of
plasma and gas discharge, electrodynamics, nuclear physics, nonlinear optics, and
other branches of physics. In particular cases, numerical method for problems of
electrodynamics and quantummechanics with strong singularity, were constructed
based on separation of singular and regular components, mesh refinement near
singular points, multiplicative extraction of singularities, etc. (see, e.g., [1–5]).

In [6] it was proposed to define the solution to a boundary value problem with
strong singularity as an Rν-generalized solution in a weighted Sobolev space.
Such a new concept of solution led to the distinction of two classes of boundary
value problems: problems with coordinated and uncoordinated degeneracy of
input data; it also made it possible to study the existence and uniqueness of
solutions as well as its coercivity and differential properties in weighted Sobolev
spaces (see [7–12]).
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The finite element method were constructed and investigated for different
kinds of boundary value problems with strong singularity of solution
(see [13–15] and references therein).

In this paper we consider the FEM for boundary value problems with strong
singularity and double singularity.

2 Basic Notations

We denote the two-dimensional Euclidean space by R2 with x = (x1, x2) and
dx = dx1dx2. LetΩ ⊂ R2 be a bounded domain with piecewise smooth boundary
∂Ω, and let Ω̄ be the closure of Ω, i.e. Ω̄ = Ω ∪ ∂Ω. We denote by

⋃n
i=1 τi a set

of points τi (i = 1, . . . , n) belonging to ∂Ω, including the points of intersection
of its smooth pieces.

Let Oδ
i be a disk of radius δ > 0 with its center in τi (i = 1, . . . , n), i.e. Oδ

i =
{x : ‖x− τi‖ ≤ δ}, and suppose that Oδ

i ∩Oδ
j = ∅, i �= j. Let Ω′ = Ω ∩

⋃n
i=1 O

δ
i .

Let ρ(x) be a function that is infinitely differentiable, positive everywhere,
except in

⋃n
i=1 τi, and satisfies the following conditions:

(a) ρ(x) = δ for x ∈ Ω \
⋃n

i=1 O
δ
i ,

(b) ρ(x) =
(
(x1 − x

(i)
1 )2 + (x2 − x

(i)
2 )2

)1/2
, (x

(i)
1 , x

(i)
2 ) = τi for x ∈ Ω ∩O

δ/2
i ,

(c) δ/2 ≤ ρ(x) ≤ δ for x ∈ Ω \Oδ/2
i (i = 1, . . . , n).

Moreover, it is assumed that∣∣∣∣ ∂ρ∂xi

∣∣∣∣ ≤ δ′, i = 1, 2 (1)

where δ′ > 0 is a real number.
We introduce the weighted spaces Hk

2,α(Ω) and W k
2,α(Ω) with norms:

‖u‖Hk
2,α(Ω) =

( ∑
|λ|≤k

∫
Ω

ρ2(α+|λ|−k)|Dλu|2 dx
)1/2

, (2)

‖u‖Wk
2,α(Ω) =

( ∑
|λ|≤k

∫
Ω

ρ2α|Dλu|2 dx
)1/2

, (3)

where Dλ = ∂|λ|/∂xλ1
1 ∂xλ2

2 , λ = (λ1, λ2), |λ| = λ1 + λ2; λ1, λ2 are integer
nonnegative numbers, α is some real nonnegative number, k is an integer non-
negative number. For k = 0 we use the notation H0

2,α(Ω) = W 0
2,α(Ω) = L2,α(Ω).

By W l
2,α+l−1(Ω, δ) for l ≥ 1 we denote a set of functions satisfying the fol-

lowing conditions:

(a) |Dku(x)| ≤ C1γ
kk!(ρα+k(x))−1 for x ∈ Ω′, where k = 0, . . . , l, the constants

C1, γ ≥ 1 do not depend on k;
(b) ‖u‖L2,α(Ω\Ω′) ≥ C2, C2 = const; with squared norm
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‖u‖2W l
2,α+l−1(Ω,δ) =

∑
|λ|≤l

‖ρα+l−1|Dλu|‖2L2(Ω). (4)

The spaces H̊k
2,α(Ω) ⊂ Hk

2,α(Ω), W̊ k
2,α(Ω) ⊂ W k

2,α(Ω) and the set W̊ k
2,α(Ω, δ) ⊂

W k
2,α(Ω, δ) are defined as the closures of the set of infinitely differentiable and

finite in Ω functions in norms (2)–(4), respectively.
Let L∞,−α(Ω,C3) and Hk

∞,−α(Ω,C4) (k ≥ 0, α ∈ R) be the set of functions
with the norms satisfying the inequalities

‖u‖L∞,−α(Ω,C3) = ess sup
x∈Ω

|ρ−αu| ≤ C3 ,

‖u‖Hk
∞,−α(Ω,C4) = max

|λ|≤k
ess sup

x∈Ω
|ρ−α+|λ|Dλu| ≤ C4

with positive constants C3, C4 independent of u.

3 The Boundary Value Problems with Strong Singularity

3.1 The BVP with Coordinated Degeneration of the Input Data

In the domain Ω we consider the differential equation

−
2∑

l,s=1

als(x)
∂2u

∂xl∂xs
+

2∑
l=1

al(x)
∂u

∂xl
+ a(x)u(x) = f(x) , x ∈ Ω (5)

with the boundary condition

u = 0 , x ∈ ∂Ω. (6)

Definition 1. The boundary value problem (5)–(6) is called the Dirichlet prob-
lem with coordinated degeneration of the input data, or Problem A, if als(x) =
asl(x) (l, s = 1, 2) and for some real number β

als ∈ H1
∞,−β(Ω,C5) , al ∈ L∞,−(β−1)(Ω,C6) , a ∈ L∞,−(β−2)(Ω,C7) , (7)

2∑
l,s=1

als(x)ξlξs ≥ C8ρ
β(x)

2∑
s=1

ξ2s , a(x) ≥ C9ρ
β−2(x)

and right-hand side of (5) satisfies f ∈ L2,μ(Ω),

where Ci (i = 5, . . . , 9) are positive constants independent of x; ξ1, ξ2 are any
real parameters; μ is some nonnegative real number.

Definition 2. A function uν from the space H̊1
2,ν+β/2(Ω) is called an Rν-gene-

ralized solution of the Dirichlet problem with coordinated degeneration of input
data if uν = 0 almost everywhere on ∂Ω and the identity

a(uν , v) = l(v) ∀v ∈ H̊1
2,ν+β/2(Ω)

holds, where ν is arbitrary but fixed and satisfies the inequality ν ≥ μ+ β/2− 1.
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In Definition 2

a(u, v) =

∫
Ω

[ 2∑
l,s=1

alsρ
2ν ∂u

∂xl

∂v

∂xs
+ als

∂ρ2ν

∂xl

∂u

∂xs
v +

∂als
∂xl

ρ2ν
∂u

∂xs
v+

+ alρ
2ν ∂u

∂xl
v + aρ2νuv

]
dx ,

l(v) =

∫
Ω

ρ2νfv dx

are the bilinear and linear forms respectively.

Remark 1. We say that a boundary value problem is strongly singular if it is
impossible to determine a generalized solution for it, that is, a solution which
does not belong to the Sobolev space W 1

2 (H1), or, in other words, the Dirichlet
integral of the solution diverges. In [6, 7] it was proposed to define the solution
to a boundary value problems with strong singularity as a Rν-generalized one in
a weighted Sobolev space. The main idea of this approach is that we introduce
into the integral identity of the generalized solution a weight function raised to
some power. The weight function coincides with the distance to the singularity
points in some neighborhoods of them. The role of this function is to eliminate
the singularity appearing in the solution due to problem non-regularity and to
achieve the convergence of the integrals in both parts of the integral identity.
Taking into account the local character of the singularity, we define the weight
function as the distance to each singularity point inside the disk of radius δ
centered in that points, and outside of these disks the weight function equals δ.
The power of the weight function in the definition of the Rν -generalized solution,
as well as the weighted space containing it, depend on the spaces which contain
the initial data of the problem, on the geometrical singularities of the domain
boundary (presence of the reentrant corners) and on the change of the type of
the boundary conditions.

The existence and uniqueness, the coercitive and differential properties of
the Rν generalized solution for the differential equation (5) with the boundary
conditions the first and third types and coordinated degeneration of initial data
were established in [7, 8, 15, 16]. The finite element method for this boundary
value problems were studied in [13, 15] and references therein.

3.2 The Finite Element Method for Boundary Value Problem with
Uncoordinated Degeneration of Input Data

We consider the boundary value problem

−
2∑

l=1

∂

∂xl

(
all(x)

∂u

∂xl

)
+ a(x)u(x) = f(x) , x ∈ Ω , (8)

u = 0 , x ∈ ∂Ω . (9)
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Definition 3. Boundary value problem (8), (9) is called the Dirichlet problem
with uncoordinated degeneration of initial data, or Problem B, if for some real
number β

all ∈ H1
∞,−β(Ω,C10) , a ∈ L∞,−β(Ω,C11) , (10)

2∑
l=1

all(x)ξ
2
l ≥ C12ρ

β(x)

2∑
l=1

ξ2l , a(x) ≥ C13ρ
β(x) (11)

and the right-hand side of the equation satisfies the condition

f ∈ L2,μ(Ω, δ) (12)

for some nonnegative real number μ. Here Ci (i = 10, . . . , 13) are positive con-
stants not depending on x; ξ1, ξ2 are arbitrary real parameters.

Definition 4. A function uν from the set W̊ 1
2,ν+β/2(Ω, δ) is called an Rν-genera-

lized solution of Problem B if uν = 0 almost everywhere on ∂Ω and for all v
from W̊ 1

2,ν+β/2(Ω, δ) the following integral identity holds:

b(uν , v) ≡
∫
Ω

[ 2∑
l=1

allρ
2ν ∂uν

∂xl

∂v

∂xl
+ all

∂ρ2ν

∂xl

∂uν

∂xl
v + aρ2νuνv

]
dx =

∫
Ω

ρ2νfv dx ≡ l(v)

for any fixed value ν satisfying the inequality

ν ≥ μ+ β/2 . (13)

Remark 2. In Definition 2 of an Rν-generalized solution to a Problem A all sum-
mands of the bilinear form a(uν , v) at the left-hand side of the integral identity
are of the some order in each neighbourhood of the points of singularity. This is
caused by the fulfillment of requirement (7) on the coefficients of the equation.
According to conditions (10), the coefficients of the equation for Problem B are
asymptotically equal and hence the summands of the bilinear form b(u, v) have
different orders near the points of singularity. Problems of this type call for a
special approach to the study of properties of the Rν -generalized solution. This is
expressed in the fact that the solution is sought for in the set W 1

2,ν+β/2(Ω, δ) be-

cause in the space W 1
2,ν+β/2(Ω) there exists a bundle of Rν-generalized solutions

in the neighbourhoods of singularity points (see [8]), and unique Rν -generalized
solution can be extracted from the bundle only by choosing the parameters ν
and δ (see [9, 11]). In [11, 12] a coercitive and differential properties of the
Rν-generalized solution were investigated for Problem B.

Remark 3. The introduction of an Rν -generalized solution for problems with un-
coordinated degeneration of initial data allows us to construct efficient numerical
methods no only for problems with strong singularity where the Dirichlet inte-
gral of the solution diverges, but also for boundary value problem with ”bad”
singularity of the solution caused by the presence of angular and conical points
in the boundary of the domain.
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We construct the scheme of the finite element method for determination of an
Rν-generalized solution to the Dirichlet problem with coordinated degeneracy
of the input data. To do this, we perform a quasiuniform triangulation of the
domain Ω and we introduce a special system of basic functions.

Inscribe in Ω a polygonal domain Ωh. We triangulate Ωh so that: (1) a polyg-

onal domain Ωh =
⋃N

i=1 Ki, where {K} = {K1,K2, . . . ,KN}, is a set of closed
triangles; here h is greatest of the side lengths of triangles Ki, i = 1, N , and ∂Ωh

is the boundary of the domain Ωh; (2) triangles Ki, i = 1, N , may share only
common sides or vertices; (3) all vertices in Ki, i = 1, N , sitting on ∂Ω belong
also to ∂Ωh; points τi, i = 1, n, are a subset of the vertex set of triangles to
∂Ωh, and moreover, one of Ki, i = 1, N , contains almost one point from

⋃n
i=1 τi

(obviously, h < δ in this instance); (4) an angle that is minimal among all angles
in triangles is strictly positive and does not depend on the triangulation; (5)
all triangles Ki, i = 1, N , have areas of the same order; (6) a distance between
points on ∂Ωh and on ∂Ω does not exceed ηh2, where η > 0, and does not
depend on h.

The vertices P1, . . . , PNh
in Ki, i = 1, N , are called triangulation nodes. The

number Nh is represented as the sum Nh = Nh + n + m, where Nh is the
number of triangulation nodes not belonging to the broken line ∂Ωh, and m is

the number of nodes belonging to ∂Ωh \
{⋃n

i=1 τi

}
. We write Ω′′ to denote a

set of segments formed by pieces of the boundary ∂Ω and by intervals of the
broken line ∂Ωh, i.e. Ω

′′ = Ω \ Ω̄h. The triangulation properties imply that not
more than one point τi, i = 1, n, belongs to every segment. To each node Pi, we
assign a function of the form

ψi = ρ−(ν+β/2+1)ϕi , i = 1, . . . , N̄h ,

where ϕi(x) is linear over every triangle Ki, i = 1, N , equals one at the point Pi,

i = 1, N̄h and zero at all the other nodes. We denote by V h(Ωh) the linear span

{ψi}N̄h

i=1. The functions vh ∈ V h(Ωh) are extended to Ω′′ so as to be identically
equal to zero. In this way, we shall in fact construct the space V h(Ω). Obviously,
V h(Ω) is subset W̊ 1

2,ν+β/2(Ω, δ).
The approximate Rν-generalized solution of the Problem B be the function

uh
ν =

∑N̄h

i=1 aiψi (ai = ρν+β/2+1(Pi)bi) satisfying the equality

b(uh
ν , v

h) = l(vh) ∀vh ∈ V h(Ω) .

Theorem 1 ([14]). Let conditions (1), (10)–(13) hold and constant C13 be suf-
ficiently large, then there exists a constant C14 which is independent of f and h
and is such that

‖uν − uh
ν‖W 1

2,ν+β/2+1
(Ω,δ) ≤ C14h‖f‖L2,μ(Ω,δ).

3.3 The Numerical Experiments

We have carried out a set numerical test for boundary value problems with singu-
larity using our finite element method and GMRES-method for solving system of
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algebraic equation. The errors of numerical approximation to the Rν -generalized
solution in the norms of space W 1

2,ν+β/2+1(Ω) was computed. Besides, for ob-
tained approximate Rν-generalized and generalized solutions we calculate the
module between approximate and exact solutions δ(Pij) at each node of the
grid, the quantity ni, i = 1, 2, . . . and coordinates of nodes with errors exceed-
ing given limit values δ̄i, i = 1, 2, . . .. Numerical experiments were realized on
meshes with different step h.

Example. Let Ω = (−1, 1) × (−1, 1) \ [0, 1] × [−1, 0] be a L-shaped domain
with one reentrant corner on its boundary ∂Ω, τ0 be the point with the coordi-
nates (0, 0).

We consider the boundary value problem (8), (9), where

a11 = a22 = 1 , a = 0 ,

f(x) = −2(27x4
1 − 10x2

1x
2
2 − 14x2

1 + 27x4
2 − 14x2

2 − 16)x1x2

9 (x2
1 + x2

2)
5/3

.

The exact solution of this problem is

u(x) =

(√
x2
1 + x2

2

)2/3

sinϕ cosϕ
(
1− x2

1

) (
1− x2

2

)
, ϕ = arctg

x2

x1
.

We denote the set of the mesh points on the domain Ω̄ by

{Pij} = {Pij : Pij = ((−1 + ih), (−1 + jh)), h =
2

M
, i, j = 0,M, Pij ∈ Ω̄}.

Here M is a positive even integer. Let ρ(x) = min{δ, dist(x, τ0)}.

Table 1. The influence of the mesh-size variations on the behaviour of the error in the
norm of the weight space W 1

2,ν+β/2+1 (ν = 0.2, β = 0, γ = 1, δ = 2.03125 · 10−2)

h 0.0625 0.03125 0.0156
M 32 64 128

‖uν − uh
ν‖W1

2,ν+1
2.02 · 10−3 6.34 · 10−4 1.99 · 10−4

Figure 1 (a, b) show the nodes of the mesh where the error exceeds some given
limit value for the generalized (a) and Rν-generalized (b) solutions (h = 0.0156,
ν = 0.2, β = 0, δ = 2.03125 · 10−2). Here for limit values of the error we use
following values: 10−3, 2 · 10−4, 2 · 10−5.

The series of numerical experiments showed that:

(i) the rate of convergence of the approximate solution to the exactRν -generali-
zed solution has first order in the norm of the weight space W 1

2,ν+β/2+1(Ω);

(ii) if we choose parameters ν and δ near to optimal, the accuracy of the ap-
proximation in the case of the Rν-generalized solution is in general two
orders higher than for the generalized solution;
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Table 2. The influence of the mesh-size variations on the behaviour of the error of the
generalized (ν = 0) and Rν -generalized solutions for ν = 0.2, β = 0, δ = 2.03125 ·10−2 ,
δ̄1 = 10

−3, δ̄2 = 2 · 10−4

h 0.0625 0.03125 0.0156
M 32 64 128

Gen. sol. Rν -gen. sol. Gen. sol. Rν-gen. sol. Gen. sol. Rν-gen. sol.
n1 183 18 78 12 30 12
n2 309 132 885 66 444 9

δ > 10−3

2 · 10−4 < δ ≤ 10−3

2 · 10−5 < δ ≤ 2 · 10−4

δ ≤ 2 · 10−5

(a)

-1

1

-1 1

(b)

-1

1

-1 1

Fig. 1. Error of generalized (a) and Rν-generalized (b) solutions

(iii) if the input data had strong singularity, it is impossible to find the gen-
eralized solution (ν = 0), because the computation is interrupted by an
exception, while the Rν-generalized solution can be computed with high
accuracy (see, for example [15]).

4 The Boundary Value Problem with Double Singularity

4.1 Problem Formulation: The Rν-generalized Solution

Let the differential equation

−Δu+ λu(x) = f(x) , x ∈ Ω (14)

be given in the domain Ω with boundary conditions

u = ϕ(x), x ∈ ∂Ω1 ,
∂u

∂η
= 0 , x ∈ ∂Ω2 (15)

and continuity conditions on the interface L

[u] = 0 ,

[
∂u

∂η

]
= ψ(x) , x ∈ L , (16)
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where η is the unit vector of the outer normal and

λ = λi = const , x ∈ Ωi , i = 1, 2 , λ1 �= λ2 . (17)

Here x = (x1, x2), Ω = Ω1 ∪Ω2, were

Ω1 = {x : x1 ∈ (−s1, s1), x2 ∈ (0, 2s1)} , Ω̄1 = {x : x1 ∈ [−s1, s1], x2 ∈ [0, 2s1]} ,
Ω2 = {x : x1 ∈ (−s2, s2), x2 ∈ (−2s2, 0)} , Ω̄2 = {x : x1 ∈ [−s2, s2], x2 ∈ [−2s2, 0]} ,
L = {x : x1 ∈ (−l, l), x2 = 0} , l < s2 < s1 , s1 = 2s2 ,

∂Ω1 = Ω̄1 \ (Ω1 ∪ L) , ∂Ω2 = Ω̄2 \ (Ω2 ∪ L) , ∂Ω = ∂Ω1 ∪ ∂Ω2 .

Let Oδ
l (Oδ

−l) be a disk of radius δ (δ < l) with its center in the point of

singularity τ+l = (l, 0) (τ−l = (−l, 0)), and assume that Oδ
l ∩ Oδ

−l = ∅ and

Ω′ = Ω ∩
(
Oδ

l ∪Oδ
−l

)
.

We introduce the weighted function ρ(x), coinciding a neighborhood Oδ
±l of

each point τ±l with the distance to it and equals δ for x ∈ Ω̄ \
(
Oδ

l ∪Oδ
−l

)
.

In complement to section 2 we need the set L2,α(L, δ) with norm

‖u‖L2,α(L,δ) =

∫
L

ρ2αu2 dx1 . (18)

We shall say that ϕ ∈ W
1/2
2,α (∂Ωk, δ), k = 1, 2, if there exists a function Φ(x) ∈

W 1
2,α(Ωk, δ) such that Φ(x)|∂Ωk

= ϕ(x), ‖ϕ‖
W

1/2
2,α (∂Ωk,δ)

= inf
Φ|∂Ωk

=ϕ
‖Φ‖W 1

2,α(Ωk,δ).

We assume that the input data of the boundary value problem (14)–(17)
satisfies the conditions:

min{λ1, λ2} ≥ C15 > 0 , (19)

f ∈ L2,μ(Ω, δ) , ϕ ∈ W
1/2
2,μ (∂Ω1, δ) , ψ ∈ L2,μ(L, δ) , (20)

where μ is a nonnegative real.
We introduce the bilinear and linear forms:

a(u, v) =

2∑
k=1

∫
Ωk

(
2∑

i=1

(
ρ2ν

∂u

∂xi

∂v

∂xi
+

∂ρ2ν

∂xi

∂u

∂xi
v

)
+ λkρ

2νuv

)
dx ,

F (v) =

∫
Ω

ρ2νfv dx−
∫
L

ρ2νψv dx .

Definition 5. A function uν from the set W 1
2,ν(Ω, δ) is called an Rν-generalized

solution of the boundary value problem (14)–(17), (19), (20) if uν = ϕ almost
everywhere on ∂Ω1, if for any v from W 1

2,ν(Ω, δ) ∩ W̊ 1
2,ν(Ω1, δ) the identity

a(uν , v) = F (v) hold, where ν is arbitrary but fixed and satisfies the inequal-
ity ν ≥ μ, and following weak continuity conditions on the interface L∫
L

ρ2ν(uν1|L − uν2|L)v dx1 = 0 ,

∫
L

ρ2ν
(
uν1

∂η1
− uν2

∂η2

)
v dx1 =

∫
L

ρ2νψv dx1

are valid.
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Here ηk is the unit vector of the outward normal to L about Ωk, k = 1, 2.

4.2 The Scheme of the Finite Element Method: Numerical
Experiments

We construct the scheme of the finite element method using Definition 5 of an Rν-
generalized solution. With this goal each subdomain Ω1 and Ω2 is decomposed
by means of vertical and horizontal lines into elementary squares with the lengths
of the sides h1 and h2 (0 < h2 < h1 < 1) respectively. The vertices of the domain
Ω̄1 (Ω̄2) will be called the nodes of the grid Ω̄h

1 (Ω̄h
2 ). We choose the step of the

grid h (h = h2) so that the points of singularity τ±l do not coincide with nodes.
The nodes of the grid Ω̄h

1 on interface L do not coincide with the nodes of the
grid Ω̄h

2 , that is, the grids do not join on interface L.
We define the finite-dimensional space V h(Ω̄h

k ) ⊂ W 1
2,ν(Ω, δ) (k = 1, 2) of

continuous functions vhk that are bilinear on each finite element.

Let {P (2)
i }i=n

i=0 be the set of nodes of the grid Ω̄h
2 locating on the interface L

and I =
[
P

(2)
0 , P

(2)
n

]
, we introduce the space

V h(L) =
{
vh(x1, 0) ∈ C(L), vh|I ∈ S3(I), v

h ∈ P0(L \ I)
}
,

where S3(I) is the space of cubic splines, P0(L \ I) is the space of polynomials
of degree 0. The norm in V h(L) is defined by means of the equality (18).

Definition 6. A function uh
ν in the space V h(Ωh

1 )∪V h(Ωh
2 ) is called an approxi-

mate Rν-generalized solution of the boundary value problem (14)–(17), (19), (20)
by the finite element method if uh

ν1 = ϕ at the nodes of the grid ∂Ω1 and the
identity a(uh

ν , v
h) = F (vh) holds for all vh ∈ V̊ h(Ωh

1 ) ∪ V h(Ωh
2 ) and condition

‖uh
ν1|L − uh

ν2|L‖L2,ν(L,δ) = O(hn) , n ≥ 2

is valid on the interface L.

Theorem 2 ([17]). Let an Rν-generalized solution uν belongs to the set
W 2

2,ν+1(Ωk, δ) for k = 1, 2. Then there exists a constant C16, independent of uν ,

uh
ν , f , ϕ, ψ and h, such that the convergence estimate

2∑
k=1

‖uν − uh
ν‖W 1

2,ν(Ωk,δ) + h− 1
2 ‖[uν]− [uh

ν ]‖L2,ν(L,δ) ≤ C16h

2∑
k=1

‖uν‖W 2
2,ν+1(Ωk,δ)

holds for the constructed triangulation of the domain Ω̄.

We conducted on computer the numerical analysis of modeling boundary
value problems (14)–(17) on domain Ω using our finite element method. For
approximate solutions we calculated the following values: the error δ(xh) =
|v(xh)−uh(xh)| at each node of the mesh Ω̄h, the maximal errorΔ = max δ(xh),
the number of nodes ni, i = 1, . . . ,m, where the errors exceeds the given limit
values δ̄i, i = 1, . . . ,m.
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Example. We consider the boundary value problem (14)–(17) with

u(x) = ((x1 + l)2 + x2
2)

0.2 + ((x1 − l)2 + x2
2)

0.2 , λ1 = 1 , λ2 = 10 ,

f(x) = −0.16[((x1 + l)2 + x2
2)

−0.8 + ((x1 − l)2 + x2
2)

−0.8]+

+λk[((x1 + l)2 + x2
2)

0.2 + ((x1 − l)2 + x2
2)

0.2], x ∈ Ωk , k = 1, 2 .

The results of computations see on Figure 2.

Fig. 2. Error of generalized and Rν-generalized solutions

Series of calculations results have shown:

(1) the value of error is always decreases as points mesh removes from points of
singularity;

(2) if we choose parameters ν and δ near to optimal, the error for founded
approximate of the Rν -generalized solution, as a rule, on two order better,
than the error for founded approximate of the generalized solution.
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Abstract. The algorithm for numerical solving the Navier-Stokes equa-
tions for two-dimensional motion for viscous heat-conducting gas is pro-
posed. The discretization of equations is performed by a combination of
a special version of the trajectory method for a substantial derivative
and the finite element method with piecewise bilinear basis functions
for other terms. The results of numerical studies of the structure of a
supersonic flow in a plane channel with an obstacle for a wide range of
Mach numbers and Reynolds numbers are presented. Velocity and pres-
sure fields are investigated, and the vortex structure of flow is studied in
the circulation area of the obstacle.

Keywords: Navier-Stokes equations, viscous heat-conducting gas,
numerical modeling, trajectories, finite element method.

1 Introduction

Gas flow in channels with obstacles is encountered in many technical devices and
installations. Although many numerical algorithms and special software com-
plexes have been developed (see [1–6] and references therein), the problem of
development and application of efficient numerical methods and algorithms re-
mains open.

In this paper, to approximate a total (substantial or Lagrangian) time deriva-
tive in each equation the method of trajectories is used. It consists in the ap-
proximation of this derivative by the backward difference time derivative along
the particle trajectory. This method (called the method of characteristics) first
has been proposed in [7] for the equation of mass transfer. Later, it was called
the modified method of characteristics and has been repeatedly used to solve a
parabolic equation (see [8] and references therein). Since a parabolic equation
has no characteristic and in gas dynamics characteristics are refereed to other
objects, we use a more appropriate name ”method of trajectories”. Space dis-
cretization of the remaining terms of the Navier-Stokes equations at each time
step is performed by the finite element method with piecewise bilinear basis
functions and the use of simple quadrature formulas.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 122–131, 2013.
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2 Formulation of the Problem and the Original Equations

Consider a two-dimensional laminar flow of gas in a plane channel with an obsta-
cle under a supersonic flow velocity at the inlet. The shape of the computational
domain is shown in Fig. 1. The point A is assumed to be the origin. Besides, hc

is the width of the channel, b and c are the width and the length of the obstacle
at the center of the channel inlet, respectively. To describe the motion of gas,
we use the time-dependent Navier-Stokes equations without any simplifying as-
sumption. To introduce dimensionless variables, the width hc of the channel is
taken as the length scale unit; the density ρ∞ of the incoming flow is taken as the
density scale unit; flow velocity u∞ at the channel inlet is taken as the velocity
scale unit; hc/u∞ is taken as the time scale unit; the scale units of pressure,
temperature and internal energy values are taken from the condition of a perfect
gas.
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Fig. 1. The channel with an obstacle at the inlet

We write the differential equations of two-dimensional viscous heat-conducting
gas in the form of dimensionless equations of continuity, momentum, and internal
energy

dρ

dt
+ ρ

∂u

∂x
+ ρ

∂v

∂y
= 0 , (1)

ρ
du

dt
= −∂P

∂x
+

∂τxx
∂x

+
∂τxy
∂y

, (2)

ρ
dv

dt
= −∂P

∂y
+

∂τxy
∂x

+
∂τyy
∂y

, (3)

ρ
de

dt
+ P

(
∂u

∂x
+

∂v

∂y

)
= −∂qx

∂x
− ∂qy

∂y
+ Φ . (4)

Here d(·)/dt is a substantial or total derivative:

dρ

dt
=

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
; (5)
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ρ is density, u and v are the projections of the velocity vector on the axes x
and y respectively; P = (γ − 1)ρe is pressure; μ = (γ(γ − 1)M2e)ω is dynamic
viscosity; e is internal energy. The components τxx, τyy, τxy of the stress tensor,
projections qx, qy of the heat flux and the dissipation function Φ are expressed
as follows:

τxx =
2

3Re
μ

(
2
∂u

∂x
− ∂v

∂y

)
, τyy =

2

3Re
μ

(
2
∂v

∂y
− ∂u

∂x

)
,

τxy = τyx =
μ

Re

(
∂u

∂y
+

∂v

∂x

)
,

qx = − γ

PrRe
μ
∂e

∂x
, qy = − γ

PrRe
μ
∂e

∂y
, (6)

Φ =
μ

Re

[
2

3

(
∂u

∂x

)2

+
2

3

(
∂v

∂y

)2

+

(
∂v

∂x
+

∂u

∂y

)2

+
2

3

(
∂u

∂x
− ∂v

∂y

)2
]

,

where Re is the Reynolds number, Pr is the Prandtl number, γ = 1.4.
To complete the formulation of the problem, we specify initial and boundary

conditions. Let the gas start to move from left to right from the rest state inside
the domain, so that ρ(0, x, y) = 1, u(0, x, y) = 0, v(0, x, y) = 0. Internal energy
of a perfect gas is set to be equal to e(0, x, y) = (γ(γ−1)M2)−1. On the boundary
areas AA1 and BB1 of the input in the time interval t ∈ (0, tfin) the following
parameters are specified: ρ|AA1

= 1, e|AA1
= (γ(γ− 1)M2)−1, v|AA1

= 0 as well
as the symmetrical conditions on the segment BB1. As for velocity u, its profile
u(t, 0, y) in the inlet section is set in the following way:

u(t, 0, y) =

⎧⎨⎩ (2a− y)y/a2, y ∈ (0, a),
1, y ∈ [a, d− a],
(d− 2a− y)(y − d)/a2, y ∈ (d− a, d) ,

(7)

where d = (hc−b)/2 is the length of the segment AA1, and a is a free parameter,
which in subsequent calculations is taken equal to 1/20. In the area BB1 the
velocity profile u(t, 0, y) is chosen symmetrically. The selected profile is designed
to ensure continuity of u(t, x, y) at the points A,A1, B and B1. Otherwise, not
only there is no convergence, but also parasitic oscillations manifested due to
the difference differentiation with respect to the space variables in the vicinity
of these points are observed. As for the jump between zero initial conditions and
the values in (7) for t > 0, the monotonic approximation of the time derivative
being used leads to rapidly smoothing the gap with time.

On fixed solid walls, the slip conditions u|Γs = 0 and v|Γs = 0 and the condi-
tion of thermal insulation, i.e., the condition ∂e/∂n|Γs

= 0 for the derivative of
internal energy along the normal to a solid wall, where Γs = Γ2∪Γ4∪Γ5∪Γ6∪Γ8

is solid boundary, are imposed. At the exit of the channel cross section CD, the
functions u, v, e are assumed to satisfy the zero Neumann conditions.
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3 The Reduction of the Original Equations

We rearrange the equations (1) and (4) to a new form. To do this, given non-
negativity of density and internal energy, we introduce the functions

ρ = σ2 , e = ε2 . (8)

Substituting (8) in the equation of continuity (1) and dividing it by 2σ, we get

dσ

dt
+

1

2
σ

(
∂u

∂x
+

∂v

∂y

)
= 0 . (9)

Repeat the procedure for the internal energy equation (4). To do this, substitute
(8) in (4) and divide it by 2ε. This gives

ρ
dε

dt
+

1

2ε

∂qx
∂x

+
1

2ε

∂qy
∂y

= − P

2ε

(
∂u

∂x
+

∂v

∂y

)
+

1

2ε
Φ . (10)

We use (8) also in the expressions for the heat flux qx, qy from (6). Taking
derivatives with respect to x and y, we arrive at

qx = − 2γ

PrRe
με

∂ε

∂x
, qy = − 2γ

PrRe
με

∂ε

∂y
, (11)

∂qx
∂x

= − 2γ

PrRe

(
μ

(
∂ε

∂x

)2

+ ε
∂

∂x

(
μ
∂ε

∂x

))
,

∂qy
∂y

= − 2γ

PrRe

(
μ

(
∂ε

∂y

)2

+ε
∂

∂y

(
μ
∂ε

∂y

))
. (12)

In view of (11), (12), and the expressions for the dissipation function Φ from (6),
the equation (10) takes the form:

ρ
dε

dt
− γ

PrRe

(
μ

ε

(
∂ε

∂x

)2

+
∂

∂x

(
μ
∂ε

∂x

))
−

γ

PrRe

(
μ

ε

(
∂ε

∂y

)2

+
∂

∂y

(
μ
∂ε

∂y

))
= − P

2ε

(
∂u

∂x
+

∂v

∂y

)
+

1

2Re

μ

ε

[
2

3

(
∂u

∂x

)2

+
2

3

(
∂v

∂y

)2

+

(
∂v

∂x
+

∂u

∂y

)2

+
2

3

(
∂u

∂x
− ∂v

∂y

)2
]

. (13)

So, we shall solve the system of the equations (9), (2), (3), (13).
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4 The Method of Trajectories

As the domain of the problem, we take the polygon Ω bounded by the broken
line AA1A2B2B1BCDA with the boundary Γ , consisting of eight segments:

Γ1 = {(x, y) : x = 5.0, y ∈ (0.0, 1.0)};
Γ2 = {(x, y) : x ∈ [0.0, 5.0] , y = 0.0};
Γ3 = {(x, y) : x = 0.0, y ∈ (0.0, 0.4)};
Γ4 = {(x, y) : x ∈ [0.0, 0.6] , y = 0.4};
Γ5 = {(x, y) : x = 0.6, y ∈ (0.4, 0.6)};
Γ6 = {(x, y) : x ∈ [0.0, 0.6] , y = 0.6};
Γ7 = {(x, y) : x = 0.0, y ∈ (0.6, 1.0)};
Γ8 = {(x, y) : x ∈ [0.0, 5.0] , y = 1.0}.

For simplicity sake we take a uniform square grid in space with coordinates
xi = ih, yj = jh, i = 0, 1, ..., n + 1, j = 0, 1, ..., n1 + 1, with meshsize h =
1/n1, entirely fitted in the horizontal and vertical directions of the polygon
Ω. This grid subdivides the computational domain Ω into square cells ωi,j =
(xi, xi+1) × (yj , yj+1). We denote the set of nodes of the grid in the rectangle
BCDA by Sh = {si,j = (xi, yj) : i = 0, 1, ..., n, j = 0, 1, ..., n1} and introduce the
grid domain Ωh = Sh ∩ Ω. We denote the set of ”computational nodes” by
Ωh = Sh ∩ (Ω ∪ Γ1), and the set of boundary nodes with ’known values’ of the
velocity components by ΓD

h = Ωh ∩ (Γ\Γ1). We also denote two portions of the
grid boundary by Γ out

h = Ωh ∩ Γ1 and Γ in
h = Ωh ∩ (Γ3 ∪ Γ7) .

To approximate the substantial derivatives in each equation of the system (9),
(2), (3), and (13), we use the method of trajectories which is in the approxima-
tion of this derivative with the backward difference time derivative along the
trajectory defined by (1) [6]. For this purpose, we introduce a uniform grid with
time step τ = tfin/m:

ωτ = {tk : tk = kτ, k = 0, ...,m} .

For an arbitrary function ϕ(t, x, y) we use the notations ϕk(x, y) = ϕ(tk, x, y) and
ϕk
i,j = ϕ(tk, xi, yj).
Thus, the substantial derivative in the equation (9) is replaced by the differ-

ence derivative of first-order consistency:

dσi,j

dt

∣∣∣∣
tk+1

≈
σk+1
i,j − σk(Xk

i , Y
k
j )

τ
,

where Xk
i = x(tk), Y k

j = y(tk) are the coordinates of the trajectory at the
instant of time t = tk, which passes through the node (xi, yj) for t = tk+1. In
principle, to determine (Xk

i , Y
k
j ) it is required to solve the following problem on

this trajectory on the interval t ∈ [tk, tk+1] in backward time:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx

dt
= u (t, x(t), y(t)) ,

dy

dt
= v (t, x(t), y(t)) ,

⎧⎨⎩
x(tk+1) = xi,

y(tk+1) = yj.
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Instead, we implement one time step of the explicit Euler scheme (being first-
order consistency as well). As a result, we obtain the approximate values

Xk
i ≈ X̄k

i = xi − τuk
i,j and Y k

j ≈ Ȳ k
j = yj − τvki,j .

It is clear that in general case the coordinates X̄k
i , Ȳ k

j do not fall at a node.

Therefore, the value of σk(X̄k
i , Ȳ

k
j ) is defined by the linear interpolation:

σk(X̄k
i , Ȳ

k
j ) = σk

i,j +
σk(x̄, yj)− σk

i,j

x̄− xi
(X̄k

i − xi) +
σk(xi, ȳ)− σk

i,j

ȳ − yj
(Ȳ k

j − yj) =

σk
i,j − τuk

i,j

σk(x̄, yj)− σk
i,j

x̄− xi
− τvki,j

σk(xi, ȳ)− σk
i,j

ȳ − yj
. (14)

Coordinates x̄ and ȳ are chosen to provide monotonicity of the difference
approximation:

x̄ =

{
xi−1, if uk

i,j ≥ 0,
xi+1 otherwise,

ȳ =

{
yj−1, if vki,j ≥ 0,
yj+1 otherwise.

As a result, monotonicity (non-positiveness of off-diagonal elements) is achieved
under the condition

τ ≤ h
/(∣∣uk

i,j

∣∣+ ∣∣vki,j∣∣) for all nodes of Ωh = Sh ∩Ω . (15)

Thus, the substantial derivatives in the equations (9), (2) can be approximated
as follows:

dσi,j

dt

∣∣∣∣
tk+1

≈
σk+1
i,j − σk(X̄k

i , Ȳ
k
j )

τ
, ρi,j

dui,j

dt

∣∣∣∣
tk+1

≈ ρk+1
i,j

uk+1
i,j − uk(X̄k

i , Ȳ
k
j )

τ
.

For vk+1
i,j and εk+1

i,j we have the similar expressions. The values of uk(X̄k
i , Ȳ

k
j ),

vk(X̄k
i , Ȳ

k
j ), and εk(X̄k

i , Ȳ
k
j ) are calculated by the linear interpolation formula

similar to (14).

5 The Finite Element Method

In principle, after the approximation of a substantial derivative at each time step
t = tk+1, k = 0, ...,m− 1, in Ω ∪ Γ1 we obtain the equations

σ

τ
+

1

2
σ

(
∂u

∂x
+

∂v

∂y

)
= f1 , (16)

ρu

τ
= −∂P

∂x
+

∂τxx
∂x

+
∂τxy
∂y

+ f2 , (17)

ρv

τ
= −∂P

∂y
+

∂τxy
∂x

+
∂τyy
∂y

+ f3 , (18)
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ρε

τ
− γ

PrRe

(
μ

ε

(
∂ε

∂x

)2

+
∂

∂x

(
μ
∂ε

∂x

))
− γ

PrRe

(
μ

ε

(
∂ε

∂y

)2

+
∂

∂y

(
μ
∂ε

∂y

))
=

f4 −
P

2ε

(
∂u

∂x
+

∂v

∂y

)
+

1

2Re

μ

ε

[
2

3

(
∂u

∂x

)2

+
2

3

(
∂v

∂y

)2

+

(
∂v

∂x
+

∂u

∂y

)2

+
2

3

(
∂u

∂x
− ∂v

∂y

)2
]

. (19)

with right-hand sides f1, f2, f3, f4, which involve the terms known from the pre-
vious time layer.

Generally speaking, in the previous section the approximations in an explicit
form are constructed for nodal points for the whole domain Ω ∪ Γ1. In fact, in
the finite element method after the use of quadrature formulas there is no need
in approximations at other points.

For each node si,j ∈ Ωh we introduce the basis function

ϕi,j(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− |xi − x|/h) (1− |yj − y|/h) ,

(x, y) ∈ ([xi−1, xi+1]× [yj−1, yj+1]) ∩Ω,

0 otherwise,

which is equal to unity at si,j and zero at all other nodes Ωh. We seek an
approximate solution as follows:

σh(t, x, y) =
∑

si,j∈Ωh

σi,j(t)ϕi,j(x, y) , uh(t, x, y) =
∑

si,j∈Ωh

ui,j(t)ϕi,j(x, y) ,

vh(t, x, y) =
∑

si,j∈Ωh

vi,j(t)ϕi,j(x, y) , εh(t, x, y) =
∑

si,j∈Ωh

εi,j(t)ϕi,j(x, y) .

The values of σh, uh, and vh on ΓD
h are known, and the values of eh are known

only on Γ in
h . This follows from the fact that the (natural) Neumann boundary

conditions in contrast to the (main) Dirichlet conditions do not eliminate the
degrees of freedom at the corresponding nodes on the boundary.

After the standard application of the finite element method (Bubnov-Galerkin
method), we apply the trapezoidal quadrature formula to calculate integrals on
the segments and its Cartesian product for the integrals in the cells ωi,j =
(xi, xi+1) × (yj , yj+1). As a result, at the interior nodes of the computational
domain Sh ∩ Ω we have the following grid analogue of the continuity equation
(from here on, for all the functions the superscript k+1 characterizing the time
dependence is omitted):

σi,j

τ
+

1

4h
σi,j(ui+1,j − ui−1,j) +

1

4h
σi,j(vi,j+1 − vi,j−1) = f1 ∀ si,j ∈ Sh ∩Ω .



Some New Approaches to Solving Navier-Stokes Equations 129

At some boundary nodes, the grid equations for uh, vh, εh are simplified due to
boundary conditions or due to the smaller support of test functions, for example,
on the border Γ out

h . This results is a wide variety of such equations omitted here.
We confine ourselves to the equations at interior nodes, which give an adequate
idea of the form of the obtained difference equations. Therefore, for u we give
the grid analogue of the momentum equation (14) also only at the interior nodes
Sh ∩Ω:

ρi,jui,j

τ
+

2

3h2Re
((ui,j − ui−1,j)(μi−1,j + μi,j)− (ui+1,j − ui,j)(μi,j + μi+1,j))+

1

6h2Re
((vi+1,j+1 − vi+1,j−1)μi+1,j − (vi−1,j+1 − vi−1,j−1)μi−1,j)+

1

2h2Re
((ui,j − ui,j−1)(μi,j−1 + μi,j)− (ui,j+1 − ui,j)(μi,j + μi,j+1)) +

1

4h2Re
((vi+1,j−1 − vi−1,j−1)μi,j−1 − (vi+1,j+1 − vi−1,j+1)μi,j+1) =

f2 −
1

2h
(Pi+1,j − Pi−1,j) ∀ si,j ∈ Sh ∩Ω .

At the nodes of the grid boundary Γ out
h , due to the Neumann condition, these

equations are simplified, and the grid boundary conditions on ΓD
h are derived

from the boundary conditions of the original differential problem.
Grid analogues for the velocity v components and energy εh at the interior

nodes Sh ∩Ω are obtained similarly.
Thus, we obtain the variational-difference scheme of first-order consistency,

both in time and space. To solve systems of linear algebraic equations at each
time step, we use the pointwise Jacobi method. The convergence of this method
and of nonlinearity iteration is much faster when the quadratic extrapolation in
time of the values from two time layers is used as an initial guess rather than a
simple transfer of values from the previous layer. In view of the significant diag-
onal dominance, an average number of iteration steps required for convergence
of the Jacobi method on a grid of 1001× 201 units was not greater than 10.

6 Calculation of Flow in the Channel Bottom Beyond a
Rectangular Obstacle

The algorithm is implemented for the above problem of a gas flow for super-
sonic velocity at the inlet. As the equations (5), we used in the calculations the
Sutherland equation of state for a perfect gas:

T = γ(γ − 1)M2e, μ = Tω, ω = 0.8 .

The calculations were performed on a grid consisting of 1001×201 nodes, the
mesh size is h = 0.005, the time step is τ = 0.0005. The Reynolds Re, Prandtl
Pr and Mach M numbers were taken as follows: Re = 2 × 103, 104, Pr = 0.7,
M = 2, 4.
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Fig. 2. The distribution of the longitudinal velocity component

Fig. 3. Density distribution

Fig. 4. Pressure distribution

In Fig. 2-4 the flow pattern in the channel behind a rectangular obstacle with
the Mach number M = 4 and the Reynolds number Re = 2 × 103 is shown at
the instant of time t = 20.0.

Figure 2 shows that the body generates stagnant zones with reverse currents
and velocity values near zero. Dark color shows an area in which the velocity
component u has values in the interval [0,−0.1). As follows from the calculations,
stagnant zone beyond the body decreases with time and takes a constant size.

Further, for the same parameters and the instant of time, Fig. 3-4 shows
the density and pressure fields. The numerical results show that with time the
obstacle generates regions with density less than that in the free stream. Thus,
we have constructed a pattern of the bottom of the supersonic flow of a viscous
heat-conducting gas with a rectangular obstacle in a channel. Beyond the body
the stagnant zone is formed with smaller velocity as compared to the incident
flow. The calculations show that an area with negative velocity is formed, which
indicates the occurrence of a reverse flow.
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7 Conclusion

It is useful to note that the combination of the method of trajectories and the
finite element method does not require matching triangulations at the neighbor-
ing time layers. This greatly facilitates the dynamic coarsening or condensation
of space triangulations for the optimization of computational work or improve-
ments of the approximation of boundary layers and shock waves. For solving
systems of algebraic equations due to considerable diagonal dominance the Ja-
cobi method in combination with external nonlinearity iteration is used.

Acknowledgement. This work was supported by RFBR (grant N 11-01-00224)
and the International Project TRISTAM.
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Abstract. To solve numerically boundary value problems for parabolic
equations with mixed derivatives, the construction of difference schemes
with prescribed quality faces essential difficulties. In parabolic problems,
some possibilities are associated with the transition to a new formulation
of the problem, where the fluxes (derivatives with respect to a spatial
direction) are treated as unknown quantities. In this case, the original
problem is rewritten in the form of a boundary value problem for the sys-
tem of equations in the fluxes. This work deals with studying schemes
with weights for parabolic equations written in the flux coordinates. Un-
conditionally stable flux locally one-dimensional schemes of the first and
second order of approximation in time are constructed for parabolic equa-
tions without mixed derivatives. A peculiarity of the system of equations
written in flux variables for equations with mixed derivatives is that there
do exist coupled terms with time derivatives.

1 Introduction

Investigating many applied problems, we can consider a second-order parabolic
equation with mixed derivatives as the basic equation. An example is diffusion
processes in anisotropic media. In desining various approximations for the corre-
sponding boundary-value problems, we focus on the inheritance of the primary
properties of the differential problem during the construction of the discrete
problem.

Locally one-dimensional difference schemes are obtained in a simple enough
way for second-order parabolic equations without mixed derivatives [1,2]. Mixed
derivatives complicate essentially the construction of unconditionally stable sche-
mes of splitting with respect to the spatial variables for parabolic equations with
variable derivatives, even for two-dimensional problems.

In some problems, it is convenient to use the fluxes (derivatives with respect to
a spatial direction) as unknow quantities. This idea may be implemented in the
most simple manner for one-dimensional problems [3]. To introduce fluxes, mixed
and hybrid finite elements are applied [4,5]. The original parabolic equation with
mixed derivatives may be written as a system of equations for the fluxes. The
basic peculiarity of this system is that the time derivatives for the fluxes in
separate equations are interconnected to each other. For the problem in the flux
variables, unconditionally stable schemes with weights are developed. Locally
one-dimensional schemes are proposed for problems without mixed derivatives.
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2 Differential Problem

In a bounded domain Ω, the unknown function u(x, t), x = (x1, x2, ..., xm),
satisfies the equation

∂u

∂t
−

m∑
α,β=1

∂

∂xα

(
kαβ(x)

∂u

∂xβ

)
= f(x, t), x ∈ Ω, 0 < t ≤ T. (1)

Assume that the coefficients kαβ , α, β = 1, 2, ...,m satisfy the conditions

k

m∑
α=1

ξ2α(x) ≤
m∑

α,β=1

kαβ(x)ξα(x)ξβ(x) ≤ k

m∑
α=1

ξ2α(x),

kαβ = kβα, α, β = 1, 2, ...,m, x ∈ Ω

(2)

for any ξα(x), α = 1, 2, ...,m with constant k > 0. Consider the boundary value
problem for equation (1) with homogeneous Dirichlet boundary conditions

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T (3)

and the initial conditions in the form

u(x, 0) = u0(x), x ∈ Ω. (4)

We introduce a vector quantity q = (q1, q2, ..., qm)T (the index T denotes
transposition) such that

q = −K gradu, (5)

where K = (kαβ) is a square matrix m ×m (K ∈ Rmm) with elements kαβ(x),
α, β = 1, 2, ...,m. Using this notation, equation (1) may be written as

∂u

∂t
+ div q = f, x ∈ Ω, 0 < t ≤ T. (6)

We can write the above problem (3)–(5) in the operator form. Scalar functions
are considered in the Hilbert spaceH = L2(Ω) with the scalar product and norm
defined by the rules

(u, v) =

∫
Ω

u(x)v(x)dx, ‖u‖ = (u, u)1/2.

For vector functions, we use the Hilbert space V = L2(Ω), where

(q,g) =
m∑

α=1

∫
Ω

qα(x)gα(x)dx, ‖q‖ = (q,q)1/2.

Taking into account (2), we can treat the matrix K as a linear, bounded,
self-adjoint, and positive definite operator in V :

K : V → V , K = K∗, kE ≤ K ≤ kE , k > 0, (7)
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where E is the identity operator in V . Suppose Du = − gradu, i.e.,

D : H → V , D =

(
− ∂

∂x1
,− ∂

∂x2
, . . . ,− ∂

∂xm

)T

. (8)

On the set of functions that satisfy the boundary conditions (3), for the gradient
and divergence operators, we have∫

Ω

u div q dx+

∫
Ω

q gradu dx = 0.

It follows from this that D∗q = div q, i.e.,

D∗ : V → H, D∗ =

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xm

)
. (9)

In the above notation (7)–(9), from (3)–(5), we obtain the Cauchy problem
for the system of operator-differential equations

du

dt
+D∗q = f(t), 0 < t ≤ T, (10)

q = KDu, (11)

u(0) = u0. (12)

For the problem (1)–(4), the following equation corresponds

du

dt
+D∗KDu = f(t), 0 < t ≤ T, (13)

which is supplemented by the initial condition (12). Taking into account that

d

dt
K −K d

dt
= 0,

it is possible to eliminate u from the system of equations (10), (11) that gives

C dq
dt

+DD∗q = Df, C = K−1, 0 < t ≤ T. (14)

In view of (11) and (12), we put

q(0) = q0 ≡ KDu0. (15)

In constructing locally one-dimensional schemes (schemes based on splitting
with respect to spatial directions), we focus on the coordinatewise formulation
of equations (10), (11), (14) and (14). Let

D = (D1,D2, . . . ,Dm)T , K = (Kαβ), C = (Cαβ),
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then the basic system of equations (10), (11) takes the form

du

dt
+

m∑
α=1

D∗
αqα = f(t), 0 < t ≤ T, (16)

qα =
m∑

β=1

KαβDβu, α = 1, 2, ...,m. (17)

The equation (13) for u is reduced to

du

dt
+

m∑
α,β=1

D∗
αKαβDβu = f(t), 0 < t ≤ T. (18)

For the flux components (see (14)), we obtain

m∑
β=1

Cαβ
dqβ
dt

+

m∑
β=1

DαD∗
βqβ = Dαf, 0 < t ≤ T. (19)

The equations of the system (19) are connected with each other, and, more-
over, the time derivatives are interconnected. The problem (12), (18) seems to
be much easier — we have a single equation instead of the system of m equa-
tions. Nevertheless, some possibilities to design locally one-dimensional schemes
for the system of equations are still there.

Here we present elementary a priori estimates for the solution of the above
Cauchy problems for operator-differential equations, which will serve us as a
checkpoint in the study of discrete problems. Multiplying equation (13) scalarly
in H by u, we obtain

‖u‖ d

dt
‖u‖+ (KDu,Du) = (f, u).

Taking into account (7) and

(f, u) ≤ ‖f‖‖u‖,

we arrive at
d

dt
‖u‖ ≤ ‖f‖.

This inequality implies the estimate

‖u(t)‖ ≤ ‖u0‖+
∫ t

0

‖f(θ)‖dθ (20)

for the solution of the problem 12), (18).
Now we investigate the problem (14), (15). By the properties (7) of the oper-

ator K, for C, we have

C : V → V , C = C∗, cE ≤ C ≤ cE , c = k
−1

> 0, c = k−1. (21)
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In view of (21), we define the Hilbert space VC , where the scalar product and
norm are

(q,g)C = (Cq,g), ‖q‖C = (q,q)
1/2
C .

Multiplying equation (15) scalarly in V by q, we obtain

‖q‖C
d

dt
‖q‖C + (D∗q,D∗q) = (Df,q).

In view of

(Df,q) ≤ ‖Df‖K‖q‖C,

we arrive at a priori estimate

‖q(t)‖C ≤ ‖q0‖C +

∫ t

0

‖Df(θ)‖K dθ (22)

for the solution of the problem (14), (15).

3 Approximation in Space

We conduct a detailed analysis using a model two-dimensional parabolic problem
in a rectangle

Ω = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.

In Ω, we introduce a uniform rectangular grid

ω = {x | x = (x1, x2), xα = iαhα, iα = 0, 1, ..., Nα, Nαhα = lα}

and let ω be the set of interior nodes (ω = ω ∪ ∂ω). On this grid, scalar grid
functions are given. For grid functions y(x) = 0, x ∈ ∂ω, we define the Hilbert
space H = L2(ω) with the scalar product and norm

(y, w) ≡
∑
x∈ω

y(x)w(x)h1h2, ‖y‖ ≡ (y, y)1/2.

To determine vector grid functions, we have two main possibilities. The first
approach deals with specifying vector functions on the same grid as it used for
scalar functions. The second possibility, which is traditionally widely used, e.g.,
in computational fluid dynamics, is based on the grid arrangement, where each
individual component of a vector quantity is referred to its own mesh. Here we
restrict ourselves to the use of the same grid for all quantities, in particular, for
setting the coefficients kαβ(x), α, β = 1, 2, ...,m.

Consider approximations for the differential operators

Lαβu = − ∂

∂xα

(
kαβ(x)

∂u

∂xβ

)
, α, β = 1, 2, ...,m.
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We apply the standard index-free notation from the theory of difference schemes
[6] for the difference operators:

ux =
u(x+ h)− u(x)

h
, ux =

u(x)− u(x− h)

h
.

If we set the coefficients of the elliptic operator at the grid points, then

Lααy = −1

2
(kααuxα)xα

− 1

2
(kααuxα

)xα , α = 1, 2. (23)

More opportunities are available in approximation of operators with mixed
derivatives. As the basic discretization [6], we emphasize

L
(1)
αβy = −1

2
(kαβuxα)xβ

− 1

2
(kαβuxα

)xβ
, (24)

L
(2)
αβy = −1

2
(kαβuxα)xβ

− 1

2
(kαβuxα

)xβ
, α, β = 1, 2, α �= β. (25)

Instead of L
(1)
αβ , L

(2)
αβ , we can take their linear combination. In particular, it is

possible [7] to put

L
(3)
αβ =

1

2
L
(1)
αβ +

1

2
L
(2)
αβ , α, β = 1, 2, α �= β. (26)

In the general case, we set

Lαβ = χL
(1)
αβ + (1− χ)L

(2)
αβ , α, β = 1, 2, α �= β, χ = const . (27)

The introduced discrete operators approximate the corresponding differential
operators with the second order:

Lααu = Lααu+O(h2
α), Lαβu = Lαβ +O(h2), β �= α, α, β = 1, 2, (28)

where h2 = h2
1 + h2

2.
We define a grid subset ω, where the corresponding components of vector

quantities are defined. Let

ω+
1 = {x | x1 = i1, i1 = 0, 1, ..., N1 − 1, x2 = i2h2, i2 = 1, 2, ..., N2 − 1},

ω−
1 = {x | x1 = i1, i1 = 1, 2, ..., N1, x2 = i2h2, i2 = 1, 2, ..., N2 − 1},

ω+
2 = {x | x1 = i1h1, i1 = 1, 2, ..., N1 − 1, x2 = i2h2, i2 = 0, 1, ..., N2 − 1},
ω−
2 = {x | x1 = i1h1, i1 = 1, 2, ..., N1 − 1, x2 = i2h2, i2 = 1, 2, ..., N2},

and
ω̃ = ω+

1 ∪ ω−
1 ∪ ω+

2 ∪ ω−
2 .

For the grid vector variables, instead of two components, we will use four com-
ponents, putting

q = (q+1 , q
−
1 , q

+
2 , q

−
2 )

T , q±α = q±α (x), x ∈ ω±
α , α = 1, 2.



138 P.N. Vabishchevich

For the grid functions defined on grids ω±
α , α = 1, 2, we define the Hilbert

spaces H±
α , α = 1, 2, where

(y, w)±α ≡
∑

x∈ω±
α

y(x)w(x)h1h2, ‖y‖±α ≡ ((y, y)±α )
1/2, α = 1, 2.

For the grid vector functions in V = H+
1 ⊕H−

1 ⊕H+
2 ⊕H−

2 , we set

(q,g) =

2∑
α=1

((q+α , g
+
α )

+
α + (q−α , g

−
α )

−
α ), ‖q‖ = (q,q)1/2.

Now we construct the discrete analogs of differential operators Dα, D∗
α, α =

1, 2 introduced according to (8), (9). Using the above difference derivatives in
space, we set

D+
α y = −yxα , x ∈ ω+

α , α = 1, 2, (29)

so that D+
α : H → H+

α , α = 1, 2. Similarly, we define D−
α : H → H−

α , α = 1, 2,
where

D−
α y = −yx̄α , x ∈ ω−

α , α = 1, 2. (30)

Thus
D : H → V, D = (D+

1 , D
−
1 , D

+
2 , D

−
2 )

T . (31)

For the adjoint operator, we have

D∗ : V → H, D∗ = ((D+
1 )

∗, (D−
1 )

∗, (D+
2 )

∗, (D−
2 )

∗), (32)

and
(D+

α )
∗ : H+

α → H, (D+
α )q = qx̄α , (33)

(D−
α )

∗ : H−
α → H, (D−

α )q = qxα , x ∈ ω, α = 1, 2. (34)

The above discrete operators approximate the corresponding differential opera-
tors with the first order:

D±
α u = Dαu+O(hα), (D±

α )
∗u = D∗

αu+O(hα), α = 1, 2. (35)

For the operator-differential equation (13), we put into the correspondence
the equation

dy

dt
+D∗KDy = ϕ(t), 0 < y ≤ T, (36)

where, e.g, ϕ(t) = f(x, t), x ∈ ω. For equation (36), we consider the Cauchy
problem

y(0) = u0. (37)

The construction of the operator K is associated with the approximations
(23)–(27). The most important properties are self-adjointness and positive def-
initeness of the operator K. The equation (36) approximates the differential
equation (13) with the second order.
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The system of equations (10), (11) is attributed to the system

dy

dt
+D∗g = ϕ(t), 0 < t ≤ T, (38)

g = KDy. (39)

For the flux problem (14), (15), we put into the correspondence the problem

C
dg

dt
+DD∗g = Dϕ(t), C = K−1, 0 < t ≤ T, (40)

g(0) = KDu0. (41)

Similarly to (20), we prove the following estimate for the solution of the prob-
lem (36), (37):

‖y(t)‖ ≤ ‖u0‖+
∫ t

0

‖ϕ(θ)‖dθ. (42)

For the estimate (22), we put into the correspondence the estimate

‖g(t)‖C ≤ ‖Du0‖K +

∫ t

0

‖Dϕ(θ)‖K dθ (43)

for the solution of the problem (40), (41).

4 Operator-Difference Schemes

We introduce a uniform grid in time with a step τ and let yn = y(tn), tn = nτ ,
n = 0, 1, ..., N, Nτ = T . For numerical solving the problem (36), (37), we apply
the standard two-level scheme with weights, where equation (36) is approximated
by the scheme

yn+1 − yn

τ
+A(σyn+1 + (1− σ)yn) = ϕn, n = 0, 1, ..., N − 1, (44)

where
A = D∗KD, A = A∗ > 0 (45)

and, e.g., ϕn = f(σtn+1 + (1 − σ)tn). Taking into account (37), the operator-
difference equation (44) is supplemented with the initial condition

y0 = u0. (46)

The truncation error of the difference scheme (44)–(46) isO(|h|2+τ2+(σ−0.5)τ).
The study of the difference scheme is conducted using the general theory of

stability (well-posedness) for operator-difference schemes [6,8]. Let us formulate
a typical result on stability of difference schemes with weights for an evolutionary
equation of first order.
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Theorem 1. The scheme (44)–(46) is unconditionally stable for σ ≥ 0.5, and
the difference solution satisfies the levelwise estimate

‖yn+1‖ ≤ ‖yn‖+ τ‖ϕn‖, n = 0, 1, ..., N − 1. (47)

From (47), in the standard way, we get the desired stability estimate

‖yn+1‖ ≤ ‖u0‖+
n∑

k=0

τ‖ϕk‖,

which may be treated as a direct discrete analogue of the a priori estimate (20)
for the solution of the differential problem (12), (18).

Schemes with weights for a system of semi-discrete equations (38), (39) are
constructed in a similar way. We put

yn+1 − yn

τ
+D∗(σgn+1 + (1 − σ)gn) = ϕn, n = 0, 1, ..., N − 1, (48)

gn = KDyn, n = 0, 1, ..., N. (49)

The scheme (48), (48) is equivalent to the scheme (44). In view of Theorem 1, it
is stable under the restriction σ ≥ 0.5, and for the solution of difference problem
(45), (48), (48), the a priori estimate (47) holds.

The special consideration should be given to the flux problem (40), (41). To
solve it numerically, we apply the scheme

C
gn+1 − gn

τ
+DD∗(σgn+1 + (1 − σ)gn) = Dϕn, n = 0, 1, ..., N − 1, (50)

g0 = KDu0. (51)

Theorem 2. The difference scheme (50), (51) is unconditionally stable for σ ≥
0.5, and the difference solution satisfies the estimate

‖gn+1‖C ≤ ‖gn‖C + τ‖Dϕn‖K , n = 0, 1, ..., N − 1. (52)

From (52), it follows the estimate

‖gn+1‖C ≤ ‖Du0‖K +

n∑
k=0

τ‖Dϕk‖K , n = 0, 1, ..., N − 1,

which corresponds to the estimate (43) for the solution of the problem (40), (41).
The computational implementation of the unconditionally stable operator-

difference schemes (44)–(46) for the parabolic equation (1) with mixed deriva-
tives is based on solving discrete elliptic problems at every time step. For
the problem (36), (37), it seems more convenient to employ additive schemes
(operator-splitting schemes) that provide the transition to a new time level us-
ing simpler problems associated with the inversion of the individual operators
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D∗
αDα, α = 1, 2 rather then their combinations. By the nature of the operators

D∗
α, Dα, α = 1, 2, in this case, we speak of locally one-dimensional schemes.
The issues of designing unconditionally stable locally one-dimensional schemes

for a parabolic equation without mixed derivatives have been studied in detain.
For parabolic equations with mixed derivatives, locally one-dimensional schemes
were constructed in several papers (see, e.g., [9, 10]). Strong results on uncon-
ditional stability of operator-splitting schemes can be proved only in a unin-
teresting case with pairwise commutative operators (the equation with constant
coefficients). For our problems (1)–(4), the construction of locally one-dimensional
schemes requires separate consideration.

Let us investigate approaches to constructing locally one-dimensional schemes
for the problem (40), (41). The computational implementation of the scheme
with weights (50), (51), which is unconditionally stable for σ ≥ 0.5, is associated
with solving the system of difference equations for four components of the vector
gn+1. The equations of this system are strongly coupled to each other, and this
interconnection does exist not only for the spatial derivatives (operatorsD±

1 D
±∗
2 ,

D±
2 D

±∗
1 ), but also for the time derivatives (k12 = k21 �= 0). Thus, we need to

resolve the problem of splitting for the operator at the time derivative, too.
The simplest case is splitting of the spatial operator without coupling the

time derivatives. Such a technique is directly applicable for the construction of
locally one-dimensional schemes for parabolic equations without mixed deriva-
tives, where

kαβ(x) = kβα(x) = 0, α �= β = 1, 2, ...,m, x ∈ Ω (53)

in equation (1).
Assume that

R = DD∗, Q = diag(D+
1 (D

+
1 )

∗, D−
1 (D

−
1 )

∗, D+
2 (D

+
2 )

∗, D−
2 (D

−
2 )

∗),

i.e., Q is the diagonal part of R. For numerical solving the problem (40), (41),
we employ the difference scheme, where only the diagonal part of R is shifted to
the upper time level. In our notation, we set

C
gn+1 − gn

τ
+Q(σgn+1 +(1− σ)gn) + (R−Q)gn = Dϕn, n = 0, 1, ..., N − 1,

(54)
with the initial conditions according to (51).

Theorem 3. The difference scheme (51), (54) is unconditionally stable for σ ≥
2, and the difference solution satisfies the estimate

‖gn+1‖B ≤ ‖gn‖B + τ‖Dϕn‖B−1 , n = 0, 1, ..., N − 1, (55)

where

B = C + στP − τ

2
R.
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The scheme (51), (54) has the first-order approximation in time. It seems more
preferable, in terms of accuracy, to apply the scheme that is based on the trian-
gular decomposition of the self-adjoint matrix operator R:

R = R1 +R2, R∗
1 = R2. (56)

For the problem (40), (41), we construct the additive scheme with the splitting
(56), where

(C+στR1)C
−1(C+στR2)

gn+1 − gn

τ
+Rgn = Dϕn, n = 0, 1, ..., N−1. (57)

The main result is formulated in the following statement.

Theorem 4. The difference scheme (51), (56)–(57) is unconditionally stable
for σ ≥ 0.5, and the difference solution satisfies the estimate (55) with

B = (C + στR1)C
−1(C + στR2)−

τ

2
R.

The alternating triangle operator-difference scheme (51), (56)–(57) belongs to
the class of schemes that are based on a pseudo-time evolution process — the
solution of the steady-state problem is obtained as a limit of this pseudo-time
evolution. It has the second-order accuracy in time if σ = 0.5, and ony the first
order for other values of σ.
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Abstract. A compact fourth-order finite difference scheme solver de-
voted to the singular-Poisson equation is proposed and verified. The
solver is based on a mixed formulation: the Poisson equation is split-
ted into a system of partial differential equations of the first order. This
system is then discretized using a fourth-order compact scheme. This
leads to a sparse linear system but introduces new variables related to
the gradient of an unknow function. The Schur factorization allows us to
work on a linear sub-problem for which a conjugated-gradient precondi-
tioned by an algebraic multigrid method is proposed.Numerical results
show that the new proposed Poisson solver is efficient while retaining the
fourth-order compact accuracy.

1 Introduction

We consider a high-order solution for the Poisson equation:

−(∂x∂xφ+ ∂y∂yφ+ ∂z∂zφ) = s(x, y, z), (1)

on a cubical domain Ω with Neumann’s boundary conditions:

∂nφ = g(x, y, z) on ∂Ω (2)

where ∂Ω is the boundary of the domain Ω, n is the normal vector to the domain
boundary, and the symbol ∂n indicates the derivative normal to the boundary.
This problem arises, in particular, at the solution of the incompressible Navier-
Stokes equations. In this framework, the staggered approximation of derivatives
is one of essential features of the Poisson equation. Literature on efficient meth-
ods of solution of this problem is abundant for second-order finite differences
[1]. Several open source toolboxes have been developed. High-order spatial ap-
proximations are known for saving computational cost, despite a more complex
algorithm than a standard second-order accurate one. Compact finite difference
schemes [2] belong to this category, and was widely used to simulate incompress-
ible flows [3–7]. But, the formulationa and solution of the pressure-like, or the
singular-Poisson, equation still remains a topical issue.
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High-order compact finite differences have been studied for a long time [8]. The
abundant literature on this subject make difficult to resume this amount of work.
However, several important tendencies could be brought out. First, a substantial
proportion of results concerns with developments of compact schemes on regular
multi-dimensional grids. The principle idea consists to utilize the governing par-
tial differential equation leading to lower-derivative expressions equivalent to the
higher-order truncation error terms [8]. These expressions can then be discretized
using the standard centered finite-differences. This approach has shown a high
accuracy on the convection/diffusion equations while leading to a solution of
sparse linear systems. Extension to three dimensional problems [9], non-uniform
mesh [10, 11], variable convection coefficients [12] have also been proposed. In
particular, Zhuang and Sun [13] have proposed a high-order fast direct solver
for the singular Poisson equation. The spatial discretization is based on the re-
sults of [8], and a singular value decomposition have been designed to remove
singularity of the problem. The aforementioned works were built on collocated
grids. Conversely, staggered grids have shown a better resolution and conser-
vation properties when finite difference schemes are used to approximate the
Navier-Stokes equations [6, 7]. On such a grid, the Poisson equation is defined
as the combination of two staggered first-order derivatives. Thus, high-order
compact finite difference schemes complicate the approximation of the Poisson
equation since, by definition, such schemes are implicit [2]. Early works of Schi-
estel and Viazzo [6] relate an iterative solution method for the Poisson equation,
while using a staggered grid and fourth-order compact schemes. This approach
relies on a second order discretization of the pressure correction equation, which
tends toward zero at the end of iterations. Recentely, Knikker [7] has used a sim-
ilar method. The diagonalization method, which is a direct solver, is retained
by Vedy et al. [14] and extended by Abide and Viazzo [15] to complex geome-
tries. Brüger et al. [4] have proposed an incompressible Navier-Stokes solver for
which spatial derivatives are approximated using fourth-order compact schemes.
The originality of their work is the iterative solution method for the underlying
pressure-like, or the singular Poisson, equation. Due to a preconditioner build
from ILU factorization of the second-order discretization of the Poisson equation,
they have shown that the condition number behaves as o(h−1) (h being the grid
space). The present work concerns with the development of an iterative solution
method for the Poisson equation using fourth-order compact approximations on
a staggered grid. First, finite difference approximations and a formulation of the
Poisson equation are presented. Then, the iterative method and the precondi-
tioner are described. Finally, numerical test are perfomed to assess the accuracy
and efficiency of the method proposed.

2 Formulation of the Problem

We consider the Poisson equation expressed in a mixed formulation, namely,

σ −∇φ = 0 in Ω,
−∇ · σ = f in Ω,

(3)



A Fourth-Order Iterative Solver 145

Then, new vectorial variable σ = ∇φ, consistent with a flux vector, is introduced.
Thus the Poisson equation results in the application of a conservation principle
−∇ · σ = f [16]. In this work, only the Neumann boundary conditions are
considered for the Poisson equation, which are written as σ ·n = g. Expressed in
a three-dimensional cartesian coordinates system, the mixed formulation of the
Poisson equation is ⎧⎪⎪⎨⎪⎪⎩

σx − ∂xφ = 0
σy − ∂yφ = 0
σz − ∂zφ = 0
−
(
∂xσ

x + ∂yσ
y + ∂zσ

y
)
= s

(4)

The unknowns functions φ, σx, σy and σz are distributed on a staggered grid.
The primary variable φ is defined on the node (xi+1/2, yj+1/2, zk+1/2), where
each component is defined by ξp+1/2 = (p + 1/2)Δξ with 0 ≤ p ≤ nξ − 1. This

location corresponds to cell centers of the grid. The flux component σξ is located
at the half of a grid spacing away from cell centers and along the direction of ξ.
For instance, the component σy is located at (xi+1/2, yj, zk+1/2), where yj = jΔy
with 0 ≤ j ≤ ny. This corresponds to the location of y-faces.

A fourth-order compact scheme discretization is used to approximate the vari-
able σ = ∇φ. If we consider a one-dimensional discretization, saying the direction
x, the evaluation of the staggered derivative cell-to-face is given by

1

24
σx
i−1 +

11

12
σx
i +

1

24
σx
i+1 =

1

Δx

(
φi+1/2 − φi−1/2

)
, (5)

For the sake of clarity, the indices of the second and third components are
dropped out. Thus, σx

i and φi+1/2 should be read respectively as σx
i,j+1/2,k+1/2

and φi+1/2,j+1/2,k+1/2 . Since the Neumann boundary conditions are prescribed,
the boundary values σx

0 and σx
nx

occur for i = 1 and i = nx − 1 in Eq. (5). So,
the following linear system

Acf
x σx = Bcf

x φ,

holds for Eq. (5), with Acf
x and Bcf

x being tridiagonal and bidiagonal respectively.
Extension to a higher dimension of this finite difference scheme is made by tensor
products, viz. ⎧⎪⎨⎪⎩

(
Acf

x ⊗ Iy ⊗ Iz
)
σx −

(
Bcf

x ⊗ Iy ⊗ Iz
)
φ = 0(

Ix ⊗Acf
y ⊗ Iz

)
σy −

(
Ix ⊗Bcf

y ⊗ Iz
)
φ = 0(

Ix ⊗ Iy ⊗Acf
z

)
σz −

(
Ix ⊗ Iy ⊗Bcf

z

)
φ = 0

(6)

where Iξ stands for the identity matrix following direction ξ. The next step of
the formulation consists in the approximation of the conservation law −∇·σ = s.
For inner nodes, the relation is the shift version of Eq. (5)

1

24
∂xσ

x
i−1/2 +

11

12
∂xσ

x
i+1/2 +

1

24
∂xσ

x
i+3/2 =

1

Δx

(
σx
i+1 − σx

i

)
, (7)

A special care is needed for the boundary nodes since a discrete form of global
conservation is required [2, 17]. Thus, the following boundary relations [17] are
considered:
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∂xσ
x
1/2 =

1

Δx

(
−23

24
σx
0 +

7

8
σx
1 +

1

8
σx
2 − 1

24
σx
3

)
(8)

and

1

12
∂xσ

x
1/2 +

5

6
∂xσ

x
3/2 +

1

12
∂xσ

x
5/2 =

1

Δx

(
− 1

24
σx
0 − 7

8
σx
1 +

7

8
σx
2 +

1

24
σx
3

)
(9)

The other boundary relations are readily obtained by symmetry considerations.
Once again, the extension to a higher dimension is given by

−
(
(Afc

x )−1Bfc
x ⊗ Iy ⊗ Iz

)
σx −

(
Ix ⊗ (Afc

y )−1Bfc
y ⊗ Iz

)
σy

−
(
Ix ⊗ Iy ⊗ (Afc

z )−1Bfc
z

)
σz = s (10)

where each matrix associated to this linear sytem is full. A sparse form is ob-
tained by mutlipliyng Eq. (10) with

(
Afc

x ⊗Afc
y ⊗Afc

z

)
:

−
(
Bfc

x ⊗Afc
y ⊗Afc

z

)
σx −

(
Afc

x ⊗Bfc
y ⊗Afc

z

)
σy

−
(
Afc

x ⊗Afc
y ⊗Bfc

z

)
σz =

(
Afc

x ⊗Afc
y ⊗Afc

z

)
s (11)

Equations (6) and (11) form a block linear system for the unknown fluxes
(σx, σy , σz, φ)t, which is given by:⎛⎜⎜⎝

Fx 0 0 Gx

0 Fy 0 Gy

0 0 Fz Gz

Dx Dy Dz 0

⎞⎟⎟⎠
⎛⎜⎜⎝

σx

σy

σz

φ

⎞⎟⎟⎠ =

(
F G
D 0

)(
σ
φ

)
=

(
0
s̃

)
(12)

where the blocks are defined by

Fx = Acf
x ⊗ Iy ⊗ Iz , Gx = Bcf

x ⊗ Iy ⊗ Iz, Dx = Bfc
x ⊗Afc

y ⊗Afc
z

Fy = Ix ⊗Acf
y ⊗ Iz , Gy = Ix ⊗Bcf

y ⊗ Iz, Dy = Afc
x ⊗Bfc

y ⊗Afc
z

Fz = Ix ⊗ Iy ⊗Acf
z , Gz = Ix ⊗ Iy ⊗Bcf

z , Dz = Afc
x ⊗Afc

y ⊗Bfc
z

(13)

and the modified source term is s̃ =
(
Afc

x ⊗Afc
y ⊗Afc

z

)
s. The following formu-

lation yields a sparse linear system. Fξ are tridiagonal matrices, whereas Gξ and
Dξ are bidiagonal matrices. A straightforward analysis using Taylor series shows
that the underlying operator corresponding to Fξ could be interpreted to a filter.
In like manner, Gξ and Dξ are the staggered second-order derivatives. Theses
remarks allow us to design the following preconditioned iterative methods.

3 Description of the Iteration Method

First, the number of unknowns in Eq. (12) is reduced. The first row is multiplied
by DF−1 and the result subtracted from the last row. Hence, the variable φ
satisfies the linear system:

−DF−1Gφ = Aφ = s̃ (14)
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The matrix F−1 is full, nevertheless, its action on an arbitrary vector could be
performed with a linear complexity, since F is a tridiagonal system. Moreover,
the operators D and G are also evaluated with a linear complexity. So, the ac-
tion of A on the vector φ could be performed with a number of floating point
operations, which increases linearly respect with to the number of mesh nodes.
The conjugated gradient is used to solve this linear system because A is sym-
metric. However, without preconditioning, a poor convergence rate have been
observed. An improvement of the convergence is achieved by using the precon-
ditioned conjugated gradient solver. The preconditioner was chosen by noting
that if F is approximated by the identity matrix, then DF−1G reduces to the
second-order discretization of the Poisson equation, denoted K = DG. More
precisely, the evaluation of K−1 is performed by a multigrid iteration of the
AGMG solver [18].

The condition number κ(K−1A) is computed to give insights on the conver-
gence rate. The periodic conditions hold on the three directions to simplify the
derivation of the eigenvalues. In this case, for an arbitrary direction ξ, it can be
proved that:

λ(DξGξ) = − 4

Δξ2
sin2(ω/2) (15)

and:

λ(DξF
−1
ξ Gξ) = − 1

Δξ2
48 sin2(ω/2)

11 + cos(ω)
(16)

where −π ≤ ω ≤ π. So, the condition number of K−1A is bounded by 1 ≤
κ(K−1A) ≤ 6/5. This result is also valid for the three-dimensional case, since the
higher dimension is achieved by means of the tensor products. From a practical
point of view, this result implies that the independence of the convergence rate
against the problem size could be expected, at least, if the periodic directions
are assumed.

4 Numerical Results

To test the efficiency of our formulation and its associated solution methods for
the singular Poisson equation, four testing problems with solutions of different
order of differentiability are retained. They are :

1. φ(x, y, z) = (xyz)3.5 [1− cos(xyz)], (five times differentiable);
2. φ(x, y, z) = x4.5 + y4.5 + z4.5, (four times differentiable);
3. φ(x, y, z) = (x+ y + z)2.5 sin(x), (three times differentiable);
4. φ(x, y, z) = (x+ y + z)2.5, (two times differentiable);

The domain is a unit cube [0, 1] × [0, 1] × [0, 1], and a uniform mesh size
h = 1/n is chosen in each direction, n being the number of grid cells in each
all directions. All tests were performed on a Dell desktop station. In order to
facilitate comparisons, a second-order discretization of the singular-Poisson equa-
tion has been implemented, and the AGMG multigrid has been used to solve it.
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Table 1. Numerical error, iteration number and computational time for different grid
sizes (fourth-order compact finite differences)

problem 1 problem 2 problem 3 problem 4

N err. it. cpu (s) err. it. cpu (s) err. it. cpu (s) err. it. cpu (s)

16 0.11e-04 42 0.18 1.40e-04 40 0.18 2.23e-05 43 0.20 4.03e-05 46 0.20
24 0.22e-05 41 0.63 3.28e-05 40 0.62 4.77e-06 43 0.65 1.53e-05 44 0.67
32 0.68e-06 39 0.14 1.17e-05 37 1.34 1.61e-06 41 1.45 7.63e-06 40 1.45
48 0.13e-06 38 0.48 2.76e-06 37 4.76 3.54e-07 41 5.22 2.84e-06 39 4.98
64 0.42e-07 38 0.12 9.90e-07 39 12.83 1.22e-07 38 12.60 1.40e-06 40 13.08
96 0.83e-08 36 0.44 2.34e-07 36 45.05 2.75e-08 39 48.46 5.15e-07 40 49.65

Table 2. Numerical error, iteration number and computational time for different grid
sizes (second-order finite differences)

problem 1 problem 2 problem 3 problem 4

N err. it. cpu (s) err. it. cpu (s) err. it. cpu (s) err. it. cpu (s)

16 2.69e-04 20 0.02 5.19e-03 21 0.01 1.62e-03 23 0.02 6.38e-04 21 0.02
24 1.62e-04 21 0.05 2.39e-03 21 0.06 7.26e-04 22 0.05 2.93e-04 22 0.06
32 1.07e-04 20 0.12 1.37e-03 21 0.13 4.10e-04 22 0.14 1.68e-04 22 0.14
48 5.54e-05 21 0.46 6.19e-04 22 0.49 1.83e-04 22 0.48 7.63e-05 23 0.50
64 3.35e-05 22 1.23 3.51e-04 21 1.17 1.03e-04 22 1.22 4.34e-05 22 1.22
96 1.59e-05 22 4.44 1.57e-04 22 4.44 4.58e-05 22 4.43 1.96e-05 22 4.42

Tables 1 and 2 present results for the problems 1-4 and for the fourth and second-
order formulations. For all formulations, the absolute numerical error, cpu time,
and number of iterations to reach a residual of (10−12) have been noted.

First, the accuracy of the present procedure is verified. The absolute numerical
error is plotted versus the mesh size for all problems and for the both discretiza-
tions, in figure 1. Using a logarithmic scales, curves with −2 and −4 slopes are
observed, depending on the used discretization. These expected values are the
effective accuracy order of the scheme. However, it should be noted that for the
problem 4, the fourth-order accuracy is not achieved. This is due to the fact that
the solution itself is only two times differentiables, so that regularity assumptions
[2] are not satisfied.

The second point of the discussion concerns with the computational cost of
the present method. First, table 1 indicates a convergence of the iterative method
after nearly 40 iterations for each mesh size. This behaviour was explained in
section 3. For the second order finite difference, the convergence is achieved after
20 iterations, illustrating the mesh size independence of the AGMG multigrid
solver. A rapid look into the computational cost by node, indicates that the sec-
ond order scheme (� 5 × 10−6sec/node) is ten times faster than the proposed
fourth-order one. However, the higher-order discretization gives an accurate so-
lution with a lower computational cost than the second-order one. This remark
have to be qualified by considering the achieved accuracy. For instance, the nu-



A Fourth-Order Iterative Solver 149

N

er
ro

r

50 100

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

4th scheme
2nd scheme
problem 1
problem 2
problem 3
problem 4

Fig. 1. Absolute numerical error versus the mesh size

merical error for the problem is 2.23 × 10−5 and the computational is about
0.2 seconds, by using our procedure. The second-order numerical solution of the
problem 3 is obtained, with the same absolute error level (10−5), takes 4.4 sec-
onds. These observations indicate the superiority of our method with respect to
the second-order solution methods, at least in the computational cost.

5 Conclusion

A fourth compact scheme formulation for the singular-Poisson equation has been
proposed. This formulation is based on a mixed formulation and implemented
on staggered grids. An iterative solution procedure has been also proposed. Sev-
eral numerical examples have been treated, in comparison with the second-order
discretization. It has been shown that using the proposed procedure, the iter-
ation number is independent to the grid size. Moreover, despite a more tricky
algorithm, the present fourth-order scheme remains faster than the second-order
procedure to achieve a desired accuracy.
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Abstract. Convection-diffusion problem are the base for continuumme-
chanics. The main features of these problems are associated with an in-
definite operator the problem. In this work we construct unconditionally
stable scheme for non-stationary convection-diffusion equations, which
are based on use of new variables. Also, we consider these equations
in the form of convection-diffusion-reaction and construct uncondition-
ally stable schemes when explicit-implicit approximations are used with
splitting of the reaction operator.

Keywords: non-stationary convection-diffusion equations, two-layer
weighted scheme, unconditionally stable schemes.

1 Introduction

Convection-diffusion equation are basic in the mathematical modelling of the
problems of continuum mechanics. The main features of these problems are
connected with the nonselfadjoint property of elliptic operator and domina-
tion of convective transport. When considering compressible media, an operator
of convection-diffusion problem is indefinite. In this case, given process can be
nondissipative, i.e. norm of the homogeneous problem solutions does not decrease
with time. This behavior of the norm solutions need to pass on the discrete level
in choosing of approximations in time.

In the numerical solution of non-stationary problems for convection-diffusion
equations the most widely used two- and three-layer scheme. Investigation of the
stability and convergence of approximate solutions can be performed using the
general theory Samarskii A. A. of stability (correctness) of operator-difference
schemes [3,4]. Must be kept in mind that for convection-diffusion problems direct
application of the general stability criteria can be difficult due to non-selfadjoint
operators. Note also that, in view of indefinite operator of problem we need
to oriented �-stable (� > 1) operator-difference schemes. In the solution non-
stationary problems of long periods of time preference should be given asymp-
totically stable schemes [5]. For these schemes ensures the correct behavior of
the solutions with the release of the fundamental solutions for large time and
damping of others.

In this paper, we construct unconditionally stable scheme for the approximate
solution of non-stationary convection-diffusion problems. Such schemes can be

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 151–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



152 N. Afanasyeva, P.N. Vabishchevich, and M. Vasilyeva

applied to other problems with an indefinite operator. The study conducted by
the example of a model two-dimensional boundary-value problem in a rectangle.
Used the simplest approximation of the operators of diffusive and convective
transfer on a uniform rectangular grid. Constructed unconditionally �-stable
difference scheme based on the introduction of new variables and the explicit-
implicit approximation.

2 The Convection-Diffusion Problem

We consider the Neumann problem in a rectangle for the non-stationary
convection-diffusion equation. For simplicity, assume that the coefficient of dif-
fusion transport is a constant (independent of time, but depends on the point
of the computational domain). The coefficient of convective transport is natural
to consider the variables both in space and time.

In the rectangle
Ω = {x | x = (x1, x2) , 0

We consider the non-stationary convection-diffusion equation with the convective
transport in divergent form,

∂u

∂t
+

2∑
α=1

∂

∂xα
(vα (x, t)u)−

2∑
α=1

∂

∂xα

(
k(x)

∂u

∂xα

)
= f (x, t) , x ∈ Ω, (1)

in the standard assumptions k1 ≤ k (x) ≤ k2, k1 > 0, T > 0 . This equation is
supplemented by Neumann boundary conditions

∂u (x, t)

∂n
= 0, x ∈ ∂Ω, 0 < t ≤ T. (2)

For the unique solvability of the nonstationary problem the initial condition is
given

u (x, 0) = u0(x), x ∈ Ω. (3)

On the set of functions u (x, t), which satisfy the boundary conditions (2),
non-stationary convection-diffusion problem written in the form of differential-
operator equation

du

dt
+Au = f(t), A = C(t) +D, 0 < t ≤ T. (4)

The diffusion operator D is defined by

Du = −
2∑

α=1

∂

∂xα

(
k (x)

∂u

∂xα

)
and convection operator C

Cu =

2∑
α=1

∂

∂xα
(vα (x, t)u) .
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Cauchy problem is considered for the evolution equation (4):

u (0) = u0. (5)

For convection operator we have the following representation

C = C0 +
1

2
vE , C0u =

1

2

2∑
α=1

(
vα (x, t)

∂u

∂xα
+

∂

∂xα
(vα(x, t)u)

)
,

where E — the identity operator and C0 -the operator of convective transport in
a symmetric form.

For arbitrary functions u(x) w(x), we define the Hilbert space H = L2 (Ω)
with inner product and norm

(u,w) =

∫
Ω

u (x)w (x) dx, ||u|| = (u, u)1/2 .

Diffusion operator D on the set of functions satisfying (2), is self-adjoint and
positive define

D = D∗ ≥ 0. (6)

The operator of convective transport is considered under the assumption that
the normal component of the medium velocity v = (v1, v2) on the boundary is
zero:

vn(x) = v n = 0, x ∈ ∂Ω, (7)

where n — outward normal to ∂Ω. In H the convection operators have the
following properties:

C0 = −C∗
0 . (8)

Also useful upper estimates for convective transport operator C:

| (Cu, u) | ≤ γ||u||2, γ =
1

2
|| div v||C(Ω). (9)

3 The Differential-Difference Problem

For an approximate solution of the non-stationary convection-diffusion problem
we use a uniform grid in the area Ω:

ω = {x | x = (x1, x2) , xα =

(
iα +

1

2

)
hα,

iα = 0, 1, ..., Nα, (Nα + 1)hα = lα, α = 1, 2}.
We define the Hilbert space H = L2 (ω) for grid functions, where the inner
product and norm are defined as follows:

(y, w) ≡
∑
x∈ω

y (x)w (x)h1h2, ||y|| ≡ (y, y)
1/2

.
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For the difference operator of the diffusion transfer D is used additive
representation

D =

2∑
α=1

D(α), α = 1, 2, x ∈ ω, (10)

here D(α), α = 1, 2 is associated with the corresponding differential operator in
one direction.

The difference operator of diffusion transport (10) in H is self-adjoint and
positive definite [3]

D = D∗ ≥ 0. (11)

The convective terms are approximated with second-order, using the central
difference derivatives and shifted grids to specify the velocity components. For
the difference operator of convective transport are also using additive
representation

C =
2∑

α=1

C(α). (12)

Difference operator of convective transport in symmetric form have the fol-
lowing basic property:

C∗
0 = −C0. (13)

We also [5] have the grid analogue of inequality (9):

| (Cy, y) | ≤ δ||y||2 (14)

with a constant

δ =
1

2
max
x∈ω

∣∣∣∣b(1) (x1 + 0.5h1, x2)− b(1) (x1 − 0.5h1, x2)

h1

+
b(2) (x1, x2 + 0.5h2)− b(2) (x1, x2 − 0.5h2)

h2

∣∣∣∣ .
In case of velocity is independent from time and sufficiently smooth velocity
components and solutions of the differential problem, we can assume,

b(α)(x) = vα(x), x ∈ Ω, 0 < xα < lα,

b(α)(x) = 0, xα = 0, xα = lα, α = 1, 2.

Therefore, from the equation (4) we arrive at the differential-operator equation

dy

dt
+Ay = φ (t) , A = A (t) = C +D, 0 < t ≤ T, (15)

on the set of grid functions y(t) ∈ H with the initial condition

y (0) = y0. (16)

Difference convection and diffusion operators in the differential-difference prob-
lem inherit the basic properties of differential operators.
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4 Unconditionally Stable Schemes

For simplicity, we restrict ourselves to a uniform grid in time

ω̄τ = ωτ ∪ {T } = {tn = nτ, n = 0, 1, ..., N, τN = T }.

For an approximate solution of (15), (16) commonly used two-layer weighted
scheme, which have a following restrictions on the time step τ < τ0 = 1

σδ .
To construct the unconditionally stable schemes for the solution of the differ-

ential problem (15), (16) with A ≥ −δE, δ > 0 we define a new function w:

y = exp(δt)w. (17)

Substitution of (17) in (15), (16) with homogeneous right-hand side gives the
following problem for the w:

dw

dt
+ Ãw = 0, Ã = A+ δE, 0 < t ≤ T, (18)

w (0) = y0. (19)

Under this transformation, operator Ã is a nonnegative (Ã ≥ 0).
To solve the problem (18), (19) we use a two-layer weighted difference scheme,

which is unconditionally stable for standard restrictions σ ≥ 0.5. We write the
scheme for the grid function yn

exp(−δτ)yn+1 − yn

τ
+ (A+ δE)

(
σ exp(−δτ)yn+1 + (1− σ) yn

)
= 0, (20)

y0 = u0, tn ∈ ωτ , . (21)

In contrast to the non-standard schemes considered in [6], the positive effect is
achieved not only through the use of a new approximation of the time, but also
by correcting the problem operator.

Theorem 1. The difference scheme (20), (21) with σ ≥ 0.5 unconditionally
�-stable in H with

� = exp(δτ), (22)

with the a priori estimate for solutions

||yn+1|| ≤ �||yn||. (23)

Proof. We rewrite the scheme (20), (21) in form

exp(−δτ)yn+1 − yn

τ
+ Ãpn+1 = 0, tn ∈ ωτ , (24)

where

pn+1 = σ exp(−δτ )yn+1 + (1− σ) yn = τ

(
σ − 1

2

)
rn+1 +

1

2

(
exp(−δτ )yn+1 − yn) ,
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rn+1 =
exp(−δτ)yn+1 − yn

τ
.

Multiplying the scalar equation (24) by pn+1, we obtain the equality

τ

(
σ − 1

2

)(
rn+1, rn+1

)
+ Ã

(
pn+1, pn+1

)
+

1

2τ

((
exp(−δτ)yn+1, exp(−δτ)yn+1

)
− (yn, yn)

)
= 0

From this equation, under the condition σ ≥ 0.5 and Ã ≥ 0, yields the estimate
of stability (23),(22). ��

Equation (1) can be written in the form of convection-diffusion-reaction equa-
tion with the convective terms in the symmetric form

∂u

∂t
+ C0u+Du+Ru = f(x, t), x ∈ Ω, t > 0. (25)

where

Ru = r(x, t)y, r(x, t) =
1

2
div v.

For the reaction operator we have the estimate

R = R∗, −δE ≤ R ≤ δE. (26)

To construct the unconditionally stable scheme without the assumption of
nonnegativity operator of problem we will use the explicit-implicit approximation
for the equation (25) [7]. The problem is generated by the reaction operator
therefore we split it into two:

R = R+ +R−, R+ = R∗
+, R− = R∗

−, 0 ≤ R+ ≤ δE, −δE ≤ R− < 0.
(27)

When using the two-layer explicit-implicit schemes, we can only count on
first-order accuracy in time. Therefore it is natural oriented to purely implicit
approximation of the basic terms of the operator and define following difference
scheme

yn+1 − yn

τ
+ (Cn +D +Rn

+)y
n+1 +Rn

−y
n = 0, n = 0, 1, ..., N − 1. (28)

Theorem 2. Explicit-implicit difference scheme (28), (21) is unconditionally
�-stable in H with

� = 1 + δτ (29)

for the numerical solution we have the estimate:

‖yn+1‖ ≤ �‖yn‖, n = 0, 1, ..., N − 1. (30)
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It is important to note that, in contrast to the ordinary weighted scheme,
stability is obtained without restrictions on the time step. The transition to a
new time layer associated with the solution of the grid problem

(E + στ(A + δE))yn+1 = χn (31)

for scheme (20) and

(E + τ(C +D +R+))y
n+1 = rn (32)

for scheme (28).
Equation (31) and (32) is a system of linear algebraic equations with a positive

definite nonselfadjoint matrix. The standard iterative methods can be used for
numerical solution.
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Abstract. We analyze some approximation properties of modified rect-
angular Morley elements applied to fourth-order problems. Degrees of
freedom of integrals type are used which yields superclose property. Fur-
ther asymptotic error estimates for biharmonic solutions are derived.
Some interesting and new numerical results concerning plate vibration
problems are also presented.

1 Introduction and Preliminaries

The Morley nonconforming element has been widely used in computational me-
chanics and structural engineering because of its simplicity in implementation.
In many practical cases, it seems better than some conforming finite elements.
This phenomenon causes the great interest of many mathematicians who study
finite elements.

In this paper we consider the following model biharmonic equation which
arises in fluid mechanics as well as in thin elastic plate problems:

Δ2u = f in Ω, (1)

where Ω is bounded domain in R2. We also consider homogeneous boundary
conditions

u =
∂u

∂ν
= 0 on ∂Ω (2)

and
∂

∂ν
denotes outer normal derivative.

To formulate the variational equivalent to (1), (2), we introduce the variational
space V = H2

0 (Ω). Here Hk(Ω) is the usual Sobolev space of order k and (·, ·)
denotes the L2−inner product.

The variational problem associated with (1), (2) is given by

a(u, v) = (f, v) ∀v ∈ V, (3)

where

a(u, v) =

∫
Ω

ΔuΔv dx ∀u, v ∈ V.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 158–165, 2013.
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Obviously, the bilinear form a(·, ·) is symmetric and V−elliptic. We shall
approximate the solutions of (3) by a nonconforming finite element method.

Consider a family of rectangulations τh =
⋃

iKi of Ω. Finite elements Ki

fulfil standard assumptions (see [1], Chapter 3). Let h = maxi hi be the finite
element parameter corresponding to any partition τh.

With a partition τh we associate a finite dimensional space Vh by means of
Morley rectangles (see Fig. 1).

Let τh consist of rectangles with edges parallel to the coordinate axes and
K ∈ τh be a rectangle with vertices aj and edges lj, j = 1, 2, 3, 4 (see e.g. [2,3]).

Fig. 1. The Morley rectangle

We choose the following set of degrees of freedom (v is a test function): v(aj)

and

∫
lj

∂v

∂ν
dl, j = 1, 2, 3, 4.

There are two variants for the polynomial space PK , namely (see [3,4]):

P(1)
K = P2 + span{x3

1, x
3
2}

and
P(2)
K = P2 + span{x3

1 − 3x1x
2
2, x

3
2 − 3x2

1x2},

i.e. PK consists of polynomials of degree ≤ 3 for which the only terms of third
degree are x3

1 and x3
2 or x3

1 − 3x1x
2
2 and x3

2 − 3x2
1x2, respectively.

Thus P2 ⊂ P(i)
K , i = 1, 2. Obviously, the set of degrees of freedom is

PK− unisolvent.
Now, we consider the finite element space Vh using P(1)

K or P(2)
K . Let us em-

phasize that the terms x3
1 − 3x1x

2
2 and x3

2 − 3x2
1x2 are the unique polynomials

of degree greater than or equal to 3 which are harmonic.
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Then the approximate variational problem of (3) is: find uh ∈ Vh such that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh, (4)

where

ah(uh, vh) =
∑
K∈τh

∫
K

ΔuhΔvh dx.

2 Main Results

First, on Vh we define the seminorm

‖vh‖h =

(∑
K∈τh

|vh|22,K

)1/2

∀vh ∈ Vh.

It may be defined over V = H2
0 (Ω) as well and for v ∈ V it is valid that

‖v‖h = |v|2,Ω. It is easy to see that the seminorm ‖ · ‖h is a norm on Vh in case
when the sides of the domain are parallel to the coordinate axes (rectangular
plates).

In order to get convergence analysis of the considered Morley element, we
introduce the mesh-dependent norm and seminorm for any integer m. If v ∈
L2(Ω) with v|K ∈ Hm(K) for all K ∈ τh we define:

‖v‖m,h =

{∑
K∈τh

‖v‖2m,K

}1/2

, |v|m,h =

{∑
K∈τh

|v|2m,K

}1/2

.

The piecewise interpolation functions ihu ∈ PK are formulated as (Fig. 1):

ihu(aj) = u(aj),∫
lj

∂ihu

∂ν
dl =

∫
lj

∂u

∂ν
dl, j = 1, 2, 3, 4,

where aj and lj are vertices and edges for any rectangle K ∈ τh, respectively.
First, we shall prove the following property of the rectangular Morley element.

Lemma 1. Let the finite element space Vh be engendered by the polynomials

P(2)
K . Then for any function u ∈ H2

0 (Ω)

ah(u− ihu, vh) = 0, ∀vh ∈ Vh. (5)

Proof. Since vh|K contains cubic harmonic monomials then Δvh|K = const.
Now

ah(u− ihu, vh) =
∑
K∈τh

∫
K

Δ(u − ihu)Δvh dx

=
∑
K∈τh

Δvh|K

∫
K

Δ(u − ihu) dx.
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Using Green’s formula and by standard orientation arguments we obtain

ah(u− ihu, vh) =
∑
K∈τh

Δvh|K

∮
∂K

∂(u− ihu)

∂ν
dl

=
∑
K∈τh

Δvh|K

(∫
l1

−
∫
l3

)
∂(u− ihu)

∂x2
dx1 +

(∫
l2

−
∫
l4

)
∂(u− ihu)

∂x1
dx2 = 0.

The next theorem gives a main result for the convergence and precision of the

rectangular Morley elements in case when PK = P(2)
K .

Theorem 1. Let τh be regular partitions of Ω containing rectangular elements
with sides parallel to the coordinate axes. Let also Vh be the space used in the
previous lemma. If u and uh are the solutions of (3) and (4) respectively and
u ∈ H4(Ω) ∩H2

0 (Ω) then

‖u− uh‖h ≤ Ch‖u‖4,Ω.

Proof. The basic approach is to apply the Strang’s theorem [1]. If ah(·, ·) is
Vh−elliptic and continuous, then there exists a constant C, independent of h,
such that

‖u− uh‖h ≤ C

{
inf

vh∈Vh

‖u− vh‖h + sup
vh∈Vh

|(f, vh)− ah(u, vh)|
‖vh‖h

}
. (6)

Since ihu ∈ Vh, we have for the first term of (6) that

inf
vh∈Vh

‖u− vh‖h ≤ |u− ihu|2,h =

{∑
K∈τh

|u− ihu|22,K

}1/2

.

From (5) and using locally Poincare’s inequality for L2 (see [6]) we have:

|u− ihu|2,K ≤ Ch|u|4,K .

Thus
inf

vh∈Vh

‖u− vh‖h ≤ Ch|u|4,Ω. (7)

In order to estimate the second term of (6) we define

Eh(u, vh) = (f, vh)− ah(u, vh)

for u ∈ H4(Ω) ∩H2
0 (Ω), vh ∈ Vh.

For any vh ∈ Vh we take a sequence {vh,n} of smooth enough functions con-
verging to vh in H1

0 (Ω) and equal to zero at the degrees of freedom located on
the boundary ∂Ω. Hence, by Green’s formula,∫

Ω

fvh,n dx =

∫
Ω

ΔuΔvh,n dx = −
∫
Ω

(gradΔu) (gradvh,n) dx.
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Since both sides of the above relation are continuous linear functionals on
L2(Ω) vanishing over ∂Ω, we can pass to the limit in order to obtain for all
vh ∈ Vh

(f, vh) =

∫
Ω

fvh dx = −
∫
Ω

(gradΔu) (gradvh) dx. (8)

On the other hand, using again the Green’s formula we have:

ah(u, vh) =
∑
K∈τh

∫
K

ΔuΔvh dx

=
∑
K∈τh

[
−
∫
K

gradΔu gradvh dx+

∮
∂K

Δu
∂vh
∂ν

dl

]
.

We substitute the last equality and (8) in Eh(u, vh) to get

Eh(u, vh) = −
∑
K∈τh

∮
∂K

Δu
∂vh
∂ν

dl. (9)

We shall transform the equality (9). First, for any K ∈ τh we set ϕ = −Δu

and w =
∂vh
∂xj

, j = 1, 2.

Here ϕ ∈ H2(Ω), since u ∈ H4(Ω). Also

w =
∂vh
∂xj

, vh ∈ P ,

where P is the restriction of PK on any side of the rectangle K.
Let us introduce the bilinear forms (see Fig. 1)

δj,K(ϕ,w) =

(∫
lj

−
∫
lj+2

)
(ϕw) dl, j = 1, 2.

From now on the sign ·̂ refers to the reference finite element K̂ (for example
unit square). Thus, by a simple (affine) change of variables

δj,K(ϕ,w) = hiδj,K̂(ϕ̂, ŵ), (10)

where hi, i = 1, 2, i �= j is the length of lj (and lj+2).

It is easy to see that δj,K̂(ϕ̂, ŵ) = 0 for ϕ̂ ∈ P0, ŵ ∈ P̂.

Note that the bilinear form δj,K̂ is continuous. Indeed (j = 1, 2),∣∣∣δj,K̂(ϕ̂, ŵ)
∣∣∣ ≤ C‖ϕ̂‖0,∂K̂‖ŵ‖0,∂K̂ .

By the trace theorem we get [1]:∣∣∣δj,K̂(ϕ̂, ŵ)
∣∣∣ ≤ C‖ϕ̂‖1,K̂‖ŵ‖1,K̂ .
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Now we can apply the bilinear lemma [1] to the bilinear form δj,K̂ to get∣∣∣δj,K̂(ϕ̂, ŵ)
∣∣∣ ≤ C |ϕ̂|1,K̂ |ŵ|1,K̂ . (11)

Having in mind that the transformation K̂ → K is accomplished by (nonsin-
gular) matrix BK , we have the relations

|ϕ̂|1,K̂ ≤ C‖BK‖ |detBK |−1/2 |ϕ|1,K ,

|ŵ|1,K̂ ≤ C‖BK‖ |detBK |−1/2 |w|1,K .

Here ‖BK‖ ≤ ChK and |detBK | = meas(K)/meas(K̂) ≥ Cρ2K , where ρK
is the radius of the inscribed circle in K such that hK/ρK ≤ const. Also hj ≤
hK , j = 1, 2.

Thus, from (10) and (11) we obtain

|δj,K(ϕ,w)| ≤ ChK‖u‖4,K‖vh‖2,K , j = 1, 2.

These inequalities lead us to the estimate

|(f, vh)− ah(u, vh)| ≤ Ch‖u‖4,Ω‖vh‖h. (12)

To complete the proof of the theorem, it remains to replace the estimates (7)
and (12) in (6).

Remark 1. For the triangular Morley element there is an analogous estimate by
Lascaux and Lasaint (see [6], Theorem 3.1), while the convergence of Morley

rectangle in case PK = P(1)
K could be found in [3].

The variational eigenvalue problem corresponding to the biharmonic problem
(2) is: find (λ, u) ∈ R×H2

0 (Ω) such that

a(u, v) = λ(u, v), ∀v ∈ V. (13)

We determine the approximate eigenpairs (λh, uh) using nonconforming rect-
angular Morley finite elements. Then, the eigenvalue problem corresponding to
(13) is: find (λh, uh) ∈ R× Vh such that

ah(uh, vh) = λh(uh, vh), ∀vh ∈ Vh. (14)

Theorem 1 is a basic tool to determine the order of convergence for the eigen-
pairs of (13) by means of the solution operator approach (see e.g. [7]):

Theorem 2. Let u ∈ H4(Ω)∩H2
0 (Ω) and uh ∈ Vh be the solutions of (13) and

(14) respectively. If the conditions of Theorem 1 concerning the partitions of Ω
by nonconforming Morley rectangles are fulfilled, then

‖u− uh‖2,h ≤ Ch‖u‖4,Ω,

|λ− λh| ≤ Ch2‖u‖24,Ω.
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Remark 2. The numerical results using rectangular Morley elements for forth-
order spectral problem give asymptotically lower bounds of the exact eigenvalues
[8]. The proof of this fact as well as of Theorem 2 will be under consideration in
separate investigation.

Remark 3. It is easy to see that an interpolation-equivalent choice for degrees
of freedom is (see [2]): function values at the vertices aj, j = 1, 2, 3, 4 of the
rectangle K ∈ τh and the first derivatives in normal direction at the midside
nodes of lj , j = 1, 2, 3, 4 (Fig.1) for v ∈ C1(K),K ∈ τh.

3 Numerical Results

To illustrate our theoretical results we shall refer to the example on related
eigenvalue problem (13) when Ω is the unit square. For this problem, numerical
results concerning the first eigenvalue by means of nonconforming Adini element
and triangular Morley element could be seen in [7]. Let us note that numerical
experiments for fourth-order eigenvalue problems could not be easily find in the
bibliography, especially by means of nonconforming FEMs.

The main purpose of this section is to compare the results obtained using
rectangular Morley elements and those obtained using Adini element for which
it is well known that it approximates eigenvalues from below [9]. On this base
it is illustrated that the rectangular Morley elements give lower bounds for the
exact eigenvalues. In addition to that, the numerical experiment by means of
Morley rectangle is implemented for both versions of degrees of freedom – (i)

Table 1. First three eigenvalues computed by Adini FE; Morley rectangle (i); Morley
rectangle (ii)

n FE λ1,h λ2,h λ3,h

Adini 1185.550861 4944.317694 4994.393228
4 Morley (i) 1102.196140 4902.648339 4902.648339
Morley (ii) 1003.056682 4107.340189 4107.340190

Adini 1254.152526 5164.790407 5219.985096
8 Morley (i) 1225.392738 5055.592884 5055.592884
Morley (ii) 1187.878467 4770.160362 4770.160362

Adini 1274.357984 5258.865533 5308.864358
12 Morley (i) 1261.666381 5213.480371 5213.480371
Morley (ii) 1243.088531 5068.724011 5068.724011

Adini 1283.199186 5307.705444 5342.189148
16 Morley (i) 1275.718722 5283.435248 5283.435248
Morley (ii) 1264.829904 5197.493919 5197.493919
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using the integral values of the derivatives in normal direction on the sides of
the elements and, (ii) using the values of the derivatives in normal direction at
the midside nodes of the elements.

The domain Ω is uniformly divided into n2 rectangles, where n = 4; 8; 12; 16,
respectively. Our numerical results show that both variants of Morley rectangle
give eigenvalues less than these obtained by Adini element. The eigenvalues
obtained using the Morley rectangle (ii) are less than those obtained using the
Morley rectangle (i). In particular, this fact illustrates the advantage of the
degrees of freedom of integral type. It is seen from the table above, the difference
between eigenvalues obtained by means of the considered three different type of
finite elements is significant in case of course mesh and decreases when we refine
the mesh.

Let us recall that under uniform mesh, Adini element gives an improved
accuracy:

|λ− λh| ≤ Ch4‖u‖24,Ω,

thus it approximates more accurately any eigenvalues λj than Morley rectangle
[6]. Consequently, nonconforming Morley rectangular finite elements give also
lower bounds for the eigenvalues.

Acknowledgement. This work has been supported by the Bulgarian National
Science Fund under grant DFNI-I01/5.
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Abstract. We present high-order symplectic schemes for stochastic
Hamiltonian systems preserving Hamiltonian functions. The approach
is based on the generating function method, and we show that for the
stochastic Hamiltonian systems, the coefficients of the generating func-
tion are invariant under permutations. As a consequence, the high-order
symplectic schemes have a simpler form than the explicit Taylor expan-
sion schemes with the same order. Moreover, we demonstrate numerically
that the symplectic schemes are effective for long time simulations.
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1 Introduction

We consider the autonomous stochastic differential equations (SDEs) in the sense
of Stratonovich:

dPi = −∂H(0)(P,Q)

∂Qi
dt−

m∑
r=1

∂H(r)(P,Q)

∂Qi
◦ dwr

t , P (t0) = p

dQi =
∂H(0)(P,Q)

∂Pi
dt+

m∑
r=1

∂H(r)(P,Q)

∂Pi
◦ dwr

t , Q(t0) = q,

(1)

where P , Q, p, q are n-dimensional vectors with the components P i, Qi, pi, qi,
i = 1, . . . , n, and wr

t , r = 1, . . . ,m are independent standard Wiener processes.
The SDEs (1) are called the Stochastic Hamiltonian System (SHS) ([6]).

The stochastic flow (p, q) −→ (P,Q) of the SHS (1) preserves the symplectic
structure (Theorem 2.1 in [6]) as follows:

dP ∧ dQ = dp ∧ dq, (2)

i.e. the sum over the oriented areas of its projections onto the two dimensional
plane (pi, qi) is invariant. Here, we consider the differential 2-form

dp ∧ dq = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn, (3)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 166–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and differentiation in (1) and (2) have different meanings: in (1) p, q are fixed
parameters and differentiation is done with respect to time t, while in (2) differ-
entiation is carried out with respect to the initial data p, q. We say that a method
based on the one step approximation P̄ = P̄ (t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q)
preserves symplectic structure if dP̄ ∧ dQ̄ = dp ∧ dq.

Milstein et al. [6] [7] introduced the symplectic numerical schemes for SHS,
and they demonstrated the superiority of the symplectic methods for long time
computation. Recently, Wang et al. [4],[8] proposed generating function meth-
ods to construct symplectic schemes for SHS. In the present study, we focus
on SHS that preserve the Hamiltonian function (i.e. SHS for which dH(r) = 0,
r = 0, . . . ,m). We propose higher order symplectic schemes that are computa-
tionally efficient for this special type of SHS .

2 The Generating Function Method and Symplectic
Schemes

Similar with the deterministic case [3], we have the following result [4] relating
the solutions of the Hamilton-Jacobi partial differential equation (HJ PDE) and
the solutions of the SHS (1):

Theorem 1. If S1
ω(P, q) is a solution of the HJ PDE

dS1
ω = H(0)(P, q +

∂S1
ω

∂P
)dt+

m∑
r=1

H(r)(P, q +
∂S1

ω

∂P
) ◦ dwr

t , S1
ω|t=t0 = 0, (4)

and if the matrix ( ∂2Sω

∂Pi∂qj
) is invertible, then the map (p, q) → (P (t, ω), Q(t, ω))

defined by

P = p− ∂S1
ω

∂q
(P, q), Q = q +

∂S1
ω

∂P
(P, q), (5)

is the flow of the SHS (1).

The key idea for deriving high order symplectic schemes via generating func-
tions is to obtain an approximation of the solution of HJ PDE, and then to
construct the symplectic numerical scheme through the relations (5). It is rea-
sonable to assume that the generating function can be expressed by the following
expansion locally [4]

S1
ω(P, q, t) = G(0)(P, q)J(0) +G(1)(P, q)J(1) +G(0,1)(P, q)J(0,1) + · · · =

∑
α

GαJα,

(6)
where α = (j1, j2, . . . , jl), ji ∈ {0, 1, . . . ,m}, i = 1, . . . , l is a multi-index of
length l(α) = l, and, with dw0

s := ds, Jα is the multiple Stratonovich integral

Jα =

∫ t

0

∫ sl

0

. . .

∫ s2

0

◦dwj1
s1 · · · ◦ dw

jl−1
sl−1

◦ dwjl
sl
. (7)
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If the multi-index α = (j1, j2, . . . , jl) with l > 1, then α− = (j1, j2, . . . , jl−1).
For any two multi-indexes α = (j1, j2, . . . , jl) and α′ = (j′1, j

′
2, . . . , j

′
l′), we define

the concatenation operation ′∗′ as α ∗ α′ = (j1, j2, . . . , jl, j
′
1, j

′
2, . . . , j

′
l′). The

concatenation of a collection Λ of multi-indexes with the multi-index α gives the
collection Λ ∗ α = {α′ ∗ α}α′∈Λ.

For any multi-index α = (j1, j2, . . . , jl) with no duplicated elements (i.e.,
jm �= jn if m �= n, 1 ≤ m,n ≤ l), we define the set R(α) to be the empty set
R(α) = Φ if l = 1 and R(α) = {(jm, jn)|m < n, 1 ≤ m,n ≤ l} if l ≥ 2. R(α)
defines a partial order on the set formed with the numbers included in the multi-
index α, defined by i ≺ j if and only if (i, j) ∈ R(α). We suppose that there are
no duplicated elements in or between the multi-indexes α = (j1, j2, . . . , jl) and
α′ = (j′1, j

′
2, . . . , j

′
l′), and we define

Λα,α′ = {β ∈ M|R(α) ∪R(α′) ⊆ R(β) and β has no duplicates} (8)

where M = {(ĵ1, ĵ2, . . . , ĵl+l′)|ĵi ∈ {j1, j2, . . . , jl, j′1, j′2, . . . , j′l′}, i = 1, . . . , l+ l′}.
Analogously if there are no duplicated elements in or between any of the multi-

indexes α = (j
(1)
1 , j

(1)
2 , . . . , j

(1)
l1

), . . . , αn = (j
(n)
1 , j

(n)
2 , . . . , j

(n)
ln

), then we define

Λα1,...,αn = {β ∈ M| ∪n
k=1 R(αk) ⊆ R(β) and β has no duplicates}, (9)

where M = {(ĵ1, ĵ2, . . . , ĵl̂)|ĵi ∈ {j(1)1 , j
(1)
2 , . . . , j

(1)
l1

, . . . j
(n)
1 , j

(n)
2 , . . . , j

(n)
ln

}, i =

1, . . . , l̂, l̂ = l1+ · · ·+ ln}. For multi-indexes with duplicated elements, we extend
the previous definitions by assigning a different subscript to each duplicated
element, for example, Λ(2,0),(0,1) = Λ(2,01),(02,1) = {(2, 02, 1, 01), (02, 2, 1, 01),
(02, 1, 2, 01), (02, 2, 01, 1), (2, 01, 02, 1), (2, 02, 01, 1)} = {(2, 0, 1, 0), (0, 2, 1, 0), (0,
1, 2, 0), (0, 2, 0, 1), (2, 0, 0, 1), (2, 0, 0, 1)}.

We can easily verify that Λα,α′ = Λα′,α, and the length of the multi indexes
β ∈ Λα,α′ , is l(β) = l(α) + l(α′).

It can be proved [2] that the multiplication of a finite sequence of multiple-
indexes can be expressed by the following summation:

n∏
i=1

Jαi =
∑

β∈Λα1,...,αn

Jβ. (10)

Inserting (6) into the HJ PDE (4), and using the previous equation, we get

S1
ω =

∫ t

0

H(0)(P, q +
∑
α

∂Gα

∂P
Jα)ds+

m∑
r=1

∫ t

0

H(r)(P, q +
∑
α

∂Gα

∂P
Jα) ◦ dwr

s

=

m∑
r=0

∞∑
i=0

n∑
k1,...,ki=1

∑
α1,...,αi

∑
β∈Λα1,...αi

1

i!

∂iH(r)

∂qk1 . . . ∂qki

∂Gα1

∂Pk1

. . .
∂Gαi

∂Pki

Jβ∗(r) (11)

where (
∑

α
∂Gαi

∂P )ki is the ki-th component of the column vector
∑

α
∂Gαi

∂P .
Equating the coefficients of Jα in (6) and (11), we obtain a recurrence formula
for determining Gα.
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If α = (r), r = 0, . . . ,m then Gα = H(r). If α = (i1, . . . , il−1, r), l > 1,
i1, . . . , il−1, r = 0, . . . ,m has no duplicates then

Gα =

l(α)−1∑
i=1

1

i!

n∑
k1,...,ki=1

∂iH(r)

∂qk1 . . . ∂qki

∑
l(α1)+···+l(αi)=l(α)−1

α−∈Λα1,...,αi

∂Gα1

∂Pk1

. . .
∂Gαi

∂Pki

. (12)

If the multi-index α contains any duplicates, then we apply formula (12) after
we associate different subscripts to the repeating numbers.

In [2], we prove that the symplectic schemes based on truncations of S1
ω for

multi-indexes α ∈ Ak = {α : l(α) + n(α) ≤ 2k} have mean square order k,
for k = 1, 1.5, 2. Here n(α) is the number of components equal with 0 in the
multi-index α. For example, using the following truncation of S1

ω based on A1,
we can get a scheme with mean square order 1:

S1
ω ≈ G(0)J(0) +

m∑
r=1

(
G(r)J(r) +G(r,r)J(r,r)

)
+

m∑
i,j=1,i	=j

G(i,j)J(i,j). (13)

3 Symplectic Schemes for SHS Preserving the
Hamiltonian Functions

Unlike the deterministic cases, in general the SHS (1) no longer preserves the
Hamiltonian functions Hi, i = 0, . . . , n with respect to time.

Proposition 1. The Hamiltonian functions H(i), i = 0, . . . ,m are invariant for
the flow of the system (1), if and only if {H(i), H(j)} = 0 for i, j = 0, . . . ,m,

where the Poisson bracket is defined as {H(i), H(j)} =
∑n

k=1(
∂H(j)

∂Qk

∂H(i)

∂Pk
−

∂H(i)

∂Qk

∂H(j)

∂Pk
).

Proof. By the chain rule of the Stratonovich stochastic integration, the Hamil-
tonian functions H(i), i = 0, . . . ,m are invariant for the system (1), if and only
if for every i = 0, . . . ,m

dH(i) =

n∑
k=1

(
∂H(i)

∂Pk
dPk +

∂H(i)

∂Qk
dQk) =

n∑
k=1

(−∂H(i)

∂Pk

∂H(0)

∂Qk

+
∂H(i)

∂Qk

∂H(0)

∂Pk
)dt+

m∑
r=1

n∑
k=1

(−∂H(i)

∂Pk

∂H(r)

∂Qk
+

∂H(i)

∂Qk

∂H(r)

∂Pk
) ◦ dwr

t = 0.

(14)

For any permutation on {1, . . . , l}, l ≥ 1 (i.e. for any bijective function π :
{1, . . . , l} → {1, . . . , l}), and for any multi-index α = (i1, . . . , il) with l(α) = l, let
denote by π(α) the multi-index defined as π(α) := (iπ(1), . . . , iπ(l)). For systems
preserving the Hamiltonian functions, the coefficients Gα of S1

ω are invariant
under the permutations on α, when l(α) = 2 because for any r1, r2 = 0, . . . ,m,
we have
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G(r1,r2) =
n∑

k=1

∂H(r2)

∂qk

∂H(r1)

∂Pk
=

n∑
k=1

∂H(r1)

∂qk

∂H(r2)

∂Pk
= G(r2,r1). (15)

A simple calculation verifies that Gα are invariant under the permutations on α
when l(α) = 3. By induction we can prove that this invariance also holds in the
general case ([1]).

Proposition 2. For SHS preserving the Hamiltonian functions, the coefficients
Gα are invariants to permutations, i.e Gα = Gπ(α).

The invariance under permutations of Gα makes higher order symplectic
schemes computationally attractive for systems preserving the Hamiltonian func-
tions. For example, for the system (1) with m = 1, since J(0,1)+J(1,0) = J(1)J(0)
and J(0,1,1) + J(1,0,1) + J(1,1,0) = J(1,1)J(0) (see (10)), we get the following
generating function based on the set A2

S1
ω ≈ G(0)h+G(1)

√
hξh +

G(0,0)

2
h2 +

G(1,1)

2
hξ2h +G(1,0)ξhh

3
2

+
G(1,1,1)

6
h

3
2 ξ3h +

G(1,1,0)

2
ξ2hh

2 +
G(1,1,1,1)

24
h2ξ4h.

(16)

Here, we proceed as reported in [7] to construct an implicit scheme based on S1
ω

and ensuring it is well-defined. If the time step h < 1, then when simulating the
stochastic integrals J1, J11, J110, J111 and J1111, we replace the random variable
ξ ∼ N(0, 1) with the bounded random variable ξh:

ξh =

⎧⎪⎨⎪⎩
−Ah(2) if ξ < −Ah(2)

ξ if |ξ| ≤ Ah(2)

Ah(2) if ξ > Ah(2),

(17)

where Ah(2) = 2
√
2| lnh|. Using (5) and (16) we construct the following

symplectic scheme:

Pi(k + 1) = Pi(k)−
(
∂G(0)

∂Qi
h+

∂G(1)

∂Qi

√
hξh +

∂G(0,0)

∂Qi

h2

2
+

∂G(1,1)

∂Qi

hξ2h
2

+ 2
∂G(1,0)

∂Qi
ξhh

3
2 +

∂G(1,1,1)

∂Qi

h
3
2 ξ3h
6

+
∂G(1,1,0)

∂Qi

3ξ2hh
2

2
+

∂G(1,1,1,1)

∂Qi

h2ξ4h
24

)
Qi(k + 1) = Qi(k) +

(
∂G(0)

∂Pi
h+

∂G(1)

∂Pi

√
hξh +

∂G(0,0)

∂Pi

h2

2
+

∂G(1,1)

∂Pi

hξ2h
2

+ 2
∂G(1,0)

∂Pi
ξhh

3
2 +

∂G(1,1,1)

∂Pi

h
3
2 ξ3h
6

+
∂G(1,1,0)

∂Pi

3ξ2hh
2

2
+

∂G(1,1,1,1)

∂Pi

h2ξ4h
24

)
,

(18)

where everywhere the arguments are (P (k + 1), Q(k)). From [7] we know that
E(ξ − ξh)

2 ≤ h4 and 0 ≤ E(ξ2 − ξ2h) ≤ 7h7/2, so proceeding as in [2] we can
prove that (18) is a mean square second-order scheme.
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Based on (5) and the truncation (13) we can build the symplectic mean square
first-order scheme:

Pi(k + 1) = Pi(k)−
(
∂G(0)

∂Qi
h+

∂G(1)

∂Qi

√
hζh +

∂G(1,1)

∂Qi

hζ2h
2

)
Qi(k + 1) = Qi(k) +

(
∂G(0)

∂Pi
h+

∂G(1)

∂Pi

√
hζh +

∂G(1,1)

∂Pi

hζ2h
2

)
,

(19)

where everywhere the arguments are (P (k + 1), Q(k)) and ζh is defined as in
(17), but with Ah(2) replaced by Ah(1) = 2

√
| lnh|.

4 Numerical Simulations and Conclusions
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Fig. 1. Sample path for (20): (-) exact solution , (- -) numerical solution from (a) the
explicit Milstein scheme and (b) the mean square second-order symplectic scheme

The mathematical model for the Kubo oscillator is given by

dP = −aQdt− σQ ◦ dw1
t , P (0) = p0,

dQ = aPdt+ σP ◦ dw2
t , Q(0) = q0,

(20)

where a and σ are constants. This example has been studied in [7] to demonstrate
the performance of the stochastic symplectic scheme for long time
computation. The linear system with constant coefficients (20) can be solved
analytically (see chapter 4 in [5]) , so we can easily simulate trajectories of the

exact solution. The Hamiltonian functions are H(0)(P (t), Q(t)) = aP (t)2+Q(t)2

2

and H(1)(P (t), Q(t)) = σP (t)2+Q(t)2

2 , and it is easy to verify that they are pre-
served under the phase flow of the systems. As a consequence, the phase tra-
jectory of (20) lies on the circle with the center at the origin and the radius√
p20 + q20 .
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Replacing in (12), we obtain the following coefficients Gα(P, q) of S
1
ω(P, q):

G(0) =
a

2
(P 2 + q2), G(1) =

σ

2
(P 2 + q2), G(0,0) = a2Pq, G(1,1) = σ2Pq,

G(1,0) = G(0,1) = aσPq, G(0,0,0) = a3(P 2 + q2), G(1,1,1) = σ3(P 2 + q2),

G(1,1,0) = G(1,0,1) = G(0,1,1) = aσ2(P 2 + q2), G(1,1,1,1) = 5σ4Pq. (21)

Here, we consider the mean square first-order scheme (19), and the mean square
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Fig. 2. A sample phase trajectory: (a) the Milstein scheme; (b) S1
ω first-order scheme;

(c) S1
ω second-order scheme
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Fig. 3. Convergence rate of different order S1
ω symplectic schemes

second-order scheme given in (18). Fig. 1 displays sample paths computed using
the scheme (18) and the explicit mean square order one Milstein scheme ([5])
for a = 2, σ = 0.3, p0 = 1 and q0 = 0. Comparing with the exact solution we
notice that the explicit scheme gives a divergent solution (see Fig. 1 a), while
the symplectic scheme (18) produce accurate results (see Fig. 1 b).
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Moreover, to validate the performance of symplectic schemes for long term
simulations, in Fig. 2, we display sample phase trajectories of (20) computed
using the explicit order one Milstein scheme given in [5] and the mean square
order one and two symplectic schemes proposed in this paper. The time interval
is 0 ≤ T ≤ 200 and the time step h = 2−8. It is clear that the phase trajectory of
the Milstein non-symplectic scheme deviates from the circle P (t)2 +Q(t)2 = 1,
while the proposed symplectic schemes produce accurate numerical solutions.

In [7], a mean square order 0.5 symplectic scheme is presented. Fig. 3 confirms
the expected convergence rate for the symplectic schemes with the mean square
orders 0.5, 1, 2, where the error is the maximum error of (P,Q) at T = 100.

4.1 Conclusions

We construct high-order symplectic schemes based on the generating functions
for stochastic Hamiltonian systems preserving Hamiltonian functions. Since the
coefficients of the generating function are invariant under permutations, the high-
order implicit symplectic schemes have simpler forms and require less multiple
stochastic integrals than the explicit Taylor expansion schemes. Based on the
numerical simulations presented in this study, we conclude that the symplectic
schemes are very effective for long term computations.

Acknowledgement. The authors are grateful for the support provided by the
Natural Sciences and Engineering Research Council of Canada.

References

1. Anton, C., Deng, J., Wong, Y.S.: Symplectic schemes for stochastic Hamiltonian
systems preserving Hamiltonian functions. Int. J. Num. Anal. Mod. (submitted)

2. Deng, J., Anton, C., Wong, Y.S.: High-order symplectic schemes for stochastic
Hamiltonian systems. Comm. Comp. Physics (submitted)

3. Hairer, E.: Geometric numerical integration: structure-preserving algorithms for or-
dinary differential equations. Springer, Berlin (2006)

4. Hong, J., Wang, L., Scherer, R.: Simulation of stochastic Hamiltonian systems via
generating functions. In: Proceedings IEEE 2011 4th ICCSIT (2011)

5. Kloeden, P., Platen, E.: Numerical solutions of stochastic differential equations.
Springer, Berlin (1992)

6. Milstein, G.N., Tretyakov, M.V., Repin, Y.M.: Symplectic integration of Hamilto-
nian systems with additive noise. SIAM J. Num. Anal. 39, 2066–2088 (2002)

7. Milstein, G.N., Tretyakov, M.V., Repin, Y.M.: Numerical methods for stochastic
systems preserving symplectic structure. SIAM J. Num. Anal. 40, 1583–1604 (2002)

8. Wang, L.: Variational integrators and generating functions for stochastic Hamilto-
nian systems. Dissertation, University of Karlsruhe, Germany, KIT Scientific Pub-
lishing (2007), http://www.ksp.kit.edu

http://www.ksp.kit.edu


High Order Accurate Difference Schemes

for Hyperbolic IBVP

Allaberen Ashyralyev and Ozgur Yildirim

Fatih University, Department of Mathematics,
Buyukcekmece, 34500 Istanbul, Turkey

Yildiz Technical University, Department of Mathematics,
Davutpasa, 34210 Istanbul, Turkey

aashyr@fatih.edu.tr,

ozgury@yildiz.edu.tr

Abstract. In the present paper the initial-boundary value problem for
multidimensional hyperbolic equation with Dirichlet condition is con-
sidered. The third and fourth orders of accuracy difference schemes for
the approximate solution of this problem are presented and the stabil-
ity estimates for the solutions of these difference schemes are obtained.
Some results of numerical experiments are presented in order to support
theoretical statements.

Keywords: Hyperbolic equation, Stability, Initial boundary value
problem.

1 Introduction

Partial differential equations of the hyperbolic type play an important role in
many branches of science and engineering. The study of this type of problems
is driven not only by a theoretical interest but also by the fact that several
phenomena in engineering and physics can be modeled in this way. For exam-
ple, acoustics, electromagnetics, hydrodynamics, elasticity, fluid mechanics, and
other areas of physics lead to partial differential equations of the hyperbolic type
(see, e.g., [1]- [7] and the references given therein). In the development of numer-
ical techniques for solving these equations, the stability has been an important
research topic (see [8]-[27] ).

A large cycle of works on difference schemes for hyperbolic partial differential
equations, in which stability was established under the assumption that the
magnitude of the grid steps τ and h with respect to time and space variables are
connected (see, e.g., [23]- [27] and the references given therein). We are interested
in studying the high order of accuracy difference schemes for hyperbolic PDEs,
in which stability is established without any assumption in respect of grid steps
τ and h.

Many of the scientists have studied unconditionally stable difference schemes
for approximately solving partial differential equations of the hyperbolic type
(see, [8]-[22] ). The high order of accuracy two-step difference schemes generated

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 174–181, 2013.
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by an exact difference scheme or by the Taylor decomposition on the three
points for the numerical solution of the same problem were presented and the
stability estimates for approximate solution of paper these difference schemes
were obtained in [8]. However, the difference methods of [8] are difficult for a
realization.

In the present paper, the following initial value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2 −

m∑
r=1

(ar(x)uxr )xr = f(t, x),

x = (x1, . . . , xm) ∈ Ω, 0 < t < 1,

u(0, x) = ϕ(x), ut(0, x) = ψ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S

(1)

for the multidimensional hyperbolic equation with Dirichlet condition is con-
sidered. Let Ω be a unit open cube in the m-dimensional Euclidean space
Rm {x = (x1, · · ·, xm) : 0 < xj < 1, 1 ≤ j ≤ m} with boundary S, Ω = Ω ∪ S.
The third and fourth orders of accuracy difference schemes for the approxi-
mate solution of (1) are constructed using integer powers of the space operator
generated by problem (1), and the stability estimates for the solution of these
difference schemes are presented.

Note that boundary value problems for parabolic equations, elliptic equations
and equations of mixed types have been studied extensively by many scientists
(see, e.g., [16]-[30] and the references given therein).

2 Third Order of Accuracy Difference Scheme

In the first step, let us define the grid sets

Ω̃h = {x = xr = (h1r1, · · ·, hmrm), r = (r1, · · ·, rm), (2)

0 ≤ rj ≤ Nj , hjNj = 1, j = 1, · · ·,m}, Ωh = Ω̃h ∩Ω,Sh = Ω̃h ∩ S. (3)

We introduce the Banach space L2h = L2(Ω̃h), W
1
2h = W 1

2h

(
Ω̃h

)
and W 2

2h =

W 2
2h

(
Ω̃h

)
of the grid functions ϕh(x) = {ϕ(h1r1, · · ·, hmrm)} defined on Ω̃h,

equipped with norms

∥∥ϕh
∥∥
L2(Ω̃h)

=

⎛⎝∑
x∈Ωh

∣∣ϕh(x)
∣∣2 h1 · · · hm

⎞⎠1/2

, (4)

∥∥ϕh
∥∥
W 1

2h

=
∥∥ϕh

∥∥
L2h

+

⎛⎝∑
x∈Ωh

m∑
r=1

∣∣∣(ϕh
)
xr ,jr

∣∣∣2 h1 · · · hm

⎞⎠1/2

, (5)



176 A. Ashyralyev and O. Yildirim

and

∥∥ϕh
∥∥
W 2

2h

=
∥∥ϕh

∥∥
W 1

2h

+

⎛⎝∑
x∈Ωh

m∑
r=1

∣∣∣(ϕh
)
xrxr ,jr

∣∣∣2 h1 · · · hm

⎞⎠1/2

, (6)

respectively. To the differential operator A generated by problem (1), we assign
the difference operator Ax

h by the formula

Ax
hu

h = −
m∑
r=1

(
ar(x)u

h
xr

)
xr,jr

(7)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0
for all x ∈ Sh.

It is known that Ax
h is a self-adjoint positive definite operator in L2(Ω̃h). With

the help of Ax
h we arrive at the Cauchy problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2vh(t,x)
dt2 +Ax

hv
h(t, x) = fh(t, x), 0 < t < 1, x ∈ Ωh,

vh(0, x) = ϕh(x), x ∈ Ω̃h,

dvh(0,x)
dt = ψh(x), x ∈ Ω̃h

(8)

for an infinite system of ordinary differential equations.
In the second step, we replace problem (8) by the following difference scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2 + 2
3A

x
hu

h
k(x) +

1
6A

x
h

(
uh
k+1(x) + uh

k−1(x)
)

+ 1
12τ

2 (Ax
h)

2
uh
k+1(x) = fh

k (x),

fh
k (x) =

2
3f

h(tk, x) +
1
6

(
fh(tk+1, x) + fh(tk−1, x)

)
− 1

12τ
2
(
−Afh(tk+1, x) + fh

tt(tk+1, x)
)
, x ∈ Ωh,

tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,

uh
0 (x) = ϕh(x), x ∈ Ω̃h,(
I + τ2

12 (A
x
h) +

τ4

144 (A
x
h)

2
)
τ−1

(
uh
1(x) − uh

0(x)
)

=
(
−
(
τ
2 (A

x
h)
)
ϕh (x) +

(
I − τ2

12 (A
x
h)
)
ψh(x) +τfh

1,1 (x)
)
, x ∈ Ω̃h,

fh
1,1 (x) =

1
2f

h (0, x) + τ
6f

h
t (0, x) , x ∈ Ω̃

(9)
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Theorem 1. Let τ and |h| be sufficiently small numbers. Then, the solution of
difference scheme (9) satisfies the following stability estimates:

max
0≤k≤N

∥∥∥uh
k

∥∥∥
L2h

+ max
0≤k≤N

∥∥∥uh
k

∥∥∥
W1

2h

+ max
1≤k≤N

∥∥∥τ−1
(
uh
k − uh

k−1

)∥∥∥
L2h

≤ M1

[
max

1≤k≤N−1

∥∥∥fh
k

∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+
∥∥∥ϕh

∥∥∥
W1

2h

+ τ
∥∥∥fh

1,1

∥∥∥
L2h

]
,

max
1≤k≤N−1

∥∥∥τ−2
(
uh
k+1 − 2uh

k + uh
k−1

)∥∥∥
L2h

+ max
0≤k≤N

∥∥∥uh
k

∥∥∥
W2

2h

+ max
1≤k≤N

∥∥∥τ−1
(
uh
k − uh

k−1

)∥∥∥
W1

2h

≤ M1

[∥∥∥fh
1

∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥τ−1
(
fh
k − fh

k−1

)∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
W1

2h

+
∥∥∥ϕh

∥∥∥
W2

2h

+ τ
∥∥∥fh

1,1

∥∥∥
W1

2h

]
.

Here M1 does not depend on τ, h, ϕh(x), ψh(x), fh
1,1(x) and fh

k (x), 1 ≤ k < N.

The proof of Theorem 1 is based on symmetry property of the operator Ax
h

defined by formula (7) and the following theorem on the coercivity inequality
for solution of elliptic difference problem in L2h.

Theorem 2. For the solutions of the elliptic difference problem

Ax
hu

h(x) = ωh(x), x ∈ Ωh, (10)

uh(x) = 0, x ∈ Sh (11)

the following coercivity inequality holds (see, [20]) :

m∑
r=1

∥∥uh
xrxr,jr

∥∥
L2h

≤ M ||ωh||L2h
. (12)

Here M does not depend on h, ωh(x).

3 Fourth Order of Accuracy Difference Scheme

Now, let us consider the fourth order of accuracy difference scheme for approx-
imately solving initial value problem (1). In a similar way as described in the
previous section the discretization of problem (1) is carried out in two steps. The
first step is exactly the same with the step previously presented. In the second
step, we replace problem (8) by the following difference scheme
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2 + 5
6A

x
hu

h
k(x) +

1
12A

x
h

(
uh
k+1(x) + uh

k−1(x)
)

− 1
72τ

2 (Ax
h)

2
uh
k+1(x) +

1
144τ

2 (Ax
h)

2 (
uh
k+1(x) + uh

k−1(x)
)
= fh

k (x),

fh
k (x) =

5
6f

h(tk, x) +
1
12

(
fh(tk+1, x) + fh(tk−1, x)

)
+ 1

72τ
2
(
−Afh(tk, x) + fh

tt(tk, x)
)

− 1
144τ

2
(
−A

(
fh(tk+1, x) + fh(tk−1, x)

)
+fh

tt(tk+1, x) + fh
tt(tk−1, x)

)
, x ∈ Ωh,

tk = kτ,Nτ = 1, 1 ≤ k ≤ N − 1,

uh
0 (x) = ϕh(x), x ∈ Ω̃h,(
I + τ2

12 (A
x
h) +

τ4

144 (A
x
h)

2
)
τ−1

(
uh
1(x) − uh

0(x)
)

=
(
−
(
τ
2 (A

x
h)
)
ϕh (x) +

(
I − τ2

12 (A
x
h)
)
ψh(x) +τfh

2,2 (x)
)
,

fh
2,2 (x) =

1
2f

h (0, x) + τ
6f

h
t (0, x) + τ2

24f
h
tt (0, x)x ∈ Ω̃h.

(13)

Theorem 3. Let τ and |h| be sufficiently small numbers. Then, the solution of
difference scheme (13) satisfies the following stability estimates:

max
0≤k≤N

∥∥∥∥∥uh
k + uh

k−1

2

∥∥∥∥∥
L2h

+ max
0≤k≤N

∥∥∥∥∥uh
k + uh

k−1

2

∥∥∥∥∥
W 1

2h

+ max
1≤k≤N−1

∥∥∥∥∥uh
k+1 − uh

k−1

2τ

∥∥∥∥∥
L2h

≤ M1

[
max

1≤k≤N−1

∥∥fh
k

∥∥
L2h

+
∥∥ψh

∥∥
L2h

+
∥∥ϕh

∥∥
W 1

2h

+ τ ‖f2,2‖L2h

]
,

max
1≤k≤N−1

∥∥∥∥∥uh
k+1 − uh

k−1

2τ

∥∥∥∥∥
W 1

2h

+ max
0≤k≤N

∥∥∥∥∥uh
k + uh

k−1

2

∥∥∥∥∥
W 2

2h

≤ M1

[∥∥fh
1

∥∥
L2h

+ max
2≤k≤N−1

∥∥τ−1
(
fh
k − fh

k−1

)∥∥
L2h

+
∥∥ψh

∥∥
W 1

2h

+
∥∥ϕh

∥∥
W 2

2h

+ τ
∥∥fh

2,2

∥∥
W 1

2h

]
.

Here M1 does not depend on τ, h, ϕh(x), ψh(x), fh
2,2(x) and fh

k (x), 1 ≤ k < N.



High Order Accurate Difference Schemes for Hyperbolic IBVP 179

The proof of Theorem 3 is based on the symmetry property of the operator
Ax

h defined by formula (7) and Theorem 2, on the coercivity inequality for the
solution of the elliptic difference problem in L2h.

4 Numerical Results

In the last section, some results of numerical experiments in order to support
our theoretical statements are presented. The following problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂2u(t,x)
∂t2

− ∂2u(t,x)
∂x2 = 2e−t sinx, 0 < t < 1, 0 < x < π,

u(0, x) = sinx, ut(0, x) = − sinx, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1

(14)

for one dimensional hyperbolic equation is considered for the numerical results.
The exact solution of this problem is

u (t, x) = e−t sinx. (15)

For the approximate solution of problem (14), the third and fourth orders of ac-

curacy difference schemes are used respectively and a system of linear equations
with matrix coefficients is obtained. Solving this system a procedure of modified
Gauss elimination method with respect to n with matrix coefficients is applied.
The implementations of numerical experiments are carried out by Matlab. Errors
are computed by the following formula

EN
M = max

1≤k≤N−1,1≤k≤M−1

∣∣u (tk, xn)− uk
n

∣∣ (16)

Here, u (tk, xn) represents the exact solution of problem (14) and uk
n represents

the numerical solution of problem (14) at (tk, xn) .

Table 1. Errors for the approximate solution of problem (14)

Method

N = 10,M = 30 N = 20,M = 50

Difference scheme (9) 0,7107.10−4 0,7645.10−5

N = 10,M = 100 N = 20,M = 400

Difference scheme (13) 0,2459.10−4 0,1628.10−5

The results are presented for different step numbers M and N which represent
time and space variables respectively.

Acknowledgments. The authors would like to thank Prof. P. E. Sobolevskii
for his helpful suggestions to the improvement of this paper.
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Modified Crank-Nicholson Difference

Schemes for Ultra Parabolic Equations
with Neumann Condition
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Abstract. In this paper, our interest is studying the stability of differ-
ence schemes for the approximate solution of the initial boundary value
problem for ultra-parabolic equations. For approximately solving the
given problem, the second-order of accuracy modified Crank-Nicholson
difference schemes are presented. Theorem on almost coercive stability
of these difference schemes is established. Numerical example is given to
illustrate the applicability and efficiency of our method.

Keywords: Ultra parabolic equations, difference schemes, stability
estimates, matlab implementation, numerical solutions.

1 Introduction

We refer to [1-13] and the references therein for a series of papers dealing with
the initial boundary value problem for ultra parabolic equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u(t,s)
∂t +∂u(t,s)

∂s +Au(t, s) = f(t, s), 0 < t, s < T,

u(0, s) = ψ(s), 0 ≤ s ≤ T,

u(t, 0) = ϕ(t), 0 ≤ t ≤ T

(1)

which arise in many natural phenomenons. In paper [13], for approximately
solving problem (1) r-modified Crank-Nicolson difference schemes of the second-
order of accuracy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk,m−uk−1,m−1

τ +Auk,m = fk,m , 1 ≤ k,m ≤ r,

uk,m−uk−1,m−1

τ + A
2 (uk,m + uk−1,m−1) = fk,m , r + 1 ≤ k,m ≤ N,

fk,m = f(tk − τ
2 , sm − τ

2 ), tk = kτ, sm = mτ, 1 ≤ k,m ≤ N, Nτ = 1,

u0,m = ψm, ψm = ψ(sm), 0 ≤ m ≤ N,

uk,0 = ϕk, ϕk = ϕ(tk), 0 ≤ k ≤ N

(2)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 182–189, 2013.
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were presented. The following theorem on stability estimates for the solution of
difference schemes (2) was established.

Theorem 1. For the solution of problem (2), we have the following stability
inequality

max
1≤k,m≤N

‖uk,m‖E ≤ C

(
max

0≤m≤N
‖ψm‖E + max

0≤k≤N
‖ϕk‖E + max

1≤k,m≤N
‖fk,m‖E

)
,

where C is independent of τ, ψm, ϕk, and fk,m.

The main result of the present paper is study of almost coercivity of difference
schemes. Theorem on almost coercivity of (2) is established. In application the
almost coercive stability estimates in maximum norm for the solution of dif-
ference schemes for multidimensional ultra parabolic equations with Neumann
condition are obtained. The theoretical statements are supported by a numerical
example.

Theorem 2. For the solution of problem (2), we have the almost coercivity
inequality

max
1≤k,m≤N

‖uk,m−uk−1,m−1

τ ‖E

+ max
1≤k,m≤r

‖Auk,m‖E + max
r+1≤k,m≤N

‖A
2 (uk,m + uk−1,m−1)‖E

≤ C

(
max

0≤m≤N
‖Aψm‖E + max

0≤k≤N
‖Aϕk‖E

+ min
{
ln 1

τ , 1+ |ln ‖A‖E→E|
}

max
1≤k,m≤N

‖fk,m‖
)
,

where C is independent of τ, ψm, ϕk, and fk,m.

Proof. Using the identities(see [13])

uk,m = Rkψm−k +

k∑
j=1

τRk−j+1fj,m−k+j , k ≤ m

uk,m = Rmφk−m +

m∑
j=1

τRm−j+1fk−m+j,j ,m ≤ k (3)

and estimates(see [14])
||Rk||E→E ≤ M

||ARk||E→E ≤ M

kτ
(4)
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we obtain

‖Auk,m‖E ≤
k∑

j=1

τ‖ARk−j+1‖E→E‖fj,m−k+j‖E

≤ M
k∑

j=1

1
k+1−j max

1≤j,m≤N
‖fj,m‖E .

Since
k∑

j=1

1

k + 1− j
≤
∫ k

1

ds

k + 1− s
= lnk,

we have
‖Auk,m‖E ≤ Mlnk max

1≤j,m≤N
‖fj,m‖E,

hence

max
1≤k,m≤r

‖Auk,m‖E ≤ Mln
1

τ
max

1≤j,m≤N
‖fj,m‖E . (5)

Further, using identities (3) we obtain

‖Auk,m‖E ≤
k∑

j=1

τ‖ARk−j+1‖E→E‖fj,m−k+j‖E

≤
k∑

j=1

τ‖ARk−j+1‖E→E max
1≤j,m≤N

‖fj,m‖E .

It remains to estimate the quantity

Jk =
k∑

j=1

τ‖ARk−j+1‖E→E =
k∑

j=1

τ‖ARs‖E→E .

From the last identity it is clear that it suffices to estimate JN . Using estimates
(4), we obtain

‖ARs‖E→E ≤ Mmin{ 1
sτ , ‖A‖E→E}.

If ‖A‖E→E > N , then

JN ≤ M
N∑
j=1

τ
sτ ≤ M

∫ 1

‖A‖E→E

ds
s ≤ M | ln‖A‖E→E | .

If ‖A‖E→E ≤ 1, then

JN ≤ M
N∑
j=1

‖A‖E→Eτ ≤ M‖A‖E→E ≤ M.

Finally, if ‖A‖E→E ≤ N , then

JN ≤ M

(
[N‖A‖−1

E→E]∑
s=1

‖A‖E→Eτ +
N∑

[N‖A‖−1
E→E]+1

τ
sτ

)
≤ M(1 +

∫ ‖A‖−1
E→E

1
ds
s ) = M(1 + ln‖A‖E→E).
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Thus, in all three cases we have the estimate

JN ≤ M(1 + ln‖A‖E→E),

which yields

max
1≤k,m≤r

‖Auk,m‖E ≤ M [1 + ln‖A‖E→E] max
1≤j,m≤N

‖fj,m‖E . (6)

From the estimates (5) and (6) we obtain the estimate

max
1≤k,m≤r

‖Auk,m‖E

≤ C

(
max

0≤m≤N
‖Aψm‖E + max

0≤k≤N
‖Aϕk‖E

+ min
{
ln 1

τ , 1+ |ln ‖A‖E→E |
}

max
1≤k,m≤N

‖fk,m‖
)
.

In a similar manner one can show that

max
r+1≤k,m≤N

‖A
2 (uk,m + uk−1,m−1)‖E

≤ C

(
max

0≤m≤N
‖Aψm‖E + max

0≤k≤N
‖Aϕk‖E

+ min
{
ln 1

τ , 1+ |ln ‖A‖E→E |
}

max
1≤k,m≤N

‖fk,m‖
)
.

Theorem 2 is proved.

2 Application

For application, letΩ be the unit open cube in the n-dimensional Euclidean space
Rn (0 < xk < 1, 1 ≤ k ≤ n) with boundary S, Ω = Ω∪S. In [0, 1]× [0, 1]×Ω we
consider the boundary-value problem for the multidimensional ultra-parabolic
equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,s,x)
∂t + ∂u(t,s,x)

∂s −
n∑

r=1
αr(x)

∂2u(t,s,x)
∂x2

r
+ δu(t, s, x) = f(t, s, x),

x = (x1, · · ·, xn) ∈ Ω, 0 < t, s < 1,

u(0, s, x) = ψ(s, x), s ∈ [0, 1] u(t, 0, x) = ϕ(t, x), t ∈ [0, 1], x ∈ Ω,

∂u(t,s,x)
∂−→n = 0, t, s ∈ [0, 1], x ∈ S,

(7)
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where αr(x) > a > 0(x ∈ Ω) and f(t, s, x) (t, s ∈ (0, 1), x ∈ Ω) are given
smooth functions and δ > 0 is a sufficiently large number, −→n is the normal
vector to Ω.

The discretization of problem (7) is carried out in two steps. In the first step,
let us define the grid sets

Ω̃h = {x = xm = (h1m1, · · ·, hnmn),m = (m1, · · ·,mn),

0 ≤ mr ≤ Nr, hrNr = L, r = 1, · · ·, n},
Ωh = Ω̃h ∩Ω,Sh = Ω̃h ∩ S.

We introduce the Banach space Ch = Ch(Ω̃h) of grid functions ϕh(x) =

{ϕ(h1m1, · · ·, hnmn)} defined on Ω̃h, equipped with the norm

‖ ϕh ‖C(Ωh)
= max

x∈Ωh

|ϕh(x)|.

To the differential operator A generated by problem (7) we assign the differ-
ence operator Ax

h by the formula

Ax
hu

h = −
n∑

r=1

ar(x)(u
h
−
xr

)xr,jr + δuh

acting in the space of grid functions uh(x), satisfying the condition Dhuh(x) = 0
for all x ∈ Sh.Here Dh is the difference operator, it is the first order of approxi-
mation of ∂·

∂−→u .
With the help of Ax

h we arrive at the initial boundary-value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂uh(t,s,x)
∂t + ∂uh(t,s,x)

∂s +Ax
hu

h(t, s, x) = fh(t, s, x), 0 < t, s < 1, x ∈ Ωh

uh(0, s, x) = ψh(s, x), 0 ≤ s ≤ 1, x ∈ Ω̃h,

uh(t, 0, x) = ϕh(t, x), 0 ≤ t ≤ 1, x ∈ Ω̃h

(8)

for an infinite system of ordinary differential equations. In the second step, we
replace problem (8) by difference scheme (2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k,m−uh

k−1,m−1

τ +Ax
hu

h
k,m = fh

k,m(x), x ∈ Ωh, 1 ≤ k,m ≤ r

uh
k,m−uh

k−1,m−1

τ + 1
2A

x
h(uk,m + uk−1,m−1) = fh

k,m(x), x ∈ Ωh,

r + 1 ≤ k,m ≤ N,

fh
k,m(x) = fh(tk − τ

2 , sm − τ
2 , x), tk = kτ, sm = mτ,

1 ≤ k,m ≤ N, x ∈ Ω̃h,

uh
0,m = ψh

m, 0 ≤ m ≤ N, uh
k,0 = ϕh

k , 0 ≤ k ≤ N

(9)
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It is known that Ax
h is a positive operator in C(Ω̃h) (see [15]). Let us give a

number of corollary of the Theorems 1 and 2.

Theorem 3. For the solution of problem (2), we have the following stability
inequality

max
1≤k,m≤N

‖uh
k,m‖C(Ω̃h)

≤ C1

(
max

0≤m≤N
‖ψh

m‖C(Ω̃h)
+ max

0≤k≤N
‖ϕh

k‖C(Ω̃h)
+ max

1≤k,m≤N
‖fh

k,m‖C(Ω̃h)

)
,

where C is independent of τ, ψh
m, ϕh

k , and fh
k,m.

Theorem 4. For the solution of problem (2), we have the following almost
coercivity inequality

max
1≤k,m≤N

‖uh
k,m−uh

k−1,m−1

τ ‖C(Ω̃h)
+ max

1≤k,m≤r

n∑
r=1

‖uh

(
−
xrxr, jr) k,m

‖C(Ω̃h)

+ 1
2 max
1≤k,m≤r+1

n∑
r=1

‖uh

(
−
xrxr, jr) k,m

+ uh

(
−
xrxr, jr) k−1,m−1

‖C(Ω̃h)

≤ C ln 1
|h|

(
max

1≤m≤N

n∑
r=1

‖ψh

(
−
xrxr, jr) m

‖C(Ω̃h)
+ max

0≤k≤N

n∑
r=1

‖ϕh

(
−
xrxr , jr) k

‖C(Ω̃h)

)
+C ln 1

τ+|h| max
1≤k, m≤N

‖f h
k,m‖C(Ω̃h)

.

where C is independent of τ, ψh
m, ϕh

k , and fh
k,m.

3 Numerical Analysis

In this section, the initial boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(s,t,x)
∂t + ∂u(s,t,x)

∂s − ∂2u(s,t,x)
∂x2 + 2u(t, s, x) = f(t, s, x),

f(t, s, x) = e−(t+s) cosπx, 0 < s, t < 1, 0 < x < 1,

u(0, s, x) = e−s cosπx, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1,

u(t, 0, x) = e−t cosπx, 0 ≤ s ≤ 1, 0 ≤ x ≤ 1,

ux(s, t, 0) = ux(s, t, π) = 0, 0 ≤ s, t ≤ 1

(10)

for one dimensional ultra parabolic equations is considered.
The exact solution of problem (10) is

u (t, s, x) = e−(t+s) cosπx.
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Using the second order of accuracy in t and s implicit difference scheme (9),
we obtain the difference scheme second order of accuracy in t and s and second
order of accuracy in x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk,m
n −uk−1,m−1

n

τ − uk,m
n+1−2uk,m

n +uk,m
n−1

h2 + 2uk,m
n = fh

k,m, 1 ≤ k,m ≤ r,

uk,m
n −uk−1,m−1

n

τ − uk,m
n+1−2uk,m

n +uk,m
n−1

h2 + 2uk,m
n

−uk−1,m−1
n+1 −2uk−1,m−1

n +uk−1,m−1
n−1

h2 + 2uk−1,m−1
n = fh

k,m,

r + 1 ≤ k,m ≤ N,

fh
k,m = f(tk − τ

2 , sm − τ
2 , xn) = e−(tk+sm−τ) sinxn,

1 ≤ k,m ≤ N, 1 ≤ n ≤ M − 1,

u0,m
n = e−sm cosxn, 0 ≤ m ≤ N, 0 ≤ n ≤ M,

uk,0
n = e−tk cosxn, 0 ≤ k ≤ N, 0 ≤ n ≤ M,

uk,m
0 = uk,m

1 , uk,m
M = uk,m

M−1, 0 ≤ k,m ≤ N,

tk = kτ, sm = mτ, 1 ≤ k,m ≤ N, Nτ = 1,

xn = nh, 1 ≤ n ≤ M, Mh = π,

(11)

for approximate solutions of initial boundary value problem (10). For the solution
of (11), we will use the modified Gauss elimination method(see [16]).

Errors computed by

EK,M
N = max

1≤k,m≤N,1≤n≤M−1

∣∣u(tk, sm, xn)− uk,m
n

∣∣
of the numerical solutions, where u(tk, sm, xn) represents the exact solution and
uk,m
n represents the numerical solution at (tk, sm, xn) and the results for r = 1

and r = 2 are given in following table.

Table 1. Difference Schemes(7) for different N=M values

N = 10 N = 15 N = 20 N = 30

r=1 0.0432 0.0223 0.0109 0.0031
r=2 0.0574 0.0286 0.0197 0.0091
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5. Genčev, T.G.: Ultraparabolic equations. Dokl. Akad. Nauk SSSR 151, 265–268
(1963)

6. Deng, Q., Hallam, T.G.: An age structured population model in a spatially hetero-
geneousenvironment: Existence and uniqueness theory. Nonlinear Anal. 65, 379–394
(2006)

7. Di Blasio, G., Lamberti, L.: An initial boundary value problem for age-dependent
population diffusion. SIAM J. Appl. Math. 35, 593–615 (1978)

8. Di Blasio, G.: Nonlinear age-dependent diffusion. UJ. Math. Biol. 8, 265–284 (1979)
9. Tersenov, S.A.: On boundary value problems for a class of ultraparabolic equations
and their applications. Matem. Sbornik. 175, 529–544 (1987)

10. Ashyralyev, A., Yilmaz, S.: Second order of accuracy difference schemes for ultra
parabolic equations. In: AIP Conference Proceedings, vol. 1389, pp. 601–604 (2011)

11. Ashyralyev, A., Yilmaz, S.: An Approximation of ultra-parabolic equations. Abstr.
Appl. Anal, Article ID 840621, 14 pages (2012)

12. Ashyralyev, A., Yilmaz, S.: On the numerical solution of ultra-parabolic equa-
tions with the Neumann Condition. In: AIP Conference Proceedings, vol. 1470,
pp. 240–243 (2012)

13. Ashyralyev, A., Yilmaz, S.: Modified Crank-Nicholson difference schemes for ultra-
parabolic equations. Comput. Math. Appl. 64, 2756–2764 (2012)

14. Ashyralyev, A., Sobolevskii, P.E.: Well-Posedness of Parabolic Difference Equa-
tions. Operator Theory Advances and Applications, vol. 69. Birkhäuser Verlag,
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Bifurcations in Long Josephson Junctions

with Second Harmonic in the Current-Phase
Relation: Numerical Study

Pavlina Atanasova1 and Elena Zemlyanaya2

1 University of Plovdiv, FMI, Plovdiv 4003, Bulgaria
atanasova@uni-plovdiv.bg

2 Laboratory of Information Technologies, Joint Institute for Nuclear Research
141980 Dubna, Moscow Region, Russia

elena@jinr.ru

Abstract. Critical regimes in the long Josephson junction (LJJ) are
studied within the frame of a model accounting the second harmonic
in the current-phase relation (CPR). Numerical approach is shown to
provide a good agreement with analytic results. Numerical results are
presented to demonstrate the availabilities and advantages of the nu-
merical scheme for investigation of bifurcations and properties of the
magnetic flux distributions in dependence on the sign and value of the
second harmonic in CPR.

Keywords: Long Josephson junction, double sine-Gordon equation,
continuous analogue of Newton’s method, numerical continuation, sta-
bility, bifurcations.

1 Introduction

Physical properties of magnetic flux in Josephson junctions (JJs) play important
role in the modern nanoelectronics. Generally, the current-phase relation (CPR)
in the JJ is taken as the Fourier decomposition of sinuses [12]. For JJs of the
“superconductor–insulator–superconductor” type, the CPR is close to a sinu-
soidal function of phase while another terms in the CPR Fourier decomposition
are negligible. In those cases, the magnetic flux distributions are described by
the sine-Gordon (SG) equation.

However, in a number of JJs models, the second harmonic contribution of
the CPR Fourier expansion should be accounted, see for example, [14,9,10]. In
the frame of corresponding models the magnetic flux distributions satisfy the
following double sine-Gordon equation:

ϕ ′′ − ϕ̈− αϕ̇ = a1 sinϕ+ a2 sin 2ϕ− γ , t > 0 , x ∈ (−l, l) . (1)

Here and below the prime means a derivative with respect to the coordinate x
and the dot – with respect to the time t. The case of the overlap-contact of a
finite length yields the following form of boundary conditions

ϕ ′(±l, t) = he . (2)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 190–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In (1),(2), ϕ is a magnetic flux distribution, he – an external magnetic field, γ
– the external current, α ≥ 0 – the dissipation coefficient, l is the semilength of
the junction, a1 and a2 are parameters corresponding the contribution of 1st and
2nd harmonic in CPR, respectively. The sign of a2 can be positive or negative
in the frame of different physical applications.

Static regimes of the magnetic flux distributions are described by the nonlinear
boundary problem [12,11,7]:

−ϕ ′′ + a1 sinϕ+ a2 sin 2ϕ− γ = 0, x ∈ (−l, l) , ϕ ′(±l) = he (3)

that follows from a necessary condition for the full energy functional extremum.
Bifurcations of ϕ correspond the transitions of junction from superconducting
to resistive state where the voltage measurement changes from zero to nonzero
value. Stable distributions correspond to superconductive state where the voltage
is equal to zero.

The stability analysis of solution ϕ(x, p) where p = (l, a1, a2, he, γ) is a vector
of parameters) can be reduced to the numerical solution of the corresponding
Sturm-Liouville problem (SLP) [8,13]:

−ψ ′′ + q(x)ψ = λψ, ψ ′(±l) = 0, q(x) = a1 cosϕ+ 2a2 cos 2ϕ. (4)

The case of positive minimal eigenvalue λ0(p) > 0 corresponds the minimum
of the distribution energy and, hence, the stable solution ϕ. In case λ0(p) < 0
solution ϕ(x, p) is unstable. The case λ0(p) = 0 indicates the bifurcation (the
transition of junction from superconducting to resistive state) with respect to
one of parameters p.

Our numerical approach is based on the consideration of Eqs.(3),(4) as unique
problem with respect to functions ϕ, ψ, and one of the parameters p. In compari-
son with a standard direct numerical simulation of Eq.(1), this method simplifies
an obtaining of the dependence of critical current γcr on external magnetic field
he – an important physical observable measured in experiments. This idea was
successfully applied to reproduce critical states in different models described by
SG (i.e. with a2 = 0), see for example [13,1] and references there. We extend
this technique for the case of nonzero a2 and investigate the effect of the second
harmonic accounting on the critical magnetic flux distributions.

Beside, our numerical scheme is furnished with a continuation algorithm [17,5]
providing analysis of interconnection between coexisting (stable and unstable)
distributions. We study the critical curves and the stability areas of the corre-
sponding solutions under the influence of the second harmonic in CPR. In Sect.
2 we describe details of our numerical approach. Results of numerical study are
discussed in Sect. 3. Concluding remarks are given in Sect. 4.

2 Numerical Approach

Supplying the system (3),(4) with a normalization condition for the eigenfunction
ψ(x) of SLP (4) ∫ +l

−l

ψ2(x) dx = 1 . (5)
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we proceed the nonlinear problem at x ∈ (−l; l). The system (3-5) is considered
as the unified nonlinear functional equation for the functions ϕ(x), ψ(x), and
one of the five parameters p (which we denote by ξ). The other four parameters
p̄ ∈ p are assumed to be known. Thus, the system (3-5) can be rewritten in a
vector form as follows:

F(y, p̄) = 0 , (6)

where y = (ϕ, ψ, ξ) is unknown element in Banach space and p̄ is the set of
parameters.

In the simplest case, when all the elements of the vector p are defined, the
problem is split into independent subsystems (3) and (4-5). The eigenvalue λ is
to be found, which corresponds to the solution ϕ(x) of (3). This approach was
applied in our papers [2,6,3].

In case the eigenvalue of SLP is assumed to be fixed λ = 0, we obtain the
closed system (3-5) with respect to the unknown Banach element y. Considering
the case ξ = γ and solving the problem (6) with respect to y = (ϕ, ψ, γ) yields
the value γ = γcr that corresponds the bifurcation magnetic flux distribution
ϕ. The bifurcation solution y is path-followed in the continuation parameter he

and the critical dependence γcr(he) is determined.
In the case ξ = γ or ξ = he the continuation of the bifurcation solution in the

parameter a2 produces the dependence of stability region on external current γ
or on external magnetic field he.

Below, we present the Newtonian iteration scheme for numerical solution of
the problem (6) for the case of ξ = γ.

The continuous analog of Newton’s method (CANM) [13] reduces the problem
(6) to the auxiliary linear problem:

∂F
∂y

w + F(y) = 0 , (7)

where w denotes the iteration increment of y: w = (u, v, Γ ), and ∂F/∂y is the
Frechet derivative. For each element Fi of the vector-function F we have

∂F1

∂y
w = −u ′′ + qu− Γ , (8)

∂F2

∂y
w = u ′(−l) ,

∂F3

∂y
w = u ′(l) , (9)

∂F4

∂y
w = −v ′′ + ruψ + qv − λv, r = −a1 sinϕ− 4a2 sin 2ϕ (10)

∂F5

∂y
w = v ′(−l) ,

∂F6

∂y
w = v ′(l) , (11)

∂F7

∂y
w = 2

l∫
−l

ψv dx . (12)
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Finally, we obtain the linear system with respect to the unknowns w = (u, v, Γ ):

− u ′′ + qu− Γ − ϕ ′′ + f = 0 , (13)

u ′(±l) + ϕ ′(±l)− he = 0 , (14)

−v ′′ + ruψ + qv − λv − ψ ′′ + qψ − λψ = 0 , (15)

v ′(±l) + ψ ′(±l) = 0 , (16)

2

l∫
−l

ψv dx+

l∫
−l

ψ2 dx− 1 = 0 . (17)

Solutions u(x) and v(x) of the system (13-17) are decomposed in a form of
linear combination

u(x) = u1(x) + Γu2(x), v(x) = v1(x) + Γv2(x), (18)

where x ∈ (−l; l) and u1, u2, v1, v2 are solutions, respectively, of the following
boundary-value problems:

− u1
′′ + qu1 − ϕ ′′ + f = 0 , u1

′(±l) + ϕ ′(±l)− he = 0 , (19)

−u2
′′ + qu2 − 1 = 0 , u2

′(±l) = 0 , (20)

−v1
′′ + rψu1 + (q − λ)v1 − ψ ′′ + (q − λ)ψ = 0 , v1

′(±l) + ψ ′(±l) = 0 ,(21)

−v2
′′ + rψu2 + (q − λ)v2 = 0 , v2

′(±l) = 0 , (22)

Quantity Γ can be determined from the following expression:

2

∫ l

−l

ψv1 dx+ 2Γ

∫ l

−l

ψv2dx+

∫ l

−l

ψ2 dx− 1 = 0 . (23)

The above formulae (18-23) define the following sequence of calculations at
each newtonian iteration for the fixed value of the continuation parameter he. Let
us assume, at n-th iteration we have n-th approximation of solution ϕn(x), ψn(x)
and γn. At (n+1)-th iteration:

1. We calculate the functions un
1 (x) and un

2 (x) from the linear boundary-value
problems (19) and (20).

2. Then we solve linear boundary-value problems (21) and (22)) with obtained
functions un

1 (x) and un
2 (x) and determine solutions vn1 (x) and vn2 (x).

3. Quantity Γn is calculated using Eq.(23).

4. The (n+ 1)-th approximation of ϕn+1(x), ψn+1(x) and γn+1 is defined by
means of the formulas

ϕn+1(x) = ϕn(x) + τn[u
n
1 (x) + Γnun

2 (x)] , (24)

ψn+1(x) = ψn(x) + τn[v
n
1 (x) + Γnvn2 (x)] , (25)

γn+1 = γn + τnΓ
n , (26)
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where the iteration parameter τn is calculated as follows [15]:

τn = max

(
τmin,

δn(0)

δn(0) + δn(1)

)
. (27)

Here τmin is a fixed minimal value of parameter τn (0 < τmin ≤ 1);

δn(0) ≡ ||F(ϕn, ψn, γn)||, δn(1) ≡ ||F(ϕ̄n+1, ψ̄n+1, γ̄n+1)||

where ‖ · ‖ means the standard C-norm and ϕ̄n+1, ψ̄n+1, γ̄n+1 are obtained
by means Eqs.(24-26) with τn = 1.

5. The iterations are finished when the inequality ‖ F ‖≤ ε holds true, where
ε > 0 is a small number chosen beforehand.

Convergence of the CANM-based iteration process is proved in [16].
For numerical solution of the linear boundary-value problems (19-22) at each

Newtonian iteration, we apply Numerov’s finite-difference approximation of the
4th order accuracy [4].

3 Numerical Results

Together with the well-known distributions (standardly called Mπ and M0) the
nonzero a2 in Eq.(3) gives a rise another uniform state (called M±ac in [6]).
Stability and bifurcations of M±ac have been investigated in [6,2].

New fluxon solution inspired by the second harmonic contribution was ob-
served in direct numerical simulation [9] and denoted “small fluxon” in contra-
diction to the standard “large fluxon” solution Φ1. Later, the “small fluxon” was
reproduced in [2] in the frame of CANM-based numerical approach.

“Large fluxon” Φ1 and “small fluxon” are characterized, respectively, with
N = 1 and N = 0 where the quantity N (denoted “number of fluxons” in [6]) is
determined as follows

N =
1

2lπ

l∫
−l

ϕ(x) dx . (28)

One more a2-inspired one-fluxon solution Φ1∗ (existing at a2 < −0.5) was
obtained in [4]. As the standard solution Φ1, the Φ1∗ fluxon characterized by the
“number of fluxons” N = 1

Figure 1 exhibits the full stability chart of two fluxons: Φ1∗ and Φ1 on the
(he, a2)-plane for the case a1 = 1. Stability domains of Φ1 and Φ1∗ are bounded,
respectively, by solid and dashed curves. In the region where two stability do-
mains overlap, the different stable fluxon distributions coexist.

Our numerical study shows that, beside of bound states of two, three and
more identical fluxons Φ1, Eq.(3) holds the stable the mixed bound states of
different types of fluxons. Stable mixed solutions ϕ1 and ϕ2 are shown in figs 2,3
for he = 0.6, a1 = 1, a2 = −1. They are characterized by (N [ϕ1]+N [ϕ2])/2 = 1
while quantities N [ϕ1] and N [ϕ2] are fractional. Note that stability of the mixed
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Fig. 1. Bifurcation diagram of two fluxons Φ1 and Φ1∗ at the plane of parameters a2

and he. Here a1 = 1, 2l = 10, γ = 0.

Fig. 2. The magnetic flux distribution
ϕ(x) for the stable mixed bound state
of two fluxons with he = 0.6, a1 = 1,
a2 = −1, 2l = 10, γ = 0

Fig. 3. The internal magnetic field dis-
tribution ϕ ′(x) for the stable mixed
bound state of two fluxons with he =
0.6, a1 = 1, a2 = −1, 2l = 10, γ = 0

bound states depends on a2 and he. For growing a2 this solution stabilizes for
sufficiently small he.

Figures 4 and 5 demonstrate the critical current curves γcr(he) for a2 =
0, a2 = 0.3, and a2 = 1. Maximal value of the critical current corresponds
the M0 distribution for he = 0. Another portions of critical current curve (for
growing he) correspond, sequentially, one-fluxon solution Φ1, two-fluxon solution
Φ2, three-fluxon solution Φ3, etc. Here, we present the case of relatively short
junctions 2l = 1/π in order to show that our results are in a good agreement
with results of direct numerical simulation of Eq. (1) [9]. Note, for longer l and
for growing a2 a complexity of the γcr(he) dependence increases, see fig.5.
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Fig. 4. Critical curves for short junction
2l = 1/π with a1 = 1 and a2 = 0.3

Fig. 5. Critical curves for the short junc-
tion 2l = 1/π with a1 = a2 = 1

4 Conclusions

The aim of this contribution is to present the numerical scheme for the bifur-
cation analysis of static magnetic flux distributions in long Josephson junctions
described by double sine-Gordon equation (1). Instead of direct numerical sim-
ulation of partial differential equation (1) we numerically solve the boundary
problem for the system of nonlinear ordinary differential equations.

It is shown that our numerical approach allows one to obtain new fluxon
distributions of Eq. (1), to investigate their stability and bifurcations and to
construct the critical current dependence, important physical characteristic of
LJJs.
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Abstract. This work is concerned with the numerical study of unsym-
metrical buckling of clamped orthotropic plates under uniform pressure.
The effect of material heterogeneity on the buckling load is examined.
The refined 2D shell theory is employed to obtain the governing equa-
tions for buckling of a clamped circular shell.
The unsymmetric part of the solution is sought in terms of multiples

of the harmonics of the angular coordinate. A numerical method is em-
ployed to obtain the lowest load value, which leads to the appearance of
waves in the circumferential direction. It is shown that if the elasticity
modulus decreases away from the center of a plate, the critical pres-
sure for unsymmetric buckling is sufficiently lower than for a plate with
constant mechanical properties.

Keywords: Circular plate, unsymmetrical buckling, inhomogeneity.

1 Introduction

The present paper is devoted to study the unsymmetrical buckling of clamped
heterogeneous circular plate subjected to uniform surface load.

For the first time, unsymmetrical buckling of the thin clamped circular
isotropic plates under normal pressure was analyzed by Panov and Feodosev
in 1948 [1]. The authors assumed that under sufficiently large load an unsym-
metric state branched from the axisymmetric one and waves developed near the
edge of the plates. Nonaxisymmetric displacement was represented in the form
W = (1−r2)2(A+Br4 cosnθ) and the bending problem was studied by Galerkin
procedure [1]. In this approach the pre-buckling axisymmetric state was approx-
imated by function with only one unknown parameter. Later, in 1963, Feodos’ev
showed that under large deformations the elastic surfaces of plates or shells
were exposed to strong changes, and the stress-strain state of these structures
could not be described by one or two unknown parameters in approximating
functions [2].

Still later, Cheo and Reiss examined the same problem on the unsymmetric
wrinkling of clamped circular plates subjected to surface load [3]. The critical

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 198–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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buckling load and the corresponding wave number obtained in [3] differs signifi-
cantly from the results in [1]. Cheo and Reiss suspected that Panov and Feodos’ev
had found unstable unsymmetric state, and underlined the approximation func-
tion with two unknown parameters was ”too inaccurate to adequately describe
the wrinkling of the plate”.

In this paper we study buckling of a circular plate with varying mechani-
cal characteristics. Such a plate can be used as the simplest model of Lamina
Cribrosa (LC) in the human eye [4]. The buckling of the LC in the nonaxisym-
metric state in the neighborhood of the edge could cause edamas and folds at
the periphery of the LC and loss of sight.

2 Problem Statement

Let us consider a circular thin plate of radius R, thickness h (h/R � 1) sub-
jected to uniform normal load p. The plate displays cylindrical orthotropy and
Ambartsumyan’s theory of anisotropic plates is employed to study large defor-
mations of the plate [5]. We assume radial inhomogeneity for the plate, i.e. the
elastic moduli continuously vary from point to point in the radial direction.

In general case, the fundamental equations can be written in the form

φ′ +
φ

r
+

ψ̇

r
= −L(w,F )− p

g1L1(w) + g′1L+
1 (w) − L1φ(φ)− L1ψ(ψ) = −φ,

g1L2(w) + g′1L2(w)− L2φ(φ)− L2ψ(ψ) = −ψ,

g2L3(F ) + g′2L−
3 (F ) + g′′2L−

1 (F ) = −λ2

2
L(w,w),

( )
′
=

∂( )

∂r
, ˙( ) =

∂( )

∂θ

(1)

with non-linear operator

L(x, y) = x′′ (y′/r + ÿ/r2
)
+ y′′

(
x′/r + ẍ/r2

)
− 2 (ẋ/r)′ (ẏ/r)′

and linear operators Li, Li, Ljφ, Ljψ, i = 1, 2, 3, j = 1, 2 are as defined in
Appendix.

System (1) is obtained from determining relations of the nonlinear theory
of anisotropic plates [5]. Here w(r, θ), F (r, θ), φ(r, θ), ψ(r, θ) are the non-
dimensional out-of-plane deflection, the Airy stress function and the force
functions, respectively. Dimensionless quantities are related with those with
dimensions by the expressions

r =
r∗

R
, w =

βw∗

h
, p =

β3R4

Eav
r h4

p∗, F =
β2F ∗

Eav
r h3

,

{φ, ψ} =
R3β3

12Eav
r h

{φ∗, ψ∗}, β2 = 12(1− νrνθ).
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Eav
r is an average value of the elastic modulus in the radial direction

Eav
r =

1

πR2

2π∫
0

R∫
0

Er(r)rdrdθ, Er(r) = E0
r , f(r) (2)

and g1(r) = E0
rf(r)/E

av
r , g2(r) = 1/g1(r).

We suppose that the edge of the plate is clamped but moves freely in the
plate’s plane. This results in the following set of conditions at r = 1 [5]

w = 0, w′ = 5μrφ/2, F ′/r + F̈ /r2 = −
(
Ḟ /r

)′
= 0. (3)

In addition, all sought-for functions must fulfil the boundedness condition at the
center of the plate.

In case of an isotropic plate Eqs. (1), (3) can be transformed into correspond-
ing equations of the classical plate theory

g1ΔΔw + g′1L+
3 (w) + g′′2L+

1 (w) = p+ L(w,F ),

g2ΔΔF + g′2L−
3 (F ) + g′′2L−

1 (F ) = −L(w,w)/2,

w = w′ = 0, F ′/r + F̈ /r2 = −
(
Ḟ /r

)′
= 0 at r = 1,

(4)

where Δ = ( )′′ + ( )′/r + ¨( )/r2 is the Laplacian in polar coordinates.

3 Numerical Solution

We seek for solutions of equations (1) in the form⎧⎨⎩ φ(r, θ)
w(r, θ)
F (r, θ)

⎫⎬⎭ =

⎧⎨⎩ φs(r)
ws(r)
Fs(r)

⎫⎬⎭+ ε

⎧⎨⎩ φn(r)
wn(r)
Fn(r)

⎫⎬⎭ cosnθ, ψ(r, θ) = ψn(r) sinnθ, (5)

where φs(r), ws(r), Fs(r) describe prebuckling axisymmetric state, ε is a small
parameter, n is a mode number and φn(r),ψn(r),wn(r),Fn(r) are the non-
symmetrical components.

For the symmetrical problem Eqs. (1) can be reduced to

φs = −pr

2
− W0Φ0

r
,

g1

(
W ′′

0 +
W ′

0

r
− λ2W0

r2

)
+ g′1

(
W ′

0 +
νθ
r
W0

)
= φs

(μθ

r2
− 1
)
− μr

r
(rφ′

s)
′
,

g2

(
Φ′′
0 +

Φ′
0

r
− Φ0

r2

)
+ g′2

(
Φ′
0 −

νθ
r
Φ0

)
= −W 2

0

2r
,

W0 = w′
s, Φ0 = F ′

s

(6)

with boundary conditions

W0(1) = 5μrφs/2, Φ0(1) = 0. (7)
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Deriving system (6) we use the limiting conditions for the function φs(r) at the
plate center (r = 0).

Substituting (5) in (1), (3), using Eqs. (6), (7) we obtain after linearization
with respect to ε

φ′
n +

φn

r
+

nψn

r
=

w′′
n

r
Φ0 +

F ′′
n

r
W0 −W ′

0

(
F ′
n

r
− n2

r2
Fn

)
− Φ′

0

(
w′

n

r
− n2

r2
wn

)
g1L

n
1 (wn) + g′1Ln+

1 + (wn)− Ln
1φn

(φ)− Ln
1ψ(ψn) = −φn,

g1L
n
2 (wn) + g′1Ln

2 (wn)− Ln
2φ(φn)− Ln

2ψ(ψn) = −ψn,

g2L3(Fn) + g′2Ln−
3 (Fn) + g′′2Ln−

1 (Fn) = −W ′
0

(
w′

n

r
− n2

r2
wn

)
− w′′

n

r
W0

(8)
with the constraints

wn(1) = 0, w′
n(1) = 5μrφn/2, F ′

n(1) = Fn(1) = 0. (9)

Expressions for Ln
i , Ln

i , L
n
jφ, L

n
jψ , i = 1, 2, 3, j = 1, 2 are listed in Appendix.

Buckling equations (8)-(9) constitute an eigenvalue problem, in which the
parameter p is implicit and appears in the equations through the functions W0

and Φ0.
We use the shooting method to solve nonlinear axisymmetric problem (7)

together with (8). To determine the value of p, for which (8)-(9) have nontrivial
solution, the finite difference method is employed [3]. We refer to the smallest of
these eigenvalues as the buckling load. The step of the difference grid is chosen so
that by reducing the step by 2 the value of the critical load varied less than 1%.

4 Results and Discussion

The physical mechanism that initiates the buckling about the axisymmetric state
into an unsymmetric equilibrium state is proposed in [1], [3]. A ring of large cir-
cumferential compressive stress develops near the edge of the plate and indicates
possibility of wrinkling near the edge. For non-uniform plate dimensionless ax-
isymmetrical circumferential stress for increasing values of load parameter p has
been plotted in Fig. 1. As one can see, the compressive stress intensity increases
with the load, but the width of the compressive ring decreases. Thus for suf-
ficiently large load, the plate may buckle unsymmetrically into circumferential
waves near the boundary.

In order to study the effect of the varying rate of inhomogeneity on the crit-
ical load and buckling mode, we solved the corresponding problem for two dif-
ferent law of material inhomogeneity: E = Ē0 exp

−q1r and E = Ê0 exp
−q2r

2

.
The buckling load for unsymmetrical buckling was calculated numerically over
a large range of parameters Ē0, Ê0, q1,2, but for constant average value of the in-
plane elastic modulus (2). The results are summarized in Table 1 and Fig. 2.
The parameter value q = 0 corresponds to uniform plate with constant Young’s
modulus.
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Fig. 1. Dimensionless axisymmetrical circumferensial stress Tθ for increasing values of

load p. Law of material inhomogeneity is taken as f(r) = exp−2r2 .

Table 1. Buckling load and corresponding wave numbers for the nonuniform plate

q = 0 q = 0.5 q = 1 q = 3 q = 5

E = Ē0e
−qr pcr 64522 56841 49207 26324 12123

n 14 14 14 15 17

E = Ê0e
−qr2 pcr 64522 53287 44137 20843 9103

n 14 14 14 16 20

As the rate of inhomogeneity q increases the buckling mode shows more and
more waves in the circumferential directions (Tab. 1). The buckling load of
nonuniform circular plate is approximately 6 times less than the buckling load
of uniform plate, see Fig. 2.

For the consecutive wave number we noted closely adjacent values of the
critical load, e.g. for the uniform plate the critical loads differ between each
other by less than 1% (pcr = 64522 for n = 14 and pcr = 64929 for n = 13).
The heterogeneous plate (with the rate function f(r) = exp−4r) wrinkles at
pcr = 18355 and the buckling mode has 16 waves, while for 15 waves the critical
load is 18416. Thus, the considered plate is sensitive to initial imperfections of
form or to initial stresses.

Buckling of axisymmetric equilibrium states of isotropic homogeneous circular
plates was studied in [3]. The authors took the grid step to be δ = 0.02 and
obtained the critical load value of 62800. We used the mesh size δ = 0.01 in
most calculations. For a twice larger mesh our results coincide with those found
in [3].
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Fig. 2. Buckling load of heterogeneous plate. p0cr denotes the buckling pressure for
uniform plate.

Pre-buckling stress-state in a narrow zone near the plates’s edge makes a
major contribution to the unsymmetrical buckling mode and the value of the
critical load. Change of elastic moduli ratio Er/Eθ affects the deformed shape in
the same manner as varying the in-plane Young’s modulus in the radial direction.
Thus, decreasing the ratio Er/Eθ causes the smaller critical load and the large
mode number in the circumferential directions.

For numerical examples the plate properties are taken from literature as
material properties of the Lamina Cribrosa (LC) of the human eye [6]: the
in-plane modulus and Poisson’s ratio are assumed to be Eav

r =0.3MPa, ν =
0.45, h/R = 0.1. By taking inhomogeneity parameter q = 5 we find that the
non-axisymmetric buckling occurs under pressure about 60 mm Hg. So, from
mechanical point of view, folds at the periphery of LC could be explained
by the bucking of the axisymmetric state of the LC in the nonaxisymmetric
state.

5 Conclusion

The critical pressure for unsymmetric buckling is significantly lower than for a
plate with constant elastic moduli, if the elasticity moduli decrease away from
the center of a plate. Number of waves in the circumferential direction increases
with degree of nonuniformity. The folders in the narrow zone at the periphery of
the Lamina Cribrosa (LC) of the human eye could be explained by the buckling
of the axisymmetric state of LC in the nonaxisymmetric state.
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Appendix

The linear differential operators that appear in (1) are define by

L1(y) = y′′′ +
y′′

r
+

λ2
rθ

r

(
ÿ

r

)′
− λ2

(
y′

r2
+

ÿ

r3

)
, L±

1 (y) = y′′ ± νθ

(
ÿ

r2
+

y′

r

)
,

L2(y) =

(
λ2

(
y′

r2
+

ÿ

r3

)
+ λ2

rθ

y′′

r

).

, L2(y) = λ2
k

(
ẏ

r

)′
,

L1φ(y) = μr

(
y′′ +

y′

r

)
− μθ

y

r2
+ μk

ÿ

r2
, L2φ(y) = μθ

ẏ

r2
+ μrθ

ẏ′

r
− μk

(
ẏ

r

)′
,

L1ψ(y) = ηrθ
ẏ′

r
− ηθ

ẏ

r2
− ηk

(
ẏ

r2
+

ẏ′

r

)
, L2ψ(y) = ηθ

ÿ

r2
+ ηk

(
y′′ +

y′

r

)′
,

L3(y) = y′′′′ +
2y′′′

r
+

κ2

r2

(
y′′ − y′

r
+

y

r2

)..

+ λ2

(
y′

r3
− y′′

r2
+

(
2
y

r4
+

ÿ

r4

)..)
,

L±
3 (y) = 2y′′′ +

2± νθ
r

y′′ − λ2

(
y′

r2
+

ÿ

r2

)
− κ2 1

r

(
ÿ

r

)′

with the short-hand notations

λ2 =
Dθ

Dr
, λ2

rθ =
Drθ

Dr
, λ2

k =
Dk

Dr
, κ2 =

Eθ

Grθ
− 2νθ,

μi =
6

5hR2

Di

Grz
, i = {r, rθ, θ, k}, ηj =

6

5hR2

Dj

Gθz
, j = {rθ, θ, k},

Di =
h3Ei

12(1− νrνθ)
, (i = r, θ), Dk =

h3

12
Grθ, Drθ = Drνθ + 2Dk.

Here Dr, Dθ, Dk are the bending stiffnesses, Er, Eθ are the Young moduli in
the radial and the circumferential directions, respectively; νr, νθ are correspond-
ing Poisson’s ratios; Grθ, Grz , Gθz are shear moduli characterising changes of
angle between the r- and θ-, the r- and z-, the θ- and z-directions, respectively.
The equality Er/Eθ = νr/νθ must be satisfied due of the symmetry.

For an isotropic plate Er = Eθ = E, νr = νθ = ν, Grθ = E/2(1 + ν),
Dr = Dθ = Drθ so λ = λrθ = λk = 1, κ2 = 2.
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After separation of variables the linear differential operators take the form

Ln
1 (y) = y′′′ +

y′′

r
− (λ2 + n2λ2

rθ)
y′

r2
+ n2λ

2 + λ2
rθ

r3
,

Ln±
1 (y) = y′′ ± νθ

(
y′

r
− n2y

r2

)
, Ln

1φ(y) = μr

(
y′′ +

y′

r

)
− (μθ + n2μk)

y

r2
,

Ln
1ψ(y) = n

(
y′
ηrθ − ηk

r
− y

ηθ + ηk
r2

)
,

Ln
2 (y) = −λ2ny

′

r2
− nλ2

(
y′

r2
− n2y

r3

)
, Ln

2 (y) = −nλ2
k

(
y′

r
− y

r2

)
,

Ln
2φ(y) = n

(
y′
μrθ + μk

r
− y

μθ + μk

r2

)
, Ln

2ψ(y) = ηk

(
y′′ +

y′

r

)′
− ηθ

n2y

r2
,

Ln
3 (y) = y′′′′ +

2

r
y′′′ − λ2 + n2κ2

r2
y′′ +

λ2 + n2κ2

r3
y′′ + n2(n2λ2 − (2λ2 + κ2))

y

r4

L±
3 (y) = 2y′′′ +

2± νθ
r

y′′ − λ2

(
y′

r2
− n2y

r2

)
+ κ2n

2

r2

(
y′ − y

r

)
,
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Abstract. In this paper we present a locally one-dimensional (LOD)
splitting method to the two-dimensional Black-Scholes equation, arising
in the Hull & White model for pricing European options with stochastic
volatility. The parabolic equation degenerates on the boundary x = 0 and
we apply to the one-dimensional subproblems the fitted finite-volume
difference scheme, proposed in [8], in order to resolve the degenera-
tion. Discrete maximum principle is proved and therefore our method
is positivity-preserving. Numerical experiments are discussed.

1 Introduction

In 1987 Hull & White proposed a model for valuing an option with a stochas-
tic volatility of the price of the underlying stock [7]. The Hull & White PDE
constitutes an important two-dimenstional extension to the celebrated, one-
dimensional, Black-Scholes PDE. Over the years, several numerical methods have
been developed to solve different two-dimensional problems [4,6,5].

This paper deals with the numerical solution of the Black-Scholes equation in
stochastic volatility models. The features of this time-dependant, two-
dimensional convection-reaction-diffusion problem is the presence of a mixed
spatial derivative term, stemming from the correlation between the two under-
lying stochastic processes for the asset price and it’s variance, and degeneration
of the parabolic equation on the part of the domain boundary. Existence of so-
lutions to the degenerate parabolic PDEs such as the Hull & White model does
not follow from classical theory and additional analysis is needed [5].

We formulate the differential problem and present a brief analysis for exis-
tence and uniqueness of a weak solution in Section 2. Section 3 contains the full
description of the splitting method. In Section 4 we perform numerical experi-
ments with the splitting scheme, where we analyze global errors in the strong
norm and the L2-norm.

2 The Differential Problem

Consider a European option with stochastic volatility √
y and an expiry date T .

It has been shown in [7] that it’s price, u, satisfies the following second-order
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differential equation

−∂u

∂t
− 1

2

[
x2y

∂2u

∂x2
+ 2ρξxy3/2

∂2u

∂x∂y
+ ξ2y2

∂2u

∂y2

]
− rx

∂u

∂x
−μy

∂u

∂y
+ ru = 0, (1)

for (x, y, t) ∈ (0, X)×(ζ, Y )×(0, T ) := Ω×(0, T ) with appropriate final (pay-off)
and Dirichlet boundary conditions of the form

u(x, y, T ) = uT (x, y), (x, y) ∈ Ω, (2)
u(x, y, t) = uD(x, y, t), (x, y, t) ∈ ∂Ω × (0, T ), (3)

where x denotes the price of the underlying stock, ξ and μ are constants from the
stochastic process, governing the variance y, ρ is the instantaneous correlation
between x and y and ζ, X , Y and T are positive constants, defining the solution
domain. In (3) ∂Ω denotes the boundary of Ω and uT (x) and uD(x, t) are given
functions. For the choices of these functions we refer to [5]. As mentioned in
[7], ρ can not take negative value, ρ ∈ [0, 1). In this paper we assume that
ρ ∈ [0, 1) is a constant. Also, the independent variable y satisfies, in general,
y ≥ 0. However the case that y = 0 is trivial because it means that the volatility
of the stock is zero in the market. This stock then becomes deterministic, which
is impossible unless the stock is a risk-less asset. In this case the price of the
option is deterministic. Therefore it is reasonable to assume that y ≥ ζ for a
(small) positive constant ζ.

Introducing a new variable ũ = exp(βt)u and coming back to the previous
notation, (1) is rewritten in the following general equation after a change in the
time variable t̃ = T − t

∂u

∂t
−∇ · (k(u)) + cu = g, (4)

k(u) = A∇u + bu is the flux, b =
(
rx − 3

4ρy
1/2ξx− yx, μy − 1

2ρy
1/2ξ − ξ2y

)T
,

A =

(
a11 a12
a21 a22

)
=

(
1
2yx

2 1
2ρy

3/2ξx
1
2ρy

3/2ξx 1
2ξ

2y2

)
,

c = β + 2r − 3

4
ρy1/2ξ − y + μ− 3

4
ρy1/2ξ − ξ2.

(5)

We consider the ramp payoff terminal condition, given by

uT (x, y) = max(0, x− E), (x, y) ∈ Īx × Īy, Ix = (0, X) and Iy = (0, Y ), (6)

where E < X denotes the exercise price of the option.
The solution domain of the above problem contains four boundary surfaces,

defined by x = 0, x = X , y = ζ and y = Y . The boundary conditions at x = 0
and x = X are simply taken to be the extension of the terminal conditions at
the points, i.e.

uD(0, y, t) = uT (0, y) = 0, and uD(X, y, t) = uT (X, y). (7)
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To determine the boundary conditions at y = ζ and y = Y we need to solve the
standard one-dimensional Black-Scholes equation, obtained by taking ξ = μ = 0
in (1) for two particular values σ =

√
ζ and σ =

√
Y with the boundary and

terminal conditions defined above.

3 LOD Additive Splitting and Full Discretization

In this section we present the numerical method.

3.1 The Splitting Method

We start with rewriting our equation in a conservative form

∂u

∂t
=

∂

∂x

(
a11

∂u

∂x
+

(
b1 −

∂a12
∂y

)
u

)
− c1u

+
∂

∂y

(
a22

∂u

∂y
+

(
b2 +

∂a21
∂x

)
u

)
− c2u+

∂

∂y

(
(a12 + a21)

∂u

∂x

)
,

where a11, a22, a12 = a21 and b1, b2 are as given in (5) and c1 + c2 = c.
Our flux-based finite volume spatial discretization benefits from the following
representation

∂u

∂t
=

∂

∂x
(xw(x, y, u)) − qu+

∂

∂y
(yŵ(y, u))− q̂u+

∂

∂y

(
k(x, y)

∂u

∂x

)
,

w(x, y, u) = 0.5xy
∂u

∂x
+
(
r − y − 1.5ρξy1/2

)
u, q(y) = 1.5r − y − 1.5ρξy1/2,

ŵ(x, y, u) = 0.5ξ2y
∂u

∂y
+
(
μ− ξ2

)
u, q̂(y) = 0.5r + μ− ξ2, k(x, y) = ρξxy3/2.

(8)

Let us introduce the notations:

L1u =
∂

∂x
(xw(x, y, u)) − qu,

L2u =
∂

∂y
(yŵ(y, u))− q̂u+

∂

∂y

(
k(x, y)

∂u

∂x

)
.

An equidistant truncation of [0, T ]
{
tk = kτ, k = 0, 1, . . . ,K, τ = T

K

}
, a non-

uniform mesh w = wx×wy by space steps for x and y are hx
i , i = 0, ..., N−1 and

hy
j , j = 0, ...,M − 1 respectively and a secondary mesh xi±1/2 = 0.5(xi±1 + xi),
yj±1/2 = 0.5(yj±1 + yj), x−1/2 ≡ x0 = 0, xN+1/2 ≡ xN = X , y−1/2 ≡ y0 = ζ,
yM+1/2 ≡ yM = Y allow us to consider the LOD additive scheme:

u(1)

⎧⎪⎪⎨⎪⎪⎩
∂u(1)

∂t = L1u(1), tk < t ≤ tk+1,
u(1)(x, y, 0) = uT (x), (x, y) ∈ [0, X)× [ζ, Y ],
u(1)(0, y, t) = uD(0, y, t), (y, t) ∈ [ζ, Y ]× [0, T ],
u(1)(X, y, t) = uD(X, y, t), (y, t) ∈ [ζ, Y ]× [0, T ],

(9)
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u(2)

⎧⎪⎪⎨⎪⎪⎩
∂u(2)

∂t = L2u(2), tk < t ≤ tk+1, k = 1, 2, . . . ,K,
u(2)(x, y, tk) = u(1)(x, y, tk+1), (x, y) ∈ [0, X)× [ζ, Y ],
u(2)(x, ζ, t) = uD(x, ζ, t), (x, t) ∈ (0, X ]× (0, T ],
u(2)(x, Y, t) = uD(x, Y, t), (x, t) ∈ (0, X ]× (0, T ].

(10)

3.2 Analysis of Time Semi-discretization

In order to proceed with the analysis of the time semi-discretization we assume
that the following condition is fulfilled:

Assumption 1. u, L1u, L2u, L
2
1u, L

2
2u, L1L2u, L2L1u ⊂ C(Ω × [0, T ])

as well as the boundary and initial conditions are compatible and smooth enough.
We define the global error Eτ = supk≤T

τ

∥∥u(tk)− uk
∥∥
∞,Ω

for semi-
discretization, where uk is the solution of the semi-discrete system, resulting
from (9) and (10). By similar considerations as in [2], one can prove the follow-
ing theorem:

Theorem 1. If the solution of the continuous problem (1)-(3) satisfies the re-
strictions in Assumption 1 then Eτ ≤ Cτ , where C is a constant, independent
of τ .

3.3 The Finite Volume Method and Full Discretization

We now proceed to the derivation of the full discretization of problem (1)-(3).
By (8) we have

w(u) = 0.5xy
∂u

∂x
+
(
r − y − 1.5ρξy1/2

)
u =: ā(y)x

∂u

∂x
+ b̄(y)u,

where ā(y) = 0.5y and b̄(y) = r − y − 1.5ρξy1/2 are notations, used in the next
considerations.

Let y is fixed. After time discretization we integrate the first equation in (9)
w.r.t. x in the interval

(
xi−1/2, xi+1/2

)
, i = 1, 2, . . . , N − 1 and applying the

mid-point quadrature rule to the integrals in the equation we arrive at

u
k+1/2
i − uk

i

τ
�
x
i =

(
xi+1/2 w(u

k+1/2)
∣∣∣
xi+1/2

−xi−1/2 w(u
k+1/2)

∣∣∣
xi−1/2

)
− c1(y)u

k+1/2
i �

x
i ,

(11)

where �
x
i = xi+1/2 − xi−1/2, ui = u(xi, y, t) and c1(y) = 1.5r − y − 1.5ρξy1/2.

Following [8], see also [1], in order to obtain an approximation for the flux in the
node xi+1/2, we consider the following BVP(

āi+1/2(y)xv
′ + b̄i+1/2(y)v

)′
x
= 0, x ∈ Ii, v(xi) = ui, v(xi+1) = ui+1.
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The solution of that problem is

wi+1/2(u) = b̄(y)
x
ᾱi(y)
i+1 ui+1 − x

ᾱi(y)
i ui

x
ᾱi(y)
i+1 − x

ᾱi(y)
i

, ᾱi =
b̄i+1/2

āi+1/2
.

When deriving the approximation of the flux at x1/2, because of the degenera-
tion, we consider the BVP with an extra degree of freedom [8](

ā(y)xv′ + b̄(y)v
)′
x
= C1, x ∈ I0, v(0) = u0, v(x1) = u1

and the approximation for w1/2(u) is 1
2

[(
ā(y) + b̄(y)

)
u1 −

(
ā(y)− b̄(y)

)
u0
]
.

It was first mentioned in [3] that the boundary conditions deteriorate the
accuracy of the splitting method if the discrete equations on the boundaries
differ from the equations for the inner nodes of the mesh. We adopt the following
correction technique [9]:

ū0,j = uD(0, yj, t
n+1), ūX,j = uD(X, yj , t

n+1), j = 0, . . . ,M,

Λ̄1ūi,0 − Λ1u
n
i,0 = 0, Λ̄1ūi,Y − Λ1u

n
i,Y = 0, i = 1, . . . , N − 1,

where the discrete operators Λ̄1 and Λ1 match the presented discretization in
the x-direction and ū is the numerical solution, corresponding to uk+1/2.

Next, after substituting the obtained approximations for the flux in (11),
considering the boundary conditions, we arrive at the scalar form of the discrete
problem for ū,

B0ū0,j + C0ū1,j = F0,

A1ū0,j +B1ū1,j + C1ū2,j = F1,

.................................................

Aiūi−1,j +Biūi,j + Ciū1,j = Fi,

A1ūN−1,j +BN ūN,j = FN ,

for i = 2, . . . , N − 1, where

B0 = 1, C0 = 0, F0 = uD(0, y, tk+1), AN = 0, BN = 1, F (N) = uD(X, y, tk+1),

A1 = −x1/2

2

(
ā(yj)− b̄(yj)

)
, C1 = −x3/2b̄(yj)x

α(yj )

2

x
α(yj )

2 −x
α(yj)

1

,

B1 =
�
x
2

τ +
x3/2b̄(yj)x

α(yj)

1

x
α(yj)

2 −x
α(yj)

1

+
x1/2

2

(
ā(yj) + b̄(yj)

)
+ �x2c1(yj), F1 =

�
x
2

τ ,

Ai = −xi−1/2b̄(yj)x
α(yj )

i−1

x
α(yj)

i −x
α(yj)

i−1

, Ci = −xi+1/2b̄(yj)x
α(yj)

i+1

x
α(yj )

i+1 −x
α(yj )

i

,

Bi =
�
x
i

τ +
xi+1/2b̄(yj)x

α(yj)

i

x
α(yj)

i+1 −x
α(yj)

i

+
xi−1/2b̄(yj)x

α(yj)

i

x
α(yj)

i −x
α(yj)

i−1

+ �xi c1(yj), Fi =
�
x
i

τ .

The discretization of the problem (10) is obtained by similar considerations.

Introducing α̂j =
b̂j+1/2

âj+1/2
, we obtain

ûi,0 = uD(xi, ζ, tk+1),
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yj−1/2

b̂j−1/2y
α̂j−1

j−1

y
α̂j−1

j − y
α̂j−1

j−1

ûi,j−1 −
[
�
y
j

τ
+ yj+1/2

b̂j+1/2y
α̂j

j

y
α̂j

j+1 − y
α̂j

j

+ yj−1/2

b̂j−1/2y
α̂j−1

j

y
α̂j−1

j − y
α̂j−1

j−1

−�
y
j ĉ
]
ûi,j + yj+1/2

b̂j+1/2y
α̂j

j+1

y
α̂j

j+1 − y
α̂j

j

ûi,j+1 = −
�
y
j ūi,j

τ
− 0.25k(xi, yj+1/2)

×
(
ūi+1,j+1 − ūi,j+1 + ūi+1,j − ūi,j

hx
i

+
ūi,j+1 − ūi−1,j+1 + ūi,j − ūi−1,j

hx
i−1

)
+ 0.25k(xi, yj−1/2)

(
ūi+1,j − ūi,j + ūi+1,j−1 − ūi,j−1

hx
i

+
ūi,j − ūi−1,j + ūi,j−1 − ūi−1,j−1

hx
i−1

)
.

ûi,M = uD(xi, Y, tk+1),

By similar considerations as given in [8] we prove the following lemma and
theorem:

Lemma 2. The system matrices for both ū and û are (can be reduced to) M-
matrices.

Theorem 3. For a non-negative functions g(x) and φ(x, y, t) the numerical so-
lution û, generated by the our splitting method, is also non-negative.

One can see that the consistency of the space discretization above relies on
the consistency of the flux w(u) with respect to x (similar is the case for y). As
it was shown in [8] this discretization scheme admits a finite volume formulation
with special trial space Sh. Therefore the following analogue of the estimate in
Lemma 4.2 in [8] holds

‖w(v) − wh(vI)‖∞,Ii
≤ C‖w(v)‖∞,Ii , i = 1, 2, . . . , N,

where v is the sufficiently smooth function and vI is the Sh interpolant.

Theorem 4. Let u be the exact solution of (1)-(3) and un is the numerical
solution. Then, there exists a positive constant C, independent of N,M and τ
such that the global error satisfies∥∥u(tn)|Ωh

− un
∥∥
∞ ≤ C(τ + hx + hy),

where u(tn)|Ωh
is the restriction of the exact solution on the product of the

meshes with respect to x and y.

4 Numerical Experiments

Numerical experiments, presented in this section, illustrate the properties of the
constructed method. We solve numerically the following Test Problem:
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(TP ). Call option with final condition (6). Parameters: X = 100, Y = 1,
T = 1, ζ = 0.01, r = 0.1, ρ = 0.9, ξ = 1, μ = 0 and E = 57.

Table 1 shows the temporal convergence of the numerical solution to the
chosen exact solution, u = x exp(−yt), of (1). We use the parameters X = Y =
T = 1, ξ = 1 and ζ = 0.01. The size of the spatial mesh is now fixed to 512×512
as the time step varies. The obtained results show that our numerical method
profits from the boundary corrections since it is able to sustain the first order of
temporal convergence.

Table 1.

ρ = 0.5, r = 0, μ = 0 ρ = 0.9, r = 0.1, μ = 0.1

K EN
∞ RC EN

2 RC EN
∞ RC EN

2 RC

16 2.000e-2 - 7.138e-3 - 3.235e-2 - 1.157e-2 -
32 9.859e-3 1.02 3.585e-3 0.99 1.562e-2 1.05 5.753e-3 1.01
64 4.848e-3 1.02 1.796e-3 1.00 7.549e-3 1.05 2.864e-3 1.01

128 2.398e-3 1.02 8.980e-4 1.00 3.721e-3 1.02 1.427e-3 1.01
256 1.197e-3 1.00 4.477e-4 1.00 1.862e-3 1.00 7.099e-4 1.01

We now solve numerically the original problem TP , characterized by non-
smoothness of the terminal (initial) condition (6) on an uniform spatial mesh
sized N × N with 2N time layers. In the following Table 2 the mesh C-norm
and RMSE (root mean square error)-norm are computed w.r.t. the numerical
solution on a very fine mesh sized 512× 512× 1024. The boundary conditions in
direction x are derived by the terminal condition (7). The boundary conditions
in direction y are obtained as explained in Section 2, see Figures 1, 2. The RMSE
is computed on the region [0.9E, 1.1E]× [ζ, Y ]. The numerical solution of TP1
is visualized on Figure 3.

Table 2.

N 8 16 32 64 128 256
E∞ 4.0877 2.0678 0.9911 0.4559 0.1944 0.0649

(0.983) (1.061) (1.120) (1.230) (1.584)
ERMSE 0.7641 0.2649 0.1197 0.0551 0.0236 0.0079

(1.528) (1.146) (1.119) (1.223) (1.571)

Fig. 1. BC y = 0.01 Fig. 2. BC y = Y Fig. 3. Option Value TP
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5 Conclusion

In this paper we develop a locally one-dimensional splitting scheme, where the
spatial discretization is performed as a flux-based finite volume method [8]. We
prove the non-negativity of the numerical solution and first order convergence
in both space and time is shown by numerical experiments.
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Abstract. The valuation of Asian Options can often be reduced to the
study of initial boundary problems for ultra-parabolic equations. Two
splitting methods are used to transform the whole time-dependent prob-
lem of a fixed strike Asian option into two unsteady subproblems of a
smaller complexity. The first subproblem is a time-dependent convection-
diffusion and the finite volume difference method of S. Wang [6] is ap-
plied for its discretization. The second one is a transport problem and is
approximated by monotone weighted difference schemes. The positivity
property of the numerical methods is established. Numerical experiments
are discussed.

1 Introduction

Asian options are exotic financial derivative products whose price must be calcu-
lated by numerical evaluation. We consider here the financial instrument denoted
a fixed strike Asian option, which is basically a contract written at time t = 0
between a buyer and a seller, giving the buyer the right to receive an a priori
unknown, non-negative sum of money, the terminal payoff, at a predefined time
T sometimes in the future. T is called the time of expiration of the option. The
terminal payoff is related to the value of something called the underlying risky
assets; anything whose value S(t) at time t is determined by a certain stochastic
process will do, e.g. a stock. For an Asian option the terminal payoff must de-
pend on the value S(t) at time T of the risky asset. The terminal value at time
T is written max{k(S(T ), A(T )), 0} for some continuous function k to be nego-
tiated at time 0 between the buyer and the seller of the option, as for example
the average value put option k = K − A(T ) (see [2,5] for other cases) for some
predetermined strike price K. Following the so called axiom of no arbitrage
of our financial model (see [2,3,7]) the seller will want to get some money up
from to do you the service of selling you the option. The question is how much
money? Since no cheating is allowed, the seller will ask you exactly the fair
price V which is the amount of money that needs to go out in the market and
by copper enough to exactly pay for the loss he will have then. It turns out that

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 214–221, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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fair price V (S,A, t) is tractable and can be described as the solution to the value
problem

∂V

∂τ
=
σ2(t)

2
S2 ∂

2V

∂S2
+ (r(t) − γ(t))S

∂V

∂S
+ S

∂V

∂A
− r(t)V, (S, x, τ) ∈ Ω∞,

where Ω∞ = (0,∞) × (0,∞) × (0, T ) and V (S,A, T ) = max{k(S,A), 0} in
Ω∞|t=T . Here γ, σ > 0 and r are the dividend yield and the volatility (on
the risky asset) and the market interest rate (on the risk free assets). Finan-
cially, the solution on the entire domain Ω∞ is not of much interest. Gener-
ally, it is possible to insert artificial positive cut off values Smax and Amax

so that the interesting computational domain becomes the box {(S,A, t) ∈
(0, Smax)×(0, Amax)×(0, T )}. Then changing the variables x = Amax−A we will
solve the initial-boundary value problem in Ω = (0, Smax)× (0, xmax)× (0, T ),

∂V

∂τ
=
σ2(t)

2
S2 ∂

2V

∂S2
+ (r(t) − γ(t))S

∂V

∂S
− S

∂V

∂x
− r(t)V, (S, x, τ) ∈ Ω, (1)

V (S, x, 0) = max

{
xmax − x

T
−K, 0

}
, (2)

V (0, x, τ) = e−rτ max

{
xmax − x

T
−K, 0

}
, (3)

V (Smax, x, τ) = max

{
e−rτ

(
xmax − x

T
−K

)
+
Smax

rT

(
1− e−rτ

)
, 0

}
, (4)

V (S, 0, τ) =
(xmax

T
−K

)
e−rτ +

S

rT

(
1− e−rτ

)
. (5)

In recent years several numerical methods have been introduced for valuation
of Asian options [3-6], while the FEM for population balance equations proposed
in [1] could be implemented to our problem.

The rest of the paper is organized as follows. We construct two splittings for
the problem (1)-(4) in Section 2. In Section 3 we describe finite difference approx-
imations of the 1D subproblems. In Section 4 we provide numerical experiments
to demonstrate the performance of these splittings.

2 Two Splittings

We will describe two splittings of problem (1) - (5) into two subproblems: the
first with respect to (S, τ) and second one - with respect to (x, τ). Let introduce
the non-uniform mesh in time: 0 = τ1 < τ2 < · · · < τn < τn+1 < . . . τP+1 =
T, %τn = τn+1 − τn.
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2.1 Splitting 1

Problems 1.1. For given V (S, x, τn), find the function u(S, x, τ) that satisfies
the problem

1

2

∂u

∂τ
=

σ2(t)

2
S2 ∂

2u

∂S2
+ (r(t)− γ(t))S

∂u

∂S
− r(t)u, (6)

(S, x, τ ) ∈ (0, Smax)× (0, xmax)× (τn, τn+ 1
2
],

u(S, x, τn) = V (S, x, τn), (7)

u(0, x, τn+ 1
2
) = e

−rτ
n+1

2 max

{
Amax − x

T
−K, 0

}
, (8)

u(Smax, x, τn+ 1
2
) = max

{
e
−rτ

n+1
2

(
Amax − x

T
−K

)
+

Smax

rT

(
1− e

−rτ
n+1

2

)
, 0

}
(9)

Problem 1.2. For given u(S, x, τn+ 1
2
), find the function V (S, x, τ), that satisfies

1

2

∂V

∂τ
+ S

∂V

∂x
= 0, (S, x, τ) ∈ (0, Smax)× (0, xmax)× (τn+ 1

2
, τn+1], (10)

V (S, 0, τn+1) =
(xmax

T
−K

)
e−rτn+1 +

S

rT

(
1− e−rτn+1

)
, (11)

V (S, x, τn+ 1
2
) = u(S, x, τn+ 1

2
). (12)

2.2 Splitting 2

We start from the initial condition (2) with given V (S, x, 0) and solve conse-
quently two problems on each of the sub-intervals (τn, τn+1], n = 1, 2, . . . , P .

Problems 2.1. For given V (S, x, τn) find u(S, x, τ) that satisfies the problem

∂u

∂τ
=
σ2(t)

2
S2 ∂

2u

∂S2
+ (r(t) − γ(t))S

∂u

∂S
− r(t)u, (13)

(S, x, τ) ∈ (0, Smax)× (0, xmax)× (τn, τn+1],

u(S, x, τn) = V (S, x, τn), (14)

u(0, x, τn+1) = e−rτn+1 max

{
Amax − x

T
−K, 0

}
, (15)

u(Smax, x, τn+1) = max

{
e−rτn+1

(
Amax − x

T
−K

)
+
Smax

rT

(
1− e−rτn+1

)
, 0

}
.

(16)

Problems 2.2. For given u(S, x, τn+1) find V (S, x, τ) that satisfies the problem

∂V

∂τ
+ S

∂V

∂x
= 0, (S, x, τ) ∈ (0, Smax)× (0, xmax)× (τn, τn+1], (17)

V (S, 0, τn+1) =
(xmax

T
−K

)
e−rτn+1 +

S

rT

(
1− e−rτn+1

)
, (18)

V (S, x, τn) = u(S, x, τn+1). (19)
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3 Approximation of Problems 1.1, 1.2, 2.1, 2.2

We will implement the S. Wang difference scheme [6]. For simplicity we will
present the formulas for the case of constant with respect t coefficients in (1).

3.1 Approximation of the Problems 1.1, 2.1

Let introduce on (0, Smax) the mesh ws
h = {0 = S1 < S2 < · · · < SN+1 = Smax,

hi = Si+1 − Si, i = 1, 2, . . . , N} and auxiliary mesh w̃s
h = {Si+1/2 = 0.5(Si +

Si+1), i = 1, 2, . . . , N}. First we consider the problem 1.1. Let us rewrite the
equation (6) in conservative form.

1

2

∂u

∂τ
=

∂

∂S

(
aS2 ∂u

∂S
+ bSu

)
− cu, a =

σ2

2
, b = r − σ2, c = 2r − σ2. (20)

We integrate equation (20) on the interval (Si−1/2, Si+1/2) and using the cen-
tral rectangles formula to obtain

1

2

∂u

∂τ

∣∣∣∣
Si

�i =
[
Si+1/2 ρ(u)|Si+1/2

− Si−1/2 ρ(u)|Si−1/2

]
− c�iui, (21)

where �i = Si+1/2 − Si−1/2, ui = u(Si, x, τ), ρ(u) = aS ∂u
∂S + bu. In order to

obtain an approximation of the flux ρ(u) in the points Si+1/2, i = 2, 3, . . . , N at
fixed x and τ , we consider the boundary value problem:

(aSw′ + bw)
′
= 0, S ∈ Ii, w(Si) = ui, w(Si+1) = ui+1.

After suitable calculations we find

ρ(u)|Si+1/2
= ρi(u) = b

Sα
i+1ui+1 − Sα

i ui

Sα
i+1 − Sα

i

, ρi−1(u) = b
Sα
i ui − Sα

i−1ui−1

Sα
i − Sα

i−1

. (22)

This approach is not applicable to the flux on the intervals (S1, S2) = (0, S2)
because (20) degenerates. After tedious calculations, we obtain

ρ1(u) = 0.5 [(a+ b)u2 − (a− b)u1] . (23)

Now, using (22), (23), we define a global piecewise constant approximation
to ρ(u) by satisfying ρh(u) = ρi(u) for x ∈ Ii . Finally, placing ρh(u) in (21) at
fixed x, we obtain the system of ODEs

1

2

∂u

∂τ

∣∣∣∣
S=S2

�2 =

[
S5/2b

Sα
3 u3 − Sα

2 u2
Sα
3 − Sα

2

− h1
2
.
1

2
[(a+ b)u2 − (a− b)u1]

]
−�2cu2,

1

2

∂u

∂τ

∣∣∣∣
S=Si

�i =

[
Si+1/2b

Sα
i+1ui+1 − Sα

i ui

Sα
i+1 − Sα

i

− Si−1/2b
Sα
i ui − Sα

i−1ui−1

Sα
i − Sα

i−1

]
− �icui,

i = 3, N. (24)



218 T.P. Chernogorova and L.G. Vulkov

We approximate (24) in time t by weighting scheme adding the initial and
boundary conditions and taking into account the variable x. To this end we
introduce the mesh 0 = x1 < x2 < . . . < xj < xj+1 < . . . < xM+1 =
xmax, hx

j = xj+1 − xj . Then we get on the new time level for the unknowns
ui,j ≈ V (Si, xj , τn), i = 1, 2, . . . , N + 1, j = 1, 2, . . . ,M + 1, n = 1, 2, . . . P, the
system of algebraic equation (at fixed j):

∣∣∣∣∣∣
Lhu1 = −C1ū1 +B1ū2 = F1,
Lhui = Aiūi−1 − Ciūi +Biūi+1 = Fi, i = 2, 3, . . . , N,
LhuN = AN+1ūN − CN+1ūN+1 = FN+1,

(25)

F1 = −e
−rτ

n+1
2 max

{
Amax − xj

T
−K, 0

}
, j = 2, 3, . . . ,M, n = 1, 2, . . . , P,

C1 = 1, B1 = 0, A2 =
θh1
4
(a− b) , B2 =

θS5/2bS
α
3

Sα
3 − Sα

2

,

C2 =
�2

Δτn
+

θh1
4
(a+ b) +

θS5/2bS
α
2

Sα
3 − Sα

2

+ θ�2c,

F2 = − �2

Δτn
u2,j − (1− θ)

[
S 5

2
b
Sα
3 u3,j − Sα

2 u2,j
Sα
3 − Sα

2

− h1
4

[
(a+ b)u2,j − (a− b)u1,j

]]
+(1− θ)�2cu2,j , j = 2, 3, . . . ,M, Ai =

θSi−1/2bS
α
i−1

Sα
i − Sα

i−1

, Bi =
θSi+1/2bS

α
i+1

Sα
i+1 − Sα

i

,

Ci =
�i

Δτn
+

θSi−1/2bS
α
i

Sα
i − Sα

i−1

+
θSi+1/2bS

α
i

Sα
i+1 − Sα

i

+ θ�ic,

Fi=− �i

Δτn
ui,j − (1− θ)

[
Si+1/2b

Sα
i+1ui+1,j − Sα

i ui,j

Sα
i+1 − Sα

i

−Si−1/2b
Sα
i ui,j − Sα

i−1ui−1,j

Sα
i − Sα

i−1

]
+(1− θ)�icui,j , i = 3, 4, . . . , N, j = 2, 3, . . . ,M + 1, AN+1 = 0, CN+1 = 1,

FN+1 = −max
{
e−rτn+1/2

(
Amax − xj

T
−K

)
+

Smax

rT

(
1− e−rτn+1/2

)
, 0

}
,

j = 1, 2, . . . ,M, n = 1, 2, . . . , P.

Lemma 1. Suppose that ui,j ≥ 0, i = 1, N + 1, j = 1,M + 1. Then for
sufficiently small %τn we have ui,j ≥ 0, i = 1, N + 1, j = 1,M + 1

Scetch of the Proof. Let us first investigate the off-diagonal entries of the
system matrix. For Ai at i = 3, 4, . . . , N we have

Ai =
θSi−1/2bS

α
i−1

Sα
i − Sα

i−1

=
θSi−1/2aαS

α
i−1

Sα
i − Sα

i−1

= θSi−1/2a
α

S̄i−1 − 1
> 0,

because when α < 0 0 < S̄i−1 =
(

Si

Si−1

)α
< 1, and when α > 0 S̄i−1 > 1.

AnalogouslyBi > 0, for i = 3, 4, . . . , N . For sufficiently smallΔτn the coefficients
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Ci > 0, i = 3, 4, . . . , N . Different is the situation for i = 2 and i = 3. From the
second and the third equation of (25) we get

ū2 =
B2

C2
ū3 −

F2 +A2F1

C2
, −C̃3ū3 +B3ū4 = F̃3,

C̃3 = C3 −
A3B2

C2
, F̃3 = F3 +A3

F2 +A2F1

C2
.

When Δτn is sufficiently small C2 = O
(

1
Δτn

)
, C3 = O

(
1

Δτn

)
. Therefore for

sufficiently small Δτn C̃3 > 0, C̃3 = O
(

1
Δτn

)
. Now, the discrete maximum

principle provides us that for sufficiently small time-step %τn the numerical
solution {ui,j} is non-negative.

Let us consider the second problem. For the boundary condition (11) we have:

V̂i,1 =
(xmax

T
−K

)
e−rτn+1 +

Si

rT

(
1− e−rτn+1

)
, i = 2, 3, . . . , N, n = 2, 3, . . . , P.

(26)
The initial condition is as follows

V (Si, xj , τn+1/2) = u(Si, xj , τn+1/2). (27)

We approximate equation (10) by the θ1 - scheme:

V̂i,j − ūi,j

Δτn
+ θ1Si

V̂i,j − V̂i,j−1

hx
j−1

+ (1− θ1)Si
ūi,j − ūi,j−1

hx
j−1

= 0, (28)

i = 2, N, j = 2,M + 1.

The following local approximation error θ1 �= 1
2 for O(%τ + h), %τ =

max%τn, h = maxhj and θ1 = 1
2 (O(τ2 + h). If θ1 = 0 scheme (25)-(27) is

monotone at %τ ≤
min

1≤j≤M
hx
j

Smax
, for θ1 = 1 is unconditionally monotone and for

θ1 = 0.5 it is monotone if %τ ≤
2 min

1≤j≤M
hx
j

Smax
. >From (28) we get for j = 2,M + 1

V̂i,j =

θ1SiΔτn
hx
j−1

V̂i,j−1 + ūi,j − (1 − θ1)SiΔτn
ūi,j−ūi,j−1

hx
j−1

+Δτnf

1 + θ1SiΔτn
hx
j−1

, i = 2, N.

(29)

Theorem 1. For sufficiently small time step %τ the numerical solutions ob-
tained by the Splittings 1,2 are non-negative.

From the discretization above, one can see that the consistency of the Split-
tings 1,2 relies on the consistency of the flux ρ(u) approximation. As it was
shown in [6] the discretization scheme in 3.1 admits a finite element formulation
with special trial space Sh. Then in our case the following analog of the estimate
in Lemma 4.2 in [6] holds:
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‖ρ(w)− ρh(w)‖∞,Ii ≤ C‖ρ′(w)‖∞,I , i = 1, 2, . . . , N.

where w is a sufficiently smooth function and wI is the Sh interpolant. Now,
using technique similar to those in Section u of [7], one can obtain the following
convergence result.

Theorem 2. Let V be exact solution of (1)-(4) and {V n} the numerical solution
of the splitting 1(2). Then, there exists a positive constant C, independent of
N,M and %τ , such that the global error satisfies

‖V (tn)|Ωh
− V n‖∞ ≤ C(%τ + h),

where u(tn)|Ωh
is the restriction of the exact solution on the product of the

meshes with respect to S and x.

4 Numerical Experiments

In order to observe the behaviour of the error for the two splittings we use the
analytical solution

Va(S, x, τ) = (2xmax − x) (S/Smax)
2
e−rτ .

Fig. 1. Analytical so-
lution Va at t = T .

Fig. 2. Numerical so-
lution at t = T .

Numerical experiments were performed for the different problems derived with:
the two splittings; consequently (S, τ), (x, τ) and on the back (x, τ), (S, τ); the
three schemes for the transport equation. For every one of the experiments the
time-step decreases to establishment of the first four digits of the relative C-norm
of the error at the last level τ = T , which is computed by by the formula∥∥V P+1

a − V P+1
∥∥
C
= max

i,j

∣∣∣(Va)
P+1
i,j − V P+1

i,j

∣∣∣ /max
i,j

∣∣∣(Va)
P+1
i,j

∣∣∣ .
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The most effective is the scheme for Splitting 1 performed in order to (S, τ), (x, τ)
combined with implicit scheme (θ1 = 1) for the transport equation. Results from
computation are presented in Table 1. The rate of convergence (RC) is calculated
using double mesh principle

RC = log2(ER
K/ER2K), ERK =

∥∥V P+1
a − V P+1

∥∥
C
, K = (N,M).

Table 1. Exact solution test

N M P Relative C−norm of the error RC
30 15 700 7.906 E-5 -
60 30 1200 2.077 E-5 1.93
120 60 6000 5.353 E-6 1.96
240 120 26000 1.358 E-6 1.98
480 240 130000 3.428 E-7 1.99

5 Conclusion

We derive and implement two splitting algorithms for a fixed strike Asian option
model. We use the fitted finite volume method for the spatial discretization of the
one-dimensional parabolic subproblems in combination with monotone weighted
difference schemes for the hyperbolic subproblems. The positivity preserving in
time of the numerical solution is shown. Numerical experiments suggest second-
order of convergence.
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Abstract. In this paper we present and analyze a set of predictor-
corrector iterative methods with increasing order of convergence, for
solving systems of nonlinear equations. Our aim is to achieve high order
of convergence with few Jacobian and/or functional evaluations. On the
other hand, by applying the pseudocomposition technique on each pro-
posed scheme we get to increase their order of convergence, obtaining
new high-order and efficient methods. We use the classical efficiency in-
dex in order to compare the obtained schemes and make some numerical
test.

Keywords: Nonlinear systems, Iterative methods, Jacobian matrix,
Convergence order, Efficiency index.

1 Introduction

Many relationships in nature are inherently nonlinear, which according to these
effects are not in direct proportion to their cause. In fact, a large number of
such real-world applications are reduce to solve nonlinear systems numerically.
Approximating a solution ξ of a nonlinear system F (x) = 0, is a classical problem
that appears in different branches of science and engineering.

Recently, for n = 1, many robust and efficient methods have been proposed
with high convergence order, but in most of cases the method cannot be ex-
tended for several variables. Few papers for the multidimensional case introduce
methods with high order of convergence. The authors design in [1] a modified
Newton-Jarrat scheme of sixth-order; in [6] a third-order method is presented
for computing real and complex roots of nonlinear systems; Shin et al. compare
in [8] Newton-Krylov methods and Newton-like schemes for solving big-sized
nonlinear systems; in [2] a general procedure to design high-order methods for
problems in several variables is presented.
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The pseudocomposition technique (see [5]) consists of the following: we con-
sider a method of order of convergence p as a predictor, whose penultimate step
is of order q, and then we use a corrector step based on the Gaussian quadra-
ture. So, we obtain a family of iterative schemes whose order of convergence is
min{q+ p, 3q}. This is a general procedure to improve the order of convergence
of known methods.

To analyze and compare the efficiency of the proposed methods we use the
classic efficiency index I = p1/d due to Ostrowski [7], where p is the order of
convergence, d is the number of functional evaluations, per iteration.

In this paper, we present three new Newton-like schemes, of order of conver-
gence four, six and eight, respectively. After the analysis of convergence of the
new methods, we apply the pseudocomposition technique in order to get higher
order procedures.

The convergence theorem in Section 2 can be demonstrated by means of the n-
dimensional Taylor expansion of the functions involved. Let F : D ⊆ Rn −→ Rn

be sufficiently Frechet differentiable in D. By using the notation introduced in
[1], the qth derivative of F at u ∈ Rn, q ≥ 1, is the q-linear function F (q)(u) :
Rn × · · · × Rn −→ Rn such that F (q)(u)(v1, . . . , vq) ∈ Rn. It is easy to observe
that

1. F (q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn),
2. F (q)(u)(vσ(1), . . . , vσ(q)) = F (q)(u)(v1, . . . , vq), for all permutation σ of

{1, 2 . . . , q}.

So, in the following we will denote:

(a) F (q)(u)(v1, . . . , vq) = F (q)(u)v1 . . . vq,
(b) F (q)(u)vq−1F (p)vp = F (q)(u)F (p)(u)vq+p−1.

It is well known that, for ξ + h ∈ Rn lying in a neighborhood of a solution ξ
of the nonlinear system F (x) = 0, Taylor’s expansion can be applied (assuming
that the Jacobian matrix F ′(ξ) is nonsingular), and

F (ξ + h) = F ′(ξ)

[
h+

p−1∑
q=2

Cqh
q

]
+O[hp], (1)

where Cq = (1/q!)[F ′(ξ)]−1F (q)(ξ), q ≥ 2. We observe that Cqh
q ∈ Rn since

F (q)(ξ) ∈ L(Rn × · · · ×Rn, Rn) and [F ′(ξ)]−1 ∈ L(Rn).
In addition, we can express the Jacobian matrix of F , F ′, as

F ′(ξ + h) = F ′(ξ)

[
I +

p−1∑
q=2

qCqh
q−1

]
+O[hp], (2)

where I is the identity matrix. Therefore, qCqh
q−1 ∈ L(Rn). From (2), we obtain

[F ′(ξ + h)]−1 =
[
I +X2h+X3h

2 +X4h
3 + · · ·

]
[F ′(ξ)]−1 +O[hp], (3)

where X2 = −2C2, X3 = 4C2
2 − 3C3,. . .
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We denote ek = x(k) − ξ the error in the kth iteration. The equation e(k+1) =
Lek

p + O[ek
p+1], where L is a p-linear function L ∈ L(Rn × · · · × Rn, Rn), is

called the error equation and p is the order of convergence.
The rest of the paper is organized as follows: in the next section, we present the

new methods of order four, six and eight, respectively. Moreover, the convergence
order is increased when the pseudocomposition technique is applied. Section 3 is
devoted to the comparison of the different methods by means of several numerical
tests.

2 Proposed High-Order Methods

Let us introduce now a new Jarratt-type scheme of five steps which we will
denote as M8. It can be proved that its first three steps are a fourth-order scheme,
denoted by M4, and its four first steps become a sixth-order method that will
be denoted by M6. The coefficients involved have been obtained optimizing the
order the convergence and the whole scheme requires three functional evaluations
of F and two of F ′ to attain eighth-order of convergence. Let us also note that
the linear systems to be solved in first, second and last step have the same matrix
and also have the third and fourth steps, so the number of operations involved
is not as high as it can seem.

Theorem 1. Let F : Ω ⊆ Rn → Rn be sufficiently differentiable in a neigh-
borhood of ξ ∈ Ω which is a solution of the nonlinear system F (x) = 0. We
suppose that F ′(x) is continuous and nonsingular at ξ and x(0) close enough to
the solution. Then, the sequence {x(k)}k≥0 obtained by

y(k) = x(k) − 2

3

[
F ′

(
x(k)

)]−1

F
(
x(k)

)
,

z(k) = y(k) +
1

6

[
F ′

(
x(k)

)]−1

F
(
x(k)

)
,

u(k) = z(k) +
[
F ′

(
x(k)

)
− 3F ′

(
y(k)

)]−1

F
(
x(k)

)
, (4)

v(k) = z(k) +
[
F ′

(
x(k)

)
− 3F ′

(
y(k)

)]−1 [
F
(
x(k)

)
+ 2F

(
u(k)

)]
,

x(k+1) = v(k) − 1

2

[
F ′

(
x(k)

)]−1 [
5F ′

(
x(k)

)
− 3F ′

(
y(k)

)] [
F ′

(
x(k)

)]−1

F
(
v(k)

)
,

converges to ξ with order of convergence eight. The error equation is:

ek+1 =

(
C2

2 − 1

2
C3

)(
2C3

2 + 2C3C2 − 2C2C3 −
20

9
C4

)
e8k +O[e9k].

By applying the next result, it is known (see [5]) that, the pseudocomposition
technique allows us to design methods with higher order of convergence.

Theorem 2. [5] Let F : Ω ⊆ Rn → Rn be differentiable enough in Ω and
ξ ∈ Ω a solution of the nonlinear system F (x) = 0. We suppose that F ′(x) is
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continuous and nonsingular at ξ. Let y(k) and z(k) be the penultimate and final
steps of orders q and p, respectively, of a certain iterative method. Taking this
scheme as a predictor we get a new approximation x(k+1) of ξ given by

x(k+1) = y(k) − 2

[
m∑
i=1

ωiF
′(η

(k)
i )

]−1

F (y(k)),

where η
(k)
i =

1

2

[
(1 + τi)z

(k) + (1− τi)y
(k)
]
and τi, ωi i = 1, . . . ,m are the nodes

and weights of the orthogonal polynomial corresponding to the Gaussian quadra-
ture used. Then,

1. the obtained set of families will have an order of convergence at least q;
2. if σ = 2 is satisfied, then the order of convergence will be at least 2q;
3. if, also, σ1 = 0 the order of convergence will be min{p+ q, 3q};

where

n∑
i=1

ωi = σ and

n∑
i=1

ωiτ
j
i

σ
= σj with j = 1, 2.

Each of the families obtained will consist of subfamilies that are determined
by the orthogonal polynomial corresponding to the Gaussian quadrature used.
Furthermore, in these subfamilies it can be obtained methods using different
number of nodes corresponding to the orthogonal polynomial used (see Table 1).
According to the proof of Theorem 2 the order of convergence of the obtained
methods does not depend on the number of nodes used.

Table 1. Quadratures used

Quadratures

Number of nodes Chebyshev Legendre Lobatto Radau

σ σ1 σ σ1 σ σ1 σ σ1

1 π 0 2 0 2 0 2 -1

2 π 0 2 0 2 0 2 0

3 π 0 2 0 2 0 2 0

Let us note that these methods, obtained by means of Gaussian quadratures,
seem to be known interpolation quadrature schemes such as midpoint, trape-
zoidal or Simpson’s method (see [4]). It is only a similitude, as they are not
applied on the last iteration x(k), and the last step of the predictor z(k), but on
the two last steps of the predictor. In the following, we will use a midpoint-like
as a corrector step, which corresponds to a Gauss-Legendre quadrature with one
node; for this scheme the order of convergence will be at least min{q + p, 3q},
by applying Theorem 2.
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The pseudocomposition can be applied on the proposed scheme M8 with iter-
ative expression (4), but also on M6. By pseudocomposing on M6 and M8 there
can be obtained two procedures of order of convergence 10 and 14 (denoted by
PsM10 and PsM14), respectively. Let us note that it is also possible to pseudo-
compose on M4, but the resulting scheme would be of third order of convergence,
which is worst than the original M4, so it will not be considered.

Following the notation used in (4), the last step of PsM10 is

x(k+1) = u(k) − 2

[
F ′
(
v(k) + u(k)

2

)]−1

F (u(k)), (5)

and the last three steps of PsM14 can be expressed as

v(k) = z(k) +
[
F ′

(
x(k)

)
− 3F ′

(
y(k)

)]−1 [
F
(
x(k)

)
+ 2F

(
u(k)

)]
,

w(k+1) = v(k) − 1

2

[
F ′

(
x(k)

)]−1 [
5F ′

(
x(k)

)
− 3F ′

(
y(k)

)] [
F ′

(
x(k)

)]−1
F
(
v(k)

)
, (6)

x(k+1) = v(k) − 2

[
F ′

(
w(k) + v(k)

2

)]−1

F (v(k)).

Fig. 1. Efficiency index of the different methods for different sizes of the system

If we analyze the efficiency indices (see Figure 1), we deduce the following
conclusions: the new methods M4, M6 and M8 (and also the pseudocomposed
PsM10 and PsM14) improve Newton and Jarratt’s schemes (in fact, the indices
of M4 and Jarratt’s are equal). Indeed, for n ≥ 3 the best index is that of M8.
Nevertheless, none of the pseudocomposed methods improve the efficiency index
of their original partners.
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3 Numerical Results

In this section, we test the developed methods to illustrate its effectiveness com-
pared with other methods. Numerical computations have been performed in
MATLAB R2011a by using variable-precision arithmetic, which uses floating-
point representation of 2000 decimal digits of mantissa. The computer specifica-
tions are: Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz with 16.00GB of RAM.
Each iteration is obtained from the former by means of an iterative expression
x(k+1) = x(k) − A−1b, where x(k) ∈ Rn, A is a real matrix n × n and b ∈ Rn.
The matrix A and vector b are different according to the method used, but in
any case, we use to calculate inverse −A−1b the solution of the linear system
Ay = b, with Gaussian elimination with partial pivoting. The stopping criterion
used is ||x(k+1) − x(k)|| < 10−200 or ||F (x(k))|| < 10−200.

Firstly, let us consider the following nonlinear systems of different sizes:

1. F1 = (f1(x), f2(x), . . . , fn(x)), where x = (x1, x2, . . . , xn)
T and fi : Rn →

R, i = 1, 2, . . . , n, such that

fi(x) = xixi+1 − 1, i = 1, 2, . . . , n− 1

fn(x) = xnx1 − 1.

When n is odd, the exact zeros of F1(x) are: ξ1 = (1, 1, . . . , 1)T and ξ2 =
(−1,−1, . . . ,−1)T .

2. F2(x1, x2) = (x21 − x1 − x22 − 1,− sin (x1) + x2) and the solutions are ξ1 ≈
(−0.845257,−0.748141)

T
and ξ2 ≈ (1.952913, 0.927877)

T
.

3. F3(x1, x2) = (x21 + x22 − 4,− exp (x1) + x2 − 1), being the solutions ξ1 ≈
(1.004168,−1.729637)T and ξ2 ≈ (−1.816264, 0.837368)T .

4. F4(x1, x2, x3) = (x21+x
2
2+x

2
3−9, x1x2x3−1, x1+x2−x23) with three roots ξ1 ≈

(2.14025, −2.09029, −0.223525)T , ξ2 ≈ (2.491376, 0.242746, 1.653518)T

and ξ1 ≈ (0.242746, 2.491376, 1.653518)T.

Table 2 presents results showing the following information: the different it-
erative methods employed (Newton (NC), Jarratt (JT), the new methods M4,
M6 and M8 and the pseudocomposed PsM10 and PsM14), the number of it-
erations Iter needed to converge to the solution Sol, the value of the stopping
factors at the last step and the computational order of convergence ρ (see [3])
approximated by the formula:

ρ ≈ ln(||x(k+1) − x(k)||)/(||x(k) − x(k−1)||)
ln(||x(k) − x(k−1)||)/(||x(k−1) − x(k−2)||) . (7)

The value of ρ which appears in Table 2 is the last coordinate of the vector ρ
when the variation between their coordinates is small. Also the elapsed time, in
seconds, appears in Table 2, being the mean execution time for 100 performances
of the method (the command cputime of Matlab has been used).

We observe from Table 2 that, not only the order of convergence and the
number of new functional evaluations and operations is important in order to
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Table 2. Numerical results for functions F1 to F4

Function Method Iter Sol ||x(k) − x(k−1)|| ||F (x(k)|| ρ e-time (sec)

F1 NC 8 ξ1 1.43e-121 2.06e-243 2.0000 8.6407

x(0) = (0.8, . . . , 0.8) n = 99 JT 4 ξ1 1.69e-60 2.06e-243 4.0000 3.9347

M4 4 ξ1 1.69e-60 2.06e-243 4.0000 3.7813

M6 4 ξ1 6.94e-193 4.33e-1160 6.0000 5.3911

M8 3 ξ1 9.40e-50 3.51e-4011 8.0913 5.0065

PsM10 3 ξ1 1.28e-91 9.54e-921 10.0545 4.9061

PsM14 3 ξ1 4.65e-164 0 14.0702 6.1018

F1 NC 17 ξ1 3.37e-340 1.14e-340 - 9.2128

x(0) = (0.0015, . . . , 0.0015) n = 99 JT 9 ξ1 8.18e-085 1.14e-340 4.0000 10.1416

M4 9 ξ1 8.18e-085 1.14e-340 4.0000 10.9104

M6 7 ξ1 1.40e-035 9.46e-216 - 12.3266

M8 19 ξ1 9.50e-030 1.29e-240 - 59.4832

PsM10 6 ξ1 3.02e-102 5.23e-1027 - 17.9957

PsM14 5 ξ1 1.84e-162 0 - 22.6130

F2 NC 9 ξ1 2.45e-181 5.92e-362 2.0148 0.2395

x(0) = (−0.5,−0.5) JT 5 ξ1 9.48e-189 8.13e-754 4.0279 0.3250

M4 5 ξ1 9.48e-189 8.13e-754 4.0279 0.1841

M6 4 ξ1 1.34e-146 2.14e-878 5.9048 0.2744

M8 3 ξ1 1.90e-038 1.23e-302 7.8530 0.3718

PsM10 3 ξ1 6.72e-72 2.68e-714 9.9092 0.4674

PsM14 3 ξ1 2.13e-122 1.95e-1706 13.9829 0.3187

F2 NC 13 ξ1 2.20e-182 2.73e-374 1.9917 0.3713

x(0) = (−5,−3) JT 7 ξ1 2.10e-179 4.51e-716 3.9925 0.4001

M4 7 ξ1 2.10e-179 4.51e-716 3.9925 0.7535

M6 8 ξ1 2.55e-036 5.81e-216 - 0.9382

M8 > 5000

PsM10 4 ξ1 2.59e-021 3.51e-208 - 0.4363

PsM14 29 ξ2 9.45e-020 5.05e-273 - 7.8090

F3 NC 10 ξ1 1.65e-190 4.61e-380 2.0000 1.4675

x(0) = (2,−3) JT 5 ξ1 8.03e-113 7.59e-450 3.9995 0.3151

M4 5 ξ1 8.03e-113 7.59e-450 3.9995 0.3034

M6 4 ξ1 1.25e-082 2.83e-493 6.0015 0.3696

M8 4 ξ1 1.54e-162 3.16e-1296 7.9993 0.4463

PsM10 3 ξ1 5.59e-044 1.40e-436 9.4708 0.4682

PsM14 3 ξ1 3.46e-068 3.45e-948 13.1659 0.5925

F3 NC 35 ξ1 3.71e-177 2.33e-253 - 1.4828

x(0) = (0.2, 0.1) JT 11 ξ1 3.29e-143 1.67e-574 - 0.7781

M4 11 ξ1 3.29e-143 1.67e-574 - 0.7535

M6 9 ξ1 1.31e-064 3.61e-385 - 0.8001

M8 n.c. ξ1
PsM10 5 ξ1 6.85e-156 1.06e-1555 - 0.6352

PsM14 8 ξ2 7.87e-155 0 - 1.1870

F4 NC 10 ξ1 1.03e-135 1.55e-270 1.9995 2.3263

x(0) = (1,−1.5,−0.5) JT 5 ξ1 9.94e-073 2.09e-289 4.0066 0.5296

M4 5 ξ1 9.94e-073 2.09e-289 4.0066 0.6340

M6 4 ξ1 9.31e-057 4.86e-338 5.9750 0.7443

M8 4 ξ1 4.43e-046 1.08e-364 - 0.8282

PsM10 3 ξ1 1.43e-031 1.04e-311 9.6674 0.8100

PsM14 3 ξ1 1.91e-033 4.05e-462 13.9954 1.0465

F4 NC 12 ξ1 1.08e-192 1.55e-384 1.9996 2.7271

x(0) = (7,−5,−5) JT 6 ξ1 2.31e-103 7.97e-412 4.0090 0.7761

M4 6 ξ1 2.31e-103 7.97e-412 4.0090 1.0301

M6 5 ξ1 2.99e-086 4.69e-515 - 1.0090

M8 15 ξ3 1.77e-071 1.48e-568 - 3.4007

PsM10 4 ξ1 6.86e-067 1.25e-666 - 1.0245

PsM14 7 ξ2 1.09e-130 9.15e-1825 - 1.8179

obtain new efficient iterative methods to solve nonlinear systems of equations. A
key factor is the range of applicability of the methods. Although they are slower
than the original methods when the initial estimation is quite good, when we are
far from the solution or inside a region of instability, the original schemes do not
converge or do it more slowly, the corresponding pseudocomposed procedures
usually still converge or do it faster.
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(a) M6 (b) PsM10

Fig. 2. Real dynamical planes for system (b) and methods M6 and PsM10

(a) M8 (b) PsM14

Fig. 3. Real dynamical planes for system (b) and methods M8 and PsM14

The advantage of pseudocomposition can be observed in Figures 2a, 2b (meth-
ods M6 and PsM10) and 3a, 3b (methods M8 and PsM14) where the dynamical
plane on R2 is represented: let us consider a system of two equations and two
unknowns (the case F2(x) = 0 is showed), for any initial estimation in R

2 rep-
resented by its position in the plane, a different color (blue or orange, as there
exist only two solutions) is used for the different solutions found (marked by a
white point in the figure). Black color represents an initial point in which the
method converges to infinity, and the green one means that no convergence is
found (usually because any linear system cannot be solved). It is clear that when
many initial estimations tend to infinity (see Figure 3a), the pseudocomposition
”cleans” the dynamical plane, making the method more stable as it can find one
of the solutions by using starting points that do not allow convergence with the
original scheme (see Figure 2b).

We conclude that the presented schemes M4, M6 and M8 show to be
excellent, in terms of order of convergence and efficiency, but also that the
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pseudocomposition technique achieves to transform them in competent and more
robust new schemes.
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Abstract. In this paper we consider finite-difference scheme for the
time-fractional diffusion equation with Caputo fractional derivative of
order α ∈ (0, 1) with the coefficient at the time derivative containing
Dirac delta distribution.
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1 Introduction

In recent years fractional differential equations have attracted many researchers
due to its demonstrated applications in engineering, physics, chemistry, and other
sciences (see e.g. [7,8]). In many cases fractional-order models are more adequate
than integer-order models, because fractional derivatives and integrals enable
the description of the memory properties of various materials and processes.
The analytical solutions of most fractional differential equations cannot be ob-
tained, and as consequence, approximate and numerical techniques are playing
important role in identifying the solutions behavior of such fractional equations.
Using the energy inequality method, a priori estimates for the solution of the
first and third boundary value problems for the diffusion-wave equation with
Caputo fractional derivative have been obtained in [2]. Lin and Xu at [6] exam-
ined a finite difference/Legandre spectral method to solve the initial-boundary
value time-fractional diffusion problem on a finite domain and they obtained
estimates of (2 − α)-order convergence in time and exponential convergence in
space. Some other methods for solving fractional differential equations can be
seen in [5], [11], [12]. In the present paper, we consider finite-difference scheme for
the time-fractional diffusion equation with Caputo fractional derivative of order
α ∈ (0, 1) with the coefficient at the time derivative containing Dirac delta dis-
tribution. Analogous problem for integer order diffusion equation is considered
in [3,4].
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2 Problem Formulation

Let Λ = (0, 1), I = (0, T ), be space and time domain respectively and Q = Λ×I.
Consider the model boundary value problem with concentrated capacity at an
interior point x = ξ:

∂α
0tu− ∂2u

∂x2
= f(x, t), x ∈ (0, ξ) ∪ (ξ, 1), t ∈ I, (1)

with homogeneous Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = 0, t ∈ I, (2)

and initial condition

u(x, 0) = 0, x ∈ Λ, (3)

where

∂α
0tu(x, t) =

1

Γ (1− α)

∫ t

0

uτ (x, τ)

(t− τ)α
dτ, (4)

is the Caputo fractional derivative of order α, 0 < α < 1. As a result the
conjugation conditions are fulfilled:

[u]x=ξ = u(ξ + 0, t)− u(ξ − 0, t) = 0, t ∈ I, (5)

and [
∂u

∂x

]
x=ξ

= K∂α
0tu(ξ, t), t ∈ I, K = const. > 0, (6)

Using the theory of generalized functions [14], the equation (1) and conditions
(5) and (6) can be rewritten as follows:

(1 +Kδ(x− ξ))∂α
0tu− ∂2u

∂x2
= f(x, t), (x, t) ∈ Q, K = const. > 0, (7)

where δ(x)is the Dirac’s delta generalized function.
There is another option for computing fractional derivatives [10]; the Riemann-
Liouville fractional derivative:

R∂α
0tu(x, t) =

1

Γ (1− α)

∂

∂t

∫ t

0

u(x, τ)

(t− τ)α
dτ, 0 < α < 1,

and it is connected to Caputo fractional derivative by relation:

R∂α
0tu(x, t) =

u(x, 0)

Γ (1− α)tα
+ ∂α

0tu(x, t). (8)

In contrast to the Caputo fractional derivative, when solving differential equa-
tions using Riemann-Liouville’s definition, it is necessary to define the fractional
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order initial conditions. It is worthwhile to note, by virtue of (8), that for ho-
mogeneous condition considered here, the Riemann-Liouville definition coincides
with Caputo version.

Let H be a real separable Hilbert space endowed with inner product (·, ·) and
norm || · ||. We also define the Sobolev spaces Hs((a, b);H) = W s

2 ((a, b);H),
H0((a, b);H) = L2((a, b);H) of the function u = u(t) mapping interval (a, b) ⊂
R into H .

We define space:

B1,α2 (Q) = L2(I;H
1
0 (Λ)) ∩B

α
2 (I; L̃2,K(Λ)), (9)

equipped with the norm

||u||
B1, α

2 (Q)
=
(
||u||2L2(I;H1

0 (Λ)) + ||u||2
B

α
2 (I;L̃2,K(Λ)

) 1
2

, (10)

where

||u||2
B

α
2 (I;L̃2,K(Λ))

=
1

Γ (1− α)

∫ T

0

(T − t)−α||u||2
L̃2,K(Λ)

dt, (11)

and

||u||2
L̃2,K(Λ)

= ||u||2L2(Λ) +Ku2(ξ). (12)

Lemma 1. [2] For any function v(t) ∈ H1(0, T ), one has the inequality

v(t)∂α
0tv(t) ≥

1

2
∂α
0tv

2(t), 0 < α < 1. (13)

Theorem 1. The solution of the problem (1)-(6) satisfies the a priori estimate:

||u||
B1, α

2 (Q)
≤ ||f ||L2(Q). (14)

Proof. Multiplying equation (7) by u(x, t) and integrating by parts with respect
to x from 0 to 1 we obtain the identity:∫

Λ

u∂α
0tudx+Ku(ξ, t)∂α

0tu(ξ, t) +

∫
Λ

∣∣∣∂u
∂x

∣∣∣2dx =

∫
Λ

fudx.

From virtue of inequality (u, f) ≤ ε||u||2+ 1
4ε ||f ||2, Poincaré-Friedrics inequality

||u||2L2(Λ) ≤
1
2 ||ux||2L2(Λ) and lemma 1 we further obtain

∂α
0t||u||2L̃2,K(Λ)

+ ||u||2H1
0 (Λ) ≤ ||f ||2L2(Λ). (15)

Integrating (15) with respect to t from 0 to T and using property that Caputo
and Rimman-Louville fractional derivative are the same when u(x, 0) = 0 we
finally obtain:

1

Γ (1− α)

∫ T

0

(T − t)−α||u||2
L̃2,K(Λ)

dt+ ||u||2L2(I;H1
0 (Λ)) ≤ ||f ||2L2(Q). (16)

��
It follows from the a priori estimate (14) that the solution of problem (7)-(3) is
unique and continuously depends on the input data.
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3 The Finite Difference Scheme

In order to construct a finite difference scheme to the boundary problem (1)-(6)
we construct a mesh on the rectangle Q = [0, 1] × [0, T ]. Let h = 1/N be the
mesh-size in the x-direction and τ = T/M the mesh-size in the t-direction, for
some positive integers N and M . We define the uniform mesh Qhτ on Q by

Qhτ = ωh × ωτ = {(xj , tm) : xj = jh, 0 ≤ j ≤ N, tm = mτ, 0 ≤ m ≤ M},

where
ωh = {xj = jh : 0 ≤ j ≤ N} = ωh ∪ {0, 1},

and
ωτ = {tm = mτ : 0 ≤ m ≤ M} = ωτ ∪ {0, T }.

We will use standard notation from the theory of finite difference schemes [9]:

v = v(x, t), vmj = v(xj , tm),

vx =
v(x+ h, t)− v(x, t)

h
= vx̄(x+h, t), vt =

v(x, t+ τ)− v(x, t)

h
= vt̄(x, t+τ)

Suppose for the simplicity that ξ is rational number. Then we can choose the
step h, so that ξ ∈ ωh.

If f(x, t) ∈ C(Q) then the problem (1)-(6) can be approximated on the mesh
Qhτ by the implicit difference scheme:

(1 +Kδh(x− ξ))Dα
τ v

m − vmxx̄ = fm, x ∈ ωh, m = 1, 2, ...,M, (17)

v(0, t) = 0, v(1, t) = 0, t ∈ ωτ ∪ {T } (18)

v(x, 0) = 0, x ∈ ωh, (19)

where

δh(x− ξ) =

{
0, x ∈ ωh \ {ξ}
1/h, x = ξ

is Dirac’s mesh function. Also, the Caputo fractional derivative is approximated
by [13]:

Dα
τ v

m =
1

Γ (2− α)τα

m−1∑
k=0

am−kv
k
τ ,

where am−k = (m− k)1−α − (m− k − 1)1−α.
Finite difference scheme (17)-(19) requires, at each time step, to solve a tri-
diagonal system of linear equations where the right-hand side utilizes all the
history of the computed solution up to that time.
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Let Hh denotes the set of functions defined on the mesh ωh and equal to zero
at x = 0 and x = 1. We define the inner product

(u,w)h = h
∑
x∈ωh

v(x)w(x),

discrete L2 and L̃2,K-norms

||v||2h = (v, v)h, ||v]|2h = h
∑

x∈ωh\{0}
v2(x), ||v||2

h̃,K
= (v, v)h +Kv2(ξ),

and the discrete Sobolev norm

||v||21,h = ||v||2h + ||vx]|2h.

We also define the norm

||v||2
B

1, α
2

h (Qhτ )
=

1

Γ (2− α)

∑
t∈ωτ

(
(T−t)1−α−(T−(t+τ))1−α

)
||v||2

h̃,K
+
∑
t∈ωτ

τ ||v||21,h.

Lemma 2. [1] For any function v(t) defined on the grid ωτ , the following in-
equality is valid:

vmDα
τ v

m ≥ 1

2
Dα

τ (v
m)2.

Theorem 2. The difference scheme (17)-(19) is absolutely stable and for its
solution the following a priori estimate is valid:

||v||
B

1, α
2

h (Qhτ )
≤ C||f ||L2(Qhτ ). (20)

Proof. If we proceed in the same way as in the proof of theorem 1, using lemma
2, we get:

(1, Dα
τ (v

m)2)h +KDα
τ v

2(ξ, tm)) + ||vm||2h,1 ≤ C||fm||2h. (21)

Multiplying inequality (21) by τ and summing over m from 1 to M − 1, we
obtain a priori estimate (20). The a priori estimate (20) implies the stability and
convergence of the difference scheme (17)-(19). ��

4 Numerical Experiment

To check the stability and convergence properties of the numerical method we
solved the problem (1)-(6) for K = 4π, ξ = 1

2 , T = 1 and

f(x, t) = sin(πx)

[
2t2−α

Γ (2− α)
+ π2t2

]
+ | sin(2πx)|

[
2t2−2α

Γ (3− α)
+ 4π2

]
.
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The exact solution of the above problem is u(x, t) = sin(πx)t2+| sin(2πx)| 2t2−α

Γ (2−α) .

Denote the maximum error

‖e(h, τ)‖∞ = ‖u− v‖∞ = max
ω̄τ

(
max
ω̄h

|u− v|
)
.

and error in B
1,α/2
h (Qhτ ) norm

‖e(h, τ)‖B = ‖u− v‖
B

1,α/2
h (Qhτ )

(22)

Table 1 lists the computational results with different time step sizes τ when
space step size is fixed as h = 2−13. From the table, we can draw the conclusion
that the order of convergence in time direction is 2− α.

Table 2 gives numerical results for small and fixed τ = 2−14 with different h.
The reason why we have used a very small τ is to make sure that the dominated
error is from space discretization. From the table, we can see that the order of
convergence in space direction is two.

The results for T=1 with h = τ = 1/60 are displayed in Fig.1, where the exact
solution is also depicted for comparison. From the results, we can see that the
numerical solution obtained by finite difference (17)-(19) is in good agreement
with exact solution.

Table 1. The experimental error results and convergence order in time direction (the
last column) with h = 2−13

α τ ||e(h, τ )||∞ ||e(h, τ )||B log2
||e(h,τ)||B

||e(h,τ/2)||B
0.5 2−5 2.205968e-3 6.190359e-3 1.47

2−6 7.936232e-4 2.222931e-3 1.48
2−7 2.839064e-4 7.995761e-4 1.48
2−8 1.011713e-4 2.857433e-5 1.49
2−9 3.594643e-5 1.018082e-5 no data

0.7 2−5 6.428188e-3 1.448575e-2 1.29
2−6 2.636782e-3 5.916592e-3 1.29
2−7 1.076979e-3 2.416312e-3 1.29
2−8 4.389248e-4 9.859266e-4 1.29
2−9 1.786251e-5 4.018979e-4 no data

0.9 2−5 1.704275e-2 2.768540e-2 1.11
2−6 7.995080e-3 1.285650e-2 1.10
2−7 3.742127e-3 5.998412e-3 1.10
2−8 1.749317e-3 2.803601e-3 1.10
2−9 8.171687e-4 1.311121e-3 no data

1 2−5 2.690193e-2 3.435696e-2 1.01
2−6 1.347861e-2 1.703289e-2 1.01
2−7 6.746233e-3 8.479882e-3 1.00
2−8 3.337484e-3 4.230770e-3 1.00
2−9 1.687831e-3 2.113081e-3 no data
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Table 2. The experimental error results and convergence order in space direction (the
last column) with τ = 2−14

α h ||e(h, τ )||∞ ||e(h, τ )||B log2
||e(h,τ)||B

||e(h/2,τ)||B
0.5 2−4 1.449066e-2 4.464869e-2 1.99

2−5 3.660336e-3 1.120727e-2 1.98
2−6 9.136818e-4 2.848326e-3 1.98
2−7 2.285259e-4 7.218827e-4 no data

0.7 2−4 1.691375e-2 5.220505e-2 1.99
2−5 4.257733e-3 1.313580e-2 1.99
2−6 1.063423e-3 3.314222e-3 1.99
2−7 2.668165e-4 8.351539e-4 no data

0.9 2−4 1.929084e-2 5.879114e-2 1.97
2−5 4.847840e-3 1.502163e-2 1.98
2−6 1.217797e-3 3.815850e-3 1.99
2−7 3.109223e-4 9.617699e-4 no data

1 2−4 2.042462e-2 6.185711e-2 1.96
2−5 5.137748e-3 1.595421e-2 1.97
2−6 1.303556e-3 4.073481e-3 1.98
2−7 3.447313e-4 1.029635e-3 no data

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x axis

u(
x,

t)

 

 

Exact solution
Numerical solution

Fig. 1. Solution behavior at t=1 with h=τ=1/60 and α=0.5

5 Conclusion

In this paper, a finite difference-scheme (17)-(19) on the uniform meshes for
the model problem (1)-(6) is derived. The stability of the difference scheme is
proved. Numerical example illustrate the efficiency of the proposed method. Con-
sideration of the other numerical methods and eventual selection of the optimal
method will be the subject of my future work.



238 A. Delić
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Abstract. In this paper we investigate a known competition model be-
tween two species in a chemostat with general (nonmonotone) response
functions and distinct removal rates. Based on the competitive exclusion
principle A. Rappaport and J. Harmand (2008) proposed the concept of
the so called biological control. Here we present a generalization of this
result.

1 Introduction

The competitive exclusion principle (CEP) is a well known concept in microbial
ecology. CEP means that when two or more microbial species grow on a single
resource in a chemostat, at most one species eventually survives – this is the
species that possesses the best affinity to the substrate. Consider the following
model of the chemostat

ṡ = (s0 − s)D −
n∑

i=1

μi(s)xi

ẋi = (μi(s)−Di)xi (1)

i = 1, 2, . . . , n; s(0) ≥ 0, xi(0) > 0,

where s0 is the input concentration of the nutrient in the chemostat, D is the
dilution rate of the chemostat, xi are the concentrations of the microorganisms
with response (growth rate) functions μi(s) and removal rates Di.

Let the following assumptions be fulfilled.

Assumption A1. For i = 1, 2, . . . , n, the functions μi(s) are nonnegative with
μi(0) = 0, and Lipschitz continuous.

Assumption A2. There exist unique, positive real numbers αi and βi with
αi < βi (βi possibly equal to +∞) such that

μi(s)

{
< Di, if s �∈ [αi, βi]
> Di if s ∈ (αi, βi)

, i = 1, 2.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 239–246, 2013.
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The numbers αi and βi are the steady state components of (1) with respect
to s; they are also called break-even concentrations. Obviously, if μi(s) is a
monotone increasing function (like the Monod law), then βi = +∞.

The equilibrium solutions (s, x1, x2, . . . , xn) of the model are of the form

E0 = (s0, 0, 0, . . . , 0)

Ei =

(
αi, 0, . . . , 0,

D(s0 − αi)

Di
, 0, . . . , 0

)
Fi =

(
βi, 0, . . . , 0,

D(s0 − βi)

Di
, 0, . . . , 0

)
, i = 1, 2, . . . , n,

that is all components of Ei (Fi) are equal to zero except for the first and the

(i + 1)-th, which are s = αi (s = βi) and xi =
D(s0 − αi)

Di

(
xi =

D(s0 − βi)

Di

)
.

The equilibrium Ei (Fi) exists for all i = 1, 2, . . . , n, such that αi < s0 (βi < s0).
If μi(s) is monotone increasing then the equilibrium Fi does not exist. Also, each
equilibrium Fi is not stable if it exists (cf. [10]).

There are lot of papers devoted to the stability analysis of the model (1). A
survey of results is given in [10], see also [1], [6], [7], [11], [12] and the references
therein. The main objective is to give sufficient conditions for global asymptotic
stability of the equilibrium points.

The main result of G. J. Butler and G. S. K. Wolkovicz [1] is that in the
case D = D1 = D2 = · · · = Dn, every solution converges to one of the above
equilibrium points. In particular, since at most one population has a nonzero
component at equilibrium, no more than one population can survive. If s0 < α1,
then E0 is the global attractor.

A more general result (for the case of different removal rates Di �= Dj, i �= j
and D �= Di) is given by B. Li in [7]. Different removal rates typically appear in
chemostats with output membranes that remove the biomass selectively, depend-
ing on the size of the microorganisms. The usual assumption is Di < D. When
however the mortality of a species is predominant, one may consider Di > D.
Denote for convenience

Dmax = max{D,D1, D2}, Dmin = min{D,D1, D2},

smin
0 =

s0D

Dmax
, smax

0 =
s0D

Dmin
.

(2)

Theorem 1. (cf. [7]). Assume that α1 < α2 ≤ · · · ≤ αn. If α1 < s0 < β1 and
smax
0 − smin

0 < α2 − α1 then all solutions of (1) satisfy

lim
t→+∞

(s(t), x1(t), . . . , xn(t)) = E1.

Biological control of the chemostat. Based on CEP, the original concept of
the so called biological control of the chemostat has been recently developed by
A. Rapaport and J. Harmand in [9]. The main idea consists in adding particular
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species in the chemostat to globally stabilize the biological process to a desired
outcome. More precisely, consider (1) for n = 1:

ṡ = (s0 − s)D − μ1(s)x1

ẋ1 = (μ1(s)−D1)x1 (3)

s(0) ≥ 0, x1(0) > 0.

Assume that the uptake function μ1(s) is not monotone (such as the Haldane
law). Let α1 and β1 be defined as in Assumption A2 with β1 < s0. Then it
is well known that the dynamics (3) possesses two locally stable equilibrium
points, the wash-out steady state E0 = (s0, 0) and the positive steady state

E1 =

(
α1,

D(s0 − α1)

D1

)
(see e. g. [1], [10], [12]): from some initial conditions

the dilution rate can lead to wash-out (extinction) of the biomass and breaking-
down of the process. Different approaches are known from the literature (like
feedback control, cf. [2], [3], [8]) aimed to make the positive equilibrium E1 a
globally asymptotically stable point of the closed-loop system.

A. Rapaport and J. Harmand proposed in [9] a new way of controlling a
biosystem through the use of an additional species with particular characteris-
tics to globally asymptotically stabilize the process towards the equilibrium E1.
Below we present the main result of [9] (cf. also [5]).

Consider the model (1) with two populations

ṡ = (s0 − s)D − μ1(s)x1 − μ2(s)x2

ẋ1 = (μ1(s)−D1)x1 (4)

ẋ2 = (μ2(s)−D2)x2

s(0) ≥ 0, x1(0) > 0, x2(0) > 0.

With d ∈ {D,D1, D2} define the sets (αi(d), βi(d)) = {s ≥ 0 : μi(s) > d}; in
particular, denote αi = αi(Di), βi = βi(Di), i = 1, 2.

Assumption A3. The sets (αi, βi), (αi(D), βi(D)), i = 1, 2, are intervals, where
βi and/or βi(D) is possibly equal to +∞.

Denote further Di = max(D,Di), i = 1, 2.

Assumption A4. Let the following inequalities be fulfilled:

β1 ≤ smin
0 , α1(D1) < α2(D2) < β1(D1) and s0 < β2(D2).

Define the point s̄ = min
{
s ∈

(
α2(D2), β1(D1)

)
: μ1(s)−D1 = μ2(s)−D2

}
.

Assumption A5. Let the following inequality be fulfilled:

μ1(s̄)−D1 = μ2(s̄)−D2 >
s0 − smin

0

smin
0 − s̄

·D.

Theorem 2. (cf. [9]). Let the assumptions A1 to A5 be fulfilled. If smax
0 −

smin
0 < α2 − α1, then any solution of (4) converges asymptotically towards

E∗ =

(
α1,

D(s0 − α1)

D1
, 0

)
.
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2 Generalization of CEP

Consider the model (4) including two populations with concentrations x1 and
x2, which compete for a single substrate s. Let the Assumption A1 holds true
for i = 1, 2. Instead of Assumption A2 we use the following one

Assumption B2. There exist unique positive real numbers αi and βi with
αi < βi (β2 possibly equal to +∞) such that

μi(s)

{
< Di, if s �∈ [αi, βi]
> Di if s ∈ (αi, βi)

, i = 1, 2;

let α1 < α2 < β1 < s0 < β2 be satisfied.

Define the function

H(s) = (s0 − s)D −min{μ1(s), μ2(s)} · (smin
0 − s). (5)

Assumption B3. There exists points s1, s2 with s1 < s2 and [s1, s2] ∈ (α2, β1)
such that H(s) < 0 for all s ∈ (s1, s2).

Assumption B4. Let the inequality smax
0 − smin

0 < α2 − α1 hods true.

The following Lemmata will be used further.

Barbălat’s Lemma (cf. [4]). If f : (0,∞) → R is Riemann integrable and
uniformly continuous, then lim

t→∞
f(t) = 0.

Lemma 1. (cf. [12]) Let the Assumption A1 be satisfied. Then for any ε > 0,
the solutions s(t), x1(t), x2(t) of (4) satisfy smin

0 − ε < s(t) + x1(t) + x2(t) <
smax
0 + ε for all sufficiently large t > 0.

Lemma 2. (cf. [11]) Let the Assumptions A1 and B2 be satisfied. Then s(t) <
s0 for all sufficiently large t > 0.

The main result of the paper is contained in the next Theorem 3.

Theorem 3. Let Assumptions A1 (with n = 2), B2, B3 and B4 be fulfilled.
Then any solution of (4) converges asymptotically towards E∗ = (α1, x

∗
1, 0) ,

with x∗1 =
D(s0 − α1)

D1
.

Proof. Lemma 1 implies that there exists a sufficiently large T2 > 0, so that for
each t ≥ T2 the following inequality holds true smin

0 − s(t)− x1(t)− x2(t) < ε.
Assume that s(t) ≥ α2 for all t ≥ T2. The derivative ẋ2(t) of x2(t) is uniformly

continuous (because μ2(·) and x2(·) are Lipschitz continuous) and Riemann in-
tegrable. Clearly, ẋ2(·) ≥ 0 whenever s ∈ [α2, s0], and so x2(t) ≥ x2(T2) > 0
for t ≥ T2. Applying Barbălat’s Lemma, we obtain limt→∞ μ2(s(t)) = D2. Ac-
cording to Assumption B2, α2 is the unique point from the interval [α2, s0] such
that μ2(s) = D2; therefore limt→∞ s(t) = α2. This means that for each positive
integer n there exists Tn > 0 such that s(t) ∈ [α2, α2 + 1/n] for each t ≥ Tn.
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Since μ1(α2)−D1 = η > 0 there exists a positive integer n such that μ1(s)−D1 ≥
η/2 for each s ∈ [α2, α2 + 1/n]. Therefore, for each t ≥ Tn we have

x1(t) = x1(Tn) +

∫ t

Tn

ẋ1(τ) dτ = x1(Tn) +

∫ t

Tn

(μ1(s(τ)) −D1) dτ

≥ x1(Tn) +

∫ t

Tn

η

2
dτ → ∞ as t→ ∞.

But this is impossible because x1(·) is bounded. Hence, there exists T3 > T2 such
that s(T3) < α2.

Consider the function H(s) from (5). Let us fix a sufficiently small ε > 0 and
choose a point s̃ ∈ (s1, s2), so that (s0 − s̃)D < (smin

0 − s̃− ε)min{μ1(s̃), μ2(s̃)}.
Let us assume that there exists t̃ ≥ T3 such that s(t̃) = s̃; set x̃1 = x1(t̃) and
x̃2 = x2(t̃). Then

ṡ(t̃) = D(s0 − s(t̃))− μ1(s(t̃))x1(t̃)− μ2(s(t̃))x2(t̃)

= D(smin
0 − s̃− x̃1 − x̃2) +D(s0 − smin

0 )− (μ1(s̃)−D)x̃1 − (μ2(s̃)−D)x̃2

< Dε+D(s0 − smin
0 )−(x̃1 + x̃2)

(
x̃1

x̃1+x̃2
(μ1(s̃)−D)+

x̃2
x̃1+x̃2

(μ2(s̃)−D)

)
≤ Dε+D(s0 − smin

0 )− (x̃1 + x̃2)min{(μ1(s̃)−D), (μ2(s̃)−D)}
< (s0 − s̃)D − (smin

0 − s̃− ε)min{μ1(s̃), μ2(s̃)} < 0.

The last inequality implies that s(t) ≤ s̃ for each t ≥ T3. The proof further
follows the same idea as in the proof of Theorem 1 (cf. [7]). We sketch it for
completeness.

We define the function g(s) =
μ2(s)(μ1(s)−D1)(s0 − α1)

D1(s0 − s)(μ2(s)−D2)
and the constant

M > maxs∈(0,α1) g(s). Following [7], we choose dmax > Dmax and 0 < dmin <
Dmin; then Lemma 1 implies that for each t ≥ T3,

Ds0
dmax

< s(t) + x1(t) + x2(t) <
Ds0
dmin

(6)

Taking into account the assumption B4, we define a continuously differentiable
function F (u) with nonnegative values whose derivative satisfies the relations:

F ′(u) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if u ≥ Ds0
dmax

− α1;

−M +M

(
u− Ds0

dmin
+ α2

)
(

Ds0
dmax

− α1 −
Ds0
dmin

+ α2

) , if
Ds0
dmin

− α2 ≤ u ≤ Ds0
dmax

− α1;

−M, if 0 ≤ u ≤ Ds0
dmin

− α2.

Taking into account (6), we obtain that

x1 + x2

{
<

Ds0
dmin

− α2 if s ≥ α2; >
Ds0
dmax

− α1 if s ≤ α1

}
.
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Following [6] and [7], we set

V (s, x1, x2) :=

∫ s

α1

(μ1(ξ)−D1)x
∗
1

D(s0 − ξ)
dξ +

∫ x1

x∗
1

ζ − x∗1
ζ

dζ +Mx2 + F (x1 + x2).

One can directly check that the Lie derivative of V with respect to the trajec-
tories of the system (4) is

V̇ (s, x1, x2) = (μ1(s)−D1)x1

(
1− μ1(s)(s0 − α1)

D1(s0 − s)
+ F ′(x1 + x2)

)
(7)

+ (μ2(s)−D2)x2 (M + F ′(x1 + x2)− g(s)) . (8)

Since

μ1(s)(s0 − α1)

D1(s0 − s)

{
≤ 1, if 0 < s ≤ α1

> 1, if α1 < s < β1,
F ′(x1 + x2)

{
= 0, if 0 < s ≤ α1

< 0, if α1 < s < β1,

we obtain that the first term (7) in the expression for V̇ is always nonpositive.
Further, if 0 < s ≤ α1, then (μ2(s) −D2)(M + F ′(x1 + x2) − g(s)) = (μ2(s) −
D2)(M − g(s)) < 0, because μ2(s)−D2 < 0 and according to the choice of M .
If α1 < s < α2, then M + F ′(x1 + x2) > 0 and g(s) < 0. If s = α2, then one
can verify that V̇ < 0. If α2 < s ≤ β1, then M + F ′(x1 + x2) = 0 and hence
(μ2(s) − D2)(M + F ′(x1 + x2) − g(s)) = −(μ2(s) − D2)g(s) ≤ 0. This means
that the second term (8) in the expression of V̇ is also nonpositive. Therefore,
V̇ (s, x1, x2) ≤ 0 for all s ∈ (0, β1]. According to the LaSalle invariance principle,
every solution (s(t), x1(t), x2(t)), t ≥ T3, approaches the largest invariant set
L∞ contained in the set L = {(s, x1, x2) : V̇ (s, x1, x2) = 0, s ∈ [0, β1], x1 ≥
0, x2 ≥ 0}. One can directly check that L = {(s, x1, x2) : (μ1(s) − D1)x1 =
0, x2 = 0, s ∈ [0, β1], x1 ≥ 0}. If x1 = 0, then (because x2 = 0) we have
ṡ(t) ≥ D(s0 − s̃) > 0, and so lim

t→∞
s(t) = +∞, which is impossible. Hence x1 > 0

and μ1(s) = D1. Further, s(t) ≤ s̃ < s2 < β1 for sufficiently large t > 0, thus
μ1(s)−D1 cannot vanish at s = β1. This shows that L∞ = {(α1, x

∗
1, 0)}.

3 Numerical Example

We demonstrate the theoretical results from Theorem 3 on a numerical example.
To make a comparison with the results of Rapaport and Harmand (Theorem 2),
we consider the following response functions

μ1(s) =
m1s

a1 + s+ γ1s2
, μ2(s) =

m2s

a2 + s

with coefficient values a1 = 20, m1 = 200, γ1 = 1/90, a2 = 265, m2 = 620; let
s0 = 180, D = 88, D1 = 80, D2 = 96.45. Here, Dmax = D2; we have α1 = 15,
α2 = 48.82, β1 = 120 and s0 < β2 = +∞; hence Assumption B2 is satisfied. The
response functions are visualized on Figure 1, left plot. The right plot in Figure 1
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Fig. 1. The graphs of μ1(s) and μ2(s) (left). The graph of H(s) (right); the solid circles
on the horizontal axis correspond to the points s1 and s2 in Assumption B3.

visualizes the graph of the function H(s) = (s0−s)−min{μ1(s), μ2(s)}(smin
0 −s);

obviously, there exist the points s1 = 51.13 and s2 = 56.61 (marked by solid
circles on the horizontal axis), such that H(s) < 0 for all s ∈ (s1, s2); therefore
Assumption B3 is satisfied. Since smax

0 − smin
0 − (α2 − α1) ≈ −0.0493 < 0,

Assumption B4 is also fulfilled.
In this example Assumption A5 is however not satisfied. Indeed, the point s̄

satisfying the equality μ1(s)−D̄1 = μ2(s)−D̄2 is s̄ ≈ 56.72; obviously, s̄ belongs

to the interval
(
α2(D̄2), β1(D̄1)

)
= (48.82, 95.75) but μ1(s̄)−D̄1−

s0 − smin
0

smin
0 − s̄

D ≈
−0.0439 < 0. Nevertheless, the equilibrium point E∗

1 is globally asymptotically
stable according to our Theorem 3.

Figure 2 presents the solutions x1(t) and x2(t) of the model with initial point
(s(0), x1(0), x2(0)) = (180, 0.01, 0.01). The horizontal dash line on the left plot
passes through the equilibrium point x∗1.

Fig. 2. The solution x1(t) (left) and x2(t) (right)
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4 Conclusion

The paper is devoted to a generalization of the so-called biological control of the
chemostat model, recently developed by A. Rapaport and J. Harmand in [9]. We
formulate in Theorem 2 the sufficient stability condition proved in [9]. The main
result of the present paper extends the applicability of the approach proposed
in [9]. More precisely, we require the following ordering α1 < α2 < β1 < s0 < β2
of the break-even concentrations, which seems to be more natural than the in-
equalities in Assumption A4. Moreover, one can check that if the Assumption
A5 holds true, then our Assumption B3 is also fulfilled. An illustrative example
shows the applicability of our main result. We would like to point out that the
assumptions from [9] are not satisfied for this example and we can not apply the
result of A. Rapaport and J. Harmand.

Acknowledgement. The work of the second author has been partially sup-
ported by the Sofia University under contract No. 126/ 09.05.2012.
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Abstract. A special computational technology for sensitivity analysis
of ozone concentrations according to variations of rates of chemical reac-
tions is developed. It allows us to study a larger number of reactions than
we have considered in our previous study. The reactions are taken from
the standardized scheme for air-pollution chemistry CBM-IV. A number
of numerical experiments with a large-scale air pollution model (Unified
Danish Eulerian Model, UNI-DEM) have been carried out to compute
Sobol sensitivity measures. The sensitivity study has been done for the
areas of four European cities (Genova, Milan, Manchester, and Edin-
burgh) with different geographical locations.

1 Introduction

Environmental security is rapidly becoming a significant topic of present inter-
est all over the world, and environmental modelling has a very high priority in
various scientific fields, respectively. Such complicated multidisciplinary prob-
lem requires joined research and collaboration between experts in the area of
environmental modeling, numerical analysis and scientific computing.

Our current study aims an exploration of model output sensitivity and/or a
model improvement in the air pollution transport. This is done for a large-scale
mathematical model describing the remote transport of air pollutants (Unified
Danish Eulerian Model, UNI-DEM, [13, 14]). The motivation to choose UNI-
DEM is that it is one of the models of atmospheric chemistry in which the
chemical processes are taken into account in a very accurate way.

Perturbations of chemical reaction rates as well as emission levels and bound-
ary conditions (of the system of partial differential equations describing the
mathematical model mentioned above) are crucial issues for the model output
variability. Our main objective here is to provide a reliable global sensitivity
analysis of this mathematical model and, in particular, to analyze the influ-
ence of variations of the rates of some chemical reactions on the model results.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 247–254, 2013.
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Here a sensitivity study of ozone concentrations according to variations of rates
of a larger number of chemical reactions than the set of chemical reactions dur-
ing the previous study [1–3] has been performed. It has been done in order to
increase the reliability of the results produced by the model, and to identify pro-
cesses that must be studied more carefully, as well as to find input parameters
that need to be measured with a higher precision.

Sensitivity analysis is a powerful tool to study of how uncertainty in the output
of a model (numerical or otherwise) can be apportioned to different sources of
uncertainty in the model input [8]. The general procedure for sensitivity analysis
can be described in the following steps: (i) definition of probability distributions
for the parameters under study, (ii) generation of samples according to the de-
fined probability distributions using a sampling strategy, (iii) sensitivity analysis
of the output variance in relation to the variation of the inputs.

2 Background

The input data for sensitivity analysis has been obtained during runs of the
mathematical model for remote transport of air pollutants - UNI-DEM. Here
we apply the Sobol approach [10], as a reliable variance-based tool to provide
global sensitivity analysis. A brief description of the mathematical model under
consideration and the Sobol approach applied during the current study is given
in the next two subsections.

2.1 Description of the Unified Danish Eulerian Model and SA-DEM

The model gives the possibility to study concentration variations in time of a
high number of air pollutants and other species over a large geographical re-
gion (4800 × 4800 km), covering the whole of Europe, the Mediterranean and
some parts of Asia and Africa which is important for environmental protection,
agriculture, health care. It takes into account the main physical, chemical and
photochemical processes between the studied species, the emissions, the quickly
changing meteorological conditions. Both non-linearity and stiffness of the equa-
tions are mainly introduced by the chemistry [14]. The chemical scheme used
in the model is the well-known condensed CBM-IV (Carbon Bond Mechanism).
This chemical scheme is one of the most accurate, but computationally expensive
as well.

The development and improvements of UNI-DEM throughout the years has
lead to a variety of different versions with respect to the grid-size/resolution,
vertical layering (2D or 3D model respectively) and the number of species in the
chemical scheme. A coarse-grain parallelization strategy based on partitioning
of the spatial domain in strips or blocks is mainly used in UNI-DEM. For the
purpose of sensitivity analysis studies a specialized version of this package, called
SA-DEM, was recently developed. More details about its parallel implementation
properties can be found in [4–6].
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Our main aim here is to study the sensitivity of the ozone concentration
according to the rate variation of some chemical reactions: ## 1, 3, 7, 22 (time-
dependent) and 27, 28 (time independent) reactions of the condensed CBM-IV
scheme ([13]). The simplified chemical equations of these reactions are as follows:

[#1] NO2 + hν =⇒ NO +O [#22] HO2 +NO =⇒ OH +NO2

[#3] O3 +NO =⇒ NO2 [#27] HO2 +HO2 =⇒ H2O2

[#7] NO2 +O3 =⇒ NO3 [#28] OH + CO =⇒ HO2

Note, that the ozone does not necessarily participate in all these reactions.
Important precursors of ozone participate instead.

The most commonly used output of UNI-DEM are the mean monthly con-
centrations of a set of dangerous chemical species (or groups of species) in de-
pendence with the particular chemical scheme, calculated in the grid points of
the computational domain. We consider the chemical raction rates to be input
parameters and the concentrations of pollutants to be output parameters.

The first stage of computations consists of generation of input data necessary
for the particular sensitivity analysis study. In our case this means to perform
a number of experiments with UNI-DEM by doing certain perturbations in the
data for chemical reaction rates.

The specialized version SA-DEM is used here to perform the necessary com-
putations for a set of different values of the vector α = (α1, . . . , α6) in the
domain under consideration (in our case - the 6-dimensional hypercubic domain
[0.6, 1.4]6). The values of α are selected to lie on the edges from the vertex
(1,1,1,1,1,1) (representing the “basic scenario” with the true emissions for the
corresponding year) to all the other vertices of the above hypercube. Along each
edge the samples of α are distributed regularly by decreasing all its variable
coordinates with a fixed step h (h = 0.1 in our experiments).

This require a huge computational effort and a powerful computer system. To
meet these challenges, we developed an advanced highly parallel modification of
UNI-DEM, specially adjusted to be used in various sensitivity analysis studies.
This code, called SA-DEM, was recently developed and implemented on the most
powerful supercomputer in Bulgaria - IBM BlueGene/P. It was used successfully
in sensitivity analysis of UNI-DEM with respect to the rate coefficients of several
chemical reactions [2, 5]. In our particular sensitivity analysis study regular per-
turbations have to be done on the input data of the chemical rate coefficients (in
the chemical submodel). This leads to generation of multiple data-independent
tasks, appropriate for parallel execution. Thus an additional opportunity for a
coarse-grain parallelism appear in SA-DEM, which is efficiently exploited on the
highly parallel IBM BlueGene/P. This is the highest level of parallelism in SA-
DEM on the top of the grid-partitioning level, the basis for distributed-memory
MPI parallelization in UNI-DEM. Moreover, our target machine offers a limited
amount of shared memory parallelism. It is exploited on the lowest (finer-grain)
level of parallelism in our algorithm by using OpenMP standard directives.

As a result of parallel computations with the use of SA-DEM and the IBM
BlueGene/P supercomputer, on this stage we obtain the needed mesh function
defined on [0.6, 1.4]6.
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2.2 Sobol Global Sensitivity Analysis

Variance-based sensitivity methods are an useful tool for an advanced study of
relations between the input parameters of a model, output results and inter-
nal mechanisms regulating the system under consideration. They deliver global,
quantitative and model-independent sensitivity measures and are efficient of the
computational point of view. Its computational cost for estimating all first-order
and total sensitivity measures is proportional to the sample size and the number
of input parameters. In Sobol approach the variance of the square integrable
model function is decomposed into terms of increasing dimension. The sensitiv-
ity of model output to each parameter or parameter interaction is measured by
its contribution to the total variance. An important advantage of this approach
is that it allows to compute also higher-order interaction effects in a way similar
to the computation of the main effects. The total effect of a fixed parameter can
be calculated with just one Monte Carlo integral per factor.

Consider a scalar model output u = f(x) corresponding to a number of non-
correlated model parameters x = (x1, x2, . . . , xd) with a joint probability density
function p(x) = p(x1, . . . , xd) in the d-dimensional unit cube Ud = [0; 1]d. In
Sobol approach [10] the parameter importance is studied via numerical integra-
tion in the terms of analysis of variance (ANOVA) model representation [8, 10]:

f(x) = f0 +

d∑
ν=1

∑
l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), l1, . . . , lν ∈ {1, . . . , d},

where f0 =
∫
Ud f(x)dx = const, f(x) is a square integrable model function,

fl1...lν (xl1 , xl2 , . . . , xlν ) are the terms of increasing dimension in the ANOVA rep-

resentation of f(x) satisfying the following condition

∫ 1

0

fl1...lν (xl1 , . . . , xlν )dxlk

= 0, 1 ≤ k ≤ ν, ν = 1, . . . , d. The quantities D =
∫
Ud f

2(x)dx− f2
0 , Dl1 ... lν

=
∫
f2
l1 ... lν

dxl1 . . . dxlν are called variances (total and partial variances, respec-
tively), where f(x) is a square integrable function. Based on the above assump-
tions about the model function and the output variance, the following quantities

Sl1 ... lν =
Dl1 ... lν

D
, ν ∈ {1, . . . , d} (1)

are called Sobol global sensitivity indices [9, 10]. The main sensitivity measures
introduced in the Sobol approach represent ratios between the corresponding
partial variances and total variance (see (1), [10]). The basic assumption under-
lying the so called High Dimensional Model Representation is that the major
features of the model functions describing typical real-live problems can be shown
by low-order subsets of inputs - constants, terms of first and second order. This
means that one can use low-order indices only, but should be able to control the
contribution of higher order terms.

The mathematical treatment of the problem of providing global sensitiv-
ity analysis consists in evaluating total sensitivity indices and in particular
Sobol global sensitivity indices (1) of corresponding order. It leads to computing
multidimensional integrals (from the mathematical representation of variances)
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I =
∫
Ω
g(x)p(x) dx, Ω ⊂ Rd, where g(x) is a square integrable function in Ω

and p(x) ≥ 0 is a p.d.f., such that
∫
Ω
p(x) dx = 1.

A more detailed description of the Sobol approach is also given in [2].
Several approaches for evaluating small sensitivity indices (to avoid loss of

accuracy because the analyzed database comes under this case) have been ap-
plied: standard (initial) Sobol approach, reducing of the mean value (proposed
by I.M. Sobol’, 1990), correlated sampling technique (proposed in [7, 11]), and a
combined approach between second and third ones [12]. The partial and the to-
tal variance estimations referred to correlated sampling approach are presented
in the following way using two independent samples x = (y, z) and x′ = (y′, z′):

Dy =

∫
Ω

f(x) [f(y, z′)−f(x′)]dxdx′, D =

∫
Ω

f(x)[f(x)−f(x′)] dxdx′, Ω ≡ U2d.

3 Analysis of Numerical Results and Discussion

The second stage of computations consists of the following steps: (i) Approxi-
mation, and (ii) Computing of Sobol global sensitivity indices.

We use polynomials of second degree as an approximation tool, where p
(k)
s (x)

is the polynomial that approximates the mesh function given in the table that
corresponds to the s-th chemical species:

p
(k)
s (x) =

k∑
j=0

∑
(ν1,ν2,...,νd)∈Nk

j

aν1...νd
xν1
1 xν2

2 . . . xνd

d , k = 2,

where Nk
j =

{
(ν1, ν2, . . . , νd) | νi = 0, 1, . . . , k,

d∑
i=1

νi = j

}
.

To estimate the accuracy of the approximation the squared 2-vector norm is

used. It is defined as ‖ ps − rs ‖22=
n∑

l=1

[ps(xl) − rs(xl)]
2, where xl ∈ [0.6; 1.4]6,

and rs(xl), l = 1, . . . , n are the corresponding table values obtained as a result
of runs of SA-DEM. In the case of a polynomial of 2-nd degree in six variables
the squared 2-vector norm derived during numerical experiments is presented as
follows: (i) Genova - 0.00478; (ii) Milan - 0.00460; (iii) Manchester - 0.00423;
(iv) Edinburgh - 0.00504. A number of preliminary numerical experiments on
the approximation step with polynomials of different degree has been done. Sec-
ond degree polynomials (28 unknown coefficients) and third degree polynomials
(84 unknown coefficients) are used for data approximation. Unfortunately, it
has been impossible to obtain reliable approximation results with forth degree
polynomials (210 unknown coefficients) since the number of model values in
the database is less than the number of unknowns. On this stage, one can see
that second degree polynomials fully satisfy the requirements for accuracy. It
is studied numerically (just one model input varies, the others are fixed to 1.0)
how various chemical rate reactions influence air pollution concentrations. An
example is shown on Figure 1. Analyzing presented results for reactions under
consideration (see Section 2.1) of CBM-IV scheme one can conclude that the
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Fig. 1. Sensitivity of ozone concentrations (Genova, July 1998)

Table 1. First-order sensitivity indices of input parameters obtained using different
approaches for sensitivity analysis (Genova, July 1998)

��������
estimated

quantity

approach Initial Sobol Approaches for small indices
approach correlated sampling

integrand g(x) f(x) f(x)
g0 0.26588 0.26588
D 0.20849 0.00249

S1 0.09013 0.35858
S2 0.08918 0.29485
S3 0.08546 0.04652
S4 0.08872 0.26462
S5 0.08477 4.3e-07
S6 0.08505 0.01904

influence of rates of the reactions ## 1, 3 and 22 on ozone concentrations is
very important. The impact of the rates of the reactions ## 7 and 27 is smaller,
but significant. At the same time the influence of the rate of the reaction # 28
can be neglected. The numerical experiments caried out to compute sensitivity
indices via Mathematica [15] show that correlated sampling approach leads to
similar results to the combined approach. In such a way, correlated sampling
approach has been applied since the original model function has been used as
an integrand. The results presented in Table 1 demonstrate significant difference
for the values of sensitivity indices obtained using standard Sobol approach and
correlated sampling approach. The numerical results referred to the second one
follow strictly the influence behaviour of the rates of the chosen chemical re-
actions towards ozone concentrations. Table 2 contains first-, second-order and
total sensitivity indices of model inputs under consideration. One can expect that
the values of higher-order sensitivity indices are comparatively small and close to
zero taking into account that the values of both first-order and total sensitivity
indices are close to each other. It means that the mathematical model is additive



Variance-Based Sensitivity Analysis of the Unified Danish Eulerian Model 253

Table 2. Sensitivity indices of input parameters (for ozone concentrations)

town Genova Milan Manchester Edinburgh

f0 0.26588 0.26566 0.26526 0.26616
D 0.00249 0.00256 0.00245 0.00136

S1 0.35858 0.36281 0.37165 0.33487
S2 0.29485 0.29936 0.26509 0.23399
S3 0.04652 0.04129 0.00997 0.05559
S4 0.26462 0.26276 0.32358 0.30133
S5 4.34e-07 1.8e-07 0.00023 0.00009
S6 0.01904 0.01703 0.00857 0.04653∑6

i=1 Si 0.98361 0.98325 0.97909 0.97241

S12 0.00556 0.00574 0.00568 0.00457
S13 0.00048 0.00049 0.00024 0.00106
S14 0.00516 0.00563 0.00809 0.00837
S16 0.00031 0.00025 0.00018 0.00104
S23 0.00038 0.00033 0.00005 0.00075
S24 0.00349 0.00343 0.00516 0.00457
S34 0.00045 0.00040 0.00015 0.00068
S36 0.00016 0.00014 0.00039 0.00435∑6

i=1 Si 0.01639 0.01675 0.02092 0.02759

Stot
1 0.37009 0.37493 0.38599 0.34993

Stot
2 0.30442 0.30897 0.27625 0.24471

Stot
3 0.04799 0.04267 0.01098 0.06274

Stot
4 0.27391 0.27239 0.33719 0.31559

Stot
5 0.00015 0.00013 0.00089 0.00091

Stot
6 0.01983 0.01766 0.00963 0.05371

according to the chosen input parameters. The numerical results obtained here
confirm the conclusions about the importance of some of the model inputs made
on the base of our previous study [3]. At the same time one can observe that
now a new important input parameter (the rate of the time-dependent chemical
reaction # 1) appears.

4 Conclusions

In this work the results from the sensitivity analysis provided for ozone concen-
trations according to variations of rates of a larger number of chemical reactions
than in our previous study are described. A number of numerical experiments
with a large-scale air pollution model (Unified Danish Eulerian Model, UNI-
DEM) have been carried out to compute Sobol sensitivity measures.

The sensitivity study has been done for the areas of four European cities
(Genova, Milan, Manchester, and Edinburgh). The results are similar and show
unsignificant correlation between geographical location and sensitivity study
conclusions. The main conclusions are: (i) the mathematical model UNI-DEM
under consideration is additive according to the chosen input parameters - rates
of chemical reactions; (ii) the results obtained during current study are fully
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consistent with the conclusions about importance of model inputs obtained in
the previous study [1–3]; (iii) a new important input parameter (the rate of the
time-dependent chemical reaction # 1) is identified.
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Abstract. In order to study the time behavior and structural stability
of the solutions of Boussinesq Paradigm Equation, two different numer-
ical approaches are designed. The first one (A1) is based on splitting
the fourth order equation to a system of a hyperbolic and an elliptic
equation. The corresponding implicit difference scheme is solved with an
iterative solver. The second approach (A2) consists in devising of a fi-
nite difference factorization scheme. This scheme is split into a sequence
of three simpler ones that lead to five-diagonal systems of linear alge-
braic equations. The schemes, corresponding to both approaches A1 and
A2, have second order truncation error in space and time. The results
obtained by both approaches are in good agreement with each other.

1 Introduction

The aim of this paper is the numerical study of time dependent solutions of the
two-dimensional Boussinesq Paradigm Equation (BPE) [1]:

utt = Δ [u− F (u) + β1utt − β2Δu] , (1)

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), (2)

where F (u) := αu2 or F (u) := α(u3 − σu5), u(x, y, t) is the surface elevation,
β1, β2 > 0 are two dispersion coefficients, and α > 0 is an amplitude parameter.
The main difference between (1) and the original Boussinesq equation [2] is the
presence of one more term for β1 �= 0 called “rotational inertia”.

It has been recently shown that the 2D BPE with quadratic or qubic-quintic
nonlinearity admits localized solutions that propagate stationary with a pre-
scribed phase velocity. These solutions can be constructed using either a pertur-
bation [3, 4], finite differences [5] or Galerkin spectral method [6]. It is of utmost
importance to answer the question about the structural stability of these solu-
tions when used as initial conditions for (1). The first results on the problem
with quadratic nonlinearity are reported in the pioneering work [7]. In order
to investigate further the time evolution of the localized solutions, alternative
techniques for (1) have to be developed. In this study we consider two different
numerical approaches A1 and A2. Some results for quadratic nonlinearity using
A1 have been already described in [8, 9]. Here we present another numerical
approach A2 and compare the numerical results obtained by both approaches
for quadratic nonlinearity as well as for qubic-quintic nonlinearity.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 255–262, 2013.
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2 Numerical Methods for Solving BPE

Approach A1 is presented in [8, 9]. Here we describe it briefly. We set

v(x, y, t) := u− β1Δu. (3a)

Upon substituting it in (1) we get the following equation for v

vtt =
β2
β1
Δv +

β1 − β2
β2
1

(u− v)−ΔF (u). (3b)

The following implicit time stepping is designed for the system (3)

vn+1
ij − 2vnij + vn−1

ij

τ2
=

β2
2β1

Λ
[
vn+1
ij + vn−1

ij

]
− ΛG(un+1

ij , un
ij , u

n−1
ij )

+
β1 − β2
2β2

1

[un+1
ij − vn+1

ij + un−1
ij − vn−1

ij ], (4a)

un+1
ij − β1Λu

n+1
ij = vn+1

ij , i = 1, . . . , Nx, j = 1, . . . , Ny. (4b)

By un
ij and vnij we denote a discrete approximation to u and v at (xi, yj, tn),

where tn = τn and τ is a time increment, Λ = Λxx+Λyy stands for the difference
approximation of the Laplace operator Δ on a uniform or non-uniform grid and
G(un+1

ij , un
ij , u

n−1
ij ) is an approximation to the nonlinear term F (u). There are

different possibilities to treat the nonlinear term [8, 9, 12–14]. Here we use

G(un+1
ij , un

ij , u
n−1
ij ) = 2[g((un+1

ij +un
ij)/2)−g((un

ij+u
n−1
ij )/2)]/(un+1

ij −un−1
ij ), (5)

where g(u) =
∫ u

0
F (s) ds. The values of the sought functions at the (n − 1)-st

and n-th time stages are considered as known when computing the (n + 1)-st
stage. The nonlinear term G is linearized using Picard method for nonlinear PDE
[10], i.e., we perform successive iterations for u and v on the (n + 1)-st stage,
starting with initial condition from the already computed n-th stage. Usually
5-10 nonlinear iterations are sufficient for convergence with tolerance 10−16. An
energy conserving numerical approach for Boussinesq equation based on this
kind of linearization was proposed and investigated in [11].

The unconditional stability of the scheme, the convergence and the conserva-
tion of the energy are shown in [15, 12, 14].

Thus, we have two coupled equations for the two unknown grid functions
un+1
ij , vn+1

ij . Two different grids on the computational domain Ωh = [−L1, L1]×
[−L2, L2], uniform and non-uniform ones, are used:

xi = −L1 + ihx, i = 0, . . . , Nx + 1, hx = 2L1/(Nx + 1),
yj = −L2 + jhy, j = 0 . . . , Ny + 1, hy = 2L2/(Ny + 1), or

(6)

xi = sinh[ĥx(i− nx)], xNx+1−i = −xi, i = nx + 1, . . . , Nx + 1, xnx = 0,

yj = sinh[ĥy(j − ny)], yNy+1−j = −yj, j = ny + 1, . . . , Ny + 1, yny = 0,
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where Nx, Ny are odd numbers, nx = (Nx + 1)/2, ny = (Ny + 1)/2, ĥx =

2Dx/(Nx + 1), ĥy = 2Dy(/Ny + 1), Dx = arcsinh(L1), Dy = arcsinh(L2).
The boundary conditions can be set equal to zero because of the localization

of the wave profile. This forms the first set of b.c.’s used in this approach. In
order to avoid the influence of the boundary, the second set of b.c.’s used here
consists of the asymptotic boundary conditions formulated in [5]

x
∂u

∂x
+ y

∂u

∂y
≈ −2u, x

∂v

∂x
+ y

∂v

∂y
≈ −2v,

√
x2 + y2 � 1. (7)

We chose the following approximation for (7)1 at the numerical infinities:

un+1
i,Ny+1 = un+1

i,Ny−1 +
hy
Ny

+ hy
Ny−1

yNy

[
− 2un+1

i,Ny
− xi
hx
i + hx

i−1

(un+1
i+1,Ny

− un+1
i−1,Ny

)
]
,

un+1
Nx+1,j = un+1

Nx−1,j +
hx
Nx

+ hx
Nx−1

xNx

[
− 2un+1

Nx,j
− yj
hy
j + hy

j−1

(un+1
Nx,j+1 − un+1

Nx,j−1)
]
,

i = 0, . . . , Nx, j = 0, . . . , Ny. The implementation of (7)2 is the same.
The first initial condition in (2) is approximated by u0ij = u0(xi, yj). The

approximations

(u1ij − u−1
ij )/(2τ) = u1(xi, yj), (v1ij − v−1

ij )/(2τ) = u1(xi, yj)− β1Δu1(xi, yj)

to the second initial condition are used and (4a) is modified for n = 0.
The coupled system of equations (4) is solved by the Bi-Conjugate Gradient

Stabilized Method with ILU preconditioner [16].

Approach A2. For the discretization of (1) we use the uniform mesh (6). The
suggested numerical approach is based on the weighted finite difference scheme
proposed in [13, 14]

B

(
un+1
ij − 2un

ij + un−1
ij

τ2

)
= Λun

ij − β2Λ
2un

ij + ΛG(un+1
ij , un

ij , u
n−1
ij ). (8)

Here B = I−(β1+θτ
2)Λ+θτ2β2Λ

2, I is the identity operator, Λ2 = (Λxx+Λyy)2

is the discrete biLaplacian, G is defined by (5), θ ∈ R is a parameter.
An O(|h|2+ τ2) approximation to the second initial condition in (2) is given by

u1i,j = u0(xi, yj) + τu1(xi, yj) +
τ2

2(I − β1Λ)

(
Λu0 − β2Λ

2u0 − ΛF (u0)
)
(xi, yj).

In this approach we use the following boundary conditions un+1
ij = 0, Λun+1

ij = 0
for i = 0, Nx+1 or j = 0, Ny+1. A second order of convergence in space and time
and a preservation of the discrete energy for the above scheme (8) are proved in
[14]. These theoretical results are confirmed numerically in the 1D case [13, 14].

The main idea of the numerical approach A2 consists in replacing the operator
B in (8) by the factorized operator B̃, i.e. B̃ = B1B2B3, where

B1 = (I−θτ2Λxx+θτ2β2Λ
xxxx), B2 = (I−θτ2Λyy+θτ2β2Λ

yyyy), B3 = (I−β1Λ).
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The factorization is based on the regularization method [17]. The form of the
operator B̃ is proposed in [13]. In such a way we get a second order in space and
time conservative factorized scheme

B1B2B3

(
un+1
ij − 2un

ij + un−1
ij

τ2

)
= Λun

ij − β2Λ
2un

ij + ΛG(un+1
ij , un

ij , u
n−1
ij ). (9)

It can be shown that for θ ≥ 1/2 the factorized scheme is unconditionally sta-
ble. The main advantage of the above factorized scheme is that it can be split
into a sequence of three simpler schemes. As in approach A1 we apply Picard
method for the linearization of (9). Thus at the time stage (n + 1) we perform
successive iterations starting with already computed solution at stage n as initial
approximation. Each iteration consists of the following four steps:

– Step 1: Solve the problem for the unknown w
(1)
ij :

B1w
(1)
ij = Λun

ij − β2Λ
2un

ij + αΛG(un+1
ij , un

ij , u
n−1
ij ), i �= 0, Nx + 1,

w
(1)
ij = 0, Λxxw

(1)
ij = 0, i = 0, Nx + 1.

(10)

– Step 2: Define the unknown w
(2)
ij as a solution of the following problem:

B2w
(2)
ij = w

(1)
ij , j �= 0, Ny + 1,

w
(2)
ij = 0, Λyyw

(2)
ij = 0, j = 0, Ny + 1.

(11)

– Step 3: Compute w
(3)
i,j by solving

B3w
(3)
ij = w

(2)
ij , i �= 0, Nx + 1, j �= 0, Ny + 1,

w
(3)
ij = 0, i = 0, Nx + 1 or j = 0, Ny + 1.

(12)

– Step 4: Finally, compute the solution of (9): un+1
ij = 2un

ij − un−1
ij + τ2w

(3)
ij .

Let us emphasize that the discrete operators B1 and B2 are one-dimensional
operators, since they depend on one spatial variable only. In such a way the
solution of the first problem (10) is reduced to a sequence of 1D problems on the
rows of the domainΩh, while for problem (11) we have a sequence of 1D problems
on the columns of Ωh. For both problems the resulting systems of linear algebraic
equations are five-diagonal with constant matrix coefficients. For solving these
systems we apply a special kind of nonmonotonic Gaussian elimination with
pivoting [18, 19]. The third problem (12) is solved by a Conjugate Gradient type
Method specially designed for the discrete Laplacian equation [20].

3 Numerical Experiments

We denote by us(x, y; c) the best-fit approximation to the stationary translating
with velocity c solution of (1), obtained in [3, 4]

us(x, y; c) = f s(x, y) + c2gs(x, y;β1) + c2hs(x, y;β1) cos [2 arctan(y/x)] . (13)
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The formulas for the functions fs, gs, hs can be found in [3] and [4] for the case of
quadratic and qubic-quintic nonlinearity respectively. In [4] the approximations
(13) are computed for two particular values of the parameter σ: σ = 3/16 and
σ = 0.95. We consider equation (1) subject to the initial conditions (2)

u0(x, y) := us(x, y; c), u1(x, y) := −cus
y(x, y; c),

that correspond to a solution moving along the y-axis with the velocity c.
The numerical experiments are performed for β1 = 3, β2 = 1, α = 1. The

solutions are computed by both approaches on two different uniform grids in
the domain x, y ∈ [−25, 25]2 with 5002, and 10002 grid points respectively. On
the coarse grid the time increment is τ = 0.1, and on the fine grid τ = 0.05. In
approach A2 we set the parameter θ = 1/2. The solutions are also computed by
A1 on a nonuniform grid in the region [−250, 250]2 with 5002 grid points and
τ = 0.1, as well as on the uniform grid in [−25, 25]2 with 5002 grid points and
τ = 0.1, using the asymptotic boundary conditions (7).

(i) The case of quadratic nonlinearity, F (u) = αu2. The numerical results in
[7–9] show that the behaviour of the solution significantly changes when the
velocity c ∈ [0.2, 0.3]. That is why we are focusing on these values of c.

Example 1. First, we present results for the case c = 0.2. As it is seen in Fig. 1,
for t > 8 the solution cannot keep its form, and transforms into a propagating
wave. The values of the maximum of the solution and its trajectory as function
of time are also shown in Fig. 1. The notation ymax is used for the y-coordinate
of the maximum of the solution. For t < 8, the solution not only moves with a
velocity, close to c = 0.2, but also behaves like a soliton, i.e., preserves its shape,
albeit its maximum decreases slightly. For larger times, the solution transforms
into a diverging propagating wave with a front deformed in the direction of
propagation.

The behaviour of the solution is the same on all grids and for all times steps,
and does not depend on the type of the boundary conditions used (the trivial one
or (7)). The approach A2 produces slightly different results for the maximum of
the solution and its position on the coarse grid, but on the fine grid the results
are very close to those obtained by A1.

Example 2. In Fig. 2 results for c = 0.26 are presented. For t < 10 the solution
moves with a velocity, very close to c = 0.26, and behaves like a soliton. For
larger times the solution transforms into a diverging propagating wave, except
in the case of A2 on the coarser grid, where the soliton keeps its form till t < 20.
But on the finer grid A2 leads to a solution, very close to those, produced by A1
on all grids and with both boundary conditions.

Here we do not present the results computed for c = 0.27 and c = 0.28 (some
may be found in [9]). All A1 solutions and the A2 solution on the finer grid have
similar behaviour – the solutions keep their form and move with the prescribed
velocity till t ≈ 10. After that they transform into diverging waves for c = 0.27 or
blow-up for c = 0.28. On the coarser grid the A2 solution blows-up for c = 0.27.

The results from these experiments confirm once again that a mechanism for
having a balance between the nonlinearity and dispersion is present, but the
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Fig. 1. Evolution of the solution for c = 0.2, the maximum u(0, ymax), and the trajec-
tory of the maximum
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Fig. 2. c = 0.26, the maximum u(0, ymax), and the trajectory of the maximum

solution is not robust (even when it is stable as a time stepping process) and
takes the path to the attractor presented by the propagating wave for c ≤ 0.27
or blows-up for c ≥ 0.28.

These results were a motivation for investigating BPE with a different non-
linear term.

(ii) The case of qubic-quintic nonlinearity, F (u) = α(u3 − σu5).

Example 3. Results for the case σ = 3/16 and c = 0.3 are presented in Fig. 3.
The solution cannot keep its form even for small times, and transforms into a
propagating wave, which is almost concentric for t > 8. The maximum of the
solution moves with a velocity, much faster than c = 0.3. The behaviour of the
solution is the same on all grids and for all times steps, and does not depend on
the type of the boundary conditions used.

Example 4. The next results are for σ = 3/16 and c = 0.6. As it is seen in Fig. 4
they are very similar to those in the previous example, i.e., the solution cannot
keep its form and transform into a diverging wave. Slightly different results are
obtained for the maximum of the A2 solution on the coarse grid, but on the fine
grid the results are closer to those for A1.
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Fig. 3. Evolution of the solution for σ = 3/16, c = 0.3
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Fig. 4. σ = 3/16, c = 0.6, the maximum u(0, ymax), and the trajectory of the maximum

We do not show here results for σ = 0.95, as they are very similar to the
already presented results for σ = 3/16. Let us note that the investigated here
2D solutions of BPE with qubic-quintic nonlinearity do not blow-up even for
larger values of c, but unfortunately they seem to be less structurally stable in
comparison with the 2D solutions of BPE with quadratic nonlinearity.

4 Conclusion

We have compared the results obtained by approach A1 with these obtained by
A2 for quadratic and qubic-quintic nonlinearity and have shown that they are
in good agreement with each other. This fact is a good criteria for the reliability
of the proposed approaches A1 and A2. In the case of quadratic nonlinearity
we have confirmed the results from [7–9] – the solution preserves its shape for
small times, but for larger times it either disperses in the form of decaying ring
wave or blows-up. The threshold for the appearance of blow-up seems to be
near c ≈ 0.28. For qubic-quintic nonlinearity the solution does not blow-up even
for relatively large values of c, but is much less stable and transforms into a
diverging propagating wave.
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Abstract. Modal behavior of an 5 × 5 array of vertical cavity surface
emitting lasers (VCSEL) was studied numerically. Thermal lensing was
simulated by the temperature profile set as a quadratic function of a
polar radius. Mathematical formulation of the problem consists of self-
consistent solution of the 3D Helmholtz wave equation and 2D non-linear
diffusion equation as the material equation of the active laser medium.
Complete formulation of the problem contains boundary conditions and
an eigenvalue to be determined. Bidirectional beam propagation method
was taken as a basis for numerical algorithms. Above-threshold operation
of laser array was simulated using round-trip iterations similar to the
Fox-Li method. In addition, the Arnoldi algorithm was implemented to
find several high-order optical modes in a VCSEL array with gain and
index distributions established by the oscillating mode.

1 Introduction

Coupled Vertical Cavity Surface-Emitting Laser (VCSEL) arrays are attractive
means to increase the coherent output power of VCSELs. Thermal lensing is
a serious obstacle for achievement of high-power single-mode laser output. Nu-
merical study gives the opportunity to find optimal parameter of a laser device
under thermal lensing effect. Modeling of VCSEL arrays represents a very dif-
ficult computational problem because of complicated geometry and non-linear
partial differential equations containing eigenvalues. The traditional for optical
resonators Fox-Li iteration method [1] is inapplicable owing to dispersion effects.
We propose an efficient computational algorithm using moderate computational
resources. The algorithm is based on the bidirectional beam propagation method
(BiBPM) [2] and the modified round-trip operator technique [3].

2 Basic Equations and Boundary Conditions

The 5× 5 VCSEL array [4] is schematically shown in Fig. 1. The device consists
of a one-wave cavity placed between top and bottom distributed Bragg reflectors
(p-DBR and n-DBR in Fig. 1). DBRs consist of several pairs of quarter-wave
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Fig. 1. Scheme of the VCSEL array in two projections

layers of GaAs and AlAs. The active layer shown as a black strip consists of
Nq = 3 InGaAs quantum wells (QW) separated by GaAs layers. The QW has
thickness 7 nm. The VCSEL array is mounted on the GaAs substrate which
is unbounded from the point of view of mathematical modeling. Similarly, an
unbounded layer of air must be accounted on top of a VCSEL. There exist
some additional layers shown in Fig. 1. Geometrical thicknesses hk of the layers
presented in Fig. 1 are calculated by the formula: hkn = pλ0, where n is the
refractive index, p is the thickness as a fraction of wavelength. The approximate
value of wavelength λ0 = 980 nm. This value is named the reference wavelength.
The index and absorption are constant in each layer except the QWs. The metal
(Ti) plate and GaAs-InGaP spacer have the 5 × 5 array of windows. Directing
z-axis perpendicularly to the substrate surface we represent the VCSEL array
as a pile of plane layers: {[zk−1, zk], k = 1, . . . ,m}, where m is the total number
of layers, {zk, k = 0, . . . ,m} is an ascending sequence of coordinates of layer
interfaces, hk = zk − zk−1 is thickness of the k-th layer.

We start from Maxwell equations and assume that the polarization effects
can be neglected and the scalar diffraction theory is applicable. Laser modes
have a time dependence of the form E(x, y, z, t) = U(x, y, z) exp(−iΩt), Ω =
ω0+Δω− iδ, where ω0 is the reference frequency, Δω = ω−ω0 is the frequency
shift and δ is the attenuation factor. The reference frequency, wavenumber and
wavelength obey the standard relations: ω0 = k0c, k0 = 2π/λ0. Introducing new
variables μ = 2δ/c, Δk = Δω/c, β = μ + i2Δk, 3D Helmholtz wave equation
reads

∂2U

∂z2
+Q2U = 0, Q =

√
k20n

2 − ik0ng − ik0n2β +
∂2

∂x2
+

∂2

∂y2
, (1)
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with a complex eigenvalue β. Here n and g are index and gain respectively, Q is
the operator of longitudinal wavenumber.

There is need to define the boundary conditions. We use condition of conti-
nuity for the wave field U and its normal derivative at the interfaces between
adjoint layers. We use the Fresnel formulae for reflection and transmission of a
plane wave from an interface as boundary conditions at the top of the device
(z = zm). The Dirichlet boundary condition U ≡ 0 were used at the substrate
boundary z = z0 because of large number of layers in the bottom DBR. Two
options of conditions on lateral boundaries were implemented: 1) non-reflecting
boundaries, 2) fully reflecting boundaries. In the first case absorbing boundary
conditions [5] were used. The Dirichlet boundary conditions U ≡ 0 for the wave
field U(x, y, z) were used in the second case.

The 2D non-linear diffusion equation [6]:

∂2Y

∂x2
+
∂2Y

∂y2
− Y

Dτnr
− B

D
NtrY

2 − |U |2 ln(χ(Y ))

Dτnr
= − J

NqeDdNtr
, (2)

is correct for normalized carrier density Y = N/Ntr at the QW. Here N is
the charge carrier density, D is the diffusion coefficient, τnr is the recombina-
tion time, B is the spontaneous emission coefficient, d is thickness of the QW,

e is the elementary charge, Ntr =
(
−1/τnr +

√
1/τ2nr + 4BJtr/(ed)

)
/(2B) is

the carrier density for conditions of transparency, Jtr is the drive current den-
sity at transparency conditions, |U |2 = I/Is, I is the light intensity, Is =
(h̄ck0Ntr)/(g0τnr) is the intensity of saturation. The drive current density is
specified by the formula J = κJtrf(x, y), where κ is the pump level, f(x, y) =
exp

(
−(2x/R)16

)
exp

(
−(2y/R)16

)
is the pump profile function, R is the trans-

verse size of the current channel. Zero boundary conditions for Y (x, y) are set at
the lateral boundaries of the active layer. The function χ(Y ), gain and index at
the active layers are approximated by the formulae [7]. The temperature profile
is specified by the quadratic function of the polar radius. As a result we have
the formulae:

χ(Y ) =

{
α+ (1− α)Y 1/(1−α), Y < 1

Y, Y ≥ 1
, g = g0 ln(χ(Y )), (3)

n = n0 −
F (g − gmin)

2k0
+ νT, T = T0

(
1− (x2 + y2)/2R2

0

)
,

where α = exp(gmin/g0), g0 is the gain parameter, n0 is the refractive index in the
absence of carriers, F is the line enhancement factor, gmin is the minimum gain,
ν is the thermo-optic coefficient, T is the increment of temperature, R0 is the
curvature radius of the temperature profile. We suppose that T0 is proportional
to the pump level, T0 = θκ. The equation (2) is true for each of QWs because
the wave field intensity |U |2 is approximately the same in all of QWs.

3 Statement of the Problem and Numerical Algorithms

The problem consists of self-consistent solving of the wave field equation and
material equations in order to find the magnitude and spatial profile of a laser
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Fig. 2. Longitudinal profiles of the lasing mode and index

electromagnetic field and its frequency in steady-state mode of operation. The
equation (1) jointly with the equations (2) and (3) supplemented with corre-
sponding boundary conditions form the non-linear eigenvalue problem. The sup-
plementary condition δ = 0 (Re(β) = 0) is required for steady-state operation.

We reformulate the problem using the bi-directional beam propagation method
(BiBPM) [2]. The wave field can be represented in each z- invariant segment as
the sum of the upward and downward propagating waves:

U = V + + V − (4)

The BiBPM is based on the principle that the wave fields in two arbitrary planes
z = const designated by symbols t and b are coupled by a transfer equation:(

V +
t , V −

t

)
= M

(
V +
b , V −

b

)
(5)

where M is a 2× 2 transfer operational matrix.
The transfer matrix for a set of uniform layers is a product of the elementary

interface and propagation matrices:

Tk =
1

2

(
1 +Q−1

k+1Qk 1−Q−1
k+1Qk

1−Q−1
k+1Qk 1 +Q−1

k+1Qk

)
, Pk =

(
exp(iQkhk) 0

0 exp(−iQkhk)

)
,

where hk is thickness of the k-th layer, Qk is the operator of longitudinal
wavenumber in the k-th layer.

We can replace the Helmholtz equation (1) with the equivalent system of
transfer equations in the form of (5) covering all the layers. Then we choose
the reference plane z = zr, e.g. the plane of the active layer (see Fig. 1). Let
u(x, y) = V + is the upward propagating wave outgoing from the reference plane.
We can make a virtual round trip of the VCSEL using the transfer equations (5).
Firstly, starting with the wave u we calculate the downward propagating wave
v(x, y) = V − falling to the reference plane using the system of equations (5)
connecting the reference plane and the plane under output windows (z = zm)
and the Fresnel boundary conditions. Then, we substitute the wave v(x, y) into
the system of equations (5) connecting the reference plane and the plane under
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bottom DBR (z = z0). Solving this system with the boundary condition U ≡ 0 at
z = z0 we find the upward propagating wave ũ at the reference plane. The wave
field is reproduced after the round trip, if it satisfies the Helmholtz equation.
This round-trip condition has a following form:

P(g, n, β)u = γu (6)

where γ = 1, P(g, n, β)u = ũ by definition of the round-trip operator.
Our approach consists in solution of the problem in the form of (6) for a

function u and eigenvalue γ to be found provided the value of β is specified.
The value β is adjusted until γ = 1 within a certain tolerance. As was shown
formerly [3] for the one-wave cavity containing sufficiently thin active layer the
solution of more simple problem

P(g, n, 0)u = γu (7)

gives good approach to (6) with γ = exp(−βLe), where Le is the effective length.
Equation (7) represents the eigenvalue problem for a non-linear operator be-

cause gain g and index n are determined by equations (2), (3) and depend on u.
This problem is solved by the Fox-Li iteration method [1] which is schematically
represented by the following diagram:[

u
g, n

]
=⇒

[
ũ = P(g, n, 0)u

U

]
⇒ [ψ = arg (ũ(x0, y0))]

=⇒
⇒
[
u = exp(−iψ)ũ
g, n

]
where (x0, y0) is an arbitrary location in the field location area. The wave ampli-
tude U is calculated as sum of the counterpropagating waves according to (4). If
convergence is achieved we have obtained the eigen-pair: {u(x, y), γ = exp(iψ)}.

To analyze stability of the lasing mode we consider also the linear eigen-
value problem (7) when gain g and index n are established by lasing mode and
”frozen”. One of the solutions is the operating mode having |γ| = 1 (Re(β) = 0).
If all other solutions have eigenvalues satisfying the condition |γ| < 1 (Re(β) > 0)
then the single-mode operation is stable because all other modes decay in time.
If at least one of the eigen-modes satisfies the condition |γ| > 1 (Re(β) < 0),
then single-mode lasing is instable. We have the linear non-hermitian eigenvalue
problem (7) in this case. Only several eigenpairs (u, γ) are required, i.e. we have
the partial eigenvalue problem.

Doing calculations for the uniform layers, the wave field was projected on
the uniform mesh in (x, y)-plane and transformed by the fast Fourier transform
(FFT) algorithm (sine-FFT in case of reflecting boundaries). In this case, the
operators Tk and Pk turn into numerical matrices in the wavenumber space. To
calculate the wave field propagation within non-uniform layers the inverse FFT
was made at the boundaries of each layer. Then approach of locally uniform wave
field was used, i.e. the spatial derivatives in the operators Qk were neglected.
This approach is permissible since thickness of the non-uniform layer is far less
than the wavelength. The non-linear diffusion equation (2) was solved by the
second-order finite-difference scheme using an iterative procedure.
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In conclusion, we note that in such approach the numerical mesh over z-
variable is not required. Usage of the FFT algorithm and a transfer-matrix ap-
proach for spectral components within plane layers structure give us the very
fast algorithm for round-trip evaluation. The partial eigenvalue problem (7) for
case of ”frozen” medium can be solved efficiently by the Arnoldi method [8].
Calculation of all elements of matrix of P(g, n, β) is not required. It is necessary
to calculate elements of vector P(g, n, β)u only.

Fig. 3. Transverse profile of the lasing
mode. Absorbing lateral boundaries.

Fig. 4. Transverse profile of the lasing
mode. Reflecting lateral boundaries.

4 Results and Discussion

The sizes of output windows are 5μm, the sizes of spacer elements are 6μm,
the distances between neighbor elements are 3μm. The absorption of spacer
layer are specified so as product of absorbing coefficient and thickness was
0.0224. The top Bragg reflector consist of 16.5 pairs of layers for absorbing
lateral boundaries and of 18.5 pairs of layers for reflecting lateral boundaries.
These numbers of layers were chosen in order to reach maximum output power.
The other parameters were given as follows: D = 50 cm2s−1, τnr = 10−9 s,
B = 1.0 × 10−10 cm3s−1, Jtr = 50Acm−2, R = 44μm, F = 1, θ = 0.083K,
R0 = 21.2μm, g0 = 4400 cm−1, n0 = 3.6, gmin = −4400 cm−1, ν = 3×10−4K−1.
In case of reflection lateral boundaries their positions were set by formulae:
x = ±L/2, y = ±L/2, where L = 48μm.

One more important approach was done in our numerical model. Thermal
lensing zone is determined by overlapping of the heated region and location of
the wave field intensity. We compress the thermal lensing zone into the active
layer with renormalization of the thermo-optic coefficient: ν′ = νhl/ha where
ha = 41 nm is the thickness of the active layer, hl is the effective thickness of
the thermal lens to be estimated. Typical longitudinal profile of intensity and
refractive index (step-wise function) are shown in Fig. 2. Usually, the heated
region covers the field intensity location. The effective thickness of the thermal
lens was set hl = 2μm.
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Fig. 5. Output power vs pump level κ.
Absorbing lateral boundaries. Solid line -
no thermal effect, dashed line - taking into
account thermal effect.
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Fig. 6.Modulus of eigenvalues. Thick line
- lasing mode (|γ| ≡ 1), solid thin line
- competing mode (no thermal effect),
dashed line - competing mode (taking into
account thermal effect).
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Fig. 7. Output power vs pump level κ.
Reflecting lateral boundaries. Solid line -
no thermal effect, dashed line - taking into
account thermal effect.
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Fig. 8.Modulus of eigenvalues. Thick line
- lasing mode (|γ| ≡ 1), solid thin line
- competing mode (no thermal effect),
dashed line - competing mode (taking into
account thermal effect).

Typically, calculations were made using 252 × 252 mesh nodes in the (x, y)-
plane. To estimate the error of discretization we have verified some calculations
using 504× 504 mesh. The relative change of results was approximately 10−2 .

The wave field intensities at the active layer under a weak pump current are
presented in Figs. 3-4. Reflecting boundaries are more preferable for high output
power because of uniform distribution of peaks of the light intensity.

Aggregate results for case of absorbing boundaries are presented in Figs. 5-6.
In the absence of thermal effect the output power grows linearly with pump
level, rate of growth P ′(κ) = 0.6mW. Single-mode lasing is stable in all range
of κ. On the contrary, under thermal effect the output power is limited by the
value 19mW, single-mode lasing is stable at κ < 46 and unstable at κ > 46.

Analogous results for case of reflecting boundaries are presented in Figs. 7-
8. In the absence of thermal effect the output power grows linearly, rate of
growth P ′(κ) = 0.88mW what considerably exceeds the rate for previous case.
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Single-mode lasing is stable in all range of κ. Under thermal effect the output
power is limited by the value 13mW, single-mode lasing is stable at κ < 22 only.

5 Conclusion

The above-threshold, fully 3D laser-simulation program is employed for study
of the VCSEL array. The developed numerical algorithms allows us to calculate
the spatial profile, output power and other characteristics of an oscillating mode.
To examine a single-mode operation, the numerical code was developed, which
calculates a set of competing modes using gain and index variations produced
by the oscillating mode. Strong influence of thermal effect on the output power
and stability of single-mode lasing was found by means of numerical modeling.

Acknowledgments. Work is partially supported by the RFBR project No.
11-02-00298-a.
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for Solving the Identification Problem
of a Parabolic Equation
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Abstract. We consider the inverse problem of reconstructing the right
side of a parabolic equation with an unknown time dependent source
function. Numerical solution and well-posedness of this type problem
with local boundary conditions considered previously by A.A. Samarskii,
P.N. Vabishchevich and V.T. Borukhov. In this paper, we focus on study-
ing the stability of the problem with nonlocal conditions. A stable algo-
rithm for the approximate solution of the problem is presented.

Keywords: Parabolic equations, identification problem, stability
analysis, implicit difference scheme.

1 Introduction

Inverse problems take an important place in many branches of science and en-
gineering and have been studied by different authors [1–9]. In this article, we
deal with an inverse problem of reconstructing the right hand side (RHS) of
a parabolic equation arising in heat transfer. The reader is referred to [5] and
the references therein for a short discussion on RHS identification problems.
The importance of well-posedness in the field of partial differential equations is
well known (see [10–16]). Moreover, the well-posedness of the RHS identifica-
tion problem for a parabolic equation where the unknown function p is in space
variable is also well-investigated [17–19].

The inverse problem of reconstructing a RHS of a parabolic equation with local
boundary conditions is investigated in [5] and [20]. The numerical solution of the
identification problem and well-posedness of the algorithm are presented. For
reconstructing the right hand side function f (t, x) = p (t) q (x) where p (t) is the
unknown function, the solution is observed in the form of u (t, x) = η (t) q (x) +

w (t, x) where η (t) =
∫ t

0 p (s) ds. Then, an approximation is given for w (t, x) via
fully implicit difference scheme.

In this paper, we consider the inverse problem of reconstructing the right side
of a parabolic equation with nonlocal conditions
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u (t, x)

∂t
= a(x)

∂2u (t, x)

∂x2
− σu (t, x) + p (t) q (x) + f (t, x) ,

0 < x < l, 0 < t ≤ T,
u (t, 0) = u (t, l) , ux (t, 0) = ux (t, l) , 0 ≤ t ≤ T,
u (0, x) = ϕ (x) , 0 ≤ x ≤ l,
u (t, x∗) = ρ (t) , 0 ≤ x∗ ≤ l, 0 ≤ t ≤ T,

(1)

where u (t, x) and p (t) are unknown functions, a (x) ≥ δ > 0 and σ > 0 is
a sufficiently large number with assuming that q (x) is a sufficiently smooth
function, q (0) = q (l) and q′ (0) = q′ (l) and q (x∗) �= 0.

2 Difference Scheme

For the approximate solution of the problem (1) , the purely implicit difference
scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk
n − uk−1

n

τ
= a(xn)

uk
n+1 − 2uk

n + uk
n−1

h2
− σuk

n + pkqn + f (tk, xn) ,

pk = p (tk) , qn = q (xn) , xn = nh, tk = kτ,
1 ≤ k ≤ N, 1 ≤ n ≤ M − 1,Mh = l, Nτ = T,

uk
0 = uk

M ,−3uk
0 + 4uk

1 − uk
2 = uk

M−2 − 4uk
M−1 + 3uk

M , 0 ≤ k ≤ N,

u0n = ϕ (xn) , 0 ≤ n ≤M,

uk⎢⎢⎢⎣x
∗

h

⎥⎥⎥⎦
= uk

s = ρ (tk) , 0 ≤ k ≤ N, 0 ≤ s ≤M

(2)

is constructed. Here, qs �= 0, q0 = qM and −3q0+4q1−q2 = qM−2−4qM−1+3qM

are assumed.
⌊
x∗
h

⌋
denotes the greatest integer less than or equal x∗

h .

Let A be a strongly positive operator. With the help of A, we introduce the
fractional space E′

α (E,A) , 0 < α < 1, consisting of all v ∈ E for which the
following norm is finite:

‖v‖E′
α
= sup

λ>0

∥∥∥λαA (λ+A)−1 v
∥∥∥
E
.

To formulate our results, we introduce the Banach space Cα
h = Cα [0, l]h , α ∈

(0, 1), of all grid functions φh = {φn}M−1
n=1 defined on

[0, l]h = {xn = nh, 0 ≤ n ≤M,Mh = l}

with φ0 = φM equipped with the norm

‖φh‖Cα
h
= ‖φh‖Ch

+ sup
1≤n<n+r≤M

|φn+r − φn| (rh)−α
,

‖φh‖Ch
= max

1≤n≤M
|φn| .
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Moreover, Cτ (E) = C ([0, T ]τ , E) is the Banach space of all grid functions φτ =

{φ (tk)}N−1
k=1 defined on [0, T ]τ = {tk = kτ, 0 ≤ k ≤ N,Nh = T } with values in

E equipped with the norm

‖φτ‖Cτ(E) = max
1≤k≤N

‖φ (tk)‖E .

Then, the following theorem on well-posedness of problem (2) is established.

Theorem 1. For the solution of problem (2), coercive stability estimates∥∥∥∥∥∥
{
uh
k − uh

k−1

τ

}N

k=1

∥∥∥∥∥∥
Cτ(C2α

h )

+
∥∥∥{D2

hu
h
k

}N
k=1

∥∥∥
Cτ(C2α

h )

≤ M (q, s)

∥∥∥∥∥
{
ρ (tk)− ρ (tk−1)

τ

}N

k=1

∥∥∥∥∥
C[0,T ]τ

+M (ã, φ, α, T )

(∥∥D2
hϕ

h
∥∥
C2α

h

+
∥∥∥{fh (tk)

}N
k=1

∥∥∥
Cτ(C2α

h )
+ ‖ρτ‖C[0,T ]τ

)
,

‖pτ‖C[0,T ]τ
≤M (q, s)

∥∥∥∥∥
{
ρ (tk)− ρ (tk−1)

τ

}N

k=1

∥∥∥∥∥
C[0,T ]τ

+M (ã, φ, α, T )

[∥∥D2
hϕ

h
∥∥
C2α

h

+
∥∥∥{fh (tk)

}N
k=1

∥∥∥
Cτ(C2α

h )
+ ‖ρτ‖C[0,T ]τ

]
hold. Here,

fh (tk) = {f (tk, xn)}M−1
n=1 , ϕh = {ϕ (xn)}M−1

n=1 , ρτ = {ρ (tk)}Nk=0 ,

D2
hu

h =

{
un+1 − 2un + un−1

h2

}M−1

n=1

, ã =
1

qs

(
aD2

hq
h − σqh

)
.

Proof. We search the solution of problem (2) in the form

uk
n = ηkqn + wk

n, (3)

where

ηk =

k∑
i=1

piτ, 1 ≤ k ≤ N, η0 = 0. (4)

From equation (3) taking difference derivatives, we get

uk
n − uk−1

n

τ
=
ηk − ηk−1

τ
qn +

wk
n − wk−1

n

τ
= pkqn +

wk
n − wk−1

n

τ

and

uk
n+1 − 2uk

n + uk
n−1

h2
= ηk

qn+1 − 2qn + qn−1

h2
+
wk

n+1 − 2wk
n + wk

n−1

h2
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for any n, 1 ≤ n ≤ M − 1. Moreover for the interior grid point uk
s , we have that

uk
s = ηkqs + wk

s = ρ (tk)

and

ηk =
ρ (tk)− wk

s

qs
. (5)

From the last equality, taking the difference derivative it follows that

pk =
1

qs

(
ρ (tk)− ρ (tk−1)

τ
− wk

s − wk−1
s

τ

)
. (6)

Using the triangle inequality, we get∣∣pk∣∣ ≤ M (q, s)

(∣∣∣∣ρ (tk)− ρ (tk−1)

τ

∣∣∣∣+ ∣∣∣∣wk
s − wk−1

s

τ

∣∣∣∣)

≤ M (q, s)

(
max

1≤k≤N

∣∣∣∣ρ (tk)− ρ (tk−1)

τ

∣∣∣∣+ max
1≤k≤N

max
0≤s≤M

∣∣∣∣wk
s − wk−1

s

τ

∣∣∣∣)

≤M (q, s)

⎛⎝ max
1≤k≤N

∣∣∣∣ρ (tk)− ρ (tk−1)

τ

∣∣∣∣+ max
1≤k≤N

∥∥∥∥∥wh
k − wh

k−1

τ

∥∥∥∥∥
C2α

h

⎞⎠ (7)

for any k, 1 ≤ k ≤ N.

Here,
{
wh

k

}N
k=0

is the solution of the following difference scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk
n − wk−1

n

τ
= a(xn)

wk
n+1 − 2wk

n + wk
n−1

h2

+a (xn)
ρ (tk)− wk

s

qs

qn+1 − 2qn + qn−1

h2

−σρ (tk)− wk
s

qs
qn − σwk

n + f (tk, xn) , xn = nh, tk = kτ,

1 ≤ k ≤ N, 1 ≤ n ≤ M − 1,Mh = l, Nτ = T,

wk
0 = wk

M ,−3wk
0 + 4wk

1 − wk
2 = wk

M−2 − 4wk
M−1 + 3wk

M , 0 ≤ k ≤ N,

w0
n = ϕ (xn) , 0 ≤ n ≤ M.

(8)

Therefore, the end of proof of Theorem 1 is based on inequality (7) and the
following theorem.

Theorem 2. For the solution of problem (8), the coercive stability estimate∥∥∥∥∥∥
{
wh

k − wh
k−1

τ

}N

k=1

∥∥∥∥∥∥
Cτ(C2α

h )

≤M (ã, φ, α, T )
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×
(∥∥ϕh

∥∥
C2α

h

+
∥∥∥{fh (tk)

}N
k=1

∥∥∥
Cτ(C2α

h )
+ ‖ρτ‖C[0,T ]τ

)
holds.

Proof. We can rewrite difference scheme (8) in the abstract form⎧⎪⎪⎨⎪⎪⎩
wh

k − wh
k−1

τ
+Ax

hw
h
k =

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ (tk)− wk

s

qs
+fh (tk) , tk = kτ, 1 ≤ k ≤ N,Nτ = T,
wh

0 = ϕh

(9)

in a Banach space E = C [0, l]h with the positive operator Ax
h defined by

Ax
hu

h =

{
−a(xn)

un+1 − 2un + un−1

h2
+ σu

}M−1

n=1

(10)

acting on grid functions uh such that satisfies the condition

u0 = uM ,−3u0 + 4u1 − u2 = uM−2 − 4uM−1 + 3uM .

Let denote R = (I + τAx
h)

−1 . In (9), we have that

wh
k = Rwh

k−1 +Rτ

((
a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ (tk)− wk

s

qs
+ fh (tk)

)
,

∀k, 1 ≤ k ≤ N. By recurrence relations, we get

wh
k = Rkϕh +

k∑
m=1

Rk−m+1 τ

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ (tm)

−
k∑

m=1

Rk−m+1 τ

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
wm

s +

k∑
m=1

Rk−m+1τfh (tm) .

Taking the difference derivative of both sides, we obtain that

wh
k − wh

k−1

τ
=
Rk −Rk−1

τ
ϕh +

1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ (tk)

+

k∑
m=1

(
Rk−m+1 −Rk−m

) 1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ (tm)

− 1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
wk

s

−
k∑

m=1

(
Rk−m+1 −Rk−m

) 1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
wm

s
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+fh (tk) +

k∑
m=1

(
Rk−m+1 −Rk−m

)
fh (tm) .

Applying the formula

k∑
m=1

(
Rk−m+1 −Rk−m

)
wm

s =

k∑
m=1

(
Rk−m+1 −Rk−m

)
ϕ (xs)

+
k∑

m=1

(
Rk−m+1 −Rk−m

) m∑
j=1

wj
s − wj−1

s

τ
τ

and changing the order of summation, we obtain that

k∑
m=1

(
Rk−m+1 −Rk−m

)
wm

s =

k∑
m=1

(
Rk−m+1 −Rk−m

)
ϕ (xs)

+

k∑
j=1

k∑
m=j

(
Rk−m+1 −Rk−m

) wj
s − wj−1

s

τ
τ. (11)

Then, the presentation of the solution of (8)

wh
k − wh

k−1

τ
=
Rk −Rk−1

τ
ϕh +

1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ (tk)

+

k∑
m=1

(
Rk−m+1 −Rk−m

) 1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
ρ (tm)

− 1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
wk

s

−
k∑

m=1

(
Rk−m+1 −Rk−m

) 1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
ϕ (xs)

−
k∑

j=1

k∑
m=j

(
Rk−m+1 −Rk−m

) 1

qs

(
a
qn+1 − 2qn + qn−1

h2
− σq

)
wj

s − wj−1
s

τ
τ

+fh (tk) +

k∑
m=1

(
Rk−m+1 −Rk−m

)
fh (tm)

is obtained. Applying the definition of norm of the spaces E
′
α and methods of

monograph [21], we can show that,∥∥∥∥∥wh
k − wh

k−1

τ

∥∥∥∥∥
E′

α

≤
(
1− (1 +M8 (φ, α, T )) ‖ã‖E′

α
τ
)−1 [

M1

∥∥Ax
hϕ

h
∥∥
E′

α
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+ max
1≤m≤N

|ρ (tm)|M8 (φ, α, T ) ‖ã‖E′
α
+M9 (φ, α, T ) ‖ã‖E′

α
‖Ax

hϕ‖E′
α

+(M10 (φ, α, T ) + 1)
∥∥∥{fh (tk)

}N
k=1

∥∥∥
Cτ (E′

α)

+ ‖ã‖E′
α

(
max

1≤k≤N
|ρ (tk)|+M11

∥∥Ax
hϕ

h
∥∥
E′

α

)

+ ‖ã‖E′
α
(1 +M8 (φ, α, T ))

k−1∑
j=1

∥∥∥∥∥wh
j − wh

j−1

τ

∥∥∥∥∥
E′

α

τ

⎤⎦ .
Using the discrete analogue of Gronwall’s inequality and the last inequality, we
get ∥∥∥∥∥wh

k − wh
k−1

τ

∥∥∥∥∥
E′

α

≤ eM12(ã,φ,α,T )
[
M13 (ã, φ, α, T )

∥∥Ax
hϕ

h
∥∥
E′

α

+M13 (ã, φ, α, T ) ‖ρτ‖C[0,T ]τ
+M14 (ã, φ, α, T )

∥∥∥{fh (tk)
}N
k=1

∥∥∥
Cτ (E′

α)

]
for every k, 1 ≤ k ≤ N. Then, we have that∥∥∥∥∥∥

{
wh

k − wh
k−1

τ

}N

k=1

∥∥∥∥∥∥
Cτ (E′

α)

≤M15 (ã, φ, α, T )
(∥∥Ax

hϕ
h
∥∥
E′

α

+
∥∥∥{fh (tk)

}N
k=1

∥∥∥
Cτ (E′

α)
+ ‖ρτ‖C[0,T ]τ

)
.

The following theorem finishes the proof of Theorem 2.

Theorem 3. [22] For 0 < α <
1

2
the norms of the spaces E′

α (C[0, l]h, A
x
h) and

C2α [0, l]h are equivalent.
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Abstract. The problem of the buckling of a transveral-isotropic cylin-
drical shell under axial compression by means of new non-classical shell
theories is studied. The local approach is used to solve the systems of
differential equations. According to this approach the buckling deflection
is sought in the form of a doubly periodic function of curvilinear coordi-
nates. The well-known solutions obtained by classical shell theories are
compared with the results of non-classical shell theories. For the non-
classical theories of anisotropic shell of moderate thickness the buckling
equations are constructed by the linearization of nonlinear equilibrium
equations. Analytical and numerical results obtained with the use of 3D
theory by the FEM code ANSYS 13 are also compared.

Keywords: Cylindrical Shell, Buckling, Non-Classical Theories of
Shells, Numerical and Analytical Modeling.

1 Introduction

In this paper the problem of the buckling of the transversal-isotropic cylindrical
shell under the axial compression by means of different nonclassical shell theories
is studied. The following non-classical theories are considered: Ambartsumian
(AMB) [1] theory of anisotropic shells, Paliy-Spiro (PS) theory of moderate-
thickness shells and Rodionova-Titaev-Chernykh (RTCH) [2] iteration theory.
The developed buckling equations for the shell theories of PS and RTCH are
constructed by linearization of nonlinear equilibrium equations. The comparison
of new solutions obtained by non-classical shell theories with well-known results
of classical theories - Kirchhoff-Love (KL) and Timoshenko-Reissner (TR) [3]
is done. In conclusion the comparison of the analytical results of shell theories
with numerical results of three–dimensional theory by the FEM code Ansys 13
is given. The main focus is on the case of small cross-section shear modulus. Also
we study the influence of relative thickness and length of the shell on the value
of critical load. Let us denote a polar angle by α, and the length coordinate by β.
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Fig. 1. An element of circular cylindrical shell

The radius of middle surface of the shell is R, the thickness is h, it’s length is
L , Young’s modulus is E, Poisson ratio is ν and tangential shear modulus is
G′. Lame coefficient and curvature coefficient which determine the geometry of
cylindrical shell: A1 = R, A2 = 1, k1 = 1/R, k2 = 0.

We consider buckling equations of the shell which are constructed by the
linearization of non-linear equilibrium equations. This method is very convenient
in estimating of upper critical loading. It is enough to define the condition under
which generalized stiffness of the construction is equal to zero. Using the method
of linearization the solution of the problem is sought by summing of consequently
calculated parameters of strain-stress state of the construction while loads are
gradually increased. Thus at the each stage of the loading the linear shell problem
is being solved.

Fig. 2. The load applied to cylindrical shell

General equations are written down for increments in the components of in-
ner forces, displacements and deformation parameters at this stage of loading.
The components of the loading include parameters which describe the stress-
strain state of the shell at the previous stage. If the change of the components is
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known and fixed, it is connected with the change of one scalar parameter. The
initial state will be an implicit function of this parameter and there appears the
eigenvalue problem.

In the given problem we use the classical hypothesis [3] holding that the basic
stress-strain state of the shell before the loss of stability is membrane. Then one
can take the well-known solution of the membrane shell theory as some function
defining the distribution of force in a membrane shell:

Z = −T20∂β,βw (1)

As a result, in this problem T2
0 magnitude becomes the only one indefinite

scalar parameter the eigenvalue of which should be found. In solving the sys-
tems of differential equations a local approach is used [4], according to which
the bucking deflection is sought in the form of a doubly periodic function of
curvilinear coordinates. The non-zero system solution is sought in the form of:

w(α, β) = w0 cos(nα) sin(mβ), Φ(α, β) = Φ0 cos(nα) sin(mβ)
u(α, β) = u0 sin(nα) sin(mβ), γ1(α, β) = γ1

0 sin(nα) sin(mβ)
v(α, β) = v0 cos(nα) cos(mβ), γ2(α, β) = γ2

0 cos(nα) cos(mβ)
(2)

where u, v, w — displacement vector components of a point of mid-surface of
shell, γ1 and γ2 —angles of normal turn in the planes (α, z), (β, z) respectively,
Φ(α, β) — force function.

2 Kirchhoff-Love Model Solution

Let us consider the well-known solution which is obtained by the classical theory
of shells which is based on the following hypothesis:

1) the straight lines normal to the mid-surface remain straight and normal to
the mid-surface after deformation;

2) the thickness of the shell does not change during a deformation.
Two-dimensional equation system of the shallow shell theory [3] has a form:

−DΔΔw + T 0
2 ∂β,βw +

1

R
∂β,βΦ = 0,

1

Eh
ΔΔΦ+

1

R
∂β,βw = 0 (3)

where Δ - Laplace operator; D = Eh3/(12(1 − ν2)) - cylindrical stiffness; T 0
2 -

desired axial force.
If we substitute the expression (2) into this system (3) for force T 0

2 , we will
obtain:

− T 0
2 = f(m,n) =

D(n2 +m2)2

R2m2
+

Ehm2

(n2 +m2)2
(4)

The critical load value is obtained as a result of minimization by the wave
parameters m and n of the function f(m,n).

T 0
2 = σ0h, σ0 = − E√

3(1− ν2)

h

R
= σcl (5)
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3 Ambartsumian Model Solution

The solution (5) being constructed by KL model does not allow taking into ac-
count the effect of stiffness on cross-section shear. Let us consider Ambartsumian
[1] theory which is based on the following hypothesis:

1) displacement which is normal to the shell mid-surface does not depend on
the normal coordinate;

2) shear stresses or the corresponding deformations change according to a
quadratic law with respect to the plane thickness;
Let us write down the equations of Ambartsumian model which takes the influ-
ence of cross-section shear into account for a transversally-isotropic shell as:

−ΔΔu− ν

R

∂3w

∂β3
+

1

R

∂3w

∂α2∂β
= 0 −ΔΔv − 2 + ν

R

∂3w

∂α∂β2
− 1

R

∂3w

∂α3
= 0 (6)

−DΔ4w +
Eh

R2
(1− hzΔ)

∂4w

∂β4
− T 0

2 (1− hzΔ)Δ2 ∂
2w

∂β2
= 0 hz =

Eh2

10(1− ν2)G′

The simplified system of differential equations of the shell buckling which
is used in Ambartsumian theory was obtained basing on the equations of the
shallow shell theory.

Using the local approach (2) for solving this system for T 0
2 we obtain:

− T 0
2 = f(m,n) =

D(n2 +m2)2

R2m2(1 + hz(n2 +m2))
+

Ehm2

(n2 +m2)2
(7)

The obtained value for critical load —

σ0 = − E√
3(1− ν2)

h

R
+

E2

10G′(1− ν2)

(
h

R

)2

= σcl

(
1−

√
3

10
√
(1 − ν2)

E

G′
h

R

)
(8)

agrees completely with the one being obtained by the theory of Timoshenko-
Reissner [3]. It is known [4] that for an isotropic shells and plates the TR theory
being asymptotically inconsistent refines the deflection of a body. But for bod-
ies, which are made of transversal isotropic material ”in case when material
stiffness in tangential directions is much larger than its stiffness in the transver-
sal direction” the TR theory makes the KL theory more precise and gives next
asymptotical approximation of the three-dimensional theory. The bodies ”with
moderately small transverse shear stiffness” are thin-walled bodies for which
small parameter g = G’/E (where E is the Young’s modulus in the tangential
direction, G’ is the shear modulus for plane normal to the surface of isotropy)

satisfies expression (h/R)2 � g � 1.

4 Paliy-Spiro Model Solution

The situation is quite different when the buckling problems are considered with
the use of improved theories. In this case the old representations are not always
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acceptable as there appear problems related to taking into account the change
of the length and the turn of the normal to mid-surface.

The Paliy-Spiro [2] theory of moderate-thickness shells accepts the following
hypothesis:

1) straight fibers of the shell which are perpendicular to its mid-surface before
deformation remain also straight after deformation;

2) cosine of the slope angle of these fibers to the mid-surface of the deformed
shell is equal to the averaged angle of transverse shear.
The mathematical formulation of the accepted hypotheses gives following
equations:

u1 = u+ φ · z, u2 = v + ψ · z,
u3 = w + F (α, β, z),
φ = γ1 + φ0, ψ = γ2 + ψ0,

φ0 = − 1

A1

∂w

∂α
+ k1u, ψ0 = − 1

A2

∂w

∂α
+ k2v,

(9)

where φ and ψ are the angles of rotation of the normal in the planes (α, z) and
(β, z); φ0, ψ0,γ1 γ2 — the angles of rotation of the normal to the medial sur-
face and the angles of displacement in the same planes. The function F (α, β, z)
characterizes the variation of the length of normal to the middle surface.

The shell deformations ε1, ε2, ε13, η1, η2 are expressed by displacement com-
ponents with the following formulas:

ε1 =
∂αu

R
+
w

R
, ε2 = ∂βv, η1 =

∂αφ

R
(10)

η2 = ∂βψ, ω =
∂αv

R
+ ∂βu, τ =

∂αψ

R
+ ∂βφ

Substituting the mentioned dependencies (10) into the constitutive relations
(11), one can obtain the equations of relation between the components of dis-
placement and forces and moments.

ε1 =
T1 − νT2

Eh
, ε2 =

T2 − νT1
Eh

, ω =
S

G′h
, η1 =

12(M1 − νM2)

Eh3
, (11)

η2 =
12(M2 − νM1)

Eh3
, τ =

12H

G′h3
, γ1 =

N1

G′h
, γ2 =

N2 + T2
0 ∗ ψ0

G′h

As one can see (11), PS theory includes the characteristical parameter T2
0 in

the equation of relation between normal slope γ2 and shear force N2.
The obtained equations of relation between components of displacement and

forces and moments are substituted into equilibrium equations:

∂αT1
R

+ ∂βS +
N1

R
= 0,

∂αS

R
+ ∂βT2 = 0,

∂αN1

R
+ ∂βN2 −

T1
R

= 0 (12)

∂αM1

R
+ ∂βH −N1 = 0,

∂αH

R
+ ∂βM2 −N2 − T2

0 ∗ ψ0 = 0.
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Resolution matrix in this case will be of [5*5] dimension. Nevertheless the
value of critical load obtained is similar to the value of Ambartsumian theory
(8). This is the factor of the second coefficient of asymptotical expansion by small
parameter h/R that makes the results different. One can see that this numerical
factor reduces the influence of transversal shear.

σ0 = − E√
3(1− ν2)

h

R
+

E2

12G′(1− ν2)

(
h

R

)2

= σcl

(
1−

√
3

12
√
(1 − ν2)

E

G′
h

R

)
(13)

5 Rodionova-Titaev-Chernykh Model Solution

The use of RTCH shell theory yields more interesting results [2]. This is a lin-
ear theory of non-homogeneous anisotropic shells which takes into account low
transversal shear compliance and deformation towards the normal to the mid-
dle surface. It also takes into account transversal normal strains and supposes
non-linear distribution of displacement vector component over shell thickness.

1) transverse tangential and normal stresses are distributed along the shell
thickness according to quadratic and cubic laws respectively;

2) tangential and normal components of the displacement vector are dis-
tributed along the shell thickness according to quadratic and cubic laws;
The functions which describe shell displacement u1(α, β, z),u2(α, β, z), u3(α, β, z)
according to RTCH theory are supposed to be sought in the form of Legendre
polynomial series P0, P1, P2, P3 from normal coordinate z ∈

[
−h

2 ,
h
2

]
.

u1(α, z) = u(α, β)∗P0(z) + γ1(α, β)
∗P1(z) + θ1(α, β)

∗P2(z) + ϕ1(α, β)
∗P3(z),

u2(α, z) = v(α, β)∗P0(z) + γ2(α, β)
∗P1(z) + θ2(α, β)

∗P2(z) + ϕ2(α, β)
∗P3(z),

u3(α, z) = w(α, β)∗P0(z) + γ3(α, β)
∗P1(z) + θ3(α, β)

∗P2(z)
(14)

P0(z) = 1, P1(z) =
2z

h
, P2(z) =

6z2

h2
− 1

2
, P3(z) =

20z3

h3
− 3z

h
(15)

where γ3 and θ3 characterize normal length variation to this surface, magnitudes
θ1 and ϕ1, describe normal curvature in the plane (α, z) of a fiber, θ2 ϕ2,
describe normal curvature in the plane (β, z)which before the deformation were
perpendicular to the medial surface of the shell.

The shell deformations ε1, ε2, ε13, η1, η2 are expressed by displacement
components:

ε1 =
∂αu

R
+
w

R
, ε2 = ∂βv, η1 =

∂αγ1
R

+
γ3
R
, η2 = ∂βγ2, ϑ0 = ∂α,αw (16)

ω =
∂αv

R
+∂βu, τ =

∂αγ2
R

+∂βγ1, ε13 =
∂αw

R
− u

R
+

2γ1
h
, ε23 = ∂βw+

2γ2
h

The characteristical parameter T2
0 is also included into the constitutive

relations.

T1 =
Eh

1− ν2
(ε1 + νε2), T2 =

Eh

1− ν2
(νε1 + ε2), M1 =

Eh2

6 (1− ν2)
(η1 + νη2),
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M2 =
Eh2

6 (1− ν2)
(νη1 + η2), S = G′hω, H = G′h

2

6
τ, N1 =

5hG′

6
ε13, (17)

N2 =
5hG′

6
ε23 +

T2
0ϑ0
6

, γ3 = − ν

1− ν

h

2
(ε1 + ε2),

The equations of relation forces and moments and displacement components
were substituted into equilibrium equations (12).

In minimizing the determinant the following solution was obtained:

σ0 = − E√
3(1− ν2)

√
1− E2

60G′2(1− ν2)

(
h

R

)2 (
h

R

)
+

E2

15G′(1 − ν2)

(
h

R

)2

(18)
This expansion into a series by a small parameter yields succeedent terms of

expansion:

σ0 = − E√
3(1− ν2)

h

R
+

E2

15G′(1 − ν2)

(
h

R

)2

+O

[
h

R

]3
(19)

6 The Comparison with Numerical Results

Let us compare the results which are obtained with the use of developed ana-
lytical formulae of shell theory and numerical results for three-dimensional the-
ory. Unfortunately, the formulae for the critical load of the shell theory do not
take into account the tube length. Being applied to the buckling problems the
obtained solutions well agree with medium-length shells. For example, a three-
dimensional model of steel tube under the influence of axial compression was
studied under the following parameters h/R = 2/15, ν = 0.3. The cross-section
shear modulus is equal to G′ = E/(2(1+ν)). For modeling the three-dimensional
problem in package Ansys 13 the finite element Solid186 was used. This is a
higher order 3-D 20-node solid element that exhibits quadratic displacement be-
havior. The element is defined by 20 nodes having three degrees of freedom per
node: translations in the nodal x, y, and z directions. The element supports plas-
ticity, hyperelasticity, creep, stress stiffening, large deflection, and large strain
capabilities. It also has mixed formulation capability for simulating deformations
of nearly incompressible elastoplastic materials, and fully incompressible hypere-
lastic materials. [5] During mesh construction the tube thickness was split for five

Table 1. The comparison of critical load values

h/R 0.025 0.05 0.1 0.133 0.162

KL 0.01532 0.03103 0.0637 0.08069 0.09814

Amb 0.01513 0.03028 0.06054 0.07561 0.09063

PS 0.01516 0.03041 0.06107 0.07646 0.09188

RTCH 0.01519 0.03053 0.06155 0.07722 0.09297

Ansys 0.01445 0.02875 0.055 0.0595 0.0635
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elements. Thus the value of the critical load according to the three-dimensional
theory is smaller than shell theories. The value of a critical load for the consid-
ered tubes with length ranged from 1.5 to 3 diameters of mid-surface does not
change considerably. Table 1 shows dimensionless values of critical load σ0/E
for different ratios of tube thickness to the radius of its middle surface.

7 Conclusions

As one can see in the table, as shell thickness increases, the values of critical load
obtained by shell theories are not consistent with the results of three-dimensional
theory. It can be noticed that error increases as the thickness grows. It is possible
to claim that in spite of improvements of non-classical hypotheses reliable results
can be obtained only for thin shells. However, as it was shown in [2] similar
hypotheses suit well for defining stress-strain state of a shell.
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Abstract. Ant Colony Optimization (ACO) is a stochastic search
method that mimic the social behavior of real ants colonies, which man-
age to establish the shortest rout to feeding sources and back. Such
algorithms have been developed to arrive at near-optimal solutions to
large-scale optimization problems, for which traditional mathematical
techniques may fail. On this paper is proposed an ant algorithm with
semi-random start. Several start strategies are prepared at the basis of
the start nodes estimation. There are several parameters which manage
the starting strategies. In this work we focus on influence on the quality
of the achieved solutions of the parameters which shows the percent-
age of the solutions classified as good and as bad respectively. This new
technique is tested on Multiple Knapsack Problem (MKP).

1 Introduction

Metaheuristic methods are general tools for solving hard (from computational
point of view) optimization problems. Most of them use ideas coming from
nature. Ant Colony Optimization is one of the most successive metaheuristic
method. The main idea comes from collective intelligence of real ant when they
look for a food. The problem is solved collectively by the whole colony. This
ability is explained by the fact that ants communicate in an indirect way by
laying trails of pheromone. The higher the pheromone trail within a particular
direction, the higher the probability of choosing this direction.

The ACO algorithm uses a colony of artificial ants that behave as cooper-
ative agents in a mathematical space where they are allowed to search and
reinforce pathways (solutions) in order to find the optimal ones. The problem
is represented by graph and the ants walk on the graph to construct solutions.
The solutions are represented by paths in the graph. After the initialization of
the pheromone trails, the ants construct feasible solutions, starting from random
nodes, and then the pheromone trails are updated. At each step the ants compute
a set of feasible moves and select the best one (according to some probabilistic
rules) to continue the rest of the tour. The transition probability pi,j , to choose
the node j when the current node is i, is based on the heuristic information ηi,j
and the pheromone trail level τi,j of the move, where i, j = 1, . . . . , n.
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pi,j =
τai,jη

b
i,j∑

k∈Unused

τai,kη
b
i,k

,

where Unused is the set of unused nodes of the graph. The higher the value of
the pheromone and the heuristic information, the more profitable it is to select
this move and resume the search. In the beginning, the initial pheromone level
is set to a small positive constant value τ0; later, the ants update this value after
completing the construction stage. ACO algorithms adopt different criteria to
update the pheromone level.

The pheromone trail update rule is given by:

τi,j ← ρτi,j +Δτi,j ,

where ρ models evaporation in the nature and Δτi,j is the new added pheromone
which is proportional to the quality of the solution.

As other metaheuristics, ACO algorithm is applied on hard (NP) combinato-
rial optimization problems coming from real life and industry. It is unpractical to
apply exact methods or traditional numerical methods on this kind of problems,
because they need huge amount of computational resources, time and memory.
Examples of optimization problems are Traveling Salesman Problem [12], Vehi-
cle Routing [13], Minimum Spanning Tree [11], Multiple Knapsack Problem [3],
etc.

The ACO is a constructive methods. The ants construct solutions starting
from random points. In serie of papers we propose and learn semirandom start
of the ants with estimation of possible starting points. There are several param-
eters controlling the ant start. One of them is how many of the solution will
be estimated as good (parameter A) and how many - as bad (parameter B).
The aim of this paper is analysis of the influence of the parameters A and B on
the ACO algorithm behavior. The success of the algorithm depends of the right
values of it parameters.

The rest of the paper is organized as follows: in section 2 estimation of start
node is introduced and several start strategies are proposed; in section 3 the
strategies are applied on MKP and sensitivity analysis of the algorithm according
parameters A and B is made. At the end some conclusions and directions for
future work are done.

2 Subset Estimations

The essential part of ACO algorithm is starting from random node when ants
create solutions. It is a kind of diversification of the search and leads to using
small number of ants, which means less computational resources. For some opti-
mization problems, especially subset problems, it is important from which node
the search process starts. For example: if an ant starts from node which does
not belong to the good solution, probability to construct it is zero. Therefore
we divide the set of nodes of the graph of the problem to subsets. We estimate
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every subset, how good and how bad is to start from it, after we offer several
start strategies keeping in some extent the random start.

Let the graph of the problem has m nodes. We divide the set of nodes on N
subsets. There are different ways for dividing. Normally, the nodes of the graph
are randomly enumerated. An example for creating of the nodes subsets, without
loss of generality, is: the node number one is in the first subset, the node number
two is in the second subset, etc. the node number N is in the N − th subset, the
node number N + 1 is in the first subset, etc. Thus the number of the nodes in
the subsets are almost equal. We introduce estimations Dj(i) and Ej(i) of the
node subsets, where i ≥ 2 is the number of the current iteration. Dj(i) shows
how good is to start from node which belong to the jth subset and Ej(i) shows
how bad is to start from node which belong to the jth subset. Dj(i) and Ej(i)
are weight coefficients of j − th node subset (1 ≤ j ≤ N).

Dj(i) = ϕ.Dj(i− 1) + (ψ − ϕ).Fj(i), (1)

Ej(i) = ϕ.Ej(i − 1) + (ψ − ϕ).Gj(i), (2)

where i ≥ 1 is the current process iteration and for each j (1 ≤ j ≤ N):

Fj(i) =

{
fj,A
nj

if nj �= 0

Fj(i− 1) otherwise
, (3)

Gj(i) =

{ gj,B
nj

if nj �= 0

Gj(i − 1) otherwise
, (4)

fj,A is the number of the solutions among the best A%, gj,B is the number of
the solutions among the worst B%, where A+B ≤ 100, i ≥ 2 and

N∑
j=1

nj = n, (5)

where nj (1 ≤ j ≤ N) is the number of solutions obtained by ants starting from
nodes subset j, n is the number of ants. Initial values of the weight coefficients
are: Dj(1) = 1 and Ej(1) = 0. With this estimation we take in to account the
information from previous iterations as well as the information from current
iteration. The information from previous iterations have less influence in the
estimation because we divide to the number of iteration. The balance between the
influence of the previous iterations and the last is important. At the beginning
when the current best solution is far from the optimal one, some of the node
subsets can be estimated as good. If the influence of the last iteration is too high
then information for good and bad solutions from previous iterations is ignored,
which can distort estimation too. We try to use the experience of the ants from
previous iterations when they choose the better starting node. Other authors use
this experience only by the pheromone, when the ants construct the solutions
[2]. Let us fix threshold E for Ej(i) and D for Dj(i), than we construct several
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strategies to choose start node for every ant, the threshold E increases every
iteration with 1/i where i is the number of the current iteration:

1 If Ej(i)/Dj(i) > E then the subset j is forbidden for current iteration and
we choose the starting node randomly from {j |j is not forbidden}.

2 If Ej(i)/Dj(i) > E then the subset j is forbidden for current simulation and
we choose the starting node randomly from {j |j is not forbidden}.

3 If Ej(i)/Dj(i) > E then the subset j is forbidden for K1 consecutive itera-
tions and we choose the starting node randomly from {j |j is not forbidden}.

4 Let r1 ∈ [R, 1) is a random number. Let r2 ∈ [0, 1] is a random number. If
r2 > r1 we randomly choose node from subset {j |Dj(i) > D}, otherwise
we randomly chose a node from the not forbidden subsets, r1 is chosen and
fixed at the beginning.

5 Let r1 ∈ [R, 1) is a random number. Let r2 ∈ [0, 1] is a random number. If
r2 > r1 we randomly choose node from subset {j |Dj(i) > D}, otherwise we
randomly chose a node from the not forbidden subsets, r1 is chosen at the
beginning and increase with r3 every iteration.

Where 0 ≤ K1 ≤”number of iterations” is a parameter. If K1 = 0, than
strategy 3 is equal to the random choose of the start node. If K1 = 1, than
strategy 3 is equal to the strategy 1. If K1 =”maximal number of iterations”,
than strategy 3 is equal to the strategy 2.
A is a parameter which shows how many of the achieved solutions will be

treated as good. B is a parameter which shows how many of the achieved solu-
tions will be treated as bad. If B is a big number, many subsets will be estimated
as bad and will become forbidden. If both A and B are small numbers, a lot of
subsets will be treated neither good nor bad.

We can use more than one strategy for choosing the start node, but there are
strategies which can not be combined. We distribute the strategies into two sets:
St1 = {strategy1, strategy2, strategy3} and St2 = {strategy4, strategy5}.
The strategies from same set can not be used at once. Thus we can use strat-
egy from one set or combine it with strategies from the other set. Exemplary
combinations are (strategy1), (strategy2; strategy5), (strategy3; strategy4).
When we combine strategies from St1 and St2, first we apply the strategy from
St1 and according it some of the regions (node subsets) become forbidden, and
after that we choose the starting node from not forbidden subsets according the
strategy from St2. For example if we combine strategy2 and strategy5. The
strategy2 is applied first. Some of the node subsets become forbidden after it
application. Next is apply strategy5. It is applied only on not forbidden subsets.
The starting node is chosen from not forbidden subsets in a random way and
the nodes from not forbidden subsets with good estimation will be with higher
probability to be chosen.

3 Experimental Results

The influence of parameters A and B is analyzed in this section. Influence of
other parameters is analyzed in previous authors works [5–9]. Like test is used
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Multiple Knapsack Problem (MKP) because it is a good representative of subset
problems. The Multiple Knapsack Problem has numerous applications in the-
ory as well as in practice. It also arise as a subproblem in several algorithms
for more complex problems and these algorithms will benefit from any improve-
ment in the field of MKP. The following major applications can be mentioned:
problems in cargo loading, cutting stock, bin-packing, budget control and finan-
cial management may be formulated as MKP. Other applications are industrial
management, naval, aerospace, computational complexity theory.

The MKP can be thought as a resource allocation problem, where there are
m resources (the knapsacks) and n objects and every object j has a profit pj .
Each resource has its own budget cj (knapsack capacity) and consumption rij
of resource i by object j. The aim is maximizing the sum of the profits, while
working with a limited budget.

The MKP can be formulated as follows:

max
n∑

j=1

pjxj

subject to
n∑

j=1

rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(6)

xj is 1 if the object j is chosen and 0 otherwise.
There are m constraints in this problem, so MKP is also calledm-dimensional

knapsack problem. Let I = {1, . . . ,m} and J = {1, . . . , n}, with ci ≥ 0 for all
i ∈ I. A well-stated MKP assumes that pj > 0 and rij ≤ ci ≤

∑n
j=1 rij for

all i ∈ I and j ∈ J . Note that the [rij ]m×n matrix and [ci]m vector are both
non-negative.

In the MKP one is not interested in solutions giving a particular order. There-
fore a partial solution is represented by S = {i1, i2, . . . , ij} and the most recent
elements incorporated to S, ij need not be involved in the process for selecting
the next element. Moreover, solutions for ordering problems have a fixed length
as one search for a permutation of a known number of elements. Solutions for
MKP, however, do not have a fixed length. The graph of the problem is defined
as follows: the nodes correspond to the items, the arcs fully connect nodes. Fully
connected graph means that after the object i one can chooses the object j for
every i and j if there are enough resources and object j is not chosen yet.

The computational experience of the ACO algorithm is shown using 10 MKP
instances from “OR-Library” available within WWW access at http://people.

brunel.ac.uk/~mastjjb/jeb/orlib, with 100 objects and 10 constraints. To
provide a fair comparison for the above implemented ACO algorithm, a pre-
defined number of iterations, k = 100, is fixed for all the runs. The developed
technique has been coded in C++ language and implemented on a Pentium 4
(2.8 Ghz). The parameters are fixed as follows: ρ = 0.5, a = 1, b = 1, num-
ber of used ants is 20, D = 1.5, E = 0.5, K1 = 5, R = 0.5, r3 = 0.01. The
values of ACO parameters (ρ, a, b) are from [4] and experimentally is found
that they are best for MKP. The tests are run with 1, 2, 4, 5 and 10 nodes
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within the nodes subsets. Parameters ϕ and ψ have values (0.45, 0.75) and
they are from [10]. We test the algorithm on following values for parameters
{A,B} ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}, and A + B ≤ 100. For every experi-
ment, the results are obtained by performing 30 independent runs, then aver-
aging the fitness values obtained in order to ensure statistical confidence of the
observed difference. The computational time which takes start strategies is neg-
ligible with respect to running time of the algorithm. Tests with all combinations
of strategies and with random start (12 combinations), 5 node devisions and 45
combinations of the values for A and B are run. Thus we perform 81 000 tests.

Table 1. Estimation of strategies and rate of fuzziness

A B Best strategies best estim.

10 10 3 3-5 3-6 89

10 20 3 92

10 30 3 92

10 40 3 3-5 3-6 89

10 50 1 88

10 60 3 89

10 70 1 87

10 80 1-5 1-6 88

10 90 2 81

20 10 3 3-5 3-6 87

20 20 3-5 3-6 91

20 30 1-5 1-6 92

20 40 1 88

20 50 1 90

20 60 2 90

20 70 3-5 3-6 87

20 80 3-5 3-6 85

30 10 3-5 3-6 90

30 20 3 91

30 30 1-5 1-6 3-5 3-6 87

30 40 1 89

30 50 1-5 1-6 89

A B Best strategies best estim.

30 60 2 2-5 2-6 89

30 70 1 2-5 2-6 85

40 10 1 3 91

40 20 3-5 3-6 88

40 40 3 85

40 50 3-5 3-6 89

40 60 2 89

50 10 3-5 3-6 88

50 20 3 90

50 30 1 88

50 40 3-5 3-6 87

50 50 2-5 2-6 86

60 10 3 90

60 20 3 90

60 30 3-5 3-6 89

60 40 3-5 3-6 86

70 10 3-5 3-6 92

70 20 3 91

70 30 3 89

80 10 3 91

80 20 1 1-5 1-6 3 89

90 10 3-5 3-6 93
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Average achieved result by some strategy, is better than without any strategy,
for every test problem. For fair comparison, the difference d between the worst
and best average result for every problem is divided to 10. If the average result
for some strategy is between the worst average result and worst average plus
d/10 it is appreciated with 1. If it is between the worst average plus d/10 and
worst average plus 2d/10 it is appreciated with 2 and so on. If it is between the
best average minus d/10 and the best average, it is appreciated with 10. Thus
for a test problem the achieved results for every strategy, every nodes devision
and values for A and B is appreciated from 1 to 10. After that is summed the
rate of all test problems for every strategy, every nodes devision and values for
parameters A and B. So theirs rate becomes between 10 and 100 (see Table 1).
It is like percentage of successes. We have applied ANOVA test to ensure the
confidence of the work. Difference with one units is significant in our estimation
system.

The best achieved results for all strategies are when there is only one node in
the node subsets. Therefore in Table 1 we report only this case. With bold is a
best found result.

The best found result is when (A,B) = (90, 10) and the worst found result
is when (A,B) = (10, 90). We observe that we achieve good results when the
value of parameter A is much greater then the value of the parameter B or A
and B are small and have similar values. When the value of the parameter B is
too big, the achieved result is bad. Big value of B means a lot of node subsets to
be estimated like bad and to be forbidden. Thus the diversification of the search
decrease. We can conclude that to achieve good results small number of node
subsets to become forbidden or the value of the parameter B to be small.

4 Conclusion

In this paper we address on influence analysis of the parameters A and B of
start strategies on the ACO algorithm applied on MKP. We vary the value of
the parameters A and B in the interval [10, 90]. We found that small values of
parameter B achieve better results, thus the best values are (A,B) = (90, 10).
Application of start strategies do not take significant time according running
time of hall algorithm. The aim of this an some of the previous works of the au-
thors is to find the best values of the algorithm parameters. Thus when someone
prepare a software which include ant algorithm, the best algorithm parameters
to be known. In a future we will apply start strategies on other problems different
than subset problems.

Acknowledgments. This work has been partially supported by the Bulgarian
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Abstract. Free axisymmetric flexural vibrations of an annular elastic
thin plate are studied. Numerical solutions of eigenvalue problem for var-
ious boundary conditions are obtained. The plate can be used as a model
of the supporting frame of a shell. In this connection the boundary con-
ditions corresponding the attaching of the plate to a cylindrical shell are
also considered. The plate is called narrow if the ratio of its width to the
radius of the inner edge is small. For the vibrations analysis of a narrow
plate new asymptotic methods are elaborated. Comparison asymptotic
and numerical results shows, that the error of the approximate formulae
quickly decreases with reduction of the plate width.

Keywords: Free vibrations, Annular thin plate, Eigenvalue problems,
Numerical solution, Asymptotic approach.

1 Introduction

The problem of free vibrations of annular plate is not too complex. Nevertheless,
till now appear papers devoted to this theme and containing new results. For
example, in [1] an exact solution for the free vibration problem of annular plates
with parabolically varying rigidity was received.

2 Analytical Solution

We consider the radius r0 of inner plate edge as the characteristic size. Then
the non-dimensional equations describing the axisymmetric transverse flexural
vibrations of the annular plate have the form

(sQ)′ + λsw = 0, sQ = (sM1)
′ −M2,

M1 =
h2

12
(κ1 + νκ2), M2 =

h2

12
(κ2 + νκ1),

κ1 = ϑ′, κ2 = ϑ/s, ϑ = −w′, λ =
σρr20ω

2

E
,

(1)

where (′) denotes the derivative with respect to the radial coordinate, s ∈ [1, sb],
sb = 1+b, b is the dimensionless plate width, w is the deflection, Q1,M1,M2 are
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the dimensionless stress-resultant and stress-couples, h is the dimensionless plate
thickness, ϑ is the angle of rotation, λ is the frequency parameter, σ = 1− ν2, ν
is Poisson’s ratio, E is Young’s modulus, ρ is the mass density, ω is the vibration
frequency.

System (1) can be reduced to the equation

Δ2w − γ4w = 0, Δw =
1

s
(sw′)′, γ4 =

12λ

h2
. (2)

The exact solution of equation (2) has the form

w = C1J0(γs) + C2Y0(γs) + C3I0(γs) + C4K0(γs), (3)

where Cj (j = 1, 2, 3, 4) are the arbitrary constants, J0 and Y0 are the Bessel
functions satisfying the equation

Δw − γ2w = 0,

I0 and K0 are the modified Bessel functions satisfying the equation

Δw + γ2w = 0.

The substitution of the solution (3) into boundary conditions provides the
following linear algebraic equations:

4∑
k=1

ajkCk = 0, j = 1, 2, 3, 4. (4)

The formulae for coefficients ajk contain values of functions I0, J0, K0, Y0 and
its derivatives at s = 1, s = sb and depend on the boundary conditions. System
(4) has nontrivial solutions if its determinant vanishes:

detA(γ) = 0, A = {ajk}. (5)

We can calculate the frequency parameter, λ, using the following formula

λ = h2γ4/12, (6)

where γ is the root of equation (5).

3 Numerical Solution

One can solve equations (1) numerically, using the initial-value or shooting pro-
cedure [2]. After the introducing new variables

y1 = w, y2 = ϑ, y3 = 12M1/h
2, y4 = 12Q/h2

equations (1) take the form

y′1 = −y2, y′2 = −νy2/s+ y3,
y′3 = σy2/s

2 − (1− ν)y3 + y4, y′4 = −γ4y1 − y4/s.
(7)
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Consider for example the annular plate with clamped edges. In this case
boundary conditions for equations (7) are

y1(1) = y2(1) = y1(sb) = y2(sb) = 0.

Using Runge-Kutta method we obtain solutions

y(1) = (y
(1)
1 , y

(1)
2 , y

(1)
3 , y

(1)
4 ), y(2) = (y

(2)
1 , y

(2)
2 , y

(2)
3 , y

(2)
4 ), s ∈ [1, sb]

of two Cauchy problems with initial conditions

y
(1)
1 = 0, y

(1)
2 = 0, y

(1)
3 = 1, y

(1)
4 = 0,

y
(2)
1 = 0, y

(2)
2 = 0, y

(2)
3 = 0, y

(1)
4 = 0, s = 1

A linear combination of these two solutions C1y
(1)+C2y

(2) satisfies the boundary
conditions at s = 1. This combination satisfies also conditions at s = sb if

C1y
(1)
1 + C2y

(2)
1 = 0, C1y

(1)
2 + C2y

(2)
2 = 0. (8)

System of equations (8) has a nontrivial solution in the case

y
(1)
1 (sb)y

(2)
2 (sb)− y

(2)
1 (sb)y

(1)
2 (sb) = 0. (9)

To obtain values of γ one have to find the roots of equation (9).
Compare algorithms base on analytical and numerical approaches. To find

roots of equation (5) we must obtain formulae for coefficients ajk, calculate the
values of the Bessel functions and its derivatives and solve numerically equation
(5). This procedure we have to do for each version of boundary conditions. If we
use numerical algorithm based on formulae (7)–(9), then for the change of bound-
ary conditions we need only change indexes into initial conditions and equation
(9). It is obvious, that the numerical algorithm is more convenient for calculation
of vibrations frequencies of a plate under various boundary conditions. With its
help the results presented in Table 1 are obtained.

Table 1. The minimal positive root γ1 of Eq. (9) vs. the dimensionless plate wide b
for various boundary conditions

Root γ1 of Eq. (9)b
CL & CL FS & FS CL & FR

0.1 47.36 31.45 18.57
0.2 23.68 15.73 9.219
0.3 15.78 10.49 6.112
0.4 11.84 7.874 4.564
0.6 7.888 5.258 3.024
0.8 5.914 3.951 2.260
1.0 4.729 3.167 1.804
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In the first column the values of the dimensionless plate wide b are given. The
next columns contain the values of the minimal positive root γ1 of equation (9)
for various boundary conditions. The following designations are used: CL & CL
— the plate with the clamped edges,

w = ϑ = 0, s = 1, s = sb, (10)

FS & FS — the plate with the free supported edges,

w = M1 = 0, s = 1, s = sb, (11)

CL & FR — the plate with the clamped inner edge s = 1 and free outer edge
s = sb

w = ϑ = 0, s = 1, M1 = Q = 0, s = sb, (12)

The root γ1 corresponds to the fundamental vibrations frequency of the plate.

4 Narrow Plate

Assume that the plate is narrow, i.e. b� 1. Replacing variable

s = 1 + bx (13)

in equation (2) and neglecting small terms leads to the approximate equation

d4w

dx4
− β4w = 0, x ∈ [0, 1] (14)

where β = bγ. Equation (14) also describes the vibrations of a beam. Its solution
has the form

w = C1 sinβx+ C2 cosβx+ C3 sinhβx+ C4 coshβ. (15)

After the replacing variable (13) instead boundary conditions (10)–(12) we
obtain approximate boundary conditions

w =
dw

dx
= 0, x = 0, x = 1, (16)

w =
d2w

dx2
= 0, x = 0, x = 1, (17)

w =
dw

dx
= 0, x = 0,

d2w

dx2
=
d3w

dx3
= 0, x = 1, (18)

corresponding vibrations of beam with clamped edges (16), free supported edges
(17) and vibrations of cantilever beam (18).

Substituting (15) into boundary conditions (16)–(18) we obtain four linear
homogeneous algebraic equations for unknowns C1, C2, C3 and C4. This system
of equations have nontrivial solutions if its characteristic determinant

D(β) = 0. (19)
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Let βk, k = 1, 2, . . . are positive roots of the equation (19). Then

γk =
βk
b
, ωk =

hβ2
k

b2r0

√
E

12σρ
. (20)

Therefore for narrow annular plate the vibrations frequencies are proportional
to 1/b2.

So, the exact analytical solution (3) is practically useless. For calculation of
frequencies it is more convenient to use a numerical method. The dependence of
frequencies on parameters of a plate and boundary conditions can be found only
by means of the approximate analytical solution.

For conditions (16), (17) and (18) the numbers βk are the roots of equations

coshβ cosβ − 1 = 0, sinβ = 0, coshβ cosβ + 1 = 0.

The minimal positive roots of the last equations are 4.730, 3.142, 1.875. Using
these roots and first formula (20) we can obtain the approximate values of γ1 for
boundary conditions (10)–(12) and various values of plate wide b. For example
in the case when plate edges are clamped and b = 0.1 we get γ1 � 4.730/0.1 =
47.30.

Comparison approximate values of γ1 and it exact values from Table 1 for
b ∈ [0.1, 1.0] shows that in the cases CL & CL, FS & FS and CL & FR the relative
error is less than 0.1%, 1% and 3.9% correspondingly. Hence, the approximate
formula (20) received for a narrow plate, gives good results even for enough great
values of plate width.

5 Plate Joined with Shell

Consider free axisymmetric vibration of the thin annular plate joined with thin
cylindrical shell (Fig. 1). This problem is of great importance for the theory

s

b

Fig. 1. Annular plate joined with cylindrical shell
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of ring-stiffened cylindrical shells [3]. Asymptotic analysis [3] got the following
boundary conditions on the inner plate edge

w = 0, M1 = cϑ, s = 1, c = 2(3σ)1/4h5/2s h−3, (21)

where dimensionless shell thickness hs and plate thickness h are small parame-
ters. In the case hs = h the stiffness c = 2(3σ)1/4/h � 1 and instead conditions
(21) one can use the approximate boundary conditions

w(1) = ϑ(1) = 0,

corresponding to the clamped edge. If c � 1 then approximate boundary
conditions

w(1) =M1(1) = 0,

correspond to the free supported edge. The outer plate edge if free, i.e.

M1(sb) = Q(sb) = 0. (22)

Assume that b � 1. After the replacing variable (13) we obtain eigenvalue
problem for equation (14) with the boundary conditions

w = 0,
d2w

dx2
= c∗

dw

dx
, x = 0,

d2w

dx2
=
d3w

dx3
= 0, x = 1, (23)

where c∗ = bc. The substitution of solution (15) into conditions (23) get system
of linear algebraic equations. Equating to zero its characteristic determinant, we
receive the equation

β(sinh β cosβ − coshβ sinβ) + c∗(coshβ cosβ + 1) = 0. (24)

We can find the positive roots βk of equation (24) by means of a numerical
method. Then for calculation of vibrations frequencies we use formula (20).

The minimal positive root of equation (24) β1 → 0 if c∗ → 0. Since approxi-
mate value of γ1 = β1/b is very small for small c∗. From the other side numerical
calculations show that for c∗ = 0 exact value of γ1 �= 0. In particular, if c∗ = 0
then γ1 = 3.94 for b = 0.1. So, we need special asymptotic approach to obtain
approximation for γ1 in the case of small c∗.

6 The Case of Small Stiffness

Consider equation (2) with the boundary conditions (21) and (22). Replacing
the variable according (13) and keeping in the equation and in the boundary
conditions small terms including the terms of the order b2 we obtain following
eigenvalue problem

d4w

dx4
+ 2b

d3w

dx3
− b2

(
2x
d3w

dx3
+
d2w

dx2

)
− α4b2w = 0, (25)
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w = 0,
d2w

dx2
+ νb

dw

dx
= c0b

2 dw

dx
, x = 0,

d2w

dx2
+ νb(1− b)

dw

dx
= 0,

d3w

dx3
+ b(1− b)

d2w

dx2
− b2

dw

dx
= 0, x = 1,

(26)

where α = γ1
√
b, c0 = c/b = c∗/b

2.
We seek solution of problem (25), (26) in the form

w = w0 + bw1 + b2w2. (27)

Substituting (27) into (25) and (26) and solving equations of the zeroth and first
approximations we obtain

w0 = x, w1 = − ν

2x
+ C1x,

where C1 is the arbitrary constant. The multiplication the equations of the
second approximation

d4w2

dx4
− α4w0 = 0

on w0 and the integration by parts over the interval [0,1] gives the relation

α4

∫ 1

0

x2 dx =

[
d3w2

dx3
w0 −

d2w2

dx2
dw0

dx

]1
0

. (28)

Taken into account boundary conditions (26) from (28) we obtain

α = 4
√
3(σ + c0), γ1 = α/

√
b. (29)

The constant C1 can be found from the third approximation.
Table 2 lists the values of the parameter γ1 for b = 0.1 and various values of

stiffness c presented in the first row. The results in the second row are obtained
numerically. The approximate values of γ1 in the third row are calculated by
means of the solution of equation (24). The fourth row contain results found
from asymptotic formula (29).

Table 2. The parameter γ1 calculated by means of various methods vs. the dimen-
sionless stiffness c for b = 0.1

c 0 0.1 0.2 0.5 1.0 3.0 10 30 ∞
Num. 3.94 4.78 5.33 6.37 7.42 9.56 12.4 15.0 18.6
(24) 4.16 4.94 6.21 7,36 9.53 12.5 15.1 18.8
(29) 4.06 4.89 5.43 6.49 7.56 9.81

If the stiffness c is not small the asymptotic results based on the solution
of equation (24) are in the good agreement with the numerical ones. For small
values of c one may use approximate formula (29). In the case b = 0.1 the relative
error of asymptotic results is no more than 3%.
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7 Conclusions

The three approach to the solution of eigenvalue problem describing free vibra-
tions of annular plate are analyzed: the exact solution of equations, the numerical
method and the asymptotic integration. The algorithm base on exact solution
is more complicated then numerical one. Except for that the exact solution
does not allow to study dependence of vibrations frequencies on parameters of
the plate. Such dependence give the simple approximate formulae obtained for
narrow plate by means of asymptotic methods. Comparison asymptotic and nu-
merical results shows, that one can use approximate formulae for the enough
wide plate.

The same roles play exact, numerical and asymptotic methods at the solu-
tions of many other problems, in particular, at the analysis of cylindrical shells
vibrations.
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A Singularly Perturbed Reaction-Diffusion

Problem with Incompatible Boundary-Initial
Data

J.L. Gracia and E. O’Riordan
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Abstract. A singularly perturbed reaction-diffusion parabolic problem
with an incompatibility between the initial and boundary conditions is
examined. A finite difference scheme is considered which utilizes a spe-
cial finite difference operator and a piecewise uniform Shishkin mesh.
Numerical results are presented for both nodal and global pointwise con-
vergence, using bilinear interpolation and, also, an interpolation method
based on the error function. These results show that the method is not
globally convergent when bilinear interpolation is used but they indicate
that, for the test problem considered, it is globally convergent using the
second type of interpolation.

1 Introduction

The solution of a singularly perturbed problem typically has large derivatives
in narrow subregions of the domain, called layer regions. Due to the presence
of these large derivatives, classical numerical methods are not appropriate to
numerically solve singularly perturbed problems [2].

In this paper we consider a singularly perturbed parabolic problem of reaction-
diffusion type with an incompatibility between the initial and boundary condi-
tions. This is a bi-singular problem where a classical singularity (due to the
incompatibility in the data) is entwined with the singular nature of the differen-
tial operator when the diffusion parameter takes arbitrary small values. Parabolic
problems with incompatible data appear in heat transfer at fluid/solid interfaces,
geophysical fluid mechanics and in chemistry (see relevant references within [1]).

A special finite difference operator on a special fitted mesh of Shishkin type
[2] which concentrates mesh points in the layer regions is used to approximate
the solution of this kind of problems. The fitting coefficient of the method is
defined as in Hemker et al. [4,5] where a classical and a singularly perturbed
parabolic problem of reaction-diffusion type with a discontinuity in the initial
condition was examined. In essence, this is an exact finite difference scheme on
a uniform mesh for the parameter-dependent error function associated with the
discontinuity in the initial condition.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 303–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In [3], the effect of regularizing the discontinuity in the data was examined
and accurate approximations were obtained outside of a neighbourhood of the
point of incompatibility. In this paper the nodal and global convergence of the
proposed scheme are numerically studied in the whole domain. Nodal conver-
gence is observed for a specific test problem, but the global convergence requires
a more careful investigation. The bilinear interpolant of the numerical solution
generated by the fitted operator method on the fitted mesh is examined, and
we conclude that the numerical scheme is not globally accurate in the maximum
pointwise norm. However, using an interpolation method based on the error
function, global convergence is observed in the numerical output.

The class of singularly perturbed reaction-diffusion problems considered in
this paper is given by

− εuxx + a(t)u + ut = f(x, t), G := (x, t) ∈ (0, 1)× (0, 1], (1.1a)

u(x, 0) = φB(x), u(0, t) = φL(t), u(1, t) = φR(t), (1.1b)

a ≥ 0, φR(0) = φB(1), φL(0) �= φB(0). (1.1c)

The singularity associated with φL(0) �= φB(0) is related to the following func-
tion (see [5])

(φB(0)− φL(0))w(x, t)e
−

∫
t
0
a(s)ds,

where

w(x, t) :=
1

2
erf(

x

2
√
εt
), erf(ζ) :=

2√
π

∫ ζ

0

exp(−α2) dα. (1.2)

For t = 0, in x = 0, the error function is defined by continuous extension.
In Figure 1 we display the computed generated “exact” error function and its
contour lines for ε = 2−10, where we observe the singular behavior of the solution
and that it is constant along curves where x/

√
εt = constant.
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Fig. 1. Computed generated “exact” error function w(x, t) for ε = 2−10 in Ḡ and its
associated contour plot in the vicinity of the edge x = 0
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2 Numerical Scheme

To approximate the solution of problems of the form (1.1), we first examine
a fitted operator (given in [5]) method defined on a special piecewise uniform

mesh of Shishkin type [2], denoted by G
N,M

, where N and M are two positive
integers corresponding to the space and time discretization parameters, respec-
tively. The mesh is uniform in time and it splits the space domain [0, 1] into
three subintervals

[0, σ], [σ, 1 − σ], [1− σ, 1]; where σ := min{1
4
, 2
√
ε lnN}. (2.1)

The grid points are uniformly distributed within each subinterval such that

x0 = 0, xN/4 = σ, x3N/4 = 1− σ, xN = 1.

Note that the mesh condenses near x = 0 and x = 1. The finite difference scheme
is given by

− εκ(x, t)δ2xU + a(t)U +D−
t U = f(x, t), (x, t) ∈ GN,M , (2.2a)

U = u, (x, t) ∈ Γ
N,M

, (2.2b)

where GN,M = G ∩ G
N,M

, Γ
N,M

= G\GN,M ; D−
t denotes the backward finite

difference operator in time and δ2x is the standard finite difference replacement
for the second derivative in space. The fitting coefficient κ is defined in the
subdomains (0, σ) and (σ, 1−σ), and (1−σ, 1) (i.e., where the mesh is uniform)
by

κ(x, t) :=
D−

t w(x, t) +D−
t u0(x, t)

εδ2xw(x, t) + εδ2xu0(x, t)
, (x, t) ∈ GN,M , (2.2c)

where w(x, t) is defined in (1.2) and u0(x, t) = −x3 − 6εxt (see [5] for more
details on this choice of u0). Note that the fitting factor κ(x, t) is independent
of the coefficient a(t) in problem (1.1).

At the transition points σ and 1− σ, the fitting coefficient κ(x, t) is specially
defined since the Shishkin mesh is, in general, highly anisotropic at these points.
The coefficient κ := κ(xi0 , tj) at the points (σ, tj) and (1 − σ, tj) is computed
using simple linear interpolation based on the values κ(xi0−1, tj) and κ(xi0+1, tj).

3 Test Problem

We consider the following test problem

ut − εuxx + (1 + t2)u = −(1− x)(2 − x), (x, t) ∈ (0, 1)× (0, 1], (3.1)

where the initial and boundary conditions are taken to be

u(x, 0) = 1, x ∈ (0, 1), u(0, t) = 0, t ∈ [0, 1], u(1, t) = 1, t ∈ [0, 1].
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The exact solution of problem (3.1) is not available, and the orders of con-
vergence are estimated using the double mesh principle [2, Chapter 8]: we de-
fine the double–mesh differences DN,M

ε for each value of ε ∈ Sε with Sε =
{20, 2−2, . . . , 2−20} and the uniform double–mesh differences DN,M by

DN,M
ε :=

∥∥UN,M − Ū2N,2M
∥∥
ḠN,M , DN,M := max

ε∈Sε

DN,M
ε ,

where UN,M , U2N,2M denote the discrete functions defined on the meshes ḠN,M

and Ḡ2N,2M , respectively; Ū2N,2M is the bilinear interpolant of the numerical
solution U2N,2M . The computed order of convergence QN,M

ε and the computed
order of uniform convergence QN,M are defined by

QN,M
ε := log2

(
DN,M

ε

D2N,2M
ε

)
, QN,M := log2

(
DN,M

D2N,2M

)
.

Nodal double–mesh differences using scheme (2.2) to approximate the solution
of problem (3.1) are given in Table 1, and we observe that the method is nodally
convergent. It is worth remarking that this nodal accuracy is being observed on
a mesh with mesh points concentrated near the corner (0, 0).

Nevertheless, a global approximation is more appropriate for problems with
different scales in the solution. The double–mesh global differences

dN,M
ε :=

∥∥∥UN,M
I − U2N,2M

I

∥∥∥
ḠN,M∪Ḡ2N,2M

, dN,M := max
ε∈Sε

dN,M
ε ,

Table 1. The maximum and uniform double–mesh nodal differences DN,M
ε , DN,M

and their computed orders of convergence QN,M
ε , QN,M for problem (3.1) using the

numerical method (2.2)

N=M=8 N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512

ε = 20 6.241E-002 3.318E-002 1.704E-002 8.625E-003 4.317E-003 2.186E-003 1.303E-003
0.911 0.961 0.983 0.999 0.982 0.747

ε = 2−2 5.482E-002 2.770E-002 1.405E-002 7.094E-003 3.565E-003 1.786E-003 8.930E-004
0.985 0.979 0.986 0.993 0.997 1.000

ε = 2−4 9.829E-002 2.862E-002 1.357E-002 6.662E-003 3.304E-003 1.646E-003 8.216E-004
1.780 1.076 1.027 1.012 1.005 1.002

ε = 2−6 2.714E-001 9.473E-002 4.009E-002 2.563E-002 1.270E-002 6.549E-003 3.366E-003
1.519 1.241 0.646 1.012 0.956 0.960

ε = 2−8 5.472E-001 2.827E-001 1.852E-001 9.267E-002 4.592E-002 2.858E-002 1.380E-002
0.953 0.610 0.999 1.013 0.684 1.050

ε = 2−10 4.295E-001 3.372E-001 3.432E-001 3.293E-001 2.004E-001 9.753E-002 4.733E-002
0.349 -0.025 0.060 0.716 1.039 1.043

ε = 2−12 4.288E-001 3.370E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.348 0.033 0.055 0.257 0.459 0.647

ε = 2−14 4.286E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

ε = 2−16 4.284E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

ε = 2−18 4.284E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

ε = 2−20 4.284E-001 3.369E-001 3.295E-001 3.171E-001 2.654E-001 1.931E-001 1.233E-001
0.347 0.032 0.055 0.257 0.459 0.647

DN,M 5.472E-001 3.372E-001 3.432E-001 3.293E-001 2.654E-001 1.931E-001 1.233E-001

QN,M 0.699 -0.025 0.060 0.311 0.459 0.647
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where UN,M , U2N,2M denote mesh functions defined, respectively, on the meshes
ḠN,M and Ḡ2N,2M ; and UN,M

I , U2N,2M
I denote interpolated global functions.

The choice of interpolation is discussed below. From these interpolated values
we calculate computed orders of global convergence qN,M

ε and uniform computed
orders of global convergence qN,M using, respectively,

qN,M
ε := log2

(
dN,M
ε

d2N,2M
ε

)
, qN,M := log2

(
dN,M

d2N,2M

)
.

4 Bilinear Interpolation

First, we consider the case where the double–mesh global differences dN,M
ε are

computed using bilinear interpolation. In Table 2 we show the numerical re-
sults using scheme (2.2) for test problem (3.1). From these numerical results,
we observe a lack of global convergence of the numerical method when bilin-
ear interpolation is used to generate a global approximation to the continuous
solution.

Table 2. The maximum and uniform double–mesh global differences dN,M
ε , dN,M and

their computed orders of convergence qN,M
ε , qN,M for problem (3.1) using the numerical

method (2.2) and bilinear interpolation

N=M=8 N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512

ε = 20 3.386E-001 3.788E-001 4.116E-001 4.365E-001 4.547E-001 4.679E-001 4.772E-001
-0.162 -0.120 -0.085 -0.059 -0.041 -0.029

ε = 2−2 2.004E-001 2.655E-001 3.259E-001 3.740E-001 4.099E-001 4.359E-001 4.545E-001
-0.406 -0.296 -0.198 -0.132 -0.089 -0.060

ε = 2−4 9.829E-002 9.344E-002 1.772E-001 2.576E-001 3.232E-001 3.730E-001 4.095E-001
0.073 -0.923 -0.540 -0.328 -0.207 -0.135

ε = 2−6 2.893E-001 1.997E-001 9.225E-002 8.134E-002 1.725E-001 2.558E-001 3.226E-001
0.535 1.114 0.182 -1.084 -0.569 -0.335

ε = 2−8 5.472E-001 4.139E-001 3.382E-001 2.165E-001 9.795E-002 7.850E-002 1.713E-001
0.403 0.291 0.643 1.144 0.319 -1.126

ε = 2−10 4.295E-001 3.388E-001 3.987E-001 4.453E-001 3.501E-001 2.206E-001 9.936E-002
0.342 -0.235 -0.159 0.347 0.666 1.151

ε = 2−12 4.288E-001 3.388E-001 3.782E-001 3.930E-001 3.786E-001 3.308E-001 2.562E-001
0.340 -0.159 -0.055 0.054 0.195 0.368

ε = 2−14 4.286E-001 3.388E-001 3.782E-001 3.930E-001 3.786E-001 3.308E-001 2.562E-001
0.339 -0.159 -0.055 0.054 0.195 0.368

ε = 2−16 4.284E-001 3.388E-001 3.782E-001 3.930E-001 3.786E-001 3.308E-001 2.562E-001
0.339 -0.159 -0.055 0.054 0.195 0.368

ε = 2−18 4.284E-001 3.388E-001 3.782E-001 3.930E-001 3.786E-001 3.308E-001 2.562E-001
0.338 -0.159 -0.055 0.054 0.195 0.368

ε = 2−20 4.284E-001 3.388E-001 3.782E-001 3.930E-001 3.786E-001 3.308E-001 2.562E-001
0.338 -0.159 -0.055 0.054 0.195 0.368

dN,M 5.472E-001 4.139E-001 4.116E-001 4.453E-001 4.547E-001 4.679E-001 4.772E-001

qN,M 0.403 0.008 -0.114 -0.030 -0.041 -0.029

This is illustrated in Figure 2 where the values of the parameters are ε = 2−20,
N = 32 and N = 64. Note that it is a zoom of the double–mesh global differences
in the vicinity of the edge x = 0 and we can observe that the maximum double–
mesh differences do not decrease as the number of grid points in time and space
are doubled.

These observations can be supported by examining bounds on the interpola-
tion error in approximating the solution u with its bilinear interpolant ū over
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Fig. 2. Global double–mesh differences using a bilinear interpolant for problem (3.1)
with ε = 2−20, taking M = N = 32 (left figure), and M = N = 64 (right figure)

the computational cell Ri,j := (xi, xi+1)× (tj, tj+1). We cite [5] for the following
bounds on the partial derivatives of the solution∣∣ ∂i+ju

∂xi∂tj
∣∣ ≤ C(1 + ε−i/2t−(i/2+j)e

− x
2
√

εt ), (4.1)

and we assume that the transition parameter σ < 0.25. From [6], we have the
following bounds on the bilinear interpolation error

‖u− ū‖Ri,j ≤ Cmin
{
(xi+1 − xi)

2‖uxx‖Ri,j , max
tj≤t≤tj+1

∫ xi+1

xi

|ux(s, t)|ds
}

+Cmin
{
(tj+1 − tj)

2‖utt‖Ri,j , max
xi≤x≤xi+1

∫ tj+1

tj

|ut(x, s)|ds
}
.

Combining these interpolation error estimates with (4.1), we obtain that

‖u− ū‖Ri,j ≤ Ce
− xi

2
√

εtj min
{
(xi+1 − xi)

2ε−1t−1
j , (1− e

− (xi+1−xi)

2
√

εtj )
}

+Cmin
{
e
− xi

2
√

εtj (tj+1 − tj)
2t−2

j ,

∫ tj+1

tj

1

s
e
− xi

2
√

εs ds
}
.

Observe that if xi ≥ 4
√
ε, then∫ tj+1

tj

1

s
e
− xi

2
√

εs ds ≤ C(tj+1 − tj)e
− xi

2
√

ε ,

using the fact that s−ne−δ/s ≤ e−δ, if n ≤ δ. In the fine mesh region, where
xi+1 − xi = C

√
εN−1 lnN , if tj ≥ δ, then we have that

‖u− ū‖Ri,j ≤ C(N−1 lnN)2δ−1 + CM−2δ−2, xi < 2
√
ε lnN, tj ≥ δ;

and in the coarse mesh region, i.e., when xi ≥ 2
√
ε lnN , it holds e

− xi
2
√

εtj ≤ N−1,
and therefore

‖u− ū‖Ri,j ≤ CN−1 + CM−1N−1; xi ≥ 2
√
ε lnN.
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These bounds indicate that for a numerical method that is nodally parameter-
uniform at all mesh points, global parameter-uniform convergence accuracy is
obtained outside of the corner region (x, t) ∈ (0, σ) × (0, δ), δ > 0, if one uses
the fitted piecewise-uniform Shishkin mesh and bilinear interpolation. However,
these interpolation bounds are of little value in the vicinity of the corner (0, 0).

5 Interpolation Based on the Error Function

Motivated by the previous numerical results, in this section we employ the fol-
lowing interpolant of the numerical solution UN,M to approximate the solution
u of problem (1.1). For all (x, t) ∈ [xi, xi+1] × [tj , tj+1], 0 ≤ xi < 1, tj ≥ 0, we
define

UN,M
I (x, t) :=

1∑
l,m=0

Ui+l,j+mT (t;xi+l, tj+m)S(x, t;xi+l), (5.1)

where

T (t;xi+l, tj+m) :=
w(xi+l, t)− w(xi+l, tj+1−m)

w(xi+l, tj+m)− w(xi+l, tj+1−m)
,

S(x, t;xi+l) :=
w(x, t) − w(xi+1−l, t)

w(xi+l, t)− w(xi+1−l, t)
.

Note that this form of interpolation is globally exact for both the constant func-
tion 1 and for the error function w(x, t). It is a two dimensional version of the
interpolation discussed in §2 of [7]. In Table 3 we present the numerical results

Table 3. The maximum and uniform double–mesh global differences dN,M
ε , dN,M and

their computed orders of convergence qN,M
ε , qN,M for problem (3.1) using the numerical

method (2.2) and interpolant (5.1)

N=M=8 N=M=16 N=M=32 N=M=64 N=M=128 N=M=256 N=M=512

ε = 20 1.021E-001 7.899E-002 4.957E-002 2.691E-002 1.400E-002 7.140E-003 3.573E-003
0.371 0.672 0.881 0.943 0.971 0.999

ε = 2−2 1.742E-001 9.761E-002 5.004E-002 2.517E-002 1.257E-002 6.314E-003 3.159E-003
0.835 0.964 0.991 1.001 0.994 0.999

ε = 2−4 2.574E-001 1.021E-001 6.199E-002 3.390E-002 1.424E-002 8.947E-003 4.527E-003
1.333 0.721 0.871 1.251 0.670 0.983

ε = 2−6 7.721E-001 3.964E-001 2.288E-001 1.242E-001 6.394E-002 3.297E-002 1.676E-002
0.962 0.793 0.881 0.958 0.956 0.976

ε = 2−8 1.856E-001 1.249E-001 4.851E-002 2.381E-002 1.190E-002 5.967E-003 3.017E-003
0.572 1.364 1.027 1.001 0.996 0.984

ε = 2−10 1.813E-001 1.359E-001 9.781E-002 4.698E-002 1.415E-002 5.885E-003 2.963E-003
0.416 0.475 1.058 1.731 1.266 0.990

ε = 2−12 1.791E-001 1.363E-001 9.531E-002 4.782E-002 1.943E-002 6.970E-003 2.933E-003
0.394 0.516 0.995 1.299 1.479 1.249

ε = 2−14 1.779E-001 1.365E-001 9.537E-002 4.783E-002 1.943E-002 6.971E-003 2.930E-003
0.382 0.517 0.996 1.299 1.479 1.251

ε = 2−16 1.773E-001 1.366E-001 9.541E-002 4.784E-002 1.944E-002 6.971E-003 2.928E-003
0.376 0.518 0.996 1.300 1.479 1.251

ε = 2−18 1.770E-001 1.367E-001 9.542E-002 4.784E-002 1.944E-002 6.972E-003 2.928E-003
0.373 0.518 0.996 1.300 1.479 1.252

ε = 2−20 1.768E-001 1.367E-001 9.543E-002 4.785E-002 1.944E-002 6.972E-003 2.927E-003
0.371 0.519 0.996 1.300 1.479 1.252

dN,M 7.721E-001 3.964E-001 2.288E-001 1.242E-001 6.394E-002 3.297E-002 1.676E-002

qN,M 0.962 0.793 0.881 0.958 0.956 0.976
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using scheme (2.2) for test problem (3.1) and we observe that the numerical
method is globally convergent for this example when the specially designed in-
terpolation (5.1) is used to generate a global approximation to the solution.

Conclusions

A fitted operator method on a piecewise-uniform Shishkin mesh has been
designed to approximate the solution of problems from the class (1.1). Nodal
pointwise accuracy was observed on this layer-adapted mesh. Global pointwise
accuracy, as opposed to nodal convergence, was not observed numerically, when
one combines a fitted finite difference operator, a rectangular layer–adapted mesh
and bilinear interpolation. However, by replacing the bilinear interpolant by an
interpolant based on the error function, pointwise accurate global approxima-
tions have been observed for the test problem considered in this paper. The-
oretical analysis of the parameter uniform global convergence of the numerical
method examined numerically in this paper remains open to future investigation.
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/FEDER MTM 2010-16917 and the Diputacion General de Aragon.
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Abstract. For solving of the Navier-Stokes equations describing 3D in-
compressible viscous fluid flows the Splitting on physical factors Method
for Incompressible Fluid flows (SMIF) with hybrid explicit finite differ-
ence scheme (second-order accuracy in space, minimum scheme viscosity
and dispersion, capable for work in the wide range of Reynolds (Re) and
internal Froude (Fr) numbers and monotonous) based on the Modified
Central Difference Scheme and the Modified Upwind Difference Scheme
with a special switch condition depending on the velocity sign and the
signs of the first and second differences of the transferred functions has
been developed and successfully applied. At the present paper the de-
scription of the numerical method SMIF and its application for simula-
tion of the 3D separated homogeneous and density stratified fluid flows
around a sphere are demonstrated.

Keywords: direct numerical simulation, viscous fluid, visualization of
vortex structures, flow regime, formation mechanisms of vortices, sphere.

1 Introduction

Unsteady 3D separated and undulatory fluid flows around a moving blunt body
are very wide spread phenomena in the nature. The understanding of such flows
is very important both from theoretical and from practical points of view. In the
experiments [1-2] the 2D internal waves structure in the vertical plane and the
3D vortex structure of the wake are observed. Using direct numerical simulation
(DNS) the full 3D vortex structures of the flow (the 3D internal waves and the 3D
wake) can be observed. Besides the numerical studies of the non-homogeneous
(stratified) fluids are very rare. In this connection at the present paper the
stratified viscous fluid flows around a sphere are investigated by means of DNS
on the basis of the Navier-Stokes equations in the Boussinesq approximation on
the supercomputers at the wide ranges of the main flow parameters.

2 Numerical Method SMIF

Let ρ(x, y, z) = ρ0(1−x/(2A)+S(x, y, z)) is the density of the linearly stratified
fluid where x, y, z are the Cartesian coordinates; z, x, y are the streamwise, lift

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 311–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and lateral directions (x, y, z have been non-dimensionalized by d/2, d is a sphere
diameter); A = Λ/d is the scale ratio, Λ is the buoyancy scale, which is related to
the buoyancy frequency N and period Tb(N = 2π/Tb, N

2 = g/Λ); g is the scalar
of the gravitational acceleration; S is a dimensionless perturbation of salinity.
The density stratified viscous fluid flows have been simulated on the basis of the
Navier-Stokes equations in the Boussinesq approximation (1)–(3) (including the
diffusion equation (1) for the stratified component (salt)) with four dimensionless
parameters: Fr = U/(N · d), Re = U · d/ν,A � 1, Sc = ν/κ = 709.22, where U
is the scalar of the sphere velocity, ν is the kinematical viscosity, κ is the salt
diffusion coefficient.

∂S

∂t
+ (v · ∇)S =

2

Sc ·ReΔS +
vx
2A

(1)

∂v

∂t
+ (v · ∇)v = −∇p+ 2

Re
Δv+

A

2Fr2
S
g

g
(2)

∇ · v = 0 (3)

In (1)-(3) v = (vx, vy, vz) is the velocity vector (non-dimensionalized by U), p
is a perturbation of pressure (non-dimensionalized by ρ0U

2). The spherical co-
ordinate system R, θ, φ(x = R · sinθ · cosφ, y = R · sinθ · sinφ, z = R · cosθ,v =
(vR, vθ, vφ)) and O-type grid are used. On the sphere surface the following bound-
ary conditions have been used:

vR = vθ = vφ = 0,
∂ρ

∂R

∣∣∣∣
R=d/2

=

(
∂S

∂R
− 1

2A

∂x

∂R

) ∣∣∣∣
R=d/2

= 0 (4)

On the external boundary of the O-type grid the following boundary condi-
tions have been used: 1) for z < 0 : vR = cosθ, vθ = −sinθ, vφ = 0, S = 0; 2) for

z ≥ 0 : vR = cosθ, vθ = −sinθ, ∂vφ

∂R = 0, ∂S∂z = 0.
For solving of the Navier-Stokes equations (1)-(3) the Splitting on physical

factors Method for Incompressible Fluid flows (SMIF) has been used [3-4].
Let the velocity, the perturbation of pressure and the perturbation of salinity

are known at some moment tn = n · τ , where τ is time step, and n is the number
of time-steps. Then the calculation of the unknown functions at the next time
level tn+1 = (n + 1) · τ for equations (1)-(3) can be presented in the following
four-step form:

Sn+1 − Sn

τ
= − (vn · ∇)Sn +

2

Sc · ReΔS
n +

vnx
2A

(5)

ṽ− vn

τ
= − (vn · ∇)vn +

2

Re
Δvn +

A

2Fr2
Sn+1g

g
(6)

τΔp = ∇ · ṽ (7)

vn+1 − ṽ

τ
= −∇p (8)

The Poisson equation (7) for the pressure has been solved by the diagonal Pre-
conditioned Conjugate Gradients Method.
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In order to understand the finite-difference scheme for the convective terms
of the equations (1)–(2) let us consider the linear model equation:

ft + ufx = 0, u = const. (9)

Let

fn+1
i − fn

i

τ
+ u

fn
i+1/2 − fn

i−1/2

h
= 0 (10)

be a finite-difference approximation of equation (9).
Let us investigate the class of the difference scheme which can be written in

the form of the two-parameter family which depends on the parameters α and
β in the following manner:

fn
i+1/2 = αfn

i−1 + (1− α− β)fn
i + βfn

i+1, if u ≥ 0,

fn
i+1/2 = αfn

i+2 + (1− α− β)fn
i+1 + βfn

i , if u < 0.
(11)

In this case the first differential approximation for equation (10) has the form

ft + ufx =

[
h

2
|u|(1 + 2α− 2β)− τu2

2

]
fxx (12)

If we put α = β = 0 in (11) we’ll obtain usual first order monotonic scheme
which is stable when

0 < C =
τ |u|
h

≤ 1, where C is the Courant number. (13)

If α = 0, β = 0.5 we’ll obtain the usual central difference scheme, and for
α = −0.5, β = 0 – the usual upwind scheme. Both last two schemes have second
order of accuracy in space variable and are non-monotonic.

It is known that it is impossible to construct a homogeneous monotonic differ-
ence scheme of higher order than the first order of the approximation for equation
(9). A monotonic scheme of higher order can therefore only be constructed either
on the basis of second-order homogeneous scheme using smoothing operators, or
on the basis of the hybrid schemes using different switch conditions from one
scheme to another (depending on the nature of the solution), possibly with the
use of smoothing. Here we are going to consider a hybrid monotonic difference
scheme.

Let us investigate schemes with upwind differences, i.e. β = 0. The require-
ment that the scheme viscosity should be a minimum, as can readily be seen
from equation (12), impose the following condition on α :

α = −0.5 · (1− C) (14)

For schemes with α = 0, the analogous condition is

β = 0.5 · (1 − C) (15)
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Since an explicit finite difference scheme considered, we shall restrict the sub-
sequent analysis to the necessary condition for stability in the case of the explicit
schemes (13).

Let us assume that there is a monotonic net function fn
i , for example,

Δfn
i+1/2 ≡ fn

i+1 − fn
i ≥ 0 at any i.

The function fn+1
i will also be monotonic when the following conditions are

satisfied:

(a) for a scheme with β = 0 and α from relationship (14), under the condition
Δfn

i+1/2 ≥ ζ(C) ·Δfn
i−1/2, where ζ(C) = 0.5 · (1 − C)/(2− C);

(b) for a scheme with α = 0 and β from relationship (15), under the condition
Δfn

i+1/2 ≤ σ(C) ·Δfn
i−1/2, where σ(C) = 2 · (1 + C)/C.

It can be seen from this that the domains of monotonicity of the homoge-
neous schemes being considered have a non-empty intersection. Hence, a whole
class of hybrid schemes is distinguished by the condition of switching from one
homogeneous scheme to another. The general form of this condition is as follows:

Δfn
i+1/2 = δ ·Δfn

i−1/2, where ζ(C) ≤ δ ≤ σ(C).

The choice of δ = 1 corresponds to the points of the interchange of the
sign of the second difference fn

i and makes it possible to obtain the estima-
tion fxx = O(h) for the required function f at the intersection points, by means
of which a second-order approximation is retained with respect to the spatial
variables of smooth solutions. We used the following switching condition:

if (u ·ΔfΔ2f)ni+1/2 ≥ 0, then the scheme with β = 0 (MUDS) is used;

if (u ·ΔfΔ2f)ni+1/2 < 0, then the scheme with α = 0 (MCDS) is used;

where Δ2fn
i+1/2 = Δfn

i+1 −Δfn
i .

On smooth solutions this scheme has a second order of approximation with
respect to the time and spatial variables. It is stable when the Courant criterion
(13) is satisfied and monotonic. More over it was shown that this hybrid scheme
comes nearest to the third order schemes.

Thegeneralizationof the consideredfinite-difference scheme for 2Dand3Dprob-
lems is easily performed for convective terms in (1) – (2). For the approximation
of other space derivatives in equations (1)-(3) the central differences are used.

The efficiency of the method SMIF and the greater power of supercomputers
make it possible adequately to model the 3D separated incompressible viscous
flows past a sphere (Fig.1) and a circular cylinder at moderate Reynolds numbers
[5-13] and the air, heat and mass transfer in the clean rooms [14].

3 The Visualization Techniques and the Basic Formation
Mechanisms of Vortices (FMV)

For the visualization of the 3D vortex structures in the fluid flows the isosurfaces of
β andλ2 have been drawing,whereβ is the imaginary part of the complex-conjugate
eigen-values of the velocity gradient tensorG[15] (Fig. 2b–d, 3), λ2 is the second



Method SMIF for Incompressible Fluid Flows Modeling 315

Fig. 1. Vortex structures of the sphere wake at Fr > 10: a–c – Re = 200, 350, 5 ·
105;λ2 = −10−6 and −0.16;−2 · 10−5;−10−4

eigen-value of the S2+Ω2 tensor, where S andΩ are the symmetric and antisym-
metric parts of G[16] (Fig. 1, 2a).

The unsteady periodical flows at the moderate Re can be described through
the chain of the basic formation mechanisms of vortices (FMV). For example for
2D circular cylinder (at ρ = ρ0) the λ2-visualization technique demonstrates the
generation of a small vortex in the recirculation zone (RZ) (at the intersection
of lines at Fig. 2a) due to Kelvin-Helmholtz instability (it is the basic FMV
1k), connection of this vortex with vortex sheet (VSh) (surrounding RZ) and
stretching the VSh downstream (2s), folding and separation of the top or bottom
ends of VSh (2t/b) (formation of next wake vortex). Thus the detailed FMV
during a period at 40 < Re < 191 (Fr = ∞) can be described as 1k-2s-2t
– 1k-2s-2b . At Re < 40 the formation of the steady symmetric RZ can be
described as 1k.

4 The Classification of Fluid Flow Regimes around a
Sphere

For Fr > 10 the homogeneous viscous fluid flow regimes are observed in the
sphere wake. The following classification of flows [5-7] has been obtained by
SMIF at Re < 5 · 105: 1) Re ≤ 20.5 - without separation; 2) 20.5 < Re ≤ 200
- a steady axisymmetrical wake with a vortex ring in RZ and VSh surrounding
RZ (1k, Fig.1a); 3) 200 < Re ≤ 270 - a steady double-thread wake with a
deformed vortex ring in RZ (1k-2s-1f); 4) 270 < Re ≤ 400 – a periodical
generation of the vortex loops (VLs) (facing upwards); the periodical separation
of the one edge of VSh ( 1k-2s-1k-3b – 1f-3t-2t) at 270 < Re ≤ 290; 1k-2s-
1k-1k – 2s-1f-3t-2t at 290 < Re ≤ 320; 1k-2s-1k-1k – 2s-1d-1f-3t-2t at
320 < Re ≤ 400 (Fig.1b)); 5) 400 < Re ≤ 3000 – the periodical separation of the
opposite edges of the irregularly rotating vortex sheet ( 2s-1d-1k-1f-3b-2b – 2s-
1d-1k-1f-3t-2t); 6) 3000 < Re ≤ 4 ·104 - a turbulent wake (subcritical regime);
7) 4 ·104 < Re < 5 ·105 - a laminar-turbulent transition (LTT) in the boundary
layer (BL) on the sphere surface (critical regime); where 1f is the formation of
two filaments (threads) in RZ connected with the vortex half-ring generated due
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to 1k; 1d is the drift of the main vortex ring in RZ toward the sphere; 3t/b is the
generation of the forward part of the upward- and downward-oriented VLs [7].
Thus a new subregime has been discovered at 290 < Re ≤ 320[7] due to SMIF
and β-visualization technique. At 5·104 < Re < 4·105 the monotonous reduction
of the time-averaged total drag coefficient has been observed (from value 0.455
to 0.155) due to LTT in BL. It was shown that this drag crisis manifests itself to
us through the formation of the separated bubbles (SBs) within BL (near the
primary separation line). SBs are growing, drifting downstream and converted
to VLs [13].

Fig. 2. a) 2D circular cylinder wake at Re = 140, F r =∞, t = 310.1 (isolines of λ2 < 0
with step 0.04). b–d) Vortex structure of RZ of the sphere wake at Re = 100, F r =
2, 1, 0.6 – isosurfaces of β = 0.15, 0.1, 0.087.

For Fr < 10 the code for DNS of the 3D separated density stratified vis-
cous fluid flows around a sphere has been tested in the case of a resting sphere
in a continuously stratified fluid. It was shown (for the first time) that the in-
terruption of the molecular flow (by the resting sphere) not only generates the
axisymmetrical flow on the sphere surface (from the equator to the poles) but
also creates the short unsteady internal waves (IWs)[8-9]. At time more than
37 · Tb the sizes and arrangement of IWs are stabilized and after some time the
high gradient sheets of density with a thickness 2.2 mm are observed near the
poles of the resting sphere.

The following classification of flow regimes around the sphere at Re < 500
[13] has been obtained by SMIF: I) Fr > 10 - the homogeneous case; II) 1.5 ≤
Fr ≤ 10 - the quasi-homogeneous case (with four additional threads connected
with VSh surrounding the sphere, Fig.2b); III) 0.9 < Fr < 1.5 – the non-
axisymmetric attached vortex in RZ (Fig.2c, 3a); IV) 0.6 < Fr ≤ 0.9 - the
two symmetric vortex loops in RZ; V) 0.4 ≤ Fr ≤ 0.6 - the absence of RZ
(Fig.2d, 3c); VI) 0.25 < Fr < 0.4 - a new RZ; VII) Fr ≤ 0.25 – the two vertical
vortices in new RZ (bounded by IWs) (Fig.3d-e). At Fr ≤ 0.3, Re > 120 a
periodical generation of the vortex loops (facing left or right) has been observed.
The corresponding Strouhal numbers 0.19 < St = fd/U < 0.24 (where f is the
frequency of shedding) and horizontal and vertical separation angles are in a
good agreement with the experiment[1]. The drag coefficients also correspond
to experimental values. The interesting transformation of the four main threads
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Fig. 3. The vortex structures in the stratified fluid around a moving sphere atRe = 100:
a-e – Fr = 1, 0.8, 0.5, 0.2, 0.08; a-e – the isosurfaces of β = 0.02; 0.005; 0.02; 0.02; 0.005

(at Fr = 1, Fig.3a) into the high gradient sheets of density near the sphere poles
(before the sphere) (at Fr = 0.08, Fig.3e) is shown at Fig.3.

5 Conclusions

The brief description of the numerical method SMIF and its application for simu-
lation of the 3D separated homogeneous and density stratified fluid flows around
a sphere have been demonstrated. The continuous changing of the complex 3D
sphere wake vortex structure of the stratified viscous fluid with decreasing of Fr
from 100 to 0.02 has been investigated at Re < 500 owing to the mathemati-
cal modeling on the supercomputers and the β–visualization of the 3D vortex
structures.
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Abstract. Recently, nanoindentation technique is gaining importance
in determination of the mechanical parameters of thin films and coatings.
Most commonly, the instrumented indentation data are used to obtain
two material characteristics of bulk materials: indentation modulus and
indentation hardness. In this paper the authors discuss the possibility
by means of numerical simulations of nanoindentation tests to obtained
the force-displacement curve employing various constitutive models for
both the substrate and the coating. Examples are given to demonstrate
the influence of some features of the numerical model and the model
assumptions on the quality of the simulation results. The main steps in
creation of the numerical model and performing the numerical simula-
tion of nanoindentation testing process are systematically studied and
explained and the conclusions are drawn.

Keywords: finite element method,nanoindentation, thin films.

1 Introduction

In last years there is an increasing interest in the design of new materials whose
microstructure can be controlled, e.g. nanostructured materials, functionally
graded materials, thin layers, compositionally graded coatings, etc. Because an
optimal material microstructure is the designer’s target, the assessment of the
mechanical properties in a local area using small volumes becomes an essential
part of the designer process. Additionally, in many cases the material proper-
ties can not be determined via conventional macro experiments due to, e.g. the
geometry, the size or the build-up of the samples. Instead, the application of in-
strumented indentation technique to characterise materials and device elements
in a local area and using small volumes grew vast. Moreover, depth-sensing inden-
tation or nanoindentation, where an indenter is pressed normal onto the surface
of the specimen and penetration depth is continuously measured in nanometres,
had been proven within the last decade to be a promising technique to inves-
tigate the mechanical properties of small volumes and thin films, [4,5]. During
such tests the global variables load and displacement are continuously monitored
and the mechanical properties such as indentation modulus and hardness are es-
timated based on these data and proper assumptions. However, the indentation
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modulus and indentation hardness are not sufficient to characterise the material
behaviour in case of numerical simulation of constructions and details whose
components are fabricated using materials coated with this films. The reason is
that in most practical cases the constitutive models representing properly the
mechanical behaviour of the film-substrate system contain a number of other pa-
rameters that do not correlate with the indentation modulus and the indentation
hardness. To overcome this shortage a technique for material model parameter
identification using instrumented indentation test data together with a finite ele-
ment simulation was intensively developed in recent years, [6,5,1,3]. In this paper
a finite element model of nanoindentation on a system of thin film and substrate
employing nonlinear material model is presented. The goal is to build the most
suitable, robust and correct finite element model in order in the next step to
be able to perform back analysis of real experiment and to achieve best fit of
the experimental data varying selected parameters involved into the considered
nonlinear material model. Furthermore, the numerical model and the obtained
numerical solution are discussed in details and the simulated force-displacement
curve is compared with data from real nanoindentaion tests. Conclusions are
done on the applicability of the used numerical and material models, as well as
the finite element technique for local material characterisation.

2 Experimental Setup

Nanoindentation testing requires a proper choice of indenter geometry and load.
The decision depends on the structure of the tested material and particularly
in the case of thin films and coatings it is important to formulate a testing
programme accounting for the thickness of the film/coating, the expected ra-
tio between the mechanical properties of the film and the substrate and the
surface roughness of the tested sample probe. Nanoindentation test programme
includes setting of several variables such as number of data points, thermal drift
allowance, the percent and the rate of unloading, maximum load (penetration
depth), and the way in which the load is applied. In this study, the experimen-
tal indentation procedure is realised by the use of Agilent Nano Indenter G200
equipped with a Berkovich three-sided diamond pyramid tip with a rounding of
20 nm and centreline-to-face angle 65.3◦, [7]. The tested sample is a 100 μm thick
copper foil with chemically deposited cobalt film with a thickness of 2.76 μm.
In order to have better statistics the practice is to realise series of at least 9 in-
dentations to collect reliable indentation test data. For the purpose of this study
we performed a series of 25 indentations on each sample probe. We used several
methods of indentation, e.g. with fixed maximum displacement and cyclic load-
ing with a prescribed number of cycles and up to maximum load. The maximum
load and displacement are chosen such that to guarantee that the indenter pen-
etrates at a depth sufficiently far from the film-substrate contact surface. Two
loading programmes are run: one cycle of loading up to maximal displacement of
200 nm and unloading up to 90% of the maximal load and 10 cycles up to a load
of 50 gf , where each cycle introduced loading up to a progressively increasing
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Fig. 1. Experimental load-displacement data for cobalt film on copper foil. The thick-
ness of the film is 2.76μm.

maximal force and unloading up to 90% of this load. As a result we obtained the
experimental load-displacement curve for the film-substrate system, and Fig. 1
illustrates such experimental data.

3 Numerical Modelling of Nanoindentation Process

The finite-element method (FEM) is a powerful technique in modelling and
solving elastic-plastic contact problems and recently it is extensively used for
material characterisation based on simulation of nanoindantation testing. One
of the benefits of FEM–models is their ability to analyse the loading and unload-
ing material response due to different material models and sample composition.
Particularly, the application of FEM-models to nanoindenatation gives the pos-
sibility to assess not only the load-indentation depth curve, but also to analyse
the distribution of the stress and strain fields, as well as the profile of the in-
dentation imprint. An example of numerically obtained distribution of the stress
field during both the loading and unloading phases of the indenentation process
is given in Fig. 2. However, the most important is that the numerical simulation
can be used for back analysis of the nanoindentation testing data and this way
to obtain the material model parameters in cases where conventional experi-
mental techniques can not be applied, [2]. While the estimation of constitutive
parameters of bulk materials may be done by means of semi-empirical formulae,
such approach is not applicable for determination of the mechanical properties
of thin films and coatings, where inverse modelling of nanoindentation testing,
often based on finite element (FE) simulation of the test, seems to be the only
acceptable method.

The numerical model of nanoindentation is built depending on the indenter
geometry and material isotropy. In the general case the problem is formulated in
the 3D space. However, in the case of isotropic materials the indenter geometry
can be introduced by an equivalent conical form whose geometric characteristics
are known for the conventional indenter tips. This way the real and more com-
plex 3D model is reduced to an axisymmetric one allowing to solve numerically
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Fig. 2. Distribution during indentation of the equivalent von Mises stress normalised
with respect to the one dimensional yield stress

a 2D problem and thus simplifying the numerical analysis and accelerating the
process of nanoindentation back analysis procedure, [8]. For the Berkovich in-
denter used in the nanoindentation tests discussed in this paper, the equivalent
conical indenter has a semi-angle of 70.3◦ ([9]) and the cone tip has a rounding
of R=20nm. In our case it is important to account for the tip rounding because
we analyse indentation tests on thin films, may be with thickness below 500nm,
and this may suggest very shallow indentation depths where the sharpness of
the cone has an influence.

The boundary value problem for the nanoindentation experiment referred to in
this article and explained in section 2 is specified as follows. All calculations were
carried out using the axisymmetric cylindrical domain characterised by a radius
L=20μm and height of 102.76μm and representing the specimen. The copper
substrate occupies a rectangular domain with dimensions 20μm× 100μm, Fig. 3.
The material model for the copper substrate used in the present work is elastic-
plastic model with linear hardening and von Mises yield surface [10]. The thin
film takes up the upper rectangular part of the model with dimensions 20μm×
2.76μm.

The material response of the film is assumed to be isotropic elasticplastic with
exponential hardening following a law, known as Hollomon’s power hardening
law obeying von Mises plastic criterion (for more detail description see [10]).

Normally, indenter material is very hard (usually it is a material with elastic
modulus ≈ 103GPa ). For that reason, it is accepted that the indenter can be
modelled as a rigid body. The process of indenter penetration and separation
from the specimen is simulated as a deformable-rigid contact problem via direct
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constraint procedure. The contact bodies are defined as a deformable (the spec-
imen) and a rigid body (the indenter). Furthermore, the following assumptions
are done:

– the indentation process is quasi-static;
– there is full adhesion between the film and the substrate, the thin film and

the substrate are perfectly bonded and there is no delaminating or slippage
at the interface;

– friction forces in the contact area are neglected;
– no stress-strain prehistory is taken into account.

Fig. 3.Model geometry and finite element discretization: the whole model and detailed
image near the indenter tip

The computational procedure for the elastic–plastic analysis employs the total
Lagrangian approach, that means we use small strain elasto-plasticity (the dis-
crete equations are formulated with respect to the reference configuration t=0),
mean normal return mapping and additive decomposition of strain rates. In the
total Lagrangian approach, the equilibrium can be expressed by the principle of
virtual work as: ∫

V0

Sij δEij dV =

∫
V0

b0i δηidV +

∫
V0

t0i δηidV (1)

Here Sij is the symmetric second Piola-Kirchhoff stress tensor, Eij , is the Green-
Lagrange strain, b0i is the body force in the reference configuration, t0i is the
traction vector in the reference configuration, and ηi is the virtual displacements.
Integrations are carried out in the original configuration at t=0. For small strain
anaysis used in the examples given in this paper, the material law is formulated
in true Cauchy stresses, σσσ, and true strains, εεε, and in incremental form it reads:

dσσσ = LLLep : dεεε , LLLep = CCC − (CCC : ∇σ̄σσ)⊗ (CCC : ∇σ̄σσ)
H + σ̄σσ : CCC : σ̄σσ

(2)
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Here CCC is the elastic stiffness matrix, H is the hardening coefficient, σ̄σσ is the
von Mises equivalent stress. The elastic stiffness and the hardening coefficient
for the substrate and the film are introduced according to the assumed elasto-
plastic models.

The specimen (substrate and thin film) is discretized with displacement for-
mulated isoparametric quadrilateral finite elements (FE type 10, MSC.MARC
[11]). The discretization is shown in Fig. 3, where it is seen that around the con-
tact area and near the tip of the indenter we use finer discretization. The finite
element mesh is done continuously coarser with getting away from the tip, as
shown in Fig. 3. The characteristic size of the finite element in the contact area is
h1 = h2 = 5nm. The FE–discretization was chosen in order to obtain a smooth
force-displacement curve in the contact area. Figure 4 contains two graphs: the
left graph present the P − h curved obtained as a results of the solution using
refined mesh as shown in Fig. 3 and the right graph is the P − h curve resulting
from a solution of a model with coarser FE–mesh. These graphs reveal the in-
fluence of the FE–discretization in the contact area on the P − h diagram: the
curve is non-smooth in the case of courser FE-mesh as shown in the right graph
in Fig. 4. Along the axis of symmetry, roller boundary conditions are applied.
The substrate base (bottom of the model) is constrained by fixed displacements.
More attention should be paid to the boundary condition at the lateral side of
the model as it may have significant influence on the final solution and especially
on the development of the P − h diagram. It is expected that if the modelled
specimen domain is large enough, i.e. the ratio of specimen radius to the in-
dentation depth exceeds 20, then the imposed boundary condition on x = L
has no influence on the solution in the near–contact zone. Figure 5 illustrates
the influence of the lateral boundary condition on the load-displacement curve
representing the resultant force from the contact between the specimen and the
indenter at the maximum displacement of the indenter during cyclic nanoinden-
tation. It can be concluded that up to a penetration depth of 1000 nm there is
no significant influence of the lateral boundary condition on the P − h diagram.

Fig. 4. Force-displacement curve obtained from nanoindentation test and from numer-
ical simulation; simulated P − h curve with course FE-mesh in the contact area
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Fig. 5. Simulated P − h diagram for different lateral boundary conditions

The movement of the indenter as a rigid body can be controlled by prescribed
force, displacement or velocity. In the presented here example simulations this
control was applied as a ramped function of time simulating the loading history
during the experiment. The size of the loading sub-steps depends on the FE-
discretization of the contact zone.

Figure 4 presents an example of simulation by means of the model given in
Fig. 3 of a nanoindentation test on cobalt film with maximum depth of penetra-
tion 200 nm. The results in this figure also shows a comparison of solutions of
the problem using 4 and 8 node isoparametric quadrilateral finite elements.

4 Closing Remarks

It is demonstrates that the numerical simulation of nanoindentation experiment
may help in better understanding the material response to the indenter penetra-
tion and to picture the stress–strain behaviour in both the film and the substrate
as well as to explain the apparent response of the whole system.

Several important features of numerical simulation of nanoindentation testing
via FEM have been pointed out and discussed, namely: the FE–discretization,
the boundary conditions and the motivation for simplification of the geometry
and the behaviour at the contact.

A conclusion may be done that it is important to build the most suitable,
robust and correct finite element model in order in the next step to be able to
perform back analysis of real experiment and to achieve best fit of the experi-
mental data varying selected parameters involved into the considered nonlinear
material model.

Acknowledgments. Authors gratefully acknowledge for financial support of
Bulgarian National Science Fund under grant No. TK01/0185.



326 R. Iankov et al.

References

1. Bocciarelli, M., Bolzon, G.: Indentation and imprint mapping for the identification
of interface properties in film-substrate systems. International Journal of Frac-
ture 155, 1–17 (2009)

2. Bolzon, G., Buljaka, V., Maier, G., Miller, B.: Assessment of elastic–plastic mate-
rial parameters comparatively by three procedures based on indentation test and
inverse analysis. Inverse Problems in Science and Engineering 19(6), 815–837 (2011)

3. Zhang, L., Yang, P., Shang, S., Li, C., Song, X.: Nanoindentation Experimen-
tal Approach and Numerical Simulation of AlCr Bilayer Films. Composite Inter-
faces 18(7), 615–626 (2011)

4. Cherneva, S., Iankov, R., Stoychev, D.: Characterisation of mechanical properties
of electrochemically deposited thin silver layers Transactions of the Institute of
Metal Finishing 88(4), 209–214 (2010)

5. Pelletier, H., Krier, J., Mille, P.: Characterization of mechanical properties of thin
films using nanoindentation test. Mechanics of Materials 38, 1182–1198 (2006)

6. Cherneva, S., Iankov, R., Stoychev, D.: Determination of Mechanical Properties of
Electrochemically Deposited Thin Gold Films. Journal of Theoretical and Applied
Mechanics, Sofia 39(4), 65–72 (2009)

7. U9820A Agilent Nano Indenter G200,
http://www.agilent.com/find/nanoindenter

8. Qin, J., Huang, Y., Xiao, J., Hwang, K.C.: The equivalence of axisymmetric in-
dentation model for three-dimensional indentation hardness. Journal of Materials
Research 24, 776–783 (2009)

9. Lichinchi, M., Lenardi, C., Haupt, J., Vitali, R.: Simulation of Berkovich nanoin-
dentation experiments on thin films using finite element method. Thin Solid
Films 312(1-2), 240 (1998)

10. Iankov, R., Cherneva, S., Datcheva, M., Stoychev, D.: Mechanical Characterization
of Layers and Thin Films via Nanoindentation and Numerical Simulations, chapter
in Series in Applied Mathematics and Mechanics. Mechanics of Nanomaterials and
Nanotechnology, 261–286 (2012)

11. MSC Software Corporation, MSC.MARC Volume A: Theory and User Information
(2005)

http://www.agilent.com/find/nanoindenter


Runge-Kutta Methods with Equation

Dependent Coefficients

L.Gr. Ixaru

“Horia Hulubei” National Institute of Physics and Nuclear Engineering,
Department of Theoretical Physics,
P.O. Box MG-6, Bucharest, Romania

and
Academy of Romanian Scientists,
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Abstract. The simplest two and three stage explicit Runge-Kutta
methods are examined by a conveniently adapted form of the exponen-
tial fitting approach. The unusual feature is that the coefficients of the
new versions are no longer constant, as in standard versions, but depend
on the equation to be solved. Some valuable properties emerge from this.
Thus, in the case of three-stage versions, although in general the order is
three, that is the same as for the standard method, this is easily increased
to four by a suitable choice of the position of the stage abscissas. Also,
the stability properties are massively enhanced. Two particular versions
of order four are A-stable, a fact which is quite unusual for explicit meth-
ods. This recommends them as efficient tools for solving stiff differential
equations.

Keywords: Runge-Kutta method, Exponential fitting, A-stability.

1 Introduction

There are different ways of approaching Runge-Kutta methods. The standard
way is as in [1] but in this contribution we adopt a different one. We report on
some recent results ([2],[3]) where a procedure inspired by the exponential fitting
(EF) technique is used for the derivation of the coefficients. As a matter of fact,
the literature on the latter is quite vast, see, e.g., [4]–[19] and references therein.

In the context of Runge-Kutta methods the EF-based procedure is not as
general as the standard one. It can be used only for simpler forms of the method
but, whenever it can be applied, the resulting versions and the methods derived
by the standard procedure look quite different: the coefficients are no longer
constants but equation dependent.

This has a number of attractive consequences for practice, and perhaps the
most salient of these is the massive improvement in stability. Specifically, in
[2],[3] two forms have been derived in this frame, the diagonally explicit two and
three stage methods, and a surprizing result was that the new explicit three-
stage method has A-stable versions of order four; this contrasts the commonly
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accepted view that explicit methods of higher order cannot be A-stable. For
implicit A-stable Runge-Kutta methods see [20].

2 Derivation of the Algorithm for the Scalar Problem

The one-step problem to solve is

y′ = f(x, y), x ∈ [xn, xn+1 = xn + h], y(xn) = yn, (1)

and the general algorithm of an s-stage RK method is (see [1], [21])

yn+1 = yn + h

s∑
i=1

bif(xn + cih, Yi) ,

where

Yi = yn + h

s∑
j=1

aijf(xn + cjh, Yj), i = 1, 2, ..., s.

This allows computing yn+1 in terms of the input yn by the formula written in
the first line (so called final stage), in which the values of Yi are as resulting
from the set of formulae in the second line (internal stages). The coefficients are
usually collected in the Butcher array

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
· · · · · · ·
cs as1 as2 · · · ass
b1 b2 · · · bs

As a rule the value c1 = 0 is used, and when aij = 0 for all j ≥ i, i = 1, 2, . . . , s,
the method is called explicit. If the only nonvanishing elements are ai,i−1 , i =
2, 3, . . . , s then the method is called diagonally explicit. In [2] and [3] the cases
s = 2, 3 of the diagonally explicit form were investigated by the EF-based
technique.

2.1 Two-Stage Version

Its Butcher array is:

0 0 0
c2 a21 0
b1 b2

With c2 ∈ (0, 1] as a free parameter the coefficients are:

1. Standard version:

a21 = c2, b1 = 1− 1/2c2, b2 = 1− b1. (2)
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2. New version:

a21 = c2, b1 = 1− 1/[2c2(1− c2M2/2)] , b2 = 1− b1 , (3)

where M2 = hfy(xn + c2h, Y2). Coefficients b1 and b2 are therefore equation
dependent.

To get some idea on how the new version has been derived by means of the EF
procedure, we present briefly the steps followed in [2].

Stage 1. This is simply Y1 = yn, where the localizing assumption yn = y(xn)
of (1) is permanently accepted hereinafter. No extra investigation is needed.
Stage 2. This consists in computing

Y2 = yn + ha21f(xn, Y1) , (4)

and, since it is tacitly assumed that Y2 is an approximation to y(xn + c2h),
c2 �= 0, it makes sense to search for parameter a21 such that this approximation
is the closest. With this aim the function

Y2(x) = y(x) + ha21y
′(x) ,

is introduced, whose value at x = xn is Y2. As announced, the EF procedure is
used (for a detailed description of this procedure see [7]). Thus, a linear operator
L2 acting on function space is defined in the following way:

L2y(x) = y(x+ c2h)− Y2(x) , (5)

which measures the error of (4). Then L2y(x) is evaluated for y(x) = xk, k =
0, 1, 2, . . . to obtain expressions which depend on x, h, c2 and a21 but, as explained
in [7] or [22], only the expressions corresponding to x = 0, called moments and
denoted Lk2 , are of concern. More general, the moments allow writing the action
of any linear operator L on a function y(x) as a Taylor-like expansion

Ly(x) =
∞∑
k=0

1

k!
Lky

(k)(x) , (6)

where Lk are its moments. The moments of L2 are

L20 = 0, L21 = h(−a21 + c2), L2k = (hc2)
k, k = 2, 3, . . . (7)

Notice that L2k ∼ hk and therefore it makes sense to accept that, once c2 was
fixed, the best value of parameter a21 is the one which results by imposing the
condition that as many successive moments as possible are vanishing. The first
moment is zero but the second is vanishing only if we take a21 = c2; the third
and subsequent moments are always nonvanishing because c2 �= 0. It follows that
we can write y(x+ c2h) = Y2(x) + err2(x) where

err2(x) =

∞∑
k=2

1

k!
Lky

(k)(x) =
1

2
(hc2)

2y′′(x) +
1

6
(hc2)

3y(3)(x) +O(h4). (8)
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As a matter of fact, evaluations within O(h4) are sufficient for our purpose. In
particular, in the following we will not use the whole err2 but its truncated
form terr2 which contains only the terms explicitly written; we therefore have
err2 = terr2 +O(h4).

External Stage. This is

yn+1 = yn + h[b1f(xn, yn) + b2f(xn + c2h, Y2)] , (9)

and it allows propagating the solution from xn to xn+1 = xn + h. We introduce
the operator Lprop as follows:

Lpropy(x) = y(x+ h)− y(x)− h[b1y
′(x) + b2f(x+ c2h,Y2(x))] , (10)

but, in contrast to L2, this can be approached only after linearization. We have
successively (notice that err2 ∼ O(h2))

y′(x+ c2h) = f(x+ c2h, y(x+ c2h)) = f(x+ c2h,Y2(x)+err2(x)) = f(x+ c2h,Y2(x))+

J2(x) err2(x) +O(err2) = f(x+ c2h,Y2(x)) + J2(x) terr2(x) +O(h4) ,

where J2(x) = fy(x+c2h, y)|y=Y2(x) is the usual Jacobian function at the quoted
arguments. It follows that, within this level of approximation, we can safely use

f(x+ c2h,Y2(x)) = y′(x+ c2h)− J2(x) terr2(x), (11)

in (10), and in this way the desired linear approximation

Lpropy(x) = y(x+h)− y(x)−h[b1y
′(x)+ b2(y

′(x+ c2h)−J2(x) terr2(x))] (12)

is obtained. Its moments are

Lprop 0 = 0, Lprop 1 = h(1− b1 − b2),

Lprop 2 = h2 [1− b2c2(2− c2M2)]},
Lprop 3 = h3 [1− b2c

2
2(3− c2M2)]}, . . .

and, upon solving the linear algebraic system

Lprop 1 = Lprop 2 = 0 (13)

for b1 and b2 we get the coefficients (3).
The local truncation error formula of this algorithm is

LTE =
1

3!
Lprop3y

(3)(xn)+O(h4) = h3
2− 3c2 + c2(c2 − 1)M2

6(2− c2M2)
y(3)(xn)+O(h4) .

(14)
The order of the method is then 2 but if c2 = 2/3 it becomes 3. To see this we
examine the factor which multiplyes h3. Parameter M2 behaves as h and then
it can be disregarded. That factor thus becomes (2− 3c2)/12, and this vanishes
when c2 = 2/3.
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2.2 Three-Stage Version

Its Butcher array is

0 0 0 0
c2 a21 0 0
c3 0 a32 0
b1 b2 b3

c2 and c3 are taken as free parameters and all other depend on these. These are:

1. Standard version:

a21 = c2, a32 = c3, b3 = − 1

18c22(c2 − 1)
, b2 =

3c2 − 1

6c22
, b1 = 1− b2 − b3,

where c2 and c3 are correlated, c3 = 3c2(1 − c2), see [21]. Each method in
this family is of order 3.

2. New version, obtained by exponential fitting (see [3]):

a21 = c2, a32 = c3, bi = bnumi /bdeni , i = 2, 3, and b1 = 1− b2 − b3, (15)

where

bnum2 = 2− 3c3 + [2c2 − 3c22 + (c3 − 1)c3]M3 + (c2 − 1)c22M2M3 ,

bnum3 = −2 + 3c2 − (c2 − 1)c2M2, b
den
2 = c2B, b

den
3 = c3B ,

with Mi = hfy(xn + cih, Yi), i = 2, 3 and

B = 6(c2−c3)+c2(3c3−2c2)M2+c3(2c3−3c2)M3+c2c3(c2−c3)M2M3 . (16)

Each of these methods is of order 3 but when c2 and c3 are correlated,

c3 =
3− 4c2
4− 6c2

. (17)

the order becomes 4.

Remark. For systems of N equations, y and f are column vectors with N
elements, and fy is the N ×N Jacobian matrix. Due to that, the bi coefficients
are no longer scalar functions but N ×N matrices.

3 Linear Stability

The linear stability analysis consists in taking the scalar problem y′ = λy, x ≥ 0,
y(0) = y0 �= 0, on which the behaviour of the numerical solution is investigated
when x is increased, for different values of complex λ with Reλ < 0, see e.g. [21]
for a rigorous presentation of these things. In essence, since the exact solution
y(x) = y0e

λx tends to 0 when x → ∞, the same behaviour is expected also for
the numerical solution but for most methods this does not happen for all λ and
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h. The product ν = λh is playing a central role in this context.
For all discussed methods a function Rf (ν) exists such that yn = [Rf (ν)]

ny0 and
therefore the desired behaviour that yn → 0 when n increases holds true only if

|Rf (ν)| < 1 . (18)

Function Rf (ν) and the stated condition are called stability function and sta-
bility condition, respectively, and the region in the complex ν plane where that
condition is satisfied is called stability region. Of course, we are mainly inter-
ested in the left-half part Re ν < 0 of this plane, and the larger its extension
the better is the method for stability. The best in this respect is when the whole
left-half plane belongs to the stability region, and in such a case the method is
called A-stable.

All discussed methods have R of form

Rf (ν) = 1 + ν + (b2c2 + b3c3)ν
2 + b3c2c3ν

3 .

3.1 Two-Stage Method

1. Standard version: We have b2 = 1/2c2 and b3 = c3 = 0. The stability
function is a polynomial, Rf (ν) = 1+ν+ν2/2, and then the stability region
has limited extension.

2. New version: For the test equation y′ = λy we have M2 = ν and then
b2 = 1/2c2(1 − c2ν), b3 = c3 = 0, such that

Rf (ν) =
2 + (2− c2)ν + (1 − c2)ν

2

2− c2ν
.

When c2 = 1 this becomes

Rf (ν) =
2 + ν

2− ν

and therefore this version is A-stable.

Notice the difference: the stability function is a polynomial in ν for the standard
version but a rational function for the new version. At the origin of this difference
is the fact that all coefficients are constants in the former method while some of
them are rational functions in the latter.

3.2 Three-Stage Method

The same difference holds true also in this case. Of particular importance are
two methods with c2 and c3 correlated by (17). These are:
1. c2 = 1/2, c3 = 1, bden = 12− 4M2 − 2M3 +M2M3 and

b1 =
2− 3M2

bden
, b2 =

8− 2M3 +M2M3

bden
, b3 =

2−M2

bden
; (19)
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2. c2 = 1, c3 = 1/2, bden = 12− 2M2 − 4M3 +M2M3 and

b1 =
2− 2M2 +M3 +M2M3

bden
, b2 =

2− 5M3

bden
, b3 =

8

bden
. (20)

In fact, these two methods of order 4 have one and the same stability function,

Rf (ν) =
12 + 6ν + ν2

12− 6ν + ν2
, (21)

a form which guarantees that they are A-stable.

3.3 Link between A-stability and Capacity of Solving Stiff Problems

There is generally accepted that an A-stable method gives good results for stiff
problems but in our case a special provision must be added. This is because the
standard methods have constant coefficients and therefore they are fully defined.
For contrast, in the new methods the coefficients are updated at each step and
therefore such a method can be coined as defined only when these coefficients
are computed accurately. Thus, the new A-stable methods work well only if the
coefficients are computed accurately, and this represents some limitation. The
following test case illustrates this:

y1
′
= (10λ+ 9)y1 − 10(λ+ 1)y2 , y2

′
= −9(λ+ 1)y1 − (9λ+ 10)y2 , (22)

x ∈ [xmin = 0, xmax = 5] , y1(0) = y10 , y
2(0) = y20 .

In matrix notations this has the form y′ = Jy, y(0) = y0 where

J =

[
10λ+ 9 −10(λ+ 1)

−9(λ+ 1) −(9λ+ 10)

]
, y(x) =

[
y1(x)

y2(x)

]
, y0 =

[
y10

y20

]
. (23)

The exact solution is

y1(x) = 10(y10 − y20)e
λ x + (−9y10 + 10y20)e

−x ,

y2(x) = 9(y10 − y20)e
λx + (−9y10 + 10y20)e

−x .

We take y10 = y20 = 1. The exact solution is now independent of λ: y1(x) =
y2(x) = e−x, and if stability were not an issue then the results at h = 1/2 or
1/4 must be sufficiently accurate irrespective of the value of λ.

We compare three methods: standard fourth order Runge-Kutta method (RK4)
and two new A-stable methods: two-stage (that is, with c2 = 1), which is of sec-
ond order, and three-stage (with c2 = 1/2), of fourth order. We take a large
sample of negative λ and run the methods with h = 1/2m, m = 1, ..., 6.

To compute the bi coefficients of the new methods (they are 2× 2 matrices),
one matrix inversion is involved, of S2 = I − hJ/2 for the two stage method,
and of S3 = 12I − 6hJ + h2J2 for the three-stage one; I is the unit matrix.
Now, the eigenvalues of J are −1 and λ, and therefore those of S2 and S3 are
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Table 1. Dependence on λ of the relative errors at x = 5 for new A-stable explicit
two-stage Runge-Kutta method. Notation a(b) means a× 10b.

λ

h −1 −102 −104 −106 −108 −1010

1/ 2 1.03(-01) 1.03(-01) 1.03(-01) 1.03(-01) 1.03(-01) -7.97(+01)
1/ 4 2.59(-02) 2.59(-02) 2.59(-02) 2.59(-02) 2.59(-02) 2.78(24)
1/ 8 6.50(-03) 6.50(-03) 6.50(-03) 6.50(-03) 6.50(-03) 1.45(50)
1/ 16 1.63(-03) 1.63(-03) 1.63(-03) 1.63(-03) 1.63(-03) -7.81(105)
1/ 32 4.07(-04) 4.07(-04) 4.07(-04) 4.07(-04) 4.07(-04) -5.15(103)
1/ 64 1.02(-04) 1.02(-04) 1.02(-04) 1.02(-04) 1.02(-04) 2.25(14)

1 + h/2, 1 − ν/2, and 12 + 6h + h2, 12 − 6ν + ν2, respectively, where ν = λh.
It is well known that the accuracy of the computation of the inverse of a matrix
depends on the ratio between its largest and smallest eigenvalues: the bigger
the ratio the worse the accuracy. In our case the ratio asymptotically increases
as −ν/2 for the two-stage method but as ν2/12 for the three-stage method and
therefore the first method is expected to work well for much more negative values
of λ than the second.

These behaviours are nicely illustrated on data presented in Tables 1 and
2; all computations were carried out in double precision arithmetics. Table 1
collects data from the two-stage A-stable method. It is seen that the relative
errors are similar for all λ up to −108, and they also confirm that this version
is of second order: the error is smaller by a factor 4 at each halving of h. As for
the drastic alteration when λ = −1010, this is because the matrix inversion is
now inaccurate.

On table 2 we compare RK4 and the new three-stage version. For RK4 we
present data only from λ = −10 and −1000 but this is enough to see that
this classical method works well only for λ = −10 which is consistent with the

Table 2. Dependence on λ of the relative errors at x = 5 for classical RK4 and new
A-stable three-stage explicit Runge Kutta method

RK4 New three− stagemethod

h −10 −103 −10 −103 −105 −107

1/ 2 -1.28(-02) -6.96(72) -4.41(-04) -4.41(-04) -4.41(-04) 1.49(39)
1/ 4 -2.01(-04) 6.44(108) -2.72(-05) -2.72(-05) -2.73(-05) 4.57(74)
1/ 8 -1.13(-05) -7.69(260) -1.70(-06) -1.70(-06) -1.67(-06) 7.07(102)
1/ 16 -6.70(-07) -NaN -1.06(-07) -1.06(-07) -1.09(-07) 3.70(159)
1/ 32 -4.08(-08) -NaN -6.62(-09) -6.63(-09) -6.62(-09) 2.41(152)
1/ 64 -2.52(-09) -NaN -4.14(-10) -4.15(-10) -5.43(-10) 2.71(165)
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known fact that the method is stable only when ν > −2.8, see,e.g., [21]. The new
method works much better, viz. for all λ up to −105. When λ = −107 the results
are inacceptable, again due to the inaccuracy in the matrix inversion which, as
expected, now appears earlier than in the two-stage method.

In conclusion, the new methods are massively better than the classical ones
for stability. In spite of being explicit they are A-stable, but in practice much
attention should be given to the accurate computation of the coefficients, espe-
cially for the three-stage version. Finding highly accurate numerical procedures
represents a real challenge although this will remove only partially the limita-
tions for stiff systems. Much more promising seems the idea of concentrating our
attention on the form of the algorithm. For example, it would be interesting to
see if explicit three-stage versions can be derived under the condition that the
matrix to be inverted is linear in the jacobian matrix, not quadratic, as in the
present version.
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2011-3-0092 of the Romanian Ministry of Education and Research.
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Abstract. In this paper linear initial-boundary-value problems of math-
ematical physics with different type boundary conditions (BCs) and pe-
riodic boundary conditions (PBCs) are studied. The finite difference
scheme (FDS) and the finite difference scheme with exact spectrum (FD-
SES) are used for the space discretization. The solution in the time is
obtained analytically and numerically, using the method of lines and
continuous and discrete Fourier methods.

1 Introduction

We consider here linear parabolic and hyperbolic type problems, which are used
for modelling different problem of mathematical pysics. For numerical investiga-
tions we consider the linear parabolic and hyperbolic heat conduction problems
in the following form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

α2
∂2T (x,t)

∂t2 + α1
∂T (x,t)

∂t = ∂
∂x (k̄

∂T (x,t)
∂x ) + f(x, t), x ∈ (0, l), t ∈ (0, tf ),

∂T (0,t)
∂x − σ1(T (0, t)− Tl(t)) = g1(t),

∂T (l,t)
∂x + σ2(T (l, t)− Tr(t)) = g2(t), t ∈ (0, tf),

T (x, 0) = T0(x),
∂T (x,0)

∂t = T̄0(x), x ∈ (0, l),

(1)

where k̄ > 0, α1 ≥ 0, α2 ≥ 0, σ1 ≥ 0, σ2 ≥ 0(σ2
1 + σ2

2 �= 0), are the constant
parameters, tf is the final time, Tl(t), Tr(t), T0(x), T̄0(x) are given functions. We
consider also a problem with periodic boundary conditions (in the following

form: T (0, t) = T (l, t), ∂T (0,t)
∂x = ∂T (l,t)

∂x , t ∈ (0, tf ). In this case the functions
T0(x), T̄0(x) are also periodic.

Solutions of these problems are obtained analytically and numerically, using
the finite second order difference scheme (FDS) and the finite difference scheme
with exact spectrum (FDSES) [4].

We obtain new transcendental equation and algorithms for solving the last two
eigenvalues and eigenvectors of the finite difference scheme, using the spectral
method for BCs of the third kind [2], [3]. We define the FDSES method, using
the finite difference matrix A in the form A = WDWT (W,D are the matrices,

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 337–344, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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containing finite difference eigenvectors and eigenvalues), where the elements of
diagonal matrix D are replaced with the first eigenvalues of the second order
differential operator. Also we consider the method of lines and Fourier methods
for solving the problems with homogenous BCs and periodic BCs.

2 Finite Difference Approximations and Spectral
Problem with Homogenous BCs of the Third Kind

We consider the uniform grid xj = jh, j = 0, N,Nh = l. Using the finite differ-
ences of second order approximation (O(h2)) for partial derivatives of the second
order with respect to x, for (1) we obtain the initial value problem for a system
of ordinary differential equations (ODEs):{

α2Ü(t) + α1U̇(t) + k̄AU(t) = F (t),

U(0) = U0, U̇(0) = Ū0,
(2)

where A is a 3-diagonal matrix of N + 1 order [5], U(t), U̇(t), Ü(t), U0, Ū0, F (t)
are the column-vectors of N + 1 order with elements uj(t) ≈ T (xj, t)), u̇j(t) ≈
∂T (xj ,t)

∂t , üj(t) ≈ ∂2T (xj ,t)
∂t2 , uj(0) = T0(xj), vj(0) = T̄0(xj), fj(t) = f̄(xj , t), j =

0, N.
For the 3-diagonal matrix A the solution of the spectral problem Ayn =

μny
n, n = 1, N + 1 is in following form [5]: the elements of eigenvectors ynj =

C−1
n ( sin(pnh)

h cos(pnxj)+ σ1 sin(pnxj)) and the eigenvalues μn = 4
h2 sin

2(pnh/2),
where pn are the positive roots of the following transcendental equation

cot(pnl) =
sin2(pnh)− h2σ1σ2
h(σ1 + σ2) sin(pnh)

, n = 1, N + 1 (3)

Since the scalar product [yk, ym] = h(
∑N−1

j=1 ykj y
m
j +0.5(yk0y

m
0 +ykNy

m
N )) = 0, k �=

m, the eigenvectors are orthogonal, C2
n = [yn, yn] [2]. Hence we have the or-

thonormal eigenvectors yn, ym with [yn, ym] = δn,m. The experimental calcu-
lations with MATLAB show [2], that the last two roots pN , pN+1 can not be
obtained from (3). Depending on the parameter Q = lσ1σ2

σ1+σ2
one (Q < 1) or two

(Q ≥ 1) roots from the following new transcendental equations can be obtained:

coth(pnl) =
sinh2(pnh) + h2σ1σ2
h(σ1 + σ2) sinh(pnh)

, n = N,N + 1 (4)

and the eigenvalues and eigenvectors are in the form:

ynj = C−1
n (−1)j( sinh(pnh)

h cosh(pnxj)− σ1 sinh(pnxj)), j = 0, N,

μn = 4
h2 cosh

2(pnh/2), n ≥ N,C2
n[y

n, yn] [2].
Therefore the matrix A can be represented in the form A = WDWT (AW =

WD), where the column of the matrix W and the diagonal matrix D contains
M = N + 1 orthonormed eigenvectors yn and eigenvalues μn, n = 1,M. From
WTW = E follows that W−1 = WT .
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The solution of the spectral problem w′′(x) + λ2w(x) = 0, x ∈ (0, l), w′(0) −
σ1w(0) = 0, w′(l) + σ2w(l) = 0, is

wn(x) = C−1
n (λn cos(λnx)+σ1 sin(λnx)), C

2
n = 0.5(l(λ2n+σ2

1)+
σ2(λ

2
n+σ2

1)

λ2
n+σ2

2
+σ1),

where (wn, wm) =
∫ 1

0
wn(x)wm(x)dx = δn,m and λn are positive roots of the

following transcendental equation:
cot(λnl) =

λn

σ1+σ2
− σ1σ2

λn(σ1+σ2)
, n = 1, N + 1.

For the finite difference scheme with the exact spectrum (FDSES) the matrix
A is represented in the form form A = WDWT , where the diagonal matrix
D contains the eigenvalues dk = λ2k, k=1, N + 1 of the differential operator

(− ∂2

∂x2 ) . For the boundary conditions of the first kind W = WT = W−1 is a

symmetric orthogonal matrix with the elements wi,j=
√

2
N sin πij

N , i, j=1, N − 1,

dk = (kπ/l)2, μk = 4
h2 sin

2 kπ
2N , dk > μk, k=1, N − 1.

3 Finite Difference Approximations and the Spectral
Problem with Periodic BCs

In the case of periodic boundary conditions we consider different order of
approximation.

3.1 Approximation Order O(h2)

The finite difference 3-diagonal circulant matrix A of M = N order is in the
form: A = 1

h2 [2 − 1 0 ... 0 0 − 1] (this matrix is given only with first row [1]).
The solution of the corresponding spectral problem Ayk = μky

k is

μk = 4
h2 sin

2(kπ/N), ykj =
√

1
N exp(2πikj/N), k, j = 1, N

and (yk, ym∗ ) =
∑N

j=1 y
k
j y

m
∗,j = δk,m,, where y

m
∗,j =

√
1
N exp(−2πimj/N),m, j =

1, N, i =
√
−1 [1].

The eigenvalues μk are symmetric: μN/2+m = μN/2−m,m = 1, N/2, where N
is even number.

Using the orthonormal eigenvectors - matricesW,W∗ with the elements ykj , y
k
∗j

we obtain the matrix representation:
AW = WD,W−1 = W∗, A = WDW∗, where the elements of the diagonal

matrix D is dk = μk, k = 1, N.

3.2 Approximation Order O(hp), p = 2n, n ≥ 1.

We consider the finite difference approximation for second order derivative
u′′(xj), using the uniform grid xj = jh with p+ 1, p = 2n points stencil
(xj−n, · · · , xj−1, xj , xj+1, · · · , xj−n).

Used the method of unknown coefficients Ck, Ep we obtain the approximation
of the O(hp) order in following form :

u′′(xj) =
1
h2

∑n
k=−n Cku(xj−k) + Ep

hpu(p+2)(ξ)
(p+2)! , xj−n < ξ < xj+n, where Ck =

C−k, C0 = −2
∑n

m=1Cm. For the others coefficients (m > 0) we get the system
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of linear algebraic equations with the Vandermonde matrix of the n order . Hav-
ing solved the system, we have

Ep = −2
∑n

m=1 Cmm
2n+2, Cm = 2(n!)2(−1)m−1

m2(n−m)!(n+m)!

and for some particular cases we have:
1)p = 2 : C1 = 1, C0 = −2, E2 = −2,
2)p = 4 : C1 = 4

3 , C2 = − 1
12 , C0 = − 5

2 , E4 == 8,
3)p = 6 : C1 = 3

2 , C2 = − 3
20 , C3 = 1

90 , C0 = − 49
18 , E4 = −72,

4)p = 8 : C1 = 8
5 , C2 = − 1

5 , C3 = 8
315 , C4 = − 1

560 , C0 = − 205
72 , E8 = 1152.

The circulant matrix A is in the form:
A = 1

h2 [C0, C1, · · · , Cp/2, 0, · · · , 0, Cp/2, Cp/2−1, · · · , C2, C1]
and has following eigenvalues:
μk = 4

h2

∑n
m=1 Cm sin2 πkm

N , k = 1, N.

Therefore for some particular cases we have the following eigenvalues (k = 1, N):
1) p = 2 : μk = 4

h2 sin
2(πk/N),

2)p = 4 : μk = 4
h2 (sin

2(πk/N) + 1
3 sin

4(πk/N)),

3)p = 6 : μk = 4
h2 (sin

2(πk/N) + 1
3 sin

4(πk/N) + 8
45 sin

6(πk/N)),

4) p = 8 : μk = 4
h2 (sin

2(πk/N)+ 1
3 sin

4(πk/N)+ 8
45 sin

6(πk/N)+ 4
35 sin

8(πk/N)).
The orthonormal complex eigenvectors wk, wk

∗ of matrix A remain the same.

3.3 The Continuous and Discrete Fourier Series

For the continuous spectral problem −w′′(x) = λw(x), x ∈ (0, l), w(0) = w(l),
w′(0) = w′(l)

we obtain λk = 2πk
l , wk(x) =

√
1
l exp

2πikx
l ,

wk
∗(x)=

√
1
l exp(−

2πikx
l ), (wk, wm

∗ )=
∫ l

0 w
k(x)wm

∗ (x)dx=δk,m , k,m=−∞,+∞.

For a periodic function g(x) with period l we have the complex Fourier series

g(x) =
∑∞

k=−∞ akw
k(x), where ak = (g, wk

∗) =
∫ l

0
g(x)wk

∗ (x)dx or in the real
Fourier series form:

g(x) =
∑∞

k=1(a
(1)
k cos 2πkx

l + a
(2)
k sin 2πkx

l ) +
a
(1)
0

2 ,

where a
(1)
k = 2

l

∫ l

0
g(x) cos 2πkx

l dx, a
(2)
k = 2

l

∫ l

0
g(x) sin 2πkx

l dx.
Similarly expressions we can consider also for the discrete cases. For a N -

order vector g with elements gj , j = 1, N we have the complex expression g =∑N
k=1 aky

k, where ak = (g, yk∗) =
∑N

j=1 gjy
k
∗j or g =

∑∗N̄
k=1(aky

k+aN−ky
N−k)+

aN√
N
,

yN−k = yk∗ , y
N−k
∗ = yk, μN−k = μk,

∑∗N̄
k=1 ak =

∑N̄−1
k=1 ak + aN̄/2, N̄ = N/2.

Using the expressions ak =
ak+aN−k

2 +
ak−aN−k

2 ,

aN−k = ak+aN−k

2 − ak−aN−k

2 , a
(1)
k = ak+aN−k√

N
, a

(2)
k = i(ak+aN−k)√

N
,

we have real discrete Fourier series in the following form:

gj =
∑∗N̄

k=1(a
(1)
k cos 2πkj

N + a
(2)
k sin 2πkj

N ) +
a
(1)
0

2 , a1N = a10,

where a
(1)
k = 1√

N
(g, wk

∗ + wN−k
∗ ) = 2

N

∑N
j=1 gj cos

2πkj
N ,

a
(2)
k = i√

N
(g, wk

∗ − wN−k
∗ ) = 2

N

∑N
j=1 gj sin

2πkj
N .
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For the FDSES the matrix A is represented in the form A =WDW∗ and the
diagonal matrix D contains the first N eigenvalues dk = λk, k=1, N from the

differential operator (− ∂2

∂x2 ) in following way:

1)dk = λ2k for k = 1, N2, where N2 = N/2.
2)dk = λ2N−k for k = N2, N − 1, dN = 0.

4 Analytical Solutions

We can consider the analytical solutions of (2) using the spectral representation
of matrix A.

4.1 The Solution for BCs of the Third Kind

Using the transformation V = WTU follows the seperate system of ODEs{
α2V̈ (t) + α1V̇ (t) + k̄DV (t) = G(t),

V (0) =WTU0, V̇ (0) =WT Ū0,
(5)

where V (t), V̇ (t), V̈ (t), V (0), V̇ (0), G(t) =WTF (t) are the column-vectors of M
order with elements vk(t), v̇k(t), v̈k(t), vk(0), v̇k(0), gk(t), k = 1,M.

The solution of this system is (α2 �= 0) [2]

vk(t) = exp(−0.5α1t/α2)(Ck sinh(κkt) +Bk cosh(κkt))

+ 1
κkα2

∫ t

0 exp(−0.5α1

α2
(t− τ)) sinh(κ(t− τ))gk(τ)dτ,

(6)

where κk =
√
0.25α2

1/α
2
2 − k̄dk/α2, Bk = vk(0), Ck = 1

κ (v̇k(0) +
α1

2α2
vk(0), dk =

μk. If 4k̄dkα2/α
2
1 > 1, then the hyperbolic functions need to be replaced with

the trigonometric. For FDSES dk = λ2k.
We can also use the Fourier method for solving (1) in the form

T (x, t) =
∑∞

k=1 vk(t)wk(x), where wk(x) are the orthonormed eigenvectors, vk(t)
is the solution (6),with gk(t) = (f, wk), vk(0)=(T0, wk), v̇k(0)=(T̄0, wk), dk=λk.

For hyperbolic type equation α1 = 0, α2 = 1 the solution of (5) is

vk(t) =
v̇k(0)
κk

sin(κkt) + vk(0) cos(κkt) +
1
κk

∫ t

0 sin(κk(t− τ))gk(τ)dτ,

where κk =
√
k̄dk, dk = μk.

For parabolic type equation α1 = 1, α2 = 0, the solution is
vk(t) = vk(0) exp(−κkt) +

∫ t

0
exp(−κk(t− τ))gk(τ)dτ, where κk = k̄dk.

4.2 The Solution for Periodic BCs

The solution of (1) with PBCs, using the Fourier method is:
T (x, t) =

∑∞
k=−∞ vk(t)w

k(x), where wk(x) are orthonormal eigenvectors, vk(t) is

the solution (6),with dk = λk, gk(t) = (f, wk
∗), vk(0) = (T0, w

k
∗ ), v̇k(0) = (T̄0, w

k
∗).
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The solution we can be also obtained in real Fourier series:
T (x, t) =

∑∞
k=1(bk(t) cos

2πkx
l + ck(t) sin

2πkx
l ) + b0(t)

2 ,

f(x, t) =
∑∞

k=1(b̄k(t) cos
2πkx

l + c̄k(t) sin
2πkx

l ) + b̄0(t)
2 ,

b̄k(t) =
2
l

∫ l

0 f(ξ, t) cos
2πkξ

l dξ, c̄k(t) =
2
l

∫ l

0 f(ξ, t) sin
2πkξ

l dξ,
where bk(t), ck(t) are the corresponding solutions of (6) by

bk(0) =
2
l

∫ l

0
T0(ξ) cos

2πkξ
l dξ, ck(0) =

2
l

∫ l

0
T0(ξ) sin

2πkξ
l dξ,

gk(t) = b̄k(t) or c̄k(t).
We can also consider the analytical solution of (2) using the spectral matrix

representation A = WDW∗ . From transformation V = W∗U(U = WV ) follows
the seperate system of ODEs (5), where the column-vectors are of the N - order.
The solution is in the form (6).

Using the discrete Fourier transformation U(t) =
∑N

k=1 vk(t)y
k, F (t) =∑N

k=1 gk(t)y
k,

we can obtained the functions vk(t) from (6), where gk(t) = (F (t), yk∗ ), vk(0) =
(U0, y

k
∗ ), v̇k(0) = (Ū0, y

k
∗)

We can obtain the solution of the discrete problem also in the following real
form:
uj(t) =

∑N̄
k=1(bk(t) cos

2πkj
N + ck(t) sin

2πkj
N ) + b0

2 ,

fj(t) =
∑N̄

k=1(b̄k(t) cos
2πkj
N + c̄k(t) sin

2πkj
N ) + b0(t)

2 ,

b̄k(t) =
2
N

∑N
1 fj(t) cos

2πkj
N , c̄k(t) =

2
N

∑N
1 fj(t) sin

2πkj
N ,

where bk(t), ck(t) are the corresponding solutions of (6) by

bk(0) =
2
N

∑N
j=1 T0(xj) cos

2πkj
N , ck(0) =

2
N

∑N
j=1 T0(xj) sin

2πkj
N ,

gk(t) = b̄k(t) or c̄k(t), dk = μk,
∑N̄

k=1 ak =
∑N/2−1

k=1 ak +
aN/2

2 ,
(for FDSES dk = λk).

5 Some Examples and Numerical Results

In order to show, how do the methods work, we shall consider 2 simple
boundary- value problems for ODEs and 3 initial- boundary- value problems
for wave, heat transfer and hyperbolic heat conduction equations.

5.1 Example for ODEs with BCs of the Third Type

For finite value σ1, σ2 we consider following problem:
−u′′(x) = f(x), x ∈ (0, l), u′(0)− σ1u(0) = 0, u′(l) + σ2u(l) = 0,

where f(x) = 12x2C0 + σ1 sin(x), C0 = σ1 cos(l)+σ1σ2 sin l+σ2

4l3+σ2l4
.

The exact solution of the continuous problem is u(x) = −x4C0+1+σ1 sin(x).
The solution of the problem is obtained in the form y = A−1F or y =

WD−1WT , where D−1 is a diagonal matrix with elements μ−1
k , k = 1, N + 1. If

σ1, σ2, N = 15, l = 11 we have the maximal errors δ(FDS) = 0.25, δ(FDSES) =
0.08 and pN = 0.037, μN = 7.44, pN+1 = 1.604, μN+1 = 10.32.
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5.2 Example for ODEs with Periodic BCs

We consider boundary-value problem with PBCs:
−u′′(x) = f(x), x ∈ (0, l), u(0) = u(l), u′(0) = u′(l).

This problem has unique solutions by
∫ l

0 f(x)dx = 0, u(x0) = u0, where x0 ∈
[0, l], u0 is fixed constant.

The exact solution of the problem with f(x) = cos(2πx/L) exp(sin(2πx/L))
can be obtained use the Matlab operator ”quad”. The calculations by
l = 10, N = 10 for FDS give following maximal errors:
0.2097(O(h2)), 0.0131(O(h4)), 0.0049(O(h6)), 0.0023(O(h8)), but for FDSES:
3.210−5. Using the FDSES, we can obtain exact solution, if the function f(x) is
a linear combination of sin(2πp1x/l), cos(2πp2x/l) and N ≥ 2 ∗max(p1, p2).

5.3 Example for a Wave Equation

For a wave equation with BCs of the first kind (1), if α1 = 0, α2 = 1, l = 1,
T0 = sin(πx), T̄0 = 0, T (x, t) = sin(πx)cos(πt), we obtain following maximal
errors (N = 40, tf = 1): 0.00748 (FDS), 10−16 (FDSES ).

For numerical calculation of a wave equation with PBCs and
f = 0, T0 = sin(2πx), T̄0 = 0, T (x, t) = sin(2πx) cos(2πt) we obtain following
maximal errors : FDS-0.0049 (O(h2)), 0.000016 ( O(h4)), 10−7 (O(h6)),2.10−10

(O(h8)), FDSES- 10−14.

5.4 Example for Heat Transfer Equation

For heat transfer equation with homogenous BC of first kind (the problem with
discontinuous initial and boundary data) (1), if α1 = 1, α2 = 0, l = 1, k̄ =
1, f = 0, T0 = 1 . the maximal error by tf = 0.02, N = 10 is 0.089 (FDS) and
0.0102(FDSES).

The results obtained with Fourier series have oscillations on x = 0, x = l
(Gibbs phenomenon). For the FDSES method these oscillations disappear. The
maximal error by tf = 0.9, N = 10 is 0.0000118 (FDS) and 0.0000015 (FDSES).

If the functions f(x, t), T0(x) are proportional to the eigenvector wp(x) and
p ≤ N − 1, then the FDSES is exact method.

For PBCs if the functions f(x, t), T0(x) are proportional to the functions
f1(x) = sin(2πp1x/l), f2(x) = cos(2πp2x/l), we have the exact solution for
max(p1, p2) ≤ N/2, using the Fourier and FDSES methods.

5.5 Example for Hyperbolic Heat Conduction Equation

The numerical experiment for a hyperbolic heat conduction equation (1), if l =
1, σ1 = σ2 = ∞, k̄ = 1, α2 = 0.1, α1 = 1, tf = 0.2, f = 0, Tl = 1, Tr = 0, T0 =
0, T̄0 = 0, N = 200 (the initial and boundary conditions are discontinuous [2])
the numerical results are represented in Figs.1,2.
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Fig. 1. Solution of finite-difference by
N = 200, t = 0.2
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Fig. 2. Solution of FDSES by N = 200,
t = 0.2

6 Conclusions

The hyperbolic and parabolic type problems with BCs of the third kind and
PBCs are solved with the method of lines in the time and with the finite differ-
ence scheme. The algorithms for discrete Fourier methods, which depend on the
special parameter Q, are developed in different ways. For the last two eigenvalues
and eigenvectors for finite difference operator new expressions are to work out,
containing the hyperbolic functions.

The advantages of the FDSES in the case of BCs of the first kind and periodic
BCs are demonstrated via several numerical examples in comparision with well-
known finite difference scheme methods.
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Abstract. The problem of propagation of long waves in a domain of
an arbitrary form with the sufficiently smooth boundary on a sphere
is considered. The boundary consists of “solid” parts passing along the
coastline and “open liquid” parts passing through the water area. In
general case the influence of the ocean through an open boundary is
unknown and must be found together with components of a velocity
vector and free surface elevation. For this purpose we use observation
data of free surface elevation given only on a part of an “open liquid”
boundary. We solve our ill-posed inverse problem by an approach based
on the optimal control methods and adjoint equations theory.

Keywords: data assimilation problem, finite elements method and high
performance computation.

Introduction

Researches [1–3] are devoted to the different aspects of mathematical and nu-
merical modelling of tidal and free surface waves in large water areas taking into
account the Earth’s sphericity and the Coriolis acceleration based on vertically
averaged equations of motion and continuity. One of the possible initial-boundary
value problems for this equations is described in [4]. Useful a priori estimates
providing stable and unique existence of solution are obtained ibid. In [5] for
the same problem the finite element method is constructed and corresponding
a priori estimates are obtained. Besides, numerical results on the special model
grids and on the non-structured grids for the water areas of the Sea of Okhotsk
and the World Ocean are presented.

Since in general case influence of an ocean on a water area through an open
boundary is unknown then we consider the inverse problem on recovery of the
boundary function which describes this influence. In [6] the iterative algorithm
for recovery of the boundary function for every time-step, using the observation
data of free surface elevation on the whole “open liquid” boundary, is considered.
In the present work we discuss the opportunity of recovery of the influence of an
ocean using an observation data of free surface elevation given only on a part of
an “open liquid” boundary.
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1 The Differential Formulation of a Problem

We consider the following problem. Let (r, λ, ϕ) be spherical coordinates with the
origin at the terrestrial globe, 0 ≤ λ ≤ 2π, 0 ≤ ϕ < π. Here λ means geographic
longitude and instead of geographic latitude θ we use angle
ϕ = π/2 + θ. We put r = RE , where RE is the radius of the Earth which
is assumed to be constant.

We formulate the problem on propagation of long waves in a water area as
follows. Let Oλϕ be image of (λ, ϕ) mapped onto a sphere S2

RE
with radius RE ,

Ω = {Oλϕ, and let (λ, ϕ) ∈ Ω′} be an open submanifold obtained by mapping
Ω′ onto a sphere of radius RE with the piecewise smooth Lipchitz boundary
Γ=Γ1 ∪ Γ2 of the class C(2), where Γ1 is a part of the boundary passing along
a coastline and Γ2 = Γ \ Γ1 is a part of the boundary rounded a water area.
Let denote characteristic functions of these parts of boundary by χ1 and χ2,
respectively. Without loss of generality we may assume that the points ϕ = 0 and
ϕ = π (poles) are not involved in Ω. For the unknown functions u = u(t, λ, ϕ),
v = v(t, λ, ϕ) and ξ = ξ(t, λ, ϕ) in Ω × (0, T ) we write the vertically averaged
equations of motion and continuity [1, 4] as following:

∂u

∂t
= lv +mg

∂ξ

∂λ
−Rfu+ f1,

∂v

∂t
= −lu+ ng

∂ξ

∂ϕ
−Rfv + f2, (1)

∂ξ

∂t
= m

(
∂

∂λ
(Hu) +

∂

∂ϕ

( n
m
Hv
))

+ f3,

where u and v are components of the velocity vector U in λ and ϕ directions,
respectively; ξ is a deviation of a free surface from the nonperturbed level;
H(λ, ϕ) > 0 is depth of a water area at a point (λ, ϕ); the function
Rf = r∗|U|/H takes into account the base friction force, r∗ is the friction coeffi-
cient; l = −2ω cosϕ is the Coriolis parameter; m = 1/(RE sinϕ);
n = 1/RE; g is the acceleration of gravity; f1 = f1(t, λ, ϕ), f2 = f2(t, λ, ϕ)
and f3 = f3(t, λ, ϕ) are given functions of external forces.

We consider boundary conditions in the following form:

HUn + βχ2

√
gHξ = χ2

√
gHd on Γ × (0, T ), (2)

where Un = U·n, n = (n1,
n

m
n2) is the vector of an outer normal to the boundary

in the spherical coordinates; β ∈ [0, 1] is a given parameter, d = d(t, λ, ϕ) is a
function defined on the boundary Γ2. We extend d by zero on the boundary Γ1.

We also impose initial conditions as following:

u(0, λ, ϕ) = u0(λ, ϕ), v(0, λ, ϕ) = v0(λ, ϕ), ξ(0, λ, ϕ) = ξ0(λ, ϕ). (3)

For time discretization we subdivide the segment [0, T ] into K subintervals
by points: 0 = t0 < t1 < · · · < tK = T with the step τ = T/K. We approximate
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time derivatives with backward differences and consider the system (1) – (2) on
the interval (tk, tk+1) as:(

1

τ
+Rf

)
u− lv −mg

∂ξ

∂λ
= f1 +

1

τ
uk in Ω,(

1

τ
+Rf

)
v + lu− ng

∂ξ

∂ϕ
= f2 +

1

τ
vk in Ω, (4)

1

τ
ξ −m

(
∂

∂λ
(Hu) +

∂

∂ϕ

( n
m
Hv
))

= f3 +
1

τ
ξk in Ω,

HUn + βχ2

√
gHξ = χ2

√
gHd on Γ, k = 0, 1, . . . ,K − 1, (5)

where for an arbitrary function f(t, λ, φ) we use fk = f(tk, λ, φ), f =
f(tk+1, λ, φ) = fk+1. Further the index (k + 1) in difference expressions is omit-
ted if there is no ambiguity. Base friction Rf = r∗|Uk|/H is taken from the
previous time level.

System (4) – (5) is the subject of our investigation. In the direct problem (4) –
(5) in time instant tk+1, k = 0, 1, ...,K−1, we should find u, v, ξ when functions
H, f1, f2, f3, d are given. But in general case, the function d is unknown. So we
formulate the inverse problem of finding the function d in the problem (4) –
(5). In this case, to close the problem (4) – (5), we consider the following closed
condition:

ξ = ξobs on Γ0, (6)

where ξobs ∈ L2(Γ0) is a given function (for example, from observation data) on
the some part of the boundary Γ0 ⊂ Γ .

Thus, for the time instant tk+1, k = 0, 1, ...,K − 1, the differential problem
(4) – (6) can be formulated as the problem on observation data assimilation in
the following way [4].

Problem 1 (Inverse problem). Assume that at the time instant tk+1, k =
0, 1, ...,K − 1, the function ξobs is defined on Γ0, the function d is unknown
on Γ2 and vanishes on Γ1. At a time instant tk+1 find u, v, ξ, d, satisfying the
system (4), the boundary condition (5) and the closure condition (6).

2 A Problem of Optimal Control

For real vector functions Φ = (u, v, ξ), Φ̂ = (û, v̂, ξ̂) ∈ (L2(Ω))3 we consider the
inner product [4]

(Φ, Φ̂) =

∫
Ω′

R2
E sinϕ

(
H(uû+ vv̂) + gξξ̂

)
dλdϕ

and the norm

‖Φ‖ = (Φ,Φ)1/2 <∞.
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For integral formulation of the problem (4) – (5) we take the inner prod-

uct of system (4) in (L2(Ω))3 by the arbitrary vector function Φ̂ = (û, v̂, ξ̂) ∈
(L2(Ω))2 × H1(Ω) ≡ W and perform integration by parts taking into account
the boundary condition (5).

Definition. A vector function Φ = (u, v, ξ) ∈ (L2(Ω))2 ×H1(Ω) ≡ W is called
a weak solution of the problem (4) – (5) if the integral identity

a(Φ,W) = f(W) + b(d,W) (7)

holds for any vector function W = (wu, wv, wξ) ∈W . Here

a(Φ,W) =

∫
Ω′

R2
E sinϕ

(1
τ

(
H(uwu + vwv) + gξwξ

)
+Hl(uwv − vwu)

+HRf (uw
u + vwv)

)
dλdϕ

+

∫
Ω′

REHg

((
u
∂wξ

∂λ
− wu ∂ξ

∂λ

)
+sinϕ

(
v
∂wξ

∂ϕ
− wv ∂ξ

∂ϕ

))
dλdϕ

+βg

∫
Γ2

√
gHξwξ ds,

f(W)=

∫
Ω′

R2
E sinϕ

(
H(f1w

u + f2w
v) + gf3w

ξ
)
dλdϕ

+

∫
Ω′

1

τ
R2

E sinϕ
(
H(ukwu + vkwv) + gξkwξ

)
dλdϕ,

b(d,W)=g

∫
Γ2

√
gHdwξ ds.

Notice that the boundary condition (5) is natural for the problem (4), hence,
it imposes no restriction on spaces of trial and test functions.

In [4] it has been proved for β > 0 the problem (7) has a solution.
Considering the bilinear forms a(Φ, ·) and b(d, ·) as bounded linear functionals

defined for any functions Φ ∈W and d ∈ L2(Γ2), respectively, we can write the
equality (7) as an operator equation [7]:

AΦ = F̃ +Bd (8)

with operators A :W→ (L2(Ω))3 and B :L2(Γ2)→ (L2(Γ2))
3 and F̃ ∈ (L2(Ω))3

which is induced by the inner product on an element F = (f1 +
1

τ
uk, f2 +

1

τ
vk,

f3 +
1

τ
ξk).

Rewrite the equation (6) on boundary Γ0 in the following form:

CΦ = ξobs (9)
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with a trace operator C :W → H1/2(Γ0) and ξobs ∈ L2(Γ0) and consider (9) as a
condition for the operator equation (8). Since Γ0 is Lipchitz boundary the space
H1/2(Γ0) is compactly embedded into L2(Γ0) [7]. As ξobs does not necessarily
belong to H1/2(Γ0), so the problems (8), (9) or (7), (6) are ill-posed.

According to [4, 7], the problem (8) – (9) is uniquely and densely solvable
provided that mes(Γ0 ∩ Γ1) > 0.

In order to solve this problem the technique presented in [7] is applied.
Thus consider the following family of optimal control problem.

Problem 2. Let ξobs be given on Γ0. For fixed α ≥ 0 find the boundary function
dα on Γ2 and the vector-function Φα = (uα, vα, ξα) which satisfy the following
operator equation

AΦα = F̃ +Bdα

and minimize the following cost functional:

Jα(dα, ξα(dα))=
1

2
g

⎛⎝α∫
Γ2

√
gH

(
∂dα
∂s

)2

ds+

∫
Γ0

√
gH(ξα − ξobs)

2 ds

⎞⎠. (10)

Each solution dα of this problem satisfies a system of variational equations
(Euler optimality equations) which has the following form:

AΦα= F̃+Bdα, A
∗Φ̂α=J ′

α,Φ(dα,Φα), J
′
α, d(dα,Φα)+B

∗Φ̂α= 0, (11)

where J ′
α, d, J

′
α,Φ mean the variations of the functional Jα with respect to d and

Φ , respectively, operators A∗:W→(L2(Ω))3, B∗: (L2(Γ2))
3→L2(Γ2) are a linear

adjoint to operators A, B, respectively, vector-functions Φα ∈ W, Φ̂α ∈ W are
solutions of direct and adjoint problems.

In our case, Euler equations (11) for Problem 2 generate the following family
of problems:

a(Φα,W) = f(W) + b(dα,W) ∀ W = (wu, wv, wξ) ∈W, (12)

a(Ŵ, Φ̂α)=g

∫
Γ0

√
gH(ξα − ξobs)ŵ

ξdΓ ∀ Ŵ = (ŵu, ŵv, ŵξ) ∈W, (13)

α
∂

∂s

(√
gH

∂dα
∂s

)
=
√
gHξ̂α on Γ2, dα(γ0) = dα(γ1) = 0. (14)

Here (14) is a boundary value problem for an ordinary differential equation
along the boundary Γ2, and γ0, γ1 are ends of Γ2 ⊂ Γ .

Thus, using (12) – (13), (14) to determine a solution uk+1, vk+1, ξk+1 and
dk+1 at (k + 1) time instant, we can apply the following iterative process.

Iterative Algorithm 1

1. Take some d
(0)
α on Γ2. From here on, when describing the algorithm, a su-

perscript in parentheses denotes the number of an iteration step. Put u
(0)
α = uk,

v
(0)
α = vk, ξ

(0)
α = ξk.
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Let ε be a given accuracy.
2. While ⎛⎝∫

Γ0

√
gH(ξ(l) − ξ

(l)
obs)

2 dΓ

⎞⎠1/2

≥ ε

⎛⎝∫
Γ0

√
gH(ξobs)

2 dΓ

⎞⎠1/2

(15)

an iteration step is performed:

2.1. Using d
(l)
α , we solve the direct problem (12) and determine u

(l)
α , v

(l)
α , ξ

(l)
α

(index (k + 1) of time step is omitted as usual).

2.2. Using a solution ξ
(l)
α of the direct problem in the boundary condition for

the adjoint one, we solve the adjoint problem (13) and determine û
(l)
α , v̂

(l)
α , ξ̂

(l)
α .

2.3. Using a solution ξ̂
(l)
α of the adjoint problem, we solve the boundary value

problem (14) and determine d̃
(l)
α . Then use this solution for the iterative refine-

ment d
(l)
α :

d(l+1)
α = d(l)α + γl(d̃

(l)
α ). (16)

Here γl, α are parameters of the method.

2.4. Put d
(l)
α = d

(l+1)
α , l = l + 1 and go to point 2.

Basing on results of [4, 7] we can prove the following theorem.

Theorem 1. Let mes(Γ0 ∩ Γ1) > 0 and mes(Γ2) > 0. Then
(1) the problem (12) – (13), (14) is well-posed for any α > 0;
(2) if Φ, d are a weak solution of the problem (12), (9) for some α > 0, then

‖Φ−Φα‖+ ‖ξ − ξobs‖L2(Γ0) → 0, as α→ +0;

(3) for sufficiently small γl > 0 the Iterative algorithm 1 converges, in
addition,

‖Φ(l)
α −Φ‖+ ‖d(l)α − d‖L2(Γ2) + ‖ξ(l)α − ξobs‖L2(Γ0) → 0

as α→ +0, k → ∞.
Thus, on each time interval (tk, tk+1) for sufficiently large l = L >> 0 and

sufficiently small 0 < α << 1, uk+1 ≈ u
(L)
α , vk+1 ≈ v

(L)
α , ξk+1 ≈ ξ

(L)
α can be

taken as the solution of the differential problem (4) – (5), (6).
The numerical solution of the direct and adjoint problems is based on the

finite elements method. Consider a consistent triangulation T = {ωi}
∣∣Nel

i=1
of the

domain Ω′ [8]. The Bubnov-Galerkin method is used for discretization of our
problem with respect to space. Linear functions on triangular finite elements are
used as trial and test functions. In [5] a priori stable estimation for the discrete
analogue is derived and the second order of approximation in internal nodes for
an uniform grid is shown.

3 Numerical Tests with Boundary Data Recovery

We consider the water area of the sea of Okhotsk and a part of the Pacific Ocean
near the Kuril Islands as a computational domain. The domain is bounded by
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a “square”: Ω = [42◦, 62◦] N. × [135◦, 162◦] E., its liquid boundary Γ2 passes
along λ = 161, 1◦ E. and along ϕ = 41, 5◦ N. From here on, for convenience,
along the λ– and ϕ–axes instead of radian measure we use degrees of eastern
longitude and northern latitude, respectively.

Test calculations for the water area of the Sea of Okhotsk were performed on
grids constructed on the basis of the ETOPO2 open bathymetric data base [8].

Since in general case for a nonstationary problem initial data are unknown
and the procedure does not assume initial data recovery, in Ω we consider the
following problem.

Firstly, we solve a steady-state problem using the function d which is given
on all “liquid” boundary, independent of time, and has the following form:

d(λ, ϕ) = Aexp

(
−
(
λ− λ0
2D

)2

−
(
ϕ− ϕ0

2D

)2
)

on Γ2. (17)

The steady-state solution is used as initial data. The values ξ from the steady-
state solution taking on some part of the boundary Γ0 are considered as “obser-
vation” data. Then we “forgot” values of d.

The aim of the numerical test is recovery of the function d on the whole liquid
boundary using our “observation” data. To this end, d is recovered everywhere
on the “liquid” boundary with Iterative algorithm 1 starting with d ≡ 0.

Using the steady-state procedure we obtain a rather smooth function as “ob-
servation” data. However, actual observation data, as a rule, are not so smooth.
In this connection, in one test “white noise” is superimposed on the values of
ξ on the boundary Γ0. Then “noisy” values of ξ are taken as observation data.
Moreover, in another test observation data with gaps is considered, i.e. data is
given on the part of the “liquid” boundary only (Fig. 1).
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Fig. 1. The observation data on the east boundary part of the Pacific ocean: 1, 3 —
smooth, 2 — “noisy”’, 4 — with gaps

Thus, the problem (4)–(5) is solved with the cost functional (10) with two
different type of observation data (6).

Test 1. Recovery with “noisy” observation data. The function of
superimposition of “white noise” satisfies the following condition: the magni-
tude of “noise” which is added to each particular value of ξ, may not exceed
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Fig. 2. Dependence of the functions d and ξ upon the number of iteration steps (1, 10,
40) on a liquid boundary of Ω with “noisy” observation data. 0 — exact d (on the left)
and ξ (on the right).

given percent of the magnitude of ξ. The obtained perturbed function is used
when recovering. Fig. 2 illustrates the recovery process of the functions d and ξ
in the case that “noise” can introduce maximal deviation equal to 10 percent in
“observation” data.

Fig. 2 shows that the recovered function d retains smoothness (17) despite
the errors introduced in “observation” data and it is close to the exact solution.
Moreover, the recovered free surface elevation ξ on the boundary practically
coincides with the observation data without “noise”. Thus, there is a smoothing
of the errors introduced by “noise”.

It is interesting to note that in [6] another regularizer in the functional of
Problem 2 is considered. When using functional from [6], recovered free surface
elevation ξ tends to noisy data.

Test 2. Recovery with smooth “observation” data with gaps. In the numerical
experiment smooth observation data was given everywhere on liquid boundary
with the exception of two discontiguous pieces along the boundary corresponding
λ = 161, 5◦.
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Fig. 3. Dependence of the functions d and ξ upon the number of iteration steps (10,
142) on a liquid boundary of Ω with observation data with gaps 0 (the graph of ξ on
the right). Graph 0 on the left — exact d.
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Results of the numerical experiments are shown in Fig. 3. Here we can see
our method recovers free surface elevation ξ and d on the whole liquid boundary
including points without observation data. Recovery passes in 142 iteration steps
and there is good coincidence of the recovered values and the exact solution.

The numerical tests demonstrate some advantages of the boundary recovery
method with the cost functional (10) in comparison with the functional proposed
in [6]. The method recovers the boundary function d on the whole liquid bound-
ary using observation data given on a part of the boundary only and moreover
it is stable to perturbation and errors in data.

Test 3. Dynamic recovery of d. The aim is to recover d at each time instant for
the problem of propagation of some initial perturbation of ξ. To get observation
data the direct problem of waves propagation in time with some initial pertur-
bation of ξ nearby the north part of the boundary Ω of the Pacific ocean (Pic. 4)

Fig. 4. The initial perturbation of ξ nearby the north part of the boundary Ω of the
Pacific ocean
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Fig. 5. The recovered ξ with observation data ξobs (with gaps) for some time instants
on the north part of the boundary Ω of the Pacific ocean
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is solved. Thus we obtain the observation data ξobs for each time instant. Then
the boundary function d is “forgotten” (d ≡ 0 on the whole liquid boundary)
and the inverse problem of recovery of d in time is solved at each instant tk,
k = 1, ...,K, of time. The results of recovery for some time instants are shown
in fig. 5.

The numerical experiments are demonstrated good recovery of unknown
boundary function from the boundary condition together with velocity vector
and free surface elevation in whole computation domain both at a time instant
and in dynamics case.
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Abstract. In this paper we study a mathematical model formulated
within the framework of the kinetic theory for active particles. The model
is a bilinear system of integro-differential equations (IDE) of Boltzmann
type and it describes the interactions between virus population and the
adaptive immune system. The population of cytotoxic T lymphocytes is
additionally divided into precursor and effector cells. Conditions for exis-
tence and uniqueness of the solution are studied. Numerical simulations
of the model are presented and discussed.

Keywords: numerical simulations, integro-differential equations, non-
linear dynamics, kinetic model.

1 Introduction

The application of mathematical and numerical approaches in life sciences is a
promising area of research, which develops quickly during the last decades. It
requires a close teamwork between specialists in mathematics, numerical anal-
ysis, computer programming, biology, medicine etc. In this way the traditional
experimental biological approaches can be fruitfully complemented by mathe-
matical modeling methods. This can help for better understanding of the way of
functioning of the biological systems and for reduction of the amount of lengthy
experiments needed for the design of therapeutical methods [5].

The purpose of the present paper is to present an example of application of
mathematical and computational methods in the field of virology. The contents
of our work are organized as follows. In Section 2 we present basic biological
information on the viral infections and the defence mechanisms of the host or-
ganisms. In Section 3 we describe a mathematical model of adaptive immune re-
sponse to virus. The model is a complicated system of partial integro-differential
equations. A theorem for existence and uniqueness of its solution is proved.
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In Section 4 we describe the performed discretization of the model and present
results of our simulations. Section 5 concludes the paper and suggests some
future research directions.

2 Viruses and Immune System

An important feature of the viruses is that they do not possess their own
metabolism [1, 9]. For their replication, they have to enter susceptible cells of
the host organism and use their metabolic mechanism. After their reproduction
inside the infected cells, the viral particles can leave and destroy the host cells,
and start infecting other susceptible cells. Too great viral replication often leads
to significant decreasing of the life span of the infected cells. Thus, the viral in-
fections may lead to various diseases, some of which such as influenza, hepatitis
C, AIDS can be very dangerous or even lethal for the infected individuals [9].

In order to protect the organisms against viruses and other foreign antigens,
various mechanisms have evolved during the evolution. They form the immune
system, which can be observed in some forms even in very simple species. The
immune system of higher organisms is one of the most complicated their systems.
It includes various molecules, cells, specialized tissues and organs.

The immune system may be divided into two main parts: (i) innate (natural)
immune system and (ii) acquired (adaptive) immune system. The innate immu-
nity is non-specific, it is not directed against any specific virus strain. It includes
physical barriers (saliva, skin, stomach acid), changes (inflammation) and im-
mune cells without immunological memory (e.g. macrophages, dendritic cells).
The innate defense mechanisms provide the initial protection against infections.

The acquired immune system is a remarkably adaptive defense system that
has evolved in vertebrates. It needs more time to develop than the innate immu-
nity and mediates the later defenses against pathogens. The acquired immunity
is virus-specific: it can specifically recognize the viral physical structure and per-
form responses depending on the identified virus strain. This important ability of
the acquired immunity to adapt to the specific type of infection and to respond
accordingly explains the second name of this very significant component of the
immune system. The adaptive responses are performed by cells called lympho-
cytes. Besides recognition of virus particles, the adaptive immunity is also able
to establish immunological memory, i.e. to produce higher amounts of virus-
specific lymphocytes (even after achieving virus clearance) and thus to carry out
better responses in future encounters with the same virus strain. The adaptive
immunity can be subdivided into two main branches: humoral and cell-mediated
(or cellular) immunity [1].

The humoral immune response is performed by B lymphocytes, which produce
antibodies (AB) that are able to bind to free virus particles. Thus viruses are
either neutralized or tagged for destruction by other cells of the immune system
(e.g. macrophages). AB can be very effective in suppressing the virus population,
but they are helpless against infected cells. This means that despite the ongoing
humoral response, virus particles can still reproduce [1].
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The cellular immunity is directed against the infected cells. The cell-mediated
response is performed by T lymphocytes: T helper cells (Th) and cytotoxic
T lymphocytes (CTL). The cytotoxic T lymphocytes are able to specifically
recognize and destroy the infected cells. The Th cells, on the other hand, take
part in the regulation of the immune responses, both cellular and humoral [9].

3 Mathematical Model

The mathematical model presented here is developed within the so-called ”ki-
netic theory for active particles” (KTAP) [7]. The basic concept of KTAP is
the functional activity of individuals (particles) taking part in the interactions
between the composing subsystems of an overall complex system. This approach
has been successfully applied to model phenomena in various areas [4–6].

The model describes the interactions between the populations of susceptible
uninfected cells, infected cells, free virus particles, AB, precursor CTL (CTLP )
and effector CTL (CTLE). Each population is denoted by the corresponding
subscript i = 1, . . . , 6. The functional states of the interacting individuals are
characterized by a variable u ∈ [0, 1] describing the specific biological activity of
each individual.

We neglect the presence of internal degree of freedom of the population of
uninfected cells labeled by i = 1. This population is assumed to be independent
of its activation states. The activity of the population of infected cells labeled by
i = 2 denotes the rate of reproduction of viruses inside the infected cell and the
rate of destruction of the infected cells due to the viral activity. Infected cells
with higher activation states are supposed to produce more virus particles, at
the cost of faster destruction of the cells.

The activity of the population of free virus particles labeled by i = 3 describes
its ability to infect susceptible uninfected cells. The activity of the population of
antibodies labeled by i = 4 describes their ability to destroy free virus particles.

Populations of precursor CTL labeled by i = 5 and of effector CTL labeled
by i = 6 participate in the cellular immune response. Upon contact with virus,
precursor cells proliferate. This results in establishment of CTL memory and
creation of effector cells. Hence, we assume that the activity of precursor CTL
describes the rate of CTLP proliferation. The activity of the population of CTLE

describes their ability to destroy infected cells.
Further, we introduce the following notation. Let

fi = fi(t, u) : [0,∞]× [0, 1] → R+, i = 1, ..., 6,

denotes the distribution function of the i-th population with activity state u ∈
[0, 1] at time t ≥ 0. The concentration of the i-th population at time t ≥ 0 is
then given by:

n1(t) = f1(t, u), ∀u ∈ [0, 1] , t ≥ 0,

ni(t) =
∫ 1

0
fi(t, u)du : [0,∞) → R+, i = 2, ..., 6.

(1)
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The difference of the equation for n1(t) in (1) is due to the assumed independency
of the population i = 1 of its activation states u. Further, we denote:

n∗
i (t) =

∫ 1

0

ufi(t, u)du : [0,∞) → R+, i = 2, ..., 6. (2)

The model of the competition between the virus particles and the adaptive
immune system is given by the following system of partial IDE:

dn1

dt (t) = S1(t)− d11n1(t)− d13n1(t)n
∗
3(t), (3)

∂f2
∂t (t, u) = p

(2)
13 (1 − u)n1(t)n

∗
3(t)− d22uf2(t, u)− d26f2(t, u)n

∗
6(t)

+c22
(
2
∫ u

0 (u− v)f2(t, v)dv − (1− u)2f2(t, u)
)
,

(4)

∂f3
∂t

(t, u) = p
(3)
22 n

∗
2(t)− d33f3(t, u)− d34f3(t, u)n

∗
4(t), (5)

∂f4
∂t

(t, u) = p
(4)
34 (1− u)n3(t)n4(t)− d44f4(t, u), (6)

∂f5
∂t

(t, u) = p
(5)
25 (1 − u)n2(t)n

∗
5(t)− d55f5(t, u), (7)

∂f6
∂t

(t, u) = p
(6)
25 (1 − u)n2(t)n

∗
5(t)− d66f6(t, u), (8)

supplemented by the following initial conditions

n1(0) = n
(0)
1 , fi(0, u) = f

(0)
i (u), i = 2, ..., 6. (9)

The initial conditions and all parameters of the model are assumed to be non-

negative. Additionally, we suppose that p
(2)
13 = 2d13. The meanings of the pa-

rameters and corresponding terms participating in the model equations (3)-(8)
are described in Table 1.

Table 1. Model parameters and variables

Par. Description
u activation state
t time
S1(t) generation of new uninfected cells
d11 natural death of uninfected cells
d13 infectivity rate of uninfected cells

p
(2)
13 rate of appearance of new infected cells

d22 natural death of infected cells
d26 destruction of infected cells by effector CTLs
c22 steady progress of infected cells towards increasing their activation states

p
(3)
22 production of new viruses

d33 natural death of viruses
d34 destruction of free viruses by antibodies

p
(4)
34 generation of new antibodies

d44 natural death of antibodies

p
(5)
25 production of new precursor CTLs

d55 natural death of precursor CTLs

p
(6)
25 production of new effector CTLs

d66 natural death of effector CTLs



Model of Adaptive Immune Response to Virus 359

Now, let us consider some properties of the solution to the initial value problem
(3)-(9). We introduce the following notation:

X =
{
f = (n1, f2, ..., f6) : |n1| < ∞ , and fi ∈ L1(0, 1) , for i = 2, ..., 6

}
,

X+ =
{
f = (n1, f2, ..., f6) ∈ X : n1 ≥ 0 , and fi ≥ 0 , i = 2, ..., 6, a.e.

}
.

We have the following theorem.

Theorem 1. Let S1 ∈ C0
(
[0,∞);R+

)
. For every T > 0 there exists a unique

solution
f ∈ C0

(
[0, T ];X

)
∩ C1

(
(0, T );X

)
to system (3)-(8) with the initial datum f (0) = (n

(0)
1 , f

(0)
2 , ..., f

(0)
6 ), f (0) ∈ X+.

The solution satisfies f(t) ∈ X+ , ∀ t ∈ [0, T ].

Proof. It is easy to check that the operators defined by the right–hand sides
of Eqs. (3)-(8) are Lipschitz–continuous in X. From this, local existence and
uniqueness follows. Standard proof can be performed for example by transform-
ing system (3)-(8) into corresponding integral system and applying the Banach
fixed point theorem, similarly to a proof of Picard’s theorem, see, e.g. [3].

The nonnegativity of the solution can be easily proved by using the successive
approximation method (see, e.g. [2]).

It remains to find a priori estimates for the solution. From the continuity of
S1(t) and Eq. (3) it follows that:

d

dt
n1(t) ≤ sup

[0,T ]

S1(t), n1(t) ≤ t sup
[0,T ]

S1(t). (10)

Therefore, the concentration n1(t) of uninfected cells is bounded on each finite
time interval [0, T ].

Taking into account the equality∫ 1

0

c22

(
2

∫ u

0

(u− v)f2(t, v)dv − (1− u)2f2(t, u)

)
du = 0,

the integration of Eq. (4) from 0 to 1 with respect to u yields:

d

dt
n2(t) = 0.5p

(2)
13 n1(t)n

∗
3(t)− d22n

∗
2(t)− d26n2(t)n

∗
6(t) (11)

Due to the relation p
(2)
13 = 2d13, after summing up Eqs. (3) and (11) we have:

d

dt

(
n1(t)+n2(t)

)
= S1(t)−d11n1(t)−d22n∗

2(t)−d26n2(t)n
∗
6(t) ≤ sup

[0,T ]

S1(t) (12)

Due to the continuity of S1(t), it follows from (12) that the sum of the concen-
trations of infected and uninfected cells n1(t) + n2(t) is bounded on each finite
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time interval [0, T ]. Since n1(t) is bounded, it follows that n2(t) is also bounded
on [0, T ].

From the boundedness of n1(t) and n2(t), after integration of Eqs. (5)-(8)
from 0 to 1 with respect to u the boundedness of n3(t), n4(t), n5(t) and n6(t)
on [0, T ] follows. Therefore fi(t, u) ∈ L1(0, 1), i = 2, ..., 6, with respect to u on
[0, T ].

From the obtained a priori estimates it follows that the solution to the initial
value problem (3)-(9) exists and it is unique on each finite time interval [0, T ],
which finishes the proof.

4 Numerical Experiments and Discussion

The Cauchy problem (3)-(9) consisting of 6 nonlinear partial integro-differential
equations is solved numerically. First, we discretize the equations (4)-(8) in the
activation state variable u ∈ [0, 1] by introducing a uniform mesh

ui = iΔu, i = 0, 1, . . . , N, (13)

where Δu and N are chosen such that NΔu = 1 and N is a positive integer.
This yields a system of 5N + 6 ordinary differential equations allowing to find
approximate solutions to the model (3)-(8).

The system of ordinary differential equations corresponding to the discretized
model (3)-(8) is solved by using the code ode15s from the Matlab ODE suite
(see, e.g. [8]) with RelT ol = 10−3 and AbsTol = 10−4. The participating inte-
grals are approximated by the use of the composite Simpson’s rule. The obtained
numerical solutions of the discretized system are used to compute the approxi-
mations to the functions n2(t),..., n6(t), by the use of Eq. (1).

The aim of our numerical experiments is to study the role of the viral repli-

cation inside the infected cells (denoted by p
(3)
22 ) for the dynamics and outcome

of the viral infection.
Let us denote by c the rate of total CTL production (both CTLP and CTLE)

and by q - the fraction of the newly produced CTL that become effector cells (q
is the CTLE differentiation rate). Then

p
(5)
25 = c(1 − q), p

(6)
25 = cq.

The role of parameter p
(3)
22 is studied for small and high rates of CTL differ-

entiation into effector cells (denoted by q). The value of q is a tradeoff between
strong CTL memory and less dangerous acute phase of infection [7].

The initial conditions and parameters of the model have been set to simulate
a full adaptive (humoral and cellular) immune response to viral infection. We
have assumed the initial presence of susceptible uninfected cells, virus particles,
antibodies and precursor CTL, as well as the initial absence of infected cells and
effector CTL. For every j = 0, ..., N , the initial values for populations and the
parameters have been set as follows:

n1(0) = 1, f2,j(0) = 0.0, f3,j(0) = 0.1,
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f4,j(0) = 0.1, f5,j(0) = 0.1, f6,j(0) = 0.0.

S1(t) = 1, d11 = 1, d13 = 2.5, d22 = 1.5, d26 = 300,

c22 = 0.1, d33 = 1, p
(4)
34 = 10, d34 = 10, d44 = 1,

d55 = 0.1, d66 = 1, c = 11.5, (i) q = 0.1, (ii) q = 0.6.

Further, for fixed value of q, we have changed the rate of virus production

inside the infected cells (parameter p
(3)
22 ) in order to obtain the equilibrium and

minimal concentrations of the uninfected cells n1(t). The equilibrium concentra-
tion determines the outcome of the infection, while the minimal concentration
describes the severity of the acute phase of infection.

The results of our simulations have shown that the rate of virus production
inside the infected cells influences both course and outcome of the viral infection
(see Fig. 1). Lower values of parameter p

(3)
22 result in less onerous acute phase of

infection and higher equilibrium concentration of uninfected cells.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time

co
nc

en
tr

at
io

n

n
2
(t)

n
1
(t)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time

co
nc

en
tr

at
io

n

n
2
(t)

n
1
(t)

Fig. 1. Dynamics of the populations of uninfected and infected cells with CTL differ-
entiation rate q = 0.1 and virus production rates: (i) p

(3)
22 = 5, (ii) p

(3)
22 = 25

An increase in the rate of virus production results in a decrease in the minimal

value of n1(t). Moreover, initially (for low enough values of p
(3)
22 ) it results in a

decrease of the equilibrium value of n1(t) as well. There exists a threshold peq

after which the increase in parameter p
(3)
22 affects only the minimal concentra-

tion of uninfected cells - the equilibrium concentration remains the same. These
results are illustrated in Fig. 2.

In the case of lower CTL differentiation rate (q = 0.1) the minimal value of
n1(t) is lower than for q = 0.6 (see Fig. 2). On the other hand, the equilibrium
value decreases slower in this case. The threshold peq is also higher for q = 0.1.
Our results confirm the observations that lower rates of CTL differentiation into
effector cells results in more onerous acute phase of infection, but stronger CTL
memory (see e.g. [7]).
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Fig. 2. Influence of virus production rate on the minimal and equilibrium values of
n1(t) for CTL differentiation rates: (i) q = 0.1, (ii) q = 0.6

5 Conclusions

In the paper we have used a mathematical model to study some features of
the competition between virus and adaptive immune system. The model has
been solved numerically. The role of the viral replication inside the infected cells
as well as the differentiation of CTLs into precursors and effectors have been
studied. Our future research plans are related to application of the model to
clinical data and development of the model for more detailed analysis of the
humoral immune reaction to viral infections.
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Abstract. A motivation for studying the nonlinear Black- Scholes equa-
tion with a nonlinear volatility arises from option pricing models taking
into account e.g. nontrivial transaction costs, investors preferences, feed-
back and illiquid markets effects and risk from a volatile (unprotected)
portfolio. In this work we develop positivity preserving algorithm for
solving a large class of non-linear models in mathematical finance on the
original (infinite) domain. Numerical examples are discussed.

1 Introduction and Model Formulation

The solution of the (linear) Black-Scholes equation (Black and Scholes, 1973)
has been derived under several restrictive assumptions like e.g. frictionless, liquid
and complete markets, etc. We also recall that the linear Black-Scholes equation
provides a perfectly replicated hedging portfolio. In the last decades some of these
assumptions have been relaxed in order to model, for instance, the presence of
transaction costs (see e.g. Leland [19], Avellaneda and Parás [5]), feedback and
illiquid market effects due to large traders choosing given stock-trading strategies
(Frey and Patie [10]), imperfect replication and investors preferences (Barles and
Soner [6]), risk from unprotected portfolio (Jandačka-Ševčovič, [15]).

This models defer from the classical Black-Scholes equation by a non-constant
volatility term σ, which depends on time t, spot price S of the underlying and
the second derivative (Greek Γ ) of the option price V (S, t). Hence, the model
equation is the following nonlinear partial differential equation

Vt +
1

2
σ2(t, S, VSS)S

2VSS +(r− q)SVS − rV = 0, 0 ≤ S < ∞, 0 ≤ t ≤ T, (1)

with constant short rate r, dividend yield q, maturity T and volatility σ2(t, S, VSS)
depending on the particular model.

We will study (1) for European Call option, i.e. the value V (S, t) is the solution
to (1), q = 0 on 0 ≤ S < ∞, 0 ≤ t ≤ T with the following terminal and boundary
conditions (E > 0 is the exercise price):

V (S, T ) = max{0, S − E}, 0 ≤ S <∞,

V (0, t) = 0, 0 ≤ t ≤ T, (2)

V (S, t) = S − Ee−r(T−t), S → ∞.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 363–370, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The model (1) can be written as the backward parabolic fully nonlinear PDE
Vt + S2F (S, VS , VSS) = 0. At some conditions on F , the most used of which are
F (S, p, r) ∈ C2, V (S, T ) = VT (S), Fr(S, V

′
T (S), V

′′
T (S)) > 0, in [1,2,6,15] was

obtained results for existence and uniqueness of solutions (classical or viscosity).
It was checked that the model described above satisfies these conditions.

Let G(S, VS , VSS) = S2F (S, VS , VSS), G ∈ Ck((0, T )×R3). We briefly discuss
the maximum principle (MP) for (1). Let ΠT be the rectangleΠT = {(S, t) : 0 <
t < T, −∞ < a < b < +∞} and Gr(S, p, r) ≥ 0 everywhere and Gr(S, 0, 0) = 0.
Then, if V is a classical solution of Vt + G(S, VS , VSS) = 0 in ΠT we have:
max
ΠT

V = max
ΓT

u and min
ΠT

V = min
ΓT

V , where ΓT = I ∪ II ∪ III, I = {0 < t <

T, x = a}, II = {a < x < b, t = 0}, III = {0 < t < T, x = b} is the parabolic
part of the boundary. For the proof, see [2].

There exists many discretizations, algorithms and some numerical methods for
different versions of the non-linear Black-Scholes equation [4,7,8,12,14]. In [20],
authors develop positivity-preserving (i.e. the non-negativity of the numerical
solution to be guaranteed) first-order fully implicit scheme for models arising
from pricing European options under transaction costs. In our previous work
[17] we developed a fast, second order both in space and time a kernel-based
method for solving a large class of non-linear models in mathematical finance,
computed on large enough truncated region. But the non-negativity of the nu-
merical solution is not guaranteed. In this work, having in mind MP discussed
above, we will present efficient, positivity preserving algorithm for solving the
same non-linear Black-Scholes models on the original (infinite) interval. We de-
velop implicit-explicit methods on quasi-uniform mesh (QUM), implementing
the idea of van Leer flux limiter [11,13,21].

An often used approach to overcome the degeneration at S = 0 and to obtain
a forward parabolic problem, is the variable transformation [1,8,12]

x(S) = log

(
S

E

)
, τ(t) =

1

2
σ2
0(T − t), u(x, τ) = e−xV

E
.

Now, denoting K = 2r/σ2
0 (σ0 is the volatility of the underlying asset), the

equation (1) transforms into

uτ − σ̃2(τ, x, ux, uxx)(ux + uxx)−Kux = 0, x ∈ R, 0 ≤ τ ≤ σ2
0T

2
, (3)

σ̃2
L = 1 + f(ux, uxx), f(ux, uxx) = Le · sign(ux + uxx),

σ̃2
BS = 1 + f(x, τ, ux, uxx), f(x, τ, ux, uxx) = Ψ [a2EeKτ+x(ux + uxx)],

σ̃2
JS = 1 + f(x, ux, uxx), f(x, ux, uxx) = μ[Eex(ux + uxx)]

1/3,

σ̃2
AP = f(ux, uxx), f(ux, uxx) =

{
σ2
max, ux + uxx ≤ 0,
σ2
min, ux + uxx > 0,

σ̃2
FP = f(x, ux, uxx), f(x, ux, uxx) = [1− ρ · λ(Eex)(ux + uxx)]

−2,

where σ̃2 = σ̃2
L,BS,JS,AP,FP corresponds to Leland, Barles-Soner, Jandačka-

Ševčovič, Avellaneda-Parás and Frey-Patie models, respectively. Here 0 < Le <
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1 is the Leland number, a is a parameter measure transaction cost and risk
aversion, ρ is a parameter measuring the market liquidity and λ(S) describes
the liquidity profile in the dependence of the asset price. In σ̃2

BS, Ψ(s) solves an
ODE [6] with implicit exact solution derived in [7]

√
s = − sinh−1

√
Ψ/

√
Ψ + 1 +

√
Ψ, for s > 0, Ψ(s) > 0,√

−s = sin−1
√
−Ψ/

√
Ψ + 1−

√
−Ψ, for s < 0, −1 < Ψ(s) < 0.

It is shown that −1 < Ψ(s) < ∞, s ∈ R. Next, vp (p = 1/3) in σ̃2
JS stands

for the signed power function, i.e. vp = v|v|p−1, μ = 3(C2M/(2π))1/3, where
M ≥ 0 is the transaction cost measure, C ≥ 0 is the risk premium measure
and SVSS < π/(32C2R). In Avellaneda-Parás model the volatility is not known
exactly, but is assumed that lie between extreme values σ2

max and σ2
min. It is

clear that for all models σ̃2 > 0.
The problem (3) is computed by the following initial and boundary conditions,

corresponding to (2)

u(x, 0) = u0(x) = max(0, 1− e−x), lim
x→−∞

u(x, τ) = 0, lim
x→∞

u(x, τ) = 1. (4)

Note that if u ≥ 0 it follows that V ≥ 0. Therefore we will concentrate on
numerical solution of the problem (3)-(4).

The remaining part of this paper is organized as follows. In Section 2, we
provide some basic tools for the numerical methods, which are presented in the
next section. Finally, in Sections 4,5, we give numerical examples and concluding
remarks.

2 Preliminaries

We start with some basic definitions, statements and notations. We also present
meshes and derivative approximations.

Mesh in space. In the interval [0, 1] we consider the uniform mesh ωh = {ξi =
ih, h = 1/N, i = 0, . . . , N}, where N is a positive number. Let x(ξ), ξ ∈ [0, 1],
x ∈ [a, b] is a strong monotone sufficiently smooth function. Following [3], we
define the mesh ωN = {xi = x( i

N ), 0 ≤ i ≤ N} in [a, b].
Next, extending the idea of [3], we shall implement to our model problem

(3)-(4) the mesh ωN , defined on the infinite interval (−∞,+∞), see Figure 1:

ωN =

{
x(ξ) = x−(ξ), x ≤ 0,
x(ξ) = x+(ξ), x ≥ 0

, m1 +m2 = N, x−(1) = x+(0) = 0,

x−(ξ) = c1ln(ξ), h
−
m1−1 = x−m1

− x−m1−1 � c1
m1

, x−1 = c1ln(m1) (5)

x+(ξ) = −c2ln(1− ξ), h+0 = x+1 − x+0 � c2
m2

, x+m2−1 = c2ln(m2), (6)

where c1 > 0 and c2 > 0 are controlling (stretching) parameters. It is easy to
check that the mesh ωN consists of two quasi-uniform meshes: (5) and (6) [16].
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The choice of c1 and c2 are coming from the fact that the half of intervals are
in domain with length ∼ c1 + c2. The first interval of (5): [x−0 , x

−
1 ] is infinite,

but the point x−1/2 is finite, since the non-integer nodes are given by x−i+α =

x−( i+α
m1

), |α| < 1. The same is for x+(ξ): the last interval of (6): [x+m2−1, x
+
m2

],

is infinite, but the point x+m2−1/2 is finite, since the non-integer nodes are given

by x+i+α = x+( i+α
m2

), |α| < 1. Therefore, the QUM transforms the infinite
domain into finite number of intervals and places the original boundary condition
directly on the infinity. The mesh ωN consists of N + 1 grid nodes, x0 = −∞
and xN+1 = ∞.

−∞ +∞ 0 

x
1
− x

m−1
+  

x− (ξ) x+ (ξ)

h
0
+ h

m−1
−  

x
m
−  =x

0
+

x
2
− x

m−2
+  

h
m−2
+  h

1
− 

Fig. 1. QUM , c1 = c2 = 1, m = m1 = m2 = 6

In the discrete space ωN we denote continuous time approximation to a func-
tion u(xi, t) by ui := ui(t). We shall use the following derivative approximations(

∂u

∂x

)
i

≈ ux̊,i :=
ui+1/2 − ui−1/2

�i
,

(
∂u

∂x

)
i+1/2

≈ ux,i :=
ui+1 − ui

2�+i
, (7)(

∂u

∂x

)
i−1/2

≈ ux,i :=
ui − ui−1

2�−i
,

(
∂2u

∂x2

)
i

≈ uxx,i :=
1

�i

[
ux,i+1/2 − ux,i−1/2

]
,(8)

with local truncation errors of order O(N−2) and �i = xi+1/2 − xi−1/2, �
+
i =

xi+3/4 − xi+1/4, �
−
i = xi−1/4 − xi−3/4.

Flux limiter. In this paper we will use the van Leer limiter [11,13,21]

Φ(θ) =
|θ|+ θ

1 + |θ| , (9)

where Φ(θ) is Lipschitz continuous, continuously differentiable for all θ �= 0, and

Φ(θ) = 0, if θ ≤ 0 and Φ(θ) ≤ 2min(1, θ). (10)

Note that at the extreme points of u, the slopes (ui+1 − ui)/2�
+ and (ui −

ui−1)/2�
− have opposite signs and Φ(θ) = 0.

Following [11,18] due to the symmetry property of the flux limiter

Φ(θ) = θΦ(θ−1), (11)

the numerical flux Fi+1/2 = F (ui+1/2) is constructed in a nonlinear way

Fi+1/2 = ui +
1

2
Φ(θi+1/2)(ui − ui−1) with θi+1/2 =

ui+1 − ui

ui − ui−1
. (12)
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For value uN+2 at outer grid node x+m2
, a second order fictitious extrapolation

will be used: uN+2 = 3uN+1 − 3uN + uN−1 [11].

Time discretization. Grid points over [0, σ2
0T/2] are defined by τk+1 = τk +

%τk, k = 0, 1, 2, . . . , τ0 = 0. Approximation of u(xi, τk) is denoted by uk
i . It

is well known [9] that for the non-negativity of the numerical solution uk+1 =
[uk+1

0 , . . . , uk+1
N ]T of the approximation of a parabolic problem at time tk+1,

written in equivalent matrix form, Muk+1 = Kkuk, the sufficient and necessary
condition is that M is a M-matrix (it guaranties that its inverse is non-negative)
and all elements of the vector Kkuk should be non-negative.

3 Numerical Method

In this section we develop an efficient explicit-implicit numerical methods, which
preserves the positive property of the model problem (3)- (4) and provides O(τ+
N−2) approximation to the solution of the continuous model problems. To this
aim we use van Leer flux-limited technique [11,13,21], combined with quasi-
uniform mesh in space and adaptive mesh in time.

Reflecting the indices that appear in ui (see (12)) about i+1/2 [11] and from

(7), (11), denoting for simplicity θki+1/2

−1
:= (θki+1/2)

−1, we find

uk
x̊,i =

1

�i
Ak

i (ui+1 − ui), Ak
i = 1− 1

2
Φ(θki+3/2) +

1

2
Φ(θki+1/2

−1
), (13)

where in view of (9), (10) we have 0 ≤ Ak
i ≤ 2, i = 1, . . . , N and k = 0, 1, . . . .

Let σ̃2
i := σ̃2(tk, xi, u

k
x̊,i, u

k
xx,i), k = 0, 1, . . . . Thus the full discretization of

(3)-(4) is

uk+1
0 = 0, uk+1

N+1 = 1,
uk+1
i − uk

i

%τk
− σ̃2

i u
k+1
xx,i = (σ̃2

i +K)uk
x̊,i, i = 1, . . . , N,

or more in details, from (13),(8), for i = 1, . . . , N we have(
1

%τk
+

σ̃2
i

2�i

(
1

�
+
i

+
1

�
−
i

))
uk+1
i −

(
σ̃2
i

2�i�
+
i

)
uk+1
i+1 −

(
σ̃2
i

2�i�
−
i

)
uk+1
i−1

=

(
1

%τk
− σ̃2

i +K

�i
Ak

i

)
un
i +

σ̃2
i +K

�i
Ak

i u
k
i+1.

(14)

The approximation (14) contains u0 = 0 and uN+1 = 1, but not x0 = −∞ and
xN+1 = ∞.

Note that the tridiagonal coefficient matrix M is strictly diagonally dominant
with positive main diagonal entries and non-positive off-diagonal entries, which
is a sufficient (but not necessary) condition for M to be an M-matrix. Next,
from discussions in Section 2 follows that if un ≥ 0 and

1

%tk
− ρi

�i

[
1 +

1

2
Φ(θki+1/2

−1
)

]
≥ 0, ρi := σ̃2

i +K,
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then un+1 ≥ 0, n = 0, 1, . . . . This leads to additional restriction of the van Leer
limiter [22] and consequently for the time step size

Φ(θki+1/2

−1
) = min

⎧⎨⎩ |θki+1/2

−1|+ θki+1/2

−1

1 + |θki+1/2

−1|
,

2�i
ρi%tk

− 2

⎫⎬⎭ , %tk ≤ min
1≤i≤N−1

{
�i

ρi

}
. (15)

With this approach, the time step restriction is relaxed (two times) at the ex-
pense of the restriction of the flux limiter.

Also, one can see that the estimate (15) for the time step could be considered
as a restriction of the Courant number [21].

Note that the QUM stretches from 0 to ±∞, placing more points in the neigh-
borhood of the grid point (0, 0) where the initial condition is non-differentiable
(see Figure 1). Thus, owing to the use of QUM, we overcome the problem with
non-smooth initial data for our transformed problem (3)-(4) at u0(0), see [23].

4 Numerical Experiments

We will test the accuracy of the presented difference schemes (14) for three
typical examples: Leland, Avellaneda-Parás and Barles-Soner models. We deal
with exact solution uex(x, t). The error Ei = uex(xi, T ) − uT

i , i = 1, . . . , N in
maximal is given by ‖EN‖∞ = max

1≤i≤N
|Ei| and the convergence rate is calculated

using double mesh principle CR∞ = log2(‖EN‖∞/‖E2N‖∞).
In the computations we add a small positive number (∼ 10−30) to both nu-

merator and denominator of the gradient ratio in (12) in order to avoid division
by zero in uniform flow regions.

The option and mesh parameters are: r = 0.1, σ0 = 0.2, E = 100, T = 2/σ2
0 ,

m1 = m2 = N/2, experimentally found optimal value of controlling parameters
c1 = c2 = 2.5 (i.e. x1/2 = −xN−1/2), %τ = h2.

Example 1 (Benchmark test with smooth initial condition). Let uex(x, t) = e−Kt−x2

.
Thus, instead of (4) we impose the corresponding to uex(x, t) initial and bound-
ary conditions and add appropriate residual term in the right-hand side of (3).
For Leland model we take Le = 0.5, σ2 = σ̃2

L. In the case σ2 = σ̃2
AP, there is a

small difference between the parameters σ2
max, σ

2
min (σ2

max = 0.25, σ2
min = 0.15

[12]) and we observe the same behavior of the solution as for Leland model.
We test also Barles-Soner model for a = 0.01. Errors and convergence results in
maximal discrete norm are summarized in Table 1.

Example 2 (Test with original initial and boundary conditions (4)). As exact so-
lution of (3)-(4) we set the solution of linear Black-Scholes equation, adding
appropriate function in the right-hand side of (3). The model parameters are
the same as in Example 1. The results are given in Table 2. They are very
satisfactory - the convergence rate in space is close to 2.
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Table 1. Errors and convergence rates in maximal discrete norms, Examples 1

Leland model Avellaneda-Parás model Barles-Soner model

N ‖EN‖∞ CR∞ ‖EN‖∞ CR∞ ‖EN‖∞ CR∞

20 7.46962e-3 9.96842e-3 8.61912e-3
40 2.53043e-3 1.5617 4.33341e-3 1.2019 2.98258e-3 1.5310
80 8.26893e-4 1.6136 1.66123e-3 1.3833 8.71307e-4 1.7753
160 2.18895e-4 1.9175 4.71415e-4 1.8172 2.38051e-4 1.8719
320 5.51499e-5 1.9888 1.24344e-4 1.9227 6.08203e-5 1.9686
640 1.36100e-5 2.0187 3.17048e-5 1.9716 1.53374e-5 1.9875

Table 2. QUM, errors and convergence rates, Example 2

Avellaneda-Parás model Barles-Soner model

N max
1≤i≤N

�i min
1≤i≤N

�i x1/2 ‖EN‖∞ CR∞ ‖EN‖∞ CR∞

20 2.74653 2.56466e-1 -4.74280 5.92107e-2 7.22740e-2
40 2.74653 1.26589e-1 -6.47567 1.46356e-2 2.0164 1.46073e-2 2.3069
80 2.74653 6.28939e-2 -8.20854 1.61228e-3 2.4861 4.36117e-3 1.7439
160 2.74653 3.13481e-2 -9.94140 7.54217e-4 1.7923 1.07680e-3 2.0179
320 2.74653 1.56495e-2 -11.67427 2.07501e-4 1.8619 2.66742e-4 2.0132
640 2.74653 7.81861e-3 -13.40714 5.68565e-5 1.8677 7.04872e-5 1.9200
1280 2.74653 3.90778e-3 -15.14001 1.48777e-5 1.9342 1.81406e-5 1.9581

5 Conclusions

In this paper we have presented efficient, positivity preserving algorithm for
solving a large class of nonlinear models in mathematical finance. The solution
is computed on infinite interval, taking into account the solution behavior at the
infinity. Moreover, we overcome the problem with non-smooth initial function.
The schemes proposed can be generalized to higher dimensional problem.
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Abstract. We construct and analyze a multicomponent alternating di-
rection method (a vector additive scheme) for the numerical solution
of the multidimensional Boussinesq Paradigm Equation (BPE). In con-
trast to the standard splitting methods at every time level a system of
many finite difference schemes is solved. Thus, a vector of the discrete
solutions to these schemes is found. It is proved that these discrete solu-
tions converge to the continuous solution in the uniform mesh norm with
O(|h|2 + τ ) order. The method provides full approximation to BPE and
is efficient in implementation. The numerical rate of convergence and the
altitudes of the crests of the traveling waves are evaluated.

Keywords: Boussinesq Equation, multicomponent ADI method, vector
additive scheme, Sobolev type problem.

1 Introduction

Consider the Cauchy problem for the Boussinesq Paradigm Equation (BPE)

∂2u

∂t2
−β1Δ

∂2u

∂t2
= Δu− β2Δ

2u+αΔf(u), (x, y) ∈ R
2, 0 < t ≤ T, T <∞ (1)

on the unbounded region R2 with asymptotic boundary conditions

u(x, y, t) → 0, Δu(x, y, t) → 0, |(x, y)| → ∞, (2)

and initial conditions

u(x, y, 0) = u0(x, y),
∂u

∂t
(x, y, 0) = u1(x, y). (3)

Here f(u) = up, p ∈ N, p ≥ 2, Δ is the Laplace operator and the constants α, β1
and β2 are positive. It is shown in [6] how equation (1) could be derived from the
original Boussinesq system. Note that equation (1) is unsolved relative to the

time derivative ∂2

∂t2 (the Laplace operator acts on the second time derivative).
Thus, problem (1)–(3) is of Sobolev type according to the terminology of [16].

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 371–378, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A lot of papers are devoted to computational simulations of one dimensional
BPE. In contrast the two dimensional problems are essentially less studied. The
efficient algorithms for evaluation of the discrete approximation to the solution u
of BPE presented in [5,7,10] are based on the representation of an implicit finite
difference scheme as pair of an elliptic and a hyperbolic discrete equations. In
[11,19] the regularization method is applied and the operator of the same finite
difference scheme is factorized in order to reduce the evaluation of the numerical
solution to a sequence of three simple schemes.

Numerous papers are dealing with the construction and investigation of split-
ting methods for numerical solution of second order evolutionary problems, see
e.g. [8,9,13,14] and the references there. A multicomponent alternating direction
method (ADI) for solving evolutionary problems is proposed and analyzed by
Abrashin in [1]. In the method at each time step a system of finite difference
equations is solved and a vector of discrete solutions to these schemes is found.
This method is called a ’vector additive scheme’ in [3,15,18]. Varying applica-
tions of the method can be found in [2,3,4,15,17]. The method has the following
advantages. First, each finite difference scheme from the system approximates
the initial continuous problem. Second, the method can be applied to equations
with mixed derivatives and to problems posed on complicated domains. Third,
the discrete solutions to the linear multicomponent ADI scheme satisfy a dis-
crete identity which is an approximation to the conservation law valid for the
solution of the linear initial problem. As a result the multicomponent method for
linear problems is unconditionally stable. Thus, the method can be treated as a
generalization of the classical ADI methods to cases of space dimensions n > 2.
Fourth, the numerical implementation of the method is efficient. The main dis-
advantage of the vector additive schemes is that their implementation demands
more computational resources (memory and time) compared to the standard
schemes since at each time level two discrete equations have to be solved.

The aim of the paper is to construct and analyze a multicomponent ADI
method for evaluation of the numerical solution to BPE (1)–(3). The algorithm
for evaluation of the numerical solutions is proposed in Section 2. In Section 3 the
numerical method is analyzed theoretically. First, it is proved for the particular
case of linear BPE ((1)–(3) with f(u) ≡ 0) that the discrete solutions satisfy an
identity, which is a proper discretization to the exact conservation law. Then the
convergence of the method for the nonlinear BPE is established in the energy
semi-norm. Important error estimates in the uniform and Sobolev mesh norms
are derived and summarized. In Section 4 the evolution of 2D solitary waves
with different velocities is computed with the multicomponent ADI scheme. The
numerical rate of convergence and the altitudes of the crests of the traveling
waves are also evaluated.

2 A Multicomponent ADI Finite Difference Scheme

We discretize BPE (1)–(3) on a sufficiently large space domain Ω = [−L1, L1]×
[−L2, L2]. We assume that the solution and its derivatives are negligibly small
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outside Ω. For integers N1, N2 set the space steps h1 = L1/N1, h2 = L2/N2

and h = (h1, h2). Let Ωh = {(xi, yj) : xi = ih1, i = −N1, . . . , N1, yj = jh2, j =
−N2, . . . , N2}. Next, for integer K we denote the time step by τ = T/K.

We consider mesh functions v
(k)
(i,j) defined on Ωh × {tk} on the time levels

tk = kτ, k = 0, 1, 2, . . . ,K . Whenever possible the subscripts (i, j) of the mesh
functions are omitted.

The discrete scalar product 〈v, w〉 =
∑

i,j h1h2v
(k)
(i,j)w

(k)
(i,j) and the correspond-

ing L2,h discrete norm || · || = 〈v, v〉
1
2 are associated with the space of mesh

functions which vanish on the boundary of Ωh.
The operators A1 and A2 are defined as second finite differences of the mesh

functions in the x the direction and in the y direction, i.e. A1v
(k)
(l,m) = −(v

(k)
(l−1,m)−

2v
(k)
(l,m) + v

(k)
(l+1,m))h

−2
1 . Then A2

1v will stand for the fourth finite difference in

the first space direction times (h1)
4 and A1A2 will be an approximation of the

mixed fourth derivative ∂4

∂x2∂y2 . The finite differences v
(k)
t =

(
v(k+1) − v(k)

)
τ−1

and v
(k)
t̄t =

(
v(k+1) − 2v(k) + v(k−1)

)
τ−2 are used for the approximation of the

first and second time derivatives respectively.
We start with the construction of a multicomponent finite difference scheme

for (1)–(3). At each time level k we consider two discrete approximations v
(1)(k)
(i,j)

and v
(2)(k)
(i,j) to u(ih1, jh2, kτ). We deal with the following system of implicit finite

difference schemes

v
(1)(k)
t̄t + β1A1v

(1)(k)
t̄t + β1A2v

(1)(k−1)
t̄t +A1v

(1)(k+1) +A2v
(2)(k)

+ β2A
2
1v

(1)(k+1) + β2A1A2v
(1)(k) + β2A

2
2v

(2)(k) + β2A1A2v
(2)(k) (4)

= −αA1f(v
(1)(k))− αA2f(v

(2)(k)),

v
(2)(k)
t̄t + β1A1v

(1)(k)
t̄t + β1A2v

(2)(k)
t̄t +A1v

(1)(k+1) +A2v
(2)(k+1)

+ β2A
2
1v

(1)(k+1) + β2A1A2v
(1)(k+1) + β2A

2
2v

(2)(k+1) + β2A1A2v
(2)(k)

= −αA1f(v
(1)(k))− αA2f(v

(2)(k)). (5)

Note that the nonlinear function f(u) is evaluated on the time level k and the

approximation A2v
(1)(k−1)
t̄t on the previous time level is used in (4). Thus, the

scheme (4)–(5) is a four-level scheme and values of the numerical solution on
the first three time levels t = −τ , t = 0 and t = τ are required in order to start
the method. We evaluate initial values for v(1) and v(2) on time levels t = 0 and
t = τ using formulas

v
(m)(0)
(i,j) = u0(xi, yj), m = 1, 2, (6)

v
(m)(1)
(i,j) = u0(xi, yj) + τu1(xi, yj) (7)

− 0.5τ2 (I + β1A)
−1 (

Au0 + β2A
2u0 + αAf(u0)

)
(xi, yj), m = 1, 2,
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where A = A1 + A2. The third initial value v(m)(−1) for m = 1, 2 at time level
t = −τ is found from the equation

v
(m)(0)
t̄t(i,j) = − (I + β1A)−1 (

Au0 + β2A
2u0 + αAf(u0)

)
(xi, yj), m = 1, 2. (8)

For approximation of the second boundary condition in (2) the mesh is extended
outside the domain Ωh by one line at each spatial boundary and the symmet-
ric second-order finite difference is used for the approximation of the second
derivatives in (2).

Suppose in the following that the exact solution to (1)–(3) is smooth enough,
e.g. u ∈ C6,6

(
R2 × [0, T ]

)
. Straightforward calculations via Taylor series expan-

sion at point (xi, yj, tk) show that the local approximation error of the discrete
equations (4)–(5) is O(h2 + τ). Also (6)–(7) approximate the initial conditions
locally with O(|h|2 + τ2) error.

The numerical algorithm for evaluation of v(1) and v(2) is as follows. Suppose
the values of v(1) and v(2) on the three consecutive time levels (k−2), (k−1) and
(k) are known. Then (4) is an implicit scheme along the x direction and is explicit

along the y direction. Thus, for each j = −N2, · · · , N2 the vector {v(1)(k+1)
(i,j) , i =

−N1, · · · , N1} can be found from equation (4) as a solution of linear five-diagonal
system. Analogously, (5) is an explicit scheme in the x direction and is implicit
in the y direction with respect to v(2)(k+1). Thus, for each i = −N1, · · · , N1 the

vectors {v(2)(k+1)
(i,j) , j = −N2, · · · , N2} can be evaluated from equation (5) as a

solution of linear five-diagonal system. As a result the implementation of the
schemes (4)–(5) can be done by efficient numerical algorithms.

Remark 1. In order to achieve efficient algorithm in equation (4) we use

A2v
(1)(k−1)
t̄t for approximation of ∂4u

∂t2∂y2 instead of the straightforward A2v
(1)(k)
t̄t .

But we pay for this efficiency by having low order of approximation – the error
of discretization of equation (4) is O(τ + |h|2) only. In addition the scheme be-
comes a four-level one. Note that the straightforward approximation on level k
could easily lead to a O(τ2 + |h|2) scheme, but the efficiency would be lost in
this case.

In the case of “good” (or “proper”) Boussinesq equation the combined time-
space derivative is removed from (1), i.e. β1 = 0 is set in (1), and a three-
level multicomponent ADI scheme with O(|h|2 + τ2) approximation error can be
proposed and analyzed following the ideas of this paper.

3 Theoretical Analysis

First we consider the linear problem, i.e. (1)–(3) with f ≡ 0. We define operators

Λ1(u) = −∂2u
∂x2 and Λ2(u) = −∂2u

∂y2 in the space of functions which vanish at
infinity together with their second derivatives.
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Let || · || stand for the standard norm in L2(R
2). Denote by E the energy

functional

E(u)(t) =

∥∥∥∥Λ 1
2
1

∂u

∂t
(·, t)

∥∥∥∥2 + ∥∥∥∥Λ 1
2
2

∂u

∂t
(·, t)

∥∥∥∥2 + β2

∥∥∥∥(Λ1 + Λ2)
∂u

∂t
(·, t)

∥∥∥∥2
+ β1

∥∥∥∥Λ 1
2
1

∂2u

∂t2
(·, t)

∥∥∥∥2 + β1

∥∥∥∥Λ 1
2
2

∂2u

∂t2
(·, t)

∥∥∥∥2 + ∥∥∥∥∂2u∂t2 (·, t)
∥∥∥∥2 . (9)

It is straightforward to prove that the solution to problem (1)–(3) with f = 0
satisfies the identity E(u)(t) = E(u)(0) for every t ≥ 0 or, equivalently the
energy functional E(u) is preserved in time.

We shall obtain a similar discrete identity for the solution to (4)–(8) with
f(u) = 0. First we define v(k) as the couple of solutions (v(1)(k), v(2)(k)) and the
semi-norm (or the energy norm) N(v(k)) by

N(v(k)) = ‖A
1
2
1 v

(1)(k)
t ‖2 + ‖A

1
2
2 v

(2)(k)
t ‖2 + β2‖A1v

(1)(k)
t +A2v

(2)(k)
t ‖2

+ β1‖A
1
2
1 v

(1)(k)
t̄t ‖2 + β1‖A

1
2
2 v

(2)(k)
t̄t ‖2 + ‖v(2)(k)t̄t ‖2. (10)

Following the proof of Theorem from page 318 of [1], it can be established

Theorem 1 (Discrete summation identity). For every Q = 1, 2, 3, . . . ,K
the solution v(Q) to problem (4)–(8) with f(u) = 0 satisfies the equality

N(v(Q)) + τ

Q∑
k=1

τ
(
‖A

1
2
1 v

(1)(k)
t̄t ‖2 + β2‖A1v

(1)(k)
t̄t ‖2 + β1‖A

1
2
1 v

(1)(k)
t̄tt̄ ‖2

)

+ τ

Q∑
k=1

τ
(
‖A

1
2
2 v

(2)(k)
t̄t ‖2 + β2‖A2v

(2)(k)
t̄t ‖2 + β1‖A

1
2
2 v

(2)(k)
t̄tt̄ ‖2

)

+ τ

Q∑
k=1

τ‖A1v
(1)(k)
t + β2A

2
1v

(1)(k)
t + β2A1A2v

(2)(k−1)
t + β1A1v

(1)(k−1)
t̄tt ‖2

+ τ

Q∑
k=1

τ‖A2v
(2)(k)
t + β2A

2
2v

(2)(k)
t + β2A1A2v

(1)(k)
t + β1A2v

(2)(k−1)
t̄tt ‖2

= N(v(0)). (11)

Consequently the energy norm of the numerical solution at each fixed time level
deviates from the energy norm of the initial data by a small term of first order
in time step, i.e. N(v(Q))−N(v(0)) = O(τ) for Q = 1, 2, . . . ,K.

We state now our main theorem

Theorem 2 (Convergence of the Multicomponent ADI Scheme). As-
sume that the solution u to BPE obeys u ∈ C6,6

(
R2 × [0, T ]

)
and the solutions

v(1)(k), v(2)(k) to the multicomponent ADI scheme (4)–(8) are bounded in the
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maximum norm for every k = 1, 2, 3, · · · ,K. Then v(1) and v(2) converge to the
exact solution u as |h|, τ → 0 and the energy norm estimate

N(z(k)) ≤ C
(
|h|2 + τ

)2
, k = 1, 2, · · · ,K

holds with a constant C independent on h and τ , where z(1)(k) = v(1)(k)−u(·, kτ)
and z(2)(k) = v(2)(k) − u(·, kτ) are the errors of the method.

Sufficient conditions for global existence of bounded solution to (1)–(3) in
C6,6

(
R2 × [0, T ]

)
are given in [21]. Stability and instability of solitary wave

solutions to (1) are treated in many papers, see e.g. [20] and the references
therein.

The problem for the boundedness of the discrete solutions to (4)–(8) imposed
in Theorem 2 is still open. The boundedness (locally in time) of the discrete
solution to a conservative finite difference scheme for BPE can be found in [12].

Corollary 1. Under the assumptions of the Theorem 2 the multicomponent ADI
scheme admits the following error estimates for every k = 1, 2, · · · ,K, m = 1, 2

‖z(1)(k)‖+ ‖z(2)(k)‖+ ‖A
1
2
1 z

(1)(k)‖+ ‖A
1
2
2 z

(2)(k)‖ ≤ C
(
|h|2 + τ

)
,

‖A1z
(1)(k) +A2z

(2)(k)‖ ≤ C
(
|h|2 + τ

)
,

‖z(m)(k)‖L∞ ≤ C
(
|h|2 + τ

)
, ‖z(m)(k)

t ‖+ ‖z(m)(k)
t̄t ‖ ≤ C

(
|h|2 + τ

)
.

4 Numerical Results

In this section some numerical tests concerning the convergence of the multicom-
ponent ADI method and the evolution of the numerical solution are presented in
the 2D case. The computational domain is [−30, 30]× [−30, 30]. The numerical
solutions are evaluated for parameters α = 3, β1 = 3, β2 = 1, p = 2 and initial
conditions u0, u1 given in [5]. These initial conditions correspond to a solitary
wave which moves along the y-axis with velocity c.

Table 1. Dependence of the convergence rate on time step and space steps

τ h1 = h2 Rate v(1) Rate v(2) τ h1 = h2 Rate v(1) Rate v(2)

0.08 0.075 - - 0.02 0.3 - -
0.04 0.075 0.9384 0.9450 0.02 0.15 2.5502 2.6853
0.02 0.075 - - 0.02 0.075 - -

Table 1 contains the numerical rate of convergence at time T = 8. The accu-
racy of the proposed schemes in the uniform norm is calculated by Runge method
using three nested meshes. We observe that the experimental rate of convergence
with respect to time step approximates the theoretical rate of convergence O(τ).
Regarding the convergence with respect to spatial steps, the numerical rate of
convergence is better than the rate of convergence O(|h|2) proved in Corollary 1.
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Fig. 1. (Color on-line) Evolution with velocity c = 0.2 of the numerical solution in
time, t = 0; 2.4; 4.8; 7.2; 9.6; 12

Fig. 2. (Color on-line) Evolution in time of the the altitudes of the crests of the solu-
tions for velocity c = 0 (left) and velocity c = 0.2 (right)

On Figure 1 evolution of the numerical solution with velocity c = 0.2 is shown.
For t < 4.8 the shape of the numerical solution is similar to the initial solution. For
larger times the numerical solution changes its initial form and transforms into a
diverging propagating wave. Evolutions of the altitudes of the crests of the solu-
tions v(1) and v(2) in time are shown onFigure 2. For comparison the same quantity
obtained by the conservative scheme from [12] is also plotted. It can be observed
that the behavior of the altitudes of the crests of the numerical solutions obtained
by the multicomponent ADI scheme is similar to the altitudes of the crests of the
numerical solution given by the conservative scheme [7,12]. Thus, the proposed nu-
merical method corresponds very well to the results evaluated by the well studied
(theoretically and numerically) finite difference schemes from [7,12].
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Abstract. The incompressible miscible displacement problem in porous
media is modeled by a coupled system of two nonlinear partial differential
equations, the pressure-velocity equation and the concentration equation.
The pressure-velocity is elliptic type and the concentration equations is
convection dominated diffusion type. It is known that miscible displace-
ment problems follow the natural law of conservation and finite volume
methods are conservative. Hence, in this paper, we present a mixed finite
volume element method (FVEM) for the approximation of the pressure-
velocity equation. Since concentration equation is convection dominated
diffusion type and most of the numerical methods suffer from the grid
orientation effect and modified method of characteristics(MMOC) mini-
mizes the grid orientation effect. Therefore, for the approximation of the
concentration equation we apply a standard FVEM combined MMOC.
A priori error estimates are derived for velocity, pressure and concentra-
tion. Numerical results are presented to substantiate the validity of the
theoretical results.

Keywords: modified method of characteristics, mixed methods, finite
volume element methods, miscible displacement problems, error esti-
mates, numerical experiments.

1 Introduction

A mathematical model describing miscible displacement of one incompressible
fluid by another in a horizontal porous medium reservoir Ω ⊂ R2 with boundary
∂Ω of unit thickness over a time period of J = (0, T ] is given by

u = −κ(x)

μ(c)
∇p ∀(x, t) ∈ Ω × J (1)

∇ · u = q ∀(x, t) ∈ Ω × J, (2)

φ(x)
∂c

∂t
+ u · ∇c−∇ · (D(u)∇c) = g(x, t, c) = (c̃− c)q ∀(x, t) ∈ Ω × J, (3)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 379–386, 2013.
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with conditions u · n = 0, D(u)∇c · n = 0 ∀(x, t) ∈ ∂Ω × J, c(x, 0) =
c0(x) ∀x ∈ Ω.

Here, Ω is bounded open set in R2 with Lipschitz boundary, u(x, t) and p(x, t)
are, respectively, the Darcy velocity and the pressure of the fluid mixture, c(x, t)
is the concentration of the fluid, c̃ is the concentration of the injected fluid,
κ(x) is the 2 × 2 permeability tensor of, the medium, q(x, t) is the external
source/sink term that accounts for the effect of injection and production wells,
φ(x) is the porosity of the medium, μ(c) is the concentration dependent viscosity
and D(u) = D(x,u) is the diffusion-dispersion tensor. For more details about
this model, we refer to [5,12] and references therein. We assume that the func-
tions φ, μ, κ and q are bounded, i.e., there exist positive constants φ∗, φ

∗, μ∗,
μ∗, κ∗, κ

∗, q∗, D∗ such that

0 < φ∗ ≤ φ(x) ≤ φ∗, 0 < μ∗ ≤ μ(x, c) ≤ μ∗, 0 < κ∗ ≤ κ(x) ≤ κ∗, (4)

|q(x)| ≤ q∗, D(x,u) ≤ D∗. (5)

The mathematical theory for the system (1)-(3) under suitable assumptions on
the data have been discussed [10,11] and for numerical approximation, we refer
to [3,5,8] . Recently, Kumar [2] has discussed a mixed and discontinuous FVEM
for incompressible miscible displacement problems.

We would like to mention that the model which describe the miscible dis-
placement of one incompressible fluid by another in porous media is similar to
reactive flows problem in porous media. The theory and numerical methods for
reactive flow problems article well developed in the literature. Authors in [4]
have discussed stability of the reactive flows and numerical approximation of
reactive flows problems given in [7].

In this paper, we present a mixed FVEM for (1)-(2) and a standard FVEM
combined with MMOC for (3). This paper is organized as follows: In Section 2,
FVE approximation procedure is discussed. A priori error estimates for velocity,
pressure and concentration are presented in Section 3. Finally in Section 4, the
numerical procedure is discussed and some numerical experiments are presented.

The basic idea behind the MMOC is to set the hyperbolic part, i.e., φ
∂c

∂t
+

u · ∇c, as a directional derivative.
Set ψ(x, t) = (|u(x, t)|2 + φ(x)2)

1
2 = (u1(x, t)

2 + u2(x, t)
2 + φ(x)2)

1
2 . The

directional derivative of the concentration c(x, t) in the direction of s is given

by ∂c
∂s = ∂c

∂t
φ(x)
ψ(x,t) +

u.∇c
ψ(x,t) , where s(x, t) = (u1(x,t),u2(x,t),φ(x))

ψ(x,t) . Hence, (3) can be
rewritten as

ψ(x, t)
∂c

∂s
−∇ · (D(u)∇c) = (c̃− c)q ∀(x, t) ∈ Ω × J. (6)

Since (6) is in the form of heat equation, the behavior of the numerical solution of

(6) should be better than (3) if the derivative term
∂c

∂s
is approximated properly.

Let 0 = t0 < t1 < · · · tN = T be a given partition of the time interval
[0, T ] with the time step size Δt. For very small values of Δt, the characteristic
direction starting from (x, tn+1) crosses t = tn at (see Fig. 1)
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x̌ = x− un+1

φ(x)
Δt, (7)

This suggests us to approximate the characteristic directional derivative at t =
tn+1 as

∂c

∂s
|t=tn+1 ≈ cn+1 − c(x̌, tn)

Δs
=

cn+1 − c(x̌, tn)

((x − x̌)2 + (tn+1 − tn)2)
1/2

, (8)

Using (7), we obtain ψ(x, t)
∂c

∂s
|t=tn+1 ≈ φ(x)

cn+1 − čn

Δt
, here čn = c(x̌, tn).
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Fig. 1. An illustration of the definition x̌

2 Finite Volume Element Approximation

Weak Formulations
Define U = {v ∈ H(div;Ω) : v · n = 0 on ∂Ω}. Note that (1)-(2) with Neumann
boundary condition has a solution for pressure, which is only unique up to an
additive constant. The non-uniqueness of (1)-(2) may be avoided by considering
the quotient space: W = L2(Ω)/R. Multiply (1) and (2) by v ∈ U and w ∈ W ,
respectively, and integrate over Ω. A use of Green’s formula and v·n = 0 on ∂Ω,
yields the following weak formulation: Find (u, p) : J −→ U ×W satisfying

(κ−1μ(c)u,v) − (∇ · v, p) = 0 ∀v ∈ U, (9)

(∇ · u, w) = (q, w) ∀w ∈ W. (10)

Similarly, multiply (3) by z ∈ H1(Ω), integrate over Ω to obtain a weak formu-
lation for the concentration equation (3) as follows:

Find a map c : J −→ H1(Ω) such that for t ∈ (0, T ] and for z ∈ H1(Ω)

(φ
∂c

∂t
, z) + (u · ∇c, z) + a(u; c, z) = (g(c), z) c(x, 0) = c0(x) ∀x ∈ Ω, (11)

where, a(u;φ, ψ) =

∫
Ω

D(u)∇φ · ∇ψdx ∀φ, ψ ∈ H1(Ω).
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Trial Spaces for Velocity and Pressure

Uh = {vh ∈ U : vh|T = (a+ bx, c+ by) ∀T ∈ Th} ,

Wh = {wh ∈W : wh|T is a constant ∀T ∈ Th} .

Here, Th be a regular partition of the domain Ω̄ into closed triangles T . The test
space Vh for velocity is defined by

Vh =
{
vh ∈ (L2(Ω))2 : vh|T∗

M
is a constant ∀T ∗

M ∈ T ∗
h and vh · n = 0 on ∂Ω

}
,

where T ∗
M denote the dual element corresponding to the mid-side node M , see

Fig 2. For construction of the dual elements, we refer to [6].
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Fig. 2. Primal grid Th and dual grid T ∗
h

The mixed FVE approximation corresponding to (1)-(2) can be written as:
find (uh, ph) : J −→ Uh ×Wh such that for t ∈ (0, T ], vh ∈ Vh and wh ∈ Wh

the following holds:

(κ−1μ(ch)uh,vh)−
Nm∑
i=1

vh(Mi) ·
∫
∂T∗

Mi

wh nT∗
Mi
ds = 0 (12)

(∇ · uh, wh) = (q, wh) ∀wh ∈ Wh, (13)

where ch is an approximation to c obtained from (18). Now, we introduce a
dual mesh V∗

h based on Th which will be used for the approximation of the
concentration equation. For construction, we refer to [1].

For applying the standard FVEM to approximate the concentration, we define
the trial space Mh on Th and the test space Lh on V∗

h.
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Trial and Test Spaces for Concentration

Mh =
{
zh ∈ C0(Ω̄) : zh|T ∈ P1(T ) ∀T ∈ Th

}
,

Lh =
{
wh ∈ L2(Ω) : wh|V ∗

P
is a constant ∀V ∗

P ∈ V∗
h

}
,

where dual mesh V∗
h based on Th and V ∗

P is the control volume associated with
node P, see [1]. Multiply (6) by zh ∈ Lh, integrate over the control volumes, the
FVE approximation ch for zh ∈ Lh can be written as:(

ψ
∂ch
∂s

, zh
)
+ ah(uh; ch, zh) + (chq, zh) = (c̃q, zh) ∀zh ∈ Lh, (14)

where,

ah(v;χ, φh) = −
Nh∑
j=1

∫
∂V ∗

Pj

(
D(v)∇χ · nPj

)
φh ds ∀v ∈ U, χ ∈ H1(Ω), φh ∈ Lh.

To approximate the concentration at any time say tn+1, we use the approx-
imation to the velocity at the previous time step. The fully discrete scheme
corresponding to (12), (13) and (14) is defined as: For n = 0, 1 · · ·N , find
(cnh, p

n
h,u

n
h) ∈ Mh ×Wh × Uh such that ∀χh ∈ Lh, vh ∈ Uh and wh ∈Wh

c0h = Rhc(0), (15)

(κ−1μ(cnh)u
n
h, γhvh)−

Nm∑
i=1

vh(Mi) ·
∫
∂T∗

Mi

pnh nT∗
Mi
ds = 0, (16)

(∇ · un
h, wh) = (qn, wh), (17)(

φ
cn+1
h − ĉnh
Δt

, χh

)
+ ah(u

n
h; c

n+1
h , χh) + (qn+1cn+1

h , χh)

= (qn+1c̃n+1, χh), (18)

where ĉnh = ch(x− un
h

φ
Δt, tn) and Rh is the projection of c defined as

A(u; c−Rhc, χh) = 0 ∀χh ∈ Lh. (19)

Here, A(u;φ, χh) = ah(u;φ, χh) + (qφ, χh) + (λφ, χh) ∀χh ∈ Lh.
The function λ will be chosen such that the coercivity of A(u; ·, ·) is assured.

3 Error Estimates

A. Error Estimates for Concentration
In order to derive error estimates, we make the following assumption on c̃, c, p
and u:

c̃, q ∈ L∞(0, T ;H1), ct ∈ L∞(0, T,H2), ctt ∈ L∞(0, T ;H1),

∇.u ∈ L∞(0, T ;H1), (∇.u)t ∈ L2(0, T ;L2), p ∈ L∞(0, T ;H1) (20)

Remark 1. Under the above assumption, we sate the following main theorem
of this article and for a proof, we refer to [13].
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Theorem 1. Let cn and cnh be the solutions of (11) and (18) at t = tn respec-
tively, and let ch(0) = c0,h = Rhc(0). Further assume that Δt = O(h). Then, for
sufficiently small h, there exists a positive constant C(T ) independent of h but
dependent on the bounds of κ−1 and μ such that

max
0≤n≤N

‖cn − cnh‖2(L2(Ω))2 ≤ C
[
h4 + (Δt)2

]
. (21)

B. Error Estimates for Velocity and Pressure
Using Raviart-Thomas and L2 projection, for a given c the following estimates
for u and p can be shown. For proof, we refer [6].

Theorem 2. Assume that the triangulation Th is quasi-uniform. Let (u, p) and
(uh, ph), respectively, be the solutions of (9)-(10) and (12)-(13). Then, there
exists a positive constant C, independent of h, but dependent on the bounds of
κ−1 and μ such that

‖u− uh‖+ ‖p− ph‖ ≤ C
[
‖c− ch‖+ h(‖u‖L∞(0,T ;(H1(Ω))2) + ‖p‖1

]
, (22)

‖∇ · (u− uh)‖ ≤ Ch‖∇ · u‖1, (23)

Here, ‖ · ‖ = ‖ · ‖L∞(0,T ;L2) and ‖ · ‖1 = ‖ · ‖L∞(0,T ;H1)

Remark 2. Using Theorem 2, the similar estimates can be obtained for velocity
and pressure as given in Theorem 1.
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Fig. 3. Contour (a) and surface (b) plot at
t=3 years
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Fig. 4. Contour (a) and surface (b) plot at
t=10 years

4 Numerical Experiments

For our numerical experiments, we take with q = q+ − q− and g(x, t, c) = c̄q+ −
cq−, where c̄ is the injection concentration and q+ and q− are the production
and injection rates, respectively.

For the test problems, we have taken data from [9].Ω = (0, 1000)×(0, 1000) ft2,
[0, T ] = [0, 3600] days, μ(0) = 1.0 cp. The injection well is located at the upper
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right corner (1000, 1000) with the injection rate q+ = 30ft2/day and injection
concentration c̄ = 1.0. The production well is located at the lower left corner with
the production rate q− = 30ft2/day and the initial concentration is c(x, 0) = 0.
For time discretization, we take Δtp = 360 days and Δtc = 120 days, i.e., we
divide each pressure time interval into three subintervals.

Test1: Take κ = 80, φ = .1, M = 1, dm = 1 and the dispersion coefficients
are zero. In the numerical simulation for spatial discretization we divide in 20
number of divisions both along x and y axis. For time discretization, we take
Δtp = 360 days and Δtc = 120 days, i.e., we divide each pressure time interval
into three subintervals. The surface and contour plots for the concentration at
t = 3 and t = 10 years are presented in Fig. 3 and Fig. 4, respectively.
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t=3 years

0

500

1000

0

500

1000
0.2

0.4

0.6

0.8

1

x

(b)

y

c h

x

y

(a)

0 500 1000
0

100

200

300

400

500

600

700

800

900

1000

Fig. 6. Contour (a) and surface (b) plot
t=10 at years

1.5 2 2.5 3 3.5 4 4.5
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

log(h)

lo
g|

|c
−c

h||

Slope≈ 1.8

Fig. 7. Order of convergence in L2- norm

Test 2: We take κ = 80 on the sub domain ΩL := (0, 1000)×(0, 500) and κ = 20
on the sub domain ΩU := (0, 1000)× (500, 1000). The contour and surface plot
at t = 3 and t = 10 years are given in Fig. 5 and Fig. 6, respectively. We compute
the order of convergence in L2 norm. To discretize the time interval [0, T ], we
take uniform time step Δt = 360 days for pressure and concentration equation.
The computed order of convergence is given in Fig. 7. Note that the computed
order of convergence matches with the theoretical order of convergence derived
in Theorem 1.
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Abstract. To consider the buckling of non-homogeneous elastic thin
structures weakened by holes, we analyze the effect of the area of rectan-
gular or circular holes on a critical buckling load under compression of
rectangular or circular plates made of isotropic, orthotropic or transver-
sally isotropic materials.

Keywords: Non-isotropic plate buckling, non-homogeneous plate
buckling.

1 Introduction

This research is concerned with the buckling analysis of non-homogeneous (weak-
ened by holes or cut-outs) isotropic or non-isotropic (orthotropic or transversely
isotropic) thin-walled elastic plates. The purpose of the study is to examine the
effect of the area and ratios of rectangular or circular holes on the critical loading
of rectangular or circular plates. The effect of the boundary conditions and the
plate side ratios are also analyzed. We limit ourselves to the analysis of plates
under external compressive planar loadings. The plates are considered to be thin
enough to apply the 2D Kirchhoff–Love theory [1]. Mathematically the buckling
problems for plates with cutouts are reduced to the solution of boundary value
problems for multiply connected domains, which are solved through analytical
and/or numerical methods including the Bubnov–Galerkin method [2] and FEM.

2 Buckling of Isotropic Plates

2.1 Rectangular Plates

We start with the analysis of an isotropic thin plate under axial compressive
load. The load is directed along the lateral faces of the plate of length a, with
side ends of length b where a � b and the side ratio is k = a/b. We consider
only simply supported boundary conditions. The free edges of the central hole
are parallel to the plate sides and the square hole has length d.

For homogeneous plates the buckling load may be derived analytically [1]

Ncr = min
m,n

[
((nk)2 +m2)

π2D

a2m2

]
; k =

a

b
.
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Fig. 1. Buckling of rectangular plate under compression

Here n is the number of waves in the axial direction, m is the number of waves
in the transversal direction, and D is the cylindrical stiffness. For plates with
holes, the results obtained by means of the Bubnov–Galerkin method are re-
ported in [2]. Here we compare them with the results of the numerical analysis
of the problem by means of the FEM package ANSYS. The most important and
interesting point is the effect of the hole area on the critical buckling loading
and the buckling modes.

In Fig. 2 one can see the effect of the plate sides ratio on the critical loading
for a plate with relative thickness h = 0.01 and Poisson’s ratio ν = 0.3, where
N0 and Ncr are the critical buckling loads for a homogeneous plate (see [1]) and
for a plate with a square hole respectively, d = 0.1.

It appeared that the critical buckling loadings may either increase or decrease.
Presumably the effect when “mechanical buckling strengths of the perforated
plates, contrary to expectation, increase rather than decrease as the hole sizes
grow larger” was firstly reported in [3]. In our research it was found that, for

0.5 1.0 1.5 2.0 2.5 3.0 3.5
k

3.5

4.0

4.5

5.0

5.5

Ncr�10�6

n�1 n�2 n�3

n�4

Fig. 2. Buckling of isotropic plates. Effect of the plate side ratio on the critical loading
for plates with a hole with d = 0.1 (dashed lines) and a homogeneous plate.
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example, for axially compressed rectangular plate for buckling nodes with odd
wave numbers the critical loading decreases when the hole area decreases and for
even wave numbers the buckling load increases when the hole area decreases [4].
The explanation of this phenomenon is in the initial compressive stresses devel-
oping in the narrow strips between the hole and the plate edges. One should
remember that a hole not only affects the plate stiffness but also influences ini-
tial stress-strain state. These initial stresses are higher for the stronger supports
of the lateral edges of the plate and they increase with Poisson’s ratio (see [4]
and [5]). That leads to the increase of the critical load.

0.15 0.20 0.25 0.30 0.35 0.40
Ν

3.4

3.5

3.6

3.7

3.8

3.9

Ncr�10�6

Fig. 3. Effect of Poisson’s ratio on critical buckling loading for rectangular plate with
a hole

The ratio of the hole sides plays an important role, which is revealed when
we analyze plates with holes of equal areas. For buckling under axial loading for
all cases, the extension of the hole in the axial direction leads to a decreasie of
the critical loading. For a hole elongated in the transversal direction, the width
of the strip is smaller and the intensity of the initial stresses is higher and the
critical loading increases. The change of the hole side ratio may also cause a
switch of the buckling modes. Clearly, this is valid only within some limits for
the hole sides. When the width of the side strip becomes too small, the local
buckling occurs and one of the strips buckles as a beam under compressive load.

2.2 Circular Plates

For the circular plate (radius R) with a central circular hole (radius r) under
radial compressive load q the dependence of the critical load on the hole area is
more predictable.
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Fig. 4. Buckling of a circular plate under compresion

The main effect is the decrease of the plate stiffness with the hole area and the
critical load goes down monotonically with the hole area. In Fig. 5, we compare
numerical results for the critical loadings (dashed lines) and those obtained in
[6] by the method of initial parameters (solid lines).

3 Buckling of Orthotropic Plates

The buckling behavior of non-isotropic plates has some specific features. As an
example, we consider the buckling of a plate made of orthotropic material with
Young’s moduli Ex, and Ey, Poisson’s ratios νxy and νyx, and shear modulus G.
Since we wish to study the effect of non-isotropy on the buckling load we assume
that

Ex = E0(1 + |ε|)sgn ε, Ey = E0(1 + |ε|)−sgn ε,
νxy = ν0(1 + |ε|)sgn ε,

Exνyx = Eyνxy = E0ν0, G = E0/(2(1 + ν0)).
(1)

So, for small ε, this material is almost isotropic. For positive ε, the material is
stiffer in the x-direction, for negative ε, it is stiffer in the y-direction. Note that
for small ε > 0, Ex ≈ E0(1 + ε) and Ey ≈ E0(1− ε).

3.1 Rectangular Plates

The effect of orthotropy on buckling load of the rectangular plate with a central
square hole with different hole area S∗ = d2 under axial compression is shown in
Fig. 6, where N0 and Ncr are the critical buckling loads for plates without and
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Fig. 5. Buckling of isotropic plates. Effect of the hole area on critical loadings for a
circular plate with a circular hole of radius r.

with a hole, respectively. Again for a homogeneous plate we use the analytical
formula [1]

Ncr = π2

[
D11

(n
a

)2
+ 2H

(m
b

)2 (n
a

)2
+D22

(m
b

)4]
, (2)

where

D11 =
Exh

3

12(1− νxyνyx)
, D22 =

Eyh
3

12(1− νxyνyx)
, H = νyxD11 +

Gh3

6
.

Even for a relatively small hole, the effect of non-isotropy is very significant:
if the plate becomes stiffer in the axial direction and softer in the transversal
direction the critical buckling loading decreases very rapidly with ε > 0 and for
a plate stiffer in the transverse direction the critical buckling loading increases.
Again, this underlines the crucial effect for buckling of the initial stresses “car-
ried by the narrow side strips of material along the plate boundaries” [3]. It is
interesting that for orthotropic plates even for a very small hole area the buck-
ling mode does not change with the plate side ratio. It looks as the hole fixes
the buckling mode wavenumbers that leads to rather monotone dependence of
the critical load on the plate material stiffness ratio.

3.2 Circular Lates

Similarly, the critical loading of an orthotropic circular plate with a central
circular hole under radial compression depends on the material stiffness ratio.
Here the important effect comes from the initial stresses in the circumferential
direction. For materials (1) stiffer in the circumferential direction (ε < 0) the
critical load increases (see Fig. 7).
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Fig. 6. Buckling of orthotropic plates. Rectangular plate with k = 2: 1 – a homogenous
plate, and 2,3,4 – a plate with a central square hole of area S∗ = 0.01; 0.04; 0.09,
respectively.
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Fig. 7. Buckling of orthotropic plates. Circular plate with R = 1: 1 –a homogenous
plate, and 2,3,4 – a plate with a central circular hole with r = 0.1; 0.2; 0.3, respectively.
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4 Buckling of Transversally Isotropic Plates

Finally, we consider the buckling behavior of transversally isotropic plates with
the following elastic moduli:

Ex = Ey = E0(1 + |ε|)sgn ε, Ez = E0(1 + |ε|)−sgn ε,
νxy = νyx = ν0(1 + |ε|)sgn ε,

Exνyx = Eyνxy = Ezνxz = E0ν0, G = E0/(2(1 + ν0)).
(3)

For positive ε the material is stiffer in the x, y-directions (in the plane), and for
negative ε, it is stiffer in the z-direction (along the thickness).

4.1 Rectangular Plates

For rectangular transversally isotropic plates, the effect of the material properties
is shown in Fig. 8. For stiffer planar materials (ε > 0), the buckling load is higher
and the buckling mode essentially depends on the stiffness parameter. For small
ε, the critical load increases with the hole area. Here a buckling mode switching
exists. One can see the significant difference with the case of the orthotropic
material. For large enough ε in absolute value, the critical buckling value becomes
smaller than for the isotropic plate.

�2 �1 1 2
Ε

0.95
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1.15

Ncr�N0

13

2

4

Fig. 8. Buckling of transversally isotropic plates. Rectangular plate with k = 2: 1 – ho-
mogenous plate, and 2,3,4 – plate with central square hole of area S∗ = 0.01; 0.04; 0.09,
respectively.

4.2 Circular Plates

For transversally isotropic circular plates, the change of planar ratio and in
thickness, Young’s modulus leads to an increase of the critical buckling load
which decreases monotonically with the hole area.
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5 Conclusions

The presence of a hole or cut-outs may lead to either increasing or decreasing
critical buckling load for compressed plates depending on the boundary condi-
tions, geometric parameters of the plate and the hole and the material properties.
For rectangular plates, the main effect comes from stresses in the lateral strips.
For buckling of non-isotropic circular plates, the material stifness ratio plays the
key role.
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Abstract. Constructed hybrid methods of the high accuracy the ex-
perts examined that’s for solving integral and integro-differential equa-
tions. Using hybrid methods for solving integral equations belongs to
Makroglou. Here, developing these idea, explored a more general hybrid
method which is applied to solving Volterra integral equations and also
constructed a concrete method with the degree p = 8. However, order of
accuracy for the known corresponding methods is of level p ≤ 4.

Keywords: Volterra integral equation, a hybrid method, stability and
degree of hybrid method, multistep methods.

1 Introduction

As is known, the solving problems of natural science are reduced to solving inte-
gral equation among of which nonlinear integral equations with variable bound-
aries are most popular. The first application of such equation to applied problems
was performed by Abel (see [1, p.12]). A wide application of integral equations
with variable boundaries belongs to Volterra that applied such equations since
1887 (see. [2, p.67]).

Consider nonlinear Volterra integral equation:

y(x) = g(x) +

x∫
x0

K(x, s, y(s))ds, x ∈ [fx0, X ]. (1)

Suppose that equation (1) has a unique continuous solution determined on
the segment x ∈ [x0, X ].

Volterra has investigated equation (1) in the case when the kernel of the inte-
gral the function K(x, z, y) is linear with respect to y (i.e. K(x, z, y) = ϕ(x, z)y).
For solving these equation Volterra suggested the quadrature method that is used
up to day. However, taking into account some shortcomings of the methods of
quadrature methods the scientists modified these methods and at some cases
suggested another methods as the methods of spline functions, collocation and
etc. (see e.g. [3–5]). Unlike these methods, here to the numerical solution of
integral equation (1) we apply hybrid methods. As remark above the applica-
tion of hybrid methods to the solving integral equations belongs to Makroglou
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(see [6]). This method was modified in the paper [7]. Here we attempt to gener-
alize some known methods in the form of a hybrid method that may be written
in the following form:

k∑
i=0

αiyn+i =

k∑
i=0

αign+i + h

k∑
i=0

k∑
j=0

β
(j)
i K(xn+j , xn+i, yn+i)+

+ h

k∑
i=0

k∑
j=0

γ
(j)
i K(xn+j , xn+li , yn+li), (2)

where li = i+ νi (|νi| < 1, i = 0, 1, 2, ..., k).
For the construction the methods of type (2), suppose that equation (1) has

a continuous solution determined on the segment x ∈ [x0, X ], and the kernel of
the integral the function K(x, z, y) is continuous on totality of arguments and is
defined on the domain G = {x0 ≤ z ≤ x+ ε ≤ X+ ε, |y| ≤ b}. Usually for ε = 0,

some coefficients of method (2) are chosen in the form β
(j)
i = 0, γ

(j)
i = 0 for

j < i. There are many methods for solving equation (1). One of them is the use
of quadrature formulae after application of which to calculation of the integral
participating in equation (1) we have:

y(xn) = gn + h
n∑

j=0

ajK(xn, xj , yj),

where the coefficients of the quadrature formula aj (j = 0, 1, ..., n) are some
real numbers, and gm = g(xm) (m = 0, 1, 2, ...).

Note that the solution of equation (1) is compared with the solution of initial
value problem for ordinary differential equations. In order to illustrate what has
been said, assume that the kernel of the integral has the following form:

K(x, z, y) =

m∑
l=0

al(x)bl(z, y).

Then the solving of equation (1) may be reduced to the solving of the following
system of equations:

y(x) = g(x) +

m∑
l=0

al(x)ϑl(x), (3)

ϑ′l = bl(x, y), ϑl(0) = 0 (l = 0, 1, 2, . . . ,m). (4)

Thus,the solving of equation (1) is reduced to the solving the system ordinary
differential equations of first order. Taking into account that the numerical so-
lution of problem (4) has been studied well, because by using known methods
we can solve the system consisted of equations (3) and (4). Application hybrid
multistep methods to the solution of problem (4) began after the known papers
of Gear and Butcher (see [8], [9]), but investigation of hybrid one-step methods
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began after the paper of Hammer and Hollingsworth (see [10]), that enters into
the class of implicit Runge-Kutta methods (see e.g. [11, p.217]).

Here, for determined the numerical solution of problems (4) for l = 0, we
apply the following hybrid method:

k∑
i=0

αiϑn+i = h

k∑
i=0

βibn+i + h

k∑
i=0

γibn+i+νi (|νi| < 1, i = 0, 1, . . . , k), (5)

where bm = b(xm, ym) (m = 0, 1, 2, . . .).

2 Construction of Hybrid Methods

Taking into account the advantage of hybrid methods, consider the investigation
of method (5). Note that method (5) has the generalizes many of the known
methods. Rewrite method (5) in the following form:

k∑
i=0

αizn+i = h

k∑
i=0

βiz
′
n+i + h

k∑
i=0

γiz
′
n+i+νi

(|νi| < 1, i = 0, 1, 2, ..., k). (6)

It is easy to see that relation (6) is a difference equation with the constant
coefficients of order k. Therefore, some authors call the k-step methods of type
(6) for γi = 0, (i = 0, 1, 2, ..., k) as the finite-difference methods (see e.g. [12], [13,
p.483]).

Before considering the definition of the values of the quantities αi, βi, γi, νi
(i = 0, 1, 2, ..., k) , establish some restrictions imposed on the coefficients of the
method (6). These conditions have the following form:

A: The values of the quantities αi, βi (i = 0, 1, 2, ..., k) are real numbers, more-
over, αk �= 0.
B: Characteristic polynomials

ρ(λ) ≡
k∑

i=0

αiλ
i, σ(λ) ≡

k∑
i=0

βiλ
i, γ(λ) ≡

k∑
i=0

γiλ
i+νi ;

have no common multipliers different from the constant.
C: σ(1) + γ(1) �= 0 and p ≥ 1 are holds.

Note that the accuracy of the finite-difference methods of the type (6) is
determined by means of the notion of degree, since the quantity k is an order
of method (6). Because, the notion of degree for method (6), is determined as
follows.

Definition 1. Let the function z(x) be determined on the segment x ∈ [x0, X ]
and be sufficiently smooth. Then, an integer quantity p > 0 calls as the degree of
the method (6) if the following holds:

k∑
i=0

(αiz(x+ ih)-h(βiz
′(x+ ih)+γiz

′(x + (i+ νi)h)))=O(hp+1), h → 0, (7)

here x = x0 + nh fixed point.
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One of the basic problems in researching method (6), is definition of the
maximum value for the degree p. However, in the method (6), value of k is the
given. Therefore, the specialists try to define the relation between the order and
degree of method. For defining the relation between the quantities p and k, we
use the method of undetermined coefficients, that uses the Taylor expansion of
the functions z(x+ ih), z′(x+ ih) and z′(x+ (i+ νi)h) in the relation (7), that
may be written in the following form:

z(x+ ih) = z(x) + ihz′(x) +
(ih)2

2!
z′′(x) + ...+

(ih)p

p!
z(p)(x) +O(hp+1), (8)

z′(x+mih) = z′(x) +mihz
′′(x) +

(mih)
2

2!
z′′′(x) + . . .+

+
(mih)

p−1

(p− 1)!
z(p)(x) +O(hp). (9)

Here the quantity mi takes the values mi = i+ νi and mi = i (i = 0, 1, 2, ..., k).
Assume that the method (6) has the degree p and allowing the expansions (8)

and (9) in asymptotic relation (7) we have:

k∑
i=0

αi = 0;
k∑

i=0

iαi =
k∑

i=0

(βi + γi),

k∑
i=0

il

l!
αi =

k∑
i=0

(
il−1

(l − 1)!
βi +

(i + νi)
l−1

(l − 1)!
γi

)
, l = 2, 3, . . . , p. (10)

It is easy to prove that for the existence of nontrivial solutions there should be
p+ 1 < 4k+ 4. Hence it follows that pmax = 4k + 2 . Usually the methods with
the degree for are unstable. The stability of method (6) is similarly defined from
the methods obtained from (6) for νi = 0 (i = 0, 1, ..., k).

Definition 2. Method (6) is stable if the roots of its characteristic polynomial
ρ(λ) lie interior to a unique circle whose boundaries have no multiple roots.

Now proof that conditions (7) and (10) are equivalent if the function z(x) is
sufficiently smooth. Consider the following lemma.

Lemma 1. Let the function z(x) be sufficiently smooth. Then, satisfaction of
the quantities αi, βi, γi, νi (i = 0, 1, 2, . . . , k) of the system algebraic equations
(10) is necessary and sufficient be fulfilled asymptotic equalities (7).

Proof. At first proof the sufficiency of conditions (10) for method (6) to have
the degree p. To this end we investigate the following:

k∑
i=0

(αiz(x+ ih)− hβiz
′(x+ ih)− hγiz

′(x + (i+ νi)h)) =
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=

k∑
i=0

αiz(x) + h

k∑
i=o

(iαi − βi − γi)z
′(x) +

k∑
i=0

αiz(x)+

+h
k∑

i=o

(iαi − βi − γi)z
′(x) + h2

k∑
i=o

(
i2

2
αi − iβi − (i + νi)γi

)
z′′(x) + . . .+

+ hp
k∑

i=0

(
ip

p!
αi −

ip−1

(p− 1)!
βi −

(i+ νi)
p−1

(p− 1)!
γi

)
z(p)(x) +O(hp+1). (11)

If we take into account that the quantities αi, βi, γi, νi (i = 0, 1, 2, ..., k) are the
solution of system (10), then asymptotic equality (7) is follows from (11). Now we
prove the necessity, i.e. prove that if the quantities αi, βi, γi, νi (i = 0, 1, 2, ..., k)
satisfies condition (7), then they are the solution of system (10). Indeed, taking
into account (7) in (11), we have:

k∑
i=0

αiz(x)+h

k∑
i=o

(iαi − βi − γi)z
′(x)+ . . .+

+ hp
k∑

i=0

(
ip

p!
αi −

ip−1

(p− 1)!
βi −

(i+ νi)
p−1

(p− 1)!
γi

)
z(p)(x) = 0. (12)

It is known that 1, x, x2, ..., xp or z(x), z′(x), ..., z(p)(x) for z(x) �= 0 and z(j)(x) �=
0 (i = 0, 1, ..., p) are linearly independent systems. Then from (12) it follows
that the quantities αi, βi, γi, νi (i = 0, 1, 2, ..., k) satisfies system (10). Thus we
proved the lemma. ��

Now consider the construction of specific methods with certain accuracy and
assume that k = 2. Then from system (10) for li = i+ νi(i = 0, 1, 2), we have:

β2 + β1 + β0 + γ2 + γ1 + γ0 = 2α2 + α1,

2β2 + β1 + l2γ2 + l1γ1 + l0γ0 = (22α2 + α1)/2,

22β2 + β1 + l22γ2 + l21γ1 + l20γ0 = (23α2 + α1)/3,

23β2 + β1 + l32γ2 + l31γ1 + l30γ0 = (24α2 + α1)/4,

24β2 + β1 + l42γ2 + l41γ1 + l40γ0 = (25α2 + α1)/5,

25β2 + β1 + l52γ2 + l51γ1 + l50γ0 = (26α2 + α1)/6,

26β2 + β1 + l62γ2 + l61γ1 + l60γ0 = (27α2 + α1)/7,

27β2 + β1 + l72γ2 + l71γ1 + l70γ0 = (28α2 + α1)/8,

28β2 + β1 + l82γ2 + l81γ1 + l80γ0 = (29α2 + α1)/9.

(13)

If put α2 = 1, α1 = 0, α0 = −1, in this system, then by solving the obtained
system of nonlinear algebraic equations, we have:

β2 = 64/180, β1 = 98/180, β0 = 18/180,

γ2 = 18/180, γ1 = 98/180, γ0 = 64/180,
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l2 = 1 +
√
21/14, l1 = 1, l0 = 1−

√
21/14,

Hence we get the following method:

yn+2 = yn + h(64y′n+2 + 98y′n+1 + 18y′n)/180+

+ h(18y′n+l2 + 98y′n+1 + 64y′n+l0)/180. (14)

Obviously, for using method (14) the values of the quantities yn+l0 , yn+l2 should
be known and these values should be calculated with the order O(h8).

Now consider the application of method (14) to the numerical solution of
equation (1). Following results of the paper [14] while applying method (14) to
solving equation (1), in one variant it will have the following form:

yn+2 = yn + gn+2 − gn + h(64K(xn+2, xn+2, yn+2) + 49K(xn+2, xn+1, yn+1)+

+49K(xn+1, xn+1, yn+1) + 9K(xn+1, xn, yn) + 9K(xn, xn, yn))/180+

+h(9K(xn+2, xn+l2 , yn+l2) + 9K(xn+l2 , xn+l2 , yn+l2)+

+49K(xn+2, xn+1, yn+1) + 49K(xn+1, xn+1, yn+1)+

+ 32K(xn+2, xn+l0 , yn+l0) + 32K(xn+1, xn+l0 , yn+l0))/180. (15)

3 Comparison of Some Methods Indented for Solving
Integral Equations with Variable Boundaries

Consider to solving of equation(1)by the quadrature method. Then we have:

y(xn+k) = gn+k + h

n+k∑
j=0

ajK(xn+k, xn+j , yn+j) +Rn (n = 0, 1, 2, . . .). (16)

Here the coefficients of the quadrature formulae aj (j = 0, 1, ..., n + k) are
some real numbers, Rn is the remainder term of the quadrature formula, k is an
entire constant. It is easy to see that while passing from one current point xn+k

to the next xn+k+1 it is necessary to calculate again the sum participating in the
right side of equality (16) since the quantity K(xn+k, xn+j , yn+j) is replaced by
the quantity K(xn+k+1, xn+j , yn+j). For removing the mentioned shortcoming
of the quadrature method it is suggested to use one of the above-given schemes.

In order to illustrate the obtained results, here we investigated the solution
of equation (1) by quadrature methods, which suggested in [14], and by the
methods using the change of the kernel of the integral with degenerate function.
And as a numerical method we used the trapezoid method since in the paper [3]
the below-given integral equations were solved by the trapezoid methods.

1. y(x) = exp(−x) +
x∫
0

exp(−(x− s))y2(s)ds, x ∈ [0; 0, 1], step h = 0, 02, the

exact solution which represented in the form y(x) ≡ 1;
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2. y(x) = 1 + x2

2 +
x∫
0

exp(x− s)(1 + s2

2 )ds, x ∈ [0, 1], step h = 0, 1, but the

exact solution was represented in the form y(x) = 2 exp(x)− x− 1;

3. y(x) = x +
x∫
0

sin(x− s)y(s)ds, x ∈ [0, 1], step h = 0, 1, the exact solution

was represented in the form y(x) = x+ x3/6.

First, the solution of integral equations use the trapezoid method, obtained

from the method (2) for γ
(j)
i = 0 (i, j = 0, 1, 2, ..., k). In the second method

after applying the kernel of the integral method of degenerate kernel to their
computing. The trapezoid method is used in all cases, the second method was
more accurate than the methods used in [3]. To compare these results apply to
the following table

number x Accuracy of the Accuracy of the Accuracy of the
example method from [3] trapezoid method trapezoid method

using degenerate kernels
I 0.02 1.E-2 6.6E-7 6.7E-7

0.04 1.5E-2 3.9E-4 1.3E-6
0.1 1.1E-2 4E-3 3.5E-6

II 0.1 -7.9E-2 8.3E-5 1.6E-4
0.2 1.E-4 1.1E-2 3.3E-4
1.0 7.5E-2 7.3E-1 1.8E-3

III 0.1 -1.0E-3 1.6E-4 8.2E-5
0.2 3.E-3 8.3E-4 1.6E-4
1.0 2.5E-1 1.4E-1 8.9E-4

Note that the method (15) has a higher accuracy, but its use has some diffi-
culty, therefore, consider the following method:

yn+1 = yn + h
(
5y′n+ 1

2+α + 8y′n+ 1
2
+ 5y′n+ 1

2−α

)
/18, (α =

√
15/10). (17)

This method is stable and has the degree p = 6. Consider to construct an
algorithm for using method (17). Assume that y1 is known, and consider the
calculation of yn+2 (n = 0, 1, 2, ...). For applying method (17) to calculation of
the values of the quantities yn±α, should be known and they are determined by
means of the following formula:

yn+α = yn + 2hy′n + α2h((h2 − 12α+ 6)y′n+3/2−

− (3α2−48α+27)y′n+1+(3α2−60α+54)y′n+1/2− (α2−24α+33)y′n)/18, (18)

where α = 3/2±
√
15/10.

4 Conclusion

Here prove that stable hybrid methods are more accurate than the corresponding
multi-step methods. There are stable methods of type (2) with a degree p = 3k+
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1, but stable methods received from the formula (2) have a degree pmax = k+2.
Therefore, hybrid methods are more promising than ordinary multistep methods.
Constructed, here stable method (15) is implicit, but the method (17) is explicit.
But, the algorithm suggested for using method (17) is implicit. We have shown
here that one can construct an algorithm for the use of hybrid methods with
high accuracy. Note that the investigation of the solutions above mentioned
examples show that, in possibility to solving the integral equation with variable
boundaries, to apply the method of degenerate kernels.

Acknowledgement. This research has been supported by the Science Devel-
opment Foundation of Azerbaijan (EIF-2011-1(3)-82/27/1).

References

1. Polishuk, Y.M.: Vito Volterra. Nauka, Leningrad (1977)
2. Volterra, V.: Theory of functional and of integral and integro-differensial equations.
Nauka, Moscow (1982)

3. Verlan, A.F., Sizikov, V.S.: Integral equations: methods, algorithms, programs.
Naukova Dumka, Kiev (1986)

4. Brunner, H.: Implicit Runge-Kutta Methods of Optimal oreder for Volterra integro-
differential equation. Methematics of Computation 42(165), 95–109 (1984)

5. Lubich, C.: Runge-Kutta theory for Volterra and Abel integral equations of the
second kind. Mathematics of Computation 41(163), 87–102 (1983)

6. Makroglou, A.: Hybrid methods in the numerical solution of Volterra integro-
differential equations. Journal of Numerical Analysis 2, 21–35 (1982)

7. Mehdiyeva, G., Ibrahimov, V., Imanova, M.: On one application of hybrid methods
for solving Volterra integral equations, Dubai, pp. 809–813. World Academy of
Science, Engineering and Technology (2012)

8. Gear, C.S.: Hybrid methods for initial value problems in ordinary differential equa-
tions. SIAM, J. Numer. Anal. 2, 69–86 (1965)

9. Butcher, J.C.: A modified multistep method for the numerical integration of ordi-
nary differential equations. J. Assoc. Comput. Math. 12, 124–135 (1965)

10. Hammer, P.C., Hollingsworth, J.W.: Trapezoildal methods of approximating solu-
tion of differential equations. MTAC 9, 92–96 (1955)

11. Hairier, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations. Mir,
Moscow (1990) (Russian)

12. Imanova, M.N.: One the multistep method of numerical solution for Volterra inte-
gral equation. Transactions Issue Mathematics and Mechanics Series of Physical-
technical and Mathematical Science VI(1), 95–104 (2006)

13. Bakhvalov, N.S.: Numerical methods. Nauka, Moscow (1973)
14. Mehdiyeva, G., Ibrahimov, V., Imanova, M.: On an application of the Cowell type

method. News of Baku University. Series of Physico-mathematical sciences, (2),
92-99 (2010)

15. Imanova, M., Mehdiyeva, G., Ibrahimov, V.: Application of the Forward Jump-
ing Method to the Solving of Volterra Integral Equation. In: Conference Proceed-
ings NumAn 2010 Conference in Numerical Analysis, Chania, Greece, pp. 106–111
(2010)



Finite Difference Scheme for a Parabolic

Transmission Problem in Disjoint Domains

Zorica Milovanović
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Abstract. In this paper we investigate a parabolic transmission problem
in disjoint domains. A priori estimate for its weak solution in appropriate
Sobolev-like space is proved. A finite difference scheme approximating this
problem is proposed and analyzed.

1 Introduction

In applications, especially in engineering, often are encountered composite or
layered structure, where the properties of individual layers can vary consider-
ably from the properties of the surrounding material. Layers can be structural,
thermal, electromagnetic or optical role, etc. Mathematical models of energy and
mass transfer in domains with layers lead to so called transmission problems. In
this paper we consider a class of non-standard parabolic transmission problem
in disjoint domain (see [4]). As model example it is taken an area consisting of
two non-adjacent rectangles.In each subarea was given a initial-boundary prob-
lem of parabolic type, where the interaction between their solutions described
by nonlocal integral conjugation conditions.

2 Formulation of the Problem

As a model example,we consider the following initial-boundary-value problem
(IBVP): Find functions u1(x, y, t) and u2(x, y, t) that satisfy the system of
parabolic equations for (1)-(11):

∂u1
∂t

− ∂

∂x

(
p1(x, y)

∂u1
∂x

)
− ∂

∂y

(
q1(x, y)

∂u1
∂y

)
+ r1(x, y)u1 = f1(x, y, t), (1)

(x, y) ∈ Ω1 = (a1, b1)× (c1, d1), t > 0,

∂u2
∂t

− ∂

∂x

(
p2(x, y)

∂u2
∂x

)
− ∂

∂y

(
q2(x, y)

∂u2
∂y

)
+ r2(x, y)u2 = f2(x, y, t), (2)

(x, y) ∈ Ω2 = (a2, b2)× (c2, d2), t > 0,

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 403–410, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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where −∞ < a1 < b1 < a2 < b2 < +∞ and c2 < c1 < d1 < d2, the initial
conditions

u1(x, y, 0) = u10(x, y), (x, y) ∈ Ω1, u2(x, y, 0) = u20(x, y), (x, y) ∈ Ω2, (3)

the simplest external Dirichlet boundary conditions

u1(a1, y, t) = 0, y ∈ (c1, d1), u2(x, c2, t) = 0, x ∈ (a2, b2),

u2(b2, y, t) = 0, y ∈ (c2, d2), u2(x, d2, t) = 0, x ∈ (a2, b2),
(4)

and the internal conjugation conditions of non-local Robin-Dirichlet type

p1(b1, y)
∂u1
∂x

(b1, y, t) + α1(y)u1(b1, y, t) =

∫ d2

c2

β1(y, y
′)u2(a2, y

′, t) dy′, (5)

−p2(a2, y)
∂u2
∂x

(a2, y, t) + α2(y)u2(a2, y, t) =⎧⎪⎨⎪⎩
∫ d1

c1
β2(y, y

′)u1(b1, y
′, t) dy′ +

∫ b1
a1
β̌2(y, x

′)u1(x
′, c1, t) dx

′, y ∈ (c2, c1),∫ d1

c1
β2(y, y

′)u1(b1, y
′, t) dy′, y ∈ (c1, d1),∫ d1

c1
β2(y, y

′)u1(b1, y
′, t) dy′ +

∫ b1
a1
β̂2(y, x

′)u1(x
′, d1, t) dx

′, y ∈ (d1, d2),

(6)

−q1(x, c1)
∂u1
∂y

(x, c1, t) + α̌1(x)u1(x, c1, t) =

∫ c1

c2

β̌1(x, y
′)u2(a2, y

′, t) dy′, (7)

q1(x, d1)
∂u1
∂y

(x, d1, t) + α̂1(x)u1(x, d1, t) =

∫ d2

d1

β̂1(x, y
′)u2(a2, y

′, t) dy′. (8)

Throughout the paper we assume that the input data satisfy the usual regularity
and ellipticity conditions

pi(x, y), qi(x, y), ri(x, y) ∈ L∞(Ωi), i = 1, 2, (9)

0 < pi0 ≤ pi(x, y), 0 < qi0 ≤ qi(x, y), 0 ≤ ri(x, y), a.e in Ωi, i = 1, 2 (10)

and
αi ∈ L∞(ci, di), i = 1, 2, α̌1, α̂1 ∈ L∞(a1, b1),

βi ∈ L∞((ci, di)× (c3−i, d3−i)), i = 1, 2,

β̌1 ∈ L∞((a1, b1)× (c2, c1)), β̂1 ∈ L∞((a1, b1)× (d1, d2)),

β̌2 ∈ L∞((c2, c1)× (a1, b1)), β̂2 ∈ L∞((d1, d2)× (a1, b1)).

(11)

In real physical problems (see [1]) we also often have

αi > 0, βi > 0, α̂1 > 0, α̌1 > 0, β̂i > 0, β̌i > 0, i = 1, 2.
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3 Existence and Uniqueness of Weak Solutions

We introduce the product space

L = L2(Ω1)× L2(Ω2) = {v = (v1, v2)|vi ∈ L2(Ωi)},

endowed with the inner product and associated norm

(u, v)L = (u1, v1)L2(Ω1) + (u2, v2)L2(Ω2), ‖v‖L = (v, v)
1/2
L ,

where

(ui, vi)L2(Ωi) =

∫ ∫
Ωi

uivi dxdy, i = 1, 2.

We also define the spaces

Hk = {v = (v1, v2)| vi ∈ Hk(Ωi)}, k = 1, 2, ...

endowed with the inner product and associated norm

(u, v)Hk = (u1, v1)Hk(Ω1) + (u2, v2)Hk(Ω2), ‖v‖Hk = (v, v)
1/2

Hk ,

where Hk(Ωi) are the standard Sobolev spaces. In particular, we set

H1
0 =

{
v ∈ H1 | v1(a1, y) = 0, v2(b2, y) = v2(x, c2) = v2(x, d2) = 0

}
.

Finally, with u = (u1, u2) and v = (v1, v2) we define the following bilinear form:

A(u, v) =

∫ ∫
Ω1

(
p1
∂u1
∂x

∂v1
∂x

+ q1
∂u1
∂y

∂v1
∂y

+ r1u1v1

)
dxdy

+

∫ ∫
Ω2

(
p2
∂u2
∂x

∂v2
∂x

+ q2
∂u2
∂y

∂v2
∂y

+ r2u2v2

)
dxdy

+

∫ d1

c1

α1(y)u1(b1, y)v1(b1, y) dy +

∫ d2

c2

α2(y)u2(a2, y)v2(a2, y) dy

+

∫ b1

a1

α̌1(x)u1(x, c1)v1(x, c1) dx+

∫ b1

a1

α̂1(x)u1(x, d1)v1(x, d1) dx

−
d1∫

c1

d2∫
c2

β1(y, y
′)u2(a2, y

′)v1(b1, y) dy
′dy −

d2∫
c2

d1∫
c1

β2(y, y
′)u1(b1, y

′)v2(a2, y) dy
′dy

−
b1∫

a1

c1∫
c2

β̌1(x, y
′)u2(a2, y

′)v1(x, c1) dy
′dx−

b1∫
a1

d2∫
d1

β̂1(x, y
′)u2(a2, y

′)v1(x, d1) dy
′dx

−
c1∫

c2

b1∫
a1

β̌2(y, x
′)u1(x

′, c1)v2(a2, y) dx
′dy −

d2∫
d1

b1∫
a1

β̂2(y, x
′)u1(x

′, d1)v2(a2, y) dx
′dy

(12)
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Lemma 1. Under the conditions (9) and (11) the bilinear form A, defined by
(12), is bounded on H1 ×H1. If besides it the conditions (10) are fulfilled, this
form satisfies the G̊arding’s inequality on H1

0 , i.e. there exist positive constants
m and κ such that

A(u, u) + κ‖u‖2L ≥ m‖u‖2H1 , ∀ u ∈ H1
0 .

Proof (comp. [5]). Boundedness of A follows from (9) and (11) and the trace
theorem

‖ui‖L2(∂Ωi) ≤ C‖ui‖H1(Ωi).

From (10) and Poincaré type inequalities we immediately obtain

2∑
i=1

∫ ∫
Ωi

[
pi

(
∂ui

∂x

)2

+ qi

(
∂ui

∂y

)2

+ riu
2
i

]
dxdy ≥ c0‖u‖2H1 ,

where c0 is a computable constant depending on pi0, qi0, bi − ai and di − ci.
Further, using Cauchy-Schwartz and ε-inequalities we obtain,∣∣∣∣ ∫ d1

c1

α1(y)u
2
1(b1, y) dy −

∫ d1

c1

∫ d2

c2

β1(y, y
′)u2(a2, y

′)u1(b1, y) dy
′dy

+

∫ d2

c2

α2(y)u
2
2(a2, y) dy −

∫ d2

c2

∫ d1

c1

β2(y, y
′)u1(b1, y

′)u2(a2, y) dy
′dy

+

∫ b1

a1

α̌1(x)u
2
1(x, c1) dx−

∫ b1

a1

∫ c1

c2

β̌1(x, y
′)u2(a2, y

′)u1(x, c1) dy
′dx

+

∫ b1

a1

α̂1(x)u
2
1(x, d1) dx−

∫ b1

a1

∫ d2

d1

β̂1(x, y
′)u2(a2, y

′)u1(x, d1) dy
′dx

−
∫ c1

c2

∫ b1

a1

β̌2(y, x
′)u1(x

′, c1)u2(a2, y) dx
′dy

−
∫ d2

d1

∫ b1

a1

β̂2(y, x
′)u1(x

′, d1)u2(a2, y) dx
′dy

∣∣∣∣ ≤ ε‖u‖2H1 +
C

ε
‖u‖2L.

Taking 0 < ε < c0 we obtain G̊arding’s inequality:

A(u, u) ≥ (c0 − ε)‖u‖2H1 −
C

ε
‖u‖2L,

where m = c0 − ε and κ = C
ε . �

Let Ω be a domain in Rn and u(t) a function mapping Ω into Hilbert space
H . In the usual manner [8] we set L2(Ω,H) = H0(Ω,H). Further, we define
H1,1/2 = L2((0, T ), H

1) ∩H1/2((0, T ), L). Let H−1 = (H1
0 )

∗ be the dual space
for H1

0 . The spaces H1
0 , L and H−1 form a Gelfand triple H1

0 ⊂ L ⊂ H−1 (see
[8]), with continuous and dense embeddings. We also introduce the space

W (0, T ) =
{
u
∣∣u ∈ L2((0, T ), H

1
0 ),

∂u

∂t
∈ L2((0, T ), H

−1)
}
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with inner product

(u, v)W (0,T ) =

∫ T

0

[
(u(·, t), v(·, t))H1 +

(∂u
∂t

(·, t), ∂v
∂t

(·, t)
)
H−1

]
dt

Multiplying equation (1) by v1(x, y) and equation (2) by v2(x, y), and integrating
by parts using condition (4)-(8), we get the weak form of (1)-(8):(

∂u

∂t
(·, t), v

)
L

+A(u(·, t), v) = (f(·, t), v)L, ∀ v ∈ H1
0 . (13)

Applying Theorem 26.1 from [8] to (13) we obtain the following assertion.

Theorem 1. Let the assumptions (9), (10) and (11) hold and suppose that
u0 = (u10, u20) ∈ L, f = (f1, f2) ∈ L2((0, T ), H

−1). Then for 0 < T < +∞ the
initial-boundary-value problem (1)-(8) has a unique weak solution u ∈ W (0, T ),
and this depends continuously on f and u0.

4 A Priori Estimate

Because the norm ‖ · ‖H−1 is not computable we restrict our investigations to
problem (1)-(8) with right hand sides of the form

fi(x, y, t) = fi0(x, y, t) +
∂(!i(x)fi1(x, y, t))

∂x
+
∂(θi(y)fi2(x, y, t))

∂y

+

∫ T

0

fi3(x, y, t, t
′)− fi3(x, y, t

′, t)

|t− t′| dt′, i = 1, 2,

(14)

where fi0, fi1, fi2 ∈ L2((0, T ), L2(Ωi)) = L2(Qi), Qi = Ωi × (0, T ), fi3 ∈
L2((0, T )

2, L2(Ωi)) = L2(Ri), Ri = Ωi×(0, T )2, !i ∈ C([ai, bi]), θ1 ∈ C([c1, d1]),
θ2(y) = 1 and

c1(b1 − x) ≤ !1 ≤ C1(b1 − x), x ∈ (a1, b1), C1 ≥ c1 > 0,

c2(x− a2) ≤ !2 ≤ C2(x− a2), x ∈ (a2, b2), C2 ≥ c2 > 0,

s1(d1 − y)(y − c1) ≤ θ1 ≤ S1(d1 − y)(y − c1), y ∈ (c1, d1), S1≥ s1> 0.

(15)

Theorem 2. Let the assumptions (9)-(11) and (15) hold and let ui0 ∈ L2(Ωi)),
fi0, fi1, fi2 ∈ L2(Qi), fi3 ∈ L2(Ri), i = 1, 2. Then the initial-boundary-value
problem (1)-(8),(14) has a unique weak solution u = (u1, u2) ∈ H1,1/2 and the
a priori estimate

‖u‖2H1,1/2 ≤ C

2∑
i=1

(
‖ui0‖2L2(Ωi)

+ ‖fi0‖2L2(Qi)
+ ‖fi1‖2L2(Qi)

+‖fi2‖2L2(Qi)
+ ‖fi3‖2L2(Ri)

) (16)

holds.
The proof is analogous to the proof of Theorem 1 in [5].
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5 Finite Difference Approximation

Let ωi,hi be a uniform mesh in [ai, bi], with step size hi = (bi − ai)/ni, i = 1, 2.
We denote ωi,hi := ωi,hi ∩ (ai, bi), ω

−
i,hi

:= ωi,hi ∪ {ai}, ω+
i,hi

:= ωi,hi ∪ {bi}.
Analogously we define a uniform mesh ωi,ki in [ci, di], with the step size ki =
(di−ci)/mi, i = 1, 2 and its submeshes ωi,ki := ωi,ki∩(ci, di), ω−

i,ki
:= ωi,ki∪{ci},

ω+
i,ki

:= ωi,ki ∪ {di}. We assume that h1 � h2 � k1 � k2. Finally, we introduce
a uniform mesh ωτ in [0, T ]with step size τ = T/n and set ωτ := ωτ ∩ (0, T ),
ω−
τ := ωτ ∪ {0}, ω+

τ := ωτ ∪ {T }. We will consider vector-functions of the form
v = (v1, v2) where vi is a mesh function defined on ωi,hi × ωi,ki × ωτ , i = 1, 2.
We define difference quotients in the usual way (see [2],[6],[7]):

vi,x =
vi(x + hi, y, t)− vi(x, y, t)

hi
= vi,x(x+ hi, y, t),

vi,y =
vi(x, y + ki, t)− vi(x, y, t)

ki
= vi,y(x, y + ki, t),

vi,t =
vi(x, y, t+ τ)− vi(x, y, t)

τ
= vi,t(x, y, t+ τ).

We approximate the initial-boundary-value problem (1)-(8) with the following
explicit finite difference scheme:

v1,t − (p1v1,x)x − (q1v1,y)y + r1v1 = f1, x ∈ ω1,h1 , y ∈ ω1,k1 , t ∈ ω−
τ (17)

v1,t(b1, y, t) + 2/h1
[
(p1(b1, y)v1,x(b1, y, t)) + α1(y)v1(b1, y, t)

−k2
∑

y′∈ω2,k2

β1(y, y
′)v2(a2, y

′, t)
]
− (q1v1,y)y(b1, y, t)

+r1(b1, y)v1(b1, y, t) = f1(b1, y, t), y ∈ ω1,k1 , t ∈ ω−
τ

(18)

v1,t(x, c1, t)− 2/k1
[
(q1(x, c1 + k1)v1,y(x, c1, t))− α̌1(x)v1(x, c1, t)

−k2
∑

y′∈ω2,k2

β̌1(x, y
′)v2(a2, y

′, t)
]
− (p1v1,x)x(x, c1, t)

+r1(x, c1)v1(x, c1, t) = f1(x, c1, t), x ∈ ω1,h1 , t ∈ ω−
τ

(19)

v1,t(x, d1, t) + 2/k1
[
(q1(x, d1)v1,y(x, d1, t)) + α̂1(x)v1(x, d1, t)

−k2
∑

y′∈ω2,k2

β̂1(x, y
′)v2(a2, y

′, t)
]
− (p1v1,x)x(x, d1, t)

+r1(x, d1)v1(x, d1, t) = f1(x, d1, t), x ∈ ω1,h1 , t ∈ ω−
τ

(20)

v2,t − (p2v2,x)x − (q2v2,y)y + r2v2 = f2, x ∈ ω2,h2, y ∈ ω2,k2 , t ∈ ω−
τ (21)

v2,t(a2, y, t)− 2/h2
[
(p2(a2 + h2, y)v2,x(a2, y, t)) + α2(y)v2(a2, y, t)

+k1
∑

y′∈ω1,k1

β2(y, y
′)v1(b1, y

′, t) + h1
∑

x′∈ω1,h1

β̌2(y, x
′)v1(x

′, c1, t)
]

−(q2v2,y)y(a2, y, t) + r2(a2, y)v2(a2, y, t) = f2(a2, y, t),

y ∈ (c2, c1), t ∈ ω−
τ

(22)
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v2,t(a2, y, t)− 2/h2
[
(p2(a2 + h2, y)v2,x(a2, y, t))− α2(y)v2(a2, y, t)

+k1
∑

y′∈ω1,k1

β2(y, y
′)v1(b1, y

′, t)
]
− (q2v2,y)y(a2, y, t)

+r2(a2, y)v2(a2, y, t) = f2(a2, y, t), y ∈ (c1, d1), t ∈ ω−
τ

(23)

v2,t(a2, y, t)− 2/h2
[
(p2(a2 + h2, y)v2,x(a2, y, t))− α2(y)v2(a2, y, t)

+k1
∑

y′∈ω1,k1

β2(y, y
′)v1(b1, y

′, t) + h1
∑

x′∈ω1,h1

β̂2(y, x
′)v1(x

′, d1, t)
]

−(q2v2,y)y(a2, y, t) + r2(a2, y)v2(a2, y, t) = f2(a2, y, t),

y ∈ (d1, d2), t ∈ ω−
τ

(24)

v1(a1, y, t) = 0, y ∈ ω1,k1 , t ∈ ωτ ,

v2(x, c2, t) = 0, x ∈ ω2,h2, t ∈ ωτ

v2(b2, y, t) = 0, y ∈ ω2,k2 , t ∈ ωτ ,

v2(x, d2, t) = 0, x ∈ ω2,h2 , t ∈ ωτ ,

(25)

vi(x, y, 0) = ui0(x, y), x ∈ ω±
i,hi

, y ∈ ωi,ki , i = 1, 2, (26)

where denoted

pi(x, y) =
1

2
[pi(x, y) + pi(x− hi, y)], x ∈ ω+

i,hi
, y ∈ ωi,ki , i = 1, 2,

qi(x, y) =
1

2
[qi(x, y) + qi(x, y − ki)], x ∈ ω±

i,hi
, y ∈ ω+

i,ki
, i = 1, 2,

ri(x, y) = ri(x, y) and f i(x, y) = fi(x, y), i = 1, 2.

Finite difference scheme (17)-(26) is computationally efficient. It follows from
the general theory of difference schemes [7], that the finite difference scheme
(17)-(26) is stable under condition

τ ≤ c min{h21, h22, k21 , k22} (27)

where c is computable constants depending on max pi and max qi, i = 1, 2.

6 Numerical Examples

The test example is problem (1)-(8), with a1 = 1, b1 = 2, c1 = 0.2, d1 = 0.8,
a2 = 3, b2 = 4.5, c2 = 0, d2 = 1, t ∈ [0, 1]. The coefficients are:

p1(x, y) = ex+y, q1(x, y) = sin(x+ y), r1(x, y) = x+ y,

p2(x, y) = x2 + y2, q2(x, y) = x(1 + y), r2(x, y) = x− y,

α1(y) = α2(y) = α̌1(x) = α̂1(x) = β1(y, y
′) = β2(y, y

′) = 1,

β̌2(y, x
′) = β̂2(y, x

′) = 0,

β̌1(x, y
′) = 0.16− y′, β̂1(x, y

′) = y′ − 0.83 .
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In the right hand sides of equations (1),(2) we determine functions f1 and f2 in
such a manner that u = (u1, u2),

u1(x, y, t) = 2 [cos(10πy − π) + 1] (x− a1)
2(y − c1)(d1 − y)e−t,

u2(x, y, t) = 2 [cos(4πy − π) + 1] (x− b2)
2(y − c2)(d2 − y)e−t

is the exact solution of the problem (1)-(8). Mesh parameters are h1 = h2 = h,
k1 = k2 = k. The results are given in discrete max norm and the convergence
rate (CR) is calculated using double mesh principle (see [3]):

Eh = ‖uh − u‖, CR = log2[E
h/Eh/2].

Table 1. Error and convergence rate in max discrete norm

Mesh Ω1 Ω2

Error (CR) Error (CR)

h=0.5, k=0.3, τ=0.0002 0.0332 0.1932
h=0.25, k=0.15, τ=0.00005 0.0076 (2.1271) 0.0443 (2.1247)
h=0.125, k=0.075, τ=0.00000125 0.0016 (2.2479) 0.0103 (2.1047)

Acknowledgement. The research of author was supported by Ministry of Ed-
ucation and Science of Republic of Serbia under project 174015.
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Abstract. This article is dealt with the study of a hybrid numerical
scheme for a class of singularly perturbed mixed parabolic-elliptic prob-
lems possessing both boundary and interior layers. The domain under
consideration is partitioned into two subdomains. In the first subdomain,
the given problem takes the form of parabolic reaction-diffusion type,
whereas in the second subdomain elliptic convection-diffusion-reaction
types of problems are posed. To solve these problems, the time deriva-
tive is discretized by the backward-Euler method, while for the spatial
discretization the classical central difference scheme is used on the first
subdomain and a hybrid finite difference scheme is proposed on the sec-
ond subdomain. The proposed method is designed on a layer resolving
piecewise-uniform Shishkin mesh and computationally it is shown that
the method converges ε-uniformly with almost second-order spatial ac-
curacy in the discrete supremum norm.

1 Introduction

Let us denote the domains for describing the model problem by

Ω = (0, 1), G− = (0, ξ)× (0, T ], G+ = (ξ, 1)× (0, T ], G = Ω × (0, T ].

We here consider the following class of singularly perturbed mixed parabolic-
elliptic initial-boundary-value problems (IBVPs) posed on the domain G−∪G+:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1,εu(x, t) ≡
(
∂u

∂t
− ε

∂2u

∂x2
+ b(x, t)u

)
(x, t) = f(x, t), (x, t) ∈ G−,

L2,εu(x, t) ≡
(
−ε∂

2u

∂x2
− a(x, t)

∂u

∂x
+ b(x, t)u

)
(x, t) = f(x, t), (x, t) ∈ G+,

u(x, 0) = s0(x), x ∈ Ω = [0, 1],

u(0, t) = s1(t), u(1, t) = s2(t), t ∈ (0, T ],
(1)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 411–419, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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where 0 < ε � 1 is a small parameter, the convection coefficient a is sufficiently
smooth on G+, the source term f is sufficiently smooth on G− ∪ G+ and the
coefficient b is sufficiently smooth on Ω such that

{
b(x, t) ≥ 0 on Ω,

α∗ > a(x, t) > α > 0, x > ξ,
(2)

and the solution u(x, t) satisfies the following interface conditions

[u] = 0,

[
∂u

∂x

]
= 0, at x = ξ. (3)

Here, we define the jump of u, denoted by [u], across the point of disconti-
nuity x = ξ by [u](ξ, t) = u(ξ+, t) − u(ξ−, t), where u(ξ±, t) = lim

x→ξ±0
u(x, t).

Under sufficient smoothness and necessary compatibility conditions imposed
on the data s0, s1 and s2, the IBVP (1)-(3) admits a unique solution u ∈
C1+λ(G)

⋂
C2+λ(G−∪G+), which in general possesses a boundary layer at x = 0

and interior layers of different widths in the neighborhood of the point x = ξ as
discussed in [1]. These types of problems arise in the context of electromagnetic
metal forming (see, e.g., [6]).

Singularly perturbed problems of mixed type have been studied mainly by
Braianov for stationary case in [2] and for non-stationary case in [1]. In this ar-
ticle, we consider a class of singularly perturbed mixed parabolic-elliptic IBVPs
whose solutions exhibit both boundary and interior layers. Here, our objective
is to devise an efficient numerical scheme which is ε-uniformly convergent in
the discrete supremum norm and also having almost second-order accuracy with
respect to the spatial variable. In the first subdomain G− we propose the clas-
sical central difference scheme for the spatial discretization of the problem of
parabolic reaction-diffusion type, whereas in the second subdomain G+ we pro-
pose a hybrid finite difference scheme for the spatial discretization of the problem
of elliptic convection-diffusion-reaction type. The time derivative in the given
problem is discretized by the classical backward-Euler method. To accomplish
this purpose, we discretize the domian using a spacial rectangular mesh that con-
sists a piecewise-uniform Shishkin mesh condensed closely to the boundary and
interior layers in the spatial direction and a uniform mesh in the time direction.
Note that in the recent paper [4], we have thoroughly studied a similar hybrid
scheme for a class of singularly perturbed parabolic convection-diffusion IBVPs
with discontinuous convection coefficient exhibiting strong interior layers.

The rest of the article is organized as follows: In Section 2, we describe the
piecewise-uniform Shishkin mesh and also provide the detailed construction of
the proposed numerical scheme. Finally, this section is ended up with a brief dis-
cussion on the stability criteria of the proposed scheme. In Section 3 we present
the numerical results for a test example having known exact solution. Finally,
we summarize the main conclusions in Section 4.
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2 Numerical Approximation

In this section, we first give a description of the suitable mesh used for the
discretization of the domain and then explicitly describe the difference scheme
for the discretization of the problem (1)-(3). Finally, we briefly discuss the ε-
uniform stability of the proposed scheme.

2.1 Discretization of the Domain

Consider the domain G = Ω× [0, T ] = [0, 1]× [0, T ] and let N ≥ 16 be a positive

even integer. Here, we construct a rectangular mesh G
N,M

ε = Ω
N,ε

x × S
M
t , which

is a combination of the piecewise-uniform Shishkin mesh condensed near to the
boundary and interior layers for the spatial variable and a uniform mesh for
the temporal variable. Firstly, to define the piecewise-uniform Shishkin mesh we
divide the spatial domain Ω into five subintervals as

Ω = [0, σ1] ∪ [σ1, ξ − σ1] ∪ [ξ − σ1, ξ] ∪ [ξ, ξ + σ2] ∪ [ξ + σ2, 1],

for some σ1, σ2 that satisfy 0 < σ1 ≤ ξ/4, 0 < σ2 ≤ (1−ξ)/2. On the subintervals
[0, σ1], [ξ−σ1, ξ] a uniform mesh with N/8 mesh-intervals is placed and a uniform
mesh with N/4 mesh-intervals is placed on the subintervals [σ1, ξ − σ1], [ξ, ξ +
σ2], [ξ + σ2, 1] such that

ΩN,ε
x = {xi : 1 ≤ i ≤ N/2− 1}

⋃
{xi : N/2 + 1 ≤ i ≤ N − 1}

denotes the set of interior points of the mesh. Clearly xN/2 = ξ and Ω
N,ε

x =

{xi}N0 . Note that this mesh is uniform when σ1 = ξ/4, σ2 = (1 − ξ)/2. It is
fitted to the problem (1)-(3) by choosing σ1 and σ2 to be the following functions
of N and ε

σ1 = min

{
ξ

4
, τ1

√
ε lnN

}
, σ2 = min

{
1− ξ

2
,
2τ2ε

α
lnN

}
,

where τ1, τ2 are constants. On the time domain [0, T ], we introduce the equidis-
tant meshes in the temporal variable such that

S
M
t = {tn = nΔt, n = 0, . . . ,M, Δt = T/M},

where M denotes the number of mesh elements in the t-direction. Let us denote
the step sizes in space by

hi = xi − xi−1, i = 1, . . . , N, ĥi = hi + hi+1, i = 1, . . . , N − 1.

Further, denote the mesh width hi in the spatial direction as follows:

hi =

{
h(l) = 8σ1/N, for i = 1, . . . , N/8, 3N/8+ 1, . . . , N/2,

h(r) = 4σ2/N, for i = N/2 + 1, . . . , 3N/4.
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2.2 The Backward-Euler Hybrid Finite Difference Scheme

On the domain G−, the problem (1)-(3) is discretized in the spatial variable
by the classical central difference scheme, whereas on the domain G+ a hybrid
scheme is proposed for the spatial discretization. The hybrid scheme consists
of the midpoint upwind scheme in the outer region [ξ + σ2, 1] and the classi-
cal central difference scheme in the interior layer region (ξ, ξ + σ2), while at the
point of discontinuity, second-order one-sided difference approximations are used
to keep the continuity of the spatial derivative. On the other hand, we employ
the backward-Euler method for discretizing the time derivative. Before describ-
ing the scheme, for a given mesh function v(xi, tn) = vni , define the forward,
backward and central difference operators D+

x , D
−
x and D0

x in space and the
backward difference operator D−

t in time by⎧⎪⎪⎨⎪⎪⎩
D+

x v
n
i =

vni+1 − vni
hi+1

, D−
x v

n
i =

vni − vni−1

hi
, D0

xv
n
i =

vni+1 − vni−1

ĥi

and D−
t v

n
i =

vni − vn−1
i

Δt
,

(4)

respectively, and we define the second-order finite difference operator δ2x in space
by

δ2xv
n
i =

2(D+
x v

n
i −D−

x v
n
i )

ĥi

.

Also, define vni+1/2 =
(
vni+1 + vni

)
/2. Then the proposed numerical scheme takes

the following form on the mesh G
N,M

ε :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0
i = s0(xi), for i = 0, . . . , N,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LN,M
1,cenU

n+1
i = fn+1

i , for i = 1, . . . , N/2− 1,

LN,M
2,cenU

n+1
i = fn+1

i , for i = N/2 + 1, . . . , 3N/4− 1,

LN,M
2,muU

n+1
i = fn+1

i+1/2, for i = 3N/4, . . . , N − 1,

DF
x Un+1

i −DB
x Un+1

i = 0, for i = N/2,

Un+1
0 = s1(tn+1), Un+1

N = s2(tn+1),
for n = 0, . . . ,M − 1,

(5)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LN,M
1,cenU

n+1
i = D−

t U
n+1
i − εδ2xU

n+1
i + bn+1

i Un+1
i ,

LN,M
2,cenU

n+1
i = −εδ2xUn+1

i − an+1
i D0

xU
n+1
i + bn+1

i Un+1
i ,

LN,M
2,muU

n+1
i = −εδ2xUn+1

i − an+1
i+1/2D

+
x U

n+1
i + bn+1

i+1/2U
n+1
i+1/2,

(6)
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and ⎧⎨⎩DF
x Un

N/2 = (−Un
N/2+2 + 4Un

N/2+1 − 3Un
N/2)/2h(r),

DB
x Un

N/2 = (Un
N/2−2 − 4Un

N/2−1 + 3Un
N/2)/2h(l).

(7)

2.3 Stability Analysis

After doing a short calculation the difference scheme (5)-(7) can be transformed
to a tridiagonal system of equations, which will be solved by a suitable solver to
obtain the numerical solution at the (n + 1)th level. Subsequently we consider

the following form of the scheme (5)-(7) on the mesh G
N,M

ε :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U0

i = s0(xi), for i = 0, . . . , N,⎧⎨⎩LN,M
hyb Un+1

i = f̃hyb
n+1

,i , for i = 1, . . . , N − 1,

Un+1
0 = s1(tn+1), Un+1

N = s2(tn+1),
for n = 0, . . . ,M − 1.

(8)

Here, the difference operator LN,M
hyb and the right hand side term f̃hyb

n+1
are

respectively defined as⎧⎨⎩LN,M
hyb Un+1

i =
[
r−i Un+1

i−1 + r0iU
n+1
i + r+i Un+1

i+1

]
+

[
p−i U

n
i−1 + p0iU

n
i + p+i U

n
i+1

]
, and

f̃hyb
n+1

,i =
[
m−

i f
n+1
i−1 +m0

i f
n+1
i +m+

i f
n+1
i+1

]
,

(9)

for i = 1, . . . , N −1, where the coefficients r−i , r
0
i , r

+
i ; p

−
i , p

0
i , p

+
i ;m

−
i ,m

0
i ,m

+
i can

be derived from the difference scheme (5)-(7).
Then using [Lemma 3.12, Part II] of the book of Roos et al. [5], we can show

that the operator LN,M
hyb satisfies the following discrete minimum principle.

Let GN,M
ε = G

N,M

ε

⋂
G and ΓN,M

ε = G
N,M

ε \GN,M
ε .

Lemma 1. Assume that N ≥ N0, where

N0

lnN0
≥ 4τ2

α∗

α
, (10)

αN0

2
≥
∥∥b∥∥∞ and

(∥∥b∥∥∞ +Δt−1
)
≤ 2kN2

0

ln2N0

, (11)

where k =
(
1/8τ1

)2
. Then if the mesh function Z satisfies Z ≥ 0 on ΓN,M

ε , then

LN,M
hyb Z ≥ 0 in GN,M

ε implies that Z ≥ 0 at each point of G
N,M

ε .

Finally, applying the discrete minimum principle with a suitable barrier func-
tion one can obtain the following stability result. This implies the uniqueness of
the numerical solution.
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Lemma 2. Let U be the solution of (8) and the assumptions (10) and (11) of
Lemma 1 hold. Then we have the following stability bound

∥∥U∥∥∞,G
N,M
ε

≤
∥∥U∥∥∞,ΓN,M

ε
+

(1 + T )

μ

∥∥f̃hyb∥∥∞,G
N,M
ε

,

where μ = min
{
1, α/(1− ξ)

}
.

It is to be noted that the detailed error analysis of the proposed numerical
scheme will be carried out in our working paper [3].

3 Numerical Results

In this section, we present the numerical results obtained by the newly proposed
scheme (5). To do this, we conduct the numerical experiments for the following

test example on the piecewise-uniform rectangular mesh G
N,M

ε . In all the cases,
the numerical experiments are performed by choosing the constant τ1 = τ2 = 2.4,
α = 0.9 and Δt = 0.8/N , otherwise it is mentioned.

Example 1. Consider the following mixed parabolic-elliptic IBVP:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− ε

∂2u

∂x2
= exp(t/2)sin(πx)

(
0.5 + επ2

)
, (x, t) ∈ (0, 0.5) × (0, 1],

−ε
∂2u

∂x2
− ∂u

∂x
= π exp(t/2)

(
sin(πx) + επ cos(πx)

)
, (x, t) ∈ (0.5, 1)× (0, 1],

[u(x, t)] = 0,

[
∂u(x, t)

∂x

]
= 0, at x = 0.5,

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, u(0, t) = u(1, t) = exp(t/2), 0 < t ≤ 1,

(12)

where ϕ(x) is the solution of the corresponding stationary problem such that
ϕ(0) = ϕ(1) = 1. Then the exact solution is u(x, t) = exp(t/2)ϕ(x). As the
exact solution of the IBVP (12) is known, for each ε, we calculate the maximum
point-wise error by

eN,Δt
ε = max

(xi,tn)∈G
N,M
ε

∣∣∣∣u(xi, tn)− UN,Δt(xi, tn)

∣∣∣∣,
where u(xi, tn) and UN,Δt(xi, tn) respectively denote the exact and the numer-

ical solution obtained on the mesh G
N,M

ε with N mesh intervals in the spatial
direction and M mesh intervals in the t-direction such that Δt = T/M is the
uniform time step. In addition, we determine the corresponding order of conver-
gence by

pN,Δt
ε = log2

(
eN,Δt
ε

e
2N,Δt/2
ε

)
.
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Fig. 1. Numerical solution at time t = 1, N = 128 for Example 1

Table 1. Maximum point-wise errors and the corresponding order of convergence for
Example 1

ε Number of mesh intervals N

32 64 128 256 512

1 1.2118e-2 5.4202e-3 2.5673e-3 1.2487e-3 6.1576e-4

1.1607 1.0781 1.0399 1.0200

10−2 5.3114e-2 2.7075e-2 1.1657e-2 3.7649e-3 1.0985e-3

0.9720 1.2158 1.6305 1.7771

10−4 2.7781e-2 1.3763e-2 5.2540e-3 1.7853e-3 5.8644e-4

1.0133 1.3893 1.5573 1.6061

10−5 2.7934e-2 1.3900e-2 5.3205e-3 2.0099e-3 7.4457e-4

1.0070 1.3854 1.4044 1.4327

10−6 2.7974e-2 1.3935e-2 5.3388e-3 2.0202e-3 7.4851e-4

1.0053 1.3842 1.4020 1.4324

eN,Δt 5.3114e-2 2.7075e-2 1.1657e-2 3.7649e-3 1.0985e-3

pN,Δt 0.9720 1.2158 1.6305 1.7771
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Table 2. Maximum point-wise errors and the corresponding order of convergence cal-
culated for Example 1 by taking M = N2

N boundary layer left outer interior layer right outer

region region region region

[0, σ1) [σ1, ξ − σ1] (ξ − σ1, ξ + σ2) [ξ + σ2, 1]

ε = 1

64 8.9116e-4 3.1684e-3 5.4344e-3 5.4990e-3

1.0512 1.1676 1.0773 1.0783

128 4.3005e-4 1.4105e-3 2.5754e-3 2.6043e-3

1.0324 1.0895 1.0386 1.0392

256 2.1025e-4 6.6284e-4 1.2537e-3 1.2673e-3

1.0180 1.0463 1.0193 1.0198

ε = 10−4

64 1.2202e-2 5.5484e-5 1.1630e-2 1.3270e-3

1.5191 2.1120 1.5062 1.9769

128 4.2572e-3 1.2835e-5 4.0941e-3 3.3712e-4

1.6975 2.0694 1.7439 1.9511

256 1.3125e-3 3.0580e-6 1.2224e-3 8.7187e-5

1.9887 2.0011 2.0608 1.9037

ε = 10−6

64 1.2200e-2 4.6652e-4 1.1802e-2 1.3245e-3

1.5191 1.8868 1.4983 1.9999

128 4.2568e-3 1.2615e-4 4.1775e-3 3.3113e-4

1.5283 2.0903 1.5285 1.9995

256 1.4758e-3 2.9625e-5 1.4481e-3 8.2811e-5

1.6390 2.4329 2.0773 1.9989

Now, for each N and Δt, we define eN,Δt = max
ε

eN,Δt
ε as the ε-uniform maxi-

mum point-wise error and the corresponding local ε-uniform order of convergence
is defined by

pN,Δt = log2

(
eN,Δt

e2N,Δt/2

)
.

The computed maximum point-wise errors eN,Δt
ε and the corresponding order

of convergence pN,Δt
ε for Example 1 are precisely presented in Table 1 for ε =

1, 10−2, 10−4, 10−5, 10−6. Clearly, from the results given in Table 1 we observe
that the computed ε-uniform errors eN,Δt decrease monotonically as N increases.
This ensures that the proposed scheme (5) is ε-uniformly convergent. Despite
this, for clarity of the presentation the presence of interior layers near the point
of discontinuity x = 0.5 and that of the boundary layer at x = 0 in the numerical
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solution of the IBVP (12) have been displayed in Figure 1, as the parameter ε
decreases.

Moreover, in order to justify the spatial order of convergence, we carried out
the numerical experiments by taking M = N2 and also displayed the computed
maximum point-wise errors as well as the corresponding order of convergence
for ε = 1, 10−4, 10−6 in Table 2. This in fact shows that the proposed scheme
(5) is second-order spatial accurate outside the layer regions and almost second-
order spatial accurate inside the layer regions, irrespective of the perturbation
parameter ε (however small it may be). It is to be noted that as it can be
proved theoretically that the method converges uniformly with almost second-
order spatial accuracy provided ε ≤ C0N

−1 for some fixed constant C0, so for
large value of ε the method merely shows first-order convergence in space.

4 Conclusion

In this article, an efficient hybrid numerical scheme has been proposed to solve a
class of singularly perturbed mixed parabolic-elliptic problems using a piecewise-
uniform Shishkin mesh resolving both boundary and interior layers. Through
a precise stability analysis it has been shown that the proposed scheme is ε-
uniformly stable, which leads to the uniqueness of the numerical solution. Fur-
ther, we have experimented computationally through a test example that the
hybrid scheme is ε-uniformly convergent and is of almost second-order accurate
with respect to the spatial variable. Therefore, looking towards the accuracy and
the ε-uniform convergence of the proposed scheme, it can be naturally concluded
that a rigorous theoretical analysis of the proposed scheme can be pursued fur-
ther as a challenging and interesting work to support the above computational
analysis.
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Numerical Experiments with a Shishkin

Numerical Method for a Singularly Perturbed
Quasilinear Parabolic Problem with an Interior

Layer
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Glasnevin, Dublin 9, Ireland

Abstract. In Russ. Acad. Dokl. Math., 48, 1994, 346–352, Shishkin pre-
sented a numerical algorithm for a quasilinear time dependent singularly
perturbed differential equation, with an internal layer in the solution. In
this paper, we implement this method and present numerical results to
illustrate the convergence properties of this numerical method.

Keywords: Singularly Perturbed, Shishkin mesh, Interior Turning Point.

1 Introduction

In [1], Shishkin presented a computational algorithm for a class of time-dependent
quasilinear singularly perturbed differential equations, whose solutions contain
an internal shock layer. The algorithm involves approximating the location of
the shock layer, for all values of time, and splitting the global problem into two
time dependent boundary turning point problems at the approximate shock lo-
cation. The method outlined in the algorithm to approximate the shock location
is intricate. A discrete approximation of the shock layer location is constructed
to generate a smooth curve in time. No numerical experiments were presented
in [1] to illustrate the details of the algorithm in practice. In [1], for sufficiently
small values of the perturbation parameter, error bounds are presented in two
cases. In the first case, a pointwise error bound of order 0.2 was established in a
neighbourhood away from the approximate shock location. In the second case,
a theoretical error bound of order 0.2 was established in a neighbourhood of the
approximate shock location. The bound in the second case is theoretical since it
requires knowledge of the exact shock location, which remains unknown.

In this paper, we implement the algorithm described in [1], as it applies to
a one-dimensional time dependent singularly perturbed parabolic problem. The
resulting numerical output indicates that the numerical algorithm in [1] is indeed
practical and, in the main, the numerical results also support the theoretical error
bounds established in [1].
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2 Outline of the Shishkin Algorithm

We describe the algorithm as it is applied to a sub-class of the problem class
considered in [1]. We make minor modifications below for practical purposes to
ease implementation. For a notable modification, a note is given to inform the
reader. Consider the following problem class on the domain G = Ω × (0, T ],
Ω = (0, 1), Γ = (0, T ); Find yε such that(

ε
∂2

∂x2
− 2yε

∂

∂x
− b− ∂

∂t

)
yε(x, t) = f(x, t), (x, t) ∈ G,

yε(0, t) = A > 0, yε(1, t) = B < 0, t ∈ [0, T ],

yε(x, 0) = uε(x), x ∈ Ω, b(x, t) � 0, (x, t) ∈ Ḡ,

(Pε)

where uε(0) = A, uε(d) = 0, uε(1) = B and uε exhibits an ε-dependent interior
layer at d for some d ∈ (0, 1). On either side of d, the initial condition uε(x) can
be decomposed into a regular component v and a layer component w. On the
interval [0, d], uε = vL + wL and on [d, 1], uε = vR + wR, where vL, vR and a
sufficient number of their derivatives are bounded independently of ε. Also it is
assumed

|w(k)
L(R)(x)| � Cε−ke−C

|d−x|
ε , 1 � k � 5, x ∈ [0, d] ([d, 1]). (2.1)

Furthermore, it is assumed that vL and vR are well defined over [0, 1]. We will
use an explicit initial condition in our numerical experiment in Section 3 and
hence know vL and vR explicitly.

The algorithm specifies the use of a simple difference scheme in the case when
ε > (N−2/5+M−2/5) and a non-trivial scheme otherwise. If ε > (N−2/5+M−2/5)
then we discretise the parabolic problem (Pε) on a uniform grid as follows: Find
Yε such that

(εD−
x D

+
x Yε −D−

x Y
2
ε −D−

t Yε − bYε)(xi, tj) = f(xi, tj), (xi, tj) ∈ GN,M ,

Yε(0, tj) = A, Yε(1, tj) = B, tj ∈ Γ̄M , Yε(xi, 0) = uε(xi), xi ∈ ΩN ,
(PN,M

ε )

where Ω̄N = Ω̄ ∩ {xi|xi = i
N , i = 0, . . . , N}, ΩN = Ω ∩ Ω̄N , Γ̄M =

Γ̄ ∩ {tj |tj = j
M , j = 0, . . . ,M}, ΓM = Γ ∩ Γ̄M , ḠN,M = Ω̄N × Γ̄M ,

GN,M = G ∩ ḠN,M . In [1], Shishkin presents the pointwise error bound
|(yε − Yε)(xi, tj)| � C(N−1/5 + M−1/5) for ε > (N−2/5 + M−2/5). Note that
throughout the paper, D−

x , D
+
x and D−

t denote the standard backward and for-
ward difference operators in space and time i.e. for any mesh function Z(xi, tj),
we have D−

x Z(xi, tj) := (Z(xi, tj) − Z(xi−1, tj))/(xi − xi−1), D
+
x Z(xi, tj) :=

D−
x Z(xi+1, tj) and D

−
t Z(xi, tj) = (Z(xi, tj)− Z(xi, tj−1))/(tj − tj−1).

If ε � (N−2/5 +M−2/5) then we follow the algorithm outlined below. There
exists a function s(t) for which yε(s(t), t) = 0, (s(t), t) ∈ Ḡ. A transition layer
appears in the vicinity of s(t) for all t ∈ [0, T ]. Consider the following reduced
left and right boundary initial value problems:
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(−2yL
∂

∂x
− ∂

∂t
− b)yL(x, t) = f(x, t), (x, t) ∈ (0, 1]× (0, T ], (2.2a)

yL(0, t) = A, t ∈ [0, T ], yL(x, 0) = vL(x), x ∈ (0, 1] ∩Ω, (2.2b)

(−2yR
∂

∂x
− ∂

∂t
− b)yR(x, t) = f(x, t), (x, t) ∈ [0, 1)× (0, T ], (2.2c)

yR(x, 0) = vR(x), x ∈ [0, 1) ∩Ω, yR(1, t) = B, t ∈ [0, T ]. (2.2d)

Define the reduced solution of (Pε) for all t ∈ [0, T ] to be

y0(x, t) := (yL + yR)(x, t). (2.3)

The leading term of the asymptotic expansion of the transition layer location
s(t) is the solution, s0, of the nonlinear initial value problem

s′0(t) = y0(s0(t), t), t ∈ (0, T ], s0(0) = d. (2.4)

In [1], Shishkin states that

|s(t)− s0(t)| � Cε ln(1/ε). (2.5)

We detail the construction of s∗(t) (in (2.12)), an approximation to s0, below.
However, to keep the continuous and discrete subproblems separate in our pre-
sentation, we skip to the application of s∗(t): we apply the transform ξ(x, t) =
1
2 (1+μ(x, t)(x−s∗(t))), μ(x, t) = 1/s∗(t) for x � s∗(t) and μ(x, t) = 1/(1−s∗(t))
for x > s∗(t) to the domains G and Ω. The problem (Pε) is transformed to the
following problem:(
1

κ21

[
ε
∂2

∂ξ2
+ κ1(κ2s

∗′(t)− 2ỹ±ε )
∂

∂ξ

]
− b̃− ∂

∂t

)
ỹ±ε (ξ, t) = f̃(ξ, t), (ξ, t) ∈ G̃±,

ỹ−ε (ξ, 0) = ũε(ξ), ξ ∈ (0, 12 ), ỹ+ε (ξ, 0) = ũε(ξ), ξ ∈ (0, 12 ),

ỹ−ε (0, t) = A, ỹ−ε (12 , t) = 0, ỹ+ε (
1
2 , t) = 0, ỹ+ε (1, t) = B, t ∈ [0, T ],

G̃+ = ((0, 12 )× [0, T ]) ∩ G̃, G̃− = ((12 , 1)× [0, T ]) ∩ G̃,

κ1 = κ(s∗(t)), κ2 = κ(ξ), κ(λ) =

{
2λ, ξ < 1

2 ,
2(1− λ), ξ > 1

2 ,
,

(P̃ε)

where G̃ is the transformed domain ξ(G) and the notation
g̃(ξ, t) := g(x−1(ξ, t), t).

Note 1. The transformation proposed in [1] is ξ(x, t) = 1
2 (1 + x − s∗(t)). That

is, with μ(x, t) = 1, which maps s∗(t) �→ 1
2 for all t. However, this transfor-

mation does not generate a rectangular computational domain, which would be
ideal to solve the corresponding discrete problem. Hence we modify the original
prescribed transformation.
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We now give details of the discretisations of (2.2)-(2.4) and of the transformed
problem (P̃ε). Denote N and M as the space and time discretisation parameters
respectively. Discretising (2.2), we solve the following reduced left and right
discrete boundary initial value problems:

(−2YLD
−
x −D−

t − b)YL(xi, tj) = f(xi, tj), (2.6a)

(xi, tj) ∈ ((0, 1] ∩ Ω̄N )× Γ̄M , (2.6b)

YL(0, tj) = A, tj ∈ Γ̄M , YL(xi, 0) = vL(xi), xi ∈ (0, d] ∩ΩN , (2.6c)

(−2YRD
+
x −D−

t − b)YR(xi, tj) = f(xi, tj), (2.6d)

(xi, tj) ∈ ([0, 1) ∩ Ω̄N )× Γ̄M , (2.6e)

YR(xi, 0) = vR(xi), xi ∈ [d, 1) ∩ΩN , YR(1, tj) = B, tj ∈ Γ̄M . (2.6f)

Define the discrete reduced solution for all tj ∈ Γ̄M to be

Y0(η, tj) := (YL + YR)(xi, tj) for all η ∈ [xi, xi+1), xi ∈ Ω̄N . (2.7)

Next, we discretise (2.4) and solve for SM
0 , a discrete approximation to s0, where

D−SM
0 (tj) = Y0(S

M
0 (tj), tj), tj ∈ Γ̄M \ t0, SM

0 (0) = d. (2.8)

Note 2. Later, for practical purposes, we need to define SM
0 beyond T . We extend

Y0 to Ȳ0 s.t Ȳ0(η, tj) = Y0(η, tj), tj � T , tj ∈ Γ̄M and Ȳ0(η, t) = Y0(η, T ), t > T .
This is suitable assuming YL and YR have reached steady-state by time T . We
can then continue to solve iteratively for SM

0 beyond T as far as required on the
extended mesh

Γ̄+ := Γ̄
M
2 ∪ {ti+M = T/Mi | i = 1, 2, 3, . . .}. (2.9)

The algorithm now performs a “smoothing” routine on SM
0 to retrieve a con-

tinuous function s∗(t). Construct the piecewise constant function s̄ as follows

s̄(η) =

{
d, η � 0

SM
0 (tj), η ∈ (tj−1, tj] ⊂ Γ̄+.

(2.10)

The algorithm requires the construction of a “piecewise-quadratic, nonnegative,
compactly supported function”, ω, with support on the set [−L,L], L = 1√

M
,

with ω ∈ C1(−L,L) and
∫ L

−L
ω(χ) dχ = 1 where M is the time discretisation

parameter. An example of such a function is

ω(χ) =

⎧⎪⎪⎨⎪⎪⎩
2
L3 (χ+ L)2, χ ∈ [−L,−L

2 ),

− 2
L3χ

2 + 1
L , χ ∈ [−L

2 ,
L
2 ),

2
L3 (χ− L)2, χ ∈ [L2 , L].

(2.11)

The function s∗ is then constructed as follows

s∗(t) =

∫ t+L

t−L

s̄(η)ω(η − t) dη, t ∈ [0, T ]. (2.12)
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Note that s∗(0) �= d. In [1], Shishkin states that

|s(t)− s∗(t)| � C(N−1/3 ln(N) +M−1/3 ln(N)).

The integral in (2.12) can be solved exactly by integrating over each subinterval
(tj−1, tj) (2.10).

Remark 1. The reason why we extend the definition of SM
0 is so that s∗(T ) and

s∗′(T ) are well defined.

We discretise (P̃ε) as follows:(
1
κ2
1

[
εDS1

ξ D−S1

ξ Ỹ ±
ε + κ1(κ2s

∗′(tj)D
S2

ξ Ỹ ±
ε −DS1

ξ (Ỹ ±
ε )2)

]
−b̃−D−

t Ỹ
±
ε

)
(ξi, tj) = f̃(ξi, tj), (ξi, tj) ∈ G̃

N
2 ,M±,

DS1

ξ =

{
D−

ξ , ξi � 1
2 ,

D+
ξ , ξi >

1
2 ,

D−S1

ξ =

{
D+

ξ , ξi � 1
2 ,

D−
ξ , ξi >

1
2 ,
, DS2

ξ = D
sgn(κ1κ2s

∗′(tj))
ξ ,

G̃
N
2 ,M+ = G̃+ ∩ (Ω

N
2

L × Γ̄M ), G̃
N
2 ,M− = G̃− ∩ (Ω

N
2

R × Γ̄M ),

θ > 1
5‖yL − yR‖, κ1 = κ(s∗(tj)), κ2 = κ(ξi),

Ỹ −
ε (0, tj) = A, Ỹ ±

ε (12 , tj) = 0, Ỹ +
ε (1, tj) = B, tj ∈ Γ̄M ,

Ỹ ±
ε (ξi, 0) = u∗ε(ξi), ξi ∈ Ω

N
2

L\R,

(P̃N,M
ε )

where the meshes Ω
N
2

L and Ω
N
2

R are defined by

Ω̄
N/2
L =

{
xi
xi =

4(1/2−σ)
N i, 0 � i � N

4 ,
xi =

1
2 − σ + 4σ

N (i− N
4 ),

N
4 < i � N

2 ,

}
, (2.13)

Ω̄
N/2
R =

{
xi
xi =

1
2 + 4σ

N i, 0 � i � N
4 ,

xi =
1
2 + σ + 4(1/2−σ)

N (i− N
4 ),

N
4 < i � N

2 ,

}
, (2.14)

σ = min{ 1
4 , θε logN}, Ω

N/2
L\R = Ω̄

N/2
L\R \ {x0, xN}, θ > 0.2|A−B|. (2.15)

In [1], u∗ε is not necessarily the initial condition uε of (Pε) under the transform
ξ but is prescribed as any function “somehow constructed” such that |(u∗ε −
ũε)(ξi)| � C(N−1 +M−1).

Remark 2. If x̃i ∈ Ω is such that x̃i = ξ−1(ξi) and Z is the inverse transform of
Ỹ ±
ε , that is Z(x̃i, tj) = Ỹ ±

ε (ξ−1(ξi), tj), then the error bounds presented in [1]
for ε � (N−2/5 +M−2/5) can be described as follows. For all x̃i ∈ Ω such that
|x̃i − s∗(t)| � C > 0, the following pointwise error bound holds:

|(yε − Z)(x̃i, tj)| � C(N−1/5(lnN)1/2 +M−1/5(lnM)1/2).

For all x̃i ∈ Ω such that |x̃i − s∗(t)| � C, the following error bound holds:

|yε(x̃i + (s(t)− s∗(t)), tj)− Z(x̃i, tj)| � C(N−1/5(lnN)1/2 +M−1/5(lnM)1/2).
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3 Numerical Example

As a sample initial condition for (Pε), we take the following choice:

uε(x) = uε(x; d) =

{
(A− x) tanh((d− x)/ε)/ tanh(dε ), x � d,

(B + 1− x) tanh((x − d)/ε)/ tanh(1−d
ε ), x > d.

(3.1)

Thus we take vL(x) = A− x and vR(x) = B + 1− x.
For the discrete problem (PN,M

ε ), we choose as an initial condition, u∗ε(ξi) =
ũε(ξi; s

∗(0)). That is uε(x; s
∗(0)) as defined in (3.1) under the transform ξ. Note

that since ξ : s∗(0) �→ 1
2 , this choice ensures u∗ε(

1
2 ) = 0 whereas ũε(

1
2 ; d) �= 0.

From the definition of s∗ in (2.12), s∗(0) → d as M → ∞ since L → 0. Hence ω
tends to the δ-function as M → ∞. In this experiment, we do not establish the
rate, in terms of N and M , at which uε(x; s

∗(0)) converges to uε(x; d).
In this example we solve (PN,M

ε ) and (P̃N,M
ε ) with b(x, t) = 2x, f(x, t) =

sin(4x), A = −B = 3, d = 0.5 and T = 1. We choose θ = 1
4 |A−B| in (P̃N,M

ε ). A
plot of SM and s∗ is included in Figure 1(a) along with a graph of a numerical
solution of (P̃N,M

ε ) with the transform ξ reversed in Figure 1(c). We also include
a plot of s∗ for T = 6 computed using N = M = 1024 for a range of values
of d, with all other problem data the same, in Figure 2(b). In Figure 2(b), we
observed that s∗(t) tends to a constant value as t → ∞ and this constant is
independent of the location d of the layer in the initial condition.

We solve for UN
ε (zi, tj) for (zi, tj) ∈ Λ̄N where if ε > N−2/5 +M−2/5 then

Λ̄N := ḠN,M , UN
ε (zi, tj) := Yε(zi, tj),

and if ε � N−2/5 +M−2/5 then

Λ̄N := G̃
N
2 ,N−

∪ G̃
N
2 ,N+

, UN
ε (zi, tj) :=

{
Ỹ −
ε (zi, tj), zi � 1

2 ,

Ỹ +
ε (zi, tj), zi >

1
2 .

Table 1. Computed rates RN
ε for sample values of N and ε

RN
ε

ε N=64 N=128 N=256 N=512 N=1024 N=2048

2−0 0.94 0.85 0.94 0.96 0.97 0.99
2−1 0.51 0.71 0.84 0.91 0.96 0.98
2−4 0.94 0.84 0.94 0.96 0.98 .
2−5 0.29 0.28 0.84 0.93 0.97 0.98
2−6 0.39 0.47 0.56 0.78 0.78 0.82
2−7 0.39 0.47 0.56 0.78 0.78 0.82
2−8 0.39 0.47 0.56 0.78 0.78 0.82
...

...
...

...
...

...
2−20 0.43 0.47 0.56 0.78 0.78 0.82

RN 0.59 0.35 0.83 0.78 0.78 0.82
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Fig. 1. Graphs: (a) Plot of t versus SM and t versus s∗(t) for N = M = 32 over
t ∈ [0, T ].; (b) Plot of t versus s∗(t) for N = M = 1024 over t ∈ [0, 6] for d =
0.1, 0.2, · · · , 0.9.; (c) Numerical Solution of (P̃N

ε ) under reverse of transform ξ for ε =
2−10 and N =M = 128

Here Yε is the solution of (PN,N
ε ) defined over the grid ḠN,N and Ỹ ±

ε are the

numerical solutions of (P̃N,N
ε ) over the grids G̃

N
2 ,N±

, all using N and M mesh
intervals in space and time respectively with N=M .

Note the following linearisations we use to solve the nonlinear discrete prob-
lems. We replace (YLD

−
x YL)(xi, tj) with YL(xi−1, tj)D

−
x YL(xi, tj) in (2.6a), we

linearise (YRD
+
x YR)(xi, tj) in (2.6d) analogously. We replace D−

ξ (Ỹ
+
ε )2(ξi, tj) in

(P̃N,N
ε ) with (Ỹ +

ε (ξi, tj−1) + Ỹ +
ε (ξi−1, tj−1))D

−
ξ Ỹ

+
ε (ξi, tj).
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We linearise D+
ξ (Ỹ

−
ε )2(ξi, tj) in (P̃N,N

ε ) and (D−
x Yε

2) in (PN,M
ε ) analogously.

We replace Y0(S
M
0 (tj), tj) in (2.8) with Y0(S

M
0 (tj−1), tj).

We compute differences DN
ε and rates RN

ε for various values of N and ε
presented in Table 1 where

DN
ε := max

(zi,tj)∈ΛN

tj�0.05

|(UN
ε − Ū2N

ε )(zi, tj)|, DN := max
ε

DN
ε , (3.2a)

RN
ε := log2

DN
ε

D2N
ε

and RN := log2
DN

D2N , (3.2b)

where Ū2N
ε is the interpolation of U2N

ε onto the grid ΛN . Note that in our
experiments, we did not observe convergence of (UN

ε − Ū2N
ε )(zi, tj) in a small

region after t0 = 0. We compute the differences for all time tj � 0.05 as in (3.2a).
Note that in Table 1, entries in the rows for ε = 2−2, 2−3 and 2−4 have been
excluded, because over this parameter range of (ε, N), two separate numerical
algorithms are implemented either side of the constraint ε = N−0.4. The bound
in (2.5) is insufficient for such high test values of ε. The computed rates of uni-
form convergence RN indicate a positive rate of convergence for this particular
example over the range of test values for ε and N .

Reference

1. Shishkin, G.I.: Difference approximation of the Dirichlet problem for a singularly
perturbed quasilinear parabolic equation in the presence of a transition layer. Rus-
sian Acad. Sci. Dokl. Math. 48(2), 346–352 (1994)
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Abstract. Variance-based sensitivity analysis approach has been pro-
posed for studying of input parameters’ error contribution into the out-
put results of a large-scale air pollution model, the Danish Eulerian
Model, in its unified software implementation, called UNI-DEM. A three-
stage sensitivity analysis algorithm, based on analysis of variances tech-
nique (ANOVA) for calculating Sobol global sensitivity indices and
computationally efficient Monte Carlo integration techniques, has re-
cently been developed and successfully used for sensitivity analysis study
of UNI-DEM with respect to several chemical reaction rate coefficients.

As a first stage it is necessary to carry out a set of computationally
expensive numerical experiments and to extract the necessary multidi-
mensional sets of sensitivity analysis data. A specially adapted for that
purpose version of the model, called SA-DEM, was created, implemented
and run on an IBM Blue Gene/P supercomputer, the most powerful par-
allel machine in Bulgaria. Its capabilities have been extended to be able
to perturb the 4 different input data sets with anthropogenic emissions
by regularly modified perturbation coefficients. This is a complicated and
challenging computational problem even for such a powerful supercom-
puter like IBM BlueGene/P. Its efficient numerical solution required opti-
mization of the parallelization strategy and improvements in the memory
management. Performance results of some numerical experiments on the
IBM BlueGene/P machine will be presented and analyzed.

1 Introduction

The Danish Eulerian Model (DEM) [11] is a large-scale air pollution model,
used to calculate the concentrations of various dangerous pollutants and other
relevant chemical species over a large geographical region (4800 × 4800 km),

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 428–436, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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including whole Europe, the Mediterranean and neighbouring to them parts of
Asia and Africa. The model takes into account the main physical and chemical
processes between these species, the actual meteorological conditions, emissions,
etc.. Among the input data sets of the Danish Eulerian Model, the anthropogenic
emissions are some of the most important and expensive to be evaluated pre-
cisely. On the other hand, strong and costly measures are recently being taken
in most developed countries to cut off these emissions, which results in a stable
trend to reduction (with uneven rate for the different countries and species). That
is why it is important to know with more certainty the effect of various emission
changes on the expected output concentrations and particularly on those of the
most dangerous pollutants. The sensitivity analysis study subject to this paper
would help us to get more definite answers to that sort of questions.

The general concept of sensitivity analysis is described briefly in Section 2.
The Danish Eulerian Model and some features of its software implementation
are described in Section 3. In Section 4 its sensitivity study with respect to the
input emissions and the specially developed for the purpose SA-DEM version
are discussed. Some numerical experiments, performance and scalability results
obtained on the IBM BlueGene/P, are presented in Section 5. Finally, some
conclusions are drawn.

2 Sensitivity Analysis Concept - Sobol Approach

Sensitivity analysis (SA) is the study of how much the uncertainty in the input
data of a model (due to any reason: inaccurate measurements or calculation,
approximation, data compression, etc.) is reflected in the accuracy of the output
results [8]. Two kinds of sensitivity analysis are present in the existing literature,
local and global. Local SA studies how much some small variations of inputs
around a given value can change the value of the output. Global SA takes into
account all the variation range of the input parameters, and apportions the
output uncertainty to the uncertainty in the input data. Subject to our study in
this paper is the global sensitivity analysis.

Several sensitivity analysis techniques have been developed and used through-
out the years [8]. In general, these methods rely heavily on special assumptions
connected to the behaviour of the model (such as linearity, monotonicity and ad-
ditivity of the relationship between input and output parameters of the model).
Among the quantitative methods, variance-based methods are most often used.
The main idea of these methods is to evaluate how the variance of an input or
a group of inputs contributes to the variance of model output.

Assume that a model is represented by the model function u = f(x), where
the input parameters x = (x1, x2, . . . , xd) ∈ Ud ≡ [0, 1]d are independent (non-
correlated) random variables with a known joint probability distribution function.
In this way the output u becomes also a random variable (as a function of the
random vector x) and let E be its mathematical expectation. Let D[E(u|xi)] be
the variance of the conditional expectation of u with respect to xi and Du - the
total variance according to u. This indicator is called first-order sensitivity index
by Sobol [9] or sometimes correlation ratio.
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Total Sensitivity Index (TSI) [9] of xi, i ∈ {1, . . . , d} is the sum of the
complete set of mutual sensitivity indices of any order:

Stot
xi

= Si +
∑
l1 	=i

Sil1 +
∑

l1,l2 	=i,l1<l2

Sil1l2 + . . .+ Sil1...ld−1
(1)

where Sil1...lj−1 is jth order sensitivity index for xi (1 ≤ j ≤ d), Si is called the
main effect of xi. In most practical problems the high dimensional terms can
be neglected, reducing significantly the number of summands in (1).

The Sobol approach, used in the current study, is based on a unique decom-
position of the model function into orthogonal terms (summands) of increasing
dimension and zero means. Its main advantage is computing in an uniform way
not only the first order indices, but also those of higher order (in a similar way
as the main effects are computed). The total sensitivity index can then be cal-
culated with one Monte Carlo integral per factor [10]. A comparison with other
techniques for global SA, used to study the variability of DEM output has been
presented in [1].

3 The Danish Eulerian Model

In this section we describe shortly the Danish Eulerian Model (DEM) [11] and its
current production version UNI-DEM. It is mathematically represented by the
following system of partial differential equations, in which the unknown concen-
trations of a large number of chemical species (pollutants and other chemically
active components) take part. The main physical and chemical processes (ad-
vection, diffusion, chemical reactions, emissions and deposition) are represented
in that system.

∂cs
∂t

= −∂(ucs)

∂x
− ∂(vcs)

∂y
− ∂(wcs)

∂z
+

+
∂

∂x

(
Kx

∂cs
∂x

)
+

∂

∂y

(
Ky

∂cs
∂y

)
+

∂

∂z

(
Kz

∂cs
∂z

)
+ (2)

+ Es +Qs(c1, c2, . . . cq)− (k1s + k2s)cs, s = 1, 2, . . . q ,

where q is the number of equations (equals to the number of chemical species and
groups of species, represented separately in the chemical scheme of the model);

– cs – the concentrations of the chemical species;
– u, v, w – the wind components along the coordinate axes;
– Kx, Ky, Kz – diffusion coefficients;
– Es – the emission functions in the domain;
– k1s, k2s – dry / wet deposition coefficients;
– Qs(c1, c2, . . . cq) – non-linear functions describing the chemical reactions be-

tween species under consideration.
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3.1 Splitting into Submodels

This huge and rather complicated computational problem is not suitable for
direct numerical treatment. For this purpose it is necessary to split it into sub-
models in accordance with the main physical and chemical processes in the
atmosphere. The most straightforward sequential splitting [4] is used by now in
the production version of the model, although other splitting methods have also
been considered and implemented in some experimental versions [3]. Applying
the sequential splitting scheme, the above system (2) can be decomposed into
three submodels, defined by the following equations:

∂cs
∂t

= −∂(ucs)

∂x
− ∂(vcs)

∂y
+

∂

∂x

(
Kx

∂cs
∂x

)
+

∂

∂y

(
Ky

∂cs
∂y

)
hor. advection
& diffusion

∂cs
∂t

= Es +Qs(c
(2)
1 , c

(2)
2 , . . . c(2)q )− (k1s + k2s)cs

chemistry, emissions
& deposition

∂cs
∂t

= −∂(wcs)

∂z
+

∂

∂z

(
Kz

∂cs
∂z

)
vertical transport

Spatial and time discretization of the above submodels on the EMEP1 grid
or its refinements (see Table 1) makes each of them a huge computational task,
challenging for the most powerful supercomputers available nowadays. That is
why the parallelization has always been a highly important issue in the computer
implementation of DEM since its very early stages. A coarse-grain parallelism,
based on partitioning of the spatial domain, is usually the primary parallelization
strategy in the computer implementation of DEM. It was shown to be very
efficient and well-balanced on widest class of nowadays parallel machines. Other
parallelizations are also possible and suitable to certain classes of supercomputer
platforms [6,7].

3.2 UNI-DEM Package and Some Essential Implementation
Features

The development and improvements of DEM throughout the years has lead to
a variety of different versions with respect to the grid-size/resolution, vertical
layering (2D or 3D model respectively) and the number of species in the chemical
scheme. The most prospective of them have been united in the package UNI-
DEM. By setting a small number of parameters one can select the desired version
in UNI-DEM and its running options. Some of these user-defined parameters and
their optional values are shown in Table 1.

A coarse-grain parallelization strategy based on partitioning of the spatial do-
main in strips or blocks is currently used in UNI-DEM. The recent more advanced
bidirectional block partitioning has been used in the experiments, presented in

1 European Monitoring and Evaluation Programme.
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Table 1. User-determined parameters for selecting an appropriate UNI-DEM version

Parameter Description Optional values

NX = NY Grid size 96× 96 288× 288 480 × 480
(Grid step) (50 km) (16.7 km) (10 km)

NZ # layers (2D/3D) 1 or 10

NEQUAT # chem. species 35, 56 or 168

NSIZE chunk size integer divisor of (NX × NY)

this paper. It is based on partitioning of the horizontal grid into rectangular
blocks and requires communication for boundary values exchange on each time
step. Improving the data locality for more efficient cache utilization is achieved
by using chunks to group properly the small tasks in the chemistry-deposition
stage. The parameter NSIZE (see Table 1) determins the size of the chunks in
dependense with the local cache size of the target machine. It should be chosen
so that the amount of data in a chunk fits entirely in the cache.

4 Sensitivity Analysis of DEM with Respect to the Input
Emissions by Using SA-DEM

Part of the large input data set of DEM are the anthropogenic emissions over
the discretized spatial domain. They are defined as vectors with four different
components E = (EN , EC , ES , EA), given separately in the input data flow.
These components correspond to four different groups of pollutants, i.e.: (i)
nitrogen oxides (NO + NO2); (ii) anthropogenic hydrocarbons; (iii) sulphur
dioxide (SO2); (iv) ammonia (NH3).

Among the huge amount of output data, the mean monthly concentrations
are one of the most commonly used. For the purpose of this particular research
we consider the following pollutants (their mean monthly concentrations, more
precisely said): (i) ozone (O3); (ii) ammonia (NH3) and (iii) ammonium sulphate
and ammonium nitrate (NH4SO4 +NH4NO3). These are taken in 3 grid points
of the computational domain, selected nearest to three European cities with
different climate and level of pollution: Milan, Manchester and Edinburgh.

The full concept of this study can be represented by the scheme in Fig. 1.
More detail on it can be found in [1,5].

The first stage of computations consists of generation of input data necessary
for the particular sensitivity analysis study. In our case this means to perform
a number of experiments with UNI-DEM by doing certain perturbations in the
data for these emissions.

SA-DEM is a modification of UNI-DEM, specially adjusted to be used in the
first stage (see Fig. 1) of our sensitivity analysis studies. It was created initially
for studying sensitivity of DEM with respect to some chemical rate coefficients in
the chemistry submodel [1]. There are additional input parameters in the main
program, allowing the user to make some perturbation of the parameters subject
to sensitivity analysis. Ratios of the following type
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Fig. 1. Stages in the sensitivity studies of UNI-DEM

rs(α) =
cαs (ai, bi)

cbass (ai, bi)
,

are calculated to form the necessary data (model mesh functions) for the par-
ticular SA study, where cαs is the ”perturbed” mean monthly concentration of
some pollutant at some point of the domain, while cαs is the corresponding basic
value (without any perturbation). By now we used it to perform two kinds of
perturbation (with respect to some chemical rate constants and with respect to
the input anthropogenic emissions). A detailed discussion on sensitivity study
of DEM with respect to the input emissions can be found in [2].

SA-DEM includes a new driver routine that automatically generates a set
of tasks in order to produce the necessary results for the particular sensitivity
analysis study. It allows to perform in parallel a large number of experiments (for
different values of α). This is a typical SIMD2 task, if considering the coarsest
possible level of the structure of our algorithm. By using it we introduce a
new, higher level of parallelism in SA-DEM on the top of the grid-partitioning
level, the basis for distributed-memory MPI parallelization in UNI-DEM. Almost
no communications are necessary on this (coarsest) level of parallelism, except
(occationally) synchronization ‘by data’, as certain temporary data files are used
by all the processes. This is implemented (in MPI) mainly by global MPI barriers.
A new communication subroutine is made to split the global communicator
(MPI COMMON WORLD) and to define separate communicators for each of the top-
level parallel tasks. The communicators are very useful on the lower level of
parallelism (where intensive communications are performed on each time-step).

The second level of parallelism in SA-DEM is based on domain decomposition
of the horizontal grid. This is the traditional distributed-memory parallelization

2 Single Instruction Multiple Data, according to Flynn’s taxonomy (1966).
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strategy for UNI-DEM (implemented by MPI library routines). There is some
domain overlapping of the advection-diffusion subproblems, a reason for some
computational overhead. Its relative weight grows up with increasing the number
of MPI tasks. Additional pre-processing and post-processing stages are needed
for scattering the input data and gathering the results (which causes some over-
head too).

Our target hardware, an IBM Blue Gene/P, can optionally offer a limited
amount of shared memory parallelism. In order to exploit it efficiently, we in-
troduced the third (finer-grain) level of parallelism in our algorithm by using
OpenMP standard directives.

5 Scalability Results on the IBM Blue Gene/P

Here we present some execution times and speed-ups, obtained during experi-
ments with the new version of SA-DEM, designed for SA studies with respect
to the input emissions, on the Bulgarian IBM Blue Gene/P supercomputer. The
IBM Blue Gene/P is a large high-performance system with 8192 CPU in total
and peak performance more than 23 TFLOPS. It consists of 2048 compute cards
(nodes), each of them being a quard core PowerPC 450 (4 CPU, 850 MHz, 2 GB
RAM). A compute card is in fact a 4-CPU shared-memory computational unit
with multithreading support via OpenMP. It can be used in 3 different modes:
VN, DUAL and SMP. With respect to the MPI parallelism there are 4 MPI
processes per node in VN mode, 2 - in DUAL mode, and one in VN mode. In
the last two cases the machine offers some limited amount of shared memory
parallelism. It can be exploited on the lowest level in our new 3-level parallel
implementation of SA-DEM.

In accordance with the load managing policy of this machine and in order
not to waste resource, our experiments with SA-DEM start from 20 CPU. Thus,
for the sake of compatibility the speed-up in Table 2 is calculated as follows:

Sp(n) = 20 T (n)
T (20) , where n is the number of processors (given in the first column).

The time and the speed-up (Sp) of the main computational stages and in total
are given in separate columns. The last column contains also the total efficiency
E (in percent), where E = 100 Sp(n)/n%.

The total time includes also the MPI communication time as well as the time
for some I/O procedures, which are not parallelizable. Moreover, the larger the
number of MPI tasks, the more I/O device conflicts arise, which results in a
significant drop-down in the total efficiency. I/O device access appear to be the
performance bottleneck in this case, partially avoided by using the lowest level
OpenMP parallelization (see Table 2). On the other hand, the computational
stages scale pretty well, even the speed-up of the chemistry stage tends to be
slightly superlinear (due to the cache memory effects).
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Table 2. Time (T) in seconds and speed-up (Sp) of SA-DEM for input emissions
perturbation (block-partitioned version) on the IBM Blue Gene/P

Time and speed-up of SA-DEM (MPI+OpenMP) on the IBM Blue Gene/P
(96× 96× 1) grid, 35 species, CHUNKSIZE=48

# MPI p-s × Advection Chemistry TOTAL

CPU OMP thr. MODE T [s] (Sp) T [s] (Sp) T [s] (Sp) E [%]

20 20 × 1 SMP 6650 (20) 27924 (20) 31206 (20) 100%
40 40 × 1 SMP 3595 (37) 13621 (41) 16424 (38) 95%
80 40 × 2 DUAL 1797 (74) 6729 (83) 8790 (71) 89%
160 80 × 2 DUAL 911 (146) 3447 (162) 4334 (144) 90%
240 120 × 2 DUAL 643 (207) 2347 (238) 3448 (181) 75%
320 160 × 2 DUAL 506 (263) 1751 (319) 2916 (214) 67%
480 240 × 2 DUAL 358 (371) 1183 (472) 2517 (248) 52%
640 160 × 4 SMP 218 (609) 875 (638) 1914 (326) 51%
960 480 × 2 DUAL 209 (635) 579 (964) 1846 (338) 35%
960 240 × 4 SMP 153 (867) 585 (955) 1576 (396) 41%
1280 320 × 4 SMP 118 (1125) 440 (1268) 1418 (440) 34%
1920 480 × 4 SMP 94 (1421) 296 (1885) 1308 (477) 25%
2560 640 × 4 SMP 79 (1674) 290 (1924) 1160 (538) 21%
3840 960 × 4 SMP 51 (2595) 147 (3807) 957 (652) 17%

6 Concluding Remarks

The new 3-level parallel implementation of SA-DEM is a high performance tool
for producing sensitivity analysis data, capable to exploit efficiently the compu-
tational power of the large and powerful supercomputer like IBM Blue Gene/P
up to its full capacity.

Chemistry, the most computationally expensive stage of the model, scales
almost perfectly in the whole range of experiments.

Advection stage scales pretty well in most of the experiments, with an ex-
pected modest slow-down in the efficiency. It is due to a significant boundary
overlapping of the domain partitioning when approaching the inherent partition-
ing limitations.

With increasing the number of processors the time for I/O operations becomes
strongly dominant. The problem comes from the insufficient number of I/O
devices compared to the CPU number and other resources of the machine. This
is the reason for the total efficiensy dropdown in the experiments with extremely
high parallelism.
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Abstract. The paper gives a survey of the author’s results on the
grid-based numerical algorithms for solving the evolutionary equations
(parabolic and hyperbolic) with the effect of heredity on a time variable.
From uniform positions we construct analogs of schemes with weights for
the one-dimensional heat conduction equation with delay of general form,
analog of a method of variable directions for the equation of parabolic
type with time delay and two spatial variables, analog of the scheme
with weights for the equation of hyperbolic type with delay. For the one-
dimensional heat conduction equation and the wave equation we obtained
conditions on the weight coefficients that ensure stability on the prehis-
tory of the initial function. Numerical algorithms are implemented in the
form of software package Partial Delay Differential Equations (PDDE)
toolbox.

Keywords: grid-based numerical methods, delay, partial differential
equations, stability, convergence order, software package.

Introduction

The effects of delay of different kinds can arise in many mathematical models de-
scribed by the evolutionary equations of parabolic and hyperbolic types [1]. One
of well-known examples in ecology is the Hutchinson’s equation with diffusion

∂u

∂t
= a2

∂2u

∂x2
+ αu(x, t)(1 − u(x, t− τ)), τ > 0

which can be also considered as the Kolmogorov-Petrovskii-Piskunov equation
with delay. Such equations are difficult for analytical investigations and so the
numerical methods for solving them are of great interest. Variants of the method
of lines reduce the problem under consideration to the problem of numerical
solving the systems of functional differential equations. The algorithms for these
systems are elaborated well enough [2,3], but the main obstacle is the high
stiffness of the systems.

In the paper we consider the methods of discretization both by time and by
spatial independent variables. The methods are based on the idea of separat-
ing the discrete prehystory to the past and the present parts. By present part

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 437–444, 2013.
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(current state of required function) we construct complete analogs of the algo-
rithms known for equations without delay [4]. For accounting the past part we
use the interpolation with specified properties. These constructions lead to the
systems of difference equations with the effect of heredity. The main difficulties
connected with nonlinear dependance of difference equations from prehistory of
discrete model are overcome by proposed earlier approach [3,5] to constructing a
general scheme of numerical solution of functional differential equations, which
allows to investigate local error, stability and convergence of these schemes. Us-
ing a common technique we construct and study the analog of difference scheme
with weights for one-dimensional heat conduction equation with delay of general
type, the analog of alternating direction method for equation of parabolic type
with time delay and two spatial variables, the analog of difference scheme with
weights for hyperbolic equation with delay.

It should be noted that other approaches to constructing numerical methods
for evolutionary functional differential equations were studied in some papers
(see, for example, [6,7]).

1 Heat Conduction Equation with Aftereffect

Let us consider parabolic-type equation with general time delay

∂u

∂t
= a2

∂2u

∂x2
+ f(x, t, u(x, t), ut(x, ·)); (1)

here u(x, t) is the required function, x ∈ [0, X ], t ∈ [0, T ], ut(x, ·) = {u(x, t +
s),−τ ≤ s < 0} is the prehistory for the required function by the time t,
τ is the value of delay. We assume that the functional f(x, t, u, v(·)) is given
on [0, X ] × [0, T ] × R × Q. We denote by Q = Q[−τ, 0) the set of functions
u(s) that are piecewise continuous on [−τ, 0] with a finite number of points of
discontinuity of first kind and right continuous at the points of discontinuity,
‖u(·)‖Q = sup

s∈[−τ,0)

|u(s)|.

Let the initial conditions u(x, t) = ϕ(x, t), x ∈ [0, X ], t ∈ [−τ, 0], and the
boundary conditions u(0, t) = g0(t), u(X, t) = g1(t), t ∈ [0, T ], be given.

We assume that the functional f and the functions g1, g2, ϕ are such that this
problem has a unique solution u(x, t) [1].

Let us make discretization of problem. Let h = X/N, introducing the points
xi = ih, i = 0, . . . , N, and let Δ = T/M, introducing the points tj = jΔ,
j = 0, . . . ,M. We assume that τ/Δ = K is a positive integer. Denote by ui

j

approximations of functions u(xi, tj) at the nodes. For every fixed i = 0, . . . , N,
introduce the discrete prehistory by time tj , j = 0, . . . ,M : {ui

k}j = {ui
k, j−m ≤

k ≤ j}. The interpolation-extrapolation operator is, by definition, the operator
defined on set of all admissible prehistories and acting by the rule I : {ui

k}j →
vi(·) ∈ Q[−τ,Δ]. Ways of creation of operators of interpolation-extrapolation
are considered in [3].
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For 0 ≤ s ≤ 1 consider the family of methods

ui
j+1 − ui

j

Δ
= sa2

ui−1
j+1 − 2ui

j+1 + ui+1
j+1

h2
+(1− s)a2

ui−1
j − 2ui

j + ui+1
j

h2
+F i

j (v
i(·)),
(2)

i = 1, . . . , N − 1, j = 0, . . . ,M − 1

with the initial conditions ui
0 = ϕ(xi, 0), i = 0, . . . , N, vi(t) = ϕ(xi, t), t < 0, i =

0, . . . , N, and the boundary conditions u0j = g0(tj), u
N
j = g1(tj), j = 0, . . . ,M.

Here the functional F i
j (v

i(·)) is defined on Q[−τ,Δ] and related to the func-

tional f(xi, tj , u
i
j, v

i(·)). The functions vi(·) are images under the interpolation-
extrapolation operator.

Denote εij = u(xi, tj)− ui
j , i = 0, . . . , N, j = 0, . . . ,M.

We will say that the method converges if εij → 0 as h → 0 and Δ → 0 for
all i = 0, . . . , N and j = 0, . . . ,M. We will say that the method converges with
order hp +Δq, if there exists a constant C such that |εij | ≤ C(hp +Δq) for all
i = 0, . . . , N and j = 0, . . . ,M.

The residual is, by definition, the grid function

Ψ i
j =

u(xi, tj+1)− u(xi, tj)

Δ
− sa2

u(xi−1, tj+1)− 2u(xi, tj+1) + u(xi+1, tj+1)

h2
−

(1− s)a2
u(xi−1, tj)− 2u(xi, tj) + u(xi+1, tj)

h2
− F i

j (utj (xi, (·))).

Theorem 1. Let the relation

s ≥ 1

2
− 1

4σ
, σ =

a2Δ

h2

holds, the residual has orderΔp1+hp2 , the functionF i
j satisfies Lipschitz condition,

the operator of interpolation-extrapolation I satisfies Lipschitz condition and has
error order Δp0 [3]. Then the method converges with order Δmin {p1,p0} + hp2 .

The proof of this statement is based on a combination of methods of the
general theory of difference schemes [4] and methods of the general scheme of
numerical methods for functional-differential equations [3,5]. This proof is pub-
lished in work [8], concrete algorithms and results of numerical experiments are
given in the same work.

2 Alternating Direction Method

Let us consider two-dimensional parabolic equation with general time delay

∂u

∂t
= a2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ f(x, y, t, u(x, y, t), ut(x, y, ·)), (3)

x ∈ [0, X ], y ∈ [0, Y ], t ∈ [0, T ], ut(x, y, ·) = {u(x, y, t+ s),−τ ≤ s < 0}.
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Let the initial conditions u(x, y, t) = ϕ(x, y, t), x ∈ [0, X ], y ∈ [0, Y ], t ∈
[−τ, 0], and the boundary conditions u(0, y, t) = g0(y, t), u(X, y, t) = g1(y, t), y ∈
[0, Y ], t ∈ [0, T ], u(x, 0, t) = g2(x, t), u(x, Y, t) = g3(x, t), x ∈ [0, X ], t ∈ [0, T ],
be given. We assume that the functional f(x, y, t, u, v(·)) is defined on [0, X ] ×
[0, Y ]× [0, T ]×R×Q.

Let us make discretization of the problem and construct the difference scheme:
hx = X/N1, hy = Y/N2, xi = ihx, i = 0, . . . , N1, yj = jhy, j = 0, . . . , N2,

Δ = T/M , tk = kΔ, k = 0, . . . ,M , τ/Δ = m is integer, u(xi, yj , tk) ≈ ui,j
k ,

{ui,j
l }k = {ui,j

l , k −m ≤ l ≤ k}, I : {ui,j
l }k → vi,j(·) ∈ Q[−τ,Δ],

ui,j

k+ 1
2

− ui,j
k

Δ/2
=

a2

h2x

(
ui+1,j

k+ 1
2

− 2ui,j

k+ 1
2

+ ui−1,j

k+ 1
2

)
+
a2

h2y

(
ui,j+1
k − 2ui,j

k + ui,j−1
k

)
+

F i,j

k+ 1
2

(vi,j(·)),

ui,j
k+1 − ui,j

k+ 1
2

Δ/2
=

a2

h2x

(
ui+1,j

k+ 1
2

− 2ui,j

k+ 1
2

+ ui−1,j

k+ 1
2

)
+
a2

h2y

(
ui,j+1
k+1 − 2ui,j

k+1 + ui,j−1
k+1

)
+

F i,j

k+ 1
2

(vi,j(·)),

F i,j
k (vi,j(·)) = f(xi, yj, tk, u

i,j
k , vi,jtk

(·)). Initial and boundary conditions are set
respectively.

The proof of convergence of the method and results of numerical experiments
are given in [9].

3 Wave Equation with Aftereffect

Let us consider wave equation with the effect of heredity

∂2u

∂t2
= a2

∂2u

∂x2
+ f(x, t, u(x, t), ut(x, ·)), (4)

0 ≤ t ≤ T , 0 ≤ x ≤ X, with the initial conditions u(0, t) = g1(t), u(X, t) =
g2(t), 0 ≤ t ≤ T, and the boundary conditions u(x, t) = ϕ(x, t), 0 ≤ x ≤ X ,
−τ ≤ t ≤ 0.

Let us make discretization of problem as for the equation of hyperbolic type
and for 0 ≤ s ≤ 1 let us consider the set of methods:

ui
j+1 − 2ui

j + ui
j−1

Δ2
= sa2

ui−1
j+1 − 2ui

j+1 + ui+1
j+1

h2
+ sa2

ui−1
j−1 − 2ui

j−1 + ui+1
j−1

h2
+

(1− 2s)a2
ui−1
j − 2ui

j + ui+1
j

h2
+ F i

j (v
i(·)),

with the boundary conditions u0j = g1(tj), u
N
j = g2(tj), j = 0, . . . ,M, and the

initial conditions ui
j = ϕ(xi, tj), i = 0, . . . , N, j ≤ 0. F i

j (v
i(·)) has the same

sense as for the equation of parabolic type.
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For s = 0 we obtain an explicit scheme, for 0 < s ≤ 1 and any fixed j we
obtain a linear tridiagonal system with respect to ui

j+1 with diagonal dominance
that can be effectively solved by sweep method.

The detailed analysis of errors of this set of methods is carried out in the
article [10].

4 The Software Package PDDE and Some Examples

All described above numerical algorithms are implemented in MATLAB in the
form of software package PDDE (Partial Delay Differential Equation) toolbox.
The package contains the programs for numerical solution of parabolic equa-
tions with one and two spatial variables and equations of hyperbolic type. These
equations can contain both lumped variable delays and some types of distributed
(integral) delays. For example, the parabolic equation with one spatial variable
can include two type integral delays:

a)

0∫
−τ(t)

g1(x, s)u(x, t+ s) ds, b)

0∫
−τ(t)

g2(u(x, t+ s)) ds.

Further we consider the examples of numerical simulation of some equations
using PDDE toolbox.

Example 1. The equation with variable delay

∂u(x, t)

∂t
= 0.04

∂2u(x, t)

∂x2
− 0.04 + x

t2

√
u(x, t− t/2) (5)

with initial and boundary conditions

u(x, r) = ex/r, 0.75 ≤ r ≤ 1.5, 1 ≤ x ≤ 5;u(1, t) = e1/t, u(5, t) = e5/t, 1.5 ≤ t ≤ 6

has the exact solution u(x, t) = ex/t. The approximate solution of this equation
was obtained by grid method (2) with weight s = 0.5−1/(12σ). Table 1 contains
the comparison of the norms of difference between the matrices of the exact and
approximate solutions of the equation (5) for different steps h and Δ.

Table 1. The norms of differences for different steps

N 10 10 10 10 20 50 100
M 10 20 50 100 10 10 10

||U || 1.3311 0.3508 0.0570 0.0143 2.7700 7.0006 14.029

Here N and M are the numbers of partition points corresponding to steps h
and Δ. The norms of the difference were calculated by the formula

||U || = max
0≤j≤M

N∑
i=0

|u(xi, tj)− ui
j |.
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Table 1 shows that the ratio of steps strongly affect the accuracy of calculations.

Example 2. The following example demonstrates the effect of delay to solution.
The equation

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
− 2 u(x, t− τ), τ > 0 (6)

with initial and boundary conditions

u(x, r) = 1, 1− τ ≤ r ≤ 1, 0 ≤ x ≤ 4; u(0, t) = u(4, t) = 1, 1 ≤ t ≤ 10

has the solutions presented in Figs. 1–4 with different τ . The appearance of
delay induces oscillations of solution. The greater the delay value, the greater
the amplitude of the oscillations and the lower their frequency. With small delay
values the solution is stabilizing over the time, the oscillations are damping. With
large delay values the solution becomes unstable, the amplitude of oscillations
are increasing over the time.
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Example 3. Let us consider the solutions of the Hutchinson’s equation with
diffusion

∂u

∂t
=
∂2u

∂x2
+ 2 u(x, t)(1− u(x, t− τ)), τ > 0 (7)

with initial and boundary conditions

u(x, r) = 0.1, 1− τ ≤ r ≤ 1, 0 ≤ x ≤ 4; u(0, t) = u(4, t) = 0.1, 1 ≤ t ≤ 10.

Figures 5–8 show similar to the previous example effects due to the occurrence
of delay. But unlike Example 2 here one can notice an interval of delay, within
which the corresponding solutions come to steady oscillations.

The properties of solutions of equation (7) were studied in many papers (see,
for example, [11] and references therein).
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Conclusion

The paper presents some principles of construction of analogs of the classical grid
schemes for the equations with delay of general type. The methods are based
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on the idea of separating the past and the present parts in the structure of the
object state as well as on the use of interpolation and extrapolation with specified
properties, for the low-order schemes the interpolation is piecewise-linear with
extrapolation by continuation. The simplicity and efficiency of the method has
allowed to create the appropriate software.

Further development of this technique assumes its application to more gen-
eral multidimensional problems of parabolic and hyperbolic types with various
boundary conditions, to the construction of the various grid schemes solving the
advection equation with delay, mixed functional differential equations, and other
evolutionary problems with heredity.

Acknowledgement. This work was supported by Russian Foundation for Basic
Research (project 13-01-00089) and by Ministry of Education and Science of
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Abstract. We study a coupled system of two singularly perturbed lin-
ear reaction-diffusion equations with discontinuous source term. A cen-
tral difference scheme on layer-adapted piecewise-uniform mesh is used
to solve the system numerically. The scheme is proved to be almost first
order uniformly convergent, even for the case in which the diffusion pa-
rameter associated with each equation of the system has a different order
of magnitude. Numerical results are presented to support the theoretical
results.

Keywords: Singular perturbation, Coupled system, Discontinuous
source term, Uniformly convergent, Shishkin mesh, Interior layers.

1 Introduction

Consider a coupled system of singularly perturbed reaction-diffusion equations
with discontinuous source term on the unit interval Ω = (0, 1), and assume a
single discontinuity in the source term at a point d ∈ Ω. LetΩ1 = (0, d) andΩ2 =
(d, 1), and let the jump at d in any function is given as [ω](d) = ω(d+)−ω(d−).

The corresponding boundary value problem is:

Find u1, u2 ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω1 ∪Ω2), such that

(Lu)1(x) := −ε1u′′1(x)+a11(x)u1(x)+a12(x)u2(x) = f1(x), x ∈ Ω1∪Ω2. (1)

(Lu)2(x) := −ε2u′′2(x)+a21(x)u1(x)+a22(x)u2(x) = f2(x), x ∈ Ω1∪Ω2. (2)

u1(0) = p, u1(1) = q, u2(0) = r, u2(1) = s, (3)

where ε1, ε2 are small parameters such that 0 < ε1 ≤ ε2 ≤ 1.
We assume that the coupling matrix satisfies the following positivity

conditions.

a12 ≤ 0 and a21 ≤ 0, for all x ∈ Ω, (4)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 445–453, 2013.
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and for some constant α we have

0 < α := min
Ω

{α1, α2}, α1 := min
x∈Ω

{a11(x)+ a12(x)}, α2 := min
x∈Ω

{a21(x)+ a22(x)}

(5)

The source terms f1, f2 are sufficiently smooth on Ω \ {d}, and their derivatives
have jump discontinuity at the same point. Due to that discontinuity, interior
layers arise in the solution of the problem.

In the literature for the scalar case, interior layers were considered in addi-
tion to the boundary layers [1–4]. A numerical method for singularly perturbed
coupled system of two second order ordinary differential equations with equal
parameters having discontinuous source term was considered in [6].

This paper is organized as follows. Section 1, presents the properties of the
exact solution of the problem. In Section 2, the discretization of the problem is
given using central difference scheme and a piecewise uniform Shishkin mesh,
which is fitted to both boundary and interior layers. In Section 3, error analysis
of the present method is given. Results of numerical experiments are presented
in Section 4.

Notations: We shall use C to denote a generic constant and C = (C,C)T a
generic positive constant vector such that both are independent of perturbation
parameters ε1, ε2 and also of the discretization parameter N but may not be
same at each occurrence. Define v ≤ w if v1(x) ≤ w1(x) and v2(x) ≤ w2(x)
x ∈ [0, 1]. We consider the maximum norm and denote it by ‖.‖S, where S is a
closed and bounded subset in [0, 1]. For a real valued function v ∈ C(S) and for
a vector valued function v = (v1, v2)

T ∈ C(S)2, we define ‖v‖S := max
x∈S

|v(x)|
and ‖v‖S := max{‖v1‖S, ‖v2‖S}.

Theorem 1. The problem (1)-(3) has a solution u = (u1, u2)
T with u1, u2 ∈

C1(Ω) ∩ C2(Ω1 ∪Ω2).

Proof. The result can be proved by following similar arguments considered in
[6].

Theorem 2. Suppose u1, u2 ∈ C0(Ω) ∩ C2(Ω1 ∪ Ω2). Further suppose that
u = (u1, u2)

T satisfies u(0) ≥ 0, u(1) ≥ 0, Lu(x) ≥ 0 in Ω1 ∪ Ω2 and
[u′](d) ≤ 0. Then u(x) ≥ 0, for all x ∈ Ω.

Proof. Let u1(p) := min
x∈Ω

{u1(x)} and u2(q) := min
x∈Ω

{u2(x)}. Assume without

loss of generality u1(p) ≤ u2(q). If u1(p) ≥ 0, then there is nothing to prove.
Suppose that u1(p) < 0, then proof is completed by showing that this leads to
contradiction. Note that p �= {0, 1}, So either p ∈ Ω1 ∪ Ω2 or p=d. In the first
case, (Lu)1(p) = −ε1u′′1(p) + a11(p)u1(p) + a12(p)u2(p) < 0.
In the other case proceed as in [2], with the assumption that there exists a
neighborhood Nh = (d − h, d) such that u1(x) < 0 and u1(x) < u2(x) for all
x ∈ Nh. Now choose a point x1 �= d, x1 ∈ Nh such that u1(x1) > u1(d). It
follows from the mean value theorem that, for some x2 ∈ Nh, u

′
1(x2) < 0 , and
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for some x3 ∈ Nh, u
′′
1(x3) > 0; also note that u1(x3) < 0, since x3 ∈ Nh. Thus

(Lu)1(x3) = −ε1u′′1(x3) + a11(x3)u1(x3) + a12(x3)u2(x3) < 0,
which leads to a contradiction.

Lemma 1. Let A(x) satisfy (4)-(5). If u = (u1, u2)
T be the solution of (1),

then,
‖u‖Ω ≤ max{‖u(0)‖, ‖u(1)‖, 1

α‖f‖Ω1∪Ω2}.

Proof. Define the functions
Ψ±(x) := (ψ±

1 (x), ψ±
2 (x))T with ψ±

1 (x) := M±u1(x) and ψ±
2 (x) :=M±u2(x),

where M = max{‖u(0)‖, ‖u(1)‖, 1
α‖f ‖Ω1∪Ω2} and Ψ±(x) = Me ± u(x).

Note that e := (1, 1)T is the unit column vector.
Now, Ψ±(0) ≥ 0 , Ψ±(1) ≥ 0 , LΨ±(x) ≥ 0 for all x∈ Ω1 ∪ Ω2 and

[(Ψ±)′](d) = ±[u ′](d) = 0 as u ∈ C1(Ω)2, it follows from the maximum
principle that Ψ±(x) ≥ 0 for all x ∈ Ω, which leads to the required bound on
u(x).

To derive the sharper bounds on the solution, the solution be decomposed into
a sum, composed of a discontinuous regular component v , and a discontinuous
singular component w . That is, u = v + w . These components are defined as
the solutions of the following problems:

Lv(x) = f (x), x ∈ Ω1∪Ω2, v(x) = A−1(x)f (x), x ∈ {0, d−, d+, 1}. (6)
By the assumptions (4)-(5) the matrix A is invertible, and

Lw(x) = 0 , x ∈ Ω1∪Ω2; (7)

w(x) = u(x)− v (x), x ∈ {0, 1}, [w ](d) = −[v ](d), [w ′](d)= −[v ′] (d). (8)

The following layer functions are used in defining the bounds on derivatives:

Bεl1
(x) := exp(−x

√
α/ε1) + exp(−(d− x)

√
α/ε1), (9)

Bεr1
(x) := exp((d−x)

√
α/ε1)+ exp(−(1−x)

√
α/ε1), (10)

Bεl2
(x) := exp(−x

√
α/ε2) + exp(−(d− x)

√
α/ε2), (11)

Bεr2
(x) := exp((d−x)

√
α/ε2)+ exp(−(1−x)

√
α/ε2). (12)

Following the technique used in [5], the bounds on the discontinuous regular
and discontinuous singular components; and on their derivarives are obtained.

Lemma 2. The discontinuous regular component v and its derivatives satisfy
the bounds given by ‖v(k)‖Ω1∪Ω2 ≤ C for k=0,1,2. with

‖v′′′1 ‖Ω1∪Ω2 ≤ Cε
−1/2
1 and ‖v′′′2 ‖Ω1∪Ω2 ≤ Cε

−1/2
2 .

Lemma 3. The discontinuous singular component w and its derivatives satisfy
the bounds given by

|w1(x)| ≤
{
CBεl2

(x), x ∈ Ω1

CBεr2
(x), x ∈ Ω2,

|w2(x)| ≤
{
CBεl2

(x), x ∈ Ω1

CBεr2
(x), x ∈ Ω2,
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|w′
1(x)| ≤

{
C(ε

−1/2
1 Bεl1

(x) + ε
−1/2
2 Bεl2

(x)),

C(ε
−1/2
1 Bεr1

(x) + ε
−1/2
2 Bεr2

(x)),
|w′

2(x)| ≤
{
C(ε

−1/2
2 Bεl2

(x)), x ∈ Ω1

C(ε
−1/2
2 Bεr2

(x)), x ∈ Ω2,

|w′′
1 (x)| ≤

{
C(ε−1

1 Bεl1
(x) + ε−1

2 Bεl2
(x)),

C(ε−1
1 Bεr1

(x) + ε−1
2 Bεr2

(x)),
|w′′

2 (x)| ≤
{
C(ε−1

2 Bεl2
(x)), x ∈ Ω1

C(ε−1
2 Bεr2

(x)), x ∈ Ω2,

|w′′′
1 (x)| ≤

{
C(ε

−3/2
1 Bεl1

(x) + ε
−3/2
2 Bεl2

(x)), x ∈ Ω1

C(ε
−3/2
1 Bεr1

(x) + ε
−3/2
2 Bεr2

(x)), x ∈ Ω2,

|w′′′
2 (x)| ≤

{
Cε−1

2 (ε
−1/2
1 Bεl1

(x) + ε
−1/2
2 Bεl2

(x)), x ∈ Ω1

Cε−1
2 (ε

−1/2
1 Bεr1

(x) + ε
−1/2
2 Bεr2

(x)), x ∈ Ω2.

To get more sharper bounds, a more precise decomposition of the function w is
required. This is achieved by following the technique used in [5].

Lemma 4. Suppose that ε1 <
ε2
4 holds. Then the components w1 and w2 can be

decomposed as follows:
w1(x) = w1,ε1(x) + w1,ε2(x), w2(x) = w2,ε1(x) + w2,ε2(x),

where

|w′′
1,ε1(x)| ≤

{
Cε−1

1 Bεl1
(x), x ∈ Ω1

Cε−1
1 Bεr1

(x), x ∈ Ω2,
|w′′′

1,ε2(x)| ≤
{
Cε

−3/2
2 Bεl2

(x), x ∈ Ω1

Cε
−3/2
2 Bεr2

(x), x ∈ Ω2,

|w′′
2,ε1(x)| ≤

{
Cε−1

2 Bεl1
(x), x ∈ Ω1

Cε−1
2 Bεr1

(x), x ∈ Ω2,
|w′′′

2,ε2(x)| ≤
{
Cε

−3/2
2 Bεl2

(x), x ∈ Ω1

Cε
−3/2
2 Bεr2

(x), x ∈ Ω2.

2 Discretization of the Problem

We use a piecewise uniform Shishkin mesh which uses these transition
parameters:

σεl2 := min

{
d

4
,

√
ε2
α

ln N

}
, σεr2 := min

{
(1− d)

4
,

√
ε2
α

ln N

}
,

σεl1 := min

{
d

8
,
σεl2
2
,

√
ε1
α

ln N

}
, σεr1 := min

{
(1− d)

4
,
σεr2
2

,

√
ε1
α

ln N

}
.

The interior points of the mesh are denoted by

ΩN = {xi : 1 ≤ i ≤ N
2 − 1} ∪ {xi : N

2 + 1 ≤ i ≤ N − 1} = ΩN
1 ∪ΩN

2 .

Let hi = xi − xi−1 be the ith mesh step and �i =
hi+hi+1

2 , clearly xN
2
= d and

Ω
N

= {xi : i = 0, 1, 2, .....N}. Let N=2l , l ≥ 5 be any positive integer.

We divide Ω
N

1 into five sub-intervals [0, σεl1 ], [σεl1 , σεl2 ], [σεl2 , d− σεl2 ], [d −
σεl2 , d−σεl1 ] and [d−σεl1 , d]. The sub-interval [0, σεl1 ] [σεl1 , σεl2 ], [d−σεl2 , d−σεl1 ]
and [d − σε11 , d] is divided into N

16 equidistant elements and the sub-interval

[σεl2 , d− σεl2 ] is divided into N
4 equidistant elements. Similarly, in Ω

N

2 the sub-
intervals [d, d + σεr1 ],[d + σεr1 , d + σεr2 ], [1 − σεr2 , 1 − σεr1 ] and[1 − σεr1 , 1] is

divided into N
16 equidistant elements and the sub-interval [d + σεr2 , 1 − σεr2 ] is

divided into N
4 equidistant elements.
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On the piecewise-uniform mesh ΩN a standard centered finite difference op-
erator is used. Then the fitted mesh method for the system is:

Define the discrete finite difference operator LN as follows:

LNU = f for all xi ∈ ΩN (13)
with boundary conditions U (x0) = p, U (xN ) = q , (14)

where LN = −Eδ2 +A(x), and at xN/2 = d the scheme is given by

LNU (d) ≡ −Eδ2 U (d) +A(d) U (d) = f (d) (15)

where δ2Z(xi) = (D+Z(xi)−D−Z(xi))
1
�i
, D+Z(xi) =

Z(xi+1)−Z(xi)
hi+1

D−Z(xi) =
Z(xi)−Z(xi−1)

hi
and f(d) =

f(d−hN
2
)+f(d+hN

2
+1

)

2 .

Lemma 5. Suppose that a mesh function W(xi) satisfies: W(0) ≥ 0, W(1) ≥
0, (LNW)(xi) ≥ 0, for all xi ∈ Ω

N
, then W(xi) ≥ 0 for all xi ∈ Ω

N
.

Proof. Let xp1 , xp2 be any two points at which W1(xj) and W2(xj) attain its

minimum value on Ω
N
. That is, Wi(xpi) = min

xj∈Ω
N
{Wi(xj)} for i=1,2.

Without loss of generality, assume W1(xp1 ) ≤ W2(xp2 ). If W1(xp1) ≥ 0, then
there is nothing to prove. If we choose W1(xp) < 0 then this leads to
contradiction.

3 Error Analysis

By the Taylor’s series expansion on discontinuous regular and discontinuous
singular components, we have

|εk(
d2

dx2
−δ2)vk(xi)| ≤

{
Cεk(xi+1 − xi−1)|vk|3 (16)
Cεkh

2|vk|4, xi+1 − xi = xi − xi−1 = h, (17)

and

|εk(
d2

dx2
−δ2)wk(xi)| ≤

⎧⎪⎨⎪⎩
Cεk(xi+1 − xi−1)|wk|3 (18)
Cεkh

2|wk|4, xi+1 − xi = xi − xi−1 = h (19)
Cεk max

x∈[xi−1,xi+1]
|w′′

k (xi)|, (20)

where k = 1, 2, i �= N
2 , |zk|j :=max| djz

dxj |, ∀j ∈ N.

Note that if σεl2 = d
4 , σεr2 = (1−d)

4 , σεl1 = d
8 and σεr1 = (1−d)

8 , then the

mesh is uniform. In that case, N−1 is very small with respect to ε1 and ε2 and
therefore a classical analysis could be used to prove the uniform convergence
of the scheme. If 2σεl1 = σεl2 =

√
ε2
α lnN and 2σεr1 = σεr2 =

√
ε2
α lnN then

ε2 = O(ε1), which is discussed in [6]. The most interesting case to discuss is
σεl1 = σεr1 =

√
ε1
α lnN and σεl2 = σεr2 =

√
ε2
α lnN.



450 S. Chandra Sekhara Rao and S. Chawla

Using (16) and bounds on discontinuous regular components, we have

|(LN − L)v(xi)| ≤ 1
3 (hi + hi+1)

(
ε1‖v′′′1 ‖Ω1∪Ω2

ε2‖v′′′2 ‖Ω1∪Ω2

)
≤ C

(
N−1

N−1

)
.

Now we evaluate the error estimates for the discontinuous singular components
for different sub-intervals.

(i) For xi ∈ [σεl2 , d−σεl2 ]∪ [d+σεr2 , 1−σεr2 ]. Consider first that xi ∈ [σεl2 ,
d
2 ].

Using (20), bounds on discontinuous singular components and (9), we have

| ((LN − L)w )1(xi) |≤ C ‖ Bεl2
‖[xi−1,xi+1]= Bεl2

(xi−1).
Thus,

‖ Bεl2
‖[xi−1,xi+1] ≤ 2e

(−σεl2
+16σεl2

/N)
√

α√
ε2 ≤ CN−1.

We can prove a similar result when xi ∈ [d2 , d− σεl2 ]. Similar arguments prove a
similar result for the sub-interval [d+ σεr2 , 1− σεr2 ].

Hence, for xi ∈ [σεl2 , d− σεl2 ] ∪ [d+ σεr2 , 1− σεr2 ] we have(
| ((LN − L)w )1(xi) |
| ((LN − L)w )2(xi) |

)
≤
(
CN−1

CN−1

)
.

(ii) For xi ∈ (0, σεl1 ) ∪ (d− σεl1 , d) ∪ (d, d+ σεr1 ) ∪ (1− σεr1 , 1).

Using (18) and the bounds on the discontinuous singular components together
with the inequality hi + hi+1 ≤ 32

√
ε1
αN

−1 lnN yields(
| ((LN − L)w)1(xi) |
| ((LN − L)w)2(xi) |

)
≤ hi+hi+1

3

(
ε1‖w′′′

1 ‖
ε2‖w′′′

2 ‖

)
≤ C

(
N−1 lnN
N−1 lnN

)
.

(iii) For xi ∈ (σεl1 , σεl2 )∪(d−σεl2 , d−σεl1 )∪(d+σεr1 , d+σεr2 )∪(d−σεr2 , d−σεr1 ).
First assume that ε2

4 ≤ ε1 ≤ ε2.

Using (18) and bounds on the discontinuous singular components, we have(
| ((LN − L)w )1(xi) |
| ((LN − L)w )2(xi) |

)
≤ hi+hi+1

3

(
ε1‖w′′′

1 ‖
ε2‖w′′′

2 ‖

)
≤C

(
N−1 lnN
N−1 lnN

)
.

Next, suppose that ε1 < ε2
4 , then we have(

| ((LN − L)w)1(xi) |
| ((LN − L)w)2(xi) |

)
≤
(
ε1(D

2 − d2

dx2 )w1,ε1(xi)

ε2(D
2 − d2

dx2 )w2,ε1(xi)

)
+

(
ε1(D

2 − d2

dx2 )w1,ε2(xi)

ε2(D
2 − d2

dx2 )w2,ε2(xi)

)
.(21)

Consider the first part of (21). Using the analysis in (i), we obtain(
ε1(D

2 − d2

dx2 )w1,ε1(xi)

ε2(D
2 − d2

dx2 )w2,ε1(xi)

)
≤ 2

(
ε1‖w′′

1,ε1‖[xi−1,xi+1]

ε2‖w′′
2,ε1‖[xi−1,xi+1]

)
≤ C

(
N−1

N−1

)
.

For the second part of (21), and the analysis in (ii) we have(
ε1(D

2 − d2

dx2 )w1,ε2(xi)

ε2(D
2 − d2

dx2 )w2,ε2(xi)

)
≤ hi+hi+1

3

(
ε1‖w′′′

1,ε2‖
ε2‖w′′′

2,ε2‖

)
≤ C

(
N−1 lnN
N−1 lnN

)
.
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Combining the results of (i)-(iii) for discontinuous singular components, we have(
| ((LN − L)w)1(xi) |
| ((LN − L)w)2(xi) |

)
≤ C

(
N−1 lnN
N−1 lnN

)
.

The point xN/2 = d and hN
2
= hN

2
+1 = h =

√
ε1
α
lnN . Consider

((LN(U − u))1(d)) = f1(d) +
ε1
h2

∫ d+h

t=d

∫ t

s=d

u′′
1 (s) ds dt− ε1

h2

∫ d

t=d−h

∫ t

s=d

u′′
1 (s) ds dt

− a11(d)u1(d)− a12(d)u2(d)

=
1

h2

∫ d+h

t=d

∫ t

s=d

∫ d+h

p=s

+
1

h2

∫ d

t=d−h

∫ t

s=d

∫ s

p=d−h

(f1 − a11u1 − a12u2)
′(p) dp ds dt

− a11(d)u1(d)− a12(d)u2(d) +
1

2
(a11(d− h)u1(d− h) + a12(d− h)u2(d− h))

+
1

2
(a11(d+ h)u1(d+ h) + a12(d+ h)u2(d+ h)),

=
1

h2

∫ d+h

t=d

∫ t

s=d

∫ d+h

p=s

+
1

h2

∫ d

t=d−h

∫ t

s=d

∫ s

p=d−h

(f1 − a11u1 − a12u2)
′(p) dp ds dt

+
1

2

∫ d−h

t=d

(a11(t)u1(t) + a12(t)u2(t))
′ dt+

1

2

∫ d+h

t=d

(a11(t)u1(t) + a12(t)u2(t))
′ dt,

which implies
|(LN (U − u))1(d))| ≤ C(N−1 ln N) and |(LN (U − u))2(d))| ≤ C(N−1 lnN).

Theorem 3. Let u and U be the exact and the numerical solutions of the problem
(1)-(3). Then, for N sufficiently large

max
xi∈ΩN

|U(xi)− u(xi)| ≤ CN−1 lnN.

Proof. Consider the mesh function Ψ(xi) = C(N−1lnN)± (U − u)(xi). This function

satisfies Ψ(x0) ≥ 0, Ψ(xN ) ≥ 0, and LNΨ(xi) ≥ 0, for all xi ∈ Ω
N
. Using discrete

maximum principle we get Ψ(xi) ≥ 0 for all xi ∈ Ω
N
, and then the required result

follows.

4 Numerical Results

Example 4.1 Consider the test Problem

− ε1u
′′
1 (x) + 2(x+ 1)

2u1(x)− (1 + x3)u2(x) = f1(x), x ∈ Ω1

⋃
Ω2

− ε2u
′′
2 (x)− 2 cos(Π

4
x)u1(x) + 2.2e

1−xu2(x) = f2(x), x ∈ Ω1

⋃
Ω2

u(0) = 0 , u(1) = 0 ,
where

f1(x) =

{
2ex for 0 ≤ x ≤ 0.5
1 for 0.5 < x ≤ 1 and f2(x) =

{
10x+ 1 for 0 ≤ x ≤ 0.5
2 for 0.5 < x ≤ 1.

For the construction of piecewise-uniform Shishkin mesh ΩN , we take α = 0.95. The
Exact solution of the Example 4.1 is not known. Therefore we estimate the error for
U by comparing it to the numerical solution Ũ obtained on the mesh x̃j that con-
tains the mesh points of the original mesh and their midpoints, that is, x̃2j = xj ,
j=0,. . . . . . ,N, x̃2j+1 = (xj + xj+1)/2, j=0,. . . . . . ,N-1.



452 S. Chandra Sekhara Rao and S. Chawla

For different values of N and ε1, ε2, we compute

DN
ε1,ε2 := ‖(U − Ũ)(xj)‖ΩN .

If ε1 = 10
−j for some non-negative integer j , set

DN
ε1 :=max{D

N
ε1,1, D

N
ε1,10−1 , D

N
ε1,10−2 , . . . . . . , D

N
ε1,10−j }.

Then the parameter-uniform error is computed as

DN :=max{DN
1 , DN

10−1 , . . . . . . , D
N
10−16},

and the order of convergence is calculated using the formula pN := log2(
DN

D2N ).

Table 1. Maximum point-wise errors DN
ε1 , D

N and ε1, ε2−uniform rate of convergence
pN for Example 4.1

ε1 = 10
−j N=64 N=128 N=256 N=512 N=1024 N=2048

j = 0 1.33E-04 3.32E-05 8.31E-06 2.08E-06 5.14E-07 1.29E-07
1 6.77E-04 1.69E-04 4.24E-05 1.06E-05 2.65E-06 6.47E-07
2 1.99E-03 5.01E-04 1.26E-04 3.14E-05 7.85E-06 1.96E-06
3 7.91E-03 2.08E-03 5.35E-04 1.34E-04 3.36E-05 8.39E-06
4 1.92E-02 7.98E-03 2.78E-03 8.50E-04 2.15E-04 5.38E-05
5 2.55E-02 8.07E-03 2.81E-03 8.99E-04 7.82E-05 2.24E-05
6 2.91E-02 1.09E-02 3.62E-03 1.11E-03 3.24E-04 9.18E-05
7 3.23E-02 1.50E-02 5.75E-03 1.95E-03 6.20E-04 1.89E-04
. . . . . . .
. . . . . . .
. . . . . . .
16 3.23E-02 1.50E-02 5.75E-03 1.95E-03 6.20E-04 1.89E-04

DN 3.23E-02 1.50E-02 5.75E-03 1.95E-03 6.20E-04 1.89E-04

pN 1.10 1.38 1.56 1.65 1.71

Theorem 3 proves almost first order of convergence, but the results of the
table 1 show almost second order of convergence. These results give us a scope to
improve the theoretical results, which requires improvement on the bounds on the
derivatives of the solution.

Acknowledgements. The authors gratefully acknowledge the valuable comments
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Abstract. In this study a new method for finding exact solution of the
Cauchy problem subject to a discontinuous initial profile for the two di-
mensional scalar conservation laws is suggested. For this aim, first, some
properties of the weak solution of the linearized equation are investigated.
Taking these properties into consideration an auxiliary problem having
some advantages over the main problem is introduced. The proposed
auxiliary problems also permit us to develop effective different numeri-
cal algorithms for finding the solutions. Some computer experiments are
carried out.

1 Introduction

It is known that theoretical investigation of many problems in sciences and
engineering, particularly in fluid dynamics requires to study the nonlinear hy-
perbolic equations of conservation laws. It is typical in such problems that their
solutions admit the points of discontinuity whose locations are unknown before-
hand. Therefore, even in one dimensional case they pose a special challenge for
theoretical and numerical analysis.

The mathematical theory of the Cauchy problem for one dimensional nonlin-
ear hyperbolic equation is studied in [4], [7], [8], [10]. Profound results for the
mathematical theory of the initial boundary value problem for scalar conserva-
tion laws in several space dimensions can be found in [1], [2], [3], [6], [7] and
[12]. Most hyperbolic equations (or systems) of conservation laws in physics are
nonlinear and solving them analytically is often difficult, sometimes impossible.

There are many sensitive numerical methods for the solving of the Cauchy
problem of nonlinear hyperbolic equations [5], [8], and etc. Very relevant results
to the basis of the main themes are found [6], [9].

In this study the original method for finding the exact and numerical solution
of the Cauchy problem for the two dimensional scalar equation

ut(x, y, t) + fx(u(x, y, t)) + gy(u(x, y, t)) = 0 (1)

is suggested. The conditions which the functions f(u) and g(u) must satisfy will
be expressed later.
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The Cauchy problem for equation (1), when f(u) = g(u) = F (u) has been
studied in [11] analytically as well as numerically. In order to study in full detail
at first the case f(u) = Au and g(u) = Bu is considered. Here A and B are
given real constants.

2 The Linear Equation and Some Properties of the Exact
Solution

Let R3
+ = R2×[0, T ) be Euclidean space of the points (x, y, t), where (x, y) ∈ R2,

t ∈ [0, T ) and T is a given constant. In R3
+ we consider the following Cauchy

problem
ut(x, y, t) +Aux(x, y, t) +Buy(x, y, t) = 0, (2)

u(x, y, 0) = u0(x, y). (3)

Here, u0(x, y) is any given function having both positive and negative slopes, or
piecewise continuous. The problem (2), (3) later on will be called as the main
problem. We support that A �= B and let Dxy be the domain defined as follows
Dxy = {(ξ, η), a ≤ ξ ≤ x, b ≤ η ≤ y} ⊆ R2, t ∈ RT

+ = [0, T ). By ∂Dxy we
denote the boundary of the domain Dxy.

It is easily shown that the function

u(x, y, t) = u0(x−At, y −Bt) (4)

is the exact solution of the main problem, and such solution is called a soft
solution of the problem (2), (3).

Definition 1. The function u(x, y, t) satisfying the initial condition (3) is called
a weak solution of the problem (2), (3) if the following integral relation∫

R2

∫
RT

+

{u(x, y, t) [ϕt(x, y, t) +Aϕx(x, y, t) +Bϕy(x, y, t)]} dxdydt

+

∫
R2

ϕ(x, y, 0)u0(x, y)dxdy = 0 (5)

holds for every test functions ϕ(x, y, t) defined and differentiable in R3
+ and

vanishes for
√
x2 + y2 + t sufficiently large.

Theorem 1. If the u(x, y, t) is a continuous weak solution of the main problem,
then the function u(x, y, t) = u0(x − At, y − Bt) is a soft solution of the main
problem.

Proof. According to the Definition 1 we have∫
R2

∫
RT

+

{u(x, y, t) [vt(x, y, t) +Avx(x, y, t) +Bvy(x, y, t)]} dxdydt

+

∫
R2

v(x, y, 0)u0(x, y)dxdy = 0 (6)
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for every smooth function v(x, y, t) which vanishes for
√
x2 + y2 + t sufficiently

large.
Applying the following transformation of variables

ξ = x−At, η = y −Bt, τ = t, (7)

the equality (6) can be expressed as∫
R2

{∫ ∞

0

u(ξ, η, τ)vτ (ξ, η, τ)dη + v(ξ, η, 0)u(ξ, η, 0)

}
dξ = 0

for every smooth v(x, y, t) with appropriate support. If we define F (ξ, η) =∫∞
0
u(ξ, η, τ)vτ (ξ, η, τ)dτ then the previous relation can be rewritten as∫

R2 [F (ξ, η) +u(ξ, η, 0)v(ξ, η, 0)]dξ = 0. This implies that F (ξ, η) +
u(ξ, η, 0)v(ξ, η, 0) = 0 for, if there were and domain [ξ1, ξ2, ]× [η1, η2] where this
is different from zero (say positive), we could define a new v̄(ξ, η) coinciding with
v in [ξ1, ξ2, ]× [η1, η2] and zero elsewhere (smoothing it out as necessary). Then∫
R2 [F̄ (ξ, η) + u(ξ, η, 0)v̄(ξ, η, 0)]dξ > 0, which is a contradiction. We conclude
that ∫

RT
+

u(ξ, η, τ)vτ (ξ, η, τ)dτ + v(ξ, η, 0)u(ξ, η, 0) = 0.

Since,
∫
RT

+
vτ (ξ, η, τ)dτ =−v(ξ, η, 0), then

∫
RT

+
vτ (ξ, η, τ)u(ξ, η, 0)dτ = −v(ξ, η, 0)

u0(ξ, η, 0), and we get
∫
RT

+
[u(ξ, η, τ) − u(ξ, η)]vτ (ξ, η, τ)dτ = 0. From the conti-

nuity of u we conclude that u(ξ, η, τ) = u(ξ, η) = u0(x−At, y −Bt).

Theorem 2. If u0(x − At, y − Bt) is integrable, then the function u(x, y, t)
defined by the formula (4) is a weak solution of the main problem.

Proof. Let v be a smooth function which vanishes for
√
x2 + y2 + t sufficiently

large. Consider the expression∫
R2

∫
RT

+

u0(x−At, y −Bt) {vt(x, y, t) +Avx(x, y, t) +Bvy(x, y, t)} dxdydt

+

∫
R2

v(x, y, 0)u0(x, y)dxdy. (8)

Taking account into consideration the (7), we have∫
R2

∫
RT

+

u0(ξ, η)vτ (ξ, η, τ)dξdηdτ +

∫
R2

v(x, y, 0)u0(x, y)dxdy.

During the integration with respect to τ , since v = 0 for sufficiently large τ , the
sum of these integrals vanishes. Hence, the function u(x, y, y) = u0(x−At, y−Bt)
is a weak solution of the main problem.

Integrating the equation (2) on the domain Dxy with respect to x, y and
using the Green’s formula we get
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∂

∂t

∫ x

a

∫ y

b

u(ξ, η, t)dξdη +A

∫ y

b

u(x, η, t)dη

−B
∫ x

a

u(ξ, y, t)dξ = ϕ(a, y, t)− ψ(x, b, t). (9)

Here, ϕ(a, y, t) = A
∫ y

b
u(a, η, t)dη, ψ(x, b, t) = B

∫ x

a
u(ξ, b, t)dξ.

The problem finding the solution of the equation (9) subject to (3) will be
called as first auxiliary problem. We introduce the following operator ((·) = (·)xy
and the function defined as

v(x, y, t) =

∫ x

a

∫ y

b

u(ξ, η, t)dξdη + Φ1(a, y, t)− Ψ1(x, b, t), (10)

where Ψ1(x, b, t) and Φ1(a, y, t) are the integrals of ψ(x, b, t) and ϕ(a, y, t) with re-
spect to t, respectively. It is easily shown, that the function ϕ(a, y, t)−ψ(x, b, t) ∈
ker(. Indeed,

(
[
ϕ(a, y, t)− ψ(x, b, t)

]
= (

[
A

∫ y

b

u(a, η, t)dη +B

∫ x

a

u(ξ, b, t)dξ
]
= 0.

For the sake of simplicity, we denote H(a, b, x, y, t) = ϕ(a, y, t)−ψ(x, b, t) and it
is obvious that (H(a, b, x, y, t) = 0. Taking into consideration (10), the equation
(9) takes the form

vt(x, y, t) +Avx(x, y, t) +Bvy(x, y, t) = 0. (11)

The initial condition for the equation (11) is

v(x, y, 0) = v0(x, y), (12)

here the function v0(x, y) is any differentiable solution of the equation

( (v0(x, y)) = u0(x, y). (13)

From (10) we have

( (v(x, y, t)) = u(x, y, t). (14)

Indeed, if we differentiate the relation (10) with respect to x, and then with
respect to y we prove the validity of (14). The auxiliary problem (11), (12)has
the following advantages:

• The differentiability property of the function v(x, y, t) with respect to x and
y is higher than u(x, y, t)

• The function u(x, y, t) may be discontinuous.
• By obtaining the solution u(x, y, t) of the problem (11), (12), we does not

use the derivatives ux, uy, ut, which does not already exist, usually.
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It is obvious that the solution of the auxiliary problem is not unique.

Theorem 3. If the function v(x, y, t) is soft solution of the auxiliary problem
(11), (12), then the function u(x, y, t) defined by (14) is a weak solution of the
main problem

Proof. Let the function ϕ(x, y, t) is a test function and we consider the following
expression

0 =

∫
R3

+

(ϕ(x, y, t) {vt +Avx +Bvy} dxdydt.

After some simple manipulation we get∫
R3

+

ϕ(x, y, t) {(vt +A(vx +B(vy} dxdydt = 0.

Taking into consideration of (14) and applying integration by part to the last
equality with respect to t, x, y respectively we get the relation (6), which shown
that u is weak solution of the main problem.

3 Two Dimensional Scalar Conservation Law

In this section the two dimensional scalar equation which describes a certain
conservation law as

ut + fx(u) + gy(u) = 0 (15)

is considered.
Relatively f(u) and g(u) we assume that

(i) f(u) and g(u) are continuous differentiable functions,
(ii) f ′(u) ≥ 0, g′(u) ≥ 0 for u ≥ 0,
(iii) f ′′(u) and g′′(u) have an alternative signs, i.e. the f(u) and g(u) functions

have the concave and convex parts.

The solution of the problem (15), (3) obtained using the characteristics method
is

u(x, y, t) = u0(ξ, η) , (16)

where ξ = x− f ′(u)t and η = y− g′(u)t are the special coordinates moving with
speed of f ′(u) and g′(u), respectively. From (16) we get

ux =
(u0)ξ

1 + [f ′′(u)(u0)ξ + g′′(u)(u0)η] t
, uy =

(u0)η
1 + [f ′′(u)(u0)ξ + g′′(u)(u0)η] t

,

ut =
f ′(u)(u0)ξ + g′(u)(u0)η

1 + [f ′′(u)(u0)ξ + g′′(u)(u0)η) t
.

As it is seen from these formulas, if (u0)ξ < 0, (u0)η < 0 and f ′′(u) > 0,
g′′(u) > 0 or ((u0)ξ > 0, (u0)η > 0 and f′′(u) < 0, g′′(u) < 0) at the value

t > T0 ≡ − [f ′′(u)(u0)ξ + g′′(u)(u0)η]
−1
⏐⏐⏐
min

the derivatives ux, uy and ut are
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approaching to infinity. Therefore the classical solution of the problem (15), (3)
does not exist.

Definition 2. The function u(x, y, t) satisfying the initial condition (3) is called
a weak solution of the problem (15), (3) if the following integral relation∫∫

R2

∫
RT

+

{uϕt + f(u)ϕx + g(u)ϕy} dxdydt+
∫∫

R2

u0(x, y)ϕ(x, y, 0)dxdy = 0

(17)
holds for every test functions ϕ(x, y, t) defined and differentiable in R3

+and van-

ishes for
√
x2 + y2 + t sufficiently large.

In order to find the weak solution of the problem (15),(3) in sense (17) we
will introduce the auxiliary problem as above. Integrating the equation (15) on
the region Dxy we get

0 =

∫∫
Dxy

{ut + fξ(u) + gη(u)} dξdη =
∂

∂t

∫ x

a

∫ y

b

u(ξ, η, t)dξdη

+

∫ y

b

[f (u(x, η, t)) − f (u(a, η, t))] dη +

∫ x

a

[g (u(ξ, y, t))− g (u(ξ, b, t))] dξ.

The last equality can be rewritten as

∂

∂t

∫ x

a

∫ y

b

u(ξ, η, t)dξdη +

∫ y

b

f (u(x, η, t)) dη +

∫ x

a

g (u(ξ, y, t)) dξ = Φ (a, y, t)

+Ψ (x, b, t). Here Φ(a, y, t) =
∫ y

b
f (u(a, η, t)) dη, Ψ(x, b, t) =

∫ x

a
g (u(ξ, b, t))dξ.

It is clearly seen that Φ(a, y, t) + Ψ(x, b, t) ∈ ker(. We denote by v(x, y, t) fol-
lowing expression

v(x, y, t) =

∫ x

a

∫ y

b

u(ξ, η, t)dξdη +H1(a, b, x, y, t), (18)

where H1(a, b, x, y, t) ∈ ker(. From (18) we have u(x, y, t) = ( (v(x, y, t)). Tak-
ing into consideration to (18) we get

vt(x, y, t) +

∫ y

b

f (u(x, η, t)) dη +

∫ x

a

g (u(ξ, y, t)) dξ = 0. (19)

The initial condition for the (19) is

v(x, y, 0) = v0(x, y). (20)

Here the function v0(x, y) is any differentiable solution of the equation (13).

Theorem 4. If the function v(x, y, t) is solution of the auxiliary problem (19),
(20), then the function u(x, y, t) expressed by u(x, y, t) = (v(x, y, t) is a weak
solution of the main problem (15) and (3).
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4 Finite Differences Schemes in a Class of Discontinuous
Functions

In this section, we intended to develop the numerical method for finding the
solution of the problem (2), (3), and investigate some properties of it. For this
aim, we will use the auxiliary problem (9), (3). In order to demonstrate the
effectiveness of the proposed method in this study we will consider only linear
case.

4.1 The Finite Differences Scheme for Cauchy Problem

In order to construct the numerical algorithm, the domain of definition of the
problem (2), (3) is covered by the following grid

ωh1,h2,τ =
{
(xi, yj, tk), xi = ih1, yj = jh2, tk = kτ, i, j, k = 0, 1, 2, ...

}
where h1 > 0, h2 > 0 and τ > 0 are steps of the grid with respect to x, y and
t, respectively.

In order to approximate of the equation (9) by the finite differences, the
integrals leaving in (9) are approximated as follows

∫ x

a

u(ξ, y, t)dξ = h1

i∑
ν=1

Uν,j,k,

∫ y

b

u(x, η, t)dη = h2

j∑
μ=1

Ui,μ,k (21)

and ∫ x

a

∫ y

b

u(ξ, η, t)dξdη = h1h2

i∑
ν=1

j∑
μ=1

Uν,μ,k. (22)

Here Ui,μ,k are approximate values of the function u(x, y, t) at points (xi, yμ, tk).
Taking into consideration (21), (22) the equation (9) at any point (i, j, k) of the
grid ωh1,h2,τ is approximated as follows

Ui,j,k+1 = (1− τ

h1
A+

τ

h2
B)Ui,j,k − τ

h1
A

j−1∑
μ=1

Ui,μ,k +
τ

h2
B

i−1∑
ν=1

Uν,j,k

−
i−1∑
ν=1

j−1∑
μ=1

(Uν,μ,k+1 − Uν,μ,k) +
τ

h1
A

j−1∑
μ=1

U0,μ,k − τ

h2
B

i−1∑
ν=1

Uν,n,k, (23)

(i = 0, 1, 2, ....N ; j = 0, 1, 2, ...,M, k = 0, 1, 2, ..., ).

The initial condition for (23) is Ui,j,0 = u0(xi, yj), (i = 0, 1, 2, ...; j = 0, 1, 2, ...).
Now, we approximate the problem (11), (12) by the finite differences. For this

aim, we introduce the following notations U(xi, yj , tk) = Ui,j , U(xi, yj , tk+1) =

Ûi,j , Δx̄Ui,j = (Ui,j −Ui−1,j), ΔȳUi,j = (Ui,j −Ui,j−1), Δ2
x̄ȳUi,j = (Δx̄Ui,j −
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Δx̄Ui,j−1), Δ2
ȳx̄Ui,j = (ΔȳUi,j −ΔȳUi−1,j). In this notations the problem (11),

(12) is approximated by the finite differences scheme as follows

V̂i,j = Vi,j −A
τ

h1
Δx̄Vi,j −B

τ

h2
ΔȳVi,j , (24)

Vi,j,0 = V
(0)
i,j . (25)

Here, the function V
(0)
i,j is any continuous solution of the equation V

(0)
x̄ȳ =

u0(xi, yj), and the grid functions Ui,j and Vi,j represent approximate values
of the functions u(x, y, t) and v(x, y, t) at point (i, j, k) respectively.

It is easy to prove that, if the grid function V̂i,j is the solution the problem

(24), (25), then the grid function Ûi,j defined by Ûi,j = 1
h1h2

Δ2
x̄ȳ V̂i,j is the

solution of the equation

Ûi,j = Ui,j −A
τ

h1
Δj

x̄Ui,j −B
τ

h2
Δi

ȳUi,j , (26)

Similarly algorithms can be written for the problem (19), (20). Using the
algorithms (24), (25) some computer experiments were carried out.

5 Conclusion

In this study an original method for finding the exact and numerical solutions of
the Cauchy problem for the first order 2-D nonlinear partial equations in a class
of discontinuous functions is proposed. The properties of the exact solution of
the linearized equation are also studied.

The special auxiliary problem whose solution is more smoother than the solu-
tion of the main problem is introduced, which makes possible to develop efficient
and sensitive algorithms that describe all physical properties of the investigated
problem accurately.
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Abstract. In the paper, we present a two-dimensional problem that is
obtained by sampling in time and linearising a problem regarding two-
phase flow of a viscous fluid without mixing. The fluid satisfies the in-
compressible Navier-Stokes equations, and it is assumed that there is a
time-varying curved interface Γ between liquid phases of different den-
sities and viscosities. The primary result of this paper is an estimate of
the convergence rate of an approximate solution to the exact solution of
a problem regarding special norms. The results of numerical experiments
agree with theoretical estimates of the convergence rate of the approxi-
mate solution to the exact solution in the special norms of grid spaces.

Keywords: Curved interface, domain decomposition, mortar method.

1 Introduction

In the paper, we present a two-dimensional problem that is obtained by sampling
in time and linearising a problem regarding two-phase flow of a viscous fluid
without mixing. The fluid satisfies the incompressible Navier-Stokes equations,
and it is assumed that there is a time-varying curved interface Γ between liquid
phases of different densities and viscosities (see [1]).

Regarding the discontinuity of the coefficients, we divide the original domain
Ω into subdomains Ωi, such that on each of the subdomains, the coefficients are
constant; accordingly, we determine the variational formulation of the problem
separately for each Ωi and coordinate the solutions on Γ using the conditions
of weak continuity. Because Γ between the subdomains Ωi is a curve, we can
produce a partition Ωih for each Ωi composed of triangles such that Γ can be
interpolated in a piecewise linear manner. An approximate variational formula-
tion of the problem is defined independently on each Ωih in conjunction with the
identification of mortar functions on Γ (see [2]). Earlier, this method was con-
sidered in [3] and [4] for elliptical problems. For a saddle point problem, different
methods have been theoretically investigated (see [5] and [6]), but the solution
has been numerically realised in [7] only for the case of a straight interface.

The primary result of this paper is an estimate of the convergence rate of an
approximate solution to the exact solution of a problem in special norms. We
also present numerical simulation results for the model problem.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 463–470, 2013.
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2 Problem Statement

Let Ω ⊂ R2 = {x̄ : x̄ = (x1, x2)} be a convex polygonal domain with boundary
∂Ω (Ω̄ = Ω ∪ ∂Ω). Consider simply connected subdomains Ω1 and Ω2 such
that Ω̄1 ∪ Ω̄2 = Ω̄, Ω̄1 ∩ Ω̄2 = Γ. Let Γ be a sufficiently smooth (not a closed,
self-avoiding) curve, the ends of which belong to ∂Ω.

The problem is to find a velocity u = (u1, u2) and a pressure P such that

!

τ
u− div σ(u, P ) + ! (g × u) = F, divu = 0 in Ω,

[u] = 0, [σ(u, P ) · n] = 0 on Γ, u = 0 on ∂Ω,
(1)

F = (F 1, F 2), g are functions defined in Ω, σ(u, P ) = {2μ εij(u)−δijP}i,j=1,2 is

a stress tensor, and ε(u) = {εij(u)}i,j=1,2 = { 1
2 (

∂uj

∂xi
+ ∂ui

∂xj
)}i,j=1,2 is a strain ten-

sor. The positive coefficients of viscosity μ and density ! of (1) are piecewise con-

stants: μ =

{
μ1, x̄ ∈ Ω1,

μ2, x̄ ∈ Ω2,
� =

{
�1, x̄ ∈ Ω1,

�2, x̄ ∈ Ω2,
g × u =

(
−gu2

gu1

)
, δij =

{
1, i = j,

0, i �= j,

[z] := z1|Γ∩Ω1
−z2|Γ∩Ω2

, where zk|Γ∩Ωk
is a trace function of zk on Γ , τ > 0 , n

is a unit normal vector to Γ . Hm
∗ (Ω) = {z ∈ L2(Ω) : zk = z|Ωk

∈ Hm(Ωk),m ∈
∈ N}, ‖z‖∗m,Ω = (

∑2
k=1 ‖zk‖2m,Ωk

)
1
2 ; Hm

∗ (Ω) = {v = (v1, v2) : vl ∈ Hm
∗ (Ω)},

‖v‖∗m,Ω = (
∑2

l=1 (‖vl‖∗m,Ω)
2)

1
2 ; H

1
2
00(Γ ) = {ρ : ρl ∈ H

1
2 (Γ ), ρ̄ l ∈ H

1
2 (∂Ωk)},

ρ̄ l =

{
ρl, on Γ,

0, on ∂Ωk\Γ,
‖ρ‖

H
1
2
00(Γ )

= (
∑2

l=1 inf
z∈H1(Ωk)

zl|Γ =ρl,zl|∂Ωk\Γ =0

||zl||21,Ωk
)

1
2 ;

V(Ω) = {v ∈ H1
∗(Ω) : [v] ∈ H

1
2
00(Γ ),v = 0 on ∂Ω}, ‖v‖V(Ω) = (

2∑
k=1

‖vk‖21,Ωk
+

+‖[v]‖2
H

1
2
00(Γ )

)
1
2 ; M(Γ ) is a dual space toH

1
2
00(Γ ), ‖ν‖M(Γ ) = sup

μ∈H
1
2
00(Γ )

∫
Γ
ν·μ dΓ

‖μ‖
H

1
2
00

(Γ )

;

Y(Ω) = {v ∈ V(Ω) :
∫
Γ χ[v] · ν dΓ = 0 ∀ν ∈ M(Γ )} with the norm of

V(Ω) (χ ∈ ∈ C1(Γ ) is a weight function defined by χ = 1
det(γ ′◦γ −1) ; γ is a

parametrization of Γ such that γ ∈ C 2(Î ,R2) and |γ(y1) − γ(y2)| ) |y1 − y2|
∀y1, y2 ∈ Î = [a, b]); X(Ω) = {Q : Qk = Q|Ωk

∈ L2(Ωk)}, ‖Q‖X(Ω) =

(
∑2

k=1 ‖Qk‖20,Ωk
)

1
2 .

Here and below, we use the notation A ) B (A * B) to denote that there
exists a constant C > 0 such that A ≥ CB (A ≤ CB), and A ∼= B, denotes
that both A ) B and A * B. Let F j

k ∈ L2(Ωk) and gk ∈ L2(Ωk) be Lipschitz
continuous functions.

The variational problem given in (1) is as follows: find (u, P, λ) ∈ V(Ω) ×
×X(Ω)×M(Γ ) such that for all (ϕ, Q, ν) ∈ V(Ω) ×X(Ω)×M(Γ ) :

a(u, ϕ) + b(ϕ, P ) + d(ϕ, λ) = l(ϕ), b(u, Q) = 0, d(u, ν) = 0, (2)

l(ϕ) =
2∑

m=1

∫
Ωm

Fm · ϕm dx̄; b(ϕ, P ) = −
2∑

m=1

∫
Ωm

divϕm Pm dx̄; a(u,ϕ) =

=
2∑

m=1

∫
Ωm

(�m

τ um · ϕm + 2μm ε(um) : ε(ϕm)− !m(um · (gm × ϕm))) dx̄;
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d(ϕ,λ) =
2∑

m=1

∫
Γ
(−1)m+1 χ λ ·ϕm|Γ∩Ω̄m

dΓ . To match the solution on Γ in

(2) we use following conditions:
∫
Γ
χ (u1 − u2)

i νi dΓ = 0 ∀ν ∈ M(Γ ),∫
Γ

(σij(u1, P1)(n1)
j)ϕidΓ =

∫
Γ

−(σij(u2, P2)(n2)
j)ϕidΓ ∀ϕ ∈ H

1
2
00(Γ ), (3)

where (n2)
j = −(n1)

j and (nm)j – j-th component of the outward normal nm

on Γ with respect to Ωm, m = 1, 2. For the closure by (3) obtained in the Ω1

and Ω2 equations (2), we introduce the supporting vector λ = (λ1, λ2) which is
defined by the relation

∫
Γ λ

i ϕi dΓ =
∫
Γ − 1

χ (σij(u1, P1)(n1)
j)ϕi dΓ .

3 The Scheme of the Finite Element Method (FEM)

First, we perform a triangulation Υh of the domain Ω. For each Ωj , we have
a quasi-uniform partition (see [9]) of Ωjh into triangles with sides of order hj .
We denote the triangles by K and refer to them as finite elements. Their set is

denoted by Υ
(j)
h . The partition Ωjh =

⋃
K∈Υ

(j)
h

K approximates the subdomain

Ωj such that ∂Ωjh is a piecewise linear interpolation ∂Ωj . The ends of Γ are
interpolation nodes. Thus for Γ, we construct two piecewise linear interpolations
Γ1h and Γ2h, which are parts of ∂Ω1h and ∂Ω2h, respectively. We parameterise
Γ1h using continuous piecewise linear functions γj

h : Î → R2, Î = [a, b], γ1h(a) =
γ2h(a), γ

1
h(b) = = γ2h(b). As an approximation for the velocity components, we

choose the vertices and midpoints of the sidesK, and for the pressure, we use the
vertices of K. We denote the set of nodes that belong to Γ1h, by N ; these nodes
are vertices of K and define a set N̂ = {y ∈ Î : γ1h(y) = r; r ∈ N on Γh ≡ Γ1h}.
We note that a subset of the nodes of the approximations Ω1h and Ω2h does not
coincide on Γ. The partition of Ω is denoted by Ωh = Ω1h ∪Ω2h.

We introduce the FE spaces on Ωjh : for the velocity components, V
(j)
h (Ωjh) is

a subspace of continuous, quadratic on K, FE functions in H1(Ωjh), which van-

ish on ∂Ω∩∂Ωj ; for the pressure,X
(j)
h (Ωjh) is a subspace of continuous, linear on

K, FE functions in L2(Ωjh). The method presented here is a first-order Taylor-
Hood method (see [10]). We denote the space of Lagrange multipliers (mortar
functions) on Î by M̂h, which is constructed on a grid with nodes of N̂ such that
∀#̂h ∈ M̂h, the following conditions hold: #̂h is a continuous function of L2, and
#̂h is quadratic on each inner segment and linear on the end segments of Î. Hence
on Γh, define a space Mh such that Mh = M̂h ◦ γ−1. In this case, we can express
the solution λm

jh ∈ Mh,m, j = 1, 2, as a linear combination of coefficients and

basic functions of Mh. As in [6], λm
h = λm

1h = −λm
2h, where λh = (λ1h, λ

2
h)

is a grid analogue to the vector λ. Define the FE spaces on Ωh and Γh:

Vh(Ωh) = {vh : vjlh ∈ V
(l)
h (Ωlh)}, ‖vh‖Vh

= (‖vh‖21,Ωh
+ ‖[vh]h‖21

2 ,h,Γ
)

1
2 ;

‖vh‖1,Ωh
= (

2∑
j,l=1

∑
K∈Υ

(l)
h

‖vjlh|K‖21,K)
1
2 , ‖[vh]h‖ 1

2 ,h,Γ = h−
1
2 ‖[vh]h‖0,Γ ; here [vh]h

is a discrete jump of a function vh on Γ , which we define later; Xh(Ωh) = {Qh :
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Qlh ∈ X
(l)
h (Ωlh)}, ‖Qh‖Xh

= (
2∑

l=1

‖Qlh‖20,Ωlh
)

1
2 = (

2∑
l=1

∑
K∈Υ

(l)
h

‖Qlh|K‖20,K)
1
2 ;

Mh(Γh) = {νh : νjh ∈ Mh(Γh)}, ‖νh‖− 1
2 ,h,Γ = h

1
2 ‖νh‖0,Γ ; Yh(Ωh) = {ωh ∈

∈ Vh :
∫
Γ χ[ωh]h · νhdΓ = 0∀νh ∈ Mh} with the norm of Vh(Ωh).

Remark 1. In all propositions, we use a common parameter to denote the grid
step, h.

Definition 1. The approximate problem (1) expressed using the FEM is as fol-
lows:find (uh, Ph,λh) ∈ Vh×Xh×Mh such that ∀(ϕh, Qh,νh) ∈ Vh×Xh×Mh:

ah(uh,ϕh) + bh(ϕh, Ph) + dh(ϕh,λh) = lh(ϕh),
bh(uh, Qh) = 0, dh(uh,νh) = 0,

(4)

lh(ϕh) =
2∑

i=1

∫
Ωih

F̄i ·ϕih dx̄, dh(uh,νh) =
∫
Γ
χ[uh]h · νh dΓ ; ah(uh,ϕh) =

=
2∑

i=1

∑
K∈Υ

(i)
h

∫
K

(
�i

τ uih · ϕih + 2μi ε(uih) : ε(ϕih)− !i
(
uih ·

(
ḡi ×ϕih

)))
dK;

bh(uh, Qh) = −
2∑

i=1

∑
K∈Υ

(i)
h

∫
K
divKuihQihdK,

where ḡi and F̄
j
i are Lipschitz continuous functions on Ωi ∪Ωih such that ḡi =

= gi, F̄
j
i = F j

i on Ωi ∩Ωih, ‖ḡi‖W 1∞(Ωi∪Ωih) ≤ Cgi , ‖F̄
j
i ‖W 1∞(Ωi∪Ωih) ≤ CF j

i
.

4 Convergence Analysis

We do not analyze problem (4) directly. To obtain a priori bounds for the dis-
cretization error, we proceed in two steps. In the first step, we introduce and
analyze a variational problem based on blending elements (BE). In the second
step, we interprete (4) as a perturbed blending approach.

We perform a triangulation Υ̃h of the domain Ω. Each Ωj is divided into

triangles K̃ such that if two vertices of K̃ belong to Γ , then the side (curve)
connecting them lies on Γ and is parameterised by γ. The above triangulation

of Ωj is denoted by Υ̃
(j)
h . Let Ω̃h =

⋃
K̃∈Υ̃h

K̃, Ω̃jh =
⋃

K̃∈Υ̃
(j)
h

K̃ be partitions of

Ω,Ωj , respectively. The FE K̃ is called BE, and the method is BEM. We assume

that Υ̃h and Υ̃
(j)
h differ from Υh and Υ

(j)
h only in that the sides ofK ∈ Υ

(j)
h (if they

have common points) approximate Γ , whereas the sides of K̃ ∈ Υ̃
(j)
h coincide

with part of Γ . The relationships between K̃,K and the basic element K̂ is
defined by one-to-one correspondences F̃K̃ , FK (F̃K̃ : K̂ → K̃, FK : K̂ → K).

Furthermore, we define spaces on Ω̃jh : V̆
(j)
h (Ω̃jh) is a subspace of continuous

functions v̆ ∈ H1(Ω̃jh), which vanish on ∂Ω ∩ ∂Ω̃jh such that for all K̃ ∈ Υ̃
(j)
h :

v̆|K̃ ◦ F̃K̃ is a polynomial of second degree on K̂, and X̃
(j)
h (Ω̃jh) is a subspace

of continuous functions q̃ ∈ L2(Ω̃jh) such that for all K̃ ∈ Υ̃
(j)
h : q̃|K̃ ◦ F̃K̃ is a
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polynomial of first degree on K̂. If v̆ljh ∈ V̆
(j)
h (Ω̃jh), then v̆

l
h ∈ V̆h(Ω̃h) and v̆h ∈

∈ V̆h(Ω̃h) = V̆h(Ω̃h)× V̆h(Ω̃h); if q̃jh ∈ X̃
(j)
h (Ω̃jh), then q̃h ∈ X̃h(Ω̃h), j, l = 1, 2.

Here, we note that X̃h(Ω̃h) is a space for the pressure and V̆h(Ω̃h) is not a
final space for the velocity field. The final space for it is Ṽh(Ω̃h).

Now, we define the correspondence between functions qh and q̃h of spaces Xh

and X̃h (vh and ṽh of spaces Vh and Ṽh). Consider K̃ ∈ Υ̃
(m)
h , which have a

side parameterised by γ. Each K̃ corresponds to K ∈ Υ
(m)
h .We have the equality

q̃h◦F̃K̃ = qh◦FK . Then, we define a mapping T : Xh → X̃h such that for allK ∈
∈ Υ

(m)
h : q̃h = Tqh = qh ◦GK , where GK = FK ◦ F̃−1

K̃
is transformation K̃ to K.

Let ∇K̃ be the gradient operator on K̃ ∈ Υ̃
(m)
h , then, we have the relation for

the gradient operator ∇K on the appropriate K ∈ Υ
(m)
h : ∇K = ((G ′

K)−1)T∇K̃ ,
whereG ′

K is the Jacobi matrix of the transformationGK .Moreover, divK̃ ≡ ∇K̃ ·

and divK ≡ ∇K ·. Let
2∑

m=1

∑
K̃∈Υ̃

(m)
h

∫
K̃
q̃mhdivK̃ ṽmhdK̃ = 0 ∀q̃h ∈ X̃h. Then, we

construct a mapping S : Vh → Ṽh such that ∀K ∈ Υ
(m)
h : ṽh = Svh and∑2

i=1

∑
K∈Υ

(i)
h

∫
K

qih divK vih dK = 0 ∀qh ∈ Xh. (5)

Proposition 1 ([11]). Let GK : K̃ → K – C2-diffeomorphism and w ∈ H1(K)
be a differentiable vector field on K. Then the following identity holds:
detG ′

K divKw = divK̃(detG ′
K (G ′

K)−1 w̆), w̆ = w ◦GK .

If we use Proposition 1 and go from K to K̃ in (5), then ∀q̃h ∈ X̃h:∑2

i=1

∑
K̃∈Υ̃

(i)
h

∫
K̃

q̃ihdivK̃(detG ′
K(G ′

K)−1(vih ◦GK))dK̃ = 0. (6)

The identity (6) is satisfied if only if on each K ∈ Υ
(m)
h : q̃h = Tqh and ṽh =

Svh = (G ′
K)−1(vh ◦GK) detG ′

K , where vh ◦GK is a second-degree polynomial
on K̃. We define a discrete jump of the function vh ∈ Vh on Γ : [vh]h = [Svh].
Then, we have the identities b(ṽh, q̃h) = bh(vh, qh), d(ṽh,νh) = dh(vh,νh).

Ṽh(Ω̃h) is a space for the velocity field ṽh, ‖ṽh‖Ṽh
= (‖ṽh‖21,Ω̃h

+‖[ṽh]‖21
2 ,h,Γ

)
1
2 ,

where ‖ṽh‖1,Ω̃h
= (
∑2

j,l=1 ‖ṽljh‖21,Ω̃jh
)

1
2 = (

∑2
j,l=1

∑
K̃∈Υ̃

(j)
h

‖ṽljh|K̃‖2
1,K̃

)
1
2 ;

X̃h(Ω̃h) is a space for a pressure q̃h, ‖q̃h‖X̃h
= (
∑2

j=1 ‖q̃jh‖20,Ω̃jh
)

1
2 ; Ỹh(Ω̃h) =

= {ṽh ∈ Ṽh :
∫
Γ χ [ṽh] · νh dΓ = 0 ∀νh ∈ Mh} with the norm of Ṽh(Ω̃h).

Definition 2. The approximation of problem (1) solved by the BEM is as fol-
lows:find (ũh, P̃h, λ̃h) ∈ Ṽh×X̃h×Mh such that ∀(ϕ̃h, Q̃h,νh) ∈ Ṽh×X̃h×Mh:

a(ũh, ϕ̃h) + b(ϕ̃h, P̃h) + d(ϕ̃h, λ̃h) = l(ϕ̃h), b(ũh, Q̃h) = 0, d(ũh,νh) = 0. (7)

Theorem 1 ([12]). Let u ∈ Y(Ω)∩H2
∗(Ω), P ∈ X(Ω)∩H1

∗ (Ω), λ ∈ H
1
2 (Γ ).

Let (ũh, P̃h, λ̃h) be an approximate solution that satisfies (7), ũh ∈ Ỹh, P̃h ∈
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∈ X̃h, λ̃h ∈ Mh. Then, the following convergence estimate holds:
‖u− ũh‖Ṽh

+ ‖P − P̃h‖X̃h
+ ‖λ− λ̃h‖− 1

2 ,h,Γ * h (‖u‖∗2,Ω + ‖P‖∗1,Ω).

In practice, the calculation of integrals over curved elements near the Γ may
cause some technical difficulties. It is much easier to realize the numerical method
if we replace integrals over the curved K̃ by the integrals over the corresponding
straightK. Let vh,wh ∈ Vh and w̃h = Swh, ṽh = Svh ∈ Ṽh and ā(w̃h, ṽh) :=
= ah(wh,vh) on Ṽh × Ṽh. We denote by u ′

h and P ′
h the vector Suh and the

function TPh, respectively. Then, the approximate formulation (4) is defined as
follows: find (u ′

h, P
′
h, λh) ∈

∈ Ṽh × X̃h ×Mh, such that ∀(ϕ̃h, Q̃h,νh) ∈ Ṽh × X̃h ×Mh (ϕ̃h = Sϕh):

ā(u ′
h, ϕ̃h)+b(ϕ̃h, P

′
h)+d(ϕ̃h,λh) = lh(ϕh), b(u

′
h, Q̃h) = 0, d(u ′

h,νh) = 0. (8)

Theorem 2 ([12]). Let u ∈ Y(Ω) ∩H2
∗(Ω), P ∈ X(Ω) ∩H1

∗ (Ω), λ ∈ H
1
2 (Γ ).

Let (u ′
h, P

′
h,λh) be an approximate solution that satisfies (8), u ′

h ∈ Ỹh, P
′
h ∈

∈ X̃h, λh ∈ Mh. Then, the following convergence estimate holds:
‖u− u ′

h‖Ṽh
+ ‖P − P ′

h‖X̃h
+ ‖λ− λh‖−1

2 ,h,Γ * h (‖u‖∗2,Ω + ‖P‖∗1,Ω).

It is known (see, for example, [13]) that any function zi ∈ Hs(Ωi), s = 1, 2,
can be extended to R2 with preservation of the class Hs, i.e., exists an operator
Es

i that satisfies the following:

Es
i : Hs(Ωi) → Hs(R2), Es

i zi = zi in Ωi, ‖Es
i zi‖s,R2 * ‖zi‖s,Ωi . (9)

Let z ∈ Hs
∗(Ω). We say that Es operates to z (Esz) if for every restriction zi =

z|Ωi ∈ Hs(Ωi), the operator Es
i acts as defined in (9). If q ∈ H1

∗ (Ω), qh ∈ Xh

and w ∈ H2
∗(Ω), wh ∈ Vh, then ‖E1q − qh‖2Xh

:=
2∑

k=1

‖Ek
1 qk − qkh‖20,Ωkh

,

‖E2w −wh‖2Vh
:=

2∑
k=1

‖E2
kwk −wkh‖21,Ωkh

+ ‖[E2w−wh]h‖21
2 ,h,Γ

.

Theorem 3 ([12]). Let u ∈ Y(Ω) ∩H2
∗(Ω), P ∈ X(Ω) ∩H1

∗ (Ω). Let (uh, Ph)
be an approximate solution that satisfies (4), uh ∈ Yh, Ph ∈ Xh. Then, the
following convergence estimate holds:
‖E2u− uh‖Vh

+ ‖E1P − Ph‖Xh
* h

(
‖u‖∗2,Ω + ‖P‖∗1,Ω

)
.

5 Numerical Results

Let Ω̄ = [−π, π]× [−π, π], and let Γ be defined such that x = a sin(32 (t− π)),
y = t, t ∈ [−π, π], a > 0. The subdomainΩ1 lies to the left of the Γ, and Ω2 lies to

the right. In the numerical experiments, we set ! =

{
1, x̄ ∈ Ω1,

5, x̄ ∈ Ω2,
μ =

{
1, x̄ ∈ Ω1,

3, x̄ ∈ Ω2,

g = b · rot u; b = 0.995; c = 1/3; τ = 1. The parameter a, which is responsible
for the location of the interface Γ, will be changed. As a solution of the problem
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Fig. 1. The errors for the velocity components on the norm of C(Ω̄h)(a = 0.4):

a)N
(1)
X1
= 48; b) N

(1)
X1
= 96

(1), we take

u1(x̄) =

{
3
2
a (x1 − a sin( 3

2
(x2 − π))) cos( 3

2
(x2 − π)), x̄ ∈ Ω1,

3
2
c a (x1 − a sin( 3

2
(x2 − π))) cos( 3

2
(x2 − π)), x̄ ∈ Ω2,

u2(x̄) =

{
x1 − a sin( 3

2
(x2 − π)), x̄ ∈ Ω1,

c (x1 − a sin( 3
2
(x2 − π))), x̄ ∈ Ω2,

P (x̄) =

{
sin x1 sin x2, x̄ ∈ Ω1,

c sin x1 sin x2, x̄ ∈ Ω2.

We note that the solution of the model problem (1) is chosen such that the
velocity field u is continuous on Γ , and that the pressure P and derivatives of
the velocity components u are discontinuous on Γ .

Let N
(j)
X1

and N
(j)
X2

be the numbers of segments of the partition Ωj on the axis

Ox1 and Ox2, respectively. Step h
(j)
X2

in direction of Ox2 is equal to 2 π/N
(j)
X2
. For

each (x2)
(j)
k = k·h(j)X2

, k = 0, . . . , N
(j)
X2
, we define a uniform step of partition Ωj in

the direction of the axis Ox1 and consider the case N
(j)
X2

= 2N
(j)
X1
, N

(2)
X1

= 2N
(1)
X1

.
Using the incomplete Uzawa algorithm [14], we perform numerical calculations.
In each iteration, we use GMRES method (see [15]). In Table 1, we show values

of the errors for the different parameters a and numbers N
(1)
X1
.

The results of the numerical experiments demonstrate that the errors of the
solutions for a velocity field in the norm of space Vh(Ωh) and a pressure in the
norm of space Xh(Ωh) decrease as the first power h for each a.
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Table 1.

N
(1)
X1

a 48 64 80 96

‖E2u− uh‖Vh 0.2 2.4980e-03 1.8791e-03 1.5032e-03 1.2503e-03
‖E1P − Ph‖Xh 0.2 2.7268e-03 2.0521e-03 1.6451e-03 1.3639e-03
‖E2u− uh‖Vh 0.4 3.9778e-03 3.0012e-03 2.3941e-03 1.9901e-03
‖E1P − Ph‖Xh 0.4 2.8997e-03 2.1791e-03 1.7502e-03 1.4476e-03
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Abstract. Parallel program systems for numerical solution of 2D and
3D problems of the dynamics of deformable media with constitutive re-
lationships of rather general form on the basis of universal mathematical
model describing small strains of elastic, elastic-plastic and granular ma-
terials are worked out. Computational algorithm is based on the splitting
methods with respect to physical processes and spatial variables. Some
computations of dynamic problems with and without taking into account
the moment properties of a material were performed on clusters.

Keywords: Dynamics, elasticity, plasticity, granular medium, Cosserat
continuum, shock-capturing method, parallel computational algorithm.

1 Introduction

Under modeling the processes of propagation of the stress waves in geomate-
rials (granular and porous media, soils and rocks) it is necessary to take into
account two main factors connected with their structural inhomogeneity. The
first of them is a sharp decrease of the compliance in compression at the time
of the collapse of pores with corresponding increase of the wave velocity. The
second factor is the conversion of a part of the wave energy into the energy of
rotational motion of particles in the material microstructure. Rotational motion
can be considered within the framework of a mathematical model of the Cosserat
continuum [1], in which along with the velocity of translational motion the an-
gular velocity of a particle is introduced, and along with the stress tensor the
couple stress tensor, determining the rotation, is introduced. To make possible
the description of deformation of materials with different resistance to tension
and compression, the rheological method was supplemented by a new element,
a rigid contact, which serves for imitation of perfectly granular material with
rigid particles. By using rigid contact in combination with conventional rheo-
logical elements (a spring simulating elastic properties of a material, a viscous
damper, and a plastic hinge) one can construct constitutive equations of granu-
lar materials and soils with elastic-plastic particles and of porous materials like
metal foams, see [4].
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In order to obtain correct numerical solutions for structurally inhomogeneous
materials by means of finite-difference methods, computations must be per-
formed on a grid whose meshes are smaller than the characteristic size of the
particles of a material. To solve 2D and 3D dynamic problems, parallel algo-
rithms can be efficiently used because they make it possible to distribute the
computational load between a lot of number of the cluster nodes, increasing
thereby the accuracy of numerical solutions.

2 Mathematical Models

The model for description of the process of deformation of elastic bodies is given
by the system of equations

A
∂U

∂t
=

n∑
i=1

Bi ∂U

∂xi
+QU +G , (1)

where U is unknown vector–function, A is a symmetric positive definite matrix
of coefficients under time derivatives, Bi are symmetric matrices of coefficients
under derivatives with respect to the spatial variables, Q is an antisymmetric
matrix, G is a given vector, n is the spatial dimension of a problem (2 or 3).
The dimension of the system (1) and concrete form of matrices–coefficients are
determined by the used mathematical model.

When taking into account the plastic deformation of a material, the system
of equations (1) is replaced by the variational inequality

(Ũ − U)

(
A
∂U

∂t
−

n∑
i=1

Bi ∂U

∂xi
−QU −G

)
≥ 0 , Ũ , U ∈ F , (2)

where F is a given convex set, by means of which some constraints are imposed
on possible states of a medium, Ũ is an arbitrary admissible element of F .

In the problems of mechanics of granular media with plastic properties a more
general variational inequality

(Ṽ − V )

(
A
∂U

∂t
−

n∑
i=1

Bi ∂V

∂xi
−QV −G

)
≥ 0 , Ṽ , V ∈ F , (3)

takes place, where the vector–functions V and U are related by the equations

V = λU + (1− λ)Uπ , U =
1

λ
V − 1− λ

λ
V π . (4)

Here λ ∈ (0, 1] is the parameter of regularization of the model characterizing
the ratio of elastic moduli in tension and compression, Uπ is the projection of
the vector of solution onto the given convex cone K, by means of which the
different resistance of a material to tension and compression is described.

The set F of admissible variations, included in (2) and (3), is defined by the
Mises yield condition

F =
{
U
∣∣∣ τ(σ) ≤ τs

}
,
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where σ is the stress tensor, τ(σ) is the intensity of tangential stresses, τs is the
yield point of particles. As a convex cone K of stresses, allowed by the strength
criterion, the Mises–Schleicher circular cone

K =
{
U
∣∣∣ τ(σ) ≤ æ p(σ)

}
is used, where p(σ) is the hydrostatic pressure, æ is the parameter of internal
friction. In plane problems of the dynamics of elastic-plastic media the vector–
function U consists of 6 unknown functions – 2 components of the velocity vector
and 4 components of the symmetric stress tensor:

U =
(
v1, v2, σ11, σ22, σ33, σ12

)
.

In spatial problems there are 9 unknown functions:

U =
(
v1, v2, v3, σ11, σ22, σ33, σ23, σ13, σ12

)
.

When taking into account the rotational degrees of freedom of particles in the
microstructure of a material in the Cosserat continuum model [1], this vector–
function along with the components of the velocity vector v and of the stress
tensor σ contains also the components of the angular velocity ω and of the
nonsymmetric couple stress tensor m. In 2D problems the vector–function U
consists of 12 unknown functions:

U =
(
v1, v2, σ11, σ22, σ33, σ12, σ21, ω3,m23,m32,m31,m13

)
,

and in 3D problems it consists of 24 unknown functions:

U =
(
v1, v2, v3, σ11, σ22, σ33, σ23, σ32, σ31, σ13, σ12, σ21,

ω1, ω2, ω3,m11,m22,m33,m23,m32,m31,m13,m12,m21

)
.

When taking into account the granularity of elastic-plastic materials, the un-
known vector–function V involves the nonzero components of the velocity vec-
tor v and the actual stress tensor σ, and in the vector–function U instead of σ
the conditional stress tensor s, defined by the Hooke law, is included. In the
most general model of a granular medium with different resistance to tension
and compression, which takes into account rotation of the particles, the vector–
function U is as follows:

U =
(
v1, v2, v3, s11, s22, s33, s23, s32, s31, s13, s12, s21,

ω1, ω2, ω3, n11, n22, n33, n23, n32, n31, n13, n12, n21

)
,

and the vector–function V is obtained from U by replacing the components of
tensors s and n on σ and m, respectively.
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3 Computational Algorithm

In the framework of considered mathematical models the parallel computational
algorithm was worked out for numerical solution of problems on the propagation
of stress and strain waves in media with complex rheological properties [4]. The
system of equations (1) is solved by means of the splitting method with respect
to spatial variables. Variational inequalities (2) and (3) are solved by splitting
with physical processes, which leads to the system (1) at each time step.

Technology of parallelization of computational algorithm is based on the
method of two-cyclic splitting with respect to spatial variables [3]. In the three-
dimensional case, on the time interval (t0, t0+Δt) the splitting method involves
7 stages: the solution of a one-dimensional problem in the x1 direction on the
interval (t0, t0+Δt/2), similar stages in the x2 and x3 directions, the solution of
a system of linear ordinary differential equations with the matrix Q, the recalcu-
lation of a problem in the x3 direction on the interval (t0+Δt/2, t0+Δt), and the
recalculation in the x2 and x1 directions. The two-cyclic splitting method is of
second-order accuracy provided that at its stages second-order schemes are used.
Besides, it ensures the stability of a numerical solution in spatial case provided
that stability conditions for one-dimensional systems are fulfilled.

To maintain second-order accuracy, at the 4th stage, when a system of or-
dinary differential equations is solved, in linear problems (where the vector–
functions V and U are equal to one another) the Crank–Nicholson implicit
nondissipative difference scheme is applied. The more general scheme is used
for the nonlinear case, and the solution is constructed by the method of succes-
sive approximations [4]. For the solution of remaining one-dimensional systems of
equations an explicit monotone finite-difference ENO-scheme of the “predictor–
corrector” type with piecewise-linear distributions of velocities and stresses over
meshes, based on the principles of grid-characteristic methods [2], is applied.

In the most general model, described by the inequality (3), at the “corrector”
step the relationships

U j+1/2 = Uj+1/2 +
Δt

2
A−1

(
Bi Vj+1 − Vj

Δxi
+Gi

)
are used (in the case of constant matrix–coefficients). Here the index j + 1/2 is
related to the center of a mesh of a spatial difference grid, a superscript corre-
sponds to an actual time level and a subscript corresponds to a previous level.
The vector V j+1/2 is calculated from U j+1/2 by the formula (4). If the matrices
are variable then the corresponding terms of the conservative approximation are
taken as a difference derivative with respect to x. At the “predictor” step a sys-
tem of differential equations arises (equations on characteristics for the model of
an elastic medium):

Yl A
∂U

∂t
= cl Yl A

∂V

∂xi
+ YlG

i ,

hence, after approximation(
I
j+1/2
l

)±
= Il j+1/2 ± αl j+1/2

Δxi
2

+
(
cl βl + YlG

i
)
j+1/2

Δt

4
,



Parallel Program Systems for Elastic-Plastic and Granular Media 475

where Yl and cl are left eigenvectors and eigenvalues of the matrix BiA−1, αl and
βl are derivatives of coefficients of the decomposition of U and V in the basis Yl:
Il = (Yl A)j+1/2 U and Jl = (Yl A)j+1/2 V , received by means of the iterative
procedure of limit reconstruction, indices “–” and “+” mark the values of these
coefficients on the left and on the right boundaries of a mesh. The procedure
of limit reconstruction consists in the construction of monotone piecewise-linear
splines which approximate Il and Jl with minimal discontinuities on boundaries
of neighbouring meshes of a grid.

To take into account plastic properties of materials, the variational inequali-
ties (2) and (3) after approximation of the time derivative by a finite difference
on the interval (t0, t0 +Δt) at each mesh of a spatial grid are reduced to

(Ṽ − V )A (U − Ū) ≥ 0 , Ṽ , V ∈ F ,

where Ū is the solution of elastic problem at given fixed instant t0 (V = U for
the inequality (2)). Then, taking into account (4), this inequality takes the form:

(Ṽ − V )A
(
V − (1− λ)V π − λ Ū

)
≥ 0. Hence, by definition of a projection,

V =
(
(1− λ)V π + λ Ū

)Π
. The mapping, defined by the right-hand side, is con-

tractive for the positive regularization parameter λ. Thus, the solution correction
procedure is in determining a fixed point of the contractive mapping and can
be implemented by method of successive approximations. For the case of the
Prandtl–Reuss elastic-plastic material this procedure does not require iterations
and coincides with the well-known Wilkins procedure for stresses correction.

Numerical algorithm allows to simulate the propagation of elastic-plastic waves
produced by external mechanical effects in a medium body, aggregated of arbi-
trary number of heterogeneous blocks with curvilinear boundaries. Examples of
regular decomposition of a computational domain into blocks bounded by curvi-
linear surfaces are presented in Fig. 1: in 2D case a medium body consists of
12 blocks, in 3D case it includes 24 blocks. The block structure of a body is reg-
ular in the sense that its separated blocks consisting of homogeneous materials

Fig. 1. Finite-difference grids in block media with curvilinear interfaces: 2D case (left),
3D case (right)
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can be numbered with three indices along the axes of a Cartesian coordinate
system. This numbering can be introduced only if interfaces of blocks are con-
sistent with each other. If there exist inconsistent interfaces, then it is necessary
to extend these interfaces and to perform a fictitious regular decomposition of
a medium body with a large number of blocks of the same material.

The parallelizing of computations is carried out using the MPI library, the
programming language is Fortran. The data exchange between processors oc-
curs at step “predictor” of the finite-difference scheme by means of the function
MPI Sendrecv. At first each processor exchanges with neighboring processors
the boundary values of their data, and then calculates the required quantities
in accordance with the difference scheme. Mathematical models are embedded in
programs by means of software modules that implement the constitutive relation-
ships, the initial data and boundary conditions of problems, and also conditions
of pasting together of solutions on inconsistent grids of neighboring blocks. The
universality of programs is achieved by a special packing of the variables, used
at each node of the cluster, into large one-dimensional arrays. Computational
domain is distributed between the cluster nodes by means of 1D, 2D or 3D de-
composition so as to load the nodes uniformly and to minimize the number of
passing data. Detailed description of the parallel algorithm one can found in [4].

4 Parallel Program Systems

Using this computational algorithm, the program systems for numerical solu-
tion of two-dimensional and three-dimensional elastic-plastic problems of the
dynamics of granular media (2Dyn Granular, 3Dyn Granular) and for solution
of two-dimensional and three-dimensional dynamic problems of the Cosserat
elasticity theory (2Dyn Cosserat, 3Dyn Cosserat) were worked out.

Parallel program systems 2Dyn Granular and 3Dyn Granular are intended
for numerical realization of the universal mathematical model describing small
strains of elastic, plastic and granular materials. In the case of elastic material
this model is reduced to the system of equations (1), hyperbolic by Friedrichs,
written in terms of velocities and stresses in a symmetric form. In the case of
elastic-plastic material the model is a special formulation of the Prandtl–Reuss
theory in the form of variational inequality (2) with one-sided constraints on
stresses. Generalization of the model to describe the deformation of a granular
material (3), (4) is obtained by means of the rheological approach, taking into
account different resistance of a material to tension and compression. Compu-
tational domain may have a block structure, composed of an arbitrary number
of layers and blocks in each layer (2D case), or an arbitrary number of layers,
strips in a layer and blocks in a strip (3D case) from different materials with
self-consistent curvilinear interfaces.

To illustrate the efficiency of program systems, numerical computations for
the Lamb problem about the action of concentrated impulsive load on the boun-
dary of elastic medium were carried out. The level curves of normal stress for
2D problem at different time moments are shown in Fig. 2, and the level surfaces
of normal stress for 3D problem are shown in Fig. 3.
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Fig. 2. 2D Lamb’s problem about the action of concentrated load on the boundary of
a half-plane for a momentless medium: level curves of normal stress σ11, 250th time
step (left) and 500th time step (right)

Fig. 3. 3D Lamb’s problem about the action of concentrated load on the surface of
a half-space for a momentless medium: level surfaces of normal stress σ11, 100th time
step (left) and 200th time step (right)

Program systems 2Dyn Cosserat and 3Dyn Cosserat allow to solve plane and
spatial dynamic problems of the moment elasticity, taking into account rotations
of the particles of microstructure of a material within the framework of the the-
ory of small strains. The model is formulated as the system of equations (1),
hyperbolic by Friedrichs, written in terms of the vectors of velocities of trans-
lational and rotational motion, as well as the tensors of stresses and couple
stresses. The initial data of boundary-value problem are formulated in terms of
displacements, rotation angles, velocities of translational and rotational motion,
stresses and couple stresses. On interblock boundaries the conditions of conti-
nuity of the velocity and angular velocity vectors, the stress and couple stress
vectors are placed. On external boundaries the boundary conditions in veloci-
ties of translational and rotational motion, stresses and couple stresses, as well
as mixed boundary conditions and symmetry conditions, ensuring mathemati-
cal correctness of a problem, can be specified. Numerical results for the Lamb
problem in the case of a moment medium are shown in Fig. 4 (2D problem).
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Fig. 4. 2D Lamb’s problem about the action of concentrated load on the boundary of
a half-plane for a moment medium: level curves of normal stress σ11, 250th time step
(left) and 500th time step (right)

In Figs. 2 – 4 one can see the incident longitudinal and transverse waves, co-
nical transverse waves and the Raleigh surface waves, moving from the loading
point inside computational domain. The essential difference between the results
of computations for the Cosserat continuum (Figs. 4) and for the classical elasti-
city theory (Figs. 2, 3) is that in a moment material behind the front of transverse
wave the additional system of high-frequency waves, caused by rotational motion
of the particles, is observed.

Numerical computations were performed on the cluster MVS–100k of Joint
Supercomputer Center of the Russian Academy of Sciences (Moscow). Paral-
lel program systems were registered by Rospatent in 2012 (certificates of state
registration no. 2012613989 (2Dyn Granular), 2012613990 (3Dyn Granular) and
2012614823 (2Dyn Cosserat), 2012614824 (3Dyn Cosserat)).
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Abstract. Mathematical models of the dynamics of elastic-plastic and
granular media are formulated as variational inequalities for hyperbolic
operators with one-sided constraints describing the transition of a mate-
rial in plastic state. On this basis a priori integral estimates are con-
structed in characteristic cones of operators, from which follows the
uniqueness and continuous dependence on initial data of solutions of
the Cauchy problem and of the boundary-value problems with dissipa-
tive boundary conditions. With the help of an integral generalization of
variational inequalities the relationships of strong discontinuity in dy-
namic models of elastic-plastic and granular media are obtained, whose
analysis allows us to calculate velocities of shock waves and to construct
discontinuous solutions. Original algorithms of solution correction are de-
veloped which can be considered as a realization of the splitting method
with respect to physical processes.

Keywords: Dynamics, granular medium, elasticity, plastic shock wave,
discontinuous solution, variational inequality, computational algorithm.

1 Introduction

Thermodynamically consistent systems of conservation laws were firstly obtained
by Godunov and his followers for the models of reversible thermodynamics – elas-
ticity theory, gas dynamics and electrodynamics [3–5]. Such form of equations
assumes the setting so-called generating potentials Φ(U) and Ψj(U) (j = 1, ..., n,
where n is the spatial dimension of a model) depending on the vector U , whose
components are projections of the velocity vector, components of the stress ten-
sor and other thermodynamic state parameters. By means of generating poten-
tials the system is written in divergent form as follows:

∂

∂t

∂Φ

∂U
=

n∑
j=1

∂

∂xj

∂Ψj

∂U
, (1)
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or in a more general form, including terms that are independent of derivatives.
The additional conservation law

∂

∂t

(
U
∂Φ

∂U
− Φ

)
=

n∑
j=1

∂

∂xj

(
U
∂Ψj

∂U
− Ψj

)
(2)

is valid for the divergent system (1). The equation (2) may be a conservation
law of energy or of entropy.

Thermodynamically consistent systems of conservation laws of the form (1),
(2) turn out to be very useful in justification of the mathematical correctness of
models. Based on such formulation a priori estimates of solutions in characteris-
tic cones of the operator can be obtained, from which it follows the uniqueness
and continuous dependence on initial data for the Cauchy problem and for boun-
dary value problems with dissipative boundary conditions. It is intended for the
integral generalization of the model, which allows to construct discontinuous so-
lutions. For numerical analysis of the system (1), (2) the effective shock-capturing
methods, such as Godunov’s method [6], adapted to the computation of solu-
tions with discontinuities, caused by concentrated and impulsive perturbations,
may be applied.

The present paper addresses to generalization and application of this ap-
proach for the analysis of thermodynamically irreversible models of mechanics
of deformable media taking into account plastic deformation of materials.

2 Special Formulations

In geometrically linear approximation the system of equations of the dynamic
elasticity can be written in common notations in the next form:

ρ
∂v

∂t
= ∇ · σ + ρ g ,

∂

∂t

∂Φ0

∂σ
=

1

2

(
∇v +∇v∗

)
. (3)

In this case the vector U consists of velocities and stresses only. The dimension
of U depends on the spatial dimension n. Generating potentials are given by
Φ = ρ v2/2 + Φ0(σ), Ψj = (σ · v)j , where the projection of a vector onto the
axis xj is marked by the index j. The system (3) itself is a thermodynamically
consistent system of conservation laws. It can also be represented in the form

A
∂U

∂t
=

n∑
j=0

Bj ∂U

∂xj
+QU +G , (4)

where A = ∂2Φ/∂U2, Bj = ∂2Ψj/∂U
2 are square matrices composed of mecha-

nical parameters of a material, G is a vector containing the mass forces, Q is
a matrix, which is nonzero in the curvilinear coordinate system.

If the strain potential Φ0 is a strongly convex twice differentiable function,
then the system (4) belongs to the well-studied class of systems, which are
hyperbolic by Friedrichs [7]. In particular, in the linear elasticity theory
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Φ0 = σ : a : σ/2 is a quadratic form, whose coefficients are given by the ten-
sor a of elastic compliance of a material – a positive definite fourth-rank tensor,
possessing a special symmetry.

In a more general nonlinear model of a granular material having different
resistance to tension and compression [10], the condition of differentiability of
a strain potential is violated. For example, for an ideal (not cohesive) granular
material with elastic particles Φ0 = σ : a : σ/2 + δK(σ), where K is the cone
of admissible stresses (the Coulomb–Mohr cone or the Mises–Schleicher cone)
and δK is the indicator function, equals to zero on K and equals to infinity in
the exterior of K. Such form of a potential indicates that tensile stresses are not
possible in an ideal granular medium. This model is reduced to the system

ρ
∂v

∂t
= ∇ · σ + ρ g , a :

∂s

∂t
=

1

2

(
∇v +∇v∗

)
, σ = sπ ,

where sπ is a projection of the conditional stress tensor s onto the cone K in
the norm |s| =

√
s : a : s. The last system can be represented in the form

A
∂U

∂t
=

n∑
j=0

Bj ∂U
π

∂xj
+QUπ +G , (5)

but this system is not reduced to the Godunov system (1), written in terms of
generating potentials.

When taking into account the irreversible deformation, in the models of vis-
coelastic media the dissipative potential H(σ) is introduced. The derivative of
this potential is equal to the viscous strain rate tensor. The constitutive equation
in (2) is replaced by the next equation:

a :
∂σ

∂t
=

1

2

(
∇v +∇v∗

)
− ∂H

∂σ
. (6)

It is usually assumed that the dissipative potential is a convex function. In this
case for any symmetric tensor σ̃ the following inequality is valid

H(σ̃)−H(σ) ≥ (σ̃ − σ) :
∂H

∂σ
,

which is equivalent to the definition of convexity. If the indicator function of
the set F , whose boundary describes the yield surface, is taken as a dissipa-
tive potential in (6), then we obtain the variational formulation of constitutive
relationships of the Prandtl–Reuss theory of elastic-plastic flow [13]:

(σ̃ − σ) :

(
a :

∂σ

∂t
−∇v

)
≥ 0 , σ, σ̃ ∈ F . (7)

It can be shown that the system of equations of the dynamics of a viscoelastic
mediumwith the constitutive equation (6) is reduced to the semilinear system (4),
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in which the matrix Q depends on the solution. In the case of an elastic-plastic
medium (7) variational inequality of general form

(Ũ − U)

(
A
∂U

∂t
−

n∑
j=0

Bj ∂U

∂xj
−QU −G

)
≥ 0 , U, Ũ ∈ F , (8)

takes place. It should be noted that under our assumptions relative to matrices–
coefficients the differential operator of variational inequality is hyperbolic by
Friedrichs and that it can be written with the help of generating potentials.

Let us consider a more general variational inequality, describing the process
of dynamic deformation of a granular medium with elastic-plastic particles:

(Ṽ − Uπ)

(
A
∂U

∂t
−

n∑
j=0

Bj ∂U
π

∂xj
−QUπ −G

)
≥ 0 , Uπ, Ṽ ∈ F , (9)

from which the above models can be obtained as special cases when K and F
coincide with the whole stress space.

3 A Priori Estimates and Weak Solutions

For the difference of two sufficiently smooth solutions of the variational inequa-
lity (8) a priori estimates in characteristic cones, generalizing estimates for so-
lutions of the hyperbolic system of equations, can be obtained. Let U and Ū be
two such solutions. Assuming that Ũ = Ū in the inequality (8) and Ũ = U in
the analogous inequality written for Ū , and summing results we obtain

(Ū − U)

(
A
∂(Ū − U)

∂t
−

n∑
j=0

Bj ∂(Ū − U)

∂xj
−Q (Ū − U)− Ḡ+G

)
≤ 0 .

This inequality, after reduction to the divergent form, is integrated over the set of
a truncated cone type in the space of variables (x1, ..., xn, t) with the bases t = t0
and t = t1, which is built by solving the equation or inequality of Hamilton–
Jacobi [3, 13]. Transforming by Green’s formula we obtain the estimate:

||Ū − U ||(t1) ≤ ||Ū − U ||(t0) expα(t1 − t0) +

+ β

t1∫
t0

||Ḡ−G||(t) expα(t1 − t) dt .
(10)

Here ||U ||(t) is the energy norm, equals to the integral of
√
UAU over the cross-

section of cone by the hyperplane t = const, α and β are the coefficients, inde-
pendent on both solutions. Uniqueness of a solution of the Cauchy problem

U
∣∣
t=t0

= U0
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and its continuous dependence on initial data and right-hand side in a small
time interval follows from the estimate (10).

A similar estimate can be obtained in a truncated cone, adjacent to a part of
boundary, where the dissipative boundary conditions are given. Dissipativity is
understood in a usual sense: the fulfillment of these conditions for two vector–
functions Ū and U must ensure the fulfillment of the inequality

(Ū − U)

n∑
j=1

νj B
j(Ū − U) ≤ 0 ,

where νj are the projections of an external normal vector.
It is impossible to deduce a similar estimate for the difference of solutions of

the variational inequality (9) because of the nonlinear projector onto the coneK,
included in the inequality. In this case the energy estimate can be obtained, by
means of which the boundness of solutions in cones and the stability of trivial
solution with respect to small perturbations of initial data and right-hand side
can be proved. In the monograph [10] the estimate is obtained for difference
of two solutions of the regularized inequality (9), where the projection Uπ is
replaced by the vector V = ε U + (1 − ε)Uπ with a small parameter ε > 0.
However, the limit under ε→ 0 in this estimate does not give the desired result.
It is essential that estimate (10) is valid for the variational inequality (8) in the
presence of discontinuity surfaces of solutions [13].

The problem of constructing weak (discontinuous) solutions in the theory
of plasticity is not completely solved till nowadays. Under the assumption of
continuity of the stress deviator on the plastic shock wave Mandell in [8] has
constructed a system of equations of a strong discontinuity in the elastic-plastic
flow theory with the Mises yield condition. Bykovtsev and Kretova in [2] have
obtained similar relationships with the Tresca–Saint-Venant yield condition un-
der the assumption of immutability of principal axes of the stress tensor onto
the sides of wave front. The author of this paper proposed a method of integral
generalization of variational inequalities, which allowed to investigate the plastic
shock waves for a wide range of models without any additional assumptions. This
method was applied to the analysis of discontinuous solutions in perfectly elastic-
plastic media [12, 15], in materials with linear and nonlinear hardening [14, 17].
In more general form it has been applied to the analysis of shock-wave motion of
granular media [9, 16]. The method occurs to be extremely fruitful in the study
of models, which are formulated as variational inequalities with linear differential
operators. In the nonlinear case, the system of relationships of a strong discon-
tinuity, obtained with the help of this method, as a rule, is not closed, and the
construction of the realizability conditions must be accompanied by the use of
additional considerations about the evolutionarity and the stability of a shock.

We describe the method of integral generalization on an example of variational
inequality with operator, expressed in terms of generating potentials:

(Ũ − U)

(
∂

∂t

∂Φ

∂U
−

n∑
j=1

∂

∂xj

∂Ψj

∂U

)
≥ 0 , U, Ũ ∈ F . (11)
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At first this inequality must be written in the divergent form:

Ũ

(
∂

∂t

∂Φ

∂U
−

n∑
j=1

∂

∂xj

∂Ψj

∂U

)
≥ ∂

∂t

(
U
∂Φ

∂U
− Φ

)
−

n∑
j=1

∂

∂xj

(
U
∂Ψj

∂U
− Ψj

)
.

Then both its parts are multiplied by a compactly supported test function χ ≥ 0
and integrated over the space–time domain using Green’s formula. As a result,
we obtain the inequality, which does not contain derivatives of the solution:∫ ∫ (

− ∂Φ

∂U

∂(χŨ)

∂t
+

n∑
j=1

∂Ψj

∂U

∂(χŨ)

∂xj

)
dx dt ≥

≥
∫ ∫ (

−
(
U
∂Φ

∂U
− Φ

)
∂χ

∂t
+

n∑
j=1

(
U
∂Ψj

∂U
− Ψj

)
∂χ

∂xj

)
dx dt .

Taking into account arbitrariness in the choice of the function χ, the next varia-
tional inequality at the points of surface of strong discontinuity can be obtained:

Ũ

[
c
∂Φ

∂U
+

n∑
j=1

νj
∂Ψj

∂U

]
≥ c

[
U
∂Φ

∂U
− Φ

]
+

n∑
j=1

νj

[
U
∂Ψj

∂U
− Ψj

]
, (12)

where c ≥ 0 is the velocity of the wave front, square brackets are used to denote
a jump of function under transition through the discontinuity. This inequality
allows to analyze admissible discontinuities of a solution in specific models. In
a similar way one can obtain more general relationships of a strong discontinuity
for the solution of variational inequality (9), which does not reduced to (11).

The inequality (12) possesses comprehensive information about the disconti-
nuities in the case of quadratic generating potentials, when a differential operator
is linear. As it turned out, jumps of velocities and stresses on the fronts of plastic
shock waves, velocities of waves and even their number are essentially dependent
on the form of a plasticity condition. In the presence of flat portions of the yield
surface the number of shock waves increases. In the geometrically linear models
the velocities of shock waves are calculated in terms of given phenomenological
parameters of a material and do not depend on the stress state in the vicinity
of a front. Conversely, in the nonlinear models the theorem of definiteness of
a shock wave holds: the state behind the front is uniquely determined by the
state before the wave front and by given velocity of the wave. In perfectly me-
dia the class of discontinuous solutions depends essentially on the type of state
function, connecting the hydrostatic pressure with the density and temperature,
on the nature of dependence of the yield point on temperature, as well as the
presence of plane faces on the yield surface [15]. In the models of a nonlinearly
hardening the number of shock waves is determined by the number of convex
down parts on the diagram of shear [9]. In the models of granular media the
number of possible discontinuities increases in comparison with usual elastic-
plastic media. Shock-wave transitions of a material from the loosened state to
the compressed one, so-called signotons, are added to these discontinuities. Shock
adiabats of plane signotons of low intensity are analyzed in [9, 10].
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4 Numerical Approaches

Besides notable successes in the investigation of a problem of discontinuous so-
lutions, the formulations of models in the form of variational inequalities turned
out to be useful in the constructing computational algorithms. The approxima-
tion of differential operator and constraint on an example of the inequality (11)
leads to the following discrete problem:

(Ũ − Ûk+1)

(
∂Φk+1

∂U
− ∂Φk

∂U
−Δt

n∑
j=1

Λj

∂Ψk
j

∂U

)
≥ 0 , Ûk+1, Ũ ∈ F ,

where Ûk+1 is a special combination of Uk+1 and Uk, Δt is the time step of
a grid, and Λj is the differential operator approximating the partial derivative

with respect to the spatial variable xj . In the case of Ûk+1 = Uk+1 there is the
most simple problem. Its solution can be found in two steps: at first the vector

∂Φ̄k+1

∂U
=
∂Φk

∂U
−Δt

n∑
j=1

Λj

∂Ψk
j

∂U
,

implementing the explicit finite-difference scheme on the time step for the sys-
tem of equations (1), is calculated and then the solution correction is made in
accordance with the variational inequality

(Ũ − Ûk+1)

(
∂Φk+1

∂U
− ∂Φ̄k+1

∂U

)
≥ 0 , Un+1, Ũ ∈ F ,

which is equivalent by the convexity of Φ(U) to the problem of conditional
minimization of the function Φ(Uk+1) − Uk+1∂Φ̄k+1/∂U under the constraint
Uk+1 ∈ F . These steps can be considered as a result of application to the varia-
tional inequality (11) of the splitting method with respect to physical processes:
at first an elastic problem is solved, then its solution is corrected by means of
the plastic constitutive relationships.

If the generating potential Φ(U) is a quadratic function, then the solution
correction is reduced to determining projection of the vector Ūk+1 onto the
convex set F with respect to corresponding norm. This method of correction
was used by Wilkins [18] under numerical solution of elastic-plastic problems,
it is widespread now. The algorithm, corresponding to Ûk+1 = (Uk+1 + Uk)/2,
possesses a more accuracy. It is realized rather simple in [1].

More general variants of the solution correction algorithm in the problems
of the dynamics of granular media taking into account the plastic deformation
of the particles are developed in the monograph [10]. The method of splitting
with respect to spatial variables, which is applied for the solution of multidi-
mensional problems in the first stage of the computational algorithm, and the
finite-difference schemes for the solution of one-dimensional systems of equations
under the realization of the splitting method are described there, too.
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An Effective Method of Electromagnetic Field

Calculation
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Abstract. The problem of calculation of electromagnetic field from a
large number (108 and more) of elementary radiating objects for the
needs of holographic lithography is considered. The specially designed
big pixel method is proposed. This method was implemented as a part
of a parallel software package and was used on the MVS-100K JSCC
RAS and the MIIT T4700 clusters (100 TFLOPS and 4.7 TFLOPS cor-
respondingly). The big pixel method allows calculating of Gabor holo-
grams for images of real-size chip topologies on modern clusters. A paral-
lel efficiency of the algorithm was investigated. It is shown an example of
Gabor hologram synthesis for an image of topology consisting of 1.6∗109
elements.

Keywords: HPC, parallel algorithms, cluster computations, holography
simulation, highly oscillatory integrals.

1 Introduction

In this paper we are considering a calculation of electromagnetic fields for one
specific optical scheme (fig. 1) used for construction of holographic images. It is
assumed that all desired images consist of simple geometrical shapes composed
from rectangles and squares with sides being parallel to coordinate axes and
having multiple sizes (see gray areas at fig. 2).

Our problem arises from a holographic lithography [1–3] where there is a need
to solve creation, optimization and reconstruction problems for such images.
For images of small-size and medium-size structures or so-called ”topologies”
(squares, strips, test miras) such problems could be solved with the use of cluster
supercomputers having relatively low performance [4], but when dealing with
images of full-size chip layer topologies it is indispensable to develop fast methods
of electromagnetic field calculation suitable for the considered optical scheme.

The main computational problem in the holographic lithography is to calcu-
late such a hologram mask which produces the desired image. While it is rather
simple to calculate a mask in ordinary projection lithography [5] (in most cases
this mask is just a homothetic copy of an image of an initial topology), here at
holographic lithography, on the contrary, holographic mask calculation is very
time consuming, obligatory technological step. At the same time calculating
holographic mask by the means of standard methods demands computational

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 487–494, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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power exceeding existing HPC-computers performance in order of magnitudes.
That is why developing of a method of fast calculation of electromagnetic fields
needed for Gabor hologram synthesis is a key issue in the holographic lithogra-
phy and this particular problem will be taken in mind through the course of the
current paper.

2 Problem Statement

A scheme of a holographic lithography system [1, 2] is shown at fig. 1. A radiation
W illuminates a holographic plate, which is denoted as ΩH and is situated in
OHxy plane. The plate’s transmissivity is described by the a real-value function
T (x, y): ΩH → [0, 1]. Domains {(x, y) | (x, y) ∈ ΩH , T (x, y) = 1} are totally
transparent for the radiation, while domains {(x, y) | (x, y) ∈ ΩH , T (x, y) = 0}
don’t transmit the radiation W at all. The resulting aerial image (intensity
distribution) is formed at OIξη plane.

Fig. 1. Optical scheme

Let q0(ξ, η) : ΩI → {0, 1} be some function defining the required image, which
corresponds to the desired paths configuration (topology) on a future chip layer.
Let’s consider an object field - a complex function g(ξ, η) : ΩI → C defined at
ΩI domain in OIξη plane. When simulating an illumination by a plane wave
R we could assume g(ξ, η) = q0(ξ, η)R(ξ, η). A Gabor hologram for the object
g(ξ, η) is a function Tg(x, y) : ΩH → [0, 1] defined by the following formula:

Tg(x, y) =

∣∣∣∣∣∣
∫∫
ΩI

K(x, y, ξ, η)g(ξ, η)dξdη +W (x, y)

∣∣∣∣∣∣
2

, (1)
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where K(x, y, ξ, η) = eik̃r
r , r =

√
(x− ξ)2 + (y − η)2 + d2, k̃ = 2π

λ
is wave

number, λ is a wave length and W (x, y) is a field complex-conjugated to the
reconstructing field W (x, y) (fig. 1).

Radiation intensity (”reconstructed image”) I(ξ, η) is registered at observa-
tion domain ΩI laying at object plane OIξη at distance d from the hologram.
If the field at OHxy plane before propagating through the hologram with the
transparency function T (x, y) is described by W (x, y), then radiation intensity
at object plane could be calculated in scalar approximation with the use of
Kirchhoff integral in the following way:

IT (ξ, η) =

∣∣∣∣∣∣
∫∫
ΩH

K(x, y, ξ, η)W (x, y)T (x, y)dxdy

∣∣∣∣∣∣
2

. (2)

A reconstructed image q(ξ, η) = ITg (ξ, η) created by Gabor hologram Tg(x, y)
will be rather close to the given image q0(ξ, η) for the case when g(ξ, η) =
q0(ξ, η)R(ξ, η).

It should be noted, that it is necessary to use vector radiation model when
dealing with high aperture angles. In this case formula (1) is not changing,
and image reconstruction calculation could be reduced to calculation of several
integrals having the same type as (2) using, for example, Stratton-Chu formulas
[6]. Therefore, the main issue in the hologram creation problem (1) (as well as
in the problem of its illumination modelling (2)) is calculation of the following
integral:

I(x, y) =

∫∫
Ω

K(x, y, ξ, η)ϕ(ξ, η)dξdη (3)

with a rapidly oscillating kernel

K(x, y, ξ, η) =
e
i2π
λ
√

(x−ξ)2+(y−η)2+d2√
(x− ξ)2 + (y − η)2 + d2

(4)

at points (− b
2 + γ(i + 1

2 ),−
b
2 + γ(j + 1

2 )), where b is a hologram size, γ is a

hologram cell size, i, j = 1, ...,M , while M = [ bγ ].

As the grid sizeM could be up to 106 as well as an image grid sizeN (N ≈ M),
it is critically important to develop a technique (or so-called fast summation
method [7]) allowing to produce the calculation (3), (4) in O(N2logN) opera-
tions instead of N4 given by direct summation. Later in this paper it is described
a method specially designed for the calculation of Gabor holograms in the holo-
graphic lithography specific optical scheme (fig. 1). It substantially uses some
peculiarities of the problem. The first is that the domain where ϕ(ξ, η) is non-zero
consists of rectangles with sides parallel to coordinate axis, because metal paths
on a resulting chip layer do have such configuration, and therefore the initial
image has the same structure. That is why we could decompose the integration
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domain into rectangles or squares without loosing accuracy. The second one is
that the transparency function Tg(x, y) of the Gabor hologram oscillates very
slow (it is done intentionally by using special optical scheme shown at fig. 1).
Therefore we need to calculate electromagnetic field I(x, y) on rather sparse
grid, that allows to considerably reduce number of operations but still allows
to implement FFT-based approach. As a result the proposed big pixel method
allows to obtain CBPN

2logN operations asymptotic with such a constant CBP

that calculating Gabor holograms for real chip layer topologies becomes possible
on the state-of-the-art cluster computational systems.

3 Big Pixel Method

Let’s decompose an image domain ΩI (square a × a having center at (ξ0, η0))
into big pixels, i.e. squares �kl having size σ × σ with centers at (ξ0 − a

2 +
σ(k + 1

2 ), η0 −
a
2 + σ(l + 1

2 )), k, l = 0, ..., N − 1, where N = [ aσ ]. Thus, on every
�kl the function of topology image q has a constant value qkl: 1, if the square
�kl belongs to topology and 0 otherwise (fig. 2). We could also add some non-
zero phase ψ (for example, neighbor elements are assumed to have phases 0
and π, when implementing a phase-shift technology [3]) to certain squares. This
additional phase will also be constant on every �kl and will be accounted for by
multiplying q by eiψ . The illumination R of the object practically doesn’t vary
on a big pixel area, thus it could be assumed that object field function g = qeiψR
is constant on every �kl and is equal to gkl on it. The initial integral (3) could
be transformed in the following way:

Fig. 2. Integration domain is decomposed into big pixels. Gray areas are radiating (or
transparent for radiation), while white ones are not.

I(x, y) =

∫∫
O

g(ξ, η)K(x, y, ξ, η)dξdη =

N−1∑
k,l=0

ϕ(k, l)

∫∫
�kl

K(x, y, ξ, η)dξdη. (5)

Let’s denote Skl(x, y) =
∫∫
�kl

K(x, y, ξ, η)dξdη. It is a result of diffraction of

electromagnetic field on the square hole (big pixel) �kl. This integral could be
found analytically in the far-field approximation [8]. Let a hologram calculation
mesh step to be equal to the step σ on the topology. Then number of points
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in hologram mesh is equal to H × H , where H = [ bσ ]. Let’s notice that the
integral Skl(x, y) is invariant when shifting along an object and a hologram
simultaneously: ∀δk, δl ∈ Z we have Sk+δk l+δl(x + δkσ, y + δlσ) = Skl(x, y).
Using this property and denoting S(i, j) = S00(iσ, jσ), the sum (5) could be
rearranged in the following way:

I(i, j) =

N−1∑
k,l=0

ϕ(k, l)S(i− k, j − l), i, j = 0, ..., H − 1, (6)

where I(i, j) = I(− b
2 + σ(i + 1

2 ),−
b
2 + σ(j + 1

2 )).

Direct computation of the convolution (6) requires N2H2 = [ aσ ]
2[ bσ ]

2 opera-
tions. Therefore, as a ∼ b, the number of operations will increase like the forth
power when increasing the image size a or decreasing the characteristic size σ,
it will be impossible to perform the calculation for big-size image in appropriate
time even when supercomputer is used. However the convolution (6) could be
calculated by 3 two-dimensional Fourier transforms [9]:

I = F−1[F (ϕ)⊗ F (S)], (7)

where F and F−1 are direct and inverse two-dimensional discrete Fourier trans-
forms, ⊗ is element-wise multiplication, and I, ϕ, S are corresponding ma-
trices. Using fast Fourier transform gives the following number of operations:
ΥBP = 3 · 2C1((k + 1)N − 1)2log2((k + 1)N − 1). Throwing away unimportant
terms and assuming C1 = 5 [9] we will have

ΥBP = 30(k + 1)2N2log2((k + 1)N) . (8)

Fig. 3. Computational meshes for hologram synthesis when the big pixel method with
decomposition of a hologram into areas is used
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3.1 Cluster Realization of the Big Pixel Method

When realizing the big pixel method on a cluster, a hologram is divided into
uniform square areas. Each area has the same size as topology (fig. 3) and is
calculated separately. Total number of such areas is k2. A number of operations
is ΥBPA = (2k2 + 1)2C1(2N − 1)2log2(2N − 1). For C1 = 5 we will have

ΥBP = (80k2 + 40)N2log2(2N) . (9)

This is a little more than for original big pixel method (8) but for this modi-
fication of the big pixel algorithm the requirements for memory is decreasing by

two orders (precisely by (k+1)2

4 times).

p, cores
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Fig. 4. Efficiency of big pixel algorithm (N = 8000, k = 10) on MVS-100K cluster. The
problem size remains constant as a number of used calculating cores increases from 1
to 512.

Big pixel method was written in C++ programming language as a part of Bin-
Net software package. FFTW and Intel MKL packages were used for performing
two-dimensional distributed parallel FFT.

Efficiency behaviour of the algorithm is practically the same as for FFT algo-
rithm (fig. 4), because on every of k2 steps practically all computation time is spent
by computing 2 two-dimensional FFTs, while time of point-to-point matrices mul-
tiplication is negligible and FFT of matrix ϕ is performed once in the beginning
and its result is stored. It could be seen that efficiency decreases by 4 times while
a number of processes increases from 1 to 8 on one node (one MVS-100K com-
putational node has two quad-core processors), then it is at about constant level
of 25% when a number of cores increases up to 64 (8 nodes) and then continues to
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Fig. 5. Result of reconstruction of an image fragment for the topology consisting of
test miras

decrease reaching 10% on 512 cores (64 nodes). This poor efficiency is caused by
excessive interprocessor communication needed to perform a transposition of the
distributively stored matrix during a calculation of 2-d FFT.

Numerical Computation Example. The test topology consisted of 40000×
40000 computational pixels filled with test miras having size 57 × 37. Gabor
hologram was 10 times bigger than the object, i.e. k = 10. This computation was
performed on 640 calculating cores of MVS100-K JSCC RAS supercomputer and
took 100 minutes. Execution time for every FFT of matrix having 79999×79999
double precision complex numbers was equal to 29 seconds. For controlling the
appropriateness of hologram synthesis it was calculated a small fragment of
a reconstructed image (2) containing 9 miras. Result of this reconstruction is
shown at fig. 5.

4 Conclusion

In the paper it is described the big pixel method allowing to calculate Ga-
bor holograms for modern chips with arbitrary topology on the state-of-the-art
computing systems. The modified variant (allowing decreasing memory amount
requirements by two orders) of the big pixel method was implemented as a part
of BinNet parallel software package.

In a case when IC topology has periodic (regular) structure, it is possible to
increase big pixel algorithm performance by considering these regular structures
as elementary pixels.

In the case when γ > σ, there is another way to increase method performance,
that is based on using multiple grids. Each FFT-grid should have step equal to
the hologram cell size γ, while a big pixel size on an image remains the same σ as
for ordinary big pixel method. This approach allows to use RAM more efficiently
and to decrease the needed number of operations. The key issue allowing such
improvement is that in this case, which is really important for applications [1–3],
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we need to calculate electromagnetic field on a hologram on very sparse grid. Its
step is bigger than a period of field oscillation and is bigger than the minimal
characteristic topology size σ on an image. Ability to use such big step γ appears
when the transparency function Tg(x, y) of a hologram is sufficiently smooth. In
some ways such an algorithm should be an optimal one for the problem (2), (3),
(4) when considering an optical scheme like the one shown on fig. 1.

It could be seen on fig. 5 that the reconstructed image q is rather far from the
given topology image q0 (which is equal only to 0 or 1). An optimization problem
ρ(q0, q) −−→

T,g
min could be considered to improve resulting image quality [10]. A

variation of diversity functional for ρ = L2 could be obtained analytically:

δJL2(T ) = 4Re(V (x, y), δT (x, y))(x,y), (10)

where

V (x, y) =

∫∫
K(ξ − x, η − y)

[
|K ∗ T |2 ·K ∗ T −K ∗ T · q02

]
(ξ, η)dξd.η

Therefore, a gradient method of optimization could be proposed, where for com-
puting variation (10) of the corresponding functional it is enough to calculate
several convolutions having the same type as (3), so the big pixel method could
be applied for solving such optimization problems.
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Abstract. The finite differences scheme for finding a numerical solution
of the parabolic equation with double nonlinearity is suggested. For this
purpose a special auxiliary problem having some advantages over the
main problem is introduced. Some properties of the numerical solution
are studied and using the advantages of the proposed auxiliary problem,
the convergence of the numerical solution to the exact solution in the
sense of mean is proven.

Keywords: Parabolic equation with double nonlinearity, auxiliary
problem, finite differences scheme in a class of discontinuous functions.

1 Introduction

It is known that many problems of hydrodynamics, such as the motion of a non-
newtonian fluid in a porous medium, the motion of water in natural watercourse
and etc are modeled by nonlinear partial differential equations of the parabolic
type with double nonlinearity under the corresponding initial and boundary
conditions. Investigation of these kinds of problems are important practically
and theoretically both, [2], [4], [6].

Let DT = {(x, t) | 0 ≤ x ≤ $, 0 < t < T } ⊂ R2. In DT we will investigate
the initial-boundary problem

∂u

∂t
=

∂

∂x
K

(
∂σ(u)

∂x

)
− ∂Q(u)

∂x
, (1)

u(x, 0) = u0(x), (2)

u(0, t) = u1(t), u($, t) = u2(t). (3)

Here, u0(x), u1(t) and u2(t) are given functions, u(x, t) is an unknown function,
K(s), σ(u) and Q(u) are known functions with respect to s, u, respectively which
satisfy the following conditions:

• K(s), σ(u) and Q(u) are non negative and bounded functions for the
bounded s and u respectively;
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• K ′(s) > 0 and σ′(u) > 0 and Q′(u) > 0 for u > 0 and are finite, K(|s|) −
K(0) ≥ m0 > 0, |s| ≥ m1;

• K(0) = K ′(0) = σ(0) = σ′(0) = Q(0) = Q′(0) = 0;
• K ′′(s) changes its sign.

In [6] the first type initial boundary value problem for the equation (1) was
investigated and the existence of a weak solution in an appropriate space was
proven, when Q(u) = 0, σ(u) = u, and K(s) = sp−2, p > 2. It should be noted
that the construction of the exact solution of the equation (1) is impossible since
the equation (1) is nonlinear. But, finding the exact solution of the equation is
possible in a special case of K(s), σ(u) and Q(u), (see [4]). When K(s) = sn,
(n > 2) and σ(u) = u, (that is, sign of K

′′
(s) does not change), the equation (1)

has the solution in the traveling wave, [10], [12]. It is proven that the solution is
continuous, but its first and second derivatives have points of discontinuities. On
the other hand, the function ∂un

∂x is continuous. The existence of global solution
of the Cauchy problem for the parabolic equation with double nonlinearity are
studied in paper [6], [14], [5], [11], [1].

Note 1. In the case when K ′
s(s) < 0, Q(u) = 0 the equation (1) models the

heat and mass exchange in stratified turbulent shear flow, [3].
In the case when K(s) ≡ 0 and Q(u) is the Buckley-Leverett’s function, the

equation (1) models simultaneous microscopical motion of two phase incompress-
ible fluids in a porous medium, regardless of the capillary pressure and have been
investigated in detail in [7], [13], [15].

Definition 1. A function u(x, t) satisfying the conditions (2) and (3) is called
to be a weak solution of the problem (1)-(3), if the following integral relation∫

D�
T

{
u
∂f

∂t
+

[
K

(
∂σ(u)

∂x

)
−Q(u)

]
∂f

∂x

}
dxdt+

∫ T

0

[
K

(
∂σ (u(0, t))

∂x

)
−Q(u(0, t))

]
f(0, t)dx+

∫ ∞

0

u0(x)f(x, 0)dx = 0

holds for every test function f(x, t) ∈ W 2
1,1(

o

D 
T ) and f(x, T ) = 0, where

W 2
1,1(

o

D 
T ) is a Sobolev space on

o

D 
T .

In order to find the weak solution of the problem (1)-(3), according to [8], [9]
we introduce the following auxiliary problem

∂v(x, t)

∂t
= K

(
∂σ (u(x, t))

∂x

)
−Q(u), (4)

v(x, 0) = v0(x), (5)

u(0, t) = u1(t), u($, t) = u2(t). (6)

Here v0(x) is any differentiable solution of the equation dv0(x)
dx = u0(x).
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Theorem 1. If v(x, t) is the solution of the auxiliary problem (4)-(6), then the
function defined by

u(x, t) =
∂v(x, t)

∂x
(7)

is a weak solution of the main problem (1)-(3).

2 Numerical Solution and Its Properties

In order to develop a numerical algorithm for the problem (1), (2) and (3), at
first, we cover the region D 

T by the grid

Ω 
h,τ = {(xi, tk) | xi = ih, tk = kτ, i = 0, 1, 2, ...n; k = 0, 1, 2, ...; h > 0, τ > 0} .

Here, h and τ are the steps of the grid Ω 
h,τ respect to x and t variables, respec-

tively, Ω̄ 
h,τ = Ω 

h,τ +γ
 
h,τ , where γ

 
h,τ is a set of boundary nodes of the grid Ω 

h,τ ,

and Ω 
h,τ = Ω 

h ×Ω 
τ . We denote by Ui,k the approximate value of grid function

u(xi, tk) which is defined in Ω 
h,τ .

The problem (4)-(6) is approximated at any points (xi, tk) of the grid Ω
 
h,τ as

follows

Vi,k+1 − Vi,k

τ
= K

(
σ (Ui,k+1)− σ (Ui−1,k+1)

h

)
−Q(Ui,k+1), (8)

Vi,0 = v0(xi), (9)

Vx |i=0= u1(tk), Vx̄ |i=n= u2(tk). (10)

Theorem 2. If Vi,k is the numerical solution of the auxiliary problem (8)-(10),
then the grid function defined by

Ui,k+1 =
Vi,k+1 − Vi−1,k+1

h

is a numerical solution of the problem

Ui,k+1 − Ui,k

τ
=

1

h

[
K

(
σ (Ui+1,k+1)− σ (Ui,k+1)

h

)

−K

(
σ (Ui,k+1)− σ (Ui−1,k+1)

h

)]
− Q(Ui,k+1)−Q(Ui−1,k+1)

h
, (11)

Ui,0 = u0(xi), (12)

U0,k = u1(tk), Un,k = u2(tk). (13)

Now we will prove some properties of the numerical solution Ui,k.
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1. The solution of the problem (11)-(13) takes the greatest (or smallest)
value at the boundary nodes, that is

0 ≤ m ≤ Ui,k ≤M,

where m = min{u0, u1, u2} and M = max{u0, u1, u2}.
Proof. For the sake of simplicity we introduce the notations Ui,k = U , Ui,k+1 =

Û and Û± = Ui±1,k+1 and hence, we can rewrite the equation (11) as

Û −U =
τ

h
K ′
(
∂σ

∂x

)[σ (Û+

)
− σ

(
Û
)

h
−
σ
(
Û
)
− σ

(
Û−
)

h

]
− Q(Û)−Q(Û−)

h
.

(14)
Assume that Û �= const and Û takes the greatest value at some points of the
grid Ω 

h,τ rather than at nodes of γ 
h,τ . Then, there is such a point (x1, t1) ∈ Ω 

h,τ

that Û takes the maximal value and at least even at some neighborhood points
U(x1, t1) is less than Û(x1, t1).

If Û(x1, t1) > U(x1, t1), since the function σ(u) is monotone, the left part of
the relation (14) is positive, but the right part is negative. Hence, we arrive to
inconsistency. In just the same way we arrive to inconsistency, if Û±(x1, t1) >
Û(x1, t1). Similarly, we can prove that Û does not take a minimal value at the
inner nodes of the grid Ω 

h,τ as well.
2. If

max {| α1 |, | α2 | } ≤ const

and

max

{
| α1 |, | α2 |,

∣∣∣∣dα1

dt

∣∣∣∣ , ∣∣∣∣dα2

dt

∣∣∣∣} ≤ const,

then the estimation for the solution of the problem (11)-(13)(
σx(Û), [K(σx(Û))−K(0)−Q(u)]

)
≤ const (15)

is hold.

2.1 The Convergence of the Numerical Solution

In order to prove the convergence of the numerical solution to exact solution, let

εi,k, ηi,k and δi,k be errors of approximation of the functions ∂σ(u)
∂x , ∂v

∂x and ∂v
∂t ,

respectively. Then the equation (4) can be rewritten in the form

vt = K
(
σx

(
Ûx̄

))
−Q (vx̄) + ν

(1)
i,k + ν

(2)
i,k . (16)

Since the function K(s) is continuous

ν
(1)
i,k = K

(
σx

(
∂v

∂x

))
−K (σx (vx̄)) = K (σx (u(xi, tk)))−K (σx (u(x

∗
i , tk)))
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= K

(
∂σ(u)

∂x

∣∣∣
x=x∗∗

)
−K

(
∂σ(u)

∂x

∣∣∣
x=x∗∗∗

)
−→ 0.

Here, | xi −x∗∗i |≤ h and | xi −x∗∗∗i |≤ h, and ν
(2)
i,k = δi,k + εi,kK

′(s)− ηi,kQ
′(s),

ν
(3)
i,k = ν

(1)
i,k + ν

(2)
i,k .

Subtracting the equation (16) from (4) and denoting R by R = v − V we get

Rt = K ′(s)
[
σ′(s∗)R̂x

]
x̄
−Q′(s∗)Rx̄ + ν

(3)
i,k , (17)

Ri,0 = h

i−1∑
j=1

Δ0,j = Δ̃(0),

(
∂v

∂x
− Vx

) ∣∣∣
i=0

= 0,

(
∂v

∂x
− Vx̄

)∣∣∣
i=n

= 0.

Theorem 3. For any τ and h the following inequalities are hold

| v − V |≤ max
i

| Δ̃(0) | +2T max
i,k

| ν(3)i,k |, (18)

τh
∑
i,k

[
σ(û)− σ(Û)

]
(u − U) + τh

∑
i,k

[
K (û)−K

(
Û
)]

x
(v − V )

≤ const

(
max
i,k

| v − V | +max
i

| ηi,k |
)
. (19)

Proof. At first, the inequality (18) will be proven. Let us introduce the function
ρ such that v − V = ρ+ A(tk), here A(tk) will be chosen later. It is easily seen
that the function ρ satisfies the equation

ρt = K ′(s) [σ′(s∗)ρ̂x̄]x −Q′(s∗)ρx̄ + ν
(3)
i,k −A′

t (20)

with the following conditions

A(0) + ρi,0 = (v − Y )i,0 = Δ̃(0), (21)[
ρx −

(
∂v

∂x
− Vx

)] ∣∣∣
i=0

= 0,

[
ρx̄ −

(
∂v

∂x
− Vx̄

)] ∣∣∣
i=n

= 0.

At the boundary points the equation (20) takes the following forms, for i = 1

ρ̂1 − ρ =
τ

h
K ′(s1)

[
σ′(s2)

(
∂v

∂x

∣∣∣
i=1

− V̂2 − V̂1
h

)]
+ ν

(3)
1,k −A′

t

and for i = n

ρ̂n − ρ̂n−1 =
τ

h
K ′(sn)

[
σ′(sn)

(
∂v

∂x

∣∣∣
i=n

−
ˆVn+1 − V̂n

h

)]
+ ν

(3)
n,k −A′

t.
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Now we can apply the principle of maximum, if A(tk) is chosen as A(tk) +

maxi,k | ν(2)i,k |< 0, for example, A(tk) = −2tk maxi,k | ν(2)i,k | . Therefore, for any
k, | ρi,k |≤ maxi | Δ(0)

i,k | and for v − V is valid

| v − V |≤| ρi,k | + | A(tk) |≤ max
i

| Δ(0) | +2T max
i,k

| ν(3)i,k | .

Now we will prove the inequality (19). For this aim, we consider

J = τh
∑
i,k

{
[σ(û)− σ(Û)](û − Û) + (Q(û)−Q(Û))

(
v̂ − V̂

)}
we can rewrite the last relation as,

J = τh
∑
i,k

{
[σ(û)− σ(Û)]

(
∂v

∂x
− V̂x̄

)
+
(
Q(û)−Q(Û)

)(
v̂ − V̂

)}
=

−τh
∑
i,k

{
[σ(û)− σ(Û)]x −

(
Q(û)−Q(Û)

)}(
v̂ − V̂

)
+

+τh
∑
i,k

[σ(û)− σ(Û )]ηi,k = J1 + J2 + J3,

where, J1 = −τh
∑

i,k [σx(û)−Q(û)]
(
v̂ − V̂

)
, J2 = −τh

∑
i,k [σx(Û)−Q(Û)](

v̂ − V̂
)
, J3 = −τh

∑
i,k [σ(Û )−Q(Û)]ηi,k.

Now we shall separate the grid Ωτh into two sub grids Ω
(1)
τh and Ω

(2)
τh where

Ω
(1)
τh = {(xi, tk) | | σx(û) −Q(û) |≤ 1}, Ω

(2)
τh = {(xi, tk) | | σx(û)−Q(û) |> 1}.

Then | J1 |
Ω

(1)
τh

≤ τh
∑

i,k | v − V |. Let us estimate J1 on the grid Ω
(2)
τh . Under

| s |> 1 and supposition | K(s)−K(0) |≥ m0 > 0 we get∣∣∣J1∣∣∣
Ω

(2)
τh

≤ 1

2
τh
∑
i,k

∣∣∣σx(u) [K(σx(u))−K(0)−Q(u)] (v − V )
∣∣∣≤ c1

m0
max
i,k

∣∣∣v − V
∣∣∣.

Similarly, the J2

∣∣∣
Ω

(1)
τh

and J2

∣∣∣
Ω

(2)
τh

are estimated. Finally, for J we have

∣∣∣J∣∣∣ ≤ c1 max
i,k

∣∣∣ηi,k∣∣∣+ 2τh
∑
i,k

∣∣∣v − V
∣∣∣+ c2 max

i,k

∣∣∣v − V
∣∣∣,

where cj , (j = 1, 2) are constants. The validity of the inequality (19) should
follow from the last relation. On the basis of the suggested algorithms some
numerical experiments were carried out.
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3 Conclusion

The special auxiliary problem having the some advantages over the main problem
is proposed, whose solution describes all physical properties of the investigated
problem accurately.

The higher resolution numerical scheme for the solution of the nonlinear
parabolic equation with double degeneration in a class of discontinuous func-
tions is suggested. Using the auxiliary problem, the convergence of the numerical
solution to the exact solution in sense of mean is proven.
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Abstract. The paper describes an architecture of information and
computing server that allow one to carry out numerical modeling of
evolutionary systems in partial derivatives with time delay. Algorithms
implemented as m-files for MATLAB were compiled into dynamic link-
ing libraries. Front end was elaborated with ASP.NET. Brief user guide
and examples of a numerical modeling of certain systems are presented.

Introduction

Evolutionary systems are most generally described in scientific and engineering
terms with respect to three-dimensional space and time. At times such sys-
tems are complicated with aftereffect, i.e. system dynamics depends not only
on the present state but also on the prior state. Partial functional differential
equations (PFDE) also known as delay partial differential equations provide a
mathematical description of these systems. These equations include at least two
independent variables (one of them usually is interpreted as time), an unknown
function of the independent variables and partial derivatives of the unknown
function with respect to the independent variables; description of the system
dynamics involves value of the unknown function at some previous time.

PFDE are widely used for describing and mathematical modeling various pro-
cesses and systems with delay [1]. Models that involve PFDE arise in biomedicine,
geology, control theory etc. Their independent variables are time t and one or
more dimensional variable x , which represents either position in space (for phys-
ical models [2]) or size of cells, their maturation level (for biomedical models [3]),
or something other. The solutions (unknown function) of delay partial differen-
tial equations may represent temperature, or concentrations/densities of various
particles, for example cells, bacteria, chemicals, animals and so on.

At present theoretical aspects of PFDE are studied with almost the same
completeness as the corresponding parts differential equations in partial deriva-
tives.

As usual even for the simplest types of PFDE are not known methods for
finding solutions in an explicit form. So elaboration of numerical methods and
their programm realization for PFDE is a very important problem.

Numerical methods are elaborated quite well for differential equations in par-
tial derivatives; moreover these methods are presented in the form of standard
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packets and toolboxes for use with MATLAB, Mathematica and other standard
packets. Mathematica allow one to solve systems of DDEs in ordinary deriva-
tives of any order, and offers such features as automatic selection of efficient and
reliable DDE integration methods, direct input of DDEs in standard mathemat-
ical notation, fully automated lag function computation, arbitrary numerical-
precision DDE solutions [19]. MATLAB provides functions to solve DDEs with
general delays and DDEs of neutral type [20].

At the same time numerical methods for PFDE are elaborated much more
poor and aren’t presented in widely known software packets. Several approaches
are used to solve PFDE. Method of lines [4–6] reduces PFDE to the system of
FDE in ordinal derivatives witch could be solved by special method [7–9]; unfor-
tunately after discretization with respect to two variables stiff systems appears.
Implicit difference methods [10–15] allow to avoid stiffness by appropriate step
choice. Various monotone iterative methods are used too.

The aim of this work is to present information and computing server that
allow one to solve PFDE of parabolic and hyperbolic types; this paper continues
[16]. This server is a result of efforts of chair of Computational Mathematics of
the Ural Federal University.

1 The Class of Solvable Equations and Corresponding
Algorithms

The class of equations which our server solves consist of parabolic functional
differential equation (also known as heat conduction equation with aftereffect)

∂u

∂t
= a2

∂2u

∂x2
+ f(x, t, u(x, t), ut(x, ·)) (1)

and hyperbolic functional differential equation

∂2u

∂t2
= a2

∂2u

∂x2
+ f(x, t, u(x, t), ut(x, ·)), (2)

here x ∈ [x0;X ] — spacial and t ∈ [t0; θ] — time independent variables; u(x, t)
— unknown function; ut(x, ·) = {u(x, t+ξ), −τ ≤ ξ < 0} — prehistory-function
of the unknown function to the moment t.

In conjunction with equation (1) or (2) initial and boundary conditions are
set

u(x, t) = ϕ(x, t), x ∈ [x0, X ], t ∈ [t0 − τ ; t0], (3)

u(x0, t) = g0(t), u(X, t) = g1(t), t ∈ [t0; θ], (4)

consentaneous conditions are satisfied

ϕ(x0, t0) = g0(t0), ϕ(X, t0) = g1(t0). (5)

Tasks (1), (3)–(5) and (2), (3)–(5) — are the typical boundary tasks. Let
assume that functions ϕ, g0, g1 and functional f are such that appropriate task
has unique solution u(t, x) in classical sense [1].
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Systems with delays (1), (2) are infinite dimensional systems because of the
presence of the functional component ut(x, ·), which characterizes delays. One
of the problem of simulations these systems consist in describing of functional
f(x, t, u(x, t), ut(x, ·)) by finite number of parameters, because for computer sim-
ulations usually only finite algorithms with finite number of input parameters
can be used. Analyzing the structure of PFDE one can realize that in certain
cases right-hand sides of these equations are combinations of finite dimensional
functions and integrals. Our server implements numerical methods, which al-
low one to model systems with distributed and lumped delays; and functional
f(x, t, u(x, t), ut(x, ·)) may be of the following forms

ψ1(x, t, u(x, t), ut(x, t− τ(t)),∫ 0

τ(t)

ψ2(x, t, u(x, t), ut(x, t+ s) ds.

Thus the right-hands sides of equations (1), (2) can be defined just by finite
numbers of functions.

To obtain numerical solutions algorithms described in [12–14] are used.

2 Examples and User’s Guide

Let us consider the following example [13]

∂u

∂t
= a2

∂2u

∂x2
+

√
0.25t2 + x2(2a2t− t2 − x2)

(t2 + x2)2
sin(u(x, t− 0.5t))

here a = 0.2, initial and boundary conditions are set

u(x, s) = arcsin
x√

s2 + x2
, 0.5 ≤ s ≤ 1, 0.5 ≤ x ≤ 4;

u(0.5, t) = arcsin
0.5√

t2 + 0.52
, u(4, t) = arcsin

4√
t2 + 42

, 1 ≤ t ≤ 5.

This task has an exact solution

u(t, x) = arcsin
x√

t2 + x2
.

On the page ”Parabolic equations” user should fill the form according the
following instructions

1. in the textarea ”Inhomogeneous function” sin(ut)*

(sqrt(t*t/4+x*x))*(2*0.2*0.2*t-t*t-x*x)/(t*t+x*x)^2

2. in the text area ”Initial condition function” asin(x/sqrt(x^2+t^2)),
3. in the text area ”Border condition Left function”
asin(0.5/sqrt(0.5^2+t^2)),

4. in the text area ”Border condition Right function”
asin(4/sqrt(4^2+t^2)),
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5. in the text area ”Time delay function” t/2,
6. in the text area ”Parameter a” 0.2.
After that it’s necessary to define grid characteristics
7. in the fields ”Start X”, ”Finish X” and ”Amount of nodes in the grid X”
0.5, 4, 32 respectively,

8. in the fields ”Start T”, ”Finish T” and ”Amount of nodes in the grid T”
1, 4, 18 respectively.

Receiving the number of partition points N and M for [x0;X ] and [t0; θ]
respectively, programm defines steps of partitions h = (X − x0)/N and Δ =
(θ − t0)/M and uniform grid {tj , xi}Mj=0

N
i=0, where tj = t0 + jΔ, j = 0, ...,M,

and xi = x0 + ih, i = 0, ..., N.
As a result user obtains an interactive plot and table (M + 1)× (N + 1) with

numerical solution. A cell in the i-th row and j-th column contains approximate
value of u(ti, xj).

0
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2

3

4

1

2
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4

5
0

0.5

1

1.5

Distance x

u(x,t)

Time t

Fig. 1. Approximate solutions, example 1

Let us consider the second example

∂2u

∂t2
=

1

2

∂2u

∂x2
− 2u(x, t− 2π),

initial and boundary conditions are set

u(x, s) = e−x2

sin t, −2π ≤ s ≤ 0, 0 ≤ x ≤ 1;

u(0, t) = sin t, u(1, t) = e−1 sin t, 0 ≤ t ≤ 3π.

This task has an exact solution

u(t, x) = e−x2

sin t.

On the page ”Hyperbolic equation” user must fill out a form in almost the
same way as described above for the parabolic equation and click the button
”Calculate”.
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The plot is interactive, i.e it allows rotation by means of the mouse in order
to better review. The processing of these user manipulations performed on the
server side; AJAX is used for the organization of client-server interaction without
refreshing the web page.
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1

Time t

u(x,t)

Distance x

Fig. 2. Approximate solutions, example 2

3 Developed Application Architecture

Numerical algorithms described in [12, 13] were programmed as m-files for MAT-
LAB. It’s difficult to provide straightforward access for remote users to the
MATLAB server because of several reasons: users must have high qualification
(at least write own m-files), there are licensing restrictions and some security
problems take place.

For the elimination of these problems, our system was elaborated — its fron-
tend is IIS and backend is MATLAB Run Time Server. User needs modern web
browser only, any additional plugins aren’t required; system we describe here
has simple and clear interface and doesn’t imply user’s knowledge of MATLAB
programming. Remote user interact with systems by means of his web browser
over HTTP and his right are constrained and controlled by web server.

Web interface was created in ASP.NET4/C#. To deal with MATLAB from
C#-programs we use MATLAB Builder NE. MATLAB Builder NE lets you cre-
ate .NET components from MATLAB programs that include MATLAB math
and graphics developed with MATLAB. Developers can integrate these com-
ponents into large Web applications and deploy them royalty-free to comput-
ers that do not have MATLAB installed. Using MATLAB Compiler, MATLAB
Builder NE encrypts certain MATLAB programs and then generates .NET wrap-
pers around them so that they can be accessed just like native .NET compo-
nents [17, 18].

The Builder NE support type-safe automatic conversion to and from managed
.NET and MATLAB data types; to do this the Builder NE provides a set of data
conversion classes derived from the abstract class MWArray.
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Using the WebFigures feature in Builder NE one can display MATLAB figures
on a Web site for graphical manipulation by end users. This enables them to use
their graphical applications from anywhere on the Web without the need to
download MATLAB or other tools that can costs considerably.

To use the component assembly pfde generated using the Builder NE from
the C#-program it’s should reference the namespaces for the MATLAB data
conversion and webfigures assemblies as well as the namespace for the builder
assembly generated for our component pfde, as shown:

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.WebFigures;

using MathWorks.MATLAB.NET.Arrays;

using pfde;

The listing below shows string and number data handling in C#-program
MWArray inpICFun = ICFun.Text;

MWArray inpParamA = Convert.ToDouble(ParamA.Text);

To create interactive plot we use such code
WebFigureControl.WebFigure =

new WebFigure(mywebfig.pdep(inpICFun, inpBCFun,

inpInhomFun, inpTimeDelayFun, inpParamA,

inpX0, inpXn, inpXNumNod, inpT0, inpTm, inpTNumNod));

Acknowledgement. This work was supported by Russian Foundation for Basic
Research (project 13-01-00089) and by Ministry of Education and Science of
Russian Federation (project 1.994.2011).

Conclusion

Elaborated system allows one to easily add new algorithms, which are imple-
mented as M-files for MATLAB. For that it’s sufficient to design an suitable
Web page with Web form, where user can input a description of his equation.
The system has a modular structure that will allow in further work on the par-
allel MATLAB, while the Web interface does not change.
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Abstract. We develop adaptive artificial boundary conditions for 2D
linear and nonlinear Schrödinger equation. These conditions are adap-
tive ones to the problem solution near the artificial boundary. This ap-
proach allows us to increase many times the efficiency of application of
the artificial boundary conditions. In this connection we discuss an in-
fluence of both round-off error and small value of intensity on accuracy
of computation of wave number of the beam in the vicinity of boundary.
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1 Introduction

Nowadays, various problems which are described by Schrödinger equation (or
equations) are of great interest. Therefore, developing of corresponding artificial
boundary conditions is relevant also. As it is well-known, various types of such
conditions have previously been proposed [1–8]. Nevertheless, they have not both
sufficient simplicity and easy realization in some cases. Especially, this problem
is actual one for the case of multidimensional problems because the proposed ar-
tificial (non-reflecting) boundary conditions have only recently begun to explore
for 2D case and, in our opinion, they do not possess sufficient efficiency at com-
puter modeling of nonlinear propagation of laser radiation. Below we develop
adaptive artificial boundary conditions for 2D linear and nonlinear Schrödinger
equation and discuss their approximation at angular points of considered rect-
angular domain. It should be stressed that early we have developed the artificial
boundary conditions which are adaptive to boundaries for 1D problem.

2 State of Problem

As it is well-known the laser beam propagation in a medium with cubic nonlin-
ear response is described by the following nonlinear Schrödinger dimensionless
equation with respect to slowly varying envelope of laser beam A (z, x, y):

∂A

∂z
+iDx

∂2A

∂x2
+iDy

∂2A

∂y2
+iγ|A|2A = 0, 0 < z < Lz, 0 < x < Lx, 0 < y < Ly

(1)

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 509–516, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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with the initial condition

A|z=0 = e
−(x−θxLx

ax
)
2−

(
y−θyLy

ay

)2

, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, θx, θy ∈ [0, 1] ,
(2)

where z – coordinate along which the beam propagates, x, y – transverse co-
ordinates, Dx, Dy characterize the diffraction of beam along the corresponding
coordinates, γ is a coefficient of nonlinearity. Parameters ax, ay denote the beam
radius along x and y coordinates. Parameters θx, θy define the center of beam’s
position.

The domain in transverse coordinates is shown in Fig.1(a). Here, parame-
ters {ΩxL, ΩxR, ΩyL, ΩyR} characterize components of wave-vector of the light
beam near the boundary in the directions those are perpendicular to the cor-
responding boundary. They are used in the boundary conditions. The dotted
arrows show possible directions of the beam propagation through boundary and
angular points.

Let us write boundary conditions for the linear problem. Using well-known
solution of the linear Schrödinger equation (parameter γ in (1) is equal to zero)
for initial Gaussian spatial distribution of complex amplitude, it is easy to write
the components of wave-vector:

{ΩxL, ΩxR} =
8DxzLx

ax

(
1 + (4Dxz)

2
) {−θx, 1− θx} ,

{ΩyL, ΩyR} =
8DyzLy

ay

(
1 + (4Dyz)

2
) {−θy, 1− θy} . (3)

In general case the corresponding component of wave vector can be computed

using the beam phase which is calculated using the function ψ = arctan
∣∣∣ AI

AR

∣∣∣ .
However, the function ψ is discontinuous one. Therefore, for points of its dis-
continuity it is necessary to use special rule for computation of the beam phase.
At domain points, in which the intensity is close to zero, one needs to smooth
the function, using the interpolation of function. For this aim we use Lagrange
polynomial of second order.

Secondly, because of round-off errors one can calculate the phase of optical
beam with the intensity which is greater than 10−δ, value of the parameter δ
is defined by data format. In opposite case the phase of the complex amplitude
is distorted as it will be demonstrated below. Therefore, to calculate the phase
correctly it is necessary to make a computation at certain distance from the
boundary where the intensity is larger than this crucial value.

We demonstrate the solution of this problem at considering the axially sym-
metric Gaussian beam propagation Dx = Dy ( see Fig.1(b) ). In this case, for
example the wave-vector Ω at the left or right boundaries on x-axis can be rep-
resented as Ω = {Ω cosα,Ω sinα}, where Ω = ΩxR, ΩxL. So, let us write the
adaptive artificial boundary conditions:
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∂A

∂z
∓ 2DxΩ cosα

∂A

∂x
∓ 2DyΩ sinα

∂A

∂y
+ iDx(Ω cosα)

2
A+

+iDy(Ω sinα)
2
A+ iγ|A|2A

)
x=0,Lx

= 0, Ω = {ΩxL, ΩxR} ,(
∂A

∂z
∓ 2DyΩ sinβ

∂A

∂y
∓ 2DxΩ cosβ

∂A

∂x
+ iDy(Ω sinβ)2A+

+iDx(Ω cosβ)
2
A+ iγ|A|2A

)
y=0,Ly

= 0, Ω = {ΩyL, ΩyR} . (4)

Values of cosα, cosβ are calculated using the coordinates of the point at which
the boundary condition is written (see Fig.1(b)):

cosα = (Lx − x0)

/√
(Lx − x0)

2 + (y1 − y0)
2 ,

cosβ = (x2 − x0)

/√
(x2 − x0)

2
+ (Ly − y0)

2
. (5)

Using the split-step method for solution of the linear problem, the angles α, β
are chosen to be equal to zero. In this case one can write the following boundary
conditions:(

∂A

∂z
∓ 2DxΩ

∂A

∂x
+ iDxΩ

2A

)
x=0,Lx

= 0, Ω = {ΩxL, ΩxR} ,

(
∂A

∂z
∓ 2DyΩ

∂A

∂y
+ iDyΩ

2A

)
y=0,Ly

= 0, Ω = {ΩyL, ΩyR} . (6)

The main difficulty of these conditions consists in definition of components {ΩxL,
ΩxR, ΩyL, ΩyR} of wave-vector in corresponding boundary points because the
analytical solution is absent in the general case, especially for nonlinear prop-
agation of laser radiation. In particular, the parameters {ΩxL, ΩxR, ΩyL, ΩyR}
in the corner points are defined by (3) for the analytical expression of the wave-
vector components, and by (5) for adaptive boundary conditions. In computer
simulation we use both types of boundary conditions for comparison of efficiency
of the adaptive boundary conditions.

The problem, formulated above, possess some invariants. Usual Energy in-
variant (I1), and Hamiltonian (I3) are examined. These invariants are used for
control of computer simulation results.

3 Finite-Difference Scheme for the Linear Schrödinger
Equation

In the domainW = (0, Lz)×(0, Lx)×(0, Ly) let us introduce the following mesh
ω = ωz × ωx × ωy for the mesh function U and the mesh ω̃ = ω̃k × ωx × ωy for
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(a) (b)

Fig. 1. Domain in transverse coordinate (a) and intensity beam profile in some section
on longitudinal coordinate (b)

the mesh function Ũ :

ωz = {zk = khz, k = 0, 1, ..., Nz, hz = Lz/Nz},
ω̃z = {zk+0.5 = hz(k + 0.5), k = 0, 1, ..., Nz − 1, hz = Lz/Nz},

ωx = {xm = mhx,m = 0, 1, ..., Nx, hx = Lx/Nx},
ωy = {xn = nhy, n = 0, 1, ..., Ny, hy = Ly/Ny}.

Let us introduce the following index-free notation:

U = Um,n = U(zk, xm, yn), Ũ = U(zk+0.5, xm, yn), Û = U(zk+1, xm, yn),

0.5

U = 0.5(Û + U),
0.5

|U |2 = 0.5(|Û |2 + |U |2).

The Laplace operator is approximated with the second order along the corre-
sponding coordinate:

Λx̄xU =
Um+1 − 2Um + Um−1

hx
2 , ΛȳyU =

Un+1 − 2Un + Un−1

hy
2 .

Thus, we write the following finite-difference scheme in the inner nodes of the
mesh for the equation (1) in linear case of laser beam propagation:

Û − U

hz
+ iDxΛx̄x

0.5

U +iDyΛȳy

0.5

U = 0, m = 1, Nx − 1, n = 1, Ny − 1 . (7)

Using the well-known split-step method, one can solve the following sequence of
equations:

Ũ − U

hz/2
+ iDxΛx̄xŨ + iDyΛȳyU = 0, m = 1, ..., Nx − 1, n = 1, ..., Ny − 1,

Û − Ũ

hz/2
+ iDxΛx̄xŨ + iDyΛȳyÛ = 0, n = 1, ..., Ny − 1,m = 1, ..., Nx − 1 (8)
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instead the equations (7). The last set of equations can be represented as three-
diagonal algebraic equations that are solved by the sweep method.

At computer simulation of nonlinear propagation of laser beam ( γ �= 0 ) we
use conservative two-stage iterative process which is written in following manner:

s+1

Û −U
hz

+ iDxΛx̄x

s+1
0.5

U +iDyΛȳy

s
0.5

U +iγ|
s
0.5

U |2
s
0.5

U = 0,
s=0

Û = U ,

s+2

Û −U
hz

+ iDxΛx̄x

s+1
0.5

U +iDyΛȳy

s+2
0.5

U +iγ|
s+1
0.5

U |2
s+1
0.5

U = 0 . (9)

Let us write conditions for the right and top boundaries (for brevity). Expressions
for the left and bottom boundaries look similar, excepting the sign before the
finite-difference derivative in corresponding coordinate:

s+1

Û Nx,n − UNx,n

hz
+ 2Dxκx

s+1
0.5

U Nx,n −
s+1
0.5

U Nx−1,n

hx
+ 2Dyκy

s
0.5

U Nx,n −
s
0.5

U Nx,n−1

hy
+

iDxκ
2
x

s+1
0.5

U Nx,n + iDyκ
2
y

s
0.5

U Nx,n + iγ|
s
0.5

U Nx,n|2
s
0.5

U Nx,n = 0, n = 1, Ny,

s+2

Û m,Ny − Um,Ny

hz
+2Dyνy

s+2
0.5

U m,Ny −
s+2
0.5

U m,Ny−1

hy
+2Dxνx

s+1
0.5

U m,Ny −
s+1
0.5

U m−1,Ny

hx
+

+iDyν
2
y

s+2
0.5

U m,Ny + iDxν
2
x

s+1
0.5

U m,Ny + iγ|
s+1
0.5

U m,Ny |2
s+1
0.5

U m,Ny = 0,m = 1, Nx, (10)

κx = ΩxR cosα, κy = ΩyR sinα, νx = ΩxR cosβ, νy = ΩyR sinβ .

The criterion of stopping the iterations is:

max
xm,yn

∣∣∣∣∣s+2

Û −
s

Û

∣∣∣∣∣ < ε1 max
xm,yn

∣∣∣∣ sÛ ∣∣∣∣+ ε2, ε1 = 10−3, ε2 = 10−2ε1 .

We apply this iterative process for solution of the linear problem also for its
comparison with split-step method.

Efficiency of adaptive artificial boundary conditions is estimated using the
following expressions:

ξ = max
z,x,y∈ω

∣∣∣|U |2 − |A|2
∣∣∣ , c = max

z,x,y∈ω
||UR −AR|+ |UI −AI || ,
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l2 =

√√√√ Nx∑
m=0

Ny∑
n=0

(
|UR −AR|2 + |UI −AI |2

)
hxhy ,

I ′ = max
z∈ω

⎧⎨⎩
Nx∑
m=0

(
|U |2 − |A|2

)∣∣
Ny
hx +

Ny∑
n=0

(
|U |2 − |A|2

)∣∣
Nx
hy

⎫⎬⎭ ,

I ′′ = max
z∈ω

{
Nx∑
m=0

(
|UR −AR|2 + |UI −AI |2

)∣∣
Ny
hx+

+

Ny∑
n=0

(
|UR −AR|2 + |UI −AI |2

)∣∣
Nx
hy

⎫⎬⎭ . (11)

4 Computer Simulation Results

First of all let us consider linear propagation of input Gaussian beam with pa-
rameters ax = ay = 1 in the domain Lz = 5, Lx = Ly = 20. In this case we
use the split-step method. The corresponding computer simulation results are
shown in the Table 1 and in Fig.2. With respect to the Table 1 one should be
stressed that the lines with parameter Ω corresponds to computer simulation re-
sults at using the analytical expression for wave-vector components in artificial
boundary conditions and presence of parameter Ω̃ in the lines of Table 1 means
that the wave-vector components is calculated numerically. In the last case one
needs to make a calculation at some distance from the boundary to avoid the
influence of round-off error on the phase distribution.

From the Table 1 it is clearly seen that the order of accuracy of the finite-
difference scheme and the order of round-off are in agreement each with other.
Comparing the Fig.2(a,b) we see high efficiency of proposed artificial boundary
conditions with adaptive choice of local wave number near the boundary. Nev-
ertheless, the distortion of beam phase can be present and it depends on way
of computation. Comparison of Fig.2(c,d) clearly illustrates this statement. It is
well-seen the distortion of the phase if we calculate the corresponding compo-
nents of local wave vector numerically in each point of the right boundary.

High efficiency of developing method illustrates Fig.2(e,f) and Fig.3 also. In
Fig.2(e,f) the intensity distribution is shown. In Fig.3 we see the distortion of
the phase distribution in dependence of the z for Ω̃. It is important to stress
that the distortion of laser radiation phase, which appears in section z = 1,
disappears in the section z = 2.5 and does not influence on the intensity profile
and phase distribution at further propagation of laser beam.
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Table 1. Invariants and deviation of numerical solution, obtained at using of the
adaptive boundary conditions, from explicit solution of linear problem. The row with
Ω corresponds to results of computer simulation for boundary conditions (3), Ω̃ – for
phase of laser beam, computed using the numerical solution.

103I1 10
3I3 10

3ξ 103l2 10
3c 103I” 103I

′

θx = 0.75, θy = 0.5, hz = hx = hy = 0.05
{I1(0) = 1.5708, I3(0) = −0.7850}

Ω 0.943 1.97 1.15 8.32 2.64 1.24 0.013

Ω̃ 0.942 1.90 9.06 8.32 2.89 1.16 0.013

θx = θy = 0.75

Ω 1.88 3.54 1.15 9.26 2.63 2.40 0.026

Ω̃ 1.87 3.42 1.15 10.4 2.88 2.24 0.025
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Fig. 2. Intensity distribution of laser beam in longitudinal section z = 5 for θx =
0.75, θy = 0.5 (a); for θx = θy = 0.75 (b). Phase distribution at z = 2(c), z = 5 (d)
if the corresponding components of local wave vector is computed according with (3)
(c) or numerically in each point of the right boundary (d). Phase distribution (e) and
intensity profile (f) of the laser beam in section z = 5 at using the parameter Ω̃ in the
adaptive artificial boundary conditions for θx = θy = 0.75.
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Fig. 3. Phase distribution of complex function U = U(x, θyLy) for θx = 0.75, θy = 0.5
at section z = 1 ( line 1 ), 2.5 ( line 2 )
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Numerical Solution of Dynamic Problems

in Block Media with Thin Interlayers
on Supercomputers with GPUs

Maria Varygina
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Siberian Branch of Russian Academy of Sciences,
Akademgorodok, 660036, Krasnoyarsk, Russia

Abstract. Parallel computational algorithms for the modeling of dy-
namic interaction of elastic blocks through thin viscoelastic interlayers
in structurally inhomogeneous media such as rock are worked out. Nu-
merical algorithms are based on monotonous grid- characteristic schemes
with the balanced number of time steps in layers and interlayers. The
numerical results to demonstrate qualitative characteristics of wave prop-
agation in materials with microstructure are shown.

Introduction

Several nature materials such as rock have distinct structurally inhomogeneous
block-hierarchical structure. Block structure appears on different scale levels
from the size of crystal grains to the blocks of rock. Blocks are connected to
each other with thin interlayers of rock with significantly weaker mechanical
properties [1].

One of the most important technological problems of coal mining is the prog-
nosis of sudden collapse of the coal mining roof. This process is preceded by a
weakening of the mechanical contact between the blocks: the rock gains weak-
ened microstructure. Such state of the media can be detected with inducing
elastic waves of small amplitude and recording the response to these distur-
bances. This method can be used to develop special technical devices for the
forehanded prediction and prevention of the emergency situations.

The purpose of this paper is to apply reliable computational algorithms for
the numerical modeling of dynamic interactions of elastic blocks through thin
viscoelastic interlayers in structurally inhomogeneous medium such as rock [2].
Parallel computation algorithms for the calculation of elastic wave propagation
in rock media based on mathematical models that take into account complex
rheological properties of layered materials are developed as a program complex
for the multiprocessor computers with graphics processing units. The computa-
tions for the large number of layers allow to analyze specific waves related to the
structural inhomogeneity, i.e. the so-called ”pendulum” waves [3–5].

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 517–523, 2013.
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1 Mathematical Model

An approximate scheme of hierarchical structure of rock media is shown on
Fig. 1. In the ideal case this is a nested layered structure with invariant ratio
of the characteristic sizes of blocks and interlayers. Let us consider at first a
fragment of the structure in one dimension, i.e. the interleaved system of n
elastic layers of thickness h and elastic interlayers of thickness δ.

Fig. 1. Hierarchical structure of rock

Let ρ and ρ0, c and c0, a = 1/(ρc2) and a0 = 1/(ρ0c
2
0) be the densities,

velocities and elastic compliances of materials in the layer and the interlayer
respectively. One-dimensional equations of elasticity theory inside the kth layer
are given:

ρ
∂vk

∂t
=
∂σk

∂x
, a

∂σk

∂t
=
∂vk

∂x
. (1)

Here vk is the longitudinal velocity in x-direction (x varies from 0 to h in each
layer) and σk is the normal stress.

The behavior of the interlayer material is described by the system of ordinary
differential equations:

ρ0
d

dt

vk+1 + vk

2
=
σk+1 − σk

δ
, a0

d

dt

σk+1 + σk

2
=
vk+1 − vk

δ
. (2)

This system contains boundary conditions for the mentioned above velocities
and stresses, i.e. the left boundary condition is for the (k + 1)th interlayer and
the right is for the kth interlayer. Such system can be obtained by averaging
the motion equations of elastic media considering thin interlayer (δ << h). The
inertial properties of interlayer are taken into account.

Systems of equations (1), (2) are complemented with the initial conditions
and the boundary conditions

vk = σk = 0, (k = 1, ..., n), σ1(0, t) = −p(t), vn(h, t) = 0.

Here p(t) is given external pressure. Statement correctness of the initial-boundary
value problem can be proved by the methods based on integral estimates derived
from the energy conservation law [6]:
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1

2

∂

∂t

n∑
k=1

h∫
0

(
ρ
∣∣vk(x, t)∣∣2 + a

∣∣σk(x, t)
∣∣2) dx+

+
δ

2

d

dt

n∑
k=1

(ρ0
2

∣∣vk+1(0, t) + vk(h, t)
∣∣2 + a0

2

∣∣σk+1(0, t) + σk(h, t)
∣∣2) =

= σn(h, t)vn(h, t)− σ1(0, t)v1(0, t),

(3)

that is the direct consequence of systems (1), (2). The conservation law (3) also
proves the thermodynamic consistency of the mathematical model.

Analysis of experimental data of wave propagation in layered media shows
that the interlayers behave non-elastically even under small wave amplitudes. In
Maxwell’s model the strain of the interlayers is formed from elastic and viscous
components. Viscoelastic interaction according to this model is described by
system (2) after replacing the second equation by the more general equation:

ao
d

dt

σk+1 + σk

2
+
σk+1 + σk

2η
=
vk+1 + vk

δ
, (4)

where η is the viscosity coefficient of interlayer material.

2 Numerical Algorithm

Numerical solution of the problem is based on the collapse of the gap Godunov
scheme on a uniform grid with a time step τ = %x/c admissible by the Courant-
Friedrichs-Levy condition. In this case the scheme in the layer does not possess an
artificial energy dissipation. Piece-wise linear ENO-reconstruction of the second-
order accuracy is used with the lower values of time step [2].

Consistency conditions of the form (2) on the boundaries between layers and
interlayers are calculated with the Godunov scheme as well. For this purpose in
each artificially introduced cell simulating a single interlayer the collapse of the
gap scheme is implemented. The independent time step in the interlayer in this
scheme τ0 = δ/c0 << τ is admissible by the Courant-Friedrichs-Levy condition.
In the interlayer the number of time steps necessary to achieve the next time
step t+τ of the main scheme is calculated. This scheme significantly reduces the
effect of smoothing the numerical solution peaks with corresponding refinement
of the obtained results.

Grid-characteristic interpretation of the method is shown schematically on
Fig. 2. At the stage of solving system (2) with time step τ0 the equations of
collapse of the gap are used on the boundaries of interlayers (stage ”predictor”
in the interlayer):

z0v+ − σ+ = z0v − σ, zv+ + σ+ = zvk+1 + σk+1,

z0v− + σ− = z0v + σ, zv− − σ+ = zvk − σk.

Here z = ρc and z0 = ρ0c0 are the acoustic impedances of materials in layer
and interlayer respectively. The values with upper indexes correspond to the
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Fig. 2. Scheme of the grid-characteristic method in the boundary between the layers

boundary cells of interacting layers. The values with lower indexes ”+” and ”–”
correspond to the right and the left boundaries of the interlayer respectively. The
subsequent recalculation of the solution (stage ”corrector”) is done according to
the following formulas:

v̂ = v + (σ+ − σ−)
τ0
ρ0 δ

, σ̂ = σ + (v+ − v−)
τ0
a0 δ

. (5)

Here v̂ and σ̂ correspond to the next time step. Predictor values on the boundary
between layers in the main scheme with time step τ are calculated by averaging
values related to the cell boundaries on small mesh steps. Stage ”corrector” of
the main scheme in layers is performed in the usual way based on the integral
analogues of differential equations (1).

In case of viscoelastic interlayers at stage ”corrector” of the numerical algo-
rithm Crank-Nicholson scheme is used instead of (5):

ρ0
v̂ − v

τ0
=
σ+ − σ−

δ
, a0

σ̂ − σ

τ0
+
σ̂ + σ

η
=
v+ − v−

δ
, (6)

which is also implemented with an explicit computational algorithm.
The scheme possess at least the first-order approximation relative to the in-

troduced parameters of time step and mesh step. It can be determined that the
difference analogue of the energy conservation law (3) is true for the scheme.
The equality sign in (3) is replaced by the sign of non-strict inequality generally
meaning that the scheme possess an artificial energy dissipation.

Numerical algorithm to solve planar problems is based on the space-variable
two-cycling decomposition method. At first two stages one-dimensional problems
in x1 and x2 directions in the time interval (t; t + τ/2) are solved. Third and
fourth stages are the stages of recalculation of the problem in directions x2 and
x1 in the time interval (t + τ/2; t + τ). The two-cycling decomposition method
ensures the stability of the numerical solution provided the Courant-Friedrichs-
Levy stability condition for one-dimensional systems is fulfilled.

3 Numerical Results

The algorithms for calculation of thin elastic and viscoelastic interlayers are im-
plemented for the multiprocessor computer systems with graphics accelerators
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with CUDA technology (Compute Unified Device Architecture). The calcula-
tions were performed on the 8-core computer with a graphics card NVIDIA
Tesla C2050.

The computations of planar waves propagation induced by short and long
Λ−impulses on the boundary of layered medium were performed. The layered
medium consists of 512 layers of rock with microfractured elastic interlayers. Cal-
culations were performed after the transition the system of equations to dimen-
sionless variables with the following parameter values: ρ0/ρ = 0.76, a0/a = 7.17,
δ/h = 0.027. A uniform finite difference mesh in the layer consists of 16 cells
and one cell is used in each interlayer.

On Fig. 3 and Fig. 4 the dependencies of dimensionless velocities of particles v
of space coordinate x, divided by the layer thickness h in a problem of the load
of Λ−impulse of pressure are shown. The impulse with a unit amplitude was
induced on the left boundary of computational domain, the right boundary was
fixed. Fig. 3 corresponds to the impulse duration equal to the time that elastic
wave passes through one layer, Fig. 4 corresponds to the duration two and a half
times longer. Fig. 3.a and Fig. 4.a show the dependencies of velocities at the
time the incident wave passes approximately 370 layers (6000th time step of the
main scheme). On Fig. 3.b and Fig. 4.b the incident wave passes approximately
200 layers in inverse direction (12000th time step).

a) b)

Fig. 3. Velocity behind front wave of incident (a) and reflected (b) waves induced by
the short impulse in layered medium

These results demonstrate a qualitative difference between the wave pattern
in layered media as compared with a homogeneous medium. This difference
at the initial stage is revealed in the appearance of waves reflected from the
interlayers, i.e. the characteristic oscillations behind the loading wave front as it
passes through the interface. Eventually stationary wave pattern appears after
multiple reflections behind the head wave front, i.e. the so-called pendulum wave
predicted in papers [3–5]. The head wave amplitude increases with the impulse
duration increasing and the amplitude of the oscillations behind the wavefront
decreases and tends to zero. It is related to the fact that waves with wavelength
considerably greater than the thickness of the layer are nearly not reflected from
the interlayers. Thus it is possible to detect the weakened microstructure of
layered or block medium with only sufficiently short wavelengths.
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a) b)

Fig. 4. Velocity behind front wave of incident (a) and reflected (b) waves induced by
the long impulse in layered medium

Fourier analysis of the displacement of layers seismograms allows to identify
the characteristic frequency of the pendulum wave due to the compliances of
interlayers and their thickness.

The numerical results of Lamb problem on the action of instant concentrated
load in tangent direction on a central part of a half-space are presented on Fig. 5.
These results are obtained on a grid consisting of 512× 1024 cells for different
number of thin interlayers. Black lines are the positions of thin interlayers.

a) b) c)

Fig. 5. Lamb problem: contour levels of σ12. a) domain without interlayers, b) domain
with 2× 4 interlayers, c) domain with 4× 8 interlayers.

All characteristic waves for the solution of Lamb’s problem in the framework
of the classical elasticity theory (incident longitudinal and transverse waves,
two conical transverse waves, the Rayleigh surface waves rapidly damped with
depth) are clearly distinguished on the level curves. The distinction is that for the
domain with thin interlayers multiple re-reflections from the interlayers arised.
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Abstract. We propose an effective asymptotic-numerical approach to
the problem of moving front type solutions in nonlinear reaction-diffusion-
advection equations. The dimension of spatial variables for the location
of a moving front is lower per unit then the original problem. This fact
gives the possibility to save computing resources in numerical experi-
ments and speed up the process of constructing approximate solutions
with a suitable accuracy.

Keywords: singularly perturbed problems, moving fronts, reaction-diffusion-
advection equations.

1 Statement of the Problem

The purpose of this paper is to develop effective asymptotic-numerical approaches
to study solutions with internal transition layers – moving fronts in a mathe-
matical model of reaction-diffusion-advection type. We demonstrate our method
for the following problem.

Consider the equation

ε2
(
Δu+ ν (x, y)

∂u

∂x

)
− ε2

∂u

∂t
= f (u, x, y, ε) , (1)

x ∈ (0, a), y ∈ (−∞,+∞), t > 0

with the boundary, space periodicity and initial conditions

∂u

∂x

∣∣∣∣
x=0,x=a

= 0, u(x, y, t, ε) = u(x, y + L, t, ε) (2)

u(x, y, t, ε)|t=0 = u0(x, y). (3)

In equation (1) ε > 0 is a small parameter, which is a consequence of the
parameters in the underlying physical problem. It should be noted that the
appearance of the small parameter in front of the time derivative determines
only the scale of the time, convenient for the further consideration.

The functions ν(x, y) and f(u, x, y, ε) are assumed to be sufficiently smooth
and L - periodic in the variable y.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 524–531, 2013.
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2 The Problem of Moving Front Formation

Suppose the following conditions are satisfied.

Condition (A1). The function f(u, x, y, ε) is such that the equation
f(u, x, y, 0) = 0 has exactly three roots ϕ(±)(x, y), ϕ(0)(x, y). Assume that
ϕ(−)(x, y) < ϕ(0)(x, y) < ϕ(+)(x, y) for all (x, y) ∈ D̄ = {[0, a]× (−∞,+∞)}
and fu

(
ϕ(±)(x, y), x, y, 0

)
> 0, fu

(
ϕ(0)(x, y), x, y, 0

)
< 0.

To simplify the further presentation, without a lost of generality we assume
that ϕ(0)(x, y) ≡ 0, that can always be achieved by a suitable change of variables.

Condition (A2). There exists sufficiently smooth L- periodic curve x = h0(y),

such that u0 (x, y) < 0 for (x, y) ∈ D
(−)
0 :={(

0 ≤ x < h0 (y)
)
× (−∞ < y < +∞)

}
and u0 (x, y) > 0 for (x, y) ∈ D

(+)
0 :={(

h0 (y) < x ≤ a
)
× (−∞ < y < +∞)

}
.

Under the conditions (A1) and (A2) the following statement is valid.

Theorem 1. Suppose that the conditions (A1)) and ( (A2) are valid. Then there
exists a positive constant B such that for sufficiently small ε at time t = tB (ε) =
Bε2 |ln ε| the solution u (x, y, t, ε) of the problem (1) – (3) satisfies the following
estimates
u (x, y, tB, ε) = ϕ(−)(x, y) +O (ε) for (x, y) ∈ D

(−)
0 ,

u (x, y, tB, ε) = ϕ(+)(x, y) +O (ε) for (x, y) ∈ D
(+)
0 .

excluding a fixed neighborhood of the curve x = h0(y).
The proof of this theorem is based on the works [1] and [2] with slight

modifications.
¿From Theorem 1 it follows that at the initial stage the solution of the problem

(1) – (3) quickly generates a sharp internal layer in the neighborhood of the curve
x = h0 (y). For the following we assume that the front already exists, i.e. we put
tB = 0.

In what follows we suppose that u (x, y, tB, ε) ≡ u0 (x, y, ε), and choose

u(x, y, t, ε)|t=0 = u0(x, y, ε), (4)

as initial conditions. Thus, we will consider the problem (1), (2), (4).

3 Description of the Moving Front

We define the function I(x, y) by I(x, y) :=

ϕ(+)(x,y)∫
ϕ(−)(x,y)

f(u, x, y, 0)du.

Condition (A3). I(x, y) ≡ 0 for (x, y) ∈ D , i.e. nonlinearity f(u, x, y, ε) is
balanced.

An asymptotic expansion of the front type solution of (1), (2), (4) can be
built by using the ideas of asymptotic theory of contrast structures (see e.q. [3]),
developed to describe moving fronts in [4]. Using this scheme to build the asymp-
totics let us consider two domains D(−) and D(+), separated by some sufficiently
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smooth curve x = h (y, t, ε), in the neighborhood of which the solution changes
rapidly from ϕ(−)(x, y) to ϕ(+)(x, y). The curve x = h (y, t, ε) is not known a
priori and should be found in the process of the construction of the asymptotics.
We define the location of the transition layer by the condition of the intersection
of the solution (1) – (4) with the root of the degenerate equation ϕ(0)(x, y) ≡ 0,
therefore it holds u (h(y, t, ε), y, t, ε) = 0.

Let us consider the equation

ε2
(
Δu+ ν (x, y)

∂u

∂x
− ∂u

∂t

)
= f (u, x, y, ε)

in two domains D(−) := {0 < x < h (y, t, ε) , y ∈ (−∞,+∞)} and D(+) :=
{h (y, t, ε) < x < a, y ∈ (−∞,+∞)} with the conditions

∂u

∂x
(0, y, t, ε) = 0, u (h (y, t, ε) , y, t, ε) = 0, y ∈ (−∞,+∞)

u (x, y, 0, ε) = u0 (x, y, ε) , (x, y) ∈ D(−)

and

u (h (y, t, ε) , y, t, ε) = 0,
∂u

∂x
(a, y, t, ε) = 0, y ∈ (−∞,+∞)

u (x, y, 0, ε) = u0 (x, y, ε) , (x, y) ∈ D(+).

We seek the unknown curve x = h (y, t, ε) in the form of a power series in ε

h (y, t, ε) = h 0 (y, t) + εh 1 (y, t) + ...,

where terms will be defined in the process of the construction of the asymptotics.
Asymptotic expansions of the solutions of each of these problems contain

regular and boundary series U (±)(x, y, t, ε) = u(±)(x, y, t, ε) + P (±) (ρ, y, t, ε) +
Q(±) (ξ, y, t, ε) and can be constructed using standard method of boundary func-
tions. Boundary series P (±) (ρ, y, t, ε) and Q(±) (ξ, y, t, ε) describe the solution
near the boundaries of D and the internal transition layer near the curve x =
h (y, t, ε). Regular series u(±)(x, y, t) in domains D(−) and D(+), and boundary
series P (±) (ρ, y, t, ε) near the boundaries of D can be determined by the stan-
dard scheme [3]. Note that the boundary series P (±) (ρ, y, t, ε) are significant
only in a small area near the boundaries of the area D, rapidly exponentially
decrease and do not have a significant influence on the behavior of the internal
transition layer. The boundary functions Q(±) (ξ, y, t, ε) describing the transition
layer near the curve x = h (y, t, ε) are defined also by the standard scheme [3].

The curve x = h (y, t, ε) can be determined from the conditions of continu-
ous matching for the functions U (−) (x, y, t, ε) , U (+) (x, y, t, ε) (asymptotic ex-
pansions built in the domains D(±)) and their first derivatives on the curve

x = h (y, t, ε) (C(1)–matching conditions) :

ε
∂U (−)

∂x
= ε

∂U (+)

∂x
forx = h (y, t, ε) . (5)
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We briefly describe some detail of the procedure of finding the main terms of
the asymptotic expansions, describing the moving front. For the construction of
the functions Q(±) we introduce local coordinates (r, θ(y)) and use them for the

parabolic operator in the right part of (1), where r = (x− h0(y, t)) ·
√
1 + h20y

is the distance from the curve x = h0 (y, t) along the normal to the curve with
the sign ”+” in the domain D(+) and with ”–” in D(−), θ(y) – coordinate of the

point on the curve h0 (y, t) from which this normal is going, h0y = ∂h0(y,t)
∂y .

As a result, using the stretched variable ξ =
r

ε
≡

(x− h0(y, t)) ·
√
1 + h20y

ε
the

operator Lu = ε2
(
Δu + ν (x, y)

∂u

∂x
− ∂u

∂t

)
can be transformed into the form

Lu =
(
1 + ε2α (εξ, y, ε)

) ∂2u
∂ξ2

+ εL1u+ ε2L2u+ ...,

where the operators L1, L2 are known and the function α is also defined. In
particular, important for the further part L1u is

L1u = k (y)
∂u

∂ξ
+
(
1 + h20y

)1/2(
ν(h0(y, t), y)−

∂h0
∂t

)
∂u

∂ξ
,

where k (y) =
h0yy

(1+h2
0y)

3/2 is the curvature of the curve x = h0 (y, t) calculated at

the point (h0(y, t), y).

For the main terms of transition layer functions Q
(±)
0 (ξ, t) we obtain the

problems

∂2Q
(±)
0

∂ξ2
= f

(
ϕ(±)(h0(y, t), y) +Q

(±)
0 , h0(y, t), y, 0

)
,

Q
(±)
0 (±∞, t) = 0, Q

(±)
0 (0, t) = −ϕ(±)(h0(y, t), y).

Taking into consideration the continuous function ũ = ϕ(±)(h0(y, t), y)+Q
(±)
0 ,

and using (A1), we can rewrite these problems as

∂2ũ

∂ξ2
= f (ũ, h0(y, t), y, 0) , ξ ∈ R,

ũ (−∞, t) = ϕ(−)(h0(y, t), y), ũ (∞, t) = ϕ(+)(h0(y, t), y), ũ (0, t) = 0.

It is well known that for a nonlinearity f(u, x, y, ε) satisfying the condition (A3),
this problem has a unique solution and the condition (5) is fulfilled in zeroth
order

∂Q
(+)
0

∂ξ

∣∣∣∣∣
ξ=0

=
∂Q

(−)
0

∂ξ

∣∣∣∣∣
ξ=0

automatically for the curve x = h0 (y, t). This curve – the main term in the
asymptotic expansion for the front localization – will be determined in the next
step by using the matching condition of first order.



528 V. Volkov and N. Nefedov

For the transition layer functions Q
(±)
1 (ξ, t) we have

∂2Q
(±)
1

∂ξ2
− fu (ũ, h0(y, t), y, 0) ·Q(±)

1 = f
(±)
1 (ξ, y, t) , ξ ∈ R,

Q
(±)
1 (0, t) = 0, Q

(±)
1 (±∞, t) = 0,

where f
(±)
1 (ξ, y, t) are known functions. For example,

f
(−)
1 (ξ, y, t) =

(
1 + h20y

)1/2[
−∂h0

∂t

∂Q
(−)
0

∂ξ
+

h0yy (y, t)(
1 + h20y (y, t)

)2 ∂Q(−)
0

∂ξ
+ ν(h0(y, t), y)

∂Q
(−)
0

∂ξ

]
+

+
(
f̃ (−)
u · ϕ(−)

x (h0(y, t), y) + f̃ (−)
x

)
· (h1(y, t) + ξ)+

f̃ (−)
u · u(−)

1 (h0(y, t), y, t) + f̃ (−)
ε ,

(6)

where the derivatives f̃
(−)
u , f̃

(−)
x , f̃

(−)
ε are calculated at the point(

ũ(−), h0(y, t), y, 0
)
. The structure of the function f

(+)
1 (ξ, y, t) is fully identical.

The solutions of these problems can be written explicitly (see [3]):

Q
(±)
1 (ξ, y, t) = −∂Q

(±)
0

∂ξ
·

ξ∫
0

(
∂Q

(±)
0

∂τ

)−2

·
±∞∫
τ

∂Q
(±)
0

∂σ
f
(±)
1 (σ, y, t) dσdτ . (7)

¿From the first order of C(1)-matching condition (5) we get

∂Q
(+)
1

∂ξ
(0, y, t) =

∂Q
(−)
1

∂ξ
(0, y, t) (8)

Using (6) and (7), the equality (8) can be transformed into the form

(
1 + h20y

)1/2 · [∂h0
∂t

− h0yy(
1 + h20y

)2 − ν(h0(y, t), y)

]
×

+∞∫
−∞

(
∂ũ

∂ξ

)2

dξ −
+∞∫

−∞

(
f̃ (−)
x · ξ + f̃ (−)

ε

)
dξ = 0.

Hence, finally we obtain the following problem to determine the location of the
front in zeroth order approximation

∂h0
∂t

− ∂2h0
∂y2

·
[
1 + h20y

]−2 − ν(h0(y, t), y)

=
m(t, y)√(
1 + h20y

) · +∞∫
−∞

(
f̃ (−)
x · ξ + f̃ (−)

ε

)
dξ,
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h0 (y, 0) = h0 (y)

with L- periodic condition in the variable y, where m(y, t) =

[
+∞∫
−∞

(
∂ũ
∂ξ

)2
dξ

]−1

.

Thus we obtain a nonlinear parabolic equation which determines the location
of the moving front in zeroth order approximation. Note that the dimension of
the spatial variables is lower per unit as we have at the original problem (1–3).
This fact can be used in order to save significantly computing resources in the
numerical experiment by replacing the original problem (1–3) by the simplified
problem above, which can adequately describe the dynamics of the front. Thus,
the use of such asymptotic-numerical approach gives the possibility to speed up
the process of constructing approximate solutions with a suitable accuracy, and
we have more efficient numerical calculations.

The higher construction of terms of the asymptotic expansion follows by the
same way as in [4].

Theorem 2. Under the conditions (A1), (A2), (A3) there exist the solution
u(x, y, t, ε) of (1)–(3) and satisfies the estimate

|u(x, y, t, ε)− Un(x, y, t, ε)| ≤ Cεn+1.

Here, Un(x, y, t, ε) = U
(±)
n (x, y, t, ε) and U

(±)
n (x, y, t, ε) are the n-th partial sum

of the asymptotic series

U (±)(x, y, t, ε) = u(±)(x, y, t, ε) + P (±) (ρ, y, t, ε) +Q(±) (ξ, y, t, ε)

in the domains D(−) and D(+), ξ =
x−

i=n+1∑
i=0

hi(y,t)

ε ·
√
1 + h20y.

The proof of this theorem is based on the method of differential inequalities
and the fact that all operators producing the asymptotic series are positively
invertible (see [7]).

4 Numerical Experiment

The theoretical results on a moving front presented in the section before are
compared with the results of numerical solution of the problem (1)-(3). For this
purpose we use standard finite-difference scheme for the problem (1)-(3) and
for the equation of front localization. Calculations were done in D, representing
a rectangle with the sides a = b = 1, the advection coefficient has the form
ν (x, y) = ν0 + νL (y), ν0 = const and f(u, x, y, ε) = u3 − u.

In case νL (y) = 0, a sharp transition layer moves along the axis X with
the constant speed. This behavior is consistent with experimental [5], [6] and
theoretical studies that show that the burning front, extending in a homogeneous
environment in the absence of a hydrodynamic perturbation moves at a constant
speed without changing its shape.

To illustrate the behavior of the front that occurs in the problem (1)-(3), we
provide three numerical calculations. In the first experiment the initial condition
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is in the form of a linear front parallel to the axis y, and the advection parameters
are ν0 = const, νL(y) = 0. In this case, the front is moving with a constant speed
ν0 without changing its shape (Figure 1a.).

In the second case, the initial condition is selected as the front line, parallel
to the axis y and the advection parameters are ν0 = const, νL = const > 0 for
y ∈ [0.25; 0.75]. In this case, the front begins to move in the direction of the
advection, and after some time its form is stabilized, then the front continues to
move (Figure 1b.) with the fixed form.

In the third case, the initial condition is selected such, that the front is spec-
ified by the equation x = p {tanh (q (y − 0.25))− tanh (q (y − 0.75))} , where p
and q are constants and the advection parameters are v0 = const, vL(y) = 0. As
a result, under the effect of the curvature the front will move along the axis x,
gradually losing the form and in the limit it is turning into a line parallel to the
side of the square, as shown in Figure 1c.

Fig. 1. Behavior of the moving front in the three numerical experiments

The analysis of the numerical calculations show a good agreement between the
above qualitative descriptions of the front behavior and numerical calculations
for (1)-(3). Figure 2. shows several sequent positions, found in the numerical
experiments. From the picture one can see that the behavior of the solutions of
(1)-(3) and of front motion problem coincides with a high accuracy.

Fig. 2. Sequent positions of the front at times t = 0.01, 0.06, 0.04, 0.08 and 0.1. Points
show the solution of (1)-(3). Solid lines show the solution of front motion problem.
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Therefore, the asymptotic representation of the solution of (1)-(3) allows fully
to describe the process of formation and dynamics of the transition layer (front),
provides the estimates of its width and the time of its formation, as well as
determines the shape of the front. Note that the asymptotic consideration is
simple enough and extremely important for the effective estimates of the various
system parameters.
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Abstract. We consider fourth order singularly perturbed boundary
value problems (BVPs) in one-dimension and the approximation of their
solution by the hp version of the Finite Element Method (FEM). If the
given problem’s boundary conditions are suitable for writing the BVP
as a second order system, then we construct an hp FEM on the so-called
Spectral Boundary Layer Mesh that gives a robust approximation that
converges exponentially in the energy norm, provided the data of the
problem is analytic. We also consider the case when the BVP is not writ-
ten as a second order system and the approximation belongs to a finite
dimensional subspace of the Sobolev space H2. For this case we construct
suitable C1−conforming hierarchical basis functions for the approxima-
tion and we again illustrate that the hp FEM on the Spectral Boundary
Layer Mesh yields a robust approximation that converges exponentially.
A numerical example that validates the theory is also presented.

1 Introduction: The Model Problems

Singularly Perturbed Problems (SPPs) arise in numerous applications from sci-
ence and engineering, such as electrical networks, vibration problems, and in the
theory of hydrodynamic stability [2]. In such problems, the highest derivative in
the differential equation is multiplied by a very small positive parameter. This
causes the solution to contain boundary layers, which are rapidly varying solu-
tion components that have support in a narrow neighbourhood of the boundary
of the domain. Their numerical approximation must be carefully constructed in
order for their effects to be accurately captured [8]. In the context of the FEM,
this requires the use of graded meshes which include refinement near the bound-
ary layer region that depends on the singular perturbation parameter. Examples
of such meshes include the Bakhvalov [1] and Shishkin [10] meshes, which are
used with finite differences and the h version of the FEM, as well as the Spectral
Boundary Element Mesh [3] which is used with the p and hp versions of the
FEM.

Most SPPs that have been studied in the literature concern second order
differential operators; notable exceptions are the works [2,4,6,9]. In this paper we

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 532–539, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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consider fourth order elliptic boundary value problems (BVP) with two different
types of boundary conditions: one that is suitable for writing the BVP as a second
order system and one that is not. The model problem we study here is a simplified
version of the well-knownOrr-Sommerfeld equation from hydrodynamics (cf. [2]),
and reads: Find u(x) such that

ε2u(4)(x)− α(x)u′′(x) + β(x)u(x) = f(x) in I = (0, 1) , (1)

where α ≥ 0, β ≥ 0 and f are given (sufficiently smooth) functions and ε ∈ (0, 1]
is a given parameter (that can approach 0). The notation u′′ means the second
derivative of u with respect to x and u(n), n ∈ N, denotes the nth derivative of
u with respect to x. Equation (1) is supplemented with one of the following two
types of boundary conditions (which for simplicity are chosen as homogeneous):

u(0) = u′(0) = u(1) = u′(1) = 0, (2)

or
u(0) = u′′(0) = u(1) = u′′(1) = 0. (3)

As we will see in the next section, the BVP (1), (3) can be written as a second
order system and its approximation will follow the work of [3]. For the BVP (1),
(2) we will construct a C1 approximation from a finite dimensional subspace of
H2, using a hierarchical basis from [7]. The results presented here summarize
the analysis found in [3] and [5].

Throughout the paper we will utilize the notation Hk (I) to mean the usual
Sobolev space of functions defined on I, whose 0, 1, ..., k (generalized) derivatives
belong to L2 (I), with associated norm and seminorm ‖·‖k,I , |·|k,I , respectively;
the Lebesgue spaces Lp(I), 1 ≤ p ≤ ∞, are defined in the usual way and 〈·, ·〉I
denotes the usual L2(I) inner-product. We will also use the space

H1
0 (I) =

{
u ∈ H1(I) : u|∂I = 0

}
,

where ∂I denotes the boundary of I. Finally, the letters c, C (with or without
subscripts) will denote generic positive constants independent of the solution
and any discretization parameters.

2 Second Order Systems

We first consider the problem (1), (3), which can be written as the following
second order system: Find U(x) = [u1(x), u2(x)]

T (= [u′′(x), u(x)]T ) such that

−EU′′(x) +A(x)U(x) = F(x) in I, U(a) = U(b) = 0, (4)

where

E =

[
ε2 0
0 1

]
,A(x) =

[
α(x) −β(x)
1 0

]
,F(x) =

[
−f(x)

0

]
. (5)
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For the remainder of the paper, we assume that the data of our problem are
analytic and that there exist positive constants Cα, Cβ , Cf , γα, γβ , γf indepen-
dent of ε such that ∀ n = 0, 1, 2, ...∥∥∥α(n)

∥∥∥
L∞(I)

≤ Cαγ
n
αn! ,

∥∥∥β(n)
∥∥∥
L∞(I)

≤ Cβγ
n
βn! ,

∥∥∥f (n)
∥∥∥
L∞(I)

≤ Cfγ
n
fn! . (6)

Moreover, we assume that the matrix valued function A(x) in (5) is pointwise
positive definite (but not necessarily symmetric), i.e. for some fixed δ > 0

ξTAξ ≥ δ2ξT ξ ∀ ξ ∈R2 , ∀ x ∈ Ī . (7)

The variational formulation of (4) reads: Find U := (u1, u2) ∈
[
H1

0 (I)
]2

such
that

B(U,V) =F(V) ∀ V = (v1, v2) ∈
[
H1

0 (I)
]2
, (8)

where

B(U,V) = ε2 〈u′1, v′1〉I + 〈u′2, v′2〉I + 〈αu1 − βu2, v1〉I + 〈u1, v2〉I , (9)

F(V) = 〈−f, v2〉I . (10)

It follows that the bilinear form B(·, ·) given by (9), is coercive with respect to
the energy norm

‖U‖2E,I ≡ ‖(u1, u2)‖2E,I := ε2 |u1|21,I + |u2|21,I + δ2
(
‖u1‖20,I + ‖u2‖20,I

)
, (11)

i.e.,

B(V,V) ≥ ‖V‖2E,I ∀ V ∈
[
H1

0 (I)
]2
. (12)

This fact, along with the continuity of B(·, ·) and F(·) imply the unique solv-
ability of (8).

The discrete version of (8) reads: Find UN := (uN
1 , u

N
2 ) ∈ [SN ]2 ⊂

[
H1

0 (I)
]2

such that

B(UN ,V) =F(V) ∀ V = (v1, v2) ∈ [SN ]
2
, (13)

where SN is a finite dimensional subspace of H1
0 (I), to be defined shortly. The

unique solvability of (13) follows from (7), and by the well-known Galerkin or-
thogonality, we have∥∥∥U−UN

∥∥∥2
E,I

≤ C inf
V∈[SN ]2

‖U−V‖2E,I ∀ V ∈ [SN ]2 . (14)

Before we define the space SN we comment on the regularity of the solution to
(8) and in particular we quote a relevant result from [3] that shows that the
solution can be decomposed into an outer (smooth) part, a boundary layer part
and a remainder that is exponentially (in ε) small.
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Theorem 1. [3] Assume (6) and (7) hold. Then there exist constants C, γ, q, ν >
0 independent of ε ∈ (0, 1] such that the following assertions are true for the so-
lution of (8):

(I)
∥∥U(n)

∥∥
L∞(I)

≤ Cε−1/2γn max
{
n, ε−1

}n ∀ n = 0, 1, 2, ...

(II) U can be written as U = W +UBL+R, with∥∥∥W(n)
∥∥∥
L∞(I)

≤ Cγnnn ∀ n = 0, 1, 2, ...,∣∣∣U(n)
BL(x)

∣∣∣ ≤ Cγn (νε)
−n

e−dist(x,∂I)/νε ∀ n = 0, 1, 2, ...,

‖R‖L∞(∂I) + ‖R‖E,I ≤ Ce−q/ε.

Moreover, the second component uBL
2 of UBL, satisfies the stronger estimate∣∣∣(uBL

2 )(n)(x)
∣∣∣ ≤ Cγnε2 (νε)

−n
e−dist(x,∂I)/νε ∀n = 0, 1, 2, ...

Practically speaking, the above theorem states that for ε relatively large, the
solution of (8) is analytic if the data α, β, f are analytic. If, on the other hand
ε is small, then the solution may be decomposed into the three aforementioned
parts and estimates on the derivatives of each part are given. This information
is the key ingredient for the proof of (exponential) convergence of the proposed
method.

We now define the space SN : Let Δ = {0 = x0 < x1 < ... < xM = 1} be an
arbitrary partition of I = (0, 1) and set Ij = (xj−1, xj) , hj = xj − xj−1, j =
1, ...,M. We also define the master (or standard) element IST = (−1, 1) and
note that it can be mapped onto the jth element Ij by the linear mapping

x = Qj(t) =
1

2
(1− t)xj−1 +

1

2
(1 + t)xj .

With Πp(IST ) denoting the space of polynomials of degree ≤ p on IST , we define
the (finite dimensional) subspace

Sp(Δ) =
{
V ∈

[
H1

0 (I)
]2

: V ◦Q−1
j ∈

(
Πpj (IST )

)2
, j = 1, ...,M

}
,

where ◦ denotes composition of functions. Then, we set

SN ≡ Sp
0 (Δ) = Sp (Δ) ∩

[
H1

0 (I)
]2
. (15)

We restrict our attention here to constant polynomial degree p for all elements,
i.e. pj = p ∀ j, but clearly more general settings with variable polynomial de-
grees are possible. The following Spectral Boundary Layer mesh is essentially the
minimal mesh that yields exponential convergence.

Definition 1. (Spectral Boundary Layer mesh) For κ > 0, p ∈ N and 0 < ε ≤ 1,
define the spaces S (κ, p) of piecewise polynomials by

S (κ, p) :=

{
Sp
0 (Δ) ;Δ = {0, 1} if κpε ≥ 1

2
Sp
0 (Δ) ;Δ = {0, κpε, 1− κpε, 1} if κpε < 1

2
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The parameter κ is user specific and depends on the problem under considera-
tion as well as the length scales of the boundary layers – we refer to [8] for a more
detailed discussion of this issue and we note that in practice the value κ = 1
yields satisfactory results for most problems. We also note that the method we
are considering is not a true hp FEM since the location and not the number of
the elements changes; a more correct characterization would be a p version FEM
on a moving mesh, but in order to be consistent with the bibliography we utilize
the term hp FEM for our method. Obviously, additional refinement and/or using
a true hp version would yield better results but at the cost of using more degrees
of freedom – see [11] for a numerical comparison.

The main result is the following:

Theorem 2. [3] Let U be the solution to (8) and let UN ∈ S (κ, p) be the
solution of (13) with S (κ, p) given by Definition 1. Then there exist constants
κ0, C, σ > 0 depending only on the data α, β, f , such that for any 0 < κ ≤ κ0∥∥∥U−UN

∥∥∥
E,I

≤ Ce−σκp.

3 A C1 Approximation

In this section we consider the BVP (1), (2) whose variational formulation reads:
Find u ∈ H2

0 (I) :=
{
u ∈ H2(I) : u(0) = u′(0) = u(1) = u′(1) = 0

}
, such that

B(u, v) = F(v) ∀ v ∈ H2
0 (I) , (16)

where

B(u, v) =
1∫
0

{
ε2u′′(x)v′′(x) + α(x)u′(x)v′(x) + β(x)u(x)v(x)

}
dx, (17)

F(v) =

1∫
0

f(x)v(x)dx. (18)

We continue to assume analyticity of the input data, i.e. (6), and coercivity of
the bilinear form B(·, ·) holds in the energy norm

|||u|||2E,I := B(u, u). (19)

Existence and uniqueness follow from the Lax-Milgram lemma as usual. The
discrete version of (16) reads: Find uN ∈ SN ⊂ H2

0 (I) such that

B(uN , v) = F(v) ∀ v ∈ SN , (20)

and we have

|||u − uN |||E,I ≤ C inf
v∈SN

|||u− v|||E,I ∀ v ∈ SN .
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In order to define the space SN , we introduce, for t ∈ IST , the four nodal
basis functions (cf. [7])

N1(t) =
1

4
(1− t)2 (2 + t) , N2(t) =

1

4
(1 + t)2 (2− t) ,

N3(t) =
1

4
(1− t) (2 + t)

2
, N4(t) =

1

4
(1 + t) (2− t)

2
,

as well as the p− 3 internal basis functions

Ni(t) =
1√

2(i− 5)

(
1

2i− 7
Pi−5(t)−

2(i− 5)

(2i− 7)(2i− 3)
Pi−3(t) +

1

2i− 3
Pi−1(t)

)
,

for i ≥ 5, where Pi(t) is the Legendre polynomial of degree i. The (first two)
nodal basis functions are equal to 1 at one endpoint of IST and 0 at the other.
The internal basis functions are 0 at both endpoints of IST . There holds

Πp (IST ) = span {N1(t), ..., Np+1(t)} ,

and, with Δ,Qj as in the previous section, we define the space

Sp(Δ) :=
{
w ∈ H2

0 (I) : w ◦Q−1
j ∈ Πpj (IST ) , j = 1, ...,m

}
.

Hence, the subspace SN ⊂ H2
0 (I) is chosen as

SN ≡ Sp
0 (Δ) = Sp (Δ) ∩H2

0 (I). (21)

The following proposition gives bounds on the nth derivative of the solution.

Proposition 1. [5] Assume (6) and (7) hold. Then there exist constants C, γ, ν,
q > 0 independent of ε ∈ (0, 1] such that the following assertions are true for the
solution of (16):

(I)
∥∥u(n)∥∥

L∞(I)
≤ Cγn max

{
nn, ε1−n

}
∀ n = 0, 1, 2, ...

(II) u can be written as u = w + uBL + r, with∥∥∥w(n)
∥∥∥
L∞(I)

≤ Cγnnn ∀ n = 0, 1, 2, ...,∣∣∣u(n)BL(x)
∣∣∣ ≤ Cγnε2 (νε)

−n
e−dist(x,∂I)/νε ∀ n = 0, 1, 2, ...,

‖r‖L∞(∂I) + |||r|||E,I ≤ Ce−q/ε.

Using the above result we can prove the following.

Proposition 2. [5] Let u be the solution to (16) and let uN ∈ S (κ, p) be the
solution of (20) with S (κ, p) given by Definition 1. Then there exist constants
κ0, C, σ > 0 depending only on the data α, β, f , such that for any 0 < κ ≤ κ0

|||u− uN |||E,I ≤ Ce−σκp.
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4 Numerical Results

In this section we present the results of numerical computations for the problem
studied in the previous section; ample numerical results pertaining to the prob-
lem studied in Section 2 may be found in [3] and [11]. We consider the BVP (1),
(2) when the data is α = β = f = 1; an exact solution is available, hence our
reported results are reliable. Figure 1 shows the percentage relative error in the
energy norm,

Error := 100× |||u− uN |||E,I

|||u|||E,I
, (22)

versus the number of degrees of freedom, N , in a semi-log scale. As the figure
shows, the error curves are straight, something that verifies the exponential
convergence of the proposed method. Moreover, as ε → 0 the method not only
does not deteriorate, but it actually performs better. This suggests that in the
error estimate of Proposition 2, there is a positive power of ε present, something
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that is due to the fact that the problem has constant coefficients and the right
hand side belongs to the subspace (see [8] for more details on this for second
order scalar problems).

Figure 2 shows the pointwise error between the exact and hp approximation
(computed with p = 8) as well as their derivatives, for ε = 10−4. The high
accuracy of the computed solution is readily visible from these figures.
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Abstract. Quadrature formula for one variable functions with a bound-
ary layer component is constructed and studied. It is assumed that the
integrand can be represented as a sum of regular and boundary layer
components. The boundary layer component has high gradients, there-
fore an application of Newton-Cotes quadrature formulas leads to large
errors. An analogue of Newton-Cotes rule with five nodes is constructed.
The error of the constructed formula does not depend on gradients of
the boundary layer component. Results of numerical experiments are
presented.

Keywords: function, numerical integration, boundary layer component,
nonpolynomial interpolation, quadrature rule, uniform accuracy.

1 Introduction

The construction of Newton-Cotes formulas is based on the approximation of
the integrand by a Lagrange polynomial. It is well known that the error of
such composite quadrature formulas can be large for high-gradient functions.
The construction of quadrature formulas for functions with large gradients was
carried out in [1, 2] and in works of many other authors. Below, it is assumed
that the integrand can be represented as a sum of a regular component having
bounded derivatives up to some order and a given boundary layer component
with large gradients in certain parts of the integration interval. In this article a
quadrature formula with five nodes, exact for the boundary layer component, is
constructed. Before we constructed similar formulas with two and three nodes
[3]. We construct the quadrature formula for the integral

I(u) =

b∫
a

u(x) dx, (1.1)

where u(x) can be represented as

u(x) = p(x) + γΦ(x), x ∈ [a, b]. (1.2)

We assume that u, Φ ∈ C6[a, b], the boundary layer component Φ(x) is a given
bounded function with high gradient areas, the regular component p(x) is

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 540–546, 2013.
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bounded together with some derivatives, and γ is an unknown constant. The
representation (1.2) holds for a solution of a singularly perturbed boundary
value problem [4]. Without loss of generality we suppose that

Φ(4)(x) > 0, x ∈ [a, b]. (1.3)

2 Construction of the Quadrature Formula

Let Ω be an uniform mesh of the interval [a, b] with nodes {xn}, 0 ≤ n ≤ N
and with a step h, h = (b− a)/N. We suppose that N/4 is integer, un = u(xn),
n = 0, 1, . . . , N.

We construct the quadrature formula for any interval [xn−2, xn+2], where
n = 2, 6, . . . , N − 2. To calculate the integral

In(u) =

xn+2∫
xn−2

u(x) dx (2.1)

we consider Newton - Cotes formula with five nodes:

Sn(u) =
2

45
h
[
7un−2 + 32un−1 + 12un + 32un+1 + 7un+2

]
. (2.2)

Using (2.2), we write the composite quadrature formula for the integral (1.1)

S(u) =
2

45
h

N−2∑
n=2,4

(
7un−2 + 32un−1 + 12un + 32un+1 + 7un+2

)
. (2.3)

The error of the formula (2.3) is estimated in [2] as

|I(u)− S(u)| ≤ 2

945
(b− a) max

x∈[a,b]
|u(6)(x)|h6. (2.4)

According to (2.4), if the derivative u(6)(x) is uniformly bounded, then the error
of the formula (2.3) is the quantity of the order O(h6). If the derivative of the
integrand has large values, then the accuracy of the formula (2.3) can degrade.
Let u(x) = exp(−ε−1x). We can easy verify that the error of the formula (2.3)
is a quantity of the order O(h) if ε ≤ h.

We modify the formula (2.2) so that the error does not depend on Φ(x). In
[5–8] we constructed spline interpolation formulas exact for Φ(x). We found an
application of such interpolation formulas in the construction of the two-grid
method for a singularly perturbed problem [9]. Now we apply such interpolation
formula to the construction of the quadrature formula.

In the interval [xn−2, xn+2] we construct the interpolant

uΦ(x) = un + β1(x− xn) + β2(x− xn)
2 + β3(x− xn)

3 +G
[
Φ(x) − Φn

]
(2.5)
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for the function u(x) with interpolation conditions at nodes {xn, xn±1, xn±2}.
We use the interpolant (2.5) in (2.1) and obtain the quadrature formula

SΦ,n(u) =

xn+2∫
xn−2

uΦ(x) dx.

Integrating, we obtain

SΦ,n(u) =
4h

3
(2un+1−un+2un−1)+G

[ xn+2∫
xn−2

Φ(x) dx− 4h

3
(2Φn+1−Φn+2Φn−1)

]
,

(2.6)
where

G =
un+2 − 4un+1 + 6un − 4un−1 + un−2

Φn+2 − 4Φn+1 + 6Φn − 4Φn−1 + Φn−2
. (2.7)

The formula (2.6) is exact for the function Φ(x).
For a function f ∈ C4[xn−2, xn+2] the next relation is known

fn+2 − 4fn+1 + 6fn − 4fn−1 + fn−2 = h4f (4)(s1), ∃s1 ∈ (xn−2, xn+2). (2.8)

Using (1.3) and (2.8), we obtain that the expression (2.7) is correct.
The formula (2.6) contains Milne’s rule for the integral (2.1):

In(f) ≈
4h

3

[
2fn−1 − fn + 2fn+1

]
.

It is known [10] that if f ∈ C4[a, b], then there is s2 ∈ (xn−2, xn+2) such that

xn+2∫
xn−2

f(x) dx − 4h

3

[
2fn−1 − fn + 2fn+1

]
=

14

45
h5f (4)(s2). (2.9)

Lemma 1. The following estimation is true

|In(u)− SΦ,n(u)| ≤
44

45
max

x
|p(4)(x)|h5, x ∈ [xn−2, xn+2]. (2.10)

Proof. Write (2.6) in a form:

SΦ,n(u) =
4h

3
(2un+1−un+2un−1)+4Mnh(un+2−4un+1+6un−4un−1+un−2),

(2.11)
where

Mn =

xn+2∫
xn−2

Φ(x) dx − 4
3h(2Φn+1 − Φn + 2Φn−1)

4h(Φn+2 − 4Φn+1 + 6Φn − 4Φn−1 + Φn−2)
. (2.12)

Now we prove that

0 < Mn <
1

6
. (2.13)
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Using relations (1.3), (2.9), we obtain that the numerator in the expression (2.12)
is positive. The denominator in this expression is positive according to (1.3) and
(2.8). Thus, Mn > 0. The condition Mn < 1/6 is equivalent to the inequality

xn+2∫
xn−2

Φ(x) dx <
2h

3

(
Φn+2 + 4Φn + Φn−2

)
.

This inequality is true because the next relation for Simpson rule is correct

2h

3

(
Φn+2+4Φn+Φn−2

)
=

xn+2∫
xn−2

Φ(x) dx+
1

90
(2h)5Φ(4)(s3), ∃s3 ∈ (xn−2, xn+2),

where Φ(4)(s3) > 0 according to (1.3).
We proved (2.13). Now we take into account that the formula (2.11) is exact

for Φ(x) and obtain

|In(u)−SΦ,n(u)| = |In(p)−SΦ,n(p)| ≤
∣∣∣4
3
h(2pn+1−pn+2pn−1)−

xn+2∫
xn−2

p(x) dx
∣∣∣+

+4Mnh
∣∣∣pn+2 − 4pn+1 + 6pn − 4pn−1 + pn−2

∣∣∣. (2.14)

Using (2.8), (2.9), (2.13), we obtain from (2.14)

|In(u)− SΦ,n(u)| ≤
[14
45

+
4

6

]
max

x
|p(4)(x)|h5, x ∈ [xn−2, xn+2].

Hence, the inequality (2.10) is true. The lemma is proved. ♦
According to Lemma 1, the error of the constructed quadrature formula (2.6)

does not depend on the boundary layer component.
Using (2.11), we write the composite quadrature formula for the integral (1.1)

SΦ(u) = 4h
N−2∑
n=2,4

[
Mnun−2 +

(2
3
− 4Mn

)
un−1 +

(
6Mn − 1

3

)
un+

+
(2
3
− 4Mn

)
un+1 +Mnun+2

]
. (2.15)

Using the estimate (2.10), we obtain

|I(u)− SΦ(u)| ≤
11

45
(b − a) max

x∈[a,b]
|p(4)(x)|h4. (2.16)

According to (2.16), the composite quadrature formula (2.15) has the error of
the order O(h4) uniformly in a boundary layer component Φ(x).

We can obtain Newton-Cotes formula (2.3) from the constructed formula
(2.15), setting Mn = 7/90.
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If we know the location of a boundary layer, we can improve the accuracy
of the composite quadrature formula. We offer to use the formula (2.11) in a
boundary layer and the classical formula (2.2) out of the boundary layer.

To be definite, we assume that the boundary layer is located near the left
endpoint of the interval [a, b] and |u(6)(x)| ≤ C0 for all x ≥ a+ σ. Let

m = min
n

{n : xn−2 ≥ a+ σ, (n− 2)/4 is integer }.

Consider the composite quadrature formula:

S̃Φ(u) = 4h

m−4∑
n=2,4

[
Mnun−2+

(2
3
−4Mn

)
un−1+

(
6Mn−

1

3

)
un+

(2
3
−4Mn

)
un+1+

+Mnun+2

]
+

2

45
h

N−2∑
n=m,4

[
7un−2 + 32un−1 + 12un + 32un+1 + 7un+2

]
. (2.17)

Taking into account the estimates of an accuracy of formulas (2.2) and (2.11),
we obtain:

|I(u)− S̃Φ(u)| ≤
11

45
(m− 2)max

x
|p(4)(x)|h5 + C0(N −m+ 2)

2

945
h7. (2.18)

If m� N, then the error of the formula (2.17) is a quantity of the order O(h5).
As example, we consider an exponential boundary layer near the point x = 0

of the interval [0, 1]. Let Φ(x) = exp(−ε−1x). We suppose that Φ(6)(σ) = 1 and
obtain σ = −6ε ln(ε), where 0 < ε < 1.

3 Numerical Results

Consider the integral

I(u) =

1∫
0

u(x) dx, u(x) = cos(πx/2) + exp(−ε−1x).

Here Φ(x) = exp(−ε−1x), ε ∈ (0, 1].
Define computed order of an accuracy for a quadrature rule. Let

CRN,ε = log2(EN,ε/E2N,ε),

where EN,ε is the error of a tested composite quadrature formula with N mesh
intervals.

In tables e ±m means 10±m.
Table 1 presents the error EN,ε and computed order CRN,ε of the composite

rule (2.3) for various ε and N . As ε decreases, computed order of an accuracy
decreases from six to one. It corresponds to the estimate (2.4) and to the remark,
following after (2.4), about the accuracy of the rule (2.3) for small values of ε.
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Table 1. The errors and computed orders of Newton-Cotes formula (2.3)

ε N
3 ∗ 23 3 ∗ 24 3 ∗ 25 3 ∗ 26 3 ∗ 27 3 ∗ 28

10−1 1.01e − 6 1.69e − 8 2.69e − 10 4.22e − 12 6.54e − 14 7.77e − 16
5.9 6.0 6.0 6.0 6.4

10−2 3.89e − 3 4.04e − 4 1.66e − 5 3.69e − 7 6.37e − 9 1.02e − 10
3.3 4.6 5.5 5.9 6.0

10−3 1.20e − 2 5.48e − 3 2.24e − 3 6.61e − 4 9.33e − 5 5.06e − 6
1.1 1.3 1.8 2.8 4.2

10−4 1.29e − 2 6.38e − 3 3.14e − 3 1.52e − 3 7.10e − 4 3.05e − 4
1.0 1.0 1.0 1.1 1.2

10−5 1.29e − 2 6.47e − 3 3.23e − 3 1.61e − 3 8.00e − 4 3.95e − 4
1.0 1.0 1.0 1.0 1.0

Table 2. The errors and computed orders of the constructed formula (2.15)

ε N
3 ∗ 23 3 ∗ 24 3 ∗ 25 3 ∗ 26 3 ∗ 27 3 ∗ 28

10−1 4.39e − 9 6.87e − 11 1.07e − 12 1.69e − 14 6.66e − 16 5.55e − 16
6.0 6.0 6.0 4.7 −

10−2 2.91e − 7 6.03e − 9 1.02e − 10 1.63e − 12 2.56e − 14 1.33e − 15
5.6 5.9 6.0 6.0 4.3

10−3 8.40e − 7 4.81e − 8 2.46e − 9 9.24e − 11 2.17e − 12 3.80e − 14
5.6 4.1 4.7 5.4 5.8

10−4 9.03e − 7 5.59e − 8 3.44e − 9 2.08e − 10 1.22e − 11 6.53e − 13
4.0 4.0 4.0 4.1 4.2

10−5 9.10e − 7 5.67e − 8 3.54e − 9 2.20e − 10 1.37e − 11 8.45e − 13
4.0 4.0 4.0 4.0 4.0

Table 3. The errors and computed orders of the combined formula (2.17)

ε N
3 ∗ 23 3 ∗ 24 3 ∗ 25 3 ∗ 26 3 ∗ 27 3 ∗ 28

10−1 2.57e − 9 3.89e − 11 3.90e − 13 3.55e − 15 4.44e − 16 5.55e − 16
6.0 6.6 6.8 3.0 −

10−2 7.51e − 8 1.54e − 9 4.19e − 11 1.06e − 12 1.85e − 14 3.33e − 16
5.6 5.2 5.3 5.8 5.8

10−3 2.18e − 7 6.27e − 9 1.61e − 10 2.43e − 12 3.12e − 14 2.66e − 15
5.1 5.3 6.1 6.3 3.6

10−4 2.34e − 7 7.30e − 9 2.25e − 10 6.81e − 12 1.99e − 13 5.88e − 15
5.0 5.0 5.0 5.1 5.1

10−5 2.36e − 7 7.41e − 9 2.31e − 10 7.21e − 12 2.24e − 13 7.54e − 15
5.0 5.0 5.0 5.0 4.9
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Table 2 presents the error and the computed order of the composite formula
(2.15) for various ε and h. Results support the estimate (2.16). As ε decreases,
the computed order of an accuracy decreases from six to four. In a case N = 3∗28
the error of the quadrature rule has the order of calculative errors, it has the
influence on the value of CRN,ε.

Table 3 presents the error and the computed order of the combined composite
formula (2.17) for various ε and h. The results confirm the estimate (2.18). As
ε decreases, the computed order of an accuracy decreases from six to five.

4 Conclusion

The quadrature formula with five nodes for the numerical integration of a func-
tion with a boundary layer component is constructed. It is proved that the error
of proposed formula does not depend on a boundary layer component. Numeri-
cal experiments confirmed that constructed formula is more accurate in compare
with Newton - Cotes formula.
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Abstract. Travelling solitons of the undamped, externally driven non-
linear Schrödinger equation (NLS) are investigated by the numerical solu-
tion of the reduced ordinary differential equation and the corresponding
linearized eigenvalue problem. This numerical approach is complemented
by direct numerical simulations of the partial differential NLS equation.
We show that in the small driving case, travelling solitons can form stably
travelling bound states.

Keywords: Nonlinear Schrödinger equation, travelling solitons, Newto-
nian iteration, numerical continuation, stability, bifurcations.

1 Introduction

We consider the nonlinear Schrödinger equation (NLS) driven by a constant
external force

iψt + ψXX + 2|ψ|2ψ − ψ = −h− iγψ, ψX(±∞) = 0, (1)

where h > 0 and γ > 0 are, respectively, dimensionless parameters of external
driving and linear damping; t and X are. respectively. dimensionless time and
space. The externally driven nonlinear Schrödinger equation has undergone an
extensive mathematical analysis because of a wide range of physical applications
(physical phenomena associated with Eq.(1) are overviewed in [4]).

Two types of stationary soliton solutions of Eq.(1), ψ− and ψ+, are well stud-
ied, see [8,2,7]. The soliton ψ− is known to be stable for small driving strengths
but unstable otherwise; the other one, ψ+, unstable independently of the choice
of the forcing amplitude.

Strongly damped stationary multi-soliton complexes are investigated in [4,2,9].
Existence of stationary complexes in the undamped case (denoted “twist”) is
proved in the recent paper [4]. Two of twist solutions (denoted T 2 and T 3) have
been reproduced numerically.

Travelling undamped waves of Eq.(1) are obtained in [4] by reducing the
partial differential equation (1) to an ordinary differential equation where the

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 547–554, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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fixed constant velocity V plays a role of additional parameter of equation. Using
two stationary solitons ψ− and ψ+ and two stationary complexes T 2 and T 3
as starting points, classes of localized travelling waves were obtained by the
numerical continuation in the parameter space. Two families of stable single
solitons have been identified: one family is stable for sufficiently low velocities
while solitons from the second family stabilize when travelling faster than a
certain critical speed. It was also shown that travelling ψ− solitons can form
stably travelling bound states.

This contribution extends numerical results of [4] by providing additional
branches of travelling complexes and results of direct numerical simulation of
Eq.(1). Our numerical approach is described in Sect.2. Numerical results are
presented in Sect.3 and summarized in Sect.4.

Here we consider the undamped case γ = 0.

2 Formulation of Problem and Numerical Approach

We search localized travelling waves of the form ψ(X, t) = ψ(X − V t) by the
numerical solution of the ordinary differential equation

− iV ψx + ψxx + 2|ψ|2ψ − ψ = −h, , ψx(±L) = 0, L → ∞. (2)

where x = X − V t and V is a constant velocity of the travelling soliton.
We pathfollow stationary single solitons and complexes in nonzero velocity

and classify stability and bifurcations of travelling waves as the parameters h
and V are varied.

For graphical representation of results we calculate, at each step of continua-
tion process, the momentum integral

P =
i

2

∫
(ψ∗

xψ − ψxψ
∗)dx (3)

that is an integral of motion for equation (1), i.e. P is a physically meaningful
characteristic of solutions.

Stability and bifurcations are analyzed on the basis of numerical solution of
the corresponding linearized eigenvalue problem [4] as follows:

Hy = λJy, H =

(
−∂2x + 1− 2(3R2 + I2) −V ∂x − 4RI

V ∂x − 4RI −∂2x + 1− 2(3I2 +R2)

)
. (4)

Here y is a two-component vector-function y(x) =

(
u
v

)
; R + iI = ψs(x) is a

solution of Eq.(2); J is a constant skew-symmetric matrix J =

(
0 −1
1 0

)
.

We routinely evaluate the spectrum of eigenvalues of Eq.(4) as we continue
localized solutions in V . If there is at least one eigenvalue λ with Reλ > 0, the
solution is unstable.
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Fig. 1. Twist solutions T2 (a) and T3 (b) for h = 0.25, V = 0. The solid line shows
the real and dashed imaginary part.

Localized solutions of Eq.(2) are investigated on the basis of the predictor-
corrector algorithm with Newtonian iteration at each step of numerical contin-
uation. We applied the 4th order accuracy Numerov’s discretization. Details of
numerical continuation technique are given in [9,10]. Typically, the calculations
have been performed with L = 500 and the spatial stepsize Δx = 0.005.

For numerical solution of the eigenvalue problem (4) the Fourier discretization
is applied. The resulting algebraic eigenvalue problem is solved by means of the
standard EISPACK code.

For direct numerical simulation of Eq.(1) we employed the split-step method
[1] with Fourier discretization in space. As an initial condition for the direct
simulations we chosen the solution of Eq.(2) with the fixed value V .

3 Numerical Results

Scenarios of transformations of travelling solitons depend on the value of h. As
representative cases, we consider three values of the driving parameter: h = 0.05,
h = 0.2, and h = 0.25. We start with the case h = 0.25

3.1 The Case h = 0.25

The case h = 0.25 is the representative value of parameter region h ≥ 0.25. As
we have already mentioned, in addition to the simple solitons ψ− and ψ+ the
equation (2) has two localized solutions in a form of multi-soliton bound states
(denoted “twist” in [4]). Two twist solutions T 2 and T 3 are shown in the Fig.1
for h = 0.25.

Result of numerical continuation of T 2 and T 3 in nonzero velocity is shown
on the Fig.2(a).

The continuation of the T 2 twist (shown in Fig.1(a)) to the negative velocities
proceeds according the following scenario: the twist transforms into a complex
of two solitons ψ−. At some negative V the curve turns back and connects to
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Fig. 2. (a) The P (V ) curve resulting from the continuation of the T2, T3, and ψ−
solutions for h = 0.25. All branches shown in this figure are unstable. More solution
branches can be obtained by the reflection V → −V , P → −P . (b) A ψ(−−−) solution
on the lower branch in (a). Here h = 0.25, V = −0.85, P = −3.19. The solid line shows
the real and dashed imaginary part.

the origin on the (V, P ) plane, with the distance between the two solitons bound
in the complex increasing to infinity.

The continuation of T 2 to positive V produces the following outcome. the
curve P (V ) turns counterclockwise and crosses through the P -axis once again.
The solution arising at the point V = 0 is nothing but the T 3 twist shown
in Fig.2(b). The subsequent continuation produces a hook-shaped curve which
leads to the origin on the (V, P )-plane. The corresponding solution is a complex
of three ψ− solitons. Representative solution of the ψ(−−−) branch is shown in
Fig.2(b). As V, P → 0, the distance between the solitons grows to infinity.

The other like-loop branch shown in Fig.2(a) is associated with ψ− soliton.
As we continue the stationary ψ− solution to nonzero velocity the P (V ) curve
turns up and returns to the origin of the (V, P )-plane while solution gradually
transforms into a three-soliton ψ(+−+). The separation between solitons in the
complex is growing without limit as V → 0.

All branches on the Fig.2 are unstable.

3.2 The Case h = 0.2

Result of continuation of complexes T 2 and T 3 in nonzero velocity for h = 0.2
is given in Fig.3a.

In the case 0.6 ≤ h ≤ 0.2 the branch of travelling twist-solution T 2 is con-
nected with the branch of travelling single wave ψ−. As we continue the T 2
complex in negative velocity, the solution transforms to a complex of two well-
separated ψ− solitons. The corresponding curve makes a turn and eventually
returns to the point V = P = 0. As V → 0, the distance between the solitons in
the complex tends to infinity.

The P (V ) curve associated with the T 3 twist, transforms to three-soliton
solution ψ(+−+) as we continue in positive velocity. Two-soliton complex ψ(−+)

arises as the pitchfork bifurcation of the ψ(+−+) branch. When pathfollowing
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Fig. 3. (a) The full P (V ) bifurcation diagram for the ψ−, T2, T3, and T4 solitons for
h = 0.2. Solid points numbered 2,3,4 indicate the twist complexes T2, T3, T4. Also
shown is the continuation of the ψ(++) branch. All branches shown in this figure are
unstable. More solution branches can be obtained by the reflection V → −V , P → −P .
(b) The twist solution T4 for h = 0.2, V = 0. The solid line shows the real and dashed
imaginary part.

in negative velocity the T 3-twist gradually transforms to a complex of three
well-separated ψ− solitons.

Besides the twist solutions T 2 and T 3, one more complex has been obtained
numerically at V = 0. This solution (denoted T 4) is shown in fig.3(b). The
branch P (V ) emanating from the T 4 twist is plotted in Fig.3(a) by dash-pointed
line. When pathfollowing to V < 0 the T 4 twist gradually transforms to the
complex of two well-separated solitons ψ+ and T 2-soliton between them. As
we continue the T 4 twist in V > 0 it transforms to the three-soliton complex
with T 2 in the middle and two ψ− solitons on the left and on the right hand.
Distances between constituents of those complexes go infinity as V tends zero.
Because Pψ− = Pψ+ = 0 at V = 0, in both cases of positive and negative
velocities the P (V ) curve ends exactly at the point V = 0, P = PT2. It does not
mean, however, that the T 4-branch joins the T 2-branch at this point.

The last branch P (V ) shown in fig.3(a) is associated with travelling complexes
ψ(++) and ψ(++++). Both branches come to the point V = P = 0 where solutions
have the form of two and four free-standing ψ(+) solitons, respectively.

As in the case h = 0.25, all branches in the Fig.3(a) are unstable.

3.3 The Case h = 0.05

The P (V ) diagram for h = 0.05 is shown in Fig.4(a). Continuing the T 2 twist
in the negative-V direction, it transforms into a complex of two ψ− solitons. At
some point along the curve (V = −0.451, P = −0.76), the complex stabilizes.
Continuing further in the direction of negative V , the branch turns back; shortly
after that the momentum reaches its minimum where the solution loses its sta-
bility. When continued beyond the turning point (V = −0.513, P = −1.042)
and the point of minimum of momentum (V = −0.503, P = −1.08), the curve



552 E. Zemlyanaya and N. Alexeeva

−0.5 0 0.5 1 1.5

−1

0

1

2

P

V

ψ
(−−−)

ψ
(+−+)

ψ
T3

ψ
(++)

ψ
(++)ψ

T2

ψ
(−−)(a)

h=0.05

−0.5 −0.4 −0.3
−1.2

−1

−0.8

−0.6

−0.4

P

V

(b)

h=0.05

ac−driven NLS

parametrically
driven NLS

Fig. 4. (a) Continuation of the twist solitons T2 and T3 for h = 0.05. Also shown is
the continuation of the ψ(−−) branch. More solution branches can be obtained by the
reflection V → −V , P → −P . (b) The stable portions of the P (V ) curves corresponding
the travelling two-soliton complexes of Eq.(1) and Eq.(5). Stable branches are given by
solid and unstable ones by dashed lines.

connects to the origin on the (V, P ) plane (Fig.4(a)). The distance between the
two ψ− solitons in complex grows without bound as V, P → 0.

It is interesting to note a similarity between the bifurcation diagram resulting
from the continuation of the small-h twist in the externally driven NLS and the
corresponding diagram for the case of parametrically driven NLS equation

iψt + ψxx + 2|ψ|2ψ − ψ = hψ∗ − iγψ . (5)

Fig.4(b) reproduces stable portions of P (V ) branches corresponding the travel-
ling complexes of Eq.(1) and Eq.(5). The latter is reproduced from [5] .

Note, in both case external and parametrical driving the P (V ) curve has a
narrow interval where two different complexes (corresponding the top and low
branches of the P (V ) graph) coexist and stably travel with the same velocity.
For the Eq.(1) the bistability interval is V ∈ [−0.513,−0.503], and for the Eq.(5)
V ∈ [−0.509,−0.4593].

Pathfollowing to V > 0 the T 2 twist transforms into a ψ(++) complex. The
P (V ) curve turns down and returns to the origin of the (V, P )-plane while sep-
aration between solitons in complex goes infinity.

Continuing the T 3 twist to positive velocities, the solution transforms into
a ψ(+−+) complex. If we, instead, continue to negative velocities, the T 3 twist
transforms into a triplet of ψ− solitons. Both V > 0 and V < 0 parts of the
curve turn and connect to the origin on the (V, P )-plane, see Fig.4(a). As V and
P approach the origin on either side, the distance between the three solitons
bound in the complex grows without limit.

Figure 4(a) also shows the P (V ) branch associated with complexes ψ(++) and
ψ(−−). Note, we have two coexisting complexes ψ(++) here, with close values of
momentum but with different distance between solitons bounded in the complex.
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dashed imaginary part. (b) The P (V ) diagram associated with the T5 complex.

Beside of twist solutions T 2, T 3, T 4 we have numerically obtained one more
complex (denoted T 5) where both real and imaginary parts are even, and P = 0.
This complex is shown in Fig.5(a) for h = 0.05, V = 0. Corresponding branch of
travelling complexes P (V ) is given in Fig.5(b). In both cases of V < 0 and V > 0
the symmetric solution T 5 transforms to nonsymmetric complex of ψ− and T 2-
solutions. As V > 0 the P (V ) curve turns up and tends the point V = 0 P = PT2

while the distance between ψ− and T 2 bounded in the complex is growing to
infinity. The negative part of the P (V ) curve is symmetric with respect to origin
of (V, P )-plane, i.e. P (V ) = −P (−V ).

4 Summary

The stable domain of travelling complexes is shown on the diagram in Fig.6(a)
(reproduced from [4]). In this region stably travelling complexes coexist with
stable travelling single waves ψ−. Fig.6(b) demonstrates stably travelling soliton
for h=0.05 obtained in direct simulation. As an initial condition we have chosen
the solution of eq.(2) with V = −0.48.

As in the case of parametrically driven NLS, ac-driven travelling complexes
are stable only for small h. No stable travelling bound states has been found in
our numerical study when h ≥ 0.06.

Note that undamped stationary solutions with P = 0 can be continued to
nonzero parameter of damping γ [5]. Our analysis confirms that the complex
T 5 can be continued to the γ > 0 direction indeed. Numerical investigation of
weakly damped multi-soliton complexes is object of the further research.

EZ was partially supported by a grant under the JINR/RSA Research Collab-
oration Programme and by RFBR (grant No.12-01-00396). NA was supported
by the National Research Foundation (grant No.67982).
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Abstract. Asynchronous Differential Evolution (ADE) [1] is a derivative-
free method to solve global optimization problems. It provides effective
parallel realization. In this work we derive ADE with restart (ADE-R).
By increasing population size after each restart, new strategy enhances
its chances to locate the global minimum. The ADE-R algorithm has
convergence rate comparable or better than ADE with fixed population
sizes. Performance of the ADE-R algorithm is demonstrated on a set of
benchmark functions.

Keywords: global optimization, derivative-free optimization, differen-
tial evolution, evolution strategy.

1 Introduction

Many optimization problems can be reduced to the finding of the optimal set
of parameters x∗ from a real-value domain Ω which minimizes an objective
function f(x∗):

f (x∗) � f(x), ∀x ∈ Ω, x = {xj}|j=0,...,D−1 . (1)

The Asynchronous Differential Evolution algorithm is efficient to solve possible
nonlinear and non-differentiable global optimization problems [1]. It contains a
few control parameters, but one of them — population size Np — is crucial
for DE: large population sizes ensure a high probability to locate the global
minimum, at the same time small populations are characterized by faster con-
vergence rate. Reasonable choice of Np by a practitioner requires an intuition
and considerable efforts.

In the next part of this paper we remind basic principles of the Asynchronous
Differential Evolution algorithm. In the part three we introduce Asynchronous
Differential Evolution with restart. As soon as new algorithm has diagnosed stag-
nation in progress to find a better candidate solution, restart is performed. Algo-
rithm increases the population size with each restart, which enhances probability
to locate the global minimum. Its performance is verified on a set of benchmark
functions characteristic for real-parameter multidimensional optimization.

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 555–561, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Asynchronous Differential Evolution

The ADE represents an asynchronous strategy derived from Classical Differential
Evolution (CDE) algorithm [4, 5]. Differential evolution is a popular algorithm
to solve black-box optimization problems. It is very competitive in the domain of
ill-conditioned and separable multidimensional problems [3]. Unlike CDE, ADE
incorporates mutation, crossover and selection operations into an asynchronous
strategy. The ADE performance is competitive to the commonly used variants
of Classical DE, while for parallel calculations ADE clearly outperforms the syn-
chronous CDE strategies [1]. ADE algorithm contains a few control parameters,
the constraints on their reasonable values were derived analytically [2].

The general scheme of the Asynchronous Differential Evolution algorithm
is presented in Fig. 1. The algorithm operates over a population Px= {xi} of
size Np, each population member is represented by a vector in the search do-
main x ∈ Ω. The population is initialized by vectors randomly selected from Ω.
Then ADE iteratively improves the population until some termination criterion
is not met.

// Initialize a population Px = {xi}|i=0,...Np−1, xi = {xi,j}|j=0,...D−1 ∈ Ω

Px = initialize population();

do {
i = choose target vector(); // Choose target vector xi

// Mutation:

vi = xr + F (xp − xq); // mutant vector, r �= p �= q; p, q are random indices

// Crossover (recombination):

for (j = 0; j < D; j = j + 1)

ui,j =

{
vi,j rand(0, 1) < Cr or j = jrand

xi,j otherwise
// trial vector

// Selection:

if (f(ui) < f(xi))

xi = ui;

} while (termination criterion not met);

Fig. 1. C-style scheme for the Asynchronous Differential Evolution algorithm

Population members are sorted according to their objective function value,
for minimization problems the best one corresponds to the smallest value. The
algorithm selects some vector, called target vector, from a population. In this
article we will consider two variants: either a target vector is randomly chosen
from the population (“rand”) or the worst population vector is chosen as a
target vector (“worst”). Another vector xr is chosen as a base vector (“rand” or
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“best”). Two other randomly chosen vectors form a difference vector. The sum
of the base vector with the difference vector multiplied by a scale factor F is a
mutant vector:

vi = xr + F (xp − xq) . (2)

Coordinate recombination (crossover) of the mutant vector with the target
one results a trial vector. To ensure that the trial vector is different from the
target one, at least one coordinate (randomly selected jrand) is taken from the
mutant vector. The objective function value of the trial vector is confronted to
the function value of the target vector. If and only if a resulting trial vector
provides a better value of the optimization function, it will replace its parent
target vector in the population.

For ADE variants we introduce an ADE/w/x/y/z notation [1] similar to the
CDE classification [5]. Here w corresponds to the choice of a target vector, this
feature is specific of ADE. The choice of a base vector is denoted as x ; y and
z indicate the number of difference vectors added and crossover type respec-
tively. In this article numerical results are obtained by ADE/rand/rand/1/bin
and ADE/worst/best/1/bin strategies. The first one is characterized by high ex-
ploration ability, while the latter one has faster convergence to a local minimum.

The performance of the ADE is evaluated on the CEC2005 set of benchmark
functions [6]. We selected four functions, which represent different classes of
real-parameter optimization problems: f1 — sphere function (unimodal, separa-
ble), f6 — Rosenbrock function (a few minima, nonseparable), f9 — Rastrigin
function (multimodal, separable) and f11 — rotated Weierstrass function (mul-
timodal, nonseparable). All functions are defined in a 10-dimensional parameter
space.

A problem is considered to have been solved if its optimizer reached the global
minimum within the predefined precision ε: f(x) − f(x∗) < ε. For the sphere
function the precision was set to 10−6, while for other functions ε = 10−2. One
trial represents 100 optimization executions. For each trial the probability of

Table 1. Convergence rate of ADE strategies for four benchmark functions

ADE/rand/rand/1/bin ADE/worst/best/1/bin

Np 〈Nfeval〉 Median Nfeval Psucc Np 〈Nfeval〉 Median Nfeval Psucc

f1 10 3641 3633 1.00 10 2986 2977 0.98
15 4344 4333 1.00

f6 20 2.38e+04 2.32e+04 0.92 50 1.92e+04 1.84e+04 0.85
50 8.30e+04 8.20e+04 0.98 150 5.65e+04 5.59e+04 0.85
70 1.28e+05 1.25e+05 1.00 600 2.12e+05 2.11e+05 0.91

f9 15 3963 4012 0.93 20 4317 4289 0.92
30 7976 7988 1.0 50 10138 10108 1.0

f11 20 0.406e+05 0.381e+05 0.59 50 0.347e+05 0.333e+05 0.55
50 2.939e+05 2.913e+05 0.83 100 0.870e+05 0.842e+05 0.73
100 1.168e+06 1.122e+05 0.90 200 1.952e+05 1.887e+05 0.84
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success Psucc, which is the number of executions which converged to the global
minimum divided by the total number of executions, the average number of
function evaluations 〈Nfeval〉 and median Nfeval for converged executions are
recorded.

Performance of ADE for the selected functions is presented in Tab. 1. For
both strategies the crossover rate Cr was set to 0.1 for separable functions and
to 0.9 otherwise. The scale factor F = 0.9 was used. We performed trials for
different population sizes Np = 10, 15, 20, 30, 50, 70, 100, 150, 200, 600. Results
with highest probability of success are reported.

Unlike CEC2005 testbench we have increased the limit on maximal number
of function evaluations from 105 to 107. Even if we don’t limit the maximal
number of function evaluations, ADE will fail to locate the global minimum in
many cases. The analysis of failed attempts reveals either degeneration of the
population into a subspace or that the search ended up in a local minimum.
Both above reasons can be overcome if one chooses sufficiently large population
size Np. From the other side, the search with a large population can consume
exceedingly long computer time. For practical problems one should either adjust
the population size to complexity of the function to be minimized or perform
multiple searches with different population sizes, which requires efforts by a
practitioner and additional CPU time.

3 Asynchronous Differential Evolution with Restart

To balance fast convergence rate with high probability of convergence we will
introduce Asynchronous Differential Evolution with restart (ADE-R). The modi-
fied algorithm starts with some small population sizeNmin

p . We will useNmin
p =10

for numerical tests. As soon as ADE-R diagnoses stagnation in the search towards
a better solution, the algorithm performs a restart by increasing the population
size by a predefined factor k and starting an independent search.

To diagnose stagnation ADE-R tracks the maximal spread for population
members in each coordinate Δxj and in function values Δf :

Δxj = max
i=0,...,Np−1

{xi,j} − min
i=0,...,Np−1

{xi,j}, (3)

Δf = max
i=0,...,Np−1

{fi} − min
i=0,...,Np−1

{fi}. (4)

As the factor F in the mutation operator (2) is of the order of one, a difference
in the operator should be larger then the coordinate of the base vector multiplied
by the machine epsilon. Otherwise adding this difference will have no effect due
to rounding in floating point operations. Therefore we introduce the following
criterion for restart

∃j Δxj < εx max
i

{|xi,j |}. (5)

In the current realization of ADE float values are 8-bytes long (IEEE 754 stan-
dard) and corresponding machine epsilon is about 10−16. Typically, εx should
exceed 10−15. At the same time one can try to use larger values of εx. In the
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latter case stagnation will be indicated ealier, which will potentially accelerate
convergence, but too large εx will lead to excessive restarts and the algorithm
will fail to locate the minimum. One should notice that the lower bound on fea-
sible values of εx is due to an algorithm numerical representation and doesn’t
depend on the function to be minimized. The upper bound is problem-dependent
and should be chosen with care.

Due to the comparison in the selection operator, we introduce another crite-
rion for restart, based on the spread in function values within population:

Δf < εf max
i=0,...,Np−1

{|fi|}. (6)

Again the lower bound on εf is due to the algorithm numerical representation,
while the upper bound is problem dependent. One should note that the upper
bound on εf can be estimated a priori for the important class of generalized
least-squares problems.
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Fig. 2.Mean number of function evaluations to solve Rosenbrock problem f6 (D = 10)
as a function of εx and εf (left). Mean and median Nfeval as a function of εf without
criterion on Δx (5) (right).

We performed a scan in the (εx, εf) plane to analyze the convergence rate as
a function of applied criteria for the ADE/worst/best/1/bin strategy on Rosen-
brock function f6 (Fig. 2). Multiplier k = 2 was used to increase the population
size after restart. For all points Psucc = 1.0 is ensured by ADE-R. Higher εx and
εf values lead to earlier diagnostic of stagnation in evolution progress, which
results in restart, and thus to faster convergence. But too large values cause
excessive restarts. Upper limit on εf at 10−4 is defined by the objective function
value in minimum f∗ = 360 and required precision of 10−2. From Fig. 2 one can
conclude that even small problem-independent values of εx and εf , defined as
the machine epsilon multiplied by a factor of 103 . . . 104, guarantee a reasonable
convergence rate.

Performance of ADE with restart for four test functions is presented in Tab. 2.
Factor k = 2 was used to increase population size after restart. For all functions
Psucc = 1 has been achieved. Compared to ADE with fixed population sizes
(Tab. 1), the improvement in the convergence rate for complex functions is ob-
served. ADE-R automatically adapts the population size to match the complex-
ity of the optimization problem. In this way strategy with restart eliminates time
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Table 2. Convergence rate of ADE-R strategies for four benchmark functions for
εx = 10

−12 and different εf

ADE-R/rand/rand/1/bin ADE-R/worst/best/1/bin

εf 〈Nfeval〉 Median Nfeval Psucc 〈Nfeval〉 Median Nfeval Psucc

f1 10−12 3641 3633 1.0 3070 2979 1.0

f6 10−7 4.91e+04 4.20e+04 1.0 2.88e+04 2.30e+04 1.0
10−12 5.11e+04 4.03e+04 1.0 4.09e+04 3.22e+04 1.0

f9 10−7 5339 2977 1.0 5865 6913 1.0
10−12 6121 2977 1.0 6942 8315 1.0

f11 10
−7 3.22e+05 0.75e+05 1.0 1.54e+05 1.14e+05 1.0

10−12 2.02e+05 0.78e+05 1.0 1.78e+05 1.32e+05 1.0

consuming tuning of the optimal population size Np for a selected optimization
problem. All results in Tab. 2 were obtained with Nmin

p = 10. In the case of com-
plex objective functions, to be solved only with large population sizes, one can
further improve convergence rate by starting the algorithm with higher Nmin

p .

Table 3. Convergence rate of ADE-R strategies for different population size multipliers
k after restart, εx = 10

−12, εf = 10
−12

ADE-R/rand/rand/1/bin ADE-R/worst/best/1/bin

k 〈Nfeval〉 Median Nfeval Psucc 〈Nfeval〉 Median Nfeval Psucc

f6 1.2 4.88e+04 3.93e+04 1.0 8.56e+04 7.81e+04 1.0
1.5 4.85e+04 3.93e+04 1.0 4.97e+04 4.14e+04 1.0
2.0 5.11e+04 4.03e+04 1.0 4.09e+04 3.22e+04 1.0
3.0 5.76e+04 4.06e+04 1.0 4.60e+04 3.42e+04 1.0
5.0 7.42e+04 4.06e+04 1.0 5.60e+04 3.51e+04 1.0

f11 1.2 2.15e+05 1.79e+05 1.0 2.37e+05 2.18e+05 1.0
1.5 1.75e+05 1.14e+05 1.0 1.64e+05 1.27e+05 1.0
2.0 2.02e+05 0.78e+05 1.0 1.78e+05 1.32e+05 1.0
3.0 2.99e+05 1.16e+05 1.0 2.11e+05 1.14e+05 1.0
5.0 1.00e+06 3.15e+05 0.96 2.66e+05 0.55e+05 1.0

The effect on the convergence rate by the population size multiplier k is
illustrated in Tab. 3. To our experience reasonable values belong to the range
1.2 . . .3.0, for many problems k ∈ [1.5, 2.0] is optimal. Smaller values lead to
finer steps in population growth thus to more frequent restarts.

With the help of ADE-R several practical optimization problems have been
solved [7–9]. These problems have objective functions with complex terrain or
multiple minima, therefore local-searching optimization algorithms failed.

4 Conclusions

We have constructed an algorithm of Asynchronous Differential Evolution
with restart (ADE-R) to solve real-value global optimization problems.
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Through introduction of simple criteria on population spread in parameter space
and corresponding objective function values, the algorithm diagnoses stagnation
in evolution towards a better solution and performs restart for an independent
search with larger population size. ADE with restart automatically increases the
population size according to the complexity of the problem to be solved. This
new algorithm performs well on a standard test bench of real-value optimiza-
tion problems, ensures high probability to locate the global extremum and has
competitive convergence rate.

Acknowledgement. E.Z. was partially supported by the Program for collabo-
ration between JINR (Dubna) and Bulgarian scientific centers.
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Abstract. A mixed boundary value problem for a singularly perturbed
elliptic convection-diffusion equation with constant coefficients is consid-
ered in a square with the Dirichlet conditions imposed on the two sides,
which are orthogonal to the flow direction, and with the Neumann con-
ditions on the other two sides. Sufficient smoothness of the right-hand
side and that of the boundary functions is assumed, which ensures the
required smoothness of the solution in the considered domain, except
the neighborhoods of the corner points. At the corner points themselves,
zero order compatibility conditions alone are assumed to be satisfied.

For the numerical solution to the posed problem a nonuniform
monotonous difference scheme is used on a rectangular piecewise uni-
form Shishkin grid. Non-uniformity of the scheme means that the form
of the difference equations, which are used for the approximation, is not
the same in different grid points but it depends on the value of the per-
turbing parameter.

Under assumptions made a uniform convergence with respect to ε
of the numerical solution to the precise solution is proved in a discrete
uniform metric at the rate O(N−3/2 ln2 N), where N is the number of
the grid points in each coordinate direction.

Keywords: singularly perturbed problems, condensing mesh, charac-
teristic boundary layer, corner singularity, uniform convergence.

1 Introduction

A mixed boundary problem for a singularly perturbed convection-diffusion equa-
tion [1,2] is considered in the square Ω = (0, 1)

2 with the boundary ∂Ω:

Lu ≡ −εΔu+ a
∂u

∂x
+ qu = f(x, y), (x, y) ∈ Ω, (1)

∂u

∂n
= ϕ(x, y), (x, y) ∈ ∂ΩN , (2)

u = g(x, y), (x, y) ∈ ∂ΩD, (3)

where a = const > 0, q = const > 0; n is the unit vector of an outer normal
to ∂ΩN , and ε ∈ (0, 1] is a small parameter. The domain boundary consists

I. Dimov, I. Faragó, and L. Vulkov (Eds.): NAA 2012, LNCS 8236, pp. 562–570, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of the parts ∂ΩD = Γ1 ∪ Γ3 and ∂ΩN = Γ2 ∪ Γ4, where Γk are the sides of
the square Ω, ordered in the counterclockwise direction starting from Γ1 =
{ (x, y) ∈ ∂Ω | x = 0} , whereas ak = (xk, yk) are its vertices, ordered in the
similar way being a1 = (0, 0).

In the corner points ak the boundary functions g and ϕ are assumed to be
the subject to the following conditions

dg1
dy

(0) = −ϕ1(0),
dg1
dy

(1) = ϕ2(0),
dg2
dy

(0) = −ϕ1(1),
dg2
dy

(1) = ϕ2(1), (4)

which are named [3] zero-order compatibility conditions, where g1(y) = g(0, y),
g2(y) = g(1, y) and ϕ1(x) = ϕ(x, 0), ϕ2(x) = ϕ(x, 1).

The solution to problem (1)–(4) has a compound structure (see [2,4] e.g. and
the literature cited there), which includes the regular boundary layer of width
O(ε) in a neighborhood of the right-hand boundary Γ3, the two characteris-
tic layers of width O(

√
ε) in neighborhoods of the upper and lower boundaries

Γ2 and Γ4, the corner layers with corner singularities in neighborhoods of the
vertices a2, a3 and the corner singularities in neighborhoods of the inflow ver-
tices a1, a4. All this makes it difficult to solve problem (1)–(4) numerically. It is
also known (see [3]) that the presence of the corner points adversely affects the
smoothness of the solution.

Actually it is problem (1)–(3) though in more general setting (with variable
coefficients and boundary conditions of the third kind imposed on ∂ΩN) that
paper [1] is devoted to. In this paper a nonuniform monotonous scheme was made
up for the equation and the scheme formally has the second order approximation
with ε ≤ CN−1 (compare with [6,7] in one dimensional case) and, under the
assumption that the compatibility conditions at the corner points are satisfied
up to the 2nd order, the convergency at the rate O(N−3/2 lnN) on Shishkin
mesh is proved.

The purpose of this work is to enhance the results [1] in the following di-
rections: getting rid of the excessive compatibility conditions, which increased
the smoothness of the solution up to u(x, y) ∈ C4, λ(Ω̄), λ ∈ (0, 1); working
out the uniform with respect to ε estimate of the convergency rate of order
O(N−3/2 ln2N) for all ε ∈ (0, 1], instead of the former estimate for ε ≤ CN−1.

In the course of the paper we denote by C, C̃ and c some positive con-
stants,which are different in any individual case and depend on input data, but
not on N or ε.

2 Statement of the Finite Difference Problem

In paper [2] by means of the decomposition of the solution to problem (1)–(3)
into smooth and boundary layer components some point-wise estimates to the
solution and its derivatives are obtained, which we use here; their dependance
on a small parameter ε and on the data compatibility conditions at the domain
corners is shown. Before we introduce the difference scheme, let us write this
solution as the following sum:

u(x, y) = S + E + w1 + w2 + w3 + w4 + ũ, (x, y) ∈ Ω, (5)



564 U.K. Zhemukhov

where S is a smooth component, E is a regular boundary layer, w1, w4 and
w2, w3 are two characteristic layers (an upper one and a lower one respectively)
and two corner layers in neighborhoods of the corners a2, a3; ũ is the remainder
term, which is exponentially small.

Thus, on the set Ω̄ we introduce the grid Ω̄h = ω̄x × ω̄y, which is a tensor
product of two piecewise unform Shishkin meshes. The mesh ω̄x contains N/2
points on each of the half-intervals (0, 1 − σx] and (1 − σx, 1] with the steps H1

and h1, respectively, and the mesh ω̄y contains N/4 points on the half-intervals
(0, σy], (1 − σy, 1] and N/2 points on the (σy, 1 − σy] with steps h2 and H2

respectively, where

H1 =
2(1− σx)

N
, h1 =

2σx
N

, σx = min
{1
2
;
4ε lnN

a

}
; H2 =

2(1− 2σy)

N
,

h2 =
4σy
N

, σy = min
{1
4
;
4
√
ε lnN

β

}
; β = min{a/12, q/2a,√q}.

Therefore, to find the numerical solution of the problem (1)–(4) we use the
inhomogeneous monotone difference scheme, in which for small values of ε con-
vective term is approximated by the usual directional difference at the middle
point xi−1/2 out of the regular layer, while in the regular layer we use for this
the central difference.

Before we write the difference scheme, we will introduce the following notation:
Ωh = Ω̄h ∩ Ω, Ωh

1 = Ω̄h
1 ∩ Ωh, Ωh

2 = Ω̄h
2 ∩ Ωh, Ω̄h

1 = {0 ≤ xi ≤ 1 − σx, 0 ≤
yj ≤ 1}, Ω̄h

2 = {1 − σx < xi ≤ 1, 0 ≤ yj ≤ 1}, ux̄,i = (ui − ui−1)/hi, ux̂,i =
(ui+1 − ui)/�i, ux̊,i = (ui+1 − ui−1)/2�i, ux,i = ux̄,i+1, �i = (hi+1 + hi)/2,
fh
ij = f(xi, yj), and uh

ij is an approximative solution to problem (1)–(4).
On the mesh Ω̄h we assign a difference problem (see [1]) to problem (1)–(4)

Lhuh
ij ≡ −ε

(
uh
x̄x̂;ij + uh

ȳŷ;ij

)
+ Lh

1u
h
ij + quh

ij = Fh
ij , Ωh (6)

where

Lh
1u

h
ij ≡

⎧⎪⎪⎨⎪⎪⎩
(
a− qH1

2

)
uh
x̄;ij , ε < aH1/2, Ω

h
1 ,

auh
x̊;ij , ε < aH1/2, Ω

h
2 ,

auh
x̊;ij , ε ≥ aH1/2, Ω

h,

Fh
ij =

⎧⎪⎨⎪⎩
fh
i−1/2,j , ε < aH1/2, Ω

h
1 ,

fh
ij , ε < aH1/2, Ω

h
2 ,

fh
ij , ε ≥ aH1/2, Ω

h.

Lhuh
i0 ≡

⎧⎪⎨⎪⎩
−uh

y;i0 +
h2
2

[
−uh

x̄x̂;i0 +
1

ε

(
a− qH1

2

)
uh
x̄;i0 +

q

ε
uh
i0

]
−uh

y;i0 +
h2
2

[
−uh

x̄x̂;i0 +
a

ε
uh
x̊;i0 +

q

ε
uh
i0

] =

=

⎧⎪⎨⎪⎩
ϕ1(xi) +

h2
2ε
fh
i−1/2,0, ε <

aH1

2
, 0 < i ≤ N/2,

ϕ1(xi) +
h2
2ε
fh
i0, ε <

aH1

2
, N/2 < i < N or ε ≥ aH1

2
, 0 < i < N ,

(7)
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Lhuh
iN≡

⎧⎪⎨⎪⎩
uh
ȳ;iN +

h2
2

[
−uh

x̄x̂;iN +
1

ε

(
a− qH1

2

)
uh
x̄;iN +

q

ε
uh
iN

]
uh
ȳ;iN +

h2
2

[
−uh

x̄x̂;iN +
a

ε
uh
x̊;iN +

q

ε
uh
iN

] =

=

⎧⎪⎨⎪⎩
ϕ2(xi) +

h2
2ε
fh
i−1/2,N , ε <

aH1

2
, 0 < i ≤ N

2
,

ϕ2(xi) +
h2
2ε
fh
iN , ε <

aH1

2
,
N

2
< i < N or ε ≥ aH1

2
, 0 < i < N ,

(8)

uh
0j = g1(yj), uh

Nj = g2(yj), 0 ≤ j ≤ N. (9)

In order to get the convergence rate estimate let us represent the solution to
difference problem (6)–(9), by analogy with the differential problem, in the form

uh = Sh + Eh +

4∑
k=1

wh
k + ũh, (xi, yj) ∈ Ω̄h (10)

where each component satisfies the following discrete problems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LhSh
ij = Fh

ij , Ωh,

LhSh
i0 = −∂S

∂y
(xi, 0) +

h2
2ε
Fh
i0, 0 < i < N,

LhSh
iN =

∂S

∂y
(xi, 1) +

h2
2ε
Fh
iN , 0 < i < N,

(11)

Sh
0j = S(0, yj), Sh

Nj = S(1, yj), 0 ≤ j ≤ N. (12)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

LhEh
ij = 0, Ωh,

LhEh
i0 = −∂E

∂y
(xi, 0), 0 < i < N,

LhEh
iN =

∂E

∂y
(xi, 1), 0 < i < N,

(13)

Eh
0j = E(0, yj), E

h
Nj = E(1, yj), 0 ≤ j ≤ N. (14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lhwh
k;ij = 0, Ωh,

Lhwh
k;i0 = −∂wk

∂y
(xi, 0), 0 < i < N,

Lhwh
k;iN =

∂wk

∂y
(xi, 1), 0 < i < N,

(15)

wh
k;0j = wk(0, yj), wh

k;Nj = wk(1, yj), k = 1, 2, 3, 4, 0 ≤ j ≤ N. (16)
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The estimate for the convergence of the numerical solution to the exact one will
be obtained as a sum of the estimates for each term from (10). To this effect we
represent the approximation error also as a sum
ψh
ij = ψh

S;ij+ψ
h
E;ij+

∑4
k=1 ψ

h
wk;ij

+ψh
ũ;ij , (xi, yj)∈Ω̄h, where ψh

S;ij=L
hS(xi, yj)−

−LhSh
ij , ψ

h
E;ij = Lh

(
E(xi, yj)− Eh

ij

)
, ψh

wk;ij
=Lh

(
wk(xi, yj)− wh

k;ij

)
.

Further in the whole article we shall use the comparison principle [1] while
working out the convergence rate estimates for each component from (10).

Theorem 1 (Comparison principle). Let V h
ij and Wh

ij be arbitrary mesh func-
tions, defined on the mesh Ω̄h, so that

∣∣LhV h
ij

∣∣ ≤ LhWh
ij в Ωh ∪ ∂Ωh

N , where
Ωh

N = Ω̄h ∩ ∂ΩN и
∣∣V h

ij

∣∣ ≤Wh
ij on ∂Ωh

D = Ω̄h ∩ ∂ΩD. Then in Ω̄h the following
estimate holds true

∣∣V h
ij

∣∣ ≤ Wh
ij .

The next theorem contains the main result of this paper.

Theorem 2. Let u(xi, yj) be a solution to the original problem (1)-(4), and uh
ij

be a solution to the discrete problem (6)-(9) on a piecewise unform Shishkin
mesh. Then for ε ∈ (0, 1] the following rate convergence estimate holds true∣∣u(xi, yj)− uh

ij

∣∣ ≤ CN−3/2 ln2N, (xi, yj) ∈ Ω̄h. (17)

Proof. The proof follows from Theorem 3 and Remark 1, which are given in the
next section. �

3 The Uniform Convergence of Numerical Solutions

The reasoning we use in this section when proving convergence for the smooth
component Sh

ij , of the regular layer Eh
ij , and also for boundary layer components

wh
k;ij (k = 1, 4) outside the domains of the characteristic layer Ωh

w1
= {0 ≤ xi ≤

1, 0 ≤ yj < σy} and of the corner layer Ωh
w2

= {1 − σx < xi ≤ 1, 0 ≤ yj < σy}
(Ωh

w4
и Ωh

w3
are dealt in the similar way), do not differ from those, which are

given in [1].
Hence, proceeding as in [1] and taking the estimates for derivatives [2], we

arrive at the following estimates∣∣S(xi, yj)− Sh
ij

∣∣ ≤ CN−2, (xi, yj) ∈ Ω̄h, (18)

∣∣E(xi, yj)− Eh
ij

∣∣ ≤ C

{
N−2, (xi, yj) ∈ Ω̄h

1 ,
N−2 ln2N, (xi, yj) ∈ Ω̄h

2 , (19)∣∣wk(xi, yj)− wh
k;ij

∣∣ ≤ CN−2, (xi, yj) ∈ Ω̄h\Ωh
wk
. (20)

Some additional investigation is needed for the convergence rate estimates for
wh

1;ij and wh
2;ij (estimates for wh

4;ij and wh
3;ij are obtained by analogy) in the

domains of the characteristic layer and the corner layer respectively, including
the corner singularities as well.
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3.1 The Characteristic Layer

Let us consider the discrete function wh
1;ij of the lower characteristic layer. Using

the derivative estimates [2], taking into consideration the approximation error
of problem (6)–(9) and estimate (20) and also proceeding as in [5], we obtain∣∣ψh

w1;ij

∣∣ ≤ C

{
N−3/2r−1

1;ij lnN, xi ∈ (0, 1− σx], yj ∈ [0, σy),

N−2 ln2N, xi ∈ (1− σx, 1), yj ∈ [0, σy),
(21)

∣∣∣w1(xi, yN/4)− wh
1;iN/4

∣∣∣ = O(N−2), 0 < i < N,∣∣w1(0, yj)− wh
1;0j

∣∣ = ∣∣w1(1, yj)− wh
1;Nj

∣∣ = 0, 0 ≤ j ≤ N.
(22)

We choose the barrier function (see [5]) in view of the corner singularity in a
neighborhood of the point a1 = (0, 0). to estimate the convergence rate of wh

1;ij .
Thus, let us consider the function

B̃w1(x, y) = N−3/2 lnN
(
CB1(x, y) + C̃b1(y) lnN

)
+ CN−2, (x, y) ∈ Ωh

w1
,

where B1(x, y)= ln(r
′
1/H1) +

(
−ϕ′2 − ϕ

′
+ π/4 + π/2 + 1

)
, b1(y)=e

− βy
2
√

ε , y
′
=y,

x
′
=x + bH1, r

′
1 =

√
x′2 + y′2, ϕ

′
= arctan

y

x′ , C̃ = 64a/27(2π + 7)3β2, b =

const > 1. The barrier function B̃w1(x, y), unlike [5], contains an additional term
b1(y) to enhance. The condition of choice for the constant b is given below.

Lemma 1. If wh
1;ij is a solution to difference problem (15)–(16) at k = 1 and

ε < aH1/2, while w1(xi, yj) is a solution to the corresponding differential prob-
lem, then the following estimate is valid∣∣w1(xi, yj)− wh

1;ij

∣∣ ≤ C
(
N−3/2 ln2N +N−2

)
, (xi, yj) ∈ Ωh

w1
. (23)

Proof. Validity of estimate (23) follows from the validity of inequality (see [5])

LhB̃w1;ij ≥ C(N−3/2 lnN/r1;ij) + CN−2, Ωh
w1

\∂Ωh
D, (24)

and this implies the result by applying comparison principle for the approx-
imation error in Ωh

w1
, in view of the estimates (21)–(22). Estimate (24) at

0 < j < N/4 is obtained by the same method as in ([5], see (3.18), (3.19)),
if we assume that Lb1;j ≥ C(q, β) holds true and instead of (3.19) from [5] we
require the fulfilment of condition
r
′
1;ij ≥ max

ij

{(
6H1

√
2π + 5

)
/
√
3; (4qH2

1)/a; 6H1(2π + 7)
}
. Since r

′
1;ij ≥ (1+b)H1

in domain Ωh
w1

\∂Ωh
D, then the last inequality certainly holds true provided

6H1(2π+7) ≤ (1 + b)H1, by which b is determined. Similar reasoning also holds
true at y = 0 if we take into consideration the derivative estimates from [2],
choice of the constant C̃ and fulfilment of the following relations

LB1;i0 =
1

r
′
1;i0

, Lb1;i0 ≥ β

2
√
ε
, 0 < i < N ;

∣∣∣∣∂3b1(y)∂y3

∣∣∣∣ ≤ C

ε
√
ε
,

∣∣∣∣∂4b1(y)∂y4

∣∣∣∣ ≤ C

ε2
.
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And the following expression will be an analogue for inequality (3.19) from [5],
which represents the Neumann boundary condition. And the expression
r
′
1;i0 ≥ 4√

3
max

0<i<N

{
h2
√
2(π + 3); 2

√
2H1h2

}
, will be an analogue of the men-

tioned earlier inequality (3.19) from [5], which stands for the boundary the Neu-
mann condition and holds true with our choice of b.

In caseN/2 < i < N the approximation error of the difference scheme contains
the fourth order derivatives, but at the expense of multipliers h21, h

2
2 all the

reasoning holds true. We finish proving the lemma with the estimates b1(y) =
e
− βy

2
√

ε ≤ 1, C ≤ B1(x, y) ≤ C(lnN +1) at 0 < x < 1, 0 ≤ y < σy, the second of
which is the implication of inequalities N−1 < H1 < 2N−1, (1 + b)H1 ≤ r

′
1;ij ≤√

2(1 + bH1). �

3.2 The Corner Layer

Let us do convergence rate estimates for the function wh
2;ij of the corner layer

and analyze the approximation error. Proceeding by analogy with characteristic
layers, we obtain∣∣ψh

w2;ij

∣∣ ≤ C
N−2 ln2N

ε
, (xi, yj) ∈ Ωh

w2
\∂Ωh, (25)

∣∣ψh
w2;i0

∣∣ ≤ C

⎧⎪⎪⎨⎪⎪⎩
N−2 ln2N

r2;i0
+
N−3 ln3N

ε
, r2;i0 < ε,

N−3 ln3N

ε
, r2;i0 ≥ ε,

N/2 < i < N, (26)

∣∣∣w2(xN/2, yj)− wh
2;N/2j

∣∣∣ = O(N−2),
∣∣w2(1, yj)− wh

2;Nj

∣∣ = 0, 0 ≤ j ≤ N

4
,∣∣∣w2(xi, yN/4)− wh

2;iN/4

∣∣∣ = O(N−2),
N

2
≤ i ≤ N,

(27)

where r2;ij =
√
(1 − xi)2 + y2j .

So the following lemma gives the convergence rate estimate for the wh
2;ij .

Lemma 2. If wh
2;ij is a solution to difference problem (15)–(16) at k = 2 and

ε < aH1/2, and w2(xi, yj) is a solution to the corresponding differential problem,
then the following estimate is valid∣∣w2(xi, yj)− wh

2;ij

∣∣ ≤ CN−2 ln3N, (xi, yj) ∈ Ωh
w2
. (28)

Proof. Let us introduce the notation zhij = w2(xi, yj) − wh
2;ij and assume zhij =

zh1;ij + zh2;ij , where zh1;ij , zh2;ij satisfies the conditions (27) and the following in-
equalities (see (25), (26))

∣∣Lhzh1;ij
∣∣ ≤ C

⎧⎪⎨⎪⎩
N−2 ln2N

ε
, N/2 < i < N, 0 < j < N/4,

N−3 ln3N

ε
, j = 0,

(29)
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∣∣Lhzh2;ij
∣∣ ≤ C

N−2 ln2N

r2;ij
, N/2 < i < N, 0 ≤ j < N/4. (30)

Therefore the error estimate for zhij will be obtained as the sum of the estimates
for zh1;ij , zh2;ij .

We shall begin our investigation with zh1;ij . Let Bh
z1;ij

= C(N−2 ln2N)Bh
E;ij ,

where

Bh
E;ij =

⎧⎨⎩
N∏

s=i+1

(1 + ahs/2ε)
−1, 0 ≤ i < N, 0 ≤ j ≤ N ,

1, i = N, 0 ≤ j ≤ N .

Applying the difference operator from (6)–(8) to the barrier Bh
E;ij and, using the

approximation error bounds (27), (29), we shall get the inequalities

LhBh
z1;ij ≥ C(a)

ε
Bh

z1;ij ≥
∣∣Lhzh1;ij

∣∣ , (xi, yj) ∈ Ωh
w2

\∂Ωh,

LhBh
z1;i0 ≥ C(a)√

ε
Bh

z1;i0 ≥
∣∣Lhzh1;i0

∣∣ , N/2 < i < N,

Bh
z1;N/2j ≥

∣∣∣zh1;N/2j

∣∣∣ , Bh
z1;Nj ≥

∣∣zh1;Nj

∣∣ , 0 ≤ j ≤ N/4,

Bh
z1;iN/4 ≥

∣∣∣zh1;iN/4

∣∣∣ , N/2 ≤ i ≤ N.

Hence, by virtue of comparison principle we have∣∣zh1;ij∣∣ ≤ Bh
z1;ij ≤ CN−2 ln2N, (xi, yj) ∈ Ωh

w2
. (31)

In order to estimate the second term zh2;ij , which contains a corner singular-
ity, by analogy with a characteristic layer we shall choose the following barrier
function

Bz2(x, y) = C(N−2 ln2N)Bw2(x, y), (x, y) ∈ Ωh
w2
,

where Bw2(x, y)=4 ln(cσy/r
′
2)+

(
−ϕ′2

+ 4ϕ
′
+ π2/4− 2π + 1

)
, r

′
2=

√
x′2 + y′2,

ϕ
′
=arctan(y

′
/x

′
), x

′
= 1− x, y

′
=y + b̃h2, b̃=const>1.

Following the same reasoning as in the case of the characteristic layer and tak-
ing into account the following inequalities r

′
2;ij ≥ max {ch1; ch2; 2ch1/a} , Bw2 >

1 in domain Ωh
w2

\∂Ωh
D, which hold true in the case of our choice of b̃, we can

obtain the estimate
LhBh

w2;ij ≥ C (1/r2;ij) , Ωh
w2

\∂Ωh
D. (32)

Then, in virtue of estimates (27), (30), (32) and of the choice of the barrier, also
in virtue of application of comparison principle, the following estimate is valid∣∣zh2;ij∣∣ ≤ C(N−2 ln2N)Bh

w2;ij , (xi, yj) ∈ Ωh
w2
. (33)

Since in Ωh
w2

the inequalities ch2 ≤ r
′
2;ij ≤ cσy hold true, then the estimate

Bw2 ≤ C lnN is valid. Substituting this estimate into (33), we obtain∣∣zh2;ij∣∣ ≤ CN−2 ln3N, (xi, yj) ∈ Ωh
w2
. (34)

Combining (31) and (34), in Ωh
w2

we obtain the final error estimate. �
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3.3 The Final Results

Thus we have all the necessary information to obtain the rate estimate for the
uniform in ε convergence of the solution to scheme (6)–(9) to the exact solution.

Theorem 3. Let u(xi, yj) be the solution to problem (1)–(4), and let uh
ij be the

solution to difference problem (6)–(9) at ε < aH1/2. Then, for N > N0, where
N0 is a positive integer, which does not depend on ε, the following estimates are
valid

∣∣u(xi, yj)− uh
ij

∣∣ ≤ C

⎧⎨⎩
N−3/2 ln2N, Ωh

w1
∪Ωh

w4
,

N−2 ln3N, N/2 < i ≤ N, N/4 ≤ j ≤ 3N/4,
N−2, 0 ≤ i ≤ N/2, N/4 ≤ j ≤ 3N/4.

Proof. The proof follows from (10), (18)–(20), (23) and (28).�
Remark 1. The case ε � aH1/2 is not investigated here in details. However we
should note, that in this case the solution to problem (6)–(9) is also uniformly
convergent, but this time the rate is O(N−2 ln3N). The general proof scheme for
this fact remains the same as in the case of small values of ε. Only Sh

ij in Ωh and
wh

1;ij , wh
2;ij require some additional investigation (wh

4;ij and wh
3;ij are examined

by analogy) in corresponding boundary layer domains.

In conclusion we shall note that numerical calculations were performed, which
corroborate the theoretical results.
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Faragó, István 1
Fidanova, Stefka 287
Filippov, Sergei 295

Galina, Mehdiyeva 395
Gedroics, Aigars 337
Georgieva, Rayna 247, 428
Gracia, J.L. 303
Gushchin, Valentin 311

Iankov, Roumen 319
Ixaru, L.Gr. 327

Jin, Bangti 24
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