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Preface

Intelligent multimedia surveillance concerns the analysis of multiple sensing inputs
including video and audio streams, radio-frequency identification (RFID) and depth
data. These data are processed for the automated detection and tracking of peo-
ple, vehicles and other objects. The goal is to locate moving targets, to understand
their behavior and to detect suspicious or abnormal activities for crime prevention.
Despite numerous benefits of this technology, there is a natural societal apprehen-
sion regarding the use of intelligent multimedia surveillance to infringe privacy. An
important challenge in this research area is therefore to balance two contradictory
goals: public safety and privacy. This book presents in nine chapters recent findings
in the field of intelligent multimedia surveillance and covers various aspects such as
privacy, surveillance as a service, crowded scene understanding, performance eval-
uation, and active vision.

In the chapter “Intelligent Video Surveillance as a Service”, Prati et al. present
a paradigm called VSaaS that considers video surveillance technology as a service.
Distributed cloud resources are used to handle the storage and processing of large
amounts of video data. The authors also describe a case study on the integration of
computer vision algorithms in a VSaaS platform.

Current solutions, for video analysis of crowds are discussed by Thida et al. in
the chapter “A Literature Review on Video Analytics of Crowded Scenes”. A sys-
tematic comparison and critical review of existing methods and technologies for
the automated analysis of complex and crowded scenes are presented. The authors
divide the literature into two broad categories, namely the macroscopic and mi-
croscopic modeling approaches. The merits and weaknesses of these approaches
are discussed and a recommendation for how existing methods can be improved is
finally provided.

The next three chapters cover privacy issues in intelligent multimedia surveil-
lance. In the chapter “Privacy and Security in Video Surveillance”, Winkler and
Rinner motivate the need for the integration of security and privacy features in video
surveillance systems. The authors first present a comprehensive review of the state
of the art and then describe a prototype system, the TrustCAM, where a dedicated
hardware security module is integrated in a camera system to achieve a high-level
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vi Preface

of security. A summary of open research issues and an outlook to future trends
conclude the chapter. Privacy is also addressed by Qureshi in the chapter “Object
Video Streams: A Framework for Preserving Privacy in Video Surveillance”. The
author introduces a framework that decomposes raw video footage into background
and one or more object-video streams. The framework is used to preserve privacy
(i.e., identity of people) in the video by representing object-video streams as blobs,
by coding foreground objects in different colors, and by rendering the scene partially
(i.e., revealing the identities of only some individuals). The approach is evaluated in
a virtual train station environment and on real video footage. In the chapter “Surveil-
lance Privacy Protection”, Gulzar et al. further investigate privacy and present an
evaluation of various aspects, such as what types of protection measures are be-
ing implemented in surveillance systems, how information is being used, and what
rights individuals have over them. In addition, the authors also emphasize the im-
portance of tools, data sets and databases that are being developed to give protection
to surveillance privacy.

Next, in the chapter “RFID Localization Improved by Motion Segmentation in
Multimedia Surveillance Systems”, Ljubojević et al. discuss the use of passive RFID
technology for localization of objects indoors. The authors describe the use of mo-
tion segmentation algorithms on the region of interest extracted using the informa-
tion collected from RFID, which allows the reduction of the position estimation
error and variance compared to the conventional RFID-based position estimation
methods. A related topic is covered by Mahapatra and Saini in the chapter “A Parti-
cle Filter Framework for Object Tracking Using Visual-Saliency Information”. The
authors use neurobiology-saliency for object detection and tracking using particle
filters. In this work, low-level features such as color, luminance and edge infor-
mation along with motion cues are used to track a person under varying lighting
conditions.

These concepts are extended by Kumar et al. in the chapter “Multiresolution
Depth Map Estimation in PTZ Camera Network”. In this chapter, the authors pro-
pose an active stereo vision system composed of two pan-tilt-zoom (PTZ) cameras.
The proposed system is used for estimating the multiresolution depth map for a large
and complex scene.

Finally, in the chapter “Performance Evaluation in Video-Surveillance Systems:
The EventVideo Project Evaluation Protocols”, SanMiguel et al. emphasize the need
to automate the performance evaluation process for video surveillance systems. The
authors describe the evaluation protocols for various analysis stages such as video
object segmentation, people detection, video object tracking and event recognition,
within the scope of the EventVideo project.

The editors of this book extend their sincere thanks to the authors and reviewers
of the chapters and very much appreciate their contribution and support, without
which this book would not have been possible. Prof. Pradeep K. Atrey has been
supported by funding from the Natural Sciences and Engineering Research Council
of Canada (NSERC) (Discovery Grant 408206). Prof. Andrea Cavallaro has been
supported in part by funding from the European Union (Project CENTAUR, 324359,
FP7-PEOPLE-2012-IAPP). Prof. Mohan Kankanhalli’s work has been carried out
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at the SeSaMe Centre which is supported by the Singapore NRF under its IRC@SG
Funding Initiative and administered by the IDMPO.

Pradeep K. Atrey
Mohan S. Kankanhalli

Andrea Cavallaro
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Intelligent Video Surveillance as a Service

Andrea Prati, Roberto Vezzani, Michele Fornaciari, and Rita Cucchiara

Abstract Nowadays, intelligent video surveillance has become an essential tool of
the greatest importance for several security-related applications. With the growth
of installed cameras and the increasing complexity of required algorithms, in-house
self-contained video surveillance systems become a chimera for most institutions
and (small) companies. The paradigm of Video Surveillance as a Service (VSaaS)
helps distributing not only storage space in the cloud (necessary for handling large
amounts of video data), but also infrastructures and computational power. This chap-
ter will briefly introduce the motivations and the main characteristics of a VSaaS
system, providing a case study where research-lab computer vision algorithms are
integrated in a VSaaS platform. The lessons learnt and some future directions on
this topic will be also highlighted.

1 Introduction

Video surveillance is an important application field of computer engineering, in-
volving multidisciplinary studies, ranging from sensors and storage systems, display
interfaces and networks to algorithms and software development.
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Since the first video surveillance installations in the mid-60s, only the hardware
architecture has shown a monotonic growth, leading from research to the market. In
1969, the first system was installed at the Municipality Building in New York, while
in 1993 the first digital system was installed at the World Trade Center following
the arrival, in 1985, of the first Digital Video Recorder (DVR), which reached the
market to create digital CCTV systems. The scenario has changed into networks
of camera systems, translating simple platforms for building automation security to
very large implementations such as those of the Chicago Virtual Shield (2006) from
IBM, initially involving 3000 connected cameras in a single network, going through
the 2-million-camera system of All-Seeing-Eye in Shenzen China (2009) [12], up
to the new IoT (Internet of Things) video-surveillance project for the Chongqing
Municipality, which comprises millions of cameras and other RFID, infrared, smoke
detector sensors.

Conversely, software components are still unsuited to current needs, and from
video processing initially used for coding and data transfer in the middle of 80s, in
the 90s commercial systems started to include simple software modules for motion
detection. Several industries (often in collaboration with research labs) have put
great efforts in building real working video surveillance software systems (such as
IBM [14], Object Video [8], or Sarnoff Corporation [19], just to mention a few). In
designing and developing these systems, the balance between advanced, lab-tested
features and stable yet simple ones has often given priority to the latter. In fact,
customers and above all security officers are typically disappointed by false alarms
and missed detections [18]: they would actually enjoy an automatic system, even
with limited functions only.

The term “video analytics” indicates software tools that provide automatic video
processing, computer vision and pattern recognition modules to extract knowledge
from the observed scene. More recently, a new paradigm has gained attention in the
field of video surveillance: this paradigm represents a “fourth generation” of Intelli-
gent Video Surveillance (IVS) [15] systems, which configures “Video Surveillance
as a Service” (VSaaS).

The VSaaS market and the commercial solutions offered have grown signifi-
cantly in the last years. It has been estimated that since 2010 about 300,000 cam-
eras have been connected to VSaaS systems worldwide, with an increase of about
100,000 in 2010 only [10]. This market is estimated to produce an average income
per year of around 100 Millions of US dollars [10]. Based on these figures, several
companies are now offering VSaaS solutions. The list in Table 1 is just a partial one,
but gives an idea of the high interest on this topic.

The differences among the various VSaaS available on the market can be sum-
marized in the following points:

• Camera support: some systems only support proprietary cameras, some others
also allow third-party cameras with “open connectivity” to be used;

• Degree of installation complexity: ease of installation varies from system to sys-
tem;
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Table 1 List of some commercial VSaaS solutions

Name Home page

Archerfish http://www.myarcherfish.com/

ByRemote http://www.byremote.net/

Alarm.com https://www.alarm.com/video/

Axis AVHS (Axis Video Hosting System) http://www.axis.com/products/avhs

Brivo http://www.brivo.com/

CameraManager http://www.cameramanager.com

Connexed http://www.connexed.com/

Dropcam https://www.dropcam.com/

DvTel NVMS (Network Video
Management Software)

http://www.dvtel.com/products/isoc/network-video-
management-system

Envysion http://www.envysion.com/

• Quality of the Video Management System (VMS): most systems come with a live
and recorded video manager, but only a few of them also provide video analytics
functions;

• Service scalability: some products are theoretically scalable on any number of
cameras, while some others have limitations.

This chapter presents the integration of a commercial video surveillance system
with a cloud-based architecture, an open-source video management system (VMS)
and stable research-lab-built computer vision algorithms.

As such, the novelty of this chapter does not rely on the algorithms (which are
rather simple, well-assessed and robust, and already published [5]), but on the ar-
chitectural VSaaS viewpoint. The “as-a-service” paradigm is now very widespread
and refers to three levels: “Application as a service” (AaaS), “Platform as a service”
(PaaS) and “Infrastructure as a service” (IaaS). The VSaaS solution proposed cov-
ers all these three levels, since it proposes, mainly to public administration bodies
(municipalities, local police stations, etc.), to remotely move every piece compos-
ing a video surveillance systems, except the cameras: using IP connections, video
feeds are transferred via a high-bandwidth fiber channel to a data center where so-
phisticated video surveillance algorithms can be used. Nowadays, talking about “a
sa-service” architecture also means talking about the cloud. Figure 1 shows the
cloud-based architecture for VSaaS, where the most innovative part is the central
one: exploiting remote server capabilities as a common IaaS is now common prac-
tice in many applications (mailing, document storage, etc.), on the other hand, the
concept of PaaS extends the horizon to common services, where interaction between
different content providers and content users must be tight.

The main motivations and advantages of a VSaaS system are highlighted in
Sect. 2: following them, we developed a prototypical VSaaS implementation within
the scope of a project called ViSERAs. The implemented architecture is described
in Sect. 3, which describes in detail both the Video Management System (Sect. 3.1)

http://www.myarcherfish.com/
http://www.byremote.net/
https://www.alarm.com/video/
http://www.axis.com/products/avhs
http://www.brivo.com/
http://www.cameramanager.com
http://www.connexed.com/
https://www.dropcam.com/
http://www.dvtel.com/products/isoc/network-video-management-system
http://www.dvtel.com/products/isoc/network-video-management-system
http://www.envysion.com/
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Fig. 1 Sketch of a cloud-based architecture for VSaaS

and the Commercial Video Analytics modules (Sects. 3.2, 3.3 and 3.4). To improve
the platform and provide an extensive service, a plethora of surveillance plug-ins
for the Video Analytics framework has been considered. Some of these plug-ins
are described in Sect. 4, which also provides some visual examples of the Shadow
removal plug-in.

2 VSaaS: The Motivations

If video surveillance system cameras are simply watched over monitors by human
operators (“passive” video surveillance), the challenges are somehow limited to
hardware installation, cable deployment and people hiring. Whenever video surveil-
lance goes “active” (or, more properly, “intelligent”), in addition to these chal-
lenges the scalability of computational resources becomes a tough issue to be dealt
with.

At the same time, telecommunication and computer engineering companies make
their powerful data centers available to customers for storing and managing large
video repositories, analyzing videos to detect interesting events, logging them and
alerting operators. As a consequence, the huge computational power provided as a
service (which is typically not affordable by individual customers) brings several
advantages for the customers: (i) reduced costs in terms of hardware and software;
(ii) layered services which can be adaptively activated/deactivated based on actual
needs and costs; (iii) almost unlimited computational power which not only im-
proves the system responsiveness, but also allows the implementation of services
(e.g., in terms of advanced video analysis algorithms) which would not be feasible
using their own hardware resources.
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3 Architecture Description

Based on the foregoing premises, in 2011 we started a project called VISERAS
(“VIdeo-Surveillance in Emilia Romagna as A Service”). Despite its limited ge-
ographical extension (Region Emilia-Romagna in Italy) and its short-term (nine
months), VISERAS is a very good example of a timely industrial research project
which combines previous experiences in the field of surveillance systems with the
new trends of computation distribution within the cloud.

The project has aimed at defining a good architecture for providing not just video-
surveillance systems but rather services applied to data remotely acquired and re-
motely stored. The availability of a cloud architecture makes new solutions available
which can spread surveillance capabilities also to public bodies (e.g., small villages)
for which the installation of a complete multi-camera, even distributed but propri-
etary system would not be affordable.

3.1 Video Management System

The VISERAS Video Management system comes from the open-source Video Man-
agement System (VMS) called ZoneMinder,1 a video-management system for net-
work cameras organized so as to operate on a single server. The VNS is responsible
for handling all digital videos from cameras or encoders. This handling process in-
cludes initial registration and configuration of the video devices, receiving video
streams from the same devices, recording this video, proxying live video streams
to clients, and streaming recorded video to clients. During the project, the basic,
publicly-available release of Zoneminder was amended and extended allowing man-
agement of multiple ZM instances in order to create a system capable of controlling
hundreds of distributed cameras and clients.

A key issue related to the VMS chosen for our project was its scalability, which
had to take the following aspects into account:

• greatest flexibility to adapt the video surveillance system to heterogeneous sce-
narios;

• use of tools from consolidated data centers to maximize data security and simplify
regular maintenance;

• minimize any architectural changes made to the ZM software in order to avoid
possible bugs, speed up the scalability process and have the system more easily
aligned with the new releases of the official ZM source code.

For these reasons, we chose to implement an architecture based on virtual ma-
chines. Each ZM instance will run on a virtual machine and will refer to a single
entity.

1http://www.zoneminder.com/

http://www.zoneminder.com/
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Fig. 2 Illustration of
middleware introduction in
the ZoneMinder data flow
(VM = Virtual Machine,
PM = Physical Machine)

In addition to the changes made to the basic ZM module, we must also consider a
further complication, given our target “users” (mainly public entities, such as local
police stations and municipalities in small towns). This requires the creation of a
middleware level to take into account federated users. A user is defined “federated”
when he/she is granted access to multiple ZoneMinder instances potentially dislo-
cated on different virtual machines and geographically distributed. Figure 2 shows
a common case, showing that a single physical machine (PM) can host multiple
virtual machines (VM), and that a single VM can be hosted on multiple PMs.

The middleware role is to make this access clear and allow the federated user
(for instance, local police authorities monitoring several neighboring cities) to be
unaware of the underlying camera distribution on different instances and machines.

The general access architecture for federated users is shown in Fig. 3. This fig-
ure clearly shows that the middleware is mainly used for three tasks: (a) clearly

Fig. 3 Layout of access management with federated users (ZM = single instance of ZoneMinder,
ZMM = ZoneMinder Middleware)
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Fig. 4 Layout of the database used in ZoneMinder Middleware

redirecting the request from the users to the correct ZoneMinder instance; (b) once
the required result is provided by ZoneMinder, feed it back through the middleware
and showing it to the user; (c) maintaining a database with information about users
and federated users, as well as a mapping to cameras, virtual machines and physical
machines. The layout of such a database is illustrated in Fig. 4.

Some snapshots of the resulting interface for added (federated) functions are
shown in Fig. 5.

3.2 Commercial Video Analytics Engine

As mentioned in the Introduction, our project relies on a commercial video surveil-
lance system, specifically the IBM Smart Vision Suite (SVS) [9]. Our choice has
been dictated by the completeness of this solution, which embodies a complex ar-
chitecture and allows plugging VMS and external video analytics algorithms with
the existing algorithms developed by IBM.

The IBM SVS delivers two primary functions:

1. the ability to observe digitally encoded videos and detect events happening in the
video in near-realtime;

2. the ability to index and store detected events to support search and correlation
after occurrence.

These functions are intended to be applied to live and recorded digital videos
provided by various cameras, encoders, digital video recorders (DVRs), network
video recorders (NVRs) and VMSs.
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Fig. 5 Snapshots of resulting variant of ZoneMinder VMS

This integrated solution can be divided into three distinct subsystems: VMS,
Video Analytics, Metadata Engine/Interfaces. Each subsystem has distinct functions
and interfaces as briefly described in the following and shown in Fig. 6.

Our VMS solution has been described in Sect. 3.1. It can be highlighted that,
with reference to Fig. 6, (1) represents the Smart Surveillance Engine (SSE) using
a DirectShow filter (described in Sect. 3.3) to access live streaming video while (3)
represents web clients using an embedded ActiveX control (or applet) to access both
live and recorded video streams from the VMS Server.

3.3 Video Analytics (SSE)

The IBM Video Analytics engine acts as a VMS client, accessing streams of live,
proxied video from the VMS. While the SSE could access these streams directly
from certain cameras, using the video proxy via VMS offers two advantages:

• a single video interface regardless of the variety of cameras deployed,
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Fig. 6 MILS architecture

Fig. 7 Examples of
operation of SSE: map setting

• mitigation of potential problems in the event that multiple clients saturate the net-
work bandwidth or the camera streaming capacity when simultaneously accessing
live videos.

Among the different system functions is the creation of an area map (Fig. 7)
showing where the cameras are located, as well as the definition of views containing
a subset of the available cameras, associating alarms with specific views (Fig. 8).
The alerts are detected and visually highlighted; they are stored in a structured DB
and can be searched by the user based on several features (visual and non-visual).
Figure 9 shows some snapshots of alert management.
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Fig. 8 Examples of operation of SSE: view setting

Fig. 9 Examples of operation of SSE: alerts

The SSE uses DirectShow (1) in order to view live video streams from the VMS
server. To allow DirectShow Filters (DSF) to be used by the SSE, these must meet
the following minimum requirements:

• The video must be requested using a single URL which meets all the neces-
sary parameters for the video provider to start the desired stream. The SSE does
not support user interaction so there is no way to enter any parameters interac-
tively.

• The DSF parameters must be majortype = “MEDIATYPE_Video”.
• The DSF must be requested via a specific protocol.

In order to link ZoneMinder video streams with IBM SSE, we have imple-
mented a DirectShow source filter satisfying these requirements. The filter retrieves
MJPEG video streams from ZoneMinder, which are accessed with the parameters
embedded in the URL request. This is recalled when the protocol specified in the
URL is ILP (ImageLab Protocol), which has been developed for this specific pur-
pose.
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Fig. 10 SSE engine message queue

3.4 Metadata Engine (MILS)

The IBM Metadata Engine is the core of the Smart Vision Suite. It provides a
massively scalable data repository that is optimized for rapid ingestion of video-
associated metadata with real-time indexing. This optimization supports extremely
efficient searches of the aggregated metadata from hundreds or thousands of video
sources.

The SSE posts metadata describing events observed on videos to the MILS us-
ing a pre-standard MILS interface (2). The MILS Web UI has just two instances
where videos are accessed from a video provider (3): one for live videos and one
for recorded videos. Each of these instances may be loaded dynamically to specific
frames within the broader MILS Web UI, which accesses relevant videos based on
event metadata (4).

The integration of a video provider involves implementing these interfaces in
the specified HTML files, as we did for the ZoneMinder integration. In order to
access both live and recorded video streams from the VMS Server, we used the
“ActiveX Axis Media Control”. Starting from the information embedded in the URL
as specified in the configuration files, we access the ZoneMinder database to get
the correct video sequence and its URL. The request is completed forwarding the
original request on the video sequence URL.

4 Plugging-in New Algorithms

The above described framework analyzes the video stream in order to extract mean-
ingful information. The video analysis task is divided into several sub-tasks, each
of which is performed by a specific component, called plug-in. This sequence of
plug-ins is implemented using an Engine Message Queue (Fig. 10): each plug-in is
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Fig. 11 Architecture and dependencies of the proposed surveillance plug-ins

attached to the queue where intermediate results are stored and then processed in a
predefined order.

A set of low and high-level surveillance tasks have been studied [16] and are
now available as modules. The availability of a plethora of plugins which can be
combined to create a specific and customized surveillance application is one of the
major advantages of the VSaaS framework. Among others, face detection and recog-
nition, posture and action classification, crowd detection and analysis modules are
available. A schema of the overall architecture and dependencies of the proposed
surveillance plug-ins is depicted in Fig. 11. The following list contains a brief de-
scription of the selected plug-ins:

• Shadow removal: the algorithm reported in [5] has been implemented as a SSE
plug-in and it removes the shadows from the foreground objects, feeding the
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tracking step with the correct input. A detailed description of this plug-in together
with some visual examples are reported in Sect. 4.1.

• Fast background initialization: a new and fast technique for background es-
timation from cluttered image sequences. Most background initialization ap-
proaches collect a number of initial frames and then require a slow estimation
step that introduces a delay. Conversely, the proposed technique redistributes
the computational load among all the frames by means of a patch-by-patch pre-
processing, which makes the overall algorithm more suitable for real-time appli-
cations [2].

• People classifier: the HoG-based people classifier [7] is implemented as a service
to detect people among the set of tracks, whenever they appear in the scene.

• Face detector: Two different face detectors are implemented in the framework:
the well known Viola-Jones of the OpenCV library and the face detection library
by Kienzle et al. [11].

• Posture classifier: the frame-by-frame posture of each person can be classified by
means of the visual appearance. The implemented posture classification is based
on projection histograms and select the most likely posture among Standing, Sit-
ting, Crouching and Laying Down [6].

• Appearance based action recognition: the action in progress is detected using
features extracted from the appearance data. Walking, waving, pointing are some
examples of the actions considered. Two different approaches have been selected
and implemented: the first is based on Hidden Markov Models [17] and the sec-
ond on action signature [3].

• Trajectory-based action recognition: people trajectories (i.e., frame-by-frame po-
sitions of the monitored tracks) embed information about the people’s behavior;
in particular they can be used to detect abnormal paths that can be related to sus-
picious events. A trajectory classifier has been added to the system replicating the
algorithm described in [4].

• Smoke detector: the smoke detection algorithm proposed in [13] has been in-
tegrated in the system. The object color properties are analyzed according to
a smoke reference color model to detect if color changes in the scene are due
to a natural variation or not. The input image is then divided into fixed size
blocks and each block is evaluated separately. Finally, a Bayesian approach de-
tects whether a foreground object is smoke.

• People re-identification with 3D body models: people appearance is the most
useful source of information if we need to match images of people captured
by spatially or temporally disjoint cameras, that is, geometrical relations are
not available. Even if partially solved using region-based features, one of the
main limitations of the available solutions for people re-identification is the
fact that these depend on the point of view: for example, the specific lo-
cation of characteristic patterns is usually lost and cannot be used for peo-
ple matching. We therefore propose to create a simplified 3D body model
which allows us to map appearance features to their 3D location in the body
model [1].
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Fig. 12 Analysis with shadow remover plug-in. (a) source images, (b) object detection without
shadow removal plug-in, (c) object detection with shadow removal plug-in, (d) pixel classification
into background (black), object (gray) and shadow (white)

4.1 The Shadow Removal Plug-in

Since the information collected into MILS must be as accurate as possible in order
to speed up the retrieval process, the analytics algorithms must assure the best per-
formance in terms of computational time and accuracy. For instance, shadows cause
nearby objects to merge and significantly change the shape and appearance of the
object. As a consequence, the subsequent object classification (which is to some ex-
tent related to the object shape-detecting cars instead of people-and its appearance-
finding red cars by the color average) can be affected by the inclusion of shadow
pixels as belonging to the object. To address this problem, we created a new com-
ponent with the aim of removing shadows. We implemented the algorithm reported
in [5] as a SSE plug-in, which is positioned in the analytic sequence after the back-
ground suppression plug-in(thus removing the shadow from the foreground objects)
and before the tracking plug-in (thus feeding it with the correct input).

Removing the shadows allows us to get the correct shape of the objects, as shown
in Fig. 12. Given as input stream the left images, on the right we have the results of
the shadow remover analysis: the background is black, the foreground is gray, and
the white color identifies those pixels that were identified as part of the foreground
object, but that are actually shadows and therefore belonging to the background.
The central images clearly show how removing the shadow improves the shape of
the cars. These enhancements allow us to obtain a better color and shape description
for a given object.

5 Concluding Remarks

The purpose of this chapter is to propose a new paradigm for video surveillance
systems which borrows concepts from cloud computing and distributed computer
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systems. The idea of providing different services on an “as-a-service” platform is
not new. The potential of VSaaS is enormous, but the tools available are still too
limited. A key future development is the creation of an easy way for plugging in new
algorithms for video analytics. The solution illustrated in this chapter represents a
first good step, although subject to improvements, to reach this goal.

Another aspect still not fully explored by the solutions currently available is the
possibility to use any type of available cameras, connections, and controls. The dif-
fusion of VSaaS is actually still limited (even though growing fast) because it often
requires major financial investment to buy new cameras, as the existing ones are not
compatible with the VSaaS software.
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Abstract This chapter presents a review and systematic comparison of the state of
the art on crowd video analysis. The rationale of our review is justified by a recent
increase in intelligent video surveillance algorithms capable of analysing automati-
cally visual streams of very crowded and cluttered scenes, such as those of airport
concourses, railway stations, shopping malls and the like. Since the safety and se-
curity of potentially very crowded public spaces have become a priority, computer
vision researchers have focused their research on intelligent solutions. The aim of
this chapter is to propose a critical review of existing literature pertaining to the au-
tomatic analysis of complex and crowded scenes. The literature is divided into two
broad categories: the macroscopic and the microscopic modelling approach. The
effort is meant to provide a reference point for all computer vision practitioners cur-
rently working on crowd analysis. We discuss the merits and weaknesses of various
approaches for each topic and provide a recommendation on how existing methods
can be improved.
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1 Introduction

Automated video content analysis of a crowded scene has been an active research
area in the field of computer vision in the last few years. This strong interest is driven
by the increased demand for public safety at crowded spaces such as airports, train
stations, malls, stadiums, etc. In such scenes, conventional computer vision tech-
niques for video surveillance cannot be directly applied in the crowded scene due to
large variations of crowd densities, complex crowd dynamics and severe occlusions
in the scene.

Algorithms for people detection, tracking and activity analysis which consider an
individual in isolation (i.e., individual object segmentation and tracking) often face
difficult situations such as the overlapping of pedestrians, complex events due to
interactions among pedestrians in a crowd. For this reason, many papers consider the
crowd as a single entity and analyse its dynamics. The status of crowd is updated as
normal or abnormal based on the dynamics of the whole crowd. However, a crowded
condition can also be unstructured where pedestrians are relatively free to move in
many directions as opposed to a structured crowd where each individual moves
coherently in one common direction. In an unstructured crowded scene, considering
the crowd as one entity will fail to identify abnormal events which arise due to an
inappropriate action of an individual in a crowd. For instance, a running person
in a crowd can indicate an abnormal event if the rest of crowd are walking. Thus,
considering the crowd as one entity can cause false detections.

Many paper works on modelling crowded scenes to identify different crowd
events and/or to detect abnormal events. However, the definition of abnormal event
or event of interest has been causing much confusion in the literature due to its sub-
jective nature. Some researchers consider a rare and outstanding event as abnormal
while some consider events that have not been observed are abnormal. The prob-
lem becomes more challenging as the density of people increases. As a result, more
computer vision algorithms are being explored recently.

Despite the great interest and a large number of methods developed, there is a
lack of a comprehensive review on crowd video analysis. As shown in Table 1, most
current surveys focus on general human motion analysis [1, 5, 24, 75] of single
or a small group of people, rather than addressing a crowded scenario. The survey
paper by Zhan et al. [83], to the best of our knowledge, is the only one focusing
on crowd video analysis. Zhan et al. reviewed some crowd density estimators and
crowd modelling techniques, focusing on pedestrian detections, and tracking in a
cluttered scene. However, they did not discuss the topic of crowd behaviour under-
standing and abnormality detection which is covered in this survey. We also present
some advances on crowd motion modelling and multi-target tracking in a crowded
scene which are not covered in the previous survey.

The goal of this survey is to review and organise the state-of-the-art methods in
the domain of crowd video analysis such that their main focus becomes apparent.
To achieve this, we have divided the research on crowd video analysis into three
broad categories: macroscopic modelling, microscopic modelling and crowd event
detection. The methods related to each task are further divided into sub-categories
and a comprehensive description of representative methods is provided. In addi-
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Table 1 A comparison of this chapter and previous surveys on human motion analysis and crowd
video analysis

Year Authors Focus Scenarios

1999 Aggarwal and Cai [1] Motion analysis, tracking and
recognising human activities

Individual or group

2003 Wang et al. [75] Human detection, tracking and
behaviour understanding

Individual or group

2004 Hu et al. [24] Motion detection, tracking and
behaviour understanding

Individual or group

2006 Yilmaz et al. [5] Object tracking Individual or group

2008 Zhan et al. [83] Crowd information extraction
and crowd modelling

Crowd

2013 This chapter Macroscopic modelling, micro-
scopic modelling, crowd event
detection

Crowd

tion, we identify challenges and future directions for analysing a crowded scene.
We believe this will help readers, especially newcomers to this area, to understand
the major tasks of a crowded scene analysis system and hope to motivate for the
development of new methods.

2 Macroscopic Modelling

In order to learn the typical motion patterns in a crowded scene, macroscopic
observation-based methods utilise holistic properties of the scene such as motions
in local spatio-temporal cuboid or instantaneous motion are utilised. It is also the
preferred method in tracking and analysing the behaviour of both sparse and dense
crowd using the following properties such as: density, velocity and flow [31]. Fig-
ure 1 depicts detailed various features available for use in macroscopic modelling
and the techniques initialising those features.

2.1 Optical Flow Feature

Optical flow is a dense field of instantaneous velocities computed between two con-
secutive frames commonly used in extracting motion features [23]. Given a video of
a crowded scene, the first step is to segment the input video into smaller video clips
and compute pixel-wise optical flow between consecutive frames of each clip using
the techniques in [11, 23, 49]. The extracted flow vectors may contain noise and
redundant information. In order to reduce the computational cost and remove noise,
researchers utilise unsupervised (Andrade et al. [6, 7] and Yang et al. [81]) or su-
pervised (Hu and Shah [26, 27]) dimensional reduction techniques. Subsequently,
the next step is to find the representative motion patterns of the scene by merging
flow vectors from all video frames. Referring back to Fig. 1, it can be seen that
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Fig. 1 A schematic illustration of the topics involved in macroscopic crowd video analysis

the motion features extracted from the optical flow can be utilised for motion pat-
tern extraction such as: Sink Seeking Process, Optical Flow Clustering, Interaction
Force Modelling, Local Spatio-temporal Motion Variation Modelling, and Spatio-
temporal Gradient feature whereby the methods can be used separately or integrated
with one another to obtain the desired crowd analysis.

2.1.1 Sink Seeking Process

In the sink seeking process, a grid of particles is overlaid on the first frame of the
video clip and advected using a numerical scheme. The path taken by a particle to
its final position is called a sink path and thus, the process of finding sinks (exits)
and sink paths is called a sink seeking process. Hu and Shah [26, 27] carry out sink
seeking process for each particle and thus generate one sink path per particle. These
sinks and sink paths are later clustered to extract the dominant motion paths of the
scene using an iterative clustering algorithm. On the other hand, Ali and Shah [3]
generate a static floor field where each particle holds a value that represents the
minimum distance to the nearest sink form its current location. Ali and Shah impose
the static floor field together with dynamic and boundary floor field as constraints
for tracking algorithm [4].

2.1.2 Optical Flow Clustering

Andrade et al. [6, 7] model the principal components of the optical flow vectors in
each video clip using Hidden Markov Models. Then, video segments which have
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similar motion pattern are grouped together using the spectral clustering method.
The resulting clustered video segments are modelled using a chain of HMMs to
represent the typical motion pattern of the scene. The emergency events in the mon-
itored scene are detected by finding deviations from the obtained model.

Instead of the spatial segmentation of each video frame, the other approach is
to cluster optical flow vectors by spatial grouping as in [64]. Imran et al. [64] pro-
posed to cluster optical flow vectors in each video clip into N Gaussian mixture
components. Then, these Gaussian components are linked over time using a fully
connected graph. The connected component analysis of the graph is performed to
discover different motion patterns. However, their method still faces the problem of
having to determine how many components should there be in the mixture.

2.1.3 Interaction Force Modelling

In addition to learning dominant motion patterns, the optical flow vectors obtained
can also be used to model interaction forces of a crowd, and then use the model to
detect the stability of the crowd. For example, Mehran et al. [53] employ the optical
flow vectors to model pedestrian motion dynamics using a social force model. Social
force models [22] have been used in many studies in computer graphic fields for
creating animations of the crowd [54]. In this model, the motions of pedestrians
are modelled with two forces: a personal desire force and an interaction force. The
interaction force is defined as an attractive and repulsive force between pedestrians.
In [53], an interaction force between pedestrians is estimated based on optical flow
computed over a grid of particles. The normal pattern of this force is later used to
model the dynamics of a crowded scene and detect abnormal behaviours in crowds.

2.1.4 Local Spatio-Temporal Motion Variation Modelling

Optical flow data can also be used in modelling the variations of motions in local
spatio-temporal volumes to describe the typical motion patterns of the scene [40–
42, 50, 52, 79, 81]. In these approaches, an image space is usually divided into cells
of a specific size (e.g., 10 × 10 in [81]) or cuboids (e.g., 30 × 30 × 20 in [42]).
Then, optical flow computed in each cell is quantised into different directions. For
instance, Yang et al. [81], considered each quantised direction of a given location
as a word and cluster these video words into different clusters using a diffusion
embedding method. Each node in the graph corresponds to a word and the clusters
extracted in the embedded space represent the typical motion patterns of the scenes.
Kim and Grauman [40] used a space-time Markov Random Field (MRF) graph to
detect abnormal activities in video. Each node in the graph corresponds to a local
region in the video frames where the local motion is modelled using a mixture of
probabilistic principle component analysis. Wu et al. [79] used Lagrangian frame-
work to extract particle trajectories. These particle trajectories are later used for the
modelling of regular crowd motion. The deviations of new motion from the learnt
model indicates an abnormal event.
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2.2 Spatio-Temporal Gradient Feature

In addition to optical flow information, other features such as spatio-temporal gra-
dient are also used to model the regular movement of a crowd [42, 50]. In [42],
the coupled HMM is trained based on the distribution of spatio-temporal motions
to detect localised abnormalities in densely crowded scenes. Vijay et al. [52] com-
bined motion information and appearance features to represent the local properties
of a scene. The normality of a crowded scene is learned using a mixture of dynamic
textures. Then, temporal and spatial abnormalities are separately detected by find-
ing deviations from the normal pattern. Their method has been proved to achieve
the better performance than the state-of-the-art methods, at a high computational
cost. To address this limitation, Reddy et al. [61] proposed a simpler method using
a set of similar features including shape, size and texture extracted from foreground
pixels. The computational cost is reduced by removing background noise and con-
sidering each feature type individually. Compared to [52], the method proposed by
Reddy et al. [61] achieved considerably better results.

2.3 Summary

To conclude the discussion on the macroscopic modelling, a summarisation of the
strength and weaknesses of the various state-of-the-art implementation are provided
in Table 2.

3 Microscopic Modelling

Microscopic analysis and modelling depends on the analysis of video trajectories of
moving entities. This approach, in general, contains the following steps:

1. detection of the moving targets present in the scene;
2. tracking of the detected targets; and
3. analysis of the trajectories to detect dominant flows, and to model typical motion

patterns.

Researchers have used different detection and tracking algorithms to generate
reliable trajectories. Tracking people in crowds can be either used as a means to
improve crowd dynamics analysis, using the tracks and mining trends out of these
(bottom-up approach to crowd analysis); or, conversely, tracking methods can use
cues obtained from the analysis of crowd dynamics, in order to improve accuracy
(top-down approach). The complexity of tracking algorithms depends on the context
and environment in which the tracking is performed. In the context of crowd video
analysis, the problem of tracking individuals within a crowd introduces additional
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Table 2 Summarisation of the macroscopic modelling techniques

Papers Advantages Disadvantages Data-set and results

[26, 27]
• Instead of using the long

term trajectories of the
moving objects in learning
the typical motion pattern,
global motion flow field is
used.

• Not affected by density of
objects within the image.

• Does not require complete
trajectory, therefore over-
coming the problem of oc-
clusion.

• More attention should be
placed on learning mo-
tion patterns in crowds
with less reliable track-
ing.

• Crowded scene.
• Aerial vide from DARPA’s

VIVID dataset.
• Hong Kong street scene.

[3]
• Lagrangian Coherent Struc-

tures (LCS) reveals under-
lying flow structures that
are generally not evident
from the raw velocity field
of the object.

• If the changes in dynam-
ics is not big enough to
be detected, it will not be
segmented out within the
image.

• Videos from stock footage
web sites.

• National Geographic doc-
umentary footage from
“Inside Mecca”.

[4]
• Takes into consideration the

crowd flow and scene lay-
out for tracking.

• Provides the shortest dis-
tance to a sink for each lo-
cation.

• Tracking errors produced
by the Static Floor field
(SFF) is inconsistent and
dependant on the trajec-
tory of the tracked ob-
ject and only works well
when the object is mov-
ing in a straight path.

• The Dynamic Floor Field
produced error when
there’s noise and inter-
ference of other objects
in the view.

• Marathon sequence from
different perspective

– Overhead cameras.
– View from high rise

building.

[53]
• Does not depend on tracked

object in the analysis of
crowd behaviour.

• The incorporation of parti-
cle advection assist in cap-
turing the crowd flow.

• Requires a set of goal
destination for the scene.

• University of Minnesota
dataset.

[40]
• Anomalies could be de-

tected on both the global
and local context.

• Posterior probabilities of
all previous descriptors
are not recalculated, and
assumed not to change.

• Surveillance videos from
subway station

– Entrance Gate.
– Exit Gate.
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Table 2 (Continued)

Papers Advantages Disadvantages Data-set and results

• With the information from
the global and local con-
text available, anomalies
are easily detected.

• Ease of implementation.

[52]
• Works extremely well in de-

tecting anomalies in video
scenes compared to other
tracking based method such
as optical flow.

• System requires training.
• Long computation time

making it not feasible for
real-time system.

• Crowded Scenes.

[81]
• The weight of the Diffusion

Map is unique to the appli-
cation.

• By manipulating the diffu-
sion time, Diffusion Map
can also be used for multi-
scale analysis of the scene.

• Might be more suitable
for scene understanding
as low level feature have
a better manifold struc-
ture.

• INGSIM dataset.
• Far-field traffic scene.

[61]
• Low-level computation re-

quired.
• Separate modelling and

analysis of motion, size
and texture feature make it
commutation efficient.

• Requires training.
• The density information

obtained changes drasti-
cally due to the handling
of the training data.

• UCSD anomaly detection
dataset.

complexity due to the interactions and occlusions between people in the crowd.
A number of tracking methods has been proposed to overcome the challenges en-
countered in a crowded scene. In this section, some popular human tracking methods
in the context of crowd video analysis are discussed. The reader is referred to the
survey by Yilmaz et al. [5] for a comprehensive review of various trackers. Figure 2
shows the different topics covered by this section.

3.1 The Particle Filter (PF) Framework

The most popular approach for tracking is the Particle Filter-based framework. Par-
ticle filtering framework was first introduced for visual tracking by Isard and Blake
in [29]. Initially, particle filter approaches were only based on colour cues, and could
only track one single target.
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Fig. 2 The topics for microscopic approach, in which a focus is put on individual tracking in
crowds

3.1.1 Additional Cues for Improved PF

The particle filter implementation based on appearance using colour information
only does not perform well tracking more than one individual, specially when those
wear similar clothing. In public demonstrations, sports matches and celebrations,
it is normal that people’s appearance is similar. Thus, a series of papers present
alternatives to the plain ‘colour-only’ Particle Filter. Combinations include colour
and contours, Harris, SIFT features [47, 59, 67, 78]; also Histograms of Oriented
Gradients (HOGs) are used along with colour information in [69]; or Mean Shift
and Joint Probabilities [10].

A completely different approach to improve tracking using particle filters is pre-
sented in [84]. The method proposed by the authors mines the interdependencies
between particles in order to improve the results. Also different is the method pro-
posed in [28], in which a new tracker is proposed which employs a particle filter
tracking framework, where the state transition model is estimated by an optical-flow
algorithm. That is, instead of using a pre-defined dynamic transition model.

There are also authors whose interest is in extending the particle filter to multiple
cameras; in that case, particles are “shared” and “fused” among the views [57].

Others propose blob-based segmentation and tracking when no occlusions are
present, and limit the use of Particle Filters as an occlusion resolution technique
[70, 86]. The limitation of this techniques seems clear: blobs are needed and used
as the main cue, which is not the case in most crowded scenes, although these tech-
niques can be useful in sparse crowds.

Silhouettes or contours can be a useful cue for action recognition, or peo-
ple counting in crowds; obviously, in the case of densely crowded scenes, only
partial contours can be extracted, although those can be quite useful (e.g., as in
‘Ω shape’-based methods). Since particle filter approaches work regardless of seg-
mentation, reconstructing contours a posteriori to obtain shape cues might be of
interest. Ma et al. [51] present this idea: Graph Cuts are applied to a particle filter
method to obtain the silhouettes of tracked objects.
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3.1.2 Alternative Cues for Tracking: Self-similarity

Schechtman and Irani [66] introduced the concept of self-similarity as a visual fea-
ture. Among the applications, they name object detection and recognition, action
recognition, texture classification, data retrieval, tracking and image alignment and
so on. BenAbdelkader et al. [12] seem to be the first to use image self-similarity
plots (ISSPs) for gait recognition; according to the authors, some works state the
ISSP of a moving person/object is a projection of its planar dynamics, and as such,
these should encode much of gait information. Junejo et al. [34, 35] use a very sim-
ilar descriptor as a means for action recognition, by using self-similarity matrices
(SSMs) as descriptors of the action class. Dexter et al. [17] extend the SSM concept
in order to apply it to the synchronisation of actions taken from multiple views. Rani
and Arumugam [60] use it as a biometric signature in gait recognition as in [12].
Also, Walk et al. [74] introduced the self-similarity as a feature for pedestrian de-
tection; and Cai et al. [14] have used it for person re-identification among different
cameras or moments; the authors create a colour codebook and obtain the spatial
occurrence distributions of colour self-similarities. To the best of our knowledge, as
of today, no works seem to use self-similarities as a feature for tracking, although
Gu et al. state it could be used as an alternative to other local descriptors such as
SIFT or SURF.

3.1.3 Multiple Target Tracking Using PF

This framework has been extended in a series of papers [2, 15, 20, 39, 58] for track-
ing multiple targets. For example, Okuma et al. [58] extend a particle framework
by incorporating a cascaded AdaBoost algorithm for the detection and tracking of
multiple hockey players in a video. The AdaBoost algorithm is used to generate
detection hypotheses of hockey players. Once the detection hypotheses are avail-
able, each hockey player is modelled with an individual particle filter that forms a
component of a mixture particle filter. Similarly, Ali and Dailey [2] combine an ‘Ad-
aBoost cascade classifier’-based head detection algorithm and the particle filtering
method for tracking multiple persons in high density crowds. The performance is
further improved by a confirmation-by-classification method to estimate confidence
in a tracked trajectory.

To conclude this subsection, a summarisation of the presented methods is shown
in Table 3. Both single and multiple view methods are presented, as well as single
and multiple target ones.

3.2 Handling Occlusions

Occlusions are one of the most important problems trackers need to face, since
generalised models for them are not straightforward [44]. According to the survey
in [82], occlusion can be classified into three categories: self-occlusion, which oc-
curs while tracking articulated objects; inter-object occlusion (or dynamic occlu-
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Table 3 Summarisation of the presented techniques

Main tracking Additional information or method Multi-view/-target Works/papers

Particle Filter Contour information No [47]

Particle Filter SIFT, Harris-SIFT No [59, 67, 78]

Particle Filter Histogram of Oriented Gradients (HOG) No [69]

Particle Filter Mean Shift/Joint Probabilities No [10]

Particle Filter None: Changes in the transition model No [28, 84]

Particle Filter None: Particles are fused among views Multi-view [57]

Blob tracking Particle filter for occlusion handling Multi-target [70, 86]

Particle Filter None: GCsa used to recover contours No [51]

Particle Filter AdaBoost, Cascaded AdaBoost Multi-target [2, 58]

Particle Filter MRFb, MCMCc Multi-target [39]

Particle Filter NN Data Association, Mean-shift Multi-target [15]

Mean Shift/Kalman Viterbi-style tracklet merge Multi-target [20]

aGraph Cuts
bMarkov Random Field
cMarkov Chain Monte Carlo

sion [72]), which arises when two tracked objects occlude each other; and occlusion
by the background (or scene occlusion [72]), which occurs when structures in the
scene (e.g., tree branches, pillars, etc.) occlude the object/s being tracked. Some ap-
proaches have already been presented in Sect. 3.1.1 [70, 86]. Yilmaz et al. [82] deal
with occlusion handling from the lens of the tracking technique in use. A series of
different tracker families are presented (point, ‘geometric model’-based and silhou-
ette); each tracking technique is then classified according to whether or not it can
handle occlusions, and in the case it does, whether these can be full or only par-
tial. Following this idea, trackers that respond well when occlusions are present, can
be used for occlusion handling. In [85], the Kanade-Lucas-Tomasi (KLT) tracker is
employed to resolve occlusions, while a particle filter is used as the main tracker.
Similarly, a technique based on Mean-shift is used in [16].

Apart of exploiting the features of “occlusion-friendly” trackers, a series of oc-
clusion handling techniques have also been devised, which can be found throughout
the literature. Wang et al. [77], present a good historical review of such methods,
which rely on the object’s motion model, and keep predicting the object’s location
until it reappears. The authors state that serious long-term occlusions cannot be dealt
with by this kind of techniques, since observations cannot be obtained while the ob-
ject is occluded for a long period of time. Vezzani et al. [72] propose what they call
the non-visible regions model, which deals with partial and full occlusions, whether
these are inter-object or due to the scene. The object model is updated differently
in a pixel-wise fashion: the appearance is updated only for the visible pixels; the
probabilities associated to those are reinforced, while they remain unchanged for
invisible pixels. Furthermore, in pixels with no correspondence due to changes in
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the shape of the object (called appearance occlusions) probabilities are smoothed.
Wang et al. [77], on the other hand, propose a means of modelling the occluder; once
modelled, when objects disappear due to occlusion, a search is performed around
the occluder in order to find the occluded object as it reappears.

In [37], the authors present a series of monocular approaches to occlusion han-
dling, although this is only to conclude that single-view systems are intrinsically
unable to handle occlusions correctly. The authors in [21, 37], use multiple oblique-
view cameras to handle occlusions appropriately, and devise a common plane re-
construction, using communication among cameras. Approaches based on multiple
views are designed to reduce the amount of hidden regions. Unfortunately, in the
case of existing static camera networks, this is not always possible due to the re-
strictions of their infrastructures, which were not initially devised for automated
surveillance. Another approach to occlusion handling is avoiding them in the first
place. Occlusions can be reduced by placing the camera appropriately, as suggested
by [82] (e.g., by placing a bird-eye view camera, no occlusions occur between the
objects on the ground), but the problem of existing infrastructures persists.

Nevertheless, when dealing with occlusions under heavily crowded scenarios,
full-body tracking is infeasible due to the continuous existence of partial occlusions,
specially from side views [13]. Since the existing cameras tend to be placed above
the heads of the people and tilted to face downwards looking at the scene, some
authors suggest a good assumption is that heads and shoulders (often referred to
as Omega-shape [46]) will be always visible, and that occlusions among subjects’
heads is lower as compared to the rest of the body parts.

3.3 Improving Tracking Using Crowd-Level Cues

As stated in the introduction to this section (Sect. 3), tracking methods can use cues
obtained from the analysis of crowd dynamics, in order to improve their accuracy,
in a top-down approach. These higher-level cues can be either contextual or coming
from the social interactions among the people in the crowd.

3.3.1 Higher-Level Contextual Information

The utility of high-level contextual information has demonstrated that exploiting
contextual information improves the performance of human tracking significantly.
Antonini et al. [9] use a discrete choice model (DCM) as motion priors to predict
human motion patterns and then, fuse this model in a human tracker for improved
performance. Similarly, Ali et al. [4] propose to exploit contextual information for
tracking multiple people in a structured crowded scene. Assuming that all partici-
pants of the crowd are moving in one direction, Ali et al. learn the direction of mo-
tion as a prior information based on floor fields. The authors have demonstrated that
a higher-level constraint greatly increases the performance of the tracker. However,
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floor fields can be learned only when the scene has one dominant motion. As a re-
sult, the method proposed in [4] cannot be applied for unstructured crowded scenes
where the motion of a crowd appears to be random with different participants mov-
ing in different directions over time. Some examples of unstructured crowded scenes
include crowds at exhibitions, sporting events and railway stations. This shortcom-
ing is addressed by Mikel et al. [63] where the authors employ a correlated topic
model for modelling random motions in an unstructured crowded scene. Similarly,
L. Kratz and K. Nishino [43] employ the normal motion pattern to predict tracking
individuals in a crowd scene where the normal motion pattern is learnt based on
local motion at fixed-size cells.

3.3.2 Social Interactions

Another interesting direction of tracking multiple targets is to integrate social inter-
action of targets in the tracking algorithm. This idea is motivated by the behaviour
of targets in a crowd. In crowded scenarios, the behaviour of each individual target
is influenced by the proximity and behaviour of other targets in the crowd. Several
methods [8, 19, 39, 48, 80] have proposed to integrate the social interactions among
targets in the tracking algorithms. This direction has shown promising performance
to track multiple targets in crowded scenes. An early example which models the
social interaction of targets is Markov Chain Monte Carlo-based (MCMC) parti-
cle filter [39]. Their method models social interactions of targets using Markov
Random Field and adds motion prior in a joint particle filter. The traditional im-
portance sampling step in the particle filter is replaced by a MCMC sampling step.
French et al. [19] extended the method in [39] by adding social information to com-
pute the velocity of particles. In [80], the authors formulated the tracking prob-
lem as a problem of minimising an energy function. The energy function is defined
based on both the social information and physical constraint in the environment.
Their preliminary results indicate that social information provides an important
cue for tracking multiple targets in a complex scene. An overview of tracking al-
gorithms that incorporate different high-level contextual information is illustrated
in Fig. 3.

3.4 Tracking in Crowds from Multiple Views

Researchers have also explored the use of multiple cameras for tracking people un-
der severe occlusion in a complex environment. Multiple camera tracking methods
intend to expand the monitored area and provide complete information about inter-
esting persons by gathering evidences from different camera views. Lee et al. [45]
propose a multiple people tracking method for wide-area monitoring. An automated
calibration method is introduced to find correspondences between distributed cam-
eras. In their method, all camera views are calibrated to a global ground-plane view
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Fig. 3 An overview of different tracking algorithms that incorporate high-level contextual infor-
mation

based on geometric constraints and tracking trajectories from each view. Another
example in a similar context can be found in the papers by Khan and Shah [36, 38].
A planar homographic occupancy constraint that combines foreground likelihood
information from different views is proposed for detection and occlusion resolu-
tion.

Another use of multiple cameras is to track people in an environment covered by
multiple cameras with overlapping views. Mittal and Davis [55] use pairs of stereo
cameras and combine evidences gathered from multiple cameras for tracking people
in a cluttered scene. Foreground regions from different camera views are projected
back into a 3D space so that the endpoints of the matched regions yield 3D points
belonging to people. Dockastader and Tekalp [18] employ a Bayesian network for
fusing 2D position information acquired from different camera views to estimate the
3D coordinate position of the interested person. Finally, a layer of Kalman filtering
is used to update the position of people. A combination of static and pan-tilt-zoom
(PTZ) cameras for multiple camera tracking is introduced in [65]. The static cameras
are used to provide a global view of the interested persons when the PTZ cameras
are used for face recognition of people.

The brief overview of the research literature indicates that multiple camera track-
ing methods provide an interesting mechanism to handle severe occlusion and to
monitor large areas at public spaces (as seen in Sect. 3.2). However, advantages of
the multiple cameras come together with additional issues such as camera calibra-
tion, matching information across the camera views, automated camera switching
and data fusion. These challenges are still yet to be solved. On the other hand, in-
tegrating the social interaction among targets in the tracking algorithms has shown
promising performance to track individual targets in a crowd.



A Literature Review on Video Analytics of Crowded Scenes 31

4 Event Detection in Crowds

A series of surveys and reviews in this field [30, 32, 56, 62, 68, 73, 83] show
there is a great interest in this area. Detecting anomalies or outstanding events in
crowds has moved a lot of research efforts. Automatic systems would allow re-
ducing the burden of manual video supervision, which makes is infeasible in most
cases, given the enormous amounts of data, as compared to the manpower to process
it [68, 73, 83]. Detection of anomalies in crowded scenes can be seen as a classifi-
cation problem where only two classes are defined (i.e., “normal” versus “anoma-
lous”) [68].

The survey by Sodemann et al. [68], analyses the works in the literature across
five aspects:

1. the target/s of interest (a person, a crowd);
2. the definitions of what is anomalous, and the assumptions taken;
3. the types of sensors involved, and the features used;
4. the learning methods; and
5. the modelling algorithms.

According to the authors, their survey is focused on the broader problem for-
mulation and assumptions, rather than providing a review on specific pattern clas-
sification methods. In Revathi and Kumar [62], authors provide a categorisation of
anomalies according to the number of people and other objects involved. Three cate-
gories are defined: anomalies involving a single person with a single object, multiple
people with multiple objects, and group behaviour.

Vishwakarma and Agrawal [73] analyse human action recognition in more gen-
eral terms in video surveillance, although, they present an interesting taxonomy
to classify complexity of topic-related algorithms. From a completely different
point of view, two other works review physics- and hydrodynamics-based tech-
niques [32, 56] for anomaly and event detection in crowds. Moore et al. [56] present
a review of techniques for crowd analysis that consider huge crowds as “fluids”
or “liquids”, which are bound to a series of rules and forces (e.g., repulsion and
attraction) which explain the interactions among the particles that conform that
fluid.

Jo et al. [32] further explore other physics-based techniques, and classify the
works according to the categorisation presented in [30], which presents various “do-
mains”: the image space domain, based on the analysis at the pixel, texture or object
levels; the sociological domain, which accounts for the social interactions or “crowd
mentality”; the level of services, where different crowd conditions are provided; or
the computer graphics domain, which deals with realistic crowd simulation. Jacques
Junior et al. [30] also classify crowd event detection techniques as either object-
based, in which individuals are tracked and these tracks are used to analyse the
situations [25, 33, 76]; or holistic-based [7, 53, 71], where the crowd is considered
as a whole, and events are detected by extracting the major crowd flows from the
monitored scene.
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5 Summary

This chapter presents a review and comparative study of various topics in the area
of crowd video analysis. The advantages and disadvantages of the state-of-the-art
methods related to video analytics in crowded scenes have been detailed.

Tracking individuals in a high-density crowd has been addressed in recent years,
as opposed to previously tracking individuals in sparse or even ad-hoc scenarios.
A major advance is the introduction of high-level crowd motion pattern as a prior
into a general framework [4, 63]. However, the problem of tracking still remains
as a challenging problem in the area of computer vision. One major challenge for
tracking in a crowded scene is inter-object occlusion due to the interactions of par-
ticipants in a crowd. There remains a gap between the state-of-the-art and robust
tracking of people in a crowded scene. Most recent trackers for crowds use Parti-
cle Filters, using different kinds of features; the use of self-similarity measures for
this particular application can be of interest and deserves further research, given the
results it achieved in other Computer Vision fields.

During recent years there has been substantial progress towards understanding
crowd behaviour and abnormality detection based on modelling crowd motion pat-
tern. However, these approaches capture general movement of a crowd but do not
accurately detect details of individual movements. As a result, the current literature
in understanding crowd motion is not ready to capture the motion pattern of an un-
structured crowd scene where the motion of the crowd appears to be random [63].
Future research in this area requires localised modelling of crowd motion to capture
different behaviours in unstructured crowded scenes. On the other hand, the under-
standing and modelling of crowd behaviour remains immature despite the consid-
erable advances in human activity analysis. Progress in this area requires further
advances in modelling or representation of a crowd event and recognition of these
events in a natural environment.
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Privacy and Security in Video Surveillance

Thomas Winkler and Bernhard Rinner

Abstract Video surveillance systems are usually installed to increase the safety and
security of people or property in the monitored areas. Typical threat scenarios are
robbery, vandalism, shoplifting or terrorism. Other application scenarios are more
intimate and private such as home monitoring or assisted living. For a long time,
it was accepted that the potential benefits of video surveillance go hand in hand
with a loss of personal privacy. However, with the on-board processing capabilities
of modern embedded systems it becomes possible to compensate this privacy loss
by making security and privacy protection inherent features of video surveillance
cameras. In the first part of this chapter, we motivate the need for the integration of
security and privacy features, we discuss fundamental requirements and provide a
comprehensive review of the state of the art. The second part presents the TrustCAM
prototype system where a dedicated hardware security module is integrated into a
camera system to achieve a high level of security. The chapter is concluded by a
summary of open research issues and an outlook to future trends.

1 The Need for Security and Privacy Protection

Reasons for deploying video surveillance systems are manifold. Frequently men-
tioned arguments are ensuring public safety, preventing vandalism and crime as
well as investigating criminal offenses [40]. As part of that, cameras are often in-
stalled in public environments such as underground or train stations, in buses [39]
or taxis [20], along roads and highways [8, 23], in sports stadiums or in shopping
malls [30, 31]. But video surveillance is no longer deployed only in public but also
in private and more intimate environments. For example, in assisted living appli-
cations [10, 25, 62] cameras are used to monitor the interior of people’s homes to
detect unusual behavior of residents.
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A major driving factor for this widespread deployment of cameras is that video
surveillance equipment has become increasingly cheap and simple to use. As part
of this development, today’s video surveillance systems are no longer the closed,
single-purpose systems they used to be. Modern systems are highly flexible which
is primarily achieved via software. Camera devices usually come with powerful
operating systems such as Linux as well as a variety of software libraries and ap-
plications running on top of it. Furthermore, these systems frequently make use of
wireless network interfaces and are part of larger, often public, networks such as the
Internet. The increasing size of the software stack and the relative openness of the
network infrastructure turn many of today’s video surveillance systems into attrac-
tive targets for both casual as well as professional attackers.

With the performance of modern embedded camera systems, it is possible to
make privacy protection an inherent feature of a surveillance camera. Sensitive data
can be protected by various approaches including blanking, obfuscation or encryp-
tion. On-camera privacy protection is a clear advantage over server-side protection
since it eliminates many potential attack scenarios during data transmission. When
considering the software stack of an embedded camera system, privacy-protection
is typically implemented at the application level. As a consequence, it is important
to detect and avoid manipulations of the underlying software components such as
the operating system or system libraries. Otherwise, an attacker might be able to
manipulate the system and get access to sensitive data before privacy protection is
applied. Depending on the application context, security guarantees such as integrity
and authenticity are not only relevant for the system’s software stack but also for
delivered data. This is especially true for enforcement applications where captured
images might serve as evidence at court.

1.1 Security and Privacy Requirements

This section discusses the main security requirements for video surveillance appli-
cations. Making a camera system more secure not only offers benefits for camera
operators. It is of equal importance for monitored persons. While this is obvious for
aspects such as confidentiality, this also holds for, for example, integrity of video
data. If integrity is not protected, an attacker could modify video data in a way
that intentionally damages the reputation of persons. The integration of the follow-
ing basic security functionality is also a fundamental requirement for the design of
high-level privacy protection techniques.

Integrity. Image data coming from a camera can be intentionally modified by an
attacker during transmission or when stored in a database. Using checksums,
digital signatures and watermarks, data integrity can be ensured. An often over-
looked issue is that integrity protection is not only important for single frames
but also for sequences. Simple reordering of images can substantially change
the meaning of a video.

Authenticity. In many applications such as traffic monitoring and law enforcement,
the origin of information is important. In visual surveillance, this is equivalent
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to knowing the identity of the camera that captured a video stream. This can be
achieved by explicitly authenticating the cameras of a network and embedding
this information into the video streams.

Freshness and Timestamping. To prevent replay attacks where recorded videos are
injected into the network to replace the live video stream, freshness of image
data must be guaranteed. Even more importantly, in many areas such as enforce-
ment applications, evidence is required when a video sequence was recorded.
Explicit timestamping of images not only answers the question when an image
was taken, but at the same time also satisfies the requirement for image freshness
guarantees.

Confidentiality. It must be ensured that no third party can eavesdrop on sensitive
information that is exchanged between cameras or sent from the cameras to a
monitoring station. Confidentiality must not only be provided for image and
video data transmitted over the network but also for videos that, for example,
are stored on a camera to be transmitted at a later point in time. A common
approach to ensure confidentiality is data encryption.

Privacy. In video surveillance, privacy can be defined as a subset of confidentiality.
While confidentiality denotes the protection of all data against access by third
parties, privacy means the protection of data against legitimate users of the sys-
tem. For example, a security guard needs access to video data as part of her/his
job. However, the identities of monitored persons are not required to identify
unusual behavior. Privacy protection therefore can be interpreted as providing
limited information to insiders while withholding sensitive, identity-revealing
data.

Access Authorization. Access to confidential image data must be limited to persons
with adequate security clearance. For access to highly sensitive data, involve-
ment of more than one operator should be required to prevent misuse. If a video
stream contains different levels of information (e.g., full video, annotations, . . . ),
access should be managed separately for each level. Finally, all attempts to ac-
cess confidential data should be logged.

Availability. A camera network should provide certain guarantees about availability
of system services under various conditions. Specifically, reasonable resistance
against denial of service attacks should be provided.

Clearly, these security properties are partially interdependent. It is, for example,
meaningless to provide data confidentiality without implementing appropriate au-
thorization mechanisms for accessing confidential data.

2 State of the Art

This section first presents an overview of the state of the art on security in video
surveillance (Sect. 2.1). It is followed by a discussion of approaches towards privacy
protection (Sect. 2.2). Section 2.3 summarizes our observations and outlines open
issues for future research.
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2.1 Video Surveillance Security

Serpanos and Papalambrou [52] provide an extensive introduction to security issues
in the domain of smart cameras. They discuss the need for confidentiality, integrity,
freshness and authenticity for data exchanged between cameras. The authors ac-
knowledge that embedded systems might not have sufficient computing power to
protect all data using cryptography. In such a situation, they propose concentrat-
ing on protecting the most important data. This work also recognizes the partial
overlap of confidentiality and privacy protection and emphasizes the importance of
data protection not only against external attackers but also against legitimate system
operators.

Senior et al. [51] discuss critical aspects of a secure surveillance system includ-
ing what data is available and in what form (e.g., raw images vs. metadata), who
has access to data and in what form (e.g., plain vs. encrypted) and for how long it is
stored. Data confidentiality is ensured via encrypted communication channels. Pri-
vacy protection is addressed by re-rendering sensitive image regions. The resulting,
multiple video streams contain different levels of data abstraction and are separately
encrypted.

Schaffer and Schartner [49] present a distributed approach to ensure confidential-
ity in a video surveillance system. They propose that the video stream is encrypted
using a hybrid cryptosystem. Encryption is performed for full video frames without
differentiating between sensitive and non-sensitive image regions. A single system
operator is not able to decrypt a video but multiple operators have to cooperate. This
property is achieved by the fact that every operator is in possession of only a part of
the decryption key.

Integrity protection of image and video data is an important security aspect. It
can be addressed by means of, for example, hash functions together with digital sig-
natures or by embedding watermarks into the video content. An important design
decision is whether the integrity protection technique is tolerant towards certain,
acceptable image modifications or not. The work of Friedman [27] aims at “restor-
ing credibility of photographic images” and therefore does not accept any image
modifications. Specifically, authenticity and integrity of images taken with a digital
still image camera should be ensured. This is achieved by extending the camera’s
embedded microprocessor with a unique, private signature key. This key is used to
sign images before they are stored on mass storage. The public key required for
verification is assumed to be made available by the camera manufacturer. Friedman
suggests that the software required for signature verification should be made pub-
licly available. This work can be seen as one of the earliest approaches towards a
trustworthy, digital camera system.

Qusquater [43] et al. propose an approach for integrity protection and authen-
tication for digital video stored on tape in the DV format. They use SHA-1 to
compute the hash of the image. To be less sensitive to transmission or tape er-
rors, the authors suggest that the images are divided into blocks that are hashed
separately. Authenticity is ensured by signing the hash values. The hash of the pre-
vious image is also included in the signature to maintain correct ordering of video
frames.
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Atrey et al. [2, 3] present a concept to verify the integrity of video data. In their
work, they differentiate between actual tampering and benign image modifications.
In this context, operations that do not change the video semantically such as image
enhancements or compression are defined as acceptable. Tampering of video data is
divided into spatial and temporal modifications. Spatial tampering includes content
cropping as well as removal or addition of information. Temporal tampering refers
to dropping or reordering of frames which might result from, for example, network
congestion. The authors argue that temporal tampering is acceptable as long as the
semantic meaning of the video is not substantially affected. The proposed algorithm
is based on a configurable, hierarchical secret sharing approach. It is shown to be
tolerant to benign image modifications while tampering is detected.

He et al. [29] also discuss the design of a video data integrity and authenticity
protection system. In contrast to other approaches, they do not operate on frames
but on objects. Objects are separated from the video background using segmenta-
tion techniques. An advantage of this approach is that network bandwidth can be
saved by transmitting primarily object data while background data is updated less
frequently. Similar to Atrey et al. [2, 3], the authors require their integrity protec-
tion system to tolerate certain modifications such as scaling, translation or rotation.
Considering these requirements, appropriate features are extracted from the detected
objects as well as the background. A hash of these features together with error cor-
rection codes is embedded into the video stream as a digital watermark.

Digital watermarks are a popular technique to secure digital media content. A wa-
termark is a signal that is embedded into digital data that can later be detected, ex-
tracted and analyzed by a verifier. According to Memon and Wong [36], a watermark
can serve different purposes. This can be proof of ownership where a private key is
used to generate the watermark. Other applications are authentication and integrity
protection, usage control and content protection. Depending on the application do-
main, watermarks can be visible or invisible. When used for integrity protection,
watermarks have the advantage that they can be designed such that they are robust
against certain image modifications such as scaling or compression [1, 5]. An ex-
ample where watermarking is used as part of a digital rights management system
for a secure, embedded camera is presented by Mohanty [37]. He describes a secure
digital camera system that is able to provide integrity, authenticity and ownership
guarantees for digital video content. This is achieved using a combination of water-
marking and encryption techniques. Due to the high computational effort, a custom
hardware prototype based on an FPGA is used to meet the realtime requirements.

2.2 Privacy Protection in Video Surveillance

Cameras allow the field of view of observers to be extended into areas where they
are not physically present. This “virtual presence” of an observer is not necessarily
noticed by monitored persons. In the resulting, but misleading feeling of privacy,
persons might act differently than they would in the obvious presence of other peo-
ple. This example makes it apparent, that privacy in video surveillance is an issue
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that needs special consideration. But when trying to identify what forms of privacy
protection are appropriate, the picture becomes less clear. One reason is that there
is no common definition of privacy. As discussed in [38, 51], the notion of privacy
is highly subjective and what is acceptable depends on the individual person as well
as cultural attitudes.

As pointed out by Cavallaro [12] or Fidaleo et al. [24], it is usually more impor-
tant to be able to observe the behavior of a person than knowing the actual identity.
This is achieved by identification and obfuscation of personally identifiable infor-
mation such as people’s faces [15, 35]. Only in situations where, for example, a law
was violated, is this personal information is interesting and should be made avail-
able to authorized parties. The main challenge of such an approach is to determine
which image regions are actually sensitive. As Saini et al. [45] argue, video data
not only includes direct identifiers such as human faces but also quasi identifiers.
These quasi identifiers are often based on contextual information and allow to infer
the identity of persons with a certain probability. Such basic contextual informa-
tion about an event includes, for example, what happened, where did it happen and
when did it happen. Vagts et al. [59, 60] present an approach that addresses privacy
protection not at the sensor level but at a higher abstraction level. As part of their
task-oriented privacy enforcement system, data is only collected if it is required for
a surveillance task. For that purpose, each task must be fully specified before data
collection is started.

In the following paragraphs, we outline key aspects of privacy protection sys-
tems. They include basic protection techniques, multilevel approaches that support
the recovery of unprotected data under controlled conditions and the need for in-
volving monitored people by asking for their consent and giving them control over
their personal data.

Privacy Protection Techniques. A common approach for privacy protection is the
identification of sensitive image regions such as human faces of vehicle li-
cense plates. If this system component does not work reliably, privacy is at risk.
A single frame of a video sequence where sensitive regions are not properly
detected can break privacy protection for the entire sequence. Once the sensi-
tive regions have been identified, different techniques can be applied to achieve
de-identification. A very basic approach is blanking where sensitive regions are
completely removed. An observer only can monitor the presence and the loca-
tion of a person. Cheung et al. [16] apply video inpainting techniques to fill the
blank areas with background. This way, an observer can no longer notice that
information was removed from the video.
An alternative to simple blanking are obfuscation and scrambling where the level
of detail in sensitive image regions is reduced such that persons can no longer
be identified while their behavior remains perceptible. Researchers apply differ-
ent techniques including mosaicing, pixelation, blurring [18, 61] or high, lossy
compression. Work by Gross et al. [28] indicates the overall protection capabil-
ities of such naive mechanisms are relatively low. A study by Boyle et al. [7] on
the effects of filtered video on awareness and privacy indicates that pixelation
provides better privacy protection than blurring. Another technique to protect
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sensitive image regions is scrambling. In its basic form, JPEG compressed im-
ages are obscured by pseudo-randomly modifying the DCT coefficients [21] of
sensitive regions.
Abstraction techniques replace sensitive image regions with, for example,
bounding boxes or, in case of persons, with avatars, stick-figures and silhou-
ettes [51]. Another form of abstraction is meta-information attached to a video.
This can be object properties such as position and dimensions, but also names
of identified persons [54]. Depending on the type of abstraction, either behavior,
identity or both can be preserved. Identities should be protected using encryp-
tion.
Data encryption is used by many systems to protect sensitive regions. When en-
crypted, regions of interest can no longer be viewed by persons who do not have
the appropriate decryption keys. Simple encryption not only protects the identity
of monitored persons but also their behavior. Upon decryption, both—identity
and behavior—are revealed. By using multiple encryption keys or split keys as
described in [49], a system can be designed that requires multiple operators to
cooperate to decrypt the original data. Such a design provides a certain degree
of protection against operator misuse.

Multilevel Privacy Protection. Support for multiple privacy levels denotes that one
single video stream contains different levels of information. These could range
from the unmodified, sensitive image regions over obfuscated versions with
blurred faces to abstracted versions. Depending on their sensitivity, these lev-
els can be separately encrypted with one or more individual encryption keys.
A multilevel approach allows a privacy protection system to be designed that
presents different types of information to observers depending on their secu-
rity clearance. While low-privileged operators can only access the version of
the stream where behavioral data is visible, supervisors or government agen-
cies could get access to the original data that contains the identity of monitored
persons.

Consent and Control. Ideally, monitored people should first be asked for consent
before they are captured by a video surveillance system. Today, installed cam-
eras are often marked with signs or stickers that advertise their presence. User
consent to video surveillance is given implicitly by acknowledging these signs
when entering the area. As these signs are easily overlooked, consent should be
sought more actively. Users could be automatically notified about presence and
properties of cameras, for example, via their smartphone. Moreover, monitored
people should remain in control of personal data captured by the system. If data
is disclosed to a third party, explicit user permission should be required.
Some of these requirements have been addressed in research prototypes. By
handing out dedicated devices or RFID tags to known and trusted users,
a stronger form of awareness about video surveillance is realized [9, 61]. Users
equipped with such devices are not only made aware of the installed cameras but
even get a certain degree of control over their privacy. Cameras recognize them
as trustworthy and remove or protect the corresponding image regions. The ap-
proach of Cheung et al. [17] goes even further. Using public key cryptography to
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protect personal information, users get full control over their privacy-sensitive
data since they have to actively participate in the decryption of this data.

Cavallaro [11, 12] emphasizes that digitalization of video surveillance introduces
new privacy threats. Therefore, personal and behavioral data should be separated
directly on the camera. While system operators only get access to behavioral data,
a separate stream containing personal data is made available to law enforcement au-
thorities. A benefit of this strict separation is prevention of operator misuse. Similar
ideas are discussed in the already mentioned work of Senior et al. [51]. They sug-
gest that privacy is protected by extracting sensitive information and re-rendering
the video into multiple streams individually protected by encryption.

Fleck [25, 26] employs smart cameras from Matrix Vision in an assisted living
scenario. The cameras are used to monitor the behavior of persons and detect un-
usual behavior such as a fall. For that purpose, the cameras create a background
model which is the basis for detecting motion regions. Detected objects are tracked
and their behavior is analyzed using support vector machines. Privacy protection
is achieved by either transmitting only event information or replacing detected ob-
jects with abstracted versions. It is assumed that the camera’s housing is sealed such
that manipulation can be detected by the camera and leads to a termination of its ser-
vices. Protection against software attacks such as integrity checks or data encryption
is not part of the current system.

Boult [6] argues that many existing approaches are targeted at removing privacy-
sensitive image data without providing mechanisms to reconstruct the original im-
age. Based on this observation, he proposes a system called PICO that relies on
cryptography to protect selected image regions such as faces. It allows the actions
of a person to be monitored without revealing the person’s identity. The faces are
only decrypted if, for example, a crime was committed by the person. Encryption is
performed as part of image compression and uses a combination of symmetric and
asymmetric cryptography. Additionally, it is suggested that checksums of frames or
sub-sequences are computed to ensure data integrity. In related work, Chattopad-
hyay and Boult present PrivacyCam [14], a camera system based on a Blackfin
DSP clocked at 400 MHz, 32 MB of SDRAM and an Omnivision OV7660 color
CMOS sensor. uClinux is used as operating system. Regions of interest are identi-
fied based on a background subtraction model and resulting regions are encrypted
using an AES session key. Rahman et al. [44] also propose that regions of interest
are encrypted. In their approach they do not rely on established crypto-systems but
propose that chaos cryptography is used.

Moncrieff et al. [38] argue that most of the proposed systems rely on predefined
security policies and are either too intrusive or too limited. Therefore, they sug-
gest that dynamic data hiding techniques are applied. Via context-based adaptation,
the system could remove or abstract privacy-sensitive information during normal
operation while in case of an emergency, the full, unmodified video stream is au-
tomatically made available. This way, the system remains usable for the intended
purpose but protects privacy during normal operation.

Dufaux and Ebrahimi [21] suggest scrambling of sensitive image regions. After
detection of relevant areas, images are transformed using DCT. The signs of the co-
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efficients of sensitive regions are then flipped pseudo-randomly. The seed for the
pseudo-random number generator is encrypted. Decryption is only possible for per-
sons who are in possession of the corresponding decryption key. According to the
authors, the main benefits are minimal performance impact and that video streams
with scrambled regions can still be viewed with standard players. A study by Du-
faux and Ebrahimi [22] indicates that scrambling is superior to simple approaches
such as pixelation and blurring.

A similar approach is discussed by Baaziz et al. [4] where, in a first step, motion
detection is performed followed by content scrambling. To ensure data integrity, an
additional watermark is embedded into the image which allows detection of manip-
ulation of image data. Limited reconstruction of manipulated image regions is possi-
ble due to redundancy introduced by the watermark. Yabuta et al. [68] also propose a
system where DCT encoded image data is modified. They, however, do not scramble
regions of interest but extract them before DCT encoding and encrypt them. These
encrypted regions are then embedded into the DCT encoded background by modify-
ing the DCT coefficients. Li et al. [32] present an approach towards recoverable pri-
vacy protection based on discrete wavelet transform. Information about sensitive im-
age regions together with their wavelet coefficients are protected with a secret key.
Data hiding techniques are used to embed this information into the resulting image.

Qureshi [42] proposes a framework for privacy protection in video surveillance
based on decomposition of raw video into object-video streams. Based on a seg-
mentation approach, pedestrians are identified. Tracking is performed using color
features. The privacy of detected persons is protected by selectively rendering the
corresponding objects. Advanced protection mechanisms such as encryption are left
as future work. Also the system presented by Tansuriyavong and Hanaki [54] is
based on detection of sensitive entities. In an office scenario, the silhouettes of de-
tected persons are blanked. Additionally, the system integrates face recognition to
identify previously registered persons. Configuration options allow the choice of
what information should be disclosed—full images, silhouettes, names of known
persons or any combination thereof.

Troncoso-Pastoriza et al. [56] propose a generic video analysis system that is
coupled with a Digital Rights Management (DRM) system. By exploiting the hier-
archical structure of MPEG-4, the authors propose selective visualization of video
objects either in clear or in obfuscated forms. Access to sensitive video objects is
conditionally granted depending on the rights of the observer and the individual
policies of monitored users. Sensitive content is protected by encryption. Intellectual
Property Management Protection (IPMP) descriptors, as standardized in MPEG-4,
are used to describe these encrypted streams. Access rights to protected video ob-
jects are formulated using the MPEG-21 Rights Expression Language (REL).

Finally, the Networked Sensor Tapestry (NeST) software architecture by Fida-
leo et al. [24], represents a more generic privacy protection approach. Its design is
not limited to videos and images but can handle arbitrary sensor data. The system
uses a centralized architecture. An important component is the privacy buffer that is
running on the server. Data received from the clients is fed into this privacy buffer.
The buffer can be extended and configured by means of privacy filters and a pri-
vacy grammar. If incoming data is qualified as private by one of the privacy filters,
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the data does not leave the privacy buffer. Non-private data is forwarded to a routing
component that manages distribution of data to interested clients.

To protect the privacy of only selected users, systems have been presented that
allow to remove known, trusted users from captured video. Due to the limited reli-
ability of computer vision to detect personal image data, many researchers rely on
portable devices carried by users for identification and localization. One such ap-
proach is presented by Brassil [9]. He proposes a Privacy Enabling Device (PED)
that gives users control over their personal data. When activated, the PED records the
location of the person together with timestamps. This data is uploaded to a clearing-
house. Before a camera operator discloses videos to a third party, the clearinghouse
has to be contacted to check if an active PED was in the vicinity of the camera at
the time in question. If so, video data has to be anonymized. Due to the absence of
feedback, users have to trust camera operators to follow the advertised procedures.

Wickramasuriya et al. [61] perform realtime monitoring of the environment to
increase user privacy. In particular, they suggest that motion sensors are used to
monitor rooms or areas. If motion is detected, an RFID reader is triggered that tries
to read the RFID tag carried by the person that entered the area. If no RFID tag can
be found or the security level of the tag does not grant access to the area, a camera
that oversees the region is activated. Image regions containing persons with valid
RFID tags are blanked such that only potential intruders remain visible.

Chinomi et al. [18] also use RFID technology to detect known users. RFID read-
ers, deployed together with cameras, are used to localize RFID tags carried by users
based on signal strength. This location information is then mapped to motion re-
gions detected by the cameras. As the RFID tag identifies the person, the individual
privacy policy can be retrieved from a database. This policy defines the relation-
ship between the monitored person and potential observers. Based on that, different
forms of abstracted data are delivered by the system. Abstractions include simple
dots showing only the location of a person, silhouettes as well as blurred motion re-
gions. Also Cheung et al. [17] use RFID for user localization. Corresponding motion
regions are extracted from the video and encrypted with the user’s public encryption
key. This key is retrieved from a database via the user ID from the RFID tag. The
blanked regions in the remaining image are filled with background image data us-
ing video inpainting [16]. The encrypted regions are embedded into the compressed
background image using data hiding techniques similar to steganography. Since de-
cryption of privacy-sensitive image regions requires the user’s private key, active
user cooperation is necessary to reconstruct the original image. A dedicated media-
tor establishes contact between users and observers who are interested in the video
data. In work from the same research group, Ye et al. [69] and Luo et al. [33] do not
use RFID tags for identification but biometric information. As part of their anony-
mous biometric access control system, iris scanners are installed at the entrances of
areas under video surveillance. Based on that, authorized individuals are then ob-
fuscated in the captured video. Anonymity of authorized persons is maintained by
using homomorphic encryption.

An approach that does not need electronic devices that are carried by users is pre-
sented by Schiff et al. [50]. Their “respectful cameras” use visual markers such as
yellow hard hats worn by people to identify privacy-sensitive regions. Specifically,
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Fig. 1 The security requirements discussed in this chapter can be classified into three groups.
First, node-centric security refers to security of the camera’s hardware as well as its software stack.
Second, network-centric security covers security of the communication channel and security as-
pects for inter-camera collaboration which include secure data sharing and aggregation techniques,
camera discovery, topology control or time synchronization. The third group is data-centric secu-
rity which denotes security (e.g., integrity, authenticity, etc.) and privacy protection for data from
its creation to its deletion

they remove person’s faces from images. For marker detection and tracking, prob-
abilistic AdaBoost and particle filtering are used. Spindler et al. [53] apply similar
ideas in the context of building automation and monitoring applications. Personal
data is obfuscated based on individual privacy settings. For identification and local-
ization, the authors suggest relying on computer vision. For the prototype, this was
not implemented but replaced by manual selection of privacy-sensitive regions.

2.3 Observations and Open Issues

Most research on privacy and security in video surveillance is on selected and iso-
lated topics. Figure 1 gives an overview of the three major areas. The majority of
work addresses data-centric security and privacy issues which include authenticity
and integrity of data, data freshness, timestamping as well as confidentiality. Ideally,
data-centric security guarantees should be provided for the entire lifetime of data,
i.e., from the moment an image is captured by the camera’s sensor until the image
and all derived data are deleted. As a consequence, data-centric security involves
all components of a visual sensor network including monitoring stations as well as
video archives. Adequate access authorization techniques must be integrated such
that sensitive data can be accessed only by legitimate users.
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When considering the architecture of a VSN node it is apparent that data-centric
protection features are implemented typically as part of the camera’s applications.
To be able to provide meaningful security guarantees for captured and processed
data the VSN device itself must be secured. This aspect, which is referred to as
node-centric security in Fig. 1, is rarely addressed in related work. In a holistic
approach, the security of both the VSN’s hardware as well as its software stack
must be taken into account. Otherwise, the protection achieved by application level
security mechanisms must be questioned.

The third major group of security issues shown in Fig. 1 is network-centric secu-
rity where a primary goal is a secure channel between two communication partners.
This could be two cameras or one camera and a monitoring or archiving facility.
A secure communication channel must provide basic non-repudiation and confiden-
tiality properties. To a certain extent, there might be a redundancy between network
channel security and data-centric security. The actual protection requirements de-
pend on the specific application. An additional and equally important aspect is se-
cure collaboration of multiple cameras. To facilitate secure collaboration, a range
of topics must be considered such as secure data sharing and aggregation, local-
ization and topology control, camera discovery and lookup mechanisms as well as
inter-camera time synchronization.

In our review of related work, we identified some of the most important open
issues.

Comprehensive Privacy Protection. The meaning of privacy in video surveillance
is still a vague term. As discussed previously there is consensus that privacy
protection denotes the protection of persons’ identities while their behavior re-
mains visible. However, it is not clear if the proposed protection techniques
such as pixelation, blurring or scrambling are actually effective. Research by
Dufaux and Ebrahimi [22] and Gross et al. [28] indicates that basic obfusca-
tion techniques might provide less protection than previously thought. Addi-
tionally, object-based privacy protection mechanisms assume the availability of
reliable detection algorithms for the identification of sensitive image regions.
A mis-detection in a single frame of a video sequence can be sufficient to breach
privacy for the entire sequence. Based on this observations, Saini et al. [47] sug-
gest to rely on global protection techniques instead of object-based approaches.
Global approaches apply uniform protection operations (e.g., downsampling,
coarse quantization or edge detection) to the entire raw image and are therefore
not prone to errors in the detection of sensitive regions.
But identity leakage does not result only from primary identifiers such as hu-
man faces. Contextual information [48] such as the location, the time and the
observed action can also be sufficient to derive the identity of persons. The use-
fulness of this contextual information depends directly on the knowledge of the
observer. One approach to reduce the likelihood of identity leakage via con-
textual information is to ensure that monitoring of video data is performed by
randomly chosen persons without knowledge about the observed area and con-
text [46]. The practical feasibility of such approaches is yet to be determined.
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Regardless of the chosen approach—privacy protection reduces usually the
amount of information that is available in a video and therefore privacy pro-
tection has a negative impact on system utility. An important aspect will be to
explore the privacy vs. system utility design space and to determine a suitable
and most probably application specific tradeoff.

Holistic Security Concept. There is still a lack of work that considers security and
privacy in VSNs in a holistic way. It is apparent that most security solutions
are situated at the application level and that node-centric security is not taken
into account. Substantial work has been targeted at data- and network-centric
security. But without addressing security of VSN nodes themselves, high-level
protection mechanisms are literally built on sand. VSN designers will have to
collaborate with engineers from other embedded system domains such as mo-
bile handsets to promote the development of standardized node-centric security
solutions.

Sensor-Level Security. Securing the VSN device is an important yet complicated
task. On modern embedded camera systems a large amount of software is ex-
ecuted. This includes the operating system with all its subsystems such as the
network stack as well as system libraries and middeleware components. Due to
the substantial size of these software components it is impractical to fully verify
them. As a consequence these components have to be implicitly trusted. One
potential approach to address this issue would be to bring security and privacy
protection closer to the sensor or even making them part of the sensor. If security
and privacy are guaranteed at the sensor level, then the camera and its relatively
large software stack would no longer have to be considered as trusted entities.
This approach implies two major challenges: First, it is unclear what type of pri-
vacy protection is suitable and feasible at the sensor level. Second, sensor-level
privacy protection means that image processing and analysis applications on the
camera must be adapted to deal with pre-processed and pre-filtered data. A criti-
cal question is the identification of an appropriate tradeoff between sensor-level
security and privacy protection and the remaining utility of the camera host sys-
tem.

3 TrustCAM: A Camera with Hardware Security Support

This section describes an approach that specifically addresses two major issues out-
lined previously in Sect. 2.3: node-centric security and providing data-centric secu-
rity guarantees for all data that is delivered by the camera. The presented TrustCAM
prototype [63–66] puts a strong focus on node security to ensure that high-level data
protection algorithms can be built on a solid basis. A fundamental question in com-
puter security is whether a software solution can provide adequate levels of security
or if an immutable hardware component is required that acts as a trust anchor. The
later is assumed by an industry initiative called Trusted Computing Group (TCG).
The main output of the group is a set of open specifications for a hardware chip—the
Trusted Platform Module (TPM) [57]—and software infrastructure such as the TCG
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Fig. 2 The TrustCAM
prototype. The image sensor,
the XBee radio and the Atmel
TPM can be seen on the front
circuit board. Behind this
board are the processing
board and WiFi radio

Software Stack (TSS) [58]. The TPM chip implements a small and well defined set
of core security functions which can not be altered by the TPM’s host system. This
approach of a hardware-based security solution has been adopted by the TrustCAM
project for embedded smart cameras. The TrustCAM prototype as shown in Fig. 2
incorporates an Atmel AT97SC3203S TPM chip which is used to various security
aspects including recording the boot process and software state of the camera de-
vice, securely storing cryptographic keys or digitally signing and encrypting outgo-
ing data.

The system largely consists of commercial, off-the-shelf components. It is based
on the BeagleBoard [55] (rev. C2) embedded processing platform. The board is
equipped with an OMAP 3530 SoC from Texas Instruments. The OMAP SoC
features a dual-core design and contains an ARM Cortext A8 processor which is
clocked at up to 600 MHz and an additional TMS320C64x+ DSP that can run
at speeds of up to 480 MHz. For stability reasons, the clock frequency of the
TrustCAM’s ARM core is set to 480 MHz. The DSP is not used in the current
version of the prototype. The prototype is equipped with 256 MB of LPDDR RAM
and 256 MB NAND flash memory. A CMOS image sensor (Logitech QuickCam
Pro 9000) is connected via USB. Wireless connectivity is provided by an RA-Link
RA-2571 802.11b/g WiFi adapter. An additional, low-performance wireless com-
munication channel is implemented via an 802.15.4 based XBee radio connected to
one of the platform’s UARTs.

3.1 Trusted Computing Preliminaries

This section provides a brief overview of the most important Trusted Computing
(TC) and TPM concepts. More detailed information can be found in the specifica-
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tions of the TCG [57] and auxiliary sources [13, 34]. The TPM is typically imple-
mented as a secure microcontroller (execution engine) with accelerators for RSA
and SHA-1. Additionally, the TPM provides a random number generator and lim-
ited amount of volatile and non-volatile memory. With an Opt-In process, users can
choose if they want to make use of the TPM.

RSA keys can be generated for different purposes such as encryption or signing.
Upon creation, keys can be declared migratable or not. While migratable keys can
be transferred to a different TPM, non-migratable keys can not. Regardless of key
type and migratability, a private TPM key can never be extracted from the chip as
plaintext but only in encrypted form. By definition, every key must have a parent
key that is used to encrypt the key when it has to be swapped out of the TPM due
to limited internal memory. At the top of this key hierarchy is the Storage Root Key
(SRK) which never leaves the TPM. TC defines three roots of trust:

Root of Trust for Measurement (RTM). In TC, measuring is the process of com-
puting the SHA-1 hash of an application binary before it is executed. Typically
starting from an immutable part of the BIOS, a chain of trust is established where
each component in the chain is measured before control is passed to it. The mea-
surements are stored inside the TPM in memory regions called Platform Config-
uration Registers (PCRs). As available memory in the TPM is limited, a special
operation called TPM_Extend is used to write to PCRs:

PCR[i] ← SHA-1
(
PCR[i]||measurement

)
.

TPM_Extend computes the hash of the current PCR value concatenated with the
new measurement. This accumulated value is written back into the PCR.

Root of Trust for Reporting (RTR). Reporting of the platform state is called attes-
tation and is done with the TPM_Quote command. As part of that, PCR values
get signed inside the TPM using a key unique to that TPM. In theory, this key
could be the Endorsement Key (EK) which is inserted into the TPM upon man-
ufacturing. For privacy reasons however, not directly the EK but alias keys are
used. They are called Attestation Identity Keys (AIKs) and are generated with
the help of an external, trusted third party.

Root of Trust for Storage (RTS). The RTS allows to use the TPM to securely store
data. Binding of data refers to encrypting data with a TPM key and hence guar-
anteeing that this data only is accessible by this specific TPM instance. Sealing
of data allows to specify a set of PCR values the data is associated with. Like
unbinding, unsealing can only be done by the specific TPM instance that holds
the private sealing key. Additionally, the plaintext is only released if the current
PCR values match those specified upon sealing.

3.2 System Architecture and Setup

The primary goals of the TrustCAM system design are to provide authenticity, in-
tegrity, freshness and timestamping as well as confidentiality and multilevel pri-
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Fig. 3 A network of X TPM-equipped TrustCAMs which are managed by a central control station

vacy protection for streamed image and video data. As illustrated in Fig. 3, each
TrustCAM of a visual sensor network (VSN) is assumed to be equipped with a
TPM chip subsequently called TPMC . Throughout the VSN, network connectivity
is provided by wireless communication in single or multi-hop mode. For this work,
cameras are assumed to be controlled and operated from a central facility subse-
quently called the Control Station (CS). A fundamental assumption is that the CS is
a secure and trustworthy facility.

Figure 3 shows a network consisting of X TrustCAM nodes and one central
control station. Not only the cameras, but also the control station is equipped with
a TPM subsequently referred to as TPMS . In addition to TPMS , the CS also hosts
several databases to store cryptographic keys generated during camera setup as well
as data received from the cameras.

It is assumed that camera setup is done when cameras are under full control of
the operating personnel. The main part of the setup involves the generation of TPM
keys on the camera and at the control station. All keys are generated as 2048 bit
RSA keys. The following setup steps and the key generation are done individually
for each of the X cameras of the network.

TPM Ownership. Initially, the camera’s TPM has to be activated. Calling the Take-
Ownership operation of TPMC sets an owner password and generates the Stor-
age Root Key KSRK . The owner secret is not required during normal operation
of the camera and is set to a random value unique to every camera. For mainte-
nance operations, the camera’s owner secret is stored in the CS database.

Identity Key Creation. An Attestation Identity Key (KAIK ) serves as an alias for the
TPM’s Endorsement Key (KEK ) and is used during platform attestation. In con-
trast to a conventional PC, there are not multiple human users on a TrustCAM.
The system software running on the camera takes the role of a single system user.
Moreover, all cameras in the network are uniquely identified and well known by
the operators. Consequently, there is no need for the anonymity gained by using
multiple AIKs in conjunction with a PrivacyCA [41]. Therefore, only a single
Attestation Identity Key KAIK is generated during setup that serves for platform
attestation. The public part KAIKpub is stored in the CS database.

Signature Key Creation. For signing data such as events or images delivered by the
camera, a non-migratable signing key KSIG is created with KSRK as its parent.
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Table 1 The cryptographic
keys generated during setup
of a single camera. The
“Control Station” and
“TrustCAM” columns denote
the storage location of the
keys. Binding keys are
generated by TPMS while all
other keys are generated by
TPMC . All keys are
non-migratable, 2048 bit
RSA keys. The pub subscript
denotes the public RSA key

Control Station TrustCAM

Endorsement Key KEKpub KEK

Storage Root Key – KSRK

Attestation Identity Key KAIKpub KAIK

Signature Key KSIGpub KSIG

Binding Keys KBIND_1 KBIND_1pub

KBIND_2 KBIND_2pub

. . . . . .

KBIND_N KBIND_Npub

Being non-migratable ensures that the private key cannot leave the camera’s
TPMC . This provides assurance that data signed with this particular key really
originates from this specific camera.

Binding Key Creation. To ensure confidentiality and privacy protection, sensitive
image data sent from the camera to the CS has to be encrypted. Encryption
should be done at different levels including the full images as well as special
regions of interest where, e.g., motion or faces have been detected.
To ensure confidentiality, at least one non-migratable binding key KBIND_1 is
created by the control station’s TPMS . The public portion of this key, KBIND_1pub ,
is exported from TPMS and stored on the camera. Note that the private part
of KBIND_1 cannot be exported from TPMS and therefore, data encrypted with
KBIND_1pub can only be decrypted at the CS and not by an intermediate attacker
who interferes with the transmission. To decrypt data bound with KBIND_1pub , the
usage password of the key has to be supplied by the system operator. To avoid
that a single operator who knows this usage password and has access to the con-
trol station can decrypt data, additional binding keys KBIND_2 to KBIND_N are
generated. Privacy sensitive data can be encrypted sequentially with multiple
binding keys. Assuming that no single operator knows all the usage secrets for
these binding keys, two or more operators have to cooperate to decrypt the data.
The N binding keys can be used also to realize different security levels. Data
at different abstraction levels (e.g., full images vs. images where people’s faces
have been removed vs. textual event descriptions) can be encrypted with dif-
ferent binding keys. Depending on security clearance, only certain abstraction
levels can be accessed by an operator.

Table 1 summarizes the cryptographic keys that are generated as part of the setup
procedure of a single camera.

Once the setup procedure is complete, the camera can be deployed. The boot
process of the camera as well as its entire software state including all executed
applications is recorded in the PCRs of its TPMC . To monitor both the availability
and the executed applications, we have previously proposed a trusted lifebeat. The
involved tursted lifebeat protocols, the mapping of camera timestamps to world time
as well as the trusted boot procedure of TrustCAM are fully detailed in [65].
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Fig. 4 Captured images are analyzed and regions of interest (ROI) are extracted. Abstracted ver-
sions of the ROI, the unmodified ROI as well as the remaining background are separately com-
pressed. The ROI parts of the video stream are encrypted with symmetric session keys that are
bound to TPMS . Hash values of the compressed images and the encrypted ROI images are signed
and timestamped by TPMC . The background image, the encrypted ROI images, the ROI hashes
and the signature are combined into a common container which is then encrypted. Subsequently,
the video data is streamed to the control station

3.3 Video Confidentiality, Authenticity and Integrity

The TrustCAM system is designed to ensure (1) confidentiality of all image data as
a protection against external attackers and (2) selective privacy protection to provide
system operators with sufficient information to fulfill their duties without automati-
cally revealing the identity of monitored persons. Furthermore, the proposed design
provides (3) authenticity, (4) integrity and (5) timestamping guarantees for delivered
data.

The basic concept is shown in Fig. 4. Image data grabbed from the camera’s
sensor is first analyzed and regions of interest (ROI) are detected. The definition
of regions of interest depends on the application and can range from motion areas
over vehicle license plates to people’s faces. The ROI are then extracted from the
image. The remaining background image ImgBACK as well as the extracted, orig-
inal ROI ImgROI are compressed. Additionally, one or more abstracted versions
ImgABST_[1...A] of the ROI are created. Abstracted versions can be images where,



Privacy and Security in Video Surveillance 55

for example, faces are blurred or persons are replaced with stick figures or generic
avatars. Alternatively, the output of the abstraction process can be also non-image
data such as a textual description. While compression of abstracted data is optional
and depends on the actual data type, encryption is mandatory:

ImgROIenc
= EncryptKSYM_2(ImgROI),

ImgABST_1enc
= EncryptKSYM_3(ImgABST_1),

. . .

ImgABST_Aenc
= EncryptKSYM_S

(ImgABST_A).

Upon startup of the streaming session, the symmetric session keys KSYM_[2...S]
are bound to the control station’s TPMS using the non-migratable binding keys
KBIND_2pub to KBIND_Npub :

KSYM_2bound = BindKBIND_3pub

(
BindKBIND_2pub

(KSYM_2)
)
,

KSYM_3bound = BindKBIND_4pub
(KSYM_3),

. . .

KSYM_Sbound = BindKBIND_Npub
(KSYM_S).

Binding KSYM_2 successively with two independent binding keys enforces the
four-eyes principle for the original ROI at the control station where two operators
have to cooperate to decrypt the data. Decryption at the control station requires
knowledge of the usage passwords of the respective binding keys. Depending on
individual security clearance, an operator might be able to, for example, decrypt the
background image and an abstracted version of the regions of interest that reveals
the behavior of monitored persons. ROI versions that contain a person’s identity are
reserved for, for example, supervisors with higher clearance. To prevent operator
misuse, especially sensitive data can be protected by double-encryption of the sym-
metric session key such that two operators have to cooperate to decrypt the data.
This is illustrated for KSYM_2 which is used to encrypt the original ROI. It is pro-
tected twice using KBind_2 and KBind_3.

To couple data integrity and authenticity guarantees with data confidentiality,
the encrypt/sign/encrypt approach discussed by Davis [19] is applied. As shown in
Fig. 4, the hashes of the plain image regions ImgBACK , ImgROI and ImgABST_[1...A]
as well as those of their encrypted equivalents are computed. Including both in the
signature demonstrates that the plaintext as well as the ciphertext come from the
same origin and provides protection against plaintext substitution attacks. Further-
more, by signing the plaintext, non-repudiation guarantees are given. Additionally,
the system operator can correlate the inner encryption with the outer encryption by
checking that the used binding keys all belong to the same camera. This protects
against potential “surreptitious” forwarding attacks [19].

HBACK = SHA-1(ImgBACK),
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HROI = SHA-1(ImgROI),

HABST_[1...A] = SHA-1(ImgABST_[1...A]),

HROIenc = SHA-1(ImgROIenc
),

HABST_[1...A]enc = SHA-1(ImgABST_[1...A]enc
).

The individual hash sums are concatenated and a common hash sum HImg is
computed:

HImg = SHA-1(HBACK ||HROI ||HABST_[1...A]||HROIenc ||HABST_[1...A]enc).

Due to performance limitations of current TPM implementations it is impossible
to sign and timestamp every image hash HImg individually. Instead, an accumulated
hash sum for a group of F frames is computed:

AccSumImg[1...F ] = SHA-1(AccSumImg[1...(F−1)]||HImg).

This accumulated hash sum, the current tick values as well as the accumulated
hash sum of the previous image group are then singed and timestamped by the cam-
era’s TPMC :

TickStampRes = TPM_TickStampBlobKSIG(TSNImgF
||TCVImgF

||TRATEImgF
||

AccSumPrevGroup||AccSumImg[1...F ]).

In the next step, the various components are combined into a common image
container ImgCOMB:

ImgCOMB = [ImageParts, ImageHashes,KSYM_[2...S]bound ,Timestamp],
with:

ImageParts = [ImgBACK, ImgROIenc
, ImgABST_[1...A]enc

],
ImageHashes = [HROI,HABST_[1...A]],

Timestamp = [TickStampRes,TSNImgF
,TSVImgF

,TRATEImgF
, startidx, endidx].

This combined image includes the background image, the encrypted original ROI
as well as the encrypted abstracted ROI images. Additionally, it contains the hashes
of the original and abstracted ROI images, the bound session keys and, in the case
of the end of a frame group, the group’s timestamp and signature together with start
and end indices. Finally, the combined image ImgCOMB is encrypted using KSYM_1
which, in turn, is bound to TPMS :

ImgCOMBenc
= EncryptKSYM_1(ImgCOMB),

KSYM_1bound = BindKBIND_1pub
(KSYM_1).
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Since all image data including the background and the regions of interest as well
as the derived abstracted versions are encrypted, confidentiality of all personal in-
formation is ensured. This also includes personal information that was accidentally
missed by the ROI detection algorithm. Furthermore, using non-migratable signing
keys for data singing guarantees data authenticity and integrity. Validation of as-
sociated timestamps and the mapping of local camera timestamps to world time is
discusses in detail in [65]. In the last step, the encrypted, combined image data and
the bound session key are streamed to the control station.

At the control station, a system operator can decrypt the individual image parts
depending on the knowledge of the usage passwords of the camera’s binding keys.
Typically, an operator can only decrypt a subset of the included data. As a con-
sequence, not all hash values of the ROI (HROI) and abstracted ROI (HABST[1...A])
images can be computed. To still be able to verify the signature of the frame group,
the operator can substitute the missing hashes with those from the ImageHashes
field included in the combined image. This approach allows verification of the over-
all signature of the frame group as well as the integrity and authenticity of those
image parts which are accessible by the operator. The strategy used is based on
the star chaining concept for hash values proposed by Wong and Lam [67] and has
two main advantages. First, an operator can validate the integrity and authenticity of
those image parts he actually sees and has legitimate access to. No decryption of ad-
ditional image components is required. Second, on the camera only one single hash
value (the accumulated HImg) has to be sent to TPMC for signing and timestamping
despite the various individual parts the combined image might contain. This is an
important advantage when considering the low performance of current TPM chips.

To illustrate the verification of the timestamp and signature, the following ex-
ample is given. Operator 1 (OP1) at the control station knows the usage secrets for
KBind_1 and KBind_4 which gives him access to the background image (ImgBACK )
and the first abstracted ROI image (ImgABST_1). For signature verification, the con-
trol station software computes the hashes of these two images:

HOP1_BACK = SHA-1(ImgBACK),

HOP1_ABST_1 = SHA-1(ImgABST_1).

Likewise, the hashes of the included encrypted image regions are computed:

HOP1_ROIenc = SHA-1(ImgROIenc
),

HOP1_ABST_[1...A]enc = SHA-1(ImgABST_[1...A]enc
).

Due to access limitations, operator 1 cannot compute the hashes HROI and
HABST_[2...A] since the usage passwords for the binding keys required to decrypt the
corresponding image parts are unknown. The missing hashes are substituted with
HROI and HABST_[2...A] from the ImageHashes field of ImgCOMB:

HOP1_Img = SHA-1(HOP1_BACK ||HROI ||HOP1_ABST_1||HABST_[2...A]||
HOP1_ROIenc ||HOP1_ABST_[1...A]enc).
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The hash sum HOP1_Img now serves as input for the computation of the expected
accumulated hash sum which, in turn, is used for group signature verification.

Finally, it must be noted that the number of abstraction levels, the video com-
pression algorithms, the container format for the combined image as well as the
streaming format can be freely chosen by the application developer. Note that the
discussed approach focuses on the protection of outgoing, sensitive image data. It
does not cover control and status messages exchanged between cameras or the con-
trol station. For that purpose, additional mechanisms such as Transport Layer Secu-
rity (TLS) can be considered.

3.4 Implementation Aspects

For the prototype, all image areas where motion is detected are defined as sensi-
tive. From the extracted ROI, an abstracted version is created using edge-detection.
The background image IMGBACK allows the presence and position of persons to
be observed, the edge-detected ROI IMGEDGE gives access to behavioral informa-
tion and the original ROI IMGROI reveals both behavior and identity of detected
persons/moving objects. Next, the background and the two ROI images are com-
pressed. JPEG compression is used for the background and the original ROI while
the black and white edge-detected ROI is compressed using zlib. The compressed
regions of interest ImgEDGE and ImgROI are encrypted using AES 265 in CBC mode
and the AES session keys are bound to CS’s TPMS using the binding keys that have
been generated for this camera during setup:

KAES_1bound = BindKBIND_1pub
(KAES_1),

KAES_2bound = BindKBIND_2pub
(KAES_2),

KAES_3bound = BindKBIND_4pub

(
BindKBIND_3pub

(KAES_3)
)
.

The video format that was chosen for the prototype is Motion JPEG (MJPEG).
As shown in Fig. 5, the encrypted image regions ImgROIenc

and ImgEDGEenc
are em-

bedded into the background image as custom EXIF data. Likewise, the bound AES
keys KAES_2bound and KAES_3bound as well as the SHA-1 hashes of the unencrypted
ImgROI and ImgEDGE are included.

Subsequently, the SHA-1 hash of the concatenated hash sums of ImgBACK ,
ImgEDGE , ImgROI , ImgEDGEenc

and ImgROIenc
is computed and is fed into the previ-

ously described hash accumulation procedure of the frame group. The accumulated
hash then is signed and timestamped by TPMC once the end of the frame group
is reached. The resulting signature and timestamp data as well as the start and end
indices of the frame group are included in the EXIF data of combined image shown
in Fig. 5.

At the control station, the streamed frames have to be decrypted before viewing.
Note that access to the original ROI IMGROI requires the cooperation of two secu-
rity guards since the corresponding AES session key KAES3 is bound with the two
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Fig. 5 The encrypted ROI image (ImgROIenc
) as well as the encrypted edge image (ImgEDGEenc

)
are embedded into the JPEG background image as custom EXIF data. The same is done for the
bound AES keys as well as the SHA-1 hashes of ImgROI and ImgEDGE . At the end of a frame
group, the group’s signature and timestamp are also included in the EXIF data. The combined
image (ImgCOMB) is then encrypted and streamed to the control station

Fig. 6 The live viewer at the control station. On the right the current frame with the decrypted,
edge-detected ROI is displayed. The left window shows the content of a circular buffer with the
last 64 frames. The current frame is marked with a blue border. Frames with a signature that has
not yet been verified have an orange border while successfully verified frames have a dark green
border. The last frame of a group has a light green border

binding keys KBIND_3 and KBIND_4. The right part of Fig. 6 shows the video stream
at the control station where the background image is overlayed with the decrypted,
edge-detected region of interest.

Accumulated image signatures and timestamps of frame groups are validated at
the control station. Assuming that this validation is successful, the operator at the CS
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has assurance that neither the individual images of a frame group nor their order was
modified and the images of the group come from the expected camera. Freshness
checks and world time mapping can be done as described in [65].

The left side of the live stream viewer example of Fig. 6 shows a circular buffer
that contains thumbnails of the last 64 received frames together with their verifica-
tion status. For frames with orange borders, the frame group signature was not yet
received. Already verified frames have a green border and the last frame of a group
is marked with a light green border. If authenticity and integrity of an image group
cannot be verified before the circular buffer wraps around, a warning message is
displayed and streaming is interrupted.

3.5 Performance Considerations

Table 2 presents the frame rates that are achieved on TrustCAM in different stream-
ing modes. The sensor can deliver images either as uncompressed YUYV data or as
a JPEG compressed version. Input images are delivered at a resolution of 320 × 240
or 640 × 480 pixels. For internal processing, input images are converted to either
RGB or grayscale. The “Plain Streaming” column of Table 2 shows the achieved
streaming frame rates if no ROI is extracted and neither encryption nor digital sig-
natures are performed. Therefore, this column reflects the baseline streaming per-
formance of the system without any additional security or privacy protection.

The second column, “Image Timestamping”, shows the delivered frame rates if
groups of outgoing images are timestamped. Overheads for the TPM TickStamp-
Blob command are eliminated from the critical path by signing frame groups and
executing the TPM operations asynchronously. As a consequence, the small perfor-
mance impact that can be observed for some cases in the “Image Timestamping”
column result from the additional computation of the accumulated SHA-1 hash for
a frame group. Performance impacts on video streaming can be observed if YUYV
input images are used. In this case, the images have to be JPEG compressed before
being hashed and streamed. JPEG compression is computing intensive and puts a
high load on the OMAP’s ARM CPU. Therefore, even the small additional effort of
the SHA-1 computation results in a reduction in the frame rate.

The “Image Encryption” column of Table 2 presents the achieved frame rates
if a randomly placed region of interest is extracted from the input image, the ROI
images are encrypted and embedded into the remaining background and, finally,
the combined image is encrypted. For data encryption, AES 256 in CBC mode
is used. Encryption runtimes for typical input sizes range from 1.6 ms (8 kB) to
15.4 ms (80 kB). Across all input format combinations, a considerable impact on
the achieved streaming framerate can be observed. Another slight performance re-
duction can be perceived in the last column of Table 2 which presents the frame
rates if both image timestamping and encryption (ROI size 200 × 200 pixels) are
performed.

To investigate the cause for the substantial performance impact that is apparent
in the “Image Encryption” column of Table 2, the involved processing steps have
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Table 2 Frame rates (avg. over 1000 frames) for different types of video streaming between
TrustCAM and CS via WiFi. In the “Plain Streaming” case, JPEG or YUYV frames are de-
livered by the sensor. JPEG frames are directly streamed as a MJPEG video stream. Note that
JPEG images delivered by the sensor unit are in RGB. A conversion to grayscale would only add
an extra overhead for decompression and recompression and is therefore omitted (cells marked
with n/a). YUYV frames are converted to grayscale or RGB24 before they are JPEG compressed
and streamed. The “Image Timestamping” column presents the achieved frame rates if groups of
full, unmodified images are signed and timestamped. The “Image Encryption” column shows the
frame rates that are achieved if a randomly placed region of interest of 200 × 200 pixels is ex-
tracted, an edge-detected version is created and the individual image parts (ImgROI , ImgEDGE and
ImgCOMB) are encrypted before streaming. Finally, the last column shows the achieved frame rates
when doing both—image timestamping/signing and encryption—before streaming

Input format Internal
Format

Plain
Streaming

Image
Timestamping

Image
Encryption

Image Encryption
and TimestampingResolution type

320 × 240 YUYV Gray 25.0 fps 25.0 fps 20.5 fps 19.7 fps

JPEG n/a n/a 13.5 fps 13.2 fps

YUYV RGB24 25.0 fps 24.4 fps 12.4 fps 12.0 fps

JPEG 25.0 fps 25.0 fps 10.3 fps 10.1 fps

640 × 480 YUYV Gray 13.1 fps 12.8 fps 9.6 fps 9.2 fps

JPEG n/a n/a 5.1 fps 5.0 fps

YUYV RGB24 6.5 fps 6.4 fps 5.1 fps 5.0 fps

JPEG 25.0 fps 25.0 fps 4.0 fps 3.9 fps

been analyzed in detail (see [65] for details). This analysis reveals that the runtime
overheads for AES 265 encryption and SHA-1 computation are acceptable. AES
encryption for the compressed ROI takes around 1.5 ms while only 1 ms is required
for the compressed edge image. For the combined image, where the encrypted ROI
and edge image are embedded as EXIF data, AES encryption requires between 4
and 9 ms. Binding of the AES session keys using the public binding keys of TPMS

takes about 5 ms and has to be done only at startup of the streaming application or
when new session keys are created. Finally, SHA-1 computation requires between 2
and 3.1 ms. Overall, the direct performance impact of the added security and privacy
functions is acceptable. The biggest bottleneck—the slow TPM—could be removed
from the critical processing path. Additionally, TPM commands are executed in
parallel to the main CPU and therefore this does not have an influence on the image
processing blocks.

4 Concluding Remarks and Outlook

Security and privacy protection are crucial properties of video surveillance systems,
since they capture and process sensitive and private information. In this chapter, we
presented an overview of existing privacy protection and security solutions. A key
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observation is that there is still a lack of approaches that consider security and pri-
vacy in video surveillance in a holistic way. It is apparent that most security solutions
are situated at the application level and that node-centric security is not taken into
account. A lot of work has been targeted at data- and network-centric security. But
without taking the security of camera devices themselves into account, high-level
protection mechanisms are literally built on sand.

With bringing security and privacy protection onto camera devices, one can
achieve reasonable protection against attacks on data that is delivered by surveil-
lance cameras. However, only limited protection is applied for data while it is on
the camera. It is an open research topic to identify suitable approaches for on-device
data protection. One potential approach is to bring security and privacy protection
even closer to the data source by integrating dedicated security functions into the
image sensor. If security and privacy are guaranteed at the sensor level, then the
camera and its relatively large software stack would no longer have to be consid-
ered as trusted entities. This approach contains two main challenges: First, it is un-
clear what type of privacy protection is suitable and feasible at the sensor level.
Second, sensor-level privacy protection means that image processing and analysis
applications on the camera must be adapted to deal with pre-processed and pre-
filtered data. A related question is if and how privacy protection can be objectively
measured. Since privacy depends on personal as well as cultural attitudes, technical
approaches alone will be insufficient. A thorough exploration of the privacy pro-
tection design space will also have to involve extensive user surveys to determine
which privacy protection techniques are appropriate.
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Object Video Streams: A Framework
for Preserving Privacy in Video Surveillance

Faisal Z. Qureshi

Abstract Here we introduce a framework for preserving privacy in video surveil-
lance. Raw video footage is decomposed into a background and one or more object-
video streams. Such object-centric decomposition of the incoming video footage
opens up new possibilities to provide visual surveillance of an area without com-
promising the privacy of the individuals present in that area. Object-video streams
allow us to render the scene in a variety of ways: (1) individuals in the scene can
be represented as blobs, obscuring their identities; (2) foreground objects can be
color coded to convey subtle scene information to the operator, again without re-
vealing the identities of the individuals present in the scene; (3) the scene can be
partially rendered, that is, revealing the identities of some individuals, while pre-
serving the anonymity of others, etc. We evaluate our approach in a virtual train
station environment populated by autonomous, lifelike virtual pedestrians. We also
demonstrate our approach on real video footage. Lastly, we show that Microsoft
Kinect sensor can be used to decompose the incoming video footage into object-
video streams.

1 Introduction

Video surveillance is ubiquitous. Recent advances in camera and communication
technologies along with the decrease in deployment costs have made it possible to
set up large video surveillance infrastructures relatively easily. The societal shift that
has occurred during the first decade of the 21st century with its focus on the war
on terrorism has all but removed any opposition to putting citizenry under video
surveillance with the stated aim to enhance public safety and security. Many cities
around the world are increasingly relying on video surveillance for crime preven-
tion and community safety. Video footage captured through surveillance cameras
is routinely used to identify suspects and as evidence in the courts. In addition to
the video surveillance infrastructure controlled by city councils and government

F.Z. Qureshi (B)
Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
e-mail: faisal.qureshi@uoit.ca

P.K. Atrey et al. (eds.), Intelligent Multimedia Surveillance,
DOI 10.1007/978-3-642-41512-8_4, © Springer-Verlag Berlin Heidelberg 2013

67

mailto:faisal.qureshi@uoit.ca
http://dx.doi.org/10.1007/978-3-642-41512-8_4


68 F.Z. Qureshi

Fig. 1 British Government
poster outside Metro station
in London (circa 2007)

bodies, private sector has also invested heavily in video surveillance technologies.
Retail stores, for example, are using video cameras to collect data needed to analyze
and model consumer behavior [10, 13]. Video cameras are also quickly becoming
an essential part of smart environments, for example, supporting home automation
to enable elderly and disabled to safely remain in their own homes.

The panoptic effect of pervasive video surveillance (Fig. 1) raises many ques-
tions: (1) Who is collecting information about us? (2) How this information is being
used? (3) What information is being collected? (4) Who has access to this infor-
mation? and (5) What is the retention policy for the collected information? These
issues have been studied by social and legal experts, and policies and best practices
have been suggested. The use of video surveillance, however, is still largely un-
regulated. In 2001 Superbowl, law enforcement videotaped attendees without their
knowledge, and then compared their faces against a database containing faces of
known criminals [12]. Casinos, for example, also use biometric technology to iden-
tify cheaters and for “patron management” [11]. Experts agree that video surveil-
lance undermines our “right to anonymity.” Video surveillance augmented with bio-
metric technology (e.g., face recognition) raises even more privacy concerns. Bal-
ancing the need for video surveillance against an individual’s right to privacy is a
challenge that needs to be addressed within social, legal, and technical contexts.
A timely challenge for computer vision researchers is to develop video surveil-
lance systems with built-in privacy protection capabilities. Such capabilities will
help camera operators implement best practices and uphold laws regulating video
surveillance.
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Here we introduce a framework for privacy preserving video surveillance sys-
tems.1 Captured video is decomposed into object-video streams. Each object-video
stream contains visual information about a single object in the scene.2 These streams
can be recombined to visualize the area under surveillance in a variety of ways. For
example, individuals present in the scene can be represented as color-coded blobs,
hiding their identities. Selected individuals can be also blurred. Additionally some
individuals can be removed from the video entirely. We also envision that these
object-video streams are encrypted at source and can only be viewed by operators
with the necessary authorization.

We embrace the Virtual Vision paradigm, exploiting visually and behaviorally
realistic virtual environments to develop and empirically evaluate our video surveil-
lance framework [17]. We employ a virtual train station environment populated
by autonomous lifelike virtual pedestrians that is described in [24]. The vision
pipeline for our prototype video surveillance system matches the performance of
the vision pipeline (for real video) presented in [6]. Therefore, the obtained results
are legitimate and valuable. We describe vision pipeline in Sect. 3. We also show
object-stream construction and selective rendering using real video footage in Fig. 9.
Furthermore, we show decomposing video into object-video streams using the Mi-
crosoft Kinect sensor [15].

The remainder of the chapter is organized as follows. We summarize relevant
literature in the next section. Section 3 develops the vision pipeline: background
learning, foreground detection, and pedestrian tracking. Then in Sect. 4, we describe
how raw video is decomposed into a background stream and one or more object-
video streams. Section 5 describes how object-video streams can be used to develop
a privacy preserving video surveillance system. Preliminary results of our approach
are presented in Sect. 6. While we have not deployed and tested our system in a real-
world setting, the results presented here serve to demonstrate the applicability of the
proposed strategy. We conclude our chapter with conclusions and future directions
in Sect. 7.

2 Relevant Literature

Typically, sensory data gathered by a video surveillance system is monitored by
human operators to detect events of interest. Computer vision technologies, such
as pedestrian tracking, face recognition, and detection of unclaimed baggage, have

1This chapter is based upon our paper that appeared in the 6th International Conference on Ad-
vanced Video and Signal Based Surveillance in 2009 [16].
2This assumption sometimes breaks due to the limitations of video processing routines, such
as background subtraction, object tracking, image segmentation, etc. Still under favorable
conditions—good lighting, sparsely populated scenes, etc.—it is possible to decompose the video
into object-video streams as we show later in the chapter.
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been employed to increase the effectiveness of existing video surveillance systems
and to develop the next-generation camera networks capable of perceptive cover-
age of large areas with little or no human supervision. These highly capable video
surveillance systems shift the balance of power between intrusiveness and privacy,
raising new privacy concerns. Clearly, these systems severely undermine the right
to anonymity in public space.

The ability to visually track people present in the scene is necessary for camera
networks capable of carrying out visual surveillance tasks autonomously. Face de-
tection and recognition enable these networks to identify individuals [1, 3, 7, 26, 28].
Computer vision techniques also allow these video surveillance systems to compute
soft and hard biometric signatures of individuals. In short, computer vision tech-
nologies will play a central role in developing the video surveillance systems of the
future.

Interestingly computer vision technologies can also be used to develop camera
networks that can uphold privacy policies and regulations [5, 23]. Pedestrian detec-
tion and tracking routines can identify individuals present in the scene and obscure
them to hide their identities. The operator can still see the scene and know how many
people are present in the scene without knowing the identities of those people. An
activity recognition technique can reveal an individual if it detects an anomalous
behavior.

Schiff et al. develop a video surveillance system capable of obscuring the faces
of individuals present in the scene [21]. Individuals who do not want to be identified
wear a visual marker, which allows the video surveillance system to locate the face
of the individual and obscure it with an ellipse, while allowing observation of his
or her actions in full detail. This allows the operator to observe the activities taking
place in the scene without knowing the identities of the people present.

Sony patented a privacy mode for camcorders that replaces the skin color of indi-
viduals so as to avoid race-based discrimination [2]. [27] patented a system capable
of obscuring a privacy region in a pan-tilt-zoom camera. [8] develops a system that
is able to locate and obscure people in a video, thereby preventing statistical in-
ferences from the video. Chattopadhyay and Boult developed a privacy preserving
smart camera, called PrivacyCam [5]. PrivacyCam uses on-board digital signal pro-
cessor to locate and encrypt human faces in the image. The original image can be
recovered given the correct decryption key.

Saini et al. have carefully studied privacy leakage in video surveillance sys-
tems [18]. They correctly identify that an individual’s identity can be learned
through other channels even when that individual is not identifiable within a
video. Consequently, obscuring/blurring an individual in a video footage alone is
not sufficient to ensure that the privacy of that individual is not compromised.
Object-video streams might alleviate this problem somewhat, since it is possible
to make an individual disappear from the video by simply removing the object-
video stream corresponding to that individual from the mix. Saini et al. have stud-
ied adaptive video blurring to protect the privacy of individuals present in the
scene [19].
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Fig. 2 Vision pipeline: We have adapted well-understood computer vision algorithms for our pur-
poses. The vision routines operate upon both synthetic video captured by virtual cameras and real
video captured through physical cameras. Background subtraction is used to identify foreground
pixels. Pedestrians signatures that encode pedestrian color distribution in HSV space are matched
in successive frames to perform tracking

3 Vision Pipeline

The performance of the proposed surveillance system is ultimately tied to the capa-
bilities of the vision pipeline that is responsible for segmenting raw video into ob-
ject video streams. We have adapted well-understood computer vision algorithms,
including background subtraction, blob detection, and pedestrian tracking, to con-
struct a vision pipeline that works equally well on both synthetic video captured
within our virtual vision simulator and real video captured by physical cameras. Re-
cently, we have also used the Microsoft Kinect RGBD sensor to construct object
video streams from raw videos. In Fig. 2 we briefly explain the various components
of the vision pipeline.

3.1 Background Subtraction

During an initial training phase, when no pedestrian is visible, each camera learns
a background model of the scene. We model the variation in each pixel using the
codebook method that was developed in [9]. We use the implementation of code-
book method for background learning provided in the Open Computer Vision Li-
brary (OpenCV) [4]. Background subtraction step involves comparing the current
frame against the learnt background model and constructing a (in general, noisy)
foreground mask. In our case, the foreground mask constructed through background
subtraction is cleaner due to lack of shadows, however, this does not invalidate our
vision pipeline. Many techniques exist in the literature to account for shadows and
other artifacts, such as camera motion, during background subtraction [6]. In a real
system, we would also need a mechanism to update the background model to ac-
count for changes in the background. It is straightforward to incorporate this capa-
bility into our background model.
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3.2 Pedestrian Tracking

The foreground mask obtained through background subtraction is cleaned up
through connected component analysis and blobs representing foreground objects
are extracted. In our case, each blob represents one or more pedestrians. We employ
an appearance-based pedestrian tracker that is able to detect and track pedestrians in
both synthetic and real video footage. Pedestrian appearance signatures are matched
across frames to track pedestrians. Specifically pedestrian tracking is performed by
setting up a bipartite graph matching problem as suggested in [6]. The optimal solu-
tion to the matching problem resolves pedestrian identities across multiple frames.
We refer the reader to [6] for more details. Pedestrian tracker assigns each blob to
one or more pedestrians. If an appropriate blob is not found in a frame, the pedes-
trian is matched to the entire frame.

The tracker maintains a list of pedestrians that are currently being tracked. In
each frame, each pedestrian is either matched to a blob (using pedestrian signa-
ture matching) or to the background. The tracker is robust to short-duration occlu-
sions.

3.3 Microsoft Kinect RGBD Sensor

It turns out that Microsoft Kinect Red-Green-Blue-Depth (RGBD) sensor is able to
perform background subtraction, blob detection, pedestrian tracking, and pose esti-
mation in real-time (around 15 frames per second). Furthermore, Microsoft Kinect
also estimates the 2.5D structure of the scene by associating a depth value with each
pixel. The depth information makes it much easier to identify the blobs belonging to
different individuals present in the scene, which is the first step towards construct-
ing object video streams from raw videos. In other words Microsoft Kinect already
includes the vision pipeline that we require. It is, however, important to bear in mind
that the Kinect sensor’s operational range is limited to roughly 2.5 m. Consequently
we still need our vision pipeline in order to be able to use generic cameras that have
much larger operational ranges.

4 Object-Video Streams

This section describes the process of decomposing captured video into object-video
streams. Let Ft be the video frame and Mt be the (binary) foreground mask at time t .
We begin by extracting background pixels:

FB
t (x) =

{ [Ft(x),1] if Mt(x) = 0;
0 otherwise.

(1)

Here, x is defined over the domain of Ft . [Ft (x),1] denotes an RGBA vector and 0
denotes a zero vector. FB

t is an RGBA image. Next, assume that the foreground
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Fig. 3 Cleaned up foreground mask decomposes a video frame into a background component and
two foreground components. Pedestrian to blob mapping information maintained by the pedestrian
tracker links each foreground component to one (or more) pedestrians

mask Mt contains n blobs. Then for each blob Ci identified in the foreground im-
age Ft , perform the following steps,

1. Construct blob mask Mi
t .

Mi
t (x) =

{
1 if x ∈ A(Ci);
0 otherwise.

(2)

A(Ci) denotes the area enclosed by blob Ci .
2. Construct an RGBA color image F i

t .

F i
t (x) =

{ [Ft (x),1] if Mi
t (x) = 1;

0 otherwise.
(3)

Here, x is defined over the domain of Ft . [Ft (x),1] is an RGBA vector. 0 denotes
a zero vector.

The above process, which is illustrated in Figs. 3 and 4, partitions frame Ft into
a background image, FB

t (with holes in places of foreground objects), and n object
images F i

t , where i ∈ [1, n]. Each object image contains pixel data for one (or more)
foreground objects. We note that this is a loss-less operation by observing that

Ft = FB
t ∪

(⋃

i

F i
t

)
.

We define a Partition(·) operator that partitions a frame into background and
foreground components as described above:

Partition(Ft ) = {FB
t ,F i

t |i ∈ [1, n]}.
Given a sequence of video frames Ft , we construct the object-video stream Ok

for a particular object k as follows. Let Ok be an empty sequence. Then for each
frame Ft :
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Fig. 4 Decomposing video into a background component and 7 foreground components. Each
foreground component encodes visual data for a particular pedestrian. (a) Raw video. (b) Fore-
ground mask. (c) Background image containing holes. (d)–(j) RGBA frames containing color data
for 7 pedestrians visible in the frame

Fig. 5 Constructing object-video streams

1. Construct Partition(Ft ).
2. Extend the sequence Ok by appending F i

t at the end, if the tracker maps object k

to blob i at time t . If the tracker does not map object k to any blob in the current
frame, extend the sequence Ok by appending F t .

Pedestrian crossover, proximity or occlusions can lead to poor blob segmentation
and tracking errors. Multiple pedestrians can be mapped to the same blob. Consider,
for example, the scenario shown in Fig. 5. The two objects represented as Green
and Blue blobs are correctly segmented in frame t , so frame t is correctly decom-
posed into three components: background, Blue object, Green object. In frame t +1,
however, the two objects are seen as a single blob, and the frame is incorrectly
decomposed into two components. The pedestrian tracker assigns both objects to
Blue/Green blob. Next, the two objects are correctly segmented in frame t + 2, so
frame t + 2 is correctly decomposed into three components.
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5 Privacy

Decomposing raw video into object streams opens up new possibilities for imple-
menting privacy policies. At the most basic level, it allows the video surveillance
system to obscure the identities of individuals present in the scene. An operator can
still see scene activity without knowing the identities of individuals present in the
scene. Object-video streams can be used to render the scene for a variety of pur-
poses. We employ Laplacian pyramid blending to combine different object-video
streams for rendering purposes [14]. Laplacian pyramid blending is also used to fill
the holes in the rendered scene by using the stored average background image FB .

• Object-video streams can be used to enhance the situational awareness of the
operator. Objects can be color coded to convey qualitative scene information to
the operator. This can be a powerful scheme for drawing operator’s attention to
events of interest. Sophisticated video analytics or simple image-space heuristics
can assign unique colors to pedestrian blobs. For example, any pedestrian who
enters a prohibited zone can be drawn as a red blob. Similarly, poorly segmented
blobs, which map to multiple pedestrians, can be color coded to indicate pedes-
trian interactions (or simply overlap).

• Object-video streams also enable selective scene rendering. An operator can ren-
der the scene showing only some of the pedestrians present in the scene, without
disclosing the identities of other individuals.

• Object centric decomposition of surveillance video has the potential to give more
control to the individual. For example, a person might be able to find a lost item
by sifting through an appropriate rendering of the scene that hides the identity of
other individuals. Presently individuals are not allowed the access to the surveil-
lance video as it might violate the privacy of others present in the scene.

We will be remiss to not point out that similar ideas of leveraging computer
vision to obscure the identity of individuals present in the scene have been explored
by others [22]. It is envisioned that in a real video surveillance system, object-video
streams will be encrypted. Access control mechanisms will determine how the scene
is rendered providing a way to strike a balance between the need-to-know on the part
of an operator and the right-to-privacy on the part of an individual.

6 Results

We evaluate our approach on a virtual video surveillance system deployed in a vir-
tual train station. The video surveillance system comprises 4 passive, wide field-of-
view cameras with overlapping fields-of-view. It is assumed that the camera setup
is fully calibrated, which simplifies pedestrian identity management across multi-
ple cameras. Decomposing raw video into object-video streams does not require
the camera network to be calibrated. We also report results on real video footage,
further demonstrating the validity of our approach. Last, we demonstrate how Mi-
crosoft Kinect RGBD sensor can be used to construct object-video streams.
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Fig. 6 Decomposition into object-video streams presents new possibilities to view the scene

6.1 Synthetic Footage

We show different rendering possibilities in Fig. 6. Figure 6(d) shows a privacy
preserving rendering where each pedestrian is seen as a color blob. Single person
blobs are Green; whereas, multi-person blobs are colored Blue. Pedestrian tracker
selects an appropriate color for the blob. Figure 6(e) shows a rendering where the
identities of two individuals (the man in Red shirt and the man in Orange shirt)
have been revealed. All other individuals are still shown as blobs. Figure 6(f) is
showing the scene with only two persons. In this case, the viewer can know the
identity of these persons; however, he can not tell how many people were present in
the scene.

Figure 7 shows selective rendering. The top row contains original video frames.
The second row shows foreground mask. Tracking output is shown in the third row,
and the fourth row shows a rendering of the scene using the object-video stream
associated with the person in Brown shirt. Notice that frames 266 and 308 (row 4)
also show a woman in a Blue top. This is an artifact of poor segmentation. Fore-
ground detection erroneously merged blobs for the two individuals in frames 266
and 308. The blobs associated with the person in Brown shirt are shown in Vio-
let.

Figure 8 shows how blob coloring can improve scene awareness of an operator,
while still preserving the privacy of individuals present in the scene. The Red blob
shows a pedestrian who has crossed a virtual trip wire. Virtual trip wires, which are
typically defined in pixel space, are routinely used in video surveillance systems to
raise alarms.
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Fig. 7 This sequence shows the effects of poor foreground segmentation on the object-video
stream for the pedestrian wearing a Brown shirt. Pedestrian tracker maps the pedestrian of interest
to Violet blobs in the shown frames

Fig. 8 Event based color coding is also possible. The Red blob indicates a person who has tripped
a virtual wire (defined in pixel space). Such wires are routinely used in video surveillance systems.
(a) Video frame, (b) foreground mask, (c) tracking output, and (d) privacy preserving color coded
rendering
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Fig. 9 Bootstrapping sequence from the Wallflower dataset [25]. (a) Raw frame, (b) mean image
estimated using 2000 frames, (c) foreground mask, (d) pixel data for foreground objects, (e) show-
ing all pedestrians as color blobs, and (f) re-imagining the scene with only two pedestrians

Fig. 10 Using Microsoft Kinect RGBD images to construct object video stream. (a) Captured
video and (b)–(d) object video streams constructed corresponding to the three individuals present
in the scene

6.2 Real Video Footage

Figure 9 shows object-stream decomposition and subsequent selective rendering on
real video footage. Figure 9(e) renders pedestrians as colored blobs: multi-person
blobs are shown in red and single person blobs are shown in blue. Tracker is unable
to resolve the green blob in the top-left corner of the frame. Figure 9(f) combines
mean image estimated by observing 2000 frames and object-video streams for the
two pedestrians in the bottom-right corner of the frame to render the scene showing
only these two pedestrians. A closer look reveals ghosting artifacts in the rendered
frame as the estimated mean frame is used to close the holes left by other pedestri-
ans. Ghosting artifacts can be reduced by providing a reference background frame.

6.3 Microsoft Kinect RGBD Sensor

Figure 10 shows object-stream decomposition and subsequent selective rendering
using Microsoft Kinect RGBD sensor. The captured video containing 3 individuals
is decomposed into 3 object video streams, each containing only a single individual.
In this case, both color and depth information available through the Kinect sensor
is used to construct the object video streams. Figure 11 illustrates a situation where
Kinect shines. The foreground mask shown in Fig. 11(a) shows a situation discussed
in Sect. 4 where sometimes a single (connected) foreground region is associated to
two or more individuals present in the scene. These situations are difficult to deal
with in a general setting. Kinect sensor, however, can easily deal with these situ-
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Fig. 11 Using Microsoft Kinect RGBD images to construct object video stream. (a) Captured
video, (b) foreground mask, and (c)–(f) object video streams constructed corresponding to the
three individuals present in the scene

ations by relying upon the depth value associated with each pixel. In the example
shown in Fig. 11, the foreground region (Fig. 11(b)) is decomposed into four indi-
viduals.

6.4 Limitations

The work on privacy preserving video surveillance systems, including the work pre-
sented here, is focused on technical challenges related to obfuscating individuals
present in the captured video stream. The underlying assumption is that the privacy
of an individual is not violated if an operator is unable to see that person. While
obfuscating individuals in captured video streams is a necessary first step towards
realizing privacy preserving video surveillance system, this capability alone does
not address the privacy issues surrounding pervasive video surveillance. This is not
only true for the system presented here, but is also true for any system that attempts
to hide the identity of an individual in the surveillance video.

Saini et al. [20] have developed privacy leakage models that attempt to quantify
the loss of privacy due to video surveillance even when an individuals is never vi-
sually identified in any of the video streams. They cogently argue that privacy is
compromised even in the presence of an obfuscation mechanisms that never fails.
One a more practical note, however, it is worthwhile remembering that error toler-
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ance for any obfuscation scheme is nearly zero. If the obfuscation scheme fails even
for a single frame, the privacy of an individual is compromised.

7 Conclusions

We have proposed a novel framework for preserving privacy in video surveillance.
Raw video data is decomposed into object-video streams. Such object-centric de-
composition of the raw video presents new alternatives for upholding privacy poli-
cies and regulations in video surveillance. Object-specific privacy policies can be
implemented. Object-video streams can be combined to recreate the original video,
when warranted. Selective scene rendering, which focuses on a single aspect of the
scene, is also supported.

The quality of object-based video decomposition is closely tied to the perfor-
mance of low-level vision processing—poor segmentation leads to poor, or worse
useless, video decompositions. Recent advances in background segmentation and
pedestrian tracking suggest that the proposed approach is useful for scenes with
low to medium crowd density. Pedestrian segmentation is still difficult in crowded
scenes. It is conceivable that a privacy preserving scheme, such as ours, can be easily
implemented in RGBD sensors similar to Microsoft Kinect. Many technical chal-
lenges, however, need to be addressed before such RGBD sensors can be used for
video surveillance in general.

We are currently investigating encryption and access control mechanisms to de-
velop secure rendering modules for video surveillance systems. These modules will
combine object-video streams to present a mediated view of the scene to the op-
erator. Such rendering modules are needed to gain the benefits of video surveil-
lance technologies while preserving individual privacy. In closing, we need to pay
more attention to privacy implications of pervasive video surveillance. More work is
needed to develop robust computer vision routines capable of stripping identifiable
information from surveillance footage without compromising the usefulness of the
captured footage. Furthermore, any privacy preserving video surveillance system
must also take into account the privacy leakage channels inherent in pervasive video
surveillance systems.
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Surveillance Privacy Protection

Nikki Gulzar, Basra Abbasi, Eddie Wu, Anil Ozbal, and WeiQi Yan

Abstract Surveillance Privacy Protection (SPP) is a realistic issue in the world we
are living in today. Due to the massive progress in technologies and systems, surveil-
lance is becoming quite impossible to avoid. More information is being handed out
without realizing the risks involved. The objective of this chapter is to evaluate what
types of surveillance, privacy and protection measures are being implemented, how
information is being used and what rights individuals have over this. In addition,
this chapter also emphasizes the importance of tools, data sets and databases that
are being developed to enable surveillance privacy.

1 Introduction

Surveillance can be defined as close observation over an object or a person for an un-
defined period of time, especially when one is under suspicion. The word “surveil-
lance” has commonly been associated with police and intelligence agencies. Previ-
ously, there was a set purpose behind “surveillance”, however since the late 1980s
with the emergence of cyberspace technology, this has changed [9]. Today, the pub-
lic is being monitored without having their consent or without having prior knowl-
edge about how these activities have become a breach in privacy [33, 52].

This chapter introduces three types of surveillance: digital surveillance, audio
surveillance and video surveillance. The main focus of this chapter is video surveil-
lance since it is the most popular type of surveillance that is being deployed in so-
ciety. Section 1 of this chapter introduces three sub-sections: surveillance, privacy
and protection. This is followed by the types of technology for digital surveillance
and the techniques that are being used for video and images in Sect. 2. Section 3 de-
scribes the systems and tools for surveillance privacy protection, it also highlights
recent study on W3 privacy: understanding what, when and where inference chan-
nels in multi-camera surveillance video. Section 4 summarizes what surveillance
privacy protection is, how it is being deployed and what the future expectations are.
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1.1 Digital Surveillance

One of the cutting-edge surveillance technologies is digital surveillance. It involves
the monitoring data and traffic on internet [64]. Government agencies such as Infor-
mation Awareness Office, NSA and the FBI spend billions of dollars each year to
develop systems so as to intercept and analyze the data transmitted, and extract the
data that is useful to law enforcements [14].

1.1.1 Biometric Surveillance

With the advancement of digital technology, we are seeing significant advancement
is biometrics. Biometric surveillance measures and analyzes human physical and be-
havioral characteristics for authentication, identification or screening purpose [68].
Physical characteristics include fingerprints, facial recognition and DNA. Behavior
characteristics include voice or gait. The September 11 tragedy has given biometric
surveillance massive attention [68].

Biometric technologies are being marketed as a “silver bullet” for terrorism [68].
The FBI is spending $1 billion to build a new biometric database, which will store
DNA, facial recognition, fingerprints and other biometric data [59]. Biometrics can-
not fully identify whether the person under surveillance is a terrorist or not, no mat-
ter how accurately the person is identified, it cannot determine it all alone [99], but
with introduction of facial thermographs, it will evolve the biometrics technology
even further [3, 50]. Facial thermographs allow machines to identify certain emo-
tions such as fear or stress by measuring the temperature generated by blood flow
to different parts of their face [77]. This system will help the law enforcements if
the suspect is worried, nervous, lying or hiding [77]. As well as biometrics, RFID
surveillance is making headway in digital surveillance [32]. RFID tags can be ap-
plied to animals, humans and products to keep track using radio waves [82]. It can
be read from several meters away. There are companies who are already using RFID
tags on employees, it helps employers to monitor them on their job. There are con-
cerns that RFID will soon allow people to be tracked and scanned everywhere they
go [18, 59].

1.1.2 Audio Surveillance

Audio surveillance is one of the oldest forms of surveillance technology. Audio
surveillance is used to keep tracking phone conversations, tracking the location and
monitoring the data [62]. Wiretapping is one of the most common and simple forms
of audio surveillance. Wiretapping is highly inconspicuous and is able to clearly
record conversations from both sides [103]. Small audio devices which are com-
monly referred to as bugs, are attached to a telephone circuitry, then signals are
transmitted from wireless to another device that records the conversation [103], but
with introduction of mobile phones, wiretapping has been replaced by software that
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keeps tracking all mobile phone users. It also gives geographical locations of a mo-
bile phone even when it is not in use [25].

Another audio surveillance that is usually utilized is a room microphone. This
usually involves placing wireless microphones in a room to pick up on conversa-
tions. The microphone can be planted in common places such as clocks, pens and
stuffed toys [103]. Room microphone works in a similar fashion to wiretapping.
The microphone sends signals to a receiver and the conversation can be directly
recorded.

Just like room microphone, long distance microphones are another means of au-
dio surveillance. A parabolic microphone has the ability to pick up conversations
up to 91.4 meters away [76]. Parabolic microphone is also referred to as a shotgun
microphone because of its long shape [103]. The disadvantage of parabolic micro-
phone is that it is highly sensitive. While picking up conversations, it can also pick
up other noises and if there is obstruction between the microphone and the conver-
sation, then functionality of the microphone will be affected [103].

Conceivable transmitters, also known as body wires which are a very well-known
type of audio surveillance. Small microphones are worn by a person, and the signals
are sent back to the receiver for recording [10]. It is a portable device and allows the
person wearing the device to engage in conversations and get specific details [89].

1.1.3 Video Surveillance

Video surveillance uses video cameras to view a wide range of areas. The footage is
recorded and can be viewed by a security guard or by members of the law enforce-
ment. Before Closed-Circuit Television (CCTV) would only be installed in places
such as banks, casinos, airport, military installation and convenience stores but now
a day CCTVs are located everywhere [61], U.K. has the largest CCTV network
in the world [9]. In January 2000, Prime Minister Tony Blair funded 150 million
pounds for the expansion of CCTV network [104].

Another form of video surveillance is aerial surveillance which is mostly used by
military to gather visual imagery or video from airborne vehicle [68]. Military air-
crafts use a range of sensors to monitor battlefields. Digital imaging technology and
miniaturized computers are some of the technologies that have contributed to rapid
advances in aerial surveillance hardware such as micro-aerial vehicles and high res-
olution imagery capable of identifying objects at extremely long distances [59, 91].
MQ-9 Reaper is a U.S. drone plane used by the Department of Homeland Security,
it carries cameras that are capable of identifying an object from altitude of 60,000
feet, and it has infrared devices that can detect the heat emitted from a human body
at a distance of up to 60 kilometers [10].

In 2007, state and domestic federal agencies were able to access imagery from
military intelligence satellites and aircraft sensors which are now being used to ob-
serve activities of U.S. citizens [59, 97]. Software such as Google Earth provides
similar information but the satellite imagery provides real-time video with higher
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resolution, it will also be able to identify objects in buildings and also detect chem-
ical traces no matter what type of weather is (cloudy, rainy or stormy) [14]. In
1928, U.S. Departments of Defence launched the Navstar Global Positioning Sys-
tem (GPS), which is composed of 24 geo-rotational satellites that orbit the earth at
a distance of 12,660 miles [14]. No matter where we are positioned on the earth,
there are several satellites above us and no movements on the ground or in orbit of
the satellite will cause a temporary blind spot [34].

1.2 Surveillance Privacy

Whenever we are under surveillance, privacy becomes an issue. Privacy has been
commonly used within western society, however, it was not a general concept and
to many cultures it was virtually unknown, until recently [95]. Privacy is an indi-
vidual right to control what happens with personal data [71, 102]. The meaning of
privacy may differ throughout cultures but the general conception is that privacy
means wanting to keep information unnoticed or unidentified from the general pub-
lic. Privacy can be categorized in different contexts [35, 65].

Personal privacy is one of the first issues that are being violated. Personal privacy
allows an individual to keep their body or beliefs private. Physical privacy can be
defined as preventing intrusion into one’s personal space or solitude. The concerns
may be [59]:

• Not allowing personal possessions searched by an unwelcome party
• Not allowing access to people’s homes and vehicle without authorization

Most countries have trespassing and property rights which help to determine the
right to physical properties [44].

Data privacy is the second most important issue when it comes to privacy. We all
want to secure our personal data but data privacy is about an evolving relationship
between technology and legal rights, which makes it harder to keep data private.
The data storage causes some privacy issues such as who will access to the data,
how the data is stored and the user’s rights for protection [67]. There are some web
sites that ask for more data than necessary but it is unclear as to what they share.
Privacy issues especially to personal data include insecure, electronic transmission,
data trails and logs of email messages, and the tracking of web pages visited [102].
Nowadays every kind of organization is marketing online users, which means that
we are putting more of our personal data online and sometimes it becomes hard to
keep track of all the information. Without our knowledge, the data could be sold to
make profits [39, 47]. Therefore data privacy has become very important, it gives us
a little control over the information we share, and the penalty for privacy violation
has become more severe. There are four ways that threats to privacy [6, 96]:

• Phishing may be used for private information. How this is done is that usually
cybercriminals send emails or maybe instant messages that look like they are
from trusted organization and may require personal information or mobile num-
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bers. Someone who is not familiar with technology and the risks that come with
handing out personal information may fall for one of these traps. It is important
to educate family, friends, and colleagues about the risks of disclosing sensitive
information. When it comes to personal information, we should always provide
bare minimum.

• Using malware and spyware has become quite common when extracting personal
information. Today cyber criminals just use malicious web sites to download pro-
grams through security holes in software on the PCs [96]. Anti-virus is important
for protecting PCs, especially in today’s digital world, where most of our personal
data are stored electronically.

• Storing data electronically has become very popular. With electronically stored
data, risk of privacy breach has increased. Law has been tightened for medical
storage, however there are still some loopholes that have been identified. It is
important to talk to companies and organizations about privacy concerns and un-
derstand how our data is being protected.

• Wireless hotspots are just about everywhere around the globe. Public Wi-Fi con-
nection can make it easy for hackers to gain access. It is important to have a strong
and operating firewall and avoid entering financial information because the data
that is being carried over the public Wi-Fi networks may not be encrypted [96].

Under the common law if an individual’s privacy has been violated, (s)he has the
right to sue [2, 81]. People have their own right of privacy. The privacy act is there
to control how individual’s information is collected, used, stored or disclosed [36].

Organizational privacy allows government agencies or organizations to keep their
activities private and prevent it from being leaked to other organizations. Each or-
ganization has its own privacy policy, which helps them to maintain the privacy of
personal data. An example of the organizational privacy is internet privacy. When
organizations have web interactions for their customers, they must take customers’
right into consideration when it comes to their personal data [26]. Data Privacy Day
is about empowering people to protect their privacy and control their digital foot-
prints to ensure the protection of data privacy [4].

1.3 Surveillance Privacy Protection

Protection is a very broad term, we use protection in our daily routines, sometimes
we are aware of it and sometimes we are not [43, 83]. We tend to protect the infor-
mation that are important and precious to us. In regard to surveillance, “protection”
is mostly emphasized on databases. Database security is an essential part of surveil-
lance privacy protection.

Database security holds a range of security topics, there is physical and network
security, encryption and authentication, and also focus more on securing data con-
cepts and mechanisms aspects. Database security is constructed upon a framework
surrounding three concepts: Confidentiality, Integrity and Accessibility (CIA) [7].
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Confidentiality from privacy aspects looks into protection of data against illegal ac-
cess, consign to the avoidance and recovery from both hardware and software blun-
der as well as from nasty data access follow-on in denial of data accessibility [63].
Permitting to these three constructs, a database security factor in any sequence will
be required to cover access control to databases, application access, vulnerability to
the system, outside inference, and auditing mechanisms as well.

The main method used to protect data is limiting the access. This action can be
performed through authentication, authorization and access control. All three mech-
anisms are relatively different but they can be used in a combination alongside the
access control for granularity by handing rights to specialized objects and users.
For example, generally a database system uses some forms of authentication, like a
username and secret password, to control unauthorized access to the database sys-
tem. In addition, usually users are authorized or privileges are delegated to specific
recourses [16].

Majority of the users do not access company database directly by simply logging
into the database system. As an alternative, they log into the database via an appli-
cation program. Currently a tool that is being used as a security (or CRUG) matrix
can also be used to plainly identify the necessary access rights that are required by
an application program. Particularly, the security matrix supplies a visual depiction
of the connection among operation or authorizations can be required for database
entities and input/output sources like documentation and reports [16].

Database security breaches have increased dramatically in the past decade. Pos-
sibly the most commonly well-known database vulnerability would be the SQL in-
jection. SQL which present superb illustration for examining security as they repre-
sent a very important database security matter, risks intrinsic to non-authorized user
contribution. SQL injections can take place when SQL statements are selected dy-
namically and created by taking user input [101]. The vulnerability happens mainly
due to features of the SQL language which lets user do such things as implanting
comments like double hyphens “(- -)”, concatenating SQL statements detached by
semicolons, and the capability to question meta data taken from database data dic-
tionaries as well [105].

Database auditing can be used to trace database access and client activity like
where and when a database was logged on. Auditing is initially used to detect who
accessed database items, which activities were executed, and what data was altered
during that time. One of the down sides is that it does not avoid security breaches,
but still provides I.T. administrator with enough information to identify if a breach
has cropped up [16].

2 Technologies and Techniques

Surveillance is a distinctive concept of the modern world. Surveillance technolo-
gies and techniques highlight how information is gathered, stored, retrieved and
processed.
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2.1 Digital Database Technology

Digital database technology is a pivot part of numerous computing systems. Data is
permitted to be taken and distributed electronically and the level of data enclosed
in these systems keeps rising at an exponential rate. That is why it is important
to ensure the integrity of collected data and secure the private information from
unauthorized access [42].

Technology such as smart phones is a great invention. It’s more practical than a
laptop but what we don’t realize is that tracking someone’s mobile phone has be-
come very easy with the help of applications that likes to use locations. Turning off
those applications is only the first step in securing our mobile phone [29]. Usually,
we store information on our mobile phones in case we don’t forget it. “Safe Note”
is the application that allows personal information that we store on the phone to be
encrypted using a pin. Also, all the “Safe Note” that are entered use a 128-bit en-
cryption, which will make it difficult to get access to personal information stored on
individual’s phone.

Another application that is used to encrypt and protect text and email messages
is called encrypted messages. This application allows us to give a password to all
the messages that we want to transmit and receive the message in encrypted form.
If the message is intercepted, then the only way a person will be able to decrypt
the message is whether they had the application and also knew the password that is
used to encrypt the message [29]. Even having a conversation via a mobile phone
is not safe, it is prone to interception. HeyTell VoIP application allows all data and
audio in transit to be encrypted [29]. It is very easy to use, just set up the privacy
level before we dial a number. It basically converts the mobile phones into a digital
walkie-talkie with encrypted messages [29]. The only downfall of these applications
is that the person we want to correspond with must have these applications installed
on their phones, but with the popularity of smart phones nearly everyone has, thus
this problem can be easily fixed.

2.2 Audio Recording Technology

One of the important aspects of audio surveillance technology is recording. With
the digitized recording technology, audio recorder, also known as voice recorder
has become smaller and easier to use [11]. Digital audio recording can be classified
in three ways [40]:

• Compression. Compressed audio (data) is where the amount of data recorded
in a waveform is reduced for transmission. The two types of compression are
lossless, where compression exploits statistical redundancy to represent data more
concisely without losing information [40]. Another type is lossy. With lossy, some
loss of information is acceptable. Depending on the application, details can be
dropped from the data to save storage space [40]. It may not be a good option for
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portable storage because it takes up too much space but it is a commonly used
format for uncompressed archiving.

• Long play. With development of video disk system, it has made long play digital
audio disk system possible [28]. The bandwidth requirement for the channels of
digital audio signal is less than that of the video signals, and combines with a
reduction of the revolution, it makes the longer playing time possible [64]. The
3PM (three-position modulation) code is implemented to improve the packing
density. The packing density can attain 150 % of MFM coding for the same min-
imum wavelength to be recorded, which is achieved at the expense of decreasing
the jitter margin [27].

• Storage. Hard disk recording system uses a high-capacity hard disk to record
digital audio. This system represents an alternative to more traditional reel-to-
reel tape or cassette multi-track systems, it provides editing capabilities which is
unavailable to tape recording [66].

2.3 Video Imaging Techniques

Nowadays video surveillance systems are widespread used in many strategic places
such as public transportation, airport, banks, they also use in public place such as
elevators, stores, and hallways. Video surveillance systems are becoming more and
more ubiquitous. However, people usually feel safe, thanks to the sense of increased
security by using surveillance systems but there are people who fear the content that
has been obtained via surveillance which can cause identity leakage and privacy
loss [20]. In particular, there could be five ways where surveillance systems would
likely be abused [63]:

• Criminal abuse or identity thieves
• Institutional abuse or bad law enforcement use
• Discriminatory targeting or find disproportionately on people color
• Voyeurism or stalking women
• Abuse for personal purpose or track estranged spouses

Due to privacy issue, the concern about the conflict between security and pri-
vacy for video surveillance is on rise [90]. Therefore, over the past few years, many
researches to protect privacy in surveillance systems have been made. They have
proposed various approaches for the privacy-protecting goal, including using distor-
tion filters to pixelize, blur, black out, silhouette, transparency, replaced by generic
object and mask the object contained sensitive information which may explore pri-
vacy [93].

Although these approaches and techniques in some degree fulfil the purpose
of protecting privacy in surveillance systems, but they also have many kind of
flaws. Five criteria for developing effectiveness privacy protection approaches
are [49, 51, 70]:

• Intelligibility of video
• Cryptographic technologies
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• Compression efficiency
• Computational complexity
• Ease of integration

In addition, there are also five main parts for privacy protection technologies in
video surveillance system [106]:

• Privacy protection techniques and technologies. Detect the Region of Interest
(ROI) need to protect and then scrambling.

• Coding and encryption efficiency. Encryption by using JPEG, MPEG, H.264/AVC
etc.

• Security management. Prevent outside attack such as brute-force attack, error con-
cealment attack etc.

• Selective storage. Secure database.
• Access control. Authorized access to the original copy of video.

Furthermore, with video and images, following four techniques can be used to
enhance the security:

• Discrete Wavelet Transform (DWT). DWT is becoming popular in many image
applications due to its multi-resolution representation feature [16]. DWT based
two-dimensional image follows pyramid-structured wavelet transform. The orig-
inal image will encounter different combinations of a low-pass filter and a high-
pass filter, and then based on the convolution with these filters to generate the
low-low (LL), low-high (LH), high-low (HL) and high-high (HH) sub-bands [9].
To obtain the next coarser scaled wavelet coefficients, the sub-band LL is fur-
ther decomposed and critically sub-sampled. This process can be repeated several
times. With the pyramid-structured wavelet transform, size of the original image
is equivalent to summing all the decomposed sub-images up. Using this decompo-
sition structure, there will be no information lost when the decomposed pieces are
reconstructed. This reconstruction process is called the Inverse Discrete Wavelet
Transform (IDWT) [41]. For example, Motion JPEG 2000 (JPEG XR) uses DWT
based transformation, it used as a global transformation which performs at the
level of a tile [100].

• Discrete Cosine Transform (DCT). DCT is widely used transform technique in
image processing [58, 92], which is commonly used in image compression such
as JPEG, Motion JPEG, MPEG, and DV etc. [78, 105]. In 2D blocked DCT,
N × N blocks are computed, N is normally 8. Typically DCT is limited to this
size. Instead of converting the image as whole, DCT used 8 × 8 blocks separately
to the image [73].

• Pixelization. Pixelization is a technique used for modifying image or video for
privacy protection, it is achieved by noticeably lower resolution in ROI, using a
square block of pixels with its average [22, 37]. The primary purpose is to use
for censorship. It is commonly used in television news to obscure the object con-
tained sensitive information such as nudity, the proper name of people, locations
or any other inappropriate discourse [21]. The advantage of using pixelization in
video surveillance system for privacy protection is very simple and easy to inte-
grate in existing system. On the other hand, the disadvantage is that the process is
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irreversible and the privacy information is lost [88]. The equation of pixelization
of image I (x, y) is shown in Eq. (1).

Ī (x, y) = 1
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where image pixel coordinates are x and y, block size is b and �·� indicates the
floored division.

• Gaussian Blurring (Smoothing). Gaussian blurring is an approach widely used
for privacy protection in video surveillance, it removes details in ROI by us-
ing a Gaussian low-pass filter [5]. It is also commonly used with edge detec-
tion [37, 46]. The equation of Gaussian function in one dimension is shown in
Eqs. (2) and (3).

g(x) = 1√
2πσ 2

e
− (x−μ)2

2σ2 (2)

where μ is the mean, σ is the variance, x ∼ N(μ,σ).
In multi-dimension, it is shown as Eq. (3):

G(X) = 1
√

(2π)k|Σ |e
− 1

2 (X−μ)T Σ−1(X−μ) (3)

where |Σ | is determinant of the matrix Σ , k = |X|, X = (x1, x2, . . . , xk),
X ∼ Nk(μ,Σ).

Scalable Video Coding (SVC) approach is an extension of standard H.264/
MPEG-4 AVC for video coding which provides greater coding flexibility and sup-
port by three forms of scalability which are spatial, temporal and SNR (Signal-to-
Noise Ratio) scalability [30]. It also allows video bit stream to be broken into multi-
ple layers of resolution, frame rate and quality, called Flexible Macroblock Ordering
(FMO). The encoded bit stream includes Video Coding Layer (VCL) and Network
Abstraction Layer (NAL). The VCL and NAL units contain coded slice data, and
the non-VCL and NAL units contain associated additional information like Sup-
plemental Enhancement Information (SEI), Sequence Parameter Sets (SPSs), and
Picture Parameter Sets (PPSs). The picture parameter set transmits the parameters
that indicate an ROI, like the slice group map type, the slice group IDs, and the top-
left and bottom-right address of the slice groups [94]. The ROI can be taken out of
JPEG XR by extracting spatial tiles in the compressed domain area, in cooperation
of spatial and frequency mode. This feature of JPEG XR is also known as fast tile
extraction [86].

There are two different types of tile layouts that are being used, they are a uni-
form and a non-uniform tile grid. The uniform tile layout where every tile holds
identical width and height, while the non-uniform tile layout allows the use of tiles
with dissimilar widths and heights (tiles located on the same row still require have
the identical height, whereas tiles on the same column will still require having the
identical width). The non-uniform tile outline is illustrated in Fig. 1 [48, 69]. For
the purpose of updating location of an ROI, extra picture parameter set NAL units
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Fig. 1 ROI illustration in
JPEG XR

that can be added into a coded bit stream, which includes the updated ROI coordi-
nates. The new picture parameter set NAL unit is used to indicate each move of the
ROI [94].

The main advantage of scalable video coding in video surveillance system de-
pends on the circumstances that can create a One-Source Multi-Use (OSMU) ser-
vice. Such a path is able to provide adapted video content in best condition to law-
enforcement authorities and authorized clients through heterogeneous network en-
vironments [17, 85, 94].

The AVC scrambling approach is sourced from a Pseudo Random Number Gen-
erator (PRNG), which is initialized by a seed value. Multiple seeds can be used to
strengthen the security. The seed values are forwarded to the correct area so it can
be encrypted, usually done by asymmetric encryption, which is then transmitted to
the decoder either via private data or a different channel [30]. Authorized personal,
in custody of the secret encryption key, can then manage to recover the seed values
and consequently reproduce an identical pseudo-random series to descramble the
coefficients [30].

Normally scrambling process doesn’t pose any negative impact on coding effi-
ciency. A likely option is therefore to apply scrambling to the AC coefficients. Addi-
tionally, the amplitude of AC coefficients is linked, but their signs do not correlate.
Per consequent, it has been suggested to scramble the quantized AC coefficients of
all 4 × 4 block of the MB in the forefront slice group by pseudo-randomly tossing
their sign [30]. This sort of technique involves negligible computational complexity.
On the contrary, second scrambling method takes a random permutation to reorga-
nize the order of AC coefficients in 4 × 4 blocks relating to MB in the forefront
slice.

In Fig. 2, the Hallway camera test sequences in CIF format, with ground truth
added to segmentation marks. Different types of experiments have been tested with
JM13.2 reference software [30]. The capability of the presented scrambling is to
conceal information in ROI. Figure 2 represents the result for both random sign
inversion as well as permutation methods. The result clearly shows that both ap-
proaches are efficient at masking the ROI so that a person can no longer be rec-
ognized. It can also be noted that in spite of scrambling the image, it can still be
accurately comprehended [30]. The effect of the two planned scrambling technique
on coding efficiency can be compared to regular AVC format.
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Fig. 2 Scrambling for
“hallway camera”.
(a) Random sign inversion.
(b) Random sign permutation

The data clearly shows that the scrambling has nominal impact on coding effi-
ciency. Even though the bit rate increase of random sign inversion scrambling data
is of 1 % at high level and 8 % at low level. The random permutation scrambling
generated a somewhat big penalty with a rate increase of 4 % at the elevated end
and 11 % was at the down end [30].

3 Systems and Tools for Surveillance Privacy Protection

Surveillance systems not only provide full security for the system and the physical
property but also ensure safety of the employees and the public. There are many sys-
tems that have been implemented to monitor threats and possibly prevent criminal
activities.

3.1 Systems

In the past, getting a hold of audio and video used to be a simple matter. An ab-
surd amount of audio visual data is becoming accessible in digital form, in digi-
tal archives, on internet, in live transmission data streams and in confidential and
professional databases. The importance of information normally depends on how
effortlessly data can be obtained, sorted out and managed at the end [15].

Video surveillance systems are being commonly used due to high-speed network
connections, and they are able to hold huge amount of sensitive data, at a high com-
putational authority [8]. Additionally, thanks to constantly developing computer vi-
sion algorithms, video surveillance systems managed to analyze more data and un-
derstand events of security. When it comes to video surveillance system, spatial
resolution and visual quality are key factors for the performance of computer vision
algorithms [23]. Obviously use of high-resolution and high-quality video content
can then enhance the overall performance of computer vision algorithms by direct-
ing object detection, recognition and tracking [15].

Along with video surveillance systems, privacy has rapidly become a vital is-
sue. Although video surveillance systems can assist in limiting law-breaking and
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criminal activities, on the other hand, extensive use of security cameras has led to
well written political campaigns [31, 98]. Current research results have revealed
that new Privacy Enabling Technologies (PET) are promising with the prospective
to successfully protect individual privacy, with no major hindering video surveil-
lance tasks. The final results confront the common surmise that increased security
may overcome a failure of privacy [74, 75].

The issue of privacy protection has been catching a lot of interests though perfor-
mance investigation is still missing. It is also very important to authenticate planned
PET against client and system requirements for privacy use. Furthermore, we are
unsure whether these approaches will be easily incorporated into existing system
and whether surveillance architecture can be organized at a wider platform [53, 75].
We can undertake this issue by assessing the competence of PET to make facial
identity jumbled, in future, this will render face recognition techniques useless and
conceal the individual identity from the public.

At present, this is a key risk to surveillance privacy protection especially in video
surveillance department. Basically, a face de-identification algorithm is explained
in [107], which holds a big amount of key facial characteristics but still manage to
make the individual face unidentifiable. Needless to say that PET does not hinder
successful face detection [87]. In the past, companies managed to explain a frame-
work to assess the performance of face recognition algorithm that were used on pic-
tures that has been changed by PET and supported by the Face Identification Eval-
uation System (FIES) [12]. Carried out trials on the Facial Recognition Technology
(FERET) records reflect the incompetence of raw PET, for instance, pixelization and
blurring the image, and established the usefulness of more complicated scrambling
methods to hide face recognition from unauthorized personal [19].

Nowadays, extensive experiments are being done, including with PSNR and
SSIM (Structural Similarity) objective quality measures to recognize facial fea-
tures [19, 101]. Simple incorporation of PET in present existing video surveillance
infrastructure is one more imperative decisive factor that can lead to quick imple-
mentation of the technology.

Concurrently, with legacy operating systems make sure that it will present a
broader and lucrative relate back to PET [57, 107]. Thus, methods which solely de-
pend on extensively used video cryptogram standards (e.g., MPEG-4, H.264/AVC,
Motion JPEG), in place of proprietary demonstration, should be favored. PET also
holds conserve syntax layout compliance that present a significant benefit. In this
instance, standard decoders can precisely decode and demonstrate the CCTV video
stream, while some areas may be obscured.

Protecting the stream syntax code and permits content modification stand on ei-
ther scalability as well transcoding throughout network broadcast [107, 108]. One
more helpful characteristic is to broadcast the same guarded video stream to the en-
tire end-users and their identification is certainly not necessary either. Ultimately,
video surveillance evidence is normally used in examination forensic analysis by
law authorities like CIA or FBI [53]. Therefore, it is very important that PET is
completely reversible in case of emergency [50, 66]. This will eventually help autho-
rized user possibly to solve or even recover the unaffected privacy-sensitive footage
informative. In some instances, inconsequential PET methods purely applying pix-
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Fig. 3 The result of the selective privacy protection approaches. (a) Pixels with whole object.
(b) Pixels with the facial. (c) Scrambling by random. (d) Facial removed permutation. (e) Blurring

elization, noise disruption, or black box disguise to cover confidential data that tend
not to fulfil this vital obligation [80, 87].

The gray scale Facial Recognition Technology (FERET) [30] database can be
used for training and testing [75]. The standard training is performed using a training
set of images. The training set includes 30 images taken from different scenarios.
This data set is used to train the surveillance system, and then carry out experiments
for detecting, intra-coding, and scrambling functions for privacy protection purpose.

The face recognition algorithms like Principal Components Analysis (PCA) [23]
and Linear Discriminant Analysis (LDA) [24, 57] techniques are used. PCA is ba-
sically a mathematical procedure that involves orthogonal transformation to alter
a set of reflection of possibly connected variable into linearly uncorrelated variable
which are called as principle components. LDA is basically related to Fisher’s linear
discriminate that is a method used to discover a linear combination of characteris-
tics which can be exemplify or separate two or more classes of objects or proce-
dures [24]. Figure 3 shows the result of the selective privacy protection approaches.
The Region Of Interest (ROI) in the training set is expected to detect with mini-
mum failure, and hide by using the selective scrambling approach. Whereas Facial
Identification Evaluation Systems (FIES) consists of four key components [12]:

• Image pre-processing
• Initial training
• Testing quality
• Performance analysis



Surveillance Privacy Protection 97

These steps are designed to minimize detrimental variations between the fa-
cial images. Individual facial feature is initially geometrically stabilized and line
up with the eye coordinates, then an elliptical mask is used to trim the facial im-
ages. More exclusively, the face area between the forehead and chin along with
left side cheek and right side cheek is held, meanwhile the rest of the data is dis-
posed. Histogram equalization is executed, contrast and brightness of the image are
normalized [12, 108]. Finally, face recognition piece is examined. More explicitly,
a collective match curve is produced. For this particular reason, the recognition rank
is calculated. After that cumulative match curve is taken by adding the number of
correct matches from each ranked individual [38, 45, 53].

Another system that can be used is PRISURV. PRISURV was designed for a
small community such as school area or office place. PRISURV adopted a mech-
anism named visual abstraction to control disclosure of visual information [13].
PRISURV is able to generate several types of images according to viewer’s authority
level, in other way it enables video surveillance system to manage and control pri-
vacy of the object shown in the video regarding to different viewer [72]. PRISURV
consists of six main components [60]:

• Analyzer. The two main functions of analyzer are image stratification and sub-
ject identification. Image stratification is used to produce stratified images of
surveillance video, every image represents one subject. The stratification is ac-
complished by background subtraction and subject region extraction by project-
ing the foreground image vertically. Subject identification is used to distinguish
subject’s identity. Every subject in the stratified images is identified by video
analysis.

• Profile Generator. Profile generator is used to setup the profile for registered
member, it contains member’s privacy information such as name, gender, age,
address and relationships. Profile generator also connected with privacy policy to
determine the outcome of the video according to the relationship between viewer
and the object shown in the video. Each profile can only be modified and updated
by member themselves, it is inaccessible by non-members.

• Profile Base. Profile base is a secure database server used to store all the profiles.
• Access Controller. Access controller is used to match up viewers’ information to

subjects’ privacy policies to determine what kind of abstraction is needed to make
and then send the command to the Abstractor.

• Abstractor. Abstractor is used to process the video for visual abstraction accord-
ing to the command received from access controller. It adopts visual abstraction
approach which can generate 12 different abstractions on video.

• Video Database. Video database is a secure database used to store past video, and
play them to viewers through visual abstraction when needed.

Hidden inference channels of what, when and where can initiate considerable
level of privacy loss when an adversary gets a hold of several-camera surveillance
video footage. The privacy loss that was carried out through these inference channels
is modeled as W3-Privacy [84]. The privacy loss calculated by the presented model
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Table 1 Specifications for digital surveillance

Specifications

Capsa Free Device Monitoring
Studios

PRTG Network
Monitor

Verilook
Surveillance SDK

Real time network
video capturing

Software solution
for monitoring

Device
monitoring
application

Performs searching
and detection of
faces

Traffic monitoring Logging network
activity

Lightweight
application

Can track multiple
faces simultaneously

Expert network
diagnosis

Analyzing data
coming through pc
parts

Can be configured
to find a subnet

Can be run on
multiple PCs

Network activity
logging

Analyzing data
through physical
connection media

Uses Graphical
User Interface

New faces saved to
database either
manually or
automatically

is nearer to the user perceived privacy loss rather than prior models. In addition,
privacy loss can only take place when sensitive information and identity leakage
co-exist at the same time. That is why any of these can be managed separately to
minimize privacy loss. For example, in a surveillance setting, the tenants of the sur-
veyed area can present sensitive information and the person who has authorization
to this surveillance footage can be measured as an adversary.

The W3 survived assessment model is essentially the foremost and very use-
ful step towards privacy protection of individuals in multi-camera video footage.
This work does help to set up directions for future research, for instance, to in-
vestigate ways to lessen the privacy loss with minimum loss of efficacy in video
quality [84]. However, our surveillance privacy protection research covers multiple
types of surveillance, privacy and protection measures which are presently being
used in order to guard an individual’s privacy at all time.

3.2 Tools

With every technology software plays an important role. The following tables show
software tools that can be used for digital surveillance and highlights the features
that are supported by the software. Table 1 highlights that software tools that are
being used for digital surveillance [54].

Audio surveillance also plays an important role in terms of surveillance. Audio
surveillance devices can also be described as listening devices. Some of the audio
surveillance softwares available have been showcased in Table 2 [76].

Ableton Live is an audio recording software program. As well as audio surveil-
lance, it can also be used as editing tools for audio [76]. Pro Tools LE has been
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Table 2 Audio surveillance features

Audio features Ableton
Live

Pro
Tools LE

Komplete Sound
Forge

Acid
Pro

Audio
Mulch

Audio
conversion tools

√ √ √ √ √ ×

Stabilized
performance
mode

√ √ × × × ×

Volume
maximizer

√ √ × × × √

External control
compatibility

√ √ × √ √ ×

Auxillary port
√ √ √ √ √ ×

Supports XP,
Windows 7,
Windows 8

√ √ √ √ √ √

Table 3 Tools and features for video surveillance

Tools features Photos
editing

Videos
recording

Images
blurring

Code editing
debuging

OpenCV
√ √ √ √

Luxand FaceSDK
√ √ √ ×

Keylemon
√ √ √ ×

ImageGraphicsVideo
√ √ √ ×

Logitec Face
Recognition software

√ √ √ ×

one of the greatest software for audio surveillance tool for many years. As Able-
ton, Pro Tools LE also has the functionality for recording and editing audio [76].
Komplete is another audio recording software. It is compatible with all major au-
dio types [76]. Sound Forge is a type of audio surveillance software that can record
multi-channel audio at the same time. It is also able to reduce noise and repair sound
quality. Acid Pro is one of the leading technologies in audio surveillance software. It
also allows users for multi-channel recording. AudioMulch is modular audio record-
ing software that can record and playback multiple sound files [76].

Table 3 highlights five popular video surveillance software tools.

• Intel OpenCV
• Luxand FaceSDK
• Keylemon
• ImageGraphicsVideo
• Logitech Face Recognition software
• 3vr
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Face detection, infrared and blurring images are the most significant specifica-
tions that cameras should have [56]. Face detection is really significant function in
surveillance camera. Face detection employs sophisticated algorithms to detect fa-
cial features [79]. Luxand FaceSDK is an example of this kind of software. The
FaceSDK processes an image, detects human face within it, and returns the facial
feature points such as eyes, eye contours, eyebrows, lip contours, nose tip, and so
on [105]. Some of the other face recognition software that is available for users are:
keylemon, ImageGraphicsVideo, Logitech Face Recognition software [78].

Intel OpenCV is defined as a computer vision library that sets its focus on the
image processing [93]. Upgraded versions of OpenCV integrate with the program-
ming languages such as C, C++, Python and Android [106]. Some of the currently
available functions for OpenCV are:

• Eighenfaces (createEighenFaceRecognizer())
• Fisherfaces (createFisherFaceRecofnizer())
• Local Binary Patterns Histograms (createLBPHFaceRecognizer())

There are numerous face recognition databases [17]. The choice of the appropri-
ate database to be used based on the task given (aging, expression, lighting, etc.).
Some of the face recognition databases are: The Colour Feret Database, SCFace,
Multi-Pie, The Yale Face Database, and Face in Action (FIA) Face Video Database,
AT&T, Cohn–Kanade AU Coded Facial Expression Databases, NIST Mugshot Iden-
tification Database, NLPR Face Database, The AR Face Database, Caltech Faces,
and Georgia Tech Face Database. Although there could be hundreds of available
face recognition database, there are two very useful databases:

• AT&T face database. In this database, the images are taken at different times
varying the lightning and facial expressions such as open/closed eyes, smiling as
well as the facial details such as glasses/no glasses [60].

• Yale face database. The database is a fairly simple database to use. It catches the
images at different times when the person is: happy, sad, angry, or sleepy [13].

Since infrared camera has the ability to pick up movement in dark scenarios, it
will be difficult to obtain images properly without infrared cameras [88]. The camera
should pick all the faces that enter the surveillance area and blur all other images. If
the camera does not provide blurring function, it will break this community privacy
rule [94]. 3vr is another good example for blurring surveillance cameras images.
3vr is software that catches all suspicious behaviors that occur in vision range of the
cameras. As well as catching the suspicious people, it also catches all other innocent
people and tweaks its software to automatically blur the faces of these innocent
individuals [85]. Therefore, it protects the privacy of the innocent individuals [55].
Some of the 3vr’s video analytics include:

• Facial surveillance
• Advanced object tracking
• People counting
• Queue line analysis
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4 Conclusion

Privacy is one of the major concerns in this technological society. Surveillance
technology has reached a place where it is impossible to avoid being caught un-
der surveillance. There are growing trends towards privacy and data protection acts
in the world [78]. Today, we are seeing advancements in the technology and the ap-
proaches of databases [1]. Since the September 11, 2001 attacks, surveillance tech-
nology has leapfrogged into the 21st century [27]. Public protection has become
fundamental, in future we will see more enriched surveillance systems as well as
evolving database systems.

In conclusion, this chapter has evaluated different types of surveillance, privacy
and protection measures which are currently being implemented in order to protect
an individual’s privacy. In addition, this chapter also covered how relevant informa-
tion is being used and what sort of rights individuals might have over them. Further-
more, this chapter has emphasized the importance of tools, data sets and also the
databases which have been developed to provide protection for surveillance privacy.
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RFID Localization Improved by Motion
Segmentation in Multimedia Surveillance
Systems

Miloš Ljubojević, Zdenka Babić, and Vladimir Risojević

Abstract An important issue in multimedia surveillance systems is determining
the physical location of moving objects. Due to features like contactless commu-
nications, high data rate, non-line-of-sight readability, compactness and low cost,
passive Radio Frequency Identification technology is very attractive for indoor lo-
calization. Technologies and techniques can be employed in combination, aimed
to improve accuracy and precision of localization by heterogeneous data fusion.
Object recognition, moving object localization and tracking can be successfully im-
plemented using integration of RFID technology and digital image processing tech-
niques. The block matching algorithm based on region of interest can be efficiently
used in image processing analysis for motion segmentation and object tracking. By
using regions of interest we eliminate the influence of other large moving objects
and avoid unnecessary computations. In this chapter, the improvement of RFID lo-
calization using motion segmentation applied on the region of interest extracted
using RFID is described. The presented solution shows significant reduction of the
position estimation error and variance in comparison to the conventional passive
RFID position estimation.

1 Introduction

Integration of multiple technologies, using the advantages of different tools and
a multidisciplinary view, leads to a new generation of systems for automatic scene
analysis, surveillance, object localization and tracking, robotics and many other ap-
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Faculty of Electrical Engineering, University of Banja Luka, Banja Luka, Bosnia and Herzegovina

Z. Babić
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plications. Using different media (images, video, audio, sensor signals) in one com-
plex system can help scene understanding, but at the same time generates new issues
that have to be solved.

The fundamental problem in the above applications is determining the physical
location of a moving object. In contrast to outdoor environments where precise loca-
tion can be easily derived by using GPS data, indoor environments require a different
approach to estimate physical location. Fusion of information obtained by several
sensors is one of the possible methods for scene analysis and indoor localization
of moving objects [1]. For precise localization, technologies and techniques can be
employed in combination, because heterogeneous data fusion improves the accu-
racy and precision of localization. In multimedia systems, great attention has to be
given to adequate selection of media types and information fusion.

1.1 Localization Technologies

The problems of localization of objects or persons are closely related to the choice
of the applied technologies and techniques [2, 3]. The main characteristics used
as criteria for choosing appropriate technology during localization system design
are [4, 5]:

• physical position and symbolic location information,
• absolute versus relative location,
• accuracy and precision,
• size of localization area,
• recognition capability and object identification,
• cost realization.

The often used localization technologies in indoor and outdoor applications are:

Satellite technologies. Geostationary collocated satellites are used for positioning
of moving objects. Among several satellite technologies, the Global Positioning
System (GPS) is the most popular technology for localization and tracking of
moving objects. Technical aspects of the GPS enable outdoor localization and
tracking of moving objects with high precision and accuracy, but this technol-
ogy is not suitable for indoor localization due to the poor GPS signal in indoor
environment.

IEEE 802.11x technology. The existing wireless LAN (WLAN) infrastructure
based on IEEE 802.11x standard can be easily and efficiently used for indoor
localization. Accuracy and precision of localization is satisfactory and depends
on the applied technique and chosen hardware. The signal propagation depends
on the surrounding conditions, that is, the number of walls and obstructions,
and the necessary infrastructure regarding the number of reference points per
localization area. It directly affects the localization precision.

Bluetooth. Due to its presence in almost every mobile commercial device and short-
range wireless connectivity, the Bluetooth technology represents a prom-ising
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solution for indoor localization. Robustness, low complexity and low power con-
sumption are the key features for choosing Bluetooth based localization system.

Infrared (IrDA). The IrDA technology is compact, low power, inexpensive and
ubiquitous technology. On the other hand, if this technology is employed, ulti-
mate line of sight presence, direct sunlight influence and short communication
range restrictions have to be solved.

Ultrasound. Localization systems based on ultrasound technology have good pre-
cision and represent a simple and inexpensive solution. It is well known that
environmental factors have substantial effects, so the large number of elements
is necessary within the system which increases the costs of the installation.

Radio-frequency (RF) technology. The main characteristics such as non-contact
communication, communication without the line of sight, short read time and
simple maintenance make the RF based localization systems the most used in
almost every area of implementation. Except localization information, those sys-
tems can provide valuable information for other systems, so they can be used as
support systems within more complex, integrated systems [6].

Scene analysis. Important characteristic and big advantage of scene analysis is that
the location of objects can be inferred using passive observation without any in-
teraction with objects of interest. Observing the features of a scene, represented
with different types of sensor signals, the conclusions about the location of the
observer or objects in the scene can be drawn.

1.2 Localization Techniques

Very important aspect of localization and tracking of moving objects is a technique
that is used for automatic positioning. For indoor localization, most frequently used
techniques are: geometry based (trilateration and triangulation), proximity tech-
nique and visual scene analysis. The choice of technique depends directly on the
technology used for localization.

Trilateration and triangulation. The technique of trilateration is based on measur-
ing the distances between the sensors and the object. Position is determined as
the point of intersection for at least three circles or spheres in terms of localiza-
tion in two or three dimensional space. The centers of these circles or spheres
are at the sensor locations and radiuses are the distances from the object. These
distances can be determined based on several parameters: the time of arrival
(TOA), time difference of arrival (TDOA), time of flight (TOF) and received
signal strength (RSS). Trilateration technique is based on angle of arrival (AOA)
as a parameter for determining the position of the reader. Position is calculated
from the angles formed by at least two reference points and the object whose
position is determined [2].

Proximity technique. With proximity technique, relative position of the object to
the known, reference, location is determined by finding the moment when the
object is near the reference locations. The presence of the object can be detected
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by physical contact, wireless networks, or object identifiers. The physical con-
tact approach uses appropriate sensors (pressure sensors, touch sensors, etc.).
The localization based on wireless networks examines whether the mobile ob-
ject is in the zone of supervised access points. The localization based on object
identifiers uses identification systems to determine the presence and location of
objects. This technique is often used in the localization based on RF technology.

Image and video processing techniques. Passive observation and data collection
about the scene generate the necessary information that can be used for object
localization. Scene analysis for object localization is usually based on visual
information and methods of digital image and video processing. Beside visual,
other types of information such as RF signals can be used for image generation
and scene analysis.

1.3 Localization Systems

There are many systems for localization of moving object or persons based on differ-
ent technologies and techniques. Up to date, indoor localization systems using one
technology and one technique dominate. The RADAR system [7] measures the sig-
nal strength and signal-to-noise ratio of signals that wireless devices send in order to
find the distance between the transmitting and receiving base stations. The location
estimation is performed using triangulation, proximity or scene analysis. The Active
Badge system [8] uses infrared technology and the system locates each person that
wears a small infrared badge emitting the globally unique number. Appropriately ar-
ranged infrared sensors collect this data and provide information to a central server
where the location of moving person is calculated. Cricket system [9] uses both the
RF and ultrasound technologies for location estimation. The ultrasound emitters are
used to create the infrastructure and the receiver is embedded in the moving object,
while the RF signal is used for synchronization and delineation of the time interval
during which the receiver should acquire ultrasound signals. APIT and DV HOP
localization systems [10] are based on the heterogeneous networks, and beside the
primary wireless sensors for localization, they use reference RF transmitters and
triangulation technique for localization improvement. SpotON system [11] enables
three-dimensional localization using radio signal strength. SmartFloor system [12]
provides high precision localization using sensor network on the test floor with the
known sensors’ locations. Easy Living [13] localization system is based on scene
analysis using image processing techniques. Bluepass system [14] is an example of
localization system in indoor environment based on the Bluetooth technology.

Radio Frequency Identification (RFID), based on RF technology and proximity
technique that uses identification systems to determine the presence and location
of passive tags, is a very attractive technology for indoor localization because of
its features like contactless communications, high data rate and security, non-line-
of-sight readability, compactness and low cost. Important issues, such as privacy
protection in a video surveillance system, also can be accomplished using RFID.
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But, information obtained from RFID readers with proximity technique leads to
coarse localization. In RFID systems, accuracy and resolution of location estima-
tion depend directly on arrangement and density of tags and readers. On the other
hand, scene analysis with motion based localization is a very precise localization
technology, but computationally very expensive, and often requires suitable features
of objects as a prior knowledge. However, under some assumptions, it is shown that
the simple and fast block matching algorithm can be used with high success for
motion segmentation and object tracking [15–17]. Indoor localization of moving
objects based on RFID localization can be improved by motion segmentation in
video sequence. Information acquired by an RFID reader is used for region of in-
terest extraction and motion is estimated within the region of interest only. In this
way, significant reduction of the position estimation error and variance in compar-
ison to the conventional RFID position estimation can be obtained with reasonable
computational complexity.

1.4 Organization of the Chapter

The remaining sections of the chapter are organized as follows. Section 2 briefly
describes main principles and related work important for indoor positioning and
localization of moving objects using the RFID technology. Section 3 describes lo-
calization of moving objects using image and video processing. The emphasis is on
the moving object segmentation as a main task. Motion estimation is analyzed in
details, especially estimation based on the block matching algorithm (BMA). The
region of interest (ROI) extraction for the redundancy reduction in the visual scene
analysis was explained also in this section. Section 4 presents a method for RFID
localization and motion segmentation integration in order to improve accuracy and
precision of moving object localization. Moving object segmentation, consisting
of block matching algorithm followed by morphological postprocessing, based on
the region of interest extracted by RFID data, is described in detail in this section.
Finally, Sect. 5 concludes the chapter and outlines possible lines of future work.

2 RFID Localization

A system for indoor positioning and localization of moving objects based on the
RFID is determined by several important elements: the process of reading of tags,
selection of the technique and metric for distance measurement, algorithms for posi-
tioning and localization, as well as representation and display of the determined lo-
cation in accordance to the chosen coordinate system. The block scheme of a RFID
system for positioning and localization is presented in Fig. 1. Output parameters of
RFID system (tag identification data—ID, TOA, TDOA, TOF, AOA and RSS) pro-
vide information for localization of objects of interest. The most used localization
techniques with RF technology are triangulation, trilateration and proximity [18].
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Fig. 1 Block scheme of RFID system for positioning and localization

Three most important characteristics which should be taken into account during
the design of the RFID localization system have direct influence to architecture of
the system are:

• type of the tag (active, passive or semi-active),
• frequency range (LF, HF, UHF, microwave),
• localization principle (RFID tag localization or RFID reader localization) [19].

The RFID localization systems often determine location of the RFID reader at-
tached to the moving object, while the active or passive RFID tags are at known
positions.

Due to the simplicity and low cost, indoor localization can be done using HF pas-
sive RFID tags arranged on the test floor at the known positions and using proximity
localization technique. Having in mind that RFID systems based on HF passive tags
acquire only the information about the presence of the tag in the RF field of the
reader antenna, it is important to precisely define density and arrangement of the
tags on the test floor.

The localization error is directly related to the arrangement and the density of the
tags. In order to reduce the number of tags, while keeping localization error below
a certain limit, it is very important to optimally arrange the RFID tags. Relation be-
tween the minimum number of the tags which RFID reader reads at the moment, the
RFID tags location coordinates and the predefined maximum of localization error
determines the optimal density and arrangement of the tags. In that way, localiza-
tion error is limited [20]. Better localization results can be achieved using the same
number of the tags with the triangular, hexagonal or diamond arrangement instead
of the rectangular arrangement of the passive RFID tags [20–22].

Knowing the start position of the moving object and time needed for reading the
tag, it is possible to significantly reduce localization error. Authors in [23] found
that localization error is determined by the radius of the RF field and dimensions of
the rectangular passive HF RFID tag.

It is also shown that using known start position of the moving object and ar-
rangement of tags in a triangular pattern the localization error can be reduced and
accuracy of localization increased [24]. The additional benefit of this solution is that
accuracy improvement is realized without increasing the number of tags.

Depending on frequency range, type of the RFID tags used or applied local-
ization technique, different approaches for localization of moving objects are pro-
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posed [25]. In order to get the best possible results authors in [7–12] combined
different types of RFID systems and localization techniques. A good example of a
moving object or person localization with active RFID tags is based on the set of
reference active tags placed at previously defined fixed positions and active tags car-
ried by persons or moving object [26]. The signal strength of a reference RFID tags
is used for system calibration. Position of the moving object is calculated using the
strenght of signal from reference and moving tags. Due to the low price and sim-
ple maintenance, passive RFID tags are intensively used, especially in conjunction
with the proximity localization technique and predefined arrangement and density
of tags [24].

RFID localization systems are often used for improving some other tasks. The
evaluation of the wireless communication protocols using the node position in-
formation achieved using the RFID localization system is a good example [23].
In [27] it is shown that systems based on RFID can be easily and efficiently embed-
ded in the existing information and communication infrastructure, and offering up
new possibilities for the RFID technology applications.

3 Localization of Moving Objects Using Image and Video
Processing

Many intelligent video surveillance systems, traffic monitoring and control systems,
as well as access control systems are based on scene analysis and video motion de-
tection [28]. Localization systems based on visual scene analysis use information
about size, shape, color, texture and other object features, as well as information
about shadows, space and geometry information that characterize observed scene
and objects of interest. Systems for visual information analysis and processing in-
volve complex and intensive mathematical calculations due to the complex structure
of the visual information.

The main problems in the localization systems based on image and video pro-
cessing are:

• presence of noise that masks objects and movements,
• features of objects of interest similar to background or noise,
• two or more objects interpreted as one object,
• one object interpreted as two or more objects,
• actual 3D motion of objects in a scene can be estimated only from their 2D pro-

jections (images),
• projected motions that do not generate optical flow exist (for example, rotation of

uniform color sphere),
• optical flow that does not correspond to projected motion (for example, illumina-

tion changes cause changes in optical flow),
• occlusion problem,
• aperture problem.
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Fig. 2 Localization of moving object using digital image analysis

Moving object segmentation is one of the main tasks in localization systems
based on digital image and video processing, and it can be performed using different
algorithms depending on application and project design [29]. Figure 2 shows the
block diagram of the localization system based on digital image analysis. The time-
varying image is formed by the projection of time-varying three-dimensional scene
in a two-dimensional image plane. Variations of the 3D scene are usually caused
by movements of objects presented in the scene. The time-varying image can be
represented as a function of two spatial variables (x1, x2) and time variable t .

3.1 Motion Estimation

In object tracking applications, the primary goal is object segmentation based on
common motion in a video sequence, grouping 3D pixels (pels) into the most promi-
nent moving groups. Motion estimation enables detection of a moving object of
interest although multiple moving objects are present in the scene [30].

Algorithms for moving object segmentation depend on analyzed elements (pix-
els, regions, blocks, angles or lines), movement representation (2D or 3D move-
ment) and criteria for segmentation. 2D motion estimation methods can be clas-
sified in optical flow methods and change detection methods. Further, optical
flow methods can be based on differential methods, block matching or statistical
methods [29, 31]. Basic classification of motion estimation methods are given in
Fig. 3.
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Fig. 3 Motion estimation
methods

If point correspondences between frames are considered, dense motion vectors
fields are obtained, but these methods fail at large displacements. Instead of that,
block-based motion segmentation methods try to group pels into regions moving co-
herently in space and time using uniformity of space descriptors [32–34], or spatio-
temporal image gradient, which results in sparse vector fields. Most of the proposed
algorithms work under certain assumptions, such as small motion, unchanged illu-
mination, etc. [35]. For robust motion segmentation, the cost of high computational
complexities must be paid [29] and therefore such a complicated approach is inap-
propriate for real-time applications.

Simple and often used technique for 2D image analysis and motion estimation
is the Block matching algorithm (BMA). Pixel displacements are represented by
motion vectors. The motion vector for the block of pixels in the actual frame is
determined by searching for the most similar block within the reference frame. Ap-
plicability of simple and fast BMA for tracking is investigated in [15]. It is shown
that, under the assumption of motionless camera and unchanged illumination, the
BMA can be used with high success for motion segmentation. Under assumption
of images with different levels of activity, sub-optimal search algorithms, which in-
crease the speed at the expense of some accuracy, can be employed [36]. BMA is
often used in video compression, moving object detection and localization [15, 32].
BMA is also used in video surveillance systems, traffic control and monitoring, and
other similar systems based on the scene analysis [28, 34].

Two-dimensional motion estimation is analyzed in the context of different influ-
ences. The most important problems are occlusion, aperture problem and motion
estimation sensitivity to the presence of the noise in the video [37]. Each motion
estimation method has some drawbacks. By choosing the appropriate parameters of
the algorithms, it is possible to reduce some of their negative effects. The most im-
portant parameters in BMA implementation are: block size and search region size,
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Table 1 Block matching
criteria and search strategies Block matching algorithm (BMA)

Matching criteria Search strategy

(a) Mean Squared Error (a) Exhaustive Search/Full search

(b) Mean Absolute Difference (b) Three Step Search

(c) Matching Pel Count (c) Four Step Search

(d) Diamond Search

(e) Adaptive Road Pattern Search

matching criteria, and search strategy. The determination of block size and search
region size depends on the application, the size of the moving object, the amount
of noise in the video frames, the texture of the object and the background. Often
used matching criteria are: Mean Squared Error (MSE), Mean Absolute Difference
(MAD), and Matching Pel Count (MPC) [16, 37]. BMA is a computationally in-
tensive, and can be improved by appropriate search strategy. Instead of Exhaustive
Search/Full search [16], other strategies can be used: Three Step Search [16], New
Three step Search [38], Simple and Efficient Search [39], Four Step Search [40], Di-
amond Search [41], and Adaptive Road Pattern Search [42]. Block matching criteria
and search strategies are summarized in Table 1.

3.2 Region of Interest Extraction

Important aspect of scene analysis for moving object localization and tracking based
on image and video processing is redundancy reduction. Because of that, region
of interest (ROI) extraction, capturing the objects of interest within the ROI, is an
important issue. Color and shape information are usually used for ROI based motion
estimation process [36, 37].

The full search BMA depends on ROI extraction more than other algorithms, be-
cause of its computational complexity [43]. Different methodologies for ROI extrac-
tion are presented in previous research. Two main approaches are often proposed.
The first method analyzes the objects within the predefined and fixed ROI, which is
in the same position for all frames in a video sequence [44]. The second approach
takes into account dynamics of the scene and automatically adapts the ROI position
within the frame. The moving object location is calculated analyzing the ROI whose
position is continually updated from frame to frame of the video sequence [45, 46].

The simplest way of forming the region of interest in analysis of a static image
is to divide the frame into blocks grouped according to previously defined rules.
The disadvantage of this approach is that fixed and predefined regions of interest
are located at the same position within each frame, so it cannot be used in the case
of moving cameras and dynamic scene changes. The above described approach is
often used in security video surveillance systems where the main task is to control
and monitor important, fixed location in the scene [44].
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It is known that different factors influence user’s visual attention. Some of them
are movement, contrast, size of the object, shape, color, location, scene background,
presence of the multiple moving objects at the scene and context of the object pres-
ence. Those factors are estimated and combined in order to create the map of key
influence factors that attracts user attention to the specific region or object [45]. If
only image processing techniques are used, the first step in the process of the ROI
extraction is frame segmentation into homogenous regions. Second step represents
combining the factors that influence visual attention with the spatial factors and fea-
tures (size and shape of the region, foreground and background characteristics etc.).
Based on the obtained attention model, automatic ROI extraction can be performed.

The physical object of interest appears in several consecutive frames. Usually,
the extracted ROI is the tightest rectangle surrounding the object of interest. The
methods of ROI tracking in video sequences are often based on similarity of visual
features in successive frames. As previously described, BMA has been widely used
in motion estimation and tracking. Authors in [47] proposed efficient human motion
tracking method using human figure model. They introduce a ROI extraction using
the object of interest modeling with object masking. In general, with known object
model and the BMA search region limited by the ROI, whose size and position
are continually refreshed, the improvement of the moving object tracking can be
achieved.

4 RFID Localization of Moving Objects Improved by Motion
Segmentation

The scene analysis is not a simple task, especially when several objects with differ-
ent characteristics are present in a scene. Navigation systems, systems for localiza-
tion of moving objects and robot auto-localization include object recognition, ROI
extraction, position determination, etc. Having in mind rapid development of mobile
and Internet communications, the integrated systems can be used.

Complex systems that achieve significant improvement in scene analysis inte-
grate the RFID and image processing techniques. Integration of visual information
and RFID data reduce localization problems caused by high interaction between
persons and objects, and eliminate the redundant scene information. The object
recognition, localization and tracking can be successfully employed using integra-
tion of RFID technology and digital image processing techniques [48]. Protecting
and managing privacy information is important an task in modern video surveillance
systems. Authors in [49, 50] propose integration of RFID technology with video
surveillance system for masking regions in acquired image, so the person’s privacy
protection is provided. An example of RFID system integrated with the image and
video processing is remote surveillance of kid’s activity in the kindergarten [51].

Methods of integration depend on specific systems, characteristics and tasks ex-
pect to be improved. The possible improvements of visual scene analysis systems
are related to:
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• image or video archive size,
• person privacy protection in video surveillance systems,
• real time moving object or person tracking using RFID data as a corrective ele-

ment,
• extracting image frames from video in face recognition systems,
• object or person identification in surveillance and tracking systems.

On the other hand, RFID systems can also be improved by digital image processing
and analysis. Many improvements are possible, and some of them are:

• increasing reliability of identification by integrating biometrical data,
• reducing active RFID reader energy consumption by triggering the reader only if

the object of interest is detected at the scene,
• accuracy and precision of localization.

Besides the ID data, RFID tag can store other useful data. Information about
absolute location, image histogram of the object or person wearing the tag, object
images and other important data can be stored depending on the RFID tag type. Due
to the possibility of using different data types and solving complex tasks, RFID tech-
nology presents more than identification technology [52–56]. Different tasks can be
solved using the data stored on the RFID tag and image processing techniques. 3D
analysis, surveillance and object classification, activity recognition are examples of
use [52, 53, 57, 58].

In this chapter, a method for RFID localization and motion segmentation integra-
tion in order to improve accuracy and precision of moving object localization will
be described. Reduction of information redundancy is an important task in mod-
ern multimedia applications, and this method reduces redundancy by extracting and
analyzing only the ROI that represents the core interest of the user, containing the
essence of the frame information.

RFID technology is employed for ROI detection. ROI is extracted based on a
priori knowledge about passive RFID tags arrangement and the RF field determined
by the RFID reader performances. After that, a moving object in ROI is segmented
based on estimated motion vectors and morphological postprocessing. Motion vec-
tors are estimated using BMA. To decrease the impact of illumination changes, only
chromatic image components are used. Centroid of the segmented object determines
the object position.

The integrated system consists of the three functional segments: information
acquisition segment based on RFID devices and image sensors usage, image pro-
cessing segment and global information acquiring based on RFID ID data. General
architecture block scheme of a system for localization and identification using inte-
gration of RFID and image processing is presented in Fig. 4.

The proposed framework could be applicable in applications based on the use
of industrial robot. Well-known problems in robotics, such as initial position de-
termination, self localization, and robot calibration can be solved using the pro-
posed framework. High precision localization in multi robot systems is necessary in
order to avoid possible collisions.
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Fig. 4 General architecture block scheme for localization and identification system using integra-
tion of RFID and image processing

Fig. 5 Moving object localization method

4.1 Moving Object Segmentation and Localization

The block scheme of the moving object localization system is shown in Fig. 5.
It is assumed that the object of interest moves across an indoor field of passive
RFID tags. In order to decrease the error of RFID position estimation of moving
objects of interest, motion segmentation followed by morphological postprocessing
and feature extraction is employed.

The aim of the proposed method is to achieve smaller absolute distance error
without increasing the number of tags.

4.2 RFID Position Estimation

The RFID localization system based on proximity technique and passive RFID tags
[21, 24] consists of a moving object with an RFID reader attached to the bottom,
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Fig. 6 RFID reader
recognition area (RRA)

and N × M passive RFID tags arranged on the floor in either a square or triangular
pattern. The RFID reader antenna forms the RF field so the tags under the effective
area of the antenna (reader recognition area—RRA) are detected (see Fig. 6). Each
tag, Tk,l , sends its identification number related to its two-dimensional coordinates
(xk, yl), k = 1,2, . . . ,N , l = 1,2, . . . ,M .

Let us assume the triangular tags pattern. Coordinate information of RFID tags
detected inside the circular RRA with radius R are xk, . . . , xk+n and yl, . . . , yl+m.

The center of RRA is the true RFID reader position (xtrue, ytrue). The estimated
position of the RFID reader is represented as [24]

xest = xk + xk+n

2
, (1)

yest = yl + yl+m

2
. (2)

The RFID absolute position estimation error represents the difference between
the true and estimated positions of the RFID reader. The maximum estimation error
is
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√
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The error is proportional to the gap between the tags. Estimation error decreases
with dtag decreasing, for example, with increasing the number of tags detected under
the same RRA. Authors in [24] conducted an experiment with dtag = 10 cm, using
square and triangular patterns, and showed that average absolute distance errors are
2.0 cm and 1.6 cm, respectively.
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Fig. 7 Relations between ROI and RRA in successive frames and roughly estimated motion vector

4.3 Rough RFID Localization

The position of the moving object is roughly estimated using the RFID localization.
When the RFID reader finishes collecting data, the minimum x and y tags coordi-
nate values inside the RRA are used to determine the reference pixel in each frame
for ROI extraction. We used the triangular tag pattern where the reference position
(xk−2, yl−1) has to be the upper left corner of ROI in order to include the whole
RRA in ROI, for every possible RRA position regarding the detected tags. Roughly
estimated motion vector is determined by two ROI reference pixels in successive
frames (see Fig. 7).

4.4 Motion Estimation

Roughly estimated motion vectors can be used for PTZ (pan-tilt-zoom) video cam-
era control in such a way that video camera follows the RFID reader, so the moving
object of interest is always captured. Another way is to use a static high resolution
video camera that captures the whole field of passive RFID tags. When motion esti-
mation between whole frames is performed, motion vectors give information about
all motions, including camera motion, background and illumination changes, and
this approach suffers from aperture and occlusion problems. Motion estimation is
an ill-posed problem and requires enormous number of operations if it is calculated
for large number of pixels.

In order to simplify motion estimation and find only the motion of the object with
attached RFID reader, information acquired by the RFID reader is used to extract
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regions of interest within the frames captured by the video camera. The size of
extracted ROI depends on the size and shape of RRA, the tags read within the RRA,
and the geometry of the moving object, so the object of interest occupies most of the
ROI area. ROI modeling is based on the assumption that the gap between the tags
is smaller than the diameter of the RRA. It is assumed that the center of the RRA is
equal to the centroid of the moving object.

Motion vectors are estimated for the blocks in extracted ROIs of the successive
frames. Due to its simplicity, BMA is appropriate for motion vectors calculation.
When ROI extraction is not used, large search windows are needed to find matching
blocks for fast moving objects (i.e. having large displacement). RFID based extrac-
tion of ROI enables block matching using small search windows regardless of the
magnitude of displacement.

4.5 Moving Object Segmentation

For moving object segmentation it is not necessary to find exact motion vectors. It
is enough to find blocks moving in the similar way. The whole object should be
included in ROIs extracted by RFID in both frames. It does not matter if ROIs of
frames represent different physical scenes determined by different sets of tags.

Block matching algorithm is not robust to illumination changes. Shadows of ob-
jects can significantly distort segmentation, because shadows move together and in
a similar way as objects and they are segmented as parts of objects. The most in-
formation about illumination and shadows by its nature belong to the luminance
component. To reduce the impact of shadows and changes in illumination, only
chromatic components of CIE L*a*b* color space are used for motion analysis.
Each chromatic component of frames is analyzed separately.

Since the object of interest occupies most of the ROI area, the most of the mo-
tion vectors in ROI belong to the object of interest, and have similar orientation and
intensity. In contrast to these motion vectors, the rest of the motion vectors result
from camera movements, random changes in illumination, noise or small moving
objects. Motion vectors are segmented if the appropriate bin in the histogram is
above the predefined percent of the histogram maximum. Blocks with such vec-
tors in at least one of the chromatic frame components belong to the moving ob-
ject.

Due to the complex structure of the moving object, camera movements, changes
in illumination, shadows, noise and, eventually, small moving objects that are near
the object of interest, all pixels from the object of interest are not segmented cor-
rectly and, additionally, some isolated small regions from background or other mov-
ing objects are also segmented. All of these inaccuracies have significant influence
to extraction of object features, especially to centroid calculation. Morphological
postprocessing improves initial segmentation obtained by motion vectors. The most
of segmented blocks belonging to the object of interest are connected.
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Fig. 8 RFID reader attached to the object

4.6 Absolute Position Estimation

Since the RFID tags are at the predefined absolute positions, the absolute position of
the ROI is also known. As we mentioned before, the upper left corner of ROI is de-
termined by tag position (xk−2, yl−1), where (xk, yl) are the coordinates of the upper
left tag sensed by the RFID reader. The relative pixel based position of the moving
object is determined by the vector connecting the upper left corner of ROI and the
centroid of the segmented object. With known relation between the image plane and
the real scene, relative pixel based position is transformed to the real relative posi-
tion. The final absolute location of the moving object is obtained by correcting the
RFID based roughly estimated absolute location with this relative position.

4.7 Experimental Results

The aim of this experiment is to show the improvement of RFID localization using
motion segmentation with BMA and morphological postprocessing. It is clear that
only the relative position of the segmented object centroid to the reference ROI
pixel (upper left corner) makes difference to the RFID localization. Because of that,
it is enough to analyze motion in the ROIs of successive frames that represent the
physical scene determined with the same set of tags, to show improvements of the
proposed method.

This experiment is conducted in realistic environment (varying illumination,
presence of shadows and noise) using a moving object with irregular shape and
texture. An object with an RFID reader attached to its bottom (see Fig. 8) is mov-
ing on the floor with triangle pattern of passive RFID tags. Process of RFID data
acquiring is synchronized with frame capturing, i.e. at the exact moment of frame
capturing new information from RFID reader about sensed tags is available.

Calibration between the RFID and the camera is performed as explained in
Sect. 4.3. Common coordinate system is established in accordance with Fig. 7. With
known video camera parameters and the reference linear measure presented on the
scene, relation between the image plane and the real scene plane was established,
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Fig. 9 RRA and tags’ grid

namely p image pixels correspond to 1 cm (p = 6 in this example). In order to use as
few tags as possible, the diameter of RRA should be smaller than 3dtag (see Fig. 9).

In this way, at least two or at most three tags both in horizontal and vertical
direction are detected simultaneously. The size of the moving object is chosen to be
smaller than RRA.

Under the given assumptions, the dimension of ROI is chosen to be p × 4dtag
in each dimension, in order to cover the entire object by ROI. Considering that the
diameter of RRA is 28 cm, tags are located at every 10 cm using triangular pattern.
In this experiment ROIs with dimensions 240 × 240 pixels are cropped from high
resolution video frames.

Motion vectors are calculated for 8×8 blocks in ROI, in CIE L*a*b* color space
for chromatic components only, and the search area of 7 pixels in each of the four
directions. Figure 10 shows two successive frames of the real scene, Figs. 11 and 12
show the corresponding motion vectors and segmented blocks of the moving object,
respectively, calculated for chromatic components in CIE L*a*b* color space.

The two-dimensional cumulative histogram of the motion vectors is generated
(see Fig. 13). The height of each bar in this histogram represents number of mo-
tion vectors that have the same real and imaginary parts. The motion vectors corre-
sponding to the most significant peaks in the histogram have similar orientation and
intensity. They determine the blocks belonging to the moving object equipped with
the RF reader.

Motion analysis, performed separately for both chromatic components, gives the
vectors with similar orientation and the intensities. Those vectors belong to object
of interest and they are clearly identified within ROI. 2D histogram of the motion
vectors for chromatic “a*” component of the CIE L*a*b* color space is shown in
the Fig. 13.

The segmented moving object obtained after morphological postprocessing is
shown in Fig. 14.

All objects whose area is smaller than the area of the largest object are removed.
Small holes inside the segmented blocks should be filled before centroid calculation.
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Fig. 10 Two successive frames

Fig. 11 Motion vectors computed using: (a) a* component, (b) b* component of CIE L*a*b*
color space

Fig. 12 Segmented blocks using: (a) a* component, (b) b* component of CIE L*a*b* color space

It can be implemented using conditional dilatation with the edge of the ROI image
as a seed and the inverted segmentation obtained beforehand as a mask image. Fi-
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Fig. 13 2D histogram of the
motion vectors for chromatic
“a*” component of the CIE
L*a*b* color space

Fig. 14 Moving object
segmented using chromatic
components

nally, binary morphological closing with a flat, disk-shaped structuring element with
2 pixels radius smoothes the edges of the segmented object.

In order to reduce the influence of illumination changes and segmentation of
shadows as a part of the object, luminance component is omitted. Figure 15(a) shows
the segmented blocks of luminance obtained by the same procedure. If the final
result is obtained with all of three CIE L*a*b* components, shadows of the object
are also segmented, compare Fig. 15(b) with Fig. 14.

After segmentation and morphological postprocessing, the absolute distance er-
rors are calculated. Two separate tests were performed, with uniform and textured
background. Typical scenes with uniform and textured background are shown in
Figs. 10 and 16, respectively. The locations in 48 positions were estimated, while
an object was crossing over the whole area covered by the same set of tags. The
test was performed four times, twice for video with uniform and twice with tex-
tured background, each time in 12 randomly chosen locations. The true location
of the object was manually determined in each captured frame based on centroid
marker presented at the object and the reference linear measure presented in the test
scene.
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Fig. 15 (a) Segmented blocks using luminance component, (b) moving object segmented using
all CIE L*a*b* components

Fig. 16 Segmentation of moving object on textured background (best viewed in color)

The comparison of the results obtained for these 48 randomly chosen locations
with the coarse RFID position estimation and the proposed method are given in
Table 2. The estimation errors are related to the RFID localization and the RFID lo-
calization improved with motion object segmentation (RFID+MS) for uniform and
textured background. Better results are obtained with textured background, because
block matching on static uniform background contaminated with noise gives more
motion vectors that point to non existing background motion, than on textured back-
ground.

Using the coarse RFID localization method the average absolute distance error
of 1.37 cm is obtained with variance of 0.51 cm2. The estimation error and variance
are reduced significantly using this method.

Calculated for all 48 positions, the average absolute distance error decreased to
0.72 cm with variance of 0.16 cm2.
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Table 2 Comparison of the
RFID localization and RFID
localization improved by
moving object segmentation

RFID RFID+MS

Uniform
background

Textured
background

Uniform
background

Textured
background

average 1.37 1.36 0.76 0.68

variance 0.50 0.54 0.17 0.15

average 1.37 0.72

variance 0.51 0.16

5 Conclusion

In this chapter, the possibilities and advantages of integration of multiple technolo-
gies in multimedia surveillance systems are described. It is shown that heteroge-
neous data fusion improves the accuracy and precision of localization and represents
a promising research area.

The method for moving object localization using integration of a passive RFID
indoor localization system and scene analysis techniques is presented. Moving ob-
ject segmentation, based on the region of interest extracted by RFID data, elim-
inates the influence of other large moving objects and avoids unnecessary image
processing computations. Due to its simplicity, the block matching algorithm fol-
lowed by morphological postprocessing is used for moving object segmentation.
The presented method eliminates the aperture problem because the extracted scene
of interest has sufficient structure to capture the whole moving object. The imple-
mentation shows significant reduction of the position estimation error and variance
in comparison to the conventional RFID position estimation. The simplicity and
error reduction are the main advantages of this solution.

Several relevant issues that deserve further investigation are also identified. Ob-
ject modeling can improve object segmentation and localization. Also, the influence
of complex environments (texture, shadow, noise, etc.) on the block matching algo-
rithm in order to perform automated ROI extraction can be investigated. Attention
has to be paid to computational requirements of the proposed solution.
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A Particle Filter Framework for Object
Tracking Using Visual-Saliency Information

Dwarikanath Mahapatra and Mukesh Saini

Abstract Automated processing of video streams is core to current surveillance
systems. The basic building blocks of video processing techniques are object de-
tection and tracking. Tracking results are further analyzed to detect various events
and activities for situation assessment. Several approaches to object detection and
tracking are based on background modeling. These approaches are generally vul-
nerable to noise, illumination changes etc. Further, the object may not look similar
in an image sequence over time due to changes in orientation, lighting, occlusion,
etc. In this chapter, we explore application of neurobiology-saliency for object de-
tection and tracking using particle filters. We use low-level features such as color,
luminance and edge information along with motion cues to track a single person.
Experimental results show that this approach is illumination invariant and can track
persons in varying lighting conditions.

1 Introduction

Current surveillance systems employ a large number of cameras capturing huge
amounts of video. Since it is difficult and expensive to monitor these videos us-
ing humans, there is a need to automatically process them for situation assessment
and anomaly detection. The main components of automatic situation assessment
are activity and behavior analysis, which in turn depend on object detection and
tracking. Numerous algorithms have been developed to track humans and other ob-
jects. A comprehensive review of these methodologies can be found in [47]. Most of
these method rely on a single image cue for tracking. Spengler et al. [42] proposed
integration of different useful image cues for robust tracking. Triesch et al. in [44]
introduced a Democratic Integration method. This is one of the initial approaches
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where the cues produce a resulting state that serves as the basis for adaptations of
individual cues.

Tracking in varying environments is essential for the purpose of security. Ap-
proaches such as mean shift tracking have shown good results in many scenar-
ios [8]. Background subtraction approaches, where the objects in the neighborhood
are more or less static, are also used to detect humans and objects [7]. However,
even a small change in the intensity of the surroundings can alter the reference
background and lead to erroneous tracking. Hence, it is necessary to use features
that are invariant to intensity changes.

In this chapter, we explore the use of features derived from neurobiology-saliency
maps for the purpose of robust object detection and tracking. A saliency based ap-
proach identifies the regions of the image that are probabilistically interesting to the
viewers based on the workings of the human visual system (HVS). Since the HVS
can efficiently track objects in the presence of noise and intensity changes, it is worth
exploring the use of saliency models to improve the robustness of existing auto-
matic detection and tracking methods. As a case study, we propose a neurobiology-
saliency based particle filter method for illumination invariant tracking in office
environments. The multi-feature-based saliency measure, when combined with mo-
tion information, produces results that are unaffected by intensity changes. It is
shown in [16] that an entropy-based saliency measure remains consistent over time.
Walther et al. use saliency to initialize tracks for objects, and track them using a
Kalman filter. Saliency inspired features have been used in various applications like
registration [22, 23, 26, 29] and segmentation [24, 25, 27, 28]. In our method, we
fuse two saliency maps, a static saliency map of a single scene obtained using purely
low-level features (using the neurobiology based approach explained in [13]), and a
motion saliency map generated using motion cues across successive frames.

Low-level features like pixel intensity, color and edge orientation in static
saliency map calculation are robust individual cues for tracking purposes. A combi-
nation of these features may provide a more robust tracking framework. We chose
the particle filter because of the following reasons: (1) it can be applied to nonlinear
systems; (2) the noise need not follow a Gaussian distribution; (3) it can work for
multimodal distributions; and (4) the particle filter predicts multiple possible states
for each object being tracked.

The rest of the chapter is organized as follows. In Sect. 2, we give details on
a standard neurobiology based saliency map as well as our modifications to adapt
it to our data. Section 3 briefly explains the particle filter and our implementation.
Experimental results are shown in Sect. 4 and we conclude with Sect. 5.

2 Saliency

Saliency defines how different a region is from its surroundings based on various
features, thus attracting our attention. Visual attention models (or saliency mod-
els) refer to computational models that determine a saliency map (conspicuity map)
based on the interaction of different features. Saliency models may consider two
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types of features, that is, bottom-up (e.g., intensity, color, texture, edge orientation)
or top-down (e.g., prior knowledge of the desired task). We shall review some mod-
els of bottom-up feature-based visual attention. Bajcsy and Gelade in [2] proposed
a feature integration theory, one of the earliest hypothesis for attention. It suggests
that attention must be directed serially to each stimulus in a display whenever con-
junctions of more than one separable feature are needed to characterize or distin-
guish the presented objects. Another model was proposed by Mozer in [32] which
modeled an object for recognition tasks. The work by Itti and Koch [15] proposes
the popular neurobiological attention model based on saliency maps and has been
found to have a high correlation with human fixations [14]. Soto and Blanco in [41]
explored the role of space-based and object-based visual attention within a cueing
paradigm. Participants had to discriminate the orientation of a line that appeared
within one of four moving circles differing in color. A cue appearing close to one
of the four circles indicates the location or circle where the target stimulus was
likely to appear. Results suggest that object and space-based attention interact with
selection-by-location over object-based selection. Logan in [19] proposed a theory
integrating space-based and object-based approaches to visual attention.

Saliency is defined by local image features at various scales. Salient regions are
those where feature strength is greater than its neighbors. For example, the edges
are salient because the difference in intensity between edge pixels and its neighbors
is high, hence human visual system (HVS) is strongly attracted to the edges. We
now look at some works that use local features for object detection or salient region
detection. Scale is an important factor in these methods leading to robust identifica-
tion of salient regions. Kadir and Brady [16] use entropy in a scale-space model to
detect salient regions in an image. Entropy gives a measure of information content
in a neighborhood, and different scales are used for robust identification of salient
regions. Lowe in [20] introduces a scale-invariant feature descriptor that identifies
salient points irrespective of rotation and the scale at which features are selected.
This technique has been used in many object matching tasks [16]. Serre et al. in [39]
propose a biological model for object detection which is inspired by the working of
the HVS. It uses a feature set combining position and scale-tolerant edge detectors
over neighboring locations and multiple orientations for an object detection task.

Apart from detecting salient regions in static images, many works have focused
on detecting salient regions in videos. Wixson [46] integrates optical flow cues to de-
termine objects that are motion salient. In [11, 12], the authors have used a Bayesian
framework to predict surprising regions in video while in [5] the problem of de-
tecting salient regions in videos is posed as an inference process in a probabilis-
tic graphical model. The computational model in [30] uses entropy for identifying
salient regions in numerous short-duration video clips.

2.1 Neurobiology Based Saliency Model

Primates have a remarkable ability to interpret complex scenes in real time. It is be-
lieved that intermediate and higher visual processes select a subset of available sen-
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sory information for processing [45]. This is most likely to reduce the complexity
of scene analysis [33]. The selection of visual information appears to be in the form
of a spatially circumscribed region of the visual field which is also called the focus
of attention. It scans the scene both in a rapid, bottom-up, saliency-driven, and task
independent manner and in a slower, top-down and task dependent manner [33].
Models of visual attention include “dynamic routing models” where information
from a small region of the visual field can progress through the cortical visual hi-
erarchy. The attended region is selected through dynamic modifications of cortical
connectivity or by establishing specific temporal patterns of activity [33, 36, 45].

The saliency model by Itti and Koch builds on biologically plausible architecture
proposed in [17] and is at the basis of several other models [3, 31]. The model is
related to the “feature integration theory” that explains human visual search strate-
gies [2]. Visual input is first decomposed into a set of topographic feature maps and
different spatial locations compete for saliency within each map such that only loca-
tions that stand out from their surroundings persist. The feature maps serve as input
to a saliency map that determines the conspicuity over the entire visual scene. It is
believed that such a map is located in the posterior parietal cortex of primates [38].
The model represents a complete account of bottom-up saliency and does not re-
quire any top-down guidance to shift attention. Such a framework allows for parallel
processing for fast selection of a small number of interesting image locations.

From the input image, nine spatial scales are created using dyadic Gaussian pyra-
mids [10]. They progressively low-pass filter and subsample the input image yield-
ing horizontal and vertical reduction factors ranging from 1 : 1 to 1 : 256 in eight
octaves. Each feature is computed by a set of linear center-surround operations akin
to visual receptive fields. Typical visual neurons are most sensitive in a small region
of the visual space (the center). Stimuli presented in a broader, weaker antagonistic
region concentric with the center (referred as the surround) inhibit the neuronal re-
sponse. Such an architecture is sensitive to local spatial discontinuities, and is par-
ticularly well suited to detecting locations that stand out from their surroundings.
This is a general computational principle in the retina [18]. Center-surround is im-
plemented in the model as the difference between fine and coarse scales. The center
is a pixel at scale c ∈ {2,3,4}, and the surround is the corresponding pixel at scale
s = c + δ, δ ∈ {3,4}. The across-scale difference between the two maps is obtained
by interpolating to finer scales and point-by-point subtraction. Several scales lead to
multiscale feature extraction by including different size ratios between center and
surround regions.

2.1.1 Extraction of Early Visual Features

Let R, G and B be the red, green and blue channels of the input image and an
intensity image I is obtained as I = (R + G + B)/3. I is used to create a Gaussian
pyramid I (σ ) where σ ∈ [0 . . .8] is the scale. Center-surround difference (denoted
as 
) between a “center” fine scale c and “surround” coarse scale s yields the feature
maps. The first set of feature maps for intensity contrast is given by

I (c, s) = ∣∣I (c) 
 I (s)
∣∣. (1)
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A second set of maps is constructed for the color channels, which, in cortex
are represented using a “color double-opponent system”. In the center of their re-
ceptive fields, the neurons are excited by one color and inhibited by another while
the converse is true for the surround. Such spatial and chromatic opponency exists
for red/green, green/red, blue/yellow and yellow/blue color pairs in human primary
visual cortex [9]. Thus, maps RG(c, s) is created to simultaneously account for
red/green and green/red double opponency and BY(c, s) for blue/yellow and yel-
low/blue opponency.

RG(c, s) = ∣∣(R(c) − G(c)
)
 (G(s) − R(s)

)∣∣,

BY (c, s) = ∣∣(B(c) − Y(c)
)
 (Y(s) − B(s)

)∣∣.
(2)

Local orientation information is obtained from I using oriented Gabor pyramids
O(σ, θ), where σ ∈ [0 . . .8] represents scale and θ ∈ {0°,45°,90°,135°} are the
preferred orientations [10]. Orientation feature maps are obtained as

O(c, s, θ) = ∣∣O(c, θ) 
 O(s, θ)
∣∣. (3)

In total 42 feature maps are computed: 6 for intensity, 12 for the three color chan-
nels and 24 for orientation. The individual features are robust for object tracking and
their combination is expected to give better results.

2.1.2 The Saliency Map

The purpose of the saliency map is to represent the conspicuity (or saliency) at every
location in the visual field by a scalar quantity, and to guide the selection of attended
locations based on the spatial distribution of saliency. A combination of the feature
maps provides bottom-up input to the saliency map modeled as a dynamic neural
network. The different feature maps represent different modalities with different
dynamic ranges and extraction mechanisms. When all feature maps are combined
salient objects appearing strongly in a few maps may be masked by noise or less
salient objects in other maps. Therefore, a normalization operator N(·) is used to
globally promote maps having a small number of strong peaks of activity (conspic-
uous locations), while globally suppressing maps containing numerous comparable
peak responses. N(·) consists of the following steps:

1. Normalize the values in the map to a fixed range [0 . . .M], in order to eliminate
modality-dependent amplitude difference;

2. Find the location of the map’s global maximum M and compute the average m̄

of all its other local maxima; and
3. Globally multiply the map by (M − m̄)2.

Comparing the maxima of the entire map to the average overall activation mea-
sures how different the most active location is from the average. When this differ-
ence is large, the most active location stands out and the map is strongly promoted.
When the difference is small the map contains nothing unique and is suppressed.
The biological motivation behind the design of N(·) is that it coarsely replicates



138 D. Mahapatra and M. Saini

cortical lateral inhibition mechanisms, where neighboring similar features inhibit
each other via specific anatomically defined connections [6]. The feature maps are
combined into “conspicuity” maps, Ī for intensity, �O for orientation at the scale
σ = 4 of the saliency map and �C for color. The final saliency map obtained as the
combination of the two normalized conspicuity maps is

SM = 1

3

[
N(Ī ) + N( �O) + N(�C)

]
. (4)

At any given time the maximum of the saliency map (SM) defines the most
salient image location where the focus of attention (FOA) is directed. However in
a neuronally plausible implementation, the SM is modeled as a 2D layer of leaky
integrate-and-fire neurons at scale σ = 4. These model neurons consist of a sin-
gle capacitance that integrates the charge delivered by synaptic input, of a leakage
conductance and a voltage threshold. When the threshold is reached, a prototypical
spike is generated and the capacitive charge is shunted to zero. The SM feeds into a
biologically plausible 2D “winner-take-all” (WTA) neural network [17, 45] at scale
σ = 4, where synaptic interactions among units ensure that only the most active
locations are suppressed.

The neurons receiving excitatory input from SM are all independent. The poten-
tial of SM neurons at more salient locations increases faster and each SM neuron
excites its corresponding WTA neuron. All the WTA neurons also evolve indepen-
dently of each other, until one (the winner) first reaches threshold and fires. This
triggers three simultaneous mechanisms:

1. The FOA is shifted to the location of the winner neuron;
2. The global inhibition of the WTA is triggered and completely inhibits (resets) all

WTA neurons;
3. Local inhibition is transiently activated in the SM, in an area with the size and

new location of the FOA; this not only yields dynamical shifts of the FOA, by al-
lowing the next most salient location to subsequently become the winner, but also
prevents the FOA from immediately returning to a previously attended location.

Such an inhibition of return has been demonstrated in human visual psy-
chophysics [37]. As no top-down attentional component is modeled, the FOA is
a simple disk with radius fixed to one-sixth of the smaller of the input image width
or height. The time constants, conductances and firing thresholds of the simulated
neurons were chosen so that the FOA jumps from one salient location to another in
approximately 30–70 ms of simulated time. The attended area is inhibited for ap-
proximately 500–900 ms. The difference in the relative magnitude of these delays
is sufficient to ensure thorough scanning of the image and prevent cycling through
a limited number of locations.

2.1.3 Strengths and Limitations

Despite its simple architecture and feed-forward structure the model is capable of
strong performance with complex natural scenes. It can quickly detect salient points
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in different kinds of images [15]. Another strength of the model is the parallel im-
plementation of the computationally expensive early feature extraction stages and
the attention focusing system. This allows for real time operation on dedicated hard-
ware. A critical part of the model is the implementation of the normalization opera-
tor N(·) which provides a general mechanism for computing saliency. The resulting
saliency measure is closer to human saliency as it implements spatial competition
between salient locations. The feed-forward implementation of N(·) is faster and
simpler than iterative schemes. The efficiency of the proposed saliency model de-
pends upon the features used and can be tailored to arbitrary tasks through the im-
plementation of dedicated feature maps.

2.2 Our Modifications

We have described the saliency map as developed in the original work by Itti
et al. [15]. For our tracking algorithm, we modify the method to make it suitable
for our datasets. Since we worked on grayscale images, only we do not use the color
channel for saliency map calculation. Therefore, our saliency map is based on a
combination of intensity and orientation conspicuity maps to get the final saliency
map. The second change is that we do not implement the winner take all step to get
the most salient region. Instead all regions are assigned with a saliency value which
is combined with the motion intensity map for subsequent analysis.

2.3 Motion Saliency Map

We define motion saliency as attention due to motion. Since tracking involves video
clips, motion is undoubtedly a strong factor in capturing the viewers attention.
Abrams et al. [1] have shown that onset of motion captures attention. Objects that
accelerate, such as those that have just begun to move, are more likely to be seen
than objects that undergo deceleration [43]. Models have been developed that emu-
late the response of the middle temporal (MT) area of the primate cortex which is
selective to velocity in visual stimuli [40]. Attention models have been used to not
only sense and analyze eye movements, but also guide them by using a special kind
of gaze-contingent information display [4].

A motion saliency map is a representation of regions that are moving and salient.
It is calculated by combining spatial coherency and temporal coherency [21]. It
is based on the concept of motion vector fields (MVF). The MVF is analogous
to the retina of the eye and motion vectors are the perceptual response of optic
nerves. This approach results in the calculation of three maps—Intensity map, the
Spatial Coherency map, and the Temporal Coherency map, each corresponding to
3 inductor fields of a MVF. These three maps are then combined to get the final
motion attention map highlighting regions that are moving and are visually salient.
We shall describe each component of the motion saliency map.
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2.3.1 Motion Vectors

Motion vectors are an integral part of many video compression algorithms, where
they are used for motion compensation or block matching. The idea behind block
matching is to divide the current frame into a matrix of blocks which are then com-
pared with the corresponding block and its neighbors in the previous frame to deter-
mine a motion vector. The motion vector estimates the movement of a block from
one frame to another. We calculate the motion vectors using the Adaptive Rood Pat-
tern Search (ARPS) [34]. The ARPS algorithm makes use of the fact that the general
motion in a frame is usually coherent, that is, if the blocks around the current block
moved in a particular direction then there is a high probability that the current block
will also have a similar motion vector. This algorithm uses the motion vector of the
block to its immediate left to predict its own motion vector.

Motion Intensity The motion intensity It , a measure of induced motion energy
or activity, is computed as the normalized magnitude of motion vectors:

It (x, y) =
√

dx2
x,y + dy2

x,y

MaxMag
, (5)

where dxx,y , dyx,y denote the components of motion vectors at location x, y, and
MaxMag is the maximum magnitude in the motion vector field.

2.3.2 Spatial Coherency

Spatial coherency indicates the blocks of pixels that belong to the same rigid object.
This is achieved by calculating the entropy over a block of pixels. The higher the
entropy the smaller the probability of that particular block belonging to the same
object. Lower entropy implies greater relationship between pixels and thus a higher
probability of the group of pixels belonging to the same object. The spatial co-
herency at pixel x, y, considering a window of size 8 × 8, is given by

Cs(x, y) = −
N∑

i=1

ps(i) logps(i), (6)

where ps(i) is the probability of occurrence of pixel intensity i and N = 8 × 8.

2.3.3 Temporal Coherency

The motivation behind the temporal coherency map is similar to that of the spatial
coherency map. Instead of a block of pixels we have a group of pixels over different
image frames. Higher entropy implies greater motion and hence a higher measure of
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saliency. We analyze a maximum of 7 frames prior to the current frame and compute
the entropy for all the pixel points:

Ct(x, y) = −
M∑

i=1

pt (i) logpt (i), (7)

where pt (i) is the probability of occurrence of pixel intensity i at the corresponding
location for different frames. For the temporal coherency map M = 7, as the effect
of motion in one frame on the scan path of the eye lasts for 5–7 frames.

2.3.4 Combining the Maps

The three maps are combined into the final motion saliency map as follows:

B = It × Ct × (1 − It × Cs), (8)

which is used for all further analysis. In the temporal coherency map higher entropy
implies greater motion over that particular area. Since our aim is to determine mo-
tion salient regions, this is a direct indicator of interesting regions. For this reason
the intensity map is multiplied with the temporal coherency map (It × Ct ).

However, in the spatial coherency map greater entropy indicates disparate ob-
jects. Our aim is to group objects together. This is the justification for the third term
(1 − It ×Cs ), which in essence assigns higher value to pixels belonging to the same
object. Thus, the output of the motion saliency map are regions in the image that
belong to one object and are moving.

An example of the various maps for a frame from one of our test clips is shown
in Fig. 1. The motion saliency map highlights those regions that are motion salient
(Fig. 1(e)). Motion saliency of a region is quantified by the value of the correspond-
ing pixel in the motion saliency map.

3 Particle Filter

Let Xt denote the state of a tracked object, and Zt = {z1, . . . , zt } denote observa-
tions up to t time instances. The use of particle filters is popular in scenarios where
the posterior density p(Xt |Zt) and observation density p(Zt |Xt) are non-Gaussian.
Particle filtering approximates the probability distribution with a weighted sam-
ple set S = {(s(n),w(n)), n = 1 . . .N}. Each sample s represents a hypothetical
state of the object with a corresponding discrete sampling probability w, where∑N

n=1 w(n) = 1.
The samples’ evolution is described by propagating them with the help of a

system model. The elements of the set are weighted in terms of the observations.
N samples are drawn with replacement with a particular sample chosen with the
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Fig. 1 (a) first frame of a movie sequence; (b)–(e) different components of the motion saliency
map for the frame shown in (a)

probability π(n) = p(zt |Xt = s
(n)
t ). A object’s mean state at each step is estimated

by (9). Further details of the principles of particle filter can be found in [35].

E[S] =
N∑

n=1

w(n)s(n). (9)

3.1 Implementation

We use 100 particles which are propagated over time. The final state of the object is
determined by a weighted combination of these samples based on their likelihood.
The tracking algorithm can be summarized in the following steps: (1) Initialize a
target model defining the characteristics of the object to be tracked. (2) Generate
saliency map of each frame. (3) Add random noise to the samples and determine
their weights. (4) Determine the new state, resample the particles and update cen-
troid of the template to the new value. The template features were defined as the
centroid of object, its normalized motion saliency value and the average motion
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saliency value within a bounding box over the object. Normalizing the saliency map
ensures that the most salient location in a frame has a value 1. The updated centroid
at each step ‘tracks’ the object of interest.

3.1.1 Assigning Weights

Each sample is assigned a weight that depends on similarity with the template. The
assigned weights are calculated in the following manner:

(1) The Euclidean distance between sample point and model is calculated which is
denoted as dist.

(2) The absolute difference in saliency values at sample point and model is denoted
as Sd . The corresponding difference between the average saliency of bounding
box is denoted as Ŝd .

(3) Saliency coefficient sc is calculated as

sc = (1 + dist)(1 + Sd)(1 + Ŝd ). (10)

(4) The assigned weight of the sample is given by

wn = 1√
2πσ

e
1−sc2

2σ2 . (11)

Equation (11) assigns lower weights to samples that greatly differ from the
model. The formulation of (10) is such that all three attributes contribute to the
similarity criterion and an accidental perfect match for one attribute does not bias
the algorithm to the particular location.

The algorithm was implemented in MATLAB on a Pentium D 2.8 Ghz machine
having 2 GB RAM. The movie clips used for the experiment were of resolution
240 × 320 and had a frame rate of 15 fps. The saliency values were normalized to
lie between 0 and 1.

4 Results and Discussion

We test our algorithm on different test clips containing various scenarios like track-
ing a person indoor, tracking a person in an outdoor environment, and sports videos.
For each clip the initial object to be tracked is determined by the static saliency map,
that is, the most salient object in the first frame is tracked over the entire clip.

4.1 Comparison with Background Subtraction

We implement a simple background subtraction method using Kalman filters to
make a qualitative comparison of the performance of our algorithm. A scene’s back-
ground is determined from the average image over a prolonged period with all lights
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Fig. 2 Frames of output sequence involving illumination change using our algorithm

Fig. 3 Frames of output sequence involving illumination change using our background subtraction

in the room switched on. A background subtraction method works well for cases
where the intensity does not vary much. Switching off a light can greatly affect the
tracking procedure. However our saliency based algorithm, combining motion and
low-level features, greatly increases the robustness of the algorithm.

Figure 2 shows the results of tracking in indoor environments under different
illumination conditions using our saliency-based algorithm. Figure 3 shows the cor-
responding results using a background subtraction method. Our algorithm performs
better than the background subtraction approach thus showing that saliency is a use-
ful approach for tracking under changing ambient illumination.

Figures 4 and 5 show results of our algorithm on outdoor videos and in sports
videos. For the outdoor video only one person needs to be tracked (as indicated
by the static saliency map), and the overall tracking is fairly accurate. In the sports
video there are multiple athletes and the saliency map denotes the middle athlete as
the most salient object and hence begins to track him. In the second image of Fig. 5,
we observe that the bounding box which tracks the object is not entirely on the mid-
dle athlete. This is because the background color matches that of the athlete’s jersey
and hence deviates the tracking algorithm. Because of our method’s reliance on mo-
tion information it quickly recovers and tracks the athlete in subsequent frames.

In terms of the number of frames where tracking was accurate, our saliency based
algorithm, with 97 % accuracy, performed better than the background subtraction
algorithm which had an accuracy rate of 89 %. For our algorithm, we used a par-
ticle filter for updating the states whereas for the background subtraction method
a Kalman filter was used. As a result, one erroneous prediction of state using the
Kalman filter made it difficult for the method to keep track of the original object.
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Fig. 4 Results of tracking in an outdoor scene

Fig. 5 Results of tracking a person in a sports video

But the use of a particle filter proved to be more robust and any erroneous prediction
of states could be rectified in subsequent frames.

5 Conclusion

In this chapter, we have proposed a saliency-based particle filter approach for ob-
ject tracking that incorporates motion cues. The algorithm was tested on different
videos and found to perform better than a background subtraction method using
Kalman filters. Our algorithm had a 97 % accuracy rate compared to the background
subtraction algorithm which had an accuracy rate of 89 %. From the observed re-
sults, we conclude that saliency has great promise for use in object tracking. De-
pending upon the scenario in question, appropriate saliency maps can be generated
using motion cues and appropriate low level features. It is expected that such an
approach will be more effective than conventional approaches using only intensity
and color features. In the future, we would like to investigate robust approaches to
detecting motion saliency maps for noisy videos or videos with insufficient illumi-
nation.
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Multiresolution Depth Map Estimation in PTZ
Camera Network

Sanjeev Kumar, Christian Micheloni, and Balasubramanian Raman

Abstract In this chapter, an active stereo vision system composed of two pan-tilt-
zoom (PTZ) cameras is proposed for estimating multiresolution depth map for a
large and complex scene. The rectification of stereo images is performed based on
the sigmoid interpolation with a set of neural networks. The orientation parame-
ters (pan and tilt values) and the rectification transformations of corresponding im-
ages are used as the input-output pairs for network training. The input data is read
from cameras directly, whereas the output data is computed offline. The trained
neural network is used to interpolate rectification transformations in real time for
the stereo images captured at arbitrary pan and tilt settings. The correspondence be-
tween the stereo images is obtained using a chain of homographies based scheme.
Non-homogeneity between the intrinsic parameters of two cameras is treated by
means of zoom compensation to improve the quality of stereo rectification. Experi-
mental results are given for estimating multiresolution depth map for a scene.

1 Introduction

The development of modern surveillance systems has attracted a lot of interest in
recent years [1, 4, 7, 18, 19]. Recently, the concept of stereo vision has been im-
plemented in surveillance systems to make the latter more efficient. Stereo vision
can estimate the 3D position of an object in a given coordinate system from its two
perspective images [2]. Traditional stereo vision research uses static cameras for
their low cost and relative simplicity in modeling. A pan-tilt-zoom (PTZ) camera is
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a typical and the simplest active camera, whose pose can be fully controlled by pan,
tilt and zoom parameters. As PTZ cameras are able to obtain multi-angle-views and
multiresolution information (i.e., both global and local image information), these
are used for wide area monitoring [9]. Therefore, a PTZ camera based stereo vision
system is able to cover a large environment. However, such type of active stereo
vision systems are much more challenging when compared to the traditional stereo
vision system. PTZs, on purpose (e.g., zoom on face, zoom on license plate etc.),
can vary both the intrinsic and the extrinsic parameters thus changing the stereo
properties. In this context, it is not an easy task to perform some operations like
stereo image rectification in an active stereo vision system.

Recently, a novel image rectification algorithm has been proposed for a dual-
PTZ-camera based stereo system [23]. In such a system, the problem related to in-
consistency of intensities in two camera images is solved by addressing a two-step
stereo matching strategy. An interesting approach in the case of the active stereo
vision system by means of rotating cameras has been proposed with analytic for-
mulation in [8]. To do this, an off-line initialization process has been performed to
initialize the essential matrix using known calibration parameters. During on-line
operations the rotation angles of the cameras are retrieved and exploited to compute
the current essential matrix. However, when the zoom is considered, the calibration
for any adopted zoom level is required for both cameras. Moreover, in a Dual PTZ
camera system, the discrepancies [3] in the field-of-view (FOV) and in the resolu-
tion levels of the two cameras lead to difficulties not only in the stereo rectification
but also in the depth estimation.

This work introduces a new method to perform the image rectification process
in the case of two PTZ camera based active stereo vision systems. The idea is to
model pan and tilt values for any setting of cameras as independent variables and a
number of parameters (rotation parameters here) depend on these. In this way, the
online rectification problem can be modeled as a nonlinear function approximation
problem. A LUT can be constructed offline having the corresponding values for
all these parameters on different orientation and a fixed zoom. Then, the function
approximation problem can be solved using supervised learning of a neural network.
In other words, the rotation parameters are interpolated with respect to given pan and
tilt values for computing the required rectification transformations. Neural networks
have been used rarely in video surveillance application. Here, a few properties of
neural networks such as the function approximation property in the case of highly
nonlinear data and fast simulation make it suitable for such applications. In the
case of zoom operation in any PTZ camera, a focal ratio based approach is used to
compensate the effect of unequal zoom levels between the two cameras [13].

To show the effectiveness of the proposed approach, a video surveillance applica-
tion is considered which shows the importance of the zoom settings of PTZ cameras
in scene understanding. In the case of the static cameras based stereo system, the
images are captured with the same resolution. However, in the case of the PTZ cam-
eras, we can consider two cases: (1) if a region has small depth variations, that is,
almost flat in nature, low resolution images can be used for obtaining the depth
map, and (2) when large depth variations occur in a region, high resolution images
are required. Based on these two facts, the PTZ cameras based stereo vision system
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provides a multiresolution depth map that can be used for better scene understand-
ing and requires low computational cost. In this context, another application of the
dual PTZ camera based stereo system is to grab images with the above facts in an
automatic manner and create a multiresolution depth map mosaic of a wide area.

In brief, the main advantages of the proposed PTZ camera based stereo vision
system are:

• There is no need to assume a fixed center of projection for the PTZ camera during
rotations.

• The depth-map computations can be achieved with wide baseline stereo systems.
• Only limited a priori information (i.e., information provided by a static camera)

is required to compute multiresolution depth maps for a large environment.

In particular, concerning the last advantage, contrarily to [24], there is no need to
have the coarse depth map and the precise FOV of the left camera. In addition, in-
stead of using wide baseline feature matching techniques [6, 15], that even though
efficient are computationally expensive, an approach based on a chain of 2D homo-
graphies is addressed to find corresponding points between wide baseline images in
real-time.

The rest of the chapter is organized as follows: Sect. 2 describes the system ar-
chitecture. Section 3 introduces a method for obtaining wide baseline stereo corre-
spondence. The offline steps, such as computation of rectification transformations
on sampled values of pan and tilt angles, training of ANN and zoom to focal length
fitting, are given in Sect. 4. The online steps are described in Sect. 5. A detailed
process for a constructing high resolution depth map mosaic is presented in Sect. 6.
Various results and discussions about them are given in Sect. 7. Finally, Sect. 8
concludes the chapter.

2 System Architecture and Description

The proposed system contains mainly two different units of cameras. The first unit,
called static camera unit (SCU), is composed of multiple static cameras. These static
cameras have wide FOV and cover a large environment with limited overlapping
FOV. The second unit contains two different PTZ cameras placed at a wide distance
(7 meters) from each other and considered as a dual-PTZ based stereo system. This
unit is called active stereo unit (ASU). The main functionalities of SCU are object
detection [16], behavior understanding and anomalous event detection [20]. Once
a region of interest is detected by the SCU, the system delivers the information to
the ASU for focusing the two PTZ cameras towards the selected region. The ASU
starts the stereo task as soon as the selected target appears in the FOVs of both
cameras. The handover of scene information [21, 25] between the different cam-
eras allows a cooperative tracking of the objects within the monitored environment.
The sequences acquired by the two PTZ cameras in ASU are transmitted to a cen-
tral node. The information of the orientation and resolution of these cameras also
transmitted with these sequences. A communication system based on a multi-cast
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Fig. 1 A virtual design of the proposed stereo system

protocol [17] is used for the cooperation within these cameras’ network. This com-
munication system is designed in such a way that it requires low bandwidth. A logic
architecture of the proposed system is shown in Fig. 1, where, the top layer of the
cameras represents the SCU, while the ASU is shown in the second layer.

The properties of the PTZ camera deployment make the stereo vision problem
more difficult when compared to classical stereo systems. Like the captured images
from the pair of PTZ cameras are not homogeneous in terms of the intrinsic pa-
rameters (resolution and distortion). If we perform rectification on these pairs of
images, it introduce errors (distortion effect) in the rectified images. The effect of
these unequal intrinsic parameters must be compensated before rectification. Here,
the resolution of the images are equalized using the focal-lengths of the two PTZ
cameras. The focal lengths are estimated directly from the zoom value. The ratio
between the zoom values of two cameras is used to compensate the unequal resolu-
tion effect. Once the frames are homogeneous, the rectification transformations are
interpolated using a neural network.

3 Correspondence Using Chain of Homographies

SIFT matching [14] is a popular tool for extracting matching points from a pair of
stereo images. However, this method is not very accurate in a case when images do
not share sufficient common FOV. It can happen when objects are close to both the
cameras placed at a wide baseline (see Fig. 2). To sidestep such a problem, con-
cept from the planar homography correspondence can be used [10]. Here, a method
based on a chain of homographies is adopted used for establishing the correspon-
dence between the pair of stereo images. Our idea is to initialize the correspondence
between the images of two PTZ cameras captured for a far scene and then subse-
quently use it for other pair of images. To do this, we require the correspondence
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Fig. 2 SIFT matching
between wide baseline stereo
images of a far (top) and near
(bottom) scenes along the
optical axis of camera

Table 1 Descriptions of some symbols and parameters used in the different equations

Symbols Descriptions

(Il , Ir ) Pair of images captured from left and right cameras, respectively

H Homography

(Jl ,Jr ) Rectified pair of stereo images

(Al ,Ar ) Rectification matrices for left and right cameras, respectively

(ml ,mr ) Set of corresponding points between left and right stereo images

F Fundamental matrix

(Pl ,Pr ) Left and right cameras’ projection matrices

K Camera intrinsic matrix

(p, t) pan and tilt settings of PTZ camera

D Disparitymap

between different overlapped images captured at different pan and tilt settings in
case of each PTZ camera which can be obtained using SIFT.

A description of the symbols used in this chapter is given in Table 1. Let (I1
l , I1

r )

be a pair of images of a far scene and H1 be the homography obtained from the
SIFT based matching points between these two images. Let (In

l , In
r ) be a pair of

images of a scene/object near to the cameras along their optical axis. The problem
is to autonomously establish the correspondence between the images (In

l , In
r ). Such a

correspondence can be established by capturing n images between the scenes those
are in I1

l and In
l from the left PTZ camera. A similar image grabbing process is

required for right PTZ camera to capture the images between the scenes those are in
I1
r and In

r . Let these two sets of images be (I1
l , I2

l , . . . , In
l ) and (I1

r , I2
r , . . . , In

r ). The
required correspondence between the images (In

l , In
r ) in terms of a homography Hn

can be achieved in the following steps:
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Fig. 3 Wide baseline stereo matching using a chain of homographic matrices

1. Establish the correspondence between image pairs (I1
l , I2

l ), (I
2
l , I3

l ), . . . , (In−1
l , In

l )

in terms of their respective homographies H1,2
l ,H2,3

l , . . . ,Hn−1,n
l such that

Ii
l = Hi,i+1

l Ii+1
l for i = 1, . . . , n − 1.

2. Repeat the procedure given in the above step to compute H1,2
r ,H2,3

r , . . . ,Hn−1,n
r

for the images captured with the right camera.
3. Compute the homographies Hl and Hr as

Hl =
n−2∏

i=0

Hn−(i+1),n−i
l , Hr =

n−2∏

i=0

Hn−(i+1),n−i
r . (1)

4. Compute the required homography matrix Hn for the pair the images In
l and In

r

as

Hn = HrH1(Hl)
−1. (2)

The homography Hn can be used to establish correspondence between the images
In
l and In

r which is not easy to obtain directly in case of wide baseline stereo systems.
Figure 3 gives an intuitive interpretation of the above described procedure. The final
homography matrix Hn can be computed for any value of n; however, the above
procedure can accumulate errors in the final homography due to the multiplication
of several matrices. In order to minimize this error: (1) we keep the sampling step
(i.e., the difference in pan and tilt angles) as low as possible, with a constraint that
any pair of images (e.g., Ii

l/r , Ii+1
l/r ) has to share at least 30 % of the FOV; (2) outliers

from matching points should be removed before applying a robust approach for the
homography estimation.
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4 Offline Steps

It is necessary to perform an offline initialization for deriving all the information
necessary to determine the rectification transformations during online operations.
This includes the computation of the rectification transformations for image pairs
captured at different pan and tilt sampling from two PTZ cameras. The rotation
parameters related to these rectification transformations are stored in the LUT cor-
responding to the respective pan and tilt values of the PTZ cameras. The LUT data
is used for the training of a set of neural networks that are used for sigmoid interpo-
lation of these transformations in real time.

4.1 Computation of Rectification Transformations and Look-Up
Table

A rectification transformation is a linear one-to-one transformation of the projective
plane, which is represented by a 3 × 3 non-singular matrix. For a pair of stereo
images Il and Ir , the rectification can be expressed as:

Jl = AlIl , Jr = ArIr

where, (Jl ,Jr ) are the rectified images and (Al ,Ar ) are the rectification matrices. In
case of uncalibrated cameras based stereo system, a quasi epipolar rectification [5]
has been proposed for computing these rectification transformations by minimizing
the following function.

∑

i

[(
mi

l

)T AT
r F∞Almi

l

]2 (3)

where, (ml ,mr ) are pairs of matching points between images Il and Ir . F∞ is the
fundamental matrix for the rectified pair of images. Generally, the minimization of
(3) is time-consuming and therefore it is not easy to compute the rectification trans-
formations in real time. Here, we use this scheme [5] for computing rectification
transformations offline for the image pairs captured at different pan and tilt sam-
pling. In real time, this information can be used for computing rectification trans-
formations for a given pan and tilt setting by using sigmoid interpolation. Recently,
in [11] such an interpolation based method is adopted to make rectification of stereo
pairs in real time. An offline LUT containing rectification matrices corresponding to
various image pairs captured at predefined pan and tilt angles is constructed. Then,
the rectification transformations can be interpolated in real-time for any arbitrary
orientation of both PTZ cameras by using LUT data. However, the interpolation of
eighteen parameters (nine elements for each rectification transformation) is again
computationally expensive. Here, our effort is to reduce the number of these inter-
polated parameters into six instead of eighteen by using some suitable assumptions
of camera projection matrix.

The meaning of stereo image rectification is that for any given pair of the original
camera projection matrices Pl and Pr , two new virtual projection matrices P̂l and
P̂r can be obtained to rotate the cameras around their optical centers until the focal
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planes become coplanar. Therefore, the rectification transformations Al and Ar can
be decomposed as

Al = P̂lP
−1
l , Ar = P̂rP−1

r . (4)

A camera matrix P can be decomposed into the intrinsic and extrinsic matrices
P = KD, where, K is the intrinsic matrix and D = [R t] denotes the extrinsic matrix
containing rotation matrix R and translation vector t. Since there is no translation
involved in the rectification process, (4) can be rewritten as

Al = K̂l
�RlK

−1
l , Ar = K̂r

�RrK−1
r (5)

where, �Rl = R̂lR
−1
l and �Rr = R̂rR−1

r are the rotation matrices involved in rectifi-
cation process. Here, the original intrinsic parameter matrices (Kl ,Kr ) and the ro-
tation matrices (Rl ,Rr ) are unknown, whereas the new intrinsic matrices (K̂l , K̂r )

can be set arbitrarily, provided that the focal lengths and the coordinates of the prin-
cipal points must be equal. During the rectification process, the unknown intrinsic
parameters can be reduced by considering the zero skew, square pixel and princi-
pal point in the center of the image assumptions. Then the intrinsic matrices can be
written as:

K̂l =
⎛

⎝
fl 0 w/2
0 fl h/2
0 0 1

⎞

⎠ ; K̂r =
⎛

⎝
fr 0 w/2
0 fr h/2
0 0 1

⎞

⎠ (6)

where, w and h are the width and the height of the image. The focal lengths fl

and fr can be computed directly by reading the zoom parameter of the two PTZ
cameras. Thus, the problem of computing a pair of rectification transformations is
converted into the computation of only two rotation matrices (�Rl ,�Rr ) . Hence, for
any pan and tilt combination, only three rotation parameters has to be stored in the
LUT instead of nine entries of a rectification transformation.

Thus, the main steps to construct the LUT are:

1. The overall monitoring wide-area is divided into a number of subarea in such a
way that each subarea is covered in the FOV of each PTZ camera just by chang-
ing the pan and tilt angles setting (pi

l , t
j
l )

j=1:1:nt

i=1:1:np
.

2. Capture ntot = (np × nt )
2 pairs of images of all these local subarea with the two

PTZ cameras at equal zoom.
3. Compute the possible k (>ntot) pairs of rectification transformation (Ak

l ,Ak
r ) for

the different combination of stereo images. The used images pairs should have
images sharing at least the 30 % of their FOV.

4. Decompose rectification transformations as per earlier described scheme and
compute their corresponding rotation parameters.

5. Store the rotation parameters in a LUT as dependent variables corresponding to
their four independent variables (pl, tl, pr , tr ).

The main problem to be addressed in the creation of the LUT is the establishment
of the correspondence between wide baseline stereo images. This has been solved
by exploiting the earlier described chain of homographies based approach.
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Fig. 4 Architecture of
employed neural network

4.2 Training a Neural Network Using LUT

Sigmoid interpolation via a set of neural networks is used for computing the rec-
tification transformations in real time corresponding to any arbitrary orientation of
two PTZ cameras. The data stored in LUT is used to train the neural networks. The
neural network based interpolation has been chosen due to its strong function ap-
proximation property with respect to highly non-linear data. A supervised learning
scheme [12] using LUT data has been adopted for the off-line training of the neural
networks.

The network considers the pan and tilt angles as input and returns the parameters
of the rotation matrices corresponding to the required rectification transformations
(Al ,Ar ) as output. The sets of input and output data are related by a non-linear
mapping U = f (pi, ti). For a known set of input-output values, the problem is to
find the function F(·) that approximates f (·) over all inputs. That is,

∥∥F(p, t) − f (p, t)
∥∥< ε for all (p, t), (7)

where, ε is a small error. The architecture of the proposed neural network is shown in
Fig. 4, where two output nodes are corresponding to the angles for left and right rota-
tion matrices. Three different networks are trained for yaw, pitch and roll elements
of the rotation matrices. A detailed learning process for the proposed network is
given in [12], where back-propagation algorithm is used with gradient information.

4.3 Zoom to Focal Length Fitting

As aforementioned, the proposed framework is based on a zoom compensation pro-
cess in case of heterogeneous image-pairs [13]. The effect of this unequal zoom
is compensated by using a focal ratio information which requires the focal lengths
corresponding to both images. For a static camera, the focal length can be estimated
offline once considering that the image parameters (specifically focal length) will
remain constant for the whole process. In case of PTZ cameras, the focal length
changes as the zoom level is changed to zoom in/out. Thus, the determination of
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the accurate focal length associated to any acquired frame is a fundamental even
though not an easy task. Moreover, if its computation is not precise enough, the
rectification accuracy of the proposed algorithm could be significantly affected. To
overcome such a problem, the focal length is computed in two steps: (a) offline fit-
ting of focal lengths corresponding to zoom settings and (b) online estimation given
a particular zoom level.

Concerning the first step, the aim is to find out a mapping between the zoom
value and the corresponding focal length. For such a purpose, the whole zoom range
is sampled and the focal length is estimated by using a calibration process for every
sampled zoom tick. In the case of motorized lenses [22], the relation between a
given zoom tick z and corresponding focal length f is

f (z) = a0

1 + a1z + a2z2 + a3z3 + · · · + anzn
(8)

where, the order n and the unknown a0, . . . , an are camera dependent. For the
adopted camera, following the methodology in [22], the estimated optimal value
of n is 2. Therefore, a0, a1 and a2 can be estimated by minimizing the following
nonlinear function

C(a) =
K∑

i=1

[
f (zi) − a0

1 + a1z + a2z2

]2

. (9)

However from (9), the estimation of the focal length is not reliable for small values
of zoom, then (9) can be written as

C(b) =
K∑

i=1

[
p(zi) − (b0 + b1z + b2z

2)]2 (10)

where, b0 = 1/a0, b1 = a1/a0, b2 = a2/a0 and p(zi) = 1/f (zi) denotes the lens
power. The minimization of (10) is reliable for lower as well as higher zoom settings.
The values b0, b1 and b2 corresponding to the minimum value of C(b) are chosen
to define the optimal values of a0, a1 and a2. In the real time, the focal length f for
any given zoom level z is estimated as

f (z) = a0

1 + a1z + a2z2
. (11)

The above method has been tested on various zoom samples and it has been found
reliable for estimating the focal length corresponding to a given zoom.

5 Online Steps

During tracking, stereo tasks can be performed by applying a zoom compensation
followed by the rectification of the resulting images. This section contains a detailed
description of these two steps.



Multiresolution Depth Map Estimation in PTZ Camera Network 159

Algorithm 1 Compensation of unequal zoom settings in PTZ stereo
Read (zl, zr )

Calculate{fl, fr} = Interpolation(zl, zr )

if fl = fr then
STOP

else if fl > fr then
R = fl/fr

I ′
l = Shrink(Il,R)

Ih
l = Zeropad(I ′

l ,Size{Ir}) and Ih
r = Ir

else
I ′
r = Shrink(Ir ,1/R)

Ih
r = Zeropad(I ′

r ,Size{Il}) and Ih
l = Il

end if

5.1 Unequal Zoom Compensation

The proposed framework allows to operate with couples of PTZ camera acquiring
images with different zoom levels. This introduces a heterogeneity between inter-
nal imaging parameters of both cameras. However, equivalent zoom values have
been used for the two PTZ cameras during the construction of the LUT contain-
ing rectification transformations. Therefore, a compensation is required to deal with
this heterogeneity with real time performance. A novel approach based on the focal
lengths of the two cameras is used to tackle such heterogeneity. In a perspective
projection model, the position of any pixel is always proportional to the focal length
for the respective camera. Therefore, if the two images are acquired with different
zoom levels, then this heterogeneity can be compensated by shrinking the higher
zoom image with a focal ratio information.

Let Il and Ir of size w × h be the two images captured at different zoom lev-
els zl and zr from the dual PTZ cameras. Let the corresponding focal lengths be
fl and fr obtained from earlier described scheme. The idea behind the process of
heterogeneity compensation is achieved by shrinking the image having longest fo-
cal length by mean of a focal ratio. The overall compensation algorithm is given in
Algorithm 1, where the function Shrink(Il,R) represents that the image Il is shrunk
by a factor of R. The function Zeropad(I ′

l ,Size{Ir}) denotes that the zero padding is
performed around image I until its size becomes equal to the size of Ir . The image
pair (Ih

l , I h
r ) is homogeneous in terms of the intrinsic image parameters which is

necessary to rectify the stereo images correctly.

5.2 Rectification of Images

Once the zoom compensation is completed, the new pair of images has to be recti-
fied for further stereo processing. This operation can be achieved in the following
steps:



160 S. Kumar et al.

1. Interpolate the parameters for generating rotation matrices �Rc
l and �Rc

r from the
trained neural network by giving the pan and tilt angles as input for current pair
of frames.

2. Calculate rectification transformations for current frames as

Ac
l = K̂c

l
�Rc

l

(
Kc

l

)−1
, Ac

r = K̂c
r
�Rc

r

(
Kc

or

)−1
(12)

where, (Kc
l ,Kc

r ) and (K̂c
l , K̂c

r ) are the pairs of intrinsic matrices in the original
and the rectified cameras’ geometries.

3. Warp the current pair of frames as a rectified pair of images using Ac
l and Ac

r .

Jc
l = Ac

l Ic
l , Jc

r = Ac
rIc

r .

The above procedure is performed in real time. In this way, rectified pairs of frames
can be obtained by using the orientation information of left and right PTZ cam-
eras.

6 High Resolution Depth Map Estimation and Mosaic
Construction

The application of the proposed system is given for scene understanding in the case
of a large environment. Depth obtained from the stereo images can be a very crucial
cue in scene understanding. In a scene having large variations in depths at various
positions (like parking lot or a hill), it is necessary to use higher resolution images
for obtaining depth map. In case of a flat region (like empty ground) where depths
at different points have smooth variation, lower resolution images can be used to
obtain the depth map. Such a multiresolution depth map based strategy is useful for
establishing a trade off between accuracy and computational cost. Finally, the depth
map of the whole environment can be obtained by making the mosaic of several
overlapped and multiresolution depth maps.

6.1 Depth Map Estimation

A multi step process is proposed for selecting the optimal zoom values of the two
cameras according to the earlier described strategy. When an event of interest has
taken place in the FOV of any static camera (let say S1), this camera delivers the
information to the dual PTZ cameras for focusing on the region of interests. Let S1
delivers the information to the PTZ cameras Cl and Cr . First, the initial resolutions
for Cl and Cr is set in such a way that it covers the whole scene, that is, a low reso-
lution more or less equivalent to the static camera. In the second step, the resolution
for Cl is refined to acquire the selected region with maximum resolution. Then the
disparity map is calculated between the high resolution image from left camera and
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Fig. 5 Procedure for
acquainting region of
interests by PTZ cameras
with maximal resolution

a low resolution image of right camera. The variation of depths are checked from the
disparity map to classify the associated region as flat or complex. In the former case,
the process is stopped and the computed disparity map is used to compute depths.
In the latter case, further processing is required. The following steps are proposed
to obtain high resolution depth maps:

1. Detect the event of interest in the static camera S1 (see Fig. 5(a)).
2. Deliver the information to both PTZ cameras (Cl,Cr) system for focusing to-

wards the regions of interest. Let the region visible in FOVs of these cameras
initially be RE0

l and RE0
r and the corresponding images be I0

l and I0
r (see

Fig. 5(b)).
3. Change the resolution of the left camera in such a way that the event of interest

is acquired with best possible resolution for acquiring the image Il . Some priori
information about the left camera are used to adopt the zoom setting for best
possible resolution (see Fig. 5(c)). This can be done just by utilizing a Look-
Up Table containing details about the various zoom settings and corresponding
FOV details.

4. Compute the disparity map D0 (having disparities d0(x, y) for all (x, y)) from
the images Il and I0

r .
5. Check whether the disparities d0(x, y) have large variations for all (x, y) in

the disparity map D0. If not, stop the algorithm and use D0 for computing its
corresponding depth map D̃. Otherwise, proceed to the next step.

6. Compute an image Ic
r as Ic

r = Il + D0.
7. Change the resolution of the right camera based on the image Ic

r and acquire a
new image Ir with such a resolution (see Fig. 5(d)).

8. Find the higher resolution disparity map D from the images Il and Ir .
9. Compute the depth map D̃ from the disparity map D.

Figure 5 provides a graphical representation of the process described in the above
steps.
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6.2 Construction of Depth Map Mosaic

In general, two approaches can be used to obtain a depth map mosaic of a large
scene. The first approach [26] works by stitching the overlapped images for each
camera separately to obtain the two stereo panoramic images and then performing
the disparity estimation. The second way foresees to compute a depth map for each
stereo image pair and then mosaic all the depth maps to construct the panoramic
depth map. The main difficulty in the later one is the estimation of matching points
between the depth maps of overlapped images, since it is very difficult to apply
feature matching between depth maps. To cope this problem, we use the same trans-
formation matrices which are used for stitching the images of left camera. However,
the second approach has the following advantages when compared to the earlier one.

• Multiresolution depth cues can be easily maintained in final depth map mosaic.
• We obtain the final depth map mosaic (for a large region) by stitching several

depth maps (of various small regions). In this context, the depth value for each
pixel belonging to the overlapped regions in consecutive images is calculated by
fusing two depth cues, so the robustness and accuracy of the final depth mosaic
can be maintained.

• The final depth map can be updated anytime for a new image pair.

The use of disparity drift [24] compensates the uncertainty in the reading of pan,
tilt and zoom parameters which is required for correct interpolation of rotation pa-
rameters associated with their corresponding rectification transformations. Assum-
ing that there are n rectified pairs (Ii

l , Ii
r ) of stereo images captured at different pan,

tilt and zoom settings. The following steps are adopted to construct the final depth
map mosaic.

1. Perform stereo matching between all image pairs (Ii
l , Ii

r ), and obtain their corre-
sponding disparity maps Di for 1 = 1,2, . . . , n.

2. Normalize the gray-level values between consecutive disparity maps. The pro-
cess starts from the maps used to specify the reference panoramic image coordi-
nate system. This process can be done by finding the linear regression parameters
(αi, βi) between each consecutive pairs of disparity maps for all matching pixels
(xm, ym).

D(i+1) = αiDi + βi (13)

where, i = 1,2, . . . , n − 1.
3. Calculate the disparity drift ρi for each disparity map Di .
4. Compute the modified disparity maps as

Di
r = Di + ρiId

where, Id represents an identity matrix having the same size as the disparity
map D.

5. Compute the depth maps D̃i from their corresponding disparity maps Di
r .

6. Construct the depth map mosaic DMM by stitching all depth maps D̃i for i =
1,2, . . . , n, into the reference panoramic image coordinate system.
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Fig. 6 SIFT ‘x’ and Chain of
Homographies ‘+’ based
correspondence between wide
baseline stereo images

Sometimes for a complex scene, a fusion of several depth cues is required for a better
representation of the depths for scene understanding. A weighted average method
as in [24] can be used for fusing several depth cues together.

7 Results and Discussions

For the experimental validation of the proposed framework, a network of static cam-
eras composed by AXIS 221 network cameras has been adopted. For the stereo unit,
two different PTZ cameras (i.e., Axis 213 and Axis 233D) are used. Three different
types of experiments have been performed to: (1) evaluate the correspondence be-
tween stereo images captured with the two cameras placed far away from each other
(i.e., wide baseline stereo), (2) evaluate the proposed interpolation based rectifica-
tion algorithm for various pairs of stereo images having unequal zoom, (3) evaluate
the computation of high resolution depth map mosaic for large scene understanding.
Different criterions have been used for comparing the performance of the proposed
framework in each case.

7.1 Correspondence Between Wide Baseline Stereo Images

To show the importance of the chain of homographies based matching algorithm
in case of wide baseline stereo images, correspondence between a pair of im-
ages has been considered. First, a homography Hd has been computed by us-
ing the matching points extracted with SIFT method between this pair of images.
Then, the homography has been evaluated by using the proposed chain of homo-
graphies based approach. To do this, a pair of stereo images has been captured
of a far scene where SIFT can be implemented accurately. Then, two different
chains of homographies have been computed using five different tilt positions in
case of each cameras separately. Finally, the final homography Hn has been com-
puted using (2). Corresponding points in the right image have been computed for
12 selected points in left image using the homographies (Hd and Hn). Figure 6
shows the results for this experiment and it can be observed that the corresponding
points obtained from proposed chain of homographies based approach are accu-
rate enough, while the corresponding points obtained from direct method are erro-
neous.



164 S. Kumar et al.

Fig. 7 Rectification of
synthetic image pairs:
original pair (first row);
direct rectification (middle
row); proposed rectification
(in bottom row)

The unequal zoom settings between the two PTZ cameras produce a distortion er-
ror in the rectified images. The distorted images produce the error in the final stereo
based 3D localization. To show the effectiveness of the adopted rectification strat-
egy in case of non-homogeneous images, experimental study has been conducted
for reconstructing 3D points generated synthetically. To do this, 120 points have
been generated in a circular pattern having different coordinates. Later, all these
points have been projected on two different planes with two different projection
matrices with different intrinsic as well as extrinsic parameters (see Fig. 7). Differ-
ent projected points in these two planes can be considered as images of two cameras
differ with intrinsic parameters (non-homogeneous). These, two circles have been
rectified using the traditional rectification algorithm (i.e., without unequal zoom
compensation) as well as after using the presented zoom compensation algorithm.
After rectification, by using the stereo triangulation on the rectified image planes,
3D points are reconstructed and compared with the original one. The error in recon-
struction is reported in Table 2 in terms of different Statistics measures. The error in
3D reconstruction obtained with the rectified images without zoom compensation
is increasing drastically, while, it is tolerable in case of rectified images after zoom
compensation.

7.2 Depth Map

High resolution depth maps are estimated for a far and large scene in a complex
environment. Figure 8 shows the depth map obtained for a building by adopting a
coarse-to-fine strategy in two successive iterations. The top row represents the dis-
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Table 2 Results for 3D reconstruction error for 120 synthetic points without and after zoom com-
pensation. The focal ratio between two camera is calculated by fixing the projection matrix of left
camera and varying it for right camera (see [13])

Focal ratio Without zoom compensation After zoom compensation

Mean error Standard deviation Mean error Standard deviation

1.0 0.0 0.0 0.0 0.0

0.90 1.57 0.16 0.23 0.05

0.80 2.79 0.27 1.45 0.11

0.70 3.21 0.32 1.74 0.10

0.60 5.30 0.39 1.89 0.13

0.50 6.11 0.54 2.20 0.16

Fig. 8 Experiment for high resolution depth estimation in two successive iterations (top to bot-
tom). In each row left camera image, right camera image and corresponding depth map image.
Three chosen points (marked with ‘+’) appear to be at different depths in the high resolution depth
map

parity map results obtained from a pair of images captured at low resolution of
both cameras, that is, in the first iteration of the process when both PTZ cameras
are directed towards this region. Then the zoom level of left PTZ camera is selected
with the proposed resolution strategy and a corresponding disparity map is obtained.
From the obtained disparity map, it is found that the variation in depths are larger
for the selected region of interests. In this context, the FOV of the right PTZ cam-
era is refined to acquire high resolution image. The high resolution images for the
selected region are given in the second row. Finally, the high resolution depth map
(right most in the second row) is obtained with this pair of images. The higher zoom
difference between these two pairs of images results in a better depth information
for the selected region.

To judge the accuracy of high resolution depth map over the low resolution depth
map, three points at different depths have been selected within the region of interest.
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Fig. 9 Testing points with matching lines in two successive iterations (left to right)

Table 3 Comparison of depth estimation in two successive iterations

Parameters Itr-1 Itr-2

Mean relative error (%) 3.29 0.86

Standard dev. error (%) 3.50 1.04

Relative depth uncertainty δ (m) 0.797 0.307

Disparity drift ρ (m) −0.0088 −0.0064

In the initial depth map (low resolution), the points appear to have the same depths,
while these three points appear to be at different depths in the high resolution depth
map. To give a quantitative evaluation of the results obtained with the iterative pro-
cedure, twenty points with ground truth depths information have been selected. The
matching is performed for finding corresponding points in all three rectified image
pairs (see Fig. 9) with good pixel precision. Five points have been randomly selected
to compute the disparity drift for both pairs of images. Let the calculated and ground
truth disparities for these five points be dj and d ′

j , respectively. The disparity drift
has been calculated as

ρ = 1

5

5∑

i=1

∣∣(d ′
j − dj

)∣∣ for j = 1,2, . . . ,5.

For the other 15 points, we have estimated the depths d̃j = f (b/(dj +ρ)) and com-
puted the mean and standard deviation of the absolute differences between ground
truth and estimated depths in the two successive iterations. Moreover, we have com-

pared the depth uncertainty δ = d̃ ′2(u/b) in support of our claim that the high res-
olution depth map is more accurate for the region having more depth variations.
Here, d̃ ′ represents the average depth in a depth map image D̃ and u is the horizon-
tal resolution of the rectified images. Table 3 shows the comparison results based
on the above mentioned criterion. It is important to notice that all the measures are
improving with further iterations, that is, the depth errors are very high in the first
iteration while these reduce significantly in the final iteration. In the similar way,
relative depth uncertainty and disparity drift iteratively improve. Finally, the depth
mosaics from several low and high resolution depth maps have been generated. For
this, 12 different pairs of images captured from both PTZ cameras at various zoom
settings have been used. The zoom settings are automatically adapted by both cam-
eras using the proposed scheme. All depth map images have been stitched in the
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Fig. 10 Depth map mosaic:
the mosaic of gray level
images for reference camera
(top) and the mosaic of
corresponding depth map
images

coordinate frame of a priori selected image. Perspective transformation is used to
align such depth maps for generating the mosaic. Figure 10 shows the generated
depth map mosaic, in which the gray value linearly reveals the magnitude of the
depth value. The visual quality of the obtained depth map mosaic represents that the
proposed method works well for a large and complex environment.

8 Conclusions

A dual PTZ camera based stereo system has been presented for video surveil-
lance applications. First, a new real-time rectification algorithm has been pro-
posed. The real-time rectification transformations have been achieved by interpo-
lating the rotation parameters for given orientations of the PTZ cameras. A pro-
cess for compensating the unequal zoom effects between the images of stereo pairs
has been given to generate more accurate rectified images. The rectified frames
have been used for constructing a depth map mosaic. The proposed framework
is able to obtain high resolution depth maps for regions having larger variation in
depths and low resolution depth maps for flatter regions. Moreover, this process
requires only limited a priori information. In the near future, the proposed frame-
work will be used to develop a multispectral stereo active system (using visible
and thermal PTZ cameras). This will allow us to perform stereo tasks in environ-
mental conditions (like foggy, rainy etc.), where visible cameras do not perform
well.
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Performance Evaluation in Video-Surveillance
Systems: The EventVideo Project Evaluation
Protocols

Juan C. SanMiguel, Álvaro García-Martín, and José M. Martínez

Abstract During recent years, automatic video-surveillance systems have expe-
rienced a great development driven by the growing need for security. Many ap-
proaches exist whose performance is not clear for a large variety of available scenar-
ios. To precisely identify which ones operate better for each scenario, empirical per-
formance evaluation has been widely used for determining their strengths and weak-
nesses through their results. This approach requires defining two aspects (usually
named as the evaluation protocol): the dataset (representative sequences) and the
metrics (performance estimators). Common empirical approaches use metrics based
on ground-truth data that define an ideal result, but there are also some novel ap-
proaches that do not require such data. Furthermore, the existence of several metrics
and the growing availability of video data increase the complexity of the protocol
design as well as require us to automate the whole evaluation process. In this chapter,
considering the main analysis stages of a typical video-surveillance system (video
object segmentation, people detection, video object tracking and event recognition),
we introduce their evaluation protocols within the scope of the EventVideo project.

1 Introduction

During recent years, automatic video-surveillance systems have experienced a great
development driven by the need for security in private and public places. Many ap-
proaches are available whose effectiveness is not clear [10]. They deal with a huge
variety of environments that might change over time (e.g., lighting conditions) or
present a substantial difference (e.g., sunny or rainy day). Hence, the performance
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of such systems can degrade significantly in these scenarios [17]. As these sys-
tems are composed of several analysis stages [35], a performance analysis for each
one is required before examining the entire system. To precisely identify which ap-
proaches operate better in certain scenarios, performance evaluation has been pro-
posed in the literature as a way to determine their strengths and weaknesses. The
widely used empirical approach is based on evaluation through the analysis of the
obtained results. For such analysis, two components have to be specified: the dataset
(a set of sequences covering the situations that the algorithm might face being large
enough to represent real world conditions) and the metrics (which allow us to quan-
tify the performance of algorithms or systems). These two aspects are also known
as the evaluation protocol [4, 22]. Traditional performance evaluation approaches
use metrics based on ground-truth data that represents a manual annotation of the
ideal result. The generation of ground-truth is usually a time consuming task and,
therefore, limits the dataset size. Although there are other approaches not focused
on ground-truth data [30, 38], most of the current literature assumes the availability
of such data. Furthermore, the existence of several metrics increases the complexity
of designing an evaluation protocol. Another point to be taken into account is the
increasing quantity of video data available, which generates a new need to automate
and optimize the whole evaluation process. In this chapter, we present the evaluation
protocols (dataset and metrics) for the main analysis stages that compose a typical
video-surveillance system (video object segmentation, people detection, video ob-
ject tracking and event recognition) within the scope of the EventVideo project.1

The remainder of this chapter is organized as follows. First, the selected stages
and evaluation scenarios of the EventVideo project are described in Sect. 2. Then,
the related work on performance evaluation is discussed in Sect. 3. After that, Sect. 4
presents the evaluation protocols of the EventVideo project. Finally, Sect. 5 summa-
rizes the chapter with some conclusions and future work.

2 Evaluation Scenarios

The EventVideo project considers the most common analysis stages of video-
surveillance systems and evaluates them under different scenarios. In this section,
we describe these stages and the classification criteria for the scenarios.

2.1 Selected Analysis Stages

The stages that compose a typical video-surveillance system are (see Fig. 1) [35]:

• Video object segmentation: extracts the foreground objects by applying analy-
sis steps to the video sequence such as foreground analysis [5] and shadow re-
moval [27]. Its output is a binary mask indicating the foreground objects.

1http://www-vpu.eps.uam.es/eventvideo/

http://www-vpu.eps.uam.es/eventvideo/
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Fig. 1 Typical processing chain for a video-surveillance system

Table 1 Proposed
classification for the
evaluation scenarios

Scenario Complexity Density

S1 Low Low

S2 High Low

S3 Low High

S4 High High

• People detection: assigns a confidence of being people for each candidate region
(that could either a frame region or a blob extracted from the foreground binary
mask) by computing their similarity with a trained person model [13]. Its outputs
are the score (confidence) and location of each analyzed candidate.

• Video object tracking: consists on locating the objects of interest (i.e., targets) in
the sequence frames [22]. Its output is the location of each tracked target.

• Event recognition: detects events using the output of the previous stages [1]. An
event is defined as an action performed by one or multiple persons (e.g., walking,
handshaking). For each detection, the output includes a descriptor with its spatio-
temporal location (frame span and position) and score (detection confidence).

2.2 Scenario Classification

For each stage of the video-surveillance system, the evaluation process should con-
sider different scenarios to appropriately represent real world conditions. For under-
standing the limitations of current approaches, each scenario is classified according
to two criteria: complexity and density. The former describes whether the visual
data represents situations that can be easily characterized or not. For example, video
object segmentation is an (relatively) easy task for static cameras and scene back-
grounds but its complexity highly increases when dealing with moving cameras or
motion in the background. The latter considers the number of moving objects in the
sequence. Independently of the stage, an increasing number of objects affects its
performance. This criterion is particularly interesting in video-surveillance where
crowded places are common scenarios (e.g., airports, mass sport events). For exam-
ple, abandoned object detection presents variable difficulty depending on the mov-
ing people density (fewer people, less complexity). Finally, we consider two levels
for each criterion (low and high) to define four evaluation scenarios (see Table 1).
Sample frames of the evaluation scenarios are depicted in Fig. 2.
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Fig. 2 Sample frames of the evaluation scenarios for event recognition. (From left to right): simple
event standing (S1), complex event UseObject (S2), abandonedObject detection (S3) and complex
event bag stealing (S4)

3 Related Work

In this section, we briefly review the state of art for each selected stage with respect
to its datasets (see Table 2) and metrics, the two components of evaluation protocol.

3.1 Video Object Segmentation

Video object segmentation also known as foreground/background detection is a crit-
ical task in video-surveillance that presents many challenges related with, among
others, shadows, camouflage, static objects and background motion [5]. For evalu-
ating the existing approaches under such conditions, several datasets are available:

• VSSN2006:2 provided within the VSSN Workshop 2006, this dataset consists of
14 sequences with artificial foreground objects introduced into real backgrounds
for representing illumination changes, shadows and background motion (ground-
truth data is provided for 10 sequences at pixel-level for every frame).

• IPPR06:3 the IPPR contest motion segmentation dataset includes three different
sequences of walking persons (with ground-truth at pixel-level for every frame)
that model shadows, illumination changes and image noise.

• CVSG:4 this dataset [34] consists of 14 sequences that represent the critical seg-
mentation factors for foreground (appearance, size, velocity) and background (ap-
pearance, motion, multimodality) by artificially combining real foreground ob-
jects and backgrounds (with ground-truth at pixel-level for every frame).

• SABS:5 this dataset [5] is an artificial dataset that represents nine common chal-
lenges of background subtraction for video-surveillance. It consists on nine se-
quences with isolated challenges which are divided into training and test data
(with ground-truth at pixel-level for every frame).

2http://imagelab.ing.unimore.it/vssn06/
3http://media.ee.ntu.edu.tw/Archer_contest/
4http://www-vpu.eps.uam.es/DS/CVSG/
5http://www.vis.uni-stuttgart.de/index.php?id=sabs

http://imagelab.ing.unimore.it/vssn06/
http://media.ee.ntu.edu.tw/Archer_contest/
http://www-vpu.eps.uam.es/DS/CVSG/
http://www.vis.uni-stuttgart.de/index.php?id=sabs
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Table 2 Categorization of
existing datasets according to
the scenarios of Table 1

Covered scenario

S1 S2 S3 S4

Video object segmentation

VSSN2006 X X

IPPR06 X

CVSG X X

SABS X X

CDW2012 X X

People detection

ETHZ X

TUD-Pedestrians X

DCII X

Caltech Pedestrian X

PDds X X X

Video object tracking

PETS X X X

VISOR X

EPFL X X

SOVTds X X

Event detection

CAVIAR X X

ETISEO X X X

PETS 2006 X X

PETS 2007 X X X

I-LIDS X X

VISOR X X

CANDELA X X

CANTATA X

ASODds X X

EDds X X

• CDW2012:6 the IEEE Workshop on Change Detection 2012 proposed a rigorous
benchmarking effort for representing well-known segmentation challenges cap-
tured in indoor and outdoor settings. In total, it has 31 sequences grouped into six
categories (with ground-truth at pixel-level for every frame).

For ground-truth based metrics, video object segmentation can be evaluated at the
lowest semantic level, that is, pixel-level, or at higher semantic levels, that is, region-

6http://www.changedetection.net

http://www.changedetection.net
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level, object-level, etc. In the literature, the pixel-level evaluation strategy is the
most popular [5, 18]. It considers foreground detection as a binary classification
of each pixel, resulting in a segmentation mask. The accuracy of this classification
is expressed by means of recall (R), precision (P ) and their harmonic mean, the
F-score (F ):

P = TP/(TP + FP), (1)

R = TP/(TP + FN), (2)

F = 2 · P · R/(P + R), (3)

where TP, FP and FN indicate, respectively, the number of correct detections, false
alarms and missed detections at pixel-level. For high-level evaluation, [7] used the
center of the segmented objects whereas [24] focused on the splits and merges of
foreground regions for composing the objects. In addition, [8] introduced spatio-
temporal metrics derived from geometrical properties of the segmented objects.

Although non ground-truth based metrics are less popular, according to [29],
they can be roughly classified into region (study the segmented regions), model
(use available object models) or assisted (use complementary algorithms). Among
them, the most relevant is [14] that defined the motion and color contrast along the
boundaries of object regions and its adaptation for video object segmentation [29].

3.2 People Detection

The complexity of people detection is mainly related with the difficulty of modeling
persons because of their huge variability in appearance, poses, movements, points
of views and object-person interactions. This complexity is even higher in crowded
video-surveillance scenarios which often include multiple persons, occlusions and
background variability. Several datasets are available for its evaluation:

• ETHZ:7 this dataset [15] consists of four stereo-sequences recorded in a real street
walking scenario. For each one, it provides the sequences for both cameras, the
camera calibration, the precomputed depth maps using the stereo images, and the
ground-truth annotations (at bounding box level).

• TUD-Pedestrians:8 this dataset [2] consists of 250 images (311 fully visible peo-
ple) and two complex sequences (highly overlapped people showing significant
variation in clothing and articulation), including the bounding box ground-truth.

• DCII:9 the Daimler Mono Pedestrian Detection Benchmark Data Set II [13] con-
sist of a sequence captured from a moving vehicle in a 27-minute drive through
urban traffic and its associated ground-truth at bounding box level.

7http://www.vision.ee.ethz.ch/~aess/iccv2007/
8http://www.d2.mpi-inf.mpg.de/andriluka_cvpr08
9http://www.gavrila.net/

http://www.vision.ee.ethz.ch/~aess/iccv2007/
http://www.d2.mpi-inf.mpg.de/andriluka_cvpr08
http://www.gavrila.net/
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• Caltech Pedestrian Dataset:10 this dataset [11] consists of approximately 10 hours
of video (∼250000 frames divided into clips of 135 minutes) taken from a vehi-
cle driving in an urban environment. In total, around 350000 bounding boxes and
2300 unique pedestrians were annotated. The annotation includes temporal cor-
respondence between bounding boxes and detailed occlusion labels.

• PDds:11 the PDds corpus [16] consists of 90 sequences for evaluation in video-
surveillance covering the most common challenges with variable complexity. For
each person, ground-truth is provided for each frame at bounding box level.

Regarding the metrics, people detection performance can be evaluated using
ground-truth data at two levels: sequence sub-unit (frame, window, etc) or global
sequence. Sub-unit performance is usually measured in terms of Detection Er-
ror Tradeoff (DET) [9, 12] or Receiver Operating Characteristics (ROC) [13, 23]
curves. Global sequence performance is estimated through Precision-Recall (PR)
curves [2, 21, 37]. The first level gives information of the classification stage, while
the second one provides the overall system performance. In both cases the detec-
tor’s output is a confidence score for each person detection, where larger values
indicate higher confidence. Both evaluation methods compute progressively the re-
spective parameters such as the number of false positives, Recall rate or Precision
rate iterating from the lowest possible score to the highest possible score. Each
score threshold iteration provides a point on the curve. On one hand, ROC curves
represent the fraction of matched annotations with the detections (true positive rate,
TPR, Recall or Sensitivity) vs. the fraction of wrong detections out of the negatives
(non-people image samples) (false positive rate, FPR or 1-Specificity). On the other
hand, PR curves represent also the TPR but in this case vs. the proportion of positive
detections that are true positives (positive predictive value, PPV or Precision).

3.3 Video Object Tracking

Video object tracking is a complicated task due to high variability of the data to an-
alyze as well as the many steps involved in the tracking process (feature extraction,
target representation and propagation of the target model over time). For evaluating
performance of tracking algorithms, several datasets are available:

• PETS:12 the PETS Workshop series have been releasing a tracking-related dataset
almost every year since 2000. As the dataset sizes are large and they cover real
situations, these datasets are widely used in the research community. Among the
existing datasets, the most important ones related to tracking are the PETS2000
(outdoor people and vehicle tracking for single camera), PETS2001 (outdoor peo-
ple and vehicle tracking for single camera using two synchronized views) and

10http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
11http://www-vpu.eps.uam.es/DS/PDds/
12http://www.cvg.cs.rdg.ac.uk/slides/pets.html

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www-vpu.eps.uam.es/DS/PDds/
http://www.cvg.cs.rdg.ac.uk/slides/pets.html
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PETS2009 (outdoor people tracking in crowded environments with multicam-
era setup). However, PETS datasets have two limitations: there is no ground-truth
available and the challenges proposed are focused on event recognition (i.e., with-
out describing the specific tracking problems for each video).

• VISOR:13 this video repository has been conceived as a support tool for different
video-surveillance projects [36]. Related to tracking, it includes six sequences
(without ground-truth data) covering common problems such as occlusions, scale
changes and complex movements.

• EPFL:14 this dataset is oriented to multicamera settings for outdoor and indoor
video-surveillance. It contains five scenarios with around 30 sequences showing
occlusions and scale changes. Although camera calibration is provided for all the
scenarios, ground-truth data is only available for some sequences.

• SOVTds:15 this dataset is provides an extensive coverage of the common
tracking-related problems in video-surveillance. For each problem, it is designed
with four complexity levels including both real and synthetic sequences care-
fully selected from other datasets (related and non-related with video tracking).
It contains 125 sequences and the associated ground-truth for every frame.

For video object tracking evaluation, metrics based on ground-truth can be divided
into frame or sequence level. Frame-level considers the information within the frame
being similar to an estimation of classification performance. Hence, standard Preci-
sion and Recall (Eqs. 1 and 2) are used for computing the spatial similarity between
estimations and ground-truth locations of targets at pixel [25] or object-level [3].
Sequence-level measures the accuracy of the target trajectories such as the temporal
accumulation of frame-level pixel accuracy [25] or the trajectory fragmentation [19]
(i.e., the number of generated segments).

Approaches for tracking evaluation without ground-truth can be grouped into
trajectory-based, feature-based and hybrid categories [30]. Trajectory-based ap-
proaches analyze the generated trajectories in which the time-reversibility of object
motion is commonly used [38]. Feature-based approaches analyze target feature
variation [30] or compute statistics for checking model consistency such as the co-
variance of the target state [26]. Finally, hybrid category describes the combinations
of the previous approaches such as the use of the time-reversibility and the covari-
ance analysis [32].

3.4 Event Recognition

As event recognition considers all the outputs of the stages that compose the video-
surveillance system and therefore, its performance is influenced by all the factors
affecting each stage. For evaluating its performance, several datasets are available:

13http://www.openvisor.org/
14http://cvlab.epfl.ch/data/pom/
15http://www-vpu.eps.uam.es/DS/SOVTds

http://www.openvisor.org/
http://cvlab.epfl.ch/data/pom/
http://www-vpu.eps.uam.es/DS/SOVTds


Performance Evaluation in Video-Surveillance Systems 179

• CAVIAR:16 this dataset includes 17 sequences of human activities for indoor
video-surveillance. It covers several events (with ground-truth data) such as peo-
ple walking alone, meeting with others, window shopping, entering and exiting
shops, fighting and passing out and leaving a package in a public place.

• ETISEO:17 this dataset [25] contains 86 indoor and outdoor video-surveillance
sequences (corridors, streets, building entries, subway, . . . ) with different types
of complexity levels. Several events are annotated considering person-object in-
teractions as well as person movement.

• PETS 2006:18 this dataset is focused on multicamera sequences for abandoned
luggage detection with increasing scene complexity in terms of nearby people. It
contains 28 sequences (∼1–2 minutes long) with 24 annotated events.

• PETS 2007:19 this dataset considers the events loitering, stolen luggage and
abandoned luggage in a crowded scenario. A four-camera setting is employed
to record, 32 sequences (∼2–3 minutes long) containing 36 events in total.

• I-LIDS:20 this dataset has three sequences (∼3.5 minutes long) for abandoned
object detection at an underground station classified into three complexity levels
(easy, medium, and hard), which are defined considering the crowd density.

• ViSOR:21 this dataset is classified in different categories including outdoor and
indoor events (human actions, traffic monitoring, cast shadows, . . . ). A total of
140 sequences with variable length is available for events related with human-
object interactions (abandoned object, Leave car, Enter Car, . . . ).

• CANDELA:22 this dataset contains 16 indoor sequences (∼30 secs long) for
abandoned object, including interactions between object owners. Despite the sim-
plicity of the scenario, the low resolution and the relatively small size of objects
present challenges for detecting the events.

• CANTATA:23 this dataset is focused on abandoned and stolen objects in non-
crowded outdoor scenarios. A total of 31 sequences (∼2 minutes long) are avail-
able from two different views (leaving and removing objects in the sequences).

• ASODds:24 this dataset provide a representative test-set for discriminating pre-
viously detected stationary regions in video-surveillance systems able to detect
abandoned and stolen objects. Annotations of both events are also provided. Se-
quences (over 100) have been extracted from related public datasets.

• EDds:25 this dataset contains 17 sequences (∼3–4 minutes long) focused on
human-related events for indoor video-surveillance considering interactions be-

16http://homepages.inf.ed.ac.uk/rbf/CAVIAR
17http://www-sop.inria.fr/orion/ETISEO/intro_presentation.htm
18http://www.cvg.rdg.ac.uk/PETS2006/data.html
19http://www.cvg.rdg.ac.uk/PETS2007/data.html
20http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
21http://www.openvisor.org/
22http://www.multitel.be/~va/candela/abandon.html
23http://www.multitel.be/~va/cantata/LeftObject/
24http://www-vpu.eps.uam.es/DS/ASODds
25http://www-vpu.eps.uam.es/DS/EDds

http://homepages.inf.ed.ac.uk/rbf/CAVIAR
http://www-sop.inria.fr/orion/ETISEO/intro_presentation.htm
http://www.cvg.rdg.ac.uk/PETS2006/data.html
http://www.cvg.rdg.ac.uk/PETS2007/data.html
http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html
http://www.openvisor.org/
http://www.multitel.be/~va/candela/abandon.html
http://www.multitel.be/~va/cantata/LeftObject/
http://www-vpu.eps.uam.es/DS/ASODds
http://www-vpu.eps.uam.es/DS/EDds
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Table 3 Critical factors in video object segmentation specified in the CVSG dataset

Foreground Background Camera

Single objects Groups

Textural complexity, apparent
velocity, object structure,
uncovered extent, object size

Largest difference,
object interactions

Textural complexity,
multimodality

Motion

tween persons and environmental objects and activities without involving physi-
cal contact. In particular, two activities (HandUp and Walking) and three person-
object interactions (Leave, Get and Use object) have been annotated.

For event recognition, the common evaluation scheme is to optimally determine the
match between ground-truth annotations the event detections. This one-to-one map-
ping can be done temporally or spatio-temporally [25]. The former only considers
the duration of the detection and the annotation whereas the latter extends it by in-
cluding a constraint for similar spatial locations. Moreover, an additional constraint
can be imposed considering the confidence of the detected event [31].

4 Evaluation Protocols

In this section, we introduce the proposed protocols for performance evaluation of
the selected video-surveillance stages within the scope of the EventVideo project.

4.1 Video Object Segmentation

4.1.1 Selected Dataset

For this stage, the Chroma Video Segmentation Ground-truth (CVSG) dataset [34]
is selected as it covers the main problems of video object segmentation. It consists
of a set of video sequences obtained according to a thorough study of the critical
factors affecting segmentation performance (summarized in Table 3). As specific
values of these factors can significantly increase or decrease the complexity of the
segmentation task (and therefore, the expected algorithm accuracy), they are conve-
nient for designing multiple sequences with variable complexity. Foreground objects
have been recorded in a chroma studio, in order to automatically obtain pixel-level
high quality segmentation masks with different foreground factors. Then, real scene
backgrounds are also recorded with different camera and background factors. Fi-
nally, the resulting corpus consists on the composition of the foreground and back-
ground sequences obtaining a total of 14 sequences (∼7000 frames). Some exam-
ples are shown in Fig. 3. As it can be observed, they present low density scenarios
with variable complexity thus covering the S1–S2 scenarios defined in Table 1.
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Fig. 3 Sample frames for the sequences of the CVSG dataset

4.1.2 Metrics Based on Ground-Truth Data

As a first approach, we have selected the pixel-wise evaluation based on ground-
truth data [18]. In order to evaluate and compare the segmentation techniques, we
have selected the precision and recall measures for foreground (P 1,R1) and back-
ground (P 0,R0) detection:

P 0 = TN/(TN + FN), R0 = TN/(TN + FP), (4)

P 1 = TP/(TP + FP), R1 = TP/(TP + FN), (5)

where TP indicates the number of foreground pixels correctly detected, TN the num-
ber of background ones correctly detected, FP the number of foreground pixels
wrongly detected as background and FN the number of background ones wrongly
detected as foreground. Additionally, the F-Score measure has been selected to com-
bine P and R measures for foreground (F1) and background (F0) results:

F0 = 2 · P 0 · R0/(P 0 + R0), (6)

F1 = 2 · P 1 · R1/(P 1 + R1). (7)

In order to achieve the objective of evaluating and finding the optimal parameters
of the algorithms, it have been maximized the average of the F-score measures for
foreground and background, F0 and F1.

4.1.3 Metrics not Based on Ground-Truth Data

We also evaluate segmentation performance without ground-truth data by means of
the color-based metric DC1 proposed by [29]. It relies on comparing the boundaries
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Fig. 4 Boundary-based
contrast scheme proposed
by [29]. (a) Segmented
object, (b) its boundary with
the normal lines and
(c) a zoom on a boundary
pixel location

of the segmented objects against the color boundaries extracted from each frame.
The scheme is depicted in Fig. 4. For each boundary pixel, a normal line of length
2L+ 1 is defined and the color differences between the initial (PI ) and ending (PO )
points of this line are obtained in a M × M patch as follows:

CD(t; i) = ‖P i
O(t) − P i

I (t)‖√
3 · 2552

, (8)

where P i
O(t) and P i

I (t) are the mean colors of the M × M patches centered atPI

and PO points (using the RGB color space quantified into 256 levels) extracted from
each ith boundary pixel of the foreground region at time t. CD(t; i) ranges from 0
to 1 if both points belong to, respectively, the same or different color regions.

Then, the evaluation of the foreground segmentation for each region, Oj is per-
formed and combined for multiple foreground regions as follows:

DC1Oj
(j) = 1

Kt

Kt∑

i=1

CD(t; i, j), (9)

DC1(t) = min
j

(
DC1Oj

(t)
)
, (10)

where Kt is the number of boundary pixels, CD(t; i, j) is the color difference of the
ith boundary pixel of the j th analyzed foreground region. Its value ranges from 0
(lowest segmentation quality) to 1 (highest segmentation quality). Finally, the mean
of DC1(t) is taken over all the sequence frames to get an evaluation score.

4.2 People Detection

4.2.1 Selected Dataset

For this stage, the Person Detection dataset (PDds) [16] is selected as it covers the
main problems affecting people detection in video-surveillance. It consists of a set
of sequences with different levels of complexity and their associated ground-truth
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Table 4 Critical factors in people detection

Background Classification

Textural complexity Variability Appearance
variability

People-object
interactions

Low, medium, high Lighting changes,
view changes,
multimodal

Pose variations,
different clothes,
carry objects

Objects, people,
objects & people

Table 5 Description of the PDds dataset and their associated critical factors

Sequence Category Subcategory Background Classification

Textural
complexity

Variability Appearance
variability

People/object
interactions

1–4 C1 C1-a Low Low Low Low

5–6 C1 C1-b Low Medium Low Low

7–8 C2 C2-a Low Low Medium Low

9–10 C2 C2-b Low Low Medium Medium

11–12 C2 C2-c Low Medium Low Medium

13 C3 C3-a Medium Medium Medium Low

14–16 C3 C3-b Medium Medium Medium Medium

17–18 C4 C4-a Low Low Medium High

19–20 C4 C4-b Low Low High Medium

21 C4 C4-c Low Low High High

22–24 C5 C5-a Medium High Medium High

25 C5 C5-b Medium High High Medium

26 C5 C5-c High High Medium High

27–33 C5 C5-d High High High Low

34–65 C5 C5-e High High High Medium

66–90 C5 C5-f High High High High

(bounding box annotations for each frame). Sequences have been classified into
different complexity categories depending on previously identified critical factors
for people detection performance. Table 4 summarizes such factors and Table 5 lists
the video sequences and their complexity. Sample frames are shown in Fig. 5. The
resulting corpus contains 91 sequences (∼28000 frames) exceeding other public
pedestrian datasets in the amount of data and its complexity variability. As it can be
observed, they present low density scenarios with variable complexity thus covering
the S1, S2 and S3 scenarios defined in Table 1.

4.2.2 Metrics Based on Ground-Truth Data

For evaluating people detection performance based on ground-truth, we aim to com-
pare the overall performance of different detection systems, so we have chosen the
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Fig. 5 Sample frames for the categories of the PDds dataset

PR evaluation method (see Sect. 3.2). For each value of the detection confidence,
PR curves compute Precision and Recall as shown in Eqs. 1 and 2.

In order to evaluate not only the (binary) yes/no detection but also the precise
pedestrians locations and extents, we use three criteria, defined by [20], that allow
comparing hypotheses at different scales: the relative distance, cover, and overlap.
The relative distance dr measures the distance between the bounding box centers
in relation to the size of the annotated bounding box (see Fig. 6a). Cover and over-
lap measure how much of the annotated bounding box is covered by the detection
hypothesis and vice versa (see Fig. 6b). A detection is considered true if dr ≤ 0.5
(corresponding to a deviation up to 25 % of the true object size) and cover and over-
lap are both above 50 %. Only one hypothesis per object is accepted as correct, so
any additional hypothesis on the same object is considered as a false positive.

We usually use the integrated Average Precision (AP) to summarize the overall
performance, represented geometrically as the area under the PR curve (AUC-PR),
in order to express more clearly the results we have chosen the representation Recall
vs 1-Precision (see Fig. 6c). In addition, focusing on the people detection evalua-
tion in video security systems, we want also to evaluate the detector at the operating
point, that is, at the predefined optimal decision threshold for each algorithm. Thus,
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Fig. 6 Performance evaluation metrics for people detection

Table 6 Complexity factors for the video tracking dataset

Problem Criteria (factors)

Complex movement The target changes its speed (pixels/frame) abruptly in consecutive
frames

Gradual illumination The average intensity of an area changes gradually with time until a
maximum intensity difference is reached

Abrupt illumination The average intensity of an area changes abruptly with respect to its
surroundings (maximum intensity difference)

Noise It includes natural (snow) or white Gaussian noise which is manually
added with varying deviation value

Occlusion Objects in the scene occlude a percentage of the target

Scale changes The target changes its size with a maximum relative change
regarding its original size

Similar objects An object with similar color to the target appears in the neighborhood
of the target

we can compare the final operational performance and not just its overall perfor-
mance.

4.3 Video Object Tracking

4.3.1 Selected Dataset

For this stage, the Single Object Video Tracking dataset (SOVTds) is selected to
evaluate single-object tracking algorithms for video-surveillance. SOVTds covers
seven common tracking problems in video-surveillance by identifying its critical
factors (see Table 6). Then, it organizes the sequences into four situations: synthetic,
real laboratory, simple real and complex real data. For the first two situations, the
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Fig. 7 Sample frames for the situations of the proposed dataset (from top row to bottom row):
synthetic, laboratory, Simple real and Complex real. Samples of some tracking problems are also
presented for each column (from left to right): abrupt illumination change, noise, occlusion, scale
change and (color-based) similar objects

sequences were recorded trying to isolate the tracking problems whereas the last two
situations contain carefully selected clips from existing datasets. In total, the corpus
has 125 sequences (∼23000 frames). Sample frames are shown in Fig. 7. Moreover,
the complexity of the tracking problems is estimated for each sequence through
the factors. As this dataset represents simple and complex problems in nonhighly
crowded situations, it covers the S1, S2 and S3 scenarios defined in Table 1.

4.3.2 Metrics Based on Ground-Truth Data

In order to evaluate the tracking accuracy, the SFDA (Sequence Frame Detection
Accuracy) metric was chosen which calculates for each frame the spatial overlap
between the estimated target location and the ground-truth annotation.

SDFA =
∑Nframes

t=1 FDA(t)
∑Nframes

t=1 ∃(Nt
GT + Nt

P )
(11)

FDA(t) = OverlapRatio
Nt

GT+Nt
P

2

(12)

where Nframes is the number of frames, Nt
GT and Nt

P represent the number of
ground-truth and estimated locations in the th frame, ∃(·) indicates if ground-truth
or estimation data exist for the th frame and OverlapRatio is the pixel-level spatial
overlap between both locations divided by their area sum.
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Fig. 8 Tracking results, tracker condition estimation and temporal segmentation for target H5
(occlusion_1 sequence; frames shown are 100, 140, 180 and 210) [32]. Tracking results and
ground-truth annotations are represented as green and red ellipses, respectively. (Green: successful
tracking; Red: unsuccessful tracking; Black: scanning; Cyan: locking in; Blue: locked on.)

4.3.3 Metrics not Based on Ground-Truth Data

For estimating tracking performance without ground-truth data, we use [32] which
is based on estimating the uncertainty of the tracking algorithm (i.e., tracker) and
then, analyzing its values to decide whether it is successful or not. Such uncertainty,
St , can be used as indicator of periods of unstable output data (e.g., wrong target
estimation) allowing the tracker evaluation. It can be measured by analyzing the
state-space representation of particle-filter based approaches [22] or by adapting the
output of deterministic trackers such as for Mean-shift tracking [33].

Then, we identify when the tracker is stable (i.e., following the target) by detect-
ing changes of St within a window of length λ. We compute two relative variations
of uncertainty for the change of St−λ with respect to St and vice versa, using two
lengths for short and long term changes (λ1 and λ2) as defined in [32]. The for-
mer change indicates low-to-high uncertainty changes whereas the latter represents
high-to-low uncertainty changes. As a result, four signals are computed by combin-
ing the two variations and the two lengths. Then, changes on the four signals are
detected by using a three-threshold scheme and combined in a finite-state machine
for estimating the tracker condition: focused on the target, scanning the video frame
or locking on the target after a failure [32]. Finally, we use time-reversed analysis
to check the tracker recovery when it focuses on an object after failure (transition
from third to first tracker condition) as it might be on a distractor (background ob-
jects with features similar to those of the target). A tracker in reverse direction from
this recovery instant until a reference point (the last time instant when the tracker
was successful) [32] and the spatial overlap between the reverse and the forward
trackers (the one to evaluate) is computed for determining if the tracker has recov-
ered or not. Figure 8 shows an example of tracker condition and successful estima-
tion.
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Fig. 9 Sample frames for the available categories in the ASODds dataset

Table 7 ASODds dataset description

Category Number of annotations (blobs) Complexity

Annotated sequences Real sequences

Abandoned Stolen Abandoned Stolen

C1 771 442 756 863 Low

C2 666 316 794 397 Medium

C3 595 174 852 660 High

All 2032 932 2402 1920

4.4 Event Detection

4.4.1 Selected Datasets

For event detection, two datasets have been selected: the Abandoned and Stolen
Discrimination dataset (ASODds) and the Event Detection dataset (EDds).

Abandoned and Stolen Object Discrimination Dataset—ASODds The ASODds
dataset [6] consists of two annotation sets of the foreground binary masks for aban-
doned and stolen objects. The first one has been obtained by manually annotating
the objects of interest in the video sequence (annotated data). The second one repre-
sents real data has been obtained by running [28] over the sequences to get inaccu-
rate masks (real data). Then, the sequences have been grouped into three categories
according to a subjective estimation of the background complexity that consists on
the presence of edges, multiple textures, lighting changes, reflections, shadows and
objects belonging to the background. Currently, three categories have been defined
considering low (C1), medium (C2) and high (C3) background complexity. Ac-
cording to the criteria proposed in Sect. 2, the categories C1 and C2 present low
complexity and few number of objects (situation S1) whereas the C3 covers low
complex and crowded scenarios (situation S3). Sample frames of such categories
are shown in Fig. 9 and a summary of the annotated events in the dataset and the
associated complexity of each category is available in Table 7.
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Table 8 EDds dataset description. The complexity estimation codes are Low (L), Medium (M),
High (H) and Very High (V). The events are Leave-object (LEA), Get-object (GET), Use-object
(USE), Hand Up (HUP) and Walking (WLK)

Sc1 Events occurrences Complexity estimation

Iterations Activities S1 S2 S3 S4

LEA GET USE HUP WLK

1 18 13 9 9 54 M L M M

2 7 7 10 14 44 M M M H

3 14 14 22 20 10 V H V V

Fig. 10 Available categories in the EDds dataset

Event Detection Dataset—EDds Currently, the dataset EDds [31] contains 17 se-
quences recorded using a stationary camera at resolution of 320 × 240 at 12 fps. It
is focused on two types of human-related events: interactions and activities. In par-
ticular, two activities (HandUp and Walking) and three human-object interactions
(Leave, Get and Use object) have been annotated. Moreover, all the test sequences
have been grouped into three categories according to a subjective estimation of the
analysis complexity according to the criteria defined in the previous subsections
for the foreground, tracking, feature and event stages that compose a typical event
detection system. A summary of the annotated events in the dataset and the associ-
ated complexity of each category is available in the Table 8. Sample frames of such
categories are shown in the Fig. 10.

4.4.2 Metrics Based on Ground-Truth Data

For matching event annotations and detections, we use the following conditions:

Match
(
EGT ,ED

)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if score > ρ ∧
|T D

start − T GT
start| < τ1 ∧

|T D
end − T GT

end | < τ2 ∧
2|AGT∩AD |
|AGT |+|AD | > σ

0 otherwise

(13)
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Table 9 Classification of datasets according to criteria defined in Sect. 2.2. The (–) indicates that
the dataset partially fulfills the requirements of such criterion

Density

Low High

Complexity Low CVSG, PDds, SOVTds, ASODds, EDds PDds (–), ASODds (–)

High PDds (–), SOVTds (–), EDds (–)

where EGT and ED are the annotated and detected events; score is the detection
probability; (T D

start; T D
end) and (T GT

start; T GT
end ) are the frame intervals of the annotated

(GT) and detected (D) events; AGT and AD represent the average area (in pixels) of
each event; |AGT ∩ AD| is their average spatial overlap (in pixels); ρ, τ1, τ2 and σ

are positive thresholds (heuristically set to the values ρ = 0.75, τ1 = τ2 = 100, and
σ = 0.5 ).

Then, we use the Precision (P) and Recall (R) measures for evaluating the per-
formance of the matching process. Precision is the ratio between the correct and the
total number of detections. Recall is the ratio between the correct detections and
the total number of annotations. We also use the F-score measure, β , to combine
Precision and Recall as shown in Eqs. 1 and 2.

5 Conclusions

In this chapter, we have presented the material for performance evaluation within
the EventVideo project. In particular, we have selected some stages: video object
segmentation, people detection, video object tracking and event detection. Then, we
have described the employed datasets and protocols for their evaluation in Sect. 4
(CVSG, PDds, SOVTds, ASODds y EDds; all of them available at http://www-vpu.
eps.uam.es/webvpu/en/recursos-publicos/datasets/).

In addition, a novel methodology that does not follow the traditional ground-truth
based approach has been presented in Sects. 4.1.3 and 4.3.3 for, respectively, the
video object segmentation and tracking stages. Moreover, according to the scenario
classification of Sect. 2.2 (with the variables complexity and density), the datasets
used in the EventVideo project are categorized as listed in Table 9.

As future work, the selected datasets will be used for comparing the most recent
approaches for evaluating the current status of the state-of-the-art (and which of the
criteria in Table 9 could be considered as achieved). Moreover, we will consider the
extension of the datasets to cover the highest levels of the defined situations and the
inclusion of additional information to help visual analysis (such as depth and laser).
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