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Survey on Decomposition of Multiple Coverings

JÁNOS PACH∗, DÖMÖTÖR PÁLVÖLGYI† and GÉZA TÓTH‡

The study of multiple coverings was initiated by Davenport and L. Fejes Tóth´
more than 50 years ago. In 1980 and 1986, the first named author published the
first papers about decomposability of multiple coverings. It was discovered much
later that, besides its theoretical interest, this area has practical applications
to sensor networks. Now there is a lot of activity in this field with several
breakthrough results, although, many basic questions are still unsolved. In this
survey, we outline the most important results, methods, and questions.

1. Cover-decomposability and the Sensor Cover Problem

Let P = {PiPP | i ∈ I} be a collection of sets in Rd. We say that P is an m-
fold covering if every point of Rd is contained in at least m members of P.
The largest such m is called the thickness of the covering. A 1-fold covering
is simply called a covering. To formulate the central question of this survey
succinctly, we need a definition.

Definition 1.1. A planar set P is said to be cover-decomposable if there
exists a (minimal) constant m = m(P ) such that every m-fold covering of
the plane with translates of P can be decomposed into two coverings.
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Note that the above term is slightly misleading: we decompose (parti-
tion) not the set P , but a collection P of its translates. Such a partition is
sometimes regarded a coloring of the members of P. The problem whether
a set P is cover-decomposable is also referred to as the cover decomposability
problem for P .

The problem of characterizing all cover-decomposable sets in the plane
was proposed by Pach [17] in 1980. He made the following conjecture, which
is still unsolved.

Conjecture 1.2 [17]. Every plane convex set P is cover-decomposable.

In the present survey, we concentrate on results and proof techniques
related to this conjecture. Obviously, in addition to systems of translates of
a set P , we could study the analogous questions for systems of homothets
of P (that is, similar copies in parallel position) or for systems of congruent
copies.

In [18], Conjecture 1.2 was proved for open centrally symmetric convex
polygons. More than twenty years later the proof was extended by Tardos
and Toth [23] to open triangles and then by P´´ alv´ olgyi and Tóth [22] to¨
any open convex polygon P . Sections 2 and 3 describe the basic ideas and
techniques utilized in these proofs.

Theorem 1.3 [18]. Every centrally symmetric open convex polygon is
cover-decomposable.

Theorem 1.4 [23]. Every open triangle is cover-decomposable.

Theorem 1.5 [22]. Every open convex polygon is cover-decomposable.

In fact, the proof gives a slightly stronger result: any set, which is the
union of finitely many translates of the same open convex polygon is also
cover-decomposable. See Section 4 for details.

Given a cover-decomposable set P , one can try to determine the exact
value ofm(P ), that is, the smallest integerm for which everym-fold covering
of the plane with translates of P splits into 2 coverings (cf. Definition 1.1).
For example, for any open triangle T , we have 12 ≥ m(T ) ≥ 4 [11]. However,
in most of the cases, the best known upper and lower bounds are very far
from each other.

One can further generalize the cover decomposability problem by asking
whether a sufficiently thick multiple covering of the plane can be decom-
posed into k coverings, for a fixed k ≥ 2. This question was raised in [18],
and first addressed in detail in [20].
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Definition 1.6. Given a set P ⊂ R2 and an integer k ≥ 2, let mk(P )
denote the smallest positive number m with the property that every m-
fold covering of the plane with translates of P can be decomposed into k
coverings. If such an integer m does not exist, we set mk(P ) =∞.

We believe that mk(P ) is finite for every cover-decomposable set P ,
but we cannot verify this conjecture in its full generality. However, the
statement is true for all currently known families of cover-decomposable
sets. In [18], it was shown that, for any centrally symmetric convex open
polygon P , the parameter mk(P ) exists and is bounded by an exponentially
fast growing function of k. In [23], a similar result was established for open
triangles, and in [22] for open convex polygons. However, all these results
were improved to the optimal linear bound in a series of papers by Pach
and Toth [20], Aloupis et al. [2], and Gibson and Varadarajan [10].´

Theorem 1.7 [20]. For any open centrally symmetric convex polygon P ,
we have mk(P ) = O(k2).

Theorem 1.8 [2]. For any open centrally symmetric convex polygon P ,
we have mk(P ) = O(k).

Theorem 1.9 [10]. For any open convex polygon P , we have mk(P ) =
O(k).

The problem of determining mk(P ) can be reformulated in a slightly
different way: for a given m, try to decompose an m-fold covering into as
many coverings as possible. This problem, more precisely, a slight general-
ization of this problem, is called the sensor cover problem in sensor network
scheduling. Suppose that we have a finite number of sensors scattered in a
region R, each monitoring some part of R, which is called the range of the
sensor. Each sensor has a duration for which it can be active and once it
is turned on, it has to remain active until this duration is over, after which
it will stay inactive. The load of a point is the sum of the durations of all
ranges that contain it, and the load of the arrangement of sensors is the
minimum load of the points of R. A schedule for the sensors is a starting
time for each sensor that determines when it starts to be active. The goal
is to find a schedule to monitor the given area, R, for as long as we can.
Clearly, the cover decomposability problem is a special case of the sensor
cover problem, when the duration of each sensor is the same (“unit” time).

Buchsbaum et al. [3] and Gibson and Varadarajan [10] proved their
result in this more general context. It was shown in [10] that for every open
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convex polygon P , there is a constant c(P ) such that for any instance of
the sensor cover problem with load c(P )k, where the range of each sensor is
a translate of P , there is a polynomial time computable schedule such that
every point is monitored for k units of time.

Conjecture 1.2 cannot be extended to all (not necessarily convex) poly-
gons.

Theorem 1.10 [19]. No concave quadrilateral is cover-decomposable.

In Section 5, following [19] and [21], we describe a large class of concave
polygons that are not cover-decomposable.

The definition of cover-decomposability can be extended to higher di-
mensions in a natural way. It is interesting to note that most of the ideas
presented in this survey fail to generalize to higher dimensions. The main
reason for this is that the statement analogous to Conjecture 1.2 is false in
higher dimensions.

Theorem 1.11 [16]. For d ≥ 3, the unit ball in Rd is not cover-
decomposable.

Theorem 1.12 [21]. For d ≥ 3, no convex polytope is cover-decomposable.

However, there is a notable exception in 3-dimensions, albeit unbounded:
the octant {(x, y, z) : x, y, z > 0}.

For the octant, even a 1-fold covering of the whole plane can be trivially
decomposed into any number of coverings. We get a more interesting
problem if we demand only a part of the plane to be covered.

Theorem 1.13 [11]. Any 12-fold covering of a finite point set by octants
can be decomposed into 2 coverings.

This property established in the above theorem is called finite-cover-
decomposability; see Definition 5.4. As an easy consequence, we obtain that
any 12-fold covering of the plane with homothets of a fixed triangle can be
split into two coverings.

As an easy consequence, we obtain that there is an integer m such that
any m-fold covering of the plane with homothets of a fixed triangle can
be split into two coverings. The statement holds with m = 12. In fact,
Conjecture 1.2 can be (and was) formulated in the following more general
form.



Survey on Decomposition of Multiple Coverings 223

Conjecture 1.14. For every plane convex set P , there exists a positive in-
teger m = m(P ) such that any m-fold covering of the plane with homothets
of P can be split into two coverings.

The methods developed in the first substantial publication in this topic
[18] were used in all later papers. Therefore, in the next two sections we
concentrate on this paper and sketch the proof of Theorem 1.3. In Subsec-
tions 3.2 and 3.3, we establish Theorems 1.7 and 1.4. In Section 4, we outline
the proofs of Theorem 1.5 and Theorem 1.9 for triangles. Section 5 contains
constructions proving (an extension of) Theorem 1.10 and Theorem 1.12.
We close this paper with some open problems.

2. Basic Tricks

A family of sets P is called locally finite if every point is contained in only
finitely many members of P. It follows by a standard compactness argument
that any m-fold covering of the plane with translates of an open polygon P
has a locally finite subfamily that forms an m-fold covering. Therefore, in
the sequel we will assume without loss of generality that all coverings that
we consider are locally finite.

In the next three subsections, we describe three basic tricks from [18]
that enable us to reduce the cover decomposability problem to a finite
combinatorial problem for hypergraphs.

2.1. Dualization

Let P = {PiPP | i ∈ I} be a collection of translates of a finite polygon P
in the plane, where I is a finite or infinite set. Let Oi denote the center
of gravity of PiPP . Obviously, P is an m-fold covering of the plane if and
only if every translate of P̄ , the reflection of P through the origin, contains
at least m elements of the point set O = {Oi | i ∈ I}. Furthermore,
P = {PiPP | i ∈ I} can be decomposed into two coverings if and only if the
point set O = {Oi | i ∈ I} can be colored with two colors such that every
translate of P̄ contains at least one point of each color.

Clearly, the reflected polygon P̄ is cover-decomposable if and only if
P is. Therefore, we have the following.
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Lemma 2.1. The polygon P is cover-decomposable if and only if there
exists an integer m satisfying the following condition. Any point set S in
the plane with the property that every translate of P contains at least m
elements of S can be colored with two colors so that every translate of P
contains at least one point of each color.

The same argument applies if we want to decompose a covering into
k > 2 coverings. Almost all later papers in the subject follow this “dual”
approach. In the sequel, we also study this version of the problem.

2.2. Divide and conquer – Reduction to wedges

The second trick from [18] is to cut the plane and the set S in Lemma 2.1
into small regions so that with respect to each of them every translate of
our polygon looks like an infinite “wedge”.

We use the following terminology. Two half-lines (rays) emanating from
the same point O divide the plane into two connected pieces, called wedges.
A closed wedge contains its boundary, an open wedge does not. The point O
is called the apex of the wedge. The angle of a wedge is the angle between
its two boundary half-lines, measured inside the wedge.

Let P be an open or closed polygon of n vertices. Consider a multiple
covering of the plane with translates of P . Then, the cover decomposition
problem can be reduced to wedges as follows. Divide the plane into small
regions, say squares, so that each of them intersects at most two consecutive
sides of any translate of P . Every translate of P can intersect only a bounded
number c of squares. If a translate of P contains at least cm points of a
set S, then at least m of those will belong to one of the squares. Therefore,
to find a coloring of the points of S meeting the requirements in Lemma 2.1,
it is sufficient to focus on a fixed subset of S ′ ⊂ S, consisting of all points
of S that lie in a single square. It is sufficient to 2-color the elements of S′ so
that no translate of P that covers at least m points of S′ is monochromatic.
Notice that, because of our assumption of local finiteness, each subset S′

is finite. Moreover, from the point of view of S′ any translate of P “looks
like” a half-space or a wedge corresponding to one of the vertices of P . To
make this statement more precise, denote by v1, . . . , vn the vertices of P in
cyclic order, and denote by WiWW the wedge bounded by the rays −−−−− →−−vivi−1 and
−−−−− →−−vivi+1 which contains a piece of P in any small neighborhood of vi. (The
indices are taken mod n.) Now any subset of S′ that can be cut off from S
by a translate of P can also be cut off by a translate of one of W1WW , . . . ,WnWW .
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Lemma 2.2. Suppose that there is a positive integer m such that any finite
point set S can be colored with two colors such that every translate of any
wedge WiWW of P that contains at least m elements of S, contains points of
both colors. Then P is cover-decomposable.

A straightforward generalization of the above argument can be applied
when we want to decompose a covering into k ≥ 2 coverings. Thus, from
now on, to prove positive cover-decomposability results we will try to find
colorings of finite point sets. However, it will turn out that coloring point
sets with respect to wedges may also be very useful in proving negative
results.

Observe that we can assume without loss of generality that our point
set S is in general position with respect to P , that is, none of the lines
determined by two points of S is parallel to a side of P . Indeed, if there is
such a line, we can slightly perturb the point set such that any subset of S
that can be cut off from S by a translate of P , can also be cut off from the
perturbed point set S′.

2.3. Totalitarianism

So far we have only considered coverings of the whole plane. At this point
it will be convenient to extend our definitions to coverings of subsets of the
plane.

Definition 2.3. A set P is said to be totally-cover-decomposable if there
exists a (minimal) constant mT = mT (P ) such that every mT -fold covering
of any (!) point set in the plane with translates of P can be decomposed into
two coverings. More generally, for any fixed k ≥ 2, let mT

k (P ) denote the
smallest number mT with the property that every mT -fold covering of any
planar point set with translates of P can be decomposed into k coverings.

This notion was formally introduced only in [21], but, in view of
Lemma 2.2, all proofs in earlier papers also work for this stronger ver-
sion of decomposability. To avoid confusion with this notion, sometimes we
will call cover-decomposable sets plane-cover-decomposable. By definition,
every totally-cover-decomposable set is also plane-cover-decomposable. On
the other hand, there exist sets (perhaps even open polygons) that are plane-
cover-decomposable but not totally-cover-decomposable. For example, the
disjoint union of a concave quadrilateral and a far enough half-plane is such
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a set. Using the notion of total decomposability, we obtain the following
stronger version of Lemma 2.2.

Lemma 2.4. A polygon P is totally-cover-decomposable if and only if there
exists a positive integer mT with the property that any finite point set S in
the plane can be colored with two colors such that every translate of any
wedge of P that contains at least mT points of S, contains points of both
colors.

Note that if we want to show that a set P is not plane-cover-decom-
posable, then, using Lemma 2.4 with suitably chosen sets S, we can first
show that it is not totally-cover-decomposable, and then we can add more
points to S and apply Lemma 2.1. Of course, we have to be careful not to
add any points to the translates that guarantee that P is not totally-cover-
decomposable. This is the path followed in [16, 19] (and also in [21], but
there the point set S cannot always be extended). These constructions will
be discussed in detail in Section 5.

3. Boundary Methods

Let W be a wedge and s be a point in the plane. The translate of W with
its apex at s is denoted by W (s). More generally, given a convex wedge
(whose angle is at most π) W , and points s1, s2, . . . , sk, let W (s1, s2, . . . , sk)
denote the minimal translate of W (for containment) whose closure contains
s1, s2, . . . , sk.

Following [18], next we will define the boundary of a finite point set
with respect to a collection of wedges. We establish and explore some basic
combinatorial and geometric properties of the boundary, which will be the
heart of the proofs of Theorems 1.3, 1.7, and 1.4. The details of these three
proofs from [18], [20], and [23], respectively, will be sketched in the next
three subsections.

3.1. Decomposition into two parts

In this subsection, we outline the proof of Theorem 1.3 in the special case
when P is an axis-parallel square. This square has an upper-left, a lower-
left, an upper-right, and a lower-right vertex. For each vertex v of the
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square, there is a corresponding convex wedge, whose apex is at v and
whose boundary half-lines contain the sides of the square incident to v.
Denote these wedges by WulWW , WllWW , WurWW , and WlrWW , respectively. We refer to
these four wedges as P -wedges.

Let S be a finite point set. By Lemma 2.2 it is sufficient to prove the
following.

Lemma 3.1. The set S can be colored with two colors such that any
translate of a P -wedge which contains at least five points of S, contains
points of both colors.

At this point, we introduce the notion of the boundary of S with respect
to the wedges of P . This notion will be similar to that of the boundary of
the convex hull. A point s of S belongs to the boundary of the convex hull
of S if there is a half-plane which contains s on its boundary, but none of the
points of S in its interior. Similarly, a point s of S belongs to the boundary
with respect to wedge W if W (s) contains none of the points of S.

Definition 3.2. Let W be an open wedge. The W -boundary of S, that is,
the boundary of S with respect to W is defined as BdW (S) = {s ∈ S :
W (s) ∩ S = ∅}. Two vertices, s and t, of the W -boundary are called
neighbors if W (s, t) ∩ S = ∅.

Obviously, one can define a natural ordering on the W -boundary points
of S, according to which two vertices are consecutive if and only if they are
neighbors. Observe that any translate of W intersects the W -boundary in
an interval with respect to this ordering. The boundary of S with respect
to the four P -wedges is the union of the WulWW -boundary, the WllWW -boundary,
the WurWW -boundary, and the WlrWW -boundary of S. All points of S that are not
boundary vertices with respect to the P -wedges are called interior points.

The WlrWW -boundary and the WllWW -boundary of S meet at the “highest”
point of S, that is, at the point of maximum y-coordinate. (Assume, for
simplicity that this point is unique). The WllWW -boundary and the WulWW -
boundary meet at the rightmost point of S; the WulWW -boundary and the
WurWW -boundary meet at the lowest point; and the WurWW -boundary and the
WlrWW -boundary meet at the leftmost point. See Figure 1. If it leads to no
confusion, the translates of WulWW , WllWW , WurWW , WlrWW will also be denoted by WulWW ,
WllWW , WurWW , WlrWW .

If we link together the natural orderings of the boundary vertices of S
corresponding toWllWW , WlrWW , WurWW , andWulWW , in this cyclic order, then we obtain
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Fig. 1. The boundary of a point set

a counterclockwise cyclic enumeration of all boundary vertices. The main
difference between the boundary of S with respect to P and the boundary
of the convex hull of S is that in the cyclic enumeration of the boundary
vertices some vertices may occur twice. These vertices are called singular,
and all other vertices regular.

It is not hard to show, however, that no boundary vertex can appear
three times in the cyclic enumeration. Moreover, all singular vertices must
have the same type. In our case, all of them belong to both a WulWW and a
WlrWW , or all of them belong to a WurWW and a WllWW . This property generalizes
to the case when P is any centrally symmetric convex polygon: all singular
boundary vertices must belong to a pair of opposite P -wedges of the same
type.

The most important observation is the following.

Observation 3.3. If the intersection of S with a translate of some P -
wedge, say, WllWW , is non-empty, then this set can be obtained as the union of
three subsets:

(i) an interval of consecutive elements in the cyclic enumeration of all
vertices of the boundary of S, which contains at least one point from
the WllWW -boundary;
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(ii) an interval of consecutive elements in the cyclic enumeration of all
vertices of the boundary of S, which contains at least one point from
the WurWW -boundary;

(iii) a set of interior points.

Note that while the subset in (i) contains at least one element, those in
(ii) and (iii) may be empty. Analogous statements hold for the other three
wedges, and also for other symmetric polygons.

A first naive attempt to find a suitable coloring of S is to color all
boundary vertices blue and all interior vertices red. Unfortunately, it is
possible that there is a P -wedge that contains lots of boundary vertices and
no interior vertex, so this coloring is not necessarily good.

Another naive attempt is to color the boundary vertices alternately red
and blue. Apart from the obvious problems that the size of the boundary
may be odd and that the singular vertices are repeated in the cyclic order,
there is a more serious difficulty with this approach: the translate of a
wedge may contain just one boundary vertex and lots of interior vertices.
Consequently, we have to be careful when we color the interior vertices,
which may lead to further complications.

It turns out that a “mixture” of the above two naive approaches will
work.

Definition 3.4. A boundary vertex s ∈ S is called m-rich if there is a
translate W of a P -wedge, such that s is the only W -boundary vertex in W ,
but W contains at least m points of S.1

This definition is used in different proofs with a different constant m,
but when it leads to no confusion, we simply write “rich” instead of “m-
rich.” In this proof, “rich” means “5-rich,” thus a boundary vertex s is rich
if there is a wedge that intersects the W -boundary in s and contains at least
four other points.2

Our general coloring rule will be the following.

1In [18] and [20] a slightly different definition was used: there s was required to be
the only vertex from the whole boundary (and not only from the W -boundary) in the
translate ofW . For centrally symmetric polygons, both definitions work, but, for example,
for triangles only the latter one does.

2Instead of m = 5, we could also choose m = 4 to define rich points in this proof. Only
the last line of the argument would require a little more attention.
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(1) Rich boundary vertices are blue.

(2) There are no two red neighbors along the boundary.

(3) Color as many points red as possible, that is, let the set of red points
R ⊂ S be maximal under condition (1) and (2).

Note that from (3) we can deduce

(4) Interior points are red.

A coloring that satisfies these conditions is called a proper coloring. The
same point set may have many proper colorings. For centrally symmetric
polygons, any proper coloring will be suitable for our purposes. In [18], an
explicit proper coloring is described.

Now we are ready to sketch the proof of Lemma 3.1. Suppose that S is
colored properly and W is a translate of a P -wedge such that it contains
at least five points of S. We can assume without loss of generality that
W contains exactly five points of S. By Observation 3.3, W intersects the
W -boundary of S in an interval.

First, we find a blue point in W . If the above interval contains just one
point then this point is rich, as the wedge contains at least five points, and
rich points are blue according to (1). If the interval contains at least two
points, then one of them should be blue, according to (2).

Now we show that W also has at least one red element. If W contains
any interior point, then we are done, according to (4). Thus, we can assume
by Observation 3.3 that W ∩ S is the union of two intervals and all points
in W are blue. Since W has five points, at least one of them, say, x, is not
the endpoint of any of the intervals. If x is not rich, then, according to (3),
x or one of its neighbors is red. So, x must be rich. But then there is a
translate W ′ of a P -wedge, W , or −W , which contains only x as a boundary
vertex, and contains five points. Using that S is centrally symmetric, it can
be shown that S ∩W ′ is a proper subset of S ∩W , a contradiction, since
both contain exactly five points. This concludes the proof of Lemma 3.1.

If we consider wedges with more points, we can guarantee more red
points in them.

Lemma 3.5. In a proper coloring of S, any translate of a P -wedge which
contains at least 5i points of S contains at least one blue point and at least i
red points (i ≥ 1).
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The proof is very similar to the proof of Lemma 3.1. The difference
is that now we color 5i-rich points red and we have to be a little more
careful when counting red points, especially because of the possible singular
points. If we delete the blue points (giving them color 1) and then recolor
red points recursively by Lemma 3.5, we obtain an upper bound on mk(P ),
exponential in k. An analogous statement holds for any centrally symmetric
open convex polygon, therefore, we have

Lemma 3.6. For any centrally symmetric open convex polygon P , there is
a constant cP such that any ckP -fold covering of the plane with translates
of P can be decomposed into k coverings.

3.2. Decomposition to Ω
(√

m
)
parts for symmetric polygons

Here we sketch the proof of Theorem 1.7, which is a modification of the
argument described in the previous subsection. We continue to assume for
simplicity that P is an axis-parallel square. Let k ≥ 2. We will color the
point set S with k colors such that any P -wedge that contains at least
m = 18k2 points has at least one point of each color. Recursively, we define
k boundary layers and denote them by B1, B2, . . . , Bk. Let B1 denote the
boundary of S, and let S2 = S \ B1. For any i < k, if the set SiSS ⊂ S has
already been defined, let Bi be the boundary of SiSS and let SiSS +1 = S\Bi. The
coloring of the boundary layer Bi will be “responsible” for color i. Color i
takes the role of blue from the previous proof, while those points that were
colored red there will be “uniformly” distributed among the other k − 1
colors.

Slightly more precisely, a vertex v ∈ Bi is called rich if there is a translate
of a P -wedge that intersects SiSS in at least 18k2 − 18ki points, and v is the
only element of Bi in it. We color all rich vertices of Bi with color i,
and color first the remaining singular, then the remaining regular points
periodically: 1, i, 2, i, 3, i, . . . , k, i, 1, i, . . .. The main observation is that, if
a P -wedge intersects Bi (for any i) in at least 18k points, then it contains
a long interval that contains a point of each color. Otherwise, it has to
intersect each of the boundary layers Bi (1 ≤ i ≤ k), but then for each i,
its intersection with Bi contains a rich point of color i.
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3.3. Triangles

The main difficulty with non-symmetric polygons is that Observation 3.3
does not hold here: the intersection with a translate of a P -wedge is not
necessarily the union of two boundary intervals and some interior points.
See Figure 2. In the case of triangles, Tardos and Toth [23] managed to´
overcome this difficulty by defining a variant of proper colorings. In this
subsection, we sketch their proof of Theorem 1.4. For other polygons, a
different approach was needed (see Section 4.1).

Suppose that P is a triangle with vertices A, B, C. There are three
P -wedges, WAW , WBW , and WCWW . We define the boundary just like before. It
consists of three parts, the A-boundary, B-boundary, and C-boundary. Each
of them forms an interval in the cyclic enumeration of the boundary vertices.
Here comes the first difficulty: there may exist a singular boundary vertex
which appears three times in the cyclic enumeration of boundary vertices,
once in each boundary. It is easy to see that there exists at most one such
vertex, and we can get rid of it by decomposing our point set S into at most
four subsets such that in each of them all singular boundary points belong
to the same pair of boundaries, just like in the case of centrally symmetric
polygons. For simplicity of the explanation, assume that S has no singular
boundary vertex.

Again, we call a boundary vertex s rich if there is a translate W of a
P -wedge, such that s is the only W -boundary vertex in W , but W contains
at least five elements of S.

Our coloring will satisfy the following four conditions.

(1) Every rich boundary vertex is blue.

(2) There are no two red neighbors.

(3) Color as many points red as possible, that is, let the set of red points
R ⊂ S be maximal under condition (1) and (2).

(4) All interior points are red.

We describe explicitly how to find the set of red points using a greedy
algorithm. Consider the linear order on the set of all lines of the plane
parallel to the side BC, so that the line through A is smaller than the line
BC. We define a partial order <A on our point set as follows. Let x <A y
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Fig. 2. Triangle P and the structure of the boundary

if the line through x is smaller than the line through y. We have A <A B
and A <A C. Analogously, define the partial order <B with respect to the
side AC such that B <B C and B <B A, and the partial order <C with
respect to the side AB such that C <C A and C <C B.

First, color all rich boundary vertices blue. Now take all A-boundary
vertices of S and consider them in increasing order with respect to <A. If
we get to a point that is not colored, we color it red and its neighbors blue.
Note that these neighbors may have already been colored blue (because they
are rich, or because of an earlier red neighbor), but they were definitely not
colored red, as any neighbor of any red point is immediately colored blue.
Continue this procedure, until all points of the A-boundary are colored.
Color the B-boundary and the C-boundary in a similar fashion, using the
other two partial orders.

Suppose that W is a translate of a P -wedge covering at least five points
of S. We can assume without loss of generality that W covers exactly five
points of S. Assume that W is a translate of WAW . The other two cases
can be treated similarly. To find a blue point in W , we proceed just like in
the previous section; this works for any proper coloring. We know that W
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intersects the A-boundary of S in an interval. If this interval contains just
one point, then it must be rich and hence blue. It the interval contains at
least two points, then one of them must be blue.

It remains to show that W also contains at least one red point. If W
contains any interior point, then we are done. Therefore, we assume that all
five points in W are boundary vertices. Since there are five points in W , one
of them, say, x, is (i) not the first or last A-boundary vertex in W ; (ii) not
the <A-minimal B-boundary point in W ; and (iii) not the <A-minimal C-
boundary point in W .

Suppose that x is rich. Then there is a translate W ′ of a P -wedge, which
contains only x as a boundary vertex, and contains five points. It can be
shown by some simple geometric arguments that S ∩W ′ is a proper subset
of S ∩W , a contradiction, since both sets contain five points. So, x cannot
be rich. But then why would it be blue? The only possible reason is that
during the coloring process, one of its neighbors on the boundary, say, y,
was colored red earlier. It can be shown that then y ∈ W , which implies
that there is a red point in W .

The same idea works if there are some singular boundary vertices, but
all of them belong to the A-boundary and the B-boundary, say. The only
difference is that in this case we have to synchronize the coloring processes
on the A-boundary and on the B-boundary, so that we arrive at the common
vertices at the same time. This concludes the proof of Theorem 1.4. The
original proof gave that every 43-fold covering with translates of a triangle
splits into two coverings, but B. Ács [1] showed that the statement also
holds for every 19-fold covering. Recently it was further improved to 12-
fold coverings, by Keszegh and Pálv´ olgyi [11].¨

By a slightly more careful argument, we can establish

Lemma 3.7. The points of S can be colored with red and blue such that
any translate of a P -wedge which contains at least 5i + 3 of the points,
contains a blue point and at least i red points (i ≥ 1).

If we apply Lemma 3.7 recursively, we obtain an bound on mk(P ),
exponential in k.

Lemma 3.8. For any open triangle P , every 7· 5k−15
20 -fold covering of the

plane with translates of P can be decomposed into k coverings.

This result was later improved by the more general Theorem 1.9 of
Gibson and Varadarajan.
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4. Path Decomposition and Level Curves

In this section, we present three generalizations of the boundary method
that can be used to establish cover-decomposability results.

4.1. Classification of wedges

Pálvolgyi and Tóth [22] developed some new ideas to establish Theorem 1.5¨
which states that all open convex polygons are cover-decomposable. In the
previous section, we colored a point set with respect to P -wedges, for some
fixed polygon P . Here we color point sets with respect to an arbitrary set
of wedges.

Definition. A collection of wedges W = {WiWW | i ∈ I} is said to be
non-conflicting or, simply, NC if there is a constant m with the following
property. Any finite set of points S in the plane can be colored with two
colors so that any translate of a wedge W ∈ W that covers at least m points
of S contains points of both colors.

It turns out that a single wedge is always NC. One can also characterize
all pairs of wedges that are NC. Pálv´ olgyi and Tóth proved that a set of¨
wedges is NC if and only if each pair is NC. It follows directly from this
characterization that for any convex polygon P , the set of P -wedges is NC.

Lemma 4.1. A single wedge is NC.

An important tool in the proof of Lemma 4.1 and in the proof of the
following lemmas is the path decomposition, which is a generalization of the
concept of the boundary. To illustrate this technique, we present a proof of
Lemma 4.1.

Proof of Lemma 4.1. Let S be a finite point set and let W be a wedge.
We prove that the NC property holds with m = 3, that is, we show that S
can be colored with two colors such that any translate of W that contains
at least 3 points of S, contains a point of both colors. Suppose first that the
angle of W is at least π. Then W is the union of two half-planes, A and B.
Take the translate of A (resp. B) that contains exactly two points of S, say,
A1 and A2 (resp. B1 and B2). There might be coincidences between A1, A2

and B1, B2, but still, we can color the set {A1, A2, B1, B2} such that A1

and A2 (resp., B1 and B2) are of different colors. Now, if a translate of W
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Fig. 3. A concave wedge and three points, any two of which can be cut off by a translate

contains three points, it contains either A1 and A2, or B1 and B2, and we
are done. Note that three is optimal in this statement; see Figure 3.

Suppose now that the angle of W is less than π. We show that in this
case the NC property holds with m = 2. We can assume that the positive x-
axis is in W ; this can be achieved by an appropriate rotation. For simplicity,
also suppose that no line determined by a pair of points of S is parallel to
the sides of W . This can be guaranteed by applying a suitable perturbation
of the set S that does not effect which subsets of it can be cut off by a
translate of W .

For any fixed y, let W (2; y) be the translate of W which

(1) contains at most two points of S;

(2) the y-coordinate of its apex is y; and

(3) the x-coordinate of its apex is minimal.

For any y, the translate W (2; y) is uniquely determined. Examine, how
W (2; y) varies as y runs over the real numbers. If y is very small (smaller
than the y-coordinate of the points of S), then W (2; y) contains two points,
say X and Y , and one more, Z, on its boundary. As we increase y, the apex
of W (2; y) changes continuously. How can the set {X,Y } of the two points
in W (2; y) change? For a certain value of y, one of them, say, X, moves
to the boundary. At this point, Y is inside and two points, X and Z, are
on the boundary. If we slightly further increase y, then Z replaces X, that
is, Y and Z will be in W (2; y) (see Figure 4). As y increases to infinity,
the set {Z, Y } could change several times, but each time it changes in the
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Fig. 4. Z replaces X in W (2; y)

above described manner. Define a directed graph whose vertices are the
points of S, and there is an edge from u to v if v replaced u during the
procedure. We get two paths, P1PP and P2PP . The pair (P1PP , P2PP ) is called the
path decomposition of S with respect to W , of order two (see Figure 5).

Color the vertices of P1PP red, the vertices of P2PP blue. Observe that each
translate of W that contains at least two points, contains at least one vertex
of both P1PP and P2PP . This completes the proof.

Fig. 5. Path decompositions of order two. P1PP = X1X2 . . ., P2PP = Y1YY Y2YY . . .

The path decomposition of S with respect to W , of order m can be
defined very similarly. Let W (m; y) denote the translate of W which

(1) contains at most m points of S;
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(2) the y-coordinate of its apex is y; and

(3) the x-coordinate of its apex is minimal.

Suppose that, for a very small value of y, the set W (m; y) contains the
points r1, r2, . . . , rm, and at least one more point on its boundary. Just like
in the proof above, as we increase the value of y, the set {r1, r2, . . . , rm}
changes several times. Every time one of the elements of this set is replaced
by another point. Define a directed graph whose vertices are the points of S,
and there is an edge from r to s if r is replaced by s at some point. This
graph is the union of m directed paths, PW

1PP , PW
2PP , . . ., PW

mPP (and possibly
some isolated vertices), which is called the order m path decomposition of S
with respect to W . Note that the order 1 path decomposition is just the
W -boundary of S, so this notion can be regarded as a generalization of
the boundary. In general, in a higher order path decomposition, no path is
identical to the boundary. The union of the paths, however, always contains
the boundary.

Note that there is a hidden variable in this notation. When we write PW
1PP ,

then it can mean the first path of the path decomposition of any order m,
so it would be more precise to write PW

1PP (m). However, to ease readability,
we use the (ambiguous) simpler notation as from the context the value of
m will be always clear.

Lemma 4.2.

(i) Any translate of W contains an interval of each of PW
1PP , PW

2PP , . . . , PW
mPP .

(ii) If a translate of W contains precisely m points of S, then it contains
precisely one point from each of PW

1PP , PW
2PP , . . . , PW

mPP .

Now we scrutinize the case when we have two wedges, V and W . We
distinguish several cases according to their relative position.

Type 1 (Big): One of the wedges has angle at least π.

For the other cases, we can assume without loss of generality that W
contains the positive x-axis. Extend the boundary half-lines of W to lines.
They divide the plane into four parts: Upper, Lower, Left, and Right parts,
the last of which is W itself. See Figure 6.

Type 2 (Half-plane): One side of V is in the Right part and the other
one is in the Left one. That is, the union of the wedges cover a half-plane.
See Figure 7.

Type 3 (Contain): One of the following three conditions is satisfied:
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Fig. 6. Wedge W

Fig. 7. Type 2 (Half-plane)

(i) one side of V is in the Upper part, the other is in the Lower part;

(ii) both sides are in the Right part;

(iii) both sides are in the Left part. See Figure 8.

Fig. 8. Type 3 (Contain)

Type 4 (Hard): One side of V is in the Left part and the other side is
either in the Upper part or in the Lower one. See Figure 9.

Type 5 (Special): One of the following three conditions is satisfied:

(i) one side of V is in the Right part and the other one is in the Upper
or Lower part;

(ii) both sides of V are in the Upper part;
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Type 4 (Hard)

(iii) both sides are in the Lower part.

That is, the union of the wedges is in an open half-plane whose boundary
contains the origin, but neither of them contains the other. See Figure 10.

Fig. 10. Type 5 (Special)

It is not hard to see that there are no other possibilities.

Lemma 4.3. LetW = {V,W} be a set of two wedges, of Type 1, 2, 3, or 4.
Then W is NC.

Here we omit the proof. It is different for each type, but in each case the
basic idea is similar to that of the proof of Lemma 4.1. In the case of pairs
of wedges of Type 4 (Hard), we have to take care of singular points in a
somewhat similar way as in the previous section, in the proof for triangles.
For pairs of wedges of Type 3 (Contain), we can apply an order 4 path
decomposition.

Next, we turn to the case of several wedges.

Lemma 4.4. A set of wedges W = {W1WW ,W2WW , . . . ,WtWW } is NC if and only if
any pair {WiWW ,WjWW } is NC.

It is obvious that if two wedges are not NC, then W cannot be NC.
The proof in the other direction is more involved. It is based on a tricky
application of path decompositions. In fact, it can be shown that if W is
NC, then for any k there is an mk such that any finite point set can be
colored with k colors such that if a translate of a wedge from W contains at
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least mk points, then it contains all k colors. However, the bound obtained
in [22] grows very fast, the argument gives only mk ≤ (8k)2

t−1
.

To finish the proof of Theorem 1.5, observe that no two wedges corre-
sponding to the vertices of a convex polygon can form a pair of Type 1 (Big)
or of Type 5 (Special).

It is shown in [21] that if W = {V,W} is a set of two wedges of Type 5
(Special), then W is not NC. Therefore, a set of wedges is NC if and only
if none of its pairs is of Type 5 (Special). For the construction and its
consequences, see Section 5.

4.2. Level curves and decomposition to Ω(m) parts for symmetric
polygons

The level curve method, which can be regarded as another extension of the
boundary technique, was invented by Aloupis, Cardinal, Collette, Langer-
man, Orden, and Ramos [2] at about the same time, but independently from
the introduction of path decompositions.

Suppose that W is an open wedge and its angle is less than π. The
level curve of depth l, denoted by C(l), is defined as the boundary of the
union of all translates of W that contain fewer than l points. If W contains
the positive x-axis, then we can also define C(l) as the set of the apices of
W (l − 1; y).

Note that this curve consists of straight-line segments that are parallel
to the sides of W . See Figure 11. C(1) passes through all boundary points.
If p ∈ C(l), then |W (p) ∩ S| is l − 1, and W (p) has one or two points of S
on its boundary.

Consider all translates of W whose apices are on C(l). Call these trans-
lates C(l) −W -wedges. Consider a point of S in a C(l) −W -wedge. The
apices of those C(l) −W -wedges which contain this point form an interval
on C(l). Therefore, each C(l)−W -wedge corresponds to a point on C(l), and
every point of S corresponds to an interval of C(l). The condition that each
C(l) −W -wedge contains at least l − 1 points translates to the condition
that each of the points of C(l) is covered by at least l − 1 intervals. Here
we want to color the intervals in such a way that each point is covered by
intervals of all colors.

Now we sketch the proof of Theorem 1.8 given in [2], based on the level
curve method.



242 J. Pach, D. Palvölgyi and G. T´´ oth´

Fig. 11. The level curve C(l)

Suppose that our symmetric polygon P has 2n vertices. Denote the
wedges belonging to them by W0WW , . . . ,W2WW n−1, in clockwise order. Through-
out the proof, all the indices should be considered modulo 2n. Two wedges,
WiWW and WjWW , are called antipodal if i+ n ≡ j modulo 2n, that is, if they be-
long to two opposite vertices of the polygon. A crucial observation, already
used in Subsection 3.1 (more generally, in [18]), is that any two wedges that
are not antipodal cover a half-space.

We want to color the points of the point set S with k colors such
that every translate of WiWW (i = 0, . . . , 2n − 1) that contains at least m′

k

points, contains a point of each color. For any fixed l, the level curves Ci(l)
that correspond to wedge WiWW may cross each other in a complicated way.
However, in the “middle” of S they form a structure similar to the boundary
in Subsection 3.1. It turns out that it is enough to consider these parts of
the level curves.

More precisely, let l = 6k+1. For every side of P , take two lines parallel
to it that cut off 2l + 3 points from each side of S. Denote the intersection
of the n strips formed by these lines by T . For every i, let C′i(l) = Ci(l)∩T .
Call those translates of WiWW whose apices are on C′i(l) witness WiWW -wedges.
It is not hard to see that only level curves belonging to antipodal wedges
may cross inside T . Some further analysis shows that, in fact, there can
be only at most one such pair. (Note the similarity to singular points in
case of symmetric polygons.) This means that the regions cut off from T
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by the curves C′i(l) are all disjoint, with the possible exception of one pair.
Without loss of generality we may assume that this pair is C′i(0) and C′i(n).
It is not difficult to verify that any translate of WiWW that contains at least
3l + 5 points, must contain a witness WiWW -wedge. Therefore, it is enough to
concentrate on wedges with this property.

One can parameterize these witness wedges by t ∈ [0, 2n) such that W (t)
is a translate of Wt�. The most important geometric observation is that
if p ∈ W (�t� + x) ∩W (�t� + z), where 0 ≤ x ≤ 1 and 0 ≤ z ≤ n, then
p ∈W (�t�+ y) for all x ≤ y ≤ z.

If p ∈W (�t�+x)∩W (�t�+z), where 0 ≤ x ≤ 1 and n ≤ z ≤ n+1, then
p is contained in two antipodal wedges, which implies that it is contained
in translates of W0WW and WnWW , but in no translates of any other wedge WiWW .
Therefore, every p corresponds to either an interval of the circle [0, 2n) or
to two intervals, one of which is a subinterval of [0, 1], and the other a
subinterval of [n, n+ 1].

We can take care of these two cases separately, as any big wedge contains
many points from one of these groups. The sets of the first type (intervals)
form a circular interval graph. Using a simple greedy algorithm, we can
partition the set of these circular intervals into k parts with the property
that any point of the circle that is covered by at least 3k intervals will be
covered by at least one interval in each part. For sets of the second type
(unions of two intervals), we want to color points with respect to a wedge
W and its antipodal pair −W . The greedy algorithm again gives a good
partition of a 3k-fold covering into k coverings. Since every witness wedge
contains at least 6k points, we are done.

Combining these facts, we obtain that m′
k ≤ 18k + 5 for any system of

wedges derived from a convex centrally symmetric polygon. This has to be
multiplied by a constant depending on the shape of the polygon that comes
from Lemma 2.2, to derive a bound for the multiple-cover-decomposability
function mk of the polygon.

4.3. Decomposition to Ω(m) parts for triangles

The case of not necessarily centrally symmetric polygons P was settled
in [10]. In this subsection, we sketch the proof in the special case when P
is a triangle, which already contains most of the key ideas of the general
argument.
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The first step is the usual dualization and reduction to wedges, therefore,
it is enough to prove the following statement.

Lemma 4.5. Let WAW , WBW , WCWW be the wedges of a triangle T , and let k > 0.
Then any point set S can be colored with k colors such that any translate
of WAW , WBW , or WCWW which covers at least 14k points of S contains at least
one point in each color.

Let S be a point set. Consider the level curve CA = CA(14k + 1) of WAW
of depth 14k + 1. Again, for the coloring it is enough to consider those
translates of WAW whose apices are on CA. As we have seen in the previous
subsection, these wedges contain 14k points of S. Call these translates
witness A-wedges. The witness B-wedges and witness C-wedges can be
defined analogously.

The most important new idea is that first we partially color the points
of S so that every witness A-wedge contains at least one point of each
color, and all witness B-wedges and witness C-wedges have sufficiently many
uncolored points. We proceed by extending this coloring in such a way that
every witness B-wedge has a point of each color, and it is still true that
every witness C-wedge has enough uncolored points. Finally, we take care
of the witness C-wedges.

Lemma 4.6. One can partially color the points of S with k colors such that

(i) each witness A-wedge contains all k colors, and

(ii) each witness B-wedge and C-wedge contains at least 6k uncolored
points.

Proof. We will again use the partial orders <A, <B, and <C , defined
in Subsection 3.3. First, we choose a subset Q ⊂ S in the following
way. Initially, set Q = ∅. Then, for each witness A-wedge W such that
|Q ∩W | < 2k, we add the points of S ∩W to Q, one by one, in decreasing
order with respect to <A, until |Q∩W | = 2k. Then we proceed with another
witness A-wedge. There are infinitely many witness A-wedges, but we have
to consider only finitely many, since they can intersect S in only finitely
many distinct subsets.

In the way described in the previous subsection, each witness A-wedge
corresponds to a point on CA, and each point of Q corresponds to an interval.
Thus, we obtain a system of intervals on CA (or, equivalently, on a line) such
that each point is covered at least 2k times. Take a minimal collection of
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these intervals that still form a covering. Is is easy to see that no point can
be covered more than twice. Color these intervals with the first color, take
another minimal cover for the second color, and continue until all colors
are used. Since we started with a 2k-fold covering and in each step the
thickness decreased by at most two, we will be able to use all colors. This
corresponds to a coloring of a subset R ⊂ Q. It is clear that each witness A-
wedge contains at least one point of each color. Observe, that the intervals
that correspond to R do not cover any point more than 2k times. That is,
each witness A-wedge contains at most 2k points of R.

Now we prove (ii). By symmetry, it is enough to show that every witness
B-wedge contains at least 6k uncolored points. LetW be a witness B-wedge,
and let p1, p2, . . . be the points of W ∩S in increasing order with respect to
<B. If none of them is in Q, then none of them is colored and we are done.
Otherwise, let j be the largest number such that pj ∈ Q. If j < 8k, then
there are at least 6k uncolored points in W . Suppose that j ≥ 8k. Point
pj was added to Q when we considered a certain witness A-wedge, say, V .
Wedges W and V can have two types of intersection, since exactly one of
them contains the apex of the other one.

Fig. 12. The two types of intersections of W and V

Case 1: V contains the apex of W . Consider the triangle Z1 = {x | x ∈
W , pj ≮B x}. (See the left part of Figure 12.) It contains j points of S, but
at most 2k of them are colored, so W contains at least 6k uncolored points.

Case 2: W contains the apex of V . Consider the triangle Z2ZZ = {x | x ∈
V , pj ≮A x}. (See the right part of Figure 12.) Since we added pj to Q
when we processed wedge V , there can be at most 2k−1 points p in V with
pj <A p. Therefore, at least 12k points are in Z2ZZ . Since we colored at most
2k of them, there must remain at least 10k uncolored points in Z2ZZ ⊂W .

Now we run the same algorithm for the uncolored points and for the
witness B-wedges. A very similar argument shows that there will still be at
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least 2k uncolored points in each witness C-wedge. We run the algorithm
once more for the uncolored points and for the witness C-wedges. This
concludes the proof.

5. Indecomposable Coverings

In this section, we describe some constructions of coverings with arbitrarily
high multiplicity that cannot be decomposed into two coverings. The first
such example was given by Mani and Pach [16], and it shows that the unit
ball is not cover-decomposable. In other words, for any m, there exists a
covering of R3 with unit balls such that every point is covered by at least
m balls, but the covering cannot be decomposed into two coverings. Later
in [19], several other constructions were given, all based on the geometric
realization of the same m-uniform hypergraph (system of m-element sets)
not having Property B.3 The same hypergraph is used in the construction
described in Subsection 5.1 below. It was shown by Erdos [8] that every˝
m-uniform hypergraphs that does not have Property B has at least 2m−1 hy-
peredges, so any indecomposable construction must be exponentially large.
As one of the first geometric applications of the Lovasz Local Lemma [9],´
Pach showed that if a system of translates of a “nice” geometric set has the
property that every point is covered by at least m and at most a subexpo-
nential (in m) number of sets, then the system is decomposable into two
coverings.

First, we present the construction of [19] showing that no concave
quadrilateral is cover-decomposable. In Subsection 5.2 (see also [21]), we
show that general concave polygons are and polyhedra are not space-cover-
decomposable. Finally, we discuss the difference between several variants of
cover-decomposability.

5.1. Concave quadrilaterals—Proof of Theorem 1.10

We present the construction in the dual setting. Suppose that the vertices
of the quadrilateral, Q, are A, B, C and D, in this order, the reflex angle
being at D. This implies that WAW and WCWW are of Type 5 (Special) (see

3We say that a hypergraph has Property B if the elements of its vertex set can be
colored with two colors such that every hyperedge contains points of both colors.
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Section 4.1 for the definition). Moreover, they belong to an even more
special subclass, which we call Very Special: when we translate the wedges
so that their apices are in the origin, then they are disjoint and their closures
are both contained in the same open half-plane (see the two right examples
in Figure 10).

First, for any m, we give a finite set of points and a finite number of
translates of Q, each covering precisely m points, such that no matter how
we color the points by two colors, at least one of the translates will be
monochromatic. In the “primal” setting, this corresponds to a finite system
of translates of Q with the property that no matter how we partition this
system into two, we can find a point contained in precisely m translates,
each of which belongs to the same part. Hence, Q is not totally-cover-
decomposable. Finally, we show how this construction can be extended
to an m-fold covering of the whole plane, which cannot be split into two
coverings.

We use translates of the wedges WAW and WCWW to realize the following
m-uniform hypergraph H, also used in [16]. The vertices of the hypergraph
are the vertices of a rooted perfect m–ary tree of height m − 1. There
are two types of hyperedges. To each vertex v which is not a leaf of the
tree, we assign a hyperedge of the first type, formed by the children of v.
To each leaf v, we assign a hyperedge of the second type, formed by the
vertices along the path from the root to v. More precisely, the vertices of
the hypergraph are sequences of length less thanm, consisting of the integers
from 1 through m: V (H) = [m]<m = ∪m−1

i=0 [m]i. The hyperedges of the first
kind consist ofm-tuples of sequences of length l, for some l (1 ≤ l < m), such
that removing their last elements, we obtain the same sequence of length
l − 1. The hyperedges of the second kind consist of all initial segments of
a sequence of length m − 1, where the empty sequence (corresponding to
the root) is considered an initial segment of every sequence. Hence, H has∑m−1

i=0 mi vertices and
∑m−1

l=1 ml−1 +mm−1 hyperedges.

The hyperedges of the first kind are realized by translates of WAW , the
hyperedges of the second kind by translates of WCWW . For simplicity, suppose
that WAW is a very thin wedge that contains the positive x-axis and WCWW is a
very thin wedge that contains the negative y-axis; although the construction
would work for any pair of convex wedges that belong to opposite vertices
of a concave quadrilateral. All vertices of H are very close to a vertical line.
All vertices of a hyperedge of the first kind are on a horizontal line, for each
edge on a different one (see Figure 13). It is easy to see that this is indeed a
geometric realization of H, so the points cannot be colored with two colors
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Indecomposable covering with two special wedges of a concave quadrilateral

such that every translate of WAW and WCWW of size m contains points of both
colors.

Fig. 14. Extending the original 2-fold covering of the four points by the solid
quadrilaterals to a 2-fold covering of the whole plane by adding the dotted quadrilaterals

Now we switch back to the primal plane. We have a point set S, and
a set Q of translates of Q. It remains to extend Q to an m-fold covering
of the whole plane. Before doing so, notice that it can be achieved that all
points of the set S are on a line �, not parallel to the sides of Q. Add to this
m-fold covering all translates of Q that are disjoint from S (see Figure 14).
It is clear that the resulting arrangement remains indecomposable. The
construction can be easily modified to obtain a “locally finite” covering,
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using a standard compactness argument. Note that the construction of [21]
is not always extendable this way.

5.2. General concave polygons and polyhedra

The hypergraph H can be realized by two wedges that form a Very Special
pair. Unfortunately, there are concave polygons that do not have two Very
Special wedges (see, e.g., Figure 16). In fact, they might not even have
two wedges that form a Type 5 (Special) wedge at all; e.g., in the case of
the union of two axis-aligned rectangles. The cover-decomposability of such
concave polygons follows from the proof of Theorem 1.5 (see Lemma 2.2,
4.3, 4.4). However, it can be shown that every concave polygon that
has two wedges that form a pair of Type 5 (Special) is not totally-cover-
decomposable. This includes all “typical” concave polygons, as any polygon
that has no parallel sides has a Type 5 (Special) pair of wedges.

To prove indecomposability, we have to realize another hypergraph that
does not have property B. This construction has fewer points than H (about
4m). It is also more general, in the sense that it can be realized by any pair
of Type 5 (Special) wedges. In fact, the following statement holds, which
implies that no polygon with a Type 5 (Special) pair of wedges is totally-
cover-decomposable [21].

Lemma 5.1 [21]. For any pair of special wedges, V and W , and for any
pair of positive integers, k and l, there is a point set P of size

(
k+l
k

)
−1 such

that for every coloring of P with red and blue, either there is a translate
of V containing k red points and no blue points, or there is a translate
of W containing l blue points and no red points.

Proof. We proceed by induction on k+ l. Denote by P (k, l) a set of points
that satisfy the conditions of the lemma for k and l. If k or l is equal to 1,
then the statement is trivially true. In the induction step (see the left side
of Figure 15), place a point p in the plane and a suitable small scaled down
copy of P (k − 1, l) with the property that any translate of V with its apex
in the neighborhood of P (k − 1, l) contains p, but none of the translates
of W with its apex in the neighborhood of P (k − 1, l) does. Analogously,
place a scaled down copy of P (k, l − 1) in such a way that any translate
of W with its apex in the neighborhood of P (k, l − 1) contains p, but none
of the translates of V with its apex in the neighborhood of P (k, l− 1) does.
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Sketch of one step of the induction and iteration of some steps

If p is colored red, then either for the first part of the construction,
similar to P (k − 1, l), there is a translate of V that covers point p together
with k − 1 other red points and no blue ones, or for the part similar to
P (k − 1, l), there is a translate of W that covers l blue points, no red ones,
and it does not contain p. In both cases, we are done. A similar argument
works in the case when p is blue.

Remark 5.2. Instead of considering all translates of V and W , in order
to find a wedge that meets the requirements of Lemma 5.1, it is sufficient
to restrict our attention to a finite set of translates whose apices lie on the
same line.

This construction, combined with Lemma 4.3 and 4.4, gives the following
characterization of polygons.

Theorem 5.3 [22, 21]. An open polygon P is totally-cover-decomposable
if and only if none of the P -wedges form a pair of Type 5 (Special).

Unfortunately, we still do not have a nice characterization for plane-
cover-decomposability. The reason is that the above construction cannot
always be extended to coverings of the whole plane. As pointed out in
Remark 5.2, it is sufficient to consider a finite set of wedges whose apices lie
on the same line. However, after dualization the centers of the translates
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will lie on two lines. An example of a polygon which is not totally-cover-
decomposable but might be cover-decomposable is depicted in Figure 16.
Some special cases when such an extension is always possible, were studied
in [21].

Fig. 16. Unknown hexagon: its only special pair of wedges are at A and E

In higher dimensions, the situation is completely different. According
to Theorem 1.12 [21], for d ≥ 3, no d-dimensional convex polytope is cover-
decomposable.

The proof is based on the observation that for any polytope P , either
there is a plane that intersects P in a concave polygon, which always has
a special pair of wedges, or there are two parallel planes that intersect P
in two polygons such that there is a special pair among their wedges. In
both cases, we can take a plane in space and a family of translates of P that
realize the above construction in this plane so that the intersection of the
plane and the translates of P play the role of the wedges. Then we take the
dual of this arrangement. To prove that this construction is extendable to
an indecomposable covering of the entire space, observe that the centers of
all the translates used in the construction lie in a plane, therefore, we can
follow the same argument as for quadrilaterals in the plane.

5.3. Technical difficulties: closed polygons, finite covering

Notice that in all of our positive results (Theorems 1.3-1.9) we considered
open polygons. This is due to the fact that at the very beginning of
Section 2, based on a compactness argument, we restricted our attention to
locally finite coverings. This does not work for closed polygons. The truth is
that at the moment for not locally finite coverings with closed polygons, we
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cannot prove any positive result. (Our negative results, of course, remain
valid for closed polygons as well.) In [21], we made an attempt to overcome
this difficulty. To state the (rather weak) results obtained there, we need a
definition.

Definition 5.4. A planar set P is said to be finite-cover-decomposable
(countable-cover-decomposable) if there exists a constant m ≥ 2 such that
every m-fold covering of any point set with finitely (countably) many trans-
lates of P can be decomposed into two coverings.

By definition, we have: P is totally-cover-decomposable ⇒ P is count-
able-cover-decomposable ⇒ P is finite-cover-decomposable. But which of
these implications can be reversed? In [21], it was proved that the first
one can be for “nice” sets. The definition of nice includes all closed convex
sets and polygons, but is much more general. The proof is based on the
hereditary Lindelof property of the plane.¨

Unfortunately, we have been unable to prove any such connection
between finite-cover-decomposability and countable-cover-decomposability.
Hence, the status of closed polygons is still undetermined. We believe, how-
ever, that using further geometric observations this problem can be settled.

6. Open Questions

The main unsolved problem in the field remains to verify (or refute) Con-
jecture 1.2 or, more generally Conjecture 1.14.

Problem 6.1. Is every plane convex set cover-decomposable?

Concerning coverings with homothetic copies of a set P , the first inter-
esting special cases are when P is a disk or a square.

Problem 6.2. Does there exist a positive integer m such that every m-
fold covering of the plane with open disks of arbitrary radii splits into two
coverings?

Problem 6.3. Does there exist a positive integer m such that every m-fold
covering of the plane with open squares of arbitrary side lengths, whose
sides are parallel to the coordinate axes, splits into two coverings?
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As we have seen in the Introduction, the answer to the corresponding
question for triangles is affirmative [11].

In Subsection 2.3, we defined a notion somewhat stronger than cover-
decomposability (see Definition 2.3).

Problem 6.4. Does there exist a bounded (convex) set P which is cover-
decomposable, but not totally-cover-decomposable?

According to Theorem 1.5, every open convex polygon is cover-decom-
posable, that is, for every open convex polygon P , there is a positive con-
stant m(P ) such that every m(P )-fold covering of the plane with translates
of P splits into two coverings. The best known value of m(P ) depends on
the shape of P .

Problem 6.5. Is it true that, for any integer j ≥ 3, there is a positive
constant mj such that every mj-fold covering of the plane with translates
of any convex j-gon P splits into two coverings?

For open triangles the answer is yes with m3 ≤ 12. On the other hand,
the same statement is not known for closed triangles, as we do not even
know if closed triangles are cover decomposable.

It is possible that for any cover-decomposable set P , there exists a
(smallest) positive integer m = m3(P ) with the property that every m-fold
covering of the plane with translates of P splits into three coverings. More
generally, as in the Introduction, let mk(P ) denote the smallest positive
integer m such that every m-fold covering of the plane with translates of P
splits into k coverings. If such an integer does not exist, let mk(P ) =∞.

Problem 6.6. Is it true that if m2(P ) <∞, then we also have mk(P ) <∞,
for every k ≥ 3?

This may be true even in a very general combinatorial setting. Given a
finite system of sets F , a multiset of its members (with possible repetition!)
is said to form a m-fold covering if every element of the underlying set
is contained in at least m members of F . For any positive integer k, let
mk(F) denote the smallest number m ≥ 1 such that every m-fold covering
with members of F splits into k coverings. It is easy to see that this number
is always finite: for example, we have mk(F) ≤ (k − 1)|F|+ 1.

Problem 6.7. Does there exist a function f such that, for every finite set
system F , we have m3(F) < f(m2(F))?



254 J. Pach, D. Palvölgyi and G. T´´ oth´

It is possible that the answer is yes even with the function f(x) = O(x).
As a matter of fact, the relation mk(F) < Ckm2(F) may also hold with an
absolute constant C > 0.

In spite of substantial progress in this field, our knowledge on decom-
posability properties of multiple coverings is rather rudimentary. To our
surprise, G. Tardos (personal communication) constructed a set system F ,
which “almost” refutes Problem 6.7. This set system cannot be decomposed
into 3 coverings, although every subsystem of it (with no repetition!) which
forms a 2-fold covering splits into 2 coverings.

Finally, we mention another problem for finite set systems that has a
strong connection to cover-decomposability.

For a subset A ⊂ [n], let us denote by ai the i-th smallest element of A.
Given two k-element sets, A,B ⊂ [n], we write A  B if ai ≤ bi for every i.

A k-uniform hypergraph H ⊂
([n]
k

)
is called a shift-chain if for any two

hyperedges, A,B ∈ H, we have A  B or B  A. (So a shift-chain has at
most k(n− k) + 1 hyperedges.)

Problem 6.8. Is it true that if k is sufficiently large, then every k-uniform
shift-chain has Property B? In other words, is it true that for every shift-
chain H ⊂

([n]
k

)
, one can color [n] with two colors such that no hyperedge

is monochromatic?

An affirmative answer would be a huge step towards Pach’s conjecture
that all planar convex sets are cover-decomposable. To see this, recall the
following definition from Section 4.1. For a finite set of point S in the plane
and for a plane convex set P , define P (k; y) as the translate of P which

(1) contains exactly k points of S;

(2) the y-coordinate of its apex is y; and

(3) the x-coordinate of its apex is maximal,

if such a translate exists.

If we associate i ∈ [n] with the element of S with the i-th smallest y-
coordinate, then an easy geometric argument shows that H = {P (k; y)∩S |
y ∈ R} is a shift-chain.
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For k = 2, there is a trivial counterexample to the above problem: (12),
(13), (23). For k = 3, a magic counterexample was found by a computer
program written by Radoslav Fulek:

(123), (124), (125), (135), (145), (245), (345), (346), (347), (357),

(367), (467), (567), (568), (569), (579), (589), (689), (789).

If we allow the hypergraph to be the union of two shift-chains (with the
same order), then the construction in Section 5.2 provides a counterexample
for any k. Therefore, all arguments using that the average degree is small
(like attempts based on Lovász Local Lemma) would probably fail.´

Added in proof

Recently, several new related new results have been found. It was proved
by I. Kovacs and G. Tóth [14, 15], and, independently, by M. Vizer [24]´
that closed centrally symmetric polygons are cover-decomposable. In a
series of papers, it was shown by J. Cardinal, K. Knauer, P. Micek and
T. Ueckerdtand [5, 6], and by B. Keszegh and D. Pálv´ olgyi [12, 13] that¨
kO(1)-fold coverings by homothets of open triangles or by (finite collections
of) octants are decomposable into k coverings.
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[9] P. Erdős and L. Lov´˝ asz: Problems and results on 3-chromatic hypergraphs and some´
related questions, in: Infinite and Finite Sets (to Paul Erds on his 60th birthday), II.
North-Holland, Amsterdam, 1975, 609–627.

[10] M. Gibson and K. Varadarajan: Optimally decomposing coverings with translates
of a convex polygon, Discrete & Computational Geometry 46 (2011), 313–333.
Also in: Proc. 50th Annual IEEE Symposium on Foundations of Computer Science,
(FOCS 09), IEEE Computer Soc., Los Alamitos, CA, 2009, 159–168.

[11] B. Keszegh and D. Pálvölgyi: Octants are cover decomposable, Discrete & Com-
putational Geometry, DOI 10.1007/s00454-011-9377-1, to appear. Also in: Proc. 7th
Hungarian–Japanese Symposium on Discrete Mathematics and Its Applications, Ky-
oto, 2011, 217–226.

[12] B. Keszegh and D. Pálvölgyi: Octants are cover-decomposable into many coverings,
arXiv:1207.0672.

[13] B. Keszegh and D. Pálvölgyi: Convex Polygons are Self-Coverable,¨
arXiv:1307.2411.
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