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1. Introduction

Suppose we have two convex sets A and B in euclidean d-space Rd. Assume
the only information we have about A and B comes from the space of their
transversal lines. Can we determine whether A and B have a point in
common? For example, suppose the space of their transversal lines has an
essential curve; that is, suppose there is a line that moves continuously in Rd,
always remaining transversal to A and B, and comes back to itself with the
opposite orientation. If this is so, then A must intersect B, otherwise there
would be a hyperplane H separating A from B; but it turns out that our
moving line becomes parallel to H at some point on its trip, which is a
contradiction to the fact that the moving line remains transversal to the
two sets. If we have three convex sets A, B and C, for example, in R3, then
our essential curve does not give us sufficient topological information. In
this case, to detect whether A ∩B ∩C �=�� φ, we need a 2-dimensional cycle.
So, for example, if we can continuously choose a transversal line parallel to
every direction, then there must be a point in A ∩ B ∩ C, otherwise if not,
the same is true for π(A)∩π(B)∩π(C), for a suitable orthogonal projection
π : R3 → H where H is a plane through the origin (see [4, Lemma 3.1]).
Hence clearly there is no transversal line orthogonal to H.

Suppose now we have three convex sets A, B and C in euclidean 3-
space R3. Assume the only information we have about A, B and C comes
from the space of their transversal planes. Can we determine whether A,
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B and C have a transversal line? For example, suppose the space of their
transversal planes has an essential curve; that is, suppose there is a plane
that moves continuously in R3, always remaining transversal to A, B and C,
and comes back to itself with the opposite orientation. If this is so, then
there must be a transversal line to {A,B,C}. This time the proof is slightly
more complicated from the topological point of view. Let me present it here.

Suppose there is no transversal line to {A,B,C}. Denote by T2TT the
space of transversal planes to {A,B,C}. Consider the continuous map
ψ : A × B × C → T2TT given by ψ(a, b, c), the unique plane containing
{a, b, c}. The continuous map ψ is well defined precisely because there is
no transversal line to {A,B,C}. Furthermore, if H ∈ T2TT , then ψ−1(H) =
(A∩H)× (B ∩H)× (C ∩H), which is contractible by the convexity of the
two sets. The fact that the fibers of ψ are contractible implies that ψ is a
homotopy equivalence. This implies that T2TT is contractible, contradicting
the hypothesis that there is an essential curve in T2TT .

We claim that for a sufficiently small family of convex sets, the topology
of its transversals provide enough information to derive geometric informa-
tion. To be more precise, let us state the following definition.

Let F be a family of compact, convex sets. We say that F has a
topological ρ-transversal of index (m, k), ρ < m, 0 < k ≤ d − m, if there
are, homologically, as many transversal m-planes to F as m-planes through
a fixed ρ-plane in Rm+k. Clearly, if F has a ρ-transversal plane, then F has
a topological ρ-transversal of index (m, k), for ρ < m and k ≤ d−m. The
converse is not true. It is easy to give examples of families with a topological
ρ-transversal but without a ρ-transversal plane. We conjecture that for a
family F of k + ρ + 1 compact, convex sets in euclidean d-space Rd, there
is a ρ-transversal plane if and only if there is a topological ρ-transversal of
index (m, k). A good reference for the algebraic topology needed in this
paper is [8], and [7] for the geometric transversal theory.

The purpose of this paper is to use the structure of the topology of the
space of transversals to obtain geometric results in the spirit of the colourful
theorems of Lovász and Bárány.
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2. The Structure of the Space of Transversals

The purpose of this section is to state several results about the structure of
the topology of the space of transversals to a family of convex sets. For the
proofs see [1], [4], [5] and [9].

Let F be a family of compact, convex sets in Rd. By M(d,m) we denote
the space of m-planes in Rd. It can be considered as an open subset of
G(d+ 1,m+ 1) and retractible to the classic Grassmanian space, G(d,m),
of m-dimensional linear subspaces of Rd. For 0 < m < d, we denote by
TmTT (F) the subspace of M(d,m) ⊂ G(d+1,m+1) consisting of all m-planes
transversal to F .

We say that F has a topological ρ-transversal of index (m, k), ρ < m,
0 < k ≤ d−m, if there are homologically as many transversal m-planes to
F as m-planes through a fixed ρ-plane in Rm+k.

More precisely, for ρ < m, 0 < k ≤ d−m, the family F has a topological
ρ-transversal of index (m, k) if

i∗([0, . . . , 0, k, . . . , k]) ∈ H(m−ρ)k
(
TmTT (F),Z2

)
is not zero,

where i∗ : H(m−ρ)k
(
G(d + 1,m + 1),Z2

)
→ H(m−ρ)k

(
TmTT (F),Z2

)
is the

cohomology homomorphism induced by the inclusion TmTT (F) ⊂ M(d,m) ⊂
G(d+ 1,m+ 1), and

[0, . . . , 0, k, . . . , k] ∈ H(m−ρ)k
(
G(d+ 1,m+ 1),Z2

)
is the Schubert-cocycle, in which the last symbol starts with ρ + 1 zeros
(see [6] for the definition of Schubert cocycle).

Clearly, if F has a ρ-transversal plane, then F has a topological ρ-
transversal of index (m, k), for ρ < m and k ≤ d − m. The converse
is not true. It is easy to give examples of families with a topological ρ-
transversal but without a ρ-transversal plane. We conjecture that for a
family F of k + ρ + 1 compact, convex sets in euclidean d-space Rd, there
is a ρ-transversal plane if and only if there is a topological ρ-transversal of
index (m, k).

The proof of the following theorem follows the ideas of the proof, given
in the introduction, that the space of transversal planes to three convex
sets, without transversal lines, in 3-space is contractible. See the proof of
Theorem 3.1 in [1].
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Theorem 2.1. Let 0 ≤ ρ < m ≤ d−1. Let F ={A0, . . . , Aρ+1} be a family
of convex sets in Rd and let αi ∈ Ai, i = 0, . . . , ρ + 1. Suppose there is no
ρ-plane transversal to F . Then the inclusion

TmTT ({α0, . . . , αρ+1}) ⊂ TmTT ({A0, . . . , Aρ+1})

is a homotopy equivalence.

In particular, TmTT (F ) has the homotopy type of G(d− ρ− 1,m− ρ− 1).

As a corollary, we have the following theorem which proves our main
conjecture when k = 1. This theorem will allow us to transform topological
information into geometric information.

Theorem 2.2. Let 0 ≤ ρ < m, and let F be a family of ρ + 2 compact
convex sets in Rd. Then there is a ρ-plane transversal to F if and only if
there is a topological ρ-transversal plane of index (m, 1).

That is, there is a ρ-plane transversal to F if

[0, . . . , 0, 1, . . . , 1] is not zero in TmTT (F),

where [0, . . . , 0, 1, . . . , 1] ∈ H(m−ρ)
(
G(m + 1, d + 1),Z2

)
is the (m − ρ)-

Stiefel–Whitney characteristic class, in which the last symbol starts with
ρ+ 1 zeros.

All results in this paper can be stated in a more general setting, but to
simplify the topological technicalities and to clarify the ideas, we will prove
and state them only for dimensions 3 and 4. So, let us summarize in the
following proposition the topology we will need in the next section.

Proposition 2.1. Let F be a family of convex sets in R4. Let D(F ) ⊂ RP3

be the set of directions in R4 orthogonal to a transversal hyperplane of F
and let d(F ) ⊂ G(4, 2) be the set of directions in R4 orthogonal to a
transversal plane of F . Then

a) if the homomorphism induced by the inclusion H1
(
RP3,Z2

)
→

H1
(
D(F ),Z2

)
is not zero, there is a transversal plane to every quadru-

ple of the convex sets of F ,

b) if the homomorphism induced by the inclusion H2
(
RP3,Z2

)
→

H2
(
D(F ),Z2

)
is not zero, there is a transversal line to every triple of

the convex sets of F ,
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c) if the homomorphism induced by the inclusion H1
(
G(4, 2),Z2

)
=

Z2 → H1
(
d(F ),Z2

)
is not zero, there is a transversal line to every

triple of the convex sets of F .

Proof. Note that the classical retraction M(4, 3) → RP 3 is a homotopy
equivalence. Furthermore its restriction T3TT (F ) → D(F ) is a homotopy
equivalence because the fibers are contractible. So, if the homomorphism
induced by the inclusion H1

(
RP 3,Z2

)
→ H1

(
D(F ), Z2

)
is not zero, then

the generator of G(5, 4) is not zero in T3TT (F ) and hence by Theorem 2.2 there
is a plane transversal to every quadruple of convex sets of F . The proofs of
b) and c) are essentially the same.

3. The Colorful Geometric Results

The purpose of this section is to use the topological results developed in
the previous section to obtain geometric results in the spirit of the colorful
theorems of Lovász and Bárany [3].´

We state the colorful Helly Theorem.

Theorem 3.1. Let F be a family of convex sets in Rd painted with d + 1
colors. Suppose that every heterochromatic d+1-tuple of F is intersecting.
Then there is a color with the property that the family of all convex sets of
this color is intersecting.

In particular, if we have a collection of red and blue intervals in the
line and every red interval intersects every blue internal, then either there
is a point in the intersection of all red intervals or there is a point in the
intersection of all blue intervals.

The colorful Helly Theorem has the following geometric interpretation:
any linear embedding of a combinatorial d-cube in Rd has, in every direction,
a transversal line to two opposite faces.

Let us consider the configuration of lines in the plane that consists of
nine points and six lines, in which the first three red lines, �1, �2, �3 are
parallel and the next three blue lines L1, L2, L3 are parallel and orthogonal
to the red ones. So every line has exactly three points, and the intersection
of a red and a blue line consists exactly of one point. Let us denote by G3

the 2-dimensional simplicial complex describing this configuration, in which
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we have three red triangles corresponding to the red lines and three blue
triangles corresponding to the blue lines.

Theorem 3.2. In any linear embedding of G3 in euclidean 3-space R3,
there is either a transversal line to the red triangles or a transversal line to
the blue triangles.

Proof. The ingredients of the proof are: i) the fact that if RP 2, the
projective plane, is the union of two closed ANR sets R and B, then either
R contains an essential cycle or B contains an essential cycle, and ii) the
colorful Helly Theorem in the line.

Let R ⊂ RP 2 be the collection of directions orthogonal to transversal
planes to the red triangles and let B ⊂ RP 2 be the collection of directions
orthogonal to transversal planes to the blue triangles. First note that
R∪B = RP 2, because if L is any line through the origin, we may project the
three red triangles and the three blue triangles orthogonally onto L. Thus
we have three red intervals and three blue intervals in L with the property
that every red interval intersects a blue interval, but this means that either
there is a point in the intersection of all red intervals or there is a point in
the intersection of all blue intervals. Therefore there is, orthogonally to L,
either a plane transversal to the three red triangles or a plane transversal to
the three blue triangles. Since R∪B = RP 2, either R contains an essential
cycle or B contains an essential cycle. This immediately implies that there
is an essential cycle of planes (see the introduction) transversal to the red
triangles or an essential cycle of planes transversal to the blue triangles.
Thus there is either a transversal line to the red triangles or a transversal
line to the blue triangles.

We have essentially proved that if we have three red convex sets and
three blue convex sets in 3-space and every red set intersects every blue
set, then there is either a transversal line to the red sets or a transversal
line to the blue sets. Now we want to prove a similar theorem but this
time using more than two colors. For this purpose we need the following
proposition, which essentially claims that G(4, 2) cannot be covered by three
null homotopic sets.

Proposition 3.1. Let G(4, 2) = A1 ∪ A2 ∪ A3 be a closed cover of
the 4-dimensional Grassmanian space G(4, 2) of planes through the origin
in R4. For some i ∈ {1, 2, 3}, the homomorphism induced by the inclusion
H∗(G(4, 2),Z2

)
→ H∗(Ai,Z2

)
is not zero.
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Proof. The strategy is to prove first that there are γiγγ ∈ H∗(G(4, 2),Z2

)
,

i = 0, 1, 2 such that γ0∗γ1∗γ2 = 0. Recall (see [6] that the product structure��
in H∗(G(4, 2),Z2

)
can be totally described by the following formula:

[λ1, λ2][0, 1] =
∑

[ξ1, ξ2],

where the summation extends over all combinations ξ1, ξ2 such that

i) 0 ≤ ξ1 ≤ ξ2 ≤ 2,

ii) λ1 ≤ ξ1 ≤ λ2, λ2 ≤ ξ2 ≤ 2, and

iii) ξ1 + ξ2 = λ1 + λ2 + 1.

Let γ0 = [1, 1] and γ1 = [0, 1]. Then γ0∗γ1 = [1, 2] and then γ0∗γ1∗γ1 =
[2, 2] �= 0.��

Suppose that the homomorphism induced by the inclusion

H∗(G(4, 2),Z2

)
→ H∗(Ai,Z2

)
is zero, for i ∈ {1, 2, 3}. Hence by exactness

H∗(G(4, 2), Ai;Z2

)
→ H∗(G(4, 2),Z2

)
is an epimorphism. We can pull γ0, γ1, γ2 back to H∗(G(4, 2), Ai;Z2

)
and

hence pull the product γ0∗γ1∗γ1 back to H∗(G(4, 2), A1∪A2∪A3;Z2

)
= 0,

which is a contradiction.

We are ready for the following theorem:

Theorem 3.3. Suppose we have three red convex sets, three blue convex
sets and three green convex sets in R4 and every heterochromatic triple is
intersecting. Then there is one color that has a line transversal to all convex
sets of this color.

Proof. The proof is essentially that of the previous theorem but using the
colorful Helly Theorem in the plane and Proposition 3.3. Let R ⊂ G(4, 2)
be the set of directions in G(4, 2) orthogonal to transversal planes to the red
convex sets, let B ⊂ G(4, 2) be the set of directions orthogonal to transversal
planes to the blue convex sets, and finally let G ⊂ G(4, 2) be the set of
directions orthogonal to transversal planes to the green convex sets. First
note that R∪B ∪ G = G(4, 2), because if H is any plane through the origin,
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we may project our nine convex sets orthogonally onto L. So, by the colorful
Helly Theorem 3.2 in the plane, there is a color, say red, such that there
is a point in common to the projection of all convex sets of that color.
Therefore there is, orthogonally to H, a plane transversal to the three red
sets. Since R∪B ∪ G = G(4, 2), by Proposition 3.3 one of these closed sets,
say B without loss of generality, has the property that the homomorphism
induced by the inclusion H∗(G(4, 2),Z2

)
→ H1(B,Z2) is not zero, but if

this is so H1
(
G(4, 2),Z2

)
→ H1(B,Z2) is not zero. By Proposition 2.3c),

this implies that there is a transversal line to the three blue convex sets, as
required.

Now we will use a variant of the colorful Helly Theorem.

Proposition 3.2. Let F be a family of red, blue and green intervals in R1.
Suppose that for every heterochromatic triple, one of the intervals intersects
the other two. Then there is a color such that there is a point in common
to all intervals of this color.

Proof. If every pair of red and every blue intervals intersects, then by the
colorful Helly Theorem in the line, either there is point common to all red
intervals or there is a point common to all blue intervals. If not, there is
a red interval IRI ∈ F and a blue interval IBI ∈ F , such that IRI ∩ IBI = φ.
Therefore every green interval of F intersects both IRI and IBI , which implies
that there is point in common to all green intervals, as required.

This variant of the colorful Helly Theorem and the fact that RP3 can
not be covered by three null homotopic closed sets together give rise to the
following theorem:

Theorem 3.4. Suppose we have four red convex sets, four blue convex sets
and four green convex sets in R4 and for every heterochromatic triple one
of the sets intersects the other two. Then there is a color such that there is
a plane transversal to all convex sets of this color.

Proof. Let R ⊂ RP 3 be the collection of directions orthogonal to transver-
sal hyperplanes to the red convex sets, let B ⊂ RP 3 be the collection of
directions orthogonal to transversal hyperplanes to the blue convex sets,
and let G ⊂ RP 3 be the collection of directions orthogonal to transversal
hyperplanes to the green convex sets. Note that R∪B ∪ G = RP 3, because
if L is any line through the origin, we may project our twelve convex sets
orthogonally onto L, obtaining four red intervals, four blue intervals and
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four green intervals in L with the property that for every heterochromatic
triple, one of the intervals intersects the other two. Then by Proposition 3.5,
there is a color such that there is a point common to all intervals of this
color. Therefore there is, orthogonally to L, a hyperplane transversal to
the three convex sets of this color. Since R ∪ B ∪ G = RP3, the Lusternik
Schnirelmann category RP3 implies that one of these closed sets, say B with-
out loss of generality, has the property that the homomorphism induced by
the inclusion H1

(
RP3,Z2

)
→ H1(B,Z2) is not zero. By Proposition 2.3a),

this implies that there is a transversal plane to the blue convex sets as
required.

It is well known that the projective plane is not the union of two null
homotopic closed sets, but can be the union of three null homotopic closed
sets. As a consequence, the following topological proposition, whose proof is
an interesting application of the Mayer–Vietoris exact sequence in homology,
will allow us to obtain two interesting results.

Proposition 3.3. Let A ∪B ∪ C = RP2 be a closed, null homotopic cover
of projective 2-space. Then A ∩B ∩ C is non-empty. Moreover, A ∩B ∩ C
has at least four non-empty components.

Theorem 3.5. Suppose we have three red convex sets, three blue convex
sets and three green convex sets in R3 and every heterochromatic triple is
intersecting. Then either there is a color such that there is a line parallel
to the xy-plane transversal to all convex sets of this color, or else there are
three parallel transversal hyperplanes, one for the red sets, one for the blue
sets and one for the green sets.

Proof. As before, let R ⊂ RP 2 be the collection of directions orthogonal to
transversal hyperplanes to the red convex sets, let B ⊂ RP 3 be the collection
of directions orthogonal to transversal hyperplanes to the blue convex sets
and let G ⊂ RP 3 be the collection of directions orthogonal to transversal
hyperplanes to the green convex sets. Note that R∪B ∪ G = RP 2, because
if L is any line through the origin, we may project our nine convex sets
orthogonally onto L, obtaining three red intervals, three blue intervals and
three green intervals in L with the property that every heterochromatic
triple is intersecting. Then, by the colorful Helly Theorem 3.1 in the plane,
there is a color such that there is a point in common to all intervals of this
color. Therefore there is a hyperplane orthogonal to L transversal to the
three convex sets of this color. Hence R ∪ B ∪ G = RP2 is a closed cover.
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Suppose that for any of the three colors, there is no line parallel to the xy-
plane transversal to all convex sets of this color. Hence R∪B ∪ G = RP2 is a
closed, null homotopic cover of projective 2-space. By Proposition 3.7, there
is at least one line L through the origin whose direction lies in R ∩ B ∩ G.
Then there is a transversal hyperplane to the red sets orthogonal to L, a
transversal hyperplane to the blue sets and a transversal hyperplane to the
green sets.

Theorem 3.6. Suppose we have three red convex sets, three blue convex
sets and three green convex sets i R3 and for every heterochromatic triple
one of the sets intersects the other two. Then either there is a color such
that there is a line transversal to the all convex sets of this color or else there
is a color, say green, and two parallel planes H1 and H2HH such that H1 is a
transversal plane to all green and red convex sets and H2HH is a transversal
plane to all green and blue convex sets.

Proof. DefineR, B and G as in the proof of the previous theorem. Note that
R∪B ∪ G = RP 2, because if L is any line through the origin, we may project
our nine convex sets orthogonally onto L, obtaining three red intervals, three
blue intervals and three green intervals in L with the property that for every
heterochromatic triple, one of the intervals intersects the other two. Then
by Proposition 3.5, there is a color such that there is a point common to
all intervals of this color. Therefore there is a hyperplane orthogonal to L
transversal to the three convex sets of this color. Hence R ∪ B ∪ G = RP2.
Suppose that for any of the three colors, there is no line transversal to all
convex sets of this color. Hence R∪B ∪ G = RP2 is a closed, null homotopic
cover of projective 2-space. By Proposition 3.7, there is at least one line L
through the origin whose direction lies in R∩ B ∩ G.

Let us project our nine convex sets orthogonally onto L, obtaining three
red intervals, three blue intervals and three green intervals in L. Note that
since the direction of L lies in R ∩ B ∩ G, every pair of intervals of the
same color intersect. If every pair of differently-colored intervals intersects,
then the collection of our nine intervals intersects pairwise and hence by
the Helly Theorem in the line, there is a point x0 ∈ L common to all nine
intervals. Then if H1 = H2HH is the plane orthogonal to L through x0, we
are done. If not, let I1 and I2II be the two intervals with different color that
are farthest apart. Suppose without loss of generality that I1 = [a1, b1] is
red, I2II = [a2, b2] is blue and a1 ≤ b1 < a2 ≤ b2. By the hypothesis, every
green interval contains both b1 and a2. Furthermore, every red interval IRI
contains b1, otherwise the distance from IRI to I2II would be greater than
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the distance from I1 to I2II . Similarly, every blue interval IBI contains b1.
Consequently the plane H1 orthogonal to L through b1 and the plane H2HH
orthogonal to L through a2 satisfy our requirements.

Proposition 3.4. Let A1 ∪ A2 ∪ A3 = RP2 be a closed cover and suppose
that A1∩A2∩A3 = A1∩A2 = A2∩A3 = A1∩A3. Then either A1∩A2∩A3

is not null homotopic or there is i ∈ {1, 2, 3} such that Ai − (A1 ∩A2 ∩A3)
is not null homotopic.

Proof. If A1∩A2∩A3 is null homotopic, then by duality there is an essential
curve α of RP2 contained in RP2−(A1∩A2∩A3). This essential curve must
lie in some connected component of RP2 − (A1 ∩A2 ∩A3). Therefore since
A1 ∩ A2 ∩ A3 = A1 ∩ A2 = A2 ∩ A3 = A1 ∩ A3, there must be i ∈ {1, 2, 3}
such that α is contained in Ai − (A1 ∩A2 ∩A3).

For the following theorems, we need a definition. Let F be a family of
red, blue and green convex sets in R3. A transversal plane (resp. line) is a
bicolor transversal plane (resp. line) if it cuts all convex sets of two different
colors.

Theorem 3.7. Let F be a family of red, blue and green convex sets
in R3. Suppose every pair of convex sets of F with different color intersects
and suppose that every bicolor transversal plane through the origin is a
transversal plane to all convex sets of F . Then there is a transversal line
to all convex sets of F .

Proof. Let us begin by analyzing the situation in the line. Suppose we have
a family of red, blue and green intervals in the line with the property that
every pair of intervals of different color intersect. Then by Helly’s Theorem
in the line, either all intervals have a point in common or there is a pair of
intervals of the same color that do not intersect. In the latter case, all the
intervals of the other two colors have a point in common.

As always, let RRB ⊂ RP 2 be the collection of directions orthogonal
to transversal planes to the red and the blue convex sets of F . Similarly,
we have RRG ⊂ RP 2 and RGB ⊂ RP 2 for the other two combinations of
colors. Our first argument proves that RRB ∪RRG∪RGB = RP2 is a closed
cover. Now note that R1 ∩ R2 ∩ R3 = R1 ∩ R2 = R1 ∩ R3 = R2 ∩ R3.
Furthermore, our hypothesis implies that for i ∈ {1, 2, 3},Ri−(R1∩R2∩R3)
is null homotopic. Therefore by Proposition 3.10, and since the directions
in which there are transversal planes to all convex sets of F coincide with
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R1 ∩R2 ∩R3, there is an essential curve of transversal planes to all convex
sets of F and consequently there is a transversal line to all convex sets of F .

Theorem 3.8. Let F be a family of red, blue and green convex sets in R3.
Suppose every non-monochromatic triple is intersecting and every bicolor
transversal line parallel to the xy-axis is a transversal line to all convex sets
of F . Then there is, parallel to every plane of R3, a transversal line to all
convex sets of F .

Proof. Let us begin by analyzing the situation in the plane. Suppose we
have a family of red, blue and green convex sets in the plane with the
property that every non-monochromatic triple is intersecting. Then the
family F is pairwise intersecting, and furthermore, by Helly’s Theorem in
the plane, either all convex sets have a point in common or there are three
convex sets of the same color that do not intersect but which are pairwise
intersecting. If this is so, then by Lemma 1 (k = λ = 2) of [10], all convex
sets of the other two colors have a point in common.

As always, let R1 ⊂ RP 2 be the collection of directions parallel to
transversal lines to the red and the blue convex sets of F . Similarly, we
have R2 ⊂ RP 2 and R3 ⊂ RP 2 for the other two combinations of colors.
Our first argument proves that R1 ∪R2 ∪R3 = RP2 is a closed cover. Now
note that R1 ∩ R2 ∩ R3 = R1 ∩ R2 = R1 ∩ R3 = R2 ∩ R3. Furthermore,
our hypothesis implies that for i ∈ {1, 2, 3}, Ri − (R1 ∩ R2 ∩ R3) is null
homotopic. Therefore by Proposition 3.10, and since the directions in which
there are transversal lines to all convex sets of F coincide with R1∩R2∩R3,
there is an essential curve of transversal lines to all convex sets of F and
consequently given a plane H ⊂ R3, one of these transversal lines must be
parallel to H.

A system Ω of λ-planes in Rd is a continuous selection of a unique λ-
plane in every direction of Rd. In [2], it is proved that λ + 1 systems of
λ-planes in Rd coincide in some direction. We use this fact to prove the
following theorem.

Theorem 3.9. Let F be a family of red, blue, white and green convex sets
in R3. Suppose that every non-heterochromatic triple is intersecting. Then
there is a transversal line to all convex sets.
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Proof. By Helly’s Theorem in the plane, there is, parallel to every direction,
a transversal line to the red and blue convex sets. The same is true for
white and green. So we have two different systems of lines. Consequently
by Theorem 2 of [2], they must coincide in some direction.

A similar argument proves that a family of convex sets in R4 painted
with six colors and with the property that every non-heterochromatic triple
is intersecting has a transversal plane to all convex sets.
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