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The idea of Voronŏı’s proof of his well-known criterion that a positive definite
quadratic form is extreme if and only if it is eutactic and perfect, is as follows:
Identify positive definite quadratic forms on Ed with their coefficient vectors

in E
1
d
d(d+1). This translates certain problems on quadratic forms into more

transparent geometric problems in E
1
2
d(d+1) which, sometimes, are easier to solve.

Since the 1960s this idea has been applied successfully to various problems of
quadratic forms, lattice packing and covering of balls, the Epstein zeta function,
closed geodesics on the Riemannian manifolds of a Teichmüller space, and other
problems.

This report deals with recent applications of Voronŏı’s idea. It begins with
geometric properties of the convex cone of positive definite quadratic forms and
a finiteness theorem. Then we describe applications to lattice packings of balls
and smooth convex bodies, to the Epstein zeta function and a generalization of
it and, finally, to John type and minimum position problems.

1. Introduction

A classical criterion of Voronŏı [80, 81, 82] says that a positive definite
quadratic form on Euclidean d-space Ed is (locally) extreme if and only if it
is eutactic and perfect. Equivalently, a lattice packing of balls has (locally)
maximum density, if it is eutactic and perfect. To prove this result, Voronŏ
identified the positive definite quadratic forms on Ed with their coefficient
vectors in E

1
2
d(d+1). Slightly earlier Plucker [59] and Klein [51] used a similar¨

idea in the context of line geometry. By Voronŏ ’s method, certain problems˘
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110 P. M. Gruber

on positive definite quadratic forms, resp. on lattice packing of balls in Ed,
are translated into more transparent geometric problems in E

1
2
d(d+1).

While Voronŏı’s criterion won immediate recognition and was widely˘
acclaimed, the idea of his proof was ignored for decades. It drew attention
only since about 1960. It was applied systematically to the following areas:
Barnes, Dickson and the Russian school of the geometry of numbers led by
Delone and Ryshkov and their collaborators Stogrin and Dolbilin used it
for lattice packing and covering problems. For coverings we add Bambah,
Schurmann, Vallentin and the author and refer to [6, 7, 22, 41, 75, 77]. The¨
minimization problem for the Epstein zeta function was at first investigated
by the British school of the geometry of numbers (Rankin [62], Cassels [16],
Ennola [24] and Montgomery [57]). Later, following a suggestion of Sobolev,
who re-discovered the zeta function in the context of numerical integration,
this problem was studied by the Russian school, see [21, 64]. Related
recent results are due to Sarnak and Strombergsson [68], Coulangeon [19]¨
and the author [45]. General properties of the density of lattice packings
of balls, considered as a function on the space of lattices, were studied
by Ash [1], who showed that the density is a Morse function. His work
was continued by Bergé and Martinet [12]. Extensions and refinements
of Voronŏı’s results on extremum properties of quadratic forms are due to˘
the school on quadratic forms in Bordeaux. It includes Martinet, Bergé,
Bachoc, Nebe and Coulangeon, see the monograph [54] of Martinet. We
mention also the contributions of Barnes, Sloane and Conway for which we
refer to the comprehensive volume [18]. Extensions to periodic sets are due
to Schurmann [75]. The kissing number of a lattice packing is related to the¨
number of closed geodesics on the fundamental torus of the lattice. This
observation led Bavard [10] and Schmutz Schaller [69, 70, 71] to investigate
the closed geodesics on the Riemannian manifolds of a Teichmüller space.

This article gives an overview of the pertinent work of the author.
See, in particular the papers [34, 38, 39, 44, 45] and the joint article with
Schuster [47]. We have included also work of other authors. A few results
are new. The section headings give a first idea of the results that will be
presented:

The cone of positive definite quadratic forms,
Weakly eutactic lattices,
Extremum properties of the lattice packing density,
Extremum properties of the product of the lattice packing density and
its polar,
Extremum properties of zeta functions,
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Extremum properties of the product of zeta functions and their polars,
John type results and minimum ellipsoidal shells,
Minimum position problems.

These results belong to the geometry of numbers, to convex geometry and
to the asymptotic theory of normed spaces. In many cases, similar results
hold both for Euclidean balls and o-symmetric, smooth convex bodies. If so,
the results for balls are presented in more detail since in some cases they are
more far reaching and have classical arithmetic interpretations in terms of
positive definite quadratic forms. While the results in different areas seem
to be unrelated, they are bound together by their outlook and the method
of proof. One may speculate, whether they are related in a deeper sense.
For one such relation see Corollary 12. A few proofs have been included.
This was done in case of new results, or to illustrate the technique of proof.

Since this is a report, the material is organized as follows: For each topic
the definitions, the results and the comments are put together, while the
proofs are presented later and may well be skipped.

For general information on the geometry of numbers, on positive
quadratic forms and on convex geometry we refer to the author and Lekkerk-
erker [46], Conway and Sloane [18], Zong [84], Martinet [54], the author [37],
and Schürmann [75].

Let the symbols tr, dim, bd, relint, relintS , pos, lin, conv, ‖ · ‖, ·, V ,
Bd, Sd−1, T , ⊥ stand for trace, dimension, boundary, interior relative to
the affine hull, interior relative to the linear subspace S, positive(=non-
negative), linear and convex hull, Euclidean norm, inner product, volume,
unit ball and unit sphere in Euclidean d-space Ed, transposition, and or-
thogonal complement.

2. The Cone of Positive Definite Quadratic Forms

Most results in this report deal in one way or another with positive definite
quadratic forms. In some cases geometric properties of the cone Pd of
positive definite quadratic forms or of certain subsets of it are indispensable
tools for the proofs. It thus seems justified to begin this overview with an
investigation of geometric properties of the cone Pd.

A (real) quadratic form on Ed,

q(x) =
∑

aikxixk, x ∈ Ed,



112 P. M. Gruber

its (real) symmetric d× d coefficient matrix

A = (aik)

and its (real) coefficient vector

(a11, . . . , a1d, a22, . . . , a2d, . . . , add)
T

in E
1
2
d(d+1) may be identified. The family of all positive definite quadratic

forms on Ed then corresponds to an open convex cone Pd in E
1
2
d(d+1) with

apex at the origin O, the cone of positive definite quadratic forms. The
closure Qd of Pd is the cone of positive semi-definite quadratic forms on Ed.
The cones Pd and Qd, certain polyhedra and unbounded convex bodies
in Pd, as well as polyhedral subdivisions of Pd play an important role in the
geometric theory of positive definite quadratic forms, including reduction
theory.

Thus, Pd and Qd appear as natural objects of investigation. To our
surprise, we found only a few pertinent results, due to Ryshkov and Bara-
novskĭı [67], Ryshkov [66], Bertraneu and Fichet [14], Barvinok [8], Wick-˘
elgren [83] and the author [39]. Ryshkov and Baranovskĭ showed that the˘
group of linear automorphisms of Pd is transitive on Pd. Ryshkov seems to
have proved that each linear automorphism of Pd is of a particularly simple
form. Wickelgren characterized the linear automorphisms of the Ryshkov
polyhedron Rd in Pd and Bertraneu and Fichet gave a description of the
extreme faces of Qd and, as a consequence, showed that the lattice of ex-
treme faces of Qd is isomorphic to the lattice of linear subspaces of Ed and,
thus, modular.

In this section, we report on the results of the author [39], beginning
with an analog for exposed faces of the result of Bertraneu and Fichet. The
next result says that the exposed and the extreme faces of Qd coincide.
These results then are used as tools for the proofs of all further results:
First, extending well-known notions for polytopes, flag transitivity of the
group of all orthogonal transformations and neighborliness properties of the
convex cone Qd are studied. Then we investigate singularity properties of
boundary points and faces of Qd, and show the simple fact that Qd is self-
dual. Finally, the group of isometries of Qd will be described. Each isometry
is generated by an orthogonal transformation of Ed.
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Extreme and Exposed Faces of Qd

An extreme face or face F of the cone Qd is a subset of Qd with the following
property: If a relative interior point of a line segment in Qd is contained
in F , then the whole line segment is contained in F . The empty set ∅ and
the cone Qd are faces of Qd. Each extreme face of Qd is itself a closed convex
cone. A special face is an exposed face, i.e. the intersection of Qd with a
support hyperplane. To simplify, also ∅ and Qd are said to be exposed.

For u ∈ Ed define the tensor product u ⊗ u to be the symmetric d × d
matrix uuT ∈ E

1
2
d(d+1). (The linear mapping x→ u⊗ux maps x ∈ Ed onto

the point (u ·x)u and, if u is a unit vector, this is the orthogonal projection
of x onto the line lin {u}.)

Theorem 1. Let F ⊆ Qd. Then the following properties (i) and (ii) of the
set F are equivalent:

(i) F is an exposed face of Qd.

(ii) There is a linear subspace S of Ed such that F = pos {u⊗u : u ∈ S}.
Moreover,

(iii) if (ii) holds, then dimF = 1
2c(c+ 1), where c = dimS.

Theorem 2. Each extreme face of Qd is exposed.

Since by Theorem 2, extreme and exposed faces coincide, from now on
we will speak simply of faces of Qd.

The Face Lattice of Qd

The above results, which show that the faces of Qd can be represented in a
particularly simple way, lead to a series of properties of Qd.

An (algebraic) lattice 〈L,∨,∧〉 is modular if it satisfies the modular law,

(l ∧m) ∨ n = l ∧ (m ∨ n) for l,m, n ∈ L.

It is orthomodular, if it has 0 and 1 and for each l ∈ L there is an ortho-
complement, i.e. an element l⊥ ∈ L such that

l ∨ l⊥ = 1, l ∧ l⊥ = 0, (l⊥)
⊥
= l and l ≤ m ⇒ l⊥ ≥ m⊥,
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and satisfies the orthomodular law,

l ≤ m ⇒ m = l ∨ (m ∧ l⊥) for l,m ∈ L.

It is well-known that the family of all linear subspaces of Ed, including ∅ = 0
and Ed = 1, with the following definitions of ∧, ∨ is a lattice with 0 and 1:

S ∧ T = S ∩ T,

S ∨ T =
⋂
{U : U linear subspace of Ed with S, T ⊆ U} = S + T

for linear subspaces S, T of Ed.

This lattice is both modular and orthomodular. The family of all faces
of Qd, including ∅ and Qd, is a lattice with respect to the following lattice
operations ∧, ∨:

F ∧ G = F ∩ G,

F ∨ G =
⋂
{H : H face of Qd with F ,G ⊆ H}

for faces F , G of Qd.

Since by Theorem 1 and 2, these lattices are isomorphic, we get the following
result:

Corollary 1. The lattice of all faces of Qd is modular and orthomodular.

The Flag Transitivity of Qd

For d×d matrices A = (aik) and B = (bik) in E
1
2
d(d+1) or Ed2 define an inner

product and a norm by A · B =
∑

aikbik and ‖A‖ = (
∑

a2ik)
1
2 . A group

of transformations which map Pd or Qd onto itself is called a group of
automorphisms or symmetries of Pd orQd. If the transformations are linear,
orthogonal or isometric we speak of linear or orthogonal automorphisms, or,
of a group of isometries with respect to the norm just defined. Then the
following holds: Let U be an orthogonal transformation of Ed. Then the
transformation

U : A→ UAUT for A ∈ Pd or Qd, respectively,
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is an orthogonal automorphism of Pd or Qd, respectively.

Extending the definition for convex polytopes, a sequence F1FF ,F2FF , . . . ,
FdFF −1 of faces of Qd is called a flag or a tower of Qd, if

F1FF ⊆ F2FF ⊆ · · · ⊆ FdFF −1 and dimFcFF =
1

2
c(c+ 1) for c = 1, 2, . . . , d− 1.

A group of automorphisms of Qd is flag transitive if for any two flags

F1FF ,F2FF , . . . ,FdFF −1 and G1,G2, . . . ,Gd−1

there is an automorphism U in the group such that UFiFF = Gi for i =
1, 2, . . . , d− 1.

Corollary 2. The group of orthogonal automorphisms of Qd is flag tran-
sitive.

The Neighborliness of Qd

The notion of neighborliness for a convex polytope, see Grunbaum [48],¨
Ch. 7, can be adapted to the present situation as follows: For k = 1, 2, . . . ,
the convex cone Qd is said to be k-almost neighborly, if the positive (=non-
negative) hull of any k extreme rays of Qd with endpoint O is contained in
a proper face of Qd.

Corollary 3. Qd is (d− 1)-, but not d-almost neighborly.

Polarity and Self-Polarity of Qd

The dual or polar cone of the convex cone Qd with apex O is the convex
cone

Qd∗ = {N ∈ E
1
2
d(d+1) : A ·N ≥ 0 for A ∈ Qd},

i.e. the (interior) normal cone of Qd at its apex O.

Corollary 4. Qd = Qd ∗
, i.e., Qd is self-polar.
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How Singular are the Faces of Qd?

A face F of Qd is k-singular, if k is the dimension of the (interior) normal
cone of the convex cone Qd at (a relative interior point of) F .

Corollary 5. Let F be a non-empty proper face of Qd with dimF =
1
2c(c+ 1). Then F is 1

2(d− c)(d− c+ 1)-singular.

The Isometries of Qd

The following result shows that the isometries of Qd are orthogonal auto-
morphisms and thus are determined by orthogonal transformations of the
underlying space Ed. This is a phenomenon which appears also in several
other instances in convex geometry, see the survey [35], to which we add
Böroczky and Schneider [15] and Schneider [74]. This result shows that, in¨
particular, the space of isometries of Qd is rather small.

Theorem 3. Let U be a mapping of Qd onto itself. Then the following
properties are equivalent:

(i) U is an isometry.

(ii) There is an orthogonal d× d matrix U ∈ Ed2 such that UA = UAUT

for A ∈ Qd.

Conclusion

Remark 1. While Qd is far from being a polyhdral cone, it shares many
properties with highly symmetric, neighborly, and self dual polyhedral con-
vex cones.

3. Weakly Eutactic Lattices

In later sections we will frequently encounter (geometric) lattices which are
eutactic, possibly in a weaker or stronger sense. Thus it is appropriate
to give some information on such lattices. Berge and Martinet [13] and´
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Bavard [11] gave descriptions of the weakly eutactic lattices in E2, E3, E4.
We extract from their results the semi-eutactic lattices in E2, E3 and point
out their relationship to the Bravais classification of lattices in crystallog-
raphy. The aforementioned authors, with Ash [2] as a forerunner, showed
that in general dimensions there are only finitely many similarity classes of
weakly eutactic lattices. We outline a new geometric proof of this result,
using the Ryshkov polyhedron.

Eutactic Lattices and the Bravais Classification

Let L be a (geometric) lattice in Ed, that is the set of all integer linear
combinations of d linearly independent vectors. The volume of the par-
allelepiped generated by these vectors is the determinant d(L) of L. The
set MLM of minimum points, or the first layer of L, consists of all points
l ∈ L\{o} with minimum Euclidean norm. The lattice L is called weakly
eutactic, semi-eutactic, eutactic, strongly eutactic, or perfect with respect
to Bd, or ‖ · ‖, if

I =
∑
l∈MLM

λl l ⊗ l with suitable λl

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
real

≥ 0

> 0

= const

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪ , resp.

E
1
2
d(d+1) = lin {u⊗ u : u ∈MLM }.

Note that any perfect lattice is weakly eutactic.

The Bravais classification of lattices is used in crystallography and
classifies lattices by their groups of orthogonal automorphisms which keep
the origin o fixed. In dimensions 2 and 3 there are 5, resp. 14 Bravais classes
of lattices. For more information see Erdos, Gruber and Hammer [25] and¨
Engel [23]. The kissing number of L is the number of minimum points.

Theorem 4. The following is a list of the similarity classes of the semi-
eutactic lattices in E2 and E3, containing the symbols of their Bravais
classes, their usual names, their eutaxy type, a remark whether they are
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perfect, and their kissing number.

d = 2 : tp square strongly eutactic 4
hp hexagonal strongly eutactic perfect 6

d = 3 : cP cubic primitive strongly eutactic 6
hP special hexagonal primitive eutactic 8
cF cubic face centered strongly eutactic perfect 12
cI cubic body centered strongly eutactic 8
tI special tetragonal body centered eutactic 8

These lattices in E2 and E3 make up certain Bravais types (tp, hp, cP,
cF, cI), or form a subset of a Bravais type (hP, tI). In the latter case we
have added the adjective ‘special’.

Theorem 5. There are only finitely many similarity classes of weakly
eutactic, resp. perfect lattices in Ed.

Since each perfect lattice is weakly eutactic, the result for perfect lattices
follows from that for weakly eutactic lattices.

Open Problems

In the later Corollaries 6 and 11 there are specified the families of Bravais
classes corresponding to those lattices in E2 and E3 which have particular
extremum properties. It would be of interest, to know whether there are
other properties of lattices which lead to the same families of Bravais classes.

Problem 1. Specify geometric properties of lattices which single out the
Bravais classes

{hp}, {tp, hp}, {cF}, {cP, cF, cI}, {hP, cP, cI, cF, tI}

among the 5 Bravais classes for d = 2, and the 14 Bravais classes for d = 3,
respectively. Is there a connection between such properties and extremum
properties of the density of lattice packings of balls or the Epstein zeta
function?

Problem 2. What is the precise relation of similarity classes of weakly
eutactic lattices and Bravais classes of lattices in Ed for general d?
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Outline of the Proof of Theorem 5

We begin with some preparations. A lattice L may be represented in the
form L = BZd, where B is a non-singular d×d-matrix and Zd is the integer
lattice. The columns of the matrix B then form a basis of L. The positive
definite quadratic form q(x) = (Bx)2 = BTB · x ⊗ x then is the metric
form (of the basis matrix B) of L. The metric forms of L are unique up
to equivalence. Conversely, a quadratic form q in Pd can be written in the
form q(x) = A · x⊗ x, where A is a symmetric d× d matrix. Then q is the

metric form of all lattices of the form RA
1
2Zd, where R is orthogonal. The

set MqMM of minimum points of q consists of all u ∈ Zd\{o} such that q(u) is
minimum. We have the following dictionary:

L = BZd q(x) = BTB · x⊗ x = A · x⊗ x

class of all lattices L class of all quadratic forms in Pd

similar to L equivalent to a multiple of q

MLM = BMqMM MqMM = B−1MLM

I =
∑
l∈MLM

λl l ⊗ l A−1 =
∑
u∈MqMM

λu u⊗ u

E
1
2
d(d+1) = lin {l ⊗ l : l ∈MLM } E

1
2
d(d+1) = lin {u⊗ u : u ∈MqMM }

Call the positive definite quadratic form q weakly eutactic, resp. perfect if
the corresponding lattice L satisfies this condition.

Let m > 0. The Ryshkov polyhedron Rd(m) is defined by

Rd(m) =
{
A ∈ Pd : A · u⊗ u ≥ m for u ∈ Zd\{o}

}
=

⋂
u∈Zd\{o}
primitive

{A ∈ E
1
2
d(d+1) : A · u⊗ u ≥ m} ∩ Pd,

where u is primitive if the points o and u are the only points of Zd on the
line segment [o, u]. The following properties of Rd(m) can easily be verified,
see [37]:

Rd(m) is a generalized polyhedron, i.e. its intersection with any convex
polytope, is a convex polytope.
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The facets of Rd(m) are precisely the sets

Rd(m) ∩ {A ∈ E
1
2
d(d+1) : A · u⊗ u = m}, u ∈ Zd\{o} primitive.

bdRd(m) is the set of all (coefficient matrices of positive definite
quadratic forms) q ∈ Pd with (homogeneous) minimum min

{
q(u) :

u ∈ Zd\{o}
}
= m.

bdRd(m) is the disjoint union of the relative interiors of its faces.

The mappings U : A → UTAU for A ∈ E
1
2
d(d+1), where U is an

integer d × d matrix with determinant ±1, map Rd(m) onto itself.
Two faces F , G of Rd(m) are equivalent if there is such a mapping U
with G = UF .
There are pairwise non-equivalent vertices V1VV , . . . , VkVV of Rd(m), such
that any other vertex is equivalent to one of these.

The latter result can be used to show that

(1) there are pairwise non-equivalent faces F1FF , . . . ,FpFF of Rd(m), such that
any other face is equivalent to one of these.

Finally, the following hold:

(2) Let A ∈ relintF , where F is a face of Rd(m). Then the (interior)
normal cone of Rd(m) at A resp. F , equals pos {u1 ⊗ u1, . . . , uj ⊗ uj}
where u1⊗u1, . . . , uj⊗uj are (interior) normal vectors of those facets
of Rd(m) which contain A and thus F .

(3) q = A · x ⊗ x is contained precisely in those facets of Rd(m) with
normal vectors u⊗ u : u ∈MqMM .

Let δ > 0. The discriminant body Dd(δ), is given by

Dd(δ) = {A ∈ Pd : detA ≥ δ}.

It is well-known that

(4) Dd(δ) is an unbounded, smooth, and strictly convex set in Pd with
non-empty interior. For A in bdDd(δ) the vector A−1 is an interior
normal vector of bdDd(δ) at A.

After these preparations, the first step of the proof is to show the
following
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(5) Let the positive definite quadratic form q = A · x⊗ x have minimum
m and determinant δ. Assume that A ∈ relintF , where F is a face
of Pd, and that q is weakly eutactic. Then D(δ) touches F at A.

The normal cone of Rd(m) at q (or F) is pos {u1 ⊗ u1, . . . , uj ⊗ uj}, where
u1 ⊗ u1, . . . , uj ⊗ uj are normal vectors of those facets of Rd(m) which
contain q (or F), see (2). Hence,

F −A ⊆ lin {u1 ⊗ u1, . . . , uj ⊗ uj}⊥.

By (3), the vectors u1, . . . , uj are the minimum vectors of the quadratic
form q = A · x⊗ x. The weak eutaxy of q then shows that

A−1 ∈ lin {u1 ⊗ u1, . . . , uj ⊗ uj}, or A−1⊥ ⊇ lin {u1 ⊗ u1, . . . , uj ⊗ uj}⊥.

By (4), the matrix A−1 is an interior normal vector of bdDd(δ) at A. Hence,

A+A−1⊥

is the tangent hyperplane of Dd(δ) at A (or q). This together with the
earlier inclusions finally yields,

F ⊆ A+ lin {u1 ⊗ u1, . . . , uj ⊗ uj}⊥ ⊆ A+A−1⊥,

concluding the proof of (5).

Since, by (4), Dd(δ) is smooth and strictly convex and the surfaces
bdDd(δ), δ > 0, are strictly convex and their union is Pd,

there is for each face F of Rd(m) at most one value of δ > 0 such that
D(δ) touches F at a relative interior point.

Thus, by (5), there are at most n weakly eutactic forms contained in the
facets F1FF , . . . ,FpFF , say q1, . . . , qn. Since weak eutaxy is invariant with respect
to equivalence and multiplication with positive integers, we see, by (1), that

the weakly eutactic forms are precisely the forms in Pd which are
equivalent to positive multiples of the forms q1, . . . , qn.

Taking into account the above dictionary, the proof is complete.
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4. Maximum Properties of the Lattice Packing Density

In this section refined maximum properties of the density of lattice packings
of balls and convex bodies are studied. The results obtained are due to
the author [44] and refine and extend the classical criterion of Voronŏ .
The notions of semi-eutaxy, eutaxy and perfection are used to characterize
lattices which provide lattice packings of balls, resp. of smooth convex
bodies with semi-stationary, maximum and ultra-maximum density. It is
surprising to observe that maximum and ultra-maximum lattice packings
of balls coincide, and that the proof is simple. Relations to the Bravais
classification of lattices are specified.

Let C be a convex body, i.e. a compact convex subset of Ed with non-
empty interior. We assume that C is o-symmetric and smooth that is,
the boundary is of class C1. Note that for lattice packing problems the
assumption of central symmetry of C is not an essential restriction. Let
‖l‖C be the norm on Ed for which C is the unit ball. Let L be a lattice.
The homogeneous or first successive minimum of L with respect to C is
defined by

λ = λ(C,L) = min
{
‖l‖C : l ∈ L\{o}

}
.

Then the convex bodies λ
2C + l : l ∈ L do not overlap, and thus form a

lattice packing with packing lattice L. This lattice packing is said to be
provided by L. In the following the density

δ(C,L) =
V (λ2C)
d(L)

=
λdV (C)

2dd(L)

of this lattice packing will be investigated for given C, as L ranges over the
space of all lattices in Ed. Let MLM =

{
l ∈ L : ‖l‖C = λ(C,L)

}
be the set

of minimum points or the first layer of L with respect to C.

The connection between Voronŏı type and maximum properties of a˘
lattice L can roughly be described as follows: The different Voronŏ type˘
properties of L are equivalent to different positions of a certain convex poly-
tope in Ed2 relative to the origin. (The origin is an exterior point, a point on
the relative boundary, or in the relative interior.) These simple geometric
properties turn out to be equivalent to different maximum properties of L.
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Extremum and Voronŏı Type Properties

The lattice L is (upper) semi-stationary, stationary, maximum or ultra-
maximum with respect to δ(Bd, ·), if

δ
(
Bd, (I +A)L

)
δ(Bd, L)

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
≤ 1 + o

(
‖A‖

)
= 1 + o

(
‖A‖

)
≤ 1

≤ 1− const‖A‖

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪ as A→ O, A ∈ T ,

where T is the subspace

T = {A ∈ E
1
2
d(d+1) : trA = A · I = 0} = I⊥

of E
1
2
d(d+1) of codimension 1 with normal vector I. The restriction of A to T

is not essential. It helps to avoid clumsy formulations of our results. An
inequality holds as A→ O, A ∈ T , if it holds for all A ∈ T with sufficiently
small norm. The symbols o(·) and const > 0 depend only on Bd and L.

In order to characterize these maximum properties, we need the Voronŏ
type notions of semi-eutactic, eutactic, and perfect lattice (or first layer)
with respect to Bd, see Sect. 3.

Characterization of Semi-Stationary and Ultra-Extreme Lattices

Theorem 6. The following properties (i) and (ii) of δ(Bd, ·) and L are
equivalent:

(i) L is semi-stationary.

(ii) L is semi-eutactic.

Moreover,

(iii) there is no stationary lattice.

This result implies, in particular, that δ(Bd, ·), considered as a function
on the space of lattices in Ed, is ‘not differentiable’. More surprising is the
next result, the main result of this section. It shows that maximality and
ultra-maximality with respect to δ(Bd, ·) coincide.
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Theorem 7. The following properties of δ(Bd, ·) and L are equivalent:

(i) L is ultra-maximum.

(ii) L is maximum.

(iii) L is perfect and eutactic.

The equivalence of (ii) and (iii) is Voronŏı’s criterion.

Bravais Types of Lattices with Maximum Properties

The following result is a consequence of Theorems 4, 6 and 7:

Corollary 6. In E2 and E3 it is the following lattices of determinant 1
which are semi-stationary, resp. ultra-maximum with respect to δ(Bd, ·):

d = 2 : tp square d = 3 : cP cubic primitive
hp hexagonal cF cubic face centered

cI cubic body centered
hP special hexagonal primitive
tI special tetragonal body centered

d = 2 : hp hexagonal d = 3 : cF cubic face centered

For general d, there are, up to orthogonal transformations, only finitely
many lattices of determinant 1 which are semi-stationary, resp. ultra-
maximum.

Extremum and Voronŏı Type Properties

In the following, the results for balls will be extended to convex bodies. Let
C be an o-symmetric, smooth convex body. Replace E

1
2
d(d+1), T , Bd and

‖ · ‖ by Ed2 , S =
{
A ∈ Ed2 , trA = A · I = 0

}
, C and ‖ · ‖C . The density

δ(C,L) and the notions of semi-stationary, etc. lattice with respect to δ(C, ·)
are defined as earlier.

In order to specify the versions of eutaxy and perfection which are needed
to characterize the maximum properties of δ(C, ·), we proceed as follows:
For l ∈ Ed\{o} let u be the exterior unit normal vector of the smooth convex
body ‖l‖CC at its boundary point l, and put n = l/l ·u. Then the lattice L,
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or the set MLM of its minimum points with respect to C, is semi-eutactic,
eutactic, strongly eutactic, or perfect with respect to C, if

I =
∑
l∈MLM

λl u⊗ n with suitable λl

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
≥ 0

> 0

= const

⎫⎪⎫⎫⎬⎪⎪⎪⎬⎬⎭⎪⎪ , resp.

Ed2 = lin {u⊗ n : l ∈MLM }.

Characterization of Semi-Stationary and Ultra-Maximum Lat-
tices

Theorems 6 and 7 now assume the following form.

Theorem 8. The following properties (i) and (ii) of δ(C, ·) and L are
equivalent:

(i) L is semi-stationary.

(ii) L is semi-eutactic.

Moreover,

(iii) there is no stationary lattice.

Theorem 9. The following properties of δ(C, ·) and L are equivalent:

(i) L is ultra-maximum.

(ii) L is perfect and eutactic.

While there are many semi-stationary lattices for δ(C, ·), for example all
lattices which provide lattice packings of C of maximum density, this is not
clear for ultra-maximum lattices. See the later discussion.

The kissing number k(C,L) of the lattice L with respect to the convex
body C or the norm ‖ · ‖C is #MLM , the number of minimum points. Equiv-
alently, let λ = λ(C,L). Then k(C,L) is the number of bodies of the lattice
packing {λ

2C + l : l ∈ L}, which touch the body λ
2C. The next estimate is

an immediate consequence of Theorem 9.

Corollary 7. Let L be an ultra-maximum lattice for δ(C, ·). Then the
kissing number satisfies the inequality k(C,L) ≥ 2d2.
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Remark 2. If L is ultra-maximum then k(C,L) ≥ 2d2 by Corollary 7.
A theorem of Minkowski says, if C is strictly convex, then holds k(C,L) ≤
2d+1 − 2. Since 2d+1 − 2 < 2d2 for d = 2, 3, 4, a strictly convex smooth o-
symmetric body can have an ultra-maximum lattice only if d ≥ 5 – if at all.
This explains why it is difficult to specify examples.

The proofs of Theorems 8 and 9 are more complicated than those of
Theorems 6 and 7 yet, in essence, follow the same line.

Baire Categories

In the following Baire categories will be used several times. A topological
space is Baire if any of its meager subsets has dense complement, where a
set is meager or of first Baire category, if it is a countable union of nowhere
dense sets. A version of the Baire category theorem says that each locally
compact or metrically complete space is Baire. When speaking of most or
of typical elements of a Baire space, we mean all elements, with a meager
set of exceptions. The space of all o-symmetric convex bodies endowed with
its natural topology is locally compact according to a version of Blaschke’s
selection theorem and, thus, Baire. See the author [36, 37] for information
on Baire type results in convex geometry.

A result of Klee [50] and the author [32] says that most o-symmetric
convex bodies are smooth and strictly convex.

Open Problems

Problem 3. Is it true that in all sufficiently high dimensions, for most
o-symmetric convex bodies

(i) the maximum and the ultra-maximum lattices coincide,

(ii) the kissing number of each maximum or ultra-maximum lattice equals
2d2?

Problem 4. If there are convex bodies with maximum lattices which are
not ultra-maximum, characterize the maximum lattices.

What is the situation in the special case of lattices which provide lattice
packings of maximum density? A result of the author [33] says that for
most o-symmetric convex bodies the kissing number of any lattice packing
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of maximum density is at most 2d2. If, in addition, the lattice is ultra-
maximum, then, by Theorem 9, the kissing number is at least 2d2 and, thus,
equals 2d2. An estimate of Swinnerton-Dyer [78] implies that a lattice which
provides a packing of maximum density, has kissing number at least d(d+1).
For many years I thought that for most o-symmetric convex bodies the
kissing number of lattice packings of maximum density is d(d+1). Recently
I have changed the opinion:

Problem 5. Show that in all sufficiently high dimensions and for most o-
symmetric convex bodies C, the lattice which provides a lattice packing
of C of maximum density, has the following properties:

(i) L is unique up to dilatations.

(ii) L is eutactic and perfect and, thus, ultra-maximum.

(iii) L has kissing number 2d2.

(iv) the packing {λ
2C + l : l ∈ L}, λ = λ(C,L) is (perhaps?) connected.

Proof of Theorem 7

In order to show the reader the simple yet effective idea underlying the
proofs of Theorems 6–9, we present the proof of Theorem 7. We begin with
some remarks. Since δ(Bd, L) does not change if L is replaced by a multiple
of it, we may assume that λ(Bd, L) = 1 and thus, l = n = u, ‖l‖ = 1 for
l ∈MLM . Trivially,

λ(Bd, L) = min
{
‖l‖ : l ∈MLM

}
< min{‖l‖ : l ∈ L\

(
MLM ∪ {o}

)}.
Note that

‖l +Al‖2 = ‖l‖2
(
1 + 2A · n⊗ n+A2 · n⊗ n

)
= 1 + 2A · l ⊗ l +O

(
‖A‖2

)
as A→ O, A ∈ T , l ∈MLM ,

det (I +A) = 1− 1

2
‖A‖2 +O

(
‖A‖2

)
as A→ O, A ∈ T

and, since L is discrete,

λ
(
Bd, (I +A)l

)
= min

{
‖l +Al‖ : l ∈MLM

}
< min

{
‖l +Al‖ : l ∈ L\MLM ∪ {o}

}
if A ∈ T has sufficiently small norm.
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Thus we get,

δ
(
Bd, (I +A)L

)
=

λ
(
Bd, (I +A)L

)d
V (Bd)

2dd
(
(I +A)L

)
=

V (Bd)

2dd(L)

min
{
‖l +Al‖2 : l ∈MLM

} d
2

det (I +A)

=
V (Bd)

2dd(L)
min

{
1 + 2A · n⊗ n+A2 · n⊗ n : l ∈MLM

} d
2

×
(
1− 1

2
‖A‖2 +O

(
‖A‖3

))−1

=
λ(Bd, L)

d
V (Bd)

2dd(L)
(min{1 + dA · l ⊗ l : l ∈MLM }+O

(
‖A‖2

)
)

= δ(Bd, L)(1 + dmin{A · l ⊗ l : l ∈MLM }+O
(
‖A‖2

)
)

as A→ O, A ∈ T .

(i)⇔ (iii):

L is ultra-maximum

⇔ δ
(
Bd, (I +A)L

)
= δ(Bd, L)(1 + min {dA · l ⊗ l : l ∈MLM }+O

(
‖A‖2

)
)

≤ δ(Bd, L)
(
1− const‖A‖

)
as A→ O,A ∈ T

⇔ 1 + dmin {A · l ⊗ l} ≤ 1− const‖A‖ as A→ O, A ∈ T

⇔ min {A · l ⊗ l : l ∈MLM } ≤ −const‖A‖ for A ∈ T

⇔ min
{
A · (l ⊗ l)T : l ∈MLM

}
< 0 for all A ∈ T \{O}

⇔ O = IT ∈ relintT conv
{
(l ⊗ l)T : l ∈MLM

}
⇔ I ∈ pos {l ⊗ l : l ∈MLM } since I · l ⊗ l = l · l > 0,
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E
1
2
d(d+1) = lin {l ⊗ l : l ∈MLM }

⇔ L is eutactic and perfect.

(ii)⇔ (iii):

L is maximum

⇔ δ
(
Bd, (I +A)L

)
≤ δ(Bd, L) for A→ O, A ∈ T

⇔ min
{
1 + 2A · l ⊗ l +A2 · l ⊗ l : l ∈MLM

}
≤
(
1− 1

2
‖A‖2 +O

(
‖A‖3

)) 2
d

as A→ O, A ∈ T

⇔ min

{
A · l ⊗ l +

1

2
A2 · l ⊗ l : l ∈MLM

}
≤ 1− 1

d
‖A‖2 +O

(
‖A‖3

)
as A→ O, A ∈ T

⇒ min {A · l ⊗ l : l ∈MLM } ≤ −1

d
‖A‖2 as A→ O, A ∈ T

⇒ min {A · l ⊗ l : l ∈MLM } < 0 for A ∈ T \{O}

· · ·

⇒ L is eutactic and perfect

⇒ L is ultra-maximum.

5. Maximum Properties of the Product of the Lattice

Packing Density and Its Polar

This section deals with refined maximum properties of the expressions

δ(C, ·) δ(C∗, ·∗)

in a neighborhood of a lattice L, where ∗ indicates polarity. In particular, we
consider the case when C = Bd and thus C∗ = Bd, which has been studied
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before by Bergé and Martinet [12]. There are many results of a related type
in the geometry of numbers, see [46], Sect. 14, in convex geometry, see [37],
and in the asymptotic theory of normed spaces, see Gruber [38], and Sects. 8
and 9. Related results hold for

δ(C, ·)
δ(C,L)

+
δ(C∗, ·∗)
δ(C∗, L∗)

.

Since the results for the weighted sum are very similar to those for the
product of the densities, only results for the latter will be presented.

Let C be an o-symmetric, smooth and strictly convex body and L a
lattice in Ed. The polar body C∗ and the polar lattice L∗ are defined by

C∗ = {y ∈ Ed : x ·y ≤ 1 for x ∈ C}, L∗ = {m ∈ Ed : l ·m ∈ Z for l ∈ L}.

Then d(L) d(L∗) = 1 and (BL)∗ = B−TL∗ for non-singular B ∈ Ed2 .

Dual Maximum and Voronŏı Type Properties

The lattice L is dual semi-stationary, dual stationary, dual maximum, or
dual ultra-maximum with respect to the product δ(Bd, ·) δ(Bd, ·∗), if

δ
(
Bd, (I +A)L

)
δ(Bd,

(
(I +A)L

)∗)
δ(Bd, L) δ(Bd, L∗)

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
≤ 1 + o

(
‖A‖

)
= 1 + o

(
‖A‖

)
≤ 1

≤ 1− const‖A‖

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪
as A→ O, A ∈ S.

The lattice L or its first layer MLM is dual semi-eutactic, dual eutactic, dual
strongly eutactic or dual perfect with respect to Bd, if∑

l∈MLM

λl l ⊗ l =
∑

m∈MLM ∗

μmm⊗m �=�� O with suitable λl,

μm

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
≥ 0

> 0

= const

⎫⎪⎫⎫⎬⎪⎪⎪⎬⎬⎭⎪⎪ , resp.

Ed2 = lin
(
{l ⊗ l : l ∈MLM } ∪ {m⊗m : m ∈MLM ∗}

)
,

where const for λl may be different from const for μm.
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Characterization of Dual Semi-stationary and Dual Ultra-Extreme
Lattices

In analogy to Theorems 6 and 7, we have the following results:

Theorem 10. The following properties (i) and (ii) of δ(Bd, ·) δ(Bd, ·∗) and
L are equivalent:

(i) L is dual semi-stationary.

(ii) L is dual semi-eutactic.

Theorem 11. The following properties of δ(Bd, ·) δ(Bd, ·∗) and L are equiv-
alent:

(i) L is dual ultra-maximum.

(ii) L is dual maximum.

(iii) L is dual perfect and dual eutactic.

The equivalence of (ii) and (ii i) is due to Bergé and Martinet [12].´

Extension to Smooth Convex Bodies

Theorems 10 and 11 continue to hold with C instead of Bd, omitting
statement (ii) in Theorem 11.

Proof of Theorem 11

To show the additional arguments needed for the proofs of these results, we
present the proof of Theorem 11.

First, some tools are put together. Since A = AT for A ∈ T , we have(
(I+A)L

)∗
= (I +A)−TL∗ =

(
I−A+A2−+ · · ·

)
L∗ for A ∈ T , ‖A‖ < 1.

Thus,

(l +Al)2 = ‖l‖2
(
1 + 2A · n⊗ n+ (An)2

)
,(

m−Am+A2m−+ · · ·
)2

= ‖m‖2(1− 2A · p⊗ p+ 3A2 · p⊗ p+O
(
‖A3‖

)
),
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where n = l/‖l‖, p = m/‖m‖. This, together with the definitions of λ and δ,
yields the following equalities,

δ
(
Bd, (I +A)L

)
= δ(Bd, L)min

{
(l +Al)2 : l ∈MLM

} d
2 det (I +A)−1

= δ(Bd, L)min{1 + 2dA · n⊗ n+O
(
‖A‖2

)
: l ∈MLM }(

1− 1

2
‖A‖2 +O

(
‖A‖3

))−1

= δ(Bd, L)(1 + dmin {A · n⊗ n : l ∈MLM }+O
(
‖A‖2

)
)

as A→ O, A ∈ T , where O
(
‖A‖2

)
≥ 0,

δ(Bd,
(
(I +A)L

)∗)
= δ(Bd, L∗)min{1− dA · p⊗ p+O

(
‖A‖2

)
: m ∈MLM ∗}(

det (I +A)−T )−1

= δ(Bd, L∗)(1 + dmin {−A · p⊗ p : m ∈MLM ∗}+O
(
‖A‖2

)
)

as A→ O, A ∈ T , where O
(
‖A‖2

)
≥ 0.

(i)⇔ (iii):

L is dual ultra-maximum

⇔ δ
(
Bd, (I +A)L

)
δ(Bd

(
(I +A)L

)∗)
≤ δ(Bd, L) δ(Bd, L∗)

(
1− const‖A‖

)
as A→ O, A ∈ T

⇔ (1 + dmin { }+O
(
‖A‖2

)
)(1− dmax { }+O

(
‖A‖2

)
)

≤ 1− const‖A‖

as A→ O, A ∈ T

⇔ min {A · n⊗ n : l ∈MLM } −max {A · p⊗ p : m ∈MLM ∗}

≤ −const‖A‖
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as A→ O, A ∈ T

⇔ min
{
A · (n⊗ n)T : l ∈MLM

}
< max

{
A · (p⊗ p)T : m ∈MLM ∗

}
for A ∈ T \{O}

⇔ relint conv
{
(n⊗ n)T , l ∈MLM

}
∩ relint conv

{
(p⊗ p)T : m ∈MLM ∗

}
�=�� ∅

⇔
∑
l∈MLM

λl n⊗ n =
∑

m∈MLM ∗

μm p⊗ p �=�� O with suitable λl, μm > O,

E
1
2
d(d+1) = lin

(
{n⊗ n : l ∈MLM } ∪ {p⊗ p : m ∈MLM ∗}

)
⇔ L is dual eutactic and dual perfect.

(ii)⇔ (iii): See [12].

6. Minimum Properties of Zeta Functions

Let L be a lattice in Ed with d(L) = 1. The Epstein zeta function of L then
is defined by

ζ(L, s) =
∑

l∈L\{o}

1

‖l‖s for s > d.

It plays an important role in crystal physics, hydrodynamics, numerical in-
tegration and other areas. It has been investigated ever since its discovery
by Epstein and its re-discovery by Sobolev in his work on numerical integra-
tion. For several applications and in the context of the geometry of numbers
a major problem on the zeta function is to study for a fixed s > d, for all
sufficiently large s, or for all s > d the lattices L with d(L) = 1 for which
ζ(·, s) is (locally) minimum.

A layer of L consists of all vectors of L\{o} with the same norm. Order
the layers by the norm of their vectors. The first layer then coincides with
the set of minimum points of L with respect to Bd. Delone and Ryshkov [21]
showed that a lattice L is minimum with respect to ζ(·, s) for all sufficiently
large s if and only if L is perfect and each layer is strongly eutactic or, in a
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different terminology, a spherical 2-design. If each layer of L is a spherical 4-
design, then Lminimizes ζ(·, s) for each s > d, as shown by Coulangeon [19].
A different sufficient condition is due to Sarnak and Strombergsson [68].¨
These authors show that many important lattices are minimum for each
s > d, one example is the Leech lattice.

We characterize the lattices which, for given s > d are stationary and
quadratic minimum with respect to ζ(·, s). This yields characterizations in
other cases. Perhaps more important for applications are simple sufficient
conditions. We state several such conditions, including one using automor-
phism groups. Finally, a relation to lattice packing of balls is mentioned.
Most of these results can be extended to general zeta functions ζC(·, s).

Minimum and Voronŏı Type Properties, Spherical Designs and˘
Automorphism Groups

Remark 3. Since ζ(·, s) and ζC(·, s) have the additional parameter s, it
is not surprising that there are more properties needed than mere eutaxy,
strong eutaxy, or perfection, to characterize the lattices L which are sta-
tionary, minimum, or quadratic minimum with respect to ζ(·, s) or ζC(·, s).
The following stronger forms of eutaxy and perfection, together with auto-
morphism groups, seem to be appropriate tools for such characterizations.

Let s > d. Then L is said to be stationary, minimum, or quadratic
minimum with respect to ζ(·, s), if

ζ

(
I +A

det (I +A)
1
d

L, s

)
ζ(L, s)

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
= 1 + o

(
‖A‖

)
≥ 1

≥ 1 + const‖A‖2

⎫⎪⎫⎫⎬⎪⎪⎪⎬⎬⎭⎪⎪ as A→ O, A ∈ T .

Let M be a finite, o-symmetric subset of Sd−1 and put ζ = ζ(L, s).
The set M is a spherical n-design if the following identity holds for any
polynomial p : Ed → R of degree at most n:∫

S

∫∫
d−1

p(u) dσ(u) =
1

#M

∑
l∈M

p(l).
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Here σ is the usual rotation invariant area measure on Sd−1, normalized so
that σ

(
Sd−1

)
= 1 and # stands for cardinal number. Venkov [79] showed

that

the set M is a spherical n-design if and only if∑
l∈M

(l · x)n = const‖x‖n for x ∈ Ed.

Let M be a layer of L. Then M is strongly eutactic or, after a suitable nor-
malization, a spherical 2-design, if it satisfies one of the following equivalent
conditions:∑

l∈M

l ⊗ l

‖l‖2
= λ I, or

∑
l∈M

(l · x)2

‖l‖2
= λ ‖x‖2 for x ∈ Ed, where λ =

#M

d
, or

∑
l∈M

A · l ⊗ l = 0 for A ∈ T .

The lattice L is strongly eutactic, if its first layer is. It is fully eutactic with
respect to ζ(·, s), if one of the following equivalent conditions holds:

∑
l∈L\{o}

l ⊗ l

‖l‖s+2 =
ζ

d
I, or

∑
l∈L\{o}

(l · x)2

‖l‖s+2 =
ζ

d
‖x‖2 for x ∈ Ed, or

∑
l∈L\{o}

A · l ⊗ l

‖l‖s+2 = 0 for A ∈ T .

Refined versions of these notions are the following: a layer M is ultra-
eutactic or a spherical 4-design, if one of the following conditions holds:∑

l∈M

(l · x)4

‖l‖4
= μ ‖x‖4 for x ∈ Ed, or, equivalently,

∑
l∈M

(A · l ⊗ l)2

‖l‖4
=

2μ

3
‖A‖2 + μ

3
(trA)2 for A ∈ E

1
2
d(d+1),

where μ =
3#M

d(d+ 2)
.
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The lattice L is completely eutactic with respect to ζ(·, s), if the one of the
following properties holds:∑

l∈L\{o}

(l · x)4

‖l‖s+4 = ν ‖x‖4 for x ∈ Ed, or, equivalently,

∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 =
2ν

3
‖A‖2 + ν

3
(trA)2 for A ∈ E

1
2
d(d+1),

where ν =
3ζ

d(d+ 2)
.

Finally, the layer M is perfect, if

E
1
2
d(d+1) = lin {l ⊗ l : l ∈M}.

If the first layer of L is perfect, then L is perfect. The automorphism or sym-
metry group A = A(L) of L is the group of all orthogonal transformations
of Ed which map L onto itself.

Characterization of Stationary and Quadratic Minimum Lattices

Note that in contrast to the situation for densities, for zeta functions a
semi-stationary lattice is already stationary.

Theorem 12. Let s > d. Then the following properties of ζ(·, s) and L are
equivalent:

(i) L is stationary for s.

(ii) L is fully eutactic for s.

Corollary 8. The following properties of ζ(·, ·) and L are equivalent:

(i) L is stationary for each s > d.

(ii) Each layer of L is strongly eutactic.

Theorem 13. Let s > d. Then the following properties of ζ(·, s) and L are
equivalent:

(i) L is quadratic minimum for s.

(ii) L is fully eutactic for s and satisfies the inequality∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 >
2ζ(L, s)

d(s+ 2)
‖A‖2 for A ∈ T \{O}.
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Corollary 9. The following properties of ζ(·, ·) and L are equivalent:

(i) L is quadratic minimum for each s > d.

(ii) Each layer of L is strongly eutactic and∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 >
2ζ(L, s)

d(s+ 2)
‖A‖2 for each s > d and A ∈ T \{O}.

This yields, in particular, Coulangeon’s criterion.

While Theorem 13 yields a characterization of the lattices, which are
quadratic minimum for arbitrarily large s, in several cases the following
sufficient conditions are more convenient to apply.

Corollary 10. Each of the following two conditions is sufficient for L to be
quadratic minimum with respect to ζ(·, s) for all sufficiently large s:

(i) L is perfect and the automorphism group A(L) is transitive on the
first layer of L.

(ii) L is perfect and each layer is strongly eutactic.

Similarly, each of the following two conditions is sufficient for L to be
quadratic minimum for each s > d:

(iii) Each layer of L is ultra-eutactic.

(iv) L is completely eutactic for each s > d.

Bravais Types of Lattices with Minimum Properties

The next result is a consequence of Theorem 4 and Corollaries 8 and 10:

Corollary 11. In E2 and E3, it is precisely the following lattices of deter-
minant 1 which are stationary, resp. quadratic minimum with respect to
ζ(·, s) for all s > d.

d = 2 : tp square d = 3 : cP cubic primitive
hp hexagonal cF cubic face centered

cI cubic body centered,
resp.
d = 2 : hp hexagonal d = 3 : cF cubic face centered.

For general d, there are, up to orthogonal transformations, only finitely
many lattices of determinant 1 which are stationary, resp. quadratic mini-
mum with respect to ζ(·, s) for all s > d.
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Zeta Functions and Ball Packing

A lattice which is quadratic minimum with respect to ζ(·, s) for all suffi-
ciently large s is perfect and each layer is strongly eutactic as can be shown
by means of Theorem 13. Hence, by Theorem 7, the following remark holds:

Corollary 12. Each lattice which is quadratic minimum with respect to
ζ(·, s) for all sufficiently large s, is ultra-maximum with respect to δ(Bd, ·).

General Lattice Zeta Functions

Our next aim is to extend the above results to a more general type of
zeta functions on lattices. Let C be a smooth, o-symmetric convex body,
‖ · ‖C the corresponding norm on Ed and L a lattice with d(L) = 1. The
function ζC , defined by

ζC(L, s) =
∑

l∈L\{o}

1

‖l‖sC
for s > d,

is called a lattice zeta function on Ed.

Minimum and Voronŏı Type Properties˘

Let s > d. The concepts of stationary, minimum or quadratic minimum
lattice with respect to ζC(·, s) are defined as earlier for Bd with T replaced
by the subspace

S =
{
A ∈ Ed2 : trA = A · I = 0

}
.

Similarly, the notions of layer and eutactic, strongly eutactic, fully eutactic
and perfect lattice with respect to C or ζC(·, s) are defined as before, but
with C, ‖ · ‖C , MLM , u⊗ n, ζC , S, Ed2 instead of Bd, ‖ · ‖, MLM , n⊗ n, ζ, T
and E

1
2
d(d+1), respectively.
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Characterization of Stationary and Quadratic Minimum Lattices

The extension of Theorem 12 is as follows:

Theorem 14. Let s > d. Then the following properties of ζC(·, s) and L
are equivalent:

(i) L is stationary for s,

(ii) L is fully eutactic for s.

Also Theorem 13 can be extended, but the corresponding necessary and
sufficient condition for L to be quadratic minimum with respect to ζC(·, s)
for given s > d is difficult to check. Thus we prefer to state the following
result.

Theorem 15. Let C be of class C2. Then the following properties of ζC(·, ·)
and L are equivalent:

(i) L is quadratic minimum for all sufficiently large s.

(ii) L is perfect and each layer is strongly eutactic.

Corollary 10, with suitable modifications, holds also for C instead of Bd.

Open Problems

The earlier characterizations and sufficient conditions guarantee in a series
of cases that L is stationary, minimum, or quadratic minimum with respect
to ζ(·, s), or ζC(·, s) for a given s > d, for all sufficiently large s, or for all
s > d. The problem arises, to make this family of results complete. We
state one particular problem.

Problem 6. If there are lattices, which are minimum (but not quadratic
minimum) with respect to ζ(·, s) or ζCζζ (·, s) for a given s > d, for all suffi-
ciently large s, and for all s > d, characterize the minimum lattices.

The next problem is related to Problem 5.

Problem 7. Show that in all sufficiently high dimensions, for most o-
symmetric convex bodies C there are lattices which are quadratic mini-
mum with respect to ζ(·, s) and ζC(·, s) respectively, for a given s, for all
sufficiently large s, or for all s > d.
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A positive answer to this problem would settle also the question of the ex-
istence of convex bodies with eutactic and perfect lattices, see Theorem 15.

Problem 8. Is it true, that in all sufficiently high dimensions and for most
o-symmetric convex bodies C, the lattice L with d(L) = 1, for which ζC(·, s)
attains its absolute minimum for a given s, for all sufficiently large s, or for
all s > d, has the following properties:

(i) L is unique,

(ii) L is quadratic minimum?

Proof of Theorem 13

To show the idea of the proofs, we present the following proof of Theorem 13.
The equality

‖l +Al‖2 = ‖l‖2(1 + 2A · n⊗ n+A2 · n⊗ n)

for A ∈ E
1
2
d(d+1), l ∈ Ed\{o}, n =

l

‖l‖

implies the formula

1

‖l +Al‖s =
1

‖l‖s
(
1 + 2A · n⊗ n+A2 · n⊗ n

)− s
2

=
1

‖l‖s
(
1− sA · n⊗ n− s

2
A2 · n⊗ n

+
s(s+ 2)

2
(A · n⊗ n)2 +O

(
‖A‖3

))
as A→ O, A ∈ T ,

which, in turn, yields the following identity, where the summation is over
l ∈ L\{o} and ζ stands for ζ(L, s):

ζ
(
(I +A)L, s

)
= ζ − sA ·

∑ l ⊗ l

‖l‖s+2 −
s

2
A2 ·

∑ l ⊗ l

‖l‖s+2 +
s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4

+O
(
‖A‖3

)
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= ζ − sA · ζ
d
I − s

2
A2 · ζ

d
I +

s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4 +O
(
‖A‖3

)
= ζ − sζ

2d
‖A‖2 + s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4 +O
(
‖A‖3

)
as A→ O, A ∈ T , if L is fully eutactic for s.

Note that

ζ

(
I +A

det (I +A)
1
d

L, s

)
= ζ
(
(I +A)L, s

)
det (I +A)

s
d .

(i)⇔ (ii): Since s is fixed, it is incorporated into const.

L is quadratic minimum for s

⇔ L is stationary for s and

ζ

(
I +A

det (I +A)
1
d

L, s

)
= ζ
(
(I +A)L, s

)
det (I +A)

s
d

≥ ζ
(
1 + const‖A‖2

)
⇔ L is fully eutactic with respect to ζ(·, s) (by Theorem 12) and

ζ − sζ

2d
‖A‖2 + s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4

≥ ζ(1 + const‖A‖2)
(
1− 1

2
‖A‖2 +O

(
‖A‖3

))− s
d

+O
(
‖A‖3

)
⇔ L is fully eutactic for s and

ζ − sζ

2d
‖A‖2 + s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4

≥ ζ +
sζ

2d
‖A‖2 + ζconst‖A‖2 + ζO

(
‖A‖3

)
⇔ L is fully eutactic for s and∑ (A · l ⊗ l)2

‖l‖s+4 >
2ζ

d(s+ 2)
‖A‖2 as A→ O, A ∈ T \{O}.



142 P. M. Gruber

In the last equivalence the implication ⇒ is clear. To see the reverse
implication ⇐, note that the expression

∑ (A · l ⊗ l)2

‖l‖s+4 − 2ζ

d(s+ 2)
‖A‖2

may be considered to be a quadratic form in the variable A ∈ T . It is,
obviously, positive definite and thus bounded below by const‖A‖2 for a
suitable constant.

7. Minimum Properties of the Product of Zeta Functions

and Their Polars

Let L be a lattice with d(L) = 1. This section deals with minimum
properties of the quantity

ζ(·, s) ζ(·∗, s)

on the space of lattices of determinant 1. We characterize dual stationary
and dual quadratic minimum lattices, both, for Bd and C. Similar results
hold for

ζC(·, s) + ζC∗(·∗, s).

Minimum and Voronŏı Type Properties˘

Let s > d. The lattice L is dual stationary, dual minimum, or dual quadratic
minimum with respect to ζ(·, s) ζ(·∗, s), if

ζ

(
I +A

det (I +A)
1
d

L, s

)
ζ

((
I +A

det (I +A)
1
d

L

)∗

, s

)
ζ(L, s) ζ(L∗, s)

⎧⎨⎧⎧⎩⎨⎨
= 1 + o

(
‖A‖

)
≥ 1

≥ 1 + const s2‖A‖2

⎫⎬⎫⎫⎭⎬⎬

as A→ O, A ∈ T .
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Let Li, L∗
i be the layers of L, resp. L∗, i = 1, 2, . . . . We use the

abbreviations ζ = ζ(L, s) and ζ∗ = ζ(L∗, s). Call Li dual strongly eutactic
with respect to C, C∗, if

1

#Li

∑
l∈Li

l ⊗ l

‖l‖2
=

1

#L∗
i

∑
m∈L∗

i

m⊗m

‖m‖2
.

The lattice L is dual fully eutactic with respect to ζζ∗ for s, if

1

ζ

∑
l∈L\{o}

l ⊗ l

‖l‖s+2 =
1

ζ∗
∑

m∈L∗\{o}

m⊗m

‖m‖s+2 , or, equivalently,

1

ζ

∑
l∈L\{o}

A · l ⊗ l

‖l‖s+2 =
1

ζ∗
∑

m∈L∗\{o}

A ·m⊗m

‖m‖s+2 for A ∈ T .

The layer Li, is dual ultra-eutactic with respect to C, C∗, if

1

#Li

∑
l∈Li

(A · l ⊗ l)2

‖l‖4
=

1

#L∗
i

∑
m∈L∗

i

(A ·m⊗m)2

‖m‖4
for A ∈ T .

Characterization of Dual Stationary and Dual Quadratic Mini-
mum Lattices

From a series of results we select from each of our two extremality types a
characterization result and a sufficient condition.

Theorem 16. Let s > d. Then the following properties of ζ(·, s) ζ(·∗, s)
and L are equivalent:

(i) L is dual stationary.

(ii) L is dual fully eutactic.

Corollary 13. Each of the following conditions is sufficient for L to be dual
stationary with respect to ζ(·, s) ζ(·∗, s) for each s > d.

(i) The first layer of L is perfect and A operates transitively on it.

(ii) L is dual fully eutactic for any s > d.

For quadratic minimality the result is rather lengthy.
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Theorem 17. Let s > d. Then the following properties of ζ(·, s) ζ(·∗, s)
and L are equivalent:

(i) L is dual quadratic minimum for s.

(ii) L is dual fully eutactic for s and satisfies the inequality,

(s+ 2)

(
1

ζ

∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 +
1

ζ∗
∑

m∈L∗\{o}

(A ·m⊗ n)2

‖m‖s+4

)

>
4

ζ
A2

∑
l∈L\{o}

l ⊗ l

‖l‖s+2 +
2s

ζ

(
A ·

∑
l∈L\{o}

l ⊗ l

‖l‖s+2

)2

as A→ O, A ∈ T \{O}.

Corollary 14. The following condition is sufficient that L be dual quadratic
minimum with respect to ζ(·, s) ζ(·∗, s) for each s > d: Each layer of L is
ultra-eutactic and dual ultra-eutactic.

Zeta Functions and Ball Packing

Also in the duality case, there is a relation between products of zeta func-
tions and densities of ball packings, see [45].

Extension to General Zeta Functions

Finally, we mention that a good many of the duality results for the Epstein
zeta function can be extended to the more general lattice zeta functions
ζC defined by means of a smooth and strictly convex o-symmetric convex
body C.

8. John Type Results and Minimum Ellipsoidal Shells

This and the next section contain results of John type and minimum position
results from the asymptotic theory of normed spaces. If not stated other-
wise, the results are from the article [45] of the author. Let C be a convex
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body. Then there is an inscribed ellipsoid of maximum volume and a cir-
cumscribed ellipsoid of minimum volume. The uniqueness of both ellipsoids
was proved by Danzer, Laugwitz and Lenz [20]. John [49] specified condi-
tions which an inscribed ellipsoid of maximum volume must satisfy. That
these conditions are sufficient was shown by Pe�lczynski [58] and Ball [5].´

We state and prove a precise version of John’s theorem, specify for typi-
cal convex bodies the number of contact points between (the boundaries of)
the body and the unique inscribed ellipsoid of maximum volume. Analo-
gous results are considered for minimal ellipsoidal shells. Minimal ellipsoidal
shells are unique for typical, but not for all convex bodies.

John’s Ellipsoid Theorem

In the case when C is o-symmetric, the result is as follows:

Theorem 18. Let Bd ⊆ C. Then the following properties are equivalent:

(i) Bd is the unique ellipsoid of maximum volume contained in C.

(ii) There is a finite set M = {±u1, . . . ,±uk} of common boundary points
of Bd and C – such points are called contact points of Bd, C – such
that

I =
∑
u∈M

λu u⊗ u with suitable λu > 0 and k ≤ d(d+ 1)

2
.

This result, or versions of it, was proved and refined many times. We
mention Bastero and Romance [9], Giannopoulos, Peressinaki and Tsolomi-
tis [29], Gordon, Litvak, Meyer and Pajor [31] and the author and Schus-
ter [47]. The later proof is taken from [47] and fits into the present context.

John’s theorem and its dual counterpart, the characterization of the
unique circumscribed ellipsoid of minimum volume, has generated a volu-
minous literature both in convex geometry and the asymptotic theory of
normed spaces. It includes various versions, extensions and new proofs of
these characterizations, and applications to normed spaces, in particular,
the following one, where the Banach-Mazur distance between two norms
‖ · ‖C , ‖ · ‖D on Ed with unit balls C, D, is defined by

δBM
(
‖ · ‖C , ‖ · ‖D

)
= δBM (C,D)

= inf
{
λ ≥ 1 : C ⊆ AD ⊆ λC, A ∈ Ed2

}
.
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Corollary 15. Let ‖ · ‖C be an arbitrary norm and ‖ · ‖ the usual Euclidean
norm on Ed. Then

δBM
(
‖ · ‖, ‖ · ‖C

)
≤
√
d.

This result and its proof based on John’s theorem are well known. For
a reason which will be explained later, it is a bit surprising that John’s
theorem yields this estimate, see Corollary 16.

The Contact Number of Typical Convex Bodies

Given a convex body, the question arises, how many contact points are
there between the convex body and its volume maximizing inscribed, resp.
its volume minimizing circumscribed ellipsoid. A result of the author [34]
gives the following answer:

Theorem 19. For most o-symmetric convex bodies C the unique o-sym-
metric inscribed ellipsoid of maximum volume and the unique o-symmetric
circumscribed ellipsoid of minimum volume, both have precisely 1

2d(d + 1)
pairs ±u of contact points with C.

For an alternative proof of this result see Rudelson [63].

Minimum Ellipsoidal Shells

A pair of solid o-symmetric ellipsoids 〈E, �E〉 is called a minimal ellipsoidal
shell of C, if E ⊆ C ⊆ �E, where � ≥ 1 is minimal. It is easy to see that
� = δBM

(
‖ · ‖, ‖ · ‖C

)
. Maurey [55] (unpublished) showed that a minimal

ellipsoidal shell need not be unique, see Lindenstrauss and Milman [53] and
Praetorius [60].

In analogy to John’s theorem and its dual, we have the following results
due to Gruber [38]:

Theorem 20. Let Bd ⊆ C ⊆ �Bd. Then the following properties are
equivalent:

(i)
〈
Bd, �Bd

〉
is a (not necessarily unique) minimal ellipsoidal shell of C.

(ii) There are contact points ±u1, . . . ,±uk ∈ bdBd ∩ bdC and ±v1, . . . ,
±vl ∈ bdC ∩ bd �Bd and reals λ1, . . . , λk, μ1, . . . , μl > 0, such that

(a) 2 ≤ k, l and k + l ≤ 1
2d(d+ 1) + 1,



Applications of an Idea of Voronŏ 147

(b)

k∑
i=1

λi ui ⊗ ui =

l∑
j=1

μj vj ⊗ vj �=�� O,

(c) lin {u1, . . . , uk} = lin {v1, . . . , vl}.

While there are examples of convex bodies with more than one minimal
ellipsoidal shell, this is a rare event, as the next result shows.

Theorem 21. Most o-symmetric convex bodies C have a unique minimal
ellipsoidal shell 〈E, �E〉. The contact sets bdE ∩ bdC and bdC ∩ bd �E,
each consist of at least 2 and at most 1

2d(d+1)−1, together of 1
2d(d+1)+1

pairs of points ±u.

Theorems 19 and 21 yield the following proposition:

Corollary 16. For most o-symmetric convex bodies C neither the inscribed
ellipsoid of maximum, nor the circumscribed ellipsoid of minimum volume,
give rise to a minimum ellipsoidal shell.

Remark 4. By Corollary 16, it is a happy, rather unexpected event, that
John’s theorem leads to a proof of Corollary 15. Being a characterization
of minimal ellipsoidal shells, Theorem 20 should readily imply Corollary 15.
This is, in fact, the case as the later proof of Corollary 15 shows.

Proofs of Theorem 18 and Corollary 15

Theorem 18: Let hC(v) = max {v · x : x ∈ C}, v ∈ Ed, be the support
function of C. Then

C =
{
x ∈ Ed : v · x ≤ hC(v) for v ∈ Sd−1

}
.

The set

E = {A ∈ E
1
2
d(d+1) : ABd ⊆ C} ∩ Pd

=
⋂

u∈bdBd

v∈Sd−1

{A ∈ E
1
2
d(d+1) : Au · v = A · v ⊗ u ≤ hC(v)} ∩ Pd

represents the set all o-symmetric ellipsoids contained in C. Since E is the
intersection of a family of closed halfspaces and the open convex cone Pd,
the set E is a convex subset of Pd, which is closed in Pd. To the ellipsoid Bd

corresponds the matrix I ∈ E . Let Dd = Dd(1) = {A ∈ Pd : detA ≥ 1}.
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(i)⇔ (ii):

Bd is the unique o-symmetric ellipsoid of maximum volume in C

⇔ E ∩Dd = {I}, i.e. the convex body E touches the smooth and strictly
convex body Dd only at I

⇔ the interior normal vector I of Dd at I is contained in the (exterior)
normal cone N of E at I. Note that N is generated by the exterior
normal vectors of those of the defining halfspaces

{
A : Au · v =

A · v ⊗ u ≤ hC(v)
}

of E which contain I as a boundary point. Thus
1 ≥ u · v = I · v ⊗ u = hC(v) ≥ 1, and therefore u · v = hC(v) = 1, or
u = v, hC(u) = 1, or u ⊗ u = v ⊗ u, u ∈ bdBd ∩ bdC = Bd ∩ bdC.
Thus N = pos {u⊗ u : u ∈ Bd ∩ bdC}

⇔ by Carathéodory’s theorem for cones, we may choose a set of contact´
points M = {±u1, . . . ,±uk} ⊆ Bd ∩ bdC such that

I =
∑
u∈M

λu u⊗ u with suitable λu > 0 and k ≤ 1

2
d(d+ 1).

Corollary 15: We may assume that Bd ⊆ C ⊆ �Bd, where

� = δBM
(
‖ · ‖, ‖ · ‖C

)
.

It is sufficient to show that � ≤
√
d. Equating the traces of the two sides of

the equality in Theorem 20(iib) implies that∑
i

λi =
∑
i

λi ui · ui =
∑
j

μj vj · vj = �2
∑
j

μj .

Noting that 1√
d
I has norm 1 and that (ui · vj)2 ≤ 1, this yields that∥∥∥∥∥∥∥∥∥∥∑

i

λi ui ⊗ ui

∥∥∥∥∥∥∥∥∥∥ ≥∑
i

λi ui ⊗ ui ·
1√
d
I =

1√
d

∑
λi ui · ui =

1√
d

∑
λi,

(∑
i

λi ui ⊗ ui

)2

=
∑
i

λi ui ⊗ ui ·
∑
j

μj vj ⊗ vj =
∑
i,j

λiμj (ui · vj)2

≤
∑
i

λi

∑
j

μj =
1

�2

(∑
i

λi

)2

,

or
1

�2
≥ 1

d
, or � ≤

√
d.
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9. Minimum Position Problems

Related to John’s theorem is the following question: Consider a real func-
tion F on the space of all convex bodies or on a suitable subspace of it,
for example on the space of all o-symmetric convex bodies, and a group G
of affinities. Assume that this subspace is invariant under the affinities
of G. Characterize for a given convex body C in this subspace those among
its images under affinities from G, for which F is minimum, the minimum
F -positions of C with respect to the group G. For numerous pertinent
results and applications see Milman and Pajor [56], Giannopoulos and Mil-
man [26, 27], Gordon, Litvak, Meyer and Pajor [31] and the author [38] and
the references there.

In the following we state minimum position results of the author [38]
which were proved using ideas in the sense of Voronŏ , while the classical˘
proofs rely on a variational argument, see Giannopoulos and Milman [26].
We characterize circumscribed ellipsoids of minimum surface area and min-
imum positions for polar moments, mean width and surface area. Let C be
an o-symmetric convex body.

Circumscribed Ellipsoids of Minimum Surface Area

In the light of John’s theorem and its dual, the following question arises nat-
urally: Given a convex body C, characterize the inscribed and circumscribed
ellipsoids of maximum, resp. minimum surface area. Are these unique?
Moreover, what are the corresponding minimum positions with respect to
the group of volume preserving linear transformations? Can the surface
area be replaced by general quermassintegrals?

Theorem 22. There is a unique ellipsoid of minimum surface area contain-
ing C.

The original proof of the author [38] was rather complicated and made
use of projection bodies and Alexandrov’s projection theorem. Much easier
is the recent proof by Schrocker [76].¨

Assign to a convex body C the minimum surface area SmSS (C) of a
circumscribed ellipsoid.
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Theorem 23. Up to rotations, C has a unique minimum SmSS -position with
respect to the group of volume-preserving linear transformations and the
following properties are equivalent:

(i) C is in minimum SmSS -position and Bd is the circumscribed ellipsoid of
minimum surface area.

(ii) There are contact points ±u1, . . . ,±uk ∈ bdBd ∩ bdC and λ1, . . . ,
λk > 0 such that

(a) d ≤ k ≤ 1
2d(d+ 1),

(b) I =
∑

λi ui ⊗ ui,
(c) Ed = lin {u1, . . . , uk}.

Comparing the dual counterpart of Theorem 18 together with some
addenda (see the author and Schuster [47]) and Theorem 23 yields the next
result.

Corollary 17. Let C ⊆ Bd. Then the following properties are equivalent:

(i) Bd is the unique circumscribed ellipsoid of C of minimum volume.

(ii) C is in minimum SmSS -position with respect to volume-preserving linear
transformations and Bd is the unique circumscribed ellipsoid of C
with minimum surface area.

These results can be extended to general quermassintegrals. Then we
see that the minimum positions for all quermassintegrals – except for the
volume – coincide.

Polar f-Moments

Let f : [0,+∞)→ [0,∞) be a non-decreasing function. Then

M(C, f) =

∫
C

∫∫
f
(
‖x‖
)
dx

is the polar f -moment of C. If f(t) = t2, then M(C, t2) is the polar moment
of inertia.

Theorem 24. Let f be convex and assume that f(t) = 0 only for t = 0.
Then C has, up to rotations, a unique minimum polar f -moment position
with respect to volume-preserving linear transformations and the following
properties are equivalent:
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(i) C is in minimum polar f -moment position.

(ii) I = λ

∫
C

∫∫
f ′(‖x‖)
‖x‖ x⊗ x dx for suitable λ > 0.

The integral here is to be understood entry-wise. We now minimize
the product M(AC, t2)M

(
(AC)∗, t2

)
, where A ranges over all non-singular

linear transformations.

Theorem 25. Up to similarities which keep o fixed, C has a unique mini-
mum M

(
· C, t2

)
M
(
(·C)∗, t2

)
-position with respect to non-singular linear

transformations and the following properties are equivalent:

(i) C is in minimum M(·C, t2)M
(
(·C)∗, t2

)
-position.

(ii)

∫
C

∫∫
x⊗ x dx = λ

∫
C

∫∫
∗
x⊗ x dx ∈ Pd for a suitable λ > 0.

Mean Width and Surface Area

The mean width of a convex body C is defined by

W (C) =
2

S(Bd−1)

∫
S

∫∫
d−1

hC(u) dσ(u),

where S(·) and σ(u) denote the usual surface area measure on Sd−1.

Theorem 26. Up to rigid motions, C has a unique minimum mean width
position with respect to volume preserving affinities and the following prop-
erties are equivalent:

(i) C is in minimum mean width position.

(ii) I = λ

∫
S

∫∫
d−1

{
gradhC(u) ⊗ u + u ⊗ gradhC(u)

}
dσ(u) for a suitable

λ > 0.

A first characterization of the minimum surface area position of C with
respect to volume-preserving affinities is due to Giannopoulos and Papadim-
itrakis [28]. A different result can be described as follows: The projection
body ΠC of C is the o-symmetric convex body with support function

hΠC(u) = v(C | u⊥),
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where C | u⊥ is the orthogonal projection of C onto the subspace u⊥

orthogonal to u of codimension 1 and v(·) the volume in d− 1 dimensions.
Since by Cauchy’s surface area formula the mean width of the projection
body is, up to a multiplicative constant, the surface area of the original
body, Theorem 26 implies the following result:

Corollary 18. Up to rigid motions, C has a unique minimum surface
area position with respect to volume-preserving affinities and the following
properties are equivalent:

(i) C is in minimum surface area position.

(ii) I = λ

∫
S

∫∫
d−1

{
gradhΠC(u)⊗ u+ u⊗ gradhΠC(u)

}
dσ(u) for a suitable

λ > 0.

There are similar results for W (C)W (C∗) and S(C)S(C∗).

Remark 5. The above characterizations of convex bodies in minimum
position and similar results in the literature should permit one to prove
all possible properties of the minimizing bodies. This seems to have been
one of the objectives at the beginning of the development. So far, these
expectations have not materialized, a minor exception being the proof of
Corollary 15.
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