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One of the basic problems in discrete geometry is to determine the most efficient
packing of congruent replicas of a given convex set K in the plane or in space.
The most commonly used measure of efficiency is density. Several types of
the problem arise depending on the type of isometries allowed for the packing:
packing by translates, lattice packing, translates and point reflections, or all
isometries. Due to its connections with number theory, crystallography, etc.,
lattice packing has been studied most extensively. In two dimensions the theory
is fairly well developed, and there are several significant results on lattice packing
in three dimensions as well. This article surveys the known results, focusing
on the most recent progress. Also, many new problems are stated, indicating
directions in which future development of the general packing theory in three
dimensions seems feasible.

1. Definitions and Preliminaries

A d-dimensional convex body is a compact convex subset of Rn, contained
in a d-dimensional flat and with non-void interior relative to the flat. A 2-
dimensional convex body is called a convex disk. The (d-dimensional)
volume of a d-dimensional convex body K will be denoted by Vol(K), but
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for d = 2 we will sometimes alternately use the term “area” and the notation
Area(K).

The Minkowski sum of sets A and B in Rd is defined as the set

A+B = {x+ y : x ∈ A, y ∈ B}.

If A consists of a single point a, we write simply a+B instead of {a}+B.

For every convex body K in Rd and every real number λ, the set λK
is defined as {λx : x ∈ K}. We usually write −K instead of (−1)K, and
K−L instead of K+(−1)L. A convex body K in Rd is centrally symmetric
if there is a point c ∈ Rd (the center of K) such that K = 2c−K. For each
convex body K, the centrally symmetric convex body DK = 1

2(K −K) is
called the difference body of K.

A packing of Rd is a family of d-dimensional convex bodies KiKK whose
interiors are mutually disjoint. A packing is a tiling if the union of its
members is the whole space Rd.

In what follows, we consider mostly packings with congruent replicas
of a convex body K. If the family P = {KiKK } (i = 1, 2, . . .) of congruent
replicas KiKK of a d-dimensional convex body K is a packing, then density
of P is defined as

d(P) = lim sup
r→∞

1

Vol(B(r))

∞∑
i=1

Vol(KiKK ∩B(r)),

where B(r) is the ball of radius r, centered at the origin. The supremum
of d(P) taken over all packings P with congruent replicas of K is called the
packing density of K and is denoted by δ(K). The supremum is actually the
maximum, as a densest packing with replicas of K exists (see Groemer [23]).
In case the allowed replicas of K are restricted to translates of K or to
translates of K by a lattice, the corresponding packing densities of K are
denoted by δT (K) and by δL(K), respectively. We also consider packings
in which translates of K and translates of −K are used; the corresponding
packing density is denoted by δT ∗(K). The lattice-like version requires that
each packing consists of translates of a non-overlapping pair K ∪ (v−K) by
the vectors of a lattice; the corresponding density is denoted by δL∗(K) (here
both the lattice L and the vector v are chosen so that the resulting packing
is of maximum density). Naturally, the more restrictions are imposed on the
type of the allowed packing arrangements, the smaller is the corresponding
packing density, therefore

0 < δL(K) ≤ δT (K) ≤ δT ∗((K) ≤ δ(K) ≤ 1
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and
0 < δL∗(K) ≤ δT ∗((K) ≤ δ(K) ≤ 1.

Obviously, if space Rd can be tiled by congruent replicas of K, then
δ(K) = 1. The converse is less obvious, but not very difficult to prove: If
δ(K) = 1, then Rd can be tiled by congruent replicas of K. Similarly,
if δT (K) = 1, then K can tile space by its translated replicas; and if
δT ∗(K) = 1, then space can be tiled by translates of K combined with
translates of −K.

It is well-known that a family P = {K + vi} of translates of a convex
body K is a packing if and only if the family P ′ = {DK + vi} is a packing
(see [43], also [16], [41] and [24]). This implies immediately that

(1.1) δT (K) =
Vol(K)

Vol(DK)
δT (DK) ≤ Vol(K)

Vol(DK)
,

which gives a meaningful (i.e., smaller than 1) upper bound in case K is
not centrally symmetric. The analogous statement and bound hold for the
lattice packing density δL.

For more details, definitions, and basic properties on these notions,
see [19]. For an overview of lattices and lattice packings, see [16], [41]
and [24].

2. Introduction

In contrast to the well developed theory of packing in two dimensions, there
are not many results about packing densities of convex bodies in R3. With
few exceptions, most of such results simply provide the value of the packing
density δL(K) for a specific convex body K, usually obtained by means of a
classical method described by Minkowski [43]. In the next section we review
those results, occasionally citing and describing some relevant results about
packing the plane R2 with congruent replicas of a convex disk (a convex
body of dimension 2).

In Sections 6, 7, and 8 we consider two simple types of convex bodies
in R3, namely cones and cylinders. Given a convex disk K in R3 and a
point v not in the plane of K, the cone with base K and apex v, denoted by
Cv(K), is the union of all line segments with one end at v and the other one
in K. Given a convex disk K in R3 and a line segment s not parallel to the
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plane of K, the cylinder with base K and generating segment s, denoted by
Πs(K), is the Minkowski sum s+K. (Observe that, with the exception of
tetrahedra, the base and apex of a cone are uniquely determined by the cone
itself; likewise, with the exception of the parallelepipeds, a cylinder has two
bases exactly - one is a translate of the other, and its generating segment is
determined uniquely up to translation.) These two simple types of convex
bodies we suggest to investigate first as a first step towards building a
systematic theory of packing in dimension three. The plan is particularly
suitable for the study of densities δT , δL, δT ∗(K), and δL∗(K) because of the
affine invariance of the corresponding problems. Both for the cone and for
the cylinder, each of the packing densities mentioned above depends only
on the affine class of the base. In Section 5 we describe in detail the nature
of the affine invariance, we draw some immediate conclusions concerning
those suitable densities, and we state a few fundamental open problems.

3. Lattice Packing in Space

We begin with the following table listing a few convex bodies in R3 whose
lattice packing densities δL have been explicitly computed.

Fig. 1. Two clusters in the densest lattice packing of balls: a “square pyramid” and
a “regular tetrahedron”

Comments to Table 1.

1. The densest lattice arrangements of spheres (balls) in R3 (see Fig. 1)
was described already by Kepler [39], but unsupported by proof, Ke-
pler’s assertion can only be considered as a conjecture. The first one
to prove that δL(B

3) = π√
18

was Gauss [21]. Actually, Kepler asserted

that the lattice arrangement shown in Fig. 1 is of maximum density
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# Body Packing Density δL Author & Reference

1 Ball {x : |x| ≤ 1} π√
18

= 0.74048 . . . Gauss [21]

2 Regular octahedron 18
19 = 0.9473 . . . Minkowski [43]

Chalk & Rogers [10],
3 Cylinder C = Πs(K) δL(C) = δL(K) also Yeh [57]

Slab of a cube
4

(see definition below)
(see formula below) Whitworth [54]

Slab of a ball
5

(see definition below)
(see formula below) Chalk [9]

Double cone
6

(see definition below)
π
√
6/9 = 0.85503 . . . Whitworth [55]

7 Tetrahedron 18
49 = 0.3673 . . . Hoylman [37]

Table 1.

among all sphere packings. This stronger conjecture, however, turned
out to be extremely difficult to prove (see Section 8, subsection 8.1).

2. The regular octahedron is also called the regular 3-dimensional cross-
polytope and is denoted byX3. Using his method for computing lattice
packing density of a centrally symmetric convex body, Minkowski [43]
proved that δL(X

3) = 18
19 . He applied the same method to the tetra-

hedron, but without success, for in the process he made a mistake in
assuming that the difference body of the regular tetrahedron is the
regular octahedron (see Comment 7 below).

3. The seemingly obvious equality δL(C) = δL(K) is not trivial at all.
The trivial part is the inequality δL(C) ≥ δL(K), obtained by stacking
layers of cylinders erected over the densest lattice packing of the
plane with translates of the base, but the opposite inequality is quite
nontrivial, since a cross-section of a lattice packing of the cylinders by
a plane parallel to the cylinders’ bases need not be a lattice packing
of the bases in the plane, and, a priori, the density of such a packing
could be greater than in any lattice packing. A result of L. Fejes Tóth´
[17], independently discovered also by Rogers [46], says that this in
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fact cannot happen, i.e., the density of a packing with translates of a
convex disk cannot exceed the maximum density attained in a lattice
arrangement.

4. The λ-slab of a cube (0 < λ ≤ 3) is defined as

Kλ = {x ∈ R3 : |xi| ≤ 1, i = 1, 2, 3; |x1 + x2 + x3| ≤ λ},

and its lattice packing density is given by the formula

δL(KλK ) =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

1

9
(9− λ2) if 0 < λ ≤ 1

2
,

1

4
λ(9− λ2)/(−λ3 − 3λ2 + 24λ− 1) if

1

2
≤ λ ≤ 1,

9

8
(λ3 − 9λ2 + 27λ− 3)/λ(λ2 − 9λ+ 27) if 1 ≤ λ ≤ 1.

Whitworth uses Minkowski’s method, and his result generalizes the
case of the regular octahedron (λ = 1), item 2 in the Table.

5. The λ-slab of a ball (0 < λ ≤ 1) is defined as

Bλ = {x ∈ R3 : |x| ≤ 1, |x3| ≤ λ},

and its lattice packing density is given by the formula

δL(Bλ) =
π

6

√
3− λ2.

Chalk uses Minkowski’s method, and his result generalizes the case of
the ball (λ = 1), item 1 in the Table.

6. The double cone (see Fig. 2) is the set

K = {x ∈ R3 :
√

x21 + x22 + |x3| ≤ 1}.

As in item 4, Whitworth uses Minkowski’s method to establish lattice
packing density of K.

7. Minkowski’s error in computing the lattice packing density of the
tetrahedron was noticed by Groemer [22], who proved that 18

49 is a
lower bound for the density. Then Douglas and Hoylman proved that
Groemer’s bound is in fact the tetrahedron’s lattice packing density.
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Fig. 2. The densest lattice packing with the double cone

Fig. 3. The densest lattice packing with the tetrahedron

The problem of the maximum density packing with congruent regular
tetrahedra (allowing all isometries) remains open and appears to be
extremely difficult. We report on the recent progress in Section 8,
subsection 8.4.

8. Each of the results listed in the table is obtained “by hand,” and, with
the exception of Gauss, each of the authors uses Minkowski’s method.
The method often requires tedious computations with a large num-
ber of cases to analyze, which for some convex bodies becomes pro-
hibitively complex. With the emergence of computer technology, how-
ever, it became possible to accomplish many such tasks in a very short
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time. In an impressive article published in year 2000, Betke and Henk
[2] present a fairly fast computer algorithm implementing Minkowski’s
method for finding lattice packing density of any 3-dimensional convex
polytope. To show the algorithm’s efficiency, the article lists lattice
packing density of each of the regular and Archimedean polytopes,
many of which would be practically impossible to handle without com-
puters.

4. Packing Convex Bodies by Translations

Thus far no example of a convex body K has been found for which δT (K) >
δL(K). In fact, there are only a few types of convex bodies K whose packing
density δT (K) is known, namely:

1. any convex polytope P that admits a tiling of space by its translates (it
is known that each such polytope tiles space in a lattice-like manner,
in every dimension, see Venkov [53] or McMullen [44]);

2. any cylinder CsK with a convex base K, since obviously δT (CsK) =
δT (K);

3. any non-symmetric body K for which the packing density of the
difference body δT (DK) is known. For example, the difference body
of a body K of constant width is a ball, hence the packing density of
the ball can be used to find δT (K);

4. any convex body K such that B3 ⊂ K ⊂ RhD, where RhD denotes
the rhombic dodecahedron circumscribing the unit ball B3, which is
the Voronoi polytope associated with the densest lattice packing ofB3.

The last two items are based on Hales’ confirmation of the Kepler
Conjecture, stating that δ(B3) = δL(B

3) = Vol(B3)/Vol(RhD).

In contrast, in R2 it is known that

(4.1) δ(K) = δL(K) for every centrally symmetric convex disk K,

which implies that

(4.2) δT (K) = δL(K) for every convex disk K,
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see L. Fejes Tóth [17].

While equation (4.2) perhaps holds true for 3-dimensional convex bodies
as well, equation (4.1) does not, as the following example shows.

Let P be the (slightly irregular) affine-regular octahedron in R3 with
vertices of the form (±1,±1, 0) and (0, 0,±1). It is easy to see that P
cannot tile space by translates alone, hence δT (P ) < 1. On the other hand,
P can tile space with translates of itself combined with translates of its
copies rotated by 90◦ about the coordinate axes. Therefore δ(P ) = 1.

It should also be mentioned that already in dimension 2 the assumption
of convexity is indispensable for equation (4.2). A. Bezdek and Kertész [5]
constructed a non-convex polygon that allows a dense non-lattice packing
of the plane by its translates, denser than any lattice packing, see Fig. 4.
(The construction of Bezdek and Kertész was modified by Heppes [36] so as
to obtain a starlike polygon with the same property.)

An example of Bezdek and Kertész: a polygon whose translates can be packed
more densely (left) than in its densest lattice packing (right)

The main question of this section remains open:

Is it true that the maximum density of a packing with translates of a
convex body in R3 is attained in a lattice packing?

Similarly, the problem of whether or not δ∗T (K) = δ∗L(K) holds for every
3-dimensional convex body K remains open.

5. Affine Invariance and Compactness

If f : Rd → Rd is an affine transformation, and if K1 is a translate of a
convex body K, then f(K1) is a translate of f(K). Similarly, if K1 is a
translate of −K, then f(K1) is a translate of −f(K). Therefore the affine
image of a packing with translates of K is a packing with translates of the
image of K, and these two packings have the same density. Moreover, the
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affine image of a lattice packing with copies of K is a lattice packing with
the affine image ofK. The same affine invariance holds true for any packing
that combines translates of K and of −K. These simple facts imply that if
convex bodies K and M are affine-equivalent, then:

δT (K) = δT (M), δT ∗(K) = δT ∗(M), δL(K) = δL(M),

and
δL∗(K) = δL∗(M).

Therefore we can say that the domain of each of the four density func-
tions δT , δT ∗ , δL, and δL∗ is the set of affine equivalence classes of convex
bodies. Let [K] denote the affine equivalence class of the convex body K.
Following Macbeath [42], we supply the set of affine equivalence classes of
convex bodies in Rd with the distance function d defined as follows: for
every pair K, M of convex bodies, set

ρ(K,M) = inf{Vol(K ′)/Vol(M) :

K ′ is affine equivalent to K and K ′ ⊃M}.

Since the function ρ is affine invariant, the function d given by

d([K], [M ]) = log ρ(K,M) + log ρ(M,K)

is well-defined. It is easy to check that d is a metric on the set of all affine
equivalence classes of convex bodies. The space of such classes supplied
with this metric, denoted by Kd

a, is compact (see Macbeath [42]), and each
of the four packing density functions δT , δT ∗ , δL, and δL∗ defined on Kd

a is
continuous. Therefore each of them reaches its extreme values. Of course,
the maximum value for each of them is 1, reached at any convex body that
tiles Rd by its translates. However, none of the four minimum values is
presently known.

Determining those minimum values and the convex bodies at which they
are attained seems to be a very challenging problem, perhaps too difficult
to expect to be solved in foreseeable future. Reasonably good estimates for
these minimum values, however, should not be too hard to establish.

As for the maximum value of 1, attained at the corresponding space tiling
bodies (polytopes), those that tile space by translations have been described
in fairly simple terms by Venkov [53] and, independently, by McMullen [44].
However, the analogous question, asking which convex polytopes can tile
space by their translates combined with translates of their negatives, still
remains unanswered.
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6. Packing Translates of Cones

We now turn our attention to the subspace Ca of K3
a consisting of affine

equivalence classes of cones, that is, affine classes of bodies of the form
Cv(K), where K, the base, is a convex disk. Since Ca is a closed subset of
K3

a, it is compact as well. Notice that the affine class of the cone Cv(K)
is determined uniquely by the affine equivalence class of its base K. The
affine class of a cone with base K will be denoted by CK. Thus CK = CM
if and only if K and M are affinely equivalent convex disks.

Again, the problem of maximum and minimum values arises that each
of the four packing density functions attains on the compact set Ca. This
time, however, the maximum value of each of them is strictly smaller than
1, since a cone cannot tile space, neither by its translates, nor by its
translates combined with translates of its negative. Thus we face a set
of eight questions:

Which convex disks produce cones of maximum and minimum packing
density with respect to the four affine-invariant packing density functions?

The eight extremum density values over the set of cones will be denoted
by cmax and cmin supplied with the corresponding subscripts T , T ∗, L,
and L∗. The case of cones with centrally symmetric bases is of special
interest, raising another set of eight analogous questions.

We begin with a lower bound for the volume of the difference body of a
cone, to be used in the inequality (1.1), producing an upper bound for the
packing density δT for all cones. Figure 5 shows side-by-side two cones and
their corresponding difference bodies.

Fig. 5. Cones and their difference bodies: the circular cone and the square pyramid

For a cone with a centrally symmetric base, the volume ratio of the cone
to its difference body is always 4

7 , which is easy to see. For a cone with non-
symmetric base, the corresponding volume ratio is always smaller than 4

7 ,
which follows directly from the Brunn-Minkowski inequality (see e.g. [47])



76 A. Bezdek and W. Kuperberg

in dimension 2. The minimum ratio 2
5 occurs for the triangular cone (the

tetrahedron) only. Thus we have the following upper bound:

δT (CK) <
4

7

as equality cannot occur since the difference body of any cone cannot tile
space by translations. Therefore

cmax
T = max{δT (CK) : K is a convex disk} < 4

7
.

On the other hand, there is a lattice packing with translates of a square
pyramid, of density 8

15 . The packing can be described as follows. Begin
with a horizontal plane tiled by a lattice of “L”-shaped figures consisting of
a unit square with a 1

2 × 1
2square attached to it. Erect a square pyramid

over each of the unit squares, get a layer of square pyramids, in which the
small squares are vacant. Place upon the first layer its translate, shifted so
that the peaks of the pyramids form the first layer plug the square holes in
the second layer. The vertical shift from the first layer to the second one
is equal to one-half of the pyramids’ height. The two layers determine the
entire lattice packing (see Fig. 6 for a top view of the two layers).

A dense, though not the densest, lattice packing with the square pyramid

Thus δL(CS) ≥ 8
15 , where S denotes the square. However, according

to the information supplied in private communication by Betke and Henk,
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the authors of [2], the lattice packing density of the difference body of the
square pyramid is 112

117 , therefore δL(CS) ≥ 448
819 = 0.547 . . . > 8

15 = 0.533 . . . ,
and we get the bounds

0.547 . . . =
448

819
≤ cmax

T <
4

7
= 0.571 . . . .

Remark 1. By request of the authors of the present article, Betke and
Henk also computed the lattice packing densities of the difference bodies
of the pyramids with a regular hexagonal and a regular octagonal bases.
The results show that the lattice packing density of the square pyramid is
greater than those of the other two. This seems to indicate that among all
cones with centrally symmetric bases, the square-based cone has maximum
lattice packing density.

Remark 2. The lattice packing density of the cone CE with a circular
(elliptical) base E has not been computed yet. The best we know is

0.4469 . . . =
2 +

√
2

24
π ≤ δL(CE) ≤

√
2

9
π = 0.4936 . . . .

The upper bound is found by inscribing a maximum volume ellipsoid in the
difference body of the circular cone (see Fig. 5) and using the lattice packing
density of the ball. The lower bound is obtained by the construction shown
in Fig. 7. Observe that the pattern is somewhat similar to that of the square
pyramid seen in the previous figure. Neither of the two bounds seems best
possible - improvements should not be hard to obtain.

Besides the tetrahedron T , we do not know of any examples of cones with
non-symmetric bases whose lattice packing density has been computed. The
lattice packing density of the tetrahedron is 18

49 = 0.3673 . . . (see Section 3,
Table 1), which is perhaps the value of cmin

L .

Turning to cones with centrally symmetric bases, we obtain a common
lower bound for their lattice packing density by a construction similar to
that described for the square pyramid (see Fig. 6). First, observe that every
centrally symmetric hexagon H is contained in a parallelogram whose sides
are extensions of sides of H and of area at most 4

3 , maximum being reached
by the regular hexagon. By an affine transformation we can assume that
the parallelogram is a unit square, and H is obtained by cutting off two
congruent right triangles at two of its opposite corners. Since the square is
of minimum area among parallelograms containing H, the legs of the cut-
off triangle cannot be longer than 1

2 . Therefore the arrangement shown in
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Fig. 7. A dense, though not likely the densest, lattice packing with the circular cone

Fig. 8 is a lattice packing of the plane with the pair consisting of H and a
translate of 1

2H attached to H, and the density of the collection of translates
of H (the large hexagons) is at least 3

4 , minimum being reached when H is
an affine regular hexagon.

In a similar way as in the construction for the square pyramid, treating
the small hexagons as holes in one layer of hexagonal pyramids, this packing
gives rise to a lattice packing of space with the cone CH. The density of
this packing is at least 1

2 .

Finally, by a theorem of Tammela [49], every centrally symmetric convex
disk K of area 1 is contained in a centrally symmetric hexagon H of area at
most (3.570624)/4, therefore, by the construction described above, we get
the bound δL(CK) ≥ 0.446328 . . . for every cone with a centrally symmetric
disk K. Therefore

cmin
T ≥ 0.446328 . . . .



Dense Packing of Space with Various Convex Solids 79

Fig. 8. A lattice packing with a pair of centrally symmetric hexagons H, 1
2
H. The large

hexagons form a packingof density at least 3
4

7. Packing Translates of Cones and Their Negatives

While we know that the value of cmax
T ∗ is smaller than 1, an explicit upper

bound below 1 is not easy to produce. Barány and Matoušek [1] found an´
explicit constant ε > 0 such that the density of every packing of space with
translates of a cone and of its negative cannot exceed 1− ε. The value of ε
produced by their proof is very small, about 10−42, and there seems to be
room for improvement.

The “best known” case is the densest lattice packing of regular octa-
hedra, of density 18

19 (see Table 1), showing that the constant ε cannot be
greater than 1

19 , that is, cmax
L∗ ≥ 18

19 , but cmax
L∗ is very likely to be consider-

ably greater than 18
19 . Namely, it is likely that in the densest packing with

translates of a square pyramid combined with translates of its negative, the
pyramids do not form pairs joined by their common base.

Perhaps it is true in general that the maximum density of a packing with
translates of a double cone with a given centrally symmetric base is always
smaller than some packing with translates of the cone and its negative. In
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other words, it seems likely that separating the two parts of the double cone
from each other always allows them to reach higher density. It would be
interesting to know at least whether or not it is so for the double cone with
a circular base and for the double square pyramid.

Elaborating on the idea of packing translates of the cone and its nega-
tive in pairs joined by their common, centrally symmetric, base, we use a
theorem of Petty [45], stating that every centrally symmetric disk of area 1
is contained in a parallelogram of area at most 4

3 , the bound being sharp
only in case of an affine regular hexagon. This allows for enclosing such
a pair of cones in an affine regular octahedron whose densest lattice pack-
ing produces a packing with a cone with an arbitrary centrally symmetric
base. The density of so obtained packing is at least 3

4 × 18
19 = 0.7105 . . . .

A similar approach for cones with any convex base (the bases of the cone
and its negative need not coincide) produces a much weaker lower bound of
1
2 × 18

19 = 0.47368 . . . . (Here the factor of 1
2 is reached only in the case of

the triangular base, that is, when the cone is a tetrahedron.) Thus we have

δT ∗(CK) ≥ 27

38
= 0.7105 . . . for all cones(7.1)

with centrally symmetric convex bases K,

and

(7.2) δT ∗(CK) ≥ 9

19
= 0.47368 . . . for all cones with convex bases K.

The bound in (7.1) is unlikely to be best possible, and the bound in (7.2) def-
initely is not, since the construction of the presently known densest packing
with translates of the tetrahedron Δ and of −Δ, recently found by Kallus,
Elser and Gravel [38], is of density (139 + 40

√
10)/369 = 0.7194880 . . . .

8. Packing Congruent Replicas of a Convex Body

Here we consider packing densities δ(K) of a convex body K in R3, with
no restrictions on the nature of isometries used in packing. There are not
many bodies K whose packing density is known. No good lower bound
has been established for the packing density δ(K) valid for all convex 3-

dimensional bodies K. A rather insignificant lower bound of
√
3
6 = 0.288 . . .
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is easy to prove based on the known result in the plane, namely that the

packing density of every convex disk is at least
√
3
2 (see [40]).

For centrally symmetric convex bodies K, the best known bound of this
type is due to E. H. Smith [48], who proved that δ(K) ≥ 0.53835 . . . for
every such body K in R3. The author indicates that the bound is not likely
to be the best possible. No reasonable conjecture has been proposed, neither
in the general case, nor under assumption of central symmetry, to point to
a specific convex body whose packing density should be smallest among all
convex bodies. It is not even certain that such a body exists.

Except for the trivial case of space-tiling polytopes, there are not many
convex solids whose packing density δ (allowing all isometries) is known. In
the following subsections we discuss known results for certain special cases.

8.1. The Kepler conjecture

The three-dimensional sphere packing problem in its general form, without
restrictions on the structure of the spheres’ arrangements is simple to state
and easy to understand even for a non-expert. The conjecture states that
the maximum density of a packing of R3 with congruent balls is π√

18
=

0.740480 . . . , attained in the familiar lattice arrangement (see Fig. 1). The
conjecture sounds very convincing to anyone who has ever seen spherical
objects, such as oranges or apples, stacked in a pyramid, yet the proof eluded
mathematicians for centuries. A problem so appealing attracts attention
of experts and laymen alike, and a solution tends to instantly elevate its
author to the status of celebrity. The Kepler conjecture, also known as
the sphere packing conjecture, has a long and fascinating history, see [30].
The unsuccessful attempts at proof and the nature of the proof that was
produced at last seem to indicate that this is one of those problems that
cannot be resolved with a reasonably simple and reasonably short proof.

The proof is due to Thomas Hales, who announced it in [29], and then,
during the past 13 years presented a series of articles on the subject (see
[27, 28, 31, 32, 33, 34], see also [20] by Ferguson, a student of Hales).
The description of the theoretical approach to the problem and results
of the work of computer occupies nearly 300 pages in these articles. At
the computational stage of the proof, computers examined some 5, 000
computer-generated cases, each of the cases requiring optimization analysis
of a system of non-linear inequalities with a large number of variables.
Hales main approach follows a strategy suggested by L. Fejes Tóth in 1953´
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(see [18]) who anticipated a then insurmountable amount of computations
needed for the case analysis.

As a corollary to Hales’ result, the packing density of any convex body K
such that B3 ⊂ K ⊂ RhD is easily computed: δ(K) = δT (K) = Vol(K)

Vol(RhD) ,
where RhD denotes the rhombic dodecahedron circumscribed about the
unit ball B3.

In 2003, Hales launched a project called FLYSPECK, designed for an
automatic (computerized) formal verification of his proof. The project
involves a number of experts in formal languages. They currently estimate
that the project is about 65% complete. As a byproduct of the FLYSPECK
project, Hales, jointly with five coauthors involved in the project, published
recently another article [35] on the topic of the Kepler conjecture, revising
the originally published text.

8.2. Packing space with congruent ellipsoids

The problem of packing space with ellipsoids is in sharp contrast with the
analogous two-dimensional problem. In the plane, the density of any packing
consisting of congruent ellipses, or even ellipses of equal areas (see L. Fejes
Toth [17], see also [18]), cannot exceed the circle’s packing density´ π√

12
.

It has been noticed in [8] that ellipsoids E exist whose packing density is
greater than that of a ball, that is, δ(E) > π√

18
. The first ellipsoid found

that had this property was quite elongated, of a very high aspect ratio, that
is, the ratio of its longest semiaxis to its shortest.

As an improvement of this construction, Wills [56] found a denser ellip-
soid packing, with ellipsoids of a slightly smaller aspect ratio. However, a
much more substantial improvement came about a few years ago. A. Donev,
F.H. Stillinger, P. M. Chaikin, and S. Torquato [15] constructed a remark-
ably dense packing of congruent ellipsoids that do not differ from a sphere
too much, namely with aspect ratio of

√
3 (or any greater than that). The

packing they found using a computerized experimental simulation technique
reaches density of 0.770732. This is the currently highest known density of
a packing of space with congruent ellipsoids.

It is not known, however, whether or not there is an upper bound below
1 for such density. While no ellipsoid can tile space by its congruent replicas,
thus the packing density of any ellipsoid is smaller than 1, it is conceivable
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that an ellipsoid with sufficiently high aspect ratio could have its packing
density as close to 1 as desired.

8.3. Packing space with congruent cylinders

The first non-trivial case of a convex (though unbounded) solid whose
packing density, allowing all isometries, was computed, was the circular
cylinder, infinitely long in both directions, that is, the set {(x, y, z) ∈ R3 :
x2 + y2 ≤ 1}, see [6]. As expected, the maximum density is reached when
all cylinders in the packing are parallel to each other and the plane cross-
section of the packing perpendicular to the cylinders forms a densest circle
packing in the plane. In other words, the packing density of the infinite
circular cylinder is π√

12
.

The first non-trivial case of a convex compact solid was resolved by
A. Bezdek [4] who determined the exact value of the packing density of
the rhombic dodecahedron slightly truncated at one of its trihedral vertices.
Although the packing density of Bezdek’s example can be derived from
the now proven Kepler conjecture (the truncated rhombic dodecahedron
contains the inscribed sphere), Bezdek’s proof was published before the
Kepler conjecture was settled and is independent from it.

The packing density of the circular cylinder {(x, y, z) ∈ R3 : x2 + y2 ≤
1, 0 ≤ z ≤ h} of finite height h > 0, conjectured to be π√

12
as well, is not

known for any value of h. The difficulty of this conjecture is indicated by
an example of a certain elliptical cylinder that admits a packing of density
greater than 0.99 (see [8]), while in any arrangement of the congruent copies
of it such that all their generating segments are parallel to each other, the
packing’s density cannot exceed π√

12
.

Related to the above problem is the following question about tiling space
with congruent right cylinders (a cylinder is said to be right if its generating
segment is perpendicular to the plane of its base):

If a right cylinder with a convex base admits a tiling of R3 with its
congruent replicas, must its base admit a tiling of the plane?

The difficulty of this question is illustrated by two examples from [7].
First, there exists a space-tiling right cylinder with a non-convex polygonal
base that cannot tile the plane (see Fig. 9). Second, there exists a skew
prism (though as close to being right as we want) with a convex polygonal
base that tiles space, but whose base cannot tile the plane (see Fig. 10).
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To explain the construction shown in Fig. 10: (a) A regular hexagon
is cut into three congruent, axially symmetric pentagons. (b) By an affine
transormation, the pentagons are stretched slightly, each in the direction
of its axis of symmetry, so that they cannot tile the plane. Then a skew
pyramid is raised over each of the pentagons, so that when they are joined
as shown in (c), they form a “hexagonal cup” whose projection to the plane
of the original hexagon coincides with the hexagon. Such “cups” can be
stacked, forming an infinite beam whose perpendicular cross-section is the
original regular hexagon. Finally, such hexagonal parallel beams can fill
space by the same pattern as the regular hexagon tiles the plane.

Fig. 9. A non-convex right prism that tiles space, with base that does not tile the plane

Fig. 10. A convex, slightly skew prism that tiles space, with base that does not tile the
plane
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The second example shows that the packing density of a cylinder Πs(K)
over a convex disk K could be greater than the packing density of K
in the plane. In this example, however, the cylinder is skew. The same
phenomenon, however, can occur with a right cylinder as well, as we saw it
on the example of a right elliptical cylinder whose packing density is greater
than 0.99. It seems natural to ask:

Which convex cylinders have their packing density in space the same as
that of their bases in the plane, and which can be packed denser?

8.4. High density packing with congruent regular tetrahedra

Since no integer multiple of the dihedral angle ϕ = arccos 1
3 = 1.23 . . .

formed by the faces of the regular tetrahedron Δ equals 2π (5ϕ = 6.15 . . . is
just slightly smaller than 2π), we know that δ(Δ) < 1. Then, how densely
can space be packed with congruent regular tetrahedra? The question is
of interest in areas other than mathematics as well, e.g. physics (compact-
ing loose particles), chemistry (material design), etc. The past four years
brought an exciting development: a series of articles appeared, each provid-
ing a surprisingly dense—denser than previously known—packing.

2006. Conway and Torquato [14] initiate the race by presenting a sur-
prisingly dense packing with density 0.717455 . . . , almost twice the lattice
packing density of the tetrahedron (see Table 1). The packing is a lattice ar-
rangement in which the “repeating unit” is a cluster of 17 congruent regular
tetrahedra. Conway and Torquato also give a simple, uniform packing with
density 2

3 (here “uniform” means possessing a group of symmetry that acts
transitively on the tetrahedra). This simple packing is a lattice arrange-
ment in which the repeating unit consists of a pair of regular tetrahedra,
one rotated by π

2 with respect to the other (see Fig. 11).

Same year, shortly after the appearance of Conway and Torquato’s ar-
ticle, Chaikin, Jaoshvili, and Wang [11], a team composed of two physicists
and a high-school student, announce results of an experiment with mate-
rial tetrahedral dice, packing them tightly, but randomly in spherical and
cylindrical containers. The experimental results indicate that the packing
density of the regular tetrahedron should exceed 0.74, perhaps even 0.76.

2008. Elizabeth R. Chen [12], a graduate student at the University
of Michigan, Ann Arbor, produces a packing reaching density 0.7786, well
above the packing density of the ball.



86 A. Bezdek and W. Kuperberg

Fig. 11. A portion of the Conway and Torquato uniform packing of regular tetrahedra.
Density: 2

3

2009. Torquato and Jiao [50, 51], using computer simulation based on
their “adaptive cell shrinking scheme” raise Chen’s record first to 0.782 . . .
and shortly thereafter to 0.823 . . . .

At this point one could hardly expect or predict any significant improve-
ments, but they kept coming without much delay.

2009. Haji-Akhbari et al. [26], using thermodynamic computer simu-
lations that allow a system of particles to evolve naturally towards high-
density states, find a packing whose density reaches 0.8324.

2009. Kallus, Elser, and Gravel [38] produce a surprisingly simple uni-
form one-parameter family of packings - a lattice arrangement of a repeating
unit consisting of just four regular tetrahedra, one pair of tetrahedra joined
by a common face and another pair a point-symmetric reflection of the first.
New density record: 100

117 = 0.85470 . . . . The packings, though found with
the aid of computer, are described analytically.

2010. Torquato and Jiao [52] produce an analytically described packing
with regular tetrahedra bettering the density record of Kallus et al. Density:
12250
14319 = 0.855506 . . . .

2010. Chen, Engel, and Glotzer [13] set the most recent density record,
reached by an analytically described packing. The currently highest known
density is raised to 4000

4671 = 0.856347 . . . .

The last few density improvements seem to be inching towards its max-
imum value. Though it is difficult to conjecture what that value should be,
any reasonable upper bound would be welcome as a valuable contribution.
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Disappointingly, thus far no specific upper bound, not even by a miniscule
amount below 1, has been established.

Added in proof. During the editorial process of publication of this article,
S. Gravel, V. Elser and Y. Kallus [arXiv:1008.2830] obtained an upper
bound for the packing density of the regular tetrahedron, around 2.6×10−24

below 1.
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[43] H. Minkowski, Dichteste gitterförmige Lagerung kongruenter K¨rper, Nachr. K. Ges.
Wiss. Gottingen, Math.-Phys. KL (1904), 311–355 (see also: Gesammelte Abhand-¨
lungen vol. II, 3–42, Leipzig 1911).

[44] P. McMullen, Convex bodies which tile space by translation, Mathematika 27 (1980),
no. 1, 113–121.



90 A. Bezdek and W. Kuperberg

[45] C. M. Petty, On the geometry of the Minkowski plane, Riv. Mat. Univ. Parma 6
(1955), 269–292.

[46] C. A. Rogers, The closest packing of convex two-dimensional domains, Acta Math.
86 (1951), 309–321.

[47] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Encyclopedia of Math-
ematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.

[48] E. H. Smith, A new packing density bound in 3-space, Discrete Comput. Geom. 34
(2005), no. 3, 537–544.

[49] P. Tammela, An estimate of the critical determinant of a two-dimensional convex
symmetric domain, Izv. Vyss. Ucebn. Zaved. Mat. 12(103) (1970), 103–107.

[50] S. Torquato and Y. Jiao, Dense packings of the Platonic and Archimedean solids,
Nature 460, 876 (2009).

[51] S. Torquato and Y. Jiao, Dense packings of polyhedra: Platonic and Archimedean
solids, Phys. Rev. E 80, 041104 (2009).

[52] S. Torquato and Y. Jiao, Analytical constructions of a family of dense tetrahedron
packings and the role of symmetry e-print arXiv:0912.4210.

[53] B. A. Venkov, On a class of Euclidean polyhedra, Vestnik Leningrad. Univ. Ser. Mat.
Fiz. Him. 9 (1954) no. 2 11–31.

[54] J. V. Whitworth, On the densest packing of sections of a cube. Ann. Mat. Pura
Appl. (4) 27, (1948), 29–37.

[55] J. V. Whitworth, The critical lattices of the double cone, Proc. London Math. Soc.
(2) 53, (1951), 422–443.

[56] J. Wills, An ellipsoid packing in E3 of unexpected high density, Mathematika 38
(1991), 318–320.

[57] Y. Yeh, Lattice points in a cylinder over a convex domain, J. London Math. Soc.
23, (1948), 188–195.

András Bezdek´
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