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Tarski’s Plank Problem Revisited

KÁROLY BEZDEK∗

In the 1930’s, Tarski introduced his plank problem at a time when the field
Discrete Geometry was about to born. It is quite remarkable that Tarski’s
question and its variants continue to generate interest in the geometric and
analytic aspects of coverings by planks in the present time as well. The paper is
of a survey type with some new results and with a list of open research problems
on the discrete geometric side of the plank problem.

1. Introduction

Tarski’s plank problem has generated a great interest in understanding the
geometry of coverings by planks. There have been a good number of results
published in connection with the plank problem of Tarski that are surveyed
in this paper. The goal of this paper is to survey the state of the art of
Tarski’s plank problem from the point of view of discrete geometry and to
prove some new results and to list some relevant research problems as well.
The topics discussed include not only coverings by planks but also coverings
by cylinders and the sets to be covered include balls as well as lattice points.
For some natural reason, a good subcollection of the research problems
listed raises challanging questions on balls, that are the most symmetric
bodies still central for research in (discrete) geometry. Last but not least
we mention that the partial covering problem by planks introduced in this
paper connects Tarski’s plank problem to the Kakeya–Pál as well as to the´

∗Partially supported by a Natural Sciences and Engineering Research Council of
Canada Discovery Grant and by the Hung. Acad. Sci. Found. (OTKA), grant no. K72537.
(This survey is partially based on the author’s talk delivered at the meeting “Intuitive
Geometry, in Memoriam Lászl´´ o Fejes T´ oth”, June 30–July 4, 2008, Budapest, Hungary.)´

I. Bárány et al. (eds.), Geometry   Intuitive, Discrete, and Convex 
© János Bolyai Mathematical Society and Springer-Verlag 2013 

−



46 K. Bezdek

Blaschke–Lebesgue problems. In this way, ball-polyhedra are investigated
as well. The rest of the paper studies the topics outlined in six consecutive
sections.

2. Plank Theorems

A convex body of the Euclidean space Ed is a compact convex set with
non-empty interior. Let C ⊂ Ed be a convex body, and let H ⊂ Ed be
a hyperplane. Then the distance w(C, H) between the two supporting
hyperplanes of C parallel to H is called the width of C parallel to H.
Moreover, the smallest width of C is called the minimal width of C and is
denoted by w(C).

Recall that in the 1930’s, Tarski posed what came to be known as the
plank problem. A plank P in Ed is the (closed) set of points between two
distinct parallel hyperplanes. The width w(P) of P is simply the distance
between the two boundary hyperplanes of P. Tarski conjectured that if a
convex body of minimal width w is covered by a collection of planks in Ed,
then the sum of the widths of these planks is at least w. This conjecture was
proved by Bang in his memorable paper [8]. (In fact, the proof presented
in that paper is a simplification and generalization of the proof published
by Bang somewhat earlier in [7].) Thus, the following statement we call the
plank theorem of Bang.

Theorem 2.1. If the convex body C is covered by the planks P1,P2, . . . ,
Pn in Ed (i.e. C ⊂ P1 ∪P2 ∪ · · · ∪Pn ⊂ Ed), then

n∑
i=1

w(Pi) ≥ w(C).

In [8], Bang raised the following stronger version of Tarski’s plank prob-
lem called the affine plank problem. We phrase it via the following def-
inition. Let C be a convex body and let P be a plank with boundary
hyperplanes parallel to the hyperplane H in Ed. We define the C-width of
the plank P as w(P)

w(C,H) and label it by wC(P). (This notion was introduced

by Bang [8] under the name “relative width”.)
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Conjecture 2.2. If the convex body C is covered by the planks P1,P2, . . . ,
Pn in Ed, then

n∑
i=1

wC(Pi) ≥ 1.

The special case of Conjecture 2.2, when the convex body to be covered
is centrally symmetric, has been proved by Ball in his celebrated paper [2].
Thus, the following is the plank theorem of Ball.

Theorem 2.3. If the centrally symmetric convex body C is covered by the
planks P1,P2, . . . ,Pn in Ed, then

n∑
i=1

wC(Pi) ≥ 1.

From the point of view of discrete geometry it seems natural to mention
that after proving Theorem 2.3 Ball [3] used Bang’s proof of Theorem 2.1 to
derive a new argument for an improvement of the Davenport–Rogers lower
bound on the density of economical sphere lattice packings.

It was Alexander [1] who noticed that Conjecture 2.2 is equivalent to
the following generalization of a problem of Davenport.

Conjecture 2.4. If a convex body C in Ed is sliced by n − 1 hyperplane
cuts, then there exists a piece that covers a translate of 1

nC.

We note that the paper [10] of A. Bezdek and the author proves Conjec-
ture 2.4 for successive hyperplane cuts (i.e. for hyperplane cuts when each
cut divides one piece). Also, the same paper ([10]) introduced two additional
equivalent versions of Conjecture 2.2. As they seem to be of independent
interest we recall them following the terminology used in [10].

Let C and K be convex bodies in Ed and let H be a hyperplane of Ed.
The C-width of K parallel to H is denoted by wC(K, H) and is defined as
w(K,H)
w(C,H) . The minimal C-width of K is denoted by wC(K) and is defined as

the minimum of wC(K, H), where the minimum is taken over all possible
hyperplanes H of Ed. Recall that the inradius of K is the radius of the
largest ball contained in K. It is quite natural then to introduce the C-
inradius of K as the factor of the largest (positively) homothetic copy of
C, a translate of which is contained in K. We need to do one more step
to introduce the so-called successive C-inradii of K as follows. Let r be
the C-inradius of K. For any 0 < ρ ≤ r let the ρC-rounded body of K be
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denoted by KρC and be defined as the union of all translates of ρC that
are covered by K. Now, take a fixed integer n ≥ 1. On the one hand,
if ρ > 0 is sufficiently small, then wC(K

ρC) > nρ. On the other hand,
wC(K

rC) = r ≤ nr. As wC(K
ρC) is a decreasing continuous function of

ρ > 0 and nρ is a strictly increasing continuous function of ρ there exists a
uniquely determined ρ > 0 such that

wC(K
ρC) = nρ.

This uniquely determined ρ is called the n-th successive C-inradius of K
and is denoted by rC(K, n). Notice that rC(K, 1) = r. Now, the two
equivalent versions of Conjecture 2.2 and Conjecture 2.4 introduced in [10]
can be phrased as follows.

Conjecture 2.5. If a convex body K in Ed is covered by the planks P1,
P2, . . . ,Pn, then

∑n
i=1wC(Pi) ≥ wC(K) for any convex body C in Ed.

Conjecture 2.6. Let K and C be convex bodies in Ed. If K is sliced by
n−1 hyperplanes, then the minimum of the greatest C-inradius of the pieces
is equal to the n-th successive C-inradius of K, i.e. it is rC(K, n).

A. Bezdek and the author [10] proved the following theorem that (under
the condition that C is a ball) answers a question raised by Conway ([9])
as well as proves Conjecture 2.6 for successive hyperplane cuts.

Theorem 2.7. Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
into n pieces by n−1 successive hyperplane cuts (i.e. when each cut divides
one piece), then the minimum of the greatest C-inradius of the pieces is
the n-th successive C-inradius of K, i.e. rC(K, n). An optimal partition is
achieved by n−1 parallel hyperplane cuts equally spaced along the C-width
of the rC(K, n)C-rounded body of K.

3. Covering Convex Bodies by Cylinders

In his paper [8], Bang by describing a concrete example and writing that it
may be extremal proposes to investigate a quite challanging question that
can be phrased as follows.
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Problem 3.1. Prove or disprove that the sum of the base areas of finitely
many cylinders covering a 3-dimensional convex body is at least half of the
minimum area 2-dimensional projection of the body.

If true, then the estimate of Problem 3.1 is a sharp one due to a covering
of a regular tetrahedron by two cylinders described in [8]. A very recent
paper of Litvak and the author ([16]) investigates Problem 3.1 as well as
its higher dimensional analogue. Their main result can be summarized as
follows.

Given 0 < k < d define a k-codimensional cylinder C in Ed as a set
which can be presented in the form C = H+B, where H is a k-dimensional
linear subspace of Ed and B is a measurable set (called the base) in the
orthogonal complement H⊥ of H. For a given convex body K and a k-
codimensional cylinder C = H + B we define the cross-sectional volume
crvK(C) of C with respect to K as follows

crvK(C) :=
vold−k(C ∩H⊥)
vold−k(PHP ⊥K)

=
vold−k(PHP ⊥C)

vold−k(PHP ⊥K)
=

vold−k(B)

vold−k(PHP ⊥K)
,

where PHP ⊥ : Ed → H⊥ denotes the orthogonal projection of Ed onto H⊥.
Notice that for every invertible affine map T : Ed → Ed one has crvK(C) =
crvTK(TC). The following theorem is proved in [16].

Theorem 3.2. Let K be a convex body in Ed. Let C1, . . . ,CN be k-codi-
mensional cylinders in Ed, 0 < k < d such that K ⊂ ⋃N

i=1Ci. Then

N∑
i=1

crvK(Ci) ≥
1(
d
k

) .
Moreover, if K is an ellipsoid and C1, . . . ,CN are 1-codimensional cylinders
in Ed such that K ⊂ ⋃N

i=1Ci, then

N∑
i=1

crvK(Ci) ≥ 1.

The case k = d− 1 of Theorem 3.2 corresponds to Conjecture 2.2 i.e. to
the affine plank problem. Theorem 3.2 for k = d−1 implies the lower bound
1/d that can be somewhat further improved (for more details see [16]).

As an immediate corollary of Theorem 3.2 we get the following estimate
for Problem 3.1.
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Corollary 3.3. The sum of the base areas of finitely many (1-codimensio-
nal) cylinders covering a 3-dimensional convex body is always at least one
third of the minimum area 2-dimensional projection of the body.

Also, note that the inequality of Theorem 3.2 on covering ellipsoids by 1-
codimensional cylinders is best possible. By looking at this result from the
point of view of k-codimensional cylinders we are led to ask the following
quite natural question. Unfortunately, despite its elementary character it is
still open.

Problem 3.4. Let 0 < c(d, k) ≤ 1 denote the largest real number with
the property that if K is an ellipsoid and C1, . . . ,CN are k-codimensional
cylinders in Ed, 1 ≤ k ≤ d−1 such thatK ⊂ ⋃N

i=1Ci, then
∑N

i=1 crvK(Ci) ≥
c(d, k). Determine c(d, k) for given d and k.

On the one hand, Theorem 2.1 and Theorem 3.2 imply that c(d, d−1) =
1 and c(d, 1) = 1 moreover, c(d, k) ≥ 1

(dk)
.

4. Covering Lattice Points by Hyperplanes

In their paper [13], Hausel and the author have established the following
discrete version of Tarski’s plank problem.

Recall that the lattice width of a convex body K in Ed is defined as

w(K,Zd) = min
{
max
x∈K

〈x, y〉 −min
x∈K

〈x, y〉 | y ∈ Zd, y �= 0��
}
,

where Zd denotes the integer lattice of Ed. It is well-known that if y ∈ Zd,
y �= 0 is chosen such that�� λy /∈// Zd for any 0 < λ < 1 (i.e. y is a primitive
lattice point), then

max
x∈K

〈x, y〉 −min
x∈K

〈x, y〉

is equal to the Euclidean width of K in the direction y divided by the
Euclidean distance between two consecutive lattice hyperplanes of Zd that
are orthogonal to y. Thus, if K is the convex hull of finitely many points
of Zd, then

max
x∈K

〈x, y〉 −min
x∈K

〈x, y〉

is an integer namely, it is less by one than the number of lattice hyperplanes
of Zd that intersect K and are orthogonal to y. Now, we are ready to state
the following conjecture of Hausel and the author ([13]).
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Conjecture 4.1. Let K be a convex body in Ed. Let H1, . . . , HNH be
hyperplanes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

HiHH .

Then
N ≥ w(K,Zd)− d.

Properly translated copies of cross-polytopes, described in [13], show
that if true, then the above inequality is best possible.

The special case, when N = 0, is of independent interest. (In particular,
this case seems to be “responsible” for the term d in the inequality of
Conjecture 4.1.) Namely, it seems reasonable to conjecture (see also [6]) that
if K is an integer point free convex body in Ed, then w(K,Zd) ≤ d. On the
one hand, this has been proved by Banaszczyk [5] for ellipsoids. On the other
hand, for general convex bodies containing no integer points, Banaszczyk,
Litvak, Pajor and Szarek [6] have proved the inequality w(K,Zd) ≤ C · d 3

2 ,
where C is an absolute positive constant. This improves an earlier result of
Kannan and Lovasz [29].´

Although Conjecture 4.1 is still open we have the following partial
results published recently. Improving the estimates of [13], Talata [34] has
succeeded in deriving a proof of the following inequality.

Theorem 4.2. Let K be a convex body in Ed. Let H1, . . . , HNH be hyper-
planes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

HiHH .

Then

N ≥ c · w(K,Zd)

d
− d,

where c is an absolute positive constant.

In the paper [16], Litvak and the author have shown that the plank
theorem of Ball [2] implies a slight improvement on the above inequality for
centrally symmetric convex bodies whose lattice width is at most quadratic
in dimension. (Actually, this approach is different from Talata’s technique
and can lead to a somewhat even stronger inequality in terms of the relevant
basic measure of the given convex body. For more details on this we refer
the interested reader to [16].)
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Theorem 4.3. Let K be a centrally symmetric convex body in Ed. Let H1,
. . . , HNH be hyperplanes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

HiHH .

Then

N ≥ c · w(K,Zd)

d ln(d+ 1)
,

where c is an absolute positive constant.

Motivated by Conjecture 4.1 and by a conjecture of Corzatt [23] (ac-
cording to which if in the plane the integer points of a convex domain can
be covered by N lines, then those integer points can also be covered by N
lines having at most four different slopes) Brass [20] has raised the following
related question.

Problem 4.4. For every positive integer d find the smallest constant c(d)
such that if the integer points of a convex body in Ed can be covered by N
hyperplanes, then those integer points can also be covered by c(d)·N parallel
hyperplanes.

Theorem 4.2 implies that c(d) ≤ c·d2 for convex bodies in general and for
centrally symmetric convex bodies Theorem 4.3 yields the somewhat better
upper bound c · d ln(d + 1). As a last note we mention that the problem
of finding good estimates for the constants of Theorems 4.2 and 4.3 is an
interesting open question as well.
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5. Partial Coverings by Planks

It seems that the following variant of Tarski’s plank problem hasn’t yet
been considered: Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let w1 > 0, w2 > 0, . . . , wn > 0 be given with w1+w2+ · · ·+wn <
w. Then find the arrangement of n planks say, of P1,P2, . . . ,Pn, of width
w1, w2, . . . , wn in Ed such that their union covers the largest volume subset
of C, that is, for which vold((P1∪P2∪· · ·∪Pn)∩C) is as large as possible.
As the following special case is the most striking form of the above problem,
we are putting it forward as the main question of this section.

Problem 5.1. Let Bd denote the unit ball centered at the origin o in Ed.
Moreover, let w1, w2, . . . , wn be positive real numbers satisfying the inequal-
ity w1 + w2 + · · · + wn < 2. Then prove or disprove that the union of the
planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn in Ed covers the largest vol-
ume subset of Bd if and only if P1 ∪ P2 ∪ · · · ∪ Pn is a plank of width
w1 + w2 + · · ·+ wn with o as a center of symmetry.

As an immediate remark we note that it would not come as a surprise to
us if it turned out that the answer to Problem 5.1 is positive in proper low
dimensions and negative in (sufficiently) high dimensions. In what follows
we discuss some partial results.

Clearly, there is an affirmative answer to Problem 5.1 for n = 1. Also, we
have the following positive results. For the sake of completeness we include
their short proofs.

Theorem 5.2. If P1 and P2 are planks in Ed, d ≥ 2 of width w1 and w2

having 0 < w1 + w2 < 2, then P1 ∪ P2 covers the largest volume subset
of Bd if and only if P1 ∪P2 is a plank of width w1 + w2 possessing o as a
center of symmetry.

Proof. The following is an outline of a quite elementary proof. First, let
us consider the case when P1 and P2 are planks in E2 of width w1 and w2

having 0 < w1 + w2 < 2. We say, that (P1 ∪P2) ∩B2 is a crossing subset
of B2, if B2 \ (P1 ∪P2) consists of 4 connected components. Now, it is not
hard to see that among the crossing subsets (resp., non-crossing subsets)
the only extremal configuration with respect to maximizing the area is the
one with P1 and P2 being perpendicular to each other and having o as a
center of symmetry (resp., the one with P1 ∪P2 being a plank of width
w1 + w2 and having o as a center of symmetry). Second, it is easy to check
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that between the two critical configurations the non-crossing one possesses
a larger area, finishing the proof Theorem 5.2 for d = 2. Finally, if P1 and
P2 are planks in Ed, d ≥ 3 of width w1 and w2 having 0 < w1 + w2 < 2,
then an application of the 2-dimensional case of Theorem 5.2, just proved,
to the 2-dimensional flats of Ed that are parallel to the normal vectors of
P1 and P2 followed by an integration of the areas of the corresponding sets
sitting on the 2-flats in question, yield the desired claim.

Theorem 5.3. Let w1, w2, . . . , wn be positive real numbers satisfying the in-
equality w1+w2+· · ·+wn < 2. Then the union of the planks P1,P2, . . . ,Pn

of width w1, w2, . . . , wn in E3 covers the largest volume subset of B3 if and
only if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn with o as
a center of symmetry.

Proof. Let P1,P2, . . . ,Pn be an arbitrary family of planks of width w1, w2,
. . . , wn in E3 and let P be a plank of width w1 + w2 + · · · + wn with o
as a center of symmetry. Moreover, let S(x) denote the sphere of radius
x centered at o. Now, recall the well-known fact that if P(y) is a plank
of width y whose both boundary planes intersect S(x), then sarea(S(x) ∩
P(y)) = 2πxy, where sarea( . ) refers to the surface area measure on S(x).
This implies in a straightforward way that

sarea[(P1 ∪P2 ∪ · · · ∪Pn) ∩ S(x)] ≤ sarea(P ∩ S(x)),

and so,

vol3((P1 ∪P2 ∪ · · · ∪Pn) ∩B3)

=

∫ 1

0

∫∫
sarea[(P1 ∪P2 ∪ · · · ∪Pn) ∩ S(x)] dx

≤
∫ 1

0

∫∫
sarea(P ∩ S(x)) dx = vol3(P ∩B3),

finishing the proof of the “if” part of Theorem 5.3. Actually, a closer look
of the above argument gives a proof of the “only if” part as well.

As an immediate corollary we get the following statement.

Corollary 5.4. If P1, P2 and P3 are planks in Ed, d ≥ 3 of widths w1,
w2 and w3 satisfying 0 < w1 + w2 + w3 < 2, then P1 ∪P2 ∪P3 covers the
largest volume subset of Bd if and only if P1 ∪P2 ∪P3 is a plank of width
w1 + w2 + w3 having o as a center of symmetry.
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Proof. Indeed an application of Theorem 5.3 to the 3-dimensional flats
of Ed that are parallel to the normal vectors of P1, P2 and P3 followed by
an integration of the volumes of the corresponding sets lying in the 3-flats
in question, yield the desired claim.

In general, we have the following estimate that one can derive from
Bang’s paper [8] as follows. In order to state it properly we introduce two
definitions.

Definition 5.5. Let C be a convex body in Ed and let m be a positive
integer. Then let T mTTCTT ,d denote the family of all sets in Ed that can be obtained

as the intersection of at most m translates of C in Ed.

Definition 5.6. Let C be a convex body of minimal width w > 0 in Ed and
let 0 < x ≤ w be given. Then for any non-negative integer n let

vd(C, x, n) := min{vold(Q) | Q ∈ T 2n

CTT ,d and w(Q) ≥ x}.

Now, we are ready to state the theorem which although was not pub-
lished by Bang in [8], it follows from his proof of Tarski’s plank conjecture.

Theorem 5.7. Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed with
w0 = w1 + w2 + · · ·+ wn < w. Then

vold(C \ (P1 ∪P2 ∪ · · · ∪Pn)) ≥ vd(C, w − w0, n),

that is

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩C) ≤ vold(C)− vd(C, w − w0, n).

Clearly, the first inequality above implies (via an indirect argument)
that if the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn cover the convex
bodyC in Ed, then w1+w2+· · ·+wn ≥ w. Also, as an additional observation
we mention the following statement, that on the one hand, can be derived
from Theorem 5.7 in a straightforward way, on the other hand, represents
the only case when the estimate in Theorem 5.7 is sharp.

Corollary 5.8. Let T be an arbitrary triangle of minimal width (i.e. of
minimal height) w > 0 in E2. Moreover, let w1, w2, . . . , wn be positive real
numbers satisfying the inequality w1+w2+ · · ·+wn < w. Then the union of
the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn in E2 covers the largest
area subset of T if P1∪P2∪· · ·∪Pn is a plank of width w1+w2+ · · ·+wn

sitting on the side of T with height w.
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6. Linking the Kakeya–Pál and the Blaschke–Lebesgue´

Problems to the Partial Covering Problem

Recall that the Kakeya–P´l problem´ is about minimizing the volume of
convex bodies of given minimal width w > 0 in Ed. For short reference let
Kw,d

KP denote any of the minimal volume convex bodies in the Kakeya–Pál´
problem. (Actually, Kakeya phrased his question in 1917 as follows: what
is the smallest area of a convex set within which one can rotate a needle
by 180◦.) Pál [31] has solved this problem for´ d = 2 by showing that the
smallest area convex domain of minimal width w > 0 is a regular triangle
of height w. As it is well-known, the Kakeya–Pál problem is unsolved in´
higher dimensions (for more details on this see for example [21]). Thus, the
following is an immediate corollary of Theorem 5.7.

Corollary 6.1. Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed with
w0 = w1 + w2 + · · ·+ wn < w. Then

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩C) ≤ vold(C)− vold(K
w−w0,d
KP ).

It seems that the best lower bound for the Kakeya–Pál problem is
due to Firey [24] claiming that vold(K

w,d
KP ) ≥ f(d)wd with f(d) = 2√

3·d! .

Corollary 6.1 suggests to further investigate and improve Firey’s inequality
for d ≥ 3. (For d = 2 the inequality in question is identical to Pál’s result
[31] and so, it is optimal.) Here, we claim the following improvement.

Theorem 6.2. Let C be a convex body of minimal width w > 0 in Ed.

Moreover, for each odd integer d ≥ 3 let g(d) =
√

3·πd−3·(d+1)!!
2d−2·(d!!)5 and for each

even integer d ≥ 4 let g(d) =
√

3·πd−3·(d+2)!!
(d+1)2·(d!!)2·((d−1)!!)3

.

Then
vold(C) ≥ g(d)wd > f(d)wd

for all d ≥ 3.

Proof. We outline the proof by describing its main idea and by leaving
out the more or less straightforward but somewhat lengthy computations.
First, we need the following result of Steinhagen [33]. Let C be a convex
body of minimal width w > 0 in Ed. Moreover, for each odd integer d ≥ 3

let r(d) = 1
2
√
d
and for each even integer d ≥ 2 let r(d) =

√
d+2

2(d+1) . Then the
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inradius r of C (which is the radius of the largest ball lying in C) is always
at least as large as r(d)w. Second, recall Kubota’s formula [19] according
to which

svold−1(bd(C)) =
1

vold−1(Bd−1)

∫
S

∫∫
d−1

vold−1(C
∣∣∣∣x) dx,

where bd( . ) (resp., svold−1( . )) stands for the boundary (resp., (d − 1)-
dimensional surface volume) of the corresponding set and Sd−1 = bd(Bd)
moreover, C | x denotes the orthogonal projection of C onto the hyperplane
passing through o with normal vector x and the integration on Sd−1 is
with respect to the surface area measure. Thus, Steinhagen’s theorem and
Kubota’s formula imply in a straightforward way

vold(C) ≥ r(d)w

d
svold−1(bd(C)) ≥ r(d)w vold(B

d)

vold−1(Bd−1)
min

x∈Sd−1
{vold−1(C | x)}.

Finally, as C
∣∣∣∣x is a (d − 1)-dimensional convex body of minimal width

at least w for all x ∈ Sd−1, therefore the above inequality, repeated in a
recursive way for lower dimensions, leads to the desired inequality claimed
in Theorem 6.2.

Remark 6.3. For comparison we mention that g(3) = 2
9 = 0.2222 · · · >

f(3) = 1
3
√
3
= 0.1924 . . . (resp., g(4) =

√
2π
75 = 0.2894 · · · > f(4) = 1

12
√
3
=

0.0481 . . . ). Also, recall that Heil [26] has constructed a convex body in E3

of minimal width 1 and of volume 0.298 . . . .

Corollary 6.1 can be further improved when C is a unit ball and the sum
of the widths of the planks is at most one. The details are as follows.

First, recall that the Blaschke–Lebesgue problem is about finding the
minimum volume convex body of constant width w > 0 in Ed. In particular,
the Blaschke–Lebesgue theorem states that among all convex domains of
constant width w, the Reuleaux triangle of width w has the smallest area,
namely 1

2

(
π−

√
3
)
w2. W. Blaschke [18] and H. Lebesgue [30] were the first

to show this and the succeding decades have seen other works published on
different proofs of that theorem. For a most recent new proof, and for a
survey on the state of the art of different proofs of the Blaschke–Lebesgue
theorem, see the elegant paper of E. M. Harrell [25]. Here we note that
the Blaschke–Lebesgue problem is unsolved in three and more dimensions.
Even finding the 3-dimensional set of least volume presents formidable
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difficulties. On the one hand, Chakerian [22] proved that any convex body

of constant width 1 in E3 has volume at least
π(3

√
6−7)
3 = 0.365 . . . . On

the other hand, it has been conjectured by Bonnesen and Fenchel [19] that
Meissner’s 3-dimensional generalizations of the Reuleaux triangle of volume
π(23 − 1

4

√
3 arccos (13)) = 0.420 . . . are the only extramal sets in E3.

For our purposes it will be useful to introduce the notation Kw,d
BL (resp.,

K
w,d
BL) for a convex body of constant width w in Ed having minimum volume

(resp., surface volume). One may call Kw,d
BL (resp., K

w,d
BL) a Blaschke–

Lebesgue-type convex body with respect to volume (resp., surface volume).

Note that for d = 2, 3 one may choose Kw,d
BL = K

w,d
BL however, this is likely

not to happen for d ≥ 4. (For more details on this see [22].) As an important
note we mention that Schramm [32] has proved the inequality

vold(K
w,d
BL) ≥

(√
3 +

2

d+ 1
− 1

)d(w

2

)d

vold(B
d),

which gives the best lower bound for all d > 4. By observing that the
orthogonal projection of a convex body of constant width w in Ed onto any
hyperplane of Ed is a (d− 1)-dimensional convex body of constant width w
one obtains from the previous inequality of Schramm the following one:

svold−1(bd(K
w,d
BL)) ≥ d

(√
3 +

2

d
− 1

)d−1(w

2

)d−1

vold(B
d).

Second, let us recall that if X is a finite (point) set lying in the interior
of a unit ball in Ed, then the intersection of the (closed) unit balls of Ed

centered at the points of X is called a ball-polyhedron and it is denoted
by B[X]. (For an extensive list of properties of ball-polyhedra see the
recent paper [15].) Of course, it also makes sense to introduce B[X] for
sets X that are not finite but in those cases we get sets that are typically
not ball-polyhedra.

Now, we are ready to state our theorem.

Theorem 6.4. Let B[X] ⊂ Ed be a ball-polyhedron of minimal width x
with 1 ≤ x < 2. Then

vold(B[X]) ≥ vold(K
2−x,d
BL )+svold−1(bd(K

2−x,d
BL ))·(x−1)+vold(B

d)·(x−1)d.



Tarski’s Plank Problem Revisited 59

Proof. Recall that if X is finite set lying in the interior of a unit ball in Ed,
then we can talk about its spindle convex hull convs(X), which is simply the
intersection of all (closed) unit balls of Ed that contain X (for more details
see [15]). The following statement can be obtained by combining Corollary
3.4 of [15] and Proposition 1 of [14].

Lemma 6.5. Let X be a finite set lying in the interior of a unit ball in Ed.
Then

(i) convs(X) = B
[
B[X]

]
and therefore B[X] = B

[
convs(X)

]
;

(ii) the Minkowski sum B[X] + convs(X) is a convex body of constant
width 2 in Ed and so, w(B[X])+diam

(
convs(X)

)
= 2, where diam( . )

stands for the diameter of the corresponding set in Ed.

By part (ii) of Lemma 6.5, diam
(
convs(X)

)
≤ 2− x. This implies, via

a classical theorem of convexity (see for example [19]), the existence of a
convex body L of constant width (2− x) in Ed with convs(X) ⊂ L. Hence,
using part (i) of Lemma 6.5, we get that B[L] ⊂ B[X] = B

[
convs(X)

]
.

Finally, notice that as L is a convex body of constant width (2− x) therefore
B[L] is in fact, the outer-parallel domain of L having radius (x− 1) (that
is B[L] is the union of all d-dimensional (closed) balls of radii (x− 1) in Ed

that are

vold(B[X]) ≥ vold
(
B[L]

)
= vold(L) + svold−1(bd(L)) · (x− 1) + vold(B

d) · (x− 1)d.

The inequality above together with the following obvious ones

vold(L) ≥ vold(K
2−x
BLd

) and svold−1(bd(L)) ≥ svold−1(bd(K
2−x
BLd

))

imply Theorem 6.4 in a straightforward way.

Thus, Theorem 5.7 and Theorem 6.4 imply the following immediate
estimate.

Corollary 6.6. Let Bd denote the unit ball centered at the origin o in Ed,
d ≥ 2. Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed

with w0 = w1 + w2 + · · ·+ wn ≤ 1. Then

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩Bd) ≤ vold(B
d)− vd(B

d, 2− w0, n)

≤
(
1− (1− w0)

d
)
vold(B

d)− vold(K
w0,d
BL )− svold−1(bd(K

w0,d
BL )) ·

(
1− w0)

Corollary 6.6 leaves open the following question (even in dimension two).
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Problem 6.7. Improve the upper bound of Corollary 6.1 for the unit ball
when 1 < w0 < 2.

7. Strengthening the Plank Theorems of Ball and Bang

Recall that Ball ([2]) generalized the plank theorem of Bang ([7], [8]) for
coverings of balls by planks in Banach spaces (where planks are defined
with the help of linear functionals instead of inner product). This theorem
was further strengthened by Kadets [28] for real Hilbert spaces as follows.
Let C be a closed convex subset with non-empty interior in the real Hilbert
space H (finite or infinite dimensional). We call C a convex body of H. Then
let r(C) denote the supremum of the radii of the balls contained in C. (One
may call r(C) the inradius of C.) Planks and their widths in H are defined
with the help of the inner product of H in the usual way. Thus, if C is a
convex body in H and P is a plank of H, then the width w(P) of P is always
at least as large as 2r(C∩P). Now, the main result of [28] is the following.

Theorem 7.1. Let the ball B of the real Hilbert space H be covered by the
convex bodies C1,C2, . . . ,Cn in H. Then

n∑
i=1

r(Ci ∩B) ≥ r(B).

We note that an independent proof of the 2-dimensional Euclidean case
of Theorem 7.1 can be found in [12]. Kadets ([28]) proposes to investigate
the analogue of Theorem 7.1 in Banach spaces. Thus, an affirmative answer
to the following problem would improve the plank theorem of Ball.

Problem 7.2. Let the ball B be covered by the convex bodies C1,C2, . . . ,
Cn in an arbitrary Banach space. Prove or disprove that

n∑
i=1

r(Ci ∩B) ≥ r(B).

It is well-known that Bang’s plank theorem holds in complex Hilbert
spaces as well. However, for those spaces Ball [4] was able to prove the
following much stronger theorem. (In fact, [4] was published a number of
years before [28].)
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Theorem 7.3. If the planks of widths w1, w2, . . . , wn cover a ball of diam-
eter w in a complex Hilbert space, then

n∑
i=1

w2
i ≥ w2.

In order to complete the picture on plank-type results (from the point of
view of discrete geometry) in spaces other than Euclidean we mention the
statement below, proved by Schneider and the author [17]. It is an extension
of Theorem 7.1 for coverings of large balls in spherical spaces. Needless to
say that it would be desirable to extend some other plank-type results as
well to spherical spaces.

Theorem 7.4. If the spherically convex bodies K1,K2, . . . ,Kn with inradii
r(K1), r(K2), . . . , r(Kn) cover the spherical ball of radius r(B) ≥ π

2 in a
spherical space, then

n∑
i=1

r(Ki) ≥ r(B).

We close our survey with another strengthening of the plank theorem
of Bang in E2. Namely, in [11], by proving some partial results, A. Bezdek
asked which convex domains in E2 have the property that whenever an
annulus consisting of the domain less a sufficiently small scaled copy of
itself, is covered by planks the sum of the widths of the planks must still
be at least the minimal width of the domain. In [35], White and Wisewell
characterized the polygons for which this is so. However, the following
perhaps most striking case of A. Bezdek’s conjecture remains open.

Conjecture 7.5. Let B be a unit disk in E2. Then there exists an ε > 0
such that if εB lies in the interior of B and the annulus B \ εB is covered
by finitely many planks, then the sum of the widths of the planks is at least
two.

Acknowledgements. The author wishes to thank the referee for the de-
tailed comments on an earlier version of this paper.
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