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Conflict-Free Coloring and its Applications

SHAKHAR SMORODINSKY

Let H = (V,E) be a hypergraph. A conflict-free coloring of H is an assignment
of colors to V such that, in each hyperedge e ∈ E, there is at least one uniquely-
colored vertex. This notion is an extension of the classical graph coloring. Such
colorings arise in the context of frequency assignment to cellular antennae, in
battery consumption aspects of sensor networks, in RFID protocols, and several
other fields. Conflict-free coloring has been the focus of many recent research
papers. In this paper, we survey this notion and its combinatorial and algorithmic
aspects.

1. Introduction

1.1. Notations and Definitions

In order to introduce the main notion of this paper, we start with several
basic definitions: Unless otherwise stated, the term log denotes the base 2
logarithm.

A hypergraph is a pair (V, E) where V is a set and E is a collection of
subsets of V . The elements of V are called vertices and the elements of E are
called hyperedges. When all hyperedges in E contain exactly two elements
of V then the pair (V, E) is a simple graph. For a subset V ′ ⊂ V refer to the
hypergraph H(V ′) = (V ′, {S ∩ V ′|S ∈ E}) as the sub-hypergraph induced
by V ′. A k-coloring, for some k ∈ N, of (the vertices of) H is a function
ϕ : V → {1, . . . , k}. Let H = (V, E) be a hypergraph. A k-coloring ϕ of H
is called proper or non-monochromatic if every hyperedge e ∈ E with |e| ≥ 2
is non-monochromatic. That is, there exists at least two vertices x, y ∈ e
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such that ϕ(x) �=�� ϕ(y). Let χ(H) denote the least integer k for which H
admits a proper coloring with k colors.

In this paper, we focus on the following colorings which are more restric-
tive than proper coloring:

Definition 1.1 (Conflict-Free and Unique-Maximum Colorings). Let H =
(V, E) be a hypergraph and let C : V → {1, . . . , k} be some coloring of H.
We say that C is a conflict-free coloring (CF-coloring for short) if every
hyperedge e ∈ E contains at least one uniquely colored vertex. More
formally, for every hyperedge e ∈ E there is a vertex x ∈ e such that
∀y ∈ e, y �=�� x ⇒ C(y) �=�� C(x). We say that C is a unique-maximum
coloring (UM-coloring for short) if the maximum color in every hyperedge
is unique. That is, for every hyperedge e ∈ E ,

∣∣∣∣e ∩ C−1(maxv∈eC(v))
∣∣∣∣ = 1.

Let χcf(H) (respectively, χum(H)) denote the least integer k for whichH
admits a CF-coloring (respectively, a UM-coloring) with k colors. Obviously,
every UM-coloring of a hypergraph H is also a CF-coloring of H, and every
CF-coloring of H is also a proper coloring of H. Hence, we have the followng
inequalities:

χ(H) ≤ χcf(H) ≤ χum(H).

Notice that for simple graphs, the three notions of coloring (non-monochro-
matic, CF and UM) coincide. Also, for 3-uniform hypergraphs (i.e., every
hyperedge has cardinality 3), the two first notions (non-monochromatic and
CF) coincide. However, already for 3-uniform hypergraphs there can be an
arbitrarily large gap between χcf(H) and χum(H). Consider, for example,
two sets A and B each of cardinality n > 1. Let H = (A ∪ B, E) where E
consists of all triples of elements e such that e∩A �=�� ∅ and e∩B �=�� ∅. In other
words E consists of all triples containing two elements from one of the sets
A or B and one element from the other set. It is easily seen that χcf(H) = 2
by simply coloring all elements of A with 1 and all elements of B with 2. It
is also not hard to verify that χum(H) ≥ n (in fact χum(H) = n+1). Indeed,
let C be a UM-coloring of H. If all elements of A are colored with distinct
colors we are done. Otherwise, there exist two elements u, v in A with the
same color, say i. We claim that all elements of B are colored with colors
greater than i. Assume to the contrary that there is an element w ∈ B with
color C(w) = j ≤ i. However, in that case the hyperedge {u, v, w} does not
have the unique-maximum property. Hence all colors of B are distinct for
otherwise if there are two vertices w1, w2 with the same color, again the
hyperedge {w1, w2, u} does not have the unique-maximum property.
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Let us describe a simple yet an important example of a hypergraph H
and analyze its chromatic number χ(H) and its CF-chromatic number
χcf(H). The vertices of the hypergraph consist of the first n integers
[n] = {1, . . . , n}. The hyperedge-set is the set of all (non-empty) subsets
of [n] consisting of consecutive elements of [n], e.g., {2, 3, 4}, {2}, the set [n],
etc. We refer to such hypergraphs as hypergraphs induced by points on
the line with respect to intervals or as the discrete intervals hypergraph.
Trivially, we have χ(H) = 2. We will prove the following proposition:

Proposition 1.2. χcf(H) = χum(H) = �log n�+ 1.

Proof. First we prove that χum(H) ≤ �log n�+ 1. Assume without loss of
generality that n is of the form n = 2k − 1 for some integer k. If n < 2k − 1
then we can add the vertices n+1, n+2, . . . , 2k−1 and this can only increase
the UM-chromatic number. In this case we will see that χum(H) ≤ k and
that for n ≥ 2k χcf(H) ≥ k + 1. The proof is by induction on k. For
k = 1 the claim holds trivially. Assume that the claim holds for some
integer k and let n = 2k+1 − 1. Consider the median vertex 2k and color it
with a unique (maximum color), say k + 1, not to be used again. By the
induction hypothesis, the set of elements to the right of 2k, namely the set
{2k + 1, 2k + 2, . . . , 2k+1 − 1} can be colored with k colors, say ‘1’, ‘2’, . . . ,
‘k’, so that any of its subsets of consecutive elements has unique maximum
color. The same holds for the set of elements to the left of 2k. We will
use the same set of k colors for the right set and the left set (and color the
median with the unique color ‘k+1’). It is easily verified that this coloring
is indeed a UM-coloring for H. Thus we use a total of k+1 colors and this
completes the induction step.

Next, we need to show that for n ≥ 2k we have χcf(H) ≥ k + 1. Again,
the proof is by induction on k. The base case k = 0 is trivial. For the
induction step, let k > 0 and put n = 2k. Let C be some CF-coloring of
the underlying discrete intervals hypergraph. Consider the hyperedge [n].
There must be a uniquely colored vertex in [n]. Let x be this vertex. Either
to the right of x or to its left we have at least 2k−1 vertices. That is, there
is a hyperedge S ⊂ [n] that does not contain x such that |S| ≥ 2k−1, so,
by the induction hypothesis, any CF-coloring for S uses at least k colors.
Thus, together with the color of x, C uses at least k+1 colors in total. This
completes the induction step.

The notion of CF-coloring was first introduced and studied in [47]
and [25]. This notion attracted many researchers and has been the focus of
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many research papers both in the computer science and mathematics com-
munities. Recently, it has been studied also in the infinite settings of the
so-called almost disjoint set systems by Hajnal et al. [27]. In this survey, we
mostly consider hypergraphs that naturally arise in geometry. These come
in two types:

• Hypergraphs induced by regions: Let R be a finite collection
of regions (i.e., subsets) in Rd, d ≥ 1. For a point p ∈ Rd, define
r(p) = {R ∈ R : p ∈ R}. The hypergraph (R, {r(p)}p∈Rd), denoted
H(R), is called the hypergraph induced by R. Since R is finite, so is
the power set 2R. This implies that the hypergraph H(R) is finite as
well.

• Hypergraphs induced by points with respect to regions: Let
P ⊂ Rd and let R be a family of regions in Rd. We refer to the hyper-
graph HRHH (P ) = (P, {P ∩ S | S ∈ R}) as the hypergraph induced by P
with respect to R. When R is clear from the context we sometimes
refer to it as the hypergraph induced by P . In the literature, hyper-
graphs that are induced by points with respect to geometric regions
of some specific kind are sometimes referred to as range spaces.

Definition 1.3 (Delaunay-Graph). For a hypergraph H = (V, E), denote
by G(H) the Delaunay-graph of H which is the graph (V, {S ∈ E | |S| = 2}).

In most of the coloring solutions presented in this paper we will see
that, in fact, we get the stronger UM-coloring. It is also interesting to
study hypergraphs for which χcf(H) < χum(H). This line of research has
been pursued in [15, 17]

1.2. Motivation

We start with several motivations for studying CF-colorings and UM-
colorings.

1.2.1. Wireless Networks. Wireless communication is used in many dif-
ferent situations such as mobile telephony, radio and TV broadcasting, satel-
lite communication, etc. In each of these situations a frequency assignment
problem arises with application-specific characteristics. Researchers have
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developed different modeling approaches for each of the features of the prob-
lem, such as the handling of interference among radio signals, the availability
of frequencies, and the optimization criterion.

The work of Even et al. [25] and of Smorodinsky [47] proposed to model
frequency assignment to cellular antennas as CF-coloring. In this new
model, one can use a very “small” number of distinct frequencies in total, to
assign to a large number of antennas in a wireless network. Cellular networks
are heterogeneous networks with two different types of nodes: base-stations
(that act as servers) and clients. The base-stations are interconnected by
an external fixed backbone network. Clients are connected only to base
stations; connections between clients and base-stations are implemented by
radio links. Fixed frequencies are assigned to base-stations to enable links
to clients. Clients, on the other hand, continuously scan frequencies in
search of a base-station with good reception. This scanning takes place
automatically and enables smooth transitions between base-stations when a
client is mobile. Consider a client that is within the reception range of two
base stations. If these two base stations are assigned the same frequency,
then mutual interference occurs, and the links between the client and each
of these conflicting base stations are rendered too noisy to be used. A base
station may serve a client provided that the reception is strong enough and
interference from other base stations is weak enough. The fundamental
problem of frequency assignment in cellular network is to assign frequencies
to base stations so that every client is served by some base station. The
goal is to minimize the number of assigned frequencies since the available
spectrum is limited and costly.

The problem of frequency assignment was traditionally treated as a
graph coloring problem, where the vertices of the graph are the given set
of antennas and the edges are those pairs of antennas that overlap in their
reception range. Thus, if we color the vertices of the graph such that no two
vertices that are connected by an edge have the same color, we guarantee
that there will be no conflicting base stations. However, this model is too
restrictive. In this model, if a client lies within the reception range of say, k
antennas, then every pair of these antennas are conflicting and therefore
they must be assigned k distinct colors (i.e., frequencies). But note that if
one of these antennas is assigned a color (say 1) that no other antenna is
assigned (even if all other antennas are assigned the same color, say 2) then
we use a total of two colors and this client can still be served. See Figure 1
for an illustration with three antennas.
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Fig. 1. An example of three antennas presented as discs in the plane. In the classical
model three distinct colors are needed where as in the new model two colors are enough

as depicted here

A natural question thus arises: Suppose we are given a set of n antennas.
The location of each antenna (base station) and its radius of transmission is
fixed and is known (and is modeled as a disc in the plane). We seek the least
number of colors that always suffice such that each of the discs is assigned
one of the colors and such that every covered point p is also covered by some
disc D whose assigned color is distinct from all the colors of the other discs
that cover p. This is a special case of CF-coloring where the underlying
hypergraph is induced by a finite family of discs in the plane.

1.2.2. RFID networks. Radio frequency identification (RFID) is a tech-
nology where a reader device can “sense” the presence of a close by object by
reading a tag device attached to the object. To improve coverage, multiple
RFID readers can be deployed in the given region. RFID systems consist of
readers and tags. A tag has an ID stored in its memory. The reader is able
to read the IDs of the tags in the vicinity by using wireless protocol. In a
typical RFID application, tags are attached to objects of interest, and the
reader detects the presence of an object by using an available mapping of
IDs to objects. We focus on passive tags i.e., tags that do not carry a bat-
tery. The power needed for passive tags to transmit their IDs to the reader
is supplied by the reader itself. Assume that we are given a set D of readers
where each reader is modeled by some disc in the plane. Let P be a set of
tags (modeled as points) that lie in the union of the discs in D. Suppose
that all readers in D use the same wireless frequency. For the sake of sim-
plicity, suppose also that each reader is only allowed to be activated once.
The goal is to schedule for each reader d ∈ D a time slot t(d) for which the
reader d will be active. That is, at time t(d) reader d would initiate a ‘read’
action. We further assume that a given tag p ∈ P can be read by reader
d ∈ D at time t if p ∈ d and d is initiating a ‘read’ action at time t (namely,
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t = t(d)) and no other reader d′ for which p ∈ d′ is active at time t. We say
that P is read by our schedule, if for every p ∈ P there is at least one d ∈ D
and a time t such that p is read by d at time t. Obviously, we would like to
minimize the total time slots used in the schedule. Thus our goal is to find a
function t : D → {1, . . . , k} which is conflict-free for the hypergraph H(D).
Since we want to minimize the total time slots used, again the question of
what is the minimum number of colors that always suffice to CF-color any
hypergraph induced by a finite set of n discs is of interest.

1.2.3. Vertex ranking. Let G = (V,E) be a simple graph. An or-
dered coloring (also a vertex ranking) of G is a coloring of the vertices
χ : V → {1, . . . , k} such that whenever two vertices u and v have the same
color i then every simple path between u and v contains a vertex with color
greater than i. Such a coloring has been studied before and has several
applications. It was studied in the context of VLSI design [46] and in the
context of parallel Cholesky factorization of matrices [37]. The vertex rank-
ing problem is also interesting for the Operations Research community. It
has applications in planning efficient assembly of products in manufacturing
systems [31]. In general, it seems that the vertex ranking problem can model
situations where inter-related tasks have to be accomplished fast in parallel,
with some constrains (assembly from parts, parallel query optimization in
databases, etc.). See also [32, 45]

The vertex ranking coloring is yet another special form of UM-coloring.
Given a graph G, consider the hypergraph H = (V,E′) where a subset
V ′ ⊆ V is a hyperedge in E′ if and only if V ′ is the set of vertices in some
simple path of G. It is easily observed that an ordered coloring of G is
equivalent to a UM-coloring of H.

1.3. A General Conflict-Free coloring Framework

Let P be a set of n points in R2 and let D be the set of all planar discs.
In [25, 47] it was proved that χum(HDHH (P )) = O(log n) and that this bound
is asymptotically tight since for any n ∈ N there exist hypergraphs induced
by sets of n points in the plane (w.r.t discs) which require Ω(log n) in any
CF-coloring. In fact, Pach and Tóth [43] proved a stronger lower-bound by
showing that for any set P of n points it holds that χcf(HDHH (P )) = Ω(log n).
The proofs of [25, 47] are algorithmic and rely on two crucial properties:
The first property is that the Delaunay graph G(HDHH (P )) always contains a
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“large” independent set. The second is the following shrinkability property
of discs: For every disc d containing a set of i ≥ 2 points of P there is
another disc d′ such that d′ ∩ P ⊆ d ∩ P and |d′ ∩ P | = 2.

In [25, 47] it was also proved that, if D is a set of n discs in the plane,
then χum(H(D)) = O(log n). This bound was obtained by a reduction to
a three-dimensional problem of UM-coloring a set of n points in R3 with
respect to lower half-spaces. Later, Har-Peled and Smorodinsky [28] gener-
alized this result to pseudo-discs using a probabilistic argument. Pach and
Tardos [40] provided several non-trivial upper-bounds on the CF-chromatic
number of arbitrary hypergraphs. In particular they showed that for every
hypergraph H with m hyperedges

χcf(H) ≤ 1/2 +
√
2m+ 1/4.

Smorodinsky [48] introduced the following general framework for UM-
coloring any hypergraph. This framework holds for arbitrary hypergraphs
and the number of colors used is related to the chromatic number of the
underlying hypergraph. Informally, the idea is to find a proper coloring
with very ‘few’ colors and assign to all vertices of the largest color class the
final color ‘1’, discard all the colored elements and recursively continue on
the remaining sub-hypergraph. See Algorithm 1 below.

Algorithm 1 UMcolor(H): UM-coloring of a hypergraph H = (V, E).
1: i← 0: i denotes an unused color
2: while V �=�� ∅ do
3: Increment: i← i+ 1
4: Auxiliary coloring: find a proper coloring χ of the induced sub-

hypergraph H(V ) with “few” colors
5: V ′ ← Largest color class of χ
6: Color: f(x)← i , ∀x ∈ V ′

7: Prune: V ← V \ V ′

8: end while

Theorem 1.4 ([48]). Algorithm 1 outputs a valid UM-coloring of H.

Proof. Formally, Algorithm 1 is not well defined as its output depends on
the auxiliary coloring of step 4 of the algorithm. Nevertheless, we regard
step 4 as given to us by some ‘black’ box and we treat this aspect of the
algorithm later on. For a hyperedge e ∈ E , let i be the maximal index
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(color) for which there is a vertex v ∈ e colored with i. We claim that there
is exactly one such vertex. Indeed, assume to the contrary that there is
another such vertex v′ ∈ e. Consider the ith iteration and let V ′ denote the
set of vertices of V that are colored with color greater or equal to i. Namely,
V ′ is the set of vertices that ‘survived’ all the prune steps up to iteration i
and reached iteration i. Let χ denote the auxiliary proper coloring for the
hypergraph H(V ′) in iteration i. Since e′ = e ∩ V ′ is a hyperedge of H(V ′)
and v and v′ belong to the same color class of χ and v, v′ ∈ e′ and since χ is
a non-monochromatic coloring, there must exist a third vertex v′′ ∈ e′ such
that χ(v′′) �=�� χ(v). This means that the final color of v′′ is greater than i,
a contradiction to the maximality of i in e. This completes the proof of the
theorem.

The number of colors used by Algorithm 1 is the number of iterations
that are performed (i.e., the number of prune steps). This number depends
on the ‘black-box’ auxiliary coloring provided in step 4 of the algorithm. If
the auxiliary coloring χ uses a total of CiCC colors on |ViVV | vertices, where ViVV is
the set of input vertices at iteration i, then by the pigeon-hole principle one
of the colors is assigned to at least |ViVV |

Ci
vertices so in the prune step of the

same iteration at least |ViVV |
Ci

vertices are discarded. Thus, after l iterations of

the algorithm we are left with at most |V | · Πl
i=1(1 − 1

Ci
) vertices. If this

number is less than 1, then the number of colors used by the algorithm is
at most l. If for example CiCC = 2 for every iteration, then the algorithm
discards at least |ViVV |

2 vertices in each iteration so the number of vertices left

after l iterations is at most |V | (1 − 1
2)

l
so for l = �log n� + 1 this number

is less than 1. Thus the number of iterations is bounded by �log n� + 1
where n is the number of vertices of the input hypergraph. In the next
section we analyze the chromatic number χ(H) for several geometrically
induced hypergraphs and use Algorithm 1 to obtain bounds on χum(H).

We note that, as observed above, for a hypergraph H that admits a
proper coloring with “few” colors hereditarily (that is, every induced sub-
hypergraph admits a proper coloring with “few” colors), H also admits a
UM-coloring with few colors. The following theorem summarizes this fact:

Theorem 1.5 ([48]). Let H = (V, E) be a hypergraph with n vertices,
and let k ∈ N be a fixed integer, k ≥ 2. If every induced sub-hypergraph
H ′ ⊆ H satisfies χ(H ′) ≤ k, then χum(H) ≤ log1+ 1

k−1
n = O(k log n).
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Remark 1.6. We note that the parameter k in Theorem 1.5 can be replaced
with a non-constant function k = k(H ′). For example, if k(H ′) = (n′)α

where 0 < α ≤ 1 is a fixed real and n′ is the number of vertices of H ′,
an easy calculation shows that χum(H) = O(nα) where n is the number of
vertices of H.

As we will see, for many of the hypergraphs that are mentioned in this
survey, the two numbers χ(H), χum(H) are only a polylogarithmic (in |V |)
factor apart. For the proof to work, the requirement that a hypergraph H
admits a proper coloring with few colors hereditarily is necessary. One
example is the 3-uniform hypergraph H with 2n vertices given above. We
have χ(H) = 2 and χum(H) = n+1. Obviously H does not admit a proper
2-coloring hereditarily.

2. Conflict-Free Coloring of Geometric Hypergraphs

2.1. Discs and Pseudo-Discs in the Plane

2.1.1. Discs in R2. In [48] it was shown that the chromatic number of a
hypergraph induced by a family of n discs in the plane is bounded by four.
That is, for a finite family D of n discs in the plane we have:

Theorem 2.1 ([48]). χ(H(D)) ≤ 4

Combining Theorem 1.5 and Theorem 2.1 we obtain the following:

Theorem 2.2 ([48]). Let D be a set of n discs in the plane. Then
χum(H(D)) ≤ log4/3 n.

Proof. We use Algorithm 1 and the auxiliary proper four coloring provided
by Theorem 2.1 in each prune step. Thus in each step i we discard at least
|ViVV | /4 discs so the total number of iterations is bounded by log4/3 n.

Remark. The existence of a four coloring provided in Theorem 2.1 is
algorithmic and uses the algorithm provided in the Four-Color Theorem
[8, 9] which runs in linear time. It is easy to see that the total running
time used by algorithm 1 for this case is therefore O(n log n). The bound
in Theorem 2.2 holds also for the case of hypergraphs induced by points
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in the plane with respect to discs. This follows from the fact that such a
hypergraph H satisfies χ(H) ≤ 4. Indeed, the Delaunay graph G(H) is
planar (and hence four colorable) and any disc containing at least 2 points
also contains an edge of G(H) [25].

Smorodinsky [48] proved that there exists an absolute constant C such
that for any family P of pseudo-discs in the plane χ(H(P)) ≤ C. Hence, by
Theorem 1.5 we have χum(H(P)) = O(log n). It is not known what is the
exact constant and it might be possible that it is still 4. By taking 4 pair-
wise (openly-disjoint) touching discs, one can verify that it is impossible to
find a proper coloring of the discs with less than 4 colors.

There are natural geometric hypergraphs which require n distinct colors
even in any proper coloring. For example, one can place a set P of n points
in general position in the plane (i.e., no three points lie on a common line)
and consider those ranges that are defined by rectangles. In any proper
coloring of P (w.r.t rectangles) every two such points need distinct colors
since for any two points p, q there is a rectangle containing only p and q.

One might wonder what makes discs more special than other shapes?
Below, we show that a key property that allows CF-coloring discs with a
“small” number of colors unlike rectangles is the so called “low” union-
complexity of discs.

Definition 2.3. Let R be a family of n simple Jordan regions in the plane.
The union complexity of R is the number of vertices (i.e., intersection of
boundaries of pairs of regions in R) that lie on the boundary ∂

⋃
r∈R r.

As mentioned already, families of discs or pseudo-discs in the plane in-
duce hypergraphs with chromatic number bounded by some absolute con-
stant. The proof of [48] uses the fact that pseudo-discs have “linear union
complexity” [33].

The following theorem bounds the chromatic number of a hypergraph
induced by a finite family of regions R in the plane as a function of the
union complexity of R:

Theorem 2.4 ([48]). Let R be a set of n simple Jordan regions and let
U : N→ N be a function such that U(m) is the maximum union complexity

of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. We assume that U(m)
m

is a non-decreasing function. Then, χ(H(R)) = O(U(n)
n ). Furthermore,

such a coloring can be computed in polynomial time under a proper and
reasonable model of computation.
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As a corollary of Theorem 2.4, for any family R of n planar Jordan
regions for which the union-complexity function U(n) is linear, we have
that χ(H(R)) = O(1). Hence, combining Theorem 2.4 with Theorem 1.5
we have:

Theorem 2.5 ([48]). Let R be a set of n simple Jordan regions and let
U : N → N be a function such that U(m) is the maximum complexity
of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. If R has linear
union complexity in the sense that U(n) ≤ Cn for some constant C, then
χum(H(R)) = O(log n).

2.2. Axis-Parallel rectangles

2.2.1. hypergraphs induced by axis-parallel rectangles. As men-
tioned already, a hypergraph induced by n rectangles in the plane might
need n colors in any proper coloring. However, in the special case of axis-
parallel rectangles, one can obtain non-trivial upper bounds. Notice that
axis-parallel rectangles might have quadratic union complexity so using the
above framework yields only the trivial upper bound of n. Nevertheless,
in [48] it was shown that any hypergraph that is induced by a family of n
axis-parallel rectangles, admits an O(log n) proper coloring. This bound is
asymptotically tight as was shown recently by Pach and Tardos [41].

Theorem 2.6 ([48]). Let R be a set of n axis-parallel rectangles in the
plane. Then χ(H(R)) ≤ 8 log n.

Plugging this fact into Algorithm 1 yields:

Theorem 2.7 ([48]). Let R be a set of n axis-parallel rectangles in the
plane. Then χum(H(R)) = O(log2 n).

Remark. Notice that in particular there exists a family R of n axis-
parallel rectangles for which χcf(H(R)) = Ω(log n). Another example
of a hypergraph H induced by n axis-parallel squares with χ(H) = 2
and χcf(H) = Ω(log n) is given in Figure 2. This hypergraph is, in fact,
isomorphic to the discrete interval hypergraph with n vertices.

Problem 1. Close the asymptotic gap between the best known upper bound
O(log2 n) and the lower bound Ω(log n) on the CF-chromatic number of
hypergraphs induced by n axis-parallel rectangles in the plane.
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Fig. 2. An example of n axis-parallel squares inducing the hypergraph H with χ(H) = 2
and χcf(H) = Ω(log n)

2.2.2. Points with respect to axis-parallel rectangles. Let R be the
family of all axis-parallel rectangles in the plane. For a finite set P in
the plane, let H(P ) denote the hypergraph HRHH (P ). Let D(P ) denote the
Delaunay graph of H(P ). It is easily seen that χ(D(P )) = χ(H(P )) since
every axis-parallel rectangle containing at least two points, also contains an
edge of D(P ).

The following problem seems to be rather elusive:

Problem 2. Let R be the family of all axis-parallel rectangles in the plane.
Let d = d(n) be the least integer such that for any set P of n points in the
plane χ(D(P )) ≤ d(n). Provide sharp asymptotic bounds on d(n).

It was first observed in [28] that d(n) = O(
√
n) by a simple application

of the classical Erdős-Szekeres theorem for a sequence of reals. This the-
orem states that in a sequence of k2 + 1 reals there is always a monotone
subsequence of length at least k + 1 (see, e.g., [52]).

One can show that for any set P of n points in the plane there is a subset
P ′ ⊂ P of size Ω(

√
n) which is independent in the graph D(P ). To see this,

sort the points P = {p1, . . . , pn} according to their x-coordinate. Write
the sequence of y-coordinates of the points in P y1, . . . , yn. By the Erdős-
Szekeres theorem, there is a subsequence yi1 , . . . , yik with k = Ω(

√
n) which

is monotone. We refer to the corresponding subset of P as a monotone
chain. Notice that by taking every other point in the monotone chain, the
set pi1 , pi3 , pi5 , . . . is a subset of size k/2 = Ω(

√
n) which is independent

in D(P ). See Figure 3 for an illustration. In order to complete the coloring
it is enough to observe that one can iteratively partition P into O(

√
n)

independent sets of D(P ).

The bounds on d(n) were recently improved and the best known bounds
are stated below:
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Fig. 3. The circled points form an independent set in the Delaunay graph D(P )

Upper bound: [14] d(n) = Õ(n0.368)

Lower bound: [20] d(n) = Ω( logn
log2 logn).

We give a short sketch of the ideas presented in [3] in order to obtain
the upper bound d(n) = Õ(n0.382) where Õ denotes the fact that a factor
of polylog is hiding in the big-O notation. Our presentation of the ideas
is slightly different from [23, 3] since our aim is to bound d(n) which
corresponds to coloring the Delaunay graph of n points rather than CF-
coloring the points themselves. However, as mentioned above, such a bound
implies also a similar bound on the CF-chromatic number of the underlying
hypergraph. Assume that d(n) ≥ c log n for some fixed constant c. We will

show that d(n) = O(nα) for all α > α0 = 3−
√
5

2 . The proof relies on the
following key ingredient, first proved in [23]. For a point set P in the plane,
let Gr be an r × r grid such that each row of Gr and each column of Gr

contains at most #n/r$ points of P . Such a grid is easily seen to exists. A
coloring of P is called a quasi-coloring with respect to Gr if every rectangle
that is fully contained in a row of Gr or fully contained in a column of Gr

is non-monochromatic. In other words, when coloring P , we do not care
about rectangles that are not fully contained in a row or fully contained in
a column (or contain only one point).

Lemma 2.8 ([23, 3]). Let P be a set of n points in the plane. If Ω(logn) =
d(n) = O(nα) then for every r, P admits a quasi-coloring with respect to Gr

with Õ((nr )
2α−α2

) colors.

The proof of the lemma uses a probabilistic argument. We first color
each column in Gr independently with d(n/r) colors. Then for each column
we permute the colors randomly and then re-color all points in a given row
that were assigned the same initial color. We omit the details of the proof
and its probabilistic analysis.
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Next, we choose an appropriate subset P ′ ⊂ P which consists of O(r)
monotone chains and with the following key property: If a rectangle S
contains points from at least two rows of Gr and at least two columns
of Gr, then S also contains a point of P ′. Note that a chain can be colored
with 2 colors so altogether one can color P ′ with O(r) colors, not to be
used for P \ P ′. Thus a rectangle that is not fully contained in a row or a
column of Gr is served by the coloring. Hence, it is enough to quasi-color
the points of P \ P ′ with respect to Gr. By the above lemma, the total

number of colors required for such a coloring is Õ((nr )
2α−α2

+ r). Choosing

r = n
2α−α2

1+2α−α2 we obtain the bound Õ(n
2α−α2

1+2α−α2 ). Thus, taking α0 to satisfy
the equality

α0 =
2α0 − α0

2

1 + 2α0 − α0
2
.

Fig. 4. The grid Gr (for r = 4) and one of its positive diagonals. The circled points are
taken to be in P ′ and the square points are in P \P ′. The point p is an extreme point of
type 2 in that diagonal and is also an extreme point of type 1 in the negative diagonal

that contains the grid cell of p

To complete the proof, we need to construct the set P ′. Consider the
diagonals of the grid Gr. See Figure 4 for an illustration. In each positive
diagonal we take the subset of (extreme) points of type 2 or 4, where a point
p is said to be of type 2 (respectively, 4) if the 2’nd quadrant (respectively,
the 4’th quadrant) with respect to p (i.e., the subset of all points above
and to the left of p) does not contain any other point from the diagonal.
Similarly, for diagonals with negative slope we take the points of type 1
and 3. If a point belongs to more than one type (in the two diagonals
that contain the point) then we arbitrarily choose one of the colors it gets
from one of the diagonals. It is easy to see that the set P ′ admits a proper
coloring with O(r) colors, as there are only 2r − 1 positive diagonals and
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2r−1 negative diagonals, and in each diagonal the extreme points of a fixed
type form a monotone chain.

As mentioned, reducing the gap between the best known asymptotic
upper and lower bounds mentioned above is a very interesting open problem.

2.3. Shallow Regions

As mentioned already, for every n there are sets D of n discs in the plane
such that χcf(H(D)) = Ω(log n). For example, one can place n unit discs
whose centers all lie on a line, say the x-axis, such that the distance between
any two consecutive centers is less than 1/n. It was shown in [25] that, for
such a family D, χcf(H(D)) = Ω(log n) since H(D) is isomorphic to the
discrete interval hypergraph with n vertices. However, in this case there are
points that are covered by many of the discs of D (in fact, by all of them).
This leads to the following fascinating problem: What happens if we have
a family of n discs D with the property that every point is covered by at
most k discs of D, for some parameter k. It is not hard to see that in such a
case, one can color D with O(k) colors such that any two intersecting discs
have distinct colors. However, we are interested only in CF-coloring of D.
Let us call a family of regions, with the property that no point is covered
by more than k of the regions, a k-shallow family.

Problem 3. What is the minimum integer f = f(k) such that for any finite
family of k-shallow discs D, we have: χcf(H(D)) ≤ f(k)?

As mentioned already, it is easy to see that f(k) = O(k). However, it is
conjectured that the true upper bound should be polylogarithmic in k.

In the further restricted case that any disc inD intersects at most k other
discs, Alon and Smorodinsky [5] proved that χcf(H(D)) = O(log3 k) and
this was recently improved by Smorodinsky [49] to χcf(H(D)) = O(log2 k).
Both bounds also hold for families of pseudo-discs. We sketch the proof of
the following theorem:

Theorem 2.9 ([49]). LetD be a family of n discs in the plane such that any
disc inD intersects at most k other discs inD. Then χcf(H(D)) = O(log2 k).

The proof of Theorem 2.9 is probabilistic and uses the Lovász Local´
Lemma [6]. We start with a few technical lemmas:

Denote by E≤�(D) the subset of hyperedges of H(D) of cardinality less
than or equal to �.
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Lemma 2.10. Let D be a finite set of n planar discs. Then |E≤k(D)| =
O(kn).

Proof. This easily follows from the fact that discs have linear union-
complexity [33] and the Clarkson–Shor probabilistic technique [21]. We
omit the details of the proof.

Lemma 2.11. Let D be a set of n planar discs, and let � > 1 be an integer.
Then the hypergraph (D,E≤�(D)) can be CF-colored with O(�) colors.

Remark. In fact, the proof of Lemma 2.11 which can be found in [7]
provides a stronger coloring. The coloring has the property that every
hyperedge in E≤�(D) is colorful (i.e., all vertices have distinct colors). Such
a coloring is referred to as �-colorful coloring and is discussed in more details
in Subsection 3.2.

Lemma 2.12. Let D be a set of discs such that every disc intersects at
most k others. Then there is a constant C such that D can be colored with
two colors (red and blue) and such that for every face f ∈ A(D) with depth

at least C ln k, there are at least |d(f)|
3 red discs containing f and at least

|d(f)|
3 blue discs containing f , where d(f) is the set of all discs containing

the face f .

Proof. Consider a random coloring of the discs in D, where each disc d ∈ D
is colored independently red or blue with probability 1

2 . For a face f of
the arrangement A(D) with |d(f)| ≥ C ln k (for some constant C to be

determined later), let Af denote the “bad” event that either less than |d(f)|
3

of the discs in d(f) or more than 2|d(f)|
3 of them are colored blue. By the

Chernoff inequality (see, e.g., [6]) we have:

Pr[Af ] ≤ 2e−
|d(f)|
72 ≤ 2e−

C ln k
72 .

We claim that for every face f , the event Af is mutually independent of all
but at most O(k3) other events. Indeed Af is independent of all events As

for which d(s) ∩ d(f) = ∅. By assumption, |d(f)| ≤ k + 1. Observe also
that a disc that contains f , can contain at most O(k2) other faces, simply
because the arrangement of k discs consists of at most O(k2) faces. Hence,
the claim follows.



348 S. Smorodinsky

Let C be a constant such that:

e · 2e−C ln k
72 · 2k3 < 1.

By the Lovasz Local Lemma, (see, e.g., [6]) we have:´

Pr[
∧

|d(f)|≥C ln k

Āf ] > 0.

In particular, this means that there exists a coloring for which every face f
with |d(f)| ≥ C ln k has at least |d(f)|

3 red discs containing f and at least
|d(f)|

3 blue discs containing it, as asserted. This completes the proof of the
lemma.

Proof of Theorem 2.9. Consider a coloring of D by two colors as in
Lemma 2.12. Let B1 denote the set of discs in D colored blue. We will color
the discs of B1 with O(ln k) colors such that E≤2C ln k(B1) is conflict-free, as
guaranteed by Lemma 2.11, and recursively color the discs in D \ B1 with
colors disjoint from those used to color B1. This is done, again, by splitting
the discs in D \B1 into a set of red discs and a set B2 of blue discs with the
properties guaranteed by Lemma 2.12. We repeat this process until every
face of the arrangementA(D′) (of the setD′ of all remaining discs) has depth
at most C ln k. At that time, we color D′ with O(ln k) colors as described in
Lemma 2.11. To see that this coloring scheme is a valid conflict-free coloring,
consider a point p ∈ ⋃d∈D d. Let d(p) ⊂ D denote the subset of all discs
in D that contain p. Let i be the largest index for which d(p)∩Bi �=�� ∅. If i
does not exist (namely, d(p)∩Bi = ∅ ∀i) then by Lemma 2.12 |d(p)| ≤ C ln k.
However, this means that d(p) ∈ E≤C ln k(D) and thus d(p) is conflict-free
by the coloring of the last step. If |d(p) ∩Bi| ≤ 2C ln k then d(p) is conflict
free since one of the colors in d(p) ∩ Bi is unique according to the coloring
of E≤c ln k(Bi). Assume then, that |d(p) ∩Bi| > 2C ln k. Let x denote the
number of discs containing p at step i. By the property of the coloring of
step i, we have that x ≥ 3C ln k. This means that after removing Bi, the
face containing p is also contained in at least C ln k other discs. Hence, p
must also belong to a disc of Bi+1, a contradiction to the maximality of i.
To argue about the number of colors used by the above procedure, note
that in each prune step, the depth of every face with depth i ≥ C ln k is
reduced with a factor of at least 1

3 . We started with a set of discs such
that the maximal depth is k + 1. After the first step, the maximal depth



Conflict-Free Coloring and its Applications 349

is 2
3k and for each step we used O(ln k) colors so, in total, we have that

the maximum number of colors f(k, r), needed for CF-coloring a family of
discs with maximum depth r such that each disc intersects at most k others
satisfies the recursion:

f(k, r) ≤ O(ln k) + f

(
k,

2

3
r

)
.

This gives f(k, r) = O(ln k log r). Since, in our case r ≤ k + 1, we obtain
the asserted upper bound. This completes the proof of the theorem.

Remark. Theorem 2.9 works almost verbatim for any family of regions
(not necessarily convex) with linear union complexity. Thus, for example,
the result applies to families of homothetics or more generally to any family
of pseudo-discs, since pseudo-discs have linear union complexity ([33]). We
also note that, as in other cases mentioned so far, it is easily seen that the
proof of the bound of Theorem 2.9 holds for UM-coloring.

The proof of Theorem 2.9 is non-constructive since it uses the Lovász
Local Lemma. However, we can use the recently discovered algorithmic ver-
sion of the Local Lemma of Moser and Tardos [39] to obtain a constructive
proof of Theorem 2.9.

Problem 4. As mentioned, the only lower bound that is known for this
problem is Ω(log k) which is obvious from taking the lower bound construc-
tion of [25] with k discs. It would be interesting to close the gap between
this lower bound and the upper bound O(log2 k).

The following is a rather challenging open problem:

Problem 5. Obtain a CF-coloring of discs with maximum depth k+1 (i.e.,
no point is covered by more than k + 1 discs) with only polylogarithmic
(in k) many colors. Obviously, the assumption of this subsection that a
disc can intersect at most k others is much stronger and implies maximum
depth k + 1. However, the converse is not true. Assuming only bounded
depth does not imply the former. In bounded depth, we still might have
discs intersecting many (possibly all) other discs.



350 S. Smorodinsky

3. Extensions of CF-Coloring

3.1. k-CF coloring

We generalize the notion of CF-coloring of a hypergraph to k-CF-coloring.
Informally, we think of a hyperedge as being ‘served’ if there is a color that
appears in the hyperedge (at least once and) at most k times, for some fix
prescribed parameter k. For example, we will see that when the underlying
hypergraph is induced by n points in R3 with respect to the family of all
balls, there are n points for which any CF-coloring needs n colors but there
exists a 2-CF-coloring with O(

√
n) colors (and a k-CF-coloring with O(n1/k)

colors for any fixed k ≥ 2). We also show that any hypergraph (V, E) with
a finite VC-dimension c, can be k-CF-colored with O(log |P |) colors, for
a reasonably large k. This relaxation of the model is applicable in the
wireless scenario since the real interference between conflicting antennas
(i.e., antennas that are assigned the same frequency and overlap in their
coverage area) is a function of the number of such antennas. This suggests
that if for any given point, there is some frequency that is assigned to at
most a “small” number of antennas that cover this point, then this point
can still be served using that frequency because the interference between a
small number of antennas is low. This feature is captured by the following
notion of k-CF-coloring.

Definition 3.1. k-CF-coloring of a hypergraph: Let H = (V, E) be a
hypergraph. A function χ : V → {1, . . . , i} is a k-CF-coloring of H if for
every S ∈ E there exists a color j such that 1 ≤ |{v ∈ S|χ(v) = j}| ≤ k;
that is, for every hyperedge S ∈ E there exists at least one color j such that
j appears (at least once and) at most k times among the colors assigned to
vertices of S.

Let χkCF (H) denote the minimum number of colors needed for a k-CF-
coloring of H.

Note that a 1-CF-coloring of a hypergraph H is simply a CF-coloring.

Here we modify Algorithm 1 to obtain a k-CF coloring of any hyper-
graph. We need yet another definition of the following relaxed version of a
proper coloring:

Definition 3.2. Let H = (V, E) be a hypergraph. A coloring ϕ of H is
called k-weak if every hyperedge e ∈ E with |e| ≥ k is non-monochromatic.
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That is, for every hyperedge e ∈ E with |e| ≥ k there exists at least two
vertices x, y ∈ e such that ϕ(x) �=�� ϕ(y).

Notice that a k-weak coloring (for k ≥ 2) of a hypergraph H = (V, E)
is simply a proper coloring for the hypergraph (V, E≥k) where E≥k is the
subset of hyperedges in E with cardinality at least k. This notion was used
implicitly in [28, 48] and then was explicitly defined and studied in the Ph.D.
of Keszegh [35, 34]. It is also related to the notion of cover-decomposability
and polychromatic colorings (see, e.g., [26, 42, 44]).

We are ready to generalize Algorithm 1. See Algorithm 2 below.

Algorithm 2 k-CFcolor(H): k-Conflict-Free-color a hypergraph H =
(V, E).
1: i← 0: i denotes an unused color
2: while V �=�� ∅ do
3: Increment: i← i+ 1
4: Auxiliary coloring: find a weak k+1-coloring χ ofH(V ) with “few”

colors
5: V ′ ← Largest color class of χ
6: Color: f(x)← i , ∀x ∈ V ′

7: Prune: V ← V \ V ′, H ← H(V )
8: end while

Theorem 3.3 ([28]). Algorithm 2 outputs a valid k-CF-coloring of H.

Proof. The proof is similar to the proof provided in Section 1.3 for the
validity of Algorithm 1. In fact, again, the coloring provided by Algorithm 2
has the stronger property that for any hyperedge S ∈ E the maximal color
appears at most k times.

As a corollary similar to the one mentioned in Theorem 1.5, for a hyper-
graph H that admit a k+1-weak coloring with “few” colors hereditarily, H
also admits a k-CF-coloring with few colors. The following theorem sum-
marizes this fact:

Theorem 3.4 ([28]). Let H = (V, E) be a hypergraph with n vertices,
and let l, k ∈ N be two fixed integers, k ≥ 2. Assume that every induced
sub-hypergraph H ′ ⊆ H admits a k+1-weak coloring with at most l colors.
Then H admits a k-CF-coloring with at most log1+ 1

l−1
n = O(l log n) colors.
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Proof. The proof is similar to the proof of Theorem 1.5

3.1.1. CF-Coloring of Balls in Three Dimensions.

Lemma 3.5. Let B be the set of balls in three dimensions. There exists a
hypergraph H induced by a finite set P of n points in R3 with respect to B
such that χ1CF (H) = n. The same holds for the set H of halfspaces in Rd,
for d > 3.

Proof. Take P to be a set of n points on the positive portion of the moment
curve γ = {(t, t2, t3) | t ≥ 0} in R3. It is easy to verify that any pair of
points p, q ∈ P are connected in the Delaunay triangulation of P implying
that there exists a ball whose intersection with P is {p, q}. Thus, all points
must be colored using different colors.

The second claim follows by taking P to be n distinct points on the
moment curve {(t, t2, . . . , td)} in Rd (i.e, P is the set of vertices of a so-
called cyclic-polytope C(n, d). See, e.g., [50]).

Theorem 3.6 ([28, 47]). Let P be a set of n points in R3. Put H = HBH (P ).
Then χkCF (H) = O(n1/k), for any fixed constant k ≥ 1.

Proof. As is easily seen by Algorithm 2, it is enough to prove that H admits
a k + 1-weak coloring with O(n1/k) colors. If so, then in every iteration we

discard at least Ω(|PiPP |1−
1
k ) elements so the total number of iterations (colors)

used is O(n1/k). The proof thatH admits a k+1-weak coloring with O(n1/k)
colors uses the probabilistic method. We provide only a brief sketch of the
proof. It is enough to consider all balls containing exactly k+1 points since
if a ball contains more than k+1 points then by perturbation and shrinking
arguments it will also contain a subset of k+1 points that can be cut-off by
a ball. So we may assume that in the underlying hypergraph H = (P, E), all
hyperedges have cardinality k+1 (such a hypergraph is also called a k+1-
uniform hypergraph). So we want to color the set P with O(n1/k) colors
such that any hyperedge in E is non-monochromatic. By the Clarkson–Shor
technique, it is easy to see that the number of hyperedges in E is O(k2n2).
Thus the average degree of a vertex in H is O(n) where the constant of
proportionality depends on k. It is well known that such a hypergraph has
chromatic number O(n1/k). This is proved via the probabilistic method.
The main ingredient is the Lovasz Local Lemma (see, e.g., [6]).´
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In a similar way we have:

Theorem 3.7 ([28, 47]). Let R be a set of n balls in R3. Then

χkCF (H(R)) = O(n1/k).

3.1.2. VC-dimension and k-CF coloring.

Definition 3.8. LetH = (V, E) be a hypergraph. The Vapnik-Chervonenkis
dimension (or VC-dimension) of H, denoted by V C(H), is the maximal
cardinality of a subset V ′ ⊂ V such that {V ′ ∩ r | r ∈ E} = 2V

′
(such

a subset is said to be shattered). If there are arbitrarily large shattered
subsets in V then V C(H) is defined to be ∞. See [38] for discussion of
VC-dimension and its applications.

There are many hypergraphs with finite VC-dimension that arise nat-
urally in combinatorial and computational geometry. One such example is
the hypergraph H = (Rd,Hd), where Hd is the family of all (open) halfs-
paces in Rd. Any set of d + 1 affinely independent points is shattered in
this space, and, by Radon’s theorem, no set of d + 2 points is shattered.
Therefore V C(H) = d+ 1.

Definition 3.9. Let (V, E) be a hypergraph with |V | = n and let 0 < ε ≤ 1.
A subset N ⊂ V is called an ε-net for (V, E) if for every hyperedge S ∈ E
with |S| ≥ εn we have S ∩N �=�� ∅.

Thus, an ε-net is a hitting set of all ‘heavy’ hyperedges, namely, those
containing at least εn vertices.

An important consequence of the finiteness of the VC-dimension is the
existence of small ε-nets, as shown by Haussler and Welzl in [29], where the
notion of VC-dimension of a hypergraph was introduced to computational
geometry.

Theorem 3.10 ([29]). For any hypergraph H = (V, E) with finite VC-
dimension d and for any ε > 0, there exists an ε-net N ⊂ V of size
O(dε log

d
ε ).

Remark. In fact, Theorem 3.10 is valid also in the case whereH is equipped
with an arbitrary probability measure μ. An ε-net in this case is a subset
N ⊂ V that meets all hyperedges with measure at least ε.
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Since all hypergraphs mentioned so far have finite VC-dimension, and
since some of them sometimes must be CF-colored with n colors, there is
no direct relationship between a finite VC-dimension of a hypergraph and
the existence of a CF-coloring of that hypergraph with a small number of
colors. In this subsection we show that such a relationship does exist, if we
are interested in k-CF-coloring with a reasonably large k.

We first introduce a variant of the general framework for k-CF-coloring
of a hypergraph H = (V, E). In this framework we modify lines 4 and
5 in Algorithm 2. In Algorithm 2 we first find a k + 1-weak coloring of
the underlying hypergraph (line 4) which is a partition of the vertices into
sets such that each set has the following property: Every set in the partition
cannot fully contain a hyperedge with cardinality at least k+1. Equivalently,
every color class V ′ ⊂ V has the property that every hyperedge containing
at least k+1 vertices of V ′ also contain vertices of V \ V ′. We modify that
framework by directly finding a “large” such subset in the hypergraph.

Definition 3.11. Let H = (V, E) be a hypergraph. A subset V ′ ⊂ V
is k-admissible if for any hyperedge S ∈ E with |S ∩ V ′| > k we have
S ∩ (V \ V ′) �=�� ∅.

Assume that we are given an algorithm A that computes, for any hyper-
graph H = (V, E), a non-empty k-admissible set V ′ = A(H). We can now
use algorithm A to k-CF-color the given hypergraph (i) Compute a k + 1-
admissible set V ′ = A(H), and assign to all the elements in V ′ the color 1.
(ii) Color the remaining elements in V \ V ′ recursively, where in the ith
stage we assign the color i to the vertices in the resulting k + 1-admissible
set. We denote the resulting coloring by CAC (H).

The proof of the following theorem is, yet, again, similar to that of
Theorem 1.4.

Theorem 3.12 ([28, 47]). Given a hypergraph H = (V, E), the coloring
CAC (H) is a valid k-CF coloring of S.

Lemma 3.13. Let H = (V, E) with |V | = n be a hypergraph with VC-
dimension d. For any k ≥ d there exists a k-admissible set V ′ ⊂ V with
respect to H of size Ω

(
n1−(d−1)/k

)
.

Proof. Any coloring of V is valid as far as the small hyperedges of E are
concerned; namely, those are the hyperedges that contain at most k vertices.
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Thus, let E ′ be the subset of hyperedges of E of size larger than k. By Sauer’s
Lemma (see, e.g., [6]) we have that |E ′| ≤ |E| ≤ nd.

Next, we randomly color V by black and white, where an element is being
colored in black with probability p, where p would be specified shortly. Let
I be the set of points of V colored in black. If a hyperedge r ∈ E ′ is colored
only in black, we remove one of the vertices of r from I. Let I ′ be the
resulting set. Clearly, I ′ is a k-admissible set for H.

Furthermore, by linearity of expectation, the expected size of I ′ is at
least

pn−
∑
r∈E ′

p|r| ≥ pn−
∑
r∈E ′

pk+1 ≥ pn− pk+1nd.

Setting p =
(
(k + 1)nd−1

)−1/k
, we have that the expected size of I ′ is at

least pn− pk+1nd = pn(1− 1/(k + 1)) = Ω
(
n1−(d−1)/k

)
, as required.

As was already seen, for geometric hypergraphs one might be able to
get better bounds than the one guaranteed by Lemma 3.13.

Theorem 3.14 ([28, 47]). Let H = (V, E) with |V | = n be a finite
hypergraph with VC-dimension d. Then for k ≥ d log n there exists a k-
CFcoloring of H with O(log n) colors.

Proof. By Lemma 3.13 the hypergraph H contains a k-admissible set of size
at least n/2. Plugging this fact to the algorithm suggested by Theorem 3.12
completes the proof of the theorem.

As remarked above, Theorem 3.14 applies to all hypergraphs mentioned
in this paper. Note also, that Lemma 3.13 gives us a trade off between
the number of colors and the threshold size of the coloring. As such, the
bound of Theorem 3.14 is just one of a family of such bounds implied by
Lemma 3.13.

3.2. k-Strong CF-Coloring

Here, we focus on the notion of k-strong-conflict-free (abbreviated, kSCF )
which is yet another extension of the notion of CF-coloring of hypergraphs.
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Definition 3.15 (k-strong conflict-free coloring:). Let H = (V, E) be a
hypergraph and let k ∈ N be some fixed integer. A coloring of V is called
k-strong-conflict-free for H (kSCF for short) if for every hyperedge e ∈ E
with |e| ≥ k there exists at least k vertices in e, whose colors are unique
among the colors assigned to the vertices of e and for each hyperedge e ∈ E
with |e| < k all vertices in e get distinct colors. Let fHff (k) denote the least
integer l such that H admits a kSCF -coloring with l colors.

Abellanas et al. [2] were the first to study kSCF-coloring1. They focused
on the special case of hypergraphs induced by n points in R2 with respect to
discs. They showed that in this case the hypergraph admits a kSCF-coloring
with O( logn

log ck
ck−1

) (= O(k log n)) colors, for some absolute constant c.

The following notion was recently introduced and studied by Aloupis et
al. [7] for the special case of hypergraphs induced by discs:

Definition 3.16 (k-colorful coloring). Let H = (V, E) be a hypergraph,
and let ϕ be a coloring of H. A hyperedge e ∈ E is said to be k-colorful
with respect to ϕ if there exist k vertices in e that are colored distinctively
under ϕ. The coloring ϕ is called k-colorful if every hyperedge e ∈ E is
min{|e|, k}-colorful. Let cH(k) denote the least integer l such that H admits
a k-colorful coloring with l colors.

Aloupis et al. [7] introduced this notion explicitly and were motivated by
a problem related to battery lifetime in sensor networks. This notion is also
related to the notion of polychromatic colorings. In polychromatic colorings,
the general question is to estimate the minimum number f = f(k) such
that one can k-color the hypergraph with the property that all hyperedges
of cardinality at least f(k) are colorful in the sense that they contain a
representative color of each color class. (see, e.g., [26, 13, 44] for additional
details on the motivation and related problems).

Remark. Every kSCF -coloring of a hypergraph H is a k-colorful coloring
of H. However, the opposite claim is not necessarily true.

The following connection between k-colorful coloring and strong-conflict-
free coloring of hypergraphs was proved by Horev et al. in [30]. If a hy-
pergraph H admits a k-colorful coloring with a “small” number of colors
(hereditarily) then it also admits a (k − 1)SCF-coloring with a “small”
number of colors. This connection is analogous to the connection between
non-monochromatic coloring and CF-coloring as appear in Theorem 1.5 and

1They referred to such a coloring as k-conflict-free coloring.
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the connection between k + 1-weak coloring and k-CF-coloring as appear
in Theorem 3.4. We start by introducing the general framework of [30]
for kSCF-coloring a given hypergraph.

A Framework For Strong-Conflict-Free Coloring. Let H be a hy-
pergraph with n vertices and let k and l be some fixed integers such that H
admits the hereditary property that every vertex-induced sub-hypergraph
H ′ of H admits a k-colorful coloring with at most l colors. Then H ad-
mits a (k − 1)SCF -coloring with O(l log n) colors. For the case when l is
replaced with the function kn(H ′)α we get a better bound without the log n
factor. The proof is constructive. The following framework (denoted as
Algorithm 3) produces a valid (k − 1)SCF coloring for a hypergraph H.

Algorithm 3 (k-1)SCF-color(H): (k − 1)-Strong Conflict-Free-color a hy-
pergraph H = (V, E).
1: i← 1 i denotes an unused color
2: while V �=�� ∅ do
3: Increment: i← i+ 1
4: Auxiliary Coloring: find a k-colorful coloring ϕ ofH(V ) with “few”

colors
5: V ′ ← Largest color class of ϕ
6: Color: χ(x)← i , ∀x ∈ V ′

7: Prune: V ← V \ V ′.
8: Increment: i← i+ 1.
9: end while

10: Return χ.

Note that Algorithm 3 is a generalization of Algorithm 1. Indeed for
k = 2 the two algorithms become identical since a 2-colorful coloring is
equivalent to a proper coloring. Arguing about the number of colors used
by the algorithm is identical to the arguments as in the coloring produced
by Algorithm 1. The proof or correctness is slightly more subtle.

For a hypergraph H = (V, E), we write n(H) to denote the number of
vertices of H. As a corollary of the framework described in Algorithm 3 we
obtain the following theorems:

Theorem 3.17 ([30]). Let H = (V, E) be a hypergraph with n vertices,
and let k, � ∈ N be fixed integers, k ≥ 2. If every induced sub-hypergraph
H ′ ⊆ H satisfies cH′(k) ≤ �, then fHff (k − 1) ≤ log1+ 1

�−1
n = O(l log n).
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Theorem 3.18 ([30]). Let H = (V, E) be a hypergraph with n vertices,
and let k ≥ 2 be a fixed integer. let 0 < α ≤ 1 be a fixed real. If
every induced sub-hypergraph H ′ ⊆ H satisfies cH′(k) = O(kn(H ′)α), then
fHff (k − 1) = O(knα).

As a corollary of Theorem 3.17 and a result of Aloupis et al. [7] on k-
colorful coloring of discs or points with respect to discs we obtain the
following:

Theorem 3.19 ([30]). If H is a hypergraph induced by n discs in the plane
or a hypergraph induced by n points in the plane with respect to discs then
fHff (k) = O(k log n).

Proof. The proof follows by combining the fact that cH(k) = O(k) [7] with
Theorem 3.17

Theorem 3.21 below provides an upper bound on the number of col-
ors required by kSCF -coloring of geometrically induced hypergraphs as a
function of the union-complexity of the regions that induce the hypergraphs.

Recall that, for a set R of n simple closed planar Jordan regions, URUU :
N→ N is the function defined in Theorem 2.4.

Theorem 3.20 ([30]). Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be a fixed
constant. Let R be a set of n simple closed Jordan regions such that
URUU (m) ≤ cm1+α, for 1 ≤ m ≤ n, and let H = H(R). Then cH(k) =
O(knα).

Combining Theorem 3.17 with Theorem 3.20 (for α = 0) and Theo-
rem 3.18 with Theorem 3.20 (for 0 < α < 1) yields the following result:

Theorem 3.21 ([30]). Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be a constant.
Let R be a set of n simple closed Jordan regions such that URUU (m) = cm1+α,
for 1 ≤ m ≤ n. Let H = H(R). Then:

fHff (k − 1) =

{
O(k log n), α = 0,

O(knα), 0 < α ≤ 1.

Axis-parallel rectangles: Consider kSCF -colorings of hypergraphs in-
duced by axis-parallel rectangles in the plane. As mentioned before, axis-
parallel rectangles might have quadratic union-complexity. For a hyper-
graph H induced by axis-parallel rectangles, Theorem 3.21 states that
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fHff (k−1) = O(kn). This bound is meaningless, since the bound fHff (k−1) ≤
n is trivial. Nevertheless, the following theorem provides a better upper
bound for this case:

Theorem 3.22 ([30]). Let k ≥ 2. Let R be a set of n axis-parallel
rectangles, and let H = H(R). Then fHff (k − 1) = O(k log2 n).

In order to obtain Theorem 3.22 we need the following theorem:

Theorem 3.23 ([30]). Let H = H(R), be the hypergraph induced by
a family R of n axis-parallel rectangles in the plane, and let k ∈ N be
an integer, k ≥ 2. For every induced sub-hypergraph H ′ ⊆ H we have:
cH′(k) ≤ k log n.

The proof of Theorem 3.22 is therefore an easy consequence of Theo-
rem 3.23 combined with Theorem 3.17.

Har-Peled and Smorodinsky [28] proved that any family R of n axis-
parallel rectangles admit a CF-coloring with O(log2 n) colors. Their proof
uses the probabilistic method. They also provide a randomized algorithm
for obtaining CF-coloring with at most O(log2 n) colors. Later, Smorodin-
sky [48] provided a deterministic polynomial-time algorithm that produces
a CF-coloring for n axis-parallel rectangles with O(log2 n) colors. Theo-
rem 3.22 thus generalizes the results of [28] and [48]. The upper bound
provided in Theorem 3.21 for α = 0 is optimal. Specifically, there exist
matching lower bounds on the number of colors required by any kSCF -
coloring of hypergraphs induced by (unit) discs in the plane.

Theorem 3.24 ([1]).

(i) There exist families R of n (unit) discs for which fHff (R)(k) =
Ω(k log n)

(ii) There exist families R of n axis-parallel squares for which fHff (R)(k) =
Ω(k log n).

Notice that for axis-parallel rectangles there is a logarithmic gap between
the best known upper and lower bounds.

Theorems 3.17 and 3.18 asserts that in order to attain upper bounds
on fHff (k), for a hypergraph H, one may concentrate on attaining a bound
on cH(k). Given a k-colorful coloring of H, Algorithm 3 obtains a strong-
conflict-free coloring of H in a constructive manner. Here computational
efficiency is not of main interest. However, it can be seen that for certain
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families of geometrically induced hypergraphs, Algorithm 3 is efficient. In
particular, for hypergraphs induced by discs or axis-parallel rectangles,
Algorithm 3 has a low degree polynomial running time. Colorful-colorings
of such hypergraphs can be computed once the arrangement of the discs is
computed together with the depth of every face.

3.3. List Colorings

In view of the motivation for CF-coloring in the context of wireless antennae,
it is natural to assume that each antenna is restricted to use some subset of
the spectrum of frequencies and that different antennae might have different
such subsets associated with them (depending, for example, on the physical
location of the antenna). Thus, it makes sense to study the following more
restrictive notion of coloring:

Let H = (V, E) with V = {v1, . . . , vn} be a hypergraph and let L =
{L1, . . . , Ln} be a family of subsets of the integers. We say that H admits a
proper coloring from L (respectively, a CF-coloring from L, a UM-coloring
from L) if there exists a proper coloring (respectively a CF-coloring, a UM-
coloring) C : V → N such that C(vi) ∈ Li for i = 1, . . . , n.

Definition 3.25. We say that a hypergraph H = (V, E) is k-choosable
(respectively, k-CF-choosable, k-UM-choosable) if for every family L =
{L1, . . . , Ln} such that |Li| ≥ k for i = 1, . . . , n, H admits a proper-coloring
(respectively a CF-coloring, a UM-coloring) from L.

We are interested in the minimum number k for which a given hyper-
graph is k-choosable (respectively, k-CF-choosable, k-UM-choosable). We
refer to this number as the choice-number (respectively the CF-choice-
number, UM-choice-number) of H and denote it by ch(H) (respectively
chcf(H), chum(H)). Obviously, if the choice-number (respectively, the CF-
choice-number, UM-choice-number) ofH is k then it can be properly colored
(respectively CF-colored, UM-colored) with at most k colors, as one can
proper color (respectively, CF-color, UM-color) H from L = {L1, . . . , Ln}
where for every i we have Li = {1, . . . , k}. Thus,

ch(H) ≥ χ(H).

chcf(H) ≥ χcf(H).

chum(H) ≥ χum(H).
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Hence, any lower bound on the number of colors required by a proper
coloring of H (respectively, a CF-coloring, a UM-coloring of H) is also a
lower bound on the choice number (respectively, the CF-choice-number, the
UM-choice-number) of H.

The study of choice numbers in the special case of graphs was initiated
by Vizing [51] and by Erdős Rubin and Taylor [24]. The study of the CF-˝
choice number and the UM-choice number of hypergraphs was initiated very
recently by Cheilaris, Smorodinsky and Sulovsky [16].´

Let us return to the discrete interval hypergraph HnHH with n vertices,
which was described in the introduction. As was shown already, we have
χcf(HnHH ) = χum(HnHH ) = �log2 n�+ 1. In particular we have the lower bound
chcf(HnHH ) ≥ �log2 n�+ 1. Hence, the following upper-bound is tight:

Proposition 3.26. For n ≥ 1, chcf(HnHH ) ≤ �log2 n�+ 1.

Proof. Assume, without loss of generality, that n = 2k+1 − 1. We will
show that HnHH is k + 1 CF-choosable. The proof is by induction on k. Let
L = {Li}i∈[n], such that |Li| = k + 1, for every i. Consider the median

vertex p = 2k. Choose a color x ∈ Lp and assign it to p. Remove x from
all other lists (for lists containing x), i.e., consider L′ = {L′

i}i∈[n]\p where
L′
i = Li \ {x}. Note that all lists in L′ have size at least k. The induction

hypothesis is that we can CF-color any set of points of size 2k−1 from lists of
size k. Indeed, the number of vertices smaller (respectively, larger) than p is
exactly 2k−1. Thus, we CF-color vertices smaller than p and independently
vertices larger than p, both using colors from the lists of L′. Intervals that
contain the median vertex p also have the conflict-free property, because
color x is used only in p. This completes the induction step and hence the
proof of the proposition.

Note that, even in the discrete interval hypergraph, it is a more difficult
problem to obtain any non-trivial upper bound on the UM-choice number. A
divide and conquer approach, along the lines of the proof of Proposition 3.26
is doomed to fail. In such an approach, some vertex close to the median
must be found, a color must be assigned to it from its list, and this color
must be deleted from all other lists. However, vertices close to the median
might have only “low” colors in their lists. Thus, while we are guaranteed
that a vertex close to the median is uniquely colored for intervals containing
it, such a unique color is not necessarily the maximal color for such intervals.
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Instead, Cheilaris et al. used a different approach. This approach pro-
vides a general framework for UM-coloring hypergraphs from lists. More-
over, when applied to many geometric hypergraphs, it provides asymptoti-
cally tight bounds for the UM-choice number.

Below, we give an informal description of that approach, which is then
summarized in Algorithm 4. It is similar in spirit to Algorithm 1.

Start by sorting the colors in the union of all lists in increasing order.
Let c denote the minimum color. Let V c ⊆ V denote the subset of vertices
containing c in their lists. Note that V c might contain very few vertices, in
fact, it might be that |V c| = 1. We simultaneously color a suitable subset
U ⊆ V c of vertices in V c with c. We make sure that U is independent in
the sub-hypergraph H(V c). The exact way in which we choose U is crucial
to the performance of the algorithm and is discussed below. Next, for the
uncolored vertices in V c \ U , we remove the color c from their lists. This
is repeated for every color in the union

⋃
v∈V Lv in increasing order of the

colors. The algorithm stops when all vertices are colored. Notice that such
an algorithm might run into a problem, when all colors in the list of some
vertex are removed before this vertex is colored. Later, we show that if we
choose the subset U ⊆ V c in a clever way and the lists are sufficiently large,
then we avoid such a problem.

Algorithm 4 UMColorGeneric(H, L): Unique-maximum color hypergraph
H = (V, E) from lists of family L
1: while V �=�� ∅ do
2: c← min

⋃
v∈V Lv {c is the minimum color in the union of the lists}

3: V c ← {v ∈ V | c ∈ Lv} {V c is the subset of remaining vertices
containing c in their lists}

4: U ← a “good” independent subset of the induced sub-hypergraph
H(V c)

5: for x ∈ U do {for every vertex in the independent set,}
6: f(x)← c {color it with color c}
7: end for
8: for v ∈ V c \ U do {for every uncolored vertex in V c,}
9: Lv ← Lv \ {c} {remove c from its list}

10: end for
11: V ← V \ U {remove the colored vertices}
12: end while
13: Return f .
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As mentioned, Algorithm 4 might cause some lists to run out of colors
before coloring all vertices. However, if this does not happen, it is proved
that the algorithm produces a UM-coloring.

Lemma 3.27 ([16]). Provided that the lists associated with the vertices
do not run out of colors during the execution of Algorithm 4, then the
algorithm produces a UM-coloring from L.

Proof. The proof is similar to the validity proof of Algorithm 1 and we
omit the details.

The key ingredient, which will determine the necessary size of the lists
of L, is the particular choice of the independent set in the above algorithm.
We assume that the hypergraph H = (V, E) is hereditarily k-colorable for
some fixed positive integer k. Recall that, as shown before, this is the case
in many geometric hypergraphs. We must also put some condition on the
size of the lists in the family L = {Lv}v∈V . With some hindsight, we require∑

v∈V
λ−|Lv | < 1,

where λ := k
k−1 .

Theorem 3.28 ([16]). Let H = (V, E) be a hypergraph which is hered-
itarily k-colorable and set λ := k

k−1 . Let L = {Lv}v∈V , such that∑
v∈V λ−|Lv | < 1. Then, H admits a UM-coloring from L.

Notice, that in particular for a hypergraph H which is hereditarily k-
colorable we have:

chum(H) ≤ logλ n+ 1 = O(k log n)

Thus, Theorem 3.28 subsumes all the theorems (derived from Algorithm 1)
that are mentioned in Section 2.

Proof. The proof of Theorem 3.28 is constructive and uses a potential
method: This method gives priority to coloring vertices that have fewer
remaining colors in their lists, when choosing the independent sets. Towards
that goal, we define a potential function on subsets of uncolored vertices
and we choose the independent set with the highest potential (the potential
quantifies how dangerous it is that some vertex in the set will run out of
colors in its list).
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For an uncolored vertex v ∈ V , let rt(v) denote the number of colors
remaining in the list of v in the beginning of iteration t of the algorithm.
Obviously, the value of rt(v) depends on the particular run of the algorithm.
For a subset of uncolored vertices X ⊆ V in the beginning of iteration t,
let PtPP (X) :=

∑
v∈X λ−rt(v). We define the potential in the beginning of

iteration t to be PtPP := PtPP (VtVV ), where VtVV denotes the subset of all uncolored
vertices in the beginning of iteration t. Notice that the value of the potential
in the beginning of the algorithm (i.e., in the first iteration) is

P1PP =
∑
v∈V

λ−|Lv | < 1.

Our goal is to show that, with the right choice of the independent set in
each iteration, we can make sure that for any iteration t and every vertex
v ∈ VtVV the inequality rt(v) > 0 holds. In order to achieve this, we will show
that, with the right choice of the subset of vertices colored in each iteration,
the potential function PtPP is non-increasing in t. This will imply that for any
iteration t and every uncolored vertex v ∈ VtVV we have:

λ−rt(v) ≤ PtPP ≤ P1PP < 1

and hence rt(v) > 0, as required.

Assume that the potential function is non-increasing up to iteration t.
Let PtPP be the value of the potential function in the beginning of iteration t
and let c be the color associated with iteration t. Recall that VtVV denotes
the set of uncolored vertices that are considered in iteration t, and V c ⊆ VtVV
denotes the subset of uncolored vertices that contain the color c in their
lists. Put P ′ = PtPP (VtVV \ V c) and P ′′ = PtPP (V c). Note that PtPP = P ′ + P ′′.
Let us describe how we find the independent set of vertices to be colored
at iteration t. First, we find an auxiliary proper coloring of the hypergraph
H[V c] with k colors (here we use the hereditary k-colorability property of
the hypergraph). Consider the color class U which has the largest potential
PtPP (U). Since the vertices in V c are partitioned into at most k independent
subsets U1UU , . . . , UkUU and P ′′ =

∑k
i=1 PtPP (UiUU ), then by the pigeon-hole principle

there is an index j for which PtPP (UjUU ) ≥ P ′′/k. We choose U = UjUU as the
independent set to be colored at iteration t. Notice that, in this case, the
value rt+1(v) = rt(v)− 1 for every vertex v ∈ V c \ U , and all vertices in U
are colored. For vertices in VtVV \ V c, there is no change in the size of their
lists. Thus, the value PtPP +1 of the potential function at the end of iteration
t (and in the beginning of iteration t+ 1) is PtPP +1 ≤ P ′ + λ(1− 1

k )P
′′. Since

λ = k
k−1 , we have that PtPP +1 ≤ P ′ + P ′′ = PtPP , as required.
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3.3.1. A relation between chromatic and choice number in general
hypergraphs. Using a probabilistic argument, Cheilaris et al. [16] proved
the following general theorem for arbitrary hypergraphs and arbitrary col-
orings with the so-called refinement property:

Definition 3.29. We call C ′ a refinement of a coloring C if C(x) �=�� C(y)
implies C ′(x) �=�� C ′(y). A class C of colorings is said to have the refinement
property if every refinement of a coloring in the class is also in the class.

The class of conflict-free colorings and the class of proper colorings are
examples of classes which have the refinement property. On the other hand,
the class of unique-maximum colorings does not have this property.

For a class C of colorings, one can naturally extend the notions of
chromatic number χC and choice number chC to C.

Theorem 3.30 ([16]). For every class of colorings C that has the refinement
property and every hypergraph H with n vertices, chC(H) ≤ χC(H)·lnn+1.

Proof. If k = χC(H), then there exists a C-coloring C of H with colors
{1, . . . , k}, which induces a partition of V into k classes: V1VV ∪ V2VV ∪ · · · ∪ VkVV .
Consider a family L = {Lv}v∈V , such that for every v, |Lv| = k∗ > k · lnn.
We wish to find a family L′ = {L′

v}v∈V with the following properties:

1. For every v ∈ V , L′
v ⊆ Lv.

2. For every v ∈ V , L′
v �=�� ∅.

3. For every i �=�� j, if v ∈ ViVV and u ∈ VjVV , then L′
v ∩ L′

u = ∅.

Obviously, if such a family L′ exists, then there exists a C-coloring from L′:
For each v ∈ V , pick a color x ∈ L′

v and assign it to v.

We create the family L′ randomly as follows: For each element in ∪L,
assign it uniformly at random to one of the k classes of the partition
V1VV ∪ · · · ∪ VkVV . For every vertex v ∈ V , say with v ∈ ViVV , we create L′

v, by
keeping only elements of Lv that were assigned through the above random
process to v’s class, ViVV .

The family L′ obviously has properties 1 and 3. We will prove that with
positive probability it also has property 2.

For a fixed v, the probability that L′
v = ∅ is at most(

1− 1

k

)k∗

≤ e−k∗/k < e− lnn =
1

n
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and therefore, using the union bound, the probability that for at least one
vertex v, L′

v = ∅, is at most

n

(
1− 1

k

)k∗

< 1.

Thus, there is at least one family L′ where property 2 also holds, as claimed.

Corollary 3.31. For every hypergraph H,

chcf(H) ≤ χcf(H) · lnn+ 1.

Corollary 3.32. For every hypergraph H,

ch(H) ≤ χ(H) · lnn+ 1.

The argument in the proof of Theorem 3.30 is a generalization of an
argument first given in [24], proving that any bipartite graph with n vertices
is O(log n)-choosable (see also [4]).

4. Non-Geometric Hypergraphs

Pach and Tardos [40] investigated the CF-chromatic number of arbitrary
hypergraphs and proved that the inequality:

χcf(H) ≤ 1/2 +
√
2m+ 1/4

holds for every hypergraph H with m edges, and that this bound is tight.
Cheilaris et al. [16] strengthened this bound in two ways by proving that:

chum(H) ≤ 1/2 +
√
2m+ 1/4.

If, in addition, every hyperedge contains at least 2t − 1 vertices (for
t ≥ 3) then Pach and Tardos showed that:

χcf(H) = O(m
1
t logm).

Using the Lovász Local Lemma, they show that the same result holds for´
hypergraphs, in which the size of every edge is at least 2t−1 and every edge
intersects at most m other edges.
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Hypergraphs induced by neighborhoods in graphs. A particular
interest arises when dealing with hypergraphs induced by neighborhoods
of vertices of a given graph. Given a graph G = (V,E) and a vertex
v ∈ V , denote by NGNN (v) = N(v) the set of all neighbors of v in G together
with v and refer to it as the neighborhood of v. Call the set Ṅ(G) =
NGNN (v) \ {v} the pointed neighborhood of v. The hypergraph H associated
with the neighborhoods of G has its vertex set V (H) = V and its edge
set E(H) = {NGNN (v)|v ∈ V } and the hypergraph Ḣ associated with the
pointed neighborhoods of G has V (Ḣ) = V and E(Ḣ) = {ṄGNN (v)|v ∈ V }.
The conflict-free chromatic parameter κCF (G) is defined simply as χcf(H)
and the pointed version of this parameter κ̇CF (G) is defined analogously as
χcf(Ḣ).

We start with an example taken from [40] in order to provide some basic
insights into the relation between these two parameters. LetK ′

sK be the graph
obtained from the complete graph KsK on s vertices by subdividing each edge
with a new vertex. Each pair of the s original vertices form the pointed
neighborhood of one of the new vertices, so all original vertices must receive
different colors in any conflict-free coloring of the corresponding hypergraph
Ḣ. Thus, we have κ̇CF (K

′
sK ) ≥ s and it is easy to see that equality holds here.

On the other hand, K ′
sK is bipartite and any proper coloring of a graph is

also a conflict-free coloring of the hypergraph formed by the neighborhoods
of its vertices. This shows that κCF (K

′
sK ) = 2, for any s ≥ 2. The example

illustrates that the pointed conflict-free chromatic parameter of a graph
cannot be bounded from above by any function of its non-pointed variant.
For many other graphs, the non-pointed parameter can be larger than the
pointed parameter. For instance, let G denote the graph obtained from the
complete graph K4KK by subdividing a single edge with a vertex. It is easy to
check that κCF (G) = 3, while κ̇CF (G) = 2. However, it is not difficult to
verify that

κCF (G) ≤ 2κ̇CF (G)

for any graph G. This inequality holds, because in a conflict-free coloring
of the pointed neighborhoods, each neighborhood N(x) also has a vertex
whose color is not repeated in N(x), unless x has degree one in the subgraph
spanned by one of the color classes. One can fix this by carefully splitting
each color class into two. The following theorems were proved in [40]:

Theorem 4.1 ([40]). The conflict-free chromatic parameter of any graph G
with n vertices satisfies κCF (G) = O(log2 n). The corresponding coloring
can be found by a deterministic polynomial time algorithm.



368 S. Smorodinsky

Theorem 4.2 ([40]). There exist graphs of n vertices with conflict-free
chromatic parameter Ω(log n).

Problem 6. Close the gap between the last two bounds.

For graphs with maximum degree Δ, a slightly better upper-bound is
known:

Theorem 4.3 ([40]). The conflict-free chromatic parameter of any graph G
with maximum degree Δ satisfies κCF (G) = O(log2+εΔ) for any ε > 0. The
corresponding coloring can be found by a deterministic polynomial time
algorithm.

Hypergraphs induced by simple paths in graphs. As mentioned in
the introduction, a particular interest is in hypergraphs induced by simple
paths in a given graph: Recall the that given a graph G, we consider the
hypergraph H = (V,E′) where a subset V ′ ⊂ V is a hyperedge in E′ if and
only if V ′ is the set of vertices in some simple path of G. As mentioned
before, the parameter χum(H) is known as the vertex ranking number of G
and was studied in other context in the literature (see, e.g., [32, 45]). An
interesting question arises when trying to understand the relation between
the two parameters χcf(H) and χum(H). This line of research was pursued
in [15] and [17]. Cheilaris and Tóth proved the following:´

Theorem 4.4 ([17]). (i) Let G be a simple graph and let H be the
hypergraph induced by paths in G as above: Then χum(H) ≤ 2χcf(H) − 1.

(ii) There is is a sequence of such hypergraphs {HiHH }∞i=1 induced by paths
such that

lim
n→∞

χum(HnHH )

χcf(HnHH )
= 2.

Narrowing the gaps between the two parameters for such hypergraphs
is an interesting open problem:

Problem 7. Let f(k) denote the function of the least integer such that for
every hypergraph H induced by path in a graph G we have that χum(H) ≤
f(χcf(H)). Find the asymptotic behavior of f .
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5. Algorithms

Until now we were mainly concerned with the combinatorial problem of ob-
taining bounds on the CF-chromatic number of various hypergraphs. We
now turn our attention to the computational aspect of the corresponding op-
timization problem. Even et al. [25] proved that given a finite set D of discs
in the plane, it is NP-hard to compute an optimal CF-coloring for H(D);
namely, a CF-coloring of H(D) using a minimum number of colors. This
hardness result holds even if all discs have the same radius. However, as
mentioned in the introduction, any set D of n discs admits a CF-coloring
that uses O(log n) colors and such a coloring can be found in determinis-
tic polynomial time (in fact in O(n log n) time). This trivially implies that
such an algorithm serves as an O(log n) approximation algorithm for the
corresponding optimization problem.

5.1. Approximation Algorithms

Given a finite set D of discs in the plane, the size ratio of D denoted by
ρ = ρ(D) is the ratio between the maximum and minimum radii of discs
in D. For simplicity, we may assume that the smallest radius is 1. For each
i ≥ 1, let Di denote the subset of discs in D whose radius is in the range
[2i−1, 2i). Let φ2i(D

i) denote the maximum number of centers of discs in Di

that are contained in a 2i × 2i square. Refer to φ2i(D
i) as the local density

of Di (with respect to 2i×2i square). For a set of points X in R2 let Dr(X)
denote the set of |X| discs with radius r centered at the points of X. The
following algorithmic results were provided in [25].

Theorem 5.1 ([25]).

1. Given a finite setD of discs with size-ratio ρ, there exists a polynomial-
time algorithm that compute a CF-coloring of D using

O

(
min{(log ρ) ·max

i
{log φ2i(D

i)}, log |D|}
)

colors.

2. Given a finite set of centers X ⊂ R2, there exists a polynomial-
time algorithm that computes a UM-coloring χ of the hypergraph
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induced X with respect to all discs using O(log |X|) colors. This is
equivalent to the following: If we color Dr(X) by assigning each disc
d ∈ Dr(X) the color of its center then this is a valid UM-coloring of
the hypergraph H(Dr(X)) for every radius r.

The tightness of Theorem 5.1 follows from the fact that for any integer n,
there exists a set D of n unit discs with φ1(D) = n for which Ω(log n) colors
are necessary in every CF-coloring of D.

In the first part of Theorem 5.1 the discs are not necessarily congruent.
That is, the size-ratio ρ may be bigger than 1. In the second part of
Theorem 5.1, the discs are congruent (i.e., the size-ratio equals 1). However,
the common radius is not determined in advance. Namely, the order of
quantifiers in the second part of the theorem is as follows: Given the
locations of the disk centers, the algorithm computes a coloring of the centers
(of the discs) such that this coloring is conflict-free for every radius r.

Building on Theorem 5.1, Even et al. [25] also obtain two bi-criteria CF-
coloring algorithms for discs having the same (unit) radius. In both cases
the algorithm uses only few colors. In the first case this comes at a cost of
not serving a small area that is covered by the discs (i.e., an area close to
the boundary of the union of the discs). In the second case, all the area
covered by the discs is served, but the discs are assumed to have a slightly
larger radius. A formal statement of these bi-criteria results is as follows:

Theorem 5.2 ([25]). For every 0 < ε < 1 and every finite set of centers
X ⊂ R2, there exist polynomial-time algorithms that compute colorings as
follows:

1. A coloring χ of D1(X) using O
(
log 1

ε

)
colors for which the following

holds: The area of the set of points in
⋃
D1(X) that are not served

with respect to χ is at most an ε-fraction of the total area of D1(X).

2. A coloring of D1+ε(X) that uses O
(
log 1

ε

)
colors such that every point

in
⋃D1(X) is served.

In other words, in the first case, the portion of the total area that is
not served is an exponentially small fraction as a function of the number
of colors. In the second case, the increase in the radius of the discs is
exponentially small as a function of the number of colors.

The following problem seems like a non-trivial challenge.
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Problem 8. Is there a constant factor approximation algorithm for finding
an optimal CF-coloring for a finite set of discs in the plane?

Remark. In the special case that all discs are congruent (i.e., have the
same radius) Lev-Tov and Peleg [36] have recently provided a constant-
factor approximation algorithm.

5.1.1. An O(1)-Approximation for CF-Coloring of Rectangles and
Regular Hexagons. Recall that Theorem 2.7 states that every set of n
axis-parallel rectangles can be CF-colored with O(log2 n) colors and such a
coloring can be found in polynomial time.

Let R denote a set of axis-parallel rectangles. Given a rectangle R ∈ R,
let w(R) (h(R), respectively) denote the width (height, respectively) of R.

The size-ratio of R is defined by max
{

w(R1)
w(R2)

, h(R1)
h(R2)

}
R1,R2∈R

.

The size ratio of a collection of regular hexagons is simply the ratio of
the longest side length and the shortest side length.

Theorem 5.3 ([25]). Let R denote either a set of axis-parallel rectangles
or a set of homothets of a regular hexagons. Let ρ denote the size-ratio
of R and let χopt(R) denote an optimal CF-coloring of R.

1. If R is a set of rectangles, then there exists a polynomial-time al-
gorithm that computes a CF-coloring χ of R such that |χ(R)| =
O((log ρ+ 1)2 · |χopt(R)|).

2. If R is a set of hexagons, then there exists a polynomial-time al-
gorithm that computes a CF-coloring χ of R such that |χ(R)| =
O((log ρ+ 1) · |χopt(R)|).

For a constant size-ratio ρ, Theorem 5.3 implies a constant approxima-
tion algorithm.

5.2. Online CF-Coloring

Recall the motivation to study CF-coloring in the context of cellular an-
tanae. To capture a dynamic scenario where antennae can be added to
the network, Chen et al. [18] introduced an online version of the CF col-
oring problem. As we shall soon see, the online version of the problem is
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considerably harder, even in the one-dimensional case, where the static ver-
sion (i.e., CF-coloring the discrete intervals hypergraph) is trivial and fully
understood.

5.2.1. Points with respect to intervals. Let us start with the simplest
possible example where things become highly non-trivial in an online setting.
We start with the dynamic extension of the discrete interval hypergraph
case. Thats is, we deal with coloring of points on the line, with respect to
interval ranges. We maintain a finite set P ⊂ R. Initially, P is empty, and
an adversary repeatedly insert points into P , one point at a time. We denote
by P (t) the set P after the tth point has been inserted. Each time a new
point p is inserted, we need to assign a color c(p) to it, which is a positive
integer. Once the color has been assigned to p, it cannot be changed in the
future. The coloring should remain a valid CF-coloring at all times. That
is, as in the static case, for any interval I that contains points of P (t), there
is a color that appears exactly once in I.

We begin by examining a natural, simple, and obvious coloring algorithm
(referred to as the UniMax greedy algorithm) which might be inefficient in
the worst case. Chen et al. [18] presented an efficient 2-stage variant of the
UniMax greedy algorithm and showed that the maximum number of colors
that it uses is Θ(log2 n).

As in the case in most CF-coloring of hypergraphs that were tackled
so far, we wish to maintain the unique maximum invariant. At any given
step t the coloring of P (t) is a UM-coloring.

The following simple-minded algorithm for coloring an inserted point p
into the current set P (t) is used. We say that the newly inserted point p
sees a point x if all the colors of the points between p and x (exclusive) are
smaller than c(x). In this case we also say that p sees the color c(x). Then
p gets the smallest color that it does not see. (Note that a color can be
seen from p either to the left or to the right, but not in both directions; see
below.) Refer to this algorithm as the Unique Maximum Greedy algorithm,
or the UniMax greedy algorithm, for short.

Below is an illustration of the coloring rule of the UniMax greedy algo-
rithm. The left column gives the colors (integers in the range 1, 2, . . . , 6)
assigned to the points in the current set P and the location of the next point
to be inserted (indicated by a period). The right column gives the colors
“seen” by the new point. The colors seen to the left precede the ·, and those
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seen to the right succeed the ·.

1· [1·]
1 · 2 [1 · 2]
1 · 32 [1 · 3]
12 · 32 [2 · 3]
121 · 32 [21 · 3]
121 · 432 [21 · 4]
121 · 3432 [21 · 34]
1215 · 3432 [5 · 34]
1215 · 13432 [5 · 134]
12152 · 13432 [52 · 134]
121526 · 13432 [6 · 134]

Correctness. The correctness of the algorithm is established by induction
on the insertion order. First, note that no color can be seen twice from p:
This is obvious for two points that lie both to the left or both to the right
of p. If p sees the same color at a point u to its left and at a point v to its
right, then the interval [u, v], before p is inserted, does not have a unique
maximum color; thus this case is impossible, too. Next, if p is assigned
color c, any interval that contains p still has a unique maximum color: This
follows by induction when the maximum color is greater than c. If the
maximum color is c, then it cannot be shared by another point u in the
interval, because then p would have seen the nearest such point and thus
would not be assigned color c. It is also easy to see that the algorithm assigns
to each newly inserted point the smallest possible color that maintains the
invariant of a unique maximum color in each interval. This makes the
algorithm greedy with respect to the unique maximum condition.

Special insertion orders. Denote by C(P (t)) the sequence of colors
assigned to the points of P (t), in left-to-right order along the line.

The complete binary tree sequence Sk of order k is defined recursively as
S1 = (1) and Sk = Sk−1‖(k)‖Sk−1, for k > 1, where ‖ denotes concatena-
tion. Clearly, |Sk| = 2k − 1.

For each pair of integers a < b, denote by C0CC (a, b) the following spe-
cial sequence. Let k be the integer satisfying 2k−1 ≤ b < 2k. Then
C0CC (a, b) is the subsequence of Sk from the ath place to the bth place (in-
clusive). For example, C0CC (5, 12) is the subsequence (1, 2, 1, 4, 1, 2, 1, 3) of
(1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1).
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Lemma 5.4. (a) If each point is inserted into P to the right of all preceding
points, then C(P (t)) = C0CC (1, t).

(b) If each point is inserted into P to the left of all preceding points,
then C(P (t)) = C0CC (2k − t, 2k − 1), where k satisfies 2k−1 ≤ t < 2k.

Proof. The proof is easy and is left as an exercise to the reader.

Unfortunately, the UniMax greedy algorithm might be very inefficient
as was shown in [18]:

Theorem 5.5 ([18]). The UniMax greedy algorithm may require Ω(
√
n)

colors in the worst case for a set of n points.

Problem 9. Obtain an upper bound for the maximum number of colors
that the algorithm uses for n inserted points. It is conjectured that the
bound is close to the Ω(

√
n) lower bound. At the moment, there is no

known sub-linear upper bound.

Related algorithms. The First-Fit algorithm—another greedy strategy.
The UniMax greedy algorithm is greedy for maintaining the unique maxi-
mum invariant. Perhaps it is more natural to consider a greedy approach
in which we want only to enforce the standard CF property. That is, we
want to assign to each newly inserted point the smallest color for which the
CF property continues to hold. There are cases where this First-Fit greedy
algorithm uses fewer colors than the UniMax greedy algorithm: Consider
an insertion of five points in the order (1 3 2 4 5). The UniMax greedy
algorithm produces the color sequence (1 3 2 1 4), whereas the First-Fit
algorithm produces the coloring (1 3 2 1 2). Unfortunately, Bar-Noy et
al. [11] have shown that there are sequences with 2i+3 elements that force
the algorithm to use i+ 3 colors, and this bound is tight.

CF coloring for unit intervals. Consider the special case where we want
the CF property to hold only for unit intervals. In this case, O(log n) colors
suffice: Partition the line into the unit intervals JiJJ = [i, i+1) for i ∈ Z. Color
the intervals JiJJ with even i as white, and those with odd i as black. Note
that any unit interval meets only one white and one black interval. We color
the points in each JiJJ independently, using the same set of “light colors” for
each white interval and the same set of “dark colors” for each black interval.
For each JiJJ , we color the points that it contains using the UniMax greedy
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algorithm, except that new points inserted into JiJJ between two previously
inserted points get a special color, color 0. It is easily checked that the
resulting coloring is CF with respect to unit intervals. Since we effectively
insert points into any JiJJ only to the left or to the right of the previously
inserted points, Lemma 5.4(c) implies that the algorithm uses only O(log n)
(light and dark) colors. We remark that this algorithm satisfies the unique
maximum color property for unit-length intervals.

We note that, in contrast to the static case (which can always be solved
with O(1) colors), Ω(log n) colors may be needed in the worst case. Indeed,
consider a left-to-right insertion of n points into a sufficiently small interval.
Each contiguous subsequence σ of the points will be a suffix of the whole
sequence at the time the rightmost element of σ is inserted. Since such a
suffix can be cut off the current set by a unit interval, it must have a unique
color. Hence, at the end of insertion, every subsequence must have a unique
color, which implies (see [25, 47]) that Ω(log n) colors are needed.

An efficient online deterministic algorithm for points with respect
to intervals. We describe an efficient online algorithm for coloring points
with respect to intervals that was obtained in [18]. This is done by modifying
the UniMax greedy algorithm into a deterministic 2-stage coloring scheme.
It is then shown that it uses only O(log2 n) colors. The algorithm is referred
to as the leveled UniMax greedy algorithm.

Let x be the point which we currently insert. We assign a color to x in
two steps. First we assign x to a level, denoted by �(x). Once x is assigned
to level �(x) we give it an actual color among the set of colors dedicated
to �(x). We maintain the invariant that each color is used by at most one
level. Formally, the colors that we use are pairs (�(x), c(x)) ∈ Z2, where
�(x) is the level of x and c(x) is its integer color within that level.

Modifying the definition from the UniMax greedy algorithm, we say that
point x sees point y (or that point y is visible to x) if and only if for every
point z between x and y, �(z) < �(y). When x is inserted, we set �(x) to be
the smallest level � such that either to the left of x or to the right of x (or
in both directions) there is no point y visible to x at level �.

To give x a color, we now consider only the points of level �(x) that x
can see. That is, we discard every point y such that �(y) �=�� �(x), and every
point y such that �(y) = �(x) and there is a point z between x and y such
that �(z) > �(y). We apply the UniMax greedy algorithm so as to color x
with respect to the sequence PxPP of the remaining points, using the colors
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of level �(x) only. That is, we give x the color (�(x), c(x)), where c(x) is
the smallest color that ensures that the coloring of PxPP maintains the unique
maximum color condition. This completes the description of the algorithm.
See Figure 5 for an illustration.

Fig. 5. Illustrating the 2-stage deterministic algorithm. An insertion order that realizes
the depicted assignment of levels to points is to first insert all level-1 points from left to

right, then insert the level-2 points from left to right, and then the level-3 points

We begin the analysis of the algorithm by making a few observations on
its performance.

(a) Suppose that a point x is inserted and is assigned to level i > 1.
Since x was not assigned to any level j < i, it must see a point �j at level
j that lies to its left, and another such point rj that lies to its right. Let
EjE (x) denote the interval [�j , rj ]. Note that, by definition, these intervals
are nested, that is, EjE (x) ⊂ Ek(x) for j < k < i. See Figure 5.

(b) We define a run at level i to be a maximal sequence of points
x1 < x2 < · · · < xk at level i, such that all points between x1 and xk
that are distinct from x2, x3, . . . , xk−1 are assigned to levels smaller than i.
Whenever a new point x is assigned to level i and is inserted into a run of
that level, it is always inserted either to the left or to the right of all points
in the run. Moreover, the actual color that x gets is determined solely from
the colors of the points already in the run. See Figure 5.

(c) The runs keep evolving as new points are inserted. A run may either
grow when a new point of the same level is inserted at its left or right end
(note that other points at smaller levels may separate the new point from
the former end of the run) or split into two runs when a point of a higher
level is inserted somewhere between its ends.

(d) As in observation (a), the points at level i define intervals, called
i-intervals. Any such interval E is a contiguous subsequence [x, y] of P ,
so that x and y are both at level i and all the points between x and y
have smaller levels. E is formed when the second of its endpoints, say x,
is inserted. We say that x closes the interval E and refer to it as a closing
point. Note that, by construction, x cannot close another interval.
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(e) Continuing observation (a), when x is inserted, it destroys the in-
tervals EjE (x), for j < i, into which it is inserted, and only these intervals.
That is, each of these intervals now contains a point with a level greater
than that of its endpoints, so it is no longer a valid interval. We charge x
to the set of the closing endpoints of all these intervals. Clearly, none of
these points will ever be charged again by another insertion (since it is the
closing endpoint of only one interval, which is now destroyed). We maintain
a forest F , whose nodes are all the points of P . The leaves of F are all the
points at level 1. When a new point x is inserted, we make it a new root
of F , and the parent of all the closing points that it charges. Since these
points have smaller levels than x, and since none of these points becomes a
child of another parent, it follows that F is indeed a forest.

Note that the nonclosing points can only be roots of trees of F . Note
also that a node at level i has exactly i − 1 children, exactly one at each
level j < i. Hence, each tree of F is a binomial tree (see [22]); if its root has
level i, then it has 2i nodes.

This implies that if m is the maximal level assigned after n points have
been inserted, then we must have 2m ≤ n, or m ≤ log n. That is, the
algorithm uses at most log n levels.

We next prove that the algorithm uses only O(log n) colors at each level.
We recall the way runs evolve: They grow by adding points at their right
or left ends, and split into prefix and suffix subruns, when a point with a
larger level is inserted in their middle.

Lemma 5.6. At any time during the insertion process, the colors assigned
to the points in a run form a sequence of the form C0CC (a, b). Moreover, when
the jth smallest color of level i is given to a point x, the run to which x is
appended has at least 2j−2 + 1 elements (including x).

Proof. The proof proceeds by induction through the sequence of insertion
steps and is based on the following observation. Let σ be a contiguous
subsequence of the complete binary tree sequence Sk−1, and let x be a
point added, say, to the left of σ. If we assign to x color c(x), using the
UniMax greedy algorithm, then (c(x)) ‖ σ is a contiguous subsequence of
either Sk−1 or Sk. The latter happens only if σ contains Sk−2 ‖ (k− 1) as a
prefix. Symmetric properties hold when x is inserted to the right of σ. We
omit the straightforward proof of this observation.

As a consequence we have.
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Theorem 5.7 ([18]). (a) The algorithm uses at most (2+log n) log n colors.

(b) At any time, the coloring is a valid CF-coloring.

(c) In the worst case the algorithm may be forced to use Ω(log2 n) colors
after n points are inserted.

Proof. (a) We have already argued that the number of levels is at most log n.
Within a level i, the kth smallest color is assigned when a run contains at
least 2k−2 points. Hence 2k−2 ≤ n, or k ≤ 2 + log n, and (a) follows.

To show (b), consider an arbitrary interval I. Let � be the highest level
of a point in I. Let σ = (y1, y2, . . . , yjy ) be the sequence of the points in I
of level �. Since � is the highest level in I, σ is a contiguous subsequence
of some run, and, by Lemma 5.6, the sequence of the colors of its points is
also of the form C0CC (a′, b′). Hence, there is a point yi ∈ σ which is uniquely
colored among y1, y2, . . . , yjy by a color of level �.

To show (c), we construct a sequence P so as to force its coloring to
proceed level by level. We first insert 2k−1 points from left to right, thereby
making them all be assigned to level 1 and colored with k different colors of
that level. Let P1PP denote the set of these points. We next insert a second
batch of 2k−2 points from left to right. The first point is inserted between the
first and second points of P1PP , the second point between the third and fourth
points of P1PP , and so on, where the jth new point is inserted between the
(2j−1)th and (2j)th points of P1PP . By construction, all points in the second
batch are assigned to level 2, and they are colored with k−1 different colors
of that level. Let P2PP denote the set of all points inserted so far. P2PP is the
concatenation of 2k−2 triples, where the levels in each triple are (1, 2, 1). We
now insert a third batch of 2k−3 points from left to right. The first point is
inserted between the first and second triples of P2PP , the second point between
the third and fourth triples of P2PP , and so on, where the jth new point is
inserted between the (2j − 1)th and (2j)th triples of P2PP . By construction,
all points in the third batch are assigned to level 3, and they are colored
with k − 2 different colors of that level.

The construction is continued in this manner. Just before inserting
the ith batch of 2k−i points, we have a set PiPP −1 of 2k−1 + · · · + 2k−i+1

points, which is the concatenation of 2k−i+1 tuples, where the sequences of
levels in each of these tuples are all identical and equal to the “complete
binary tree sequence” C0CC (1, 2i−1−1), as defined above (whose elements now
encode levels rather than colors). The points of the ith batch are inserted
from left to right, where the jth point is inserted between the (2j − 1)th
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and (2j)th tuples of PiPP −1. By construction, all points in the ith batch are
assigned to level i and are colored with k − i + 1 different colors of that
level. Proceeding in this manner, we end the construction by inserting the
(k − 1)th batch, which consists of a single point that is assigned to level k.
Altogether we have inserted n = 2k − 1 points and forced the algorithm to
use k + (k − 1) + · · ·+ 1 = k(k + 1)/2 = Ω(log2 n) different colors.

Given that the only known lower bound for this online CF-coloring
problem is Ω(log n) which holds also in the static problem, its a major
open problem to close the gap with the O(log2 n) upper bound provided by
the algorithm above.

Problem 10. Find a deterministic online CF-coloring for coloring points
with respect to intervals which uses o(log2 n) colors in the worst case or
improve the Ω(log n) lower bound.

Other Online models. For the case of online CF-coloring points with
respect to intervals, other models of a weaker adversary were studied in [12].
For example, a natural assumption is that the adversary reveals, for a newly
inserted point, its final position among the set of all points in the end of
the online input. This is referred to as the online absolute positions model.
In this model an online CF-coloring algorithm that uses at most O(log n)
colors is presented in [12].

5.2.2. Points with respect to halfplanes or unit discs. In [18] it
was shown that the two-dimensional variant of online CF-coloring a given
sequence of inserted points with respect to arbitrary discs is hopeless as there
exists sequences of n points for which every CF-coloring requires n distinct
colors. However if we require a CF-coloring with respect to congruent discs
or with respect to half-planes, there is some hope. Even though no efficient
deterministic online algorithms are known for such cases, some efficient
randomized algorithms that uses expected O(log n) colors are provided in
[19, 10] under the assumption that the adversary is oblivious to the random
bits used by the algorithm.

Chen Kaplan and Sharir [19] introduced an O(log3n) deterministic al-
gorithm for online CF-coloring any n nearly-equal axis-parallel rectangles
in the plane.
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5.2.3. Degenerate hypergraphs. Next, we describe the general frame-
work of [10] for online CF-coloring any hypergraph. This framework is used
to obtain efficient randomized online algorithms for hypergraphs provided
that a special parameter referred to as the degeneracy of the underlying hy-
pergraph is small. This notion extends the notion of a degenerate graph to
that of a hypergraph:

Definition 5.8. Let k > 0 be a fixed integer and let H = (V,E) be a
hypergraph on the n vertices v1, . . . , vn. For a permutation π : {1, . . . , n} →
{1, . . . , n} define the n partial sums, indexed by t = 1, . . . , n,

Sπ
tSS =

t∑
j=1

d(vπ(j)),

where

d(vπ(j)) =
∣∣∣∣{ i < j | {vπ(i), vπ(j)} ∈ G(H({vπ(1), . . . , vπ(j)}))

}∣∣∣∣ ,
that is, d(vπ(j)) is the number of neighbors of vπ(j) in the Delaunay graph
of the hypergraph induced by {vπ(1), . . . , vπ(j)}. Assume that for all permu-
tations π and for every t ∈ {1, . . . , n} we have

(1) Sπ
tSS ≤ kt.

Then, we say that H is k-degenerate.

Let H = (V,E) be any hypergraph. We define a framework that colors
the vertices of V in an online fashion, i.e., when the vertices of V are revealed
by an adversary one at a time. At each time step t, the algorithm must
assign a color to the newly revealed vertex vt. This color cannot be changed
in future times t′ > t. The coloring has to be conflict-free for all the induced
hypergraphs H(VtVV ) with t = 1, . . . , n, where VtVV ⊆ V is the set of vertices
revealed by time t.

For a fixed positive integer h, let A = {a1, . . . , ah} be a set of h auxiliary
colors. This auxiliary colors set should not be confused with the set of main
colors used for the conflict-free coloring: {1, 2, . . . }. Let f : N+ → A be
some fixed function. In the following, we define the framework that depends
on the choice of the function f and the parameter h.

A table (to be updated online) is maintained with row entries indexed
by the variable i with range in N+. Each row entry i at time t is associated
with a subset V i

tVV ⊆ VtVV in addition to an auxiliary proper non-monochromatic
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coloring ofH(V i
tVV ) with at most h colors. The subsets V i

tVV are nested. Namely,
V i+1
tVV ⊂ V i

tVV for every i. Informally, we think of a newly inserted vertex as
trying to reach its final entry by some decision process. It starts with entry 1
and continue “climbing” to higher levels as long as it does not succeed to
get its final color. We say that f(i) is the auxiliary color that represents
entry i in the table. At the beginning all entries of the table are empty.
Suppose all entries of the table are updated until time t − 1 and let vt be
the vertex revealed by the adversary at time t. The framework first checks
if an auxiliary color can be assigned to vt such that the auxiliary coloring of
V 1
tVV −1 together with the color of vt is a proper non-monochromatic coloring of

H(V 1
tVV −1∪{vt}). Any (proper non-monochromatic) coloring procedure can be

used by the framework. For example a first-fit greedy method in which all
colors in the order a1, . . . , ah are checked until one is found. If such a color
cannot be found for vt, then entry 1 is left with no changes and the process
continues to the next entry. If however, such a color can be assigned, then
vt is added to the set V 1

tVV −1. Let c denote such an auxiliary color assigned
to vt. If this color is the same as f(1) (the auxiliary color that represents
entry 1), then the final color in the online conflict-free coloring of vt is 1 and
the updating process for the t-th vertex stops. Otherwise, if an auxiliary
color cannot be found or if the assigned auxiliary color is not the same as
f(1), then the updating process continues to the next entry. The updating
process stops at the first entry i for which vt is both added to V i

tVV and the
auxiliary color assigned to vt is the same as f(i). Then, the main color of vt
in the final conflict-free coloring is set to i. See Figure 6 for an illustration.

It is possible that vt never gets a final color. In this case we say that
the framework does not halt. However, termination can be guaranteed by
imposing some restrictions on the auxiliary coloring method and the choice
of the function f . For example, if first-fit is used for the auxiliary colorings
at any entry and if f is the constant function f(i) = a1, for all i, then
the framework is guaranteed to halt for any time t. Later, a randomized
online algorithm based on this framework is derived under the oblivious
adversary model. This algorithm always halts, or to be more precise halts
with probability 1, and moreover it halts after a “small” number of entries
with high probability. We prove that the above framework produces a valid
conflict-free coloring in case it halts.

Lemma 5.9. If the above framework halts for any vertex vt then it produces
a valid online conflict-free coloring of H.
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An example of the updating process of the table for the hypergraph induced by
points with respect to intervals. 3 auxiliary colors denoted {a, b, c} are used. In each
line i the auxiliary coloring is given. It serves as a proper coloring for the hypergraphs
H(V i

tVV ) induced by the subset V i
tVV of all points revealed up to time t that reached line i.

The first point v1 is inserted to the left. The second point v2 to the right and the third
point v3 in the middle, etc. For instance, at the first entry (i.e., line) of the table, the
auxiliary color of v2 is b. In the second line it is a and in the third line it is a. Since
f(3) = a, the final color of v2 is 3. Similarly, the final color of v1 is 1, of v3 is 2, and

of v4 is 1

Proof. Let H(VtVV ) be the hypergraph induced by the vertices already re-
vealed at time t. Let S be a hyperedge in this hypergraph and let j be
the maximum integer for which there is a vertex v of S colored with j. We
claim that exactly one such vertex in S exists. Assume to the contrary that
there is another vertex v′ in S colored with j. This means that at time t
both vertices v and v′ were present at entry j of the table (i.e., v, v′ ∈ V j

tVV )
and that they both got an auxiliary color (in the auxiliary coloring of the
set V j

tVV ) which equals f(j). However, since the auxiliary coloring is a proper
non-monochromatic coloring of the induced hypergraph at entry j, S∩V j

tVV is
not monochromatic so there must exist a third vertex v′′ ∈ S ∩V j

tVV that was
present at entry j and was assigned an auxiliary color different from f(j).
Thus, v′′ got its final color in an entry greater than j, a contradiction to
the maximality of j in the hyperedge S. This completes the proof of the
lemma.

The above algorithmic framework can also describe some well-known
deterministic algorithms. For example, if first-fit is used for auxiliary col-
orings and f is the constant function, f(i) = a1, for all i, then, for the
hypergraph induced by points on a line with respect to intervals, the algo-
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rithm derived from the framework becomes identical to the UniMax greedy
algorithm described above.

An online randomized conflict-free coloring algorithm. We devise a
randomized online conflict-free coloring algorithm in the oblivious adversary
model. In this model, the adversary has to commit to a permutation
according to the order of which the vertices of the hypergraph are revealed
to the algorithm. Namely, the adversary does not have access to the random
bits that are used by the algorithm. The algorithm always produces a valid
coloring and the number of colors used is related to the degeneracy of the
underlying hypergraph in a manner described in the following theorem.

Theorem 5.10 ([10]). Let H = (V,E) be a k-degenerate hypergraph
on n vertices. Then, there exists a randomized online conflict-free coloring
algorithm for H which uses at most O( log1+ 1

4k+1
n) = O(k log n) colors

with high probability against an oblivious adversary.

The algorithm is based on the framework presented above. In order
to define the algorithm, we need to state what is (a) the set of auxiliary
colors of each entry, (b) the function f , and (c) the algorithm we use for
the auxiliary coloring at each entry. We use the set of auxiliary colors
A = {a1, . . . , a2k+1}. For each entry i, the representing color f(i) is chosen
uniformly at random from A. We use a first-fit algorithm for the auxiliary
coloring.

Our assumption on the hypergraph H (being k-degenerate) implies that
at least half of the vertices up to time t that reached entry i (but not
necessarily added to entry i), denoted by Xt

≥i, have been actually given

some auxiliary color at entry i (that is,
∣∣∣∣V i

tVV
∣∣∣∣ ≥ 1

2

∣∣∣∣Xt
≥i

∣∣∣∣). This is due to the
fact that at least half of those vertices vt have at most 2k neighbors in the
Delaunay graph of the hypergraph induced by Xt−1

≥i (since the sum of these

quantities is at most k
∣∣∣∣Xt

≥i

∣∣∣∣ and since V i
tVV ⊆ Xt

≥i). Therefore, since we have
2k + 1 colors available, there is always an available color to assign to such
a vertex. The following lemma shows that if we use one of these available
colors then the updated coloring is indeed a proper non-monochromatic
coloring of the corresponding induced hypergraph as well.

Lemma 5.11. Let H = (V,E) be a k-degenerate hypergraph and let V j
tVV be

the subset of V at time t and at level j as produced by the above algorithm.
Then, for any j and t if vt is assigned a color distinct from all its neighbors
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in the Delaunay graph G(H(V j
tVV )) then this color together with the colors

assigned to the vertices V j
tVV −1 is also a proper non-monochromatic coloring

of the hypergraph H(V j
tVV ).

Proof. Follows from Lemma 5.9

We also prove that for every vertex vt, the algorithm always halts, or
more precisely halts with probability 1.

Proposition 5.12. For every vertex vt, the algorithm halts with probabil-
ity 1.

Proof.

Pr[algorithm does not halt for vt] =

Pr[algorithm does not assign a main color to vt in any entry] ≤

Pr[algorithm does not assign a main color to vt in any empty entry] =

Pr[
⋂

i : empty entry

(algorithm does not assign a main color to vt in entry i)] =

∏
i : empty entry

Pr[algorithm does not assign a main color to vt in entry i] =

∏
i : empty entry

(1− h−1) = lim
j→∞

(1− h−1)j = 0

and therefore Pr[algorithm halts for vt] = 1.

We proceed to the analysis of the number of colors used by the algorithm,
proving theorem 5.10.

Lemma 5.13. Let H = (V,E) be a hypergraph and let C be a coloring
produced by the above algorithm on an online input V = {vt} for t =
1, . . . , n. Let XiXX (respectively X≥i) denote the random variable counting the
number of points of V that were assigned a final color at entry i (respectively
a final color at some entry ≥ i). Let Ei = E[Xi] and E≥i = E[X≥i] (note
that X≥i+1 = X≥i −XiXX ). Then:

E≥i ≤
(
4k + 1

4k + 2

)i−1

n.
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Proof. By induction on i. The case i = 1 is trivial. Assume that the
statement holds for i. To complete the induction step, we need to prove

that E≥i+1 ≤ (4k+1
4k+2)

i
n. By the conditional expectation formula, we have

for any two random variables X, Y that E[X] = E[E[X | Y ]]. Thus,

E≥i+1 = E[E[X≥i+1 | X≥i]] = E[E[X≥i−XiXX | X≥i]] = E[X≥i−E[XiXX | X≥i]].

It is easily seen that E[Xi | X≥i] ≥ 1
2

X≥i

2k+1 since at least half of the
vertices of X≥i got an auxiliary color by the above algorithm. Moreover
each of those elements that got an auxiliary color had probability 1

2k+1 to
get the final color i. This is the only place where we need to assume that the
adversary is oblivious and does not have access to the random bits. Thus,

E[X≥i −E[XiXX | X≥i]] ≤ E

[
X≥i −

1

2(2k + 1)
X≥i

]

=
4k + 1

4k + 2
E[X≥i] ≤

(
4k + 1

4k + 2

)i

n,

by linearity of expectation and by the induction hypotheses. This completes
the proof of the lemma.

Lemma 5.14. The expected number of colors used by the above algorithm
is at most log 4k+2

4k+1
n+ 1.

Proof. Let IiII be the indicator random variable for the following event: some
points are colored with a main color in entry i. We are interested in the
number of colors used, that is Y :=

∑∞
i=1 IiII . Let b(k, n) = log 4k+2

4k+1
n. Then,

E[Y ] = E

[∑
1≤i

IiII

]
≤ E

[ ∑
1≤i≤b(k,n)

IiII

]
+E[X≥b(k,n)+1] ≤ b(k, n) + 1,

by Markov’s inequality and lemma 5.13.

We notice that:

b(k, n) =
lnn

ln 4k+2
4k+1

≤ (4k + 2) lnn = O(k log n).
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We also have the following concentration result:

Pr[more than c · b(k, n) colors are used]

= Pr[X≥c·b(k,n)+1 ≥ 1] ≤ E≥c·b(k,n)+1 ≤
1

nc−1
,

by Markov’s inequality and by lemma 5.13.

This completes the performance analysis of the algorithm.

Remark. In the above description of the algorithm, all the random bits
are chosen in advance (by deciding the values of the function f in advance).
However, one can be more efficient and calculate the entry f(i) only at the
first time we need to update entry i, for any i. Since at each entry we need
to use O(log k) random bits and we showed that the number of entries used
is O(k log n) with high probability then the total number of random bits
used by the algorithm is O(k log k log n) with high probability.
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list conflict-free coloring for geometric hypergraphs. In Proc. 27th Annu. ACM
Sympos. Comput. Geom., 2011.
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[42] J. Pach, G. Tardos, and G. Tóth, Indecomposable coverings. In The China-
Japan Joint Conference on Discrete Geometry, Combinatorics, and Graph Theory
(CJCDGCGT 2005), Lecture Notes in Computer Sceince, pages 135–148, 2007.

[43] J. Pach and G. Tóth, Conflict free colorings, Discrete & Computational Geometry,
The Goodman-Pollack Festschrift, pages 665–671, 2003.
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