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Preface

In the summer of 2008, the editors of the present volume organized a well
attended conference at the Rényi Institute of the Hungarian Academy of
Sciences to commemorate the highly influential work and character of Lászl´´ o
Fejes Toth (1915–2005), one of the best known Hungarian geometers of all´
time, who served as a director of the Institute for thirteen years. The idea of
publishing a collection of essays dedicated to him was conceived shortly after
the conference, and it was embraced by a number of outstanding colleagues.

Hungary produced many famous mathematicians in the twentieth cen-
tury, but only few of them sparked the interest of a large number of talented
students in his subject and created an active school. László Fejes T´´ oth was´
one of the exceptions.

Like Paul Erdős, John von Neumann, and Paul Tur˝ an, he defended´
his thesis under the supervision of Leopold Fejér at Pázm´´ any University,´
Budapest. In his thesis, he solved a problem in Fourier analysis. He found
the problem and its solution entirely by himself, when reading a classical
monograph of Francesco Tricomi.

After his army service, he started teaching in Kolozsvár (Cluj). He
met Dezső L´˝ az´ ar, a mathematics teacher at the local Jewish High School,´
who told him about an exciting open problem that had a huge impact
on Fejes Tóth’s later work: How should one arrange´ n points in the unit
square so as to maximize the minimum distance between them? In other
words, what is the maximum density of a packing of n congruent disks
in a square? Unaware of earlier work by Axel Thue, László Fejes Tóth´
found an asymptotically tight answer to this question. He generalized the
problem in many different directions. A few years later he showed that
the maximum density of a packing of congruent copies of any centrally
symmetric convex body in the plane is attained for a lattice packing. He also
solved another important open problem. Steiner conjectured that among
all convex polytopes of unit surface area that are combinatorially equivalent
to a given Platonic body, the regular polytope has the largest possible
volume. For tetrahedra and octahedra, the conjecture can be easily verified
by symmetrization. Fejes Tóth developed a new technique using sums of
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spherical moments to prove Steiner’s conjecture for the cube and for the
dodecahedron. (The problem is still open for the icosahedron.) The method
has turned out to have many other interesting consequences.

Several years of systematic research in this area resulted in Fejes Tóth’s´
monograph, “Lagerungen in der Ebene, auf der Kugel und im Raum,”
which appeared in the prestigious series of Springer-Verlag, Grundlehren
der mathematischen Wissenschaften in 1953. The book became an instant
classic. As Ambrose Rogers wrote one decade later, “Until recently, the
theory of packing and covering was not sufficiently well developed to justify
the publication of a book devoted exclusively to it. After the publication of
L. Fejes Tóth’s excellent book in 1953, there would be no need for a second
work on the subject, but for the fact that he confines his attention mainly
to two and three dimensions.” The higher dimensional problems and results
inspired by Fejes Tóth’s work have led to important discoveries in coding
theory, in combinatorics, and in many other areas. Tom Hales’ solution of
“Kepler’s conjecture,” the sphere packing problem in three dimensions, was
motivated by Fejes Tóth’s program outlined in his book. Sixty years after
the publication of its first edition, the Lagerungen is still considered a basic
work in geometry. Its annotated English translation will appear soon.

One of László Fejes T´´ oth’s most impressive abilities was to ask beautiful´
and deep mathematical questions. Many of these questions can be found
in the short communications listed at the end of Fejes Tóth’s complete
bibliography, included in this volume. His work and his modest, unassuming
personality had a lasting impact on the professional life and development of
the editors as well as many of the contributors of this volume.

Imre Bárány
Károly Bör¨´ oczky, Jr.¨
Gábor Fejes T´´ oth´

János Pach´
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Des séries exponentielles de Cauchy. C. R. Acad. Sci., Paris 200 (1935), 1712–1714.
JFM 62.1191.03

1937
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A szabályos testek, mint sz´´ els˝´ o´˝ert´ ekfeladatok megoldásai. (Hungarian) [The regular´
polyhedra as the solution of extremum problems.] Mat. Termeszett. Értes. 61
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Über die mittlere Schnittpunktszahl konvexer Kurven und Isoperimetrie. Elemente
der Math. 3 (1948), 113–114. MR0027546

On the densest packing of convex domains. Nederl. Akad. Wetensch., Proc. 51
(1948), 544–547. (Indagationes Math. 10 (1948), 188–192.) MR0025753

On the total length of the edges of a polyhedron. Norske Vid. Selsk. Forh., Trond-
hjem 21 (1948), 32–34. MR0033073

1949

On the densest packing of circles in a convex domain. Norske Vid. Selsk. Forh.,
Trondhjem 21 (1949), 68–71. MR0033551
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Annäherung von Kurven durch Kurvenbogenzüge. Publ. Math. Debrecen 3 (1954),
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and Heppes, A., Über stabile Körpersysteme. Compositio Math. 15 (1963),
119–126. MR0161227

Isoperimetric problems concerning tessellations. Acta Math. Acad. Sci. Hungar. 14
(1963), 343–351. MR0157294

Coxeter, H. S. M. and , The total length of the edges of a non-Euclidean
polyhedron with triangular faces. Quart. J. Math. Oxford Ser. (2) 14 (1963),
273–284. MR0158307

On the isoperimetric property of the regular hyperbolic tetrahedra. Magyar Tud.
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Über das Didosche Problem. Elem. Math. 23 (1968), 97–101. MR0236820

On the permeability of a layer of parallelograms. Studia Sci. Math. Hungar. 3
(1968), 195–200. MR0232285

Solid circle-packings and circle-coverings. Studia Sci. Math. Hungar. 3 (1968),
401–409. MR0238192
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Atoms for Parallelohedra
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A parallelohedron is a convex polyhedron which tiles 3-dimensional space by
translations only. A polyhedron σ is said to be an atom for the set Π of parallelo-
hedra if for each parallelohedron P in Π, there exists an affine-stretching trans-
formation A : R3 −→ R3 such that A(P ) is the union of a finite number of copies
of σ. In this paper, we will present two different atoms for the parallelohedra,
and determine the number of these atoms used to make up each parallelohedron.
We will also show an arrangement of the parallelohedra in lattice-like order and
introduce the notion of indecomposability.

1. Introduction

A parallelohedron is a convex polyhedron which tiles 3-dimensional space
(i.e., space-filling) by translations only. In 1885, a Russian crystallogra-
pher, Evgraf Fedorov [5], established that there are exactly five families of
parallelohedra, namely, parallelepiped, rhombic dodecahedron, hexagonal
prism, elongated rhombic dodecahedron, and truncated octahedron (Fig-
ure 1). Note that each family contains infinitely many different shapes of
polyhedra since applying affine transformation to any of them will not affect
the space-filling property.

This paper deals with convex polyhedra only. We say that two polyhedra
P and Q are congruent if either P and Q are identical, or one is a mirror
image of the other. In what follows, we do not distinguish between two
congruent polyhedra. Minkowski [7] obtained the following results for a
general d-dimensional parallelohedron.
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Fedorov’s Parallelohedra

Theorem A (Minkowski). If P is a d-dimensional parallelohedron, then

(1) P is centrally symmetric,

(2) All faces of P are centrally symmetric, and

(3) The projection of P along any of its (d − 2)-faces onto the comple-
mentary 2-plane is either a parallelogram or a centrally symmetric
hexagon.

Theorem B (Minkowski). The number fdff −1(P ) of faces in a d-parallelo-
hedron P does not exceed 2(2d − 1) and there is a parallelohedron P with
fdff −1 = 2(2d − 1).

Dolbilin [4] extended Minkowski’s theorems for non-face-to-face tilings
of space. There are also numerous studies on parallelohedra discussed by
Alexandrov [3] and Gruber [6].

Let Π be the set of all parallelohedra. A polyhedron σ is said to be
an atom for Π if for each parallelohedron P in Π, there exists an affine-
stretching transformation A : R3 −→ R3 such that A(P ) is the union of a
finite number of copies of σ. i.e.,

∀P ∈ Π, A(P ) =
⋃

σ.

Note that every parallelohedron has the Dehn invariant zero, and this
property is preserved under affine-stretching transformations [1, 2, 8].

In this paper, we will determine two different atoms for the set Π above
and show an inclusion property among the parallelohedra. Let F1FF , F2FF , . . . , F5FF
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denote the five families of parallelohedra, namely, parallelepiped, rhom-
bic dodecahedron, hexagonal prism, elongated rhombic dodecahedron, and
truncated octahedron, respectively. For each of these five families FiFF
(i = 1, . . . , 5), choose a polyhedron PiPP ∈ FiFF to be a representative in
any manner. The resulting set Σ = {P1PP , . . . , P5PP } consists of five parallelo-
hedra, and we call it a representative set of parallelohedra.

Let Σ = {P1PP , . . . , P5PP } be a representative set. Given any parallelohedron
P ∈ Π, there exists an affine-stretching transformation A : R3 −→ R3 such
that A(P ) ∈ Σ. Hence, in order to determine an atom for the set Π, it
suffices to find a polyhedron σ and a representative set Σ = {P1PP , . . . , P5PP }
such that each parallelohedron PiPP ∈ Σ is the union of a finite number of
copies of σ. Therefore, in this paper we consider the representative set
that consists of the cube, the rhombic dodecahedron, the skewed hexagonal
prism, the elongated rhombic dodecahedron, and the truncated octahedron.

2. An Atom for the Set of Parallelohedra

Throughout the paper, we denote the set of all parallelohedra by Π, and
we use Σ to denote the representative set of parallelohedra that consists
of the cube, the rhombic dodecahedron, the skewed hexagonal prism, the
elongated rhombic dodecahedron, and the truncated octahedron. In the
following theorem, we will show that a special kind of pentahedron, which
we call a pentadron, is an atom for the set Π. A pentadron is either
one of the pentahedra shown in Figure 2(a), with developments shown in
Figure 2(b).

Fig. 2. Pentahedra as an Atom
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Theorem 1. A pentadron is an atom for Π, and the decomposition of each
parallelohedron in Σ into pentadra is summarized in Table 1.

Table 1: The Number of Pentadra in the Parallelohedra
Parallelohedron Number of Pentadra

Cube 96
Rhombic Dodecahedron 192
Skewed Hexagonal Prism 144
Elongated Rhombic Dodecahedron 384
Truncated Octahedron 48

Proof. We consider four cases.

(1 ) Cube and Rhombic Dodecahedron. Consider the cube in Fig-
ure 3(a). The cube can be decomposed into 6 congruent pyramids by
using 4 planes, each of which passes through the center of the cube
and contains two opposite edges (Figure 3(b)).

Fig. 3. Cube Decomposed in Pyramids

One such pyramid consists of a square base and four isosceles triangles
joined at the peak (Figure 4). We now divide this pyramid further into
4 congruent parts by two planes passing through the peak and through
each of the two diagonals of the base. Each part is a tetrahedron with
three right angles (Figure 4). We will call this tetrahedron a right
tetra. Thus, we have shown that a cube can be decomposed into 24
congruent right tetras.

On the other hand, if a square-based pyramid, such as the one shown
in Figure 4 is attached to each face of a cube, a rhombic dodecahedron
is formed (Figure 5). This implies that a rhombic dodecahedron can
be decomposed into 48 congruent right tetras.
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Fig. 4. Pyramid Decomposed in Right Tetra

Rhombic Dodecahedron Composed with a Cube and 6 Pyramids

(2 ) Skewed Hexagonal Prism. The base of the right tetra is a right
isosceles triangle. Two right tetras glued at the base will form yet an-
other tetrahedron (Figure 6(a)). We call this tetrahedron a tetrapak.
If 3 such tetrapaks are glued appropriately, a triangular prism with
an equilateral triangle at its cross section is formed. (Figure 6(b)).
Finally, a skewed hexagonal prism is formed using three pairs of tri-
angular prisms, where each pair consists of a triangular prism and its
mirror image (Figure 6(c)). Therefore a skewed hexagonal prism can
be formed using 18 tetrapaks.

(3 ) Elongated Rhombic Dodecahedron. An elongated dodecahedron
is formed using two solids: a rhombic dodecahedron and a concave
solid which can be obtained from the rhombic dodecahedron. In
order to obtain the second, we consider any vertex of degree 4 of
the rhombic dodecahedron. We cut the dodecahedron along the edges
containing this vertex and open the solid at that vertex. The resulting
solid resembles a helmet (Figure 7). Figure 8 illustrate how the
elongated dodecahedron is obtained from a rhombic dodecahedron and
this helmet-shaped solid.



28 J. Akiyama, M. Kobayashi, H. Nakagawa, G. Nakamura and I. Sato

Fig. 6. Skewed Hexagonal Prism Composed with Tetrapak

Fig. 7. The Helmet-shaped Solid

As we have mentioned, a rhombic dodecahedron consists of 48 right
tetras. Therefore, the elongated rhombic dodecahedron can be formed
using 96 right tetras.
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Obtaining the Elongated Rhombic Dodecahedron

(4 ) Truncated Octahedron. A tetrapak has another important prop-
erty. It can be divided into 4 congurent hexahedra using 6 planes
(Figure 9). Each plane should pass through the midpoint of an edge
and through the center of the tetrapak and must be perpendicular to
the edge. We will call each of the resulting hexahedron a c-squadron.

Tetrapak Decomposed in c-squadrons

If we rearrange these 4 c-squadra in an appropriate way, we can
form the a diamond-shaped solid (Figure 10(a)). Then, using 6 of
these solids, we can construct a truncated octahedron (Figure 10(b)).
Thus a truncated octahedron can be constructed using 24 c-squadra.

A summary of the results we have obtained so far is given in Table 2.
The remaining problem is as follows: Is there a single polyhedron upon
which a right tetra, a tetrapak and c-squadron may be built? To settle
this problem, we consider a c-squadron (Figure 11(a)).

If a c-squadron is divided as shown in Figure 11(b), two congruent
pentahedra are formed, which were the pentadra we introduced in the
beginning of this section. Four pentadra can be used to build a right
tetra (Figure 11(c)) and hence, 8 pentadra make up a tetrapak. These
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Fig. 10. Truncated Octahedron Composed with Diamonds

Table 2: Decomposition of the Parallelohedra
Parallelohedra Decomposition

Cube 24 right tetras
Rhombic Dodecahedron 48 right tetras
Skewed Hexagonal Prism 18 tetrapaks
Elongated Rhombic Dodecahedron 96 right tetras
Truncated Octahedron 24 c-squadra

facts, combined with the information in Table 2 will enable us to obtain
Table 1. We have therefore shown that each of the parallelohedra in our
representative set can be constructed by a finite number of pentadra. This
completes the proof.

Right Tetra Decomposed in c-squadrons

Remark 1. There is a way to build a cube by using only 12 pentadra
(Figure 12).
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Fig. 12. Cube Decomposed into 12 Pentadra

3. Embeddings in the Elongated Rhombic Dodecahedron

In the previous section, we found that the number of pentadra needed to
construct each type of parallelohedron is a multiple of 48. We now look into
an inclusive property among the different types of parallelohedra. Let Σ be
the representative set as in Section 2, and denote each parallelohedron
in Σ as in Table 3.

Table 3: Denoting the Parallelohedra
Parallelohedra Symbols

Cube P1PP
Rhombic Dodecahedron P2PP
Skewed Hexagonal Prism P3PP
Elongated Rhombic Dodecahedron P4PP
Truncated Octahedron P5PP

Theorem 2. Let Σ = {P1PP , P2PP , . . . , P5PP } be the representative set as above.
Then we have the following inclusive property among the elements of Σ:

P5PP ⊂ P1PP ⊂ P2PP ⊂ P4PP and P3PP ⊂ P4PP ,

where the notation “Q“ 1 ⊂ Q2” has the meaning “Q“ 1 is embedded in Q2” in
such a way that when viewing Q2 as the union of pentadra as in Section 2,
Q1 is the union of a subset of the pentadra used for Q2.

Proof. There are four cases to consider since the symbol “⊂” appears four
times in the statement of Theorem 2.
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(1 ) P2 ⊂ P4. From Case (3) of the proof of Theorem 1 and from
Figure 8, it is clear that a rhombic dodecahedron is embedded in an
elongated rhombic dodecahedron.

(2 ) P1 ⊂ P2. Also from Case (1) of the proof of Theorem 1, we have
shown that a cube is embedded in a rhombic dodecahedron (Fig-
ure 5).

(3 ) P5 ⊂ P1. We now show that there is a special embedding of a trun-
cated octahedron inside a cube. Glue a pair of congruent pentadra in
such a way that the resulting hexahedron will have a right isosceles
triangular face (Figure 13). Let us call this hexahedron a tripen-
quadron. This polyhedron has two other right triangular faces and
has a unique vertex of degree 4.

Fig. 13. Tripenquadron Composed with Two Pentadra

Suppose we now take three tripenquadra and glue them along their
right triangular faces so that they all meet at the vertex whose degree
is 4 (Figure 14). This meeting point is the peak of the resulting solid
whose base is a regular hexagon.

By taking 8 such solids and gluing them along the right isosceles
triangular faces, we obtain a punctured cube having 6 square holes
at the center of each face (Figure 15).

To examine the interior of this punctured cube, let us open it by a
plane perpendicular to two opposite faces through their diagonals.
The cross section reveals that the faces in the interior of this punc-
tured cube consist of regular hexagons and that the hole is obtained
by carving out half of a truncated octahedron. The truncated octa-
hedron and the result of fitting it into the punctured cube is shown in
(Figure 16). It follows that a truncated octahedron is embedded in a
special way inside a cube.
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Fig. 14. Tripenquadra Composition

Fig. 15. Punctured Cube

Fig. 16. Octahedron inside a Punctured Cube

(4 ) P3 ⊂ P4. Finally, we show that a skewed hexagonal prism is em-
bedded inside an elongated rhombic dodecahedron. Consider again
Figure 8 where a rhombic dodecahedron and a helmet-shaped solid
are combined to form an elongated rhombic dodecahedron.
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First, we divide the rhombic dodecahedron into two congruent parts
by a plane which passes through six vertices, and consider only one
part (Figure 17).

Fig. 17. Rhombic Dodecahedron Cut into Two Congruent Parts

Next, we take the helmet-shaped solid and cut off a part as shown in
Figure 18. The right-hand solid in Figure 18 is V-shaped and consists
of 2 skewed triangular prisms which are mirror images of each other.
Each triangular prism is formed by gluing 3 tetrapaks as in Figure 6.

Fig. 18. Cutting the Helmet-shaped Solid

Now if this part is attached to the lower half of the rhombic dodeca-
hedron, we obtain the skewed hexagonal prism as shown in Figure 19.
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This shows the special embedding of the skewed hexagonal prism in-
side an elongated rhombic dodecahedron.

Fig. 19. Embedding the Skewed Hexagonal Prism

This completes the proof.

Consider the tessellation by translates of the 3-dimensional space R3 by
the elongated rhombic dodecahedron P4PP . Since P4PP is the union of copies of
pentadra, we obtain immediately the tessellation of the space R3 by pen-
tadra. Now, Theorem 2 tells us that each of the other four parallelohedra
PiPP ∈ Σ (i = 1, 2, 3, 5) is embeded in P4PP in such a way that PiPP is the union of
a subset of pentadra used for P4PP . Therefore, in the tessellation by translates
of the space R3 by P4PP (consequently by pentadra), each of the other four
parallelohedra PiPP ∈ Σ will appear periodically. This is summarized in the
following Corollary.

Corollary 1. In space, there is an arrangement of pentadra such that each
of the elements of Σ appears in lattice-like order.

4. A Second Atom for the Set of Parallelohedra

In this section, we present a second atom for the set of all parallelohedra Π.
We call this second atom tetradron, and it is either one of the tetrahedra
shown in Figure 20 along with its development.

Before getting into the theorem, we first illustrate how to obtain a
tetradron from a cube. Cut a cube of unit length by passing a plane
through two opposite edges to obtain two congruent triangular prisms (Fig-
ure 21).

Take one of the prisms and label its vertices with the letters A, B, C,
D, E and F . By dividing this prism into three parts using the planes BCD
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Fig. 20. Tetradron as an Atom

Fig. 21. Cube Composed with Two Prisms

and CDE, we obtain three congruent tetrahedra all of whose faces are right
triangles (Figure 22).

Fig. 22. Prism Composed with Three Tetrahedra

Tetrahedra ABCD and CDEF are identical while tetrahedron BCDE
is a mirror image of each of the previous two, and thus, these tetrahedra
are congruent. Any tetrahedron such as ABCD or its mirror image is a
tetradron. We are ready to state the main theorem of Section 4.

Theorem 3. A tetradron is an atom for Π, and the decomposition of each
parallelohedron in Σ into tetradra is summarized in Table 4.
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Table 4: The Number of Tetradra in the Parallelohedra
Parallelohedron Number of Tetradra

Cube 6
Rhombic Dodecahedron 96
Skewed Hexagonal Prism 18
Elongated Rhombic Dodecahedron 144
Skewed Truncated Octahedron 384

Proof. Since the case for the cube is obvious from the above illustrations,
we will only consider the other four cases, each corresponding to a remaining
parallelohedron in Σ.

(1 ) Skewed Hexagonal Prism. The construction of a skewed hexago-
nal prism using congruent copies of a tetradron is shown in Figure 23.
First, we take three identical tetradra and glue some faces to form a
skewed triangular prism (Figure 23(a)). Figure 23(b) shows a mirror
image of the triangular prism and can be constructed by a similar glu-
ing of the tetradra which are mirror images of the previous. A gluing
of three pairs of each type of triangular prism gives rise to a skewed
hexagonal prism (Figure 23(c)).

Fig. 23. Skewed Hexagonal Prism Composed with Tetradra

(2 ) Rhombic Dodecahedron. Next, we will illustrate how to construct
a rhombic dodecahedron using tetradra. We join a pair of tetradra,
one a mirror image of the other, to form a right tetra of unit height
whose base is a right isosceles triangle with hypotenuse of length
2 units. The square-based pyramid is obtained by gluing four right
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tetras (Figure 24). This pyramid is centrally symmetric and also has
a height of 1 unit. A rhombic dodecahedron is formed when each of
the faces of a 2× 2× 2 cube is capped by this square-based pyramid.

Fig. 24. Squared-base Pyramid Composed with Tetradra

(3 ) Elongated Rhombic Dodecahedron. An elongated rhombic do-
decahedron can be constructed by first dividing the rhombic dodecahe-
dron into two congruent nanohedra. We insert a 2× 2× 1 rectangular
cuboid between the two nanohedra to obtain an elongated rhombic
dodecahedron (Figure 25). Note that we can insert a 2 × 2 × k rect-
angular cuboid for any positive integer k; that is, we can elongate the
dodecahedron to any length.

Fig. 25. Elongated Rhombic Dodecahedron Obtained from a Rhombic Dodecahedron

(4 ) Truncated Octahedron. Note that a tetradron is a tetrahedral
reptile, that is, it replicates itself. For instance, by using 8 tetradra
consisting of two identical ones and three pairs of mirror images, we
can construct a similar tetradron whose size is double the original one.
Similarly, a tetradron which is triple in size can be constructed from
9 tetradra and 9 pairs of mirror images (Figure 26).
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Fig. 26. Tetradron is a Tetrahedral Reptile

Using this self-replicating property, it is possible to construct a pyra-
mid which is thrice the size of the one shown in Figure 24. In Fig-
ures 27, we obtain an octahedron by gluing two such pyramids.

Fig. 27. Octahedron Composed of Squared Pyramids

Figure 28 shows the same octahedron being made up of tetradra.
Remove a portion of the upper pyramid, one-third unit away from
a vertex. If such a cut is done to every vertex, we get the truncated
octahedron (Figure 28).

Fig. 28. Truncated Octahedron Composed of Tetradra

This completes the proof.
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5. Indecomposability of the Atoms

A polyhedron is said to be indecomposable if it cannot be decomposed
into two or more congruent polyhedral pieces. In the previous sections,
we have presented two different atoms for the set of all parallelohedra Π: a
pentadron and a tetradron. However, if two identical pentadra are glued
along their kite faces, we obtain a tetradron (Figure 29). In other words, a
tetradron can be decomposed into two congruent parts, and therefore is not
indecomposable. In this sense, we would like to find an indecomposable
atom for Π; that is, one which cannot be decomposed into two or more
congruent polyhedra.

Obtaining a Tetradron by Gluing Two Pentadra

The following proposition shows that it is not possible to decompose a
pentadron into two congruent parts.

Proposition 1. A pentadron σ cannot be decomposed into two congruent
polyhedra.

Proof. Let α and β be two polyhedra obtained by dissecting σ by a plane π
(Figure 30(a)), and let k be the number of sides of its polygonal cross-
section. Since the total number of faces of α and β is 7 + k, k must be
either 3 or 5 to make α and β congruent. We denote the vertices of σ by A,
B, C, P , Q and R as illustrated in Figure 30(b).

(1 ) Suppose k = 3. In this case either α or β is a tetrahedron and the
other is a hexahedron. Thus, we can disregard this case.

(2 ) Suppose k = 5. In this case both α and β are hexahedra and the
dissecting plane π has to cut all the faces of σ. This implies that no
vertices of σ are on π. Let α be the polyhedron containing P . Note
that σ has only one right isosceles triangle ABC, where ∠B = 90◦.
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Fig. 30. Pentadron as an Atom

The dissecting plane π cuts exactly two sides of �ABC. We divide
our proof into three subcases depending on which sides of �ABC π
intersects.

(i) Suppose π intersects the sides BC and AC. Note that the
side PQ has the largest length 3

√
2 among all sides of σ. There

are two distinct cases according to whether α contains PQ as its
side or α not (Figure 31).

Fig. 31. π Intersects the Sides BC and AC

The first case implies that α is not congruent to β since β cannot
contain any side of length 3

√
2. In the second case, both α

and β contain exactly one pentagonal face distinct from the
cutting surface. One of diagonals of the pentagonal face on α



42 J. Akiyama, M. Kobayashi, H. Nakagawa, G. Nakamura and I. Sato

has length 3
√
2, but the pentagonal face of β does not contain

such a diagonal.

(ii) Suppose π intersects the sides AB and AC. The hexahe-
dron α contains the side AP of length 4 as a side of a pentagonal
face, but β does not have a pentagonal face with a side of the
same length (Figure 32(a)). Thus α is not congruent to β.

Fig. 32. π Intersects the Side AB

(iii) Suppose π intersects the sides AB and BC. Note that
�BPR and �PQR have the maximum area 3

√
2 among all

right triangles which can be taken on the surface of σ and whose
vertices are those of σ (Figure 32(b)). This case implies that α
contains �BPR on its surface, but since �PQR is cut by π, β
cannot have a right triangle with the same area.

This completes the proof.

Proposition 1 suggests the following conjecture.

Conjecture 1. A pentadron is an indecomposable atom.
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Tarski’s Plank Problem Revisited

KÁROLY BEZDEK∗

In the 1930’s, Tarski introduced his plank problem at a time when the field
Discrete Geometry was about to born. It is quite remarkable that Tarski’s
question and its variants continue to generate interest in the geometric and
analytic aspects of coverings by planks in the present time as well. The paper is
of a survey type with some new results and with a list of open research problems
on the discrete geometric side of the plank problem.

1. Introduction

Tarski’s plank problem has generated a great interest in understanding the
geometry of coverings by planks. There have been a good number of results
published in connection with the plank problem of Tarski that are surveyed
in this paper. The goal of this paper is to survey the state of the art of
Tarski’s plank problem from the point of view of discrete geometry and to
prove some new results and to list some relevant research problems as well.
The topics discussed include not only coverings by planks but also coverings
by cylinders and the sets to be covered include balls as well as lattice points.
For some natural reason, a good subcollection of the research problems
listed raises challanging questions on balls, that are the most symmetric
bodies still central for research in (discrete) geometry. Last but not least
we mention that the partial covering problem by planks introduced in this
paper connects Tarski’s plank problem to the Kakeya–Pál as well as to the´

∗Partially supported by a Natural Sciences and Engineering Research Council of
Canada Discovery Grant and by the Hung. Acad. Sci. Found. (OTKA), grant no. K72537.
(This survey is partially based on the author’s talk delivered at the meeting “Intuitive
Geometry, in Memoriam Lászl´´ o Fejes T´ oth”, June 30–July 4, 2008, Budapest, Hungary.)´
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Blaschke–Lebesgue problems. In this way, ball-polyhedra are investigated
as well. The rest of the paper studies the topics outlined in six consecutive
sections.

2. Plank Theorems

A convex body of the Euclidean space Ed is a compact convex set with
non-empty interior. Let C ⊂ Ed be a convex body, and let H ⊂ Ed be
a hyperplane. Then the distance w(C, H) between the two supporting
hyperplanes of C parallel to H is called the width of C parallel to H.
Moreover, the smallest width of C is called the minimal width of C and is
denoted by w(C).

Recall that in the 1930’s, Tarski posed what came to be known as the
plank problem. A plank P in Ed is the (closed) set of points between two
distinct parallel hyperplanes. The width w(P) of P is simply the distance
between the two boundary hyperplanes of P. Tarski conjectured that if a
convex body of minimal width w is covered by a collection of planks in Ed,
then the sum of the widths of these planks is at least w. This conjecture was
proved by Bang in his memorable paper [8]. (In fact, the proof presented
in that paper is a simplification and generalization of the proof published
by Bang somewhat earlier in [7].) Thus, the following statement we call the
plank theorem of Bang.

Theorem 2.1. If the convex body C is covered by the planks P1,P2, . . . ,
Pn in Ed (i.e. C ⊂ P1 ∪P2 ∪ · · · ∪Pn ⊂ Ed), then

n∑
i=1

w(Pi) ≥ w(C).

In [8], Bang raised the following stronger version of Tarski’s plank prob-
lem called the affine plank problem. We phrase it via the following def-
inition. Let C be a convex body and let P be a plank with boundary
hyperplanes parallel to the hyperplane H in Ed. We define the C-width of
the plank P as w(P)

w(C,H) and label it by wC(P). (This notion was introduced

by Bang [8] under the name “relative width”.)
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Conjecture 2.2. If the convex body C is covered by the planks P1,P2, . . . ,
Pn in Ed, then

n∑
i=1

wC(Pi) ≥ 1.

The special case of Conjecture 2.2, when the convex body to be covered
is centrally symmetric, has been proved by Ball in his celebrated paper [2].
Thus, the following is the plank theorem of Ball.

Theorem 2.3. If the centrally symmetric convex body C is covered by the
planks P1,P2, . . . ,Pn in Ed, then

n∑
i=1

wC(Pi) ≥ 1.

From the point of view of discrete geometry it seems natural to mention
that after proving Theorem 2.3 Ball [3] used Bang’s proof of Theorem 2.1 to
derive a new argument for an improvement of the Davenport–Rogers lower
bound on the density of economical sphere lattice packings.

It was Alexander [1] who noticed that Conjecture 2.2 is equivalent to
the following generalization of a problem of Davenport.

Conjecture 2.4. If a convex body C in Ed is sliced by n − 1 hyperplane
cuts, then there exists a piece that covers a translate of 1

nC.

We note that the paper [10] of A. Bezdek and the author proves Conjec-
ture 2.4 for successive hyperplane cuts (i.e. for hyperplane cuts when each
cut divides one piece). Also, the same paper ([10]) introduced two additional
equivalent versions of Conjecture 2.2. As they seem to be of independent
interest we recall them following the terminology used in [10].

Let C and K be convex bodies in Ed and let H be a hyperplane of Ed.
The C-width of K parallel to H is denoted by wC(K, H) and is defined as
w(K,H)
w(C,H) . The minimal C-width of K is denoted by wC(K) and is defined as

the minimum of wC(K, H), where the minimum is taken over all possible
hyperplanes H of Ed. Recall that the inradius of K is the radius of the
largest ball contained in K. It is quite natural then to introduce the C-
inradius of K as the factor of the largest (positively) homothetic copy of
C, a translate of which is contained in K. We need to do one more step
to introduce the so-called successive C-inradii of K as follows. Let r be
the C-inradius of K. For any 0 < ρ ≤ r let the ρC-rounded body of K be
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denoted by KρC and be defined as the union of all translates of ρC that
are covered by K. Now, take a fixed integer n ≥ 1. On the one hand,
if ρ > 0 is sufficiently small, then wC(K

ρC) > nρ. On the other hand,
wC(K

rC) = r ≤ nr. As wC(K
ρC) is a decreasing continuous function of

ρ > 0 and nρ is a strictly increasing continuous function of ρ there exists a
uniquely determined ρ > 0 such that

wC(K
ρC) = nρ.

This uniquely determined ρ is called the n-th successive C-inradius of K
and is denoted by rC(K, n). Notice that rC(K, 1) = r. Now, the two
equivalent versions of Conjecture 2.2 and Conjecture 2.4 introduced in [10]
can be phrased as follows.

Conjecture 2.5. If a convex body K in Ed is covered by the planks P1,
P2, . . . ,Pn, then

∑n
i=1wC(Pi) ≥ wC(K) for any convex body C in Ed.

Conjecture 2.6. Let K and C be convex bodies in Ed. If K is sliced by
n−1 hyperplanes, then the minimum of the greatest C-inradius of the pieces
is equal to the n-th successive C-inradius of K, i.e. it is rC(K, n).

A. Bezdek and the author [10] proved the following theorem that (under
the condition that C is a ball) answers a question raised by Conway ([9])
as well as proves Conjecture 2.6 for successive hyperplane cuts.

Theorem 2.7. Let K and C be convex bodies in Ed, d ≥ 2. If K is sliced
into n pieces by n−1 successive hyperplane cuts (i.e. when each cut divides
one piece), then the minimum of the greatest C-inradius of the pieces is
the n-th successive C-inradius of K, i.e. rC(K, n). An optimal partition is
achieved by n−1 parallel hyperplane cuts equally spaced along the C-width
of the rC(K, n)C-rounded body of K.

3. Covering Convex Bodies by Cylinders

In his paper [8], Bang by describing a concrete example and writing that it
may be extremal proposes to investigate a quite challanging question that
can be phrased as follows.
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Problem 3.1. Prove or disprove that the sum of the base areas of finitely
many cylinders covering a 3-dimensional convex body is at least half of the
minimum area 2-dimensional projection of the body.

If true, then the estimate of Problem 3.1 is a sharp one due to a covering
of a regular tetrahedron by two cylinders described in [8]. A very recent
paper of Litvak and the author ([16]) investigates Problem 3.1 as well as
its higher dimensional analogue. Their main result can be summarized as
follows.

Given 0 < k < d define a k-codimensional cylinder C in Ed as a set
which can be presented in the form C = H+B, where H is a k-dimensional
linear subspace of Ed and B is a measurable set (called the base) in the
orthogonal complement H⊥ of H. For a given convex body K and a k-
codimensional cylinder C = H + B we define the cross-sectional volume
crvK(C) of C with respect to K as follows

crvK(C) :=
vold−k(C ∩H⊥)
vold−k(PHP ⊥K)

=
vold−k(PHP ⊥C)

vold−k(PHP ⊥K)
=

vold−k(B)

vold−k(PHP ⊥K)
,

where PHP ⊥ : Ed → H⊥ denotes the orthogonal projection of Ed onto H⊥.
Notice that for every invertible affine map T : Ed → Ed one has crvK(C) =
crvTK(TC). The following theorem is proved in [16].

Theorem 3.2. Let K be a convex body in Ed. Let C1, . . . ,CN be k-codi-
mensional cylinders in Ed, 0 < k < d such that K ⊂ ⋃N

i=1Ci. Then

N∑
i=1

crvK(Ci) ≥
1(
d
k

) .
Moreover, if K is an ellipsoid and C1, . . . ,CN are 1-codimensional cylinders
in Ed such that K ⊂ ⋃N

i=1Ci, then

N∑
i=1

crvK(Ci) ≥ 1.

The case k = d− 1 of Theorem 3.2 corresponds to Conjecture 2.2 i.e. to
the affine plank problem. Theorem 3.2 for k = d−1 implies the lower bound
1/d that can be somewhat further improved (for more details see [16]).

As an immediate corollary of Theorem 3.2 we get the following estimate
for Problem 3.1.
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Corollary 3.3. The sum of the base areas of finitely many (1-codimensio-
nal) cylinders covering a 3-dimensional convex body is always at least one
third of the minimum area 2-dimensional projection of the body.

Also, note that the inequality of Theorem 3.2 on covering ellipsoids by 1-
codimensional cylinders is best possible. By looking at this result from the
point of view of k-codimensional cylinders we are led to ask the following
quite natural question. Unfortunately, despite its elementary character it is
still open.

Problem 3.4. Let 0 < c(d, k) ≤ 1 denote the largest real number with
the property that if K is an ellipsoid and C1, . . . ,CN are k-codimensional
cylinders in Ed, 1 ≤ k ≤ d−1 such thatK ⊂ ⋃N

i=1Ci, then
∑N

i=1 crvK(Ci) ≥
c(d, k). Determine c(d, k) for given d and k.

On the one hand, Theorem 2.1 and Theorem 3.2 imply that c(d, d−1) =
1 and c(d, 1) = 1 moreover, c(d, k) ≥ 1

(dk)
.

4. Covering Lattice Points by Hyperplanes

In their paper [13], Hausel and the author have established the following
discrete version of Tarski’s plank problem.

Recall that the lattice width of a convex body K in Ed is defined as

w(K,Zd) = min
{
max
x∈K

〈x, y〉 −min
x∈K

〈x, y〉 | y ∈ Zd, y �= 0��
}
,

where Zd denotes the integer lattice of Ed. It is well-known that if y ∈ Zd,
y �= 0 is chosen such that�� λy /∈// Zd for any 0 < λ < 1 (i.e. y is a primitive
lattice point), then

max
x∈K

〈x, y〉 −min
x∈K

〈x, y〉

is equal to the Euclidean width of K in the direction y divided by the
Euclidean distance between two consecutive lattice hyperplanes of Zd that
are orthogonal to y. Thus, if K is the convex hull of finitely many points
of Zd, then

max
x∈K

〈x, y〉 −min
x∈K

〈x, y〉

is an integer namely, it is less by one than the number of lattice hyperplanes
of Zd that intersect K and are orthogonal to y. Now, we are ready to state
the following conjecture of Hausel and the author ([13]).
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Conjecture 4.1. Let K be a convex body in Ed. Let H1, . . . , HNH be
hyperplanes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

HiHH .

Then
N ≥ w(K,Zd)− d.

Properly translated copies of cross-polytopes, described in [13], show
that if true, then the above inequality is best possible.

The special case, when N = 0, is of independent interest. (In particular,
this case seems to be “responsible” for the term d in the inequality of
Conjecture 4.1.) Namely, it seems reasonable to conjecture (see also [6]) that
if K is an integer point free convex body in Ed, then w(K,Zd) ≤ d. On the
one hand, this has been proved by Banaszczyk [5] for ellipsoids. On the other
hand, for general convex bodies containing no integer points, Banaszczyk,
Litvak, Pajor and Szarek [6] have proved the inequality w(K,Zd) ≤ C · d 3

2 ,
where C is an absolute positive constant. This improves an earlier result of
Kannan and Lovasz [29].´

Although Conjecture 4.1 is still open we have the following partial
results published recently. Improving the estimates of [13], Talata [34] has
succeeded in deriving a proof of the following inequality.

Theorem 4.2. Let K be a convex body in Ed. Let H1, . . . , HNH be hyper-
planes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

HiHH .

Then

N ≥ c · w(K,Zd)

d
− d,

where c is an absolute positive constant.

In the paper [16], Litvak and the author have shown that the plank
theorem of Ball [2] implies a slight improvement on the above inequality for
centrally symmetric convex bodies whose lattice width is at most quadratic
in dimension. (Actually, this approach is different from Talata’s technique
and can lead to a somewhat even stronger inequality in terms of the relevant
basic measure of the given convex body. For more details on this we refer
the interested reader to [16].)
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Theorem 4.3. Let K be a centrally symmetric convex body in Ed. Let H1,
. . . , HNH be hyperplanes in Ed such that

K ∩ Zd ⊂
N⋃
i=1

HiHH .

Then

N ≥ c · w(K,Zd)

d ln(d+ 1)
,

where c is an absolute positive constant.

Motivated by Conjecture 4.1 and by a conjecture of Corzatt [23] (ac-
cording to which if in the plane the integer points of a convex domain can
be covered by N lines, then those integer points can also be covered by N
lines having at most four different slopes) Brass [20] has raised the following
related question.

Problem 4.4. For every positive integer d find the smallest constant c(d)
such that if the integer points of a convex body in Ed can be covered by N
hyperplanes, then those integer points can also be covered by c(d)·N parallel
hyperplanes.

Theorem 4.2 implies that c(d) ≤ c·d2 for convex bodies in general and for
centrally symmetric convex bodies Theorem 4.3 yields the somewhat better
upper bound c · d ln(d + 1). As a last note we mention that the problem
of finding good estimates for the constants of Theorems 4.2 and 4.3 is an
interesting open question as well.
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5. Partial Coverings by Planks

It seems that the following variant of Tarski’s plank problem hasn’t yet
been considered: Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let w1 > 0, w2 > 0, . . . , wn > 0 be given with w1+w2+ · · ·+wn <
w. Then find the arrangement of n planks say, of P1,P2, . . . ,Pn, of width
w1, w2, . . . , wn in Ed such that their union covers the largest volume subset
of C, that is, for which vold((P1∪P2∪· · ·∪Pn)∩C) is as large as possible.
As the following special case is the most striking form of the above problem,
we are putting it forward as the main question of this section.

Problem 5.1. Let Bd denote the unit ball centered at the origin o in Ed.
Moreover, let w1, w2, . . . , wn be positive real numbers satisfying the inequal-
ity w1 + w2 + · · · + wn < 2. Then prove or disprove that the union of the
planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn in Ed covers the largest vol-
ume subset of Bd if and only if P1 ∪ P2 ∪ · · · ∪ Pn is a plank of width
w1 + w2 + · · ·+ wn with o as a center of symmetry.

As an immediate remark we note that it would not come as a surprise to
us if it turned out that the answer to Problem 5.1 is positive in proper low
dimensions and negative in (sufficiently) high dimensions. In what follows
we discuss some partial results.

Clearly, there is an affirmative answer to Problem 5.1 for n = 1. Also, we
have the following positive results. For the sake of completeness we include
their short proofs.

Theorem 5.2. If P1 and P2 are planks in Ed, d ≥ 2 of width w1 and w2

having 0 < w1 + w2 < 2, then P1 ∪ P2 covers the largest volume subset
of Bd if and only if P1 ∪P2 is a plank of width w1 + w2 possessing o as a
center of symmetry.

Proof. The following is an outline of a quite elementary proof. First, let
us consider the case when P1 and P2 are planks in E2 of width w1 and w2

having 0 < w1 + w2 < 2. We say, that (P1 ∪P2) ∩B2 is a crossing subset
of B2, if B2 \ (P1 ∪P2) consists of 4 connected components. Now, it is not
hard to see that among the crossing subsets (resp., non-crossing subsets)
the only extremal configuration with respect to maximizing the area is the
one with P1 and P2 being perpendicular to each other and having o as a
center of symmetry (resp., the one with P1 ∪P2 being a plank of width
w1 + w2 and having o as a center of symmetry). Second, it is easy to check
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that between the two critical configurations the non-crossing one possesses
a larger area, finishing the proof Theorem 5.2 for d = 2. Finally, if P1 and
P2 are planks in Ed, d ≥ 3 of width w1 and w2 having 0 < w1 + w2 < 2,
then an application of the 2-dimensional case of Theorem 5.2, just proved,
to the 2-dimensional flats of Ed that are parallel to the normal vectors of
P1 and P2 followed by an integration of the areas of the corresponding sets
sitting on the 2-flats in question, yield the desired claim.

Theorem 5.3. Let w1, w2, . . . , wn be positive real numbers satisfying the in-
equality w1+w2+· · ·+wn < 2. Then the union of the planks P1,P2, . . . ,Pn

of width w1, w2, . . . , wn in E3 covers the largest volume subset of B3 if and
only if P1 ∪P2 ∪ · · · ∪Pn is a plank of width w1 +w2 + · · ·+wn with o as
a center of symmetry.

Proof. Let P1,P2, . . . ,Pn be an arbitrary family of planks of width w1, w2,
. . . , wn in E3 and let P be a plank of width w1 + w2 + · · · + wn with o
as a center of symmetry. Moreover, let S(x) denote the sphere of radius
x centered at o. Now, recall the well-known fact that if P(y) is a plank
of width y whose both boundary planes intersect S(x), then sarea(S(x) ∩
P(y)) = 2πxy, where sarea( . ) refers to the surface area measure on S(x).
This implies in a straightforward way that

sarea[(P1 ∪P2 ∪ · · · ∪Pn) ∩ S(x)] ≤ sarea(P ∩ S(x)),

and so,

vol3((P1 ∪P2 ∪ · · · ∪Pn) ∩B3)

=

∫ 1

0

∫∫
sarea[(P1 ∪P2 ∪ · · · ∪Pn) ∩ S(x)] dx

≤
∫ 1

0

∫∫
sarea(P ∩ S(x)) dx = vol3(P ∩B3),

finishing the proof of the “if” part of Theorem 5.3. Actually, a closer look
of the above argument gives a proof of the “only if” part as well.

As an immediate corollary we get the following statement.

Corollary 5.4. If P1, P2 and P3 are planks in Ed, d ≥ 3 of widths w1,
w2 and w3 satisfying 0 < w1 + w2 + w3 < 2, then P1 ∪P2 ∪P3 covers the
largest volume subset of Bd if and only if P1 ∪P2 ∪P3 is a plank of width
w1 + w2 + w3 having o as a center of symmetry.
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Proof. Indeed an application of Theorem 5.3 to the 3-dimensional flats
of Ed that are parallel to the normal vectors of P1, P2 and P3 followed by
an integration of the volumes of the corresponding sets lying in the 3-flats
in question, yield the desired claim.

In general, we have the following estimate that one can derive from
Bang’s paper [8] as follows. In order to state it properly we introduce two
definitions.

Definition 5.5. Let C be a convex body in Ed and let m be a positive
integer. Then let T mTTCTT ,d denote the family of all sets in Ed that can be obtained

as the intersection of at most m translates of C in Ed.

Definition 5.6. Let C be a convex body of minimal width w > 0 in Ed and
let 0 < x ≤ w be given. Then for any non-negative integer n let

vd(C, x, n) := min{vold(Q) | Q ∈ T 2n

CTT ,d and w(Q) ≥ x}.

Now, we are ready to state the theorem which although was not pub-
lished by Bang in [8], it follows from his proof of Tarski’s plank conjecture.

Theorem 5.7. Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed with
w0 = w1 + w2 + · · ·+ wn < w. Then

vold(C \ (P1 ∪P2 ∪ · · · ∪Pn)) ≥ vd(C, w − w0, n),

that is

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩C) ≤ vold(C)− vd(C, w − w0, n).

Clearly, the first inequality above implies (via an indirect argument)
that if the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn cover the convex
bodyC in Ed, then w1+w2+· · ·+wn ≥ w. Also, as an additional observation
we mention the following statement, that on the one hand, can be derived
from Theorem 5.7 in a straightforward way, on the other hand, represents
the only case when the estimate in Theorem 5.7 is sharp.

Corollary 5.8. Let T be an arbitrary triangle of minimal width (i.e. of
minimal height) w > 0 in E2. Moreover, let w1, w2, . . . , wn be positive real
numbers satisfying the inequality w1+w2+ · · ·+wn < w. Then the union of
the planks P1,P2, . . . ,Pn of width w1, w2, . . . , wn in E2 covers the largest
area subset of T if P1∪P2∪· · ·∪Pn is a plank of width w1+w2+ · · ·+wn

sitting on the side of T with height w.
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6. Linking the Kakeya–Pál and the Blaschke–Lebesgue´

Problems to the Partial Covering Problem

Recall that the Kakeya–P´l problem´ is about minimizing the volume of
convex bodies of given minimal width w > 0 in Ed. For short reference let
Kw,d

KP denote any of the minimal volume convex bodies in the Kakeya–Pál´
problem. (Actually, Kakeya phrased his question in 1917 as follows: what
is the smallest area of a convex set within which one can rotate a needle
by 180◦.) Pál [31] has solved this problem for´ d = 2 by showing that the
smallest area convex domain of minimal width w > 0 is a regular triangle
of height w. As it is well-known, the Kakeya–Pál problem is unsolved in´
higher dimensions (for more details on this see for example [21]). Thus, the
following is an immediate corollary of Theorem 5.7.

Corollary 6.1. Let C be a convex body of minimal width w > 0 in Ed.
Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed with
w0 = w1 + w2 + · · ·+ wn < w. Then

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩C) ≤ vold(C)− vold(K
w−w0,d
KP ).

It seems that the best lower bound for the Kakeya–Pál problem is
due to Firey [24] claiming that vold(K

w,d
KP ) ≥ f(d)wd with f(d) = 2√

3·d! .

Corollary 6.1 suggests to further investigate and improve Firey’s inequality
for d ≥ 3. (For d = 2 the inequality in question is identical to Pál’s result
[31] and so, it is optimal.) Here, we claim the following improvement.

Theorem 6.2. Let C be a convex body of minimal width w > 0 in Ed.

Moreover, for each odd integer d ≥ 3 let g(d) =
√

3·πd−3·(d+1)!!
2d−2·(d!!)5 and for each

even integer d ≥ 4 let g(d) =
√

3·πd−3·(d+2)!!
(d+1)2·(d!!)2·((d−1)!!)3

.

Then
vold(C) ≥ g(d)wd > f(d)wd

for all d ≥ 3.

Proof. We outline the proof by describing its main idea and by leaving
out the more or less straightforward but somewhat lengthy computations.
First, we need the following result of Steinhagen [33]. Let C be a convex
body of minimal width w > 0 in Ed. Moreover, for each odd integer d ≥ 3

let r(d) = 1
2
√
d
and for each even integer d ≥ 2 let r(d) =

√
d+2

2(d+1) . Then the
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inradius r of C (which is the radius of the largest ball lying in C) is always
at least as large as r(d)w. Second, recall Kubota’s formula [19] according
to which

svold−1(bd(C)) =
1

vold−1(Bd−1)

∫
S

∫∫
d−1

vold−1(C
∣∣∣∣x) dx,

where bd( . ) (resp., svold−1( . )) stands for the boundary (resp., (d − 1)-
dimensional surface volume) of the corresponding set and Sd−1 = bd(Bd)
moreover, C | x denotes the orthogonal projection of C onto the hyperplane
passing through o with normal vector x and the integration on Sd−1 is
with respect to the surface area measure. Thus, Steinhagen’s theorem and
Kubota’s formula imply in a straightforward way

vold(C) ≥ r(d)w

d
svold−1(bd(C)) ≥ r(d)w vold(B

d)

vold−1(Bd−1)
min

x∈Sd−1
{vold−1(C | x)}.

Finally, as C
∣∣∣∣x is a (d − 1)-dimensional convex body of minimal width

at least w for all x ∈ Sd−1, therefore the above inequality, repeated in a
recursive way for lower dimensions, leads to the desired inequality claimed
in Theorem 6.2.

Remark 6.3. For comparison we mention that g(3) = 2
9 = 0.2222 · · · >

f(3) = 1
3
√
3
= 0.1924 . . . (resp., g(4) =

√
2π
75 = 0.2894 · · · > f(4) = 1

12
√
3
=

0.0481 . . . ). Also, recall that Heil [26] has constructed a convex body in E3

of minimal width 1 and of volume 0.298 . . . .

Corollary 6.1 can be further improved when C is a unit ball and the sum
of the widths of the planks is at most one. The details are as follows.

First, recall that the Blaschke–Lebesgue problem is about finding the
minimum volume convex body of constant width w > 0 in Ed. In particular,
the Blaschke–Lebesgue theorem states that among all convex domains of
constant width w, the Reuleaux triangle of width w has the smallest area,
namely 1

2

(
π−

√
3
)
w2. W. Blaschke [18] and H. Lebesgue [30] were the first

to show this and the succeding decades have seen other works published on
different proofs of that theorem. For a most recent new proof, and for a
survey on the state of the art of different proofs of the Blaschke–Lebesgue
theorem, see the elegant paper of E. M. Harrell [25]. Here we note that
the Blaschke–Lebesgue problem is unsolved in three and more dimensions.
Even finding the 3-dimensional set of least volume presents formidable
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difficulties. On the one hand, Chakerian [22] proved that any convex body

of constant width 1 in E3 has volume at least
π(3

√
6−7)
3 = 0.365 . . . . On

the other hand, it has been conjectured by Bonnesen and Fenchel [19] that
Meissner’s 3-dimensional generalizations of the Reuleaux triangle of volume
π(23 − 1

4

√
3 arccos (13)) = 0.420 . . . are the only extramal sets in E3.

For our purposes it will be useful to introduce the notation Kw,d
BL (resp.,

K
w,d
BL) for a convex body of constant width w in Ed having minimum volume

(resp., surface volume). One may call Kw,d
BL (resp., K

w,d
BL) a Blaschke–

Lebesgue-type convex body with respect to volume (resp., surface volume).

Note that for d = 2, 3 one may choose Kw,d
BL = K

w,d
BL however, this is likely

not to happen for d ≥ 4. (For more details on this see [22].) As an important
note we mention that Schramm [32] has proved the inequality

vold(K
w,d
BL) ≥

(√
3 +

2

d+ 1
− 1

)d(w

2

)d

vold(B
d),

which gives the best lower bound for all d > 4. By observing that the
orthogonal projection of a convex body of constant width w in Ed onto any
hyperplane of Ed is a (d− 1)-dimensional convex body of constant width w
one obtains from the previous inequality of Schramm the following one:

svold−1(bd(K
w,d
BL)) ≥ d

(√
3 +

2

d
− 1

)d−1(w

2

)d−1

vold(B
d).

Second, let us recall that if X is a finite (point) set lying in the interior
of a unit ball in Ed, then the intersection of the (closed) unit balls of Ed

centered at the points of X is called a ball-polyhedron and it is denoted
by B[X]. (For an extensive list of properties of ball-polyhedra see the
recent paper [15].) Of course, it also makes sense to introduce B[X] for
sets X that are not finite but in those cases we get sets that are typically
not ball-polyhedra.

Now, we are ready to state our theorem.

Theorem 6.4. Let B[X] ⊂ Ed be a ball-polyhedron of minimal width x
with 1 ≤ x < 2. Then

vold(B[X]) ≥ vold(K
2−x,d
BL )+svold−1(bd(K

2−x,d
BL ))·(x−1)+vold(B

d)·(x−1)d.
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Proof. Recall that if X is finite set lying in the interior of a unit ball in Ed,
then we can talk about its spindle convex hull convs(X), which is simply the
intersection of all (closed) unit balls of Ed that contain X (for more details
see [15]). The following statement can be obtained by combining Corollary
3.4 of [15] and Proposition 1 of [14].

Lemma 6.5. Let X be a finite set lying in the interior of a unit ball in Ed.
Then

(i) convs(X) = B
[
B[X]

]
and therefore B[X] = B

[
convs(X)

]
;

(ii) the Minkowski sum B[X] + convs(X) is a convex body of constant
width 2 in Ed and so, w(B[X])+diam

(
convs(X)

)
= 2, where diam( . )

stands for the diameter of the corresponding set in Ed.

By part (ii) of Lemma 6.5, diam
(
convs(X)

)
≤ 2− x. This implies, via

a classical theorem of convexity (see for example [19]), the existence of a
convex body L of constant width (2− x) in Ed with convs(X) ⊂ L. Hence,
using part (i) of Lemma 6.5, we get that B[L] ⊂ B[X] = B

[
convs(X)

]
.

Finally, notice that as L is a convex body of constant width (2− x) therefore
B[L] is in fact, the outer-parallel domain of L having radius (x− 1) (that
is B[L] is the union of all d-dimensional (closed) balls of radii (x− 1) in Ed

that are

vold(B[X]) ≥ vold
(
B[L]

)
= vold(L) + svold−1(bd(L)) · (x− 1) + vold(B

d) · (x− 1)d.

The inequality above together with the following obvious ones

vold(L) ≥ vold(K
2−x
BLd

) and svold−1(bd(L)) ≥ svold−1(bd(K
2−x
BLd

))

imply Theorem 6.4 in a straightforward way.

Thus, Theorem 5.7 and Theorem 6.4 imply the following immediate
estimate.

Corollary 6.6. Let Bd denote the unit ball centered at the origin o in Ed,
d ≥ 2. Moreover, let P1,P2, . . . ,Pn be planks of width w1, w2, . . . , wn in Ed

with w0 = w1 + w2 + · · ·+ wn ≤ 1. Then

vold((P1 ∪P2 ∪ · · · ∪Pn) ∩Bd) ≤ vold(B
d)− vd(B

d, 2− w0, n)

≤
(
1− (1− w0)

d
)
vold(B

d)− vold(K
w0,d
BL )− svold−1(bd(K

w0,d
BL )) ·

(
1− w0)

Corollary 6.6 leaves open the following question (even in dimension two).
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Problem 6.7. Improve the upper bound of Corollary 6.1 for the unit ball
when 1 < w0 < 2.

7. Strengthening the Plank Theorems of Ball and Bang

Recall that Ball ([2]) generalized the plank theorem of Bang ([7], [8]) for
coverings of balls by planks in Banach spaces (where planks are defined
with the help of linear functionals instead of inner product). This theorem
was further strengthened by Kadets [28] for real Hilbert spaces as follows.
Let C be a closed convex subset with non-empty interior in the real Hilbert
space H (finite or infinite dimensional). We call C a convex body of H. Then
let r(C) denote the supremum of the radii of the balls contained in C. (One
may call r(C) the inradius of C.) Planks and their widths in H are defined
with the help of the inner product of H in the usual way. Thus, if C is a
convex body in H and P is a plank of H, then the width w(P) of P is always
at least as large as 2r(C∩P). Now, the main result of [28] is the following.

Theorem 7.1. Let the ball B of the real Hilbert space H be covered by the
convex bodies C1,C2, . . . ,Cn in H. Then

n∑
i=1

r(Ci ∩B) ≥ r(B).

We note that an independent proof of the 2-dimensional Euclidean case
of Theorem 7.1 can be found in [12]. Kadets ([28]) proposes to investigate
the analogue of Theorem 7.1 in Banach spaces. Thus, an affirmative answer
to the following problem would improve the plank theorem of Ball.

Problem 7.2. Let the ball B be covered by the convex bodies C1,C2, . . . ,
Cn in an arbitrary Banach space. Prove or disprove that

n∑
i=1

r(Ci ∩B) ≥ r(B).

It is well-known that Bang’s plank theorem holds in complex Hilbert
spaces as well. However, for those spaces Ball [4] was able to prove the
following much stronger theorem. (In fact, [4] was published a number of
years before [28].)
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Theorem 7.3. If the planks of widths w1, w2, . . . , wn cover a ball of diam-
eter w in a complex Hilbert space, then

n∑
i=1

w2
i ≥ w2.

In order to complete the picture on plank-type results (from the point of
view of discrete geometry) in spaces other than Euclidean we mention the
statement below, proved by Schneider and the author [17]. It is an extension
of Theorem 7.1 for coverings of large balls in spherical spaces. Needless to
say that it would be desirable to extend some other plank-type results as
well to spherical spaces.

Theorem 7.4. If the spherically convex bodies K1,K2, . . . ,Kn with inradii
r(K1), r(K2), . . . , r(Kn) cover the spherical ball of radius r(B) ≥ π

2 in a
spherical space, then

n∑
i=1

r(Ki) ≥ r(B).

We close our survey with another strengthening of the plank theorem
of Bang in E2. Namely, in [11], by proving some partial results, A. Bezdek
asked which convex domains in E2 have the property that whenever an
annulus consisting of the domain less a sufficiently small scaled copy of
itself, is covered by planks the sum of the widths of the planks must still
be at least the minimal width of the domain. In [35], White and Wisewell
characterized the polygons for which this is so. However, the following
perhaps most striking case of A. Bezdek’s conjecture remains open.

Conjecture 7.5. Let B be a unit disk in E2. Then there exists an ε > 0
such that if εB lies in the interior of B and the annulus B \ εB is covered
by finitely many planks, then the sum of the widths of the planks is at least
two.

Acknowledgements. The author wishes to thank the referee for the de-
tailed comments on an earlier version of this paper.
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[33] P. Steinhagen, Über die grösste Kugel in einer konvexen Punktmenge,¨ Abh. Math.
Sem. Hamburg 1 (1922), 15–26.



64 K. Bezdek

[34] I. Talata, Covering the lattice points of a convex body with affine subspaces, Bolyai
Soc. Math. Stud. 6 (1997), 429–440.

[35] S. White and L. Wisewell, Covering polygonal annuli by strips, Discrete Comput.
Geom. 37/4 (2007), 577–585.
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One of the basic problems in discrete geometry is to determine the most efficient
packing of congruent replicas of a given convex set K in the plane or in space.
The most commonly used measure of efficiency is density. Several types of
the problem arise depending on the type of isometries allowed for the packing:
packing by translates, lattice packing, translates and point reflections, or all
isometries. Due to its connections with number theory, crystallography, etc.,
lattice packing has been studied most extensively. In two dimensions the theory
is fairly well developed, and there are several significant results on lattice packing
in three dimensions as well. This article surveys the known results, focusing
on the most recent progress. Also, many new problems are stated, indicating
directions in which future development of the general packing theory in three
dimensions seems feasible.

1. Definitions and Preliminaries

A d-dimensional convex body is a compact convex subset of Rn, contained
in a d-dimensional flat and with non-void interior relative to the flat. A 2-
dimensional convex body is called a convex disk. The (d-dimensional)
volume of a d-dimensional convex body K will be denoted by Vol(K), but
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of the European Community’s “Structuring the European Research Area” programme.



66 A. Bezdek and W. Kuperberg

for d = 2 we will sometimes alternately use the term “area” and the notation
Area(K).

The Minkowski sum of sets A and B in Rd is defined as the set

A+B = {x+ y : x ∈ A, y ∈ B}.

If A consists of a single point a, we write simply a+B instead of {a}+B.

For every convex body K in Rd and every real number λ, the set λK
is defined as {λx : x ∈ K}. We usually write −K instead of (−1)K, and
K−L instead of K+(−1)L. A convex body K in Rd is centrally symmetric
if there is a point c ∈ Rd (the center of K) such that K = 2c−K. For each
convex body K, the centrally symmetric convex body DK = 1

2(K −K) is
called the difference body of K.

A packing of Rd is a family of d-dimensional convex bodies KiKK whose
interiors are mutually disjoint. A packing is a tiling if the union of its
members is the whole space Rd.

In what follows, we consider mostly packings with congruent replicas
of a convex body K. If the family P = {KiKK } (i = 1, 2, . . .) of congruent
replicas KiKK of a d-dimensional convex body K is a packing, then density
of P is defined as

d(P) = lim sup
r→∞

1

Vol(B(r))

∞∑
i=1

Vol(KiKK ∩B(r)),

where B(r) is the ball of radius r, centered at the origin. The supremum
of d(P) taken over all packings P with congruent replicas of K is called the
packing density of K and is denoted by δ(K). The supremum is actually the
maximum, as a densest packing with replicas of K exists (see Groemer [23]).
In case the allowed replicas of K are restricted to translates of K or to
translates of K by a lattice, the corresponding packing densities of K are
denoted by δT (K) and by δL(K), respectively. We also consider packings
in which translates of K and translates of −K are used; the corresponding
packing density is denoted by δT ∗(K). The lattice-like version requires that
each packing consists of translates of a non-overlapping pair K ∪ (v−K) by
the vectors of a lattice; the corresponding density is denoted by δL∗(K) (here
both the lattice L and the vector v are chosen so that the resulting packing
is of maximum density). Naturally, the more restrictions are imposed on the
type of the allowed packing arrangements, the smaller is the corresponding
packing density, therefore

0 < δL(K) ≤ δT (K) ≤ δT ∗((K) ≤ δ(K) ≤ 1



Dense Packing of Space with Various Convex Solids 67

and
0 < δL∗(K) ≤ δT ∗((K) ≤ δ(K) ≤ 1.

Obviously, if space Rd can be tiled by congruent replicas of K, then
δ(K) = 1. The converse is less obvious, but not very difficult to prove: If
δ(K) = 1, then Rd can be tiled by congruent replicas of K. Similarly,
if δT (K) = 1, then K can tile space by its translated replicas; and if
δT ∗(K) = 1, then space can be tiled by translates of K combined with
translates of −K.

It is well-known that a family P = {K + vi} of translates of a convex
body K is a packing if and only if the family P ′ = {DK + vi} is a packing
(see [43], also [16], [41] and [24]). This implies immediately that

(1.1) δT (K) =
Vol(K)

Vol(DK)
δT (DK) ≤ Vol(K)

Vol(DK)
,

which gives a meaningful (i.e., smaller than 1) upper bound in case K is
not centrally symmetric. The analogous statement and bound hold for the
lattice packing density δL.

For more details, definitions, and basic properties on these notions,
see [19]. For an overview of lattices and lattice packings, see [16], [41]
and [24].

2. Introduction

In contrast to the well developed theory of packing in two dimensions, there
are not many results about packing densities of convex bodies in R3. With
few exceptions, most of such results simply provide the value of the packing
density δL(K) for a specific convex body K, usually obtained by means of a
classical method described by Minkowski [43]. In the next section we review
those results, occasionally citing and describing some relevant results about
packing the plane R2 with congruent replicas of a convex disk (a convex
body of dimension 2).

In Sections 6, 7, and 8 we consider two simple types of convex bodies
in R3, namely cones and cylinders. Given a convex disk K in R3 and a
point v not in the plane of K, the cone with base K and apex v, denoted by
Cv(K), is the union of all line segments with one end at v and the other one
in K. Given a convex disk K in R3 and a line segment s not parallel to the
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plane of K, the cylinder with base K and generating segment s, denoted by
Πs(K), is the Minkowski sum s+K. (Observe that, with the exception of
tetrahedra, the base and apex of a cone are uniquely determined by the cone
itself; likewise, with the exception of the parallelepipeds, a cylinder has two
bases exactly - one is a translate of the other, and its generating segment is
determined uniquely up to translation.) These two simple types of convex
bodies we suggest to investigate first as a first step towards building a
systematic theory of packing in dimension three. The plan is particularly
suitable for the study of densities δT , δL, δT ∗(K), and δL∗(K) because of the
affine invariance of the corresponding problems. Both for the cone and for
the cylinder, each of the packing densities mentioned above depends only
on the affine class of the base. In Section 5 we describe in detail the nature
of the affine invariance, we draw some immediate conclusions concerning
those suitable densities, and we state a few fundamental open problems.

3. Lattice Packing in Space

We begin with the following table listing a few convex bodies in R3 whose
lattice packing densities δL have been explicitly computed.

Fig. 1. Two clusters in the densest lattice packing of balls: a “square pyramid” and
a “regular tetrahedron”

Comments to Table 1.

1. The densest lattice arrangements of spheres (balls) in R3 (see Fig. 1)
was described already by Kepler [39], but unsupported by proof, Ke-
pler’s assertion can only be considered as a conjecture. The first one
to prove that δL(B

3) = π√
18

was Gauss [21]. Actually, Kepler asserted

that the lattice arrangement shown in Fig. 1 is of maximum density
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# Body Packing Density δL Author & Reference

1 Ball {x : |x| ≤ 1} π√
18

= 0.74048 . . . Gauss [21]

2 Regular octahedron 18
19 = 0.9473 . . . Minkowski [43]

Chalk & Rogers [10],
3 Cylinder C = Πs(K) δL(C) = δL(K) also Yeh [57]

Slab of a cube
4

(see definition below)
(see formula below) Whitworth [54]

Slab of a ball
5

(see definition below)
(see formula below) Chalk [9]

Double cone
6

(see definition below)
π
√
6/9 = 0.85503 . . . Whitworth [55]

7 Tetrahedron 18
49 = 0.3673 . . . Hoylman [37]

Table 1.

among all sphere packings. This stronger conjecture, however, turned
out to be extremely difficult to prove (see Section 8, subsection 8.1).

2. The regular octahedron is also called the regular 3-dimensional cross-
polytope and is denoted byX3. Using his method for computing lattice
packing density of a centrally symmetric convex body, Minkowski [43]
proved that δL(X

3) = 18
19 . He applied the same method to the tetra-

hedron, but without success, for in the process he made a mistake in
assuming that the difference body of the regular tetrahedron is the
regular octahedron (see Comment 7 below).

3. The seemingly obvious equality δL(C) = δL(K) is not trivial at all.
The trivial part is the inequality δL(C) ≥ δL(K), obtained by stacking
layers of cylinders erected over the densest lattice packing of the
plane with translates of the base, but the opposite inequality is quite
nontrivial, since a cross-section of a lattice packing of the cylinders by
a plane parallel to the cylinders’ bases need not be a lattice packing
of the bases in the plane, and, a priori, the density of such a packing
could be greater than in any lattice packing. A result of L. Fejes Tóth´
[17], independently discovered also by Rogers [46], says that this in
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fact cannot happen, i.e., the density of a packing with translates of a
convex disk cannot exceed the maximum density attained in a lattice
arrangement.

4. The λ-slab of a cube (0 < λ ≤ 3) is defined as

Kλ = {x ∈ R3 : |xi| ≤ 1, i = 1, 2, 3; |x1 + x2 + x3| ≤ λ},

and its lattice packing density is given by the formula

δL(KλK ) =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪

1

9
(9− λ2) if 0 < λ ≤ 1

2
,

1

4
λ(9− λ2)/(−λ3 − 3λ2 + 24λ− 1) if

1

2
≤ λ ≤ 1,

9

8
(λ3 − 9λ2 + 27λ− 3)/λ(λ2 − 9λ+ 27) if 1 ≤ λ ≤ 1.

Whitworth uses Minkowski’s method, and his result generalizes the
case of the regular octahedron (λ = 1), item 2 in the Table.

5. The λ-slab of a ball (0 < λ ≤ 1) is defined as

Bλ = {x ∈ R3 : |x| ≤ 1, |x3| ≤ λ},

and its lattice packing density is given by the formula

δL(Bλ) =
π

6

√
3− λ2.

Chalk uses Minkowski’s method, and his result generalizes the case of
the ball (λ = 1), item 1 in the Table.

6. The double cone (see Fig. 2) is the set

K = {x ∈ R3 :
√

x21 + x22 + |x3| ≤ 1}.

As in item 4, Whitworth uses Minkowski’s method to establish lattice
packing density of K.

7. Minkowski’s error in computing the lattice packing density of the
tetrahedron was noticed by Groemer [22], who proved that 18

49 is a
lower bound for the density. Then Douglas and Hoylman proved that
Groemer’s bound is in fact the tetrahedron’s lattice packing density.



Dense Packing of Space with Various Convex Solids 71

Fig. 2. The densest lattice packing with the double cone

Fig. 3. The densest lattice packing with the tetrahedron

The problem of the maximum density packing with congruent regular
tetrahedra (allowing all isometries) remains open and appears to be
extremely difficult. We report on the recent progress in Section 8,
subsection 8.4.

8. Each of the results listed in the table is obtained “by hand,” and, with
the exception of Gauss, each of the authors uses Minkowski’s method.
The method often requires tedious computations with a large num-
ber of cases to analyze, which for some convex bodies becomes pro-
hibitively complex. With the emergence of computer technology, how-
ever, it became possible to accomplish many such tasks in a very short
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time. In an impressive article published in year 2000, Betke and Henk
[2] present a fairly fast computer algorithm implementing Minkowski’s
method for finding lattice packing density of any 3-dimensional convex
polytope. To show the algorithm’s efficiency, the article lists lattice
packing density of each of the regular and Archimedean polytopes,
many of which would be practically impossible to handle without com-
puters.

4. Packing Convex Bodies by Translations

Thus far no example of a convex body K has been found for which δT (K) >
δL(K). In fact, there are only a few types of convex bodies K whose packing
density δT (K) is known, namely:

1. any convex polytope P that admits a tiling of space by its translates (it
is known that each such polytope tiles space in a lattice-like manner,
in every dimension, see Venkov [53] or McMullen [44]);

2. any cylinder CsK with a convex base K, since obviously δT (CsK) =
δT (K);

3. any non-symmetric body K for which the packing density of the
difference body δT (DK) is known. For example, the difference body
of a body K of constant width is a ball, hence the packing density of
the ball can be used to find δT (K);

4. any convex body K such that B3 ⊂ K ⊂ RhD, where RhD denotes
the rhombic dodecahedron circumscribing the unit ball B3, which is
the Voronoi polytope associated with the densest lattice packing ofB3.

The last two items are based on Hales’ confirmation of the Kepler
Conjecture, stating that δ(B3) = δL(B

3) = Vol(B3)/Vol(RhD).

In contrast, in R2 it is known that

(4.1) δ(K) = δL(K) for every centrally symmetric convex disk K,

which implies that

(4.2) δT (K) = δL(K) for every convex disk K,
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see L. Fejes Tóth [17].

While equation (4.2) perhaps holds true for 3-dimensional convex bodies
as well, equation (4.1) does not, as the following example shows.

Let P be the (slightly irregular) affine-regular octahedron in R3 with
vertices of the form (±1,±1, 0) and (0, 0,±1). It is easy to see that P
cannot tile space by translates alone, hence δT (P ) < 1. On the other hand,
P can tile space with translates of itself combined with translates of its
copies rotated by 90◦ about the coordinate axes. Therefore δ(P ) = 1.

It should also be mentioned that already in dimension 2 the assumption
of convexity is indispensable for equation (4.2). A. Bezdek and Kertész [5]
constructed a non-convex polygon that allows a dense non-lattice packing
of the plane by its translates, denser than any lattice packing, see Fig. 4.
(The construction of Bezdek and Kertész was modified by Heppes [36] so as
to obtain a starlike polygon with the same property.)

An example of Bezdek and Kertész: a polygon whose translates can be packed
more densely (left) than in its densest lattice packing (right)

The main question of this section remains open:

Is it true that the maximum density of a packing with translates of a
convex body in R3 is attained in a lattice packing?

Similarly, the problem of whether or not δ∗T (K) = δ∗L(K) holds for every
3-dimensional convex body K remains open.

5. Affine Invariance and Compactness

If f : Rd → Rd is an affine transformation, and if K1 is a translate of a
convex body K, then f(K1) is a translate of f(K). Similarly, if K1 is a
translate of −K, then f(K1) is a translate of −f(K). Therefore the affine
image of a packing with translates of K is a packing with translates of the
image of K, and these two packings have the same density. Moreover, the
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affine image of a lattice packing with copies of K is a lattice packing with
the affine image ofK. The same affine invariance holds true for any packing
that combines translates of K and of −K. These simple facts imply that if
convex bodies K and M are affine-equivalent, then:

δT (K) = δT (M), δT ∗(K) = δT ∗(M), δL(K) = δL(M),

and
δL∗(K) = δL∗(M).

Therefore we can say that the domain of each of the four density func-
tions δT , δT ∗ , δL, and δL∗ is the set of affine equivalence classes of convex
bodies. Let [K] denote the affine equivalence class of the convex body K.
Following Macbeath [42], we supply the set of affine equivalence classes of
convex bodies in Rd with the distance function d defined as follows: for
every pair K, M of convex bodies, set

ρ(K,M) = inf{Vol(K ′)/Vol(M) :

K ′ is affine equivalent to K and K ′ ⊃M}.

Since the function ρ is affine invariant, the function d given by

d([K], [M ]) = log ρ(K,M) + log ρ(M,K)

is well-defined. It is easy to check that d is a metric on the set of all affine
equivalence classes of convex bodies. The space of such classes supplied
with this metric, denoted by Kd

a, is compact (see Macbeath [42]), and each
of the four packing density functions δT , δT ∗ , δL, and δL∗ defined on Kd

a is
continuous. Therefore each of them reaches its extreme values. Of course,
the maximum value for each of them is 1, reached at any convex body that
tiles Rd by its translates. However, none of the four minimum values is
presently known.

Determining those minimum values and the convex bodies at which they
are attained seems to be a very challenging problem, perhaps too difficult
to expect to be solved in foreseeable future. Reasonably good estimates for
these minimum values, however, should not be too hard to establish.

As for the maximum value of 1, attained at the corresponding space tiling
bodies (polytopes), those that tile space by translations have been described
in fairly simple terms by Venkov [53] and, independently, by McMullen [44].
However, the analogous question, asking which convex polytopes can tile
space by their translates combined with translates of their negatives, still
remains unanswered.
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6. Packing Translates of Cones

We now turn our attention to the subspace Ca of K3
a consisting of affine

equivalence classes of cones, that is, affine classes of bodies of the form
Cv(K), where K, the base, is a convex disk. Since Ca is a closed subset of
K3

a, it is compact as well. Notice that the affine class of the cone Cv(K)
is determined uniquely by the affine equivalence class of its base K. The
affine class of a cone with base K will be denoted by CK. Thus CK = CM
if and only if K and M are affinely equivalent convex disks.

Again, the problem of maximum and minimum values arises that each
of the four packing density functions attains on the compact set Ca. This
time, however, the maximum value of each of them is strictly smaller than
1, since a cone cannot tile space, neither by its translates, nor by its
translates combined with translates of its negative. Thus we face a set
of eight questions:

Which convex disks produce cones of maximum and minimum packing
density with respect to the four affine-invariant packing density functions?

The eight extremum density values over the set of cones will be denoted
by cmax and cmin supplied with the corresponding subscripts T , T ∗, L,
and L∗. The case of cones with centrally symmetric bases is of special
interest, raising another set of eight analogous questions.

We begin with a lower bound for the volume of the difference body of a
cone, to be used in the inequality (1.1), producing an upper bound for the
packing density δT for all cones. Figure 5 shows side-by-side two cones and
their corresponding difference bodies.

Fig. 5. Cones and their difference bodies: the circular cone and the square pyramid

For a cone with a centrally symmetric base, the volume ratio of the cone
to its difference body is always 4

7 , which is easy to see. For a cone with non-
symmetric base, the corresponding volume ratio is always smaller than 4

7 ,
which follows directly from the Brunn-Minkowski inequality (see e.g. [47])
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in dimension 2. The minimum ratio 2
5 occurs for the triangular cone (the

tetrahedron) only. Thus we have the following upper bound:

δT (CK) <
4

7

as equality cannot occur since the difference body of any cone cannot tile
space by translations. Therefore

cmax
T = max{δT (CK) : K is a convex disk} < 4

7
.

On the other hand, there is a lattice packing with translates of a square
pyramid, of density 8

15 . The packing can be described as follows. Begin
with a horizontal plane tiled by a lattice of “L”-shaped figures consisting of
a unit square with a 1

2 × 1
2square attached to it. Erect a square pyramid

over each of the unit squares, get a layer of square pyramids, in which the
small squares are vacant. Place upon the first layer its translate, shifted so
that the peaks of the pyramids form the first layer plug the square holes in
the second layer. The vertical shift from the first layer to the second one
is equal to one-half of the pyramids’ height. The two layers determine the
entire lattice packing (see Fig. 6 for a top view of the two layers).

A dense, though not the densest, lattice packing with the square pyramid

Thus δL(CS) ≥ 8
15 , where S denotes the square. However, according

to the information supplied in private communication by Betke and Henk,
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the authors of [2], the lattice packing density of the difference body of the
square pyramid is 112

117 , therefore δL(CS) ≥ 448
819 = 0.547 . . . > 8

15 = 0.533 . . . ,
and we get the bounds

0.547 . . . =
448

819
≤ cmax

T <
4

7
= 0.571 . . . .

Remark 1. By request of the authors of the present article, Betke and
Henk also computed the lattice packing densities of the difference bodies
of the pyramids with a regular hexagonal and a regular octagonal bases.
The results show that the lattice packing density of the square pyramid is
greater than those of the other two. This seems to indicate that among all
cones with centrally symmetric bases, the square-based cone has maximum
lattice packing density.

Remark 2. The lattice packing density of the cone CE with a circular
(elliptical) base E has not been computed yet. The best we know is

0.4469 . . . =
2 +

√
2

24
π ≤ δL(CE) ≤

√
2

9
π = 0.4936 . . . .

The upper bound is found by inscribing a maximum volume ellipsoid in the
difference body of the circular cone (see Fig. 5) and using the lattice packing
density of the ball. The lower bound is obtained by the construction shown
in Fig. 7. Observe that the pattern is somewhat similar to that of the square
pyramid seen in the previous figure. Neither of the two bounds seems best
possible - improvements should not be hard to obtain.

Besides the tetrahedron T , we do not know of any examples of cones with
non-symmetric bases whose lattice packing density has been computed. The
lattice packing density of the tetrahedron is 18

49 = 0.3673 . . . (see Section 3,
Table 1), which is perhaps the value of cmin

L .

Turning to cones with centrally symmetric bases, we obtain a common
lower bound for their lattice packing density by a construction similar to
that described for the square pyramid (see Fig. 6). First, observe that every
centrally symmetric hexagon H is contained in a parallelogram whose sides
are extensions of sides of H and of area at most 4

3 , maximum being reached
by the regular hexagon. By an affine transformation we can assume that
the parallelogram is a unit square, and H is obtained by cutting off two
congruent right triangles at two of its opposite corners. Since the square is
of minimum area among parallelograms containing H, the legs of the cut-
off triangle cannot be longer than 1

2 . Therefore the arrangement shown in
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Fig. 7. A dense, though not likely the densest, lattice packing with the circular cone

Fig. 8 is a lattice packing of the plane with the pair consisting of H and a
translate of 1

2H attached to H, and the density of the collection of translates
of H (the large hexagons) is at least 3

4 , minimum being reached when H is
an affine regular hexagon.

In a similar way as in the construction for the square pyramid, treating
the small hexagons as holes in one layer of hexagonal pyramids, this packing
gives rise to a lattice packing of space with the cone CH. The density of
this packing is at least 1

2 .

Finally, by a theorem of Tammela [49], every centrally symmetric convex
disk K of area 1 is contained in a centrally symmetric hexagon H of area at
most (3.570624)/4, therefore, by the construction described above, we get
the bound δL(CK) ≥ 0.446328 . . . for every cone with a centrally symmetric
disk K. Therefore

cmin
T ≥ 0.446328 . . . .
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Fig. 8. A lattice packing with a pair of centrally symmetric hexagons H, 1
2
H. The large

hexagons form a packingof density at least 3
4

7. Packing Translates of Cones and Their Negatives

While we know that the value of cmax
T ∗ is smaller than 1, an explicit upper

bound below 1 is not easy to produce. Barány and Matoušek [1] found an´
explicit constant ε > 0 such that the density of every packing of space with
translates of a cone and of its negative cannot exceed 1− ε. The value of ε
produced by their proof is very small, about 10−42, and there seems to be
room for improvement.

The “best known” case is the densest lattice packing of regular octa-
hedra, of density 18

19 (see Table 1), showing that the constant ε cannot be
greater than 1

19 , that is, cmax
L∗ ≥ 18

19 , but cmax
L∗ is very likely to be consider-

ably greater than 18
19 . Namely, it is likely that in the densest packing with

translates of a square pyramid combined with translates of its negative, the
pyramids do not form pairs joined by their common base.

Perhaps it is true in general that the maximum density of a packing with
translates of a double cone with a given centrally symmetric base is always
smaller than some packing with translates of the cone and its negative. In
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other words, it seems likely that separating the two parts of the double cone
from each other always allows them to reach higher density. It would be
interesting to know at least whether or not it is so for the double cone with
a circular base and for the double square pyramid.

Elaborating on the idea of packing translates of the cone and its nega-
tive in pairs joined by their common, centrally symmetric, base, we use a
theorem of Petty [45], stating that every centrally symmetric disk of area 1
is contained in a parallelogram of area at most 4

3 , the bound being sharp
only in case of an affine regular hexagon. This allows for enclosing such
a pair of cones in an affine regular octahedron whose densest lattice pack-
ing produces a packing with a cone with an arbitrary centrally symmetric
base. The density of so obtained packing is at least 3

4 × 18
19 = 0.7105 . . . .

A similar approach for cones with any convex base (the bases of the cone
and its negative need not coincide) produces a much weaker lower bound of
1
2 × 18

19 = 0.47368 . . . . (Here the factor of 1
2 is reached only in the case of

the triangular base, that is, when the cone is a tetrahedron.) Thus we have

δT ∗(CK) ≥ 27

38
= 0.7105 . . . for all cones(7.1)

with centrally symmetric convex bases K,

and

(7.2) δT ∗(CK) ≥ 9

19
= 0.47368 . . . for all cones with convex bases K.

The bound in (7.1) is unlikely to be best possible, and the bound in (7.2) def-
initely is not, since the construction of the presently known densest packing
with translates of the tetrahedron Δ and of −Δ, recently found by Kallus,
Elser and Gravel [38], is of density (139 + 40

√
10)/369 = 0.7194880 . . . .

8. Packing Congruent Replicas of a Convex Body

Here we consider packing densities δ(K) of a convex body K in R3, with
no restrictions on the nature of isometries used in packing. There are not
many bodies K whose packing density is known. No good lower bound
has been established for the packing density δ(K) valid for all convex 3-

dimensional bodies K. A rather insignificant lower bound of
√
3
6 = 0.288 . . .
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is easy to prove based on the known result in the plane, namely that the

packing density of every convex disk is at least
√
3
2 (see [40]).

For centrally symmetric convex bodies K, the best known bound of this
type is due to E. H. Smith [48], who proved that δ(K) ≥ 0.53835 . . . for
every such body K in R3. The author indicates that the bound is not likely
to be the best possible. No reasonable conjecture has been proposed, neither
in the general case, nor under assumption of central symmetry, to point to
a specific convex body whose packing density should be smallest among all
convex bodies. It is not even certain that such a body exists.

Except for the trivial case of space-tiling polytopes, there are not many
convex solids whose packing density δ (allowing all isometries) is known. In
the following subsections we discuss known results for certain special cases.

8.1. The Kepler conjecture

The three-dimensional sphere packing problem in its general form, without
restrictions on the structure of the spheres’ arrangements is simple to state
and easy to understand even for a non-expert. The conjecture states that
the maximum density of a packing of R3 with congruent balls is π√

18
=

0.740480 . . . , attained in the familiar lattice arrangement (see Fig. 1). The
conjecture sounds very convincing to anyone who has ever seen spherical
objects, such as oranges or apples, stacked in a pyramid, yet the proof eluded
mathematicians for centuries. A problem so appealing attracts attention
of experts and laymen alike, and a solution tends to instantly elevate its
author to the status of celebrity. The Kepler conjecture, also known as
the sphere packing conjecture, has a long and fascinating history, see [30].
The unsuccessful attempts at proof and the nature of the proof that was
produced at last seem to indicate that this is one of those problems that
cannot be resolved with a reasonably simple and reasonably short proof.

The proof is due to Thomas Hales, who announced it in [29], and then,
during the past 13 years presented a series of articles on the subject (see
[27, 28, 31, 32, 33, 34], see also [20] by Ferguson, a student of Hales).
The description of the theoretical approach to the problem and results
of the work of computer occupies nearly 300 pages in these articles. At
the computational stage of the proof, computers examined some 5, 000
computer-generated cases, each of the cases requiring optimization analysis
of a system of non-linear inequalities with a large number of variables.
Hales main approach follows a strategy suggested by L. Fejes Tóth in 1953´
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(see [18]) who anticipated a then insurmountable amount of computations
needed for the case analysis.

As a corollary to Hales’ result, the packing density of any convex body K
such that B3 ⊂ K ⊂ RhD is easily computed: δ(K) = δT (K) = Vol(K)

Vol(RhD) ,
where RhD denotes the rhombic dodecahedron circumscribed about the
unit ball B3.

In 2003, Hales launched a project called FLYSPECK, designed for an
automatic (computerized) formal verification of his proof. The project
involves a number of experts in formal languages. They currently estimate
that the project is about 65% complete. As a byproduct of the FLYSPECK
project, Hales, jointly with five coauthors involved in the project, published
recently another article [35] on the topic of the Kepler conjecture, revising
the originally published text.

8.2. Packing space with congruent ellipsoids

The problem of packing space with ellipsoids is in sharp contrast with the
analogous two-dimensional problem. In the plane, the density of any packing
consisting of congruent ellipses, or even ellipses of equal areas (see L. Fejes
Toth [17], see also [18]), cannot exceed the circle’s packing density´ π√

12
.

It has been noticed in [8] that ellipsoids E exist whose packing density is
greater than that of a ball, that is, δ(E) > π√

18
. The first ellipsoid found

that had this property was quite elongated, of a very high aspect ratio, that
is, the ratio of its longest semiaxis to its shortest.

As an improvement of this construction, Wills [56] found a denser ellip-
soid packing, with ellipsoids of a slightly smaller aspect ratio. However, a
much more substantial improvement came about a few years ago. A. Donev,
F.H. Stillinger, P. M. Chaikin, and S. Torquato [15] constructed a remark-
ably dense packing of congruent ellipsoids that do not differ from a sphere
too much, namely with aspect ratio of

√
3 (or any greater than that). The

packing they found using a computerized experimental simulation technique
reaches density of 0.770732. This is the currently highest known density of
a packing of space with congruent ellipsoids.

It is not known, however, whether or not there is an upper bound below
1 for such density. While no ellipsoid can tile space by its congruent replicas,
thus the packing density of any ellipsoid is smaller than 1, it is conceivable
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that an ellipsoid with sufficiently high aspect ratio could have its packing
density as close to 1 as desired.

8.3. Packing space with congruent cylinders

The first non-trivial case of a convex (though unbounded) solid whose
packing density, allowing all isometries, was computed, was the circular
cylinder, infinitely long in both directions, that is, the set {(x, y, z) ∈ R3 :
x2 + y2 ≤ 1}, see [6]. As expected, the maximum density is reached when
all cylinders in the packing are parallel to each other and the plane cross-
section of the packing perpendicular to the cylinders forms a densest circle
packing in the plane. In other words, the packing density of the infinite
circular cylinder is π√

12
.

The first non-trivial case of a convex compact solid was resolved by
A. Bezdek [4] who determined the exact value of the packing density of
the rhombic dodecahedron slightly truncated at one of its trihedral vertices.
Although the packing density of Bezdek’s example can be derived from
the now proven Kepler conjecture (the truncated rhombic dodecahedron
contains the inscribed sphere), Bezdek’s proof was published before the
Kepler conjecture was settled and is independent from it.

The packing density of the circular cylinder {(x, y, z) ∈ R3 : x2 + y2 ≤
1, 0 ≤ z ≤ h} of finite height h > 0, conjectured to be π√

12
as well, is not

known for any value of h. The difficulty of this conjecture is indicated by
an example of a certain elliptical cylinder that admits a packing of density
greater than 0.99 (see [8]), while in any arrangement of the congruent copies
of it such that all their generating segments are parallel to each other, the
packing’s density cannot exceed π√

12
.

Related to the above problem is the following question about tiling space
with congruent right cylinders (a cylinder is said to be right if its generating
segment is perpendicular to the plane of its base):

If a right cylinder with a convex base admits a tiling of R3 with its
congruent replicas, must its base admit a tiling of the plane?

The difficulty of this question is illustrated by two examples from [7].
First, there exists a space-tiling right cylinder with a non-convex polygonal
base that cannot tile the plane (see Fig. 9). Second, there exists a skew
prism (though as close to being right as we want) with a convex polygonal
base that tiles space, but whose base cannot tile the plane (see Fig. 10).
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To explain the construction shown in Fig. 10: (a) A regular hexagon
is cut into three congruent, axially symmetric pentagons. (b) By an affine
transormation, the pentagons are stretched slightly, each in the direction
of its axis of symmetry, so that they cannot tile the plane. Then a skew
pyramid is raised over each of the pentagons, so that when they are joined
as shown in (c), they form a “hexagonal cup” whose projection to the plane
of the original hexagon coincides with the hexagon. Such “cups” can be
stacked, forming an infinite beam whose perpendicular cross-section is the
original regular hexagon. Finally, such hexagonal parallel beams can fill
space by the same pattern as the regular hexagon tiles the plane.

Fig. 9. A non-convex right prism that tiles space, with base that does not tile the plane

Fig. 10. A convex, slightly skew prism that tiles space, with base that does not tile the
plane
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The second example shows that the packing density of a cylinder Πs(K)
over a convex disk K could be greater than the packing density of K
in the plane. In this example, however, the cylinder is skew. The same
phenomenon, however, can occur with a right cylinder as well, as we saw it
on the example of a right elliptical cylinder whose packing density is greater
than 0.99. It seems natural to ask:

Which convex cylinders have their packing density in space the same as
that of their bases in the plane, and which can be packed denser?

8.4. High density packing with congruent regular tetrahedra

Since no integer multiple of the dihedral angle ϕ = arccos 1
3 = 1.23 . . .

formed by the faces of the regular tetrahedron Δ equals 2π (5ϕ = 6.15 . . . is
just slightly smaller than 2π), we know that δ(Δ) < 1. Then, how densely
can space be packed with congruent regular tetrahedra? The question is
of interest in areas other than mathematics as well, e.g. physics (compact-
ing loose particles), chemistry (material design), etc. The past four years
brought an exciting development: a series of articles appeared, each provid-
ing a surprisingly dense—denser than previously known—packing.

2006. Conway and Torquato [14] initiate the race by presenting a sur-
prisingly dense packing with density 0.717455 . . . , almost twice the lattice
packing density of the tetrahedron (see Table 1). The packing is a lattice ar-
rangement in which the “repeating unit” is a cluster of 17 congruent regular
tetrahedra. Conway and Torquato also give a simple, uniform packing with
density 2

3 (here “uniform” means possessing a group of symmetry that acts
transitively on the tetrahedra). This simple packing is a lattice arrange-
ment in which the repeating unit consists of a pair of regular tetrahedra,
one rotated by π

2 with respect to the other (see Fig. 11).

Same year, shortly after the appearance of Conway and Torquato’s ar-
ticle, Chaikin, Jaoshvili, and Wang [11], a team composed of two physicists
and a high-school student, announce results of an experiment with mate-
rial tetrahedral dice, packing them tightly, but randomly in spherical and
cylindrical containers. The experimental results indicate that the packing
density of the regular tetrahedron should exceed 0.74, perhaps even 0.76.

2008. Elizabeth R. Chen [12], a graduate student at the University
of Michigan, Ann Arbor, produces a packing reaching density 0.7786, well
above the packing density of the ball.
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Fig. 11. A portion of the Conway and Torquato uniform packing of regular tetrahedra.
Density: 2

3

2009. Torquato and Jiao [50, 51], using computer simulation based on
their “adaptive cell shrinking scheme” raise Chen’s record first to 0.782 . . .
and shortly thereafter to 0.823 . . . .

At this point one could hardly expect or predict any significant improve-
ments, but they kept coming without much delay.

2009. Haji-Akhbari et al. [26], using thermodynamic computer simu-
lations that allow a system of particles to evolve naturally towards high-
density states, find a packing whose density reaches 0.8324.

2009. Kallus, Elser, and Gravel [38] produce a surprisingly simple uni-
form one-parameter family of packings - a lattice arrangement of a repeating
unit consisting of just four regular tetrahedra, one pair of tetrahedra joined
by a common face and another pair a point-symmetric reflection of the first.
New density record: 100

117 = 0.85470 . . . . The packings, though found with
the aid of computer, are described analytically.

2010. Torquato and Jiao [52] produce an analytically described packing
with regular tetrahedra bettering the density record of Kallus et al. Density:
12250
14319 = 0.855506 . . . .

2010. Chen, Engel, and Glotzer [13] set the most recent density record,
reached by an analytically described packing. The currently highest known
density is raised to 4000

4671 = 0.856347 . . . .

The last few density improvements seem to be inching towards its max-
imum value. Though it is difficult to conjecture what that value should be,
any reasonable upper bound would be welcome as a valuable contribution.
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Disappointingly, thus far no specific upper bound, not even by a miniscule
amount below 1, has been established.

Added in proof. During the editorial process of publication of this article,
S. Gravel, V. Elser and Y. Kallus [arXiv:1008.2830] obtained an upper
bound for the packing density of the regular tetrahedron, around 2.6×10−24

below 1.
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Geometric Problems on Coverage in Sensor

Networks

PETER BRASS∗

In this article we survey results and state some open problems that are motivated
by sensor networks applications.

1. Introduction

Sensors controlled by computers who communicate their acquired data to
some central server by a network connection have been used for a fairly
long time. Sensor networks now denote a more specific setting: a large
number of sensors (nodes), each with an autonomous computer, wireless
network connection, and power supply, distributed over a region of interest
[74, 17]. The nodes form an ad-hoc network by maintaining a wireless
network connection with some neighboring nodes, and distribute important
sensor information by this network to all interested other nodes. The
number of nodes is very large, thousands to possibly millions, the nodes
are moderately cheap, and getting cheaper, so a much considered scenario is
that they are just dropped from a plane in large numbers, and spontaneously
organize and start sensing. Paradigmatic applications are environmental,
e.g., detecting a forest fire, or presence of a dangerous chemical, or intrusive
species; and military, detecting enemy forces, or hidden weapons. In this
model, it is impossible to share all sensor information, since the number
of sensors is potentially unlimited, but the network data rate is small. We
assume there is one event somewhere, which should be detected by a sensor,

∗Supported by NSF grant CCF-1017539.
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and if it is detected, the communication of the event to some center is task
of the network protocol. This divides the problem into the mostly geometric
problem of finding the event, and the network protocol problem of spreading
the news about the event. In this paper, we will concentrate on the first
problem.

To further specify the model, we need to know when a sensor detects
an event. The most widely used, and most easily accessible model is the
boolean sensing model : there is a sensing radius r, and each sensor detects
everything within that radius r, and nothing outside. In this case we arrive
at a classical covering by discs setting. Alternatives are that the event needs
to be discovered by several sensors, leading to multiple coverage problems,
and that the discovery by a sensor is a random event whose probability
depends on the distance from the sensor to the event.

Another important model parameter is whether we can freely choose the
locations of the sensors, or the sensors are randomly distributed over the
region of interest X. For random distribution of sensors, the most conve-
nient model is a Poisson process of density λ, which distributes an expected
number of λ area(X) sensors in X; an alternative, which is more difficult
to analyze, is to drop a given number of sensors by independent uniform
random choice from X. Many further model parameters are possible.

In the basic model, given a region X, a sensing radius r, and a number
or density of available sensors n = λ area(X), we obtain versions of a classic
geometric coverage problem, the optimum coverage of X by circles. The
optimum coverage of the plane, i.e., X = R2, was solved in [35, 29], and
the more difficult case of a finite region X was essentially answered by Fejes
Toth in [25]. As example, we cite´

Theorem 1. To cover a region X by sensors with sensing radius r,

2

3
√
3

area(X)

r2
+

2

π
√
3

perimeter(X)

r
+ 1

sensors are sufficient.

If the number of available sensors is not enough to achieve complete
coverage, but the area of interest X is large compared to a sensing disc,
then, by the moment theorem, a triangular lattice arangement is essentially
best possible. If X is the entire plane, it can be stated as follows.

Theorem 2. If sensors with sensing radius r are placed with density λ in
the plane, their coverage is at most the coverage reached by the triangular
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lattice arrangement of that density. So especially for λr2 ≤ 1
2
√
3
it is at most

πr2λ, and for λr2 ≥ 2
3
√
3
it can reach 1.

If the sensors are instead spread randomly in X by a Poisson process of
density λ, there are never enough sensors to guarantee complete coverage.
If we again disregard boundary effects by assuming X is the entire plane, it
is easy to show [45]

Theorem 3. If sensors with sensing radius r are placed with a Poisson
process of density λ in the plane, then the expected coverage is 1− e−πλr2 .

This follows, since a point will be covered if a sensor falls within dis-
tance r of it, so the probability of detecting the event by a sensor is the
probability that at least one sensor falls into a disc of area πr2. If the
sensors are distributed in a finite region X, the expected coverage will be
smaller, since for points p within distance r to the boundary, only the part
of D(p, r) inside X can possibly receive a sensor. So the probability of p
being covered is only 1− e−λ area(D(p,r)∩X),

Ten discs covering a square, and two random arrangements of these discs

The density of the Poisson process necessary to give complete coverage
with high probability has been studied in detail [56], one essentially needs
an additional log n-factor, where n is the number of necessary sensors under
optimal placement. We cite a simple version.

Theorem 4. Let sensors with sensing radius r be placed with a Poisson
process of density λ in a sequence of scaled regions νX, ν → ∞, and let
ε > 0.

• if r =

√
(1− ε)

log area(νX)

πλ
, then lim

ν→∞
Prob(νX is covered) = 0

• if r =

√
(1 + ε)

log area(νX)

πλ
, then lim

ν→∞
Prob(νX is covered) = 1
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1000 random discs of combined area 300 in a rectangle of area 100

If we use as alternative randomization model that n sensors are indepen-
dently placed according to a uniform distribution on X, the analysis gets
more complicated but gives similar asymptotic behavior [39]. Yet another
similar model is that the potential sensor locations are a sufficiently fine
square grid in X, and each of these locations receives a sensor with some
probability p. That model has the interpretation that sensors are placed on
all grid points, but most are sleeping to conserve their battery, only with
probability p they wake up [64, 61].

2. Mobile Targets

If the event that the sensors should detect is not at a fixed point, but is a
mobile target, this opens several further types of questions. If the sensors
achieve complete coverage of X, mobility does not help the target since
it will be caught immediately anyway. But if there are much less sensors,
then the best we can do is catch the target in some coverage hole that is as
small as possible. For randomly placed sensors, this becomes a question of
percolation [49, 55, 3]. For chosen sensor positions this is the question of
how to arrange n discs of radius r in X such that the largest component of
the relative complement of the discs becomes as small as possible.

Problem 1. Given a region X and n discs of radius r, how can we find
a placement of the discs that minimizes the maximum diameter of the
components of the relative complement of the discs?

If the total area of the discs is small relative to X, then we divide X
into cells by chains of sensors, so the problem becomes how to divide X into
cells, using a given total length of cell-boundaries, such that the cells are
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as small as possible. If we wish to minimize the diameter of the cells, this
becomes a known open isoperimetric-type problem [16], but the division
into hexagonal cells is at least near-optimal.

Arrangement of discs dividing the plane into small cells

Problem 2. Which placement of unit discs of density r in the plane mini-
mizes the maximum diameter of the connected components of the comple-
ment of the discs?

For these and many further related settings, when the sensors or the
target may be mobile, we refer to [14].

If something is known about the intended movement of the target, e.g.,
that it has to move from a position t1 to t2, the problem becomes that of
barrier coverage. Several concepts have been proposed, best known are [51],

• the maximal breach path, that stays as far away as possible from the
sensors (maximizing the minimum distance to the nearest sensor), and

• the maximum support path, that stays as close as possible to sensors
(minimizing the maximum distance to the nearest sensor).

Both paths are easy to compute, e.g., the maximal breach path must be
essentially following Voronoi edges to maximize the distance to the nearest
sensor [42, 41, 50].

This definition considers only the maximum or minimum coverage of the
path; it would be more interesting to consider the accumulated coverage,
taking an integral of the coverage over the path length. This is the path
exposure defined in [23]; it is there approximated by discretizing the region,
computing the exposure of each cell, and computing the shortest path
in this graph. Although this heuristic probably gives a constant-factor
approximation, no bounds are known. The exposure of each cell could be
defined in several ways, the simplest is to assume that within each sensing
disc, there is at each moment a constant probability of discovery p, and
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t1 to t2

distinct sensors give independent events. Then the probability of discovery
at point x is p to the number of discs containing x, and the path exposure
is the integral over the path length of this probability.

Problem 3. Given n discs D1, . . . , Dn and points t1, t2, how can we find or
approximate the path from t1 to t2 that minimizes or maximizes exposure?

Two interpretations of this problem are: if the discs are cell phone
transmitters, each having a probability of failure, how should we travel
from t1 to t2 such that the expected time without connection is minimized?
And: if the discs are guards, each with a constant probability of discovering
the intruder while he is in the region of the guard, how should he move from
t1 to t2 to minimize his probability of discovery? In general, these problems
can be interpreted as a instances of the the shortest path in weighted
regions problems, which is an apparently difficult problem in computational
geometry [52].

A different formalization of barrier coverage is introduced in [37]; an
arrangement of sensors forms a k-barrier coverage between t1 and t2 if any
path in the region from t1 to t2 crosses at least k sensing discs. If we can
choose the positions of the sensors, the best k-barrier separating opposite
sides of a rectangle consists of k chains of sensors parallel to those sides.
In [37], the probability that sensors placed by a Poisson process of density λ
form a k-barrier coverage is analyzed. Several other measures are analyzed
in this random placement setting in [58].

If the target is known to move on a straight line, we obtain the model of
track coverage proposed in [12]; they try to place the sensors as to maximize
the measure of the set of lines crossing the region of interest or barrier that
intersect at k sensing discs.
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Problem 4. How should n unit discs be arranged in a × b-rectangle such
that the measure of lines that cross the rectangle, intersecting both a-sides,
and that intersect at least k discs, is maximized?

The problem of intercepting a mobile target by sensors might also be
viewed as a geometric game, with randomized strategies on either side [21];
geometric games are analyzed in [60].

3. Mobile Sensors

If the sensors are mobile, we can actively search for targets, or improve
the coverage properties of our arrangement. Here is an overlap between
mobile sensors and robots; sensors are typically assumed to be very energy-
constrained and cannot move much, if at all, whereas no such restriction
exists for robots.

The improvement of an initial random sensor arrangement by moving
sensors is a special case of the problem of sensors spreading out studied
in the next section; if the initial density of the sensor network is high
enough, then only a small fraction of the sensors have to be moved a
moderately short distance to get coverage, or even k-fold coverage, with
a high probability [70].

If movement is less restricted, and a sensor is sensing everything within
distance r while it is traveling along a path γ of length l, then this sensor
covers the set {p | ∃q ∈ γ : d(p, q) ≤ r}, that is the Minkowski sum of the disc
around 0 of radius r and the curve γ. This set has area at most πr2+2rl. If
we can freely choose the initial placement and the paths taken, it is nearly
optimal to arrange the sensors in columns of searchers, with distance 2r
from one searcher to the next, and as many columns as the available sensor
density allows [14]. If the initial position is randomly distributed, then a
simple strategy is to choose some direction and move along it; this model
is again easy to analyze [43]. Such random direction models were further
studied in [53, 47].

A natural problem which up to now did not receive any study is to
arrange periodic patrol paths in a region. The model here is that we
have k mobile guards that move at a fixed speed through the region of
interest X, and at each moment see everything within distance r to their
current position. At any time, a spontaneous event might occur anywhere
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in X, and once it occured, it stays visible. We want to arrange the patrol
paths in such a way that the time to discovery is minimized.

Problem 5. How should k mobile guards patrol a region X as to minimize
the time to discovery of an event?

For k = 1 this problem was discussed as lawn mowing problem: a
classical rotating-blade lawnmower mows a disc, and one wants to find the
shortest path to mow the entire lawnX. Even there, only a 3-approximation
for the optimum path length is known [4]. We do not know any way to
compute the optimum patrol path of a given set X and radius r, e.g., what
is the optimum patrol path for a square?

If both target and sensors are mobile, we get several types of searching
problems, depending on the mutual information of searcher and target,
and their speed. The most natural in our context is that the searchers
see everything within their sensing radius r, whereas the target sees the
position of all the searchers. This setting has been studied in [24] under
the title ‘offline variants of lion and man’, referring to the unrelated ‘Lion
and Man’ problem studied by Besicovitch, and others, in which the lion
sees the position of the man and has to intercept him. The problem has
been studied mainly in a graph variant, where there are k searchers on
an n × n-grid graph, and one target; the searchers see only their current
vertex, and have to catch the target [24, 15, 13]. Using a discretization
of the unit square, there is some asymptotic relation between the graph
setting and the geometric setting, although not enough to give the correct
multiplicative constants. An interesting problem here is the following

Problem 6. What is the largest square that can be searched by k unit-
radius searchers against a mobile target with the same speed as the
searchers?

Some small cases have been studied in [1]. The obvious answer, that
the k searchers can form a row and sweep a square of sidelength 2k is not
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optimal. A unit radius disc wobbling between two unit radius discs slightly
more than 4 units apart can close both gaps alternatingly, by overlapping the
outer discs at a length which is much larger than the necessary movement of
the middle disc, so the target would be caught if it entered that gap. This
has been worked out and extended to 3d in [2]; the 2d movement scheme
proposed there might be optimal, the 3d version almost certainly is not.

Discs blocking slightly more than their diameter, alternatingly closing the gaps

4. Mobile Sensors Spreading Out

A problem that has been studied in a number of papers without reaching
a satisfactory theoretical analysis is that of mobile sensors spreading out
from some starting positions to cover a region X. The idea is that each
sensor looks at his own position and that of neigboring sensors, and moves
to a new position to locally improve the covering quality. By repeating
these independent local improvements, one hopes to arrive at a global near-
optimal solution. Such a motion strategy would allow autonomous spreading
out to cover some unknown regions, as well as automatic filling in of coverage
holes if some sensors fail.

If the current sensor positions are p1, . . . , pn, then each sensor pi covers
some part of his Voronoi-cell Vor(pi) ∩ X, so natural movement strategies
that were suggested is to move pi so that it best covers its own Voronoi-cell
[66, 63, 30, 38], or to set up some virtual forces against the neighboring
robots and try to balance these forces [75, 57, 28, 54, 46, 19, 40, 20].
Since the actual movement of sensors is slow compared to communication
and computation, one can run the algorithm on the intended positions
instead of the real positions, and start moving only when the intended
positions for each sensor have stabilized [67]. But up to now it has not been
proved for any algorithm of this type that it will converge to a near-optimal
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Points moving away from each other, with increasing number of steps.
Discs show half the distance to nearest neighbor

covering, and neither any bound for the expected pathlength. A square
lattice arrangement would give a suboptimal stable arrangement under this
motion rule. Indeed, if we disregard the boundary effects and fill the entire
plane, there are arbitrary bad arrangements which are necessarily stable
under any local motion rule since each sensor has a symmetric neighborhood.
These are, however, not stable under small perturbations.

perturbations

Problem 7. Show for some local motion rule that any stable arrangement
in the entire plane which is also stable under infinitesimal perturbations will
have a covering density at most a constant factor worse than the optimal
covering density.

A more fundamental question is to demand both travel distance and
covering quality to be near-optimal.

Problem 8. Show for some motion rule that is based only on local in-
formation that the positions of the sensors converge to a solution for which
both the covering quality is a constant-factor approximation of the optimum
covering quality, and the total travelled path length is a constant-factor ap-
proximation of the optimal path length.
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A different type of strategy was proposed in [8, 9]; they force the tri-
angular lattice structure, first choosing the right edgelength for it from the
knowledge of X, and then moving sensors to these lattice positions along
a growing patch. Every sensor who reaches a new lattice position on the
boundary of the patch becomes fixed and extends the boundary. This solu-
tion necessarily converges to a near-optimum, but it needs a-priori knowl-
edge of the region X and the number of available sensors, whereas the local
rules can be used to fill an unknown region, and deal with sensor failures
and coverage obstacles. Further algorithms with more global planning to
match redundant sensors to coverage holes with small movement distances
were proposed in [68, 73, 18].

The same problem of sensors spreading out through an unknown region
has also been studied for more complicated sensing models [10, 31].

5. Coverage and Connectivity

In the previous models, we described only coverage; if we also take the com-
munication in the network into account, we have a set of sensors with their
sensing discs, and a graph of sensors which are connected by communication
links. Typically, the graph is given by a distance constraint on the sensor
locations: there is a communication distance d, and the communication
network consists of those sensors of distance at most d.

A minimal condition on the communication network is that it must be
connected. If the sensors cover the region, then it is easy to see that d ≥ 2r
guarantees that the network is connected. If the region is just a long, narrow
strip, this is clearly best possible, connectivity does not follow from coverage
if d < 2r. But even if we cover the plane, an arrangement of two halfplanes
each densely filled with sensors, but separated by an empty strip of width
2r−ε, show that connectivity does not follow from coverage for any d < 2r.

To introduce redundancy in the communication network, which typically
suffers from many link failures due to transmission obstacles, one frequently
aims for k-edge-connected communication networks. Node failures can be
modelled by requiring higher node connectivity.

Problem 9. What is the smallest ck such that for any arrangement of
sensors whose sensing discs of radius r cover the plane, the graph of distances
less than ckr is k-edge-connected?
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A problem which has already received partial study is the minimum den-
sity of a sensor network, given d and r, which gives complete coverage and
k-connectivity. Since minimum density for complete coverage is achieved
by the triangular lattice arrangement, which for d ≥

√
3r has a communica-

tion network which is at least 6-connected, this question is interesting only
for d <

√
3 or large k. For 1- and 2-connectivity, it was proved [5, 33, 69]

that the optimum arrangement, for any d <
√
3r, consists of rows of sensors

at distance d, which are connected by one column for 1-connectivity, or by
columns spaced arbitrarily far (e.g., at exponentially increasing distances)
for 2-connectivity.

Thinnest covering arrangement with 1-connected communication network

The optimum arrangement for 4-connectivity was determined for the in-
terval

√
3r ≥ d ≥

√
2r in [6]; beyond

√
3r, the triangular lattice arrangement

is extremal, and for d <
√
2r, probably again a row-based network, with

4-connected rows, will be optimal. There are no results for 3-connected ar-
rangements, but it seems that 3- and 4-connectivity give the same extremal
arrangements, as it is true for 1- and 2-connectivity.

Problem 10. What is the arrangement of minimum density whose sensing
discs of radius r cover the plane, and whose graph of distances less than d
is k-edge-connected?

Similar questions for networks in three-dimensional space, e.g., floating
in the sea, were studied in [59, 7].
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[25] Fejes Tóth, L., Lagerungen in der Ebene, auf der Kugel, und im Raum (2. Auflage),
Springer-Verlag 1972.

[26] Gao, Y., Wu, K. and Li, F., Analysis of the redundancy or wireless sensor networks,
in: WSNA ’03 (Proc. ACM Workshop Wireless Sensor Networks Applications) 2003,
108–114.

[27] Gui, C. and Mohapatra, P., Power convervation and quality of surveillance in target
tracking application, in: MobiCom ’04 (Proc. ACM Conference on Mobile Comput-
ing and Networking) 2004, 129–143.

[28] Guo, P., Zhu, G. and Fang, L., An adaptive coverage algorithm for large-scale
mobile sensor networks, in: UIC ’06 (Proc. Conference on Ubiquitous Intelligence
and Computing) Springer LNCS 4159 (2006) 468–477.



Geometric Problems on Coverage in Sensor Networks 105
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Applications of an Idea of Voronŏı,

a Report

PETER M. GRUBER

In memoriam Lászl´´ o Fejes T´ oth (1915–2005)´

The idea of Voronŏı’s proof of his well-known criterion that a positive definite
quadratic form is extreme if and only if it is eutactic and perfect, is as follows:
Identify positive definite quadratic forms on Ed with their coefficient vectors

in E
1
d
d(d+1). This translates certain problems on quadratic forms into more

transparent geometric problems in E
1
2
d(d+1) which, sometimes, are easier to solve.

Since the 1960s this idea has been applied successfully to various problems of
quadratic forms, lattice packing and covering of balls, the Epstein zeta function,
closed geodesics on the Riemannian manifolds of a Teichmüller space, and other
problems.

This report deals with recent applications of Voronŏı’s idea. It begins with
geometric properties of the convex cone of positive definite quadratic forms and
a finiteness theorem. Then we describe applications to lattice packings of balls
and smooth convex bodies, to the Epstein zeta function and a generalization of
it and, finally, to John type and minimum position problems.

1. Introduction

A classical criterion of Voronŏı [80, 81, 82] says that a positive definite
quadratic form on Euclidean d-space Ed is (locally) extreme if and only if it
is eutactic and perfect. Equivalently, a lattice packing of balls has (locally)
maximum density, if it is eutactic and perfect. To prove this result, Voronŏ
identified the positive definite quadratic forms on Ed with their coefficient
vectors in E

1
2
d(d+1). Slightly earlier Plucker [59] and Klein [51] used a similar¨

idea in the context of line geometry. By Voronŏ ’s method, certain problems˘
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on positive definite quadratic forms, resp. on lattice packing of balls in Ed,
are translated into more transparent geometric problems in E

1
2
d(d+1).

While Voronŏı’s criterion won immediate recognition and was widely˘
acclaimed, the idea of his proof was ignored for decades. It drew attention
only since about 1960. It was applied systematically to the following areas:
Barnes, Dickson and the Russian school of the geometry of numbers led by
Delone and Ryshkov and their collaborators Stogrin and Dolbilin used it
for lattice packing and covering problems. For coverings we add Bambah,
Schurmann, Vallentin and the author and refer to [6, 7, 22, 41, 75, 77]. The¨
minimization problem for the Epstein zeta function was at first investigated
by the British school of the geometry of numbers (Rankin [62], Cassels [16],
Ennola [24] and Montgomery [57]). Later, following a suggestion of Sobolev,
who re-discovered the zeta function in the context of numerical integration,
this problem was studied by the Russian school, see [21, 64]. Related
recent results are due to Sarnak and Strombergsson [68], Coulangeon [19]¨
and the author [45]. General properties of the density of lattice packings
of balls, considered as a function on the space of lattices, were studied
by Ash [1], who showed that the density is a Morse function. His work
was continued by Bergé and Martinet [12]. Extensions and refinements
of Voronŏı’s results on extremum properties of quadratic forms are due to˘
the school on quadratic forms in Bordeaux. It includes Martinet, Bergé,
Bachoc, Nebe and Coulangeon, see the monograph [54] of Martinet. We
mention also the contributions of Barnes, Sloane and Conway for which we
refer to the comprehensive volume [18]. Extensions to periodic sets are due
to Schurmann [75]. The kissing number of a lattice packing is related to the¨
number of closed geodesics on the fundamental torus of the lattice. This
observation led Bavard [10] and Schmutz Schaller [69, 70, 71] to investigate
the closed geodesics on the Riemannian manifolds of a Teichmüller space.

This article gives an overview of the pertinent work of the author.
See, in particular the papers [34, 38, 39, 44, 45] and the joint article with
Schuster [47]. We have included also work of other authors. A few results
are new. The section headings give a first idea of the results that will be
presented:

The cone of positive definite quadratic forms,
Weakly eutactic lattices,
Extremum properties of the lattice packing density,
Extremum properties of the product of the lattice packing density and
its polar,
Extremum properties of zeta functions,
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Extremum properties of the product of zeta functions and their polars,
John type results and minimum ellipsoidal shells,
Minimum position problems.

These results belong to the geometry of numbers, to convex geometry and
to the asymptotic theory of normed spaces. In many cases, similar results
hold both for Euclidean balls and o-symmetric, smooth convex bodies. If so,
the results for balls are presented in more detail since in some cases they are
more far reaching and have classical arithmetic interpretations in terms of
positive definite quadratic forms. While the results in different areas seem
to be unrelated, they are bound together by their outlook and the method
of proof. One may speculate, whether they are related in a deeper sense.
For one such relation see Corollary 12. A few proofs have been included.
This was done in case of new results, or to illustrate the technique of proof.

Since this is a report, the material is organized as follows: For each topic
the definitions, the results and the comments are put together, while the
proofs are presented later and may well be skipped.

For general information on the geometry of numbers, on positive
quadratic forms and on convex geometry we refer to the author and Lekkerk-
erker [46], Conway and Sloane [18], Zong [84], Martinet [54], the author [37],
and Schürmann [75].

Let the symbols tr, dim, bd, relint, relintS , pos, lin, conv, ‖ · ‖, ·, V ,
Bd, Sd−1, T , ⊥ stand for trace, dimension, boundary, interior relative to
the affine hull, interior relative to the linear subspace S, positive(=non-
negative), linear and convex hull, Euclidean norm, inner product, volume,
unit ball and unit sphere in Euclidean d-space Ed, transposition, and or-
thogonal complement.

2. The Cone of Positive Definite Quadratic Forms

Most results in this report deal in one way or another with positive definite
quadratic forms. In some cases geometric properties of the cone Pd of
positive definite quadratic forms or of certain subsets of it are indispensable
tools for the proofs. It thus seems justified to begin this overview with an
investigation of geometric properties of the cone Pd.

A (real) quadratic form on Ed,

q(x) =
∑

aikxixk, x ∈ Ed,
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its (real) symmetric d× d coefficient matrix

A = (aik)

and its (real) coefficient vector

(a11, . . . , a1d, a22, . . . , a2d, . . . , add)
T

in E
1
2
d(d+1) may be identified. The family of all positive definite quadratic

forms on Ed then corresponds to an open convex cone Pd in E
1
2
d(d+1) with

apex at the origin O, the cone of positive definite quadratic forms. The
closure Qd of Pd is the cone of positive semi-definite quadratic forms on Ed.
The cones Pd and Qd, certain polyhedra and unbounded convex bodies
in Pd, as well as polyhedral subdivisions of Pd play an important role in the
geometric theory of positive definite quadratic forms, including reduction
theory.

Thus, Pd and Qd appear as natural objects of investigation. To our
surprise, we found only a few pertinent results, due to Ryshkov and Bara-
novskĭı [67], Ryshkov [66], Bertraneu and Fichet [14], Barvinok [8], Wick-˘
elgren [83] and the author [39]. Ryshkov and Baranovskĭ showed that the˘
group of linear automorphisms of Pd is transitive on Pd. Ryshkov seems to
have proved that each linear automorphism of Pd is of a particularly simple
form. Wickelgren characterized the linear automorphisms of the Ryshkov
polyhedron Rd in Pd and Bertraneu and Fichet gave a description of the
extreme faces of Qd and, as a consequence, showed that the lattice of ex-
treme faces of Qd is isomorphic to the lattice of linear subspaces of Ed and,
thus, modular.

In this section, we report on the results of the author [39], beginning
with an analog for exposed faces of the result of Bertraneu and Fichet. The
next result says that the exposed and the extreme faces of Qd coincide.
These results then are used as tools for the proofs of all further results:
First, extending well-known notions for polytopes, flag transitivity of the
group of all orthogonal transformations and neighborliness properties of the
convex cone Qd are studied. Then we investigate singularity properties of
boundary points and faces of Qd, and show the simple fact that Qd is self-
dual. Finally, the group of isometries of Qd will be described. Each isometry
is generated by an orthogonal transformation of Ed.
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Extreme and Exposed Faces of Qd

An extreme face or face F of the cone Qd is a subset of Qd with the following
property: If a relative interior point of a line segment in Qd is contained
in F , then the whole line segment is contained in F . The empty set ∅ and
the cone Qd are faces of Qd. Each extreme face of Qd is itself a closed convex
cone. A special face is an exposed face, i.e. the intersection of Qd with a
support hyperplane. To simplify, also ∅ and Qd are said to be exposed.

For u ∈ Ed define the tensor product u ⊗ u to be the symmetric d × d
matrix uuT ∈ E

1
2
d(d+1). (The linear mapping x→ u⊗ux maps x ∈ Ed onto

the point (u ·x)u and, if u is a unit vector, this is the orthogonal projection
of x onto the line lin {u}.)

Theorem 1. Let F ⊆ Qd. Then the following properties (i) and (ii) of the
set F are equivalent:

(i) F is an exposed face of Qd.

(ii) There is a linear subspace S of Ed such that F = pos {u⊗u : u ∈ S}.
Moreover,

(iii) if (ii) holds, then dimF = 1
2c(c+ 1), where c = dimS.

Theorem 2. Each extreme face of Qd is exposed.

Since by Theorem 2, extreme and exposed faces coincide, from now on
we will speak simply of faces of Qd.

The Face Lattice of Qd

The above results, which show that the faces of Qd can be represented in a
particularly simple way, lead to a series of properties of Qd.

An (algebraic) lattice 〈L,∨,∧〉 is modular if it satisfies the modular law,

(l ∧m) ∨ n = l ∧ (m ∨ n) for l,m, n ∈ L.

It is orthomodular, if it has 0 and 1 and for each l ∈ L there is an ortho-
complement, i.e. an element l⊥ ∈ L such that

l ∨ l⊥ = 1, l ∧ l⊥ = 0, (l⊥)
⊥
= l and l ≤ m ⇒ l⊥ ≥ m⊥,
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and satisfies the orthomodular law,

l ≤ m ⇒ m = l ∨ (m ∧ l⊥) for l,m ∈ L.

It is well-known that the family of all linear subspaces of Ed, including ∅ = 0
and Ed = 1, with the following definitions of ∧, ∨ is a lattice with 0 and 1:

S ∧ T = S ∩ T,

S ∨ T =
⋂
{U : U linear subspace of Ed with S, T ⊆ U} = S + T

for linear subspaces S, T of Ed.

This lattice is both modular and orthomodular. The family of all faces
of Qd, including ∅ and Qd, is a lattice with respect to the following lattice
operations ∧, ∨:

F ∧ G = F ∩ G,

F ∨ G =
⋂
{H : H face of Qd with F ,G ⊆ H}

for faces F , G of Qd.

Since by Theorem 1 and 2, these lattices are isomorphic, we get the following
result:

Corollary 1. The lattice of all faces of Qd is modular and orthomodular.

The Flag Transitivity of Qd

For d×d matrices A = (aik) and B = (bik) in E
1
2
d(d+1) or Ed2 define an inner

product and a norm by A · B =
∑

aikbik and ‖A‖ = (
∑

a2ik)
1
2 . A group

of transformations which map Pd or Qd onto itself is called a group of
automorphisms or symmetries of Pd orQd. If the transformations are linear,
orthogonal or isometric we speak of linear or orthogonal automorphisms, or,
of a group of isometries with respect to the norm just defined. Then the
following holds: Let U be an orthogonal transformation of Ed. Then the
transformation

U : A→ UAUT for A ∈ Pd or Qd, respectively,
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is an orthogonal automorphism of Pd or Qd, respectively.

Extending the definition for convex polytopes, a sequence F1FF ,F2FF , . . . ,
FdFF −1 of faces of Qd is called a flag or a tower of Qd, if

F1FF ⊆ F2FF ⊆ · · · ⊆ FdFF −1 and dimFcFF =
1

2
c(c+ 1) for c = 1, 2, . . . , d− 1.

A group of automorphisms of Qd is flag transitive if for any two flags

F1FF ,F2FF , . . . ,FdFF −1 and G1,G2, . . . ,Gd−1

there is an automorphism U in the group such that UFiFF = Gi for i =
1, 2, . . . , d− 1.

Corollary 2. The group of orthogonal automorphisms of Qd is flag tran-
sitive.

The Neighborliness of Qd

The notion of neighborliness for a convex polytope, see Grunbaum [48],¨
Ch. 7, can be adapted to the present situation as follows: For k = 1, 2, . . . ,
the convex cone Qd is said to be k-almost neighborly, if the positive (=non-
negative) hull of any k extreme rays of Qd with endpoint O is contained in
a proper face of Qd.

Corollary 3. Qd is (d− 1)-, but not d-almost neighborly.

Polarity and Self-Polarity of Qd

The dual or polar cone of the convex cone Qd with apex O is the convex
cone

Qd∗ = {N ∈ E
1
2
d(d+1) : A ·N ≥ 0 for A ∈ Qd},

i.e. the (interior) normal cone of Qd at its apex O.

Corollary 4. Qd = Qd ∗
, i.e., Qd is self-polar.
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How Singular are the Faces of Qd?

A face F of Qd is k-singular, if k is the dimension of the (interior) normal
cone of the convex cone Qd at (a relative interior point of) F .

Corollary 5. Let F be a non-empty proper face of Qd with dimF =
1
2c(c+ 1). Then F is 1

2(d− c)(d− c+ 1)-singular.

The Isometries of Qd

The following result shows that the isometries of Qd are orthogonal auto-
morphisms and thus are determined by orthogonal transformations of the
underlying space Ed. This is a phenomenon which appears also in several
other instances in convex geometry, see the survey [35], to which we add
Böroczky and Schneider [15] and Schneider [74]. This result shows that, in¨
particular, the space of isometries of Qd is rather small.

Theorem 3. Let U be a mapping of Qd onto itself. Then the following
properties are equivalent:

(i) U is an isometry.

(ii) There is an orthogonal d× d matrix U ∈ Ed2 such that UA = UAUT

for A ∈ Qd.

Conclusion

Remark 1. While Qd is far from being a polyhdral cone, it shares many
properties with highly symmetric, neighborly, and self dual polyhedral con-
vex cones.

3. Weakly Eutactic Lattices

In later sections we will frequently encounter (geometric) lattices which are
eutactic, possibly in a weaker or stronger sense. Thus it is appropriate
to give some information on such lattices. Berge and Martinet [13] and´
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Bavard [11] gave descriptions of the weakly eutactic lattices in E2, E3, E4.
We extract from their results the semi-eutactic lattices in E2, E3 and point
out their relationship to the Bravais classification of lattices in crystallog-
raphy. The aforementioned authors, with Ash [2] as a forerunner, showed
that in general dimensions there are only finitely many similarity classes of
weakly eutactic lattices. We outline a new geometric proof of this result,
using the Ryshkov polyhedron.

Eutactic Lattices and the Bravais Classification

Let L be a (geometric) lattice in Ed, that is the set of all integer linear
combinations of d linearly independent vectors. The volume of the par-
allelepiped generated by these vectors is the determinant d(L) of L. The
set MLM of minimum points, or the first layer of L, consists of all points
l ∈ L\{o} with minimum Euclidean norm. The lattice L is called weakly
eutactic, semi-eutactic, eutactic, strongly eutactic, or perfect with respect
to Bd, or ‖ · ‖, if

I =
∑
l∈MLM

λl l ⊗ l with suitable λl

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
real

≥ 0

> 0

= const

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪ , resp.

E
1
2
d(d+1) = lin {u⊗ u : u ∈MLM }.

Note that any perfect lattice is weakly eutactic.

The Bravais classification of lattices is used in crystallography and
classifies lattices by their groups of orthogonal automorphisms which keep
the origin o fixed. In dimensions 2 and 3 there are 5, resp. 14 Bravais classes
of lattices. For more information see Erdos, Gruber and Hammer [25] and¨
Engel [23]. The kissing number of L is the number of minimum points.

Theorem 4. The following is a list of the similarity classes of the semi-
eutactic lattices in E2 and E3, containing the symbols of their Bravais
classes, their usual names, their eutaxy type, a remark whether they are
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perfect, and their kissing number.

d = 2 : tp square strongly eutactic 4
hp hexagonal strongly eutactic perfect 6

d = 3 : cP cubic primitive strongly eutactic 6
hP special hexagonal primitive eutactic 8
cF cubic face centered strongly eutactic perfect 12
cI cubic body centered strongly eutactic 8
tI special tetragonal body centered eutactic 8

These lattices in E2 and E3 make up certain Bravais types (tp, hp, cP,
cF, cI), or form a subset of a Bravais type (hP, tI). In the latter case we
have added the adjective ‘special’.

Theorem 5. There are only finitely many similarity classes of weakly
eutactic, resp. perfect lattices in Ed.

Since each perfect lattice is weakly eutactic, the result for perfect lattices
follows from that for weakly eutactic lattices.

Open Problems

In the later Corollaries 6 and 11 there are specified the families of Bravais
classes corresponding to those lattices in E2 and E3 which have particular
extremum properties. It would be of interest, to know whether there are
other properties of lattices which lead to the same families of Bravais classes.

Problem 1. Specify geometric properties of lattices which single out the
Bravais classes

{hp}, {tp, hp}, {cF}, {cP, cF, cI}, {hP, cP, cI, cF, tI}

among the 5 Bravais classes for d = 2, and the 14 Bravais classes for d = 3,
respectively. Is there a connection between such properties and extremum
properties of the density of lattice packings of balls or the Epstein zeta
function?

Problem 2. What is the precise relation of similarity classes of weakly
eutactic lattices and Bravais classes of lattices in Ed for general d?
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Outline of the Proof of Theorem 5

We begin with some preparations. A lattice L may be represented in the
form L = BZd, where B is a non-singular d×d-matrix and Zd is the integer
lattice. The columns of the matrix B then form a basis of L. The positive
definite quadratic form q(x) = (Bx)2 = BTB · x ⊗ x then is the metric
form (of the basis matrix B) of L. The metric forms of L are unique up
to equivalence. Conversely, a quadratic form q in Pd can be written in the
form q(x) = A · x⊗ x, where A is a symmetric d× d matrix. Then q is the

metric form of all lattices of the form RA
1
2Zd, where R is orthogonal. The

set MqMM of minimum points of q consists of all u ∈ Zd\{o} such that q(u) is
minimum. We have the following dictionary:

L = BZd q(x) = BTB · x⊗ x = A · x⊗ x

class of all lattices L class of all quadratic forms in Pd

similar to L equivalent to a multiple of q

MLM = BMqMM MqMM = B−1MLM

I =
∑
l∈MLM

λl l ⊗ l A−1 =
∑
u∈MqMM

λu u⊗ u

E
1
2
d(d+1) = lin {l ⊗ l : l ∈MLM } E

1
2
d(d+1) = lin {u⊗ u : u ∈MqMM }

Call the positive definite quadratic form q weakly eutactic, resp. perfect if
the corresponding lattice L satisfies this condition.

Let m > 0. The Ryshkov polyhedron Rd(m) is defined by

Rd(m) =
{
A ∈ Pd : A · u⊗ u ≥ m for u ∈ Zd\{o}

}
=

⋂
u∈Zd\{o}
primitive

{A ∈ E
1
2
d(d+1) : A · u⊗ u ≥ m} ∩ Pd,

where u is primitive if the points o and u are the only points of Zd on the
line segment [o, u]. The following properties of Rd(m) can easily be verified,
see [37]:

Rd(m) is a generalized polyhedron, i.e. its intersection with any convex
polytope, is a convex polytope.
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The facets of Rd(m) are precisely the sets

Rd(m) ∩ {A ∈ E
1
2
d(d+1) : A · u⊗ u = m}, u ∈ Zd\{o} primitive.

bdRd(m) is the set of all (coefficient matrices of positive definite
quadratic forms) q ∈ Pd with (homogeneous) minimum min

{
q(u) :

u ∈ Zd\{o}
}
= m.

bdRd(m) is the disjoint union of the relative interiors of its faces.

The mappings U : A → UTAU for A ∈ E
1
2
d(d+1), where U is an

integer d × d matrix with determinant ±1, map Rd(m) onto itself.
Two faces F , G of Rd(m) are equivalent if there is such a mapping U
with G = UF .
There are pairwise non-equivalent vertices V1VV , . . . , VkVV of Rd(m), such
that any other vertex is equivalent to one of these.

The latter result can be used to show that

(1) there are pairwise non-equivalent faces F1FF , . . . ,FpFF of Rd(m), such that
any other face is equivalent to one of these.

Finally, the following hold:

(2) Let A ∈ relintF , where F is a face of Rd(m). Then the (interior)
normal cone of Rd(m) at A resp. F , equals pos {u1 ⊗ u1, . . . , uj ⊗ uj}
where u1⊗u1, . . . , uj⊗uj are (interior) normal vectors of those facets
of Rd(m) which contain A and thus F .

(3) q = A · x ⊗ x is contained precisely in those facets of Rd(m) with
normal vectors u⊗ u : u ∈MqMM .

Let δ > 0. The discriminant body Dd(δ), is given by

Dd(δ) = {A ∈ Pd : detA ≥ δ}.

It is well-known that

(4) Dd(δ) is an unbounded, smooth, and strictly convex set in Pd with
non-empty interior. For A in bdDd(δ) the vector A−1 is an interior
normal vector of bdDd(δ) at A.

After these preparations, the first step of the proof is to show the
following
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(5) Let the positive definite quadratic form q = A · x⊗ x have minimum
m and determinant δ. Assume that A ∈ relintF , where F is a face
of Pd, and that q is weakly eutactic. Then D(δ) touches F at A.

The normal cone of Rd(m) at q (or F) is pos {u1 ⊗ u1, . . . , uj ⊗ uj}, where
u1 ⊗ u1, . . . , uj ⊗ uj are normal vectors of those facets of Rd(m) which
contain q (or F), see (2). Hence,

F −A ⊆ lin {u1 ⊗ u1, . . . , uj ⊗ uj}⊥.

By (3), the vectors u1, . . . , uj are the minimum vectors of the quadratic
form q = A · x⊗ x. The weak eutaxy of q then shows that

A−1 ∈ lin {u1 ⊗ u1, . . . , uj ⊗ uj}, or A−1⊥ ⊇ lin {u1 ⊗ u1, . . . , uj ⊗ uj}⊥.

By (4), the matrix A−1 is an interior normal vector of bdDd(δ) at A. Hence,

A+A−1⊥

is the tangent hyperplane of Dd(δ) at A (or q). This together with the
earlier inclusions finally yields,

F ⊆ A+ lin {u1 ⊗ u1, . . . , uj ⊗ uj}⊥ ⊆ A+A−1⊥,

concluding the proof of (5).

Since, by (4), Dd(δ) is smooth and strictly convex and the surfaces
bdDd(δ), δ > 0, are strictly convex and their union is Pd,

there is for each face F of Rd(m) at most one value of δ > 0 such that
D(δ) touches F at a relative interior point.

Thus, by (5), there are at most n weakly eutactic forms contained in the
facets F1FF , . . . ,FpFF , say q1, . . . , qn. Since weak eutaxy is invariant with respect
to equivalence and multiplication with positive integers, we see, by (1), that

the weakly eutactic forms are precisely the forms in Pd which are
equivalent to positive multiples of the forms q1, . . . , qn.

Taking into account the above dictionary, the proof is complete.
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4. Maximum Properties of the Lattice Packing Density

In this section refined maximum properties of the density of lattice packings
of balls and convex bodies are studied. The results obtained are due to
the author [44] and refine and extend the classical criterion of Voronŏ .
The notions of semi-eutaxy, eutaxy and perfection are used to characterize
lattices which provide lattice packings of balls, resp. of smooth convex
bodies with semi-stationary, maximum and ultra-maximum density. It is
surprising to observe that maximum and ultra-maximum lattice packings
of balls coincide, and that the proof is simple. Relations to the Bravais
classification of lattices are specified.

Let C be a convex body, i.e. a compact convex subset of Ed with non-
empty interior. We assume that C is o-symmetric and smooth that is,
the boundary is of class C1. Note that for lattice packing problems the
assumption of central symmetry of C is not an essential restriction. Let
‖l‖C be the norm on Ed for which C is the unit ball. Let L be a lattice.
The homogeneous or first successive minimum of L with respect to C is
defined by

λ = λ(C,L) = min
{
‖l‖C : l ∈ L\{o}

}
.

Then the convex bodies λ
2C + l : l ∈ L do not overlap, and thus form a

lattice packing with packing lattice L. This lattice packing is said to be
provided by L. In the following the density

δ(C,L) =
V (λ2C)
d(L)

=
λdV (C)

2dd(L)

of this lattice packing will be investigated for given C, as L ranges over the
space of all lattices in Ed. Let MLM =

{
l ∈ L : ‖l‖C = λ(C,L)

}
be the set

of minimum points or the first layer of L with respect to C.

The connection between Voronŏı type and maximum properties of a˘
lattice L can roughly be described as follows: The different Voronŏ type˘
properties of L are equivalent to different positions of a certain convex poly-
tope in Ed2 relative to the origin. (The origin is an exterior point, a point on
the relative boundary, or in the relative interior.) These simple geometric
properties turn out to be equivalent to different maximum properties of L.
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Extremum and Voronŏı Type Properties

The lattice L is (upper) semi-stationary, stationary, maximum or ultra-
maximum with respect to δ(Bd, ·), if

δ
(
Bd, (I +A)L

)
δ(Bd, L)

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
≤ 1 + o

(
‖A‖

)
= 1 + o

(
‖A‖

)
≤ 1

≤ 1− const‖A‖

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪ as A→ O, A ∈ T ,

where T is the subspace

T = {A ∈ E
1
2
d(d+1) : trA = A · I = 0} = I⊥

of E
1
2
d(d+1) of codimension 1 with normal vector I. The restriction of A to T

is not essential. It helps to avoid clumsy formulations of our results. An
inequality holds as A→ O, A ∈ T , if it holds for all A ∈ T with sufficiently
small norm. The symbols o(·) and const > 0 depend only on Bd and L.

In order to characterize these maximum properties, we need the Voronŏ
type notions of semi-eutactic, eutactic, and perfect lattice (or first layer)
with respect to Bd, see Sect. 3.

Characterization of Semi-Stationary and Ultra-Extreme Lattices

Theorem 6. The following properties (i) and (ii) of δ(Bd, ·) and L are
equivalent:

(i) L is semi-stationary.

(ii) L is semi-eutactic.

Moreover,

(iii) there is no stationary lattice.

This result implies, in particular, that δ(Bd, ·), considered as a function
on the space of lattices in Ed, is ‘not differentiable’. More surprising is the
next result, the main result of this section. It shows that maximality and
ultra-maximality with respect to δ(Bd, ·) coincide.
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Theorem 7. The following properties of δ(Bd, ·) and L are equivalent:

(i) L is ultra-maximum.

(ii) L is maximum.

(iii) L is perfect and eutactic.

The equivalence of (ii) and (iii) is Voronŏı’s criterion.

Bravais Types of Lattices with Maximum Properties

The following result is a consequence of Theorems 4, 6 and 7:

Corollary 6. In E2 and E3 it is the following lattices of determinant 1
which are semi-stationary, resp. ultra-maximum with respect to δ(Bd, ·):

d = 2 : tp square d = 3 : cP cubic primitive
hp hexagonal cF cubic face centered

cI cubic body centered
hP special hexagonal primitive
tI special tetragonal body centered

d = 2 : hp hexagonal d = 3 : cF cubic face centered

For general d, there are, up to orthogonal transformations, only finitely
many lattices of determinant 1 which are semi-stationary, resp. ultra-
maximum.

Extremum and Voronŏı Type Properties

In the following, the results for balls will be extended to convex bodies. Let
C be an o-symmetric, smooth convex body. Replace E

1
2
d(d+1), T , Bd and

‖ · ‖ by Ed2 , S =
{
A ∈ Ed2 , trA = A · I = 0

}
, C and ‖ · ‖C . The density

δ(C,L) and the notions of semi-stationary, etc. lattice with respect to δ(C, ·)
are defined as earlier.

In order to specify the versions of eutaxy and perfection which are needed
to characterize the maximum properties of δ(C, ·), we proceed as follows:
For l ∈ Ed\{o} let u be the exterior unit normal vector of the smooth convex
body ‖l‖CC at its boundary point l, and put n = l/l ·u. Then the lattice L,
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or the set MLM of its minimum points with respect to C, is semi-eutactic,
eutactic, strongly eutactic, or perfect with respect to C, if

I =
∑
l∈MLM

λl u⊗ n with suitable λl

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
≥ 0

> 0

= const

⎫⎪⎫⎫⎬⎪⎪⎪⎬⎬⎭⎪⎪ , resp.

Ed2 = lin {u⊗ n : l ∈MLM }.

Characterization of Semi-Stationary and Ultra-Maximum Lat-
tices

Theorems 6 and 7 now assume the following form.

Theorem 8. The following properties (i) and (ii) of δ(C, ·) and L are
equivalent:

(i) L is semi-stationary.

(ii) L is semi-eutactic.

Moreover,

(iii) there is no stationary lattice.

Theorem 9. The following properties of δ(C, ·) and L are equivalent:

(i) L is ultra-maximum.

(ii) L is perfect and eutactic.

While there are many semi-stationary lattices for δ(C, ·), for example all
lattices which provide lattice packings of C of maximum density, this is not
clear for ultra-maximum lattices. See the later discussion.

The kissing number k(C,L) of the lattice L with respect to the convex
body C or the norm ‖ · ‖C is #MLM , the number of minimum points. Equiv-
alently, let λ = λ(C,L). Then k(C,L) is the number of bodies of the lattice
packing {λ

2C + l : l ∈ L}, which touch the body λ
2C. The next estimate is

an immediate consequence of Theorem 9.

Corollary 7. Let L be an ultra-maximum lattice for δ(C, ·). Then the
kissing number satisfies the inequality k(C,L) ≥ 2d2.
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Remark 2. If L is ultra-maximum then k(C,L) ≥ 2d2 by Corollary 7.
A theorem of Minkowski says, if C is strictly convex, then holds k(C,L) ≤
2d+1 − 2. Since 2d+1 − 2 < 2d2 for d = 2, 3, 4, a strictly convex smooth o-
symmetric body can have an ultra-maximum lattice only if d ≥ 5 – if at all.
This explains why it is difficult to specify examples.

The proofs of Theorems 8 and 9 are more complicated than those of
Theorems 6 and 7 yet, in essence, follow the same line.

Baire Categories

In the following Baire categories will be used several times. A topological
space is Baire if any of its meager subsets has dense complement, where a
set is meager or of first Baire category, if it is a countable union of nowhere
dense sets. A version of the Baire category theorem says that each locally
compact or metrically complete space is Baire. When speaking of most or
of typical elements of a Baire space, we mean all elements, with a meager
set of exceptions. The space of all o-symmetric convex bodies endowed with
its natural topology is locally compact according to a version of Blaschke’s
selection theorem and, thus, Baire. See the author [36, 37] for information
on Baire type results in convex geometry.

A result of Klee [50] and the author [32] says that most o-symmetric
convex bodies are smooth and strictly convex.

Open Problems

Problem 3. Is it true that in all sufficiently high dimensions, for most
o-symmetric convex bodies

(i) the maximum and the ultra-maximum lattices coincide,

(ii) the kissing number of each maximum or ultra-maximum lattice equals
2d2?

Problem 4. If there are convex bodies with maximum lattices which are
not ultra-maximum, characterize the maximum lattices.

What is the situation in the special case of lattices which provide lattice
packings of maximum density? A result of the author [33] says that for
most o-symmetric convex bodies the kissing number of any lattice packing
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of maximum density is at most 2d2. If, in addition, the lattice is ultra-
maximum, then, by Theorem 9, the kissing number is at least 2d2 and, thus,
equals 2d2. An estimate of Swinnerton-Dyer [78] implies that a lattice which
provides a packing of maximum density, has kissing number at least d(d+1).
For many years I thought that for most o-symmetric convex bodies the
kissing number of lattice packings of maximum density is d(d+1). Recently
I have changed the opinion:

Problem 5. Show that in all sufficiently high dimensions and for most o-
symmetric convex bodies C, the lattice which provides a lattice packing
of C of maximum density, has the following properties:

(i) L is unique up to dilatations.

(ii) L is eutactic and perfect and, thus, ultra-maximum.

(iii) L has kissing number 2d2.

(iv) the packing {λ
2C + l : l ∈ L}, λ = λ(C,L) is (perhaps?) connected.

Proof of Theorem 7

In order to show the reader the simple yet effective idea underlying the
proofs of Theorems 6–9, we present the proof of Theorem 7. We begin with
some remarks. Since δ(Bd, L) does not change if L is replaced by a multiple
of it, we may assume that λ(Bd, L) = 1 and thus, l = n = u, ‖l‖ = 1 for
l ∈MLM . Trivially,

λ(Bd, L) = min
{
‖l‖ : l ∈MLM

}
< min{‖l‖ : l ∈ L\

(
MLM ∪ {o}

)}.
Note that

‖l +Al‖2 = ‖l‖2
(
1 + 2A · n⊗ n+A2 · n⊗ n

)
= 1 + 2A · l ⊗ l +O

(
‖A‖2

)
as A→ O, A ∈ T , l ∈MLM ,

det (I +A) = 1− 1

2
‖A‖2 +O

(
‖A‖2

)
as A→ O, A ∈ T

and, since L is discrete,

λ
(
Bd, (I +A)l

)
= min

{
‖l +Al‖ : l ∈MLM

}
< min

{
‖l +Al‖ : l ∈ L\MLM ∪ {o}

}
if A ∈ T has sufficiently small norm.
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Thus we get,

δ
(
Bd, (I +A)L

)
=

λ
(
Bd, (I +A)L

)d
V (Bd)

2dd
(
(I +A)L

)
=

V (Bd)

2dd(L)

min
{
‖l +Al‖2 : l ∈MLM

} d
2

det (I +A)

=
V (Bd)

2dd(L)
min

{
1 + 2A · n⊗ n+A2 · n⊗ n : l ∈MLM

} d
2

×
(
1− 1

2
‖A‖2 +O

(
‖A‖3

))−1

=
λ(Bd, L)

d
V (Bd)

2dd(L)
(min{1 + dA · l ⊗ l : l ∈MLM }+O

(
‖A‖2

)
)

= δ(Bd, L)(1 + dmin{A · l ⊗ l : l ∈MLM }+O
(
‖A‖2

)
)

as A→ O, A ∈ T .

(i)⇔ (iii):

L is ultra-maximum

⇔ δ
(
Bd, (I +A)L

)
= δ(Bd, L)(1 + min {dA · l ⊗ l : l ∈MLM }+O

(
‖A‖2

)
)

≤ δ(Bd, L)
(
1− const‖A‖

)
as A→ O,A ∈ T

⇔ 1 + dmin {A · l ⊗ l} ≤ 1− const‖A‖ as A→ O, A ∈ T

⇔ min {A · l ⊗ l : l ∈MLM } ≤ −const‖A‖ for A ∈ T

⇔ min
{
A · (l ⊗ l)T : l ∈MLM

}
< 0 for all A ∈ T \{O}

⇔ O = IT ∈ relintT conv
{
(l ⊗ l)T : l ∈MLM

}
⇔ I ∈ pos {l ⊗ l : l ∈MLM } since I · l ⊗ l = l · l > 0,
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E
1
2
d(d+1) = lin {l ⊗ l : l ∈MLM }

⇔ L is eutactic and perfect.

(ii)⇔ (iii):

L is maximum

⇔ δ
(
Bd, (I +A)L

)
≤ δ(Bd, L) for A→ O, A ∈ T

⇔ min
{
1 + 2A · l ⊗ l +A2 · l ⊗ l : l ∈MLM

}
≤
(
1− 1

2
‖A‖2 +O

(
‖A‖3

)) 2
d

as A→ O, A ∈ T

⇔ min

{
A · l ⊗ l +

1

2
A2 · l ⊗ l : l ∈MLM

}
≤ 1− 1

d
‖A‖2 +O

(
‖A‖3

)
as A→ O, A ∈ T

⇒ min {A · l ⊗ l : l ∈MLM } ≤ −1

d
‖A‖2 as A→ O, A ∈ T

⇒ min {A · l ⊗ l : l ∈MLM } < 0 for A ∈ T \{O}

· · ·

⇒ L is eutactic and perfect

⇒ L is ultra-maximum.

5. Maximum Properties of the Product of the Lattice

Packing Density and Its Polar

This section deals with refined maximum properties of the expressions

δ(C, ·) δ(C∗, ·∗)

in a neighborhood of a lattice L, where ∗ indicates polarity. In particular, we
consider the case when C = Bd and thus C∗ = Bd, which has been studied
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before by Bergé and Martinet [12]. There are many results of a related type
in the geometry of numbers, see [46], Sect. 14, in convex geometry, see [37],
and in the asymptotic theory of normed spaces, see Gruber [38], and Sects. 8
and 9. Related results hold for

δ(C, ·)
δ(C,L)

+
δ(C∗, ·∗)
δ(C∗, L∗)

.

Since the results for the weighted sum are very similar to those for the
product of the densities, only results for the latter will be presented.

Let C be an o-symmetric, smooth and strictly convex body and L a
lattice in Ed. The polar body C∗ and the polar lattice L∗ are defined by

C∗ = {y ∈ Ed : x ·y ≤ 1 for x ∈ C}, L∗ = {m ∈ Ed : l ·m ∈ Z for l ∈ L}.

Then d(L) d(L∗) = 1 and (BL)∗ = B−TL∗ for non-singular B ∈ Ed2 .

Dual Maximum and Voronŏı Type Properties

The lattice L is dual semi-stationary, dual stationary, dual maximum, or
dual ultra-maximum with respect to the product δ(Bd, ·) δ(Bd, ·∗), if

δ
(
Bd, (I +A)L

)
δ(Bd,

(
(I +A)L

)∗)
δ(Bd, L) δ(Bd, L∗)

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
≤ 1 + o

(
‖A‖

)
= 1 + o

(
‖A‖

)
≤ 1

≤ 1− const‖A‖

⎫⎪⎫⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎬⎬⎪⎪⎪⎪⎪⎪⎭⎪⎪
as A→ O, A ∈ S.

The lattice L or its first layer MLM is dual semi-eutactic, dual eutactic, dual
strongly eutactic or dual perfect with respect to Bd, if∑

l∈MLM

λl l ⊗ l =
∑

m∈MLM ∗

μmm⊗m �=�� O with suitable λl,

μm

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
≥ 0

> 0

= const

⎫⎪⎫⎫⎬⎪⎪⎪⎬⎬⎭⎪⎪ , resp.

Ed2 = lin
(
{l ⊗ l : l ∈MLM } ∪ {m⊗m : m ∈MLM ∗}

)
,

where const for λl may be different from const for μm.
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Characterization of Dual Semi-stationary and Dual Ultra-Extreme
Lattices

In analogy to Theorems 6 and 7, we have the following results:

Theorem 10. The following properties (i) and (ii) of δ(Bd, ·) δ(Bd, ·∗) and
L are equivalent:

(i) L is dual semi-stationary.

(ii) L is dual semi-eutactic.

Theorem 11. The following properties of δ(Bd, ·) δ(Bd, ·∗) and L are equiv-
alent:

(i) L is dual ultra-maximum.

(ii) L is dual maximum.

(iii) L is dual perfect and dual eutactic.

The equivalence of (ii) and (ii i) is due to Bergé and Martinet [12].´

Extension to Smooth Convex Bodies

Theorems 10 and 11 continue to hold with C instead of Bd, omitting
statement (ii) in Theorem 11.

Proof of Theorem 11

To show the additional arguments needed for the proofs of these results, we
present the proof of Theorem 11.

First, some tools are put together. Since A = AT for A ∈ T , we have(
(I+A)L

)∗
= (I +A)−TL∗ =

(
I−A+A2−+ · · ·

)
L∗ for A ∈ T , ‖A‖ < 1.

Thus,

(l +Al)2 = ‖l‖2
(
1 + 2A · n⊗ n+ (An)2

)
,(

m−Am+A2m−+ · · ·
)2

= ‖m‖2(1− 2A · p⊗ p+ 3A2 · p⊗ p+O
(
‖A3‖

)
),
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where n = l/‖l‖, p = m/‖m‖. This, together with the definitions of λ and δ,
yields the following equalities,

δ
(
Bd, (I +A)L

)
= δ(Bd, L)min

{
(l +Al)2 : l ∈MLM

} d
2 det (I +A)−1

= δ(Bd, L)min{1 + 2dA · n⊗ n+O
(
‖A‖2

)
: l ∈MLM }(

1− 1

2
‖A‖2 +O

(
‖A‖3

))−1

= δ(Bd, L)(1 + dmin {A · n⊗ n : l ∈MLM }+O
(
‖A‖2

)
)

as A→ O, A ∈ T , where O
(
‖A‖2

)
≥ 0,

δ(Bd,
(
(I +A)L

)∗)
= δ(Bd, L∗)min{1− dA · p⊗ p+O

(
‖A‖2

)
: m ∈MLM ∗}(

det (I +A)−T )−1

= δ(Bd, L∗)(1 + dmin {−A · p⊗ p : m ∈MLM ∗}+O
(
‖A‖2

)
)

as A→ O, A ∈ T , where O
(
‖A‖2

)
≥ 0.

(i)⇔ (iii):

L is dual ultra-maximum

⇔ δ
(
Bd, (I +A)L

)
δ(Bd

(
(I +A)L

)∗)
≤ δ(Bd, L) δ(Bd, L∗)

(
1− const‖A‖

)
as A→ O, A ∈ T

⇔ (1 + dmin { }+O
(
‖A‖2

)
)(1− dmax { }+O

(
‖A‖2

)
)

≤ 1− const‖A‖

as A→ O, A ∈ T

⇔ min {A · n⊗ n : l ∈MLM } −max {A · p⊗ p : m ∈MLM ∗}

≤ −const‖A‖
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as A→ O, A ∈ T

⇔ min
{
A · (n⊗ n)T : l ∈MLM

}
< max

{
A · (p⊗ p)T : m ∈MLM ∗

}
for A ∈ T \{O}

⇔ relint conv
{
(n⊗ n)T , l ∈MLM

}
∩ relint conv

{
(p⊗ p)T : m ∈MLM ∗

}
�=�� ∅

⇔
∑
l∈MLM

λl n⊗ n =
∑

m∈MLM ∗

μm p⊗ p �=�� O with suitable λl, μm > O,

E
1
2
d(d+1) = lin

(
{n⊗ n : l ∈MLM } ∪ {p⊗ p : m ∈MLM ∗}

)
⇔ L is dual eutactic and dual perfect.

(ii)⇔ (iii): See [12].

6. Minimum Properties of Zeta Functions

Let L be a lattice in Ed with d(L) = 1. The Epstein zeta function of L then
is defined by

ζ(L, s) =
∑

l∈L\{o}

1

‖l‖s for s > d.

It plays an important role in crystal physics, hydrodynamics, numerical in-
tegration and other areas. It has been investigated ever since its discovery
by Epstein and its re-discovery by Sobolev in his work on numerical integra-
tion. For several applications and in the context of the geometry of numbers
a major problem on the zeta function is to study for a fixed s > d, for all
sufficiently large s, or for all s > d the lattices L with d(L) = 1 for which
ζ(·, s) is (locally) minimum.

A layer of L consists of all vectors of L\{o} with the same norm. Order
the layers by the norm of their vectors. The first layer then coincides with
the set of minimum points of L with respect to Bd. Delone and Ryshkov [21]
showed that a lattice L is minimum with respect to ζ(·, s) for all sufficiently
large s if and only if L is perfect and each layer is strongly eutactic or, in a
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different terminology, a spherical 2-design. If each layer of L is a spherical 4-
design, then Lminimizes ζ(·, s) for each s > d, as shown by Coulangeon [19].
A different sufficient condition is due to Sarnak and Strombergsson [68].¨
These authors show that many important lattices are minimum for each
s > d, one example is the Leech lattice.

We characterize the lattices which, for given s > d are stationary and
quadratic minimum with respect to ζ(·, s). This yields characterizations in
other cases. Perhaps more important for applications are simple sufficient
conditions. We state several such conditions, including one using automor-
phism groups. Finally, a relation to lattice packing of balls is mentioned.
Most of these results can be extended to general zeta functions ζC(·, s).

Minimum and Voronŏı Type Properties, Spherical Designs and˘
Automorphism Groups

Remark 3. Since ζ(·, s) and ζC(·, s) have the additional parameter s, it
is not surprising that there are more properties needed than mere eutaxy,
strong eutaxy, or perfection, to characterize the lattices L which are sta-
tionary, minimum, or quadratic minimum with respect to ζ(·, s) or ζC(·, s).
The following stronger forms of eutaxy and perfection, together with auto-
morphism groups, seem to be appropriate tools for such characterizations.

Let s > d. Then L is said to be stationary, minimum, or quadratic
minimum with respect to ζ(·, s), if

ζ

(
I +A

det (I +A)
1
d

L, s

)
ζ(L, s)

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
= 1 + o

(
‖A‖

)
≥ 1

≥ 1 + const‖A‖2

⎫⎪⎫⎫⎬⎪⎪⎪⎬⎬⎭⎪⎪ as A→ O, A ∈ T .

Let M be a finite, o-symmetric subset of Sd−1 and put ζ = ζ(L, s).
The set M is a spherical n-design if the following identity holds for any
polynomial p : Ed → R of degree at most n:∫

S

∫∫
d−1

p(u) dσ(u) =
1

#M

∑
l∈M

p(l).
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Here σ is the usual rotation invariant area measure on Sd−1, normalized so
that σ

(
Sd−1

)
= 1 and # stands for cardinal number. Venkov [79] showed

that

the set M is a spherical n-design if and only if∑
l∈M

(l · x)n = const‖x‖n for x ∈ Ed.

Let M be a layer of L. Then M is strongly eutactic or, after a suitable nor-
malization, a spherical 2-design, if it satisfies one of the following equivalent
conditions:∑

l∈M

l ⊗ l

‖l‖2
= λ I, or

∑
l∈M

(l · x)2

‖l‖2
= λ ‖x‖2 for x ∈ Ed, where λ =

#M

d
, or

∑
l∈M

A · l ⊗ l = 0 for A ∈ T .

The lattice L is strongly eutactic, if its first layer is. It is fully eutactic with
respect to ζ(·, s), if one of the following equivalent conditions holds:

∑
l∈L\{o}

l ⊗ l

‖l‖s+2 =
ζ

d
I, or

∑
l∈L\{o}

(l · x)2

‖l‖s+2 =
ζ

d
‖x‖2 for x ∈ Ed, or

∑
l∈L\{o}

A · l ⊗ l

‖l‖s+2 = 0 for A ∈ T .

Refined versions of these notions are the following: a layer M is ultra-
eutactic or a spherical 4-design, if one of the following conditions holds:∑

l∈M

(l · x)4

‖l‖4
= μ ‖x‖4 for x ∈ Ed, or, equivalently,

∑
l∈M

(A · l ⊗ l)2

‖l‖4
=

2μ

3
‖A‖2 + μ

3
(trA)2 for A ∈ E

1
2
d(d+1),

where μ =
3#M

d(d+ 2)
.



136 P. M. Gruber

The lattice L is completely eutactic with respect to ζ(·, s), if the one of the
following properties holds:∑

l∈L\{o}

(l · x)4

‖l‖s+4 = ν ‖x‖4 for x ∈ Ed, or, equivalently,

∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 =
2ν

3
‖A‖2 + ν

3
(trA)2 for A ∈ E

1
2
d(d+1),

where ν =
3ζ

d(d+ 2)
.

Finally, the layer M is perfect, if

E
1
2
d(d+1) = lin {l ⊗ l : l ∈M}.

If the first layer of L is perfect, then L is perfect. The automorphism or sym-
metry group A = A(L) of L is the group of all orthogonal transformations
of Ed which map L onto itself.

Characterization of Stationary and Quadratic Minimum Lattices

Note that in contrast to the situation for densities, for zeta functions a
semi-stationary lattice is already stationary.

Theorem 12. Let s > d. Then the following properties of ζ(·, s) and L are
equivalent:

(i) L is stationary for s.

(ii) L is fully eutactic for s.

Corollary 8. The following properties of ζ(·, ·) and L are equivalent:

(i) L is stationary for each s > d.

(ii) Each layer of L is strongly eutactic.

Theorem 13. Let s > d. Then the following properties of ζ(·, s) and L are
equivalent:

(i) L is quadratic minimum for s.

(ii) L is fully eutactic for s and satisfies the inequality∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 >
2ζ(L, s)

d(s+ 2)
‖A‖2 for A ∈ T \{O}.
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Corollary 9. The following properties of ζ(·, ·) and L are equivalent:

(i) L is quadratic minimum for each s > d.

(ii) Each layer of L is strongly eutactic and∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 >
2ζ(L, s)

d(s+ 2)
‖A‖2 for each s > d and A ∈ T \{O}.

This yields, in particular, Coulangeon’s criterion.

While Theorem 13 yields a characterization of the lattices, which are
quadratic minimum for arbitrarily large s, in several cases the following
sufficient conditions are more convenient to apply.

Corollary 10. Each of the following two conditions is sufficient for L to be
quadratic minimum with respect to ζ(·, s) for all sufficiently large s:

(i) L is perfect and the automorphism group A(L) is transitive on the
first layer of L.

(ii) L is perfect and each layer is strongly eutactic.

Similarly, each of the following two conditions is sufficient for L to be
quadratic minimum for each s > d:

(iii) Each layer of L is ultra-eutactic.

(iv) L is completely eutactic for each s > d.

Bravais Types of Lattices with Minimum Properties

The next result is a consequence of Theorem 4 and Corollaries 8 and 10:

Corollary 11. In E2 and E3, it is precisely the following lattices of deter-
minant 1 which are stationary, resp. quadratic minimum with respect to
ζ(·, s) for all s > d.

d = 2 : tp square d = 3 : cP cubic primitive
hp hexagonal cF cubic face centered

cI cubic body centered,
resp.
d = 2 : hp hexagonal d = 3 : cF cubic face centered.

For general d, there are, up to orthogonal transformations, only finitely
many lattices of determinant 1 which are stationary, resp. quadratic mini-
mum with respect to ζ(·, s) for all s > d.
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Zeta Functions and Ball Packing

A lattice which is quadratic minimum with respect to ζ(·, s) for all suffi-
ciently large s is perfect and each layer is strongly eutactic as can be shown
by means of Theorem 13. Hence, by Theorem 7, the following remark holds:

Corollary 12. Each lattice which is quadratic minimum with respect to
ζ(·, s) for all sufficiently large s, is ultra-maximum with respect to δ(Bd, ·).

General Lattice Zeta Functions

Our next aim is to extend the above results to a more general type of
zeta functions on lattices. Let C be a smooth, o-symmetric convex body,
‖ · ‖C the corresponding norm on Ed and L a lattice with d(L) = 1. The
function ζC , defined by

ζC(L, s) =
∑

l∈L\{o}

1

‖l‖sC
for s > d,

is called a lattice zeta function on Ed.

Minimum and Voronŏı Type Properties˘

Let s > d. The concepts of stationary, minimum or quadratic minimum
lattice with respect to ζC(·, s) are defined as earlier for Bd with T replaced
by the subspace

S =
{
A ∈ Ed2 : trA = A · I = 0

}
.

Similarly, the notions of layer and eutactic, strongly eutactic, fully eutactic
and perfect lattice with respect to C or ζC(·, s) are defined as before, but
with C, ‖ · ‖C , MLM , u⊗ n, ζC , S, Ed2 instead of Bd, ‖ · ‖, MLM , n⊗ n, ζ, T
and E

1
2
d(d+1), respectively.
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Characterization of Stationary and Quadratic Minimum Lattices

The extension of Theorem 12 is as follows:

Theorem 14. Let s > d. Then the following properties of ζC(·, s) and L
are equivalent:

(i) L is stationary for s,

(ii) L is fully eutactic for s.

Also Theorem 13 can be extended, but the corresponding necessary and
sufficient condition for L to be quadratic minimum with respect to ζC(·, s)
for given s > d is difficult to check. Thus we prefer to state the following
result.

Theorem 15. Let C be of class C2. Then the following properties of ζC(·, ·)
and L are equivalent:

(i) L is quadratic minimum for all sufficiently large s.

(ii) L is perfect and each layer is strongly eutactic.

Corollary 10, with suitable modifications, holds also for C instead of Bd.

Open Problems

The earlier characterizations and sufficient conditions guarantee in a series
of cases that L is stationary, minimum, or quadratic minimum with respect
to ζ(·, s), or ζC(·, s) for a given s > d, for all sufficiently large s, or for all
s > d. The problem arises, to make this family of results complete. We
state one particular problem.

Problem 6. If there are lattices, which are minimum (but not quadratic
minimum) with respect to ζ(·, s) or ζCζζ (·, s) for a given s > d, for all suffi-
ciently large s, and for all s > d, characterize the minimum lattices.

The next problem is related to Problem 5.

Problem 7. Show that in all sufficiently high dimensions, for most o-
symmetric convex bodies C there are lattices which are quadratic mini-
mum with respect to ζ(·, s) and ζC(·, s) respectively, for a given s, for all
sufficiently large s, or for all s > d.
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A positive answer to this problem would settle also the question of the ex-
istence of convex bodies with eutactic and perfect lattices, see Theorem 15.

Problem 8. Is it true, that in all sufficiently high dimensions and for most
o-symmetric convex bodies C, the lattice L with d(L) = 1, for which ζC(·, s)
attains its absolute minimum for a given s, for all sufficiently large s, or for
all s > d, has the following properties:

(i) L is unique,

(ii) L is quadratic minimum?

Proof of Theorem 13

To show the idea of the proofs, we present the following proof of Theorem 13.
The equality

‖l +Al‖2 = ‖l‖2(1 + 2A · n⊗ n+A2 · n⊗ n)

for A ∈ E
1
2
d(d+1), l ∈ Ed\{o}, n =

l

‖l‖

implies the formula

1

‖l +Al‖s =
1

‖l‖s
(
1 + 2A · n⊗ n+A2 · n⊗ n

)− s
2

=
1

‖l‖s
(
1− sA · n⊗ n− s

2
A2 · n⊗ n

+
s(s+ 2)

2
(A · n⊗ n)2 +O

(
‖A‖3

))
as A→ O, A ∈ T ,

which, in turn, yields the following identity, where the summation is over
l ∈ L\{o} and ζ stands for ζ(L, s):

ζ
(
(I +A)L, s

)
= ζ − sA ·

∑ l ⊗ l

‖l‖s+2 −
s

2
A2 ·

∑ l ⊗ l

‖l‖s+2 +
s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4

+O
(
‖A‖3

)
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= ζ − sA · ζ
d
I − s

2
A2 · ζ

d
I +

s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4 +O
(
‖A‖3

)
= ζ − sζ

2d
‖A‖2 + s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4 +O
(
‖A‖3

)
as A→ O, A ∈ T , if L is fully eutactic for s.

Note that

ζ

(
I +A

det (I +A)
1
d

L, s

)
= ζ
(
(I +A)L, s

)
det (I +A)

s
d .

(i)⇔ (ii): Since s is fixed, it is incorporated into const.

L is quadratic minimum for s

⇔ L is stationary for s and

ζ

(
I +A

det (I +A)
1
d

L, s

)
= ζ
(
(I +A)L, s

)
det (I +A)

s
d

≥ ζ
(
1 + const‖A‖2

)
⇔ L is fully eutactic with respect to ζ(·, s) (by Theorem 12) and

ζ − sζ

2d
‖A‖2 + s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4

≥ ζ(1 + const‖A‖2)
(
1− 1

2
‖A‖2 +O

(
‖A‖3

))− s
d

+O
(
‖A‖3

)
⇔ L is fully eutactic for s and

ζ − sζ

2d
‖A‖2 + s(s+ 2)

2

∑ (A · l ⊗ l)2

‖l‖s+4

≥ ζ +
sζ

2d
‖A‖2 + ζconst‖A‖2 + ζO

(
‖A‖3

)
⇔ L is fully eutactic for s and∑ (A · l ⊗ l)2

‖l‖s+4 >
2ζ

d(s+ 2)
‖A‖2 as A→ O, A ∈ T \{O}.
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In the last equivalence the implication ⇒ is clear. To see the reverse
implication ⇐, note that the expression

∑ (A · l ⊗ l)2

‖l‖s+4 − 2ζ

d(s+ 2)
‖A‖2

may be considered to be a quadratic form in the variable A ∈ T . It is,
obviously, positive definite and thus bounded below by const‖A‖2 for a
suitable constant.

7. Minimum Properties of the Product of Zeta Functions

and Their Polars

Let L be a lattice with d(L) = 1. This section deals with minimum
properties of the quantity

ζ(·, s) ζ(·∗, s)

on the space of lattices of determinant 1. We characterize dual stationary
and dual quadratic minimum lattices, both, for Bd and C. Similar results
hold for

ζC(·, s) + ζC∗(·∗, s).

Minimum and Voronŏı Type Properties˘

Let s > d. The lattice L is dual stationary, dual minimum, or dual quadratic
minimum with respect to ζ(·, s) ζ(·∗, s), if

ζ

(
I +A

det (I +A)
1
d

L, s

)
ζ

((
I +A

det (I +A)
1
d

L

)∗

, s

)
ζ(L, s) ζ(L∗, s)

⎧⎨⎧⎧⎩⎨⎨
= 1 + o

(
‖A‖

)
≥ 1

≥ 1 + const s2‖A‖2

⎫⎬⎫⎫⎭⎬⎬

as A→ O, A ∈ T .
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Let Li, L∗
i be the layers of L, resp. L∗, i = 1, 2, . . . . We use the

abbreviations ζ = ζ(L, s) and ζ∗ = ζ(L∗, s). Call Li dual strongly eutactic
with respect to C, C∗, if

1

#Li

∑
l∈Li

l ⊗ l

‖l‖2
=

1

#L∗
i

∑
m∈L∗

i

m⊗m

‖m‖2
.

The lattice L is dual fully eutactic with respect to ζζ∗ for s, if

1

ζ

∑
l∈L\{o}

l ⊗ l

‖l‖s+2 =
1

ζ∗
∑

m∈L∗\{o}

m⊗m

‖m‖s+2 , or, equivalently,

1

ζ

∑
l∈L\{o}

A · l ⊗ l

‖l‖s+2 =
1

ζ∗
∑

m∈L∗\{o}

A ·m⊗m

‖m‖s+2 for A ∈ T .

The layer Li, is dual ultra-eutactic with respect to C, C∗, if

1

#Li

∑
l∈Li

(A · l ⊗ l)2

‖l‖4
=

1

#L∗
i

∑
m∈L∗

i

(A ·m⊗m)2

‖m‖4
for A ∈ T .

Characterization of Dual Stationary and Dual Quadratic Mini-
mum Lattices

From a series of results we select from each of our two extremality types a
characterization result and a sufficient condition.

Theorem 16. Let s > d. Then the following properties of ζ(·, s) ζ(·∗, s)
and L are equivalent:

(i) L is dual stationary.

(ii) L is dual fully eutactic.

Corollary 13. Each of the following conditions is sufficient for L to be dual
stationary with respect to ζ(·, s) ζ(·∗, s) for each s > d.

(i) The first layer of L is perfect and A operates transitively on it.

(ii) L is dual fully eutactic for any s > d.

For quadratic minimality the result is rather lengthy.
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Theorem 17. Let s > d. Then the following properties of ζ(·, s) ζ(·∗, s)
and L are equivalent:

(i) L is dual quadratic minimum for s.

(ii) L is dual fully eutactic for s and satisfies the inequality,

(s+ 2)

(
1

ζ

∑
l∈L\{o}

(A · l ⊗ l)2

‖l‖s+4 +
1

ζ∗
∑

m∈L∗\{o}

(A ·m⊗ n)2

‖m‖s+4

)

>
4

ζ
A2

∑
l∈L\{o}

l ⊗ l

‖l‖s+2 +
2s

ζ

(
A ·

∑
l∈L\{o}

l ⊗ l

‖l‖s+2

)2

as A→ O, A ∈ T \{O}.

Corollary 14. The following condition is sufficient that L be dual quadratic
minimum with respect to ζ(·, s) ζ(·∗, s) for each s > d: Each layer of L is
ultra-eutactic and dual ultra-eutactic.

Zeta Functions and Ball Packing

Also in the duality case, there is a relation between products of zeta func-
tions and densities of ball packings, see [45].

Extension to General Zeta Functions

Finally, we mention that a good many of the duality results for the Epstein
zeta function can be extended to the more general lattice zeta functions
ζC defined by means of a smooth and strictly convex o-symmetric convex
body C.

8. John Type Results and Minimum Ellipsoidal Shells

This and the next section contain results of John type and minimum position
results from the asymptotic theory of normed spaces. If not stated other-
wise, the results are from the article [45] of the author. Let C be a convex
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body. Then there is an inscribed ellipsoid of maximum volume and a cir-
cumscribed ellipsoid of minimum volume. The uniqueness of both ellipsoids
was proved by Danzer, Laugwitz and Lenz [20]. John [49] specified condi-
tions which an inscribed ellipsoid of maximum volume must satisfy. That
these conditions are sufficient was shown by Pe�lczynski [58] and Ball [5].´

We state and prove a precise version of John’s theorem, specify for typi-
cal convex bodies the number of contact points between (the boundaries of)
the body and the unique inscribed ellipsoid of maximum volume. Analo-
gous results are considered for minimal ellipsoidal shells. Minimal ellipsoidal
shells are unique for typical, but not for all convex bodies.

John’s Ellipsoid Theorem

In the case when C is o-symmetric, the result is as follows:

Theorem 18. Let Bd ⊆ C. Then the following properties are equivalent:

(i) Bd is the unique ellipsoid of maximum volume contained in C.

(ii) There is a finite set M = {±u1, . . . ,±uk} of common boundary points
of Bd and C – such points are called contact points of Bd, C – such
that

I =
∑
u∈M

λu u⊗ u with suitable λu > 0 and k ≤ d(d+ 1)

2
.

This result, or versions of it, was proved and refined many times. We
mention Bastero and Romance [9], Giannopoulos, Peressinaki and Tsolomi-
tis [29], Gordon, Litvak, Meyer and Pajor [31] and the author and Schus-
ter [47]. The later proof is taken from [47] and fits into the present context.

John’s theorem and its dual counterpart, the characterization of the
unique circumscribed ellipsoid of minimum volume, has generated a volu-
minous literature both in convex geometry and the asymptotic theory of
normed spaces. It includes various versions, extensions and new proofs of
these characterizations, and applications to normed spaces, in particular,
the following one, where the Banach-Mazur distance between two norms
‖ · ‖C , ‖ · ‖D on Ed with unit balls C, D, is defined by

δBM
(
‖ · ‖C , ‖ · ‖D

)
= δBM (C,D)

= inf
{
λ ≥ 1 : C ⊆ AD ⊆ λC, A ∈ Ed2

}
.
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Corollary 15. Let ‖ · ‖C be an arbitrary norm and ‖ · ‖ the usual Euclidean
norm on Ed. Then

δBM
(
‖ · ‖, ‖ · ‖C

)
≤
√
d.

This result and its proof based on John’s theorem are well known. For
a reason which will be explained later, it is a bit surprising that John’s
theorem yields this estimate, see Corollary 16.

The Contact Number of Typical Convex Bodies

Given a convex body, the question arises, how many contact points are
there between the convex body and its volume maximizing inscribed, resp.
its volume minimizing circumscribed ellipsoid. A result of the author [34]
gives the following answer:

Theorem 19. For most o-symmetric convex bodies C the unique o-sym-
metric inscribed ellipsoid of maximum volume and the unique o-symmetric
circumscribed ellipsoid of minimum volume, both have precisely 1

2d(d + 1)
pairs ±u of contact points with C.

For an alternative proof of this result see Rudelson [63].

Minimum Ellipsoidal Shells

A pair of solid o-symmetric ellipsoids 〈E, �E〉 is called a minimal ellipsoidal
shell of C, if E ⊆ C ⊆ �E, where � ≥ 1 is minimal. It is easy to see that
� = δBM

(
‖ · ‖, ‖ · ‖C

)
. Maurey [55] (unpublished) showed that a minimal

ellipsoidal shell need not be unique, see Lindenstrauss and Milman [53] and
Praetorius [60].

In analogy to John’s theorem and its dual, we have the following results
due to Gruber [38]:

Theorem 20. Let Bd ⊆ C ⊆ �Bd. Then the following properties are
equivalent:

(i)
〈
Bd, �Bd

〉
is a (not necessarily unique) minimal ellipsoidal shell of C.

(ii) There are contact points ±u1, . . . ,±uk ∈ bdBd ∩ bdC and ±v1, . . . ,
±vl ∈ bdC ∩ bd �Bd and reals λ1, . . . , λk, μ1, . . . , μl > 0, such that

(a) 2 ≤ k, l and k + l ≤ 1
2d(d+ 1) + 1,
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(b)

k∑
i=1

λi ui ⊗ ui =

l∑
j=1

μj vj ⊗ vj �=�� O,

(c) lin {u1, . . . , uk} = lin {v1, . . . , vl}.

While there are examples of convex bodies with more than one minimal
ellipsoidal shell, this is a rare event, as the next result shows.

Theorem 21. Most o-symmetric convex bodies C have a unique minimal
ellipsoidal shell 〈E, �E〉. The contact sets bdE ∩ bdC and bdC ∩ bd �E,
each consist of at least 2 and at most 1

2d(d+1)−1, together of 1
2d(d+1)+1

pairs of points ±u.

Theorems 19 and 21 yield the following proposition:

Corollary 16. For most o-symmetric convex bodies C neither the inscribed
ellipsoid of maximum, nor the circumscribed ellipsoid of minimum volume,
give rise to a minimum ellipsoidal shell.

Remark 4. By Corollary 16, it is a happy, rather unexpected event, that
John’s theorem leads to a proof of Corollary 15. Being a characterization
of minimal ellipsoidal shells, Theorem 20 should readily imply Corollary 15.
This is, in fact, the case as the later proof of Corollary 15 shows.

Proofs of Theorem 18 and Corollary 15

Theorem 18: Let hC(v) = max {v · x : x ∈ C}, v ∈ Ed, be the support
function of C. Then

C =
{
x ∈ Ed : v · x ≤ hC(v) for v ∈ Sd−1

}
.

The set

E = {A ∈ E
1
2
d(d+1) : ABd ⊆ C} ∩ Pd

=
⋂

u∈bdBd

v∈Sd−1

{A ∈ E
1
2
d(d+1) : Au · v = A · v ⊗ u ≤ hC(v)} ∩ Pd

represents the set all o-symmetric ellipsoids contained in C. Since E is the
intersection of a family of closed halfspaces and the open convex cone Pd,
the set E is a convex subset of Pd, which is closed in Pd. To the ellipsoid Bd

corresponds the matrix I ∈ E . Let Dd = Dd(1) = {A ∈ Pd : detA ≥ 1}.
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(i)⇔ (ii):

Bd is the unique o-symmetric ellipsoid of maximum volume in C

⇔ E ∩Dd = {I}, i.e. the convex body E touches the smooth and strictly
convex body Dd only at I

⇔ the interior normal vector I of Dd at I is contained in the (exterior)
normal cone N of E at I. Note that N is generated by the exterior
normal vectors of those of the defining halfspaces

{
A : Au · v =

A · v ⊗ u ≤ hC(v)
}

of E which contain I as a boundary point. Thus
1 ≥ u · v = I · v ⊗ u = hC(v) ≥ 1, and therefore u · v = hC(v) = 1, or
u = v, hC(u) = 1, or u ⊗ u = v ⊗ u, u ∈ bdBd ∩ bdC = Bd ∩ bdC.
Thus N = pos {u⊗ u : u ∈ Bd ∩ bdC}

⇔ by Carathéodory’s theorem for cones, we may choose a set of contact´
points M = {±u1, . . . ,±uk} ⊆ Bd ∩ bdC such that

I =
∑
u∈M

λu u⊗ u with suitable λu > 0 and k ≤ 1

2
d(d+ 1).

Corollary 15: We may assume that Bd ⊆ C ⊆ �Bd, where

� = δBM
(
‖ · ‖, ‖ · ‖C

)
.

It is sufficient to show that � ≤
√
d. Equating the traces of the two sides of

the equality in Theorem 20(iib) implies that∑
i

λi =
∑
i

λi ui · ui =
∑
j

μj vj · vj = �2
∑
j

μj .

Noting that 1√
d
I has norm 1 and that (ui · vj)2 ≤ 1, this yields that∥∥∥∥∥∥∥∥∥∥∑

i

λi ui ⊗ ui

∥∥∥∥∥∥∥∥∥∥ ≥∑
i

λi ui ⊗ ui ·
1√
d
I =

1√
d

∑
λi ui · ui =

1√
d

∑
λi,

(∑
i

λi ui ⊗ ui

)2

=
∑
i

λi ui ⊗ ui ·
∑
j

μj vj ⊗ vj =
∑
i,j

λiμj (ui · vj)2

≤
∑
i

λi

∑
j

μj =
1

�2

(∑
i

λi

)2

,

or
1

�2
≥ 1

d
, or � ≤

√
d.
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9. Minimum Position Problems

Related to John’s theorem is the following question: Consider a real func-
tion F on the space of all convex bodies or on a suitable subspace of it,
for example on the space of all o-symmetric convex bodies, and a group G
of affinities. Assume that this subspace is invariant under the affinities
of G. Characterize for a given convex body C in this subspace those among
its images under affinities from G, for which F is minimum, the minimum
F -positions of C with respect to the group G. For numerous pertinent
results and applications see Milman and Pajor [56], Giannopoulos and Mil-
man [26, 27], Gordon, Litvak, Meyer and Pajor [31] and the author [38] and
the references there.

In the following we state minimum position results of the author [38]
which were proved using ideas in the sense of Voronŏ , while the classical˘
proofs rely on a variational argument, see Giannopoulos and Milman [26].
We characterize circumscribed ellipsoids of minimum surface area and min-
imum positions for polar moments, mean width and surface area. Let C be
an o-symmetric convex body.

Circumscribed Ellipsoids of Minimum Surface Area

In the light of John’s theorem and its dual, the following question arises nat-
urally: Given a convex body C, characterize the inscribed and circumscribed
ellipsoids of maximum, resp. minimum surface area. Are these unique?
Moreover, what are the corresponding minimum positions with respect to
the group of volume preserving linear transformations? Can the surface
area be replaced by general quermassintegrals?

Theorem 22. There is a unique ellipsoid of minimum surface area contain-
ing C.

The original proof of the author [38] was rather complicated and made
use of projection bodies and Alexandrov’s projection theorem. Much easier
is the recent proof by Schrocker [76].¨

Assign to a convex body C the minimum surface area SmSS (C) of a
circumscribed ellipsoid.
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Theorem 23. Up to rotations, C has a unique minimum SmSS -position with
respect to the group of volume-preserving linear transformations and the
following properties are equivalent:

(i) C is in minimum SmSS -position and Bd is the circumscribed ellipsoid of
minimum surface area.

(ii) There are contact points ±u1, . . . ,±uk ∈ bdBd ∩ bdC and λ1, . . . ,
λk > 0 such that

(a) d ≤ k ≤ 1
2d(d+ 1),

(b) I =
∑

λi ui ⊗ ui,
(c) Ed = lin {u1, . . . , uk}.

Comparing the dual counterpart of Theorem 18 together with some
addenda (see the author and Schuster [47]) and Theorem 23 yields the next
result.

Corollary 17. Let C ⊆ Bd. Then the following properties are equivalent:

(i) Bd is the unique circumscribed ellipsoid of C of minimum volume.

(ii) C is in minimum SmSS -position with respect to volume-preserving linear
transformations and Bd is the unique circumscribed ellipsoid of C
with minimum surface area.

These results can be extended to general quermassintegrals. Then we
see that the minimum positions for all quermassintegrals – except for the
volume – coincide.

Polar f-Moments

Let f : [0,+∞)→ [0,∞) be a non-decreasing function. Then

M(C, f) =

∫
C

∫∫
f
(
‖x‖
)
dx

is the polar f -moment of C. If f(t) = t2, then M(C, t2) is the polar moment
of inertia.

Theorem 24. Let f be convex and assume that f(t) = 0 only for t = 0.
Then C has, up to rotations, a unique minimum polar f -moment position
with respect to volume-preserving linear transformations and the following
properties are equivalent:
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(i) C is in minimum polar f -moment position.

(ii) I = λ

∫
C

∫∫
f ′(‖x‖)
‖x‖ x⊗ x dx for suitable λ > 0.

The integral here is to be understood entry-wise. We now minimize
the product M(AC, t2)M

(
(AC)∗, t2

)
, where A ranges over all non-singular

linear transformations.

Theorem 25. Up to similarities which keep o fixed, C has a unique mini-
mum M

(
· C, t2

)
M
(
(·C)∗, t2

)
-position with respect to non-singular linear

transformations and the following properties are equivalent:

(i) C is in minimum M(·C, t2)M
(
(·C)∗, t2

)
-position.

(ii)

∫
C

∫∫
x⊗ x dx = λ

∫
C

∫∫
∗
x⊗ x dx ∈ Pd for a suitable λ > 0.

Mean Width and Surface Area

The mean width of a convex body C is defined by

W (C) =
2

S(Bd−1)

∫
S

∫∫
d−1

hC(u) dσ(u),

where S(·) and σ(u) denote the usual surface area measure on Sd−1.

Theorem 26. Up to rigid motions, C has a unique minimum mean width
position with respect to volume preserving affinities and the following prop-
erties are equivalent:

(i) C is in minimum mean width position.

(ii) I = λ

∫
S

∫∫
d−1

{
gradhC(u) ⊗ u + u ⊗ gradhC(u)

}
dσ(u) for a suitable

λ > 0.

A first characterization of the minimum surface area position of C with
respect to volume-preserving affinities is due to Giannopoulos and Papadim-
itrakis [28]. A different result can be described as follows: The projection
body ΠC of C is the o-symmetric convex body with support function

hΠC(u) = v(C | u⊥),
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where C | u⊥ is the orthogonal projection of C onto the subspace u⊥

orthogonal to u of codimension 1 and v(·) the volume in d− 1 dimensions.
Since by Cauchy’s surface area formula the mean width of the projection
body is, up to a multiplicative constant, the surface area of the original
body, Theorem 26 implies the following result:

Corollary 18. Up to rigid motions, C has a unique minimum surface
area position with respect to volume-preserving affinities and the following
properties are equivalent:

(i) C is in minimum surface area position.

(ii) I = λ

∫
S

∫∫
d−1

{
gradhΠC(u)⊗ u+ u⊗ gradhΠC(u)

}
dσ(u) for a suitable

λ > 0.

There are similar results for W (C)W (C∗) and S(C)S(C∗).

Remark 5. The above characterizations of convex bodies in minimum
position and similar results in the literature should permit one to prove
all possible properties of the minimizing bodies. This seems to have been
one of the objectives at the beginning of the development. So far, these
expectations have not materialized, a minor exception being the proof of
Corollary 15.

Acknowledgements. For his great help in the preparation of this article
I am obliged to Tony Thompson.
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Uniform Polyhedrals

BRANKO GRÜNBAUM

This survey is meant to honor Laszlo Fejes Tóth, who for many years was

one of few proponents of visual geometry

Half a century ago H. S. M. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller
published a very influential paper on “Uniform Polyhedra” [7]. These are finite
polyhedra with regular polygons as faces, and with vertices in a single orbit
under symmetries. Uniform polyhedrals are defined by the same conditions, but
with finite replaced by locally finite, and the additional explicit requirement that
there are no coinciding elements (vertices, edges or faces); this was self-understood
in [7]. Coplanar faces, collinear edges, and partial overlaps are allowed for uniform
polyhedrals, as they are for uniform polyhedra. It is somewhat surprising that
no systematic study of infinite uniform polyhedrals has been undertaken so far.
There are three distinct classes of such polyhedrals – rods, slabs, and sponges.
The beginnings of their investigation form the core of this article, and many open
problems become evident. Illustrations serve to shorten the explanations, but
also to highlight the difficulty of presenting polyhedrals graphically. Applications
of such polyhedrals and their relatives in fields such as architecture, biology,
engineering, and others are discussed as well, as are the shortcomings of the
mathematical reviewing journals in reporting these and related applications of
geometry.

1. Introduction

The study of polyhedra more general than the convex ones received a very
significant boost in 1954 by the appearance of the long paper “Uniform
polyhedra” by H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P.
Miller [7]. A century of contributions to the topic was surveyed, as well
as extended and systematized in a far-reaching manner. The authors’
hope that their enumeration of the polyhedra in question was complete
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was vindicated independently by S. P. Sopov [34], J. Skilling [33], and
I. Szepesváry [35]. Apart from the actual enumeration of uniform polyhedra,
the most significant contribution of [7] was the explicit definition of the
concept of “uniform polyhedron”. It is well known that the general idea of
“polyhedron” has been left rather murky ever since ancient times, and is
still being discussed in many variants. However, the definition of the topic
in [7] is simple, crisp and convenient. To quote:

A polyhedron is a finite set of polygons such that every side
of each belongs to just one other, with the restriction that no
subset has the same property. [It is] uniform if its faces are
regular while its vertices are equivalent under symmetries of the
polyhedron.

Uniform polyhedrals, the objects discussed in the following pages, could
be defined in exactly the same way except that instead of requiring that the
set of polygons is finite, we require only that it is locally finite, that faces
incident with a vertex form a single cycle, and no two vertices, or two edges,
or two faces can coincide.

An independent and more generally applicable definition is:

A polyhedral is a locally finite and edge-sharing family of polygons,
locally and globally strongly connected, with the property that no two
vertices, or two edges, or two faces coincide. A uniform polyhedral has
regular polygons as faces, and its vertices are equivalent under isometric
symmetries of the polyhedral.

Since no other kinds are considered here, we shall simplify the language
by frequently omitting “uniform” in the following discussion of uniform poly-
hedrals. It is understood that we are dealing exclusively with polyhedrals
in the Euclidean 3-dimensional space.

We still need to clarify what are the regular polygons we admit for
our polyhedrals. In contrast to various generalizations that have been
considered (for example in [13], [15], [16], and other papers) and that could
be used in the study of uniform polyhedrals, here we restrict attention to
the classically accepted polygons denoted by {n/d}, for relatively prime n
and d, with 1 ≤ d < n/2, where n is the number of edges (and vertices) and
d the “density” (see, for example, [7]).

Since the finite uniform polyhedrals have been adequately described in
the literature – there are three infinite families and 75 individual ones – most
of our attention will go to the infinite polyhedrals. It is easy to see that it is
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convenient to distinguish three classes of infinite uniform polyhedrals: rods
are infinite in one direction, slabs are infinite in two independent directions,
and sponges are infinitely extended in three independent directions. Simple
examples are shown in Fig. 1. The following sections will discuss each of
these classes in considerable detail. But it seems worth mentioning that it
appears strange that the finite polyhedrals, and the three classes of infinite
polyhedrals, have not been considered together, even though they share
many characteristics. One of the main aims of the following pages is the
enumeration of the different kinds of polyhedrals – to the extent that this
is known. Besides the acoptic (selfintersection-free) infinite polyhedrals, we
shall pay particular attention to the non-acoptic ones; these seem not to
have been considered in the literature at all.

The primary characteristics of all uniform polyhedrals is the local spec-
ification of the neighborhood of each (hence every) vertex by its vertex star
– the circuit of polygons (faces) that are incident with the vertex. The ver-
tex star can be recorded by the vertex symbol, such as (4.6.8); exponents
are sometimes used to shorten the symbol. Additional examples are given
in Fig. 1.

(a) A rod with vertex symbol (36). (b) A slab with vertex symbol (3.44).
(c) A sponge with vertex symbol (45)

Finite polyhedrals are uniquely determined by their vertex stars. Hence
the vertex symbol, such as (3.4.5.4) or (6.6.5/2), is generally accepted as
the identification symbol of the polyhedral.

For infinite polyhedrals this is not the case in general, and additional
information needs to be specified for identification. This information re-
quires two distinct components. First, the shape of the vertex star should
be specified by listing the dihedral angles between the successive faces of the
vertex star. In some cases this is determined by the other data – for exam-
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ple, for the unique polyhedral with vertex symbol (5.5.5.5.5), see Section 5.
The other identifying component is the adjacency symbol of the polyhedral.
This establishes the relation between adjacent vertex stars, that is, those
that share an edge. By the definition of polyhedrals, the adjacency symbol
is the same for all pairs of adjacent vertices, hence it is associated with the
polyhedral itself. Together with the identification of the class (rod, slab, or
sponge), these data determine the polyhedral uniquely. However, this way
of describing individual polyhedrals is rather inconvenient and laborious,
and except in the case of sponges, simpler possibilities exist. Hence we shall
delay discussing the adjacency symbols till Section 6.

The three classes of infinite uniform polyhedrals are analogous to the
infinite isohedral polyhedra the study of which was proposed in [18] thirty
years ago, along with that of the infinite uniform polyhedrals in the sense
of the present paper. However, it appears that this publication has not had
any influence on later developments.

2. Finite Uniform Polyhedrals

The best introduction to the finite polyhedrals is still the long paper [7]
by Coxeter et al., supplemented by the images of physical models in Wen-
ninger’s book [42]. The Internet has many excellent presentations, such as
those of V. Bulatov [2], G. W. Hart [20], [21], Maeder [27], E. W. Weis-
stein [42], Wikipedia [43], [44], and many other pages.

We shall not enlarge upon the 75 particular finite uniform polyhedrals,
but need to describe the three infinite families – the prisms and the an-
tiprisms – since we shall have to refer to them in connection with the uni-
form rods.

Each of the prisms and antiprisms has as its two bases congruent regular
polygons {n/d}, where 1 ≤ d < n/2 and d is relatively prime to n. The
prisms have vertex symbols (4.4.n/d), while the antiprisms have vertex
symbols (3.3.3.n/d). However, there are two varieties of antiprisms. The
ordinary antiprism (3.3.3.n/d) exists for all the n and d satisfying these
conditions. The crossed antiprism (3.3.3.n/d) exists only if, in addition,
n/3 < d < n/2. The difference between the two varieties is that the triangles
of the ordinary antiprisms do not cross the axis of rotational symmetry of
the antiprisms, while the triangles of the crossed antiprisms do cross it.
In [7] and many other publications the crossed antiprism with {n/d} bases
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is denoted
(
3.3.3.n/(n−d)

)
. We shall adhere to this notation. We illustrate

prisms and antiprisms in Fig. 2.

Fig. 2. The pentagram-based prism (4.4.5/2) and antiprisms (3.3.3.5/2) and (3.3.3.5/3)

3. Uniform Rods

There are three classes of uniform rods: stacked, ribboned, and helical.
(However, see Note in Section 7.) Due to the assumed isogonality of each
rod, all its vertices must be on a cylindrical surface. Hence uniform rods
can have only squares or equilateral triangles as faces. The squares must
have edges parallel and perpendicular to the axis of the prism. The first
publication that illustrates all three kinds of (acoptic) rods is [41].

Each stacked rod is formed by an infinite stack of modules (modular
units); each module consists of the faces that form the mantle of a prism
or antiprism. The stacked rod is unary if all its modules are of the same
kind (hence are congruent, see Fig. 3), and it is binary if its modules are of
different kinds. In the latter case, for each pair of modules there are always
two possibilities: Adjacent modules are either on opposite sides of the plane
of the common bases, or on the same side – see Fig. 4. The same-side
variant is possible without violating the non-coincidence restriction since
the altitudes of different modules (with the same basis) are unequal.

Ribboned rods have vertical ribbons of either squares or triangles. Unary
ribboned rods with squares are the same as stacked rods (4.4.4.4)n.
Hence the only unary ribboned rods that need to be considered are the
ones with triangles. Some examples of acoptic (selfintersection-free) rods
R(3.3.3.3.3.3)n of this kind are shown in Fig. 5(a). It should be noted that
adjacent ribbons are translates of each other by a half-length of a side.
Hence the number of ribbons must be even, regardless of whether the rod
is acoptic or not. If the intended cross-section of the rod is {n/d} with
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Fig. 3. Uniform acoptic stacked rods with {n} bases, n = 3, 4, 5. (a) Unary triangle-faced
rods (3.3.3.3.3.3)n. (b) Unary square-faced rods (4.4.4.4)n. (c) Binary rods (3.3.3.4.4)n

Fig. 4. Two possible pairs of modules with {5/2} bases, leading to binary stacked rods
that can be denoted (3.3.3.4.4)5/2 and (3.3.3.− 4.− 4)5/2, respectively. Notice that in
the latter rod there are several simultaneous overlaps of squares. There are four other
binary stacked rods with pentagrammatic bases: (3.3.3.4.4)5/3 and (3.3.3.− 4.− 4)5/3,

(3.3.3.3.3.3.)5/2,5/3 and (3.3.3.− 3.− 3.− 3)5/2,5/3

n odd, the number of ribbons must be doubled. Then the ribbons coincide
in pairs, but with a displacement of half an edge-length in the direction of
the axis of the rod. Thus the evenness requirement is satisfied, as is the
non-coincidence of faces. Hence the rod R(3.3.3.3.3.3)n/d with odd n has
2n ribbons. I have found no satisfactory way of presenting meaningful illus-
trations of such ribboned rods; attempts are made in the simplest cases in
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Fig. 5(b). Equally hard to show are selfintersecting (multiply wound) rib-
boned rods R(3.3.3.3.3.3)n/d in which the cross-section is a regular polygon
{n/d}, with d > 1 and with d and n relatively prime. Fig. 6 illustrates the
unary ribboned rod R(3.3.3.3.3.3)8/3.

Fig. 5. (a) Acoptic unary ribboned rods R(3.3.3.3.3.3)n, for n = 4, 6, 8, 10. (b) Unary
ribboned rods R(3.3.3.3.3.3)3 and R(3.3.3.3.3.3)5

Fig. 6. The ribboned rod R(3.3.3.3.3.3)8/3 shown alongside its cross-section

Binary ribboned rods R(3.3.3.4.4)n/d have n ribbons with squares and
n ribbons with triangles, if n is even, and twice these numbers if n is
odd. Examples of acoptic binary ribboned rods are shown in Fig. 7. For
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selfintersecting binary ribboned rods it is most appropriate to show their
cross-section, see Fig. 8; each of these is an isogonal polygon, with sides
alternating in length in ratio

√
3/2.

Fig. 7. Acoptic binary ribbons R(3.3.3.4.4)2 and R(3.3.3.4.4)4

Fig. 8. Isogonal polygons with ratio of sides
√
3/2 = 0.866 . . . . These are cross-sections

of binary ribbons R(3.3.3.4.4)n with n = 4/2, 8/3, 6/2, 10/2, 10/3, respectively

Helical rods are possible only with triangles. The rods shown in Fig. 9
are the simplest acoptic ones. They are obtainable by selecting a suitable
strip from the regular tiling by triangles, and wrapping it once (for acoptic
rods) or several times around a cylinder. The process is explained in Fig. 10,
but see the comments in Section 7. As far as I am aware, non-acoptic helical
rods have not been mentioned in the literature; my technological limitations
have prevented me from showing any here.

It is worth mentioning that an extension of the notation explained in
Fig. 10 could also be used to designate ribboned rods R(3.3.3.3.3.3)n as
(n, n, 2n), and the stacked rods (3.3.3.3.3.3)n as (0, n, n).
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Fig. 9. Acoptic helical rods. In the notation explained in Fig. 10, they can be described
by (1,m,m+ 1), for m = 2, 3, 4, 5, 6

Fig. 10. The construction of the helical rods (1, 4, 5) and (2, 5, 7). In each case the strip
between the parallel heavily drawn lines should be used to generate the rod by making

the two heavy dots coincide. The perpendicular to these lines (which becomes an
equatorial section of the rod) is intersected by 1, 4, and 5 = 1 + 4, and by 2, 5, and

7 = 2 + 5 helical strips of triangles, respectively; this explains the notation (1, 4, 5) and
(2, 5, 7) for these helical rods. The general acoptic helical rod has symbol of the form

(m,n,m+ n), with 1 ≤ m < n; the notation for non-acoptic helical rods is
(m,n,m+ n)/k if the triangles of the rod form a rod of type (m,n,m+ n), that winds

k ≥ 1 times about the axis
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4. Uniform Slabs

To describe uniform slabs it is convenient to distinguish four kinds: Tilings,
corrugates, crinkles, and tunneled slabs.

Uniform tilings are slabs that are isogonal collections of regular poly-
gons filling up a plane without overlaps. There are eleven acoptic ones –
the traditional three regular tilings with vertex symbols (4.4.4.4), (6.6.6),
(3.3.3.3.3.3), and eight Archimedean tilings with vertex symbols (3.3.3.4.4),
(3.3.4.3.4), (4.8.8), (3.3.3.3.6), (4.6.12), (3.4.6.4), (3.12.12), (3.6.3.6) – as
well as fourteen non-acoptic ones. Some of the latter were first investigated
in the 19th century by A. Badoureau [3], and the full enumeration was car-
ried out by J. C. P. Miller [28] in 1933. The first actual publication of the
complete list (without illustrations) was by Coxeter et al. [7, Table 8]; the
full enumeration with illustrations is accessible in [17]. The fourteen non-
acoptic ones can be characterized by their vertex stars shown in [17], and
the corresponding (modified) vertex symbols; the modification consists in a
change of sign if two adjacent polygons are not oriented in the same way.
The vertex symbols (see [17]) are:

(3.3.3. − 4. − 4) illustrated in Fig. 11; (3.3. − 4.3. − 4); (4. − 8.8/3);
(8.8/3.− 8.− 8/3); (−4.8/3.8/3); (6.− 12.12/5); (4.− 6.12/5); (−3.12.6.12);
(4.12. − 4. − 12); (3. − 4.6. − 4); (3.12/5. − 6.12/5); (4.12/5. − 4. − 12/5);
(12.12/5.− 12.− 12/5); (−3.12/5.12/5).

Fig. 11. The non-acoptic uniform tiling (3.3.3.− 4.− 4). (a) The vertex star.
(b) A patch of the tiling, illustrating the multiple overlaps of the tiles

Corrugations or corrugated tilings are slabs obtained from appropriate
uniform tilings (the ones with only triangles or squares as tiles) by bending
them out of the plane along complete lines formed by edges of the tiling.
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Hence only tilings (3.3.3.3.3.3), (4.4.4.4), (3.3.3.4.4), and (3.3.3. − 4. − 4)
can be used. The amount of bending can be specified by an angle; in
Fig. 12 we indicate the lines that are used for the bends by marking the
ridges and valleys, and the cross-sections perpendicular to the lines of
bends for the (4.4.4.4) tiling, which show the angles α of bend for each
slab. The corrugated slabs arising from (3.3.3.3.3.3) are analogous. The
corrugated slabs arising from (3.3.3.4.4) are the same as those arising from
(3.3.3.− 4.− 4); there are three parametrized families, indicated in Fig. 13.
Thus there are precisely seven parametrized families; in the acoptic case
these were first specified in [41]. Hughes Jones [23] provides examples of the
corrugated slabs (3.3.3.3.3.3) for a specific value of α.

Fig. 12. The two families of corrugated slabs derived from the (4.4.4.4) tiling. (a) Here
0 < α < π/2. (b) Here 0 < α < π; note that for α ≥ 2π/3 the slab is selfintersecting

Fig. 13. The three corrugations that arise from (3.3.3.4.4) (and also from
(3.3.3.− 4.− 4)). (a) The angle of bend satisfies 0 < α < π/2. (b) Here 0 < α < π; note
that for α ≥ 115.66◦ the slab is selfintersecting. (c) Here 0 < α < π as well; note that for

α ≥ 125.26◦ the slab is selfintersecting
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Crinkles or crinkled tilings are obtained in a way similar to corrugations,
by appropriately bending certain tilings. The tilings which can be used
are (3.3.3.3.3.3), (3.3.3.4.4), and (3.3.4.3.4). The four families of crinkles
are parametrized by a real parameter. Details are shown in Fig. 14. The
term “crinkle” seems to appear first in [23], where it is used to denote the
crinkle (3.3.3.3.3.3)#α for a specific value of α. The crinkle in Fig. 14(a) was
devised by the present writer in the early 1990’s; the other three crinkles
were invented by William Webber shortly thereafter. They have not been
published so far, and I am grateful to Professor Webber for allowing their
inclusion here.

The last kind of uniform slabs are the tunneled slabs. A uniform tunneled
slab consists of two copies of a tiling (usually a uniform tiling), placed in
parallel planes, and from which an appropriate family of tiles is removed.
The resulting holes in the two tilings are connected by suitable mantles of
Archimedean prisms or antiprisms. (In fact, among the antiprisms only the
mantle of the 3-antiprism – that is, the octahedron – is usable.) There are
18 acoptic tunneled slabs. All these appear in [41] – I am not aware of any
other publication or internet page that presents them all. The non-acoptic
ones are presented here for the first time.

There are two simple ways of symbolically presenting tunneled tilings.
The generating symbol starts from the symbol of the tiling, by indicating
in its vertex symbol the tile that is being omitted; this can be done, for
example, by underlining the symbol of the omitted tile. As an illustration,
the tunneled slab in Fig. 1(b) has the symbol (3.4.6.4). The other way is
by simply listing the vertex symbol of the tunneled slab. The former is
more intuitive but there are two drawbacks. On the one hand, (3.3.3.3.3.3)
can denote two distinct tunneled slabs, with vertex symbols (4.4.3.3.3.3.3)
and (3.3.3.3.3.3.3.3); similarly, (3.6.3.6) corresponds to both (4.4.6.3.6) and
(3.3.3.6.3.6). On the other hand, the two tunneled slabs that correspond
to (4.4.4.4), that are shown in Fig. 15, both have vertex symbol (4.4.4.4.4),
hence cannot be distinguished by either unless one adds asterisks or some
other ad hoc notation. Adjacency symbols (which we shall discus in the
next section) distinguish between these two – the more symmetric slab
has adjacency symbol (ab+c+c−b−; ab−c−c+b+), the other slab has symbol
(a+b+c+d+e+; a−b+c−d−e−).

The complete list of 18 acoptic tunneled slabs is:

(3.3.4.3.4) = (3.3.4.4.3.4), (4.8.8) = (4.4.8.8), (4.8.8) = (4.4.4.8),

(4.4.4.4) = (4.4.4.4.4)∗, (4.4.4.4) = (4.4.4.4.4)∗∗,
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The four parametrized families of crinkles. (a) (3.3.3.3.3.3)#α ; (b) (3.3.4.3.4)#α ;

(c) (3.3.3.4.4)#α ; (d) (3.3.3.4.4)##
α , where α denotes the angle of the bend. For α → 0

each tends to the corresponding tiling. If α → π, the crinkle (3.3.3.3.3.3)#α has a

discontinuity: (3.3.3.3.3.3)#α is a (2-dimensional) crinkle, while (3.3.3.3.3.3)#π is just a

strip of triangles. If α → π, (3.3.4.3.4)#α → (3.3.3.− 4.− 4), which is the tiling
illustrated in Fig. 11. The crinkles in (c) and (d) have in fact three different angles of
bend; α denotes the bend along edges between triangles. For α → π, each of these

crinkles tends to a non-acoptic structure that is not a uniform polyhedral

(3.3.3.3.6) = (3.3.3.3.4.4), (3.3.3.3.6) = (3.3.4.4.3.6),

(4.6.12) = (4.4.6.12), (4.6.12) = (4.4.4.12), (4.6.12) = (4.4.4.6),
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Fig. 15. Two distinct tunneled slabs that cannot be distinguished by their vertex
symbols without the asterisks. These slabs, as well as the illustrations in Section 5, were

created by Steven Gillispie

(3.4.6.4) = (4.4.4.4.6), (3.4.6.4) = (3.4.4.4.4), (3.12.12) = (4.4.12.12),

(6.6.6) = (4.4.6.6), (3.3.3.3.3.3) = (3.3.3.3.3.4.4),

(3.3.3.3.3.3) = (3.3.3.3.3.3.3.3), (3.6.3.6) = (3.6.4.4.6),

(3.6.3.6) = (3.3.3.6.3.6).

Known selfintersecting tunneled slabs are:

(3.3.− 4.3.−4) = (3.3.− 4.3.− 4.− 4), (4.− 8.8/3) = (4.4.− 8.8/3),

(4.−8.8/3) = (4.− 4.− 4.8/3), (4.− 8.8/3) = (4.4.4.− 8),

(8.8/3.− 8.− 8/3) = (4.4.8/3.− 8.− 8/3),

(8.8/3.− 8.− 8/3) = (8.4.4.− 8.− 8/3),

(−4.8/3.8/3) = (−4.− 4.8/3.8/3), (−4.8/3.8/3) = (−4.4.4.8/3),

(6.− 12.12/5) = (4.4.− 12.12/5), (6.−12.12/5) = (6.− 4.− 4.12/5),

(6.− 12.12/5) = (6.− 12.4.4), (4.− 6.12/5) = (4.4.− 6.12/5),

(4.−6.12/5) = (4.− 4.− 4.12/5), (4.− 6.12/5) = (4.4.4.− 6),

(−3.12.6.12) = (−4.− 4.12.6.12), (−3.12.6.12) = (−3.12.4.4.12),
(3.− 4.6.− 4) = (4.4.− 4.6.− 4), (3.− 4.6.− 4) = (3.− 4.4.4.− 4),
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(3.12/5.− 6.12/5) = (4.4.12/5.− 6.12/5),

(3.12/5.−6.12/5) = (3.12/5.− 4.− 4.12/5),

(−3.12/5.12/5) = (−4.− 4.12/5.12/5).

It is an unconfirmed conjecture that this list of 21 selfintersecting tunneled
slabs is complete.

One additional observation about the tunneled slabs is worth mention-
ing. Several of them are not rigid – they admit of continuous deformations
in the 3-dimensional space. However, in contrast to the corrugations and
crinkles, that stay uniform through the deformation, the deformed tunneled
slabs are not uniform; they are not even monogonal (that is, the vertex stars
of the deformed slabs are not all congruent, regardless of symmetries).

5. Uniform Sponges

Uniform sponges come in a wide variety of types; they are only poorly
known, and no overall classification has been proposed at this time. Two
kinds that we are able to characterize in a reasonable way are the isotropic
sponges and the layered sponges; see Fig. 16. An example of a uniform
sponge that is of neither of these kinds is shown in Fig. 17. The present
account of uniform sponges is based mainly on [10], and on unpublished
joint research with Steven Gillispie.

Fig. 16. (a) An isotropic sponge (4.4.4.4.4.4) with incidence symbol (a a∧aa∧aa∧; a).
This is one of the three regular Coxeter–Petrie sponges; all are isotropic. (b) A layered

sponge (4.4.4.4.4) with incidence symbol (a+b+c+d+e+; a−b−c−d∧+e−)
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Fig. 17. A uniform sponge (4.4.4.4.4) = (a+b+c+d+e+; a−b+c−d+e−) from [10], where it
is denoted N1. Like several other sponges from [10], this is neither isotropic nor layered.

It was first described in [14]

An isotropic sponge is periodic in three independent directions, that are
equivalent under symmetries of the sponge.

A layered sponge consists of a series of copies of a family of polygons
in parallel planes, connected by “tunnels” or “barriers”. The family of
polygons is usually a tiling of the plane from which some tiles have been
removed, so that the “tunnels” or “barriers” can be attached. The “tunnels”
and “barriers” are formed either by squares (as in the tunneled example
below), or else by triangles, just as in the case of the tunneled slabs. For
each plane, some of these tunnels go above and some below the plane itself.
Each “barrier” is a strip, straight or zigzag, and either perpendicular to the
planes or inclined at a suitable angle; again, some go up and some go down
from the plane.

Here is a brief survey of the history of uniform sponges.

The first mention of such objects is in Coxeter’s paper [5], where he
describes specific sponges (4.4.4.4.4.4), (6.6.6.6), and (6.6.6.6.6.6). These
are regular in the sense that the symmetries act transitively on the flags
of each, where a flag is a triple consisting of a vertex, an edge, and a face,
all mutually incident; in that context the appropriate Schläfli symbols are
{4, 6}, {6, 4}, and {6, 6}. Moreover, Coxeter proved that there are no other
regular sponges.

Several individual sponges were described in the 1950’s and later; how-
ever, in most cases there was no attempt at finding any general results or
points of view. The same can be said for the various appearances of sponges
on the Internet. More detailed references may be found in [10]. Of greater
interest is the work of Gott [12], who described several sponges, including
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the three regular ones. The most interesting of Gott’s sponges is a (5.5.5.5.5)
uniform sponge shown in Fig. 18. He also illustrates the acoptic tunneled
slab we denoted by (3.3.3.3.3.3) = (3.3.3.3.3.3.3.3).

Fig. 18. The (5.5.5.5.5) uniform sponge discovered by Gott [12]

The largest collection of uniform sponges is [41], with photos of over
eighty cardboard models of different sponges; the precise number depends
on the definition of “different sponges”, which will occupy us soon. This
work introduced concepts close to isotropic and layered sponges, albeit with
different terminology.

The next noteworthy collection of uniform sponges is that of Hughes
Jones [23], which gives details on 26 special acoptic sponges

(
3k
)

with
triangular faces and with 7 ≤ k ≤ 12. The faces of Hughes Jones’ sponges
are required to be among the faces of the tiling of 3-space by tetrahedra
and octahedra. Of the slabs, he lists the two corrugations and one crinkle;
he mentions that he knows 11 other uniform sponges with triangular faces,
that are not derived from the tiling by tetrahedra and octahedra.

Goodman-Strauss and Sullivan [11] characterized the (4.4.4.4.4.4)
sponges that have faces among the squares of the cubic lattice. They proved
that there are precisely six distinct acoptic sponges of this kind. The ap-
proach taken in [11] excludes selfintersecting sponges.

The most recent addition to this list is the paper [10]. It presents an
enumeration of the (4.4.4.4.4) acoptic uniform sponges with faces among
the squares of the cubic lattice. There is a total of 15 different types; it
should be noted that two of the types are slabs (see Fig. 15 above), which
in the present paper are not considered to be sponges. However, the main
importance of [10] is the presentation of a computational model that can be
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used in the study of arbitrary uniform sponges. The next several pages will
be devoted to an explanation of this program.

As in many other contexts – for example, the enumeration of isohedral
tilings or other symmetrical objects – the first step is the replacement of
the geometric sponges by combinatorial objects which yield “candidates” for
realization by geometric sponges; these can then be drawn and inspected, or
investigated by other means. Several illustrations of this idea are detailed
in [18].

In the case of sponges, we start by considering the vertex star of a family
of sponges we wish to investigate, and label its edges incident with the cen-
tral vertex. The procedure is illustrated by the example of the (4.4.4.4.4)
sponges with faces in the cubic lattice; this is taken from [10], where ad-
ditional details (omitted here for brevity) can be found. As indicated in
Fig. 19, this particular vertex star needs two different labelings; each is
shown with a canonical “vertex star label”. Either no symmetry among the
edges is invoked, or else the symmetry is encoded in the labeling. If an edge
x+ of a vertex star is mapped onto another by a reflection, the reflected
edge needs to be marked x−. An edge x+ mapped onto itself by a reflection
is relabeled as x. This leads to the vertex star labels shown in Fig. 19. (In
cases where a vertex symbol is associated with several vertex stars, each

Fig. 19. The two labeled vertex stars (45) possible in the cubic lattice. (a) Asymmetric
vertex star label a+b+c+d+e+. (b) Symmetric vertex star label a+b+c+c−b−, using the
mirror that contains the Oa edge and bisects the angle c+Oc−. Other symmetries that a

vertex star may possess lead to other vertex star labels

vertex star has to be treated separately, for each of its (inequivalent) vertex
star labels. For example, the symbol (4.4.4.4.4.4) in the cubic lattice is as-
sociated with the two vertex stars in Fig. 20, each of which admits several
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vertex star labels.) Among other possible maps of an edge onto itself we
mention the flip, which exchanges the sides of the vertex star. This is indi-
cated, for an edge labeled x, by x∧, and similar notation is introduced for
other possibilities. For example, the right part of Fig. 20 can have vertex
star label aa âa âa∧. Since we are not trying to reproduce [10] here, the
reader is again urged to consult that paper for details and specifics.

Fig. 20. The two vertex stars associated in the cubic lattice with the vertex symbol (46).
Each admits several vertex star labels

The vertex star label constitutes the first part of the incidence symbol.
The second part is the adjacency symbol. For each edge at a chosen vertex,
the adjacency symbol specifies which symmetry carries its vertex star to the
vertex star of the vertex at the other end of the edge. Since the labels given
to the edges of one vertex star are, by the assumed isogonality, automatically
transferred to all vertices, we only need to specify for each symbol of the
vertex star label of the starting vertex which is the symbol of that edge
in the vertex star label of the other end of the same edge. The reader is
invited to verify the adjacency symbols we attached to the slabs and sponges
in Figures 15, 16, and 17.

Once an incidence symbol has been chosen, the program in [10] attempts
to build a valid polyhedral by combining multiple copies of the vertex star
according to the incidence symbol. The various steps described in [10] apply
in great generality.

6. The “Type” of Sponges
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Among uniform polyhedrals, the sponges are the least explored and under-
stood. One critical question, which arises in enumerations of objects of any
kind, is how to decide when two of the objects are “the same”, or “of the
same type”, for the purposes of the enumeration. As long as we assume
ahead of time that the sponges have faces among a preassigned set (such
as the cubic lattice in [11] and [10], or the faces of the tiling of 3-space by
tetrahedra and octahedra in [23]), there is no difficulty: Sponges that look
different are assigned to different types. However, if one does not insist that
the vertex stars be taken from a finite, discrete set of possibilities, this sit-
uation changes. For example, the two sponges in Fig. 21 certainly appear
different, but since they have the same adjacency symbol it is not obvious
by what criteria they should be used to decide whether they are of the same
type or different types. Clearly, no enumeration of possible types of a cer-
tain kind of sponges – such as the

(
45
)
sponges – can be attempted before

this question is settled in a meaningful and practicable way.

This concern is not something abstract; it has occurred in actual at-
tempts at enumeration, such as [41]. Besides two

(
45
)

slabs, there are
nine

(
45
)

sponges shown in [41]. Two of these – which the authors de-
note by 45(4) and 45(6) – are analogous to the two sponges in our Fig. 21,
but with the tunnels in adjacent layers shifted by one step. Thus, although
considered to be two different sponges, they are in fact two representatives
of a continuum of sponges with the same adjacency symbol (a+b+c+d+e+;
a−b−c−d∧−e−) and with the same symmetry group; it would appear rea-
sonable to consider all these to be of the same “type”. It would seem that a
satisfactory definition of two sponges being of the same “type” would involve
the equality of their adjacency symbols, and the continuous deformability
of their vertex stars into each other, subject to certain reasonable and well-
defined restrictions. However, the exact nature of these restrictions has not
been determined so far. Moreover, there is still the question whether the
intuitive feeling that the sponge in Fig. 21(a) is somehow different from the
other sponges of the same “type” can be (or should be) rationalized and
codified in some way.

As a consequence of these difficulties, it is at this time impossible to state
for any vertex symbol (a.b. . . . .g) how many different “types” of sponges
it admits; the only known exception is the sponge

(
55
)
of Gott [12] that

has the single realization as an unlabeled sponge, shown in Fig. 18. Even
the more basic question whether there are any sponges with a given vertex
symbol (a.b. . . . .g) does not have any general solution at this time. The
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algorithm in [10] at best only produces all candidate sponges for a given
vertex star.

Only acoptic uniform sponges were considered in [14]. In this context,
several conjectures made there are still open, and it is appropriate to men-
tion them now.

• No vertex star of an acoptic sponge has more than 12 faces.

• If the vertex star of an acoptic sponge is incident with more than eight
faces, then all faces are triangles.

• No acoptic sponge has only faces with seven or more sides.

There is no information on which to base guesses concerning the ana-
logues of these conjectures if the sponges are not assumed to be acoptic.

Fig. 21. The sponge in (a) is another view of the sponge in Fig. 16(b). It can be
“stretched” (or “flexed”) in a continuous way to yield the one in (b). Both have the
same adjacency symbol (a+b+c+d+e+; a−b−c−d∧+e−), hence should be considered as

being of the same “type”. The sponge (a) appears in [41] as 45(8), but the sponge (b) is
missing from that collection

7. Notes and Comments

As noted earlier, an extension of the symbol (m,n,m + n) for helical rods
to the case m = 0 covers the stacked rods (3.3.3.3.3.3)n. However, the very
different properties of stacked rods as compared with helical rods make
it reasonable to treat them separately. Analogously, the ribboned rods
R(3.3.3.3.3.3)n can be interpreted as helical rods (n, n, 2n); again, this is
more of a sidelight than a contribution to understanding.
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The study of helical rods developed from applications in biology. A de-
tailed account was published by van Iterson [40] in 1907, although some
aspects were investigated even earlier. The work [40] concentrates on sym-
metrically arranged points situated on spirals that wind on cylinders. In
particular, van Iterson studies (among more general kinds) point sets that
can be used as centers of congruent balls, each of which touches six other
balls. It is obvious that connecting the centers of such families of balls
yields uniform helical rods. On the other hand, there are connections to the
distribution of leaves or florets on various plants (phyllotaxis), to flagella
of various bacteria, to subunits of certain microtubules, and various other
biological entities; for details see Thompson [37] or Erickson [8]. Many
other writers (mostly non-mathematicians) dealt with this topic; it is amus-
ing that Alan Turing also studied this topic, see [39, pp. 141–144], and, in
particular, [38].

The helical rods have a rich history. In particular, the smallest one
– (1, 2, 3) in the notation of Section 3 – was repeatedly discovered by various
workers; the name “tetrahelix” for it is reported to have been coined by
R. Buckminster Fuller in [9]. As noticed by Hurley [24] and Coxeter [6], the
tetrahelix can be obtained as a stack of regular tetrahedra, with adjacent
tetrahedra related by reflection in the plane of the common face. Boerdijk [4]
obtained it earlier, as a stack of regular tetrahedra related by screw-motion,
as well as in the guise of a family of balls. He was not the first, as van
Iterson [40] found the helical structures and the sphere packings in 1907.
It is interesting that van Iterson credits (without explicit references) the
tetrahelix of spheres (but not the other helices he investigates) to Federico
Delpino; I was not able to determine which publication of Delpino’s lead to
the attribution.

Almost all uniform rods can be interpreted as resulting from suitable
strips of uniform tilings of the plane. For the unary stacked and ribboned
rods the square tiling and the tiling by triangles can be used, while binary
ribboned rods and binary acoptic stacked rods require the (3.3.3.4.4) tiling.

A fine but non-obvious point needs to be mentioned; it is stressed (among
others) by Erickson [8]. The often invoked picture (see Fig. 10 above) of the
construction of uniform helical rods intimates that a suitable strip of the
regular tiling (3.3.3.3.3.3) is bent into a cylinder. By this is meant that
the vertices are placed on a cylinder, and the triangles are kept planar – so
that the resulting rod is not convex. In particular, the equal length of the
edges of the rod is not compatible with the assumption that each vertex is
equally distant in the geodesic distance on the cylinder from all the adjacent
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vertices. Naturally, the vertices on each spiral are equidistantly disposed.
Additional considerations of these matters can be found in Lord [25], where
also various related constructions that lead to symmetric (but not uniform)
rods are described. Lord considers, in particular, isohedral structures with
polygonal regions (such as hexagons) on cylinders, stressing their occurrence
in biology and structural chemistry. Related information appears in [26].

Note (Added January 12, 2010). After the present paper was submitted,
Dr. William T. Webber informed me that he has found an additional type
of uniform rods with vertex symbol (3.3.3.3.3.3). In analogy to the situation
concerning uniform slabs, these objects deserve to be called crinkled rods.
Webber is preparing a paper with details of the construction of these rods.

8. Related Polyhedra-like Structures

In this section we shall discuss various modifications of “uniform poly-
hedrals”; hence the word “polyhedral” and related expressions will be used
without the implication of uniformity. The results mentioned here show that
interesting geometry may result by considering polyhedrals more general
than the uniform ones. It is my hope that the present exposition may lead
to such investigations.

Helical triangle-faced polyhedrals (with not necessarily equilateral tri-
angles as faces) have been studied by engineers in several contexts. Guest
and Pelegrino [19] study the cases in which a given triangle leads to he-
lical isohedral rods that can be collapsed to planar sets of triangles, with
relatively small stresses (or deformations) during the transition from one
configuration to another.

Raskin’s Ph.D. thesis [32] deals with deployable structures, that is, rods
and slabs that can change their dimensions. These questions are addressed
from an engineering point of view, but many of the examples are close to
the topic of the present paper. For example, Figure 1.3 of [32] can be
interpreted (in a manner not intended by Raskin) as a unary stacked rod(
36
)
8
; it is attributed to I. Hegedus [22]; Figure 1.6 could inspire the stacked

rod
(
36
)
3
, but a better example is given by Miura [30]. Figure 3.39 in [32]

can be interpreted as the ribboned rod R(3.3.3.3.3.3)3, with triangles that
are isosceles but not equilateral; it is attributed to You and Pellegrino [45].
Many other examples are given in [32], together with a wealth of references.
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Barker and Guest [1] describe several types of isogonal and isohedral rods
with triangular faces, and investigate bucking patterns that present some
features of this kind.

In a different engineering application, Tarnai [36] describes the buckling
of cylindrical shells as giving rise to isogonal stacked rods of type

(
36
)
n
,

but with isosceles triangles; this is based on Miura [29]. He also presents
cylindrical rods obtainable from the uniform tiling (3.3.4.3.4); these are not
isogonal (there are two or more orbits of vertices) but the faces are planar
polygons. Miura (in [29]) also describes analogues of isohedral acoptic
stacked rods, with faces that are isosceles trapezes.

A very interesting deformable isohedral slab is described by Miura [30],
see Fig. 22; it is meant to be employed in space structures such as arrays
of solar cells. Suitable changes of the angle α of bend along the ridges and
valleys lead to a complete collapse. It may be noted that if the parallelo-
grams are rhombi and τ = 60◦, then the rhombi can be interpreted as pairs
of equilateral triangles and the crinkle (3.3.3.3.3.3)#α shown in Fig. 14(a) is
obtained. On the other hand, if the parallelograms are squares, and only
the heavily drawn zigzags are taken as ridges and valleys (they are straight
lines in this situation), then the corrugation (4.4.4.4)α shown in Fig. 12(a)
results. However, Miura’s claim that the parallelogram tiling “will fold into
a point” is clearly wrong; a similar error occurs in [29]. The precise proper-
ties of the folding transformation still need to be investigated, in terms of
the dependence on the angle τ and on the ratio of the parallelogram sides.
A partial analysis is given by Piekarski [31], who also considers variants that
lead to curved structures.

From the facts mentioned above it is impossible to escape the conclusion
that engineers, architects, biologists and others could have benefited from
closer contact with mathematicians; even more evident is the fact that
mathematicians could have been inspired in important ways by acquaintance
with the works and problems in these applied disciplines. It should be borne
in mind that the list of results mentioned here is very haphazard, since
there is no reasonable way for a mathematician to access all of the relevant
literature. The shocking failure in this matter of the reviewing journals
(Math Reviews and Zentralblatt) is illustrated by the fact that almost none
of the references we give – including the books [41] and [26], that clearly have
mathematical importance and relevance – are even mentioned in either of
these journals. Among the editorial policies of the refereeing journals there
seems to be a deeply ingrained aversion to anything that has to do with the
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geometry of polyhedral objects in 3-space; this stand leads to a great loss
to both pure and applied mathematics, and to culture in general.

Fig. 22. An isohedral tiling by parallelograms, described by Miura [30]. It can be folded
to yield a crinkled slab; heavy solid edges indicate ridges, dashed ones valleys
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[17] Grünbaum, B., Miller, J. C. P. and Shephard, G. C., Uniform tilings with hollow
tiles, “The Geometric Vein – The Coxeter Festschrift”, C. Davis, B. Grünbaum and¨
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Geometric Transversal Theory:

T (3)-families in the Plane

ANDREAS F. HOLMSEN

A line that intersects every member of a finite family F of convex sets in the plane
is called a line transversal to F . In this paper we will survey the main results
and open problems concerning T (3)-families: Finite families of convex sets in the
plane in which every subfamily of size 3 admit a line transversal.

1. Introduction

Let F be a finite family of compact convex sets in the Euclidean plane.
In fact we will restrict ourselves to the case when the members of F are
convex bodies, i.e. compact convex sets with non-empty interiors, to avoid
dealing with certain (uninteresting) degenerate situations. A line transver-
sal (or just transversal) to F is a straight line that intersects every member
of F . For a positive integer k ≥ 3 we call F a T (k)-family if every subfam-
ily of size at most k has a transversal. In this paper we will be concerned
with some fundamental results concerning T (k)-families, and in particular
the case when k = 3.

It is a well-known fact that there is no Helly-type theorem for line
transversals to general families of convex bodies in the plane. This means
that for every integer k ≥ 3 one can find a T (k)-family that does not have
a line transversal. In order to obtain Helly-type theorems one must make
additional assumptions on the shape or the relative positions of the bodies.
One such direction which has been very fruitful and produced many results
is the case when F is family of (disjoint) translates of a convex body. The
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recent development of this line of research has been surveyed by the present
author in [17].

The basic problem that we will discuss in this paper is the following:
For every positive integer k ≥ 3, does there exist a real number α(k) ∈ (0, 1)
such that for any T (k)-family in the plane there is a line that meets at least
α(k) |F | members of F? Or in other words, does every T (k)-family F
admit a partial transversal whose size is at least some fixed fraction of the
size of F?

Such a function does indeed exist as was shown by Katchalski and Liu
[22]. Moreover, they show that limk→∞ α(k) = 1, which is an interesting
phenomenon in view of the non-existence of a Helly-type theorem. Actually,
the Katchalski-Liu result only deals with the case when k ≥ 4. The existence
of α(3) follows as a consequence of a result by Kramer [23], and his method
was later improved by Eckhoff [9]. A different proof of the existence of α(3)
is given by Matoušek [24] which uses an argument due to Alon and Kalai
[1], but no attempt is made to optimize the value (and in fact it establishes
a more general result).

In 1978 Katchalski conjectured that α(3) can be taken close to 2
3 . (See

[12] for more detailed references). To make this more precise we define
α(n, k) ∈ (0, 1) to be the greatest fraction such that every T (3)-family of
size n has a partial transversal of size α(n, k)n. Let us then define

α(k) = lim
n→∞

α(n, k)

Katchalski’s conjecture then states that α(3) = 2
3 .

Recently Eckhoff [12] revisited the study of T (k)-families and showed

that α(k) ≥ 1 −
√
2√

k−1
. Furthermore, Eckhoff gives a construction which

shows that Katchalski’s conjecture is best possible, if true. Finally, Eckhoff
conjectures that α(k) = k−1

k which is an extension of Katchalski’s conjec-
ture.

This paper will discuss some approaches towards improving the bound
on α(k), and in particular the value of α(3). In Sections 2–4 we will use
various results (some new and some old) to obtain incrementally better
lower bounds of α(3). The best known bounds on α(3) are due to the
present author [18] where it is shown that 1

3 ≤ α(3) ≤ 1
2 , thus disproving

Katchalski’s (and Eckhoff’s) conjecture. This approach will be reviewed in
Section 5. Even though the method in [18] gives the current best lower
bound for α(3), we feel it worthwhile to report on the other approaches.
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In Section 2 we introduce a (new) condition on a family of convex bodies
which we call tightness: A triple of convex bodies is called tight if the union
of the convex hulls of the pairs is convex. A special case of this is when
the triple has a line transversal. We show that if F is a family where every
triple is tight then there is a partial transversal of size 1

8 |F |. Although this
approach could at best give a fraction of 2

5 we believe that it could yield
some new insight to the problem. (See Figure 2 and Lemma 3 below).

In Section 3 we review the recent colorful version of Hadwiger’s transver-
sal theorem due to Arocha, Bracho, and Montejano [4]. We will show that
their theorem implies that α(3) ≥ 1

5 .

In Section 4 we will review Eckhoff’s partition theorems for T (3)- and
T (4)-families. In general Eckhoff’s theorems concern partitioning a T (k)-
family into as few parts as possible such that each part has a transversal.
Such theorems are often called Gallai-type theorems. An immediate conse-
quence of these results is that α(3) ≥ 1

4 and α(4) ≥ 1
2 .

In Section 5 we give a short outline of the recent results due Eckhoff [12]
and the present author [18], and in Section 6 we conclude with discussions
of further generalizations and extensions.

The topic dealt with in this paper is just a small part of the broader
subject geometric transversal theory. There are several excellent surveys
on the subject, and the interested reader should consult [10, 14, 16, 28] for
more information and references.

2. Tight Triples

It is a basic fact that a triple of convex bodies in the plane have a transversal
if and only if there is a partition of the triple into two non-empty parts {A}
and {B,C}, say, such that A ∩ conv(B ∪ C) �=�� ∅. In this section we will
show that this property can be weakened and still we are guaranteed a large
partial transversal.

Let A, B, and C be convex bodies in the Euclidean plane. We will say
that the triple A, B, C is tight if the following holds:

conv(A ∪B) ∩ conv(A ∪ C) ∩ conv(B ∪ C) �=�� ∅.

For instance, if two of the bodies, A and B, say, have non empty intersection,
then A, B, C is tight. More generally, if A, B, C have a transversal, then A,
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B, C is tight, but it should be clear that these conditions are not necessary
to guarantee tightness. (See Figure 1).

Fig. 1. Examples of tight triples

It can easily be shown that the following are equivalent:

1. A, B, C is a tight triple.

2. The union conv(A ∪B) ∪ conv(A ∪ C) ∪ conv(B ∪ C) is convex.

In this section we establish the following result.

Theorem 1. Let F be a finite family of convex bodies in the Euclidean
plane. If every triple of F is tight, then F has a partial transversal of size
at least 1

8 |F |.

The fraction 1
8 in Theorem 1 could probably be improved. It is quite

possible that 2
5 is the correct fraction, and it is simple to see this would be

best possible. (See Figure 2).

Fig. 2. Every triple among the five segments is tight, but any line intersects at most two
of the segments. Each segment can be duplicated m times to obtain arbitrarily large

families

Since a triple that has a transversal is also tight, Theorem 1 implies the
following.

Corollary 2. α(3) ≥ 1
8 .
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The main lemma. Here we present the main lemma that will be used
to show Theorem 1. First we need to introduce some notions. Let F =
{A1, . . . , A2k} be a family of convex bodies. By a matching of F we mean,
as usual, a partition of F given by means of a splitting of {1, . . . , 2k} into k
disjoint pairs. Each element of the matching is thus a pair of convex bodies
{Ai, Aj} and we will refer to conv(Ai∪Aj) as a component of the matching.

Lemma 3. For k > 0, let F = {A1, . . . , A2k} be a family of convex bodies
in the plane, and suppose every triple of F is tight. There exists a matching
of F such that the components of the matching have a point in common.

In what follows we will speak of separation of convex bodies. It is a basic
theorem of convexity that two disjoint convex bodies in the plane can be
separated by a line, and it will be necessary to distinguish weak separation
from strict separation: Two convex bodies are weakly (strictly) separated
by a line l if they are contained in opposite closed (open) halfplanes bounded
by l.

Proof of Lemma 3. First consider the degenerate case when the members
of F are points: It is then clear that the condition of tightness implies
that the points are all collinear, thus we have 2k points on the line, and
the statement is trivial. For the general case of convex bodies, the crucial
observation is the following.

Claim 4. Let {A0, A1, B0, B1} be a family of convex bodies in the plane
such that every triple is tight. Let D be a disk of positive radius which is
tangent to conv(A0 ∪A1) and conv(B0 ∪B1) at distinct points, and denote
by lA and lB the unique (weak) separating lines of D and conv(A0∪A1) and
conv(B0 ∪B1), respectively. Then one of the following cases must occur:

(i) There is a matching of the members of {A0, A1, B0, B1} such that the
components intersect the interior of D.

(ii) Some member of {A0, A1, B0, B1} is separated (weakly) from D by
both lA and lB.

Proof of Claim 4. We first consider the case when lA and lB are non-
parallel. We will assume that (ii) does not hold and exhibit the desired
matching: First suppose one of the bodies, A0, say, is tangent to D. Since
B0 and B1 both contain points that are strictly separated from A0 by lA, it
follows that conv(A0 ∪Bi) intersects the interior of D for i = 0 and 1. The
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Fig. 3. A0 is tangent to D

same argument applies (with the roles reversed) if one of the Bi is tangent
to D, so we may assume that Bi ∩D = ∅ for i = 0 and 1. (See Figure 3).

It is now easily seen that if neither conv(A1 ∪ B0) nor conv(A1 ∪ B1)
intersect the interior of D, then the triple {A1, B0, B1} cannot be tight:
The point of tangency between lB and D is (1) in the interior of conv(A1 ∪
B0 ∪ B1), (2) on the boundary of conv(B0 ∪ B1), and (3) disjoint from
conv(A1 ∪B0) and conv(A1 ∪B1).

It remains to consider the case where no member of {A0, A1, B0, B1}
is tangent to D. Orient the lines such that D is contained in the third
quadrant. Then the first quadrant does not contain any of the bodies of
{A0, A1, B0, B1}, and we can assume (after relabeling if necessary) that lA
meets the bodies in order A0DA1, and lB meets the bodies in order B0DB1.
(See Figure 4). It is clear that {A0, B1}, {A1, B0} is the desired matching.

The case when lA and lB are parallel follows by the exact same argument
as above. In fact, we don’t have to assume that (ii) does not occur, since it
is clearly impossible! This concludes the proof of the claim.

For a given matching of F , let r ≥ 0 be the minimal radius of a disk
that intersects each component of the matching. If r = 0, then we are done,
so suppose r > 0. We will show that we can find a new matching with
associated radius r′ < r.

Let D be a disk of minimal positive radius that intersects every compo-
nent of a given matching. Since D is of minimal radius, some components
of the matching must be tangent to D, and let P = {p1, . . . , pn} denote
these points of tangency. If P can be strictly separated from the center
of D, then we could nudge D slightly towards the {pi} such that every pi
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Fig. 4. No member of {A0, A1, B0, B1} is tangent to D

is contained in the interior of D, which would still intersect the interior of
all the remaining components, but this would imply that D was not mini-
mal. It therefore follows by Carathéodory’s theorem that the center of D
is contained in conv(Q) for some Q ⊂ P with |Q| ≤ 3. If |Q| = 2 then it
follows by Claim 4 that we can rearrange the matching of the four bodies
involved, obtaining a matching with fewer tangency points. If |Q| = 3 then
it also follows from Claim 4 that some two of the three components involved
can be rearranged and again reducing the number of tangency points: If no
pair of components involved can be rearranged, they all fall into case (ii)
of Claim 4, which results in a triple which is not tight. In this way we
can keep removing tangency points until the remaining ones can be strictly
separated from the center of D. The resulting matching has an associated
radius strictly smaller than the radius of D. This completes the proof of
the Lemma 3.

Proof of Theorem 1. First assume there is an even number of members
in F (here we need disregard at most one member). By Lemma 3 there
is a matching of F and a point p contained in every component. For each
member of A of F let LA denote the set of lines through p that intersect A. If
p /∈// A the union of lines in LA, denoted by {LA}, is a double cone with apex
at p and we refer to the half which contains A as the positive part of {LA}
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and the other half as the negative part. Let M ⊂ F denote the subfamily
whose cones {LA}A∈M are minimal with respect to inclusion. Using, for
instance, Proposition 19 of [16], we may assume that there are pairs X, Y
in M for which LX ∩LY = ∅. Among such pairs, choose one, A, B for which
the angular distance between the positive parts of LA and LB is maximal.
Let l1 and l2 be the boundary lines of LA, and l3 and l4 the boundary lines
of LB. (See Figure 5). We will show that there is a subfamily G ⊂ F ,
with |G| > 1

2 |F |, such that every member of G meets at least one of the li,
i = 1, . . . , 4, which will complete the proof.

Fig. 5. {A,B} ⊂ M ⊂ F are chosen so the angle β is maximal. This implies that the
open double cone bounded by l2 and l3 (shaded region) cannot contain any members

of F

Consider the open double cone bounded by the positive part of LA (LB)
and the negative part of LB (LA): It cannot contain any member of F as
this would contradict the maximal choice of angle between A and B. (See
Figure 5). The open cone bounded by the negative parts of LA and LB

cannot contain any member of F , as this would, together with A and B,
violate the condition that every triple is tight. Thus every member of F
which does not meet any li must be contained in the open cone bounded
by the positive parts of LA and LB, but since we have a matching of F for
which every component contains p, this open cone contains at most � |F |

2 �−2
members of F .



Geometric Transversal Theory: T (3)-families in the Plane 195

3. The Colorful Hadwiger Theorem

One of the classical results of geometric transversal theory is Hadwiger’s
theorem from 1957 [15]: A finite family of pairwise disjoint convex bodies
has a line transversal if and only if the members of the family admit a linear
ordering such that each three members of the family are intersected in the
given order by a suitable line.

We can think of Hadwiger’s theorem to be dealing with a special class
of T (3)-families. It is interesting to note that Hadwiger’s theorem does not
guarantee that there is a line that meets the members of the family in the
given order. If one asks for a line that meets the members in the prescribed
order, one must require that every four members can be intersected in the
given order by a suitable line, as was noted by Tverberg [26] andWenger [27].

Hadwiger’s theorem has had a great influence on geometric transversal
theory. In a sense it was a forerunner to the notion of a geometric permuta-
tion introduced by Katchalski, Lewis and Zaks [20] in 1985, almost 30 years
later. Geometric permutations have been studied extensively as a tool in
geometric transversal theory (see [17] for many references), and they also
give rise to many questions that are interesting in their own right.

The ordering condition in Hadwiger’s theorem can be reformulated as
follows: If the members of the family are ordered A1, . . . , An, then for every
1 ≤ i < j < k ≤ n we have conv(Ai∪Ak)∩Aj �=�� ∅. It is easy to see that when
the members of the family are pairwise disjoint this condition is equivalent
to the ordering condition in Hadwiger’s Theorem. The advantage of the
latter formulation is that it still makes sense when we drop the condition of
pairwise disjointness. This raises the question if there is a generalization of
Hadwiger’s transversal theorem for general families of convex bodies in the
plane. This is indeed the case as was shown by Wenger [27] in 1990.

Theorem 5 (Wenger). Let F = {A1, . . . , An} be a family of convex
bodies in the plane such that for every 1 ≤ i < j < k ≤ n we have
conv(Ai ∪Ak) ∩Aj �=�� ∅. Then F has a transversal.

The proof of Theorem 5 uses the fact that each disjoint pair {Ai, Aj} ⊂ F
(i < j) gives rise to a pair of antipodal arcs of separation directions on the
circle. Depending on whether the direction separates with Ai on the left
and Aj on the right (or vice versa) the direction is labeled positive (or
negative). If there is no transversal to the family then the separation arcs
must cover the circle, and it follows that the circle is covered by two open
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sets (the union of the positive arcs and the union of the negative arcs).
By the Borsuk–Ulam theorem one of these open sets contains an antipodal
pair, and a simple case analysis of this situation yields a contradiction.
Wenger’s proof also generalizes to the setting of a topological affine plane
as was noted in [7], which means that the straightness of the lines is not a
necessary assumption.

In 2008, Arocha, Bracho and Montejano [4] discovered a generalization
of Theorem 5 in the spirit of Bárány’s generalization of Carath´´ eodory’s´
theorem [5]. They call this the Colorful Hadwiger Theorem.

Theorem 6 (Arocha–Bracho–Montejano). Let F = F1FF ∪ F2FF ∪ F3FF =
{A1, . . . , An} be a family of convex bodies in the plane. If for every
1 ≤ i < j < k ≤ n where the Ai, Aj , Ak belong to distinct parts (F(( pFF ’s) we
have conv(Ai ∪Ak) ∩Aj �=�� ∅, then one of the FpFF has a line transversal.

Notice that Theorem 6 does not require the parts FpFF to be disjoint:
A convex body Aj could belong to more than one of the F ′

pFF s. In particular,
if we let F1FF = F2FF = F3FF then we obtain Theorem 5. The proof of Theorem 6
resembles Wenger’s proof but requires an additional combinatorial lemma,
and it is easily seen that it also extends to the more general setting of a
topological affine plane. We conclude with an application of Theorem 6 to
general T (3)-families.

Corollary 7. α(3) ≥ 1
5 .

Proof. Let F be a finite family of compact convex bodies. Using a standard
compactness argument we can assume that the bodies are |F | different
convex polygons, no two having vertices in common, and no three vertices
being collinear. Then we can choose any direction as vertical and find two
distinct vertical lines l and m having the following property:

If a, b, c denotes the number of bodies in F in the three open strips
defined by l and m, then max{a, b, c} −min{a, b, c} ≤ 1.

Assume that R2 is the strip that is bounded by l and m. (See Figure 6
below). Let G ⊂ F consist of the members of F that are contained in
one of the regions Ri. If |F \ G| ≥ 2

5 |F |, then we are done since either
l or m intersects at least 1

5 |F | members of F . We may therefore assume
that |G| ≥ 3

5 |F |. Partition G = G1 ∪ G2 ∪ G3 such that the members
of Gi are contained in region Ri. Label arbitrarily the members of G1 by
{1, . . . , |G1|}, the members of G2 by {|G1| + 1, . . . , |G1| + |G2|}, and the
members of G3 by {|G1|+ |G2|+1, . . . , |G1|+ |G2|+ |G3|}. By construction,
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G will satisfy the conditions of Theorem 6, therefore one of the Gi has a
transversal.

Partitioning of G in the proof of Corollary 7

4. Eckhoff’s Partition Theorems for T (3)- and

T (4)-families

Consider the following Gallai-type question: For a given integer k ≥ 3 does
there exist a finite positive integer p(k) such that every T (k)-family F admits
a partition into at most p(k) parts such that each part has a transversal?

An affirmative answer to this question would immediately imply α(k) ≥
1

p(k) . Here are two results due to Eckhoff [8, 9] which answer this question
in two particular cases.

Theorem 8 (Eckhoff). A T (4)-family can be partitioned into two parts
such that each part has a transversal.

Theorem 9 (Eckhoff). A T (3)-family can be partitioned into four parts
such that each part has transversal.

Eckhoff’s proof of Theorem 8 [8] relies on a lemma which states that if
a family F of convex bodies satisfies the property that any pair of members
in F can be intersected by a vertical or horizontal line then there exists a
vertical line v and a horizontal line h such that any member of F meets v
or h. The fact that a T (4)-family has the stated property was already shown
by Hadwiger and Debrunner in [16], where they deduced that p(4) ≤ 4.

Theorem 9 is much more complicated to establish and is based on ideas
due to Kramer [23]. In the proof [9] Eckhoff starts by singling out four
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special lines and then makes several deductions concerning the relative
positions of the sets with respect to these lines. What follows is an intricate
series of rotations and translations of these special lines to obtain a position
where each member of the family is met by at least one of these (new) lines.

Eckhoff has pointed out that it is strongly believed that three lines should
be sufficient, but so far no proof is known. See Section 4 of [9] for a detailed
discussion of this problem. In [8] Eckhoff gives an example that shows that
three lines may be necessary, and therefore this approach could ultimately
give a lower bound α(3) ≥ 1

3 . It would be of considerable interest to find a
new (simpler) proof of Eckhoff’s partition theorem for T (3)-families and/or
a proof or counter-example to Eckhoff’s (Gallai-type) conjecture. It should
also be noted that the fact that there is a finite piercing number follows
from the more general result by Alon and Kalai [1]. As pointed out earlier,
Eckhoff’s partition theorems give the following.

Corollary 10. α(3) ≥ 1
4 and α(4) ≥ 1

2 .

5. Improved Bounds for T (k)-families

In [12] Eckhoff improves on the lower bound for α(k). In particular it

is shown that α(k) ≥ 1 −
√
2√

k−1
when k ≥ 4. The methods employed

involve the Fractional Helly Theorem due to Katchalski and Liu [21] and an
analogous result concerning intersections of arcs on the circle. The key to the
argument is a transformation which maps a pair of convex bodies to an arc
on the circle. This transformation has previously been used for transversal
problems by Hadwiger and Debrunner (see for instance Proposition 26 of [16]
and Eckhoff [8]).

Eckhoff [12] also constructs a family of disks which shows that α(3) ≤ 2
3 ,

which means that Katchalski’s conjecture would be best possible if true.
A slightly weaker version of Eckhoff’s construction can be described as
follows.

Let C denote the unit radius circle centered at the origin. It is easily
verified that any strip of width 3

2 can cover at most 2
3 of the total length

of C. If we place m points uniformly on C, then, as m tends to infinity, the
greatest proportion of points which can be covered by a strip of width 3

2
will tend to 2

3 . If we now replace each of the points on C by a disk of radius
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3
4 centered at the respective point, it is easily seen that a line l intersects
a disk if and only if the strip of width 3

2 symmetric about l contains the
center of the disk. Furthermore it is easily verified that the resulting family
of disks is a T (3)-family. This proves that α(3) ≤ 2

3 .

Recently, the present author [18] has improved on Eckhoff’s results. It
is shown that

α(k) ≥
(

2

k(k − 1)

)1/(k−2)

.

For k = 3 this gives α(3) ≥ 1
3 , which is currently the best known. Also,

for k ≥ 6 this bound is sharper then the one from Eckhoff [12]. It is
interesting to note that the best known lower bounds for α(4) and α(5) still
follow from Theorem 8. Also the upper bound for α(k) is improved in [18].
Constructions are given that give the following upper bounds. (The reader
should consult [18] for more details).

α(k) ≤ k − 2

k − 1
.

6. Remarks

The results of Section 5 disprove Katchalski’s conjecture on the value of α(3)
and Eckhoff’s conjecture regarding α(k). However it is still possible that
Eckhoff’s conjecture describes the correct asymptotic behavior of the func-
tion α(k). It is tempting to conjecture that α(k) = k−2

k−1 .

It should also be mentioned that the planar results discussed in this pa-
per have higher-dimensional analogues (i.e. hyperplane transversals), some-
thing that follows from the previously mentioned results due to Alon and
Kalai [1]. In fact their results imply the existence of higher-dimensional
analogues of the Gallai-type results discussed in Section 4, and even much
more general (p, q)-type theorems, however much less is known about op-
timal bounds. For more information the reader should consult Eckhoff’s
surveys [10, 11], as well as the paper by Alon et al. [2] which shows the im-
portance of the Fractional Helly Theorem of Katchalski and Liu [21] with
respect to these problems.

For the main result of Section 2, the crucial observation is Lemma 3.
This Tverberg-type Lemma seems interesting in its own right, and there
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should be several ways it could be generalized. We first describe a higher-
dimensional version due to R. Karasev [19].

Let us define for a given family F of convex sets in Rd the Carathéodory´
number, cF , to be the least integer such that for any subset G ⊂ F of size
at least cF we have the following.

conv
( ⋃

X∈G
X
)
=

⋃
H⊂G,|H|=cF

(
conv

( ⋃
X∈H

X
))

Note that Carathéodory’s theorem implies that´ cF ≤ d+ 1.

Theorem 11 (Karasev). Let F be a family of convex sets (in Rd) with
Carathéodory number c, and suppose |F | = ck + 1. Then F can be
partitioned into k non-empty parts F = F1FF ∪· · ·∪FkFF such that F1FF ∩· · ·∩FkFF �=��
∅.

It is not known whether the ‘+1’ is necessary, and we conjecture that
Theorem 11 also holds when |F | = cFk.

It seems possible that there is a further generalization of Lemma 3, but
we were unable to establish this. Here we state the planar version: For
k ≥ 3 call a k-tuple {A1, . . . , Ak} of convex bodies in the plane tight if the
following holds: ⋃

i<j

conv(Ai ∪Aj) is convex.

By Caratheodory’s Theorem it follows that if every k-tuple of a family of
convex bodies is tight then every (k+1)-tuple is also tight. It seems plausible
that the conclusion of Lemma 3 could hold (that there is a matching in
which the components have a common point) under the weaker condition
that every k-tuple is tight, for k > 3.

Problem 12. Does there exist an increasing function f(n), such that every
family F = {A1, . . . , An} (n = 2k) for which every f(n)-tuple is tight admits
a partition into disjoint pairs F = B1 ∪ · · · ∪Bk such that conv(B1) ∩ · · · ∩
conv(Bk) �=�� ∅?

The first higher-dimensional analogue of Hadwiger’s transversal theorem
was discovered by Goodman and Pollack [13]. Subsequently Pollack and
Wenger found a short proof based on the Borsuk–Ulam Theorem [25], and
the most general version is due to Anderson and Wenger [3]. The key is
to replace the linear ordering to a higher-dimensional analogue, namely an
oriented matroid.
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Theorem 13 (Anderson–Wenger). A family F of compact convex sets
in Rd has a hyperplane transversal if and only if for some k, 0 ≤ k < d,
there is and acyclic oriented matroid of rank k + 1 such that every k + 2 of
the sets have a k-transversal meeting them consistently with that oriented
matroid.

An oriented k-flat (k-dimensional affine subspace) meets a family of
convex sets consistently with a given acyclic oriented matroid, M , if one
can choose a point from the intersection of each set and the k-flat such that
the orientation of each (k+1)-tuple of points matches the orientation of the
corresponding (k + 1)-tuples of M .

It seems to be a challenging problem of geometric transversal theory to
find a higher-dimensional version of the Colored Hadwiger Theorem. Only
some very special cases in R3 have been obtained [4].

Note added in proof. Theorem 11 has appeared in [6].
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[15] H. Hadwiger, Über Eibereiche gemeinsamer Treffgeraden, Portugal Math., 16 (1957),
23–29.

[16] H. Hadwiger, H. Debrunner and V. Klee, Combinatorial Geometry in the Plane,
Holt, Rinehart & Winston, New York, 1964.

[17] A. F. Holmsen, Recent Progress on line transversals in the plane, Contemp Math.,
453 (2008), 283–297.

[18] A. F. Holmsen, New results for T (3)-families in the plane, Mathematika, 56 (2010),
86–92.

[19] R. Karasev, Personal communication.

[20] M. Katchalski, T. Lewis and J. Zaks, Geometric permutations for convex sets,
Discrete Math., 54 (1985), 271–284.

[21] M .Katchalski and A. Liu, A problem of geometry in Rn, Proc. Amer. Math. Soc.,
75 (1979), 284–288.

[22] M. Katchalski and A. Liu, Symmetric twins and common transversals, Pacific
J. Math., 86 (1980), 513–515.

[23] D. Kramer, Transversalenprobleme vom Hellyschen und Gallaischen Typ. Disserta-
tion, Universitat Dortmund, 1974.¨
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1. Introduction

Suppose we have two convex sets A and B in euclidean d-space Rd. Assume
the only information we have about A and B comes from the space of their
transversal lines. Can we determine whether A and B have a point in
common? For example, suppose the space of their transversal lines has an
essential curve; that is, suppose there is a line that moves continuously in Rd,
always remaining transversal to A and B, and comes back to itself with the
opposite orientation. If this is so, then A must intersect B, otherwise there
would be a hyperplane H separating A from B; but it turns out that our
moving line becomes parallel to H at some point on its trip, which is a
contradiction to the fact that the moving line remains transversal to the
two sets. If we have three convex sets A, B and C, for example, in R3, then
our essential curve does not give us sufficient topological information. In
this case, to detect whether A ∩B ∩C �=�� φ, we need a 2-dimensional cycle.
So, for example, if we can continuously choose a transversal line parallel to
every direction, then there must be a point in A ∩ B ∩ C, otherwise if not,
the same is true for π(A)∩π(B)∩π(C), for a suitable orthogonal projection
π : R3 → H where H is a plane through the origin (see [4, Lemma 3.1]).
Hence clearly there is no transversal line orthogonal to H.

Suppose now we have three convex sets A, B and C in euclidean 3-
space R3. Assume the only information we have about A, B and C comes
from the space of their transversal planes. Can we determine whether A,

∗Supported by CONACYT, 41340.
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B and C have a transversal line? For example, suppose the space of their
transversal planes has an essential curve; that is, suppose there is a plane
that moves continuously in R3, always remaining transversal to A, B and C,
and comes back to itself with the opposite orientation. If this is so, then
there must be a transversal line to {A,B,C}. This time the proof is slightly
more complicated from the topological point of view. Let me present it here.

Suppose there is no transversal line to {A,B,C}. Denote by T2TT the
space of transversal planes to {A,B,C}. Consider the continuous map
ψ : A × B × C → T2TT given by ψ(a, b, c), the unique plane containing
{a, b, c}. The continuous map ψ is well defined precisely because there is
no transversal line to {A,B,C}. Furthermore, if H ∈ T2TT , then ψ−1(H) =
(A∩H)× (B ∩H)× (C ∩H), which is contractible by the convexity of the
two sets. The fact that the fibers of ψ are contractible implies that ψ is a
homotopy equivalence. This implies that T2TT is contractible, contradicting
the hypothesis that there is an essential curve in T2TT .

We claim that for a sufficiently small family of convex sets, the topology
of its transversals provide enough information to derive geometric informa-
tion. To be more precise, let us state the following definition.

Let F be a family of compact, convex sets. We say that F has a
topological ρ-transversal of index (m, k), ρ < m, 0 < k ≤ d − m, if there
are, homologically, as many transversal m-planes to F as m-planes through
a fixed ρ-plane in Rm+k. Clearly, if F has a ρ-transversal plane, then F has
a topological ρ-transversal of index (m, k), for ρ < m and k ≤ d−m. The
converse is not true. It is easy to give examples of families with a topological
ρ-transversal but without a ρ-transversal plane. We conjecture that for a
family F of k + ρ + 1 compact, convex sets in euclidean d-space Rd, there
is a ρ-transversal plane if and only if there is a topological ρ-transversal of
index (m, k). A good reference for the algebraic topology needed in this
paper is [8], and [7] for the geometric transversal theory.

The purpose of this paper is to use the structure of the topology of the
space of transversals to obtain geometric results in the spirit of the colourful
theorems of Lovász and Bárány.
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2. The Structure of the Space of Transversals

The purpose of this section is to state several results about the structure of
the topology of the space of transversals to a family of convex sets. For the
proofs see [1], [4], [5] and [9].

Let F be a family of compact, convex sets in Rd. By M(d,m) we denote
the space of m-planes in Rd. It can be considered as an open subset of
G(d+ 1,m+ 1) and retractible to the classic Grassmanian space, G(d,m),
of m-dimensional linear subspaces of Rd. For 0 < m < d, we denote by
TmTT (F) the subspace of M(d,m) ⊂ G(d+1,m+1) consisting of all m-planes
transversal to F .

We say that F has a topological ρ-transversal of index (m, k), ρ < m,
0 < k ≤ d−m, if there are homologically as many transversal m-planes to
F as m-planes through a fixed ρ-plane in Rm+k.

More precisely, for ρ < m, 0 < k ≤ d−m, the family F has a topological
ρ-transversal of index (m, k) if

i∗([0, . . . , 0, k, . . . , k]) ∈ H(m−ρ)k
(
TmTT (F),Z2

)
is not zero,

where i∗ : H(m−ρ)k
(
G(d + 1,m + 1),Z2

)
→ H(m−ρ)k

(
TmTT (F),Z2

)
is the

cohomology homomorphism induced by the inclusion TmTT (F) ⊂ M(d,m) ⊂
G(d+ 1,m+ 1), and

[0, . . . , 0, k, . . . , k] ∈ H(m−ρ)k
(
G(d+ 1,m+ 1),Z2

)
is the Schubert-cocycle, in which the last symbol starts with ρ + 1 zeros
(see [6] for the definition of Schubert cocycle).

Clearly, if F has a ρ-transversal plane, then F has a topological ρ-
transversal of index (m, k), for ρ < m and k ≤ d − m. The converse
is not true. It is easy to give examples of families with a topological ρ-
transversal but without a ρ-transversal plane. We conjecture that for a
family F of k + ρ + 1 compact, convex sets in euclidean d-space Rd, there
is a ρ-transversal plane if and only if there is a topological ρ-transversal of
index (m, k).

The proof of the following theorem follows the ideas of the proof, given
in the introduction, that the space of transversal planes to three convex
sets, without transversal lines, in 3-space is contractible. See the proof of
Theorem 3.1 in [1].
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Theorem 2.1. Let 0 ≤ ρ < m ≤ d−1. Let F ={A0, . . . , Aρ+1} be a family
of convex sets in Rd and let αi ∈ Ai, i = 0, . . . , ρ + 1. Suppose there is no
ρ-plane transversal to F . Then the inclusion

TmTT ({α0, . . . , αρ+1}) ⊂ TmTT ({A0, . . . , Aρ+1})

is a homotopy equivalence.

In particular, TmTT (F ) has the homotopy type of G(d− ρ− 1,m− ρ− 1).

As a corollary, we have the following theorem which proves our main
conjecture when k = 1. This theorem will allow us to transform topological
information into geometric information.

Theorem 2.2. Let 0 ≤ ρ < m, and let F be a family of ρ + 2 compact
convex sets in Rd. Then there is a ρ-plane transversal to F if and only if
there is a topological ρ-transversal plane of index (m, 1).

That is, there is a ρ-plane transversal to F if

[0, . . . , 0, 1, . . . , 1] is not zero in TmTT (F),

where [0, . . . , 0, 1, . . . , 1] ∈ H(m−ρ)
(
G(m + 1, d + 1),Z2

)
is the (m − ρ)-

Stiefel–Whitney characteristic class, in which the last symbol starts with
ρ+ 1 zeros.

All results in this paper can be stated in a more general setting, but to
simplify the topological technicalities and to clarify the ideas, we will prove
and state them only for dimensions 3 and 4. So, let us summarize in the
following proposition the topology we will need in the next section.

Proposition 2.1. Let F be a family of convex sets in R4. Let D(F ) ⊂ RP3

be the set of directions in R4 orthogonal to a transversal hyperplane of F
and let d(F ) ⊂ G(4, 2) be the set of directions in R4 orthogonal to a
transversal plane of F . Then

a) if the homomorphism induced by the inclusion H1
(
RP3,Z2

)
→

H1
(
D(F ),Z2

)
is not zero, there is a transversal plane to every quadru-

ple of the convex sets of F ,

b) if the homomorphism induced by the inclusion H2
(
RP3,Z2

)
→

H2
(
D(F ),Z2

)
is not zero, there is a transversal line to every triple of

the convex sets of F ,
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c) if the homomorphism induced by the inclusion H1
(
G(4, 2),Z2

)
=

Z2 → H1
(
d(F ),Z2

)
is not zero, there is a transversal line to every

triple of the convex sets of F .

Proof. Note that the classical retraction M(4, 3) → RP 3 is a homotopy
equivalence. Furthermore its restriction T3TT (F ) → D(F ) is a homotopy
equivalence because the fibers are contractible. So, if the homomorphism
induced by the inclusion H1

(
RP 3,Z2

)
→ H1

(
D(F ), Z2

)
is not zero, then

the generator of G(5, 4) is not zero in T3TT (F ) and hence by Theorem 2.2 there
is a plane transversal to every quadruple of convex sets of F . The proofs of
b) and c) are essentially the same.

3. The Colorful Geometric Results

The purpose of this section is to use the topological results developed in
the previous section to obtain geometric results in the spirit of the colorful
theorems of Lovász and Bárany [3].´

We state the colorful Helly Theorem.

Theorem 3.1. Let F be a family of convex sets in Rd painted with d + 1
colors. Suppose that every heterochromatic d+1-tuple of F is intersecting.
Then there is a color with the property that the family of all convex sets of
this color is intersecting.

In particular, if we have a collection of red and blue intervals in the
line and every red interval intersects every blue internal, then either there
is a point in the intersection of all red intervals or there is a point in the
intersection of all blue intervals.

The colorful Helly Theorem has the following geometric interpretation:
any linear embedding of a combinatorial d-cube in Rd has, in every direction,
a transversal line to two opposite faces.

Let us consider the configuration of lines in the plane that consists of
nine points and six lines, in which the first three red lines, �1, �2, �3 are
parallel and the next three blue lines L1, L2, L3 are parallel and orthogonal
to the red ones. So every line has exactly three points, and the intersection
of a red and a blue line consists exactly of one point. Let us denote by G3

the 2-dimensional simplicial complex describing this configuration, in which
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we have three red triangles corresponding to the red lines and three blue
triangles corresponding to the blue lines.

Theorem 3.2. In any linear embedding of G3 in euclidean 3-space R3,
there is either a transversal line to the red triangles or a transversal line to
the blue triangles.

Proof. The ingredients of the proof are: i) the fact that if RP 2, the
projective plane, is the union of two closed ANR sets R and B, then either
R contains an essential cycle or B contains an essential cycle, and ii) the
colorful Helly Theorem in the line.

Let R ⊂ RP 2 be the collection of directions orthogonal to transversal
planes to the red triangles and let B ⊂ RP 2 be the collection of directions
orthogonal to transversal planes to the blue triangles. First note that
R∪B = RP 2, because if L is any line through the origin, we may project the
three red triangles and the three blue triangles orthogonally onto L. Thus
we have three red intervals and three blue intervals in L with the property
that every red interval intersects a blue interval, but this means that either
there is a point in the intersection of all red intervals or there is a point in
the intersection of all blue intervals. Therefore there is, orthogonally to L,
either a plane transversal to the three red triangles or a plane transversal to
the three blue triangles. Since R∪B = RP 2, either R contains an essential
cycle or B contains an essential cycle. This immediately implies that there
is an essential cycle of planes (see the introduction) transversal to the red
triangles or an essential cycle of planes transversal to the blue triangles.
Thus there is either a transversal line to the red triangles or a transversal
line to the blue triangles.

We have essentially proved that if we have three red convex sets and
three blue convex sets in 3-space and every red set intersects every blue
set, then there is either a transversal line to the red sets or a transversal
line to the blue sets. Now we want to prove a similar theorem but this
time using more than two colors. For this purpose we need the following
proposition, which essentially claims that G(4, 2) cannot be covered by three
null homotopic sets.

Proposition 3.1. Let G(4, 2) = A1 ∪ A2 ∪ A3 be a closed cover of
the 4-dimensional Grassmanian space G(4, 2) of planes through the origin
in R4. For some i ∈ {1, 2, 3}, the homomorphism induced by the inclusion
H∗(G(4, 2),Z2

)
→ H∗(Ai,Z2

)
is not zero.
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Proof. The strategy is to prove first that there are γiγγ ∈ H∗(G(4, 2),Z2

)
,

i = 0, 1, 2 such that γ0∗γ1∗γ2 = 0. Recall (see [6] that the product structure��
in H∗(G(4, 2),Z2

)
can be totally described by the following formula:

[λ1, λ2][0, 1] =
∑

[ξ1, ξ2],

where the summation extends over all combinations ξ1, ξ2 such that

i) 0 ≤ ξ1 ≤ ξ2 ≤ 2,

ii) λ1 ≤ ξ1 ≤ λ2, λ2 ≤ ξ2 ≤ 2, and

iii) ξ1 + ξ2 = λ1 + λ2 + 1.

Let γ0 = [1, 1] and γ1 = [0, 1]. Then γ0∗γ1 = [1, 2] and then γ0∗γ1∗γ1 =
[2, 2] �= 0.��

Suppose that the homomorphism induced by the inclusion

H∗(G(4, 2),Z2

)
→ H∗(Ai,Z2

)
is zero, for i ∈ {1, 2, 3}. Hence by exactness

H∗(G(4, 2), Ai;Z2

)
→ H∗(G(4, 2),Z2

)
is an epimorphism. We can pull γ0, γ1, γ2 back to H∗(G(4, 2), Ai;Z2

)
and

hence pull the product γ0∗γ1∗γ1 back to H∗(G(4, 2), A1∪A2∪A3;Z2

)
= 0,

which is a contradiction.

We are ready for the following theorem:

Theorem 3.3. Suppose we have three red convex sets, three blue convex
sets and three green convex sets in R4 and every heterochromatic triple is
intersecting. Then there is one color that has a line transversal to all convex
sets of this color.

Proof. The proof is essentially that of the previous theorem but using the
colorful Helly Theorem in the plane and Proposition 3.3. Let R ⊂ G(4, 2)
be the set of directions in G(4, 2) orthogonal to transversal planes to the red
convex sets, let B ⊂ G(4, 2) be the set of directions orthogonal to transversal
planes to the blue convex sets, and finally let G ⊂ G(4, 2) be the set of
directions orthogonal to transversal planes to the green convex sets. First
note that R∪B ∪ G = G(4, 2), because if H is any plane through the origin,
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we may project our nine convex sets orthogonally onto L. So, by the colorful
Helly Theorem 3.2 in the plane, there is a color, say red, such that there
is a point in common to the projection of all convex sets of that color.
Therefore there is, orthogonally to H, a plane transversal to the three red
sets. Since R∪B ∪ G = G(4, 2), by Proposition 3.3 one of these closed sets,
say B without loss of generality, has the property that the homomorphism
induced by the inclusion H∗(G(4, 2),Z2

)
→ H1(B,Z2) is not zero, but if

this is so H1
(
G(4, 2),Z2

)
→ H1(B,Z2) is not zero. By Proposition 2.3c),

this implies that there is a transversal line to the three blue convex sets, as
required.

Now we will use a variant of the colorful Helly Theorem.

Proposition 3.2. Let F be a family of red, blue and green intervals in R1.
Suppose that for every heterochromatic triple, one of the intervals intersects
the other two. Then there is a color such that there is a point in common
to all intervals of this color.

Proof. If every pair of red and every blue intervals intersects, then by the
colorful Helly Theorem in the line, either there is point common to all red
intervals or there is a point common to all blue intervals. If not, there is
a red interval IRI ∈ F and a blue interval IBI ∈ F , such that IRI ∩ IBI = φ.
Therefore every green interval of F intersects both IRI and IBI , which implies
that there is point in common to all green intervals, as required.

This variant of the colorful Helly Theorem and the fact that RP3 can
not be covered by three null homotopic closed sets together give rise to the
following theorem:

Theorem 3.4. Suppose we have four red convex sets, four blue convex sets
and four green convex sets in R4 and for every heterochromatic triple one
of the sets intersects the other two. Then there is a color such that there is
a plane transversal to all convex sets of this color.

Proof. Let R ⊂ RP 3 be the collection of directions orthogonal to transver-
sal hyperplanes to the red convex sets, let B ⊂ RP 3 be the collection of
directions orthogonal to transversal hyperplanes to the blue convex sets,
and let G ⊂ RP 3 be the collection of directions orthogonal to transversal
hyperplanes to the green convex sets. Note that R∪B ∪ G = RP 3, because
if L is any line through the origin, we may project our twelve convex sets
orthogonally onto L, obtaining four red intervals, four blue intervals and
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four green intervals in L with the property that for every heterochromatic
triple, one of the intervals intersects the other two. Then by Proposition 3.5,
there is a color such that there is a point common to all intervals of this
color. Therefore there is, orthogonally to L, a hyperplane transversal to
the three convex sets of this color. Since R ∪ B ∪ G = RP3, the Lusternik
Schnirelmann category RP3 implies that one of these closed sets, say B with-
out loss of generality, has the property that the homomorphism induced by
the inclusion H1

(
RP3,Z2

)
→ H1(B,Z2) is not zero. By Proposition 2.3a),

this implies that there is a transversal plane to the blue convex sets as
required.

It is well known that the projective plane is not the union of two null
homotopic closed sets, but can be the union of three null homotopic closed
sets. As a consequence, the following topological proposition, whose proof is
an interesting application of the Mayer–Vietoris exact sequence in homology,
will allow us to obtain two interesting results.

Proposition 3.3. Let A ∪B ∪ C = RP2 be a closed, null homotopic cover
of projective 2-space. Then A ∩B ∩ C is non-empty. Moreover, A ∩B ∩ C
has at least four non-empty components.

Theorem 3.5. Suppose we have three red convex sets, three blue convex
sets and three green convex sets in R3 and every heterochromatic triple is
intersecting. Then either there is a color such that there is a line parallel
to the xy-plane transversal to all convex sets of this color, or else there are
three parallel transversal hyperplanes, one for the red sets, one for the blue
sets and one for the green sets.

Proof. As before, let R ⊂ RP 2 be the collection of directions orthogonal to
transversal hyperplanes to the red convex sets, let B ⊂ RP 3 be the collection
of directions orthogonal to transversal hyperplanes to the blue convex sets
and let G ⊂ RP 3 be the collection of directions orthogonal to transversal
hyperplanes to the green convex sets. Note that R∪B ∪ G = RP 2, because
if L is any line through the origin, we may project our nine convex sets
orthogonally onto L, obtaining three red intervals, three blue intervals and
three green intervals in L with the property that every heterochromatic
triple is intersecting. Then, by the colorful Helly Theorem 3.1 in the plane,
there is a color such that there is a point in common to all intervals of this
color. Therefore there is a hyperplane orthogonal to L transversal to the
three convex sets of this color. Hence R ∪ B ∪ G = RP2 is a closed cover.
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Suppose that for any of the three colors, there is no line parallel to the xy-
plane transversal to all convex sets of this color. Hence R∪B ∪ G = RP2 is a
closed, null homotopic cover of projective 2-space. By Proposition 3.7, there
is at least one line L through the origin whose direction lies in R ∩ B ∩ G.
Then there is a transversal hyperplane to the red sets orthogonal to L, a
transversal hyperplane to the blue sets and a transversal hyperplane to the
green sets.

Theorem 3.6. Suppose we have three red convex sets, three blue convex
sets and three green convex sets i R3 and for every heterochromatic triple
one of the sets intersects the other two. Then either there is a color such
that there is a line transversal to the all convex sets of this color or else there
is a color, say green, and two parallel planes H1 and H2HH such that H1 is a
transversal plane to all green and red convex sets and H2HH is a transversal
plane to all green and blue convex sets.

Proof. DefineR, B and G as in the proof of the previous theorem. Note that
R∪B ∪ G = RP 2, because if L is any line through the origin, we may project
our nine convex sets orthogonally onto L, obtaining three red intervals, three
blue intervals and three green intervals in L with the property that for every
heterochromatic triple, one of the intervals intersects the other two. Then
by Proposition 3.5, there is a color such that there is a point common to
all intervals of this color. Therefore there is a hyperplane orthogonal to L
transversal to the three convex sets of this color. Hence R ∪ B ∪ G = RP2.
Suppose that for any of the three colors, there is no line transversal to all
convex sets of this color. Hence R∪B ∪ G = RP2 is a closed, null homotopic
cover of projective 2-space. By Proposition 3.7, there is at least one line L
through the origin whose direction lies in R∩ B ∩ G.

Let us project our nine convex sets orthogonally onto L, obtaining three
red intervals, three blue intervals and three green intervals in L. Note that
since the direction of L lies in R ∩ B ∩ G, every pair of intervals of the
same color intersect. If every pair of differently-colored intervals intersects,
then the collection of our nine intervals intersects pairwise and hence by
the Helly Theorem in the line, there is a point x0 ∈ L common to all nine
intervals. Then if H1 = H2HH is the plane orthogonal to L through x0, we
are done. If not, let I1 and I2II be the two intervals with different color that
are farthest apart. Suppose without loss of generality that I1 = [a1, b1] is
red, I2II = [a2, b2] is blue and a1 ≤ b1 < a2 ≤ b2. By the hypothesis, every
green interval contains both b1 and a2. Furthermore, every red interval IRI
contains b1, otherwise the distance from IRI to I2II would be greater than
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the distance from I1 to I2II . Similarly, every blue interval IBI contains b1.
Consequently the plane H1 orthogonal to L through b1 and the plane H2HH
orthogonal to L through a2 satisfy our requirements.

Proposition 3.4. Let A1 ∪ A2 ∪ A3 = RP2 be a closed cover and suppose
that A1∩A2∩A3 = A1∩A2 = A2∩A3 = A1∩A3. Then either A1∩A2∩A3

is not null homotopic or there is i ∈ {1, 2, 3} such that Ai − (A1 ∩A2 ∩A3)
is not null homotopic.

Proof. If A1∩A2∩A3 is null homotopic, then by duality there is an essential
curve α of RP2 contained in RP2−(A1∩A2∩A3). This essential curve must
lie in some connected component of RP2 − (A1 ∩A2 ∩A3). Therefore since
A1 ∩ A2 ∩ A3 = A1 ∩ A2 = A2 ∩ A3 = A1 ∩ A3, there must be i ∈ {1, 2, 3}
such that α is contained in Ai − (A1 ∩A2 ∩A3).

For the following theorems, we need a definition. Let F be a family of
red, blue and green convex sets in R3. A transversal plane (resp. line) is a
bicolor transversal plane (resp. line) if it cuts all convex sets of two different
colors.

Theorem 3.7. Let F be a family of red, blue and green convex sets
in R3. Suppose every pair of convex sets of F with different color intersects
and suppose that every bicolor transversal plane through the origin is a
transversal plane to all convex sets of F . Then there is a transversal line
to all convex sets of F .

Proof. Let us begin by analyzing the situation in the line. Suppose we have
a family of red, blue and green intervals in the line with the property that
every pair of intervals of different color intersect. Then by Helly’s Theorem
in the line, either all intervals have a point in common or there is a pair of
intervals of the same color that do not intersect. In the latter case, all the
intervals of the other two colors have a point in common.

As always, let RRB ⊂ RP 2 be the collection of directions orthogonal
to transversal planes to the red and the blue convex sets of F . Similarly,
we have RRG ⊂ RP 2 and RGB ⊂ RP 2 for the other two combinations of
colors. Our first argument proves that RRB ∪RRG∪RGB = RP2 is a closed
cover. Now note that R1 ∩ R2 ∩ R3 = R1 ∩ R2 = R1 ∩ R3 = R2 ∩ R3.
Furthermore, our hypothesis implies that for i ∈ {1, 2, 3},Ri−(R1∩R2∩R3)
is null homotopic. Therefore by Proposition 3.10, and since the directions
in which there are transversal planes to all convex sets of F coincide with
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R1 ∩R2 ∩R3, there is an essential curve of transversal planes to all convex
sets of F and consequently there is a transversal line to all convex sets of F .

Theorem 3.8. Let F be a family of red, blue and green convex sets in R3.
Suppose every non-monochromatic triple is intersecting and every bicolor
transversal line parallel to the xy-axis is a transversal line to all convex sets
of F . Then there is, parallel to every plane of R3, a transversal line to all
convex sets of F .

Proof. Let us begin by analyzing the situation in the plane. Suppose we
have a family of red, blue and green convex sets in the plane with the
property that every non-monochromatic triple is intersecting. Then the
family F is pairwise intersecting, and furthermore, by Helly’s Theorem in
the plane, either all convex sets have a point in common or there are three
convex sets of the same color that do not intersect but which are pairwise
intersecting. If this is so, then by Lemma 1 (k = λ = 2) of [10], all convex
sets of the other two colors have a point in common.

As always, let R1 ⊂ RP 2 be the collection of directions parallel to
transversal lines to the red and the blue convex sets of F . Similarly, we
have R2 ⊂ RP 2 and R3 ⊂ RP 2 for the other two combinations of colors.
Our first argument proves that R1 ∪R2 ∪R3 = RP2 is a closed cover. Now
note that R1 ∩ R2 ∩ R3 = R1 ∩ R2 = R1 ∩ R3 = R2 ∩ R3. Furthermore,
our hypothesis implies that for i ∈ {1, 2, 3}, Ri − (R1 ∩ R2 ∩ R3) is null
homotopic. Therefore by Proposition 3.10, and since the directions in which
there are transversal lines to all convex sets of F coincide with R1∩R2∩R3,
there is an essential curve of transversal lines to all convex sets of F and
consequently given a plane H ⊂ R3, one of these transversal lines must be
parallel to H.

A system Ω of λ-planes in Rd is a continuous selection of a unique λ-
plane in every direction of Rd. In [2], it is proved that λ + 1 systems of
λ-planes in Rd coincide in some direction. We use this fact to prove the
following theorem.

Theorem 3.9. Let F be a family of red, blue, white and green convex sets
in R3. Suppose that every non-heterochromatic triple is intersecting. Then
there is a transversal line to all convex sets.
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Proof. By Helly’s Theorem in the plane, there is, parallel to every direction,
a transversal line to the red and blue convex sets. The same is true for
white and green. So we have two different systems of lines. Consequently
by Theorem 2 of [2], they must coincide in some direction.

A similar argument proves that a family of convex sets in R4 painted
with six colors and with the property that every non-heterochromatic triple
is intersecting has a transversal plane to all convex sets.
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Survey on Decomposition of Multiple Coverings

JÁNOS PACH∗, DÖMÖTÖR PÁLVÖLGYI† and GÉZA TÓTH‡

The study of multiple coverings was initiated by Davenport and L. Fejes Tóth´
more than 50 years ago. In 1980 and 1986, the first named author published the
first papers about decomposability of multiple coverings. It was discovered much
later that, besides its theoretical interest, this area has practical applications
to sensor networks. Now there is a lot of activity in this field with several
breakthrough results, although, many basic questions are still unsolved. In this
survey, we outline the most important results, methods, and questions.

1. Cover-decomposability and the Sensor Cover Problem

Let P = {PiPP | i ∈ I} be a collection of sets in Rd. We say that P is an m-
fold covering if every point of Rd is contained in at least m members of P.
The largest such m is called the thickness of the covering. A 1-fold covering
is simply called a covering. To formulate the central question of this survey
succinctly, we need a definition.

Definition 1.1. A planar set P is said to be cover-decomposable if there
exists a (minimal) constant m = m(P ) such that every m-fold covering of
the plane with translates of P can be decomposed into two coverings.
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Note that the above term is slightly misleading: we decompose (parti-
tion) not the set P , but a collection P of its translates. Such a partition is
sometimes regarded a coloring of the members of P. The problem whether
a set P is cover-decomposable is also referred to as the cover decomposability
problem for P .

The problem of characterizing all cover-decomposable sets in the plane
was proposed by Pach [17] in 1980. He made the following conjecture, which
is still unsolved.

Conjecture 1.2 [17]. Every plane convex set P is cover-decomposable.

In the present survey, we concentrate on results and proof techniques
related to this conjecture. Obviously, in addition to systems of translates of
a set P , we could study the analogous questions for systems of homothets
of P (that is, similar copies in parallel position) or for systems of congruent
copies.

In [18], Conjecture 1.2 was proved for open centrally symmetric convex
polygons. More than twenty years later the proof was extended by Tardos
and Toth [23] to open triangles and then by P´´ alv´ olgyi and Tóth [22] to¨
any open convex polygon P . Sections 2 and 3 describe the basic ideas and
techniques utilized in these proofs.

Theorem 1.3 [18]. Every centrally symmetric open convex polygon is
cover-decomposable.

Theorem 1.4 [23]. Every open triangle is cover-decomposable.

Theorem 1.5 [22]. Every open convex polygon is cover-decomposable.

In fact, the proof gives a slightly stronger result: any set, which is the
union of finitely many translates of the same open convex polygon is also
cover-decomposable. See Section 4 for details.

Given a cover-decomposable set P , one can try to determine the exact
value ofm(P ), that is, the smallest integerm for which everym-fold covering
of the plane with translates of P splits into 2 coverings (cf. Definition 1.1).
For example, for any open triangle T , we have 12 ≥ m(T ) ≥ 4 [11]. However,
in most of the cases, the best known upper and lower bounds are very far
from each other.

One can further generalize the cover decomposability problem by asking
whether a sufficiently thick multiple covering of the plane can be decom-
posed into k coverings, for a fixed k ≥ 2. This question was raised in [18],
and first addressed in detail in [20].
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Definition 1.6. Given a set P ⊂ R2 and an integer k ≥ 2, let mk(P )
denote the smallest positive number m with the property that every m-
fold covering of the plane with translates of P can be decomposed into k
coverings. If such an integer m does not exist, we set mk(P ) =∞.

We believe that mk(P ) is finite for every cover-decomposable set P ,
but we cannot verify this conjecture in its full generality. However, the
statement is true for all currently known families of cover-decomposable
sets. In [18], it was shown that, for any centrally symmetric convex open
polygon P , the parameter mk(P ) exists and is bounded by an exponentially
fast growing function of k. In [23], a similar result was established for open
triangles, and in [22] for open convex polygons. However, all these results
were improved to the optimal linear bound in a series of papers by Pach
and Toth [20], Aloupis et al. [2], and Gibson and Varadarajan [10].´

Theorem 1.7 [20]. For any open centrally symmetric convex polygon P ,
we have mk(P ) = O(k2).

Theorem 1.8 [2]. For any open centrally symmetric convex polygon P ,
we have mk(P ) = O(k).

Theorem 1.9 [10]. For any open convex polygon P , we have mk(P ) =
O(k).

The problem of determining mk(P ) can be reformulated in a slightly
different way: for a given m, try to decompose an m-fold covering into as
many coverings as possible. This problem, more precisely, a slight general-
ization of this problem, is called the sensor cover problem in sensor network
scheduling. Suppose that we have a finite number of sensors scattered in a
region R, each monitoring some part of R, which is called the range of the
sensor. Each sensor has a duration for which it can be active and once it
is turned on, it has to remain active until this duration is over, after which
it will stay inactive. The load of a point is the sum of the durations of all
ranges that contain it, and the load of the arrangement of sensors is the
minimum load of the points of R. A schedule for the sensors is a starting
time for each sensor that determines when it starts to be active. The goal
is to find a schedule to monitor the given area, R, for as long as we can.
Clearly, the cover decomposability problem is a special case of the sensor
cover problem, when the duration of each sensor is the same (“unit” time).

Buchsbaum et al. [3] and Gibson and Varadarajan [10] proved their
result in this more general context. It was shown in [10] that for every open
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convex polygon P , there is a constant c(P ) such that for any instance of
the sensor cover problem with load c(P )k, where the range of each sensor is
a translate of P , there is a polynomial time computable schedule such that
every point is monitored for k units of time.

Conjecture 1.2 cannot be extended to all (not necessarily convex) poly-
gons.

Theorem 1.10 [19]. No concave quadrilateral is cover-decomposable.

In Section 5, following [19] and [21], we describe a large class of concave
polygons that are not cover-decomposable.

The definition of cover-decomposability can be extended to higher di-
mensions in a natural way. It is interesting to note that most of the ideas
presented in this survey fail to generalize to higher dimensions. The main
reason for this is that the statement analogous to Conjecture 1.2 is false in
higher dimensions.

Theorem 1.11 [16]. For d ≥ 3, the unit ball in Rd is not cover-
decomposable.

Theorem 1.12 [21]. For d ≥ 3, no convex polytope is cover-decomposable.

However, there is a notable exception in 3-dimensions, albeit unbounded:
the octant {(x, y, z) : x, y, z > 0}.

For the octant, even a 1-fold covering of the whole plane can be trivially
decomposed into any number of coverings. We get a more interesting
problem if we demand only a part of the plane to be covered.

Theorem 1.13 [11]. Any 12-fold covering of a finite point set by octants
can be decomposed into 2 coverings.

This property established in the above theorem is called finite-cover-
decomposability; see Definition 5.4. As an easy consequence, we obtain that
any 12-fold covering of the plane with homothets of a fixed triangle can be
split into two coverings.

As an easy consequence, we obtain that there is an integer m such that
any m-fold covering of the plane with homothets of a fixed triangle can
be split into two coverings. The statement holds with m = 12. In fact,
Conjecture 1.2 can be (and was) formulated in the following more general
form.
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Conjecture 1.14. For every plane convex set P , there exists a positive in-
teger m = m(P ) such that any m-fold covering of the plane with homothets
of P can be split into two coverings.

The methods developed in the first substantial publication in this topic
[18] were used in all later papers. Therefore, in the next two sections we
concentrate on this paper and sketch the proof of Theorem 1.3. In Subsec-
tions 3.2 and 3.3, we establish Theorems 1.7 and 1.4. In Section 4, we outline
the proofs of Theorem 1.5 and Theorem 1.9 for triangles. Section 5 contains
constructions proving (an extension of) Theorem 1.10 and Theorem 1.12.
We close this paper with some open problems.

2. Basic Tricks

A family of sets P is called locally finite if every point is contained in only
finitely many members of P. It follows by a standard compactness argument
that any m-fold covering of the plane with translates of an open polygon P
has a locally finite subfamily that forms an m-fold covering. Therefore, in
the sequel we will assume without loss of generality that all coverings that
we consider are locally finite.

In the next three subsections, we describe three basic tricks from [18]
that enable us to reduce the cover decomposability problem to a finite
combinatorial problem for hypergraphs.

2.1. Dualization

Let P = {PiPP | i ∈ I} be a collection of translates of a finite polygon P
in the plane, where I is a finite or infinite set. Let Oi denote the center
of gravity of PiPP . Obviously, P is an m-fold covering of the plane if and
only if every translate of P̄ , the reflection of P through the origin, contains
at least m elements of the point set O = {Oi | i ∈ I}. Furthermore,
P = {PiPP | i ∈ I} can be decomposed into two coverings if and only if the
point set O = {Oi | i ∈ I} can be colored with two colors such that every
translate of P̄ contains at least one point of each color.

Clearly, the reflected polygon P̄ is cover-decomposable if and only if
P is. Therefore, we have the following.
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Lemma 2.1. The polygon P is cover-decomposable if and only if there
exists an integer m satisfying the following condition. Any point set S in
the plane with the property that every translate of P contains at least m
elements of S can be colored with two colors so that every translate of P
contains at least one point of each color.

The same argument applies if we want to decompose a covering into
k > 2 coverings. Almost all later papers in the subject follow this “dual”
approach. In the sequel, we also study this version of the problem.

2.2. Divide and conquer – Reduction to wedges

The second trick from [18] is to cut the plane and the set S in Lemma 2.1
into small regions so that with respect to each of them every translate of
our polygon looks like an infinite “wedge”.

We use the following terminology. Two half-lines (rays) emanating from
the same point O divide the plane into two connected pieces, called wedges.
A closed wedge contains its boundary, an open wedge does not. The point O
is called the apex of the wedge. The angle of a wedge is the angle between
its two boundary half-lines, measured inside the wedge.

Let P be an open or closed polygon of n vertices. Consider a multiple
covering of the plane with translates of P . Then, the cover decomposition
problem can be reduced to wedges as follows. Divide the plane into small
regions, say squares, so that each of them intersects at most two consecutive
sides of any translate of P . Every translate of P can intersect only a bounded
number c of squares. If a translate of P contains at least cm points of a
set S, then at least m of those will belong to one of the squares. Therefore,
to find a coloring of the points of S meeting the requirements in Lemma 2.1,
it is sufficient to focus on a fixed subset of S ′ ⊂ S, consisting of all points
of S that lie in a single square. It is sufficient to 2-color the elements of S′ so
that no translate of P that covers at least m points of S′ is monochromatic.
Notice that, because of our assumption of local finiteness, each subset S′

is finite. Moreover, from the point of view of S′ any translate of P “looks
like” a half-space or a wedge corresponding to one of the vertices of P . To
make this statement more precise, denote by v1, . . . , vn the vertices of P in
cyclic order, and denote by WiWW the wedge bounded by the rays −−−−− →−−vivi−1 and
−−−−− →−−vivi+1 which contains a piece of P in any small neighborhood of vi. (The
indices are taken mod n.) Now any subset of S′ that can be cut off from S
by a translate of P can also be cut off by a translate of one of W1WW , . . . ,WnWW .
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Lemma 2.2. Suppose that there is a positive integer m such that any finite
point set S can be colored with two colors such that every translate of any
wedge WiWW of P that contains at least m elements of S, contains points of
both colors. Then P is cover-decomposable.

A straightforward generalization of the above argument can be applied
when we want to decompose a covering into k ≥ 2 coverings. Thus, from
now on, to prove positive cover-decomposability results we will try to find
colorings of finite point sets. However, it will turn out that coloring point
sets with respect to wedges may also be very useful in proving negative
results.

Observe that we can assume without loss of generality that our point
set S is in general position with respect to P , that is, none of the lines
determined by two points of S is parallel to a side of P . Indeed, if there is
such a line, we can slightly perturb the point set such that any subset of S
that can be cut off from S by a translate of P , can also be cut off from the
perturbed point set S′.

2.3. Totalitarianism

So far we have only considered coverings of the whole plane. At this point
it will be convenient to extend our definitions to coverings of subsets of the
plane.

Definition 2.3. A set P is said to be totally-cover-decomposable if there
exists a (minimal) constant mT = mT (P ) such that every mT -fold covering
of any (!) point set in the plane with translates of P can be decomposed into
two coverings. More generally, for any fixed k ≥ 2, let mT

k (P ) denote the
smallest number mT with the property that every mT -fold covering of any
planar point set with translates of P can be decomposed into k coverings.

This notion was formally introduced only in [21], but, in view of
Lemma 2.2, all proofs in earlier papers also work for this stronger ver-
sion of decomposability. To avoid confusion with this notion, sometimes we
will call cover-decomposable sets plane-cover-decomposable. By definition,
every totally-cover-decomposable set is also plane-cover-decomposable. On
the other hand, there exist sets (perhaps even open polygons) that are plane-
cover-decomposable but not totally-cover-decomposable. For example, the
disjoint union of a concave quadrilateral and a far enough half-plane is such
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a set. Using the notion of total decomposability, we obtain the following
stronger version of Lemma 2.2.

Lemma 2.4. A polygon P is totally-cover-decomposable if and only if there
exists a positive integer mT with the property that any finite point set S in
the plane can be colored with two colors such that every translate of any
wedge of P that contains at least mT points of S, contains points of both
colors.

Note that if we want to show that a set P is not plane-cover-decom-
posable, then, using Lemma 2.4 with suitably chosen sets S, we can first
show that it is not totally-cover-decomposable, and then we can add more
points to S and apply Lemma 2.1. Of course, we have to be careful not to
add any points to the translates that guarantee that P is not totally-cover-
decomposable. This is the path followed in [16, 19] (and also in [21], but
there the point set S cannot always be extended). These constructions will
be discussed in detail in Section 5.

3. Boundary Methods

Let W be a wedge and s be a point in the plane. The translate of W with
its apex at s is denoted by W (s). More generally, given a convex wedge
(whose angle is at most π) W , and points s1, s2, . . . , sk, let W (s1, s2, . . . , sk)
denote the minimal translate of W (for containment) whose closure contains
s1, s2, . . . , sk.

Following [18], next we will define the boundary of a finite point set
with respect to a collection of wedges. We establish and explore some basic
combinatorial and geometric properties of the boundary, which will be the
heart of the proofs of Theorems 1.3, 1.7, and 1.4. The details of these three
proofs from [18], [20], and [23], respectively, will be sketched in the next
three subsections.

3.1. Decomposition into two parts

In this subsection, we outline the proof of Theorem 1.3 in the special case
when P is an axis-parallel square. This square has an upper-left, a lower-
left, an upper-right, and a lower-right vertex. For each vertex v of the
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square, there is a corresponding convex wedge, whose apex is at v and
whose boundary half-lines contain the sides of the square incident to v.
Denote these wedges by WulWW , WllWW , WurWW , and WlrWW , respectively. We refer to
these four wedges as P -wedges.

Let S be a finite point set. By Lemma 2.2 it is sufficient to prove the
following.

Lemma 3.1. The set S can be colored with two colors such that any
translate of a P -wedge which contains at least five points of S, contains
points of both colors.

At this point, we introduce the notion of the boundary of S with respect
to the wedges of P . This notion will be similar to that of the boundary of
the convex hull. A point s of S belongs to the boundary of the convex hull
of S if there is a half-plane which contains s on its boundary, but none of the
points of S in its interior. Similarly, a point s of S belongs to the boundary
with respect to wedge W if W (s) contains none of the points of S.

Definition 3.2. Let W be an open wedge. The W -boundary of S, that is,
the boundary of S with respect to W is defined as BdW (S) = {s ∈ S :
W (s) ∩ S = ∅}. Two vertices, s and t, of the W -boundary are called
neighbors if W (s, t) ∩ S = ∅.

Obviously, one can define a natural ordering on the W -boundary points
of S, according to which two vertices are consecutive if and only if they are
neighbors. Observe that any translate of W intersects the W -boundary in
an interval with respect to this ordering. The boundary of S with respect
to the four P -wedges is the union of the WulWW -boundary, the WllWW -boundary,
the WurWW -boundary, and the WlrWW -boundary of S. All points of S that are not
boundary vertices with respect to the P -wedges are called interior points.

The WlrWW -boundary and the WllWW -boundary of S meet at the “highest”
point of S, that is, at the point of maximum y-coordinate. (Assume, for
simplicity that this point is unique). The WllWW -boundary and the WulWW -
boundary meet at the rightmost point of S; the WulWW -boundary and the
WurWW -boundary meet at the lowest point; and the WurWW -boundary and the
WlrWW -boundary meet at the leftmost point. See Figure 1. If it leads to no
confusion, the translates of WulWW , WllWW , WurWW , WlrWW will also be denoted by WulWW ,
WllWW , WurWW , WlrWW .

If we link together the natural orderings of the boundary vertices of S
corresponding toWllWW , WlrWW , WurWW , andWulWW , in this cyclic order, then we obtain
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Fig. 1. The boundary of a point set

a counterclockwise cyclic enumeration of all boundary vertices. The main
difference between the boundary of S with respect to P and the boundary
of the convex hull of S is that in the cyclic enumeration of the boundary
vertices some vertices may occur twice. These vertices are called singular,
and all other vertices regular.

It is not hard to show, however, that no boundary vertex can appear
three times in the cyclic enumeration. Moreover, all singular vertices must
have the same type. In our case, all of them belong to both a WulWW and a
WlrWW , or all of them belong to a WurWW and a WllWW . This property generalizes
to the case when P is any centrally symmetric convex polygon: all singular
boundary vertices must belong to a pair of opposite P -wedges of the same
type.

The most important observation is the following.

Observation 3.3. If the intersection of S with a translate of some P -
wedge, say, WllWW , is non-empty, then this set can be obtained as the union of
three subsets:

(i) an interval of consecutive elements in the cyclic enumeration of all
vertices of the boundary of S, which contains at least one point from
the WllWW -boundary;
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(ii) an interval of consecutive elements in the cyclic enumeration of all
vertices of the boundary of S, which contains at least one point from
the WurWW -boundary;

(iii) a set of interior points.

Note that while the subset in (i) contains at least one element, those in
(ii) and (iii) may be empty. Analogous statements hold for the other three
wedges, and also for other symmetric polygons.

A first naive attempt to find a suitable coloring of S is to color all
boundary vertices blue and all interior vertices red. Unfortunately, it is
possible that there is a P -wedge that contains lots of boundary vertices and
no interior vertex, so this coloring is not necessarily good.

Another naive attempt is to color the boundary vertices alternately red
and blue. Apart from the obvious problems that the size of the boundary
may be odd and that the singular vertices are repeated in the cyclic order,
there is a more serious difficulty with this approach: the translate of a
wedge may contain just one boundary vertex and lots of interior vertices.
Consequently, we have to be careful when we color the interior vertices,
which may lead to further complications.

It turns out that a “mixture” of the above two naive approaches will
work.

Definition 3.4. A boundary vertex s ∈ S is called m-rich if there is a
translate W of a P -wedge, such that s is the only W -boundary vertex in W ,
but W contains at least m points of S.1

This definition is used in different proofs with a different constant m,
but when it leads to no confusion, we simply write “rich” instead of “m-
rich.” In this proof, “rich” means “5-rich,” thus a boundary vertex s is rich
if there is a wedge that intersects the W -boundary in s and contains at least
four other points.2

Our general coloring rule will be the following.

1In [18] and [20] a slightly different definition was used: there s was required to be
the only vertex from the whole boundary (and not only from the W -boundary) in the
translate ofW . For centrally symmetric polygons, both definitions work, but, for example,
for triangles only the latter one does.

2Instead of m = 5, we could also choose m = 4 to define rich points in this proof. Only
the last line of the argument would require a little more attention.
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(1) Rich boundary vertices are blue.

(2) There are no two red neighbors along the boundary.

(3) Color as many points red as possible, that is, let the set of red points
R ⊂ S be maximal under condition (1) and (2).

Note that from (3) we can deduce

(4) Interior points are red.

A coloring that satisfies these conditions is called a proper coloring. The
same point set may have many proper colorings. For centrally symmetric
polygons, any proper coloring will be suitable for our purposes. In [18], an
explicit proper coloring is described.

Now we are ready to sketch the proof of Lemma 3.1. Suppose that S is
colored properly and W is a translate of a P -wedge such that it contains
at least five points of S. We can assume without loss of generality that
W contains exactly five points of S. By Observation 3.3, W intersects the
W -boundary of S in an interval.

First, we find a blue point in W . If the above interval contains just one
point then this point is rich, as the wedge contains at least five points, and
rich points are blue according to (1). If the interval contains at least two
points, then one of them should be blue, according to (2).

Now we show that W also has at least one red element. If W contains
any interior point, then we are done, according to (4). Thus, we can assume
by Observation 3.3 that W ∩ S is the union of two intervals and all points
in W are blue. Since W has five points, at least one of them, say, x, is not
the endpoint of any of the intervals. If x is not rich, then, according to (3),
x or one of its neighbors is red. So, x must be rich. But then there is a
translate W ′ of a P -wedge, W , or −W , which contains only x as a boundary
vertex, and contains five points. Using that S is centrally symmetric, it can
be shown that S ∩W ′ is a proper subset of S ∩W , a contradiction, since
both contain exactly five points. This concludes the proof of Lemma 3.1.

If we consider wedges with more points, we can guarantee more red
points in them.

Lemma 3.5. In a proper coloring of S, any translate of a P -wedge which
contains at least 5i points of S contains at least one blue point and at least i
red points (i ≥ 1).
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The proof is very similar to the proof of Lemma 3.1. The difference
is that now we color 5i-rich points red and we have to be a little more
careful when counting red points, especially because of the possible singular
points. If we delete the blue points (giving them color 1) and then recolor
red points recursively by Lemma 3.5, we obtain an upper bound on mk(P ),
exponential in k. An analogous statement holds for any centrally symmetric
open convex polygon, therefore, we have

Lemma 3.6. For any centrally symmetric open convex polygon P , there is
a constant cP such that any ckP -fold covering of the plane with translates
of P can be decomposed into k coverings.

3.2. Decomposition to Ω
(√

m
)
parts for symmetric polygons

Here we sketch the proof of Theorem 1.7, which is a modification of the
argument described in the previous subsection. We continue to assume for
simplicity that P is an axis-parallel square. Let k ≥ 2. We will color the
point set S with k colors such that any P -wedge that contains at least
m = 18k2 points has at least one point of each color. Recursively, we define
k boundary layers and denote them by B1, B2, . . . , Bk. Let B1 denote the
boundary of S, and let S2 = S \ B1. For any i < k, if the set SiSS ⊂ S has
already been defined, let Bi be the boundary of SiSS and let SiSS +1 = S\Bi. The
coloring of the boundary layer Bi will be “responsible” for color i. Color i
takes the role of blue from the previous proof, while those points that were
colored red there will be “uniformly” distributed among the other k − 1
colors.

Slightly more precisely, a vertex v ∈ Bi is called rich if there is a translate
of a P -wedge that intersects SiSS in at least 18k2 − 18ki points, and v is the
only element of Bi in it. We color all rich vertices of Bi with color i,
and color first the remaining singular, then the remaining regular points
periodically: 1, i, 2, i, 3, i, . . . , k, i, 1, i, . . .. The main observation is that, if
a P -wedge intersects Bi (for any i) in at least 18k points, then it contains
a long interval that contains a point of each color. Otherwise, it has to
intersect each of the boundary layers Bi (1 ≤ i ≤ k), but then for each i,
its intersection with Bi contains a rich point of color i.
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3.3. Triangles

The main difficulty with non-symmetric polygons is that Observation 3.3
does not hold here: the intersection with a translate of a P -wedge is not
necessarily the union of two boundary intervals and some interior points.
See Figure 2. In the case of triangles, Tardos and Toth [23] managed to´
overcome this difficulty by defining a variant of proper colorings. In this
subsection, we sketch their proof of Theorem 1.4. For other polygons, a
different approach was needed (see Section 4.1).

Suppose that P is a triangle with vertices A, B, C. There are three
P -wedges, WAW , WBW , and WCWW . We define the boundary just like before. It
consists of three parts, the A-boundary, B-boundary, and C-boundary. Each
of them forms an interval in the cyclic enumeration of the boundary vertices.
Here comes the first difficulty: there may exist a singular boundary vertex
which appears three times in the cyclic enumeration of boundary vertices,
once in each boundary. It is easy to see that there exists at most one such
vertex, and we can get rid of it by decomposing our point set S into at most
four subsets such that in each of them all singular boundary points belong
to the same pair of boundaries, just like in the case of centrally symmetric
polygons. For simplicity of the explanation, assume that S has no singular
boundary vertex.

Again, we call a boundary vertex s rich if there is a translate W of a
P -wedge, such that s is the only W -boundary vertex in W , but W contains
at least five elements of S.

Our coloring will satisfy the following four conditions.

(1) Every rich boundary vertex is blue.

(2) There are no two red neighbors.

(3) Color as many points red as possible, that is, let the set of red points
R ⊂ S be maximal under condition (1) and (2).

(4) All interior points are red.

We describe explicitly how to find the set of red points using a greedy
algorithm. Consider the linear order on the set of all lines of the plane
parallel to the side BC, so that the line through A is smaller than the line
BC. We define a partial order <A on our point set as follows. Let x <A y
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Fig. 2. Triangle P and the structure of the boundary

if the line through x is smaller than the line through y. We have A <A B
and A <A C. Analogously, define the partial order <B with respect to the
side AC such that B <B C and B <B A, and the partial order <C with
respect to the side AB such that C <C A and C <C B.

First, color all rich boundary vertices blue. Now take all A-boundary
vertices of S and consider them in increasing order with respect to <A. If
we get to a point that is not colored, we color it red and its neighbors blue.
Note that these neighbors may have already been colored blue (because they
are rich, or because of an earlier red neighbor), but they were definitely not
colored red, as any neighbor of any red point is immediately colored blue.
Continue this procedure, until all points of the A-boundary are colored.
Color the B-boundary and the C-boundary in a similar fashion, using the
other two partial orders.

Suppose that W is a translate of a P -wedge covering at least five points
of S. We can assume without loss of generality that W covers exactly five
points of S. Assume that W is a translate of WAW . The other two cases
can be treated similarly. To find a blue point in W , we proceed just like in
the previous section; this works for any proper coloring. We know that W
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intersects the A-boundary of S in an interval. If this interval contains just
one point, then it must be rich and hence blue. It the interval contains at
least two points, then one of them must be blue.

It remains to show that W also contains at least one red point. If W
contains any interior point, then we are done. Therefore, we assume that all
five points in W are boundary vertices. Since there are five points in W , one
of them, say, x, is (i) not the first or last A-boundary vertex in W ; (ii) not
the <A-minimal B-boundary point in W ; and (iii) not the <A-minimal C-
boundary point in W .

Suppose that x is rich. Then there is a translate W ′ of a P -wedge, which
contains only x as a boundary vertex, and contains five points. It can be
shown by some simple geometric arguments that S ∩W ′ is a proper subset
of S ∩W , a contradiction, since both sets contain five points. So, x cannot
be rich. But then why would it be blue? The only possible reason is that
during the coloring process, one of its neighbors on the boundary, say, y,
was colored red earlier. It can be shown that then y ∈ W , which implies
that there is a red point in W .

The same idea works if there are some singular boundary vertices, but
all of them belong to the A-boundary and the B-boundary, say. The only
difference is that in this case we have to synchronize the coloring processes
on the A-boundary and on the B-boundary, so that we arrive at the common
vertices at the same time. This concludes the proof of Theorem 1.4. The
original proof gave that every 43-fold covering with translates of a triangle
splits into two coverings, but B. Ács [1] showed that the statement also
holds for every 19-fold covering. Recently it was further improved to 12-
fold coverings, by Keszegh and Pálv´ olgyi [11].¨

By a slightly more careful argument, we can establish

Lemma 3.7. The points of S can be colored with red and blue such that
any translate of a P -wedge which contains at least 5i + 3 of the points,
contains a blue point and at least i red points (i ≥ 1).

If we apply Lemma 3.7 recursively, we obtain an bound on mk(P ),
exponential in k.

Lemma 3.8. For any open triangle P , every 7· 5k−15
20 -fold covering of the

plane with translates of P can be decomposed into k coverings.

This result was later improved by the more general Theorem 1.9 of
Gibson and Varadarajan.
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4. Path Decomposition and Level Curves

In this section, we present three generalizations of the boundary method
that can be used to establish cover-decomposability results.

4.1. Classification of wedges

Pálvolgyi and Tóth [22] developed some new ideas to establish Theorem 1.5¨
which states that all open convex polygons are cover-decomposable. In the
previous section, we colored a point set with respect to P -wedges, for some
fixed polygon P . Here we color point sets with respect to an arbitrary set
of wedges.

Definition. A collection of wedges W = {WiWW | i ∈ I} is said to be
non-conflicting or, simply, NC if there is a constant m with the following
property. Any finite set of points S in the plane can be colored with two
colors so that any translate of a wedge W ∈ W that covers at least m points
of S contains points of both colors.

It turns out that a single wedge is always NC. One can also characterize
all pairs of wedges that are NC. Pálv´ olgyi and Tóth proved that a set of¨
wedges is NC if and only if each pair is NC. It follows directly from this
characterization that for any convex polygon P , the set of P -wedges is NC.

Lemma 4.1. A single wedge is NC.

An important tool in the proof of Lemma 4.1 and in the proof of the
following lemmas is the path decomposition, which is a generalization of the
concept of the boundary. To illustrate this technique, we present a proof of
Lemma 4.1.

Proof of Lemma 4.1. Let S be a finite point set and let W be a wedge.
We prove that the NC property holds with m = 3, that is, we show that S
can be colored with two colors such that any translate of W that contains
at least 3 points of S, contains a point of both colors. Suppose first that the
angle of W is at least π. Then W is the union of two half-planes, A and B.
Take the translate of A (resp. B) that contains exactly two points of S, say,
A1 and A2 (resp. B1 and B2). There might be coincidences between A1, A2

and B1, B2, but still, we can color the set {A1, A2, B1, B2} such that A1

and A2 (resp., B1 and B2) are of different colors. Now, if a translate of W
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Fig. 3. A concave wedge and three points, any two of which can be cut off by a translate

contains three points, it contains either A1 and A2, or B1 and B2, and we
are done. Note that three is optimal in this statement; see Figure 3.

Suppose now that the angle of W is less than π. We show that in this
case the NC property holds with m = 2. We can assume that the positive x-
axis is in W ; this can be achieved by an appropriate rotation. For simplicity,
also suppose that no line determined by a pair of points of S is parallel to
the sides of W . This can be guaranteed by applying a suitable perturbation
of the set S that does not effect which subsets of it can be cut off by a
translate of W .

For any fixed y, let W (2; y) be the translate of W which

(1) contains at most two points of S;

(2) the y-coordinate of its apex is y; and

(3) the x-coordinate of its apex is minimal.

For any y, the translate W (2; y) is uniquely determined. Examine, how
W (2; y) varies as y runs over the real numbers. If y is very small (smaller
than the y-coordinate of the points of S), then W (2; y) contains two points,
say X and Y , and one more, Z, on its boundary. As we increase y, the apex
of W (2; y) changes continuously. How can the set {X,Y } of the two points
in W (2; y) change? For a certain value of y, one of them, say, X, moves
to the boundary. At this point, Y is inside and two points, X and Z, are
on the boundary. If we slightly further increase y, then Z replaces X, that
is, Y and Z will be in W (2; y) (see Figure 4). As y increases to infinity,
the set {Z, Y } could change several times, but each time it changes in the
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Fig. 4. Z replaces X in W (2; y)

above described manner. Define a directed graph whose vertices are the
points of S, and there is an edge from u to v if v replaced u during the
procedure. We get two paths, P1PP and P2PP . The pair (P1PP , P2PP ) is called the
path decomposition of S with respect to W , of order two (see Figure 5).

Color the vertices of P1PP red, the vertices of P2PP blue. Observe that each
translate of W that contains at least two points, contains at least one vertex
of both P1PP and P2PP . This completes the proof.

Fig. 5. Path decompositions of order two. P1PP = X1X2 . . ., P2PP = Y1YY Y2YY . . .

The path decomposition of S with respect to W , of order m can be
defined very similarly. Let W (m; y) denote the translate of W which

(1) contains at most m points of S;
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(2) the y-coordinate of its apex is y; and

(3) the x-coordinate of its apex is minimal.

Suppose that, for a very small value of y, the set W (m; y) contains the
points r1, r2, . . . , rm, and at least one more point on its boundary. Just like
in the proof above, as we increase the value of y, the set {r1, r2, . . . , rm}
changes several times. Every time one of the elements of this set is replaced
by another point. Define a directed graph whose vertices are the points of S,
and there is an edge from r to s if r is replaced by s at some point. This
graph is the union of m directed paths, PW

1PP , PW
2PP , . . ., PW

mPP (and possibly
some isolated vertices), which is called the order m path decomposition of S
with respect to W . Note that the order 1 path decomposition is just the
W -boundary of S, so this notion can be regarded as a generalization of
the boundary. In general, in a higher order path decomposition, no path is
identical to the boundary. The union of the paths, however, always contains
the boundary.

Note that there is a hidden variable in this notation. When we write PW
1PP ,

then it can mean the first path of the path decomposition of any order m,
so it would be more precise to write PW

1PP (m). However, to ease readability,
we use the (ambiguous) simpler notation as from the context the value of
m will be always clear.

Lemma 4.2.

(i) Any translate of W contains an interval of each of PW
1PP , PW

2PP , . . . , PW
mPP .

(ii) If a translate of W contains precisely m points of S, then it contains
precisely one point from each of PW

1PP , PW
2PP , . . . , PW

mPP .

Now we scrutinize the case when we have two wedges, V and W . We
distinguish several cases according to their relative position.

Type 1 (Big): One of the wedges has angle at least π.

For the other cases, we can assume without loss of generality that W
contains the positive x-axis. Extend the boundary half-lines of W to lines.
They divide the plane into four parts: Upper, Lower, Left, and Right parts,
the last of which is W itself. See Figure 6.

Type 2 (Half-plane): One side of V is in the Right part and the other
one is in the Left one. That is, the union of the wedges cover a half-plane.
See Figure 7.

Type 3 (Contain): One of the following three conditions is satisfied:
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Fig. 6. Wedge W

Fig. 7. Type 2 (Half-plane)

(i) one side of V is in the Upper part, the other is in the Lower part;

(ii) both sides are in the Right part;

(iii) both sides are in the Left part. See Figure 8.

Fig. 8. Type 3 (Contain)

Type 4 (Hard): One side of V is in the Left part and the other side is
either in the Upper part or in the Lower one. See Figure 9.

Type 5 (Special): One of the following three conditions is satisfied:

(i) one side of V is in the Right part and the other one is in the Upper
or Lower part;

(ii) both sides of V are in the Upper part;
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Type 4 (Hard)

(iii) both sides are in the Lower part.

That is, the union of the wedges is in an open half-plane whose boundary
contains the origin, but neither of them contains the other. See Figure 10.

Fig. 10. Type 5 (Special)

It is not hard to see that there are no other possibilities.

Lemma 4.3. LetW = {V,W} be a set of two wedges, of Type 1, 2, 3, or 4.
Then W is NC.

Here we omit the proof. It is different for each type, but in each case the
basic idea is similar to that of the proof of Lemma 4.1. In the case of pairs
of wedges of Type 4 (Hard), we have to take care of singular points in a
somewhat similar way as in the previous section, in the proof for triangles.
For pairs of wedges of Type 3 (Contain), we can apply an order 4 path
decomposition.

Next, we turn to the case of several wedges.

Lemma 4.4. A set of wedges W = {W1WW ,W2WW , . . . ,WtWW } is NC if and only if
any pair {WiWW ,WjWW } is NC.

It is obvious that if two wedges are not NC, then W cannot be NC.
The proof in the other direction is more involved. It is based on a tricky
application of path decompositions. In fact, it can be shown that if W is
NC, then for any k there is an mk such that any finite point set can be
colored with k colors such that if a translate of a wedge from W contains at
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least mk points, then it contains all k colors. However, the bound obtained
in [22] grows very fast, the argument gives only mk ≤ (8k)2

t−1
.

To finish the proof of Theorem 1.5, observe that no two wedges corre-
sponding to the vertices of a convex polygon can form a pair of Type 1 (Big)
or of Type 5 (Special).

It is shown in [21] that if W = {V,W} is a set of two wedges of Type 5
(Special), then W is not NC. Therefore, a set of wedges is NC if and only
if none of its pairs is of Type 5 (Special). For the construction and its
consequences, see Section 5.

4.2. Level curves and decomposition to Ω(m) parts for symmetric
polygons

The level curve method, which can be regarded as another extension of the
boundary technique, was invented by Aloupis, Cardinal, Collette, Langer-
man, Orden, and Ramos [2] at about the same time, but independently from
the introduction of path decompositions.

Suppose that W is an open wedge and its angle is less than π. The
level curve of depth l, denoted by C(l), is defined as the boundary of the
union of all translates of W that contain fewer than l points. If W contains
the positive x-axis, then we can also define C(l) as the set of the apices of
W (l − 1; y).

Note that this curve consists of straight-line segments that are parallel
to the sides of W . See Figure 11. C(1) passes through all boundary points.
If p ∈ C(l), then |W (p) ∩ S| is l − 1, and W (p) has one or two points of S
on its boundary.

Consider all translates of W whose apices are on C(l). Call these trans-
lates C(l) −W -wedges. Consider a point of S in a C(l) −W -wedge. The
apices of those C(l) −W -wedges which contain this point form an interval
on C(l). Therefore, each C(l)−W -wedge corresponds to a point on C(l), and
every point of S corresponds to an interval of C(l). The condition that each
C(l) −W -wedge contains at least l − 1 points translates to the condition
that each of the points of C(l) is covered by at least l − 1 intervals. Here
we want to color the intervals in such a way that each point is covered by
intervals of all colors.

Now we sketch the proof of Theorem 1.8 given in [2], based on the level
curve method.
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Fig. 11. The level curve C(l)

Suppose that our symmetric polygon P has 2n vertices. Denote the
wedges belonging to them by W0WW , . . . ,W2WW n−1, in clockwise order. Through-
out the proof, all the indices should be considered modulo 2n. Two wedges,
WiWW and WjWW , are called antipodal if i+ n ≡ j modulo 2n, that is, if they be-
long to two opposite vertices of the polygon. A crucial observation, already
used in Subsection 3.1 (more generally, in [18]), is that any two wedges that
are not antipodal cover a half-space.

We want to color the points of the point set S with k colors such
that every translate of WiWW (i = 0, . . . , 2n − 1) that contains at least m′

k

points, contains a point of each color. For any fixed l, the level curves Ci(l)
that correspond to wedge WiWW may cross each other in a complicated way.
However, in the “middle” of S they form a structure similar to the boundary
in Subsection 3.1. It turns out that it is enough to consider these parts of
the level curves.

More precisely, let l = 6k+1. For every side of P , take two lines parallel
to it that cut off 2l + 3 points from each side of S. Denote the intersection
of the n strips formed by these lines by T . For every i, let C′i(l) = Ci(l)∩T .
Call those translates of WiWW whose apices are on C′i(l) witness WiWW -wedges.
It is not hard to see that only level curves belonging to antipodal wedges
may cross inside T . Some further analysis shows that, in fact, there can
be only at most one such pair. (Note the similarity to singular points in
case of symmetric polygons.) This means that the regions cut off from T
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by the curves C′i(l) are all disjoint, with the possible exception of one pair.
Without loss of generality we may assume that this pair is C′i(0) and C′i(n).
It is not difficult to verify that any translate of WiWW that contains at least
3l + 5 points, must contain a witness WiWW -wedge. Therefore, it is enough to
concentrate on wedges with this property.

One can parameterize these witness wedges by t ∈ [0, 2n) such that W (t)
is a translate of Wt�. The most important geometric observation is that
if p ∈ W (�t� + x) ∩W (�t� + z), where 0 ≤ x ≤ 1 and 0 ≤ z ≤ n, then
p ∈W (�t�+ y) for all x ≤ y ≤ z.

If p ∈W (�t�+x)∩W (�t�+z), where 0 ≤ x ≤ 1 and n ≤ z ≤ n+1, then
p is contained in two antipodal wedges, which implies that it is contained
in translates of W0WW and WnWW , but in no translates of any other wedge WiWW .
Therefore, every p corresponds to either an interval of the circle [0, 2n) or
to two intervals, one of which is a subinterval of [0, 1], and the other a
subinterval of [n, n+ 1].

We can take care of these two cases separately, as any big wedge contains
many points from one of these groups. The sets of the first type (intervals)
form a circular interval graph. Using a simple greedy algorithm, we can
partition the set of these circular intervals into k parts with the property
that any point of the circle that is covered by at least 3k intervals will be
covered by at least one interval in each part. For sets of the second type
(unions of two intervals), we want to color points with respect to a wedge
W and its antipodal pair −W . The greedy algorithm again gives a good
partition of a 3k-fold covering into k coverings. Since every witness wedge
contains at least 6k points, we are done.

Combining these facts, we obtain that m′
k ≤ 18k + 5 for any system of

wedges derived from a convex centrally symmetric polygon. This has to be
multiplied by a constant depending on the shape of the polygon that comes
from Lemma 2.2, to derive a bound for the multiple-cover-decomposability
function mk of the polygon.

4.3. Decomposition to Ω(m) parts for triangles

The case of not necessarily centrally symmetric polygons P was settled
in [10]. In this subsection, we sketch the proof in the special case when P
is a triangle, which already contains most of the key ideas of the general
argument.
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The first step is the usual dualization and reduction to wedges, therefore,
it is enough to prove the following statement.

Lemma 4.5. Let WAW , WBW , WCWW be the wedges of a triangle T , and let k > 0.
Then any point set S can be colored with k colors such that any translate
of WAW , WBW , or WCWW which covers at least 14k points of S contains at least
one point in each color.

Let S be a point set. Consider the level curve CA = CA(14k + 1) of WAW
of depth 14k + 1. Again, for the coloring it is enough to consider those
translates of WAW whose apices are on CA. As we have seen in the previous
subsection, these wedges contain 14k points of S. Call these translates
witness A-wedges. The witness B-wedges and witness C-wedges can be
defined analogously.

The most important new idea is that first we partially color the points
of S so that every witness A-wedge contains at least one point of each
color, and all witness B-wedges and witness C-wedges have sufficiently many
uncolored points. We proceed by extending this coloring in such a way that
every witness B-wedge has a point of each color, and it is still true that
every witness C-wedge has enough uncolored points. Finally, we take care
of the witness C-wedges.

Lemma 4.6. One can partially color the points of S with k colors such that

(i) each witness A-wedge contains all k colors, and

(ii) each witness B-wedge and C-wedge contains at least 6k uncolored
points.

Proof. We will again use the partial orders <A, <B, and <C , defined
in Subsection 3.3. First, we choose a subset Q ⊂ S in the following
way. Initially, set Q = ∅. Then, for each witness A-wedge W such that
|Q ∩W | < 2k, we add the points of S ∩W to Q, one by one, in decreasing
order with respect to <A, until |Q∩W | = 2k. Then we proceed with another
witness A-wedge. There are infinitely many witness A-wedges, but we have
to consider only finitely many, since they can intersect S in only finitely
many distinct subsets.

In the way described in the previous subsection, each witness A-wedge
corresponds to a point on CA, and each point of Q corresponds to an interval.
Thus, we obtain a system of intervals on CA (or, equivalently, on a line) such
that each point is covered at least 2k times. Take a minimal collection of
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these intervals that still form a covering. Is is easy to see that no point can
be covered more than twice. Color these intervals with the first color, take
another minimal cover for the second color, and continue until all colors
are used. Since we started with a 2k-fold covering and in each step the
thickness decreased by at most two, we will be able to use all colors. This
corresponds to a coloring of a subset R ⊂ Q. It is clear that each witness A-
wedge contains at least one point of each color. Observe, that the intervals
that correspond to R do not cover any point more than 2k times. That is,
each witness A-wedge contains at most 2k points of R.

Now we prove (ii). By symmetry, it is enough to show that every witness
B-wedge contains at least 6k uncolored points. LetW be a witness B-wedge,
and let p1, p2, . . . be the points of W ∩S in increasing order with respect to
<B. If none of them is in Q, then none of them is colored and we are done.
Otherwise, let j be the largest number such that pj ∈ Q. If j < 8k, then
there are at least 6k uncolored points in W . Suppose that j ≥ 8k. Point
pj was added to Q when we considered a certain witness A-wedge, say, V .
Wedges W and V can have two types of intersection, since exactly one of
them contains the apex of the other one.

Fig. 12. The two types of intersections of W and V

Case 1: V contains the apex of W . Consider the triangle Z1 = {x | x ∈
W , pj ≮B x}. (See the left part of Figure 12.) It contains j points of S, but
at most 2k of them are colored, so W contains at least 6k uncolored points.

Case 2: W contains the apex of V . Consider the triangle Z2ZZ = {x | x ∈
V , pj ≮A x}. (See the right part of Figure 12.) Since we added pj to Q
when we processed wedge V , there can be at most 2k−1 points p in V with
pj <A p. Therefore, at least 12k points are in Z2ZZ . Since we colored at most
2k of them, there must remain at least 10k uncolored points in Z2ZZ ⊂W .

Now we run the same algorithm for the uncolored points and for the
witness B-wedges. A very similar argument shows that there will still be at
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least 2k uncolored points in each witness C-wedge. We run the algorithm
once more for the uncolored points and for the witness C-wedges. This
concludes the proof.

5. Indecomposable Coverings

In this section, we describe some constructions of coverings with arbitrarily
high multiplicity that cannot be decomposed into two coverings. The first
such example was given by Mani and Pach [16], and it shows that the unit
ball is not cover-decomposable. In other words, for any m, there exists a
covering of R3 with unit balls such that every point is covered by at least
m balls, but the covering cannot be decomposed into two coverings. Later
in [19], several other constructions were given, all based on the geometric
realization of the same m-uniform hypergraph (system of m-element sets)
not having Property B.3 The same hypergraph is used in the construction
described in Subsection 5.1 below. It was shown by Erdos [8] that every˝
m-uniform hypergraphs that does not have Property B has at least 2m−1 hy-
peredges, so any indecomposable construction must be exponentially large.
As one of the first geometric applications of the Lovasz Local Lemma [9],´
Pach showed that if a system of translates of a “nice” geometric set has the
property that every point is covered by at least m and at most a subexpo-
nential (in m) number of sets, then the system is decomposable into two
coverings.

First, we present the construction of [19] showing that no concave
quadrilateral is cover-decomposable. In Subsection 5.2 (see also [21]), we
show that general concave polygons are and polyhedra are not space-cover-
decomposable. Finally, we discuss the difference between several variants of
cover-decomposability.

5.1. Concave quadrilaterals—Proof of Theorem 1.10

We present the construction in the dual setting. Suppose that the vertices
of the quadrilateral, Q, are A, B, C and D, in this order, the reflex angle
being at D. This implies that WAW and WCWW are of Type 5 (Special) (see

3We say that a hypergraph has Property B if the elements of its vertex set can be
colored with two colors such that every hyperedge contains points of both colors.
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Section 4.1 for the definition). Moreover, they belong to an even more
special subclass, which we call Very Special: when we translate the wedges
so that their apices are in the origin, then they are disjoint and their closures
are both contained in the same open half-plane (see the two right examples
in Figure 10).

First, for any m, we give a finite set of points and a finite number of
translates of Q, each covering precisely m points, such that no matter how
we color the points by two colors, at least one of the translates will be
monochromatic. In the “primal” setting, this corresponds to a finite system
of translates of Q with the property that no matter how we partition this
system into two, we can find a point contained in precisely m translates,
each of which belongs to the same part. Hence, Q is not totally-cover-
decomposable. Finally, we show how this construction can be extended
to an m-fold covering of the whole plane, which cannot be split into two
coverings.

We use translates of the wedges WAW and WCWW to realize the following
m-uniform hypergraph H, also used in [16]. The vertices of the hypergraph
are the vertices of a rooted perfect m–ary tree of height m − 1. There
are two types of hyperedges. To each vertex v which is not a leaf of the
tree, we assign a hyperedge of the first type, formed by the children of v.
To each leaf v, we assign a hyperedge of the second type, formed by the
vertices along the path from the root to v. More precisely, the vertices of
the hypergraph are sequences of length less thanm, consisting of the integers
from 1 through m: V (H) = [m]<m = ∪m−1

i=0 [m]i. The hyperedges of the first
kind consist ofm-tuples of sequences of length l, for some l (1 ≤ l < m), such
that removing their last elements, we obtain the same sequence of length
l − 1. The hyperedges of the second kind consist of all initial segments of
a sequence of length m − 1, where the empty sequence (corresponding to
the root) is considered an initial segment of every sequence. Hence, H has∑m−1

i=0 mi vertices and
∑m−1

l=1 ml−1 +mm−1 hyperedges.

The hyperedges of the first kind are realized by translates of WAW , the
hyperedges of the second kind by translates of WCWW . For simplicity, suppose
that WAW is a very thin wedge that contains the positive x-axis and WCWW is a
very thin wedge that contains the negative y-axis; although the construction
would work for any pair of convex wedges that belong to opposite vertices
of a concave quadrilateral. All vertices of H are very close to a vertical line.
All vertices of a hyperedge of the first kind are on a horizontal line, for each
edge on a different one (see Figure 13). It is easy to see that this is indeed a
geometric realization of H, so the points cannot be colored with two colors
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Indecomposable covering with two special wedges of a concave quadrilateral

such that every translate of WAW and WCWW of size m contains points of both
colors.

Fig. 14. Extending the original 2-fold covering of the four points by the solid
quadrilaterals to a 2-fold covering of the whole plane by adding the dotted quadrilaterals

Now we switch back to the primal plane. We have a point set S, and
a set Q of translates of Q. It remains to extend Q to an m-fold covering
of the whole plane. Before doing so, notice that it can be achieved that all
points of the set S are on a line �, not parallel to the sides of Q. Add to this
m-fold covering all translates of Q that are disjoint from S (see Figure 14).
It is clear that the resulting arrangement remains indecomposable. The
construction can be easily modified to obtain a “locally finite” covering,



Survey on Decomposition of Multiple Coverings 249

using a standard compactness argument. Note that the construction of [21]
is not always extendable this way.

5.2. General concave polygons and polyhedra

The hypergraph H can be realized by two wedges that form a Very Special
pair. Unfortunately, there are concave polygons that do not have two Very
Special wedges (see, e.g., Figure 16). In fact, they might not even have
two wedges that form a Type 5 (Special) wedge at all; e.g., in the case of
the union of two axis-aligned rectangles. The cover-decomposability of such
concave polygons follows from the proof of Theorem 1.5 (see Lemma 2.2,
4.3, 4.4). However, it can be shown that every concave polygon that
has two wedges that form a pair of Type 5 (Special) is not totally-cover-
decomposable. This includes all “typical” concave polygons, as any polygon
that has no parallel sides has a Type 5 (Special) pair of wedges.

To prove indecomposability, we have to realize another hypergraph that
does not have property B. This construction has fewer points than H (about
4m). It is also more general, in the sense that it can be realized by any pair
of Type 5 (Special) wedges. In fact, the following statement holds, which
implies that no polygon with a Type 5 (Special) pair of wedges is totally-
cover-decomposable [21].

Lemma 5.1 [21]. For any pair of special wedges, V and W , and for any
pair of positive integers, k and l, there is a point set P of size

(
k+l
k

)
−1 such

that for every coloring of P with red and blue, either there is a translate
of V containing k red points and no blue points, or there is a translate
of W containing l blue points and no red points.

Proof. We proceed by induction on k+ l. Denote by P (k, l) a set of points
that satisfy the conditions of the lemma for k and l. If k or l is equal to 1,
then the statement is trivially true. In the induction step (see the left side
of Figure 15), place a point p in the plane and a suitable small scaled down
copy of P (k − 1, l) with the property that any translate of V with its apex
in the neighborhood of P (k − 1, l) contains p, but none of the translates
of W with its apex in the neighborhood of P (k − 1, l) does. Analogously,
place a scaled down copy of P (k, l − 1) in such a way that any translate
of W with its apex in the neighborhood of P (k, l − 1) contains p, but none
of the translates of V with its apex in the neighborhood of P (k, l− 1) does.
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Sketch of one step of the induction and iteration of some steps

If p is colored red, then either for the first part of the construction,
similar to P (k − 1, l), there is a translate of V that covers point p together
with k − 1 other red points and no blue ones, or for the part similar to
P (k − 1, l), there is a translate of W that covers l blue points, no red ones,
and it does not contain p. In both cases, we are done. A similar argument
works in the case when p is blue.

Remark 5.2. Instead of considering all translates of V and W , in order
to find a wedge that meets the requirements of Lemma 5.1, it is sufficient
to restrict our attention to a finite set of translates whose apices lie on the
same line.

This construction, combined with Lemma 4.3 and 4.4, gives the following
characterization of polygons.

Theorem 5.3 [22, 21]. An open polygon P is totally-cover-decomposable
if and only if none of the P -wedges form a pair of Type 5 (Special).

Unfortunately, we still do not have a nice characterization for plane-
cover-decomposability. The reason is that the above construction cannot
always be extended to coverings of the whole plane. As pointed out in
Remark 5.2, it is sufficient to consider a finite set of wedges whose apices lie
on the same line. However, after dualization the centers of the translates
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will lie on two lines. An example of a polygon which is not totally-cover-
decomposable but might be cover-decomposable is depicted in Figure 16.
Some special cases when such an extension is always possible, were studied
in [21].

Fig. 16. Unknown hexagon: its only special pair of wedges are at A and E

In higher dimensions, the situation is completely different. According
to Theorem 1.12 [21], for d ≥ 3, no d-dimensional convex polytope is cover-
decomposable.

The proof is based on the observation that for any polytope P , either
there is a plane that intersects P in a concave polygon, which always has
a special pair of wedges, or there are two parallel planes that intersect P
in two polygons such that there is a special pair among their wedges. In
both cases, we can take a plane in space and a family of translates of P that
realize the above construction in this plane so that the intersection of the
plane and the translates of P play the role of the wedges. Then we take the
dual of this arrangement. To prove that this construction is extendable to
an indecomposable covering of the entire space, observe that the centers of
all the translates used in the construction lie in a plane, therefore, we can
follow the same argument as for quadrilaterals in the plane.

5.3. Technical difficulties: closed polygons, finite covering

Notice that in all of our positive results (Theorems 1.3-1.9) we considered
open polygons. This is due to the fact that at the very beginning of
Section 2, based on a compactness argument, we restricted our attention to
locally finite coverings. This does not work for closed polygons. The truth is
that at the moment for not locally finite coverings with closed polygons, we
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cannot prove any positive result. (Our negative results, of course, remain
valid for closed polygons as well.) In [21], we made an attempt to overcome
this difficulty. To state the (rather weak) results obtained there, we need a
definition.

Definition 5.4. A planar set P is said to be finite-cover-decomposable
(countable-cover-decomposable) if there exists a constant m ≥ 2 such that
every m-fold covering of any point set with finitely (countably) many trans-
lates of P can be decomposed into two coverings.

By definition, we have: P is totally-cover-decomposable ⇒ P is count-
able-cover-decomposable ⇒ P is finite-cover-decomposable. But which of
these implications can be reversed? In [21], it was proved that the first
one can be for “nice” sets. The definition of nice includes all closed convex
sets and polygons, but is much more general. The proof is based on the
hereditary Lindelof property of the plane.¨

Unfortunately, we have been unable to prove any such connection
between finite-cover-decomposability and countable-cover-decomposability.
Hence, the status of closed polygons is still undetermined. We believe, how-
ever, that using further geometric observations this problem can be settled.

6. Open Questions

The main unsolved problem in the field remains to verify (or refute) Con-
jecture 1.2 or, more generally Conjecture 1.14.

Problem 6.1. Is every plane convex set cover-decomposable?

Concerning coverings with homothetic copies of a set P , the first inter-
esting special cases are when P is a disk or a square.

Problem 6.2. Does there exist a positive integer m such that every m-
fold covering of the plane with open disks of arbitrary radii splits into two
coverings?

Problem 6.3. Does there exist a positive integer m such that every m-fold
covering of the plane with open squares of arbitrary side lengths, whose
sides are parallel to the coordinate axes, splits into two coverings?
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As we have seen in the Introduction, the answer to the corresponding
question for triangles is affirmative [11].

In Subsection 2.3, we defined a notion somewhat stronger than cover-
decomposability (see Definition 2.3).

Problem 6.4. Does there exist a bounded (convex) set P which is cover-
decomposable, but not totally-cover-decomposable?

According to Theorem 1.5, every open convex polygon is cover-decom-
posable, that is, for every open convex polygon P , there is a positive con-
stant m(P ) such that every m(P )-fold covering of the plane with translates
of P splits into two coverings. The best known value of m(P ) depends on
the shape of P .

Problem 6.5. Is it true that, for any integer j ≥ 3, there is a positive
constant mj such that every mj-fold covering of the plane with translates
of any convex j-gon P splits into two coverings?

For open triangles the answer is yes with m3 ≤ 12. On the other hand,
the same statement is not known for closed triangles, as we do not even
know if closed triangles are cover decomposable.

It is possible that for any cover-decomposable set P , there exists a
(smallest) positive integer m = m3(P ) with the property that every m-fold
covering of the plane with translates of P splits into three coverings. More
generally, as in the Introduction, let mk(P ) denote the smallest positive
integer m such that every m-fold covering of the plane with translates of P
splits into k coverings. If such an integer does not exist, let mk(P ) =∞.

Problem 6.6. Is it true that if m2(P ) <∞, then we also have mk(P ) <∞,
for every k ≥ 3?

This may be true even in a very general combinatorial setting. Given a
finite system of sets F , a multiset of its members (with possible repetition!)
is said to form a m-fold covering if every element of the underlying set
is contained in at least m members of F . For any positive integer k, let
mk(F) denote the smallest number m ≥ 1 such that every m-fold covering
with members of F splits into k coverings. It is easy to see that this number
is always finite: for example, we have mk(F) ≤ (k − 1)|F|+ 1.

Problem 6.7. Does there exist a function f such that, for every finite set
system F , we have m3(F) < f(m2(F))?
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It is possible that the answer is yes even with the function f(x) = O(x).
As a matter of fact, the relation mk(F) < Ckm2(F) may also hold with an
absolute constant C > 0.

In spite of substantial progress in this field, our knowledge on decom-
posability properties of multiple coverings is rather rudimentary. To our
surprise, G. Tardos (personal communication) constructed a set system F ,
which “almost” refutes Problem 6.7. This set system cannot be decomposed
into 3 coverings, although every subsystem of it (with no repetition!) which
forms a 2-fold covering splits into 2 coverings.

Finally, we mention another problem for finite set systems that has a
strong connection to cover-decomposability.

For a subset A ⊂ [n], let us denote by ai the i-th smallest element of A.
Given two k-element sets, A,B ⊂ [n], we write A  B if ai ≤ bi for every i.

A k-uniform hypergraph H ⊂
([n]
k

)
is called a shift-chain if for any two

hyperedges, A,B ∈ H, we have A  B or B  A. (So a shift-chain has at
most k(n− k) + 1 hyperedges.)

Problem 6.8. Is it true that if k is sufficiently large, then every k-uniform
shift-chain has Property B? In other words, is it true that for every shift-
chain H ⊂

([n]
k

)
, one can color [n] with two colors such that no hyperedge

is monochromatic?

An affirmative answer would be a huge step towards Pach’s conjecture
that all planar convex sets are cover-decomposable. To see this, recall the
following definition from Section 4.1. For a finite set of point S in the plane
and for a plane convex set P , define P (k; y) as the translate of P which

(1) contains exactly k points of S;

(2) the y-coordinate of its apex is y; and

(3) the x-coordinate of its apex is maximal,

if such a translate exists.

If we associate i ∈ [n] with the element of S with the i-th smallest y-
coordinate, then an easy geometric argument shows that H = {P (k; y)∩S |
y ∈ R} is a shift-chain.



Survey on Decomposition of Multiple Coverings 255

For k = 2, there is a trivial counterexample to the above problem: (12),
(13), (23). For k = 3, a magic counterexample was found by a computer
program written by Radoslav Fulek:

(123), (124), (125), (135), (145), (245), (345), (346), (347), (357),

(367), (467), (567), (568), (569), (579), (589), (689), (789).

If we allow the hypergraph to be the union of two shift-chains (with the
same order), then the construction in Section 5.2 provides a counterexample
for any k. Therefore, all arguments using that the average degree is small
(like attempts based on Lovász Local Lemma) would probably fail.´

Added in proof

Recently, several new related new results have been found. It was proved
by I. Kovacs and G. Tóth [14, 15], and, independently, by M. Vizer [24]´
that closed centrally symmetric polygons are cover-decomposable. In a
series of papers, it was shown by J. Cardinal, K. Knauer, P. Micek and
T. Ueckerdtand [5, 6], and by B. Keszegh and D. Pálv´ olgyi [12, 13] that¨
kO(1)-fold coverings by homothets of open triangles or by (finite collections
of) octants are decomposable into k coverings.
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Hanani–Tutte and Related Results

MARCUS SCHAEFER

We are taking the view that crossings of adjacent edges are trivial, and easily
got rid of. Bill Tutte

We interpret this sentence as a philosophical view and not a mathematical
claim. Lászl´ o Sz´´ ekely´

We investigate under what conditions crossings of adjacent edges and pairs of
edges crossing an even number of times are unnecessary when drawing graphs.
This leads us to explore the Hanani–Tutte theorem and its close relatives, em-
phasizing the intuitive geometric content of these results.

1. The Hanani–Tutte Theorem in The Plane

In 1934, Hanani [15] published a paper which—in passing—established the
following result:

Any drawing of a K5K or a K3K ,3 contains two independent edges
crossing each other oddly.1

Since by Kuratowski’s theorem every non-planar graph contains a sub-
division of K5K or K3K ,3, Hanani’s observation implies that any drawing of a

1The result can be hard to find even if one reads German. It is stated as (1) on page
137 of the article and mainly an application of methods developed by Flores [20, 62.
Kolloqium].
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non-planar graph contains two vertex-disjoint paths that cross an odd num-
ber of times and therefore two independent edges that cross oddly—one in
each path. This consequence was first explicitly stated by Tutte [49].2

Theorem 1.1 (The (Strong) Hanani–Tutte Theorem). Any drawing of a
non-planar graph contains two independent edges that cross oddly.

Equivalently, but more spectacularly, the theorem can be phrased as
saying that if we can draw a graph so that every two independent edges
cross evenly, then the graph is planar (we study the algorithmic content of
this statement in Section 1.4). Since the reverse direction is immediate, the
Hanani–Tutte theorem can be viewed as a characterization of planarity.

In this paper we bring together different versions and applications of the
Hanani–Tutte theorem to show that the result of Hanani–Tutte deserves the
epithets “remarkable” and “beautiful” [27, 29]. We acknowledge the roots
of Hanani–Tutte in the literature of algebraic topology, but this paper will
take an intuitive, geometric approach which proves sufficient as long as we
restrict ourselves to two-dimensional surfaces.

Some conventions used in this paper: When we speak of drawings of
graphs we do not distinguish between an abstract edge and the arc repre-
senting it in the plane; or a vertex and the point it is located at. We will
simply use “edge” and “vertex” for both concepts; we use topological graph
when we want to emphasize that we are considering an abstract graph to-
gether with a drawing. We require drawings of graphs to fulfill the standard
properties: there are only finitely many intersections, a vertex does not lie
in the interior of an edge, no two vertices lie in the same location, and at
most two edges intersect at any interior intersection point. Interior inter-
section points of edges come in two flavors: crossings, if the edges cross at
that point, or touching points if the edges touch. A common endpoint of
two edges is considered an intersection point, but it is neither a crossing nor
a touching point.

2The theorem is generally known as the Hanani–Tutte theorem, though Levow [17]
calls it the “van Kampen-Shapiro-Wu characterization of planar graphs” emphasizing
the parallel history of the theorem in algebraic topology (ignoring Flores, however). In a
recent paper [34] we introduced the name “strong Hanani–Tutte theorem” to distinguish it
from a weaker version that is also often called the Hanani–Tutte theorem in the literature.



Hanani–Tutte and Related Results 261

1.1. The Weak Hanani–Tutte Theorem, or, Even Crossings Don’t
Matter

The Hanani–Tutte theorem is often stated and used in a weak form. Call
an edge in a drawing even if it crosses every other edge an even number
of times (including 0 times). If a graph can be drawn so that all its edges
are even, then the graph is planar. This weak version of the Hanani–Tutte
theorem is easier to prove than the strong version, and yields a stronger
conclusion: the graph can be embedded in the plane without changing its
rotation system. The rotation at a vertex is the cyclic ordering of ends of
edges at that vertex, the rotation system is the collection of rotations of all
vertices.

Theorem 1.2 (Weak Hanani–Tutte). If a graph can be drawn so that all
its edges are even, then the graph is planar and can be embedded without
changing the rotation system.

The assumption of the weak Hanani–Tutte theorem can be weakened:
it is enough to require that in the drawing every even subgraph of G, that
is, a subgraph all of whose vertices have even degree, has an even number of
self-crossings. This form of the theorem was suggested and proved by Loebl
and Masbaum in their study of Norine’s conjecture [18].

Theorem 1.3 (Loebl, Masbaum). If a graph can be drawn so that every
even subgraph has an even number of self-crossings, then the graph can be
embedded in the plane without changing the rotation system.

Or, as Loebl and Masbaum phrase it: “Even drawings don’t help”.
Theorem 1.3 immediately implies Theorem 1.2. We include an easy proof
of Theorem 1.3 using geometric rather than homological methods.

Proof. Suppose we are given a drawing of the graph so that (∗) every even
subgraph has an even number of self-crossings.

We can assume that the graph is connected: Adding an edge between
two components of the graph does not affect (∗) since that edge cannot
be part of any even subgraph (it would, in each of the components, be
incident to a subgraph of odd total degree, which contradicts the handshake
lemma). Repeating this, we obtain a connected graph fulfilling (∗). If the
new graph is embeddable without changing its rotation system, then the
original graph can be embedded with its original rotation system (delete the
additional edges). We prove the result for connected graphs by induction
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on the number of vertices and edges. To make the induction work, we allow
multiple edges and loops.

If there is a non-loop edge e = uv contract it by moving v along e
towards u, eventually identifying u and v and merging the rotations of u
and v as shown in Figure 1. We presently argue that (∗) remains true,
so by the inductive assumption, the new graph can be embedded without
changing its rotation; but then we can split u = v into two vertices again
and move them apart slightly, recovering the original rotations of u and v
and reinserting the edge e = uv without introducing any crossings.

Fig. 1. Geometrically contracting edge e = uv towards u

The contraction of e does not affect (∗): let H be an arbitrary even
subgraph before the contraction. If e /∈// E(H), then, since the degree of H
at v is even, an even number of edges of H is pulled along e, so any crossing
of e leads to an even number of crossing with H, so the number of self-
crossings of H remains even. The same conclusion holds if e ∈ E(H).
In this case we are pulling an odd number of edges of H along e, but e
itself belongs to H, so if v is pulled through a crossing with some edge
f ∈ E(H), the odd number of crossings added is balanced by the single
crossing between e and f that is removed, so that the overall parity remains
even.

Since we started with a connected graph, we are left with the case of
a single vertex with loops. Any loop by itself is an even subgraph, so it
has an even number of self-crossings. Since any two loops also form an
even subgraph, any two loops must cross each other an even number of
times. Pick any loop e whose ends are closest in the rotation; the ends of e
must be consecutive (any loop starting between the two ends of e would
also have to end between the two ends, but then we would have chosen it
over e). Remove e and draw the remaining graph by induction (with the
same rotation). We can then reinsert e at its original place in the rotation
without introducing any crossings. This completes the proof.



Hanani–Tutte and Related Results 263

The Loebl–Masbaum result no longer holds if we only require that every
cycle has an even number of self-crossings: take two cycles sharing a single
vertex so that the ends of the cycle alternate at the vertex. While this graph
is planar it cannot be drawn without changing its rotation system. A simple
modification of the theorem is true, however.

Theorem 1.4. If a graph can be drawn so that every cycle has an even
number of self-crossings, then the graph can be embedded in the plane
without changing the rotation system of any 2-connected block of the graph.
(Only the rotations at cut-vertices need to be adjusted: make the ends of
edges belonging to the same 2-connected block consecutive in the rotation
without otherwise changing the ordering of ends belonging to the same
block.)

Even though Theorem 1.4 leads to a change in rotation, it has the flavor
of the weak Hanani–Tutte theorem; we can ask whether it is sufficient
to assume that every cycle has an even number of independent crossings
to guarantee planarity. Theorem 1.16 in the next section answers that
question.

In the proof of the theorem, we will contract edges only partially, namely,
up to a point where they are free of crossings.3

Proof of Theorem 1.4. We show that any 2-connected graph fulfilling the
conditions of the theorem can be embedded without changing its rotation
system. The general result then follows.

First note that contracting an edge, even partially, does not affect the
parity of the number of crossings along any cycle, since a cycle always has
even degree at every vertex. So we can pick a spanning tree T of the graph
and partially contract edges in a breadth-first (or depth-first) order towards
the root of the tree so that all edges of T are entirely free of crossings. This
might introduce self-crossings along edges in E(G) − E(T ), but since each
such edge forms a cycle with a path in T , it must have an even number of
self-crossings, so we can remove all self-crossings of edges without changing
the parity of crossings along any cycle. At this point the only crossings are
between distinct edges in E(G)−E(T ). We claim that any two such edges
e, f ∈ E(G) − E(T ) cross evenly: for a contradiction assume that e and f
cross oddly. Let PePP and PfP be the sub-paths of T connecting the endpoints
of e and f and CeCC = PePP ∪{e}, CfC = PfP ∪{f}. First consider the case that e

3Partial contractions were used by Černy [9] in his proof of the weak Hanani–Tutte´
theorem in the plane.
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and f are independent. Since e and f cross oddly, but two closed curves
in the plane always cross evenly, CeCC and CfC must have at least a vertex in
common. If CeCC and CfC share an edge, we argue as follows: the symmetric
difference C ′ = CeCC �CfC is a cycle consisting of e, f and crossing-free edges
from T . Since by assumption C ′ has an even number of self-crossings, e
and f must cross evenly. If CeCC and CfC share only a vertex, say v, then
CeCC − v and CfC − v are disjoint, so since G is 2-connected, there must be an
edge g /∈// E(T ) connecting them. Consider the following cycles pictured in
Figure 2:

Ce,gCC : start at the endpoint of g lying on CeCC , follow CeCC to e, traverse e, follow
CeCC to v, follow CfC to the other endpoint of g, traverse g,

Cf,gC : start at the endpoint of g lying on CfC , follow CfC to f , traverse f ,
follow CfC to v, follow CeCC to the other endpoint of g, traverse g,

C ′: start at the endpoints of g lying on CeCC and CfC , follow CeCC to v traversing e
and follow CfC to v traversing f ; add g.

Fig. 2. Cycles Ce,g, Cf,g and C′ in case e and f are independent

Now Ce,gCC and Cf,gC are even, so both e and g as well as f and g cross
evenly (all other edges in these cycles are crossing-free). Since C ′ is even,
this means that e and f also have to cross evenly.

In case e and f share an endpoint v, let TeTT and TfT be the components
of T − {v} containing the other endpoints of e and f . If TeTT = TfT , then
T − {v} contains a path P connecting the two endpoints of e and f which
are different from v. Now the cycle P ∪ {e} ∪ {f} is even; since all edges
of P are free of crossings, this implies that e and f cross evenly.
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So we can assume that TeTT �=�� TfT . Since G is 2-connected, there must
be an edge g between TeTT and TfT . With g we can construct three cycles as
shown in Figure 3:

Ce,gCC : start at v, follow e, follow TeTT to g, follow g, follow TfT to v,

Cf,gC : start at v, follow f , follow TfT to g, follow g, follow TeTT to v,

C ′: start at v, follow e, follow TeTT to g, follow g, follow TfT to f , follow f
back to v.

Fig. 3. Cycles Ce,g, Cf,g and C′ in case e and f are adjacent

Since Ce,gCC is even, e and g cross evenly (by an argument similar to the
one above); by the same token, the evenness of Cf,gC implies that f and g
cross evenly. Finally, since C ′ is even, and, we assumed e and f cross oddly,
e or f must cross oddly with g, but we saw that this is not the case, so e
and f cross evenly.

In other words, all edges in the current drawing of G are even. By the
weak Hanani–Tutte theorem, we can then embed G in the plane without
changing its rotation system.

Theorem 1.4 suggests a more general family of Hanani–Tutte type results: if we
know that all subgraphs belonging to some family of graphs have an even number
of self-crossings, what does this tell us about the graph? To guarantee planarity
we saw that it is enough to look at pairs of edges (weak Hanani–Tutte), pairs
of independent edges (strong Hanani–Tutte), even subgraphs (Loebl–Masbaum),
cycles (Theorem 1.4). What other families of graphs guarantee planarity?

Paths furnish a trivial example: if all paths have an even number of self-
crossings, then all edges are even: consider two edges e and f , and let P be a
shortest path containing both e and f (so they must be the first and last edge of
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the path). Since P − {e, f}, P − {e}, P − {f} as well as P are even, e and f have
to cross evenly. Hence all edges are even, and the graph is planar.

Stars on the other hand, do not appear very promising at first: any drawing of a
graph which minimizes the number of crossings has no crossings between adjacent
edges, so for any graph all stars can be made free of self-crossings. Looking at
pairs of stars trivializes the problem: any two edges are a pair of stars, so by the
weak Hanani–Tutte theorem, the graph is planar. However, there is an interesting
variant hiding here: what happens if we consider pairs of maximal stars?

Question 1.5. If G is drawn so that every union of two maximal stars in G has
an even number of self-crossings, is G planar?

Note that this fails for the torus: take a toroidal grid CnCC �CnCC and add a pair
of diagonal edges to each square. Then the union of two maximal stars will always
contain 0 or 2 self-crossings.

Other families of graphs worth exploring might be triples of (independent)
edges and Θ-graphs, that is, graphs consisting of three internally disjoint paths
connecting the same pair of vertices.

Even if we do not get planarity, we can still ask whether requiring certain
subgraphs in the drawing to have an even number of self-crossings allows us to draw
any conclusions about the graph. One might, for example, ask extremal questions.
We are not aware of any extremal results of this particular form, however, there
are several very similar extremal results we will discuss in Section 3.2. There is a
result by Pach and Toth [31] worth mentioning in this context: a topological graph´
for which any set of k ≥ 2 independent edges contains two edges that cross evenly
has at most O(n log4k−8 n) edges. For k = 2 this is a consequence of the strong
Hanani–Tutte theorem.4

On the structural side there is Norine’s fine characterization of Pfaffian graphs
[22]: he shows that a graph is Pfaffian if and only if it has a drawing in which every
perfect matching has an even number of self-crossings (edges are not allowed to
self-intersect in this characterization).

One might ask which natural properties of graphs are invariant under
weakening crossing-free to even or independently even, where an edge is
independently even if it crosses every non-adjacent edge an even number
of times. Suppose, for example, that we have a drawing of a graph in
which all vertices lie on the boundary of the same region, and all edges
are independently even. Then the graph is outerplanar. So outerplanarity
survives the weakening of crossing-free to independently even. (The proof
is simple: to the region containing all vertices on the boundary, add a
new vertex and connect it to all other vertices by crossing-free edges. All
edges in the resulting drawing are independently even, so by the strong

4This result, with a slightly weaker bound, was rediscovered and used in [6].
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Hanani–Tutte theorem the graph is planar. Removing the new vertex from
the planar drawing yields an outerplanar drawing of the graph.) On the
other hand, the notion of crossing number is not invariant under replacing
crossing-free with even or independently even as we will see in Section 3.4.

Another example is furnished by a result of Pach and Tóth’s on´ x-
monotone drawings; call a drawing x-monotone if all its edges are x-
monotone, that is, functions on an interval. It is known that every x-
monotone embedding of a graph can be turned into a straight-line embed-
ding without changing the x-coordinates of any vertex [11, 30].

Theorem 1.6 (Pach, Tóth [30]). If all edges in an x-monotone drawing
of a graph are even, then the graph has a straight-line embedding in which
every vertex keeps its x-coordinate.

Does the result remain true if we only require edges to be independently
even rather than even? Since x-monotone embeddings can be turned into
straight-line embeddings without changing x-coordinates, it would be suffi-
cient to establish the following conjecture.

Conjecture 1.7. If all edges in an x-monotone drawing of a graph are
independently even, then there is an x-monotone embedding of the graph
in which every vertex keeps its x-coordinate.

The proof of Theorem 1.6 uses the Cairns-Nikolayevsky proof of Theorem 1.2;
it is not immediately clear whether the redrawing techniques we have used in this
section can be adapted to establish Theorem 1.6 or the conjecture.

The weak version of Hanani–Tutte is a simple but popular form of the
theorem. As such it has been discovered independently a couple of times.
Cairns and Nikolayevsky used homology theory and intersection forms to
prove the result for arbitrary surfaces [7]; an intuitive geometric proof, again
for arbitrary surfaces, can be found in [36]. The proof for the plane was
independently found by Černý [9]. It also follows from a redrawing result
of Pach and Toth [29] which we discuss in Section 3.4.´

1.2. Planarity Criteria and Weak Hanani–Tutte

In a way all versions of Hanani–Tutte are planarity criteria, but the two
variants we explore in this section are special in that they depend on the
rotation system of the graph only, and not on the particular drawing. The
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first criterion is due to Cairns and Nikolayevsky [7] and is implicit in their
proof of the weak Hanani–Tutte theorem. To state the result we need to
define a new notion of the number of crossings between two cycles of a
graph: Consider two cycles C1 and C2CC and let P be a maximal path in
C1 ∩ C2CC ; contract P to a single vertex. If the ends of C1 and C2CC alternate
at that vertex, we say the cycles cross in P and count this as one crossing;
otherwise C1 and C2CC touch in P and we do not count this as a crossing. Let
σ(C1, C2CC ) be the total number of crossings—in this sense—between C1 and
C2CC . Note that we do not count crossings between edges from C1 and C2CC , so
σ(C1, C2CC ) is completely determined by a rotation system of the graph.

Theorem 1.8 (Cairns, Nikolayevsky [7]). If a graph can be drawn so that
σ(C1, C2CC ) is even for every two cycles C1, C2CC in the graph, then the graph
can be embedded in the plane without changing the rotation system.

Theorem 1.8 is easily seen to imply the weak Hanani–Tutte theorem.
A proof of the theorem can proceed along the same lines as the proof of
Theorem 1.3: The parity of σ(C1, C2CC ) is not affected by contractions of
edges, so we can contract the graph to a single vertex with loops; now by
assumption any two loops cross an even number of times (in the traditional
sense of crossings); but then we can embed the graph as we did in the proof
of Theorem 1.3.

The second planarity criterion is due to Lovasz, Pach and Szegedy [19]´
and, like the Cairns-Nikolayevsky criterion, arose in the study of thrackles
(of which more in Section 3.3). Recall that a Θ-graph is a pair of vertices
connected by three internally disjoint paths. In a drawing of a Θ-graph the
cyclic clockwise ordering in which the three paths end at the two vertices is
either the same or reversed; if the order is reversed, we call the Θ-graph a
converter. A plane Θ-graph is always a converter.

Theorem 1.9 (Lovász, Pach, and Szegedy [19])´ . A graph is planar if and
only if it can be drawn so that every Θ-subgraph is a converter. In that
case, the graph can be embedded in the plane without changing the rotation
system of any 2-connected block of the graph (only the rotations at cut-
vertices need to be changed).

Rather than establishing the planarity criterion from scratch (which
isn’t very hard assuming Kuratowski’s theorem), we will show that it is
really an incarnation of Theorem 1.2. Indeed, this is how we obtain the
conclusion about the rotation system, which is not part of the original result
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of Lovasz, Pach and Szegedy (using Kuratowski’s theorem doesn’t allow any´
conclusions about the rotation). In the proof we use a characterization of
Θ-graphs in terms of self-crossings.

Lemma 1.10. A Θ-graph is a converter if and only if it has an even number
of cycles with an odd number of self-crossings.

The lemma could be established using exhaustive case-analysis; instead
we opt to obtain it as a consequence of Theorem 1.4.

Proof. If a Θ-graph is drawn so that it has an even number of cycles with an
odd number of self-crossings, there are either no or two cycles with an odd
number of self-crossings. In case there are two cycles with an odd number
of crossings, the two cycles share one of the three paths; introduce a self-
crossing (within one edge) along that path. Hence, we can assume that all
cycles have an even number of self-crossings. By Theorem 1.4, the graph
can be embedded in the plane with the same rotation system, so it must be
a converter.

To establish the other direction, swap the ends of two edges at one of
the two vertices defining the Θ-graph; this changes the parity of the number
of cycles with an odd number of self-crossings, so it becomes even. Then
by the argument we made in the first paragraph, the modified graph is a
converter, which means that the original graph (before swapping the ends)
is not.

Θ-graphs are not closed under contracting edges, leading to problems
with proofs centered around contraction. To address this issue, we introduce
ϑ-graphs as graphs resulting from completely contracting one of the paths of
a Θ-graph; in other words, a ϑ-graph is a vertex with two closed, internally
disjoint paths starting and ending at that vertex. We call a ϑ-graph a
converter if the ends of the two closed paths do not alternate at the shared
vertex. (If we contract one of the paths of a Θ-graph which is a converter,
the resulting ϑ-graph is a converter.) It is easy to see that a ϑ-graph is a
converter if and only if its two closed paths cross an even number of times
(not counting the shared vertex v).

Lemma 1.11. If every Θ-subgraph in a drawing of a 2-connected graph
(without loops) is a converter, then every ϑ-subgraph in the drawing is a
converter.
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Proof. Fix a drawing of the graph and assume that every Θ-subgraph is a
converter. Pick a ϑ-subgraph at some vertex v formed by two closed paths P
and Q. Since the graph is 2-connected, there must be a path connecting
P − v and Q − v (each of these paths contains at least one vertex, since
the graph contains no loops). Let R be a shortest such path with endpoints
p ∈ P and q ∈ Q. Now P consists of two (proper) v, p-paths P1PP , P2PP and
Q of two v, q-paths Q1, Q2. With these pieces we can build two Θ-graphs
between v and p: P1PP , P2PP , R + Q1 and P1PP , P2PP , R + Q2. By assumption,
both of the Θ-graphs are converters, so the cyclic clockwise orderings of the
three paths at v and p must be reversed. Let us assume that paths P1PP , R,
P2PP occur in this clockwise, cyclic ordering at p (the other case P2PP , R, P1PP is
analogous). But then the two continuations of R (Q1 and Q2) must each
occur between P2PP and P1PP in the clockwise cyclic ordering at v since the two
Θ-graphs are converters. Hence, Q1 and Q2 are consecutive at v, which
implies that the ϑ-subgraph formed by P and Q is a converter.

With these results we are in a position to show that Theorem 1.9 is a
variant of the weak Hanani–Tutte theorem.

Proof of Equivalence of Theorem 1.9 and Theorem 1.2. In a drawing
in which every two edges cross an even number of times, every Θ-subgraph is
a converter by Lemma 1.10 (every cycle has an even number of self-crossings
and we can assume that edges are free of self-crossings). This shows that
Theorem 1.9 implies Theorem 1.2.

To see the other direction, let the graph be drawn so that every Θ-
subgraph is a converter. It is sufficient to prove the result for 2-connected
graphs, and then recombine the drawings at the cut-vertices. As we did in
the proof of Theorem 1.4, we can partially contract the edges of a spanning
tree T so that all edges of T are free of crossings. Let e and f be any two
edges of the graph. We show that e and f cross an even number of times.
This is obvious if either one of them belongs to E(T ), so we can assume
that e, f /∈// E(T ) and there are cycles CeCC ⊆ T + e and CfC ⊆ T + f . If CeCC
and CfC do not share a vertex, they must cross an even number of times in
the plane, so e and f cross evenly; if CeCC and CfC share a vertex, but not an
edge, then CeCC ∪ CfC is a ϑ-graph, so by Lemma 1.11 it is a converter, and e
and f cross evenly. Finally, if CeCC and CfC share more than one vertex, they
share a non-empty path, and CeCC ∪ CfC is a Θ-graph which, by assumption,
is a converter. But then e and f cross evenly by Lemma 1.10.
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1.3. Strong Hanani–Tutte and Cycles

Maybe the shortest and most elegant proof of the Hanani–Tutte theorem
is due to Kleitman [16]. He essentially establishes Hanani’s original result
using an intuitive geometric approach by showing that all drawings of K2KK i+1

and K2KK i+1,2j+1 have an odd number of independent crossings.5 Together
with Kuratowski’s theorem this yields the strong Hanani–Tutte theorem in
the same way that Hanani’s result did.

Archdeacon and Richter later showed that K2i+1 and K2i+1,2j+1 are the only
graphs for which the parity of independent crossings is the same in all drawings [2].

We do not include Kleitman’s proof since we will show how to obtain an
even stronger version of the Hanani–Tutte theorem using ideas similar to
his. The following lemma has been used and stated in many forms, but its
core ideas really go all the way back to van Kampen [54]. An (e, v)-move
consists of deforming a small part of e, moving it close to v and then pulling
it over v. It changes the parity of crossing of e with every edge incident to v,
but with no other edge, see Figure 4. A rotation swap consists of swapping
the order of two consecutive ends at a vertex.

Fig. 4. Performing an (e, v)-move

Lemma 1.12. Given two drawings D1 and D2 of the same graph, there is
a set of (e, v)-moves and rotation swaps that can be applied to D1 so that
the resulting drawing D′

1 has the same parity of crossing between every pair
of edges as D2.

Proof. We follow Kleitman’s argument [16]: start with D1. By deforming
the plane, we can assume that each vertex has the same location in D1

5The slightly weaker result that this result is true if one restricts oneself to drawings
in which adjacent edges do not cross, is already contained in Levow [17].
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and D2. Now continuously deform each edge e from its drawing in D1 to its
drawing in D2. The only ways the parity of crossing between e and another
edge f can change is by e moving over an endpoint v of f—corresponding
to an (e, v)-move, or by the consecutive ends of e and f swapping order at
a shared vertex—corresponding to a rotation swap.

Lemma 1.12 simplifies reasoning about drawings, by turning it into an
algebraic problem. Our first use of the lemma is to establish a strengthening
of Kleitman’s observation. Let a principal k-cycle of a subdivision of a graph
G be a cycle that contracts to a k-cycle of G.

Lemma 1.13. Given a drawing of a subdivision of K3K ,3, the number of
principal 4-cycles with an odd number of independent self-crossings is odd.

Proof. The claim is true for the standard straight-line drawings of K3K ,3

and its subdivisions, so we only have to show that the number of principal
4-cycles with an odd number of independent self-crossings does not change
under (e, v)-moves.

First observe that an edge and a vertex in a K3K ,3 always determine an
even number of 4-cycles (namely 2 or 4) that use the edge and the vertex;
on the other hand two disjoint edges determine a unique 4-cycle.

Fix a drawing of a K3K ,3-subdivision, and select any vertex v and edge e
of the graph. If v is a degree-2 vertex in a subdivided K3K ,3 edge f , and e
occurs in the subdivision of a K3K ,3-edge that is not adjacent to f , then the
two edges incident to v cannot be adjacent to e, so the (e, v)-move flips the
parity of crossing of e with both edges incident to v. Since either both or
neither of those two edges belong to a cycle, the number of independent
self-crossings along any cycle cannot change in this case.

Otherwise, v is a degree-2 vertex in the same subdivided edge that e
belongs to, or v is a vertex of the original K5K . In either case, by the
observation, an (e, v)-move affects an even number of principal 4-cycles (by
either changing the parity of independent self-crossings of all of them or none
of them), so the total number of principal 4-cycles with an odd number of
independent self-crossings does not change parity.

As often, K5K turns out to be the harder case.

Lemma 1.14. Any drawing of a K5K contains a cycle with an odd number
of independent self-crossings.
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Proof. Let an i-odd pair be a pair of independent edges that crosses an
odd number of times. First note that in any drawing of a K5K the number
of i-odd pairs is odd. This is true for the standard (convex) straight-line
drawing of K5K , which contains five i-odd pairs; so it is sufficient to show
that the parity of i-odd pairs does not change under (e, v)-moves; but this
is clear, since any (e, v)-move either does not change the parity of crossings
between independent edges at all (if v is an endpoint of e), or changes the
parity of crossing between e and each of the two edges incident to v that are
not adjacent to e. In either case, the parity of i-odd pairs does not change.

Now assume, for a contradiction, that K5K can be drawn so that every
cycle has an even number of independent self-crossings. Every 4-cycle is
made up of two independent pairs of edges that, by assumption, must have
the same parity of crossing. But then the three pairs of independent edges
that make up a K4KK -subgraph must also all have the same parity of crossing.
So each K4KK has either three or no i-odd pairs. Since the number of i-odd
pairs in the drawing is odd, this implies that of the five K4KK s into which
the independent pairs in K5K can be partitioned, an odd number of them
will contain three i-odd pairs. Now consider any C5CC ; it shares exactly one
i-odd pair with each of the five K4KK s so it has an odd number of independent
self-crossings, contradicting the assumption.

With Lemma 1.14 as the base case we are ready to deal with subdivisions
of K5K .

Lemma 1.15. Any drawing of a subdivision of K5 contains a cycle with
an odd number of independent self-crossings.

Proof. For the purposes of this proof only, the parity of a cycle is the parity
of the number of pairs of independent edges that belong to the cycle and
cross oddly. Suppose then that there is a subdivision G of K5K which can be
drawn so that all cycles have even parity.

By Lemma 1.14, G cannot be K5K , so G must contain a degree-2 vertex v.
We show that in that case we can redraw G so that v can be contracted
away without changing the parity of any cycle. This gives us an inductive
proof of the lemma. For the redrawing it will be useful to understand the
effects of (e, v)-moves on the parity of cycles: if v is one of the endpoints
of e, then an (e, v)-move has no effect on the parity of any pairs of edges
crossing, and so it does not affect the parity of any cycles. If, on the other
hand, v is not a neighbor of either endpoint of e, then an (e, v)-move also
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has no effect on the parity of any cycle: each cycle has even degree at v, so
an (e, v)-move will change the parity of crossing between e and the two cycle
edges incident to v, so the parity of the cycle does not change. Finally, we
are in the case that there is an edge f which shares one endpoint with e and
has v as its other endpoint. Then an (e, v)-move will change the parity of
every cycle that contains both e and f excepting, if it exists, a C3CC containing
both e and f ; a C3CC always has even parity.

First suppose that G contains a path uvwx where v and w have degree
2 (so uvwx is part of a subdivided edge). There are two possible obstacles
to merging vw and wx into a single edge vx without changing the parity
of any cycle: some edge incident to x crosses vw oddly or uv crosses wx
oddly. If uv crosses wx oddly, then perform an (uv, x)-move; since there
cannot be an edge between u and x, this does not change the parity of any
cycle, and makes uv cross wx evenly. If there is an edge f incident to x
that crosses vw oddly, perform an (f, v)-move. As above, f cannot have u
as an endpoint, so no cycle changes parity, and f crosses vw evenly. Hence,
all edges incident to v and x (excepting vw and wx) cross both vw and wx
evenly, so we can replace vw and wx by a single edge vx without changing
the parity of any cycle.

If G does not contain a path uvwx as above and is not a K5K , it must
contain a path uvw so that both u and w have degree 4 and v has degree 2.
If all edges (other than uv and vw) incident to u or w cross both uv and
vw evenly, then we can merge uv and vw into a single edge uw without
changing the parity of any cycle in G. Hence, there must be some edge e
incident to u or w that crosses uv or vw oddly. Without loss of generality, e
is incident to u. If e crosses uv oddly, then we can perform an (e, u)-move.
This makes e cross uv evenly, and it does not change the parity of any
cycle (since e is incident to u). Hence, we can assume that e crosses vw
oddly. Let x be the other endpoint of e. If xw is not an edge in G, then
we can perform an (e, w)-move without changing the parity of any cycle,
and making e cross vw evenly. Hence f = xw must be an edge of G. But
now uv, vw, f , e form a 4-cycle in G which, by assumption, has an even
number of independent crossings. However, there are only two independent
pairs: e, vw and f , uv. Since e and vw cross oddly, so must f and uv. Now
perform both an (e, w)- and a (f, u)-move. This reduces the number of odd
crossings along uvw and does not change the parity of any cycle (each move
by itself changes the parity of all cycles containing both e and f ; performed
together, the parity of each cycle is unaffected). In summary, we can ensure



Hanani–Tutte and Related Results 275

that all edges incident to u or w cross both uv and vw evenly, so uv and vw
can be merged into a single edge uw.

Since by Kuratowski’s theorem every non-planar graph contains a sub-
division of K5K or K3K ,3, Lemmas 1.13 and 1.15 imply the following theorem.
The traditional strong Hanani–Tutte theorem is an immediate consequence.

Theorem 1.16. If a graph can be drawn so that all its cycles have an even
number of independent self-crossings, then the graph is planar.

One might ask, whether it is possible to prove the strong Hanani–Tutte theorem
or even Theorem 1.16 without taking recourse to Kuratowski’s theorem? This is
not an idle question as we will see in Section 1.4. For Theorem 1.16 we have to
leave the question open, but there is an elementary proof of the Hanani–Tutte
theorem—in the style of the proof of Theorem 1.3—that does not use Kuratowski’s
theorem [34].6 This, in turn, leads to the question of whether Kuratowski’s theorem
can be obtained from the Hanani–Tutte theorem. The answer is yes, as shown by
van der Holst [51].7

1.4. Algorithmic and Algebraic Aspects

While Kuratowski’s theorem gives us a characterization of planar graphs, it
does not directly lead to either an efficient planarity test or an efficient em-
bedding technique for planar graphs. These problems were first addressed
in the sixties, culminating in the linear-time algorithm by Hopcroft and Tar-
jan. The Hanani–Tutte theorem offers an alternative algorithmic approach
to planarity testing along two separate routes: one practical, the tree ap-
proach, based on work of de Fraysseix and Rosenstiehl [10] and the more
theoretical algebraic approach, first suggested by Wu [56, 57].8

1.4.1. Trémaux Orders.´ A Trémaux tree´ is a (rooted) depth-first search
tree of a graph; it defines a partial order on the vertices of the tree, a

6Sarkaria [41] in 1991 claimed the same result. His proof contains several flaws: The
redrawing suggested in his Figure 4 (page 82) introduces odd crossings between β and
edges that end between α and β. This not only changes the parity of crossings between two
edges, but it may also introduce crossings with edges that have previously been cleared
of crossings. Both problems can be dealt with, but, as far as we know, not by locally
working with a single vertex. This is why we believe that Sarkaria’s proof cannot be fixed
along the lines described in his paper.

7Sarkaria [41] also claims this result, however we were not able to verify it.
8Wu’s 1985 papers are translations of work originally published in the 1970s in Chinese.
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Trémaux order´ , with the root as the smallest element. In a Trémaux
order any non-tree edge of a graph has two endpoints that are comparable.
Given a spanning tree T of a graph G, a T -embedding of G is a drawing
of G in which the edges of T are crossing-free; let T [e] denote the unique
path in T that connects the endpoints of e. Liu established the following
characterization of planarity [10].

Theorem 1.17 (Trémaux Crossing Theorem (Liu))´ . If T is a Trémaux
tree of a non-planar graph G, then any T -embedding of G contains two
edges e and f that cross oddly, and so that T [e] and T [f ] have an edge in
common.

The Tremaux Crossing Theorem follows from the strong Hanani–Tutte theo-´
rem: in a T -embedding there are two independent edges e and f that cross oddly
by Hanani–Tutte; but then T [e] and T [f ] must share an edge: if they only shared
a vertex, the endpoints of e and f together with the shared vertex do not form a
Trémaux order.´

The Trémaux Crossing Theorem is at the root of de Fraysseix–Rosen-
stiehl’s planarity criterion which has been used to justify the correctness
of linear time planarity algorithms including Hopcroft-Tarjan and the Left-
Right algorithm of de Fraysseix–Rosenstiehl [10].

1.4.2. Algebraic Characterizations of Planarity. Call a drawing of a
graph i-even if all pairs of independent edges cross evenly. To find a planar
embedding of a graph, it is enough to, (i), find an i-even drawing of the
graph (if this fails, the graph is not planar), and, (ii), convert the i-even
drawing into a planar drawing.

For step (i) we can exploit the algebraic characterization of planarity
suggested by the Hanani–Tutte theorem. For a given graph G, let U(G) be
the GF(2)-vector space over the basis [e, f ], where e and f range over all
independent pairs of edges of G and e < f in some ordering of the edges;
to simplify notation, we allow [f, e] for [e, f ] and let [e, f ] = 0 if e and f are
not independent.

Consider a drawing D of G = (V,E). With D we associate the vector

xD :=
∑
e<f

(crD(e, f) mod 2)[e, f ],

where crD(e, f) is the number of crossings between e and f in D. Let
X(G) := {xD : D is a drawing of G}. Also, we define we,v :=

∑
f=(u,v)[e, f ]
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(this vector corresponds to the effect of an (e, v)-move). Let W (G) be the
GF(2)-vector space in U(G) spanned by the we,v, e ∈ E, v ∈ V .

Theorem 1.18 (Van Kampen, Tutte, Wu, Levow). The difference between
any two vectors in X(G) lies in W (G) and if x ∈ X(G) and w ∈ W (G),
then v +w ∈ X(G). In other words, X(G) is a coset of W (G) in U(G).

Who proved this result? Van Kampen [54] proved one direction, X(G) −
X(G) ⊆W (G), but could only prove the other direction for higher dimensions; the
first explicit statements are in Wu [56] and Levow [17]. Tutte essentially proved
the same result over a different vector space, as we will see below; Levow was aware
of Tutte’s work, Wu was not.

By Theorem 1.18 planarity is equivalent to 0 ∈ X(G), which means
that planarity can be phrased as system of linear equations over the field
GF(2) which can be solved by Gaussian elimination in cubic time (even
less). Unfortunately, the number of variables and equations is Θ(|E|2),
which yields a planarity algorithm running in worst-case time O(|E|6); it
is not clear whether the structure of the problem can be used to obtain a
practical algorithm.

Let ‖x‖1 denote the 1-norm of x, that is, the sum of the absolute values
of the entries of x. Then minx∈X(G) ‖x‖1 is known as the independent odd
crossing number ofG written as iocr(G) (see Section 3.4 for more on crossing
numbers). Thus, computing iocr(G) can be expressed as a minimization
problem over a vector space. More precisely, let s ∈ X(G) be an arbitrary
vector (for example, position the vertices of G on the boundary of a disk
in arbitrary order and consider the resulting straight-line drawing). Then
iocr(G) is the minimum of ‖s+ x‖1 over all x ∈ W (G). In other words,
we are looking for x ∈ W (G) that is closest, in the 1-norm, to s. This is a
special case of the nearest vector problem, which isNP-hard to approximate
to within any constant [3]. Hence, the algebraic approach does not seem
to offer any help in the efficient computation or approximation of crossing
numbers.

We have counted crossings along edges modulo 2, corresponding to the
traditional Hanani–Tutte theorem; however, there is another way to count
crossings that might be worth exploring, and that goes back at least as far as
Whitney’s 1944 paper [55], though Flores already hints at the possibility [20,
62. Kolloquium §12]; it’s first explicitly worked out by Tutte. Form UZUU (G)
like U(G), but as a Z-vector space. If we orient all the edges in G, we can
assign +1 and −1 to each crossing between two edges depending on the
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direction of the crossing; let acrD(e, f) be the sum of these values along e
and f , and aD :=

∑
e<f acrD(e, f)[e, f ], and A(G) := {aD : D is a drawing

of G}. For an (e, v)-move we now have two vectors we,v depending on the
direction in which we pull e over v (and the entries are +1 and −1 depending
on the direction of crossing). Without spelling out the details, let WZWW (G)
be the Z-vector space generated by all these vectors.

Theorem 1.19 (Tutte). A(G) is a coset of WZWW (G) in UZUU (G).

As above, planarity is equivalent to 0 ∈ A(G). Tutte also showed that
if x ∈ A(G), then 2x ∈WZWW (G).9

As with X(G), we can make A(G) the basis of a crossing number
definition: minx∈A(G) ‖x‖1 is the independent algebraic crossing number
of G, or iacr(G), for short. On the question of whether iacr = cr, where cr
is the traditional crossing number (see Section 3.4), Levow [17] writes “it
seems reasonable to hope that equality holds for all graphs”; as we will see in
Section 3.4 this is not the case, the two notions of crossing numbers differ.
Interestingly, Whitney came close to asking the same question 30 years
earlier [55]. Levow continues “whether or not equality holds, the algebraic
setting may be useful in helping to compute crossing numbers, for it leads
to a lower bound for the crossing number given in terms of the solution to
an integer or Boolean minimization problem.”

Step (ii) requires an effective version of the strong Hanani–Tutte theo-
rem. From that perspective all the proofs based on Kuratowski’s theorem
fail. The first proof of strong Hanani–Tutte that does not appeal to Ku-
ratowski’s theorem and constructs an embedding starting with an i-even
drawing is from [34] (a straightforward implementation of the algorithm
will run in quadratic time, better bounds might be possible). The approach
has a flavor similar to the proof shown in Theorem 1.3. For a variant see
Theorem 3.14, for a strengthening, Theorem 3.17 in Section 3.4.10

As an immediate consequence of steps (i) and (ii) we get that planarity
testing can be performed, and the planar graph embedded, in time O(|E|6),

9In his terminology: “A crossing chain is half a cross-coboundary.”
10We note that there were two previous claims for algorithms solving (ii). Wu extends

the system of linear equations by a set of quadratic equations whose solution will describe
an embedding. However, solving quadratic systems of equations is NP-complete, so Wu’s
approach does not lead to an efficient solution. Sarkaria [41] claims that there is a “one-
dimensional version of Whitney’s trick by means of which any graph [G which has an
i-even drawing] can be, step by step embedded in R2.” Unfortunately, his version of the
Whitney trick for n = 1 is fatally flawed as explained in an earlier footnote.
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so the algebraic approach, at least at this point, does not seem to offer
any algorithmic advantages over the graph-theoretical approach. However,
on the theoretical side, the algebraic point of view has led to interesting
research, including several recent papers by van der Holst giving purely
algebraic characterizations of planarity, outerplanarity, and linkless embed-
dability [51, 52].

2. Surfaces

Different from many other planarity criteria—such as Kuratowski or
MacLane’s—Hanani–Tutte can easily be restated for arbitrary surfaces.11

Take the weak Hanani–Tutte theorem:

Theorem 2.1 (Weak Hanani–Tutte for Surfaces [7, 36]). If a graph can
be drawn in a surface S so that every pair of edges crosses an even number
of times, then the graph can be embedded in S without changing the
embedding scheme.12

For orientable surfaces this was established by Cairns and Nikolayevsky
[7] using homology theory; the result can also be established using a ge-
ometric proof which also works for non-orientable surfaces as shown by
Pelsmajer, Schaefer, and Štefankovic [36]. Cairns and Nikolayevsky estab-ˇ
lished the slightly stronger Theorem 1.8 for orientable surfaces. The parity
of crossing between two closed curves in a surface depends only on their
isotopy classes (we assume the two curves have a finite number of crossings
and don’t touch at any point); for example, in the plane any two closed
curves cross an even number of times, and any two generators of the torus
will cross an odd number of times. Given two cycles C1 and C2CC in a graph
drawn in surface S, let c1 and c2 be two curves isotopic to the drawings
of C1 and C2CC that cross finitely and don’t touch. Let ΩS(C1, C2CC ) denote
the parity of crossing between c1 and c2. We use σS(C1, C2CC ) for the notion

11Both Kuratowski and MacLane can be restated for arbitrary surfaces, but in the case
of Kuratowski we do not know the list of excluded topological minors except for the plane
and the projective plane [21], and in the case of MacLane’s criterion the generalization is
far from obvious [5].

12Embedding schemes generalize the notion of rotation system to arbitrary surfaces,
including non-orientable ones. We do not include a formal definition, but refer the reader
to [21] or [36] for details.
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of crossing number defined at the beginning of Section 1.2 generalized to
surface S.

Theorem 2.2 (Cairns, Nikolayevsky [7]). If a graph can be drawn in a
surface S so that σS(C1, C2CC ) ≡ ΩS(C1, C2CC ) mod 2 for every two cycles in
the graph, then the graph can be embedded in S without changing the
embedding scheme.

In the plane, Ω(C1, C2CC ) = 0 for all pairs of cycles and so the planar version,
Theorem 1.8, is a special case. The proof we sketched of Theorem 1.8 generalizes
to arbitrary surfaces, including non-orientable surfaces: The parity of σ(C1, C2CC )
is not affected by contractions of edges, so we can contract the graph to a single
vertex with loops; now the number of crossing between two loops e and f equals
σS(e, f) + ΩS(e, f) ≡ 0 mod 2, so e and f cross an even number of times. By
Theorem 2.1 that graph can be embedded without changing its embedding scheme.

The Loebl–Masbaum result, Theorem 1.3 also generalizes to arbitrary
surfaces.

Theorem 2.3. If a graph can be drawn in surface S so that every even
subgraph has an even number of self-crossings, then G can be embedded
in S without changing the embedding scheme.

Proof. The proof of Theorem 1.3 does not use the fact that the ambient
surface is a plane until it deals with the one-vertex case. However, in the
case of a single vertex the assumption of the theorem implies that any two
loops cross evenly. This allows us to apply Theorem 2.1 (which, by its
proof, is true for graphs with loops) to redraw the one-vertex graph without
crossings and without changing the embedding scheme.

Similarly, a closer look at the proof of Theorem 1.4 shows that for 2-
connected graphs it does not use planarity at all, but only relied on the weak
Hanani–Tutte theorem for the plane. Since we just saw that that theorem
can be lifted to arbitrary surfaces, the cycle version of weak Hanani–Tutte
is true for arbitrary surfaces:

Theorem 2.4. If a 2-connected graph can be drawn in surface S so that
every cycle has an even number of self-crossings, then the graph can be
embedded in S without changing the embedding scheme.

The result fails if the graph is not 2-connected; on the torus, for example,
we can take two K7 and overlap them in one vertex. Each K7 by itself can
be embedded on the torus without self-crossings, so all cycles in the drawing
are free of self-crossings.
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The planarity criterion by Lovasz, Pach, and Szegedy, Theorem 1.9, does not´
seem to generalize in a straight-forward manner. The notion of converters seems
too closely bound to the plane, but a careful analysis of the proof might yield an
equivalent form for higher-order surfaces, at least for orientable surfaces.

The story of strong versions of Hanani–Tutte is, unfortunately, much
shorter. We currently only know that strong Hanani–Tutte is true on the
projective plane.

Theorem 2.5 (Pelsmajer, Schaefer, Stasi [32]). If a graph can be drawn in
the projective plane so that every pair of independent edges crosses an even
number of times, then the graph can be embedded in the projective plane.

The proof of Theorem 2.5 relies on the excluded minors for embeddabil-
ity in the projective plane, so while some of ideas of the proof might be
useful, it will not guide the way to establishing the Hanani–Tutte theorem
for other surfaces, like the Klein bottle or the torus (for which the list of
excluded minors is not known). It also means, that, at least with its present
proof, Theorem 2.5 does not lead to an algorithm for embeddability in the
projective plane.13

We know that in the plane every graph which can be drawn so that
all its cycles have an even number of independent self-crossings is planar
(Theorem 1.16). The example after Theorem 2.4 shows that on surfaces
other than the plane we need to require 2-connectedness.

Conjecture 2.6. If a 2-connected graph can be drawn in the projective
plane so that all its cycles have an even number of independent self-crossings,
then the graph can be embedded in the projective plane.

If all edges in a graph are independently even, all cycles in the graph have an
even number of independent self-crossings. Therefore Conjecture 2.6 implies the
strong Hanani–Tutte theorem on the projective plane; analogously, a version of
Conjecture 2.6 for surface S implies strong Hanani–Tutte of surface S. The reverse
implication is not clear.

13In the terminology of Section 1.4, step (ii) fails. However, step (i) also seems to fail for
the projective plane: the natural way of adding the cross-cap into the system of equations
will lead to a quadratic system which, in general, is NP-complete to solve. Levow [17]
shows how to extend Tutte’s algebraic characterization of planarity to arbitrary surfaces.
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3. Applications of Hanani–Tutte

We survey some of the applications of Hanani–Tutte, both weak and strong;
we do not claim completeness; for example, we do not pursue the alternative
history of Hanani–Tutte in the literature of algebraic topology.

3.1. Arrangements of Geometric Objects

A collection of pseudo-disks is a collection of simply connected regions
(bounded by simple, closed curves) so that the boundary curves of any
two regions intersect at most twice. In their extension of a point-selection
result from disks to pseudo-disks, Smorodinsky and Sharir established the
following theorem:

Theorem 3.1 (Smorodinsky, Sharir [45]). Let P be a collection of n points
and C a collection of m pseudo-disks in the plane so that the boundary of
every pseudo-disk passes through a distinct pair of points in P and so that
no pseudo-disk contains a point of P in its interior. Then m ≤ 3n− 6.

To see that the theorem is true, construct a multi-graph on the vertices
of P with edges formed by the two boundary arcs of each pseudo-disk
(formed by the two points of P on the boundary). We argue that any
two independent edges e and f of the graph cross an even number of times;
suppose, for a contradiction, that e and f cross oddly. Since e and f are
independent, they belong to two different pseudo-disks bounded by e, e′

and f, f ′. Since e and f cross oddly, they must cross once (being part of
the boundaries of two pseudo-disks, they can cross at most twice). If e′ also
crosses f , then neither can cross f or f ′, so the two endpoints of e are on
different sides of the pseudo-circle formed by f, f ′, which is a contradiction,
so we conclude that e′ does not cross f . But then the endpoints of f are on
opposite sides of e, e′, again a contradiction. Hence, any two independent
edges cross evenly, and, thus, by Hanani–Tutte, the multi-graph is planar.
By construction, each edge in the multi-graph is doubled, so we conclude
that m ≤ 3n− 6.14

The proof needs the strong Hanani–Tutte theorem, since adjacent edges might
very well cross oddly in the setting of Theorem 3.1. This makes generalizations of
Theorem 3.1 to other surfaces hard, since we do not have strong Hanani–Tutte for

14The argument closely follows the proof given in [45].
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arbitrary surfaces; however, we can extend Theorem 3.1 to the projective plane:
Note that apart from the application of Hanani–Tutte, the proof of Theorem 3.1
works for arbitrary surfaces, since the union of two pseudo-disks (even in surfaces
other than the plane) is a planar region, so the argument can proceed as is; the only
difference is that we need to replace the Euler bound on m by the corresponding
bound for the given surface; in the case of the projective plane, the proof outline
above, combined with Theorem 2.5 establishes the following result:

Theorem 3.2. Let P be a collection of n points and C a collection of m pseudo-
disks in the projective plane so that the boundary of every pseudo-disk passes
through a distinct pair of points in P and so that no pseudo-disk contains a point
of P in its interior. Then m ≤ 3n− 3.

To generalize Theorem 3.1 to arbitrary surfaces we do not actually need the full
strong Hanani–Tutte theorem, since we can assume that any pair of edges crosses
at most twice. This suggests the following parameterized form of the Hanani–Tutte
theorem for arbitrary surfaces:

Conjecture 3.3. If a graph can be drawn in a surface S so that any pair of
independent edges crosses evenly and every pair of edges crosses at most t times,
then the graph can be embedded in the surface.

To establish Theorem 3.1 for surface S (with adjusted Euler bound), it would
be sufficient to prove the conjecture for t = 2, but even t = 1 does not appear to
be obvious.

The idea of using Hanani–Tutte with unions of objects seems to have
been first used by Pach and Sharir [25] in a new proof of an earlier result
of Whitesides and Zhao. Call a collection of simply connected regions k-
admissible if no region disconnects another, the boundaries of regions don’t
touch and they cross at most k times (for example, collections of pseudo-
disks that don’t touch are 2-admissible).

Theorem 3.4 (Whitesides, Zhao). The boundary of the union of a k-
admissible family of size n ≥ 3 contains at most k(3n− 6) arcs.

As in the case of Theorem 3.1, the proof does not rely on properties of the
plane other than the application of the Hanani–Tutte theorem (establishing
Conjecture 3.3 for t = 2k would be sufficient), so the theorem can be
established for the projective plane with a bound of k(3n−3); other surfaces
remain open, as does the question of whether results based on Theorems 3.1
and 3.4 can be extended to surfaces other than the plane.

It appears that the Hanani–Tutte theorem can play a role in extend-
ing results about geometric disks to pseudo-disks; indeed, another example
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due to Buzaglo, Pinchasi, and Rote [6] concerns the Vapnik–Červonenkis-
dimension of pseudo-disks. The Vapnik–Červonenkis-dimension of a collec-
tion C of sets is the largest number of points such that every subset of the
points can be obtained as an intersection of the set of points with a set in C.
It is well-known that the Vapnik–Červonenkis-dimension of disks is 3 (for
any set of four points, there always is some subset of the points that cannot
be obtained by intersecting the four points with a disk).

Theorem 3.5 (Buzaglo, Pinchasi, and Rote [6]). The Vapnik–Červonenkis-
dimension of any collection of pseudo-disks is at most 3.

The proof does not require the Hanani–Tutte theorem, but it is based
on studying drawings of K4KK in which edges are allowed to cross evenly.

A collection of pseudo-parabolas is a collection of functions from R !→ R

so that any two functions cross twice or share one point of tangency (and no
point lies on more than two pseudo-parabolas). Then the tangency graph
in which each pseudo-parabola is represented by a vertex, and an edge
represents tangency between two pseudo-parabolas is a biparite, planar
graph and thus has at most 2n − 4 edges, if n ≥ 3 is the number of
pseudo-parabolas. This result from [1] is based on strong Hanani–Tutte
and it has several interesting consequences, for example, that the number
of empty bigons (or lenses) in a collection of pairwise intersecting pseudo-
circles is linear in the number of pseudo-circles [1], also see the exposition
in [26, Section 5.2]. Ezra and Sharir [12] use the same approach to bound
the complexity of the lower envelope of n functions in R3 (under certain
conditions), a much more complicated situation.

3.2. Excluded Subgraphs

Traditionally, ex(n,G) is the largest number of edges of a (simple) graph on
n vertices without a subgraph isomorphic to G; in topological graph theory
the corresponding notion is excr(n,G), asking for the largest number of edges
in a topological graph that contains no self-intersecting G (equivalently: all
copies of G are crossing free). Pinchasi and Radoiči´ˇ c introduced a parity´
version of this they called exocr(n,G) which is the largest number of edges
of a topological graph on n vertices for which every two edges in the same
copy of G cross evenly [40]. In the same spirit we can define exiocr(n,G) in
which we only require independent edges of G to cross evenly (the reasons
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for the names will become clear in Section 3.4 on crossing numbers). By
the definition we have ex(n,G) ≤ excr(n,G) ≤ exocr(n,G) ≤ exiocr(n,G).

Let us consider two trivial cases. If G = P3PP , the path of length 3, then
ex(n, P3PP ) = �n/2�, the size of a largest matching on n vertices. On the other
hand, in a convex straight-line drawing of KnKK no two adjacent edges cross, so
excr(n, P3PP ) = exocr(n, P3PP ) = exiocr(n, P3PP ) =

(
n
2

)
; for the same reason,

excr(n,K1,m) = exocr(n,K1,m) = exiocr(n,K1,m) =

(
n

2

)

so stars are not of interest. If G = 2K2, two independent edges, then ex(n, 2K2) =
n− 1, for n ≥ 4, and excr(n, 2K2) ≤ exocr(n, 2K2) ≤ exiocr(n, 2K2) = 3n− 6, using
the strong Hanani–Tutte theorem. From these examples, it is clear that ex differs
from all the other variants, but we do not know of any examples separating excr,
exocr and exiocr.

As Pach, Pinchasi, Tardos and Tóth [23] point out any of these notions
are only interesting for planar bipartite graphs G; if G is non-planar, then
ex(n,G) = excr(n,G) = exocr(n,G) = exiocr(n,G) (using the Hanani–Tutte
theorem), and if G is not bipartite, ex(n,G) is already Ω(n2) so there are
no interesting asymptotic results.

So the smallest interesting cases to consider are P4PP and C4CC and there
are bounds for both. Pach, Pinchasi, Tardos and Tóth show that both´
excr(n, P4PP ) and exiocr(n, P4PP ) are of order Θ(n3/2) [23] compared to the tra-
ditional ex(n, P4PP ) = n. Pinchasi and Radoičić show that ex´ ocr(n,C4CC ) =
O(n8/5) [40], while ex(n,C4CC ) = Θ(n3/2) which also is the best current lower
bound on exocr(n,C4CC ). The C4CC problem is particularly interesting, since it
has implications for the number of cuts needed to turn an arrangement of
pseudo-parabolas into pseudo-segments [40].

Other variants of these problems are possible; for example, Pach, Pin-
chasi, Tardos and Tóth study the geometric version ex´ rcr(n, P4PP ) of excr(n, P4PP )
(in which all edges are line segments). For geometric versions, the excr,
exocr and exiocr versions collapse. One can also consider excr(2)(n,G)
(excr−(2)(n,G)) in which we require that every copy of G in the topolog-
ical graph has an even number of (independent) self-crossings. This has the
flavor of Theorem 1.4 and the problems suggested in the subsequent remark.
As far as we know, nothing is known about excr(2) and excr−(2) or how they
relate to exocr or exiocr.
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3.3. Thrackles

John Conway has a penchant for asking simple questions that are hard
to answer. His Devil and Angel problem had to wait more than 20 years
for a solution, and his even older thrackle conjecture is still unsettled. It
forcefully drives home the point how little we really know about drawings
of graphs.

Conway defined a thrackle as a graph that can be drawn so that ev-
ery pair of edges intersects exactly once. A common endpoint of two edges
counts as an intersection, so if we rephrase this condition in terms of cross-
ings it requires that the graph can be drawn so that every pair of indepen-
dent edges crosses exactly once and adjacent edges do not cross.

Conway conjectured that the number of edges of a thrackle is at most
the number of its vertices [4, Section 9.5]. While this conjecture is open, we
do know that |E(G)| = O(|V (G)|) for thrackles G; this was first shown by
Lovász, Pach and Szegedy [19].15 Their proof uses the notion of a generalized
thrackle, a graph which can be drawn so that every two edges cross an odd
number of times.

The traditional definition of a generalized thrackle requires that every two edges
intersect an odd number of times. The two definitions are equivalent [36, Remark
4.2]: one can flip the rotation at each vertex changing the parity of crossing between
any pair of adjacent edges to move back and forth between the two variants. For
traditional thrackles this implies that an intersection-thrackle is always a crossing-
thrackle, but the reverse is not true: C4CC is known not to have a (intersection)-
thrackle drawing, but it can easily be drawn so that every pair of edges crosses
exactly once. We are not aware of any research specifically on crossing-thrackles.

Theorem 3.6 (Lovász, Pach and Szegedy [19])´ . A bipartite graph is a
generalized thrackle if and only if it is planar.

Let G be a thrackle; split V (G) into V1VV and V2VV so as to maximize the
number of edges between V1VV and V2VV . Then every vertex has at least as many
neighbors in the other partition as it has in its own partition (otherwise we
would move it to the other partition), so we can remove at most half the
edges of G to turn it into a bipartite graph G′. By Theorem 1.9, G′ is
planar and thus has at most 2|V (G′)| − 4 edges (using Euler); but then
|E(G)| ≤ 4|V (G′)| − 8 ≤ 4|V (G)|, so |E(G)| = O(|V (G)|) for thrackles G.
In fact, this bound can be improved by sharpening the reasoning:

15The best current upper bound of, approximately, |E| < 1.428|V | is due to Fulek and
Pach [13] using computational methods.
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Corollary 3.7 (Lovász, Pach and Szegedy [19])´ . If G is a thrackle, then
|E(G)| ≤ 2|V (G)| − 3.

We include a very simple proof of Theorem 3.6 based on a proof from [36].
Recall that an (e, v)-move pulls e over v changing the parity of crossing
between e and every edge incident to v as shown in Figure 4.

Proof of Theorem 3.6. Let G be a bipartite graph and U one of its
partitions. Fix an order of the vertices in U and say that e precedes v,
if e’s endpoint in U precedes v in the ordering of U . Now, for any pair
e ∈ E(G) and u ∈ U such that e precedes u perform an (e, u)-move. The
result of these moves is that the parity of any pair of independent edges
changes, whereas the parity of any pair of adjacent edges remains unaffected.
Reversing the rotation of every vertex in U and redrawing the edges incident
to it in a small neighborhood of the vertex changes the parity of every pair
of adjacent edges. In summary, the parity of every pair of edges changed.
This means that for a bipartite graph a drawing in which every pair of
edges crosses oddly can be turned into a drawing in which every pair of
edges crosses evenly and vice versa. This immediately implies that a planar
bipartite graph is a generalized thrackle, and, in the reverse direction, that a
generalized bipartite thrackle is planar by the weak Hanani–Tutte theorem.

Cairns and Nikolayevsky showed that Theorem 1.9 remains true on any
orientable surface. Indeed, the proof of Theorem 3.6 we just gave works for
arbitrary surfaces if we replace the application of the weak Hanani–Tutte
theorem for the plane with the version for an arbitrary surface.

Corollary 3.8 (Cairns, Nikolayevsky [7]). A bipartite graph is a generalized
thrackle in a surface if and only if it can be embedded in that surface.

Cairns and Nikolayevsky managed to find a pleasant generalization of
this result to non-bipartite graphs using the notion of a parity embedding
which is is an embedding of a graph on a non-orientable surface so that even
cycles are two-sided curves and odd cycles are one-sided curves.

Theorem 3.9 (Cairns, Nikolayevsky [8]). G is a generalized thrackle on
an orientable surface S if and only if G has a parity embedding on the
(nonorientable) surface obtained by adding a crosscap to S.

A short proof-sketch of the easy direction: Given G in S push each edge across
the new crosscap as shown in Figure 5. Every pair of edges will then cross evenly,
and thus, by Theorem 2.1 be embeddable in the new surface.
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Fig. 5. Pushing edges over the crosscap

This result can be extended to non-orientable surfaces using the notion of
an X-parity embedding. For a non-orientable surface, let X be a particular
crosscap of the surface; an X-parity embedding is an embedding in which
a cycle is odd if and only if it passes through X an odd number of times.
(If S is orientable, then a parity embedding on S + X is the same as an
X-parity embedding, so Theorem 3.9 is subsumed.)

Theorem 3.10 (Pelsmajer, Schaefer, Štefankovic [36])ˇ . G is a generalized
thrackle on a surface S if and only if G has an X-parity embedding on the
surface obtained by adding a crosscap X to S, with the same embedding
scheme. In that case, we can assume that every edge passes through X an
odd number of times.

As a consequence, we can recover a result shown by Perlstein and Pin-
chasi in their study of Vazsonyi’s conjecture [39]. A´ centrally symmetric
S2-lifting of a graph G is a bipartite graph G′ embedded on the sphere so
that G′ is centrally symmetric and every vertex of G corresponds to two
antipodal points of G′ that belong to different partitions of G′ and every
edge of G corresponds to two edges of G′ so that the endpoints of each edge
belong to different partitions.

Theorem 3.11 (Perlstein, Pinchasi [39]). A graph is a generalized thrackle
if and only if it has a centrally symmetric S2-lifting.

Proof sketch: A centrally symmetric S2-lifting is really a double-cover of an
embedding of G in the projective plane, so one direction is obvious. In the other
direction, Theorem 3.10 tells us that a generalized thrackle can be embedded in the
projective plane so that every edge crosses through the crosscap an odd number of
times. If we think of the projective plane as a disk with the crosscap as its boundary,
then the natural S2-double-cover of this embedding is a centrally symmetric S2-
lifting.

A geometric graph is a graph with a straight-line embedding. With
Theorem 3.11 Perlstein and Pinchasi are able to show that every geometric
graph in R3 in which every two edges are strongly avoiding—they can be
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projected onto some 2-dimensional plane so that they belong to two distinct
rays that form a non-acute angle between them—is a generalized thrackle
(in the plane).

3.4. Crossing Numbers

The crossing number, cr(G), of a graph G is the smallest number of crossings
necessary to draw the graph in the plane. We do not allow edges to pass
through vertices or more than two edges to cross in a point.

The Hanani–Tutte theorem has been closely linked to the study of the crossing
number and many of its variants. Kleitman’s parity result, for example, was part
of his proof that Zarankiewicz’s conjecture holds for the crossing numbers of K5,n

and K6KK ,n. Tutte’s paper tried to establish an algebraic theory of crossing numbers,
see Section 1.4 for details on Tutte’s approach.

Do we really need to count all the crossings? The (weak) Hanani–Tutte
theorem seems to suggest that it should be sufficient to count crossings
only modulo 2: let ocr(G), the odd crossing number of G be the smallest
number of pairs of edges that cross oddly in a drawing of G [29]. The odd
crossing number in many ways behaves like the standard crossing number,
for example, the famous crossing lemma, cr(G) ≥ 1/64|E(G)|3/|V (G)|2,
remains true for the odd crossing number, with the original proof, though
some recent strengthening of the constant factor apparently do not carry
over to the odd crossing number [24].

The weak Hanani–Tutte theorem can now be stated as saying that
ocr(G) = 0 implies that cr(G) = 0. This might suggest that ocr(G) = cr(G)
for all G, but equality does not hold between the two crossing numbers: One
can construct a graph for which ocr(G) < cr(G) ≤ 10 [35, 47]16. However,
it is true that ocr(G) = cr(G) as long as ocr(G) ≤ 3 [34], that is, if a graph
can be drawn so that at most k ≤ 3 edges cross oddly, then the graph can be
drawn with at most k crossings. To establish a result like this, one must be
able to remove crossings along edges that are not involved in odd crossings.
The first such “removing crossings” result is due to Pach and Tóth.

Lemma 3.12 (Pach, Tóth [29]). If D is a drawing of G in the plane, and
E0 is the set of even edges in D, then G can be drawn in the plane so that
no edge in E0 is involved in any crossings.

16The original separation is from [35]; Tóth’s approach leads to a separation of ocr(G)
and cr(G) with cr(G) ≤ 10 [48].
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Lemma 3.12 implies that cr cannot be arbitrary larger than ocr (clear
all even edges of crossings using the lemma and then draw the remaining
edges in their faces so they cross each other at most once), resulting in the
pairwise crossing of at most 2 ocr(G) edges. This was observed by Pach and
Tóth.´

Corollary 3.13 (Pach, Tóth [29]). cr(G) ≤
(
2 ocr(G)

2

)
.

Lemma 3.12 has the disadvantage that it may introduce new odd pairs,
that is, pairs of edges that cross oddly, so it cannot be used to show, for
example, that ocr(G) = cr(G) for small values. This issue is addressed in
the following variant.

Lemma 3.14 (Pelsmajer, Schaefer, Štefankovic [34])ˇ . If D is a drawing
of G in the plane, and E0 is the set of even edges in D, then G can be
drawn in the plane so that no edge in E0 is involved in any crossings and
there are no new pairs of edges that cross an odd number of times.

Lemma 3.14 can be used to prove the strong Hanani–Tutte theorem without
appealing to Kuratowski’s theorem: Pick a cycle in the graph, make its edges even
(since there are no odd independent crossings this can be done by locally modifying
rotations of vertices on the cycle), use Lemma 3.14 to remove crossings with the
cycle, and induct. The induction has to be set up carefully. This approach yields
an effective procedure for constructing the embedding from the original drawing.

Lemma 3.14 should be useful as a first step in improving the upper
bound of Corollary 3.13. The general feeling is that cr(G) ≤ O(ocr(G)),
but there is no hard evidence for this. Lemma 3.14 unfortunately fails
on surfaces other than the plane (there are counterexamples for projective
plane and torus that show that the pairs of edges that cross oddly may have
to change [36]). It is possible that a surface version of the lemma can be
proved which only concludes that the odd crossing number of the drawing
does not increase. Meanwhile, the following weaker version (which in the
plane is the same as Pach-Toth’s result, Lemma 3.12) is true:´

Lemma 3.15 (Pelsmajer, Schaefer, Štefankovic [36])ˇ . If D is a drawing of
a graph G on some surface S, and E0 is the set of even edges in D, then G
can be drawn in S so that no edge in E0 is involved in any crossings.

One concludes, as in the planar case, that crS , the crossing number on
surface S is bounded in terms of ocrS , the odd crossing number on S:
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Corollary 3.16 (Pelsmajer, Schaefer, Štefankovic [36])ˇ .

crS(G) ≤
(
2 ocrS(G)

2

)
for any surface S, orientable or non-orientable.

The independent odd crossing number, iocr(G), is the smallest number
of independent pairs of edges that cross in a drawing of G. The (strong)
Hanani–Tutte theorem translates into “iocr(G) = 0 implies cr(G) = 0”.
Since, by definition, iocr(G) ≤ ocr(G) ≤ cr(G), we already know that
equality does not hold between iocr(G) and cr(G) (as ocr and cr can be
separated), however, it is entirely open whether iocr(G) = ocr(G). One
might again ask, whether iocr(G) = cr(G) for small values and whether
cr can be bounded in terms of iocr. The situation is more difficult than cr
versus ocr, since the number of odd crossings in a drawing can be arbitrarily
large even if iocr is bounded. However, we could recently establish the
following redrawing result:

Lemma 3.17 (Pelsmajer, Schaefer, Štefankovic [37])ˇ . If D is a drawing of
a graph G in the plane and E0 is the set of independently even edges in D,
then G can be redrawn so that no edge in E0 is involved in any crossings
and every pair of edges crosses at most once.

As an immediate consequence one obtains, as earlier:

Corollary 3.18 (Pelsmajer, Schaefer, Štefankovic [37])ˇ . cr(G) ≤
(
2 iocr(G)

2

)
.

It is open whether the conclusion of Lemma 3.17 can be strengthened to
say that there are no new pairs of independent edges crossing oddly. The
following result is another consequence of Lemma 3.17; the proof in this
case is rather intricate though.

Corollary 3.19 (Pelsmajer, Schaefer, Štefankovic [37])ˇ . iocr(G) = cr(G)
for graphs G with iocr(G) ≤ 2.

We do not know whether any of the last three results hold for surfaces
other than the plane.

We started with the odd and independent odd crossing numbers, since
they are most closely related to the Hanani–Tutte results, however, there are
two other crossing number variants worth mentioning in this context: pair
and algebraic crossing number (the latter we saw before in Section 1.4).



292 M. Schaefer

With this, our—still incomplete—list of basic crossing number variants
becomes:

crossing number: cr(G), the smallest number of crossings in a drawing
of G,

pair crossing number: pcr(G), the smallest number of pairs of edges
crossing in a drawing of G,

algebraic crossing number: acr(G), orient all the edges in a drawing
and distinguish between positive and negative crossings along an edge,
counting them as +1 and −1; minimize the sum of the absolute values
of these counts for each edge,

odd crossing number: ocr(G), the smallest number of pairs of edges
crossing oddly in a drawing of G.

We can modify each of these notions by two rules, suggested by Pach
and Tóth [28]:

“Rule +”: restrict the drawings to drawings in which adjacent edges are
not allowed to cross.

“Rule −”: allow crossings of adjacent edges, but does not count them
towards the crossing

We add + and − as a subscript to the crossing number to denote that
we are following that particular rule. Rule + is inspired by the observation
that crossing-number minimal drawings fulfill it, that is, cr = cr+, but it is
not clear whether this holds for any other crossing number variant. Of the
twelve possible combinations of Rule + and Rule − with the four crossing
numbers, these are the only two that are known to coincide. Rule − is what
turns ocr into iocr, namely, ocr− = iocr.

This leaves us with eleven, potentially different, notions of crossing
number:

Rule + ocr+ acr+ pcr+ cr
ocr acr pcr

Rule − iocr = ocr− iacr = acr− pcr− cr−
Little is known about the relationship between these crossing numbers.

The variants are monotone in the sense that going from bottom to top in
the table does not decrease the value and neither does going from left to
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right as long as we drop either the acr-column or the pcr-column. So iocr(G)
is the smallest and cr(G) the largest value, but we do not know whether
acr(G) ≤ pcr(G). We are aware of only two separations among all these
variants: one can construct families of graphs for which ocr(G) < λ cr(G)
for some λ < 1 (originally [35], improved λ in [47]). The original examples
realize ocr(G) < acr(G) = pcr(G) = cr(G) [35] and the new examples
ocr(G) = acr(G) < pcr(G) = cr(G) [47]. Combining these two types of
examples, one can build a graph G for which ocr(G) < acr(G) < pcr(G).
We are not aware of any other separations. Corollary 3.18 shows that
all the crossing number variants listed here are within a square of each
other; for cr versus pcr this bound can be improved: Valtr [50] showed
that cr(G) = O(pcr2(G)/ log pcr(G)), which Tóth [47] improved to cr(´ G) =
O(pcr2(G)/ log2 pcr(G)). Using a separator theorem for string graphs due
to Pach and Fox, Tóth has recently been able to lower this bound to
cr(G) = O(pcr7/4(G)/ log3/2 pcr(G)) [46]. These are the only non-quadratic
upper bounds between crossing numbers we are aware of.

We conjecture that pcr = cr and cr− = cr. Evidence for the first con-
jecture is purely computational: for two vertex multi-graphs with rotations
it appears to be true, according to computer searches performed in connec-
tion with [35]. A first step towards the second conjecture is the proof that
crossings with adjacent edges can be removed if they are the only crossings
along an edge:

Theorem 3.20 (Schaefer [42]). If D is a drawing of G in the plane, and
E0 is the set of edges in D that have no independent crossings, then G can
be drawn in the plane so that no edge in E0 is involved in any crossings and
there are no new independent crossings.

This brings us only slightly closer to proving cr− = cr, but it is a first,
necessary, step to showing even cr = O(cr−). The extent of our ignorance
about cr− is captured in the following conjecture.

Conjecture 3.21. If a graph can be drawn on a surface S so that no two
independent edges cross, then the graph can be embedded in S.

By the strong Hanani–Tutte theorem we know that the conjecture is
true for the plane and the projective plane. Beyond that we know nothing.
So we can only agree with the first half of Tutte’s sentiment that “crossings
of adjacent edges are trivial, and easily got rid of” [49].

What about the computational complexity of all of these crossing numbers?
Obviously, they are all NP-complete? Well, yes, and no. Most of them are NP-
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complete, but not always for obvious reasons. Garey and Johnson showed that
the crossing number problem is NP-complete [14]. This proof also shows that
pcr is NP-hard, but it does not imply that the problem lies in NP; that was
established later in connection with the string graph problem [43]. The variant ocr
is NP-complete as shown by Pach and Tóth [29]; NP-hardness is a modification
of the Garey-Johnson proof and containment in NP relies on a refinement of
Theorem 1.18 which takes into account the rotation system. For acr, Pach and
Toth’s hardness proof for ocr still works and acr´ ∈ NP, since acr(G) ≤ k can be
rephrased as an integer linear program (along the lines of Theorem 1.19). (This
means that drawings of G with acr(G) ≤ k may require an exponential number of
crossings, since this is the best bound known for integer linear programming. We
leave it open whether this bound can be improved for acr.)

For the Rule − variants, we know that iocr, pcr− and cr− areNP-complete [38].
In all three cases, NP-hardness follows from showing that the underlying crossing
number concept ocr, pcr and cr remains NP-hard if the graph is given with a
rotation system. (This turns out to be highly non-trivial in the case of ocr.) All
three problems lie in NP; for iocr this follows directly from Theorem 1.18, for pcr−
and cr− the situation is more complicated, since there is no immediate bound on
the number of crossings that do not count; using techniques from [43] and [44] the
problems can be placed in NP (the upper bounds on the uncounted crossings are
exponential). We do not know the complexity of iacr, though it is quite possible
that the iocr-hardness proof can be adapted.

Finally, ocr+ and pcr+ are NP-hard; we know that ocr and pcr remain hard
if the rotation system of the graph is specified. So let (G,R) be a graph with
rotation system; from it construct G′ by replacing each vertex v of degree d with a
wheel WdWW and attach edges originally connected to v to the d outer vertices of WdWW .
Finally, replace edges of WdWW with multiple, parallel P3PP s to ensure that the WdWW are
embedded. Then the pair or odd crossing number of G with rotation R is at most
k if and only if pcr+ or ocr+ of G′ is at most k. Showing that ocr+ and pcr+ lie in
NP can be done using the approach from [43] and [44]. Again we leave open the
complexity of the algebraic variant, acr+.

There are also results on the parameterized complexity of pcr and ocr [33].

4. In Place of a Conclusion

We have sprinkled open problems and conjectures liberally throughout the
survey and there are many obvious questions one can ask (is there a Hanani–
Tutte theorem for hypergraphs? For matroids?), so instead of reiterating
this material, let us mention one more tempting direction that one can take
the Hanani–Tutte theorem. We restricted ourselves to surfaces following the
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graph-theoretical tradition; the algebraic topology literature went a different
route. The Hanani–Tutte theorem is there known as a version of the
Flores-van Kampen theorem, which has many generalizations and variants,
typically in higher-dimensional spaces. Closer to our versions of the Hanani–
Tutte theorem is a recent result of van der Holst and Pendavingh [53]:
imagine a graph embedded in R3. An embedding is called flat if one can
attach an open disk to each cycle of the graph so that the boundary of
the disk is the cycle and the disk is disjoint from the graph. If a graph
can be embedded in R3 so that each disk crosses each non-incident edge of
the graph an even number of times, then the graph has a flat embedding.
The proof uses methods from algebraic topology; can it be shown using an
intuitive geometric argument?
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Extremal Properties of Random Mosaics

ROLF SCHNEIDER

Laszló Fejes Tóth’s fascinating book [2] demonstrates in many ways´
the phenomenon that figures of discrete or convex geometry that are very
economical, namely solving an extremal problem of isoperimetric type, often
show a high degree of symmetry. Among the examples are also planar
mosaics where, for instance, an extremal property leads to the hexagonal
pattern. Mosaics, or tessellations, have become increasingly important for
applications. Random tessellations in two or three dimensions have been
suggested as models for various real structures. We refer, e.g., to chapter
10 of the book by Stoyan, Kendall, Mecke [35] and to the book by Okabe,
Boots, Sugihara, and Chiu [29] on Voronoi tessellations, which also contains
a chapter on random mosaics. Apart from possible applications, random
mosaics are also an interesting object of study from a purely geometric point
of view. Among the results of geometric appeal that have been obtained,
some concern extremal problems for (roughly speaking) expected sizes of
average cells under some side condition, leading to random mosaics with
high symmetry or of a very simple type, namely made up of parallelepipeds
only. High symmetry here means that the distribution of the random
mosaic, which is usually assumed to be translation invariant, is also invariant
under rotations. Extremal problems for the sizes of average cells (not taking
expectations) seem senseless at first, since extrema cannot be attained.
Nevertheless, in many problems, average cells of large size approximate
certain definite shapes, for example balls, segments, regular simplices, with
high probability.

The purpose of the following is a survey over results, older and more
recent, that have been obtained on extremal properties of random mosaics.
These random tessellations are mostly of special types, namely hyperplane,
Voronoi or Delaunay mosaics generated by Poisson processes, and satisfying
an assumption of homogeneity, also called stationarity.
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1. Explanations

We work in Euclidean space Rd, with scalar product 〈·, ·〉 and norm ‖ · ‖.
Its unit ball and unit sphere are denoted, respectively, by Bd and Sd−1.
The set K of convex bodies (nonempty, compact, convex subsets) in Rd

and its subset P of polytopes are equipped with the topology induced by
the Hausdorff metric. Lebesgue measure on Rd is denoted by λ, and m-
dimensional Hausdorff measure by Hm. We write λ(Bd) =: κd = πd/2/Γ(1+
d/2). For a topological space T , the σ-algebra of its Borel sets is denoted
by B(T ). A ‘measure’ on a topological space in the following is always a
measure on its Borel σ-algebra.

The mosaics to be considered will be ‘face-to-face’. Therefore, by a
mosaic in Rd, or a tessellation of Rd, we understand here a locally finite
set m of d-dimensional polytopes in Rd with the following properties: the
polytopes of m cover Rd, and the intersection of any two different polytopes
of m is either empty or a face of both polytopes. The polytopes of m are
called its cells, and every k-dimensional face of some cell is, by definition,
a k-face of m (k = 0, . . . , d). We denote by FkFF (m) the set of all k-faces of
m and by skelk m the union of these k-faces.

Since random mosaics will be modeled as special particle processes, we
must explain these first. For a detailed introduction we refer to chapters 3
and 4 of the book [34]. Here we restrict ourselves to convex particles and
simple processes. Thus, by a particle process X in Rd we understand
a simple point process in K, that is, a measurable mapping from some
probability space (Ω,A,P) into the space Ns(K) of simple, locally finite
counting measures on K, equipped with the usual σ-algebra. We identify
a simple counting measure η with its support and often write x ∈ η for
η
(
{x}
)

= 1. Then we can view a realization of the particle process X
as a locally finite system of (generally overlapping) convex bodies in Rd.
The particle process X is stationary (or homogeneous) if for any t ∈ Rd

the process X and its translate X + t (defined in the obvious way) have
the same distribution. The intensity measure Θ of X is defined by
Θ(A) := EX(A) for A ∈ B(K), where E denotes mathematical expectation.
We assume (this is part of the definition of a particle process) that Θ is
locally finite with respect to the hit-or-miss topology, which means that
Θ
(
{K ∈ K : K ∩ C �=�� ∅}

)
< ∞ for each C ∈ K. From now on we assume

that X is stationary and that Θ is not the zero measure; then the intensity
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measure has a decomposition∫
K

∫∫
f dΘ = γ

∫
K

∫∫
0

∫
R

∫∫
d

f(K + x)λ(dx)Q(dK),

for any Θ-integrable function f on K. Here, γ is a positive number, the
intensity of X, and Q, the grain distribution of X, is a probability
measure on K0, the space of convex bodies K with Steiner point s(K) at
the origin. (Other than in [34], we use here the Steiner point as center
function, which is possible and convenient in the case of convex bodies.) If
A ∈ B(K) and B ∈ B(Rd) is a set with λ(B) = 1, then (denoting by 1A the
indicator function of A)

γQ(A) = E
∑

K∈X, s(K)∈B
1A
(
K − s(K)

)
,

which reveals the intuitive meaning of the intensity γ and the grain distri-
bution Q (and incidentally shows that they are uniquely determined by X).

A random convex body with distribution Q is called the typical grain
of X.

With a stationary particle process X one can associate two body-valued
parameters, which comprise much information about the process. Let
SdS −1(K, ·) denote the surface area measure of the convex body K. The
Blaschke body B(X) of X is the unique body in K0 with

SdS −1

(
B(X), ·

)
= γ

∫
K

∫∫
0

SdS −1(K, ·)Q(dK);

it exists by a theorem going back to Minkowski. The projection body,
ΠB(X), of B(X) is called the associated zonoid of X and is denoted
by ΠX . Thus, its support function, denoted by h, is given by

h(ΠX , u) =
1

2

∫
S

∫∫
d−1

∣∣∣∣〈u, v〉∣∣∣∣ SdS −1

(
B(X), dv

)
=

γ

2

∫
K

∫∫
0

∫
S

∫∫
d−1

∣∣∣∣〈u, v〉∣∣∣∣SdS −1(K, dv)Q(dK)

= γ

∫
K

∫∫
0

h(ΠK , u)Q(dK).
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The formula

h(ΠX , u) =
1

2
E
∑
K∈X

card
(
[0, u] ∩ bdK

)
, u ∈ Rd,

where [0, u] denotes the line segment with endpoints 0 and u, reveals the in-
tuitive meaning of the associated zonoid (see [34], in particular section 4.6).

A further body-valued parameter is the set-valued expectation of the
typical grain. Let Z be the typical grain of X. Its set-valued expectation
(or Aumann expectation, also called selection expectation) is defined by

EZ :=
{
E ξ : ξ : Ω→ Rd is measurable and ξ ∈ Z a.s.

}
(a.s. stands for ‘almost surely’). It is a convex body, and h(EZ, ·) =
Eh(Z, ·), hence

h(EZ, ·) = γ

∫
K

∫∫
0

h(K, ·)Q(dK).

In the plane, one has Sd−1(K + M, ·) = SdS −1(K, ·) + SdS −1(M, ·) for
K,M ∈ K, from which one can deduce that

(1) B(X) = γEZ for d = 2.

A random mosaic is now defined as a particle process which is almost
surely a mosaic. Let X be a stationary mosaic in Rd. For k = 0, . . . , d, the
set FkFF (X) defines a stationary particle process, the process of k-faces of X,
denoted by X(k). Assuming that it has locally finite intensity measure (this
will be satisfied in the examples considered in later sections), we denote its
intensity by γ(k) and its grain distribution by Q(k).

There are several natural ways of defining ‘average faces’ of a stationary
random mosaic. The typical k-face of X is, by definition, the random
polytope Z(k) (unique up to stochastic equivalence) with distribution Q(k).
The intuitive idea behind this is that in every realization of the random
mosaic one picks out a k-face at random, with equal chances for all the k-
faces (which is, of course, only possible in a bounded region), and translates
it to bring its Steiner point to the origin, to obtain a realization of Z(k).
A more precise manifestation of this idea is given by the formula

P{Z(k) ∈ A} = lim
r→∞

E
∑

F∈X(k), F⊂rW 1A
(
F − s(F )

)
E
∑

F∈X(k), F⊂rW 1
,
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which holds for A ∈ B(P) and any W ∈ K with λ(W ) > 0 (this follows from
[34, Th. 4.1.3]). We write Z(d) =: Z and call this the typical cell of X.

Another way of defining an average cell of X consists in choosing the
(almost surely unique) cell that contains a given point. By stationarity, it is
inessential which point we choose; we choose 0 and call the cell containing
this point the zero cell of X and denote it by Z0ZZ . Up to translations, the
distribution of the zero cell is the volume-weighted distribution of the typical
cell. In fact, for every translation invariant, nonnegative, measurable func-
tion f of P we have Ef(Z0ZZ ) = E

[
f(Z)λ(Z)

]
/Eλ(Z) (see [34, Th. 10.4.1]).

For a stationary random mosaic X, the Blaschke body B(X) is always
centrally symmetric with respect to 0, and the support function of the
associated zonoid is given by

h(ΠX , u) = E card
(
[0, u] ∩ skeld−1X

)
.

For d = 2, B(X) = γEZ and

(2) ΠX = 2ϑπ/2B(X),

where ϑπ/2 denotes a rotation by π/2 (observe that B(X) = −B(X)). Thus,
for a planar random mosaic, the three introduced parameter bodies differ
from each other only by elementary transformations.

2. Poisson Hyperplane Tessellations

A particularly accessible class of random mosaics are those generated by
Poisson hyperplane processes. They were already an essential topic in
the early work on stochastic geometry by Miles and Matheron. In this
section, we give a brief survey of the older extremal properties that have
been shown for these random mosaics, and we mention a few new results.
The subsequent sections are then devoted to a broader survey of more recent
results.

We denote by G(d, k) the Grassmannian of k-dimensional linear sub-
spaces and by A(d, k) the affine Grassmannian of k-flats in Rd, both with
their usual topologies (k = 1, . . . , d − 1). In particular, A(d, d − 1) is the
space of hyperplanes. A hyperplane is often written in the form

H(u, τ) =
{
x ∈ Rd : 〈x, u〉 = τ

}
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with u ∈ Sd−1 and τ ∈ R. Note that H(u, τ) = H(−u,−τ) (which will not
cause ambiguities).

Let X̂ be a stationary Poisson hyperplane process in Rd with intensity
measure Θ̂ �= 0. This means that�� Θ̂ is a translation invariant, locally finite
measure on A(d, d−1) and X̂ is a measurable mapping from some probability
space (Ω,A,P) into the measurable space Ns

(
A(d, d− 1)

)
of simple, locally

finite counting measures on A(d, d− 1) with its usual σ-algebra, such that

P
{
X̂(A) = k

}
= e−

̂Θ(A) Θ̂(A)k

k!
, k = 0, 1, 2, . . . ,

for A ∈ B
(
A(d, d − 1)

)
with Θ̂(A) < ∞. In particular, Θ̂(A) = E X̂(A).

The measure Θ̂ has a unique decomposition of the form∫
A

∫∫
(d,d−1)

f dΘ̂ = γ̂

∫
S

∫∫
d−1

∫ ∞

−∞

∫∫
f
(
H(u, τ)

)
dτ ϕ̂(du)

for every nonnegative, measurable function f on A(d, d− 1), with a number
γ̂ > 0 and an even probability measure ϕ̂ on Sd−1. The number γ̂ is the
intensity and ϕ̂ is the spherical directional distribution of X̂. We
assume that X̂ is nondegenerate, which means that the measure ϕ̂ is not
concentrated on a great subsphere. Again, simple counting measures are
identified with their supports. Then a.s. every realization X̂(ω), ω ∈ Ω, can
be viewed as a locally finite system of hyperplanes (i.e., every compact set
is met by only finitely many of the hyperplanes). It defines a tessellation
X(ω) of Rd, the cells of which are the closures of the connected components
of Rd \X(ω). Since X̂ is nondegenerate, the cells are a.s. bounded, hence in
this way we define a randommosaicX. It is called thePoisson hyperplane
mosaic induced by X̂. The random mosaic X is stationary.

For k = 0, . . . , d, the process X(k) of k-faces of X has a locally finite
intensity measure (see [34, sect. 10.3]) and hence a positive, finite inten-
sity γ(k) and a grain distribution Q(k).

Further natural geometric parameters for the description of X̂ and hence
X are obtained as follows. For k ∈ {0, . . . , d − 1}, let X̂d−k denote the
intersection process of order d− k of X̂ (see [34, sect. 4.4]). It is a stationary
process in A(d, k), defined by the intersections of any d− k hyperplanes
of X̂ which are in general position. We denote the intensity of X̂d−k by
γ̂d−k (hence γ̂1 = γ̂) and its directional distribution, which is a measure
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on G(d, k), by Q̂d−k. The intuitive meaning of these parameters can be
read off from

γ̂d−kQ̂d−k(A) =
1

κd−k
E card {E ∈ X̂d−k : E ∩Bd �=�� ∅, E0 ∈ A}

for A ∈ B
(
G(d, k)

)
, where E0 ∈ G(d, k) denotes the linear subspace parallel

to the flat E.

The typical cell Z and the zero cell Z0ZZ of the stationary random mosaic
X are random polytopes, which can be considered as ‘average’ cells of X, in
different ways. We shall be interested in estimating the ‘size’ of these average
cells, metrically or combinatorially. A quite general class of functionals for
measuring the size of a d-polytope P (already considered by Miles [27] for
typical cells) is given, for 0 ≤ r ≤ s ≤ d, by

Yr,sYY (P ) :=
∑

F∈FsFF (P )

VrVV (F ),

where FsFF (P ) is the set of s-faces of P and VrVV denotes the rth intrinsic
volume. This comprises the following special cases.

• Yr,dYY (P ) = VrVV (P ) is the rth intrinsic volume of P ; in particular, VdVV (P )
is the volume, 2VdVV −1(P ) is the surface area, (2κd−1/dκd)V1VV (P ) is the
mean width of P , and V0VV (P ) = 1.

• Ys,sYY (P ) =: Ls(P ) is the total s-dimensional volume of the s-faces of P .

• Y0YY ,s(P ) =: fsff (P ) is the number of s-faces of P .

For 0 ≤ r ≤ s ≤ k, the functional Yr,sYY is defined for k-polytopes. We want
to evaluate EYr,sYY (Z(k)), its expectation for the typical k-face of the random
mosaic X. Define the densities

(3) d(k,s)r := γ(k)EYr,sYY (Z(k)), d(k)r := d(k,k)r = γ(k)EVrVV (Z(k)).

It follows from [34], Theorem 10.1.2 and (10.9), that

(4) d(k,s)r = 2k−s

(
d− s

d− k

)
d(s)r ,

where we have used that a.s. every s-face of X with s ≤ k lies in precisely
2k−s

(
d−s
d−k

)
k-faces of X. By [34, Th. 10.3.1],

(5) d(s)r =

(
d− r

d− s

)
d(r)r ,
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in particular (case j = 0),

(6) γ(s) =

(
d

s

)
γ(0) =

(
d

s

)
γ̂d.

From (3)–(6) we get

(7) EYr,sYY (Z(k)) = 2k−s

(
k

r

)(
k − r

k − s

)
EVrVV (Z(r)).

The case r = 0 gives

(8) E fsff (Z(k)) = 2k−s

(
k

s

)
.

So far, Poisson assumptions were not required, only some finiteness assump-
tions, which are satisfied in the Poisson case.

For a stationary Poisson hyperplane process X̂, the remaining essential
parameters can be expressed as intrinsic volumes of an associated zonoid.
This surprising and very useful fact was discovered by Matheron.

Since X is a stationary particle process, its Blaschke body B(X) and
associated zonoid ΠX are defined as in Section 1. They can now be ex-
pressed more directly in terms of the data γ̂ and ϕ̂ of the hyperplane pro-
cess X̂. Since ϕ̂ is an even measure on Sd−1 and not concentrated on a
great subsphere, there exists a unique 0-symmetric convex body B(X̂) with
SdS −1

(
B(X̂), ·

)
= γ̂ϕ̂, the Blaschke body of the hyperplane process ̂)X. Its

projection body Π
B( ̂X)

=: Π
̂X
, and thus the body with support function

h(Π
̂X
, ·) = γ̂

2

∫
S

∫∫
d−1

∣∣∣∣〈·, v〉∣∣∣∣ ϕ̂(dv),
is the associated zonoid of X̂. It turns out ([34, p. 489]) that

(9) B(X) = 2
1

d−1B(X̂), ΠX = 2Π
̂X
.

We remark already here that the Blaschke body B(X̂) is closely related
to the shape of (weighted) typical cells. One instance is the following
result ([34], Theorem 10.4.11) (another one is (34) and the subsequent
remark). Among all convex bodies K ∈ K with 0 ∈ K and given positive
volume, precisely the homothets of the Blaschke body B(X̂) maximize
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the probability that the zero cell Z0ZZ of the tessellation X contains K.
A similar result (but requiring a different proof) was obtained in Hug and
Schneider [12]: Among all convex bodies K ∈ K of given positive volume,
precisely the homothets of the Blaschke body maximize the probability that
the typical cell Z of the tessellation X contains a translate of K.

The following remarkable relations can be stated (see [34], (4.63),
(10.43), (10.44) for proofs and references). For 0 ≤ r ≤ d,

(10) γ̂d−r = d(r)r = VdVV −r(Π ̂X
),

in particular,

(11) γ̂ = γ̂1 = V1VV (Π
̂X
).

From (3), (6), (10) we obtain

(12) EVrVV (Z(r)) =
VdVV −r(Π ̂X

)(
d
r

)
VdVV (Π

̂X
)
.

In the plane, we can consider the set-valued expectation EZ of the
typical cell Z. From (1), (2), (9) we get the nice formula

V2VV (EZ) = EV2VV (Z).

Since also

V1VV (EZ) = EV1VV (Z)

by linearity, the isoperimetric inequality gives[
EV1VV (Z)

]2 ≥ πEV2VV (Z),

with equality if and only if X̂ is isotropic.

In higher dimensions, the Aleksandrov–Fenchel inequalities for intrinsic
volumes can be used to obtain inequalities of isoperimetric type for the
considered mosaics. A first example is a sharp inequality for the intersection
densities (the intensities of the intersection processes), given the intensity,
namely

(13)
γ̂k
γ̂k
≤

(
d
k

)
κkd−1

dkκd−kκ
k−1
d
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for k ∈ {2, . . . , d}. Equality holds if and only if X̂ is isotropic (see [34],
Section 4.6, also for references). Thus, for given intensity, precisely the
most symmetric, namely isotropic, hyperplane processes yield the highest
kth intersection density. The case k = d together with (6) gives

(14)
γ(k)

γ̂d
≤
(
d
k

)
κdd−1

ddκd−1
d

,

where again equality holds precisely in the isotropic case. This shows that
for given intensity γ̂, the intensity of the k-faces of the mosaic X is maximal
in the isotropic case.

As simple examples show, there is no counterpart to (13) in the opposite
direction: if γ̂ > 0 is given, γ̂k can be arbitarily close to zero. However,
a sharp estimate in the other direction is possible if the intersection density is
measured in an affine-invariant way. For a linear transformation Λ ∈ GL (d),
the hyperplane process ΛX̂ is obtained from X̂ by applying Λ to each
hyperplane of X̂. Then the inequality

(15) sup
Λ∈GL (d)

γ̂k(ΛX̂)

γ̂(ΛX̂)
k
≥ 1

dk

(
d

k

)

holds for k = 2, . . . , d, with equality if and only if the hyperplanes of X̂
attain almost surely only d fixed directions. This was proved by Hug and
Schneider [12], also using the associated zonoid.

In contrast to the inequalities (13), the following one was not mentioned
in [25] or [34]. Let 0 < k < d − 1. From the inequalities (6.4.6) in [30],
where we replace i, j, k by 0, k, d− 1 and observe that

WrWW =
κr(
d
r

)VdVV −r,

we obtain

(16)

(
VdVV −k(Π ̂X

)(
d
k

)
VdVV (Π

̂X
)

)d−1

≥
κkd−1

κd−1
k

(
V1VV (Π

̂X
)

dVdVV (Π
̂X
)

)k

and thus, by (12),

(17) [EVkVV (Z(k))]
d−1 ≥

κkd−1

κd−1
k

[EVdVV −1(Z(d−1))]
k
.
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Supppose that equality holds in (17). Then (see [30, p. 334]) equality must
hold in the inequality WdWW −2(Π ̂X

)2 ≥ WdWW −3(Π ̂X
)WdWW −1(Π ̂X

). Since Π
̂X
is

centrally symmetric and d-dimensional, this implies by [30, Th. 6.6.19] that
Π

̂X
is a 1-tangential body, and hence a cap body, of a ball. This means that

Π
̂X
is the convex hull of a ball B and a (possibly empty) set M of points

outside B with the property that the segment joining any two points of M
intersects B. If M is not empty, then Π

̂X
has uncountably many exposed

faces which are segments of different directions. Since Π
̂X
is a zonoid, each

of its faces is a summand of Π
̂X
. This leads to a contradiction, hence Π

̂X

is a ball, and X̂ is isotropic.

Eliminating VdVV (Π
̂X
) from the right side of (16) by means of the inequal-

ity connecting V1VV and VdVV (i.e., [34, (14.31)] for j = 1, k = d), we obtain

(18) EVkVV (Z(k)) ≥
dkκkd

κkd−1κk

1

γ̂k
,

which together with (5) gives [25, Satz 3.12.3]. Equality holds precisely if
X̂ is isotropic. Thus, for given intensity γ̂, the isotropic mosaics yield the
smallest expected volume of the typical k-face.

We turn to the zero cell Z0ZZ of the mosaic X. In contrast to the case of
the typical cell Z, useful explicit representations for the expectations of the
functionals Yr,sYY (Z0ZZ ) are only known in the following few special cases (for
proofs and references, see [34, sect. 10.4]). The first of these is

EVdVV (Z0ZZ ) =
d!

2d
VdVV (Πo

̂X
),

where Πo
̂X
:= (Π

̂X
)o denotes the polar body of the associated zonoid Π

̂X
.

The expected total k-volume of the k-faces can be reduced to this, namely by

ELk(Z0ZZ ) = d
(k)
k EVdVV (Z0ZZ ) =

d!

2d
VdVV −k(Π ̂X

)VdVV (Πo
̂X
),

for k = 0, . . . , d − 1. The particular case k = 0 gives the expected number
of vertices,

E f0ff (Z0ZZ ) =
d!

2d
VdVV (Π

̂X
)VdVV (Πo

̂X
).

Since the zero polytope is a.s. simple (that is, each vertex lies in precisely
d facets), we have

E f1(Z0ZZ ) =
d

2
E f0ff (Z0ZZ ),
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and for d = 3 we can use Euler’s relation to get

E f2ff (Z0ZZ ) = 2 +
1

2
E f0ff (Z0ZZ ).

Sharp inequalities are known for the volume and the vertex number,
namely

(19) EVdVV (Z0ZZ ) ≥ d!κd

(
2κd−1

dκd
γ̂

)−d

,

with equality if and only if X̂ is isotropic, and

(20) 2d ≤ E f0ff (Z0ZZ ) ≤ d!κ2d
2d

.

Equality on the left side of (20) holds if and only if X is a parallel mosaic,
which means that the hyperplanes of X̂ belong to d fixed translation classes.
Equality on the right holds if and only if X̂ is affinely isotropic. This
means that there exists a nondegenerate affine transformation α of Rd such
that the hyperplane process αX̂ is isotropic. For the proofs, we refer to [34,
Th. 10.4.9].

The extremal property of isotropic mosaics exhibited by (19) goes much
farther. For given intensity γ̂, every moment EVdVV (Z0ZZ )k, and also every mo-
ment EVdVV (Z)k, for k ∈ N, attains its minimum precisely if X̂ is isotropic.
The proof of this result, which is due to Mecke, is also reproduced in [34,
Th. 10.4.9].

3. Nonstationary Hyperplane Tessellations

We mention briefly (following [31]) how a few of the preceding results can
be extended to nonstationary Poisson hyperplane tessellations. We assume
again that X̂ is a Poisson hyperplane process in Rd with a locally finite in-
tensity measure Θ̂. Since X̂ need not be stationary now, the measure Θ̂ is
not necessarily translation invariant. We assume however, that it is trans-
lation regular, which means that it is absolutely continuous with respect
to some translation invariant, locally finite measure Θ̃ on A(d, d − 1). For
simplicity, we restrict ourselves here to the case where Θ̂ has a continuous
density with respect to Θ̃. In that case, the constant intensities that exist
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in the stationary case are replaced by measurable intensity functions, which
admit intuitive interpretations. The intensity function γ̂ of X̂ can be
defined by

γ̂(z) = lim
r→0

1

VdVV (rK)
E
∑
H∈ ̂X

Hd−1
(
H ∩ (rK + z)

)
for z ∈ Rd, where K is any convex body with VdVV (K) > 0. It has also the
representation

γ̂(z) = lim
r→0

1

2r
E card

{
H ∈ X̂ : H ∩ (rBd + z) �=�� ∅

}
.

For k ∈ {0, . . . , d−1}, the intersection process X̂d−k of order d− k is defined
as in the stationary case; it is obtained by taking the intersections of any
d− k hyperplanes of X̂ in general position and is a.s. a simple process of
k-flats. It has an intensity function given by

γ̂d−k(z) = lim
r→0

1

κd−krd−k
E card

{
E ∈ X̂d−k : E ∩ (rBd + z) �=�� ∅

}
for z ∈ Rd. The inequality (13) extends to an inequality holding at every
point, namely

(21) γ̂k(z) ≤
(
d
k

)
κkd−1

dkκd−kκ
k−1
d

γ̂(z)k for z ∈ Rd.

Equality for all z holds if and only if the hyperplane process X̂ is stationary
and isotropic. Thus, here an extremal property implies the invariance of
the distribution under the full group of rigid motions!

To study the tessellation induced by X̂, we need first a suitable notion
of nondegeneracy. We say that X̂ is nondegenerate if the zero cell Z0ZZ
is bounded with positive probability and if the following holds. Whenever
U ⊂ Sd−1 is a measurable set and X̂ contains with positive probability a
hyperplane with normal vector in U , then X̂ contains with positive prob-
ability infinitely many such hyperplanes. If X̂ is nondegenerate, then it
can be shown that the cells induced by X̂ constitute a random mosaic X
and that the process X(k) of its k-faces (k ∈ {0, . . . , d}) has a locally fi-
nite intensity measure, which is also translation regular, in the sense that it
is absolutely continuous with respect to some translation invariant, locally
finite measure on the space of polytopes.
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In the stationary case, we have defined in (3) a density d
(k)
r =

γ(k)EVrVV (Z(k)), the specific rth intrinsic volume of the stationary k-

face process X(k). In the nonstationary case, where no typical k-face exists,
this definition cannot be used, but it can be generalized by defining

d(k)r (z) := lim
r→0

1

VdVV (rBd)
E
∑

K∈X(k)

Φr

(
K, rBd + z

)
for λ-almost all z ∈ Rd. Here Φr(K, ·) is the rth curvature measure of the
convex body K. It can then be shown that the relations

d(k)r =

(
d− r

d− k

)
d(r)r , d(r)r = γ̂d−r,

and hence the inequality

(22) d(k)r ≤
(
d− r

d− k

)(
d

r

)
κd−r
d−1

dd−rκrκ
d−r−1
d

γ̂d−r,

hold almost everywhere. Equality in (22) holds if and only if X̂ is stationary
and isotropic.

4. Weighted Faces

We return to the stationary Poisson hyperplane process X̂ and its induced
tessellation X, as studied in Section 2. The results of that section reveal
a clear distinction between the zero cell Z0ZZ and the typical cell Z, though
either of them provides a natural notion of ‘average cell’. Heuristically, the
zero cell can also be obtained, up to translations, if in a large bounded region
of space we choose a uniformly distributed random point (with respect to
Lebesgue measure) and take the almost surely unique cell of X containing
that point. A similar procedure makes also sense for k-faces: in a large
bounded region of space we choose a random point, uniformly distributed
on the k-skeleton skelk X of X, with respect to the k-dimensional Hausdorff
measure, and take the (almost surely unique) k-face of X containing that
point. This leads (up to translations) to the notion of the weighted typical
k-face. A precise formal definition using Palm theory may be sketched as
follows. On Ns

(
A(d, d− 1)

)
, we can define a probability measure Po

k by

γ̂d−kP
o
k(A) = E

∫
skel

∫∫
k X

1B(x)1A(X̂ − x)Hk(dx),
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where B is any Borel set in Rd with λ(B) = 1. (Details, as well as
the results below, are found in [32]). There exists a hyperplane process

YkYY with distribution Po
k , and we denote by Z

(k)
0ZZ the (always existing and

almost surely unique) k-face of the tessellation induced by YkYY that contains

the origin 0. In particular, Z
(d)
0ZZ is stochastically equivalent to the zero

cell Z0ZZ . The random polytope Z
(k)
0ZZ is uniquely determined up to stochastic

equivalence and is called the volume-weighted typical k-face, or briefly
the weighted typical k-face, of X. This terminology is justified, since

the distribution of Z
(k)
0ZZ is, if translations are disregarded, the volume-

weighted distribution of the typical k-face Z(k). In fact, for every translation
invariant, nonnegative, measurable function f on P one has

E f(Z(k)
0ZZ ) =

1

EVkVV (Z(k))
E[f(Z(k))VkVV (Z(k))].

(Recall that VkVV (K) = Hk(K) for a k-dimensional convex body K.) Another
justification of the terminology, and at the same time a precise version of
the intuitive approach with which we started, is provided by the following
formula. Here W can be any convex body with positive volume, and every
polytope that appears is replaced by its translate with Steiner point at the
origin. For A ∈ B(P), we have

P{Z(k)
0ZZ − s(Z(k)

0ZZ ) ∈ A} = lim
r→∞

E
∑

F∈X(k), F⊂rW 1A
(
F − s(F )

)
VkVV (F )

E
∑

F∈X(k), F⊂rW VkVV (F )
.

It is a useful consequence of the Poisson property of X̂ that the distribu-
tion of the weighted typical k-face can be determined from the distribution
of the zero cell Z0ZZ , in the following way. Recall that Q̂d−k is the directional
distribution of the intersection process X̂d−k of order d− k and is a prob-
ability measure on the Grassmannian G(d, k). Now, for k ∈ {1, . . . , d − 1}
and every A ∈ B(P) we have

(23) P{Z(k)
0ZZ ∈ A} =

∫
G

∫∫
(d,k)

P{Z0ZZ ∩ L ∈ A} Q̂d−k(dL).

This can also be interpreted as follows. If we choose a random k-dimensional
linear subspace L of Rd with distribution Q̂d−k such that X̂ and L are
independent, then the intersection Z0ZZ ∩ L is stochastically equivalent to the

weighted k-face Z
(k)
0ZZ .
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The representation (23) allows us to extend the inequalities (20) to the
weighted k-face. In fact, for the vertex number f0ff it yields

Ef0ff (Z
(k)
0ZZ ) =

∫
G

∫∫
(d,k)

Ef0ff (Z0ZZ ∩ L) Q̂d−k(dL).

For fixed L ∈ G(d, k), the polytope Z0ZZ ∩ L appearing in the integrand can
also be obtained as follows. If we intersect each hyperplane of X̂ with L, we
obtain the section process X̂ ∩ L (see [34, sect. 4.4]), which is a stationary
Poisson hyperplane process with respect to the space L. The set Z0ZZ ∩ L
is the zero cell of the tessellation of L induced by X̂ ∩ L. The associated
zonoid (in L) of X̂ ∩ L is given by Π

̂X
|L, the orthogonal projection of the

associated zonoid Π
̂X

to L; see [34, (4.61)]. Hence, it follows from [34,
Th. 10.4.9] (applied in L) that

(24) E f0ff (Z
(k)
0ZZ ) = 2−kk!

∫
G

∫∫
(d,k)

VkVV (Π
̂X
|L)VkVV

(
(Π

̂X
|L)o

)
Q̂d−k(dL).

Here, (Π
̂X
|L)o denotes the polar body of Π

̂X
|L in the subspace L. Since

Π
̂X
|L is a zonoid, the inequalities

(25)
4k

k!
≤ VkVV (Π

̂X
|L)VkVV

(
(Π

̂X
|L)o

)
≤ κ2k

hold. Equality on the right side (the Blaschke–Santaló inequality) holds´
if and only if Π

̂X
|L is an ellipsoid; equality on the left side (Reisner’s

inequality) holds if and only if Π
̂X
|L is a parallelepiped. From (24) and

(25) we obtain the inequalities

(26) 2k ≤ E f0ff (Z
(k)
0ZZ ) ≤ 2−kk!κ2k

for k ∈ {2, . . . , d − 1}. Equality on the left side holds if and only if X̂ is a
parallel mosaic. Equality on the right side holds if X̂ is affinely isotropic,
but we don’t know whether this is the only case. For the characterization of
the equality case on the left side, the following geometric result is needed.
Let K ⊂ Rd be a 0-symmetric zonoid with generating measure ρ, thus the
support function of K is represented by

h(K,x) =

∫
S

∫∫
d−1

∣∣∣∣〈x, v〉∣∣∣∣ ρ(dv), x ∈ Rd,

and ρ is a finite, even measure on Sd−1. Suppose that K has the property
that for any d− k linearly independent vectors v1, . . . , vd−k in the support
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of the measure ρ, the orthogonal projection of K to v⊥1 ∩ · · · ∩ v⊥d−k is
a parallelepiped. Then K is itself a parallelepiped. This can be proved.
The analogous assertion, with ‘parallelepiped’ replaced by ‘ellipsoid’, would
settle the equality case on the right side of (26), but this has not been
proved so far.

The inequalities (26) have been extended in [33]. Instead of weight-
ing the typical face by the volume, we can use for weighting the to-
tal j-dimensional volume of its j-faces. Thus, for a polytope P and for
0 ≤ j ≤ dimP we put

Lj(P ) :=
∑

F∈FjFF (P )

VjVV (F ),

and we define the Lj-weighted typical k-face Zk,j of the randommosaicX
as the random polytope with distribution given by

P{Zk,j ∈ A} = 1

ELj(Z(k))
E[1A(Z(k))Lj(Z(k))]

for A ∈ B(P). Then the inequalities

2k ≤ Ef0ff (Zk,j) ≤ 2j−2k
k−j∑
i=0

22i
(
k − j

i

)
(k − i)!κ2k−i

are valid. The equality cases are the same as for (26).

5. Large Cells in Poisson Hyperplane Mosaics

As we have seen, isoperimetric problems for sizes of average cells or faces
of random mosaics can be stated, and in some cases solved, if one asks for
expected values of functionals measuring the size. To ask just for the shape
of average cells with extremal sizes is not a meaningful question, since such
extrema will not be attained. Surprisingly, however, such questions can
make perfect sense if one asks for the asymptotic shape of average cells
under the condition that their size (in some sense) is large. The origin of
such questions is a conjecture ventured by D. G. Kendall (in the 1940s, and
later popularized by him in the foreword to the first edition of [35], which
appeared in 1987). Kendall considered the zero cell Z0ZZ of a stationary
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and isotropic Poisson line process in the plane and conjectured that the
conditional law for its shape, under the condition of given area, converges
weakly, as the area tends to infinity, to the degenerate law concentrated at
the circular shape. This has been verified in various extended versions and
in general dimensions, beginning with solutions and analogs in the planar
case by Kovalenko [13, 14, 15] and Miles [28]. In this and the two subsequent
sections we describe the main results that have been obtained on generalized
versions of Kendall’s problem.

The first higher-dimensional version of problems of this type was studied
by Mecke and Osburg [24]. For the special case of a stationary Poisson hy-
perplane mosaic with spherical directional distribution concentrated (with
equal masses) in {±u1, . . . ,±ud}, where (u1, . . . , ud) is an orthonormal ba-
sis of Rd, they obtained that zero cells of large volume approximate cubi-
cal shape. This was made precise in several ways, involving monotonicity,
stochastic order, and limit relations. The results were transferred to affine
images of such hyperplane tessellations.

Hyperplane tessellations with more general directional distributions were
investigated in [3]–[8], as we now explain. First, we consider again a sta-
tionary Poisson hyperplane process X̂ in Rd, with intensity γ̂ and spherical
directional distribution ϕ̂. We ask for the shape of its zero cell Z0ZZ , under the
condition that the zero cell is large. Here ‘large’ can be interpreted in terms
of volume, or diameter, or many other reasonable functionals. We can put
this axiomatically. By a size functional we understand any continuous real
function Σ �≡ 0 on the space K(0) of convex bodies in Rd containing 0 which
is increasing under set inclusion and is homogeneous of some degree k > 0.
For many such functionals, there are precise asymptotic results about the
shape of Z0ZZ under the condition that Σ(Z0ZZ ) is large. It turns out that such
asymptotic shapes are determined by an isoperimetric inequality that con-
nects the size functional with the hitting functional of the process X̂.
This is the function Φ defined by

Φ(K) :=
1

2γ̂
E card {H ∈ X̂ : H ∩K �= 0�� }, K ∈ K.

Explicitly, it is given by

Φ(K) =

∫
S

∫∫
d−1

h(K,u) ϕ̂(du).

Note that Φ is continuous and homogeneous of degree one. It follows from
continuity and compactness that among all convex bodies K ∈ K(0) with a
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given positive value of Φ(K), there exist convex bodies for which Σ becomes
maximal. Hence, by homogeneity there is an isoperimetric-type inequality

(27) Φ(K) ≥ τΣ(K)1/k

holding for all K ∈ K(0), and with equality holding for some convex bodies;
these are called extremal bodies. It turns out (in many cases) that the
shapes of Σ-large zero cells approximate the shapes of extremal bodies.
Since, however, these shapes can in general not be attained, we need to
measure how close a shape comes to that of an extremal body. Therefore,
we define, for given Σ and Φ, a deviation functional as any function ϑ
on the space {K ∈ K(0) : Σ(K) > 0} which is continuous, nonnegative,
homogeneous of degree zero, and satisfies ϑ(K) = 0 if and only if K is an
extremal body. The existence follows by continuity, and for the same reason
there exist continuous functions f : R+ → R+ with f(0) = 0 and f(x) > 0
for x > 0 such that the following stability version of the inequality (27)
holds:

(28) Φ(K) ≥
(
1 + f(ε)

)
τΣ(K)1/k whenever ϑ(K) ≥ ε.

For the geometrically most interesting concrete size functionals Σ, simple
explicit functions ϑ and f can be provided.

We can now estimate P
{
ϑ(Z0ZZ ) ≥ ε | Σ(Z0ZZ ) ≥ a

}
, the conditional

probability that the zero cell deviates in shape by at least ε from an extremal
body, under the condition that its Σ-size it at least a. We assume that Σ,
ϑ, f with the properties listed above are given.

Theorem. For given ε > 0 and a > 0, there exist positive constants c
(depending on X̂, Σ, f , ε) and c0 such that

(29) P
{
ϑ(Z0ZZ ) ≥ ε | Σ(Z0ZZ ) ≥ a

}
≤ c exp

(
− c0f(ε)γ̂a

1/k
)
.

We can also condition by Σ(Z0ZZ ) = a, instead of Σ(Z0ZZ ) ≥ a. Namely,
the random polytope Z0ZZ takes its values in K. Since this is a Polish space,
the regular conditional probability distribution of Z0ZZ with respect to Σ(Z0ZZ )
exists. Similarly to (29), we have

(30) P
{
ϑ(Z0ZZ ) ≥ ε | Σ(Z0ZZ ) = a

}
≤ c exp

(
− c0f(ε)γ̂a

1/k
)
.

The role of the isoperimetric inequality (27) and its strengthening (28)
can be explained as follows. By definition,

(31) P
{
ϑ(Z0ZZ ) ≥ ε | Σ(Z0ZZ ) ≥ a

}
=

P
{
ϑ(Z0ZZ ) ≥ ε, Σ(Z0ZZ ) ≥ a

}
P
{
Σ(Z0ZZ ) ≥ a

} ,
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and this has to be estimated from above. Let ε > 0 and a > 0 be given.
Let B be an extremal body of (27). Since dilates of B are also extremal
bodies and Σ is homogeneous of degree k > 0, we can assume that Σ(B) = a

and hence that Φ(B) = τΣ(B)1/k = τa1/k. If H ∩B = ∅ for all H ∈ X̂,
then B ⊂ Z0ZZ (since 0 ∈ B), hence Σ(Z0ZZ ) ≥ Σ(B) = a. Therefore, the
denominator of (31) can be estimated by

P
{
Σ(Z0ZZ ) ≥ a

}
≥ P

{
card {H ∈ X̂ : H ∩B �=�� ∅} = 0

}
= exp

(
− Φ(B)2γ̂

)
= exp

(
− 2τ γ̂a1/k

)
.

The estimation of the numerator we explain only heuristically. Let K be a
convex body satisfying

ϑ(K) ≥ ε, Σ(K) ≥ a.

Then, using (28) instead of (27),

P
{
card {H ∈ X̂ : H ∩K �=�� ∅} = 0

}
= exp

(
− Φ(K)2γ̂

)
≤ exp (−

(
1 + f(ε)

)
2τ γ̂a1/k).

An only slightly weaker inequality can be proved if the deterministic convex
body K is replaced by the random polytope Z0ZZ , namely

(32) P
{
ϑ(Z0ZZ ) ≥ ε, Σ(Z0ZZ ) ≥ a

}
≤ c exp (−

(
1 + c1f(ε)

)
2τ γ̂a1/k)

with positive constants c, c1. Division now gives

P
{
ϑ(Z0ZZ ) ≥ ε | Σ(Z0ZZ ) ≥ a

}
≤ c exp

(
− c1f(ε)2τ γ̂a

1/k
)
.

The bulk of the work, of course, consists in the proof of the estimate (32).

The first concrete example is the case where the size functional Σ is
given by the volume VdVV . Denoting by

B = B(X̂)

the Blaschke body of the hyperplane process X̂, we can express the hitting
functional as a mixed volume. Since ϕ̂ is now the surface area measure of B,
we have Φ(K) = dV (K,B, . . . , B). Minkowski’s inequality

(33) V (K,B, . . . , B) ≥ VdVV (B)1−1/dVdVV (K)1/d
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is the inequality (27) in this case (with τ = dVdVV (B)1−1/d), and it is well
known that its extremal bodies are all homothetic to B. For a deviation
functional we can choose

ϑ(K) := inf
{
β/α : α, β > 0, αB ⊂ K + t ⊂ βB for some t ∈ Rd

}
.

A stability version (28) of inequality (33) is known with f(x) = const ·xd+1;
hence we obtain

(34) P
{
ϑ(Z0ZZ ) ≥ ε | VdVV (Z0ZZ ) ≥ a

}
≤ c exp

(
− c0ε

d+1γ̂a1/d
)
.

Thus, the Blaschke body provides the shape of zero cells of large volume.
We can also deduce the existence of a (degenerate) limit distribution for
the shape. By SH we denote the quotient space of K with respect to the
equivalence relation given by homothety. The equivalence class of a convex
body K is denoted by sH(K) and is called the homothetic shape of K. We
define the conditional law of the homothetic shape of Z0ZZ , given the lower
bound a > 0 for the volume, as the probability measure μa on SH with

μa(A) := P
{
sH(Z0ZZ ) ∈ A | VdVV (Z0ZZ ) ≥ a

}
for A ∈ B(SH). Then

(35) lim
a→∞

μa = δsH(B) weakly,

with δsH(B) denoting the Dirac measure concentrated at sH(B).

If X̂ is isotropic, then the Blaschke body B(X̂) is a ball, hence the
asymptotic shape is given by the class of balls, as in Kendall’s original
problem.

The inequality (34) was proved in [3]. It was also remarked there that
this inequality remains true if the zero cell is replaced by the typical cell.
This is due to the fact that the distribution of the zero cell is, up to
translations, the volume-weighted distribution of the typical cell.

The setting for extended Kendall problems was considerably broadened
in [7]. Besides admitting general size functionals Σ, a wider class of Poisson
hyperplane processes X̂ was considered, namely those with an intensity
measure Θ̂ of the form

(36) Θ̂(A) = 2γ̂

∫
S

∫∫
d−1

∫ ∞

0

∫∫
1A
(
H(u, t)

)
tr−1 dt ϕ̂(du)
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for A ∈ B
(
A(d, d− 1)

)
. Here r ≥ 1, γ̂ > 0, and ϕ̂ is a finite (not necessarily

even) measure on the unit sphere, not concentrated on a closed hemisphere.
The case of a stationary hyperplane process X̂ is obtained if r = 1 and ϕ̂
is even. As explained in the next section, the case of r = d and rotation
invariant ϕ̂ allows one to treat the typical cell of a stationary Poisson–
Voronoi tessellation in a similar way. In [7], also general versions of (30)
and (35) were obtained. For stationary Poisson hyperplane tessellations,
the following special size functionals were treated. The different cases
may require different notions of shape, since the extremal bodies of the
corresponding crucial inequality (27) may be equivalent to a fixed convex
body with different meanings of ‘equivalent’, for example, homothetic, or
equivalent by positive dilatation, or similar. If the size is measured by the
diameter, then the limit shape of the zero cell is provided by the class of
segments. If size is measured by thickness (minimal width), then the whole
class of bodies of constant width can be considered as the asymptotic shape
of the zero cell. Further size functionals studied in [7] are the inradius, the
centered inradius, and the width in a given direction.

For the typical cell instead of the zero cell and for size functionals
different from the volume, no such simple transfer argument as mentioned
above is possible. For stationary, isotropic Poisson hyperplane tessellations,
results on the asymptotic shapes of large typical cells were obtained in [8]. If
the size is measured by the kth intrinsic volume, k ∈ {2, . . . , d}, asymptotic
shapes are balls. (For the zero cell, the same was proved in [4].) For the
diameter as size functional, one obtains segments as asymptotic shapes. The
proof makes use of a special representation of the distribution of the typical
cell with respect to the highest vertex as center function (see [34, Theorem
10.4.7]).

Extensions of some of these results to typical k-faces (k ∈ {2, . . . , d−1})
of stationary Poisson hyperplane tessellations were investigated by Hug and
Schneider [9]. This requires the additional condition that the direction of
the face lies in a sufficiently small neighbourhood of a given direction. This
was continued in [11], where the regular conditional distributions of, possibly
weighted, typical faces under the hypothesis of given direction were studied,
with a particular view to the shape of large faces.
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6. Large Cells in Poisson–Voronoi Mosaics

A much studied class of tessellations are the Voronoi or Dirichlet mosaics.
If S ⊂ R is a nonempty, locally finite set and x ∈ S, then the Voronoi cell
C(x, S) of x (with respect to S) is defined as the set of all points in Rd for
which x is a nearest point in S, thus

C(x, S) =
{
y ∈ Rd : ‖y − x‖ ≤ ‖y − s‖ for all s ∈ S

}
.

The point x is called the nucleus of the Voronoi cell C(x, S).

Now let X̃ be a stationary Poisson point process in Rd with intensity
γ̃ > 0 (and, as always assumed, locally finite intensity measure). Then the
collection

{
C(x, X̃) : x ∈ X̃

}
is a stationary random mosaic. It is called

the Poisson–Voronoi mosaic induced by X̃. We denote it by X. Since
the intensity measure of X̃ is locally finite and translation invariant, it
is a constant multiple of Lebesgue measure and hence is invariant under
rotations. Therefore, the random mosaic X is isotropic.

We are interested in the asymptotic shape of the typical cell Z of X,
under the condition that it is large. It follows from Slivnyak’s theorem
on Poisson processes that the typical cell Z is stochastically equivalent to
C
(
0, X̃ ∪{0}

)
, the Voronoi cell of 0 for the point process X̃ ∪ {0}, which is

obtained from X̃ by adding a point at 0. For x ∈ Rd, let H(x) be the mid-
hyperplane of 0 and x, that is, the set of all points having equal distance
from 0 and x. For x �= 0, let�� H−(x) be the closed halfspace bounded by
H(x) that contains 0. By the definition of Voronoi cells, we have

C
(
0, X̃ ∪ {0}

)
=
⋂
x∈ ˜X

H−(x);

hence C
(
0, X̃ ∪ {0}

)
is the zero cell, Z0ZZ , of the mosaic induced by the

hyperplane process X̂ :=
{
H(x) : x ∈ X̃

}
. This is a (non-stationary)

Poisson process, and its intensity measure Θ̂ can be represented by

(37) Θ̂(A) = 2dγ̃

∫
S

∫∫
d−1

∫ ∞

0

∫∫
1A
(
H(u, t)

)
td−1 dt σ(du)

for A ∈ B
(
A(d, d−1)

)
, where σ denotes spherical Lebesgue measure. This is

of type (36), with γ̂ = 2ddκdγ̃. Therefore, the methods described in [7] can
be used to obtain results on asymptotic shapes for Z0ZZ (which is stochastically
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equivalent to the typical cell Z of X), under the condition that it has large
size. In [4], the following results were obtained.

For K ∈ K(0) with K �=�� {0}, we measure the deviation from a centered
ball by the function

ϑ(K) :=
R0 − r0
R0 + r0

,

where R0 is the radius of the smallest ball with center 0 containing K
and r0 is the radius of the largest ball with center 0 contained in K. Let
k ∈ {1, . . . , d}, let VkVV denote the kth intrinsic volume. If ε ∈ (0, 1) and if
a > 0 is sufficiently large, then

P
{
ϑ(Z0ZZ ) ≥ ε | VkVV (Z0ZZ ) ≥ a

}
≤ c exp (− c0ε

(d+3)/2γ̃ad/k),

where the constant c depends on d and ε, while c0 depends only on d.
A similar result was obtained in [4], with the size of Z0ZZ measured by the
centered inradius.

The general methods of [7] allow also the treatment of size functionals
where the resulting asymptotic shapes are of lower dimension. For example,
if the size of Z0ZZ is measured by the largest distance of a vertex from the
nucleus, then the limit shape is given by the class of all segments with one
endpoint at the origin.

Lower-dimensional typical faces of stationary Poisson–Voronoi tessella-
tions were studied by Hug and Schneider [10]. Under the condition of large
inradius, the relative boundary of such a typical face lies, with high proba-
bility, in a narrow spherical annulus.

7. Large Cells in Poisson–Delaunay Mosaics

As in the previous section, let X̃ be a stationary Poisson point process
in Rd with intensity γ̃ > 0. Together with the Voronoi mosaic induced
by X̃ comes a certain dual of it, the Delaunay mosaic. We recall here its
definition without recourse to the Voronoi mosaic. With probability one,
any d+ 1 points of X̃ lie on a unique sphere. If the open ball bounded by
this sphere does not contain a point of X̃, then the convex hull of the d+ 1
points is called a cell. The collection of all cells obtained in this way is a
tessellation of Rd into simplices. In this way, a stationary random mosaic Y
is defined, which is called the Poisson–Delaunay mosaic induced by X̃.
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For a d-dimensional simplex S, there is a unique sphere through its
vertices, and we denote by z(S) the center of this sphere, also called the
circumcenter of S, and by R(S) the radius of the sphere. Let Z be
the typical cell of Y with respect to the center function z. Then Z is a
d-dimensional random simplex with circumcenter 0. For its distribution,
there is an explicit integral representation due to Miles; see [34, Theorem
10.4.4]. This was used in [5], [6] to obtain results on asymptotic shapes
of large typical cells. We describe briefly a general result obtained in [6].
Let Δ0 be the subspace of P consisting of all d-dimensional simplices with
circumcenter 0. By a size functional we understand now a positive,
continuous function Σ on Δ0 which is homogeneous of some degree k > 0
and which, if restricted to the simplices S with R(S) = 1, has the property
that Σ attains a maximum (denoted by τ) and that VdVV /Σ1/k is bounded.
By homogeneity, we then have

(38) Σ(S) ≤ τR(S)1/k

for all S ∈ Δ0. Every simplex S for which (38) holds with equality is called
an extremal simplex. For given Σ, a deviation functional is defined as
a nonnegative, continuous function ϑ on Δ0 which is homogeneous of degree
zero and satisfies ϑ(S) = 0 if and only if S is an extremal simplex. For given
Σ and ϑ, a stability function is a continuous function f : [0, 1]→ [0, 1]
with the properties that f(0) = 0, f(x) > 0 for x > 0 and

(39) Σ(S) ≤
(
1− f(ε)

)
τR(S)1/k whenever ϑ(S) ≥ ε.

Now suppose that Σ, ϑ, f with these properties are given. If ε ∈ (0, 1) and
if a > 0 is sufficiently large, then

(40) P
{
ϑ(Z) ≥ ε | Σ(Z) ≥ a

}
≤ c exp

(
− c0f(ε)γ̃a

d/k
)
,

with constants c, c0 independent of a.

For concrete size functionals Σ, this yields results on asymptotic shapes
if the extremal simplices of the isoperimetric inequality (38) can be deter-
mined. This can be surprisingly difficult; for example, it is still not known
whether the simplices of extremal mean width inscribed to the unit sphere
are regular. Other cases are simpler. For Σ = VdVV , the volume, it is easy
to see that all maximal simplices are regular, and in [5] a stability result
of type (39), with a stability function of optimal order, was obtained, for
the following deviation functional. For a simplex S ∈ Δ0, let ϑ(S) be the
smallest number η for which there exists a regular simplex T ∈ Δ0 with
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R(S) = 1 such that for each vertex p of R(S)−1S there is a vertex q of T
with ‖p− q‖ ≤ η, and conversely. The version of (40) proved in [5] reads

P
{
ϑ(Z) ≥ ε | VdVV (Z) ≥ a

}
≤ c exp

(
− c0ε

2γ̃a
)
,

where c depends only on d and ε and c0 depends on d.

Further, in [6] the following concrete cases of the general result (40)
were treated. For each of the size functionals: surface area, inradius,
minimal width, the asymptotic shape of the typical cell is that of the regular
simplices. For the case of the surface area, it follows from a more general
result of Tanner [36] that the extremal simplices of (38) are the regular
ones. The case of the inradius is easier, and for the minimal width, a result
of Alexander [1] was used. If the diameter is chosen as size functional, then
the asymptotic shapes of large typical cells are provided by the diametral
simplices. A simplex S is called diametral if a longest edge of S is a diameter
of the circumsphere of S. In the plane, these are the right-angled triangles.

8. General Mosaics

For random mosaics that are not of the special types described in the
previous sections, only very few extremal results have been obtained. In
the plane, we can mention inequalities due to Mecke [17], which are parallel
to results on deterministic mosaics by L. Fejes Tóth. Let´ X be a stationary
random mosaic in R2. Let Λ denote the mean total length of the edges

of X per unit area; with the notation of [34, sect. 10.1], this is Λ = d
(1)
1 =

V 1(X(1)). Further, let N (= n20 = n21 in the notation of [34]) be the mean
number of edges of the typical cell of X. Mecke has proved the following
two theorems.

Suppose that all cells of X have the same area F . Then

Λ2 ≥ N

F
tan

π

N
.

Equality holds if and only if N ∈ {3, 4, 6} and all cells of X are regular
N -gons.

Suppose that all cells of X have the same perimeter U . Then

Λ ≥ 2N

U
tan

π

N
.
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Equality holds if and only if N ∈ {3, 4, 6} and all cells of X are regular
N -gons.

For general mosaics in higher dimensions, we know only of one result
exhibiting an extremal property. Let X be a stationary random mosaic
in Rd. An inequality of Wieacker [37] connects the volume of the Blaschke
body B(X) with the expected volume of the zero cell Z0ZZ , namely

(41) VdVV
(
B(X)

)d−1
EVdVV (Z0ZZ ) ≥ 1.

Since this result is not mentioned in [34], we present here the proof in the
style of [34]. First we show that

(42)

∫
S

∫∫
d−1

f(u)SdS −1

(
B(X), du

)
= E

(
VdVV (Z0ZZ )−1

∫
S

∫∫
d−1

f(u)SdS −1(Z0ZZ , du)

)
for any nonnegative measurable function f on Sd−1. In fact, writing

g(K) :=

∫
S

∫∫
d−1

f(u)SdS −1(K, du) for K ∈ K,

we get from [34, Th. 10.4.1] and Fubini’s theorem for kernels (with Q(d),
γ(d), Z as in Section 2)

E

(
VdVV (Z0ZZ )−1

∫
S

∫∫
d−1

f(u)SdS −1(Z0ZZ , du)

)
= E

(
VdVV (Z0ZZ )−1g(Z0ZZ )

)
= γ(d)E g(Z)

= γ(d)
∫
K

∫∫
0

g(K)Q(d)(dK) = γ(d)
∫
K

∫∫
0

∫
S

∫∫
d−1

f(u)SdS −1(K, du)Q(d)(dK)

=

∫
S

∫∫
d−1

f(u)SdS −1

(
B(X), du

)
,

which proves (42). Now we use (24), together with Minkowski’s inequality
for mixed volumes and Jensen’s inequality for concave functions, to obtain

VdVV
(
B(X)

)
=

1

d

∫
S

∫∫
d−1

h
(
B(X), u

)
SdS −1

(
B(X), du

)
=

1

d
E

(
VdVV (Z0ZZ )−1

∫
S

∫∫
d−1

h
(
B(X), u

)
SdS −1(Z0ZZ , du)

)
= E(VdVV (Z0ZZ )−1V

(
B(X), Z0ZZ , . . . , Z0ZZ

)
)
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≥ VdVV
(
B(X)

) 1
dE(VdVV (Z0ZZ )−

1
d )

≥ VdVV
(
B(X)

) 1
d
(
EVdVV (Z0ZZ )

)− 1
d .

This gives (41). Equality holds if and only if there exists a convex body K
such that a.s. every realization of X consists of translates of K (so the
randomness affects only the translations).
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Conflict-Free Coloring and its Applications

SHAKHAR SMORODINSKY

Let H = (V,E) be a hypergraph. A conflict-free coloring of H is an assignment
of colors to V such that, in each hyperedge e ∈ E, there is at least one uniquely-
colored vertex. This notion is an extension of the classical graph coloring. Such
colorings arise in the context of frequency assignment to cellular antennae, in
battery consumption aspects of sensor networks, in RFID protocols, and several
other fields. Conflict-free coloring has been the focus of many recent research
papers. In this paper, we survey this notion and its combinatorial and algorithmic
aspects.

1. Introduction

1.1. Notations and Definitions

In order to introduce the main notion of this paper, we start with several
basic definitions: Unless otherwise stated, the term log denotes the base 2
logarithm.

A hypergraph is a pair (V, E) where V is a set and E is a collection of
subsets of V . The elements of V are called vertices and the elements of E are
called hyperedges. When all hyperedges in E contain exactly two elements
of V then the pair (V, E) is a simple graph. For a subset V ′ ⊂ V refer to the
hypergraph H(V ′) = (V ′, {S ∩ V ′|S ∈ E}) as the sub-hypergraph induced
by V ′. A k-coloring, for some k ∈ N, of (the vertices of) H is a function
ϕ : V → {1, . . . , k}. Let H = (V, E) be a hypergraph. A k-coloring ϕ of H
is called proper or non-monochromatic if every hyperedge e ∈ E with |e| ≥ 2
is non-monochromatic. That is, there exists at least two vertices x, y ∈ e
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such that ϕ(x) �=�� ϕ(y). Let χ(H) denote the least integer k for which H
admits a proper coloring with k colors.

In this paper, we focus on the following colorings which are more restric-
tive than proper coloring:

Definition 1.1 (Conflict-Free and Unique-Maximum Colorings). Let H =
(V, E) be a hypergraph and let C : V → {1, . . . , k} be some coloring of H.
We say that C is a conflict-free coloring (CF-coloring for short) if every
hyperedge e ∈ E contains at least one uniquely colored vertex. More
formally, for every hyperedge e ∈ E there is a vertex x ∈ e such that
∀y ∈ e, y �=�� x ⇒ C(y) �=�� C(x). We say that C is a unique-maximum
coloring (UM-coloring for short) if the maximum color in every hyperedge
is unique. That is, for every hyperedge e ∈ E ,

∣∣∣∣e ∩ C−1(maxv∈eC(v))
∣∣∣∣ = 1.

Let χcf(H) (respectively, χum(H)) denote the least integer k for whichH
admits a CF-coloring (respectively, a UM-coloring) with k colors. Obviously,
every UM-coloring of a hypergraph H is also a CF-coloring of H, and every
CF-coloring of H is also a proper coloring of H. Hence, we have the followng
inequalities:

χ(H) ≤ χcf(H) ≤ χum(H).

Notice that for simple graphs, the three notions of coloring (non-monochro-
matic, CF and UM) coincide. Also, for 3-uniform hypergraphs (i.e., every
hyperedge has cardinality 3), the two first notions (non-monochromatic and
CF) coincide. However, already for 3-uniform hypergraphs there can be an
arbitrarily large gap between χcf(H) and χum(H). Consider, for example,
two sets A and B each of cardinality n > 1. Let H = (A ∪ B, E) where E
consists of all triples of elements e such that e∩A �=�� ∅ and e∩B �=�� ∅. In other
words E consists of all triples containing two elements from one of the sets
A or B and one element from the other set. It is easily seen that χcf(H) = 2
by simply coloring all elements of A with 1 and all elements of B with 2. It
is also not hard to verify that χum(H) ≥ n (in fact χum(H) = n+1). Indeed,
let C be a UM-coloring of H. If all elements of A are colored with distinct
colors we are done. Otherwise, there exist two elements u, v in A with the
same color, say i. We claim that all elements of B are colored with colors
greater than i. Assume to the contrary that there is an element w ∈ B with
color C(w) = j ≤ i. However, in that case the hyperedge {u, v, w} does not
have the unique-maximum property. Hence all colors of B are distinct for
otherwise if there are two vertices w1, w2 with the same color, again the
hyperedge {w1, w2, u} does not have the unique-maximum property.
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Let us describe a simple yet an important example of a hypergraph H
and analyze its chromatic number χ(H) and its CF-chromatic number
χcf(H). The vertices of the hypergraph consist of the first n integers
[n] = {1, . . . , n}. The hyperedge-set is the set of all (non-empty) subsets
of [n] consisting of consecutive elements of [n], e.g., {2, 3, 4}, {2}, the set [n],
etc. We refer to such hypergraphs as hypergraphs induced by points on
the line with respect to intervals or as the discrete intervals hypergraph.
Trivially, we have χ(H) = 2. We will prove the following proposition:

Proposition 1.2. χcf(H) = χum(H) = �log n�+ 1.

Proof. First we prove that χum(H) ≤ �log n�+ 1. Assume without loss of
generality that n is of the form n = 2k − 1 for some integer k. If n < 2k − 1
then we can add the vertices n+1, n+2, . . . , 2k−1 and this can only increase
the UM-chromatic number. In this case we will see that χum(H) ≤ k and
that for n ≥ 2k χcf(H) ≥ k + 1. The proof is by induction on k. For
k = 1 the claim holds trivially. Assume that the claim holds for some
integer k and let n = 2k+1 − 1. Consider the median vertex 2k and color it
with a unique (maximum color), say k + 1, not to be used again. By the
induction hypothesis, the set of elements to the right of 2k, namely the set
{2k + 1, 2k + 2, . . . , 2k+1 − 1} can be colored with k colors, say ‘1’, ‘2’, . . . ,
‘k’, so that any of its subsets of consecutive elements has unique maximum
color. The same holds for the set of elements to the left of 2k. We will
use the same set of k colors for the right set and the left set (and color the
median with the unique color ‘k+1’). It is easily verified that this coloring
is indeed a UM-coloring for H. Thus we use a total of k+1 colors and this
completes the induction step.

Next, we need to show that for n ≥ 2k we have χcf(H) ≥ k + 1. Again,
the proof is by induction on k. The base case k = 0 is trivial. For the
induction step, let k > 0 and put n = 2k. Let C be some CF-coloring of
the underlying discrete intervals hypergraph. Consider the hyperedge [n].
There must be a uniquely colored vertex in [n]. Let x be this vertex. Either
to the right of x or to its left we have at least 2k−1 vertices. That is, there
is a hyperedge S ⊂ [n] that does not contain x such that |S| ≥ 2k−1, so,
by the induction hypothesis, any CF-coloring for S uses at least k colors.
Thus, together with the color of x, C uses at least k+1 colors in total. This
completes the induction step.

The notion of CF-coloring was first introduced and studied in [47]
and [25]. This notion attracted many researchers and has been the focus of
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many research papers both in the computer science and mathematics com-
munities. Recently, it has been studied also in the infinite settings of the
so-called almost disjoint set systems by Hajnal et al. [27]. In this survey, we
mostly consider hypergraphs that naturally arise in geometry. These come
in two types:

• Hypergraphs induced by regions: Let R be a finite collection
of regions (i.e., subsets) in Rd, d ≥ 1. For a point p ∈ Rd, define
r(p) = {R ∈ R : p ∈ R}. The hypergraph (R, {r(p)}p∈Rd), denoted
H(R), is called the hypergraph induced by R. Since R is finite, so is
the power set 2R. This implies that the hypergraph H(R) is finite as
well.

• Hypergraphs induced by points with respect to regions: Let
P ⊂ Rd and let R be a family of regions in Rd. We refer to the hyper-
graph HRHH (P ) = (P, {P ∩ S | S ∈ R}) as the hypergraph induced by P
with respect to R. When R is clear from the context we sometimes
refer to it as the hypergraph induced by P . In the literature, hyper-
graphs that are induced by points with respect to geometric regions
of some specific kind are sometimes referred to as range spaces.

Definition 1.3 (Delaunay-Graph). For a hypergraph H = (V, E), denote
by G(H) the Delaunay-graph of H which is the graph (V, {S ∈ E | |S| = 2}).

In most of the coloring solutions presented in this paper we will see
that, in fact, we get the stronger UM-coloring. It is also interesting to
study hypergraphs for which χcf(H) < χum(H). This line of research has
been pursued in [15, 17]

1.2. Motivation

We start with several motivations for studying CF-colorings and UM-
colorings.

1.2.1. Wireless Networks. Wireless communication is used in many dif-
ferent situations such as mobile telephony, radio and TV broadcasting, satel-
lite communication, etc. In each of these situations a frequency assignment
problem arises with application-specific characteristics. Researchers have
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developed different modeling approaches for each of the features of the prob-
lem, such as the handling of interference among radio signals, the availability
of frequencies, and the optimization criterion.

The work of Even et al. [25] and of Smorodinsky [47] proposed to model
frequency assignment to cellular antennas as CF-coloring. In this new
model, one can use a very “small” number of distinct frequencies in total, to
assign to a large number of antennas in a wireless network. Cellular networks
are heterogeneous networks with two different types of nodes: base-stations
(that act as servers) and clients. The base-stations are interconnected by
an external fixed backbone network. Clients are connected only to base
stations; connections between clients and base-stations are implemented by
radio links. Fixed frequencies are assigned to base-stations to enable links
to clients. Clients, on the other hand, continuously scan frequencies in
search of a base-station with good reception. This scanning takes place
automatically and enables smooth transitions between base-stations when a
client is mobile. Consider a client that is within the reception range of two
base stations. If these two base stations are assigned the same frequency,
then mutual interference occurs, and the links between the client and each
of these conflicting base stations are rendered too noisy to be used. A base
station may serve a client provided that the reception is strong enough and
interference from other base stations is weak enough. The fundamental
problem of frequency assignment in cellular network is to assign frequencies
to base stations so that every client is served by some base station. The
goal is to minimize the number of assigned frequencies since the available
spectrum is limited and costly.

The problem of frequency assignment was traditionally treated as a
graph coloring problem, where the vertices of the graph are the given set
of antennas and the edges are those pairs of antennas that overlap in their
reception range. Thus, if we color the vertices of the graph such that no two
vertices that are connected by an edge have the same color, we guarantee
that there will be no conflicting base stations. However, this model is too
restrictive. In this model, if a client lies within the reception range of say, k
antennas, then every pair of these antennas are conflicting and therefore
they must be assigned k distinct colors (i.e., frequencies). But note that if
one of these antennas is assigned a color (say 1) that no other antenna is
assigned (even if all other antennas are assigned the same color, say 2) then
we use a total of two colors and this client can still be served. See Figure 1
for an illustration with three antennas.
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Fig. 1. An example of three antennas presented as discs in the plane. In the classical
model three distinct colors are needed where as in the new model two colors are enough

as depicted here

A natural question thus arises: Suppose we are given a set of n antennas.
The location of each antenna (base station) and its radius of transmission is
fixed and is known (and is modeled as a disc in the plane). We seek the least
number of colors that always suffice such that each of the discs is assigned
one of the colors and such that every covered point p is also covered by some
disc D whose assigned color is distinct from all the colors of the other discs
that cover p. This is a special case of CF-coloring where the underlying
hypergraph is induced by a finite family of discs in the plane.

1.2.2. RFID networks. Radio frequency identification (RFID) is a tech-
nology where a reader device can “sense” the presence of a close by object by
reading a tag device attached to the object. To improve coverage, multiple
RFID readers can be deployed in the given region. RFID systems consist of
readers and tags. A tag has an ID stored in its memory. The reader is able
to read the IDs of the tags in the vicinity by using wireless protocol. In a
typical RFID application, tags are attached to objects of interest, and the
reader detects the presence of an object by using an available mapping of
IDs to objects. We focus on passive tags i.e., tags that do not carry a bat-
tery. The power needed for passive tags to transmit their IDs to the reader
is supplied by the reader itself. Assume that we are given a set D of readers
where each reader is modeled by some disc in the plane. Let P be a set of
tags (modeled as points) that lie in the union of the discs in D. Suppose
that all readers in D use the same wireless frequency. For the sake of sim-
plicity, suppose also that each reader is only allowed to be activated once.
The goal is to schedule for each reader d ∈ D a time slot t(d) for which the
reader d will be active. That is, at time t(d) reader d would initiate a ‘read’
action. We further assume that a given tag p ∈ P can be read by reader
d ∈ D at time t if p ∈ d and d is initiating a ‘read’ action at time t (namely,
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t = t(d)) and no other reader d′ for which p ∈ d′ is active at time t. We say
that P is read by our schedule, if for every p ∈ P there is at least one d ∈ D
and a time t such that p is read by d at time t. Obviously, we would like to
minimize the total time slots used in the schedule. Thus our goal is to find a
function t : D → {1, . . . , k} which is conflict-free for the hypergraph H(D).
Since we want to minimize the total time slots used, again the question of
what is the minimum number of colors that always suffice to CF-color any
hypergraph induced by a finite set of n discs is of interest.

1.2.3. Vertex ranking. Let G = (V,E) be a simple graph. An or-
dered coloring (also a vertex ranking) of G is a coloring of the vertices
χ : V → {1, . . . , k} such that whenever two vertices u and v have the same
color i then every simple path between u and v contains a vertex with color
greater than i. Such a coloring has been studied before and has several
applications. It was studied in the context of VLSI design [46] and in the
context of parallel Cholesky factorization of matrices [37]. The vertex rank-
ing problem is also interesting for the Operations Research community. It
has applications in planning efficient assembly of products in manufacturing
systems [31]. In general, it seems that the vertex ranking problem can model
situations where inter-related tasks have to be accomplished fast in parallel,
with some constrains (assembly from parts, parallel query optimization in
databases, etc.). See also [32, 45]

The vertex ranking coloring is yet another special form of UM-coloring.
Given a graph G, consider the hypergraph H = (V,E′) where a subset
V ′ ⊆ V is a hyperedge in E′ if and only if V ′ is the set of vertices in some
simple path of G. It is easily observed that an ordered coloring of G is
equivalent to a UM-coloring of H.

1.3. A General Conflict-Free coloring Framework

Let P be a set of n points in R2 and let D be the set of all planar discs.
In [25, 47] it was proved that χum(HDHH (P )) = O(log n) and that this bound
is asymptotically tight since for any n ∈ N there exist hypergraphs induced
by sets of n points in the plane (w.r.t discs) which require Ω(log n) in any
CF-coloring. In fact, Pach and Tóth [43] proved a stronger lower-bound by
showing that for any set P of n points it holds that χcf(HDHH (P )) = Ω(log n).
The proofs of [25, 47] are algorithmic and rely on two crucial properties:
The first property is that the Delaunay graph G(HDHH (P )) always contains a
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“large” independent set. The second is the following shrinkability property
of discs: For every disc d containing a set of i ≥ 2 points of P there is
another disc d′ such that d′ ∩ P ⊆ d ∩ P and |d′ ∩ P | = 2.

In [25, 47] it was also proved that, if D is a set of n discs in the plane,
then χum(H(D)) = O(log n). This bound was obtained by a reduction to
a three-dimensional problem of UM-coloring a set of n points in R3 with
respect to lower half-spaces. Later, Har-Peled and Smorodinsky [28] gener-
alized this result to pseudo-discs using a probabilistic argument. Pach and
Tardos [40] provided several non-trivial upper-bounds on the CF-chromatic
number of arbitrary hypergraphs. In particular they showed that for every
hypergraph H with m hyperedges

χcf(H) ≤ 1/2 +
√
2m+ 1/4.

Smorodinsky [48] introduced the following general framework for UM-
coloring any hypergraph. This framework holds for arbitrary hypergraphs
and the number of colors used is related to the chromatic number of the
underlying hypergraph. Informally, the idea is to find a proper coloring
with very ‘few’ colors and assign to all vertices of the largest color class the
final color ‘1’, discard all the colored elements and recursively continue on
the remaining sub-hypergraph. See Algorithm 1 below.

Algorithm 1 UMcolor(H): UM-coloring of a hypergraph H = (V, E).
1: i← 0: i denotes an unused color
2: while V �=�� ∅ do
3: Increment: i← i+ 1
4: Auxiliary coloring: find a proper coloring χ of the induced sub-

hypergraph H(V ) with “few” colors
5: V ′ ← Largest color class of χ
6: Color: f(x)← i , ∀x ∈ V ′

7: Prune: V ← V \ V ′

8: end while

Theorem 1.4 ([48]). Algorithm 1 outputs a valid UM-coloring of H.

Proof. Formally, Algorithm 1 is not well defined as its output depends on
the auxiliary coloring of step 4 of the algorithm. Nevertheless, we regard
step 4 as given to us by some ‘black’ box and we treat this aspect of the
algorithm later on. For a hyperedge e ∈ E , let i be the maximal index



Conflict-Free Coloring and its Applications 339

(color) for which there is a vertex v ∈ e colored with i. We claim that there
is exactly one such vertex. Indeed, assume to the contrary that there is
another such vertex v′ ∈ e. Consider the ith iteration and let V ′ denote the
set of vertices of V that are colored with color greater or equal to i. Namely,
V ′ is the set of vertices that ‘survived’ all the prune steps up to iteration i
and reached iteration i. Let χ denote the auxiliary proper coloring for the
hypergraph H(V ′) in iteration i. Since e′ = e ∩ V ′ is a hyperedge of H(V ′)
and v and v′ belong to the same color class of χ and v, v′ ∈ e′ and since χ is
a non-monochromatic coloring, there must exist a third vertex v′′ ∈ e′ such
that χ(v′′) �=�� χ(v). This means that the final color of v′′ is greater than i,
a contradiction to the maximality of i in e. This completes the proof of the
theorem.

The number of colors used by Algorithm 1 is the number of iterations
that are performed (i.e., the number of prune steps). This number depends
on the ‘black-box’ auxiliary coloring provided in step 4 of the algorithm. If
the auxiliary coloring χ uses a total of CiCC colors on |ViVV | vertices, where ViVV is
the set of input vertices at iteration i, then by the pigeon-hole principle one
of the colors is assigned to at least |ViVV |

Ci
vertices so in the prune step of the

same iteration at least |ViVV |
Ci

vertices are discarded. Thus, after l iterations of

the algorithm we are left with at most |V | · Πl
i=1(1 − 1

Ci
) vertices. If this

number is less than 1, then the number of colors used by the algorithm is
at most l. If for example CiCC = 2 for every iteration, then the algorithm
discards at least |ViVV |

2 vertices in each iteration so the number of vertices left

after l iterations is at most |V | (1 − 1
2)

l
so for l = �log n� + 1 this number

is less than 1. Thus the number of iterations is bounded by �log n� + 1
where n is the number of vertices of the input hypergraph. In the next
section we analyze the chromatic number χ(H) for several geometrically
induced hypergraphs and use Algorithm 1 to obtain bounds on χum(H).

We note that, as observed above, for a hypergraph H that admits a
proper coloring with “few” colors hereditarily (that is, every induced sub-
hypergraph admits a proper coloring with “few” colors), H also admits a
UM-coloring with few colors. The following theorem summarizes this fact:

Theorem 1.5 ([48]). Let H = (V, E) be a hypergraph with n vertices,
and let k ∈ N be a fixed integer, k ≥ 2. If every induced sub-hypergraph
H ′ ⊆ H satisfies χ(H ′) ≤ k, then χum(H) ≤ log1+ 1

k−1
n = O(k log n).
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Remark 1.6. We note that the parameter k in Theorem 1.5 can be replaced
with a non-constant function k = k(H ′). For example, if k(H ′) = (n′)α

where 0 < α ≤ 1 is a fixed real and n′ is the number of vertices of H ′,
an easy calculation shows that χum(H) = O(nα) where n is the number of
vertices of H.

As we will see, for many of the hypergraphs that are mentioned in this
survey, the two numbers χ(H), χum(H) are only a polylogarithmic (in |V |)
factor apart. For the proof to work, the requirement that a hypergraph H
admits a proper coloring with few colors hereditarily is necessary. One
example is the 3-uniform hypergraph H with 2n vertices given above. We
have χ(H) = 2 and χum(H) = n+1. Obviously H does not admit a proper
2-coloring hereditarily.

2. Conflict-Free Coloring of Geometric Hypergraphs

2.1. Discs and Pseudo-Discs in the Plane

2.1.1. Discs in R2. In [48] it was shown that the chromatic number of a
hypergraph induced by a family of n discs in the plane is bounded by four.
That is, for a finite family D of n discs in the plane we have:

Theorem 2.1 ([48]). χ(H(D)) ≤ 4

Combining Theorem 1.5 and Theorem 2.1 we obtain the following:

Theorem 2.2 ([48]). Let D be a set of n discs in the plane. Then
χum(H(D)) ≤ log4/3 n.

Proof. We use Algorithm 1 and the auxiliary proper four coloring provided
by Theorem 2.1 in each prune step. Thus in each step i we discard at least
|ViVV | /4 discs so the total number of iterations is bounded by log4/3 n.

Remark. The existence of a four coloring provided in Theorem 2.1 is
algorithmic and uses the algorithm provided in the Four-Color Theorem
[8, 9] which runs in linear time. It is easy to see that the total running
time used by algorithm 1 for this case is therefore O(n log n). The bound
in Theorem 2.2 holds also for the case of hypergraphs induced by points
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in the plane with respect to discs. This follows from the fact that such a
hypergraph H satisfies χ(H) ≤ 4. Indeed, the Delaunay graph G(H) is
planar (and hence four colorable) and any disc containing at least 2 points
also contains an edge of G(H) [25].

Smorodinsky [48] proved that there exists an absolute constant C such
that for any family P of pseudo-discs in the plane χ(H(P)) ≤ C. Hence, by
Theorem 1.5 we have χum(H(P)) = O(log n). It is not known what is the
exact constant and it might be possible that it is still 4. By taking 4 pair-
wise (openly-disjoint) touching discs, one can verify that it is impossible to
find a proper coloring of the discs with less than 4 colors.

There are natural geometric hypergraphs which require n distinct colors
even in any proper coloring. For example, one can place a set P of n points
in general position in the plane (i.e., no three points lie on a common line)
and consider those ranges that are defined by rectangles. In any proper
coloring of P (w.r.t rectangles) every two such points need distinct colors
since for any two points p, q there is a rectangle containing only p and q.

One might wonder what makes discs more special than other shapes?
Below, we show that a key property that allows CF-coloring discs with a
“small” number of colors unlike rectangles is the so called “low” union-
complexity of discs.

Definition 2.3. Let R be a family of n simple Jordan regions in the plane.
The union complexity of R is the number of vertices (i.e., intersection of
boundaries of pairs of regions in R) that lie on the boundary ∂

⋃
r∈R r.

As mentioned already, families of discs or pseudo-discs in the plane in-
duce hypergraphs with chromatic number bounded by some absolute con-
stant. The proof of [48] uses the fact that pseudo-discs have “linear union
complexity” [33].

The following theorem bounds the chromatic number of a hypergraph
induced by a finite family of regions R in the plane as a function of the
union complexity of R:

Theorem 2.4 ([48]). Let R be a set of n simple Jordan regions and let
U : N→ N be a function such that U(m) is the maximum union complexity

of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. We assume that U(m)
m

is a non-decreasing function. Then, χ(H(R)) = O(U(n)
n ). Furthermore,

such a coloring can be computed in polynomial time under a proper and
reasonable model of computation.
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As a corollary of Theorem 2.4, for any family R of n planar Jordan
regions for which the union-complexity function U(n) is linear, we have
that χ(H(R)) = O(1). Hence, combining Theorem 2.4 with Theorem 1.5
we have:

Theorem 2.5 ([48]). Let R be a set of n simple Jordan regions and let
U : N → N be a function such that U(m) is the maximum complexity
of any k regions in R over all k ≤ m, for 1 ≤ m ≤ n. If R has linear
union complexity in the sense that U(n) ≤ Cn for some constant C, then
χum(H(R)) = O(log n).

2.2. Axis-Parallel rectangles

2.2.1. hypergraphs induced by axis-parallel rectangles. As men-
tioned already, a hypergraph induced by n rectangles in the plane might
need n colors in any proper coloring. However, in the special case of axis-
parallel rectangles, one can obtain non-trivial upper bounds. Notice that
axis-parallel rectangles might have quadratic union complexity so using the
above framework yields only the trivial upper bound of n. Nevertheless,
in [48] it was shown that any hypergraph that is induced by a family of n
axis-parallel rectangles, admits an O(log n) proper coloring. This bound is
asymptotically tight as was shown recently by Pach and Tardos [41].

Theorem 2.6 ([48]). Let R be a set of n axis-parallel rectangles in the
plane. Then χ(H(R)) ≤ 8 log n.

Plugging this fact into Algorithm 1 yields:

Theorem 2.7 ([48]). Let R be a set of n axis-parallel rectangles in the
plane. Then χum(H(R)) = O(log2 n).

Remark. Notice that in particular there exists a family R of n axis-
parallel rectangles for which χcf(H(R)) = Ω(log n). Another example
of a hypergraph H induced by n axis-parallel squares with χ(H) = 2
and χcf(H) = Ω(log n) is given in Figure 2. This hypergraph is, in fact,
isomorphic to the discrete interval hypergraph with n vertices.

Problem 1. Close the asymptotic gap between the best known upper bound
O(log2 n) and the lower bound Ω(log n) on the CF-chromatic number of
hypergraphs induced by n axis-parallel rectangles in the plane.
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Fig. 2. An example of n axis-parallel squares inducing the hypergraph H with χ(H) = 2
and χcf(H) = Ω(log n)

2.2.2. Points with respect to axis-parallel rectangles. Let R be the
family of all axis-parallel rectangles in the plane. For a finite set P in
the plane, let H(P ) denote the hypergraph HRHH (P ). Let D(P ) denote the
Delaunay graph of H(P ). It is easily seen that χ(D(P )) = χ(H(P )) since
every axis-parallel rectangle containing at least two points, also contains an
edge of D(P ).

The following problem seems to be rather elusive:

Problem 2. Let R be the family of all axis-parallel rectangles in the plane.
Let d = d(n) be the least integer such that for any set P of n points in the
plane χ(D(P )) ≤ d(n). Provide sharp asymptotic bounds on d(n).

It was first observed in [28] that d(n) = O(
√
n) by a simple application

of the classical Erdős-Szekeres theorem for a sequence of reals. This the-
orem states that in a sequence of k2 + 1 reals there is always a monotone
subsequence of length at least k + 1 (see, e.g., [52]).

One can show that for any set P of n points in the plane there is a subset
P ′ ⊂ P of size Ω(

√
n) which is independent in the graph D(P ). To see this,

sort the points P = {p1, . . . , pn} according to their x-coordinate. Write
the sequence of y-coordinates of the points in P y1, . . . , yn. By the Erdős-
Szekeres theorem, there is a subsequence yi1 , . . . , yik with k = Ω(

√
n) which

is monotone. We refer to the corresponding subset of P as a monotone
chain. Notice that by taking every other point in the monotone chain, the
set pi1 , pi3 , pi5 , . . . is a subset of size k/2 = Ω(

√
n) which is independent

in D(P ). See Figure 3 for an illustration. In order to complete the coloring
it is enough to observe that one can iteratively partition P into O(

√
n)

independent sets of D(P ).

The bounds on d(n) were recently improved and the best known bounds
are stated below:
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Fig. 3. The circled points form an independent set in the Delaunay graph D(P )

Upper bound: [14] d(n) = Õ(n0.368)

Lower bound: [20] d(n) = Ω( logn
log2 logn).

We give a short sketch of the ideas presented in [3] in order to obtain
the upper bound d(n) = Õ(n0.382) where Õ denotes the fact that a factor
of polylog is hiding in the big-O notation. Our presentation of the ideas
is slightly different from [23, 3] since our aim is to bound d(n) which
corresponds to coloring the Delaunay graph of n points rather than CF-
coloring the points themselves. However, as mentioned above, such a bound
implies also a similar bound on the CF-chromatic number of the underlying
hypergraph. Assume that d(n) ≥ c log n for some fixed constant c. We will

show that d(n) = O(nα) for all α > α0 = 3−
√
5

2 . The proof relies on the
following key ingredient, first proved in [23]. For a point set P in the plane,
let Gr be an r × r grid such that each row of Gr and each column of Gr

contains at most #n/r$ points of P . Such a grid is easily seen to exists. A
coloring of P is called a quasi-coloring with respect to Gr if every rectangle
that is fully contained in a row of Gr or fully contained in a column of Gr

is non-monochromatic. In other words, when coloring P , we do not care
about rectangles that are not fully contained in a row or fully contained in
a column (or contain only one point).

Lemma 2.8 ([23, 3]). Let P be a set of n points in the plane. If Ω(logn) =
d(n) = O(nα) then for every r, P admits a quasi-coloring with respect to Gr

with Õ((nr )
2α−α2

) colors.

The proof of the lemma uses a probabilistic argument. We first color
each column in Gr independently with d(n/r) colors. Then for each column
we permute the colors randomly and then re-color all points in a given row
that were assigned the same initial color. We omit the details of the proof
and its probabilistic analysis.
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Next, we choose an appropriate subset P ′ ⊂ P which consists of O(r)
monotone chains and with the following key property: If a rectangle S
contains points from at least two rows of Gr and at least two columns
of Gr, then S also contains a point of P ′. Note that a chain can be colored
with 2 colors so altogether one can color P ′ with O(r) colors, not to be
used for P \ P ′. Thus a rectangle that is not fully contained in a row or a
column of Gr is served by the coloring. Hence, it is enough to quasi-color
the points of P \ P ′ with respect to Gr. By the above lemma, the total

number of colors required for such a coloring is Õ((nr )
2α−α2

+ r). Choosing

r = n
2α−α2

1+2α−α2 we obtain the bound Õ(n
2α−α2

1+2α−α2 ). Thus, taking α0 to satisfy
the equality

α0 =
2α0 − α0

2

1 + 2α0 − α0
2
.

Fig. 4. The grid Gr (for r = 4) and one of its positive diagonals. The circled points are
taken to be in P ′ and the square points are in P \P ′. The point p is an extreme point of
type 2 in that diagonal and is also an extreme point of type 1 in the negative diagonal

that contains the grid cell of p

To complete the proof, we need to construct the set P ′. Consider the
diagonals of the grid Gr. See Figure 4 for an illustration. In each positive
diagonal we take the subset of (extreme) points of type 2 or 4, where a point
p is said to be of type 2 (respectively, 4) if the 2’nd quadrant (respectively,
the 4’th quadrant) with respect to p (i.e., the subset of all points above
and to the left of p) does not contain any other point from the diagonal.
Similarly, for diagonals with negative slope we take the points of type 1
and 3. If a point belongs to more than one type (in the two diagonals
that contain the point) then we arbitrarily choose one of the colors it gets
from one of the diagonals. It is easy to see that the set P ′ admits a proper
coloring with O(r) colors, as there are only 2r − 1 positive diagonals and
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2r−1 negative diagonals, and in each diagonal the extreme points of a fixed
type form a monotone chain.

As mentioned, reducing the gap between the best known asymptotic
upper and lower bounds mentioned above is a very interesting open problem.

2.3. Shallow Regions

As mentioned already, for every n there are sets D of n discs in the plane
such that χcf(H(D)) = Ω(log n). For example, one can place n unit discs
whose centers all lie on a line, say the x-axis, such that the distance between
any two consecutive centers is less than 1/n. It was shown in [25] that, for
such a family D, χcf(H(D)) = Ω(log n) since H(D) is isomorphic to the
discrete interval hypergraph with n vertices. However, in this case there are
points that are covered by many of the discs of D (in fact, by all of them).
This leads to the following fascinating problem: What happens if we have
a family of n discs D with the property that every point is covered by at
most k discs of D, for some parameter k. It is not hard to see that in such a
case, one can color D with O(k) colors such that any two intersecting discs
have distinct colors. However, we are interested only in CF-coloring of D.
Let us call a family of regions, with the property that no point is covered
by more than k of the regions, a k-shallow family.

Problem 3. What is the minimum integer f = f(k) such that for any finite
family of k-shallow discs D, we have: χcf(H(D)) ≤ f(k)?

As mentioned already, it is easy to see that f(k) = O(k). However, it is
conjectured that the true upper bound should be polylogarithmic in k.

In the further restricted case that any disc inD intersects at most k other
discs, Alon and Smorodinsky [5] proved that χcf(H(D)) = O(log3 k) and
this was recently improved by Smorodinsky [49] to χcf(H(D)) = O(log2 k).
Both bounds also hold for families of pseudo-discs. We sketch the proof of
the following theorem:

Theorem 2.9 ([49]). LetD be a family of n discs in the plane such that any
disc inD intersects at most k other discs inD. Then χcf(H(D)) = O(log2 k).

The proof of Theorem 2.9 is probabilistic and uses the Lovász Local´
Lemma [6]. We start with a few technical lemmas:

Denote by E≤�(D) the subset of hyperedges of H(D) of cardinality less
than or equal to �.
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Lemma 2.10. Let D be a finite set of n planar discs. Then |E≤k(D)| =
O(kn).

Proof. This easily follows from the fact that discs have linear union-
complexity [33] and the Clarkson–Shor probabilistic technique [21]. We
omit the details of the proof.

Lemma 2.11. Let D be a set of n planar discs, and let � > 1 be an integer.
Then the hypergraph (D,E≤�(D)) can be CF-colored with O(�) colors.

Remark. In fact, the proof of Lemma 2.11 which can be found in [7]
provides a stronger coloring. The coloring has the property that every
hyperedge in E≤�(D) is colorful (i.e., all vertices have distinct colors). Such
a coloring is referred to as �-colorful coloring and is discussed in more details
in Subsection 3.2.

Lemma 2.12. Let D be a set of discs such that every disc intersects at
most k others. Then there is a constant C such that D can be colored with
two colors (red and blue) and such that for every face f ∈ A(D) with depth

at least C ln k, there are at least |d(f)|
3 red discs containing f and at least

|d(f)|
3 blue discs containing f , where d(f) is the set of all discs containing

the face f .

Proof. Consider a random coloring of the discs in D, where each disc d ∈ D
is colored independently red or blue with probability 1

2 . For a face f of
the arrangement A(D) with |d(f)| ≥ C ln k (for some constant C to be

determined later), let Af denote the “bad” event that either less than |d(f)|
3

of the discs in d(f) or more than 2|d(f)|
3 of them are colored blue. By the

Chernoff inequality (see, e.g., [6]) we have:

Pr[Af ] ≤ 2e−
|d(f)|
72 ≤ 2e−

C ln k
72 .

We claim that for every face f , the event Af is mutually independent of all
but at most O(k3) other events. Indeed Af is independent of all events As

for which d(s) ∩ d(f) = ∅. By assumption, |d(f)| ≤ k + 1. Observe also
that a disc that contains f , can contain at most O(k2) other faces, simply
because the arrangement of k discs consists of at most O(k2) faces. Hence,
the claim follows.
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Let C be a constant such that:

e · 2e−C ln k
72 · 2k3 < 1.

By the Lovasz Local Lemma, (see, e.g., [6]) we have:´

Pr[
∧

|d(f)|≥C ln k

Āf ] > 0.

In particular, this means that there exists a coloring for which every face f
with |d(f)| ≥ C ln k has at least |d(f)|

3 red discs containing f and at least
|d(f)|

3 blue discs containing it, as asserted. This completes the proof of the
lemma.

Proof of Theorem 2.9. Consider a coloring of D by two colors as in
Lemma 2.12. Let B1 denote the set of discs in D colored blue. We will color
the discs of B1 with O(ln k) colors such that E≤2C ln k(B1) is conflict-free, as
guaranteed by Lemma 2.11, and recursively color the discs in D \ B1 with
colors disjoint from those used to color B1. This is done, again, by splitting
the discs in D \B1 into a set of red discs and a set B2 of blue discs with the
properties guaranteed by Lemma 2.12. We repeat this process until every
face of the arrangementA(D′) (of the setD′ of all remaining discs) has depth
at most C ln k. At that time, we color D′ with O(ln k) colors as described in
Lemma 2.11. To see that this coloring scheme is a valid conflict-free coloring,
consider a point p ∈ ⋃d∈D d. Let d(p) ⊂ D denote the subset of all discs
in D that contain p. Let i be the largest index for which d(p)∩Bi �=�� ∅. If i
does not exist (namely, d(p)∩Bi = ∅ ∀i) then by Lemma 2.12 |d(p)| ≤ C ln k.
However, this means that d(p) ∈ E≤C ln k(D) and thus d(p) is conflict-free
by the coloring of the last step. If |d(p) ∩Bi| ≤ 2C ln k then d(p) is conflict
free since one of the colors in d(p) ∩ Bi is unique according to the coloring
of E≤c ln k(Bi). Assume then, that |d(p) ∩Bi| > 2C ln k. Let x denote the
number of discs containing p at step i. By the property of the coloring of
step i, we have that x ≥ 3C ln k. This means that after removing Bi, the
face containing p is also contained in at least C ln k other discs. Hence, p
must also belong to a disc of Bi+1, a contradiction to the maximality of i.
To argue about the number of colors used by the above procedure, note
that in each prune step, the depth of every face with depth i ≥ C ln k is
reduced with a factor of at least 1

3 . We started with a set of discs such
that the maximal depth is k + 1. After the first step, the maximal depth
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is 2
3k and for each step we used O(ln k) colors so, in total, we have that

the maximum number of colors f(k, r), needed for CF-coloring a family of
discs with maximum depth r such that each disc intersects at most k others
satisfies the recursion:

f(k, r) ≤ O(ln k) + f

(
k,

2

3
r

)
.

This gives f(k, r) = O(ln k log r). Since, in our case r ≤ k + 1, we obtain
the asserted upper bound. This completes the proof of the theorem.

Remark. Theorem 2.9 works almost verbatim for any family of regions
(not necessarily convex) with linear union complexity. Thus, for example,
the result applies to families of homothetics or more generally to any family
of pseudo-discs, since pseudo-discs have linear union complexity ([33]). We
also note that, as in other cases mentioned so far, it is easily seen that the
proof of the bound of Theorem 2.9 holds for UM-coloring.

The proof of Theorem 2.9 is non-constructive since it uses the Lovász
Local Lemma. However, we can use the recently discovered algorithmic ver-
sion of the Local Lemma of Moser and Tardos [39] to obtain a constructive
proof of Theorem 2.9.

Problem 4. As mentioned, the only lower bound that is known for this
problem is Ω(log k) which is obvious from taking the lower bound construc-
tion of [25] with k discs. It would be interesting to close the gap between
this lower bound and the upper bound O(log2 k).

The following is a rather challenging open problem:

Problem 5. Obtain a CF-coloring of discs with maximum depth k+1 (i.e.,
no point is covered by more than k + 1 discs) with only polylogarithmic
(in k) many colors. Obviously, the assumption of this subsection that a
disc can intersect at most k others is much stronger and implies maximum
depth k + 1. However, the converse is not true. Assuming only bounded
depth does not imply the former. In bounded depth, we still might have
discs intersecting many (possibly all) other discs.
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3. Extensions of CF-Coloring

3.1. k-CF coloring

We generalize the notion of CF-coloring of a hypergraph to k-CF-coloring.
Informally, we think of a hyperedge as being ‘served’ if there is a color that
appears in the hyperedge (at least once and) at most k times, for some fix
prescribed parameter k. For example, we will see that when the underlying
hypergraph is induced by n points in R3 with respect to the family of all
balls, there are n points for which any CF-coloring needs n colors but there
exists a 2-CF-coloring with O(

√
n) colors (and a k-CF-coloring with O(n1/k)

colors for any fixed k ≥ 2). We also show that any hypergraph (V, E) with
a finite VC-dimension c, can be k-CF-colored with O(log |P |) colors, for
a reasonably large k. This relaxation of the model is applicable in the
wireless scenario since the real interference between conflicting antennas
(i.e., antennas that are assigned the same frequency and overlap in their
coverage area) is a function of the number of such antennas. This suggests
that if for any given point, there is some frequency that is assigned to at
most a “small” number of antennas that cover this point, then this point
can still be served using that frequency because the interference between a
small number of antennas is low. This feature is captured by the following
notion of k-CF-coloring.

Definition 3.1. k-CF-coloring of a hypergraph: Let H = (V, E) be a
hypergraph. A function χ : V → {1, . . . , i} is a k-CF-coloring of H if for
every S ∈ E there exists a color j such that 1 ≤ |{v ∈ S|χ(v) = j}| ≤ k;
that is, for every hyperedge S ∈ E there exists at least one color j such that
j appears (at least once and) at most k times among the colors assigned to
vertices of S.

Let χkCF (H) denote the minimum number of colors needed for a k-CF-
coloring of H.

Note that a 1-CF-coloring of a hypergraph H is simply a CF-coloring.

Here we modify Algorithm 1 to obtain a k-CF coloring of any hyper-
graph. We need yet another definition of the following relaxed version of a
proper coloring:

Definition 3.2. Let H = (V, E) be a hypergraph. A coloring ϕ of H is
called k-weak if every hyperedge e ∈ E with |e| ≥ k is non-monochromatic.
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That is, for every hyperedge e ∈ E with |e| ≥ k there exists at least two
vertices x, y ∈ e such that ϕ(x) �=�� ϕ(y).

Notice that a k-weak coloring (for k ≥ 2) of a hypergraph H = (V, E)
is simply a proper coloring for the hypergraph (V, E≥k) where E≥k is the
subset of hyperedges in E with cardinality at least k. This notion was used
implicitly in [28, 48] and then was explicitly defined and studied in the Ph.D.
of Keszegh [35, 34]. It is also related to the notion of cover-decomposability
and polychromatic colorings (see, e.g., [26, 42, 44]).

We are ready to generalize Algorithm 1. See Algorithm 2 below.

Algorithm 2 k-CFcolor(H): k-Conflict-Free-color a hypergraph H =
(V, E).
1: i← 0: i denotes an unused color
2: while V �=�� ∅ do
3: Increment: i← i+ 1
4: Auxiliary coloring: find a weak k+1-coloring χ ofH(V ) with “few”

colors
5: V ′ ← Largest color class of χ
6: Color: f(x)← i , ∀x ∈ V ′

7: Prune: V ← V \ V ′, H ← H(V )
8: end while

Theorem 3.3 ([28]). Algorithm 2 outputs a valid k-CF-coloring of H.

Proof. The proof is similar to the proof provided in Section 1.3 for the
validity of Algorithm 1. In fact, again, the coloring provided by Algorithm 2
has the stronger property that for any hyperedge S ∈ E the maximal color
appears at most k times.

As a corollary similar to the one mentioned in Theorem 1.5, for a hyper-
graph H that admit a k+1-weak coloring with “few” colors hereditarily, H
also admits a k-CF-coloring with few colors. The following theorem sum-
marizes this fact:

Theorem 3.4 ([28]). Let H = (V, E) be a hypergraph with n vertices,
and let l, k ∈ N be two fixed integers, k ≥ 2. Assume that every induced
sub-hypergraph H ′ ⊆ H admits a k+1-weak coloring with at most l colors.
Then H admits a k-CF-coloring with at most log1+ 1

l−1
n = O(l log n) colors.
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Proof. The proof is similar to the proof of Theorem 1.5

3.1.1. CF-Coloring of Balls in Three Dimensions.

Lemma 3.5. Let B be the set of balls in three dimensions. There exists a
hypergraph H induced by a finite set P of n points in R3 with respect to B
such that χ1CF (H) = n. The same holds for the set H of halfspaces in Rd,
for d > 3.

Proof. Take P to be a set of n points on the positive portion of the moment
curve γ = {(t, t2, t3) | t ≥ 0} in R3. It is easy to verify that any pair of
points p, q ∈ P are connected in the Delaunay triangulation of P implying
that there exists a ball whose intersection with P is {p, q}. Thus, all points
must be colored using different colors.

The second claim follows by taking P to be n distinct points on the
moment curve {(t, t2, . . . , td)} in Rd (i.e, P is the set of vertices of a so-
called cyclic-polytope C(n, d). See, e.g., [50]).

Theorem 3.6 ([28, 47]). Let P be a set of n points in R3. Put H = HBH (P ).
Then χkCF (H) = O(n1/k), for any fixed constant k ≥ 1.

Proof. As is easily seen by Algorithm 2, it is enough to prove that H admits
a k + 1-weak coloring with O(n1/k) colors. If so, then in every iteration we

discard at least Ω(|PiPP |1−
1
k ) elements so the total number of iterations (colors)

used is O(n1/k). The proof thatH admits a k+1-weak coloring with O(n1/k)
colors uses the probabilistic method. We provide only a brief sketch of the
proof. It is enough to consider all balls containing exactly k+1 points since
if a ball contains more than k+1 points then by perturbation and shrinking
arguments it will also contain a subset of k+1 points that can be cut-off by
a ball. So we may assume that in the underlying hypergraph H = (P, E), all
hyperedges have cardinality k+1 (such a hypergraph is also called a k+1-
uniform hypergraph). So we want to color the set P with O(n1/k) colors
such that any hyperedge in E is non-monochromatic. By the Clarkson–Shor
technique, it is easy to see that the number of hyperedges in E is O(k2n2).
Thus the average degree of a vertex in H is O(n) where the constant of
proportionality depends on k. It is well known that such a hypergraph has
chromatic number O(n1/k). This is proved via the probabilistic method.
The main ingredient is the Lovasz Local Lemma (see, e.g., [6]).´
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In a similar way we have:

Theorem 3.7 ([28, 47]). Let R be a set of n balls in R3. Then

χkCF (H(R)) = O(n1/k).

3.1.2. VC-dimension and k-CF coloring.

Definition 3.8. LetH = (V, E) be a hypergraph. The Vapnik-Chervonenkis
dimension (or VC-dimension) of H, denoted by V C(H), is the maximal
cardinality of a subset V ′ ⊂ V such that {V ′ ∩ r | r ∈ E} = 2V

′
(such

a subset is said to be shattered). If there are arbitrarily large shattered
subsets in V then V C(H) is defined to be ∞. See [38] for discussion of
VC-dimension and its applications.

There are many hypergraphs with finite VC-dimension that arise nat-
urally in combinatorial and computational geometry. One such example is
the hypergraph H = (Rd,Hd), where Hd is the family of all (open) halfs-
paces in Rd. Any set of d + 1 affinely independent points is shattered in
this space, and, by Radon’s theorem, no set of d + 2 points is shattered.
Therefore V C(H) = d+ 1.

Definition 3.9. Let (V, E) be a hypergraph with |V | = n and let 0 < ε ≤ 1.
A subset N ⊂ V is called an ε-net for (V, E) if for every hyperedge S ∈ E
with |S| ≥ εn we have S ∩N �=�� ∅.

Thus, an ε-net is a hitting set of all ‘heavy’ hyperedges, namely, those
containing at least εn vertices.

An important consequence of the finiteness of the VC-dimension is the
existence of small ε-nets, as shown by Haussler and Welzl in [29], where the
notion of VC-dimension of a hypergraph was introduced to computational
geometry.

Theorem 3.10 ([29]). For any hypergraph H = (V, E) with finite VC-
dimension d and for any ε > 0, there exists an ε-net N ⊂ V of size
O(dε log

d
ε ).

Remark. In fact, Theorem 3.10 is valid also in the case whereH is equipped
with an arbitrary probability measure μ. An ε-net in this case is a subset
N ⊂ V that meets all hyperedges with measure at least ε.
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Since all hypergraphs mentioned so far have finite VC-dimension, and
since some of them sometimes must be CF-colored with n colors, there is
no direct relationship between a finite VC-dimension of a hypergraph and
the existence of a CF-coloring of that hypergraph with a small number of
colors. In this subsection we show that such a relationship does exist, if we
are interested in k-CF-coloring with a reasonably large k.

We first introduce a variant of the general framework for k-CF-coloring
of a hypergraph H = (V, E). In this framework we modify lines 4 and
5 in Algorithm 2. In Algorithm 2 we first find a k + 1-weak coloring of
the underlying hypergraph (line 4) which is a partition of the vertices into
sets such that each set has the following property: Every set in the partition
cannot fully contain a hyperedge with cardinality at least k+1. Equivalently,
every color class V ′ ⊂ V has the property that every hyperedge containing
at least k+1 vertices of V ′ also contain vertices of V \ V ′. We modify that
framework by directly finding a “large” such subset in the hypergraph.

Definition 3.11. Let H = (V, E) be a hypergraph. A subset V ′ ⊂ V
is k-admissible if for any hyperedge S ∈ E with |S ∩ V ′| > k we have
S ∩ (V \ V ′) �=�� ∅.

Assume that we are given an algorithm A that computes, for any hyper-
graph H = (V, E), a non-empty k-admissible set V ′ = A(H). We can now
use algorithm A to k-CF-color the given hypergraph (i) Compute a k + 1-
admissible set V ′ = A(H), and assign to all the elements in V ′ the color 1.
(ii) Color the remaining elements in V \ V ′ recursively, where in the ith
stage we assign the color i to the vertices in the resulting k + 1-admissible
set. We denote the resulting coloring by CAC (H).

The proof of the following theorem is, yet, again, similar to that of
Theorem 1.4.

Theorem 3.12 ([28, 47]). Given a hypergraph H = (V, E), the coloring
CAC (H) is a valid k-CF coloring of S.

Lemma 3.13. Let H = (V, E) with |V | = n be a hypergraph with VC-
dimension d. For any k ≥ d there exists a k-admissible set V ′ ⊂ V with
respect to H of size Ω

(
n1−(d−1)/k

)
.

Proof. Any coloring of V is valid as far as the small hyperedges of E are
concerned; namely, those are the hyperedges that contain at most k vertices.
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Thus, let E ′ be the subset of hyperedges of E of size larger than k. By Sauer’s
Lemma (see, e.g., [6]) we have that |E ′| ≤ |E| ≤ nd.

Next, we randomly color V by black and white, where an element is being
colored in black with probability p, where p would be specified shortly. Let
I be the set of points of V colored in black. If a hyperedge r ∈ E ′ is colored
only in black, we remove one of the vertices of r from I. Let I ′ be the
resulting set. Clearly, I ′ is a k-admissible set for H.

Furthermore, by linearity of expectation, the expected size of I ′ is at
least

pn−
∑
r∈E ′

p|r| ≥ pn−
∑
r∈E ′

pk+1 ≥ pn− pk+1nd.

Setting p =
(
(k + 1)nd−1

)−1/k
, we have that the expected size of I ′ is at

least pn− pk+1nd = pn(1− 1/(k + 1)) = Ω
(
n1−(d−1)/k

)
, as required.

As was already seen, for geometric hypergraphs one might be able to
get better bounds than the one guaranteed by Lemma 3.13.

Theorem 3.14 ([28, 47]). Let H = (V, E) with |V | = n be a finite
hypergraph with VC-dimension d. Then for k ≥ d log n there exists a k-
CFcoloring of H with O(log n) colors.

Proof. By Lemma 3.13 the hypergraph H contains a k-admissible set of size
at least n/2. Plugging this fact to the algorithm suggested by Theorem 3.12
completes the proof of the theorem.

As remarked above, Theorem 3.14 applies to all hypergraphs mentioned
in this paper. Note also, that Lemma 3.13 gives us a trade off between
the number of colors and the threshold size of the coloring. As such, the
bound of Theorem 3.14 is just one of a family of such bounds implied by
Lemma 3.13.

3.2. k-Strong CF-Coloring

Here, we focus on the notion of k-strong-conflict-free (abbreviated, kSCF )
which is yet another extension of the notion of CF-coloring of hypergraphs.
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Definition 3.15 (k-strong conflict-free coloring:). Let H = (V, E) be a
hypergraph and let k ∈ N be some fixed integer. A coloring of V is called
k-strong-conflict-free for H (kSCF for short) if for every hyperedge e ∈ E
with |e| ≥ k there exists at least k vertices in e, whose colors are unique
among the colors assigned to the vertices of e and for each hyperedge e ∈ E
with |e| < k all vertices in e get distinct colors. Let fHff (k) denote the least
integer l such that H admits a kSCF -coloring with l colors.

Abellanas et al. [2] were the first to study kSCF-coloring1. They focused
on the special case of hypergraphs induced by n points in R2 with respect to
discs. They showed that in this case the hypergraph admits a kSCF-coloring
with O( logn

log ck
ck−1

) (= O(k log n)) colors, for some absolute constant c.

The following notion was recently introduced and studied by Aloupis et
al. [7] for the special case of hypergraphs induced by discs:

Definition 3.16 (k-colorful coloring). Let H = (V, E) be a hypergraph,
and let ϕ be a coloring of H. A hyperedge e ∈ E is said to be k-colorful
with respect to ϕ if there exist k vertices in e that are colored distinctively
under ϕ. The coloring ϕ is called k-colorful if every hyperedge e ∈ E is
min{|e|, k}-colorful. Let cH(k) denote the least integer l such that H admits
a k-colorful coloring with l colors.

Aloupis et al. [7] introduced this notion explicitly and were motivated by
a problem related to battery lifetime in sensor networks. This notion is also
related to the notion of polychromatic colorings. In polychromatic colorings,
the general question is to estimate the minimum number f = f(k) such
that one can k-color the hypergraph with the property that all hyperedges
of cardinality at least f(k) are colorful in the sense that they contain a
representative color of each color class. (see, e.g., [26, 13, 44] for additional
details on the motivation and related problems).

Remark. Every kSCF -coloring of a hypergraph H is a k-colorful coloring
of H. However, the opposite claim is not necessarily true.

The following connection between k-colorful coloring and strong-conflict-
free coloring of hypergraphs was proved by Horev et al. in [30]. If a hy-
pergraph H admits a k-colorful coloring with a “small” number of colors
(hereditarily) then it also admits a (k − 1)SCF-coloring with a “small”
number of colors. This connection is analogous to the connection between
non-monochromatic coloring and CF-coloring as appear in Theorem 1.5 and

1They referred to such a coloring as k-conflict-free coloring.
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the connection between k + 1-weak coloring and k-CF-coloring as appear
in Theorem 3.4. We start by introducing the general framework of [30]
for kSCF-coloring a given hypergraph.

A Framework For Strong-Conflict-Free Coloring. Let H be a hy-
pergraph with n vertices and let k and l be some fixed integers such that H
admits the hereditary property that every vertex-induced sub-hypergraph
H ′ of H admits a k-colorful coloring with at most l colors. Then H ad-
mits a (k − 1)SCF -coloring with O(l log n) colors. For the case when l is
replaced with the function kn(H ′)α we get a better bound without the log n
factor. The proof is constructive. The following framework (denoted as
Algorithm 3) produces a valid (k − 1)SCF coloring for a hypergraph H.

Algorithm 3 (k-1)SCF-color(H): (k − 1)-Strong Conflict-Free-color a hy-
pergraph H = (V, E).
1: i← 1 i denotes an unused color
2: while V �=�� ∅ do
3: Increment: i← i+ 1
4: Auxiliary Coloring: find a k-colorful coloring ϕ ofH(V ) with “few”

colors
5: V ′ ← Largest color class of ϕ
6: Color: χ(x)← i , ∀x ∈ V ′

7: Prune: V ← V \ V ′.
8: Increment: i← i+ 1.
9: end while

10: Return χ.

Note that Algorithm 3 is a generalization of Algorithm 1. Indeed for
k = 2 the two algorithms become identical since a 2-colorful coloring is
equivalent to a proper coloring. Arguing about the number of colors used
by the algorithm is identical to the arguments as in the coloring produced
by Algorithm 1. The proof or correctness is slightly more subtle.

For a hypergraph H = (V, E), we write n(H) to denote the number of
vertices of H. As a corollary of the framework described in Algorithm 3 we
obtain the following theorems:

Theorem 3.17 ([30]). Let H = (V, E) be a hypergraph with n vertices,
and let k, � ∈ N be fixed integers, k ≥ 2. If every induced sub-hypergraph
H ′ ⊆ H satisfies cH′(k) ≤ �, then fHff (k − 1) ≤ log1+ 1

�−1
n = O(l log n).
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Theorem 3.18 ([30]). Let H = (V, E) be a hypergraph with n vertices,
and let k ≥ 2 be a fixed integer. let 0 < α ≤ 1 be a fixed real. If
every induced sub-hypergraph H ′ ⊆ H satisfies cH′(k) = O(kn(H ′)α), then
fHff (k − 1) = O(knα).

As a corollary of Theorem 3.17 and a result of Aloupis et al. [7] on k-
colorful coloring of discs or points with respect to discs we obtain the
following:

Theorem 3.19 ([30]). If H is a hypergraph induced by n discs in the plane
or a hypergraph induced by n points in the plane with respect to discs then
fHff (k) = O(k log n).

Proof. The proof follows by combining the fact that cH(k) = O(k) [7] with
Theorem 3.17

Theorem 3.21 below provides an upper bound on the number of col-
ors required by kSCF -coloring of geometrically induced hypergraphs as a
function of the union-complexity of the regions that induce the hypergraphs.

Recall that, for a set R of n simple closed planar Jordan regions, URUU :
N→ N is the function defined in Theorem 2.4.

Theorem 3.20 ([30]). Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be a fixed
constant. Let R be a set of n simple closed Jordan regions such that
URUU (m) ≤ cm1+α, for 1 ≤ m ≤ n, and let H = H(R). Then cH(k) =
O(knα).

Combining Theorem 3.17 with Theorem 3.20 (for α = 0) and Theo-
rem 3.18 with Theorem 3.20 (for 0 < α < 1) yields the following result:

Theorem 3.21 ([30]). Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be a constant.
Let R be a set of n simple closed Jordan regions such that URUU (m) = cm1+α,
for 1 ≤ m ≤ n. Let H = H(R). Then:

fHff (k − 1) =

{
O(k log n), α = 0,

O(knα), 0 < α ≤ 1.

Axis-parallel rectangles: Consider kSCF -colorings of hypergraphs in-
duced by axis-parallel rectangles in the plane. As mentioned before, axis-
parallel rectangles might have quadratic union-complexity. For a hyper-
graph H induced by axis-parallel rectangles, Theorem 3.21 states that
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fHff (k−1) = O(kn). This bound is meaningless, since the bound fHff (k−1) ≤
n is trivial. Nevertheless, the following theorem provides a better upper
bound for this case:

Theorem 3.22 ([30]). Let k ≥ 2. Let R be a set of n axis-parallel
rectangles, and let H = H(R). Then fHff (k − 1) = O(k log2 n).

In order to obtain Theorem 3.22 we need the following theorem:

Theorem 3.23 ([30]). Let H = H(R), be the hypergraph induced by
a family R of n axis-parallel rectangles in the plane, and let k ∈ N be
an integer, k ≥ 2. For every induced sub-hypergraph H ′ ⊆ H we have:
cH′(k) ≤ k log n.

The proof of Theorem 3.22 is therefore an easy consequence of Theo-
rem 3.23 combined with Theorem 3.17.

Har-Peled and Smorodinsky [28] proved that any family R of n axis-
parallel rectangles admit a CF-coloring with O(log2 n) colors. Their proof
uses the probabilistic method. They also provide a randomized algorithm
for obtaining CF-coloring with at most O(log2 n) colors. Later, Smorodin-
sky [48] provided a deterministic polynomial-time algorithm that produces
a CF-coloring for n axis-parallel rectangles with O(log2 n) colors. Theo-
rem 3.22 thus generalizes the results of [28] and [48]. The upper bound
provided in Theorem 3.21 for α = 0 is optimal. Specifically, there exist
matching lower bounds on the number of colors required by any kSCF -
coloring of hypergraphs induced by (unit) discs in the plane.

Theorem 3.24 ([1]).

(i) There exist families R of n (unit) discs for which fHff (R)(k) =
Ω(k log n)

(ii) There exist families R of n axis-parallel squares for which fHff (R)(k) =
Ω(k log n).

Notice that for axis-parallel rectangles there is a logarithmic gap between
the best known upper and lower bounds.

Theorems 3.17 and 3.18 asserts that in order to attain upper bounds
on fHff (k), for a hypergraph H, one may concentrate on attaining a bound
on cH(k). Given a k-colorful coloring of H, Algorithm 3 obtains a strong-
conflict-free coloring of H in a constructive manner. Here computational
efficiency is not of main interest. However, it can be seen that for certain
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families of geometrically induced hypergraphs, Algorithm 3 is efficient. In
particular, for hypergraphs induced by discs or axis-parallel rectangles,
Algorithm 3 has a low degree polynomial running time. Colorful-colorings
of such hypergraphs can be computed once the arrangement of the discs is
computed together with the depth of every face.

3.3. List Colorings

In view of the motivation for CF-coloring in the context of wireless antennae,
it is natural to assume that each antenna is restricted to use some subset of
the spectrum of frequencies and that different antennae might have different
such subsets associated with them (depending, for example, on the physical
location of the antenna). Thus, it makes sense to study the following more
restrictive notion of coloring:

Let H = (V, E) with V = {v1, . . . , vn} be a hypergraph and let L =
{L1, . . . , Ln} be a family of subsets of the integers. We say that H admits a
proper coloring from L (respectively, a CF-coloring from L, a UM-coloring
from L) if there exists a proper coloring (respectively a CF-coloring, a UM-
coloring) C : V → N such that C(vi) ∈ Li for i = 1, . . . , n.

Definition 3.25. We say that a hypergraph H = (V, E) is k-choosable
(respectively, k-CF-choosable, k-UM-choosable) if for every family L =
{L1, . . . , Ln} such that |Li| ≥ k for i = 1, . . . , n, H admits a proper-coloring
(respectively a CF-coloring, a UM-coloring) from L.

We are interested in the minimum number k for which a given hyper-
graph is k-choosable (respectively, k-CF-choosable, k-UM-choosable). We
refer to this number as the choice-number (respectively the CF-choice-
number, UM-choice-number) of H and denote it by ch(H) (respectively
chcf(H), chum(H)). Obviously, if the choice-number (respectively, the CF-
choice-number, UM-choice-number) ofH is k then it can be properly colored
(respectively CF-colored, UM-colored) with at most k colors, as one can
proper color (respectively, CF-color, UM-color) H from L = {L1, . . . , Ln}
where for every i we have Li = {1, . . . , k}. Thus,

ch(H) ≥ χ(H).

chcf(H) ≥ χcf(H).

chum(H) ≥ χum(H).
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Hence, any lower bound on the number of colors required by a proper
coloring of H (respectively, a CF-coloring, a UM-coloring of H) is also a
lower bound on the choice number (respectively, the CF-choice-number, the
UM-choice-number) of H.

The study of choice numbers in the special case of graphs was initiated
by Vizing [51] and by Erdős Rubin and Taylor [24]. The study of the CF-˝
choice number and the UM-choice number of hypergraphs was initiated very
recently by Cheilaris, Smorodinsky and Sulovsky [16].´

Let us return to the discrete interval hypergraph HnHH with n vertices,
which was described in the introduction. As was shown already, we have
χcf(HnHH ) = χum(HnHH ) = �log2 n�+ 1. In particular we have the lower bound
chcf(HnHH ) ≥ �log2 n�+ 1. Hence, the following upper-bound is tight:

Proposition 3.26. For n ≥ 1, chcf(HnHH ) ≤ �log2 n�+ 1.

Proof. Assume, without loss of generality, that n = 2k+1 − 1. We will
show that HnHH is k + 1 CF-choosable. The proof is by induction on k. Let
L = {Li}i∈[n], such that |Li| = k + 1, for every i. Consider the median

vertex p = 2k. Choose a color x ∈ Lp and assign it to p. Remove x from
all other lists (for lists containing x), i.e., consider L′ = {L′

i}i∈[n]\p where
L′
i = Li \ {x}. Note that all lists in L′ have size at least k. The induction

hypothesis is that we can CF-color any set of points of size 2k−1 from lists of
size k. Indeed, the number of vertices smaller (respectively, larger) than p is
exactly 2k−1. Thus, we CF-color vertices smaller than p and independently
vertices larger than p, both using colors from the lists of L′. Intervals that
contain the median vertex p also have the conflict-free property, because
color x is used only in p. This completes the induction step and hence the
proof of the proposition.

Note that, even in the discrete interval hypergraph, it is a more difficult
problem to obtain any non-trivial upper bound on the UM-choice number. A
divide and conquer approach, along the lines of the proof of Proposition 3.26
is doomed to fail. In such an approach, some vertex close to the median
must be found, a color must be assigned to it from its list, and this color
must be deleted from all other lists. However, vertices close to the median
might have only “low” colors in their lists. Thus, while we are guaranteed
that a vertex close to the median is uniquely colored for intervals containing
it, such a unique color is not necessarily the maximal color for such intervals.
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Instead, Cheilaris et al. used a different approach. This approach pro-
vides a general framework for UM-coloring hypergraphs from lists. More-
over, when applied to many geometric hypergraphs, it provides asymptoti-
cally tight bounds for the UM-choice number.

Below, we give an informal description of that approach, which is then
summarized in Algorithm 4. It is similar in spirit to Algorithm 1.

Start by sorting the colors in the union of all lists in increasing order.
Let c denote the minimum color. Let V c ⊆ V denote the subset of vertices
containing c in their lists. Note that V c might contain very few vertices, in
fact, it might be that |V c| = 1. We simultaneously color a suitable subset
U ⊆ V c of vertices in V c with c. We make sure that U is independent in
the sub-hypergraph H(V c). The exact way in which we choose U is crucial
to the performance of the algorithm and is discussed below. Next, for the
uncolored vertices in V c \ U , we remove the color c from their lists. This
is repeated for every color in the union

⋃
v∈V Lv in increasing order of the

colors. The algorithm stops when all vertices are colored. Notice that such
an algorithm might run into a problem, when all colors in the list of some
vertex are removed before this vertex is colored. Later, we show that if we
choose the subset U ⊆ V c in a clever way and the lists are sufficiently large,
then we avoid such a problem.

Algorithm 4 UMColorGeneric(H, L): Unique-maximum color hypergraph
H = (V, E) from lists of family L
1: while V �=�� ∅ do
2: c← min

⋃
v∈V Lv {c is the minimum color in the union of the lists}

3: V c ← {v ∈ V | c ∈ Lv} {V c is the subset of remaining vertices
containing c in their lists}

4: U ← a “good” independent subset of the induced sub-hypergraph
H(V c)

5: for x ∈ U do {for every vertex in the independent set,}
6: f(x)← c {color it with color c}
7: end for
8: for v ∈ V c \ U do {for every uncolored vertex in V c,}
9: Lv ← Lv \ {c} {remove c from its list}

10: end for
11: V ← V \ U {remove the colored vertices}
12: end while
13: Return f .
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As mentioned, Algorithm 4 might cause some lists to run out of colors
before coloring all vertices. However, if this does not happen, it is proved
that the algorithm produces a UM-coloring.

Lemma 3.27 ([16]). Provided that the lists associated with the vertices
do not run out of colors during the execution of Algorithm 4, then the
algorithm produces a UM-coloring from L.

Proof. The proof is similar to the validity proof of Algorithm 1 and we
omit the details.

The key ingredient, which will determine the necessary size of the lists
of L, is the particular choice of the independent set in the above algorithm.
We assume that the hypergraph H = (V, E) is hereditarily k-colorable for
some fixed positive integer k. Recall that, as shown before, this is the case
in many geometric hypergraphs. We must also put some condition on the
size of the lists in the family L = {Lv}v∈V . With some hindsight, we require∑

v∈V
λ−|Lv | < 1,

where λ := k
k−1 .

Theorem 3.28 ([16]). Let H = (V, E) be a hypergraph which is hered-
itarily k-colorable and set λ := k

k−1 . Let L = {Lv}v∈V , such that∑
v∈V λ−|Lv | < 1. Then, H admits a UM-coloring from L.

Notice, that in particular for a hypergraph H which is hereditarily k-
colorable we have:

chum(H) ≤ logλ n+ 1 = O(k log n)

Thus, Theorem 3.28 subsumes all the theorems (derived from Algorithm 1)
that are mentioned in Section 2.

Proof. The proof of Theorem 3.28 is constructive and uses a potential
method: This method gives priority to coloring vertices that have fewer
remaining colors in their lists, when choosing the independent sets. Towards
that goal, we define a potential function on subsets of uncolored vertices
and we choose the independent set with the highest potential (the potential
quantifies how dangerous it is that some vertex in the set will run out of
colors in its list).
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For an uncolored vertex v ∈ V , let rt(v) denote the number of colors
remaining in the list of v in the beginning of iteration t of the algorithm.
Obviously, the value of rt(v) depends on the particular run of the algorithm.
For a subset of uncolored vertices X ⊆ V in the beginning of iteration t,
let PtPP (X) :=

∑
v∈X λ−rt(v). We define the potential in the beginning of

iteration t to be PtPP := PtPP (VtVV ), where VtVV denotes the subset of all uncolored
vertices in the beginning of iteration t. Notice that the value of the potential
in the beginning of the algorithm (i.e., in the first iteration) is

P1PP =
∑
v∈V

λ−|Lv | < 1.

Our goal is to show that, with the right choice of the independent set in
each iteration, we can make sure that for any iteration t and every vertex
v ∈ VtVV the inequality rt(v) > 0 holds. In order to achieve this, we will show
that, with the right choice of the subset of vertices colored in each iteration,
the potential function PtPP is non-increasing in t. This will imply that for any
iteration t and every uncolored vertex v ∈ VtVV we have:

λ−rt(v) ≤ PtPP ≤ P1PP < 1

and hence rt(v) > 0, as required.

Assume that the potential function is non-increasing up to iteration t.
Let PtPP be the value of the potential function in the beginning of iteration t
and let c be the color associated with iteration t. Recall that VtVV denotes
the set of uncolored vertices that are considered in iteration t, and V c ⊆ VtVV
denotes the subset of uncolored vertices that contain the color c in their
lists. Put P ′ = PtPP (VtVV \ V c) and P ′′ = PtPP (V c). Note that PtPP = P ′ + P ′′.
Let us describe how we find the independent set of vertices to be colored
at iteration t. First, we find an auxiliary proper coloring of the hypergraph
H[V c] with k colors (here we use the hereditary k-colorability property of
the hypergraph). Consider the color class U which has the largest potential
PtPP (U). Since the vertices in V c are partitioned into at most k independent
subsets U1UU , . . . , UkUU and P ′′ =

∑k
i=1 PtPP (UiUU ), then by the pigeon-hole principle

there is an index j for which PtPP (UjUU ) ≥ P ′′/k. We choose U = UjUU as the
independent set to be colored at iteration t. Notice that, in this case, the
value rt+1(v) = rt(v)− 1 for every vertex v ∈ V c \ U , and all vertices in U
are colored. For vertices in VtVV \ V c, there is no change in the size of their
lists. Thus, the value PtPP +1 of the potential function at the end of iteration
t (and in the beginning of iteration t+ 1) is PtPP +1 ≤ P ′ + λ(1− 1

k )P
′′. Since

λ = k
k−1 , we have that PtPP +1 ≤ P ′ + P ′′ = PtPP , as required.
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3.3.1. A relation between chromatic and choice number in general
hypergraphs. Using a probabilistic argument, Cheilaris et al. [16] proved
the following general theorem for arbitrary hypergraphs and arbitrary col-
orings with the so-called refinement property:

Definition 3.29. We call C ′ a refinement of a coloring C if C(x) �=�� C(y)
implies C ′(x) �=�� C ′(y). A class C of colorings is said to have the refinement
property if every refinement of a coloring in the class is also in the class.

The class of conflict-free colorings and the class of proper colorings are
examples of classes which have the refinement property. On the other hand,
the class of unique-maximum colorings does not have this property.

For a class C of colorings, one can naturally extend the notions of
chromatic number χC and choice number chC to C.

Theorem 3.30 ([16]). For every class of colorings C that has the refinement
property and every hypergraph H with n vertices, chC(H) ≤ χC(H)·lnn+1.

Proof. If k = χC(H), then there exists a C-coloring C of H with colors
{1, . . . , k}, which induces a partition of V into k classes: V1VV ∪ V2VV ∪ · · · ∪ VkVV .
Consider a family L = {Lv}v∈V , such that for every v, |Lv| = k∗ > k · lnn.
We wish to find a family L′ = {L′

v}v∈V with the following properties:

1. For every v ∈ V , L′
v ⊆ Lv.

2. For every v ∈ V , L′
v �=�� ∅.

3. For every i �=�� j, if v ∈ ViVV and u ∈ VjVV , then L′
v ∩ L′

u = ∅.

Obviously, if such a family L′ exists, then there exists a C-coloring from L′:
For each v ∈ V , pick a color x ∈ L′

v and assign it to v.

We create the family L′ randomly as follows: For each element in ∪L,
assign it uniformly at random to one of the k classes of the partition
V1VV ∪ · · · ∪ VkVV . For every vertex v ∈ V , say with v ∈ ViVV , we create L′

v, by
keeping only elements of Lv that were assigned through the above random
process to v’s class, ViVV .

The family L′ obviously has properties 1 and 3. We will prove that with
positive probability it also has property 2.

For a fixed v, the probability that L′
v = ∅ is at most(

1− 1

k

)k∗

≤ e−k∗/k < e− lnn =
1

n
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and therefore, using the union bound, the probability that for at least one
vertex v, L′

v = ∅, is at most

n

(
1− 1

k

)k∗

< 1.

Thus, there is at least one family L′ where property 2 also holds, as claimed.

Corollary 3.31. For every hypergraph H,

chcf(H) ≤ χcf(H) · lnn+ 1.

Corollary 3.32. For every hypergraph H,

ch(H) ≤ χ(H) · lnn+ 1.

The argument in the proof of Theorem 3.30 is a generalization of an
argument first given in [24], proving that any bipartite graph with n vertices
is O(log n)-choosable (see also [4]).

4. Non-Geometric Hypergraphs

Pach and Tardos [40] investigated the CF-chromatic number of arbitrary
hypergraphs and proved that the inequality:

χcf(H) ≤ 1/2 +
√
2m+ 1/4

holds for every hypergraph H with m edges, and that this bound is tight.
Cheilaris et al. [16] strengthened this bound in two ways by proving that:

chum(H) ≤ 1/2 +
√
2m+ 1/4.

If, in addition, every hyperedge contains at least 2t − 1 vertices (for
t ≥ 3) then Pach and Tardos showed that:

χcf(H) = O(m
1
t logm).

Using the Lovász Local Lemma, they show that the same result holds for´
hypergraphs, in which the size of every edge is at least 2t−1 and every edge
intersects at most m other edges.
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Hypergraphs induced by neighborhoods in graphs. A particular
interest arises when dealing with hypergraphs induced by neighborhoods
of vertices of a given graph. Given a graph G = (V,E) and a vertex
v ∈ V , denote by NGNN (v) = N(v) the set of all neighbors of v in G together
with v and refer to it as the neighborhood of v. Call the set Ṅ(G) =
NGNN (v) \ {v} the pointed neighborhood of v. The hypergraph H associated
with the neighborhoods of G has its vertex set V (H) = V and its edge
set E(H) = {NGNN (v)|v ∈ V } and the hypergraph Ḣ associated with the
pointed neighborhoods of G has V (Ḣ) = V and E(Ḣ) = {ṄGNN (v)|v ∈ V }.
The conflict-free chromatic parameter κCF (G) is defined simply as χcf(H)
and the pointed version of this parameter κ̇CF (G) is defined analogously as
χcf(Ḣ).

We start with an example taken from [40] in order to provide some basic
insights into the relation between these two parameters. LetK ′

sK be the graph
obtained from the complete graph KsK on s vertices by subdividing each edge
with a new vertex. Each pair of the s original vertices form the pointed
neighborhood of one of the new vertices, so all original vertices must receive
different colors in any conflict-free coloring of the corresponding hypergraph
Ḣ. Thus, we have κ̇CF (K

′
sK ) ≥ s and it is easy to see that equality holds here.

On the other hand, K ′
sK is bipartite and any proper coloring of a graph is

also a conflict-free coloring of the hypergraph formed by the neighborhoods
of its vertices. This shows that κCF (K

′
sK ) = 2, for any s ≥ 2. The example

illustrates that the pointed conflict-free chromatic parameter of a graph
cannot be bounded from above by any function of its non-pointed variant.
For many other graphs, the non-pointed parameter can be larger than the
pointed parameter. For instance, let G denote the graph obtained from the
complete graph K4KK by subdividing a single edge with a vertex. It is easy to
check that κCF (G) = 3, while κ̇CF (G) = 2. However, it is not difficult to
verify that

κCF (G) ≤ 2κ̇CF (G)

for any graph G. This inequality holds, because in a conflict-free coloring
of the pointed neighborhoods, each neighborhood N(x) also has a vertex
whose color is not repeated in N(x), unless x has degree one in the subgraph
spanned by one of the color classes. One can fix this by carefully splitting
each color class into two. The following theorems were proved in [40]:

Theorem 4.1 ([40]). The conflict-free chromatic parameter of any graph G
with n vertices satisfies κCF (G) = O(log2 n). The corresponding coloring
can be found by a deterministic polynomial time algorithm.
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Theorem 4.2 ([40]). There exist graphs of n vertices with conflict-free
chromatic parameter Ω(log n).

Problem 6. Close the gap between the last two bounds.

For graphs with maximum degree Δ, a slightly better upper-bound is
known:

Theorem 4.3 ([40]). The conflict-free chromatic parameter of any graph G
with maximum degree Δ satisfies κCF (G) = O(log2+εΔ) for any ε > 0. The
corresponding coloring can be found by a deterministic polynomial time
algorithm.

Hypergraphs induced by simple paths in graphs. As mentioned in
the introduction, a particular interest is in hypergraphs induced by simple
paths in a given graph: Recall the that given a graph G, we consider the
hypergraph H = (V,E′) where a subset V ′ ⊂ V is a hyperedge in E′ if and
only if V ′ is the set of vertices in some simple path of G. As mentioned
before, the parameter χum(H) is known as the vertex ranking number of G
and was studied in other context in the literature (see, e.g., [32, 45]). An
interesting question arises when trying to understand the relation between
the two parameters χcf(H) and χum(H). This line of research was pursued
in [15] and [17]. Cheilaris and Tóth proved the following:´

Theorem 4.4 ([17]). (i) Let G be a simple graph and let H be the
hypergraph induced by paths in G as above: Then χum(H) ≤ 2χcf(H) − 1.

(ii) There is is a sequence of such hypergraphs {HiHH }∞i=1 induced by paths
such that

lim
n→∞

χum(HnHH )

χcf(HnHH )
= 2.

Narrowing the gaps between the two parameters for such hypergraphs
is an interesting open problem:

Problem 7. Let f(k) denote the function of the least integer such that for
every hypergraph H induced by path in a graph G we have that χum(H) ≤
f(χcf(H)). Find the asymptotic behavior of f .
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5. Algorithms

Until now we were mainly concerned with the combinatorial problem of ob-
taining bounds on the CF-chromatic number of various hypergraphs. We
now turn our attention to the computational aspect of the corresponding op-
timization problem. Even et al. [25] proved that given a finite set D of discs
in the plane, it is NP-hard to compute an optimal CF-coloring for H(D);
namely, a CF-coloring of H(D) using a minimum number of colors. This
hardness result holds even if all discs have the same radius. However, as
mentioned in the introduction, any set D of n discs admits a CF-coloring
that uses O(log n) colors and such a coloring can be found in determinis-
tic polynomial time (in fact in O(n log n) time). This trivially implies that
such an algorithm serves as an O(log n) approximation algorithm for the
corresponding optimization problem.

5.1. Approximation Algorithms

Given a finite set D of discs in the plane, the size ratio of D denoted by
ρ = ρ(D) is the ratio between the maximum and minimum radii of discs
in D. For simplicity, we may assume that the smallest radius is 1. For each
i ≥ 1, let Di denote the subset of discs in D whose radius is in the range
[2i−1, 2i). Let φ2i(D

i) denote the maximum number of centers of discs in Di

that are contained in a 2i × 2i square. Refer to φ2i(D
i) as the local density

of Di (with respect to 2i×2i square). For a set of points X in R2 let Dr(X)
denote the set of |X| discs with radius r centered at the points of X. The
following algorithmic results were provided in [25].

Theorem 5.1 ([25]).

1. Given a finite setD of discs with size-ratio ρ, there exists a polynomial-
time algorithm that compute a CF-coloring of D using

O

(
min{(log ρ) ·max

i
{log φ2i(D

i)}, log |D|}
)

colors.

2. Given a finite set of centers X ⊂ R2, there exists a polynomial-
time algorithm that computes a UM-coloring χ of the hypergraph
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induced X with respect to all discs using O(log |X|) colors. This is
equivalent to the following: If we color Dr(X) by assigning each disc
d ∈ Dr(X) the color of its center then this is a valid UM-coloring of
the hypergraph H(Dr(X)) for every radius r.

The tightness of Theorem 5.1 follows from the fact that for any integer n,
there exists a set D of n unit discs with φ1(D) = n for which Ω(log n) colors
are necessary in every CF-coloring of D.

In the first part of Theorem 5.1 the discs are not necessarily congruent.
That is, the size-ratio ρ may be bigger than 1. In the second part of
Theorem 5.1, the discs are congruent (i.e., the size-ratio equals 1). However,
the common radius is not determined in advance. Namely, the order of
quantifiers in the second part of the theorem is as follows: Given the
locations of the disk centers, the algorithm computes a coloring of the centers
(of the discs) such that this coloring is conflict-free for every radius r.

Building on Theorem 5.1, Even et al. [25] also obtain two bi-criteria CF-
coloring algorithms for discs having the same (unit) radius. In both cases
the algorithm uses only few colors. In the first case this comes at a cost of
not serving a small area that is covered by the discs (i.e., an area close to
the boundary of the union of the discs). In the second case, all the area
covered by the discs is served, but the discs are assumed to have a slightly
larger radius. A formal statement of these bi-criteria results is as follows:

Theorem 5.2 ([25]). For every 0 < ε < 1 and every finite set of centers
X ⊂ R2, there exist polynomial-time algorithms that compute colorings as
follows:

1. A coloring χ of D1(X) using O
(
log 1

ε

)
colors for which the following

holds: The area of the set of points in
⋃
D1(X) that are not served

with respect to χ is at most an ε-fraction of the total area of D1(X).

2. A coloring of D1+ε(X) that uses O
(
log 1

ε

)
colors such that every point

in
⋃D1(X) is served.

In other words, in the first case, the portion of the total area that is
not served is an exponentially small fraction as a function of the number
of colors. In the second case, the increase in the radius of the discs is
exponentially small as a function of the number of colors.

The following problem seems like a non-trivial challenge.
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Problem 8. Is there a constant factor approximation algorithm for finding
an optimal CF-coloring for a finite set of discs in the plane?

Remark. In the special case that all discs are congruent (i.e., have the
same radius) Lev-Tov and Peleg [36] have recently provided a constant-
factor approximation algorithm.

5.1.1. An O(1)-Approximation for CF-Coloring of Rectangles and
Regular Hexagons. Recall that Theorem 2.7 states that every set of n
axis-parallel rectangles can be CF-colored with O(log2 n) colors and such a
coloring can be found in polynomial time.

Let R denote a set of axis-parallel rectangles. Given a rectangle R ∈ R,
let w(R) (h(R), respectively) denote the width (height, respectively) of R.

The size-ratio of R is defined by max
{

w(R1)
w(R2)

, h(R1)
h(R2)

}
R1,R2∈R

.

The size ratio of a collection of regular hexagons is simply the ratio of
the longest side length and the shortest side length.

Theorem 5.3 ([25]). Let R denote either a set of axis-parallel rectangles
or a set of homothets of a regular hexagons. Let ρ denote the size-ratio
of R and let χopt(R) denote an optimal CF-coloring of R.

1. If R is a set of rectangles, then there exists a polynomial-time al-
gorithm that computes a CF-coloring χ of R such that |χ(R)| =
O((log ρ+ 1)2 · |χopt(R)|).

2. If R is a set of hexagons, then there exists a polynomial-time al-
gorithm that computes a CF-coloring χ of R such that |χ(R)| =
O((log ρ+ 1) · |χopt(R)|).

For a constant size-ratio ρ, Theorem 5.3 implies a constant approxima-
tion algorithm.

5.2. Online CF-Coloring

Recall the motivation to study CF-coloring in the context of cellular an-
tanae. To capture a dynamic scenario where antennae can be added to
the network, Chen et al. [18] introduced an online version of the CF col-
oring problem. As we shall soon see, the online version of the problem is
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considerably harder, even in the one-dimensional case, where the static ver-
sion (i.e., CF-coloring the discrete intervals hypergraph) is trivial and fully
understood.

5.2.1. Points with respect to intervals. Let us start with the simplest
possible example where things become highly non-trivial in an online setting.
We start with the dynamic extension of the discrete interval hypergraph
case. Thats is, we deal with coloring of points on the line, with respect to
interval ranges. We maintain a finite set P ⊂ R. Initially, P is empty, and
an adversary repeatedly insert points into P , one point at a time. We denote
by P (t) the set P after the tth point has been inserted. Each time a new
point p is inserted, we need to assign a color c(p) to it, which is a positive
integer. Once the color has been assigned to p, it cannot be changed in the
future. The coloring should remain a valid CF-coloring at all times. That
is, as in the static case, for any interval I that contains points of P (t), there
is a color that appears exactly once in I.

We begin by examining a natural, simple, and obvious coloring algorithm
(referred to as the UniMax greedy algorithm) which might be inefficient in
the worst case. Chen et al. [18] presented an efficient 2-stage variant of the
UniMax greedy algorithm and showed that the maximum number of colors
that it uses is Θ(log2 n).

As in the case in most CF-coloring of hypergraphs that were tackled
so far, we wish to maintain the unique maximum invariant. At any given
step t the coloring of P (t) is a UM-coloring.

The following simple-minded algorithm for coloring an inserted point p
into the current set P (t) is used. We say that the newly inserted point p
sees a point x if all the colors of the points between p and x (exclusive) are
smaller than c(x). In this case we also say that p sees the color c(x). Then
p gets the smallest color that it does not see. (Note that a color can be
seen from p either to the left or to the right, but not in both directions; see
below.) Refer to this algorithm as the Unique Maximum Greedy algorithm,
or the UniMax greedy algorithm, for short.

Below is an illustration of the coloring rule of the UniMax greedy algo-
rithm. The left column gives the colors (integers in the range 1, 2, . . . , 6)
assigned to the points in the current set P and the location of the next point
to be inserted (indicated by a period). The right column gives the colors
“seen” by the new point. The colors seen to the left precede the ·, and those



Conflict-Free Coloring and its Applications 373

seen to the right succeed the ·.

1· [1·]
1 · 2 [1 · 2]
1 · 32 [1 · 3]
12 · 32 [2 · 3]
121 · 32 [21 · 3]
121 · 432 [21 · 4]
121 · 3432 [21 · 34]
1215 · 3432 [5 · 34]
1215 · 13432 [5 · 134]
12152 · 13432 [52 · 134]
121526 · 13432 [6 · 134]

Correctness. The correctness of the algorithm is established by induction
on the insertion order. First, note that no color can be seen twice from p:
This is obvious for two points that lie both to the left or both to the right
of p. If p sees the same color at a point u to its left and at a point v to its
right, then the interval [u, v], before p is inserted, does not have a unique
maximum color; thus this case is impossible, too. Next, if p is assigned
color c, any interval that contains p still has a unique maximum color: This
follows by induction when the maximum color is greater than c. If the
maximum color is c, then it cannot be shared by another point u in the
interval, because then p would have seen the nearest such point and thus
would not be assigned color c. It is also easy to see that the algorithm assigns
to each newly inserted point the smallest possible color that maintains the
invariant of a unique maximum color in each interval. This makes the
algorithm greedy with respect to the unique maximum condition.

Special insertion orders. Denote by C(P (t)) the sequence of colors
assigned to the points of P (t), in left-to-right order along the line.

The complete binary tree sequence Sk of order k is defined recursively as
S1 = (1) and Sk = Sk−1‖(k)‖Sk−1, for k > 1, where ‖ denotes concatena-
tion. Clearly, |Sk| = 2k − 1.

For each pair of integers a < b, denote by C0CC (a, b) the following spe-
cial sequence. Let k be the integer satisfying 2k−1 ≤ b < 2k. Then
C0CC (a, b) is the subsequence of Sk from the ath place to the bth place (in-
clusive). For example, C0CC (5, 12) is the subsequence (1, 2, 1, 4, 1, 2, 1, 3) of
(1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1).
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Lemma 5.4. (a) If each point is inserted into P to the right of all preceding
points, then C(P (t)) = C0CC (1, t).

(b) If each point is inserted into P to the left of all preceding points,
then C(P (t)) = C0CC (2k − t, 2k − 1), where k satisfies 2k−1 ≤ t < 2k.

Proof. The proof is easy and is left as an exercise to the reader.

Unfortunately, the UniMax greedy algorithm might be very inefficient
as was shown in [18]:

Theorem 5.5 ([18]). The UniMax greedy algorithm may require Ω(
√
n)

colors in the worst case for a set of n points.

Problem 9. Obtain an upper bound for the maximum number of colors
that the algorithm uses for n inserted points. It is conjectured that the
bound is close to the Ω(

√
n) lower bound. At the moment, there is no

known sub-linear upper bound.

Related algorithms. The First-Fit algorithm—another greedy strategy.
The UniMax greedy algorithm is greedy for maintaining the unique maxi-
mum invariant. Perhaps it is more natural to consider a greedy approach
in which we want only to enforce the standard CF property. That is, we
want to assign to each newly inserted point the smallest color for which the
CF property continues to hold. There are cases where this First-Fit greedy
algorithm uses fewer colors than the UniMax greedy algorithm: Consider
an insertion of five points in the order (1 3 2 4 5). The UniMax greedy
algorithm produces the color sequence (1 3 2 1 4), whereas the First-Fit
algorithm produces the coloring (1 3 2 1 2). Unfortunately, Bar-Noy et
al. [11] have shown that there are sequences with 2i+3 elements that force
the algorithm to use i+ 3 colors, and this bound is tight.

CF coloring for unit intervals. Consider the special case where we want
the CF property to hold only for unit intervals. In this case, O(log n) colors
suffice: Partition the line into the unit intervals JiJJ = [i, i+1) for i ∈ Z. Color
the intervals JiJJ with even i as white, and those with odd i as black. Note
that any unit interval meets only one white and one black interval. We color
the points in each JiJJ independently, using the same set of “light colors” for
each white interval and the same set of “dark colors” for each black interval.
For each JiJJ , we color the points that it contains using the UniMax greedy
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algorithm, except that new points inserted into JiJJ between two previously
inserted points get a special color, color 0. It is easily checked that the
resulting coloring is CF with respect to unit intervals. Since we effectively
insert points into any JiJJ only to the left or to the right of the previously
inserted points, Lemma 5.4(c) implies that the algorithm uses only O(log n)
(light and dark) colors. We remark that this algorithm satisfies the unique
maximum color property for unit-length intervals.

We note that, in contrast to the static case (which can always be solved
with O(1) colors), Ω(log n) colors may be needed in the worst case. Indeed,
consider a left-to-right insertion of n points into a sufficiently small interval.
Each contiguous subsequence σ of the points will be a suffix of the whole
sequence at the time the rightmost element of σ is inserted. Since such a
suffix can be cut off the current set by a unit interval, it must have a unique
color. Hence, at the end of insertion, every subsequence must have a unique
color, which implies (see [25, 47]) that Ω(log n) colors are needed.

An efficient online deterministic algorithm for points with respect
to intervals. We describe an efficient online algorithm for coloring points
with respect to intervals that was obtained in [18]. This is done by modifying
the UniMax greedy algorithm into a deterministic 2-stage coloring scheme.
It is then shown that it uses only O(log2 n) colors. The algorithm is referred
to as the leveled UniMax greedy algorithm.

Let x be the point which we currently insert. We assign a color to x in
two steps. First we assign x to a level, denoted by �(x). Once x is assigned
to level �(x) we give it an actual color among the set of colors dedicated
to �(x). We maintain the invariant that each color is used by at most one
level. Formally, the colors that we use are pairs (�(x), c(x)) ∈ Z2, where
�(x) is the level of x and c(x) is its integer color within that level.

Modifying the definition from the UniMax greedy algorithm, we say that
point x sees point y (or that point y is visible to x) if and only if for every
point z between x and y, �(z) < �(y). When x is inserted, we set �(x) to be
the smallest level � such that either to the left of x or to the right of x (or
in both directions) there is no point y visible to x at level �.

To give x a color, we now consider only the points of level �(x) that x
can see. That is, we discard every point y such that �(y) �=�� �(x), and every
point y such that �(y) = �(x) and there is a point z between x and y such
that �(z) > �(y). We apply the UniMax greedy algorithm so as to color x
with respect to the sequence PxPP of the remaining points, using the colors
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of level �(x) only. That is, we give x the color (�(x), c(x)), where c(x) is
the smallest color that ensures that the coloring of PxPP maintains the unique
maximum color condition. This completes the description of the algorithm.
See Figure 5 for an illustration.

Fig. 5. Illustrating the 2-stage deterministic algorithm. An insertion order that realizes
the depicted assignment of levels to points is to first insert all level-1 points from left to

right, then insert the level-2 points from left to right, and then the level-3 points

We begin the analysis of the algorithm by making a few observations on
its performance.

(a) Suppose that a point x is inserted and is assigned to level i > 1.
Since x was not assigned to any level j < i, it must see a point �j at level
j that lies to its left, and another such point rj that lies to its right. Let
EjE (x) denote the interval [�j , rj ]. Note that, by definition, these intervals
are nested, that is, EjE (x) ⊂ Ek(x) for j < k < i. See Figure 5.

(b) We define a run at level i to be a maximal sequence of points
x1 < x2 < · · · < xk at level i, such that all points between x1 and xk
that are distinct from x2, x3, . . . , xk−1 are assigned to levels smaller than i.
Whenever a new point x is assigned to level i and is inserted into a run of
that level, it is always inserted either to the left or to the right of all points
in the run. Moreover, the actual color that x gets is determined solely from
the colors of the points already in the run. See Figure 5.

(c) The runs keep evolving as new points are inserted. A run may either
grow when a new point of the same level is inserted at its left or right end
(note that other points at smaller levels may separate the new point from
the former end of the run) or split into two runs when a point of a higher
level is inserted somewhere between its ends.

(d) As in observation (a), the points at level i define intervals, called
i-intervals. Any such interval E is a contiguous subsequence [x, y] of P ,
so that x and y are both at level i and all the points between x and y
have smaller levels. E is formed when the second of its endpoints, say x,
is inserted. We say that x closes the interval E and refer to it as a closing
point. Note that, by construction, x cannot close another interval.
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(e) Continuing observation (a), when x is inserted, it destroys the in-
tervals EjE (x), for j < i, into which it is inserted, and only these intervals.
That is, each of these intervals now contains a point with a level greater
than that of its endpoints, so it is no longer a valid interval. We charge x
to the set of the closing endpoints of all these intervals. Clearly, none of
these points will ever be charged again by another insertion (since it is the
closing endpoint of only one interval, which is now destroyed). We maintain
a forest F , whose nodes are all the points of P . The leaves of F are all the
points at level 1. When a new point x is inserted, we make it a new root
of F , and the parent of all the closing points that it charges. Since these
points have smaller levels than x, and since none of these points becomes a
child of another parent, it follows that F is indeed a forest.

Note that the nonclosing points can only be roots of trees of F . Note
also that a node at level i has exactly i − 1 children, exactly one at each
level j < i. Hence, each tree of F is a binomial tree (see [22]); if its root has
level i, then it has 2i nodes.

This implies that if m is the maximal level assigned after n points have
been inserted, then we must have 2m ≤ n, or m ≤ log n. That is, the
algorithm uses at most log n levels.

We next prove that the algorithm uses only O(log n) colors at each level.
We recall the way runs evolve: They grow by adding points at their right
or left ends, and split into prefix and suffix subruns, when a point with a
larger level is inserted in their middle.

Lemma 5.6. At any time during the insertion process, the colors assigned
to the points in a run form a sequence of the form C0CC (a, b). Moreover, when
the jth smallest color of level i is given to a point x, the run to which x is
appended has at least 2j−2 + 1 elements (including x).

Proof. The proof proceeds by induction through the sequence of insertion
steps and is based on the following observation. Let σ be a contiguous
subsequence of the complete binary tree sequence Sk−1, and let x be a
point added, say, to the left of σ. If we assign to x color c(x), using the
UniMax greedy algorithm, then (c(x)) ‖ σ is a contiguous subsequence of
either Sk−1 or Sk. The latter happens only if σ contains Sk−2 ‖ (k− 1) as a
prefix. Symmetric properties hold when x is inserted to the right of σ. We
omit the straightforward proof of this observation.

As a consequence we have.
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Theorem 5.7 ([18]). (a) The algorithm uses at most (2+log n) log n colors.

(b) At any time, the coloring is a valid CF-coloring.

(c) In the worst case the algorithm may be forced to use Ω(log2 n) colors
after n points are inserted.

Proof. (a) We have already argued that the number of levels is at most log n.
Within a level i, the kth smallest color is assigned when a run contains at
least 2k−2 points. Hence 2k−2 ≤ n, or k ≤ 2 + log n, and (a) follows.

To show (b), consider an arbitrary interval I. Let � be the highest level
of a point in I. Let σ = (y1, y2, . . . , yjy ) be the sequence of the points in I
of level �. Since � is the highest level in I, σ is a contiguous subsequence
of some run, and, by Lemma 5.6, the sequence of the colors of its points is
also of the form C0CC (a′, b′). Hence, there is a point yi ∈ σ which is uniquely
colored among y1, y2, . . . , yjy by a color of level �.

To show (c), we construct a sequence P so as to force its coloring to
proceed level by level. We first insert 2k−1 points from left to right, thereby
making them all be assigned to level 1 and colored with k different colors of
that level. Let P1PP denote the set of these points. We next insert a second
batch of 2k−2 points from left to right. The first point is inserted between the
first and second points of P1PP , the second point between the third and fourth
points of P1PP , and so on, where the jth new point is inserted between the
(2j−1)th and (2j)th points of P1PP . By construction, all points in the second
batch are assigned to level 2, and they are colored with k−1 different colors
of that level. Let P2PP denote the set of all points inserted so far. P2PP is the
concatenation of 2k−2 triples, where the levels in each triple are (1, 2, 1). We
now insert a third batch of 2k−3 points from left to right. The first point is
inserted between the first and second triples of P2PP , the second point between
the third and fourth triples of P2PP , and so on, where the jth new point is
inserted between the (2j − 1)th and (2j)th triples of P2PP . By construction,
all points in the third batch are assigned to level 3, and they are colored
with k − 2 different colors of that level.

The construction is continued in this manner. Just before inserting
the ith batch of 2k−i points, we have a set PiPP −1 of 2k−1 + · · · + 2k−i+1

points, which is the concatenation of 2k−i+1 tuples, where the sequences of
levels in each of these tuples are all identical and equal to the “complete
binary tree sequence” C0CC (1, 2i−1−1), as defined above (whose elements now
encode levels rather than colors). The points of the ith batch are inserted
from left to right, where the jth point is inserted between the (2j − 1)th
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and (2j)th tuples of PiPP −1. By construction, all points in the ith batch are
assigned to level i and are colored with k − i + 1 different colors of that
level. Proceeding in this manner, we end the construction by inserting the
(k − 1)th batch, which consists of a single point that is assigned to level k.
Altogether we have inserted n = 2k − 1 points and forced the algorithm to
use k + (k − 1) + · · ·+ 1 = k(k + 1)/2 = Ω(log2 n) different colors.

Given that the only known lower bound for this online CF-coloring
problem is Ω(log n) which holds also in the static problem, its a major
open problem to close the gap with the O(log2 n) upper bound provided by
the algorithm above.

Problem 10. Find a deterministic online CF-coloring for coloring points
with respect to intervals which uses o(log2 n) colors in the worst case or
improve the Ω(log n) lower bound.

Other Online models. For the case of online CF-coloring points with
respect to intervals, other models of a weaker adversary were studied in [12].
For example, a natural assumption is that the adversary reveals, for a newly
inserted point, its final position among the set of all points in the end of
the online input. This is referred to as the online absolute positions model.
In this model an online CF-coloring algorithm that uses at most O(log n)
colors is presented in [12].

5.2.2. Points with respect to halfplanes or unit discs. In [18] it
was shown that the two-dimensional variant of online CF-coloring a given
sequence of inserted points with respect to arbitrary discs is hopeless as there
exists sequences of n points for which every CF-coloring requires n distinct
colors. However if we require a CF-coloring with respect to congruent discs
or with respect to half-planes, there is some hope. Even though no efficient
deterministic online algorithms are known for such cases, some efficient
randomized algorithms that uses expected O(log n) colors are provided in
[19, 10] under the assumption that the adversary is oblivious to the random
bits used by the algorithm.

Chen Kaplan and Sharir [19] introduced an O(log3n) deterministic al-
gorithm for online CF-coloring any n nearly-equal axis-parallel rectangles
in the plane.
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5.2.3. Degenerate hypergraphs. Next, we describe the general frame-
work of [10] for online CF-coloring any hypergraph. This framework is used
to obtain efficient randomized online algorithms for hypergraphs provided
that a special parameter referred to as the degeneracy of the underlying hy-
pergraph is small. This notion extends the notion of a degenerate graph to
that of a hypergraph:

Definition 5.8. Let k > 0 be a fixed integer and let H = (V,E) be a
hypergraph on the n vertices v1, . . . , vn. For a permutation π : {1, . . . , n} →
{1, . . . , n} define the n partial sums, indexed by t = 1, . . . , n,

Sπ
tSS =

t∑
j=1

d(vπ(j)),

where

d(vπ(j)) =
∣∣∣∣{ i < j | {vπ(i), vπ(j)} ∈ G(H({vπ(1), . . . , vπ(j)}))

}∣∣∣∣ ,
that is, d(vπ(j)) is the number of neighbors of vπ(j) in the Delaunay graph
of the hypergraph induced by {vπ(1), . . . , vπ(j)}. Assume that for all permu-
tations π and for every t ∈ {1, . . . , n} we have

(1) Sπ
tSS ≤ kt.

Then, we say that H is k-degenerate.

Let H = (V,E) be any hypergraph. We define a framework that colors
the vertices of V in an online fashion, i.e., when the vertices of V are revealed
by an adversary one at a time. At each time step t, the algorithm must
assign a color to the newly revealed vertex vt. This color cannot be changed
in future times t′ > t. The coloring has to be conflict-free for all the induced
hypergraphs H(VtVV ) with t = 1, . . . , n, where VtVV ⊆ V is the set of vertices
revealed by time t.

For a fixed positive integer h, let A = {a1, . . . , ah} be a set of h auxiliary
colors. This auxiliary colors set should not be confused with the set of main
colors used for the conflict-free coloring: {1, 2, . . . }. Let f : N+ → A be
some fixed function. In the following, we define the framework that depends
on the choice of the function f and the parameter h.

A table (to be updated online) is maintained with row entries indexed
by the variable i with range in N+. Each row entry i at time t is associated
with a subset V i

tVV ⊆ VtVV in addition to an auxiliary proper non-monochromatic
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coloring ofH(V i
tVV ) with at most h colors. The subsets V i

tVV are nested. Namely,
V i+1
tVV ⊂ V i

tVV for every i. Informally, we think of a newly inserted vertex as
trying to reach its final entry by some decision process. It starts with entry 1
and continue “climbing” to higher levels as long as it does not succeed to
get its final color. We say that f(i) is the auxiliary color that represents
entry i in the table. At the beginning all entries of the table are empty.
Suppose all entries of the table are updated until time t − 1 and let vt be
the vertex revealed by the adversary at time t. The framework first checks
if an auxiliary color can be assigned to vt such that the auxiliary coloring of
V 1
tVV −1 together with the color of vt is a proper non-monochromatic coloring of

H(V 1
tVV −1∪{vt}). Any (proper non-monochromatic) coloring procedure can be

used by the framework. For example a first-fit greedy method in which all
colors in the order a1, . . . , ah are checked until one is found. If such a color
cannot be found for vt, then entry 1 is left with no changes and the process
continues to the next entry. If however, such a color can be assigned, then
vt is added to the set V 1

tVV −1. Let c denote such an auxiliary color assigned
to vt. If this color is the same as f(1) (the auxiliary color that represents
entry 1), then the final color in the online conflict-free coloring of vt is 1 and
the updating process for the t-th vertex stops. Otherwise, if an auxiliary
color cannot be found or if the assigned auxiliary color is not the same as
f(1), then the updating process continues to the next entry. The updating
process stops at the first entry i for which vt is both added to V i

tVV and the
auxiliary color assigned to vt is the same as f(i). Then, the main color of vt
in the final conflict-free coloring is set to i. See Figure 6 for an illustration.

It is possible that vt never gets a final color. In this case we say that
the framework does not halt. However, termination can be guaranteed by
imposing some restrictions on the auxiliary coloring method and the choice
of the function f . For example, if first-fit is used for the auxiliary colorings
at any entry and if f is the constant function f(i) = a1, for all i, then
the framework is guaranteed to halt for any time t. Later, a randomized
online algorithm based on this framework is derived under the oblivious
adversary model. This algorithm always halts, or to be more precise halts
with probability 1, and moreover it halts after a “small” number of entries
with high probability. We prove that the above framework produces a valid
conflict-free coloring in case it halts.

Lemma 5.9. If the above framework halts for any vertex vt then it produces
a valid online conflict-free coloring of H.



382 S. Smorodinsky

An example of the updating process of the table for the hypergraph induced by
points with respect to intervals. 3 auxiliary colors denoted {a, b, c} are used. In each
line i the auxiliary coloring is given. It serves as a proper coloring for the hypergraphs
H(V i

tVV ) induced by the subset V i
tVV of all points revealed up to time t that reached line i.

The first point v1 is inserted to the left. The second point v2 to the right and the third
point v3 in the middle, etc. For instance, at the first entry (i.e., line) of the table, the
auxiliary color of v2 is b. In the second line it is a and in the third line it is a. Since
f(3) = a, the final color of v2 is 3. Similarly, the final color of v1 is 1, of v3 is 2, and

of v4 is 1

Proof. Let H(VtVV ) be the hypergraph induced by the vertices already re-
vealed at time t. Let S be a hyperedge in this hypergraph and let j be
the maximum integer for which there is a vertex v of S colored with j. We
claim that exactly one such vertex in S exists. Assume to the contrary that
there is another vertex v′ in S colored with j. This means that at time t
both vertices v and v′ were present at entry j of the table (i.e., v, v′ ∈ V j

tVV )
and that they both got an auxiliary color (in the auxiliary coloring of the
set V j

tVV ) which equals f(j). However, since the auxiliary coloring is a proper
non-monochromatic coloring of the induced hypergraph at entry j, S∩V j

tVV is
not monochromatic so there must exist a third vertex v′′ ∈ S ∩V j

tVV that was
present at entry j and was assigned an auxiliary color different from f(j).
Thus, v′′ got its final color in an entry greater than j, a contradiction to
the maximality of j in the hyperedge S. This completes the proof of the
lemma.

The above algorithmic framework can also describe some well-known
deterministic algorithms. For example, if first-fit is used for auxiliary col-
orings and f is the constant function, f(i) = a1, for all i, then, for the
hypergraph induced by points on a line with respect to intervals, the algo-
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rithm derived from the framework becomes identical to the UniMax greedy
algorithm described above.

An online randomized conflict-free coloring algorithm. We devise a
randomized online conflict-free coloring algorithm in the oblivious adversary
model. In this model, the adversary has to commit to a permutation
according to the order of which the vertices of the hypergraph are revealed
to the algorithm. Namely, the adversary does not have access to the random
bits that are used by the algorithm. The algorithm always produces a valid
coloring and the number of colors used is related to the degeneracy of the
underlying hypergraph in a manner described in the following theorem.

Theorem 5.10 ([10]). Let H = (V,E) be a k-degenerate hypergraph
on n vertices. Then, there exists a randomized online conflict-free coloring
algorithm for H which uses at most O( log1+ 1

4k+1
n) = O(k log n) colors

with high probability against an oblivious adversary.

The algorithm is based on the framework presented above. In order
to define the algorithm, we need to state what is (a) the set of auxiliary
colors of each entry, (b) the function f , and (c) the algorithm we use for
the auxiliary coloring at each entry. We use the set of auxiliary colors
A = {a1, . . . , a2k+1}. For each entry i, the representing color f(i) is chosen
uniformly at random from A. We use a first-fit algorithm for the auxiliary
coloring.

Our assumption on the hypergraph H (being k-degenerate) implies that
at least half of the vertices up to time t that reached entry i (but not
necessarily added to entry i), denoted by Xt

≥i, have been actually given

some auxiliary color at entry i (that is,
∣∣∣∣V i

tVV
∣∣∣∣ ≥ 1

2

∣∣∣∣Xt
≥i

∣∣∣∣). This is due to the
fact that at least half of those vertices vt have at most 2k neighbors in the
Delaunay graph of the hypergraph induced by Xt−1

≥i (since the sum of these

quantities is at most k
∣∣∣∣Xt

≥i

∣∣∣∣ and since V i
tVV ⊆ Xt

≥i). Therefore, since we have
2k + 1 colors available, there is always an available color to assign to such
a vertex. The following lemma shows that if we use one of these available
colors then the updated coloring is indeed a proper non-monochromatic
coloring of the corresponding induced hypergraph as well.

Lemma 5.11. Let H = (V,E) be a k-degenerate hypergraph and let V j
tVV be

the subset of V at time t and at level j as produced by the above algorithm.
Then, for any j and t if vt is assigned a color distinct from all its neighbors
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in the Delaunay graph G(H(V j
tVV )) then this color together with the colors

assigned to the vertices V j
tVV −1 is also a proper non-monochromatic coloring

of the hypergraph H(V j
tVV ).

Proof. Follows from Lemma 5.9

We also prove that for every vertex vt, the algorithm always halts, or
more precisely halts with probability 1.

Proposition 5.12. For every vertex vt, the algorithm halts with probabil-
ity 1.

Proof.

Pr[algorithm does not halt for vt] =

Pr[algorithm does not assign a main color to vt in any entry] ≤

Pr[algorithm does not assign a main color to vt in any empty entry] =

Pr[
⋂

i : empty entry

(algorithm does not assign a main color to vt in entry i)] =

∏
i : empty entry

Pr[algorithm does not assign a main color to vt in entry i] =

∏
i : empty entry

(1− h−1) = lim
j→∞

(1− h−1)j = 0

and therefore Pr[algorithm halts for vt] = 1.

We proceed to the analysis of the number of colors used by the algorithm,
proving theorem 5.10.

Lemma 5.13. Let H = (V,E) be a hypergraph and let C be a coloring
produced by the above algorithm on an online input V = {vt} for t =
1, . . . , n. Let XiXX (respectively X≥i) denote the random variable counting the
number of points of V that were assigned a final color at entry i (respectively
a final color at some entry ≥ i). Let Ei = E[Xi] and E≥i = E[X≥i] (note
that X≥i+1 = X≥i −XiXX ). Then:

E≥i ≤
(
4k + 1

4k + 2

)i−1

n.
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Proof. By induction on i. The case i = 1 is trivial. Assume that the
statement holds for i. To complete the induction step, we need to prove

that E≥i+1 ≤ (4k+1
4k+2)

i
n. By the conditional expectation formula, we have

for any two random variables X, Y that E[X] = E[E[X | Y ]]. Thus,

E≥i+1 = E[E[X≥i+1 | X≥i]] = E[E[X≥i−XiXX | X≥i]] = E[X≥i−E[XiXX | X≥i]].

It is easily seen that E[Xi | X≥i] ≥ 1
2

X≥i

2k+1 since at least half of the
vertices of X≥i got an auxiliary color by the above algorithm. Moreover
each of those elements that got an auxiliary color had probability 1

2k+1 to
get the final color i. This is the only place where we need to assume that the
adversary is oblivious and does not have access to the random bits. Thus,

E[X≥i −E[XiXX | X≥i]] ≤ E

[
X≥i −

1

2(2k + 1)
X≥i

]

=
4k + 1

4k + 2
E[X≥i] ≤

(
4k + 1

4k + 2

)i

n,

by linearity of expectation and by the induction hypotheses. This completes
the proof of the lemma.

Lemma 5.14. The expected number of colors used by the above algorithm
is at most log 4k+2

4k+1
n+ 1.

Proof. Let IiII be the indicator random variable for the following event: some
points are colored with a main color in entry i. We are interested in the
number of colors used, that is Y :=

∑∞
i=1 IiII . Let b(k, n) = log 4k+2

4k+1
n. Then,

E[Y ] = E

[∑
1≤i

IiII

]
≤ E

[ ∑
1≤i≤b(k,n)

IiII

]
+E[X≥b(k,n)+1] ≤ b(k, n) + 1,

by Markov’s inequality and lemma 5.13.

We notice that:

b(k, n) =
lnn

ln 4k+2
4k+1

≤ (4k + 2) lnn = O(k log n).
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We also have the following concentration result:

Pr[more than c · b(k, n) colors are used]

= Pr[X≥c·b(k,n)+1 ≥ 1] ≤ E≥c·b(k,n)+1 ≤
1

nc−1
,

by Markov’s inequality and by lemma 5.13.

This completes the performance analysis of the algorithm.

Remark. In the above description of the algorithm, all the random bits
are chosen in advance (by deciding the values of the function f in advance).
However, one can be more efficient and calculate the entry f(i) only at the
first time we need to update entry i, for any i. Since at each entry we need
to use O(log k) random bits and we showed that the number of entries used
is O(k log n) with high probability then the total number of random bits
used by the algorithm is O(k log k log n) with high probability.
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