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Abstract. Text categorization (TC) is a challenging issue, and the 
corresponding algorithms can be used in many applications. This paper 
addresses the online multi-category TC problem abstracted from the 
applications of online binary TC and batch multi-category TC. Most 
applications are concerned about the space-time performance of TC algorithms. 
Through the investigation of the token frequency distribution in an email 
collection and a Chinese web document collection, this paper re-examines the 
power law and proposes a random sampling ensemble Bayesian (RSEB) TC 
algorithm. Supported by a token level memory to store labeled documents, the 
RSEB algorithm uses a text retrieval approach to solve text categorization 
problems. The experimental results show that the RSEB algorithm can achieve 
the state-of-the-art performance at greatly reduced space-time requirements 
both in the TREC email spam filtering task and the Chinese web document 
classifying task. 
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1 Introduction 

Automated text categorization (TC) has been widely investigated since the early days 
of artificial intelligence. According to the arriving mode of documents, TC can be 
divided into online TC and batch TC. According to the number of predefined 
categories, TC includes binary TC and multi-category TC. For instance, email spam 
filtering is an online binary TC application and web document classifying is normally 
a batch multi-category TC application. The binary TC is a special case of the multi-
category TC and a batch TC can be regarded as a series of online classifications, so 
this paper addresses the online multi-category TC problem. 

Most TC applications pay more attention to the space-time complexity of TC 
algorithms. The power law of word frequency in a set of text documents, a famous 
random distribution phenomenon, was discovered for a long time. How to use the 
power law to reduce the space-time complexity of statistical TC algorithms is a 
significant research problem. In statistical TC algorithms, token frequency is a very 
effective feature. If we only use token frequency features in a closed text collections, 
the feature with once occurrence will never be used, and according to the power law, 
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we can easily remove these useless long tail features for lower space-time costs. But 
in an online situation, we meet a puzzle of open feature space. The ubiquitous power 
law may bring an opportunity to propose a novel statistical TC algorithm for the 
efficient online multi-category TC problem. 

The rest of this paper is organized as follows. In section 2, we describe some 
related works about TC. In section 3, we investigate the power law of token frequency 
both in an email collection and a web document collection, and analyze the potential 
uselessness rate. In section 4, we propose a random sampling ensemble Bayesian 
(RSEB) algorithm. In section 5, the experiment and result are described. At last, in 
section 6, the conclusion and further work are given. 

2 Related Work 

Recently, statistical TC algorithms have been widely used in TC applications [1]. Email 
spam filtering is defined as an online supervised binary TC problem, which is simulated 
as an immediate full feedback task (IFFT) in the TREC spam track. Web document 
classifying is normally defined as a batch multi-category TC problem, which is 
simulated as a 12-category Chinese web document classifying task (WDCT) [2]. 

Many online binary TC algorithms have been proposed for the email spam 
filtering. For instance: 1) based on the vector space model (VSM), the online 
Bayesian algorithm uses the joint probabilities of words and categories to estimate the 
probabilities of categories for a given document; 2) the relaxed online support vector 
machines (SVMs) algorithm [3] relaxes the maximum margin requirement and 
produces nearly equivalent results, which has gained several best results in the TREC 
2007 spam track; and 3) the online fusion of dynamic Markov compression (DMC) 
and logistic regression on character 4-gram algorithm [4] is the winner on the IFFT in 
the TREC 2007 spam track. 

Many batch multi-category TC algorithms have been introduced to deal with the 
web document classifying. For instance: 1) the k-nearest neighbor (kNN) TC 
algorithm decides a document according to the k nearest neighbor document 
categories; 2) the centroid TC algorithm [5] is based on the assumption that a given 
document should be assigned a particular category if the similarity of this document 
to the centroid of its true category is the largest; and 3) the winnow algorithm [6] uses 
a multiplicative weight-update scheme that allows it to perform much better when 
many dimensions are irrelevant. 

Structured feature and token frequency distribution feature of documents are both 
crucial to the classification performance. Previous research shows that the multi-field 
structured feature of email documents supports the divide-and-conquer strategy, and 
can be used to improve the classification performance [7]. This multi-field learning 
(MFL) framework will bring the statistical, computational and representational 
advantages like that of ensemble learning methods [8]. Previous research also shows 
that the token frequency distribution follows the power law [9], which is a prevalent 
random phenomenon in many text documents. 

The previous TC algorithms often pursue the high classification accuracy and the 
high overall performance of supervised learning, without more claiming their low 
space-time complexity. However, in practice the algorithm is space-time-cost-
sensitive for many real-world large-scale applications. For instance, specified in the 
TREC spam track, the space-time limitation (total 1 GB RAM and 2 sec/email) is still 
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unpractical and horrible in a real large-scale email system, where large-scale emails 
will form a round-the-clock data stream and there will be more than thousands of 
emails arriving during 2 seconds. Especially, it is unreasonable to require an industrial 
TC algorithm with a time-consuming training or updating: such a requirement defeats 
previous complex statistical algorithms, and motivates us to explore a space-time-
efficient TC algorithm. 

3 Re-examination of Power Law 

3.1 Corpora 

The email documents corpus is the TREC07p collection, firstly designed as a public 
corpus for TREC 2007 spam track, which contains total 75,419 emails (25,220 hams 
and 50,199 spams). Each email document is stored as a plain text file, and email text 
is unaltered except for a few systematic substitutions of names. 

The Chinese web documents corpus is the TanCorp collection, which contains total 
14,150 documents and is organized in two hierarchies. The first hierarchy contains 12 
big categories and the second hierarchy consists of 60 small classes. In this paper, we 
use TanCorp-12. 

From the perspective of lingual category, above two corpora are representative. 
The TREC07p corpus contains multi-language, although the main language is 
English. The TanCorp corpus is a Chinese text documents collection. 

3.2 Token Frequency Distribution 

In order to re-examine token frequency distribution, we calculate the number of 
tokens. According to the widely-used VSM, a text document is normally represented 
as a feature vector, and each feature is a text token. Previous research has shown that 
overlapping word-level k-gram token model can achieve promising results [10]. But 
different languages have different appropriate k values, and the different 
representational granularities determine the total number of text features. Here, we 
consider four overlapping word-level k-gram token models (1-gram, 2-gram, 3-gram, 
4-gram) to represent tokens. 

 

Fig. 1. Word-level 4-gram Token Frequency-Rank in the TREC07p Collection 
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Firstly, we regard an email message as a single plain-text document, and calculate 
the number of each token occurrence in the TREC07p collection. Fig. 1 shows the 
token frequency as the function of the token’s rank with the word-level 4-gram token 
model. The horizontal-axis (x-axis) indicates the token’s rank (log scale), and the 
vertical-axis (y-axis) indicates the token frequency (log scale). The trendline (y = a x 
+ b) indicates that the frequency distribution of the word-level 4-gram token 
approximately follows a power law. 

 

Fig. 2. Word-level 2-gram Token Frequency-Rank in the TanCorp Collection 

Secondly, we use the same method to calculate the number of each token 
occurrence in the TanCorp collection. Fig. 2 shows the token frequency as the 
function of the token’s rank with the word-level 2-gram token model. The trendline 
also shows a power law distribution. 

Table 1. Trendline Coefficients in TREC07p Collection and TanCorp Collection 

 1-gram 2-gram 3-gram 4-gram 

TREC07p 
a -1.118 -1.103 -0.923 -0.828 
b 15.047 16.454 14.501 13.290 

TanCorp 
a -1.766 -0.849 -0.460 -0.280 
b 20.129 12.022 6.879 4.242 

 
Finally, the statistical results show that not only the 4-gram token frequency 

distribution in the TREC07p collection and the 2-gram token frequency distribution in 
the TanCorp collection follow the power law, but the others k-gram token frequency 
distribution also follow the power law. Table 1 shows the detailed trendline (y = a x + 
b) coefficients a and b. 

Above re-examination shows that the token frequency distribution follows the 
power law in the multilingual email documents, the Chinese web documents, and  
the field sub-documents of email [11]. The ubiquitous power law indicates that the 
weightiness of each token feature is not equivalent, which suggests a feature selection 
method to remove those useless features for lower space-time costs. 
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3.3 Potential Useless Feature 

In statistical TC algorithms, the text feature selection is a widely-used method against 
the high dimensional problem and has a crucial influence on the classification 
performance. The iteration, the cross-validation and the multi-pass scans are all 
effective methods to the text feature selection. But these methods bring the high 
space-time complexity. If we can detect and remove those useless features, we will 
save more time and space. However, what is the useless feature and how to find it? 

In a whole text documents set, a token feature with a less frequency (≤2) is a 
potential useless feature. As an extreme instance, if a token feature occurs only once all 
the time, it is useless because it will never be used in the future. So the useful features 
will not decrease after removing the useless features. We further define the uselessness 
rate Ru as the ratio of the number of token features with less frequency to the total 
number of token features. Here, we only consider the word-level 4-gram token in the 
TREC07p collection and the word-level 2-gram token in the TanCorp collection. 

Table 2. Feature Number and Uselessness Rate 

 
Feature Number (num) Ru(%) 

N(1) N(2) N(*) Ru(≤1) Ru(≤2) 
TREC07p 9,985,998 2,885,917 15,754,699 63 82 
TanCorp 1,316,422  325,834 2,087,815 63 79 

 
The N(1) and N(2) separately denote the number of token features which only 

occurs once and twice in the related documents set. The N(*) denotes the total number 
of token features. The Ru(≤1) is defined as N(1)/N(*), and the Ru(≤2) is defined as 
(N(1)+N(2))/N(*). Table 2 shows that the uselessness rate in the TREC07p collection 
is between 63% and 82%, and the uselessness rate in the TanCorp collection is 
between 63% and 79%. The uselessness rates are all higher in the five natural text 
fields of the TREC07p corpus [11]. If we can get the whole text documents before TC 
predicting, we will easily find these useless token features and cut this long tail. 
However, the online TC application faces an open text space problem, and we can not 
foreknow a token feature’s occurrence in the future. Though an online text stream 
makes it impossible to find these posteriori useless token features, the higher 
uselessness rate indicates that there are lots of useless token features. Supported by 
the priori and ubiquitous power law, this paper proposes a random sampling method 
to remove these useless token features at the time of online training. The range of 
uselessness rate indicates the theoretical tolerant range of training feature loss rate. 

4 Random Sampling Ensemble Bayesian Algorithm 

4.1 Token Level Memory 

In this paper, the object categories of the online multi-category TC problem are 
represented as a set in the form (C={Ci}, i=1, 2, ..., n), and a document D is 
represented as a sequence of tokens in the form (D=T1T2...Tj...). Here, we use the 
overlapping word-level k-gram model to define a token. The token frequency within 
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historical labeled documents, the key feature of online supervised machine learning, 
implies rich classification information and must be stored effectively. The token level 
memory (TLM) is a data structure to store the token frequency information of labeled 
documents, from which we can conveniently calculate the Bayesian conditional 
probability P(Ci|Tj) for the object category Ci and the token Tj. We straightforwardly 
combine the Bayesian conditional probabilities of tokens and choose the category of 
the biggest probability as the document’s final category prediction. 

Fig. 3 shows the TLM structure, including two indexes organized as two hash tables. 
The table entry of the DF index is a key-value pair <keyC, value>, where each key Ci 
denotes the ith category and each value DF(Ci) denotes the total number of documents 
with Ci category labels. The hash function hashDF(Ci) maps the category Ci to the address 
of the DF(Ci). The table entry of the TF index is also a key-value pair <keyT, value>, 
where each key Tj denotes a token and each value consists of n integers. The integer 
TFi(Tj) denotes the occurrence times of the token Tj in labeled Ci category documents. 
The hash function hashTF(Tj) maps the token Tj to the address of the n integers. 

keyT

DF(C1) DF(C2) ... DF(Ci) ...

keyC Ci hashDF(Ci)

C1 C2 ... Ci ...
Tj

hashTF(Tj)

TF1(T1) TF2(T1) ... TFi(T1) ...
TF1(T2) TF2(T2) ... TFi(T2) ...
... ... ... ... ...

TF1(Tj) TF2(Tj) ... TFi(Tj) ...
... ... ... ... ...

 

Fig. 3. Token Level Memory 

The TLM stores labeled tokens, the tiny granularity labeled examples, while other 
memory-based algorithms, such as kNN, store document-level labeled examples. This 
index structure has a native compressible property of raw texts. Each incremental 
updating or retrieving of index has a constant time complexity. The power law can 
help us to remove lots of long tail tokens through random sampling learning. 

4.2 Random Sampling Learning 

Supported by the TLM, the RSEB algorithm takes the online supervised training 
process as an incremental updating process of indexes, and takes the online predicting 
process as a retrieving process of indexes. 

According to the power law, we add a random sampling learning into the online 
supervised training process. The random sampling idea is based on the assumption 
that some tokens selected randomly according to equiprobability trend to be higher 
frequency tokens. If only the relative frequency features are concerned among tokens, 
we can use partial tokens of a labeled document to update the TLM after random 
sampling. As a result, lots of long tail tokens will be online removed, and the relative 
frequency will not change among tokens. We define the random sampling rate Rrs as 
the ratio of the number of tokens added into the TLM to the total number of tokens of 
each labeled document, which is a real number (Rrs∈[0, 1]). 
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Fig. 4. Random Sampling Sketch 

Fig. 4 shows the random sampling sketch. The horizontal-axis (x-axis) indicates 
the token’s rank, and the vertical-axis (y-axis) indicates the token frequency. If Rrs=1, 
all the tokens of a labeled document will be added into the TLM at the time of online 
training. While if Rrs<1, there will be some tokens absent in the TLM. Along the 
online incremental updating, these above two cases will form two power law curves 
in Fig. 4, where the shadow range denotes removed tokens. These two power law 
curves also indicate that the random sampling will not change the total distribution of 
the relative frequency among tokens. Of course, if the random sampling rate 
approximates zero, the classification ability of the TLM will also be damaged. 
However, what is the optimal random sampling rate? Theoretically, a promising 
random sampling rate is the (Rrs=1-Ru). But the exact Ru is also not a priori value. 
Fortunately, the ubiquitous power law gives an approximate heuristic, such as the 
20|80 rule of the Rrs|Ru. 

 
//OTP: Online Training Procedure 
OTP(Document d; Gram k; Category c; TLM t; Rrs r) 
(1) String[] T := Tokenizer(d; k); 
(2) String[] Trs := RandomSampler(T; r); 
(3) t.DF(c) := t.DF(c)+1; 
(4) Loop: For Each Tj∈Trs Do: 

(4.1) If t.containKeyT(Tj) Then: t.TF(c, Tj) := t.TF(c, Tj)+1; 
(4.2) Else: 

(4.2.1) t.TF(c, Tj) := 1; 
(4.2.2) t.TF(~c, Tj) := 0; //~c means all other categories 
(4.2.3) t.putKeyT(Tj); 

(5) Output: t. 
 
//Extract tokens based on overlapping word-level k-gram model 
Tokenizer(Document d; Gram k) 
 
//Sample tokens based on the random sampling rate Rrs 
RandomSampler(String[] T; Rrs r)

Fig. 5. Pseudo-Code for Online Training 

Fig. 5 gives the pseudo-code for the online training procedure of the RSEB 
algorithm. When a new labeled document arrives, the online training procedure only 
needs to add the document’s tokens into the TLM. This procedure firstly analyzes the 
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document text and extracts tokens based on an overlapping word-level k-gram model, 
and then randomly samples the tokens based on a preset random sampling rate, and 
finally updates the token frequency or adds a new index entry to the TLM according 
to the tokens after the random sampling. 

4.3 Ensemble Bayesian Predicting 

The Bayesian conditional probability predicting is a very classical method. According 
to each observed token of a document, the Bayesian method can obtain an array of 
probabilities, reflecting the likelihood that the classified document belongs to each 
category. The ensemble method uses arithmetical average to combine the multi-array 
of probabilities predicting from all tokens to form a final array. And then, the 
category of the maximal probability in the final array is predicted as the document’s 
category. 
 

//OPP: Online Predicting Procedure 
OPP(Document d; Gram k; TLM t) 
(1) String[] T := Tokenizer(d; k); 
(2) Float[] ep := new Float[n]; 
(3) Loop: For Each Tj∈T Do: 

(3.1) Float[] p := BayesianPredictor(Tj; t); 
(3.2) Loop: For Each i∈[1, n] Do: 

(3.2.1) ep[i] := ep[i]+p[i]; 
(4) Float sum := Sum(ep); //Add the n floats to a sum 
(5) Loop: For Each i∈[1, n] Do: 

(5.1) ep[i] := ep[i]/sum; 
(6) Integer index := Math.max(ep).getIndex; 
(7) Output: Cindex, ep[index]. 
 
//Compute conditional probability P(Ci|Tj) for each category Ci 
BayesianPredictor(String token; TLM t) 
(1) Float[] p := new Float[n]; 
(2) Loop: For Each i∈[1, n] Do: 

(2.1) p[i] := t.TF(Ci, token)/t.DF(Ci); 
(3) Float sum := Sum(p); //Add the n floats to a sum 
(4) Loop: For Each i∈[1, n] Do: 

(4.1) p[i] := p[i]/sum; 
(5) Output: p. 
 
//Extract tokens based on overlapping word-level k-gram model 
Tokenizer(Document d; Gram k)

Fig. 6. Pseudo-Code for Online Predicting 

Fig. 6 gives the pseudo-code for the online predicting procedure of the RSEB 
algorithm. When a new document arriving, the online predicting procedure is 
triggered: 1) the procedure also analyzes the document text and extracts tokens based 
on an overlapping word-level k-gram model; 2) the procedure retrieves the current 
TLM and calculates each token’s probabilities array according to the Bayesian 
conditional probability; 3) the procedure assumes that each token’s contribution is 
equivalent to the final probabilities array and uses the arithmetical average method to 
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calculate a final ensemble probabilities array; and 4) the procedure chooses the 
maximal probability in the final ensemble probabilities array, and outputs the 
document’s category predication and this maximal probability. 

4.4 Space-Time Complexity 

The RSEB algorithm mainly makes up of the online training and the online predicting 
procedures, whose space-time complexity depends on the TLM storage space and the 
loops in the two procedures. 

The TLM storage space is efficient owing to two reasons: the native compressible 
property of index files [12] and the random-sampling-based compressible property at 
the time of online incremental updating. Hash list structure, prevailingly employed in 
information retrieval, has a lower compression ratio of raw texts. Though the training 
documents will mount in the wake of the increasing of online feedbacks, the TLM 
storage space will only increase slowly. The native compressible property of index 
files ensures that the TLM storage space is theoretically proportional to the total 
number of tokens, and not limited to the total number of training documents. The 
random-sampling-based compressible property of TLM is caused by the power law of 
token frequency distribution and the only requirement of relative frequency. The 
random-sampling-based feature selection can cut the long tail useless features in the 
online situation. The above two compressible properties make that the online labeled 
document stream can be incrementally space-efficiently stored. 

The incremental updating or retrieving of TLM has a constant time complexity 
according to hash functions. The online training procedure is lazy, requiring no 
retraining when a new labeled document added. Fig. 5 shows that the time cost of per 
updating is only proportional to the total number of tokens in the document. Except 
the loop (see (4) of Fig. 5) according to the number of tokens, there are no time-
consuming operations. The major time cost of the online predicting procedure is 
related to the number of categories. The straightforward calculating makes that the 
time complexity is acceptable in the practical online application. 

5 Experiment 

5.1 Implementation 

We implement an email spam filter (esf) and a web document classifier (wdc) 
according to the proposed RSEB algorithm. In the filter and classifier, we do nothing 
about text pre-processing, such as stemming, stop word elimination, etc. 

Using cs4 combining strategy [7], the esf filter is combined from seven field 
classifiers within the seven-field MFL framework, five natural fields (Header, From, 
ToCcBcc, Subject, and Body) and two artificial fields (H.IP, H.EmailBox), and each 
field classifier is an implementation of the RSEB algorithm with binary categories. In 
each field classifier, the overlapping word-level 4-gram token model is applied. 

Applying the overlapping word-level 2-gram token model, the wdc classifier is an 
implementation of the RSEB algorithm with 12 categories in Chinese texts. In order 
to extract word-level tokens, we build a Chinese segmenter in the wdc classifier. 
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5.2 Task and Evaluation 

We run an IFFT of email spam filtering and a WDCT of 12-category Chinese web 
document classifying to evaluate the performance of the RSEB algorithm. 

On the email spam filtering, we report the overall performance measurement 1-
ROCA, the area above the receiver operating characteristic (ROC) curve percentage, 
where 0 is optimal, to evaluate the filter’s performance. We compare the esf to the 
bogo filter (bogo-0.93.4), the tftS3F filter, and the wat3 filter on the IFFT, defined in 
the TREC spam track. The bogo filter is a classical implementation of online 
Bayesian algorithm, the tftS3F filter is based on the relaxed online SVMs algorithm 
and has gained several best results in the TREC 2007 spam track, and the wat3 filter 
is based on the online fusion of DMC and logistic regression algorithm, which is the 
winner on the IFFT in the TREC 2007 spam track. In this experiment, we use the 
TREC07p corpus, the TREC spam filter evaluation toolkit, and the associated 
evaluation methodology. 

On the web document classifying, we use three-fold cross validation in the 
experiments by evenly splitting the TanCorp-12 dataset into three parts and use two 
parts for training and the remaining third for testing. We perform the training-testing 
procedure three times and use the average of the three performances as the final 
result. Here reports classical MacroF1 and MicroF1 measures. We run the wdc 
classifier on the 12-category Chinese WDCT, and compare the results of the wdc 
classifier as well as to that of the kNN classifier, the centroid classifier, and the 
winnow classifier. 

The hardware environment for running experiments is a PC with 1 GB memory 
and 2.80 GHz Pentium D CPU. 

5.3 Results and Discussions 

There are four experiments. On the email spam filtering, the experiment A tries to 
evaluate that the RSEB algorithm is time-efficient and can achieve the best overall 
performance, and the experiment B wants to verify that the TLM data structure has 
the random-sampling-based compressible property and the proposed random 
sampling method is space-efficient. On the web document classifying, the experiment 
C tries to evaluate the effectiveness of the RSEB algorithm, and the experiment D 
wants to verify the random-sampling-based compressible property of the TLM data 
structure in the multi-category situation. 

In the experiment A, the bogo, tftS3F, and the esf filter run on the IFFT on the 
TREC07p corpus separately, and the esf filter sets its random sampling rate Rrs=1. 
The detailed experimental results are showed in Table 3. The results show that the esf 
filter can complete filtering task in high speed (2,834 sec), whose overall performance 
1-ROCA is comparable to the best wat3 filter’s (0.0055) among the participators at 
the TREC 2007 spam filtering evaluation. The time and 1-ROCA performance of the 
esf filter exceed the bogo’s and the tftS3F’s more. 
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Table 3. Performance Statistics of Email Spam Filtering 

 Time (sec) 1-ROCA (%) TREC 2007 Rank 
esf  2,834 0.0055

wat3  0.0055 1
tftS3F 62,554 0.0093 2
bogo 25,100 0.1558

 
In the experiment B, we run the esf filter under different random sampling rate Rrs 

from the 90% down to the 10%. The esf filter repeatedly runs 30 times for each 
random sampling rate, and here reports the mean performance among the 30 results 
for each random sampling rate. The detailed random sampling rate (Rrs), final indexed 
token compressing rate (Rtc), and performances are showed in Table 4. Where, the Rrs 
is a predefined priori value, while the Rtc is a posteriori value after the filtering task, 
and is defined as the ratio of the number of tokens in the final TLM to the total 
number of processed tokens during the filtering task. The space is the number of 
tokens in the final TLM storage. 

Table 4. Random Sampling Rate, Token Compressing Rate and Performances 

Rrs Rtc Time (sec) Space (num) 1-ROCA (%) 
100 100 2,834 15,754,699 0.0055

90 94 2,715 14,763,087 0.0055
80 87 2,607 13,660,951 0.0054
70 79 2,481 12,511,131 0.0053
60 71 2,139 11,257,499 0.0053
50 63 2,130 9,895,697 0.0055
40 54 2,094 8,467,245 0.0053
30 44 2,066 6,860,210 0.0055
20 32 2,028 5,071,819 0.0064
10 19 2,006 2,984,139 0.0066

 
We find that the 1-ROCA is almost a constant (≈0.0055) while the Rrs varying 

from the 100% down to the 30%, which indicates if we randomly remove up to 70% 
tokens at the time of online training, the 1-ROCA will not be influenced obviously. 
On average of the 30 results, there are four 1-ROCA values exceed the best one 
(0.0055). Table 4 shows that the final indexed token compressing rate approximates a 
direct ratio of the random sampling rate, which proves that random-sampling-based 
token feature selection according to the theoretical uselessness rate heuristic between 
63% and 82% is effective in the online situation. 

In the experiment C, the wdc classifier runs on the 12-category Chinese WDCT, 
and sets its random sampling rate Rrs=1. Through evenly splitting the TanCorp-12 
dataset, we make the three-fold cross validation. The mean MacroF1 and the mean 
MicroF1 are showed in Table 5, where the results of other four classifiers are cited 
from existing researches [2]. The results show that the wdc classifier can complete 
classifying task in high MacroF1 (0.8696) and high MicroF1 (0.9126), whose 
performance exceeds the centroid’s, the kNN’s, the winnow’s, and approaches to the 
best SVM classifier’s MacroF1 (0.9172) and MicroF1 (0.9483). 
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Table 5. MacroF1 and MicroF1 Results 

 MacroF1 MicroF1
SVM 0.9172 0.9483
wdc 0.8696 0.9126

centroid 0.8632 0.9053
kNN 0.8478 0.9035

winnow 0.7587 0.8645

 
In the experiment D, we run the wdc classifier under different random sampling 

rate Rrs from the 90% down to the 10%. The wdc classifier repeatedly runs 30 times 
for each random sampling rate, and here reports the mean performance among the 30 
results for each random sampling rate. The detailed random sampling rate (Rrs), 
training indexed token compressing rate (Rtc), and performances are showed in Table 
6. Where, the Rtc is a posteriori value after the training, and is defined as the ratio of 
the token number in the TLM after the training to the total number of processed 
tokens during the training. On average of the 30 results, Table 6 shows that the 
training indexed token compressing rate approximates a direct ratio of the random 
sampling rate, which proves that random-sampling-based token feature selection 
according to the theoretical uselessness rate heuristic between 63% and 79% is also 
effective in the multi-category situation. 

Table 6. Random Sampling Rate, Token Compressing Rate and Performances 

Rrs Rtc MacroF1 MicroF1
100 100 0.8696 0.9126

90 93 0.8715 0.9136
80 86 0.8677 0.9119
70 79 0.8663 0.9113
60 71 0.8657 0.9114
50 63 0.8653 0.9103
40 53 0.8609 0.9083
30 43 0.8570 0.9051
20 32 0.8517 0.9010
10 19 0.8345 0.8921

6 Conclusion 

This paper investigates the power law distribution and proposes a RSEB algorithm for 
the online multi-category TC problem. The experimental results show that the RSEB 
algorithm can obtain a comparable performance compared with other advanced 
machine learning TC algorithms in email spam filtering application and Chinese web 
document classifying application. The RSEB algorithm can achieve the state-of-the-
art performance at greatly reduced space-time complexity, which can satisfy the 
restriction of limited space and time for many practical large-scale applications. 

With the development of mobile computing and network communicating, the spam 
concept extends from email spam to instant messaging spam, short message service 
spam, and so on. A web document may belong to the hierarchical category or may 
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have multiple category labels. Further research will concern the short message TC 
problem, the multi-hierarchy TC problem, and the multi-category multi-label TC 
problem. According to the ubiquitous power law, the RSEB algorithm is more general 
and can be easily transferred to other TC applications. 
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