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Abstract. In this paper we discuss k-anonymous graphs in terms of
modular decomposition and we present two algorithms for the k-anonym-
ization of graphs with respect to neighborhoods. This is the strictest def-
inition of k-anonymity for graphs. The first algorithm is an adaptation
of the k-means algorithm to neighborhood clustering in graphs. The sec-
ond algorithm is distributed of message passing type, and therefore en-
ables user-privacy: the individuals behind the vertices can jointly protect
their own privacy. Although these algorithms are not optimal in terms
of information loss, they are a first example of algorithms that provide
k-anonymization of graphs with respect to the strictest definition, and
they are simple to implement.
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1 Introduction

Data privacy is a field that is concerned with privacy issues that appear in the
collection and distribution of data. A standard example is when data collected
anonymously by a National Statistical Bureau should be made accessible for
researchers. It is well-known that side-information may allow records to be linked
to the individuals they represent. This is a threat, in the first place to the privacy
of the individual, but, in extension, to the correctness of statistical research,
since the citizen may refuse to answer the survey if she holds doubts whether
the survey is really anonymous. Statistical disclosure control (SDC) is a research
area dedicated to the development of data protection techniques that allow for
the anonymous release of data to third parties, or that allow third parties to
query the data that stays on a secure server, so that all released information
respect the anonymity of individuals [11].

Similar privacy issues appear for data collected by companies. Social network
providers hold extensive databases over their users, a goldmine for researchers
in social science and advertising agencies. In 2006 AOL released search logs that
contained 20 million web queries from 658,000 AOL users posted during a period
of 3 months. The released data was anonymized by replacing the identity of the
users by a random index, but this quickly showed insufficient as several sequences

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 263–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



264 K. Stokes

of queries were linked to real persons. AOL removed the query logs from the
Internet, but the files were of course already downloaded by many people [1].
Because of this accident, most companies probably would not consider to release
data “anonymously”. Still, the high market value of data, and a general tendency
of people to make mistakes and forget, suggest that this was not the last time
such a data leak occurred.

Most methods for SDC have been developed for microdata, data structured in
table form.Avery popular class ofmethods are those that achieve k-anonymity [23,
24, 28]. It is clear that k-anonymity suffers from some weaknesses (see for exam-
ple [17]), however, it is conceptually very simple to understand and it is also achiev-
able, making it attractive when compared to some of its alternatives. For example,
differential privacy is a concept that, apart from beingmore difficult to understand
for the uninitiated, in current implementations would not produce an anonymized
graph. Instead, differential privacy is typically used to ensure that queries on the
data are privacy preserving, while the data itself is not published.

The idea behind k-anonymity is based on the concept of quasi-identifier,
coined by Tore Dalenius in 1986 [4]. A quasi-identifer in a data table is a col-
lection of attributes in the so-called public domain, which, when combined, can
serve as an identifier of at least some records. It can for example be possible
for an adversary holding relevant side-information to reidentify the individual
behind a record from its entries for the attributes address, gender, age. A data
table is k-anonymous with respect to a quasi-identifier QI if every record ap-
pears in at least k copies in the table when restricted to QI. We say that these
copies form an anonymity set with respect to QI.

It is well-known that a graph structure in the data can be used as a quasi-
identifier. For example, in data coming from social networks, the set of friends
of an individual can be used to reidentify her record, even if the identifiers of the
table are removed. However, it has not always been clear how k-anonymization
should be applied to graphs. Indeed, properties like the degree or the centrality of
a vertex in the social graph, can be used for reidentification of individual vertices.
Several graph properties have been pointed out as particularly interesting. The
literature considers k-anonymity for graphs with respect to a list of distinct
quasi-identifiers as for example vertex degree and neighborhood topology.

The main problem in k-anonymity for graphs is still to define efficient algo-
rithms that can transform a given graph into a k-anonymous graph with small
information loss. A variant of this problem is to define distributed algorithms for
the k-anonymization of graphs in which all calculations are performed locally.
Such algorithms would break the ground for systems in which the users of com-
munication systems and social networks would be able to k-anonymize their own
digital footprints, without the collaboration of the server or data holder. One of
the motivations behind this paper is to explore such user-driven anonymization
techniques.

This paper is structured as follows. The second section contains the prelimi-
naries. In the third section we express k-anonymity for graphs in terms of mod-
ular decomposition. Section 4 presents algorithms for clustering of graphs with
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respect to open neighborhoods, which are based on the k-means algorithm. The
paper ends with the conclusions.

2 Preliminaries

2.1 k-Anonymity for Graphs

A graph (V,E) is a set of vertices V and a set of edges E consisting of non-ordered
pairs of elements from V . The open neighborhood of a vertex v ∈ V is the set
N(v) = {u ∈ V : (v, u) ∈ E}. The closed neighborhood of v isN(v) = N(v)∪{v}.
The degree of v is the cardinality of N(v). An adjacency matrix of the graph
is a |V | × |V | matrix A = (aij) with the rows and columns indexed by V and
such that aij = 0 if (i, j) �∈ E and aij = 1 if (i, j) ∈ E. Permuting columns and
rows of an adjacency matrix of a graph produces another adjacency matrix of
the same graph.

An isomorphism f between two graphs G = (V,E) and G′ = (V ′, E′) is a
bijective function f : V → V ′ with an edge-preserving property, i.e. uv ∈ E
if and only if f(u)f(v) ∈ E′. A graph automorphism on a graph G is a graph
isomorphism f : G → G. Given a graph G = (V,E), the set of automorphisms
on G forms a group, denoted by Aut(G). An element f in Aut(G) acts on a
vertex v in V as fv := f(v). The orbit of a vertex v for a subgroup F ⊆ Aut(G)
is the subset of vertices {fv : f ∈ F}.

A (micro-)data set is k-anonymous with respect to a quasi-identifier QI if
every record equals k − 1 other records when restricted to the attributes in QI.
The achieved level of privacy will depend on whether the quasi-identifier was
correctly determined.

When k-anonymity is applied to graphs, typically the goal is to partition the
vertex set into anonymity sets, according to the properties attached to each ver-
tex. Different flavours of k-anonymity for graphs exist in the literature, differing
in choice of quasi-identifier. For example, Liu and Terzi developed methods for
k-anonymity with respect to the degrees of the vertices [14], Zhou and Pei con-
sidered k-anonymity with respect to isomorphic neighborhoods [30], and other
authors considered more generic structural quasi-identifiers [3, 9, 31]. Methods
that these authors use for k-anonymization are, for example, simulated anneal-
ing and greedy algorithms which heuristically aim at minimizing some measure of
information loss. There are also approaches for edge k-anonymization, in which
the edges are partitioned into anonymity sets instead of the vertices. This list of
previous work is not exhaustive, and an interested reader is referred to surveys
like [15, 19] for further information. Observe that, in general, a graph that is
k-anonymous with respect to some quasi-identifier may fail to be so for another
quasi-identifier.

Actually, it was observed already in 1971 that the computationally correct
quasi-identifier for social networks is the neighborhood of the vertices [16], al-
though the result was not discussed in the context of data privacy, and the
concept of quasi-identifier was not yet defined then. The same fact was later
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rediscovered and explored in [26], which also provided a characterization of k-
anonymous graphs with respect to the open neighborhoods. The same article
sketched an algorithm which, given a graph, transforms it into a k-anonymous
graph (with respect to open neighborhoods). We repeat it here (Algorithm 1),
since it is essential for the content of this paper. In the current article, Algo-
rithm 1 is implemented in combination with a distributed k-means algorithm for
clustering open neighborhoods in graphs.

Graphs that are k-anonymous with respect to open neighborhoods are in gen-
eral not k-anonymous with respect to closed neighborhoods, and vice versa. If the
quasi-identifier is the open neighborhood, then vertices in the same anonymity
set must be disconnected. Indeed, if two vertices u and v are connected, then
v ∈ N(u) and u ∈ N(v), but u �∈ N(u) and v �∈ N(v), so u and v cannot have
the same open neighborhood. If instead the quasi-identifier is the closed neigh-
borhood, then vertices in the same anonymity set must be connected. If two
vertices u and v are not connected then u ∈ N(u) and v ∈ N(v), but u �∈ N(v)
and v �∈ N(u), so they cannot have the same closed neighborhood. Figure 1
shows examples of graphs with these properties.

The correct choice between these two quasi-identifiers depends on the type
of graph that is considered. As was observed in [16], an identity relation in
a (social) network is represented by a self-loop at each vertex. In general, a
relation with this property is called reflexive. If the data represented by the graph
contain such a reflexive relation, then the correct quasi-identifier is the closed
neighborhood. If the graph instead represents a relation that is not reflexive,
so that the graph is without self-loops, then the correct quasi-identifier is the
open neighborhood. The so-called “social graph”, representing friendships in an
online social network, is typically defined as a graph without self-loops. The
correctness of these quasi-identifiers can be understood through the fact that
when any of these two corresponding criteria are satisfied (reflexive relation
together with k-anonymity with respect to closed neighborhoods, or non-reflexive
relation together with k-anonymity with respect to open neighborhood), then an
adjacency matrix of the graph will be k-anonymous with respect to all columns
simultaneously, when considered as a table with |V | rows and |V | columns.

Two vertices u and v in G are structurally equivalent if u relates to every ver-
tex in G in exactly the same ways as v does. If this occurs, then u and v are abso-
lutely equivalent within the graph, indeed they are substitutable. Consequently
a graph that is k-anonymized with respect to open/closed neighborhoods will be
k-anonymized to any other graph property attached to the vertices, when con-
sidered as vertices of a graph without/with a loop at each vertex. Two vertices
with the same neighborhood also share the same degree, centrality, etc.

In some cases, achieving an acceptable privacy level only requires a weaker
form of structural equivalence, like the one in which the anonymity sets are orbits
of the vertices under the action of some subgroup of the automorphism group of
the graph [31]. Observe that k-anonymity with respect to both open and closed
neighborhoods implies k-anonymity in terms of automorphisms, but the contrary
is not true. However, as has been observed by some authors, k-anonymizing a
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graph with respect to automorphisms and with gain in information loss is a com-
putationally difficult problem, while k-anonymity with respect to neighborhoods
is much more straightforward.
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Fig. 1. The graph on the left is not k-anonymous with respect to open neighborhoods,
closed neighborhoods, nor automorphisms, for any k > 1. The graph in the middle is 2-
anonymous with respect to open neighborhoods, but not k-anonymous with respect to
closed neighborhoods for k > 1. It is also 2-anonymous with respect to automorphisms.
The graph on the right is 2-anonymous with respect to closed neighborhoods and
automorphisms, but not k-anonymous with respect to open neighborhoods for k > 1.

The definition of k-anonymity for graphs with respect to neighborhoods is very
strict, implying that k-anonymization may cause large information loss when the
original graph is far from being k-anonymous. However, this information loss may
be proportionally small when there are substantial data quantities attached to
the vertices in the graph. In this case, it is possible to apply hybrid protection
methods to the data set, combining k-anonymity for graphs with, for example,
synthetic data generators applied to the data attached to each anonymity set,
separately [26]. In this process it is of great importance that the anonymity
sets are respected over all columns of the relevant quasi-identifiers. Otherwise
it is possible to attack the protection of the data by intersecting overlapping
anonymity sets.

A graph that is k-anonymous with respect to neighborhoods has a rather
particular structure. As we saw previously, vertices in the same anonymity set
are either all connected (closed neighborhoods) or they are not connected at all
(open neighborhoods). In both cases, two vertices u and v in different anonymity
sets A and B are connected if and only if all vertices in A are connected to all
vertices in B. Therefore, the graph essentially consists of many copies of a smaller
graph: the induced subgraph on a subset of vertices with one vertex from each
anonymity set. With an appropiate drawing of the graph this phenomenon can
be observed easily. This is not fully developed in Figure 2, which represents a
graph with only two anonymity sets, indeed it is the complete bipartite graph
on 7 + 8 vertices.

In some cases it is not necessary to provide a concrete graph as output from
the anonymization algorithm, but it may be enough to present the clusters and
the relations between the clusters [3]. In any case, the choice of the clustering
algorithm is essential, in particular for controlling the information loss. This
article focuses on the k-means clustering algorithm for the k-anonymization of
graphs.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0 0 1 0 0 0 0 1 1 1
1 0 1 1 0 0 0 1 0 1 0 0 0 0 1
1 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 0 0 1
0 1 0 0 0 0 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 0 0 0 0 0 1 1 0 1
1 1 0 0 0 0 0 0 1 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. The 7-anonymous graph on the right was obtained through k-anonymization
of the Newman-Watts-Strogatz graph on the left, using Algorithm 1 and Algorithm 4.
Below the adjacency matrices of the two graphs.

2.2 The k-Means Algorithm

In exploratory data mining, clustering is the task of grouping elements together
on the basis of some similarity, dividing data into cells of a Voronoi diagram.
Clustering has many applications in machine learning, pattern recognition, image
analysis, information retrieval, and bioinformatics. In centroid-based clustering,
each cluster is represented by a centroid. The centroid can be for example the
vector representing the average of all the vectors in the cluster. The centroid
does not necessarily belong to the data set.

There is an intrinsic relation between k-anonymity and centroid-based clus-
tering. Indeed, k-anonymity can be attained by clustering the data and replacing
the records by the centroid of the corresponding cluster. One of the most impor-
tant algorithm for centroid-based clustering is the k-means algorithm or Lloyd’s
algorithm (Algorithm 2), defined by Stuart Lloyd in 1957 [13].

There exist variants of the k-means algorithm that replace the original Eu-
clidean average by the median, the mode, etc., see for example [12]. Other vari-
ants explore the possibility to use other similarities than the one induced by the
Euclidean distance, as for example those induced by the Malahanobis distance
or the Hamming distance. For graphs, the similarity induced by the Manhattan
distance and the 2-path similarity were proposed in [27].

There are several ways to initialize cluster centroids for the k-means algorithm,
see for example [22]. Two common procedures are to initialize the centroids as
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Input: A graph G = (V,E) and a natural number k ≤ |V |
Output: A graph G′ = (V,E′) that is k-anonymous with respect to open

neighborhoods
Calculate a family of clusters C of V so that vertices in the same cluster have
similar open neighborhoods;
foreach Ci ∈ C do

foreach (u, v) ∈ Ci do
if uv ∈ E then

Delete uv;
end

end

end
foreach Ci �= Cj ∈ C do

if �{(u, v) ∈ Ci × Cj : ∃uv ∈ E} > |Ci||Cj |/2 then
foreach (u, v) ∈ Ci × Cj do

if uv �∈ E then
Add uv to E;

end

end

end
else

foreach (u, v) ∈ Ci × Cj do
if uv ∈ E then

Delete uv from E;
end

end

end

end
Return G;

Algorithm 1. An algorithm for k-anonymization of graphs

random points in the data domain, or as random points in the data set. In the
first case, the points are not required to belong to the data set. The k-means
algorithm does not have to return a globally optimal result, and the outcome is
typically different for different initial input to the algorithm. A good solution is
to run the algorithm several times, and choose the best result.

2.3 Message Passing Algorithms

A message passing algorithm is an iterative algorithm in which each step is exe-
cuted on the vertices of a graph. The result of this execution is then forwarded
in messages to the neighbors of the vertices in the graph, before the next itera-
tion. There are several important examples of message passing algorithms. Belief
propagation is a message passing algorithm for inference in graphical models as
Bayesian networks or Markov random fields. Sometimes it is used as a synonym
for the sum-product algorithm, originally described by Judea Pearl in 1982 [21],
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Input: A data set of records X = (xj) and an integer k
Output: A list of cluster centers C = (ci)
Initialize a set of cluster centers C′ := C := c1, . . . , ck;
repeat

C := C′;
foreach xj do

Assign xj to the closest cluster centroid ci, creating the Voronoi
diagram with corresponding Voronoi cells Ai;

end
foreach Ai do

Calculate the new centroid of Ai, c
′
i;

end

until C = C′;

Algorithm 2. The k-means algorithm

and with applications for example in the decoding of low-density parity-check
(LDPC) codes. However, in its general form it is simply a message passing al-
gorithm that takes advantage of a factorization of the global function into local
functions of a subset of the variables. Defined in this way, the Viterbi algo-
rithm [29] is another important example of belief propagation.

A belief propagation algorithm has an associated factor graph, which models
the factorization of the problem into local subfunctions. The factor graph is a
bipartite graph with the variables in one set and the subfunctions in the other.
There is an edge between a variable vertex v and a subfunction vertex f if f is
a function of v.

Belief propagation algorithms can typically be proved to be exact on acyclic
graphs (trees). Surprisingly, they also tend to give non-exact but approximately
good result on graphs with cycles. However, then convergence is not ensured,
and oscillation may occur [18].

2.4 Modular Decomposition of Graphs

A module in a graph G = (V,E) is a subset of vertices M ⊆ V that share the
same neighbors in V \ M . A strong module is a module that does not overlap
other modules. The modules of a graph form a partitive family defining a decom-
position scheme for the graph with an associated decomposition tree composed
of the graphs strong modules [7]. This tree is a representation of the structure
of the graph and is therefore a first step in many algorithms.

A congruence partition is a partition of the vertices V in which the parts
are modules. A factor is the induced graph on the vertices in one part of a
congruence partition. The modules that are maximal with respect to inclusion
form a congruence partition of V , called a maximal modular partition. Every
graph has a unique maximal modular partition. If two vertices v1 and v2 in two
disjoint modules M1 andM2 are connected, then all vertices in M1 are connected
to all vertices in M2. In particular this is true for the maximal modules. The
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quotient graph of G is defined as the graph with the maximal modules of G
as vertices and an edge between two vertices if the corresponding modules are
connected.

For a survey on algorithms for modular decomposition of graphs, see [8].

3 k-Anonymous Graphs in Terms of Modular
Decomposition

In this section we characterize k-anonymity for graphs with respect to neighbor-
hoods in terms of modular decomposition. It is easy to see that a graph G that
is k-anonymous with respect to open neighborhoods is a graph such that the
cardinality of each part in the maximal modular partition P of G is larger than
or equal to k, and additionally, the factors of G with respect to P are totally
disconnected.

A graph G that is k-anonymous with respect to closed neighborhoods still
has a maximal modular partition P such that each part has cardinality larger
than or equal to k. However, in this case the factors of G with respect to P are
complete graphs. We summarize these results in the following theorem.

Theorem 1. Let G be a graph. If G is k-anonymous with respect to the open
(closed) neighborhoods, thenG has a maximal modular partition P = {V1, . . . , Vm}
such that |V i| ≥ k for all i = 1, . . . ,m and such that the factors of G with respect
to P are completely disconnected (complete) graphs.

Observe that Theorem 1 provides an efficient way of testing for k-anonymity
in graphs. Just apply an algorithm for modular decomposition to obtain the
maximal modular partition and check that the factors are as required. As an
extension, the modular decomposition tree could be used for k-anonymization.

In general, the factors of the maximal modular partition of a graph can be any
graph. This motivates the use of modular decomposition of graphs for a more
flexible definition of k-anonymity, in which only the edges between the different
modules are anonymized. This can be useful for example in cases in which some
edges are considered to be more sensitive than others. As an example of this,
consider a situation in which it can be assumed that some edges are not in
the public domain of knowledge, so that they are not in the quasi-identifier.
Then, according to the model of k-anonymity, these edges cannot be used for
reidentification, and there is no need to k-anonymize them.

4 Algorithms for Clustering of Graphs with Respect to
Open Neighborhoods

This section describes algorithms for centroid-based clustering of graphs with
respect to open neighborhoods. These algorithms can be used in combination
with Algorithm 1 to produce a k-anonymous graph.
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4.1 A k-Means Algorithm for Graphs

Only small modifications to the template of the k-means algorithm is needed in
order to obtain a straight-forward iterative centroid-based clustering algorithm
for graphs, Algorithm 3.

For a vertex v in a graph G = (V,E), represent N(v) as the row vector in
an adjacency matrix of G indexed by v. Then N(v) is a vector in {0, 1}|V |. For
two vectors x and y in {0, 1}|V |, let d(x, y) := |{i : xi �= yi}| be the Hamming
distance of x and y. Observe that for two vertices u, v ∈ V , the Hamming
distance betweeen N(v) and N(u) equals the symmetric difference between the
neighborhoods of u and v as sets.

For a vertex v ∈ V , denote by c(v) the centroid vector c from a set of centroids
C that minimizes d(N(v), c). Denote the clusters by A(c) := {v ∈ V : c(v) = c}.

As we saw in Section 2.2, cluster centroids can be initialized in several ways.
Although there exist more advanced initialization algorithms for the k-means
algorithm, it is commonly accepted that random initialization is a good alter-
native, combined with several runs of the algorithm, see for example [22]. We
suggest that randomly generated centroids should be chosen from a distribution
that adjusts well to the relevant family of graphs. This can be achieved easily
by choosing the centroids randomly from the data set, which is the method that
will be used in this article. Other initialization methods can of course be used.

The k-means algorithm involves a step of calculation of the mean between
several vectors. For open neighborhoods, the mean does not adjust well, since it
is not obvious how to define the mean of a set of neighborhoods. Instead other
aggregation operators can be more suitable. The mode of a set of elements is
the element that appears most often in the set. In contrast to the mean or the
median, the mode can be used also for nominal data. We use the mode for vectors
applied to each coefficients independently. Given a set of vectors it returns the
vector with coefficients equal to the mode of the coefficients of all vectors in the
set. Observe that defined in this way, the mode of a data set of vectors does
not necessarily belong to the data set. The mode of a set of neighborhoods with
threshold t is then a neighborhood that contains a vertex v if a proportion larger
than a threshold t ∈ [0, 1] of the original neighborhoods contain v.

4.2 A Distributed k-Means Algorithm

In this section we present a distributed version of the k-means open neighborhood
clustering algorithm for graphs. The idea is to approximate Algorithm 3 by
decomposing the calculation of one iteration of the algorithm into factors that
can be calculated by each vertex independently, using only local knowledge. As
was pointed out in [27], two vertices in a graph have similar neighborhoods if
their 2-path similarity is high. The 2-path similarity between two vertices u
and v is defined as the number of paths of length two between u and v. It
is therefore clear that all vertices in an anonymity set of a vertex v in a k-
anonymous graph of non-zero degree will all be on distance at most two from v.
This suggests that a clustering in graphs with respect to open neighborhoods can
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Input: A graph (V,E) and an integer m
Output: A set of m cluster centroids C = {c1, . . . , cm}
Initialize a set of cluster centroids C′ := C := {c1, . . . , cm};
repeat

foreach v ∈ V do
C := C′;
Calculate c(v) as c ∈ C minimizing d(c,N(v));
Assign v to A(c(v)).

end
foreach c ∈ C do

Calculate the new centroid c′ of A(c) as the mode with threshold t of
the vectors N(u) for u ∈ A(c);

end

until C = C′;

Algorithm 3. A k-means algorithm for open neighborhood clustering of
graphs

be approximated with local computations on each vertex, requiring a knowledge
of the graph topology that covers vertices at distance at most three, or in other
words, the neighborhoods of the neighbors of neighbors. However, in practice,
the algorithm can be defined so that it requires only message passing between
vertices at distance one. Also, much of the information, the neighborhoods, can
be passed once in the beginning of the algorithm and stored for future use.

The distributed k-means algorithm is described in Algorithm 4. As in Sec-
tion 4.1, for a vertex v ∈ V , denote by c(v) the centroid vector c from a set
of centroids C that minimizes d(N(v), c) and the clusters by A(c) := {v ∈ V :
c(v) = c}.

The algorithm starts by initializing a set of cluster centroids. Also, each vertex
v posts a message to all its neighbors containing its neighborhood N(v), which is
stored by these vertices. The rest of the algorithm is an iteration of the two steps
in Algorithm 3 and an extra third approximation step, adapting the algorithm
to distributed execution. Since the execution of the algorithm moves between
neighbors, it is useful to follow the execution as it moves from one vertex v and
its neighbor u.

In Step 1 each vertex v calculates the cluster centroid that is closest to its
neighborhood N(v) and posts the result to all its neighbors u ∈ N(v). In Step 2
each vertex u updates the cluster centroids C = {c1, . . . , cm}. For each centroid
ci, the new centroid c′i is calculated as the mode of the coefficients of the set of
neighborhood vectors {N(v) : v ∈ N(u) and c(v) = ci}. Then u posts the set of
new centroids C′ to the neighbors v ∈ N(u). In Step 3 each vertex v calculates
an approximation C′′ of the new centroids as a combination of the different C′’s
received from its neighbors. Then the algorithm returns to step 1 with C := C′′.

Instead of having the vertices post the set of new centroids C′ to their neigh-
bors, one can let them post C′ on a public message board. In any case, where the
original k-means algorithm produced one set of new centroids, the distributed
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Input: A graph (V,E) and an integer m
Output: A set of cluster centroids C = {c1, . . . , cm}
Globally initialize a set of cluster centroids C′′ := C := {c1, . . . , cm} and post
them to the public board;
foreach v ∈ V do

Post N(v) to u ∈ N(v);
Receive and store N(u) from u ∈ N(v);
repeat

Step 1
Set C := C′′;
Calculate c(v), as c ∈ C′ that minimizes d(c,N(v));
Post c(v) to u ∈ N(v);
Step 2
Receive c(u) from u ∈ N(v);
Calculate the new centroids C′

v := {c′1, . . . , c′m} as the mode of the
neighborhoods in the set {N(u) : u ∈ N(v) ∩A(ci)}, with ci ∈ C;
Post C′

v to N(v);
Step 3
Receive C′

u from u ∈ N(v) and combine them all into new centroids C′′;
until C = C′′;

end

Algorithm 4. A distributed k-means algorithm for clustering graphs

version of the algorithm produces many sets of new centroids that must be com-
bined in some effective way. Our experiments show that it works to combine the
new centroids C′ = {c′1, . . . , c′m} into the vectors C′′ = {c′′1 , . . . , c′′m} that have
ones at the indices where there is at least one c′i with a one at these indices. This
strategy can be used for the calculation of C′′ both locally and globally at the
public message board.

5 Experiments

Algorithm 4 was implemented in Sage [25] and executed on random graphs
generated using the Barabási-Albert model [2] and the Newman-Watts-Strogatz
model [20]. These random graph models were chosen since they share properties
with real social graphs: the former gives graphs that are scale-free and the graphs
generated using the latter model have the small world property.

5.1 The k-Means Algorithm on Graphs

In a first experiment, for each of these two graph models and for each number of
vertices in {30, 60, 120}, Algorithm 4 with public board was tested on 20 different
graphs. For each graph, 10 different initializations of the cluster centroids were
tried, and the result with the smallest information loss was chosen. In this ex-
periment, information loss was measured as the sum of the symmetric difference
error (SSDE), the symmetric difference between the cluster centers (considered
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as sets of vertices) and the neighborhoods of the vertices in each cluster, summed
over all vertices of the graph. The number of iterations on each initialization was
set to 15, since it was observed that in general convergence was achieved well
before 10 iterations. Table 1 shows the average information loss in SSDE among
20 tested graphs on |V | vertices, divided by the number of vertices |V |.

Table 1.

|V | e m SSDE/|V |
30 3 3 3.9
60 3 3 4.8
120 3 3 5.3

|V | e p k SSDE/|V |
30 4 0.2 3 3.9
60 4 0.2 3 4.0
120 4 0.2 3 4.2

Barabási-Albert graphs Newman-Watts-Strogatz graphs
with parameters (|V |, e) with parameters (|V |, e, p)

5.2 Constructing k-Anonymous Graphs

In a second experiment, once the clusters were obtained, Algorithm 1 was ap-
plied to the original graph, and a k-anonymized graphs was constructed. For
each of the two random graph models, and for each number of vertices |V | in
{30, 60, 120}, Algorithm 4 was first applied to 20 different graphs, with the same
settings as the experiment in Section 5.1. The only change was the use of an x-
factor when updating the centroids, allowing to adjust the approximate number
of vertices in the centroids. Then Algorithm 1 was applied, using the resulting
clusters to construct a k-anonymous graph.

Several problems were observed during both experiments described in this
article. For example, although m centroids were demanded, the algorithm typ-
ically returned fewer centroids. Also, the k-means algorithm is not designed to
ensure that clusters contain at least k vertices. Since our goal is to construct
a k-anonymous graph, this was an issue. In particular, outliers were a prob-
lem, creating clusters with single vertices. All these problems are typical for the
k-means algorithm and there are methods to deal with them available in the
literature. Note though that for all the tested graphs, 10 different initializations
were enough in order to automatically find a clustering such that each cluster
contained at least k vertices. The results presented in Table 2 all correspond to
graphs that are k-anonymous.

Currently, there is no measure of information loss for graphs that can be
considered to be clearly better than other measures. In general, information
loss should be quantified according to the utility of the anonymized graph in
the context in which it should be used. This means that the best measure of
information loss may vary with the context. Sometimes it may be interesting
to preserve some particular property of the graph, i.e. diameter, girth, degree
sequence. Then, please note then that a graph that is k-anonymous with respect
to neighborhoods, with k ≥ 2 and minimum degree 2, must have girth 3 if
neighborhoods are closed and can not have girth larger than 4 if neighborhoods
are open. To see this, fix a vertex v and observe that there must be a vertex



276 K. Stokes

Table 2.

|V | e k SSDE/|V | ED/|V |
30 3 3 4.13 4.16
60 3 3 5.56 6.68
120 3 3 6.64 10.75

|V | e p k SSDE/|V | ED/|V |
30 4 0.2 3 3.93 3.68
60 4 0.2 3 4.51 4.95
120 4 0.2 3 4.61 6.6

Barabási-Albert graphs Newman-Watts-Strogatz graphs
with parameters (|V |, e) with parameters (|V |, e, p)

u �= v with the same neighbors as v. Since v has at least two neighbors, if
neighborhoods are closed, there will be a cycle of length 3, if neighborhoods
are open, there will be a cycle of length 4. Therefore the girth is not a very
interesting measure of information loss in this context.

In this experiment, information loss was measured both as in Section 5.1 and
as the number of edges that had to be removed or added in order to construct the
k-anonymous graph from the original graph. In Table 2, the average of the infor-
mation loss over the 20 graphs is presented as the sum of symmetric difference
error (SSDE), the symmetric difference between centroids and neighborhoods as
sets as in Table 1, and as the edge difference (ED), the number of edges added
or removed by the anonymization algorithm. In both cases, information loss was
divided by the number of vertices in the graphs. The SSDE was slightly higher
than in Table 1, due to the use of the x-factor.

6 Conclusions

The contribution of this article was two-fold. On the one hand we have char-
acterized k-anonymous graphs in terms of modular decomposition, motivating
a more flexible definition of k-anonymity for graphs. On the other hand we
have described two algorithms for the k-anonymization of graphs with respect
to open neighborhoods. Algorithm 3 is an adaptation of the k-means algorithm
to the open neighborhood clustering problem in graphs. Algorithm 4 is a dis-
tributed version of Algorithm 3. The algorithms have been implemented using
Sage [25]. Applications for distributed algorithms for k-anonymization of graphs
can be found for example in user-driven privacy enhancing technologies for social
networks.
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