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Abstract. Hyperproperties were proposed as an abstract formalization
of security policies, but unfortunately they lack a generic verification
methodology. In an attempt to remedy this, we introduced the notion of
incremental hyperproperties (IHPs), motivated by the observation that
they have a clearer and more feasible verification methodology. To show
that verification is indeed feasible, a decidable IHP verification method-
ology via games is presented and evaluated. The main advantage of the
approach is that the games in combination with winning strategy evi-
dence give valuable intuition about the security of a system and are very
helpful when analyzing systems w.r.t. policy specifications.

1 Introduction

Clarkson and Schneider introduced the notion of hyperproperties [3] in an at-
tempt to formalize security policies. A hyperproperty is a set of sets of execu-
tion traces over some alphabet. Hyperproperties are important and intuitively
appealing as they generalize properties and can be seen as very generic system
specifications. Some prominent instances of security-relevant hyperproperties are
the large variety of notions of noninterference [12,21,10].

Unfortunately, hyperproperties lack a generic verification methodology: for
instance, there is no such verification methodology for possibilistic information
flow hyperproperties [3]. In order to make a step towards such a methodology,
in recent work [15] we proposed an incremental approach to both system and
hyperproperty specification and verification. As a result, systems can be seen
as potentially infinite trees and hyperproperties as coinductive predicates on k-
tuples of trees expressed in a logic called IL. Specifications defined in such a
manner are called incremental hyperproperties (IHPs) and we argued that they
have a clear and feasible verification methodology [15]. Given a hyperproperty
H , an IHP H ′ is the greatest fixed point of a monotone function over k-tuples
of trees such that H ′ implies or is equivalent to H . We also introduced H ′-
simulation relations which correspond to a monotone operator whose greatest
fixed point is the coinductive tree predicate H ′. Showing the existence of such a
relation is sufficient to show that H ′ (and thus H) holds [15].

In order to show that IHPs can express a large class of useful, security-
relevant hyperproperties, we demonstrated that our coinductive unwinding rela-
tions (which happen to be H ′-simulations and thus IHPs) can express and reason
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about arbitrary security-relevant hyperproperties, including but not limited to
noninference [21], generalized noninference [21], generalized noninterference [12]
and the perfect security property [21] (shown in recent work [14]).

However, it turns out that the initially proposed logic IL [15] for IHPs is
undecidable and not expressive enough for a large class of useful IHPs arising
in practice, such as the incremental variants of possibilistic information flow
policies explored in recent work [14]. To address these problems, we investigated
several related logics [13] for IHPs and found out that the most appropriate one
(for the known IHPs) is a fragment ILk

μ of the polyadic mu-calculus Lk
μ [1].

In this paper, we start by proposing a characterization of the satisfaction re-
lation between a system and an IHP in Lk

μ in terms of playing the so called
IHP game. Such games are intimately related to parity games and this is used
to enable model checking IHPs based on game-based, off-the-shelf tools. In par-
ticular, we explore the problem of IHP model checking via games, by proposing
two sound, game-based approaches (one of them based on off-the-shelf tools). In
addition, we show that the games in combination with winning strategy evidence
give valuable intuition about the security of a system and can be very helpful
when analyzing why a system fails to respect some policy specification. We show
that using such techniques and visualizations in terms of games can potentially
result in tools with more intuitive debugging functionality.

The rest of the paper is structured as follows. Section 2 provides background
material. Section 3 proposes the logic ILk

μ which is a fragment of Lk
μ. It also

introduces IHP games for Lk
μ and establishes their relation to parity games. Sec-

tion 4 presents possible model checking approaches and an empirical evaluation
of one of them. Section 5 discusses the advantages of model checking IHPs via
games. In Sections 6 we discuss the main contributions and compare them with
related work. Finally, we conclude and share some ideas for future work.

2 Background

Let A be a fixed alphabet of abstract observations. A string is a finite sequence
of elements of A. The set of all strings over A is denoted A∗. A stream of A’s
is an infinite sequence of elements of A. The set of all streams over A is Aω .
A stream σ can be specified in terms of its first element σ(0) and its stream
derivative σ′, given by σ′(n) = σ(n + 1). A trace is a finite or infinite sequence
of elements of A. The set of all traces over A is denoted A∞ = A∗ ∪ Aω. Let
2 be any two element set. A system is a set of traces. The set of all systems is
Sys = 2A

∞
, the set of infinite systems is Sysω = 2A

ω

.

2.1 Properties vs. Hyperproperties

Clarkson and Schneider present a theory of policies based on properties and
hyperproperties [3]. Our definitions are slight generalizations of the original ones,
as we do not require all traces to be infinite. As a result, termination-sensitive
definitions can be expressed more naturally. A property is a set of traces. The
set of all properties is Prop = 2A

∞
. A hyperproperty is a set of sets of traces or

a set of properties. The set of all hyperproperties is HP = 22
A∞

= 2Prop = 2Sys.
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2.2 Models of Systems

In this work, we model systems as partial automata [16], trees or sets of traces,
as these can be seen as equivalent views [15]. A partial automaton with input
alphabet A and a start state is a 4-tuple 〈S, o, t, s0〉, where set S is the possibly
infinite state space of the automaton, the observation function o : S → 2 indi-
cates whether a state is accepting or not, the function t : S → (1+S)A gives the
transition structure and s0 is the initial state. If t(s) is defined for some a ∈ A,
then t(s)(a) = s′ gives the next state; s′ is then called an a-derivative of s and
denoted sa. When the function t(s) is undefined for some a ∈ A, it is mapped to
⊥. The observation function indicates whether the empty trace is in the set of
traces acceptable by the partial automaton from state s. Note that t(s)(a) = s′

is typically abbreviated as s
a−→ s′ and t(s)(a) = ⊥ as s � a−→.

Alternatively, it is often more intuitive and convenient to think of a system
as being equivalent to its behavior. In such cases, we talk about the unique
tree of system behavior. A tree can be obtained from a partial automaton by
continuously taking derivatives with respect to elements of A. The start state
of the system corresponds to the root of the tree and subtrees are obtained by
taking derivatives. Yet another view of systems is as sets of traces accepted by a
partial automaton. As partial automata, trees and sets of traces are equivalent
views on systems, we often implicitly switch between these views: for instance, we
may write t(T )(a) and Ta, where the type of T is either tree or system. Finally,

for a k-tuple of trees T we use notation T
a−→i T ′ to mean that T ′

i = t(T i)(a),
where T i is the i-th tree in T and for all j s.t. 1 ≤ j ≤ k and j �= i, T ′

j = T j .

2.3 Auxiliary Definitions

For a partition of alphabet A as A = Av ∪ An ∪ Ac, define a view to be a tuple
(Av, An, Ac) corresponding to visible, neutral and confidential events [10]. Let
sets Ai and Ao be inputs and outputs such that Ai ⊆ A, Ao ⊆ A and Ai∩Ao = ∅.

We also introduce definitions from previous work [14]. Coinductively define
noZ : A∞ → 2, which states that there are no events from set Z in a trace as:

coind

noZ(ε)

a ∈ A \ Z noZ (x)
coind

noZ(a · x)

Next, inductively define w�Z a · w′ (for Z ⊆ A, w Z-reveals a with tail w′)

ε�Z ε

a ∈ Z

a · w�Z a · w
b ∈ A \ Z w�Z a · w′

b · w�Z a · w′

Finally, coinductively define weak bisimulation w.r.t. set Z as follows:

coindε∼Z ε
w�Z a · w′ u�Z a · u′ w′ ∼Z u′

coindw∼Z u

The coinductive definitions are denoted as coind on the right side of the rule.
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2.4 Incremental Hyperproperties as Coinductive Predicates [14]

In recent work [15] we introduced and formalized the notion of incremental
hyperproperties (IHPs). Such a hyperproperty is the greatest fixed point of a

monotone functional over Sysk, given in a fragment of Least Fixed Point Logic
(the extension of first order logic with fixed point operators) [2], denoted IL.

An incremental hyperproperty (IHP) is a coinductive predicate on a k-tuple
of trees that can be specified by some formula φ ∈ IL. The set of all incremental
hyperproperties is {S ⊆ Sysk | S |= φ where φ ∈ IL}. Coupled with an IHP H ′,
we introduced the notion of an H ′-simulation — an n-ary relation R such that
R ⊆ ΨH′(R), where ΨH′ is a monotone operator determined by H ′. To illustrate
these notions, consider a variant of noninterference (called noninference [14]):

NI (X) =̂ ∀x0 ∈ X ∃x1 ∈ X. (noAc (x1)∧ x1 ∼Av x0).

The corresponding notion of NI ′ is given as follows:

NI ′ =̂ gfpR(s, t) . ∀a ∈ A \Ac ∀sa ∈ Sys.
(

s
a−→ sa →

∃σ ∈ (A \Ac)
∗ ∃tσ ∈ Sys.(t

σ−→ tσ ∧ a∼Av σ ∧R(sa, tσ))
)

∧

∀a ∈ Ac ∀sa ∈ Sys . (s
a−→ sa → R(sa, t)).

It is known [14] that for all T ∈ Sys, NI ′(T, T ) implies NI (T ). As a result, to
show that NI (T ), we can alternatively reason about NI ′(T, T ).

2.5 The Polyadic Modal mu-Calculus Interpreted over Trees [13]

The polyadic modal mu-calculus Lk
μ [1] is a logic whose formulae are interpreted

over k-tuples of transition systems. It is an extension of the modal mu-calculus [2]
with different diamond and box modalities associated with each system (from
the k-tuple). In this work, formulae will be interpreted over k-tuples of trees,
denoted T . The elements of these tuples will be referred to as Ti, where 1 ≤ i ≤ k.

Assume a set Var2 = {X,Y, Z, . . .} of second-order variables and a set P =
{Qi, Oi, . . . : 1 ≤ i ≤ k} of propositional constants. Formulae in Lk

μ have the
following syntax:

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]iΦ | 〈a〉iΦ | νZ.Φ | μZ.Φ,

where tt and ff are the constant true and false formulae, a ∈ A, [a]i and 〈a〉i
are the typical modal operators relativized to the i-th tree, where 1 ≤ i ≤ k. As
usual, μZ and νZ are the least and greatest fixed point operators, respectively.
Sometimes, for K ⊆ A we abbreviate

∧
a∈K [a]iΦ as [K]iΦ and

∨
a∈K〈a〉iΦ as

〈K〉iΦ. Finally, propositional variables are ranged over by second-order variables
from Var2. The semantics of Lk

μ on trees is given in recent work [13].

Any hyperproperty expressed in Lk
μ can be checked in polynomial time [1].

There is an algorithm for deciding T |= Φ, where Φ is closed, T a k-tuple of
finite transition systems with state spaces S1, . . . , Sk and m is the alternating
depth of Φ, in time O(|Φ|m(|S1| . . . |Sk|)m−1|T1| . . . |Tk|). Here |Ti| is the size of
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the underlying state space plus the size of the transition relation plus 1 and |Si|
is the size of the respective state space. The result is applicable to our setting
for reasoning about potentially infinite trees, generated by finite-state partial
automata.

3 Incremental Hyperproperty Checking Games

This section starts by presenting a fragment of Lk
μ which is expressive enough

for the known IHPs. Then it shows how to interpret IHP checking as playing
a game (called an IHP game and related to parity games) and thus lays the
foundations for game-based verification of IHPs.

3.1 A New Logic for Incremental Hyperproperties

The logic ILk
μ, which is a fragment of Lk

μ, is expressive enough for all IHPs

encountered in our former work [15,14]. Formulae in ILk
μ have syntax:

Ψ ::= νZ.Φ Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]iΦ | 〈a〉iΦ | μZ.Φ.

The maximal alternating depth of any formula in ILk
μ is 2, which results in

lower model checking complexity compared with Lk
μ. This is reflected in a result

about the complexity of model checking ILk
μ: there is an algorithm running in

time O(|Φ|2|S1| . . . |Sk||T1| . . . |Tk|) for deciding T |= Φ, where Φ is closed and
T a k-tuple of finite transition systems with state spaces S1, . . . , Sk [13]. The
logic allows (a restricted form of) coinductive/inductive definitions reminiscent
of the idea that any hyperproperty is the intersection of hypersafety and hyper-
liveness [3]: the latter are generalizations of safety and liveness properties.

To illustrate the need of alternation of least and greatest fixed point operators
(and to give intuition why IL is insufficient), consider the coinductive unwind-
ing relation oscV [14] in ILk

μ. Intuitively, oscV gives the indistinguishability of
possible behaviors at level Av, where O1 ↔ O2 means that the related states
have the same observations (both accepting or both rejecting, see Section 2.2).

oscV =̂ νX. O1 ↔ O2 ∧
∧

a∈A\Ac

[a]1μZ.(〈a〉2X ∨ 〈An〉2Z).

Although ILk
μ is expressive enough for the known IHPs, the theory presented in

this paper is more general as it works for the full polyadic modal mu-calculus.

3.2 Incremental Hyperproperty Checking Games (IHP Games)

In this section we propose a game-theoretic characterization of when an IHP
expressed in Lk

μ holds for a k-tuple of trees T , relative to a second-order valu-
ation V. The IHP games presented next are played by two players: refuter (R)
and verifier (V ). R attempts to disprove that T satisfies an IHP H ′, whereas
V attempts to prove that H ′ holds for T . A system satisfies an IHP whenever
player V has a winning strategy for the respective IHP game.
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Assume Φ expresses an IHP. A play of the IHP game HGV((T
1, . . . , T k), Φ)

is a finite or infinite sequence of pairs of k-tuples of trees and Lk
μ formulae:

((T 1
0 , . . . , T

m
0 , . . . , T k

0 ), Φ0) . . . ((T
1
i , . . . , T

m
j , . . . , T k

l ), Φn) . . . .

Note that each formula Φi is a subformula of Φ0 and each tree T j
i is a subtree

of T j
0 . The next move in a play from any position ((T 1

i , . . . , T
m
j , . . . , T k

l ), Φn)
depends on the main connective in Φn. The possible moves are given next:
– If Φn = Ψ1 ∧ Ψ2, then R choses one of the conjuncts Ψi (i ∈ {1, 2}), the k-tuple of trees

(T 0
i , . . . , T

m
j , . . . , T k

l ) remains unchanged and formula Φn+1 = Ψi.

– If Φn = Ψ1 ∨ Ψ2, then V choses one of the disjuncts Ψi (i ∈ {1, 2}), the k-tuple of trees
(T 0

i , . . . , T
m
j , . . . , T k

l ) remains unchanged and formula Φn+1 = Ψi.

– If Φn = [a]mΨ , then R has to move along the transition Tm
j

a−→ Tm
j+1, the k-tuple of trees

(T 0
i , . . . , T

m
j , . . . , T k

l ) becomes (T 0
i , . . . , T

m
j+1, . . . , T

k
l ) and formula Φn+1 = Ψ .

– If Φn = 〈a〉mΨ , then V has to move along the transition Tm
j

a−→ Tm
j+1, the k-tuple of trees

(T 0
i , . . . , T

m
j , . . . , T k

l ) becomes (T 0
i , . . . , T

m
j+1, . . . , T

k
l ) and formula Φn+1 = Ψ .

– If Φn = σZ.Ψ , then formula Φn+1 becomes Z and the k-tuple of trees (T 0
i , . . . , T

m
j , . . . , T k

l )

remains unchanged.
– If Φn = Z and the subformula of Φ0 identified by Z is σZ.Ψ , then formula Φn+1 = Ψ and

the k-tuple of trees (T 0
i , . . . , T

m
j , . . . , T k

l ) remains unchanged.

The winning conditions are considered next. Player R wins a finite play if
a false configuration is reached: the evaluated formula Φn is ff , or position
((T 1

i , . . . , T
m
j+1, . . . , T

k
l ), Z) is reached where Z is free in Φ0 and the k-tuple

(T 1
i , . . . , T

m
j+1, . . . , T

k
l ) �∈ V(Z), or V has to move, but such a move is impos-

sible. The rules for V are dual. The winner in an infinite play depends on the
outermost fixed point subformula that is unfolded infinitely often: if it is a least
fixed point one, R wins; dually, if this is a greatest fixed point one, V wins.

The proposed approach of reasoning about games to determine if a system
satisfies an IHP specification is justified by the following theorem.

Theorem 1 (Correctness of IHP games [13]). The following equivalences
are valid:

1. (T 1, . . . , Tm, . . . , T k) |=V Φ iff player V has a history-free winning strategy
for HGV((T

1, . . . , Tm, . . . , T k), Φ).
2. Dually, (T 1, . . . , Tm, . . . , T k) �|=V Φ iff player R has a history-free winning

strategy for HGV((T
1, . . . , Tm, . . . , T k), Φ).

3.3 From IHP Games to Parity Games

IHP games can be converted into equivalent parity games over k-tuples of trees.
This means that player P ∈ {V,R} has a history-free winning strategy for an
IHP game iff P has a history-free winning strategy for the respective parity
game. This is not surprising, as it is known that the solving of a parity game
has equivalent complexity to the model checking problem for the modal mu-
calculus [2]: the result can be lifted to our polyadic setting. The method for
converting IHP games into parity games is similar to the one used by Stirling [18]
for converting property checking games into (min-) parity games and can be
found in the first author’s PhD thesis [13]. The conversion allows the use of
results and tools developed for solving parity games to model check IHPs.
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4 Model Checking the Polyadic Modal mu-Calculus Lk
µ

This section starts by presenting the use of traditional model checking techniques
for IHPs. Then we introduce two novel, game-based approaches for model check-
ing IHPs. The major advantage of model checking via games is that it gives a
very accurate and intuitive account of whether a system respects a specification.

4.1 Traditional Model Checking of Lk
µ

It is possible to use traditional model checking techniques for IHPs in Lk
μ. Ander-

sen himself proposed a model checking approach for his Lk
μ [1]. The approach is

a reduction of the problem of model checking Lk
μ to model checking the ordinary

modal mu-calculus Lμ on a product of the original system.
Given an n-ary tuple of transition systems (T1, . . . , Tn), define the product

prod(T ) of these to be the labelled transition system (S,−→, i), where S is the
state space given as S =̂ S1 × . . . × Sn, −→ is the transition relation and i the
tuple of the start states. Relation −→⊆ S × (A× N)× S is defined as follows:

(s1, . . . , sn)
a,i−−→ (s′1, . . . , s

′
n) iff si

a−→ s′i and ∀j.(1 ≤ j ≤ n ∧ j 
= i) → sj = s′j .

Next, define prod(Φ) as the homomorphic map on formulae in Lk
μ such that

prod(〈a〉iΦ) = 〈(a, i)〉prod(Φ). Note that instead of 〈(a, i)〉Φ we typically write
〈ai〉Φ. It is clear that prod(T ) is a single system (vs. tuple of systems) and
prod(Φ) is defined over such systems.

Theorem 2 (Reduction of Lk
μ to Lμ [1]). Consider an n-tuple of transition

systems T and an Lk
μ formula Φ, as well as the respective prod(T ) and prod(Φ)

as defined above. Then the following equivalence is valid:

T |= Φ iff prod(T ) |= prod (Φ).

This result is important, as it suggests the use of standard model checking tech-
niques for verification of IHPs expressed in the polyadic modal mu-calculus Lk

μ.
We next propose two model checking approaches for IHPs via games. The

first is based on the combination of IHP games and the parity game solver PG-
Solver [5]. The second is based on the use of several tools (including MLSolver [6],
a tool to reason about satisfiability and validity of modal fixed point logics) and
has the advantage that it can be fully automated. Both approaches are based on
creating and solving the appropriate parity game, eventually using PGSolver [5].

4.2 Model Checking IHP Games

Start with some IHP game HGV((T
1, . . . , Tm, . . . , T k), Φ).

1. Convert HGV((T
1, . . . , Tm, . . . , T k), Φ) into the equivalent min-parity game

PGV((T
1, . . . , T k), Φ) (See Section 3.3 and our recent work [13]).

2. Use PGSolver to convert PGV((T
1, . . . , T k), Φ) to its equivalent max-parity

game PGmax
V ((T 1, . . . , T k), Φ), as PGSolver solves max-parity games.
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3. Use PGSolver to solve the parity game PGmax
V ((T 1, . . . , T k), Φ).

To know if (T 1, . . . , Tm, . . . , T k) |=V Φ holds or does not hold, it is enough to
solve the game locally for the start node. We have shown the correctness of
IHP games and of the conversion to parity games [13]. Hence, if player V has a
history-free winning strategy, then it has to be that (T 1, . . . , Tm, . . . , T k) |=V Φ;
if player R has a winning strategy, it has to be that (T 1, . . . , Tm, . . . , T k) �|=V Φ.

Example 1. Let V0 be the view of Av = {l1, l2}, An = ∅ and Ac = {h}. Consider
the (termination-insensitive version of) IHP definition NI ′ (see Section 2.4):

NI ′
V0

=̂ νX.[l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X.

Consider system T , given by the omega regular expression (l1hl2 | l1l2)ω. The
respective IHP game is given in Fig. 1. We next illustrate the use of PGSolver for
solving IHP games. We can convert game HGV((T, T ),NI

′
V0
) into a parity game

PGV((T, T ),NI
′
V0
) (see Fig. 2, the conversion method is from [13]). The resulting

parity game PGV((T, T ),NI
′
V0
) can be specified in PGSolver as follows:

pa r i ty 17 ;
0 2 0 1 ”1” ;
1 2 0 2 ”10”;
2 1 1 3 ,4 ” 1 9 ” ; . . .

In such a specification, the first line is optional and gives the highest identifier.
Each further line specifies a vertex by giving it an identity number, its parity,
its owner, the vertices that are successors and an optional, symbolic name of the
vertex [5]. PGSolver converts and solves the parity game globally:

Player 0 wins from nodes :
{0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 14 , 15 , 16}
with s t r a t egy [0−>1,1−>2,3−>3,5−>6,8−>8,11−>13,13−>14,15−>16,16−>1]
Player 1 wins from nodes : {12 , 17} with s t r a t egy [12−>12,17−>17]

1

2

 3  R

15 R  16  R

18  R 

30 R 40 R 

 

 

31
 

32  

33 V   

34 V   35 V   

36  

37 V  

38 V  39 V
 

17  

V 

R 

R 

V 

1 : ((T, T ), νX. 31 : ((T, T ), μZ.
[l]1μZ.(〈l〉2X ∨ 〈τ 〉2Z) ∧ [h]1X) (〈l〉2X ∨ 〈τ 〉2Z))
2 : ((T, T ), X) 32 : ((T, T ), Z)
3 : ((T, T ), 33 : ((T, T ), 〈l〉2X ∨ 〈τ 〉2Z)
[l]1μZ.(〈l〉2X ∨ 〈τ 〉2Z) ∧ [h]1X) 34 : ((T, T ), 〈l〉2X)
15 : ((T, T ), [l]1μZ. 35 : ((T, T ), 〈τ 〉2Z)
(〈l〉2X ∨ 〈τ 〉2Z)) 36 : ((T, Tτ ), Z)
16 : ((T, T ), [h]1X) 37 : ((T, Tτ ), 〈l〉2X ∨ 〈τ 〉2Z)
17 : ((Th, T ),X) 38 : ((T, Tτ ), 〈l〉2X)
18 : ((Th, T ), 39 : ((T, Tτ ), 〈τ 〉2Z)
[l]1μZ.(〈l〉2X ∨ 〈τ 〉2Z) ∧ [h]1X) 40 : ((Th, T ), [h]1X)
30 : ((Th, T ), [l]1μZ. (〈l〉2X ∨ 〈τ 〉2Z))

Fig. 1. The game graph of HGV((T, T ),NI ′
V0
)
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1

19

10

28

85

82

13

22

31

37

46

55

64 73

48

7566

57

Fig. 2. Parity game PGV((T, T ),NI ′
V0
)

The winning positions for V and R are presented, as well as the positional
strategy from each node. As V has a history-free winning strategy from the
start node, it follows that (T, T ) |= NI ′V0

. Hence NI V0(T ) holds [14]. The strategy
itself (and not only its existence) is important, as it provides a witness why a
hyperproperty holds or does not hold, as well as some intuition. Alternatively, if
we were only interested in the validity of the checked formula, we could simply
use PGSolver to perform local model checking and determine whether V has
a winning strategy from the start node. One obvious way of automating this
approach is to use a tool to create an IHP game from the formula and system.
However, it is more convenient to convert the (product of) transition systems
and formula into a parity game, and then solve that game. This would allow the
use of existing tools (e.g. MLSolver and mCRL2 [7]) and can be fully automated.

4.3 Model Checking without Going through IHP Games

The alternative approach that constructs the parity game automatically and
does not rely on an IHP game is presented next. The needed steps, given systems
(T 1, . . . , Tm, . . . , T k) and formula Φ, are:

1. Make the product of the systems denoted prod(T 1, . . . , Tm, . . . , T k), as out-
lined in Section 4.1. This can be done in mCRL2 using the parallel com-
position operator (||) and disabling the simultaneous occurrence of multiple
actions, as we are not interested in those for the product (see Section 4.2).

2. Convert system prod(T 1, . . . , Tm, . . . , T k) into MLSolver [6] format.
3. Convert formula Φ to work on the product prod(T 1, . . . , Tm, . . . , T k). In

essence, each action in the formula is given a subscript linking it with a
particular transition system. The result is prod(Φ) (see Section 4.1).

4. Use MLSolver to create a parity game for system prod(T 1, . . . , Tm, . . . , T k)
and formula prod(Φ).
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5. Use PGSolver to solve the parity game resulting from step 4.

The correctness of such an algorithm results from Theorem 2 and the suitable
construction of the product. In principle, writing a tool for fully automating
these steps is straightforward. For the model checking performed in this work,
we only wrote a script automating (the most tedious) step 2.

Example 2. Let view V1 be: Av = {l}, An = {τ} and Ac = {h}. Consider the
system S given as (hl | τhτ)ω . We use mCRL2 to build the product prod(S1, S2):

act h1, h2, l1, l2, τ1, τ2;
proc T1 = h1.l1.T1 + τ1.h1.τ1.T1; T2 = h2.l2.T2 + τ2.h2.τ2.T2; S = T1||T2 ;
init allow({h1, h2, l1, l2, τ1, τ2}, S) ;

The policy of interest is prod(NI ′V1
), here in the format for MLSolver:

nu X . (([l1]mu Z . (〈l2〉X | 〈τ2〉Z)) & ([h1]X)) .

s0

s1

s2

s3

s4

s5

s6 s7

s8

s9

s10

s11

s12

s13

s14

s15

h1

τ1

h2

τ2

l1

h2

τ2
h1

h2

τ2

h1

τ1

l2

h1

τ1

h2

l1
l2

l1h2

τ1

h2

τ2

h1

l2

h1
h2

h1

τ1

τ2

l1

τ2

τ1

l2

τ1

h2
h1

τ2

τ1

τ2

Fig. 3. The product prod(S1, S2)

The resulting transition system of prod(S1, S2) can be seen in Fig. 3. The
specification format (given next) is simple. The first line says that the transition
system has 16 states, the second line gives the start state 1. Each further line
specifies a state and lists its successors together with the respective labels. The
specification of the transition system is encoded in MLSolver as follows:

lts 16;
start 1;
1 h1 : 2, τ1 : 3, h2 : 4, τ2 : 5;
2 l1 : 1, h2 : 6, τ2 : 7; ...

The output (checking whether prod(NI ′V1
) holds for prod(S1, S2)) in MLSolver:

Game has 15 s t a t e s . F in i shed s o l v i ng : 0 . 00 sec .
Trans i t i on system i s no model o f the formula !

Hence, we may conclude that (S, S) �|= NI ′V1
. Instead of directly solving the

game, it is possible to display the parity game using MLSolver and the strategy
using PGSolver. For instance, the strategy is given as follows:
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Player 0 wins from nodes : {2 , 7} with s t r a t egy [ ]
Player 1 wins from nodes : {0 , 1 , 3 , 4 , 5 , 6 , 8 , 9 , 10 , 11 , 12 , 13 ,
14 , 15} with s t r a t egy [1−>3,3−>4,5−>6,6−>8]

4.4 Experiments

A number of experiments on relatively large (albeit admittedly artificial) systems
have been performed and reported in Table 1. The policy was always a variant
of the policy prod(NI ′V ), the approach is the one from Section 4.3.Although the
system products become large quite fast, the games are substantially smaller.
Proving a formula that is true requires more time than disproving the same
formula for a slight variant of the system, having the same number of states
(obtained by relabeling). We have not continued this experiment to obtain much
larger games, as such experiments for games exist [5]. It would be interesting to
further evaluate the approach on large reactive systems (left for future work).

Table 1. Proof of concept evaluation of the approach from Section 4.3

Program Domain size(product) Time(in sec)-secure Time(in sec)-insecure Game Size
1 1816 0 0 124
2 10139 0 0 330
3 18415 1 1 672
4 22645 8 6 550
5 63271 13 9 1925
6 78392 34 19 2988
7 79500 36 20 3942
8 122492 60 55 4103

5 Advantages of Model Checking via Games

Two of the presented approaches are game-based and this section presents some
of the advantages of these in comparison with traditional approaches, such as the
one presented in Section 4.1. Although game graphs similar to the one in Fig. 1
are useful for visualizing the respective games, there is more that can be done for
understanding and analyzing IHP games. To show this, we introduce two new
views of IHP games. These views allow focusing on interesting aspects of the
game and are based on information calculated by the model checking algorithm.

We first present notation needed for the formalization of the game graphs
(of IHP games) and the new views. Let σ = {V,R} denote the set of players.
A game graph can be formalized as the tuple (V,−→, L), where V is the set of
positions (vertices), −→ is a binary relation on vertices, and the partial function
L : V → σ, when defined, denotes whose turn it is at a position. The games we
consider are positionally determined [13]. Hence, the strategy for player σ is a
partial function fσ : Vσ → V, where v ∈ Vσ iff L(v) = σ. Let Winσ be the set
of winning positions for player σ. Technically, WinV and WinR are not part of
the game graph and need to be calculated by the model checking algorithm.

We next present the extended game graph view, which enhances the game
graph with the winning strategy and the complete winning positions. An
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extended game graph view is a 3-tuple (G, fG
σ ,WinG), including the graph view

G, the winning strategy fG
σ , where σ ∈ {V,R}, for the winner from the start

node, and the set of winning positions for both players denoted WinG = WinG
V ∪

WinG
R. A simple extended game graph view is presented in Fig. 4. The graph

additionally includes the progression of k-tuples of trees along the graph.
The second view is the tree view of the game — a finite list of the states

visited in a play with stuttering states removed, starting at the root of the
game tree and ending at the current position. A tree view for an IHP game
HGV((T

1, . . . , T k), Φ) at position HGV((T
1
l , . . . , T

k
m), Φn) is a list of states, start-

ing with (T 1, . . . , T k) and ending at (T 1
l , . . . , T

k
m), without repeating states. As

an example, the tree view at position 12 in Fig. 4 is: (T, T ), (Th, T ), (Thl, T ).
This is essentially a view showing the history of a game. The rules for this game
come from the policy to be checked; the arena of the game (k-tuple of trees)
together with the current position and the rules determine which next moves
are possible. Such games capture the intuition behind H ′-simulations well.

The ability of users to see and cross-reference both views introduced above
and to play interactively in IHP games in the role of V can be useful for debug-
ging: the fact that the system does not satisfy some policy (in Lk

μ) can be seen
interactively as the inability of V to win the respective game [19]. An advantage
of the views is that they are computed during the model checking process. A
tool such as PGSolver comes up with a winning strategy and winning positions
for the respective parity game automatically. Thus, the views can be constructed
automatically with relatively minor modifications of existing tools.

In order to better visualize the strategy-based evidence and show that it is
useful to enhance the user’s understanding (why a policy does not hold when R
has a winning strategy), we propose to combine the extended game graph view
with the tree view. This visualization can be done by a specially constructed
interactive tool, similar to the one proposed for property checking games [19].
The visualization starts by showing the part of the extended game graph view,
for which no player is responsible (such as initial positions) in combination with
the respective tree view. At each point in time there are several options. If the
current vertex is labeled R, then V has no choice but to observe what the next
position, determined by the winning strategy for R, is. The play goes into the
new position, the extended view is changed appropriately and the tree view is
changed when necessary. If the current vertex is labeled V , it is V ’s turn to choose
a move and the tool presents the possible next moves. If the current vertex is not
labeled, the game progresses automatically. At any time, both views are given
to the user (Fig. 4 and 5) and the combined information helps V to make an
informed choice. V is also able to backtrack and explore different plays.

Example 3. To illustrate these ideas, consider the system T given by the omega-
regular expression (hlh | τhτ)ω . We want to check whether (T, T ) |= NI ′ti ,
where NI ′ti is the termination insensitive version of NI ′ (restricted to some view
(Av, An, Ac) with Av = {l}, An = {τ} and Ac = {h}), given as follows:

NI ′ti =̂ νX. ([l]1μZ.(〈l〉2X ∨ 〈τ〉2Z)) ∧ [h]1X.

The extended game graph is given in Fig. 4. Player R has a winning strategy
for the IHP game HGV((T, T ),NI

′
ti). The strategy is given as the red (grey)
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2 : ((T, T ), X)
3 : ((T, T ), ([l]1μZ.(〈l〉2X ∨ 〈τ〉2Z)) ∧ [h]1X)
4 : ((T, T ), [l]1μZ.(〈l〉2X ∨ 〈τ〉2Z))
5 : ((T, T ), [h]1X)
6 : ((Th, T ),X)
7 : ((Th, T ), ([l]1μZ.(〈l〉2X ∨ 〈τ〉2Z)) ∧ [h]1X)
8 : ((Th, T ), [l]1μZ.(〈l〉2X ∨ 〈τ〉2Z))
9 : ((Th, T ), [h]1X)
10 : ((Thl , T ), μZ.(〈l〉2X ∨ 〈τ〉2Z))
11 : ((Thl , T ), Z)
12 : ((Thl , T ), 〈l〉2X ∨ 〈τ〉2Z)
13 : ((Thl , T ), 〈l〉2X)
14 : ((Thl , T ), 〈τ〉2Z)
15 : ((Thl , Tτ ), Z)
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17 : ((Thl , Tτ ), 〈l〉2X)
18 : ((Thl , Tτ ), 〈τ〉2Z)

Fig. 4. The extended game graph view of HGV((T, T ),NI ′
ti)

arrows. We next illustrate a visualization, building incrementally the views, that
is helpful for the user to understand why the policy NF ′

ti is violated by system T .
Fig. 5 presents the positions (and their respective tree views) corresponding
to the interesting plays of the game, namely the plays witnessing the winning
strategy for R. The visualization of the tree view can be seen as a game in its
own right: on the arena of two copies of T , player R moves in the first tree and
has a red (light grey) token, player V moves in the second tree and has a blue
(dark grey) token. The rules are implicit and depend on the policy, here NF ′

ti .
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Fig. 5. The tree views of game HGV((T, T ),NF ′
ti) at different positions/states

Initially, player V (i.e. the user) sees the extended graph until position 3 and
the tree view in Fig. 5(a). The next two moves are automatic and determined
by the winning strategy for R. The play is now at position 6, the extended view
consists of positions 1, . . . , 6 and the tree view is the one in Fig. 5(b). At positions
7 and 8 R follows her winning strategy. The extended game graph progresses
and is built to position 10, the respective tree view is the one in Fig. 5(c).
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Positions 10 and 11 are not labeled so the play goes to position 12, which is the
first possible choice for player V : she is now asked to choose between actions l
and τ , i.e. whether to go to position ((Thl, T ), 〈l〉2X) or ((Thl, T ), 〈τ〉2X). If V
chooses the first option (position 13), she loses the game. This can be seen in
the tree view, as V has to make an l-move in the second tree, but making such
a move is impossible. The user can backtrack to position 12 and choose to go to
position 14 instead. Player V continues playing and now the tree view changes
to the one in Fig. 5(d). The play then goes on until position 16, where V has to
again choose between l and τ , i.e. whether to go to positions ((Thl, Tτ ), 〈l〉2X) or
((Thl, Tτ ), 〈τ〉2X). Choosing either position, the user loses. Consulting the tree
view in Fig. 5(d), the user can see that neither action l nor τ can be performed at
position (Thl, Tτ ) and this is the reason for losing. Interestingly, this is also the
reason why the policy does not hold on the system. The two views have helped
identify and visualize the problem. Thus the views can be used to provide useful
intuition as to what goes wrong with the system-policy interaction.

The techniques presented here can be used to explore any IHP game in Lk
μ on

any finite-state system. The user can systematically explore different paths and
strategies to play against player R. As shown above, this helps with understand-
ing both the policy and system behavior, as well as their interaction.

6 Discussion and Related Work

This work enables practical reasoning about security-relevant hyperproperties
via IHPs and games. To achieve this, we propose two game-based model checking
approaches reusing some results on model checking parity games, in particular
algorithms and tools [19,22,20,17]. In this sense, using the tool PGSolver is par-
ticularly beneficial, as it implements most known algorithms for model checking
games, both local, on-the-fly and global ones, as well as heuristics to improve
performance. Thus, depending on the particular problem, one may choose an
algorithm with good theoretical properties or experiment with a multitude of
different algorithms. More importantly, such a tool is an excellent candidate to
build upon, as it calculates all the data needed to create the proposed views.
As a result, one can easily build an interactive visualization tool, allowing users
to play against player R to enhance their understanding of problematic system-
policy interaction. Building such a tool is left for future work.

The idea of using strategies for analyzing why a system does not satisfy a
policy is not new. Stevens and Stirling [19] present a similar idea of using strate-
gies to construct and prove the correctness of local, on-the-fly model checking
algorithms. They also present the idea of visualizing why a property does not
hold as a byproduct of the local model checking algorithm finding the strategy.
In comparison with our idea of visualization via views, their visualization seems
to be less intuitive (it is given by a command line tool). More importantly, our
views present a useful separation of the states, moves and rules of the game. In
addition, the views present a visualization of H ′-simulations.

We have not experimented with model checking very large systems with re-
spect to IHPs, as, due to our reduction of the problem to solving parity games,
doing so would be dependent on the concrete algorithms for solving parity games.
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Instead, we present a short survey of the time complexity of such algorithms.
Currently, the existence of a polynomial time algorithm for solving parity games
is a major open problem [8]. The reason is that solving a parity game is equiva-
lent to the problems of model checking the mu-calculus and the complementation
of ω-tree automata [18]. Most of the algorithms for solving parity games run in
exponential time, for instance this is the case for the recursive algorithm by
Zielonka [22] and the strategy improvement one by Vöge and Jurdziński [20].

Surprisingly, the promising and well-behaved in practice (see [5]) policy it-
eration algorithms, proposed by Vöge and Jurdziński [20] and Schewe [17], can
also take exponential time on some parity games [4]. The theoretically fastest
algorithms for the problem are randomized algorithms by Kalai [9] as well as
by Matoušek, Sharir and Welzl [11]. The fastest deterministic subexponential
(in the size of the game) algorithm for the solution of parity games uses only

polynomial space and runs in time 2O(
√
n log n), where n is the size of the game.

Although there is no proof that there are polynomial algorithms for solving
parity games, Friedmann and Lange [5] show that parity games can be solved
efficiently in practice. One of their results is that the recursive algorithm by
Zielonka [22] has the best performance in practice, being able to handle games of
size up to 1 million nodes. Although these results look promising, we acknowledge
that the topic of practical model checking of IHPs needs further exploration.

7 Conclusion

We have developed a verification methodology for IHPs in ILk
μ and Lk

μ, based
on a characterization of the satisfaction relation between a system and an IHP
in terms of playing a game. This is the first generic verification methodology
(via H ′-simulations and games) that goes beyond k-safety hyperproperties and
additionally enables reasoning about a class of liveness hyperproperties (i.e. the
coinductive variants of possibilistic information flow policies from [14]).

In addition, we have demonstrated the potential of practical game-based
model checking of IHPs using two approaches based on off-the-shelf tools. The
main advantage of these game-based approaches is the possibility of using a win-
ning strategy as a witness why a particular system is or is not secure with respect
to some policy. We also proposed two views that have the potential to facilitate
the illustration of system-policy interactions. Possible directions for future work
include extending the approaches to decidable classes of infinite state systems
and developing a game-theoretic semantics for IHP-preserving refinement.
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