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Preface

NordSec was initially started as a workshop series with the aim of bringing
together researchers and practitioners working on computer security in the Nordic
countries in 1996, thereby establishing a forum for discussion and cooperation
between universities, industry, and computer societies. Since then, the workshop
has developed into a fully fledged international conference, held in the Nordic
(and Baltic) countries – with five events in Sweden, three in Norway and Finland,
and two in Denmark, Iceland, and Estonia.

The 18th Nordic Conference on Secure IT Systems took place in Ilulissat
(Jakobshavn) on Greenland during October 18–21, 2013. It had for a long time
been a dream to arrange the conference in this remote part of the Danish King-
dom and the venue of Ilulissat was indeed remarkable – situated 200 km north of
the Arctic Circle and neighboring UNESCO’s World Heritage Centre of Ilulissat
Icefjord.

NordSec addresses a broad range of topics within IT security and in 2013
the conference had a special focus on the security challenges of cyber-physical
systems. A total of 35 submissions were received, each of which was reviewed by
three ProgramCommittee members. After a thorough discussion phase, 18 of the
submitted papers were accepted as regular papers and three as short papers; they
all appear in these proceedings. Additionally, the conference featured two invited
talks, one by David Basin on“Developing Security Protocols by Refinement”and
another by Gilles Barthe on“Towards Verified Implementations of Cryptographic
Constructions.”

We wish to thank all the people who invested time and energy to make Nord-
Sec 2013 a success: First and foremost come all the authors who submitted papers
to NordSec and presented them at the conference. The members of the Program
Committee together with the external reviewers worked hard in evaluating the
submissions and, in some cases, to shepherd promising work. We would also like
to thank Roberto Vigo, Alessandro Bruni, and Nataliya Skrypnyuk for assisting
with local arrangements. Last but not least, special thanks goes to Karin Jensen
at Greenland Travel for very competent assistance with travel arrangements.

The conference was sponsored by MT-LAB, a VKR Centre of Excellence for
the Modelling of Information Technology (www.MT-LAB.dk).

August 2013 Qujanarsuaq

Dieter Gollmann
Hanne Riis Nielson
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Towards Verified Implementation

of Cryptographic Constructions
Invited Talk

Gilles Barthe

IMDEA Software Institute

EasyCrypt [2] is a computer-assisted framework for reasoning about the security
of cryptographic constructions in the computational model. EasyCrypt adopts the
principles of provable security, and allows building reductionist proofs showing
that the probability that an adversary breaks the security of the cryptographic
system in “reasonable time” is “small”, provided the probability that a proba-
bilistic algorithm solves a computationally intractable problem in “reasonable
time” is also “small”. Over the last years, we have used EasyCrypt and its prede-
cessor CertiCrypt to prove security of several emblematic constructions, including
public-key encryption and signature schemes, modes of operations, hash designs,
zero-knowledge protocols, and differentially private algorithms.

Following an established trend, EasyCrypt takes a language-based approach to
provable security. Security notions and cryptographic constructions are modelled
using a core probabilistic programming language, featuring sequential composi-
tion, conditionals, loops, procedure calls, deterministic assignments and prob-
abilistic assignments drawn from discrete distributions. Thanks to their well-
defined semantics, programming languages provide a natural framework to rea-
son formally about security of cryptographic constructions. Specifically, proofs
of security are executed using program logics. Because reductionist arguments
reason about the execution of two programs, they cannot be captured by tradi-
tional program logics, which can only establish properties of program executions.
Therefore, EasyCrypt features a Hoare logic to bound the probability of events
in programs, and a relational Hoare logic that allows users to relate the proba-
bility of two events in different programs. In combination, these logics capture
the most common patterns of reasoning that arise in cryptographic proofs. Us-
ing an ambient logic, one can then prove concrete security of a cryptographic
construction by combining the probability claims derived from valid Hoare and
relational Hoare judgments.

However, there is a significant gap between the formally verified algorithms,
and their realizations in the real world. In fact, many practical attacks exploit
implementation details, for instance error management or message formatting,
that are typically not considered in formal proofs. Therefore, our most recent
work [1] provides a framework to derive security guarantees for executable code.
The front-end of the framework is an extension of EasyCrypt for reasoning about
C-like programs extended with idealized probabilistic operations, such as uniform
sampling or random oracles, in the style of code-based security proofs. This ex-
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tension allows proving concrete security of reference implementations based on
standards; it also narrows a painful gap between provable security, which consid-
ers algorithmic descriptions of the schemes, and cryptographic practice, based
on implementation of standards. The back-end of the framework is based on an
extension of CompCert, a verified optimizing compiler for C [3], and allows the
security guarantees established at C-level to be carried over to executable code.
We have applied the framework to verify the RSA-OAEP encryption scheme, as
standardized in PKCS#1 v2.1.

More information about the project is available from the project web page

http://www.easycrypt.info
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Detecting and Preventing Beacon Replay

Attacks in Receiver-Initiated MAC Protocols
for Energy Efficient WSNs�

Alessio Di Mauro, Xenofon Fafoutis,
Sebastian Mödersheim, and Nicola Dragoni

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

{adma,xefa,samo,ndra}@dtu.dk

Abstract. In receiver-initiated MAC protocols for Wireless Sensor Net-
works (WSNs), communication is initiated by the receiver of the data
through beacons containing the receiver’s identity. In this paper, we
consider the case of a network intruder that captures and replays such
beacons towards legitimate nodes, pretending to have a fake identity
within the network. To prevent this attack we propose RAP, a challenge-
response authentication protocol that is able to detect and prevent the
beacon replay attack. The effectiveness of the protocol is formally veri-
fied using OFMC and ProVerif. Furthermore, we provide an analysis that
highlights the trade-offs between the energy consumption and the level
of security, defined as the resilience of the protocol to space exhaustion.

Keywords: Beacon Replay Attack, Receiver Initiated Medium Access
Control, Wireless Sensor Network Security.

1 Introduction

Wireless Sensor Networks (WSNs) are collections of many small, resource and
power constrained, miniaturized sensing devices, equipped with an on-board ra-
dio transceiver which enables them to interconnect to each other. Their use
covers a broad spectrum of applications, from temperature monitoring, to home
automation and from medical to military applications. Deploying WSNs in un-
manned, unsurveilled and hostile areas is not uncommon, making security a
primary concern for the whole application. One of the very common attacks
performed against WSNs is the so called replay attack [6], where a previously
sent piece of information is recorded and re-transmitted at a later time. A replay
attack is very commonly used as an essential building block for more complex
and effective attacks (Sinkhole and Blackhole attacks [13], to mention only a
few). Alongside security, research in the field of WSNs keeps on expanding in
other interesting directions, primarily energy efficiency. The Receiver Initiated

� This work was partially supported by the IDEA4CPS project granted by the Danish
National Research Foundation.

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Di Mauro et al.

paradigm, introduced in [17], was proposed to provide an energy efficient way
of establishing a link-layer connection. In Receiver-Initiated MAC (Medium Ac-
cess Control)1 protocols, the communication is started with a special frame called
beacon, sent by what will be the receiver of the data. In this new scenario, the
typical solutions used to address common security issues do not apply anymore.

The contribution of the paper is as follows; we define and introduce the Bea-
con Replay Attack, an attack specific for receiver-initiated MAC protocols for
energy-efficient WSNs (Section 2). We analyze the attack in depth and show
how it can be used to bring severe harm to a sensor network and how coun-
tering it at a the link-layer level will preclude other more sophisticated attacks.
To achieve the latter, we introduce and discuss RAP, the Receiver Authentica-
tion Protocol, a challenge-response authentication protocol specifically designed
to detect and prevent the beacon replay attack (Section 3). We also include a
formal verification of RAP through the automated verification tools OFMC [3]
and ProVerif [4] (Section 4.1) and a space exhaustion analysis (Section 4.2).
Ultimately, we present an overhead assessment of RAP by means of an energy
consumption analysis (Section 4.3). Section 5 concludes the paper.

2 Attack Definition and Related Work

2.1 Receiver-Initiated MAC Protocols

A MAC protocol is responsible for the establishment of a communication link.
Its primary role is to coordinate access to and transmission over a medium
common to several nodes. Furthermore, it plays a key role in the design of
energy-efficient WSNs, as it controls the active and sleeping state of a node,
known as duty cycling. The energy consumption of a wireless sensor node is
dominated by the power needs of its radio component [2]. As a result, duty
cycling the radio plays a fundamental role towards the realization of low-power
wireless networks. Radio duty cycling introduces the problem of coordinating
the sender and the receiver to a moment in time where both are active, so that a
wireless link can be established. One of the common approaches to this issue is
the receiver-initiated paradigm of communication for duty cycling nodes, which
was originally introduced by Lin et al. in 2004 (RICER [17]). Later, in 2008,
the paradigm was popularized by RI-MAC [29], whose authors also provided an
implementation of the protocol for TinyOS [15].

Receiver-Initiated MAC protocols use beacons to establish a link between
duty cycling nodes, as shown in Fig. 1. In particular, a node is generally in a
sleeping state, in which its radio is turned off. Periodically, it interrupts its sleep
to transmit a small frame, called beacon, which indicates its availability to receive
data. After the beacon transmission and for a predefined time, the node awaits
with the radio tuned on, for a reply. In case of no reply, the node goes back to the
sleeping state. A node with data to transmit interrupts its sleep and passively
listens to the channel for a beacon that originates from the intended receiver.

1 Mind the unfortunate clash of acronym with Message Authentication Code.
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Fig. 1. Receiver-Initiated paradigm of communication

Upon reception of a beacon, data transmission follows, typically acknowledged
by an additional control frame (ACK ). The latter concludes the communication
cycle and both nodes go to the sleeping state.

Since the publication of RI-MAC, several MAC protocols that build on the
receiver-initiated paradigm have been proposed. Such protocols mostly focus on
optimizing the performance of the network and/or extending some features. For
instance, proposed protocols focus on different aspects such as mitigating the
time a node awaits for a beacon (e.g. EE-RI-MAC [35] and PW-MAC [31]), dy-
namically adapting the duty cycles (e.g. ODMAC [9] and CyMAC [24]), adding
broadcasting support (ADB [28] and YA-MAC [34]) and adding multi-channel
support (DCM [16] and EM-MAC [30]). Despite their differences, all these MAC
protocols are based on the same receiver initiated communication paradigm.

2.2 Related Work: Mitigating Replay Attacks in WSNs

The replay attack is a well known threat for WSNs. It can be used as a building
block for other attacks such as PDoS (Path Denial of Service) [5] where a whole
path from one sensor node to the base station is filled with bogus packets. Given
the typical structure of a WSN, i.e. a tree rooted in the base station, not only the
node at one end of the attacked path can not use the communication medium,
but also all the nodes along the path are prevented from forwarding their own
messages. Furthermore, depending on the specific application that is being run
on top of the network, replayed data messages could pose different kind of threats
according to their specific meaning. One of the well known security suites for
WSNs, TinySec [14], explicitly leaves replay attacks out of consideration.

Other previous works have addressed and mitigated replay attacks. The most
common solution is to make each packet unique by means of adding either a
counter or a timestamp. Timestamps are usually harder to implement because
they require an agreement between the sender and the receiver which, in turns,
translates to a global agreement for forwarded packets. An alternative is repre-
sented by monotonically increasing counters that are generally included within
a message authentication code, making sure that each message will be different
from the previous one. The authors in [25], use two different techniques one for
each part of the protocol. In SNEP a counter is added within the MAC code,
whereas time synchronization and hash chains are used in μTesla. Similarly, the
authors in [18] use a sequence number in the message exchange. The work found
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in [8] makes use of hash chains and a two step scheme composed of detection and
response. For the detection part each node adds its own ID value to the message,
along with an always increasing common hop count. The authors in [10] use the
LEACH [11] protocol in a query driven paradigm and build upon it a mechanism
that exploits the cluster organization, relaying on the cluster heads to compare
timings of the messages from the registered nodes. Finally, [26] presents a time
synchronization scheme that makes use of beacon messages that could somehow
resemble the idea of beacons in the receiver-initiated paradigm. Once more the
authors make use of a sequence number in order to prevent replay attacks.

Replaying beacons in the receiver-initiated world presents a very different ap-
proach to the typical replay attack. In the next section we will see why commonly
adopted solutions are inapplicable or ineffective for this class of protocols.

2.3 Beacon Replay Attack in the Receiver-Initiated Paradigm

A replay attack is defined as an attack against a protocol where previously ex-
changed messages are reused in order to fool legitimate participants into thinking
that the current run of the protocol is valid and exchanged data is fresh [6].

Replay attacks can be deployed against WSNs using a receiver-initiated MAC
protocol. The key idea is to capture and replay beacon frames. As mentioned
before, these frames manifest the availability of a particular node to receive a
message. Among other things, beacons contain the identity of their creator which
is the main piece of information needed to determine whether or not a specific
beacon can be used by a potential sender, according to the overlying routing
algorithm. By replaying beacons containing good identities (typically from a
routing point of view), it is possible to deploy a series of other attacks.

First of all, it is possible to flood the channel with these frames, trying to
accumulate as many data packets as possible, therefore performing what is
known as a Sinkhole attack [13]. After the acquisition, packets can be com-
pletely dropped thus performing a Blackhole attack [13]. A subtler possibility is
to implement a Selective Forwarding attack [13] (sometimes also called Grayhole
attack), where the packets are not dropped indiscriminately, but rather accord-
ing to their source. This yields a harder to detect and yet still very effective
attack. Another possible attack is the Sybil attack [13] shown in Fig. 2, where a
node relates to other nodes with more than one identity. This could lead to rout-
ing paths to be invalidated, or even nodes that are physically not within range
one another, to be led to believe so; turning this into a rudimentary one-man
Wormhole attack [13]. One last meta-attack, specific to duty-cycling wireless
networks, is what we call the Sleepwalker attack. The idea behind this attack is
that all the previous attacks can be deployed by a malicious node that is within
range of the attacked node, by exploiting the notion of duty-cycle. Beacons can
be collected from a node and replayed in the same neighborhood when the orig-
inal sender is asleep. In this way a malicious node can effectively masquerade
itself as another node.

Well-known techniques to prevent this attack (shortly introduced in Section
2.2) do not apply in this scenario. One of the advantages of a receiver-initiated
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S1 S2 S3u v Sybil node

Regular node

Virtual node

Fig. 2. Sybil attack: a Sybil node (red) sends beacons to regular nodes (u,v) claiming
different legit identities (S1, S2, S3)

approach is the fact that no synchronization is needed for the protocol to operate.
Timestamps, in order to be meaningful, require some form of clock synchroniza-
tion among the nodes. This usually comes for free within protocols that use
synchronized duty-cycles, but is a costly feature to obtain in receiver-initiated
protocols. The other common alternative is the use of counters or session num-
bers. The latter are random non-reusable numbers that uniquely identify a par-
ticular message, or in this case a beacon. In order to check if a received beacon
is fresh or replayed, a table of all the previously used session numbers should be
kept. Given the highly constrained resources of a node, and the fact that there
should be such a table for each one of the neighboring nodes, this solution is
inapplicable. One way of simplifying this mechanism is to replace the random
number with a monotonically increasing counter. This eliminates the need of
having to store a whole table, only the latest value is needed. Upon receiving a
message the new counter value can be compared against the last received one and
if newer (i.e. the receiver value of the counter is bigger than the previous one) it
will be accepted and discarded otherwise. The reason why this mechanism does
not work with a receiver-initiated protocol is the following. Beacons are sent
with a periodic cadence, which is typically randomized in order to minimize col-
lisions. If we also consider all the neighboring nodes, from the point of view of a
specific node, the arrival time of a beacon is virtually uniformly distributed. This
means that there is no way for a sleeping node to know how many beacons were
sent between the current and the previous active period, allowing the attacker
to replay beacons that were not received by sleeping nodes. Moreover, a major
downside of both timestamps and counters, is that some extra information (i.e.
overhead) has to be sent with every beacon, even the ones that will never be
received, because all the other nodes are asleep.

Lastly, despite the fact that Message Authentication Codes (MAC) can be
used to authenticate beacon, they cannot prevent a replay attack. All that can be
guaranteed upon receiving a beacon whose message authentication code correctly
matches, is that the at some moment in time that beacon was genuine, created
by a legitimate node and intended for another legitimate node. However, it is
not possible to establish whether or not the beacon that has just been received
is actually that beacon.

For all these reasons, we introduceRAP, a novel authentication scheme specifi-
cally designed to detect and prevent the beacon replay attack in receiver-initiated
MAC protocols.
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3 Receiver Authentication Protocol (RAP)

RAP (Receiver Authentication Protocol) is a challenge-response authentication
protocol that aims to authenticate the receiver, i.e. the beacon transmitter, in
a receiver-initiated data transmission, securing the receiver-initiated paradigm
of communication in general. RAP is compatible and can be used on top of
every MAC protocol that follows the receiver-initiated paradigm, essentially se-
curing the whole class of protocols from beacon replay attacks; moreover it can
and should be used together with security suites that provide other important
features such as data integrity and confidentiality (e.g. TinySec [14]).

Sender Receiver
Beaconi

Dataj

Beaconi+1, Ack(Dataj)

(a)

Sender Receiver
Beaconi

Dataj , CD

Beaconi+1, Ack(Dataj), E(CD)

(b)

Sender Receiver
Beaconi

CP

E(CP )

Dataj

Beaconi+1, Ack(Dataj)

CP
?
= D(E(CP ))

(c)

Fig. 3. A typical receiver-initiated protocol (a), RAP-D (b), RAP-P (c)

RAP has two modes of operation as shown in Fig. 3, namely detection and
prevention mode. In a nutshell, the detection mode (RAP-D) is a low overhead
scheme and aims at detecting an intruder that replays beacons without prevent-
ing it from doing so. The prevention mode (RAP-P), on the other hand, is a
more costly scheme that prevents the attack altogether. As described in the fol-
lowing sections, the key difference between the two modes is the timing of the
challenge-response message exchange. In RAP-P, the challenge-response message
exchange takes place before the data transmission. Thus, the sender transmits
the data packet only if the receiver is authenticated. The low overhead nature of
RAP-D, on the other hand, is maintained by piggybacking the challenge and its
response on top of the frames normally exchanged in the MAC protocol. In other
words, the authentication of the receiver takes place after the data transmission
(thus, the attack is not prevented). Having energy efficiency as a primary system
priority, the idea is that a node normally operates at the low overhead detection
mode and switches to the expensive prevention mode only if necessary.

3.1 Detection Mode (RAP-D)

RAP-D is aiming at detecting beacon replay attacks with low communication
overhead. The protocol works as shown in Fig. 3b. Consider that a sender node
A wants to transmit some data to a receiver node B. After B broadcasts a
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beacon, A answers back with a data packet and a challenge value CD. On its
following beacon, B acknowledges the reception of the data packet, and attaches
the encrypted version of the challenge EkRAP (CD) using the protocol specific,
shared key kRAP . At this point B can validate the response to the challenge by
decrypting it and checking it against its original value. Should these two values
not match, then B can conclude that the initial beacon was not genuine.

RAP-D adds a minimal overhead in the whole communication scheme, as the
challenge and the response are piggybacked on top of a regular message exchange.
Furthermore, if the challenge, CD, is transmitted as part of the payload and
encrypted with it, its size can be relatively small without risking increasing the
chances of a space exhaustion attack (see Section 4.2).

3.2 Prevention Mode (RAP-P)

RAP-P is aiming to prevent the beacon replay attack at the cost of an increased
overhead. In particular, the challenge-response messages are exchanged before
the data transmission, in order to distinguish the legitimate from the replayed
beacons. The protocol works as shown in Fig. 3c. Instead of sending the data
right after a beacon, A sends out a longer challenge CP , and awaits for its en-
crypted version EkRAP (CP ) from B. Only if the received value decrypts correctly
(i.e. matches against CP ), then data is sent. This scheme is more expensive be-
cause it requires two additional messages to be exchanged. Additionally, the
size of the challenge needs to be significantly larger than the detection mode to
prevent space exhaustion attacks.

3.3 Transition Policies

Depending on the security goal of an application, RAP can be configured to
switch between the two modes, using several policies. If the application can-
not tolerate a few beacons getting replayed, the protocol should always operate
in prevention mode for maximum security. In the opposite case, the detection
mode should be the default mode to promote energy efficiency. Here, the transi-
tion from RAP-D to RAP-P should be done after a defined number of challenge
mismatches. This number should be configured accordingly to account for chan-
nel errors. Furthermore, the intruder detection may trigger an alarm that can
be piggybacked onto data packets and beacons in order to warn the neighboring
nodes and the sink. The transition back to detection mode can be done either
automatically or manually depending on the level of desired of security. In cases
of high security requirements, it may be desired that RAP-D is re-activated
manually by the system administrator only after an investigation. An automatic
transition to RAP-D, can be done after a predetermined number of success-
ful challenge matches. To avoid the exploitation of the latter transition policy,
this number can be exponentially increased each time a new replay attack is
detected.
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4 Verification and Analysis

4.1 Verification with OFMC and ProVerif

In order to formally verify RAP, we modeled it using the AnB language. AnB [21]
is a specification language based on the popular Alice-and-Bob notation for se-
curity protocols. Besides giving us a way to describe the protocols of interest in a
succinct way, AnB is also a formal language with an unambiguous semantics of the
honest agents, the intruder, and the goals of the protocol. The semantics of AnB
is defined by translation to infinite-state transition systems and its attack states,
described in the AVISPA Intermediate Format [1]. The Intermediate Format can
be directly read by several tools, such as the model-checker OFMC [3]. We also
manually translate AnB specification to the abstraction-based tool ProVerif [4].
The main idea for using two tools lies in their complementary strengths. OFMC
is effective in finding attacks, but can verify a protocol only for a bounded num-
ber sessions; on the other hand ProVerif abstracts from the concrete search space,
sometimes producing false attacks (especially for replay-protection goals), requir-
ing adaptations of the specification. Therefore, verifying the protocols with differ-
ent approaches gives a higher confidence.

The core of the AnB specification is the definition of the behavior of each role
of the protocol when it is played by an honest agent, namely how this agent
decomposes the messages it receives (and what parts of a received message it
can actually check), and how the agent composes outgoing messages based on
its initial knowledge and the previously received messages. Here, all variables
that do not appear in the knowledge section of the AnB specification are values
that are freshly created by the agent who first uses them. For instance in the
detection protocol RAP-D, A freshly creates the challenge C and the data Data.
For the full details of the AnB semantics we refer to the original paper [21].

The standard intruder model of AnB is the common Dolev-Yao intruder [7]
who controls the entire communication medium, it can arbitrarily overhear, send
and even intercept messages. This is clearly inspired by communication in wired
networks, and for many questions this is unrealistically strong for WSNs: an
intruder may not control all locations spanned by the WSN and also it may not
be able to hear a message when it is blocking it (e.g. by jamming). However,
verifying the protocol under such a strong intruder gives higher confidence.

Moreover, unless explicitly excluded in the specification, the intruder can also
play as a legal participant of the protocol. In the case of WSNs, this amounts
to modeling compromised or intruder-controlled nodes. These dishonest nodes
do not need to comply with the protocol, but can send whatever messages the
intruder can compose from its knowledge. The initial intruder knowledge is deter-
mined also by the knowledge section of the AnB specification: for each instance
of a role that the intruder is playing, he gets the associated initial knowledge.
For example, consider in the RAP-D protocol a session where A is played by
honest agent a and B is played by the intruder i. Then the intruder gets the
knowledge of B under this instantiation, i.e., a, i,mac, sk(a, i), and thus he has
the shared key needed for communicating with a.
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Furthermore, we use authentication goals which correspond to Lowe’s injective
agreement [19]. For the concrete example of the goal A authenticates B on B,C,
as soon as B learns the fresh challenge C, it produces (in our model) an auxiliary
event witness(B,A,C) formalizing the intention to run the protocol with A
and using challenge C. When A successfully finishes her run of the protocol,
she produces also an event request(A,B,C) to formalize that she finished the
protocol, apparently with B and using challenge C. It counts as an attack if a
trace contains more request events than corresponding witness events, i.e., when
A either believes in receiving something from B that B actually has never sent,
or if A is tricked into accepting something more times than B actually sent.

Finally, we use Maurer’s channel notation [20], which is supported by the
AnB language (for the formal definitions in AnB see [23]). Informally A •→B
means that A sends a message authentically to B (so B can be sure it really
comes from A and was meant for B), A→•B means that the message is sent
confidentially (so A can be sure only B can receive it), and A •→•B means
both authentic and confidential transmission. We use this notation to abstract
from how the transmission of the actual data is organized, i.e., how authenti-
cation and confidentiality is achieved if they are desired. In fact, this problem
is orthogonal to the replay-protection for the beacon that we study here, and
the channel notation allows us to abstract from that. We note however that the
actual realization of such channels (e.g. by MAC and/or encryption) needs to
compose with our replay-protection, as explained in [23]. In short, if both our
replay protection and the secure channel implementation use symmetric encryp-
tion with the same shared key, this can lead to misunderstandings in the WSN
that may be exploitable. If they use however different keys (possibly derived
from the same root key) this is prevented and the composition is sound.

In Fig. 4 it is possible to see how we modeled RAP using the AnB notation
[21]. It should be noted that we decided to strip down the protocols in order
to focus the attention on the beacon replay attack, hence we kept only the
messages relevant in this sense. Furthermore, due to space limitation, we also
decided not to include the basic version of the paradigm which does not include
any form of authentication. This protocol is essentially modeled like the basic
version (Fig. 4a) but without an authentication code for the beacon. This yields
the trivial attack of beacon forgery due to the complete lack of authentication.

In the case of basic authentication (Fig. 4a), OFMC can detect the beacon
replay attack, shown in Fig. 5, within a few seconds. For the intruder i it is
simply enough to store a previously received beacon and replay it to a victim
node in order to receive the data. Another interesting fact is that by adding
the weakly clause to the authentication goal, hence turning it into Lowe’s non-
injective agreement [19], no attack is found. This helps to build confidence in
the model and its correctness. When running OFMC on RAP-D and RAP-P
we can verify them for 3 sessions in 2 and 24 minutes respectively, without any
attack. Note that in each session, OFMC considers all possible instantiations of
the roles with concrete agents, both honest and the intruder. Thus, whenever a
protocol is verified for a given number of sessions, then there is no instantiation
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Protocol : Bas ic Auth

Types :
Agent A,B;
Function mac , sk

Knowledge :
A: A,B,mac , sk (A,B) ;
B: A,B,mac , sk (A,B)

Actions :
B−>A: B,mac( sk (A,B) ,B)
A∗−>∗B: Data

Goals :
A authenticates B on B

(a)

Protocol : RAP−D

Types :
Agent A,B;
Function sk

Knowledge :
A: A,B, sk (A,B) ;
B: A,B, sk (A,B)

Actions :
B−>A: B
A∗−>∗B: Data ,C
B−>A: { |C | } sk (A,B)

Goals :
A authenticates B on B,C

(b)

Protocol : RAP−P

Types :
Agent A,B;
Function sk

Knowledge :
A: A,B, sk (A,B) ;
B: A,B, sk (A,B)

Actions :
B−>A: B
A−>B: C
B−>A: { |C | } sk (A,B)
A∗−>∗B: Data

Goals :
A authenticates B on B,C

(c)

Fig. 4. The protocols used in OFMC described with AnB notation. A basic authenti-
cation model (a) is only enough to prevent beacon forgery. RAP-D (b) and RAP-P (c)
are not affected by beacon replay attacks.

of the roles for these parallel sessions that can lead to an attack. As a rule of
thumb, attacks are usually detected within 2 sessions.

ProVerif computes on first-order Horn clauses [12] that represent an over-
approximation of the reachable events and messages the intruder can ever learn.
There is therefore no notion of timeline, posing some difficulties for the analysis of
replay, even though ProVerif offers the notion of injective events for this purpose.
In order to experiment with different settings, we used the AIF framework [22]
built on top of ProVerif, allowing to specify a state-transition system with a
number of sets of data. In this particular case we can define for each agent the
set of challenges that are sent out and have not been responded to, as well as
those that have been responded to (and are therefore used). The AIF framework
also allows for producing the Horn clauses for a different tool (on which ProVerif
was originally based): the automatic first-order theorem prover SPASS [33]. It is
therefore without extra cost to check the verification also with SPASS. ProVerif
needs 5 and 3 minutes, respectively for RAP-D and RAP-P, while SPASS has a
large discrepancy in run times: 73 minutes for RAP-D and only 1.5 minutes for
RAP-P. In fact, the two tools have often different performance and termination
behavior due to very different strategies, another reason to often try out both.

4.2 Space Exhaustion Analysis

In this section we conduct a space exhaustion analysis on RAP. Specifically, an
attacker can passively monitor the communication of legitimate nodes and collect
pairs of challenge and response messages. This way, the attacker can gradually
build a dictionary that can be used to bypass RAP. The size of such a dictionary
is a direct indication of the resilience of the protocol against space exhaustion.
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(b, 1) intruder (a, 1)

•
b,mac(sk(a,b),b) �� •

b,mac(sk(a,b),b) �� •

• •
data1

�� (a, 2)

•
b,mac(sk(a,b),b) �� •

• •
data2

��

Fig. 5. Trace of the beacon replay attack found by OFMC in the basic version of a
receiver-initiated protocol

When RAP is in prevention mode, an attacker can trivially map the challenge
to the respective response, as they are both distinct messages. Thus, the size of
each word DRAP-P in the dictionary is equal to the size CP of the challenge in
bits, translating to 2DRAP-P words.

DRAP-P = CP (1)

When RAP is in detection mode, we aim at a small challenge to keep the overhead
low. However, the dictionary size can be significantly increased by encrypting
the challenge together with the data, using Cipher-Block Chaining (CBC) en-
cryption [27]. Essentially, CBC hides the challenge within the data, preventing
the attacker from mapping the challenge to the response. As a result, a dictio-
nary can only be built by mapping the whole message (that contains both the
data and the challenge) to the respective response. Therefore, the size of each
word DRAP-D in the dictionary, which translates to a dictionary size of 2DRAP-D

words, is equal to the aggregate size LD of the data and CD of the challenge.

DRAP-D = CD + LD (2)

As an attacker can force the system to change the mode of operation, we note
that the overall resilience of RAP to space exhaustion is equal to the smallest
of the two dictionaries, DRAP-D and DRAP-P. Furthermore, the sizes of the two
challenges, CD and CP , which constitute configurable protocol parameters, de-
fine the level of security in the same manner the size of a key defines the level
of security of an encryption algorithm. In the following section, we attempt to
model the energy overhead of RAP and highlight the trade off between security
and energy constraints.

4.3 Energy Consumption Analysis

Let LD be the size of a data packet in bits, LB be the size of a beacon in bits and
R the transmission rate of the radio in bits per second. Additionally, let Ptx and
Prx be power consumption for transmitting and receiving / listening respectively.
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First, we estimate the energy consumption for a single packet transmission in the
case of not using RAP. For the receiver, B, the energy consumption is estimated
by (3), where tG is a time guard during which the radio is turned on while
waiting for a answer right after a transmission. The purpose of such a guard is
to account for the propagation and the processing delay.

EDefault
B =

LB

R
Ptx + tGPrx +

LD

R
Prx +

LB

R
Ptx (3)

For the sender, A, the energy consumption is estimated similarly.

EDefault
A =

LB

R
Prx +

LD

R
Ptx + tGPrx +

LB

R
Prx (4)

Note that this energy model disregards the energy consumed while the sender
awaits for the beacon, as this source of energy consumption is independent of
the security protocol.

In the case of RAP-D, the energy consumption for a single packet transmis-
sion, for the receiver (B) and the sender (A), is given by the following formulae.

ERAP-D
B =

LB

R
Ptx + tGPrx +

LD + CD

R
Prx +

LB + CD

R
Ptx (5)

ERAP-D
A =

LB

R
Prx +

LD + CD

R
Ptx + tGPrx +

LB + CD

R
Prx (6)

In the case of RAP-P, the energy consumption for a single packet transmission,
for the receiver (B) and the sender (A), is estimated similarly.

ERAP-P
B =

LB

R
Ptx + tGPrx +

CD

R
Prx +

CD

R
Ptx + tGPrx +

LD

R
Prx +

LB

R
Ptx (7)

ERAP-P
A =

LB

R
Prx +

CD

R
Ptx + tGPrx +

CD

R
Prx +

LD

R
Ptx + tGPrx +

LB

R
Prx (8)

We define the energy consumption overhead (ECO) of a protocol as the ratio
of the energy consumption for a single packet transmission (while using the
respective protocol) over the case of a plain communication (without using it).
The subscript j is equivalent to B for the receiver and A for the sender.

ECORAP-D
j =

ERAP-D
j

EDefault
j

, ECORAP-P
j =

ERAP-P
j

EDefault
j

(9)

For the following numerical results, we assume using the CC2500 radio [32]
which has the following characteristics: R = 500 Kbps, Ptx = 53.8 mW , Prx =
42.5 mW . Additionally, we consider the following values for the protocol param-
eters: LB = 2 bytes, LD = 32 bytes and tG = 10 μs. Fig. 6 shows the cost for
a single packet transmission of the two protocols, as defined in (9). Notice that
the cost of the sender and the receiver increase linearly with the challenge size
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Fig. 6. Energy Consumption Overhead (ECO) for a single packet transmission for
RAP-D (a) and RAP-P (b)

while the cost for the latter is relatively higher. The difference between them
also increases as the challenge size increases.

In Fig. 7, we to compare the cost of RAP-D and RAP-P, showing the low-
overhead nature of the former. Particularly, we compare the cost overheadECOB

for the receiver of the two protocols keeping the same dictionary word size D, as
defined in (1) and (2). Note that the dictionary word size indicates the resilience
of each protocol to space exhaustion. In the case of RAP-D, we make sure the
value of the challenge is at least 1 byte by setting it to CD = max(DRAP-D −
LD, 1). As shown in the figure, the cost of using RAP-P is significantly higher
than the cost of using RAP-D for the same level of security.
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Fig. 7. The relative cost between RAP-D and RAP-P for the same level of resilience
to space exhaustion

Fig. 8 investigates the relative cost of the two protocols for different data
sizes, by comparing the cost overhead ECOB for the receiver of the two pro-
tocols. Additionally, we consider different dictionary word sizes as requirements
for resilience to space exhaustion. The results suggest that increasing the data
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Fig. 8. The relative cost between RAP-D and RAP-P for different data sizes (LD) and
required levels of resilience to space exhaustion (D)

packet drops the energy cost down for both protocols. The energy overhead of
RAP-D can be kept at a minimal level as long as the data size is above the
dictionary word size requirement.

5 Conclusion

In this paper, we focused on securing the class of receiver-initiatedMAC protocols
for WSN against the Beacon Replay attack. According to the receiver-initiated
paradigm of communication, beacons are used to initiate the communication be-
tween two nodes. By collecting and replaying such beacons, an intruder can pre-
tend a fake identity and perform a series of attacks. In particular, we proposed
a challenge-response authentication protocol, named RAP, that is able to detect
and prevent beacon replay attacks. RAP has two modes of operation. RAP-D is a
low-overhead protocol that is able to detect intruders who replay beacons. RAP-
P, on the other hand, is a more expensive prevention mechanism.We validated the
effectiveness of RAP against beacon replay attacks using various tools, including
OFMC and ProVerif. Furthermore, we have modeled the energy consumption of
both protocols and we have exposed the trade-off between the level of security,
measured by the resilience of the scheme to space exhaustion, and the level of en-
ergy consumption. Furthermore, we have shown that the energy consumption of
RAP-P is significantly higher than RAP-D.

Our future work will be focused on two different directions. First, RAP can
be extended to provide dynamically adaptable security. Specifically, a node can
adapt the size of the challenge and, therefore, the resilience of the protocol
to space exhaustion, according to the energy constraints of the node and the
security requirements of the application. Such adaptability has particular interest
in scenarios where the energy constraints are unpredictable, such as an energy
harvesting scenario. The second direction is to extend RAP into a multi-key
environment. While the size of the challenge can make a space-exhaustion attack
unfeasible, a periodical replacement of the encryption key can further increase
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the security of the system. It is, therefore, interesting to compare the energy
overhead of increasing the size of the challenge to the respective cost of a key
update and distribution mechanism and investigate the related trade-offs.
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23. Mödersheim, S., Viganò, L.: Secure Pseudonymous Channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009)

24. Peng, Y., Li, Z., Qiao, D., Zhang, W.: Delay-Bounded MAC with Minimal Idle
Listening for Sensor Networks. In: Proc. 30th Ann. Joint Conf. IEEE Comput. and
Communn. Soc (INFOCOM), pp. 1314–1322. IEEE (2011)

25. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: security pro-
tocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)

26. Song, H., Zhu, S., Cao, G.: Attack-resilient time synchronization for wireless sensor
networks. In: Int. Conf. on Mobile Adhoc and Sensor Systems, pp. 765–772 (2005)

27. Stallings, W.: Cryptography and Network Security. Prentice Hall (2005)
28. Sun, Y., Gurewitz, O., Du, S., Tang, L., Johnson, D.B.: ADB: An Efficient Mul-

tihop Broadcast Protocol based on Asynchronous Duty-cycling in Wireless Sensor
Networks. In: Proc. 7th ACM Int. Conf. on Embedded Networked Sensor Syst.
(SenSys), pp. 43–56. ACM (2009)

29. Sun, Y., Gurewitz, O., Johnson, D.B.: RI-MAC: A Receiver-Initiated Asynchronous
Duty Cycle MAC Protocol for Dynamic Traffic Loads in Wireless Sensor Networks.
In: Proc. 6th ACM Int. Conf. on Embedded Networked Sensor Syst. (SenSys), pp.
1–14. ACM (2008)

30. Tang, L., Sun, Y., Gurewitz, O., Johnson, D.B.: EM-MAC: A Dynamic Multi-
channel Energy-Efficient MAC Protocol for Wireless Sensor Networks. In: Proc. of
ACM MobiHoc 2011, p. 23 (2011)

31. Tang, L., Sun, Y., Gurewitz, O., Johnson, D.B.: PW-MAC: An Energy-Efficient
Predictive-Wakeup MAC Protocol for Wireless Sensor Networks. In: Proc. of IN-
FOCOM 2011, pp. 1305–1313. IEEE (2011)

32. Texas Instruments: CC250: Low-cost low-power 2.4 ghz rf transceiver (2011),
http://www.ti.com/lit/ds/symlink/cc2500.pdf

33. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
description: spass version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

34. Yadav, P., McCann, J.A.: YA-MAC: Handling Unified Unicast and Broadcast Traf-
fic in Multi-hop Wireless Sensor Networks. In: Proc. 7th IEEE Int. Conf. on Dis-
tributed Computing in Sensor Systems (DCOSS), pp. 1–9. IEEE (2011)

35. Yong, Y.T., Chow, C.O., Kanesan, J., Ishii, H.: EE-RI-MAC: An energy-efficient
receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads
in wireless sensor networks. Journal of Physical Sciences 6(11), 2633–2643 (2011)

http://www.ti.com/lit/ds/symlink/cc2500.pdf


Security Games for Cyber-Physical Systems

Roberto Vigo, Alessandro Bruni, and Ender Yüksel
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Abstract. The development of quantitative security analyses that con-
sider both active attackers and reactive defenders is a main challenge in
the design of trustworthy Cyber-Physical Systems. We propose a game-
theoretic approach where it is natural to model attacker’s and defender’s
actions explicitly, associating costs to attacks and countermeasures. Cost
considerations enable to contrast different strategies on the basis of their
effectiveness and efficiency, paving the way to a multi-objective notion of
optimality. Moreover, the framework allows expressing the probabilistic
nature of the environment and of the attack detection process. Finally,
a solver is presented to compute strategies and their costs, resorting to
a recent combination of strategy iteration with linear programming.

Keywords: Cyber-Physical Systems, security verification, stochastic
games, strategy iteration.

1 Introduction

The notion of game naturally expresses our intuition of rival behaviours: game
theory deals with multiple players competing with each other while trying to
attain incompatible objectives. This view seamlessly applies to the description
of security scenarios: the struggle between attackers and their actions on one
hand, and defenders and their policies on the other, is at the core of any study
in the areas of security and risk management.

In the literature on security verification, a main line of research investigates
techniques for analysing protocols. A number of automated verifiers have been
developed that compute the knowledge that an attacker can obtain by inter-
acting with the protocol, like ProVerif [1], Scyther [2], OFMC [3], LySa [4],
and Maude-NPA [5]. Since security protocols are meant to be secure by design,
it is a reasonable approximation to center the analysis on the adversary, while
disregarding actions that legitimate users could undertake to mitigate or stop
attacks, and indeed such tools led to detecting serious flaws in many real-life
security protocols.

While security protocols are basic building-blocks that should be guaranteed
flawless, experience tells that complex systems built on these foundations are
doomed to be insecure. To confront insecurity arising from code composition,
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mobility, and complexity, such systems are nowadays equipped with attack de-
tection and response mechanisms. As a formal counterpart, game-theoretic ap-
proaches have been recently proposed to model and analyse these systems, as
games allow describing attacker-defender interactions explicitly.

Attack-defence interactions become even more fundamental when moving
from the cyber-space to Cyber-Physical Systems (CPSs). These are networks
of sensors and actuators that monitor and interact with physical processes, ex-
changing sensed information over a cyber layer [6]. As these systems are increas-
ingly exploited in the realisation of critical infrastructure (e.g. healthcare, traffic
control, defence, power grid applications), their security is a public concern, and
thus they are constantly monitored and maintained. Therefore, whenever such a
system undergoes an attack, it is possible that the malicious action is detected
and that some countermeasure is enforced in order to revert the system to a
desired operational status. Moreover, the dual cyber-physical nature of CPSs
amplifies the potential security threats, and thus increases the number of strate-
gies that an attacker can devise: both cyber communication-based and physical
actions are available, and they can be combined, offering to the adversary mul-
tiple ways for achieving similar objectives [7]. Finally, due to the complexity of
huge CPSs like the coming Smart Grid, it is not sufficient to establish whether
or not an attack is viable, but cost considerations have to be contemplated: a
great many cyber-physical applications have to satisfy precise quantitative re-
quirements in terms of time, probability, and energy, that have to be taken into
account in the verification process.

Providing formal frameworks and tools able to consider both active attack-
ers and reactive defenders, and in which quantitative questions can be formu-
lated, is a main challenge in development of trustworthy CPSs. In this work, we
advocate that stochastic games offer a flexible framework in which the attack-
countermeasure mechanism can be modelled and analysed, capturing both suc-
cess and failure of attack detection. We demonstrate the usefulness of stochastic
games on a simple example, showing how games can be used to decide among
different potential strategies, possibly arising from the cyber-physical nature of
a system. Our framework allows to compute strategies for the players and the
probabilities with which such strategies lead to winning a play. Moreover, our
approach considers also costs to attacks and countermeasures, and enable to com-
pute the expected cost of playing or winning a game once the strategies for the
players are fixed. On this basis, a notion of strategy optimality can be derived
which tempers effectiveness (probability of winning) with efficiency (expected
cost), allowing to reason about players constrained in resources.

The results we present are obtained with our tool RESIS1. The tool relies
on the transformation of a game into a set of min-max rational equations, that
are then solved by means of strategy iteration and linear programming, as pro-
posed in [8]. The problems of computing strategies, their effectiveness, and their
efficiency can all be handled by RESIS in a uniform manner.

1 Available at http://www.imm.dtu.dk/~albr/resis.html
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Related work. Roy et al. [9] conducted an excellent survey of the literature on
games for network security. With respect to the taxonomy suggested in that
work, our approach would be classified as considering dynamic, stochastic, com-
plete, and perfect information games. In particular, with our work we bridge
two gaps mentioned in [9] as open points: we relax the assumption that the
defender is always able to detect attacks, and we propose a solving algorithm
whose scalability seems promising. More in general, all the works discussed in
the survey are limited to consider the cyber-space, that is, networked computer
systems. Although the treatment of CPSs in this framework does not alter any
technical detail, still we deem that pointing out how games can express the dual
nature of such systems uniformly is a fruitful consideration. Among the works
considered in [9], Lye and Wing’s paper [10] deserves an explicit notice, as the
only one exploiting stochastic games. The main outcome of their analysis is the
computation of Nash Equilibria by means of non-linear programs in MATLAB.

More recently, game-theoretic approaches have been proposed that address the
unique features of CPSs specifically. Ma et al. [11] study probabilistic attacker-
defender games where the attacker can decide to attack either cyber or physical
resources, but the defender can only choose to reinforce both. This question-
able asymmetry is overcome in our work. On the same line, [12] offers a rather
mathematical presentation of the game, whose connection to the problem under
investigation is not immediate. It is worth observing that none of these papers
mentions how the Nash Equilibria are computed.

The model checker PRISM has recently been extended with support for
stochastic multi-player games [13]. The core solving algorithm is based on a
reduction to 2-player games and value iteration, which historically showed worse
performance with respect to strategy iteration algorithms. A thorough compar-
ison with our approach is however worthwhile studying as future work.

Brown et al. [14] study the problem of multi-objective optimisation in security
games, that we indirectly attack in a simple setting with 2 parameters. In [15]
security games are derived from defence trees considering economic indexes as
pay-off functions, but it is not shown how to compute Nash Equilibria.

Finally, some works explore a hybrid approach, studying standard protocol
verification techniques in a game-theoretic mindset. In [16], games are used to
model non-repudiation protocol, and properties expressed in alternating tempo-
ral logic are verified via model checking. In [17], games are derived from inter-
leaved runs of a protocol in presence of a Dolev-Yao intruder, and logic formulae
describing security properties are interpreted as sets of strategies over a game
tree. The work seems however biased towards qualitative protocol verification,
and does not consider probabilistic behaviour.

Outline. Section 2 introduces the basics of stochastic games and shows how
security scenarios can be encoded, introducing our running example, which is
compared to real-world applications in Sect. 3. In Sect. 4, we discuss the reduc-
tion from games to equation systems, which is then applied to the case study of
Sect. 2. Our solver is presented in Sect. 5. Finally, Sect. 6 concludes and sketches
a line for future work.
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2 Modelling Security Games

2.1 Stochastic Games

In the following, we briefly review some basic concepts about Simple Stochastic
Games (SSGs), as formulated by Condon in [18].

A Simple Stochastic Game G = (V,E) is a directed graph, where V = Vmax∪
Vmin∪Vav consists of three disjoint sets of vertices, called max, min, and average
vertices. The game has a start vertex, which can be of any type, and two sink
vertices, called 0-sink and 1-sink. Sink vertices have no successor (�v ∈ V | (i-
sink, v) ∈ E, for i ∈ {0, 1}), while the successors of the other vertices can be of
any type.

The intended semantics is the following. The graph models a game between
two players, 0 and 1. A token is initially placed on the start vertex, and at each
step (turn) it is moved from a vertex to one of its successors, according to the
following rules: at a min vertex, player 0 chooses the successor; at a max vertex,
player 1 chooses the successor; at an average vertex, the token is moved to one
of the successors with a given probability (we relax Condon’s assumption about
uniform distributions). The game ends when the token reaches a sink vertex:
player 1 wins if the 1-sink is reached, while player 0 wins if the 0-sink is reached
or if the game never halts (hence the objectives are not symmetric). We call
the vertices max and min as at the max vertices player 1 has to maximise the
probability with which the 1-sink is reached, whereas at the min vertices player
0 tries to minimise the same quantity.

A strategy τ for player 0 (1, respectively) is a set of edges of E such that for
each min (resp. max) vertex vi there is exactly one pair (vi, vj) ∈ τ , vj being a
successor of vi. Informally, a strategy fully specifies the behaviour of a player,
that is, the decisions he or she takes during their turns.

Simple stochastic games are determined, that is, for a fixed game, the maximal
probability γ1 with which player 1 wins a play is given by 1−γ0, where γ0 is the
maximal probability with which player 0 wins the game. This means that for a
given game either player 0 or player 1 has a winning strategy (in the probabilistic
setting). The formulation given above focuses on reachability objectives, but this
result has been established also for safety and parity objectives [19].

Surprisingly, both players have optimal positional strategies, that is, fixed a
game, the best strategy for each player (i) is deterministic and (ii) each decision
only depends on the current vertex (memoryless strategy).

In order to associate costs to actions, we extend SSGs considering a cost
function cost : E → Z associated with each edge (vi, vj) ∈ E, such that
cost(vi, vj) = 0 for each vi ∈ Vav. Intuitively, for each vi ∈ Vmax, cost(vi, vj)
is the cost player 1 incurs when performing the action related to the edge, and
likewise for player 0 (see [20] for a survey on stochastic games with pay-off).
Negative costs can be used to model rewards. In general we will be interested
in the expected costs that the players incur for reaching a given position in the
game. As the game evolves, costs encountered on the edges are summed up for
each player.
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2.2 Attacker-Defender Games

SSGs are two-player games, and thus we consider exactly one attacker and one
defender, who take their decision in turn. We name the two sinks up and down,
representing the conditions under which the system is operational or out of order,
respectively. The objective of the attacker consists in maximising the probability
with which down is reached, while the objective of the defender is minimising
this probability. In order to achieve their targets, the attacker and the defender
choose which action to perform next (i.e., which node will be the next one in
the game) from a set of attacks A and a set of countermeasures C, respectively.

An attack a ∈ A is described by a name, a probability s(a) of being successful,
a probability d(a) of being detected, and a cost cost(a) ∈ Z. We assume that an
attack a always have the same cost through the game, and thus we can write
cost(a) since all the edges associated with a have the same cost. This assumption
does not entail any limitation in expressiveness, since there is no restriction on
the number of attacks that one can consider. In the following, we say that an
attack is successful, meaning that the related actions have been carried out
without any error and that the attack has not been detected by the defender
(e.g., by an Intrusion Detection System), and we say that an attack is detected
whenever the attack is performed correctly but the defender detected it. The
probability that an attack fails is derived as f(a) = 1− s(a)− d(a).

A countermeasure c ∈ C has a name, a probability s(c) of being successful,
in which case the effects of the related attack are neutralised, a probability
f(c) = 1−s(c) of failure in countering the attack, and a cost cost(c). The relation
between attacks and countermeasures is modelled by a partial function confront :
A ↪→ P(C), such that confront(a) is the set {c1, . . . , cn} of countermeasures that
can neutralise a. As confront is a partial map, it might be the case that a specific
attack cannot be countered (e.g. a plant cannot be reverted to an operational
status after having been bombed, unless we consider reconstruction a realistic
countermeasure).

As in the real world attacks (resp. countermeasures) are not mutually inde-
pendent from each other, we feel free to write s(a2|a1), denoting the probability
that attack a2 is successful given that attack a1 has been successfully carried
out previously. Similarly, we write d(a2|a1), denoting the probability that a2 is
detected given that a1 was successful. This feature could be formally captured
considering a function success : A×P(A×C)→ [0, 1], describing the probability
of success of an attack a in the event that specific attacks and countermeasures
were carried out successfully before a is attempted.

Reasoning about strategies. The core mechanism of attacker-defender interac-
tions is seamlessly encoded into an SSG as follows. When the game starts, the
system is in its normal operational status. The defender has no interest in al-
tering the status quo, since he or she would waste resources. On the contrary,
the adversary aims at compromising the system, and thus performing an attack
(paying the corresponding cost). If the attack fails, then the system status is
unaltered, and thus the defender wins the play. If the attack succeeds, then it
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is again the turn of the attacker, as not knowing about the attack, the defender
will not undertake any countermeasure. If the attack is detected, then it is likely
that the defender will undertake a countermeasure, which can in turn fail or
succeed.

More complex games are encoded by assembling attacks and countermeasure
together. Figure 1 depicts a two-stage attacker-defender game built on the fol-
lowing scenario:

– A = {a1, a2}, C = {c1, c2}
– confront(a1) = confront(a2) = {c1, c2}

Square nodes represent attacker’s (∨) or defender’s (∧) decision points, while in
circle nodes probabilistic choices are taken by the environment (+). In this game,
the attacker wins a play once both a1 and a2 are successful, and looks for a strat-
egy that maximises the probability that down is reached. On the contrary, the
defender strives for finding a strategy minimising the same probability. Observe
that this is an SSG, and thus these strategies exist and are positional. In the
example of Fig. 1, the only choice for the attacker consists in selecting the order
with which a1, a2 will be attempted, while the defender has no choice. Hence,
the attacker has to choose between the strategy τ1 = {(1, 2)} and the strategy
τ2 = {(1, 3)}. In Sect. 4 we will discuss how such strategies can be synthesised
automatically.

Observe that the effectiveness of a strategy τ , that is, the probability with
which τ leads the corresponding player to winning, does not depend on the
efficiency of τ , that is, the expected cost of playing according to τ . Nonetheless,
effectiveness induces an ordering on the strategies available to a player, and so
does efficiency. Even if the ordering induced by costs is independent from the
one induced by probabilities, it is not always the case that a player will choose
the best-effective strategy, if there exists a cheaper near-effective one. For this
reason, in Sect. 4 we will compute not only the best-effective strategies for the
players, but also the corresponding expected costs, so as to compare strategies
by effectiveness and efficiency.

It is worthwhile noting that cost bounds can be used to simulate players with
limited resources. Assume, for example, that attack costs represent time, and
that for the overall attack to be successful a1 and a2 must be carried out in less
than t time units: then, we should search for an attack strategy whose cost is
at most t. Similarly, we can reason about energy or money, if we know that any
attacker will be constrained in some of these respects. More likely, different cost
notions can be considered together, transforming the search for a strategy in a
multi-objective optimisation problem, and thus looking for the Pareto frontier.
However, for the sake of simplicity, in the following we will limit our scope to
optimise strategy effectiveness with respect to a single parameter.

3 Motivating Examples

In order to facilitate the exposition, the game displayed in Fig. 1 constrains
the defender to a fixed behaviour (no choice). In this respect, the example is
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Fig. 1. An attacker-defender game for an attack with two stages
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an instance of a one-and-a-half player game, i.e., a Markov Decision Process.
Despite its simplicity, however, the example can be used to model fragments of
realistic scenarios in the security domain.

Consider a CPS composed by 2 functionally-redundant but structurally-
different sub-systems, as in [21, § 4.4]. In order to make the system halt, the
attacker has to compromise both the components, but these being different the
probabilities of success, detection, and failure are different from each other. More-
over, greater care will be paid by the system administrators once a component
has been taken down, and thus there is a correlation between those probabilities.

This application can be generalised so as to consider robust systems, that
remain operational until m out of n components are compromised, as suggested
in [11]. Moreover, by studying the set of games where the attacker’s objective is
to take k ∈ [1,m] components down, we could derive information about the cost
and probability that the system operates at a given performance level.

As for posterior probability of success, consider a TCP port scan and a DoS
flooding attack: clearly the latter has greater chances of succeeding if we know to
which port a stream of packets can be addressed. In the cyber-physical world, in
order to obtain the content of the memory of a device with exhausted battery an
attacker has either to replace the battery (physical action) and then try to break
given protocols (sequence of cyber actions), or to physically access the memory
and extract the information (physical actions). Trying to intercept messages
before bringing the device back to life will have probability 0 of success.

The Smart Meter case. The coming Smart Grid promises to couple the existing
electricity grid infrastructure with a cyber layer, over which information about
power consumption, availability, and price is conveyed and exploited to optimise
local as well as global goals. The Smart Meter (SM) is meant to be the nodal
point of this huge CPS, acting as a gateway between customers, household ap-
pliances, and the electrical utility.

It is of utmost importance to secure the SM, since it records valuable meter-
ing information, communicating it to the utility, and controlling the connected
appliances. Therefore, an attack to the SM may lead to energy disconnections,
energy usage frauds, and to hack electrical devices. In addition to this, the dis-
closure of recorded energy usage information would reveal behavioural patterns,
resulting in privacy violations. A comprehensive scenario for the SM security is
discussed in [22].

Due to its dominant role, an SM is a natural target for attacks within the
grid, and it is susceptible to both physical and cyber threats. Physical attacks
to SMs include hardware destruction, manipulations (read/alter the content
of the chip-set), power outage, power quality change. Cyber attacks include
classical communication-related actions like spoofing, forging messages, buffer
overflow, replay attacks. Countermeasures to physical attacks consist both in re-
inforcing physical protection (walls, pad-locks, cameras, proximity and presence
sensors, etc.) and in physically replacing or repairing damaged components. On
the cyber side, cryptography is the main tool to protect sensible information
from being stolen or altered, and in this realm possible actions include renewing
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cryptographic keys, lifting the encryption level (e.g. stronger keys), requiring mul-
tiple authentication, and so on.

Assume, for example, that the attacker goal is to alter the energy usage data
recorded in the SM, so as to cheat the electrical utility. As for physical actions, an
attacker could try to get hold of the device and work on its memory. On the cyber
side, a similar effect can be achieved by sending fake consumption messages to
the SM, or by tampering with actual messages sent by the connected appliances
(possibly breaking the involved protocols, if any). More subtle attacks can be
achieved by assembling physical and cyber actions together. While it is clear that
each of these actions is characterised by a cost (energy, time, money, etc.), it is
also reasonable to assume that an action will succeed with a given probability,
determined by the skills of the attacker, the implementation of given security
policies (e.g. strength of an encryption scheme), and physical obstacles. Likewise,
once an attack is successful, the defender (e.g. the electrical utility) will realise
the damage with a given probability, e.g. depending on the discrepancy with the
consumption pattern of the given customer.

While a detailed study of security in smart metering is out of the scope of
this work, the scenario depicted above strongly motivates the importance of
investigating game-theoretic approaches for the verification of security properties
of CPSs.

4 Analysing Security Games

The problems of computing a strategy and the expected cost of playing ac-
cordingly, introduced in Sect. 2, can both be reduced to the problem of solving
systems of min-max rational equations. In the following, we discuss how the
reduction from SSGs to equation systems works, and in Sect. 5 we review the
solving technique on which our tool is based.

From games to equations. The construction of the equation system for an SSG
resembles the derivation of equation systems for Markov Chains [23] (refer to
[24] for an analogous reduction on recursive games). Given an SSG G = (V,E),
we define the related equation system over the variables xu,v, with u, v ∈ V ,
denoting the probability of going from u to v. The form of the equation defining
xu,v is determined by the type of vertex u:

1. if u is a sink, then xu,v = 0 for all v �= u;
2. if u = v, then xu,v = 1 (the target has already been reached);
3. if u is an average vertex, then

xu,v =
∑

v′∈V |(u,v′)∈E

xu,v′xv′,v

i.e., the probability of reaching v from u is given by summing up the prob-
abilities with which v is reached from the successors of u, each multiplied
with the probability of choosing the given successor; observe that for any
successor v′ of u, the probability xu,v′ is given by the game;
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4. if u is a min (resp. max) vertex, then we have

xu,v = min
v′∈V |(u,v′)∈E

xv′,v (resp. max)

Consider the game depicted in Fig. 1. The equation system describing the at-
tacker’s objective, i.e., going from the start node 1 to the sink down, is derived
according to the definition above: x1,d describes the probability of winning for
the attacker, and it is defined in terms of the the probabilities for reaching the in-
termediate goals. Solving such a system, we obtain the maximum probability for
reaching down, and the choices at ∨ nodes give us the corresponding attacker’s
strategy.

Similarly, we can obtain an equation system expressing the reachability of
up, but since SSGs are determined its value is derivable from the solution of
the system for down. In order to obtain the corresponding strategy, however, we
need to solve the equation system.

With respect to the reachability of down in the game of Fig. 1, we obtain the
following equation system, where d, u denote sinks down and up, respectively.

x1,d = x2,d ∨ x3,d

x2,d = s(a1) · x4,d + d(a1) · x5,d + f(a1) · xu,d

x3,d = s(a2) · x7,d + d(a2) · x6,d + f(a2) · xu,d

x9,d = s(c1) · xu,d + f(c1) · x5,d

x10,d = s(c2) · xu,d + f(c2) · x6,d

x8,d = s(a2|a1) · xd,d + d(a2|a1) · x12,d + f(a2|a1) · x4,d

x11,d = s(a1|a2) · xd,d + d(a1|a2) · x13,d + f(a1|a2) · x7,d

x14,d = s(c2) · xu,d + f(c2) · x12,d

x15,d = s(c1) · xu,d + f(c1) · x13,d

x4,d = x8,d x5,d = x9,d x6,d = x10,d

x7,d = x11,d x12,d = x14,d x13,d = x15,d

xu,d = 0 xd,d = 1

Computing the optimal strategy. In the next section we will see how such a
system can be automatically solved. However, in such a simple case, we can
solve the system by substitution. Assume that the following probabilities are
given:

s(a1) =
1
8 s(a2) =

1
4 s(a2|a1) = 1

2 s(a1|a2) = 1
8

d(a2|a1) = 1
6 = d(a1|a2) f(a1|a2) = 17

24 f(a2|a1) = 1
3

that is, while a1 is independent from a2, a2 will have more success chances if
carried out after a1. However, solving the system we obtain

x1,d = x2,d ∨ x3,d x2,d =
3

32
x3,d =

3

28

hence the maximum probability with which the attacker can reach down is 3
28 ,

and this is achieved by following the strategy τ1 = {(1, 3)}, that is, selecting a2
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first. Since SSGs are determined, we can already conclude that the maximum
probability with which the defender wins a play is 1 − 3

28 . What is more, we
have also obtained the (only) other strategy the attacker can undertake and its
effectiveness, that is, τ2 = {(1, 2)} with a probability of 3

32 . In general, we can
obtain an additional strategy solving a new system, where the choices related to
already considered strategies are dropped. In principle, we can compute all the
strategies available to the players.

According to the literature on SSGs, τ1 has to be considered optimal in the
sense the no other strategy has higher chances to lead to victory. Nonetheless,
real applications cannot simply disregard the cost of operating the system in a
given fashion: cost considerations are introduced below, so as to enable contrast-
ing strategies by their effectiveness and efficiency.

Cost analysis: playing. As we have observed, given the best-effective strategy τ1
for the attacker, also the value of the best-effective strategy for the opponent is
determined, and our solver can provide both strategies. Hence, computing the
expected cost for a play that develops according to these strategies amounts to
computing the expected reward for reaching a given state in the Markov chain
induced by the strategies (refer to [23, Sect. 10.5] for cost-bounded reachability
in Markov chains). Applying their strategies, indeed, the players remove the
non-determinism from the game.

We can calculate the cost k for reaching the sink down from node 1 in the
attacker’s best-effective strategy as follows:

k = cost(a2) +
1
4

(
cost(a1) +

17
24cost(a1) +

17
242 cost(a1) + . . .

)
= cost(a2) +

1
4cost(a1)

∑∞
i=0

17
24i

= cost(a2) +
1
4cost(a1)

1
1− 17

24

= cost(a2) +
6
7cost(a1)

where we have not considered the paths from node 3 to the sink up since the
attacker does not incur any cost in those branches. An equivalent formalisation
of the cost analysis is given by the following equation system, where ki denotes
the expected cost for a play starting in node i:

k1 = cost(a2) + k3
k3 = s(a2)k7 + d(a2)k6 + ku = 1

4k7 k7 = cost(a1) + k11
k11 = s(a1|a2)kd + f(a1|a2)k7 = 17

24k7 kd = 0

where in the first line we consider the only branch given by τ1, and in the second
line we omit the term d(a2)k6 + ku since it does not contain any cost for the
attacker. Solving the system we get

k7 = cost(a1) +
17
24k7 ⇒ k7 = 24

7 cost(a1)

k1 = cost(a2) +
1
4
24
7 cost(a1) = cost(a2) +

6
7cost(a1)

Observe that the second encoding has the advantage of reducing to an equation
system that can directly be handled by our solver, which thus offers a uniform
approach to the computation of strategies and their costs.
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Analogously, considering τ2 we derive the following expected cost:

k1 = cost(a1) +
3

16
cost(a2)

Now, replacing cost(ai) with actual costs we obtain the expected cost of playing
according to the given strategy. Moreover, it is worth noting that by studying
the inequality

6

7
cost(a1) + cost(a2) ≥ cost(a1) +

3

16
cost(a2)

we obtain the condition under which τ1 is optimal, that is, the best-effective
and cheapest strategy: if cost(a2) ≥ 16

91cost(a1) then τ1 will be cheaper than τ2
while leading to the objective with a higher probability. This approach could be
particularly useful in the design phase of countermeasures, since it puts bounds
to the resources that the implementation of a given procedure may require to be
taken into account. Dually, we can compute the expected costs that the defender
has to pay for playing with a given strategy.

Cost analysis: winning. Finally, we can compute the expected cost for winning
a play whenever a given strategy is applied, as opposed to the expected cost
of playing according to the strategy, that we have just discussed. In order to
compute the former expected cost, we need to consider only those paths that
lead one player to winning the game, and we have to normalise to 1 all the
probabilities on such paths. Considering the attacker in the scenario in which
τ1 is played, we have that the expected cost for winning a play is the cost k1
of reaching the sink down from node 1. This is similar to the cost k1 computed
above, but it has not to be weighed by s(a2) =

1
4 , since the only possibility to

reach sink down is indeed taking (3, 7).

5 Solving Min-Max Equation Systems

As we have shown above, a number of quantitative problems on SSGs can be
reduced to solving systems of min-max rational equations. In the following we
present an approach originally developed in [8], where the key idea is to use
strategy iteration to guess a strategy for max choices (dually, min), and then
solve the so-obtained minimisation linear program (dually, maximisation).

Min-max rational equations. We consider equations of the form x = e where
x ∈ Var is a variable and e is an expression generated according to the following
grammar:

e ::= x | c | c× x | e1 + e2 | e1 ∨ e2 | e1 ∧ e2

where c is in Q∞ = Q∪ {−∞,∞}, + is the sum over Q extended to Q∞ so that
x+−∞ = −∞+x = −∞ for all x ∈ Q∞, x+∞ = ∞+x = ∞ for x ∈ Q∪{∞},
and × is the product of a non-negative constant and a variable. ∨ is defined as
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the maximum between two sub-expressions and ∧ is defined as the minimum
between two sub-expressions. The approach and the solver can also deal with
linear programs, letting an expression e be defined by LPA,v(e1, . . . , en), but in
the following we omit this feature as it is not relevant to our discussion.

A system ε of min-max rational equations is a finite set {x1 = e1, . . . , xk = ek}
of equations where the xi’s are pairwise distinct variables in Var . The solution
of a system ε is an assignment ρ : Var → Q∞ that satisfies all the equations
in ε. In order to solve such a problem, first we derive a system of min rational
equations from ε, and then we solve the linear program {xi ≤ ei |xi = ei ∈ ε}
where we want to maximise the values of the xi’s.

We define a max-strategy σ as a set of choices for the ∨-expressions occurring
in ε:

σ = {e1 ∨ e2 → ei | i ∈ {1, 2}, e1 ∨ e2 ∈ ε}

Given a system ε of min-max rational equations and a max-strategy σ for ε,
we derive a system of min-equations by performing the choices suggested by the
strategy at the decision points. The new system is obtained from ε according to
the following rules:

[ε]σ = {xi = [ei]σ |xi = ei ∈ ε} [e1 ∨ e2]σ =

{
[e1]σ iff σ(e1 ∨ e2) = e1

[e2]σ iff σ(e1 ∨ e2) = e2

[e1 ∧ e2]σ = [e1]σ ∧ [e2]σ [e1 + e2]σ = [e1]σ + [e2]σ

[c× x]σ = [c]σ × [x]σ [c]σ = c [x]σ = x

Linear Programming. We can solve a system of min rational equations ε by
solving a linear program whose size is linear with respect to the size of ε. The
linear program is obtained mapping each equation in ε to a set of constraints:

�ε�LP = max
∑

xi
{i|xi=ei∈ε}

�x = e1 ∧ e2�LP = {x ≤ e1, x ≤ e2} �x = e�LP = {x ≤ e}

where the last rule applies whenever e is not a min-expression. If �ε�LP is in-
feasible, then ε has no finite solution. If it is feasible and bounded, then an
optimal solution ρ for the linear program is also an optimal solution for ε. In the
event that some variables of �ε�LP are unbounded, there are infinite possible as-
signments that maximise the objective function: a pre-computation step, called
∞-abstraction, is enforced to deal with such a case [8, Sect. 8].

Strategy Iteration. As stated above, in order to reduce our task to solving linear
programs, we need to obtain a max-strategy for the original system of min-max
equations. Resorting to strategy iteration, first we define an initial strategy σ0

for each ∨-expression in ε, then we solve the linear program �[ε]σ0�LP, and finally
we improve the strategy until an optimal solution is reached.
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Algorithm 1. Strategy iteration algorithm

function Solve(ε, σinit, ρinit)
σ ← σinit

ρ ← ρinit
while ρ /∈ Solutions(ε) do

σ ← P eager
∨ (σ, ρ)

ρ ← �[ε]σ�LP

end while
return (σ, ρ)

end function

Since all our operators are monotone, we can define a strategy improvement
operator which also preserves monotonicity. Such operator is defined greedily as

P eager
∨ (σ, ρ)(e1 ∨ e2) =

⎧⎪⎨
⎪⎩
e1 if [e1]ρ > [e2]ρ

e2 if [e1]ρ < [e2]ρ

σ(e1 ∨ e2) if [e1]ρ = [e2]ρ

Algorithm 1 summarises the entire approach. It starts with an initial assignment
ρ(xi) = −∞ for all the xi’s and an initial strategy. It then iteratively improves
the current strategy using P eager

∨ and solves the derived LP-problem until the
strategy cannot be improved any further, terminating at that point and returning
an optimal strategy together with a solution (if any).

Implementation and performance. RESIS strictly follows the procedure dis-
cussed above and proposed in [8]. The implementation is in C++, and the
program is mainly composed by the strategy iteration mechanism, that we imple-
mented, and the COIN-OR Linear Program Solver (CLP) [25], an open-source
simplex solver, also written in C++. These two components cooperate as ex-
plained above. For simplicity, before applying the strategy iteration step, we
normalise the system so as that the operators ∧,∨ appear only at the top level.
Note that any system can be normalised by introducing fresh variables and assign
them to nested sub-expressions.

As for performance, we have written an equation system generator and tested
RESIS on problems of the order of 100000 variables. Despite solving a linear
program every time a strategy is guessed, the average solving time on an ordi-
nary laptop is about 1 minute (feasible problems). Carrying out a thorough test
campaign and assessing the quality of the generator is part of our future work.

6 Conclusion

Stochastic games offer a flexible framework for studying attack-response interac-
tions in CPSs, where analysis techniques that consider the probabilistic nature
of the environment as well as of the attack detection infrastructure are needed.
We have shown how the basic attack-response mechanism can be encoded as
a game, and improved on the existing literature by introducing probabilistic
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detection and cost considerations. What is more, in the framework we have
presented it is natural to consider both the effectiveness of a strategy, as the
probability with which the strategy leads to winning a play, and the expected
cost of playing according to a strategy, i.e., its efficiency. The concepts of strat-
egy effectiveness and efficiency give rise to a realistic notion of optimality, that
tempers effectiveness with efficiency, and is worthwhile being investigated thor-
oughly. Finally, we explained how strategies and their costs can be computed by
combining strategy iteration with linear programming, and we presented a tool
based on this approach. The experiments we have conducted with the tool are
promising with respect to its scalability.

We have intentionally developed the exposition as informally as possible, in-
dulging in technical details only in Sect. 5, because we do believe that the obscu-
rity of the literature on games hampered the adoption of game-theoretic models
in industry so far.

Future work includes the development of a front-end software for translating
games into equations, so as to simplify the specification task as much as possible.
Moreover, we deem that our approach can seamlessly be extended to energy
games, where there are explicit bounds to the sum of costs encountered in a play.
These games are strongly related to another interesting possible improvement,
that is, fixed a cost threshold, compute all the strategies whose cost is below
(respectively, above) the threshold. In our current framework we can obtain this
information only at the price of computing all the strategies and their costs.
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Abstract. Many cyber-physical applications are responsible for safety
critical or business critical infrastructure. Such applications are often
controlled through a web interface. They manage sensitive databases,
drive important SCADA systems or represent imperative business pro-
cesses. A vast majority of such web applications are well-known to be
vulnerable to a number of exploits. The focus of this paper is on the vul-
nerability of session stealing, also called session hijacking. We developed
a novel method to prevent session stealing in general. The key idea of
the method is binding the securely negotiated communication channel to
the application user authentication. For this we introduce a server side
reverse proxy which runs independently from the client and server soft-
ware. The proposed method wraps around the deployed infrastructure
and requires no alterations to existing software. This paper discusses the
technical encryption issues involved with employing this method. We de-
scribe a prototype implementation and motivate the technical choices
made. Furthermore, the prototype is validated by applying it to se-
cure the particularly vulnerable Blackboard Learn system, which is
a important and critical infrastructural application for our university.
We concretely demonstrate how to protect this system against session
stealing. Finally, we discuss the application areas of this new method.

Keywords and Phrases: software security, web applications, cross site
scripting, session stealing, session hijacking.

1 Introduction

Web applications are hard to secure. Many web applications suffer from security
vulnerabilities that can be exploited by an attacker. A widely used method to
secure web applications involves the creation of an application session for which
the user has to authenticate using a registered login name and corresponding
password. Before such a session is established, a secure encrypted communication
channel is negotiated at a network level to ensure confidentiality. However, the
creation of a session and the use of encrypted communication is not sufficient to
make an application secure against all attacks.
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The focus of this paper is on one of the serious attacks: session stealing or
session hijacking. This is aimed at the session mechanism itself. An adversary
takes over a valid user session with a recovered authentication token that is dis-
tributed to an genuine user. From this point on we call such a valid authentica-
tion token a session identifier (session ID ). Most modern websites use encrypted
communication between the client and the server to prevent an adversary from
eavesdropping this session ID. However, it does not prevent stealing the session
ID by means of malicious scripts or rogue browser plug-ins.

Sessions in web applications are very common on many infrastructural appli-
cation areas. Many business critical applications and safety critical applications
use a session mechanism. Also cyber-physical applications often use a web server
and a session mechanism for communication purposes. Supervisory control and
data acquisition (SCADA) systems are well-known to be vulnerable to session
hijacking at the transport layer [9]. Improving the safety of sessions contributes
to increasing the security level of such applications.

A user whose session is stolen may not notice anything strange while the attack
is performed, since the execution of the script may run in the background without
changing anything on the screen of the user.Thismeans that the user canbe offered
little advice in order to prevent such attacks. Themain advice is to avoid surfing to
pages hosted on the same domain that could be infected by malicious scripts dur-
ing an active session. This means always closing an open session before surfing to
a website that does not require the same session credentials. Such advice does not
help much if the application for which the session is opened, is itself vulnerable to
cross site scripting. This is the case for many web applications where data can be
entered by users and is to be read by other users. Vulnerabilities can occur if the
output, generated from the entereddata, is not properly encoded.Output encoding
prevents executable scripts by replacing meaningful characters with harmless an-
notated symbols. For example, when an adversary is able to post amalicious script,
it could compromise the complete website and steal all active sessions. In that case
an attack can happen directly after a genuine user visits the website only once.

Vulnerabilities like these may greatly reduce the trust of the user in the sys-
tem. The user feels very insecure since there seems to be no way for the user to
prevent such an attack.

Motivational Example
The method we propose can be applied in general. As an application example a
virtual learning environment is chosen. Such a learning environment is part of
the infrastructure: it is a virtual extension of a school/university building which
aims to create a safe place for students and teachers. In such a safe place students
have confidential discussions with teachers, grades are administered and exams
can be held. The activities that take place in the virtual learning environment are
for a large part the same as the ones that take place in the physical environment.
When within such a virtual learning environment sessions can be stolen without
anyone noticing, which could cause that the hard to gain trust is easily lost.

More specifically, our contribution is motivated by the fact that we discov-
ered several vulnerabilities in the Blackboard Learn system used at our
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university [4]. We demonstrated multiple ways to steal the session identifier
and successfully perform a privilege escalation attack. In line with the principles
of responsible disclosure, we have notified Blackboard inc. and informed them
of our findings back in July 2011. They reacted quickly with some ad-hoc fixes
and formed a special security task-force team to locate the nature of these prob-
lems [5,6]. The fixes were mostly improvident, one example is that they try to
bind the session to the IP address that is used by a genuine user. Such limita-
tion does not work very effectively for large university networks which operate
behind one big routing firewall, they all seem to have the same IP address. Fur-
thermore, such network information is publicly accessible, can be determined
remotely (using a malicious XSS script) and is easy to spoof. Although some im-
minent threats were resolved, a more conceptual solution for such vulnerabilities
is preferred. The goal is an independent and general applicable design that works
without having access to the source code of the application. Hence, we propose
a secure protocol that wraps around any closed source and proprietary system
and extends its security with significant protection against session hijacking.

The Contributions of This Paper:

• a new method of binding the application session to the cryptographic net-
work credentials that effectively prevents hijacking of web sessions;

• a fully functional prototype implementation of the method (for cookies),
built and released under the royalty free BSD license.

The Structure of This Paper:
Sect. 2 discusses session stealing in more detail. Our method to prevent session
stealing is presented in Sect. 3. Next, in Sect. 4 we demonstrate a prototype
of our proposed method and evaluate its effectiveness in a specific application
instance. Finally, we discuss related work in Sect. 5 and conclude in Sect. 6.

2 Session Stealing and Prevention

Sessions are necessary to keep track of users, to see which pages they visit and if
they are allowed to visit them. When a user logs on to a website, a new session is
started for that user. The rights of the user to follow links and view webpages are
stored in the session data. Upon each page view, the rights should be checked.
HTTP is a stateless protocol, so it does not provide this user tracking and access
verification. Sessions are therefore implemented in the application which runs on
top of HTTP. The session ID is kept by the client to be sent with each HTTP
request to let the server know the state of the session and verify the user. A
session ID can however be stolen and used by another person. The literature
refers to this issue with the terms session stealing or session hijacking.

2.1 Stealing the Session

An adversary with limited access can post a script on a webpage (e.g. via cross
site scripting XSS ) and wait for the genuine user to access the infected website.
When the user opens the page, the malicious script executes automatically and
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gains access to the decrypted credentials. Such a script often tries to recover the
session ID and discretely communicates it back to the adversary. A variation of
this attack is performed by sending a genuine user a link that triggers a malicious
script from within the browser. An example of an XSS attack via the URL is
given in Fig. 1.

http :// vu lne rab l e . com/ search . php?q=</u><s c r i p t >
document . wr i t e ( ‘< img s r c=”http :// hacker . com/
s e s s i o n \ h i j a c k . php?ck=’ + document . cook i e +‘”> ’) ;
</ s c r i p t >

Fig. 1. A XSS attack within a URL. Published by Nikiforakis et al. [10]

The malicious script sends the cookie of the user to the website of the at-
tacker. With the freshly recovered session ID the adversary gains all the session
capabilities of the genuine user without having to authenticate. The session ID
is often stored in a cookie, but can also be part of the URL1. This latter form is
mostly used in older web applications. The form of the session ID is not really
relevant, as long as there is a value kept by the client to be sent with every
request. This session ID represents the state of the session. In this paper, we will
focus on the method that involves cookies, but our solution proposed in Sect. 3
is generic and will also work for other forms.

2.2 Strengths and Weaknesses of http-only Cookies

There are special cookies that can not be accessed by any script that gets ex-
ecuted in the browser. Such cookies are referred to as http-only cookies, since
they are stripped away and added again when the http headers are processed in
the browser. This seems to be a powerful countermeasure against scripts that try
to steal the credentials from cookies. Nowadays, most globally used services (like
Facebook, Google and Microsoft) are accessed through users credentials based
on a persistent session ID stored in a http-only cookie. The endless count of these
active services increases the threat of users being tricked to install a malicious
browser plug-in that eave-drops a session ID and seize their user accounts. An
example that clearly demonstrates how to steal sessions with a browser plug-in
is Firesheep2. It is not exactly a malicious plug-in, but can be used to demon-
strate the severity of an adversary on the network. The main problem is that a
browser plug-in has access to all decrypted incoming website traffic, including
all cookies.

Interestingly, the encrypted data and cryptographic credentials are inaccessi-
ble for a browser plug-in. The decryption is often handled in the browser core or,
preferably, at the network level of the operating system. We propose to use this
specific property to prevent session hijacking by binding the application session
to the already negotiated cryptographic credentials at the network level.

1 For example:
http://domain.com/index.php?session_id=rj3ids98dhpa0mcf3jc89mq1t0

2 http://codebutler.com/firesheep/

http://domain.com/index.php?session_id=rj3ids98dhpa0mcf3jc89mq1t0
http://codebutler.com/firesheep/
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2.3 Session Stealing Prevention

There are several papers that address the prevention of session hijacking. Our
solution is based on a method proposed in 2006 by Oppliger et al. [11]. Oppliger
et al. propose their method as a defense against a man-in-the-middle (MITM )
attack where the credentials are stolen. Even though the attack is different from
the attack we face, the basic idea can still be used.

The idea is to combine the application session with the HTTPS session. Where
HTTP is stateless, HTTPS needs to keep the state of a connection. With the
combination of HTTPS and the application session, you can make use of the
security of the HTTPS session to secure your application session. The coupling
of the SSL/TLS session and the application session provides a failsafe.

It is straightforward to detect if a session ID is used by another HTTPS
connection. In such case, the server should immediately ask for renegotiation.
With such a countermeasure it gets a lot harder to take over an application
session if it is cryptographically coupled with the network session. Oppliger et al.
combined the sessions by binding the application session to a client certificate.
With a client certificate, the user proves to the server that he is indeed who
he claims to be. In this paper we propose to use a different form of binding
the sessions. Our method does not require client certificates. Client certificates
require management and seem to be a hassle to install for inexperienced users.
Client certificates are also an optional part of SSL/TLS. Our method uses the
cryptographical keys already available in SSL/TLS.

3 Session Securing by Proxying

This section discusses a new prevention method for session hijacking. First, the
general idea is explained in a little more detail. After that, some design details
that were made during the implementation are discussed. Also more details are
given about the protocol and the inner workings of the method. Finally, there is
an attacker model that describes what an attacker can and cannot do.

3.1 Session Binding Proxy

In this paper, we propose Session Binding Proxy (SBP), a method that combines
SSL/TLS session-aware authentication with a reverse proxy. This proxy relays
the requests to the back end application server only if the client that originally
got the application session ID is sending the request. To authenticate a client
over HTTPS, you register the SSL session and application session information.
When a request with the same application session ID is used with a different
SSL session, you know that the session is stolen. By removing the session cookie
from the request, the application session is invalidated. The proxy makes sure
the HTTPS session and application session combination does not need to be
kept inside the application (server). The idea is to use a server side reverse
proxy that handles the HTTP(S) requests as they come in and sends them to
the back-end application server. The application server should only be accessible
by the reverse proxy as shown in Fig. 2.
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Fig. 2. An application server protected with SBP

To administer sessions, the reverse proxy needs to be extended with function-
ality to read the requests and responses and manage both the SSL/TLS and the
application session. First, we present the identifiers bound together. Then, two
solutions are proposed to manage them to ensure the validity of the session.

SSL Identifiers
There are multiple identifiers for the SSL/TLS connection and session provided
by the SSL cipher suite. The most important identifier for the network layer
is the SSL session ID, which uniquely identifies the current SSL network con-
nection. However, it does not strongly identify a client but rather a connection.
For instance, when the SSL session ID is renegotiated, either by a timeout or
disconnection, the SSL session ID changes.

An alternative identifier for the SSL/TLS connection is the SSL master key.
The master key is part of the SSL handshake, just like the SSL session ID, but
is persistent during a session renegotiation. Therefore, the master key can be
used to identify multiple SSL connections which represent one client session.
The master key is a shared secret between the client’s SSL implementation and
the server’s SSL cipher suite.

Application Session Identifiers
The way the application session identifier works, depends on the application
itself. Most applications use a session ID stored in a cookie [10]. The admin-
istrator of the SBP is able to choose which cookies represent the application
session identifier and therefore, should be protected. The application might use
JavaScript to read other (non session related) cookies in the browser and change
parts of the webpage based on this value. Such cookies can obviously not be pro-
tected, since it breaks the functionality of the web application if SBP changes the
value. Next, we propose two solutions to bind the SSL and application session
identifiers together.

Solution 1
The first option is to store the SSL/TLS session and application session combina-
tion in memory. When the ‘Set-Cookie’ header is sent by the application server,
the SSL master key and the cookie value pair is stored by the proxy. When the
next request from the client comes in, the session cookie value is checked against
the pairs that are stored by the proxy. If the incoming pair does not match
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one of the pairs in memory, the session is invalid. To invalidate the session on
the application server, the request is just sent to the server without the Cookie
header. The server does not recognize any active session and redirects the user
to the login page.

Solution 2
Another method is to authenticate the cookie value with a combination of the
SSL master key and a secret key, known to the proxy only. One way of authen-
ticating the cookie is by combining it with an HMAC value. Another way is to
encrypt the cookie value. We chose to encrypt the cookie, because when this
option is deployed in larger environments, and the proxy is tested next to the
application server (see the dotted line in Fig. ??), the cookies will not be recog-
nizable when encrypted. So, the two systems can not interfere with each other.
For new systems that include SBP in the application, an HMAC will suffice.

When encryption is used, the secret key owned by the proxy is hashed together
with the SSL master key using a secure hash function. The output of this hash is
the key to a AES-256-cbc encryption/decryption function. This means that the
encryption/decryption key is different for every client connection. ‘Set-Cookie’
headers, for specific cookies, are intercepted by the proxy and their values are
encrypted before sending them to the client. The client cannot decrypt the result-
ing cookie, because it does not know the secret key. This method saves memory
and synchronization of parallel processes with shared resources is not necessary.
Fig. 2 shows some schematics of the layout, with and without SBP (With SBP,
the application server is not directly reachable).

In our proposed prototype in Sect. 3.4, the SBP, Solution 2 is used.

3.2 Session Management

This section describes how the SBP handles a request. The first thing that the
SBP server does when it gets a request, is redirect the user to the HTTPS port
if the user did not connect on that port already. This will start the SSL/TLS
handshake to establish the necessary identifiers. Fig. 3 shows the SSL negotiation
in the first block (lines 0 to 10). All further traffic passes this SSL connection.

When the SSL connection is made, the application session can be established.
The first request sent to the server does not contain a cookie, because the server
has not set any cookies yet. The SBP can simply replay the request to the
application server. Any request on a page without a session cookie results in a
redirect to the login page. When the user logs in, the application server will send
a ‘Set-Cookie’ header. This header is intercepted by SBP and the value of the
cookie is encrypted with the key kc, which is a hash of a secret system key Kp

and the SSL master key k concatenated, performed by kc ← hash(Kp||k). In
our prototype, we use SHA256 as the hashing algorithm. Every encryption with
AES-256-cbc (denoted by {−}) requires a fresh random Initialization Vector
(IV) such that an attacker cannot generate multiple session ID values encrypted
with the same key and IV. We generate a new random IV for every new ‘Set-
Cookie’ header. The IV is not required to be secret. The cookie is encrypted
as follows {cookie}kc ← encrypt(cookie, kc, IV ). In order to later retrieve the
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IV, we concatenate it with the encrypted cookie. The encrypted version of the
header {cookie}kc and the IV is sent to the client. This process is shown in the
second block (lines 11 to 19) in Fig. 3. From this point on with each request by
the user, the client sends the encrypted cookie along with every request. When
a request is received with encrypted session data, SBP decrypts the value of the
cookie and send the plaintext cookie to the back end server. This can be seen in
the final block (lines 20 to 25) of Fig. 3.

Client Proxy Server
SSL/TLS negotiation

0 picks challenge cC
1 cC−−−−−−−−−−−−−−−−→
2 picks connection id
3 id, certificate

←−−−−−−−−−−−−−−−−
4 picks secret S
5 {S}publickeyproxy−−−−−−−−−−−−−−−−→
6 k ← hash(S, cC , id) k ← hash(S, cC , id)
7 {id}k−−−−−−−−−−−−−−−−→
8 verify {id}k

9 {cC}k←−−−−−−−−−−−−−−−−
10 verify {cC}k

SSL/TLS initialized

11 request
−−−−−−−−−−−−−−−−→

12 forward request
13 request

−−−−−−−−−−−−→
14 get cookie
15 answer, cookie

←−−−−−−−−−−−−
16 kc ← hash(Kp||k)
17 picks IV
18 answer, IV, {cookie}kc←−−−−−−−−−−−−−−−−
19 stores IV, {cookie}kc

Session established

20 request, IV, {cookie}kc−−−−−−−−−−−−−−−−→
21 kc ← hash(Kp||k)
22 request, cookie

−−−−−−−−−−−−→
23 answer←−−−−−−−−−−−−
24 forward answer
25 answer←−−−−−−−−−−−−−−−−

Request handled

Fig. 3. Session Binding Proxy protocol

3.3 Session Management

This section describes how the SBP handles a request. When the SBP server gets
a request, it first redirects the user to the HTTPS port if the user did not connect
on that port already. This will start the SSL/TLS handshake to establish the
necessary identifiers. Fig. 3 shows the SSL negotiation in the first block (lines 0
to 10). All further traffic will go through this SSL connection.



Prevent Session Hijacking by Binding the Session 41

When the SSL connection is made, the application session can be established.
The first request sent to the server does not contain a cookie, because the server
has not set any cookies yet. The SBP can simply replay the request to the
application server. Any request on a page without a session cookie results in a
redirect to the login page. When the user logs in, the application server will send
a ‘Set-Cookie’ header. This header is intercepted by SBP and the value of the
cookie is encrypted with the key kc, which is a hash of a secret system key Kp

and the SSL master key k concatenated. So kc ← hash(Kp||k). In our prototype,
we use SHA256 as the hashing algorithm. Every encryption with AES-256-cbc
requires a fresh random Initialization Vector (IV) such that an attacker cannot
generate multiple session ID values encrypted with the same key and IV. We
generate a new random IV for every new ‘Set-Cookie’ header. The IV is not
required to be secret. So {cookie}kc ← Enc(cookie, kc, IV ). In order to later
retrieve the IV, we concatenate it with the encrypted cookie. The encrypted
version of the header IV ||{cookie}(kc,IV ) is sent to the client. This process is
shown in the second block (lines 11 to 20) in Fig. 3. From this point on with
each request by the user, the client sends the encrypted cookie along with every
request. When a request is received with encrypted session data, SBP decrypts
the value of the cookie and send the plaintext cookie to the back end server.
This can be seen in the final block (lines 21 to 28) of Fig. 3.

When the request is sent over the same SSL connection, the same master key
will be used and the cookie value decrypts normally. When the request is sent
from a different client, the SSL master key differs and the decrypted result will
be some random data. When the back end server receives such a request with
random cookie data, it tries to load a session that does not exist. The application
responds on a non-existing session request with a redirection to the login page.

The same goes for an expired SSL session. As said in Sect. 3.1, the SSL
master key is used for renegotiation, but whenever an SSL session is completely
terminated, the corresponding master key expires. Values that are encrypted
with an expired master key become invalid and are just ignored. This will result
in a session invalidation and the user is logged out and redirected to the login
page. SSL session expiration also has an effect on so called long-living cookies.
These cookies are needed for a ‘Stay signed in’ option that allows the user to
keep visiting a website with the same session for multiple days or even weeks.
We want to improve SBP in the future to handle expired SSL sessions such that
long-living cookies can also be used.

3.4 Prototype

To show that the idea works in practice, a prototype for SBP is implemented as
a module for the popular reverse proxy server Nginx. Nginx is a very lightweight
application and can be used as reverse proxy, webserver and load balancer. It is
written in C and highly optimized for performance. Because SBP relies heavily
on the efficiency of the reverse proxy, we chose to implement it as a module for a
proven to be robust and reliable reverse-proxy server like Nginx. The framework
can be used to handle the requests and only the application logic of the cookie
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names and SSL master key data should be configured. This was slightly harder
than we initially thought however, because the Nginx framework is not very well
documented3. Nginx is built to work in phases. An HTTP request is processed
by all the phases in order, starting from phase 1 all the way up until the response
is sent out at phase 10. Each phase can have zero or more handlers. There are
ten phases in total as depicted in Fig. 4.

Nginx Phase Description
1 ngx http server rewrite phase Request uri transformation on virtual server level
2 ngx http server config phase Configuration location lookup
3 ngx http rewrite phase Request uri transformation on location level
4 ngx http post rewrite phase Request uri transformation post-processing phase
5 ngx http preaccess phase Access restrictions check preprocessing phase
6 ngx http access phase Access restrictions check phase
7 ngx http post access phase Access restrictions check post-processing phase
8 ngx http try files phase Try files directive processing phase
9 ngx http content phase Content generation phase
10 ngx http log phase Logging phase

Fig. 4. Phases of Nginx

The module hooks into the rewrite phase (phase 3 in Fig. 4) to decrypt and
modify the cookie values in the request headers. Then, the request is handled
by the reverse proxy module of Nginx. The request is forwarded to the back end
and its response is returned to the Nginx proxy and at some point handed to the
filters of the module. Filters hook in to phase 10 of Nginx, where they perform
some last modification to the response before sending it to the client. In the
presence of ‘Set-Cookie’ headers, the cookie value in the header is encrypted.
Finally, the resulting headers and page body are returned to the client.

Set−Cookie : s s e s s i o n i d =609A38D1ECB3A70590BC51D41EA44048
; Path=/; Secure ; HttpOnly

Fig. 5. Cookie sent from backend server to proxy

Set−Cookie : s s e s s i o n i d=CD444464249E9227−Sz/
I2JEoX4uWvTfvzXAc4r2OAXsMF/MmvZBYcF7CQCFGWBIcq+
CJbNKwglZbU7G6CGSCI59QDagYhrZQu2RPCXLKRzX/
Te58QVFMB5Uk5J8SigaTOJY8dr5fLJnUyYGP; Path=/; Secure ;
HttpOnly

Fig. 6. Cookie sent from proxy to client

Fig. 5 shows a simple example of a HTTP header from the back end server.
An example of the the encrypted cookie is shown in Fig. 6.

The encryption and decryption is done using an AES-256-cbc function, pro-
vided by the used OpenSSL cipher suite. It has three main parameters, namely

3 SBP started out as a bachelor thesis subject for Willem Burgers [1]. A proof of
concept of SBP for the thesis was implemented in PHP.
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the key, the initialization vector and the data. For the key, the system private
key Kp is concatenated with the SSL master key k using SHA256. The output
of this hash is the encryption key. In our prototype, the system key Kp is a
256 bit hexadecimal string, randomly generated at the startup of Nginx. The
initialization vector is a 64 bit random, generated upon each new ‘Set-Cookie’
header intercepted. In order to decrypt with the same IV, it is placed in front
of the cookie value, separated by a ‘-’. To ensure that the cookie is still handled
correctly by the browser, only the value of the cookie is encrypted.

3.5 Attacking the SBP

This section describes the implications of an adversary with access to different
levels of the server and client. In Fig. 7 a schematic overview is given of the
protection level of SBP. Known attacks against SSL and cookies are represented
by arrows on the level they can attack.

Fig. 7. Attacker model

Suppose an adversary can execute JavaScript code (access to level 1 or 2 in
Fig. 7). He can use this to craft an XSS attack and steal a cookie from a user.
With SBP in place, the attacker can still steal the cookies, but he will not be
able to take over the user’s session, because he cannot decrypt or re-encrypt the
cookie. An alternative prevention method against an adversary with access to
level 1 or 2 would be to make use of http-only cookies as described in Sect. 2.2.

When the attacker has access to level 3, more advanced attacks can be crafted.
A browser plugin has more rights than JavaScript and can read all cookies, even
the http-only cookies. A malicious plug-in is able to send sensitive cookies to the
adversary. To put it in perspective, a browser plug-in is also able to perform other
attacks. A browser plug-in can forge requests while the user is logged in such that
it looks like the user did the request. This way, an attacker does not need to steal
the session. It is a different kind of attack called man-in-the-browser [13] and
therefore this kind of attack is out of the scope for this paper. A browser plug-in
can also view the user credentials while logging in. Just capturing the username
and password can be sufficient to take over the entire account. However, modern
systems migrate to two-factor authentication to make sure that even with the
username and password, an adversary is still not able to log on. After a successful
login, the session identifier is a crucial credential that should be protected. SBP
aims to provide such a protection.
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When level 4 is compromised, the adversary has full user level access to a
machine. The adversary can access the cookies of the browser directly through
the file system. The adversary can capture user input directly which enables
phishing attacks. As explained for level 3, with modern authentication techniques
like two-factor authentication, the adversary is still not able to do anything with
the recovered cookies.

An attacker has to use operating system exploits to gain access to level 5
and 6. Kernel exploits are often fixed within days of discovery making it hard
to gain access to SSL/TLS credentials. Only an adversary with access to the
SSL/TLS master key k and the system private key Kp can bypass the SBP
system protection.

On the server side, the attacker needs to gain root access to recover the keys
needed to hijack the session. Nginx runs under a isolated user account on the
server and once again, operating system exploits need to be used in order to get
a hold of the necessary information.

4 Validating SBP

To validate our SBP method, we have designed and implemented a prototype.
The code of our prototype is open source and available on a public github repos-
itory4. This prototype is fully functional and released under the same license
as Nginx, the royalty free BSD License, which defines very minimalistic distri-
bution restrictions. The prototype was deployed on a widely used and complex
application in order to check whether it can actually prevent session hijacking
in a real-life context. We chose Blackboard Learn since this application fits
our requirements very well.

Blackboard Learn (previously Blackboard Academic Suite) is one of
the most popular e-learning systems or Learning Management System (LMS) in
higher education worldwide. It is used by thousands of educational institutions
spread over numerous countries. One of its main features is to publish the con-
tents of a course on the Internet for students. This is not directly very security
sensitive. However, Blackboard Learn also has the ability to keep track of
grades for assignments with the intention to derive the final grades from the
Blackboard Learn system. Clearly, influencing the grades might be a goal
of an attacker. Furthermore, Blackboard Learn has the ability to take on-
line exams completely within the system. Being able to access these exams in
advance is obviously another feasible attack goal.

Several serious vulnerabilities have been found in Blackboard Learn. On-
line24 [12] did a full black box investigation of Blackboard Learn version 8.
They found all kinds of feasible attacks. One vulnerability with major impact
allows an adversary to insert executable code or send emails with viruses from
Blackboard Learn. Because of these flaws in Blackboard Learn, one of
the possibilities is that students can elevate their permissions to the permissions
of a teacher. This can be done e.g. by session hijacking. A student can insert

4 https://github.com/wburgers/Session-Binding-Proxy

https://github.com/wburgers/Session-Binding-Proxy
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cross site scripting (XSS) code in an assignment and when the teacher opens
this assignment to grade the work, the code is executed in the browser of the
teacher. Blackboard Inc., the company behind Blackboard Learn responded
with a new version in which all the problems were claimed to be fixed. LaQuSo5

verified this claim by again testing the Blackboard Learn system version 9.1
SP5 as a black box. LaQuSo concluded [4] that Blackboard Learn blacklisted
the previous attacks, but that workarounds for the blacklisting filter were very
easily found. Vulnerabilities can be expected to keep popping up until structural
security measures have been fully incorporated by Blackboard Learn.

The structural nature of the revealed vulnerabilities lead the Board of Direc-
tors of the Radboud University in Nijmegen to decide in September 2011 not
to use Blackboard Learn for any privacy or security sensitive activities until
further notice. Hence, Blackboard Learn can not be used for online exams
and teachers e.g. have to keep a separate version of the grades they gave to
students since the students can edit the Blackboard Learn grades.

Sect. 4.1 first explains the details of a cross site script that steals a session in
Blackboard Learn. Then, Sect. 4.2 reports on the results of testing our pro-
totype on the Radboud University Nijmegen Blackboard Learn test server.
Finally, Sect. 4.3 evaluates the test result impact for Blackboard Learn.

4.1 Session Stealing in Blackboard Learn

It was still very easy to steal sessions in Blackboard Learn version 9.1 SP5
by executing an XSS attack. The LaQuSo research showed that especially the
Discussion board and Blog-Assignments were vulnerable and scripts could be
injected in the title/subject field as well as the message field of both modules.
When a student hands in a Blog-Assignment or submits something to the Dis-
cussion board and the teacher requests the page, the script in Fig. 8 can get the
cookies of the teacher and send them to the attackers website (at website.com).

document . wr i t e (”<img s r c=\”http :// webs ite . com/bb/? cook i e
=” + document . cook i e+ ”\”>”) ;

Fig. 8. bb.js

The screens that invoke the XSS attack are shown. The upper image of Fig. 9
shows the student injecting the attack in the Discussion board and the bottom
image of Fig. 9 shows the teacher viewing the discussion thread. The teacher does
not even have to open the thread, because the attack is injected in the title. With
such an attack, the adversary is able to steal all the necessary cookies from a
teacher and hijack the session.

4.2 Applying the SBP Prototype

The prototype was tested on the, fully functional, local Blackboard Learn
test server of the Radboud University Nijmegen. In order to detect and resolve

5 The Laboratory for Quality Software (LaQuSo) is a joint activity of Technische
Universiteit Eindhoven and Radboud Universiteit Nijmegen.
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Fig. 9. Student injects JavaScript code — Instructor views malicious post

incompatibilities with earlier versions this server is used for testing new Black-
board Learn releases and patches before putting them in actual operation.
It generally takes several weeks or even a few months before a new release is
fully operational. The Blackboard Learn test environment runs on several
application servers. A load balancer divides the work between the application
servers. This load balancer is not the SSL/TLS endpoint, so the SSL connection
is still intact after being routed through the load balancer. For every application
server, a SBP is included on the same system such that the routing will look
like: incoming request—load balancer—SBP —Blackboard Learn server.
We first tested whether it is still possible to steal a session in Blackboard
Learn on the standard Blackboard Learn test server. We used two browsers
A and B, both having the login page of the Blackboard Learn test server
open. We logged in on browser A, copied the cookies from browser A to browser
B and refreshed the page on browser B. By copying the cookies, the session was
transferred to browser B and we were logged in on both browsers.

Then, we performed the same attack again but first made sure that the in-
stalled SBP prototype was used. This was achieved by one simple redirect at the
highest level. Again we used two browsers A and B. Both had the login page of
the Blackboard Learn test server open, but this time we were connected to
the SBP machine. This means that all traffic flowed through the proxy. Again,
we logged in on browser A and copied the cookies to browser B. When we re-
freshed the page on browser B now, we were not logged in. The reason for that
is that both browsers had a different SSL session. The cookie that is sent to the
back end server will not be valid and the session is not taken over. So, SBP was
effectively used to prevent session hijacking in Blackboard Learn.

4.3 Validation Evaluation

The Blackboard Learn test server we used did not have the most recent
patches by Blackboard Inc., where some cookies are protected from JavaScript
access by making them http-only. The browser will then keep the cookies for itself
and when requesting access to the cookies by the JavaScript command ’docu-
ment.cookie’, it only returns the cookies that do not have the http-only attribute.
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This means that XSS attacks based on JavaScript requesting the cookies, will
not work. The most important cookie in Blackboard Learn is the s session id
cookie. The s session id cookie is set to http-only in the recent patches. The ses-
sion cannot be hijacked by XSS attacks because of this property. This does not
mean that session stealing becomes impossible. Recent papers have shown that
cookies sent over an HTTPS connection can be read using a chosen plaintext
attack on SSL/TLS [3]. This recent Blackboard Learn patch is therefore less
effective than our SBP approach. In Sect. 5 we will discuss this attack on SS-
L/TLS. It is important to note that SBP does not prevent XSS attacks or other
attacks from happening (proper input validation and output encoding should be
in place in order to achieve that), but it does prevent one of their uses. SBP is
a general approach in which sessions can no longer be stolen by only obtaining
the session ID from the cookie of a client’s browser.

The validation has shown that our SBP prototype is fully operational, easily
deployed and effective in practice against session stealing via XSS. Even in a
production environment with multiple application servers.

4.4 General Applicability of SBP

The use of SBP is not limited to e-learn environments only. Many legacy web ap-
plications suffer from various XSS vulnerabilities, mainly due the lack of proper
maintenance. Without having access to the source-code it is hard to protect
them against widely distributed and general applicable XSS exploit scripts. Our
contribution provides a setup that does not require any knowledge of the web
application that it protects. As long as it is accessible through a secure channel
(SSL/TLS) and uses a cookie to store the session credentials, then the SBP is
able to fortify the security of its online sessions. Our case study shows the ro-
bustness and demonstrates that hijacking a session is only mountable when the
clients computer or application server is completely compromised.

5 Related Work

5.1 Session Hijacking Prevention

There are several other proposals to prevent session hijacking. Johns (2006) [7]
proposes a solution where the cookies in which the session ID is kept are sent
from a different subdomain. This way the JavaScript code cannot get the cookie,
because it does not fall under the same-origin policy, so the cookie is safe. This
does not prevent every type of attack though. With browser hijacking or XSS
propagation, session cookies can still be obtained by an attacker. Johns uses URL
randomization and one-time URLs to prevent these attacks from being executed.
He also writes that these methods are not meant as a complete replacement
for input and output validation in the application, but it is an extra layer of
protection. This sure is a good way of preventing session hijacking, though it is
a lot of hassle to implement. Most of the application needs to be rewritten.

Another method is to run a piece of software on the client computer which
intercepts the ‘Set-Cookie’ header before it is sent to the browser. This way the
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cookies will never be in the browser at all. This method is proposed by Nikiforakis
et al. (2011) [10]. Without much overhead this system will prevent JavaScript
code from accessing the cookie information. This still relies on the client side.
A secure implementation without memory leaks makes this a good solution. As
mentioned in Sect. 2.3, this paper is based on the work of Oppliger et al. [11].
They propose to bind the application session to the SSL/TLS session to prevent
MITM attacks. To bind the two sessions, they use either a software token (like
a client cerficate or a private key) or a hardware token (like a smartcard or
dedicated device). This is a safe solution, but it requires the distribution of a
pre shared key to the client/user. The same binding idea can be used for session
hijacking, but we propose a different binding method.

The only other paper that uses the binding of SSL/TLS Session-Aware User
Authentication as a basis is a proposal by Chen et al. [2]. They make use of
a two factor authentication method by means of a separate device (3g phone).
With this device they bind the SSL/TLS session to the application session. It
requires both client and server side changes.

In Fig. 10, an overview is given of the modifications that are required to secure
sessions with the various proposed methods.

Software patches System changes
Protection method Side

browser application software token hardware token server
SessionSafe [7] Server no yes no no no
SessionShield [10] Client yes no no no no

Session-Aware [11] Server no yes yes1 yes1 no

TLS-SA + GAA [2] Both no yes2 no yes yes2

SBP Server no no no no no

1
The implementation can work with either a software token or a hardware token.

2
Either the server application needs to be modified or install additional software.

Fig. 10. Comparison of patch requirements to prevent session stealing

5.2 Related Attack Setups

There are also papers that describe attacks on cookies and sessions. As men-
tioned in Sect. 4.3 there exist attacks like Browser Exploit Against SSL/TLS
(BEAST) [3] and CRIME to steal cookies. Both attacks are implemented in
JavaScript for speed, but can be run on any user level. BEAST and CRIME use
known plaintext attacks to guess the unencrypted cookie that is sent over an
encrypted SSL connection. The cookie is guessed character by character. This
brute force method allows to guess an entire cookie. Where BEAST works only
on certain versions of SSL/TLS, CRIME works for any version. CRIME makes
use of the compression in SSL/TLS to guess the cookie. The flaws of compres-
sion in combination with encryption are already described in a paper by John
Kelsey in 2002 [8]. There is a proof of concept for the CRIME attack. With some
modifications it can be used to actually capture cookies even though they have
the http-only property. This is just another method to get the cookie from the
client. Our proposed method also defends against both attacks as depicted in
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the attacker model. Even though they can steal the cookie. It is still hard to
copy the SSL session. Also the last two years people could download a Firefox
add-on that would sniff network traffic and intercept cookies from other users.
This extension is called Firesheep. The main focus of the creator of Firesheep
was to encourage sites like Facebook and Twitter to always use HTTPS, not
just when logging in. Nowadays those sites do use HTTPS for all their traffic
and Firesheep is useless. BEAST and CRIME can be used however. Firesheep
will also not work on sites that use SBP, because SBP needs HTTPS to work.

6 Conclusions

We have presented a new, general technique to prevent session stealing, SBP. Us-
ing a server side reverse proxy the secure communication channel is bound to the
user authentication of the session. We validated the approach by implementing
SBP and testing it on a test server of a widely used infrastructural application
which was vulnerable to session stealing. Using SBP, this application was shown
to be effectively protected against the earlier session stealing attacks. We made
our prototype implementation available as open source to be used by a broad
community in a wide context. This prototype is fully functional and released un-
der the same license as Nginx, the royalty free BSD License, which defines very
minimalistic distribution restrictions. We want to improve on our prototype to
handle full SSL/TLS connection termination and renegotiation, such that long-
living cookies can also be used with SBP. This will make it deployable in all
contexts.

Acknowledgements. We thank the anonymous reviewers for useful feedback
and for believing this solution has the potential to grow into the universally
acceptable security standard solution. This motivates us to continue along this
path and make our solution work for every context.
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Abstract. Permission-based security models are common in smartphone
operating systems. Such models implement access control for sensitive
APIs, introducing an additional concern for application developers. It is
important for the correct set of permissions to be declared for an applica-
tion, as too small a set is likely to result in runtime errors, whereas too large
a set may needlessly worry users. Unfortunately, not all platform vendors
provide tools support to assist in determining the set of permissions that
an application requires.

We present a language-based solution for permission management. It
entails the specification of permission information within a collection of
source code, and allows for the inference of permission requirements for a
chosen program composition. Our implementation is based on Magnolia,
a programming language demonstrating characteristics that are favorable
for this use case. A language with a suitable component system supports
permission management also in a cross-platform codebase, allowing ab-
straction over different platform-specific implementations and concrete
permission requirements. When the language also requires any “wiring”
of components to be known at compile time, and otherwise makes de-
sign tradeoffs that favor ease of static analysis, then accurate inference
of permission requirements becomes possible.

Keywords: language-based security, platform security architectures,
security management, software engineering.

1 Introduction

Permission-based security models have become commonplace in real-world,
consumer-faced operating systems. Such models have been adopted mostly for
mobile OS platform security architectures, partly because smartphones are high-
utility personal devices with privacy and usage cost concerns (regulations and
business models have also driven adoption [21]). Smartphones are also natively
third-party programmable (by our definition), and the wide consumer awareness
of “app stores” has made it almost an expectation that applications (or “apps”)
are available for installation in large numbers. While some smartphone platforms
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(such as iOS1 and Maemo) rely on app store maintainers to serve as gatekeepers
against malicious (or maliciously exploitable) apps, many others (such as An-
droid, BlackBerry 10, and Windows Phone) have permission-based security to
restrict the damage that such apps might cause. Sole reliance on gatekeepers has
the drawback that “side-loading” of apps from another source is then more likely
to be prevented by the platform vendor (as is the case with iOS2).

A number of different terms are being used for essentially the same concept
of a permission. By our definition a permission is something that is uniquely
named, and something that a program (or rather its threads of execution) may
possess. Possession is required for a program to be allowed to take certain actions
(typically to call certain system APIs), or perhaps even to be the target of
certain actions (e.g., an Android app may not receive certain system messages
without the appropriate permissions [15]). A common reaction to an attempt
to invoke an unallowed operation is to trigger a runtime error, although the
concrete mechanisms for reporting such errors vary between platforms.

By the term permission-based security model we simply mean a security model
in which access control is heavily based on permissions. We assume at least
API access control such that different permissions may be required for different
operations; i.e., there is finer than “all or nothing” granularity in granting ac-
cess to protected APIs. With judiciously chosen restrictions for sensitive APIs
a permission-based security model can serve as a central platform integrity pro-
tection measure. Such a model can also help permission-savvy end users (even
if they are in the minority [16]) avoid leakage of private data and malicious
exploitation of functionality.

Users, operators, and regulators all get some genuine benefit from platform
security measures. Software developers, however, tend to only be inconvenienced
by them, unless their software specifically requires functionality that platform
security happens to provide. There are restrictions in what features can be had
in an app, and how apps can be deployed (during a test/debug cycle, or in the
field). This can even motivate the maintenance of multiple variants of an app [18]
depending on what permissions are grantable for which distribution channel.

For most platforms the permissions required by an application must be de-
clared. Writing the declaration may not in itself be difficult, but permission
requirements are sometimes poorly documented [15], and keeping permission
information up to date is an extra maintenance burden. The burden can be sig-
nificant particularly for applications [18] that both exercise many sensitive APIs,
and also have variants with different feature sets.

We present an approach for inferring permission requirements for programs
constructed out of a selection of components in a permission-annotated code-
base. While it takes effort to annote all sensitive primitives with permission
information, the up-front cost is amortized through reuse in new program com-

1 In iOS 6, there is a small set of privacy-related permissions with application-specific
settings. Developers need not declare the required permissions.

2 As of early 2013, end-user installation of iOS applications is only allowed from the
official vendor-provided App Store.
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positions. We have implemented the approach as one use case for the research
language Magnolia, designed to be statically analyzable to the extreme. Mag-
nolia avoids dynamic features, but has extensive support for static “wiring” (or
linking) of components. We argue that these characteristics combine to facilitate
permission inference without undue restrictions on expressivity. Magnolia also
supports cross-platform code reuse, as its interface and implementation specifica-
tions allow for declaration of permission information in such a way that different
platform-specific concrete permissions can be handled in an abstract way.

Magnolia is source-to-source translated into C++, and hence can be used to
target platforms that are programmable in C++, including most smartphone
platforms.3 Translation to a widely deployable language is an important part of
the overall portability picture, and also a possibility to abstract over differences
in implementations of said language. Cross-platform libraries and Magnolia’s
support for interface-based abstraction help with the API aspect of portability.
A third aspect is support for integration with platform vendor provided tools,
which remains as future work in the case of Magnolia.

Maintaining permission information together with source code should result
in better awareness of possible runtime permission failures when programming,
and also allow for various automated analyses of the permission requirements of
programs and program fragments. Such analyses, particularly when used in ways
that affect the construction of software (e.g., due to analysis-based generation
of permission declarations, or even code modifications), could also aid in the
discovery of errors in app permission declarations or platform documentation.

While our focus is on permissions, some of the techniques presented apply not
only to right of access, but more generally ability of access. E.g., from the point
of view of error handling it matters little if a runtime failure is caused by lack of
camera hardware, or lack of permission to access it. There are platform differ-
ences in whether requesting a permission will guarantee its runtime possession,
and also in whether it is possible to similarly declare a (software or hardware)
feature requirement so that availability of the feature will be guaranteed after
successful installation. For instance, specifying ID_REQ_REARCAMERA in the mani-
fest of a Windows Phone 8 app will prevent installation on devices without a
back-facing camera [22]. Given the similarities between permissions and feature
requirements we sometimes use the term access capability to imply access ability
in a broader sense than that determined by permissions.

1.1 Contributions

The contributions of this paper are:

– We give a brief overview of permission-based security models of a number
of current smartphone OSes, and survey the associated tooling (if any) for
inferring required permission information for applications.

3 Magnolia is not a symbiotic language (i.e., a language designed to coexist with an-
other one), however, and there is nothing in Magnolia that would prevent its com-
pilation into other languages. Still, the current implementation only targets C++.
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– We present a language-based solution for declaring permissions for APIs
and inferring permission requirements for programs. The solution allows for
cross-platform programming by exploiting the host language’s support for
interface-specification-level abstraction over different implementations.

– We discuss static analysis friendly language design choices that favorably
affect permission inference accuracy, and argue that some of the expressive-
ness cost of the resulting lack of “dynamism” can be overcome by flexible
static composition.

To evaluate the presented solution we have implemented it based on the Mag-
nolia language, and made use of it in a small cross-platform porting friendly
application that requires access to some sensitive APIs. We have organized the
app codebase to facilitate growing it to target multiple different platforms and
feature sets, probably with different permission sets for different configurations.

2 Permission-Based Security Models in Smartphone
Operating Systems

Below we list distinctive aspects of the permission-based security models of a
number of current smartphone OSes (more wholesome surveys of the permission
and security models of some of the same platforms exist [2,21]). We also discuss
any permission inference or checking tools in the associated vendor-provided
developer offerings. We provide a side-by-side summary of permission-related
details of the platforms in Table 1. Due to the newness of Tizen (no devices
have been released as of early 2013) and the similarity of its and bada’s native
programming offerings, we opt to exclude Tizen (but not bada) from the table.

Android allows for the definition of custom “permissions”. Permissions have an
associated “protection level”, with permissions of the “dangerous” level pos-
sibly requiring explicit user confirmation; hence a developer defining such
a permission should also provide a description for it, localized to different
languages [1]. A “signature” level permission does not have that requirement
as it is automatically granted to apps signed with the same certificate as the
app that declared the permission. No tools for inferring permissions for an
app are included in the Android “SDK Tools” [1] as of revision 21.1. There are
two third-party permission checkers capable of statically analyzing the per-
mission requirements of Android apps. The tools are named Stowaway [15]
and Permission Check Tool [30], and they both report on over/underprivilege
wrt manifest-declared permissions. Their accuracy is discussed in Section 7.

bada 2.0 The Eclipse-based IDE of the bada SDK 2.0.0 [27] incorporates an
“API and Privilege Checker” [26] tool that checks the project for privilege
violations (an API requiring a privilege group is used, but the privilege group
is not declared in the manifest) and unused privileges automatically during
packaging, and optionally during builds. The tool is for checking privileges,
and does not generate privilege group declarations for the manifest.
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BlackBerry 10 (BB10) is notable in that (upon first running an app) a user
may grant only a subset of the “permissions” requested in the corresponding
“application descriptor file” [13], and it is then up to the app to react sen-
sibly to any runtime failures caused by unpermitted operations. BB10 also
has limited support for running (repackaged) Android applications, with a
number of Android features and permissions being unsupported [12].

MeeGo 1.2 Harmattan access control makes use of traditional “credentials”
including predefined Linux “capabilities”, Unix UID and GID and supplemen-
tary groups, and file system permissions. Harmattan adds to these by intro-
ducing fine-grained permissions known as resource “tokens”, as supported
by the Mobile Simplified Security Framework (MSSF) [23]. Granting of cre-
dentials is policy-based, and consequently (as of early 2013 and Harmattan
version PR1.3) app credential information is not shown to the user, either
in the app Store or under installed Applications. The aegis-manifest tool
performs static analysis of binaries and QML source. It generates a manifest
file listing required credentials for a program, but may fail in exceptional
cases. Dynamically determined loading (e.g., via dlopen) or invocation (e.g.,
via D-Bus) of code are possible causes for the static scanner failing to detect
the full set of required credentials.

Symbian v9+ Symbian OS has had a “capability-based security model” since
version 9 [19]. It is unusual in that both executables and DLLs have “ca-
pabilities”. A process takes on the capabilities of its executable. Installation
requires code signing with a certificate authorizing all the capabilities listed
in any installed binaries; a self-signed certificate is sufficient for a restricted
set of capabilities. Any loaded DLLs must have at least the capabilities of
the process. There is a “Capability Scanner” plug-in for the Eclipse-based
Carbide.c++ IDE that ships with some native Symbian SDKs; the plug-in
is available starting with the Carbide.c++ release 1.3 [24]. The scanning
tool presents warnings about function calls in a project’s codebase for which
capabilities are not listed in the project definition file. The tool is only able
to estimate the required capabilities.

Tizen 2.0 The Tizen 2.0 SDK [29] release introduced a C++ based native ap-
plication framework, which appears to have bada-derived APIs. The per-
missions in Tizen are called “privileges”; the set of permissions (and their
naming) in Tizen differs from those of bada. Privileges are specified in a
manifest file in an installation package, and there is no tool support for au-
tomatically inferring and generating the privilege requests. However, as with
bada, the Tizen SDK includes an “API and Privilege Checker” [28] tool for
checking for potential inconsistencies between specified privileges and APIs
being used in an application. The tool may be enabled for automatic checks
during builds or code editing, and it may detect either under or overprivilege.

Windows Phone 8 (WP8) has a security model in which the kernel is in the
“Trusted Computing Base” “chamber”, and where OS components, drivers,
and apps are all in the “Least Privilege Chamber” (LPC) [20]. Software in the
latter chamber may only directly invoke relatively low-privilege operations,
and only when in possession of the appropriate “capabilities”. All capabilities
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Table 1. Smartphone platform permissions and tools support

Android bada BlackBerry
10

MeeGo 1.2
Harmattan

Symbian
v9+

Windows
Phone 8

permissions: open-ended
set of “per-
missions”

predefined
set of
“privilege
groups”

open-ended
set of “per-
missions”

open-ended
set of
resource
“tokens”

predefined
set of “capa-
bilities”

predefined
set of “capa-
bilities”

permission
categories:

“normal”,
“dangerous”,
“signature”,
and
“signature-
OrSystem”

“Normal”,
“System”

N/A N/A “User”,
“System”,
“Restricted”,
“Device
Manufac-
turer”

“Least
Privilege
Chamber”

auth: depending
on
permission:
automatic,
user
approved
(all or
nothing),
signed by
authority, or
preinstalled

by vendor
at time of
publishing,
based on
developer
“privilege
level”

user
approval;
user may
only grant a
subset of
requested
permissions

by installer,
depending
on software
source and
policies
declared in
software
packages

user
approved
(all or
nothing),
developer
signed,
identity-
verified
developer
signed, or
vendor
approved

user
approval
(all or
nothing)

assignment
request:

recorded in
a manifest
in
installation
package

recorded in
a manifest
in
installation
package

recorded in
a manifest
in
installation
package

recorded in
a manifest
in
installation
package

specified in
project
definition;
recorded in
binary

recorded in
a manifest
in
installation
package

inference by
tools:

Stowaway
(3rd party),
Permission
Check Tool
(3rd party)

“API and
Privilege
Checker”

none aegis-
manifest

“Capability
Scanner”

none (for
WP8 –
“Store Test
Kit” for 7.1)

are user grantable, and the requested capability set of each app is disclosed
in Windows Phone Store; some capability requirements are displayed more
prominently than others. “Hardware requirements” may also be specified,
and an app is not offered for phone models not meeting the requirements.
The Windows Phone SDK 8.0 does not contain capability detection tools for
apps targeting WP84, nor (as of early 2013) are such apps programmatically
capability analyzed during Store submission [22].

3 The Magnolia Programming Language

Magnolia [7] is a research language that aims to innovate in the area of reusabil-
ity of software components. Safe composition of reusable components requires
4 Windows Phone SDK 8.0 has a Visual Studio IDE integrated “Store Test Kit” that

may be used to inspect a Windows Phone OS 7.1 targeting app and list the capabil-
ities required by it. Windows Phone OS 7.1 is not natively programmable by third
parties, and hence not a smartphone OS per our definition.
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strict specification of component interfaces—sometimes referred to as APIs (ap-
plication programmer interfaces) if semantic content is implied. A description
of an API in Magnolia is given using the concept construct; a concept declara-
tion can be thought of as an incomplete requirements specification. It specifies
one or more abstract types, some operations on those types, and the behavior
of those operations (in the form of axioms). Each concept may have multiple
implementations that provide data structures and algorithms that satisfy its be-
havior. Each implementation, in turn, may satisfy multiple concepts.

One kind of operation that may be defined in Magnolia is a procedure. A
procedure has no return values, but may modify its arguments according to
specified parameter modes [6]. Legal parameter modes include obs (observe; the
argument is read-only), upd (update; the argument may be changed) and out
(output; the argument is write-only) [8]. A simple procedure that only outputs
to a single parameter may equivalently be defined in a more “sugary” form as
a function, and regardless of choice of declaration style, invocations to such
operations may appear in expressions.5 The keyword call is used to invoke an
operation as a statement. A predicate is a special kind of function yielding truth
values, and taking zero or more appropriately typed expressions as arguments.
A predicate application as well as TRUE and FALSE are predicate expressions, and
more complex predicate expressions are built using logical connectives.

The notion of partiality of an operation, meaning that the operation is not
valid for all values that its parameter types could take, is central to Magnolia.
Such a restriction can be specified for an operation. In the API it takes the
form of a guard [4] with a predicate expression, which may include invocations
to functions and predicates. The more fine-grained notion of alerts [5] is the
corresponding partiality notion in implementations. Alerts are an abstraction
over pre/postconditions and error reporting, and each partial function is tagged
with a list of alert names and the corresponding conditions that trigger the
alerts. The set of defined alert names is user extensible and partially ordered,
possible to organize as a directed acyclic graph.

alert CameraAccessAlert;
alert NoCamera <: CameraAccessAlert;
alert NoAccessToCamera <: CameraAccessAlert;

predicate deviceHasCamera() = Permission;
procedure takePicture(upd w : World, out p : Picture)
alert NoCamera unless pre deviceHasCamera()
alert NoAccessToCamera if throwing PermissionDenied
alert NoAccessToCamera if throwing CameraInUse;

Here the alert names NoCamera and NoAccessToCamera are specialisations of the
alert name CameraAccessAlert. The procedure takePicture has three possible er-
ror behaviors. The precondition test calling the predicate deviceHasCamera checks
whether the device has a camera; if not, it would not be meaningful to use the

5 In Magnolia, an expression always yields a single value; i.e., there are no multi-valued
expressions such as (values 1 2) in Racket.
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procedure. The two other conditions have the same alert name, and are triggered
by the procedure implementation throwing one of two exceptions.6

A program is a special implementation in that its operations are made available
as “entry points” to a piece of software that is composed in Magnolia. The Mag-
nolia compiler translates Magnolia code into C++ source code, and produces
a command-line interface wrapper for the program through which the exported
operations may be invoked.

Due to Magnolia’s explicit static linking of components (as declared in source
code), all data structures and algorithms corresponding to a program’s types and
operations (respectively) are known at compile time. Programs are statically
typed, and there is no subtyping or dynamic dispatch (as e.g. in the case of
C++ virtual functions). There are also no first-class functions (or even function
pointers) to pass by value for parameterizing operations at runtime; any such
parameterization must be done statically by specifying concrete operations used
to implement a concept.

The static nature of Magnolia means that the actual target of an operation
invocation appearing in program code is always statically known. Due to this it
is possible to tell whether calls to a given operation appear in a given program
composition, and any definitions for operations that have no invocations may
be dropped for purposes of optimization or full-program analysis. Still, even in
Magnolia’s case it is generally not possible to tell if an operation appearing in
a program actually gets invoked, as relevant facts about program runtime state
or how far execution gets to proceed are generally not known at compile time.

4 Language Support for Permissions

Here we design a way to model permissions (and more generally, access capabil-
ities) in Magnolia. As we prefer to keep Magnolia’s core language simple, again
for ease of analysis, we want to avoid feature-specific language extensions where
possible. In this case we can do so by mapping permissions onto the Magno-
lia alerts system. The syntax may not always be as convenient as it could be,
but that could be fixed through superficial syntactic transformations; we do not
consider alternative syntaxes here.

The execution of a program consists of operations on the program state, and
we want to be able to determine the permission requirements of all operations
appearing in Magnolia code. To allow for this the permissions must either be
declared, or it must be possible to infer them based on the implementation of
the operation (i.e., its body). Magnolia currently allows an operation to be im-
plemented either in Magnolia or in C++; for the former we can infer permissions
by examining the language, but not for the latter. Any permission requirements
for C++ operations will therefore have to be declared.

6 In real-world code we might want different alert names to distinguish between errors
of a transient (CameraInUse) and permanent (PermissionDenied) nature. On most
platforms application permissions are fixed at install time.
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Permission-protected operations are associated with requirements, i.e., pre-
conditions, as dictated by the platform APIs. We can state the preconditions
as alerts with predicate expressions, noting that a permission restriction gives
us two separate concerns: (1) we want to know of the permission requirement
so that we can request the permission, and hence try to prevent runtime errors;
and (2) we want to be able to handle any related errors. For case (1) we want
platform-specific permission names, while for case (2) we would like abstract,
platform-agnostic error names, probably relating to the operation. The example
in Section 3 had the latter kind of names, namely NoCamera and NoAccessToCamera.

For storing platform-specific permissions we essentially just want to have the
predicate expressions as named properties of operations. Had we support for con-
venient scripting of compiler-assisted queries we would not necessarily require
fixed, predefined naming, but might rather choose any descriptive name to use
as a search key to find the relevant expressions. The built-in support for permis-
sion inference in Magnolia currently uses the name RequiresPermission for this
purpose (as suggested in Section 6, it might sometimes be desirable to use other
names). We use RequiresPermission to “tag” permission preconditions, and each
permission appearing in a precondition is defined as a “dummy” predicate.

As such predicates merely represent static properties, they are not intended to
actually trigger an alert at runtime. This can be ensured by treating Requires-
Permission as special and not inserting a precondition check for it. A more
general alternative is to define the predicates as TRUE, leaving any generated
check as dead code. On most platforms we can assume that the program is only
started if the declared permissions have been granted, but there may be reasons
for not requesting all inferred-as-required permissions. Permission-related pre-
condition violations are thus possible, and we want them trapped as declared for
their platform-agnostic alerts. It may be more efficient to capture any platform-
specific runtime “permission denied” error than to actually implement a sensible
predicate that checks for possession of the associated permission.

The Magnolia compiler supports scavenging a program for its operations
(which, as mentioned in Section 3, are known in Magnolia) and respective per-
mission requirements, provided the operations’ permissions are specified as sug-
gested above. (This approach also generalizes to other access capabilities, e.g.
Windows Phone hardware requirements.) The result is conservative, but can
only err on the side of too many permissions, assuming correct annotations. One
source of inaccuracy is the currently indiscriminate inspection of all operations.
Any dead code elimination done by the compiler happens later in the pipeline;
such optimization would be beneficial, particularly if data-flow sensitive.

The second source of inaccuracy comes from the way we build the result.
Perhaps the most accurate way to represent the result would have been as a
single predicate expression such as BLUETOOTH() && CAMERA() && (ACCESS_COARSE_
LOCATION() || ACCESS_FINE_LOCATION()), built as a collation of the relevant pred-
icate expressions. Currently, however, we just build a set of permissions such
as {BLUETOOTH, CAMERA, ACCESS_COARSE_LOCATION}. This may produce subopti-
mal results, as concrete choices must be made between logical alternatives.
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Our current implementation produces a set, and picks the left choice from OR-ed
permissions.

Platform-provided sensitive operations typically require a fixed set of permis-
sions, but there are many exceptions that motivate allowing the use of logical
expressions to at least specify permission requirements, even if we do not al-
ways make optimal use of the specification. Let us consider the LocationManager
class of Android OS. Its getLastKnownLocation(String) method requires either
ACCESS_FINE_LOCATION, or at least ACCESS_COARSE_LOCATION, depending on the “lo-
cation provider” specified as the sole argument. The NETWORK_PROVIDER supports
both coarse and fine grained positioning, and no SecurityException should get
thrown as long as either permission has been requested (and granted). If we
implement a network positioning specialized version of the operation—perhaps
named getLastKnownNetworkLocation—then we may declare:

procedure getLastKnownNetworkLocation(upd w : World, out l : Loc)
alert RequiresPermission unless pre ACCESS_COARSE_LOCATION() ||

ACCESS_FINE_LOCATION()
alert LocationAccessNotPermitted if throwing SecurityException
alert IllegalArgument if throwing IllegalArgumentException
alert NotFound if post value == null;

We are using a platform-agnostic LocationAccessNotPermitted alert to allow
permission failures to be handled portably. The Android-specific permissions
we are stating as a predicate expression tagged with RequiresPermission. Other
possible errors for the operation are also mapped to alerts to allow handling.

For other platforms we would probably require a different (native) imple-
mentation of the operation, also with different error-to-alert mappings declared
similarly to the above. E.g., on Windows Phone a UnauthorizedAccessException
typically gets thrown on permission errors, whereas on Symbian one can gener-
ally expect a Symbian-native leave (a form of non-local return) with the error
code KErrPermissionDenied. Interestingly, there are APIs (such as those of the Qt
cross-platform application framework) that have been ported to different plat-
forms, but which still necessarily have platform-specific permission requirements.
With such APIs one could have a single (native) implementation but multiple
Magnolia declarations (with different alert clauses).

5 Experience with Application Integration

For trying out the solution we created a small software project named Anyxporter
(Any Exporter) [11], with the goal of building a codebase that would serve as
a basis for creating various programs for exporting PIM (personal information
manager) data in different (probably textual) formats. We chose the PIM export-
ing theme for exercising permissions as: (1) there are a number of different data
sources, possibly requiring different permissions; (2) different storage/transmis-
sion options for exported data would likely require further permissions; and (3)
the idea of building a “suite” of programs should allow us to keep the permission
requirements of each individual program reasonably small, which may make a
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user feel safer in installing a given variant (since the program does not ask for
permissions to do anything other than what the user wants done).

Anyxporter currently includes only one proper PIM data source, for reading
contact data. Its implementation requires the Qt Mobility Contacts API [25].
Said API is implemented [25] at least for Symbian (S60 3rd Edition FP1 and
later), Maemo 5, and Harmattan, and also for Qt Simulator for testing purposes
(without real contact data). For targets for which the API is not available, we
have also implemented a “mock” data source that yields fixed contact data, and
this data source has proved useful in testing other components of the software.

Of the targets supported by Qt Mobility Contacts, Symbian and Harmattan
have permission-based security models, and our discussion here focuses on them.
On Harmattan using the Qt API to read contact data requires the TrackerRead-
Access, TrackerWriteAccess, and GRP::metadata-users credentials, whereas on
Symbian only ReadUserData is required; clearly, the Symbian implementation of
the API is better in respecting the principle of least privilege.

The default output option is to save to a file, which for a suitably chosen
filesystem location requires no manifest-declared permissions either on Symbian
or Harmattan. Anyxporter also has initial support for HTTP POST uploads
of output files, implemented in terms of Qt 4.8 networking. Qt 4.8 is mostly
unavailable on our example platforms, but Internet access generally requires no
credentials on Harmattan, and the NetworkServices capability on Symbian.

Formatting of data for output is done using Lua scripts, and we currently
include an XML formatting option for contact data. A Lua virtual machine (VM)
instance is used as the intermediate representation (IR) between the different
input and output options; in principle, data of the same kind (e.g. contact data)
could have the exact same Lua object representation, regardless of concrete data
sources and output formatters. Through careful choice of enabled Lua libraries
we are preventing Lua code from doing anything other than “pure processing”;
it cannot access platform APIs or the file system, and hence should require no
permissions (or analysis for inferring permissions) on any platform.

The various library components of the app, such as file system interface, con-
tact data source and Lua script interface, are specified by concepts. The main
app code is programmed against these concepts, so that it is independent of the
target platform. The app code is unaware of the exact nature of the permissions,
though it may make use of and handle generic permission denied alerts.

Each library component has multiple implementations, one for each supported
platform, with each implementation specifying platform-specific permissions. For
example, the plain streams-based file system interface uses the following permis-
sion predicates:

predicate CXX_FILE_CREATE() = Permission;
predicate CXX_FILE_WRITE() = Permission;
predicate CXX_FILE_READ() = Permission;
predicate CXX_FILE_DELETE() = Permission;

A particular version of the app is built by composing the main app code with
the platform-specific library implementations:
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Fig. 1. Hover information for a program in the IDE shows which permissions are en-
abled and disabled

program CxxEngine = {
use Engine; // application logic
use CxxFileSys; // generic C++ versions of the library components
use CxxLuaState;
// use the ’mock’ data source
// the data source mapper will apply ’exportEntry’ to each data entry
use MockDataSourceMapper[map => mapDataSource, Data1 => File, Data2 =>

LuaState, f => exportEntry];
};

Our system collects all the permissions used by CxxEngine, defines the value of
the relevant predicates to be TRUE (and the predicates for the unused permissions
to be FALSE), and then outputs the permission list in a text file, together with
the C++ code for the program. Figure 1 shows an IDE display with the inferred
permission requirements.

6 Problematic Permission Requirements

It is a Magnolia philosophy that incomplete specifications are okay, and that
specifying as much as is convenient is likely to give a good return for effort.
Documented platform permission requirements are generally straightforward for
individual operations, and it is unfortunate if they do not directly translate
into code, as one must then expend effort to considering how to best specify
them without harmful inaccuracies. There are real-world permission require-
ments whose accurate and convenient specification challenges our design.

It is not uncommon for the permission requirements of a platform operation
to depend on its arguments. Such requirements can be specified as a predicate
expression for an alert, as shown by the example below. However, as argument
values are generally not statically known, the operation is no longer guarded
by a static predicate expression. Any permission analysis trying to determine
the permission requirements of a program will then require a policy regarding
how to translate such expressions to static ones without underprivilege or too
much overprivilege. Perhaps a better alternative is to (where possible) divide
the operation into multiple ones with static predicate expressions. We did so in
a similar example in Section 4 by defining a location provider specific operation
for a provider known to support coarse-grained positioning.
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procedure getLastKnownLocation(upd w : World, out l : Loc,
obs p : Provider)

alert RequiresPermission unless pre ACCESS_FINE_LOCATION() ||
(supportsCoarse(p) && ACCESS_COARSE_LOCATION());

We have discussed declaring different permissions for different platforms, but
there are also permission differences between different releases of the same plat-
form. On Android, the permissions for some operations have changed over time
due to subtle and innocuous code changes [3] in their implementation. As such
changes tend to only affect relatively few APIs and operations, it may be incon-
venient to have to give separate implementation declarations in these cases. One
possible, pragmatic solution may be to give different alert clauses for different
platform releases. For example, we might generally specify AndroidPerm alerts for
Android, but in some [3] cases use release specific alerts:

alert AndroidPerm8 <: AndroidPerm; // Android 2.2 (API level 8)
alert AndroidPerm9 <: AndroidPerm; // Android 2.3 (API level 9)
procedure startBluetoothDiscovery(upd w : World)
alert AndroidPerm8 unless pre BLUETOOTH()
alert AndroidPerm9 unless pre BLUETOOTH() && BLUETOOTH_ADMIN();

7 Related Work

Most of the literature on permissions is focused on Android, while our approach
is to exploit the abstraction facilities of Magnolia in order to create platform-
agnostic solutions. In Section 2 we already mentioned Stowaway [15] and Permis-
sion Check Tool [30], tools for analyzing the permission requirements of Android
apps statically. As both tools are geared towards checking already declared per-
missions against code, the issue of deriving a concrete set of permissions to de-
clare is perhaps less prominent; as explained in Section 4, the Magnolia compiler
requires a policy for resolving logical permission expressions into sets.

Both Stowaway and Permission Check Tool resort to heuristics due to com-
plexities of language and execution environment; heuristics-demanding complexi-
ties relating to language should not arise in the context of Magnolia. Stowaway’s
analysis appears more comprehensive than that of Permission Check Tool in
that it attempts to handle reflective calls and Android “Content Providers” and
“Intents”. Magnolia has no reflective calls, and we propose that permissions be de-
clared for all external-facing interfaces. Permission Check Tool works by analyz-
ing source code using Eclipse APIs, whereas Stowaway takes Dalvik executable
(DEX) files as input; the Magnolia ideal is to have programmable language
infrastructure for custom analyses of semantically rich source code.

The Stowaway authors tackled poor platform documentation by determining
Android 2.2 API permission requirements through API fuzzing. The PScout [3]
tool has been found to discover more complete Android OS permission informa-
tion. It performs a static reachability analysis between Android API operations
and permission checks to produce a set of required permissions for each op-
eration. Like our permission inferrer, PScout does path-insensitive analysis on
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source code. PScout’s policy for “expression-to-set translation” is to take the
union of all appearing permissions, which is more conservative than ours.

PScout has been used to extract permission specifications for multiple versions
of Android. We are not aware of such analyses for other OSes, and problems of
poor API documentation are compounded for cross-platform programming. With
a suitably accurate and complete permission map available for a platform, one
might imagine annotating a primitive with its set of sensitive operations rather
than its permission requirements, allowing for the latter to be inferred.

The kind of variability imposed by access capabilities is commonly handled
using feature models [9,10]. As shown in Section 4, access capabilities are asso-
ciated with specific operations of an API, thus letting us use the alerts system
of Magnolia for modeling their variability.

nesC [17] is a prominent example of a programming language with a program-
ming model that is similarly restricted as that of Magnolia. Like Magnolia, nesC
does static wiring of components so that types and operations become known
at compile time; nesC even performs static component instantiation to avoid
the overhead of dynamic memory management. The static nature of the lan-
guage gives rise to a number of possibilities for accurate program analysis. E.g.,
the nesC compiler itself performs static whole-program analysis to detect data
races. As nesC code is amenable to such analyses and the language also features
interface-based abstraction support, we believe it would be a suitable substrate
for a cross-platform permission inference solution. However, permissions are not
applicable to TinyOS programming, which presently is nesC’s primary domain.

As demonstrated by tools such as VCC [14], even unsafe languages (such as
C) can be made static analysis (or verification) friendly with a suitably struc-
tured programming style and the addition of semantic information in the form of
annotations. Additional annotations could also be used for permissions. Anno-
tating an existing language is a valid implementation strategy for an analyzable
language, with the advantage of avoiding another, full language layer. Magnolia’s
ground-up design for analyzability is likely cleaner, and the language can also
be used merely as a tool for assembling programs out of C++ components.

8 Conclusion

Permissions are among the nuisances that software developers have to deal with.
Language-based technology cannot lift access control restrictions, but it can help
manage them, and reduce the chance of uncleanly handled permission errors oc-
curring. Appropriate tools support enables automated analyses for determining
a set of permissions that (if granted) will mean that no permission-caused run-
time failures will occur. Suitable language can also help handle runtime failures
in a portable manner, using abstract, concept or operation specific (not platform
specific) permission failure reports and handlers.

We have presented such language and tools support. Our design relies on
the base language taking care of: enforcing a programming style that does not
prevent accurate static reachability analysis; and encouraging interface-based
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abstraction. Mere ability to declare permission information in a language is not
special, as many languages (e.g., Java and Python) even support annotations as
a way to attach custom attributes to declarations.

In Magnolia, the base language of our implementation, we can use core lan-
guage such as predicates and alerts to express permission conditionality and
errors. Cross-platform interfaces may be exposed as concepts, and different
implementations and/or alert declarations may be used to express platform dif-
ferences. Coupled with tooling, code analyses (and also transformations) can be
performed based on such declared information and what it implies.

In Magnolia, “dynamism” can only be allowed in a controlled way for cor-
rect permission analysis, and even then only outside the language. Analyzable,
“static” language can be sugar-coated with convenient syntax, but certain fa-
miliar constructs are not directly transferable to Magnolia; e.g. a “traditional”
higher-order map operation cannot be defined as functions cannot be passed as
(runtime) arguments. Magnolia therefore carries some cost to expressiveness and
developer familiarity, but offsets that by offering rich compile-time semantic in-
formation. Different language design tradeoffs could probably be made, while
still allowing for accurate cross-platform permission inference. We see value in
exploring awareness creating and preventative measures against potential soft-
ware failures, whether caused by access control restrictions or other reasons.
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Abstract. Approaches for safe execution of JavaScript on web pages have been a
topic of recent research interest. A significant number of these approaches aim
to provide safety through runtime mediation of accesses made by a JavaScript
program. In this paper, we propose a novel, lightweight JavaScript transformation
technique for enforcing security properties on untrusted JavaScript programs using
source code interposition. Our approach assures namespace isolation between sev-
eral principals within a single web page, and access control for sensitive browser
interfaces. This access control mechanism is based on a whitelist approach to en-
sure soundness of the mediation. Our technique is lightweight, resulting in low
run-time overhead compared to existing solutions such as BrowserShield and Caja.

1 Introduction

Modern web applications employ JavaScript technology to facilitate many sophisticated
features, including rich interactive user interfaces, client-side interactivity and promot-
ing the use of user-generated content. Among the popular examples of these applica-
tions are social networking sites such as Facebook, and mash-ups such as iGoogle. The
growth of these sites has been fueled by highly attractive revenue models and business
opportunities from advertising.

In this context, a server includes content from several sources (principals) that are in-
tegrated and rendered in a web browser. The most typical examples of such contents are
online advertisements and web gadgets. In this case, the server has the role of an inte-
grator of various forms of content, which it often accomplishes by proxying third-party
content or importing third-party scripts. Contents sourced from various origins coexist-
ing in a single web page pose a large risk: every script has access to the full JavaScript
environment and the Document Object Model (DOM) of the page, including trusted
regions of the page supplied by the server. Current browsers and standards support for
policy based enforcement is extremely limited. The same-origin policy supported by
browsers is very limited and too coarse-grained to be of help to integrator applications.
One particularly suitable approach for fine-grained policy enforcement is to instrument
the untrusted JavaScript code to embed security monitors into the code to control the
behaviors of the code. This approach is taken by BrowserShield [15] and Caja [8] that
place runtime restrictions on the untrusted JavaScript code. (These and other related
approaches are further discussed in detail in Section 5.)
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Similar in spirit to these above works, we propose a novel lightweight transforma-
tion mechanism, called SAFESCRIPT, that supports fine-grained policy enforcement
for multiple untrusted third-party applications within a integrator’s web page. The main
idea in our technical approach is to facilitate the integrator’s (trusted) code to have
complete control over how an untrusted JavaScript code’s identifiers are resolved dur-
ing execution. SAFESCRIPT enables such control by allowing the integrator to emulate
JavaScript’s native identifier resolution mechanism. With complete control of the iden-
tifier resolution process, our policy enforcement mechanism can robustly isolate name
spaces, and provide complete mediation over access to sensitive objects.

To elaborate further on our approach, we first note that JavaScript resolves identifiers
to object properties when a script is evaluated. The process of identifier resolution in-
volves associating a name with an object by searching through the program scope or an
object hierarchy. A security mechanism can not prevent access to shared objects present
in this hierarchy (e.g., the global object and Object.prototype), unless it has con-
trol over JavaScript’s name resolution process. By taking complete control over how
identifiers are resolved, SAFESCRIPT’s approach ensures that the integrator achieves
complete mediation. In addition, sensitive interfaces are also mediated by tapping into
the identifier resolution process. These include, for instance, interface proto , that
has direct access to Object.prototype and wrapper objects; parent , that can
have direct access to the global object; watch and defineSetter that can inter-
cept sensitive data and object references.

Benefits. The single most important benefit from SAFESCRIPT is that it allows for trans-
parent interposition without undermining commonly used constructs in the JavaScript
language such as the with statement and catch blocks. This makes it readily applica-
ble to untrusted, third party code such as advertisements that may not be written with
conformance to restricted language subsets and / or the use of alternative safe APIs. In
addition, SAFESCRIPT enjoys many practical benefits. It requires no changes in browser
implementation for deployment. Thus, SAFESCRIPT is very compatible in terms of lan-
guage support, ease of use for developers, ease of deployment in web applications, and
is fully functioning on current browsers. SAFESCRIPT follows a whitelist approach and
allows use of all standard APIs.

Results. This paper presents the technical details of our transformation technique to
ensure isolation of principals and complete mediation over access of sensitive APIs.
We evaluate SAFESCRIPT over several micro-benchmarks and examples of third party
code and show that our prototype is fully functional and has competitive overheads as
compared to other related efforts.

Paper organization. The rest of the paper is organized as follows: The approach and
architecture of our proposed solution is discussed in Section 2, followed by technical
implementation details in Section 3. Security analysis, micro-benchmarks and an anal-
ysis of performance are discussed in Section 4. Related works are discussed in Section
5 and we conclude in Section 6.
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Fig. 1. SAFESCRIPT architecture (right) compared with the original page

2 Approach

2.1 Architecture

Fig. 1 depicts the architecture of our framework. Suppose an untrusted JavaScript pro-
gram is embedded to the page by a script tag as follows:
<script src=’http://3rd.com/main.js’></script>

Then, in our approach, the above snippet will be replaced by the following code:

<script src=’rewriter.js’></script> //the transformation tool
<script src=’interface0.js’></script> //an API’s implementation
//...
var namespace0 = $ sm[0]();
var script0_code = load_script(’http://3rd.com/main.js’);
exec_script(transform(script0_code, namespace0));

In the above code, the purpose of $_sm[0]() is to create a unique namespace for
the untrusted program. This namespace is isolated from the integrator’s own names-
pace as further described in Section 3.1. The script code is loaded to a string variable
script0 code (through appropriate server-side modifications or by a proxy). This
script code is dynamically rewritten by the transform function (the main rewriter
function implementing the rules, described in Section 3) to its particular namespace,
and the rewritten code is executed in the usual manner by the browser’s JavaScript in-
terpreter.

For each modified script, SAFESCRIPT provides the corresponding interfaces to rel-
evant DOM operations. In our example, the interfaces for script0 code are defined
in the included file interface0.js. The interfaces are used to mediate and enforce
access control policies on the untrusted code’s access to the DOM. The interfaces are
constructed per untrusted JavaScript program, thus policy enforcement is per principal
for coexisting JavaScript applications within a single page. We adopt a whitelist ap-
proach for implementing principal-based interfaces with policies. Thus, by deploying
SAFESCRIPT, an integrator can enforce fine-grained policies for different third-party
JavaScript programs without browser modifications.

2.2 Technical Approach

Our approach is to emulate JavaScript’s native identifier resolution mechanisms at run
time in a manner that allows us to precisely control all aspects of identifier resolution.



70 M. Ter Louw et al.

We then transform JavaScript programs to invoke the emulated resolution mechanism
at run time, thus completely avoiding any unwanted or unexpected behaviors that are
part of the identifier resolution process.

Goals. Specifically we strictly control the identifier resolution process to achieve the
following two security goals.
Separation of principals. Each principal, or provider of untrusted web content, can

only resolve identifiers in its own isolated namespace.

Principal-based access control for untrusted, coexisting JavaScript programs. A se-
curity monitor can robustly govern accesses to sensitive interfaces on a per-principal
basis, by (a) installing API hooks and (b) preventing the occurrence of specific APIs
in a principal’s namespace.

The isolation property specifically protects against implicit access to the global object
and shared prototype objects. Access to these objects can not be prevented when using
the native JavaScript resolver. Furthermore, each principal can only resolve identifiers in
its own namespace. This prevents direct communication between principals, except for
any communication-enabling APIs that may be explicitly populated into a principal’s
namespace as determined by the integrator’s policy.

Access control is ensured by populating each namespace with only the interfaces
that are explicitly allowed or have an attached security monitor function. For example,
if a web application wishes to disallow all access to the document.write() interface,
then the function reference stored in the browser’s document.write property is never
bound to any identifier in the principal’s namespace. Alternatively, the web application
can bind the document.write property to a security monitor function that wraps the
real API and can selectively filter access.

To satisfy our goal of completely replacing JavaScript identifier resolution, all lan-
guage constructs that explicitly or implicitly involve native identifier resolution features
are transformed into equivalent JavaScript statements that instead leverage our custom
resolver. The language constructs we need to transform are those that perform any of
the following operations:
1. creation of new scope or prototype chains,

2. modification of existing scope or prototype chains, or

3. initiation of any identifier resolution process.
Details of the implementation of this approach are described in the next section.

2.3 Scope

In Section 3, we enumerate all JavaScript language constructs that involve these opera-
tions and implement equivalent operations in a controlled manner. The transformation
process is transparent to existing source code, as it supports the use of all JavaScript lan-
guage features defined by widely adopted standards [5, 18]. We note that our approach
provides a basic framework for implementing isolation and access control policies. The
technical exposition in this paper focuses on our enforcement approach for untrusted
JavaScript. Although we have implemented some custom access control policies for
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our prototype evaluation, a full fledged discussion of the various kinds of policies that
can be applied on untrusted scripts is outside the scope of this paper.

3 Implementation

Our implementation assures namespace isolation and interface access control by man-
aging each step of the identifier resolution process at run time. We employ source code
interposition to insert calls to our runtime monitor and remove all unsafe dependencies
on the native JavaScript resolver. Our implementation uses a customized version of the
Narcissus [17] JavaScript interpreter to perform the necessary source code interposition.
After transformation, every identifier in untrusted code only uses our resolver (in the in-
strumented code) to perform name resolution. The trusted parts of the page make use of
JavaScript’s native resolver, as usual. This section details the specific transformations we
perform.

3.1 Namespaces

SAFESCRIPT supports an arbitrary number of isolated namespaces coexisting in the same
web document. Each namespace contains a namespace object, which is analogous to the
global object (typically accessed via the identifier window) for regular JavaScript code.

In practice, each namespace is associated with a separate principal, thus allowing
several principals (e.g., advertiser, gadget provider, anonymous user) to coexist on a
page while maintaining strict control of any potential interactions between principals.
Namespaces are created by invoking the constructor function:
var namespace = $ sm[0]();

The web application is not prevented in any way from accessing the internal state
of namespace objects. Therefore, the isolation property only holds for code executing
within a namespace. Code that is not enclosed in a namespace is considered trusted and
has no restrictions imposed by our runtime monitor.

3.2 Execution Contexts

An execution context, which is essentially an identifier scope chain, is created for each
continuous sequence of JavaScript code (e.g., script file, script element body, event han-
dler attribute) to be executed in a namespace. Execution contexts keep track of which
identifiers are visible at any point in a JavaScript program. For example, an identifier
referenced within a function can refer to a global variable, formal parameter to the
enclosing function, declared local variables, declared inner functions, and more. SAFE-
SCRIPT keeps track of all these symbols in the internal state of the execution context.
All execution contexts for a given principal share the same namespace object, thus
allowing for global identifiers that are visible across contexts.

When an untrusted script is transformed, the modified script is additionally en-
veloped by statements that initialize a new execution context. This interposed code can
be seen in Table 1. The global context transformation in this table shows that invoking
the <newContext> method of the namespace object creates the execution context
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object cx. This cx context object is utilized by most of the transformations we make to
the untrusted script.

Some arguments are passed to the <newContext> method to initialize the execution
context. The most crucial data we pass are arrays containing string representations of all
identifiers declared by the untrusted script. There is an identifier array for the “global”
scope, and identifier arrays for each function declaration or expression contained in the
script. Additionally we pass some data to facilitate faster operations at run time, such
as the number of unique identifiers in each array and number of formal parameters each
function takes. All of this data is compiled during the script transformation process to
reduce the runtime workload of our identifier resolution mechanism.

3.3 Syntax-Based Transformation

Each JavaScript statement in the untrusted program is transformed as defined by a set of
rules based on language syntax. Any statement in the JavaScript language (according to
the ECMAScript standard [5]) that affects or is affected by scope or prototype chains is
transformed to use our interposed name resolver. One key result of the transformation is
all user-specified identifiers are removed from the script, and are only present as strings
given as parameters to our name resolver.

Table 1. Execution context transformations. Italicized syntax elements are recursively trans-
formed according to the rules in Tables 1–4. Method names in angle brackets are used for illustra-
tive purposes; the actual transformation uses numeric array indices as a performance optimization.

Description Original JavaScript Transformed JavaScript

“Global” context var a;
var b = 4;
function f (...) {...}
statements

(function (ns) {
var cx = ns[<newContext>](

[ <global identifiers> ],
[ <f1 identifiers> ],
$ f1 );

cx[<sWrite>]("b", 4)
function $ f1 (...) {...}
statements

})(ns);

Function declaration function g (arg1, arg2) {
function h (...) {...}
statements

}

function $ f2 () {
cx[<pushFunction>](

this, arguments, $ f3 );
function $ f3 (...) {...}
statements

}

Function bodies. Function bodies are transformed by inserting a call to our name re-
solver that updates the current execution context to reflect the symbols that are visible
to code running inside the function. This call passes the arguments object and current
value of the this keyword, which is used to decide which object this should resolve to
for transformed code. For example, if this resolves to the global object, then our name
resolver will ensure that all transformed accesses to this resolve to the namespace

object.



SAFESCRIPT: JavaScript Transformation for Policy Enforcement 73

A unique function identification number is also passed to the name resolver, which
enables our resolver to locate the execution context symbol table for the function. Fi-
nally, references to all inner declared functions are passed so the corresponding function
objects can be initialized. Function initialization performs some internal bookkeeping
such as establishing the length property of each function, and is needed here because
JavaScript creates inner function objects when their enclosing function is entered, so
that functions can be forward-referenced. Therefore initializing function objects as they
occur in the source code can be, in some cases, too late.

Table 2. Basic transformations

Description Original JavaScript Transformed JavaScript

Read variable a cx[<sRead>]("a")

Read object property (dot) object.a cx[<pRead>](object, "a")

Read object property (bracket) object[expr] cx[<pRead>](object, expr)

Write variable a = 5 cx[<sWrite>]("a", 5)

Write object property (dot) object.a = 5 cx[<pWrite>](object, "a", 5)

Write object property (bracket) object[expr] = 5 cx[<pWrite>](object,expr,5)

Invoke function f(arg1, arg2) cx[<sExecute>]("f", [arg1, arg2])

Invoke method (dot) object.m(arg1, arg2) cx[<pExecute>](object, "m",
[arg1, arg2])

Invoke method (bracket) object[expr](arg1, arg2) cx[<pExecute>](object, expr,
[arg1, arg2])

Invoke constructor function new F(arg1, arg2) cx[<sConstruct>]("F",
[ arg1, arg2])

Invoke constructor method (dot) new object.M(arg1, arg2) cx[<pConstruct>](object, "M",
[arg1, arg2])

Invoke constructor method (bracket) new object[expr](arg1, arg2) cx[<pConstruct>](object, expr,
[arg1, arg2 ])

Delete variable delete a cx[<sDelete>]("a")

Delete object property (dot) delete object.a cx[<pDelete>](object, "a")

Delete object property (bracket) delete object[expr] cx[<pDelete>](object, expr)

Test property definition property in object cx[<in>](property, object)
Test prototype inheritance object instanceof class cx[<instanceof>](object, class)

For-in loop for (expr in object) statement for (
cx[<forIn>](object);
cx[<hasNextIn>]();
expr = cx[<nextIn>]();

) statement

Variable declaration var a; removed (identifier given in context preamble,
cf. Table 1)

Variable declaration (with assignment) var a = 3; cx[<sWrite>]("a", 3)

this keyword this cx[<this>]()

Evaluate eval(expr) cx[<eval>](expr)

Name resolution interposition. Table 2 summarizes the basic transformation rules used
for language statements that primarily induce a scope or prototype chain search. Many
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of these transformations have three forms: an “s” form that handles scope chain (i.e.,
variable) searches, and two “p” forms that handle prototype chain (i.e., object property)
searches. The latter two forms correspond to the two types of object member expressions
allowed by JavaScript: dot notation and square bracket notation.

Each operation is transformed into one or more calls to our name resolver, which
performs an equivalent operation using managed scope chains. All identifiers are con-
verted into strings, and expressions corresponding to other aspects of the JavaScript
grammar are transformed recursively. The for-in loop is somewhat different from
the other transformations, as it is more complex to implement. For instance, it must
be transformed such that the assignment expression is evaluated on each iteration, and
nested for-in loops must be supported.

Table 3. Atomic read / write transformations. The “count” functions either increment or decre-
ment a value (depending upon the boolean <inc> parameter), using either a prefix or postfix
operation (depending upon the boolean <prefix> parameter). The “op-assign” functions per-
form an arithmetic operation on a value and store the result. Depending upon the value of the
numeric <opcode> parameter, the operation can be one of: *, /, %, +, -, <<, >>, >>>, &, ˆ, |.

Description Original JavaScript Transformed JavaScript

Increment / decrement variable a++ cx[<sCount>]("a", <inc>,
<prefix>)

Increment / decrement object property (dot) object.a++ cx[<pCount>](object, "a", <inc>,
<prefix>)

Increment / decrement object property (bracket) object[expr]++ cx[<pCount>](object, expr, <inc>,
<prefix>)

Assign to variable with operation a += expr cx[<sOpAssign>]("a", expr,
<opcode>)

Assign to object property with operation (dot) object.a += expr cx[<pOpAssign>]
(object, "a", expr, <opcode>)

Assign to object property with operation (bracket) object[expr1] += expr2 cx[<pOpAssign>]
(object, expr1, expr2, <opcode>)

Further parametrized transformations. Two types of JavaScript language statements
perform a variable read and write that occur in a single atomic step. These are in-
crement / decrement operations and operational assignments. To reduce the number of
transformation rules required to support these statements, we reduce the rules to general
forms, given in Table 3, that take parameters specifying the specific atomic operation
to perform. For instance, the “count” function takes two boolean arguments that deter-
mine whether to count a variable up (increment) or down (decrement), and whether to
perform a prefix or postfix operation.

Creating and modifying chains. Several transformation rules are required to facilitate
tracking of properties on newly created objects for use in prototype-chain searches.
Also there are some JavaScript language statements, most notably with, that enable
modification of scope chains that are transformed by our process. These transformation
rules are summarized in Table 4.
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Table 4. JavaScript transformations that are primarily concerned with creating and altering scope
or prototype chains. The function expression transformation associates a unique number to each
function which is used to link the function with its symbols (stored internally). Also the body of
all functions is further transformed as shown in Table 1.

Description Original JavaScript Transformed JavaScript

Initialize array [ element0, element1 ] cx[<array>]([element0,element1])

Initialize object { a: expr1, b: expr2 } cx[<object>]("a",expr1, "b",expr2)

Literal regular expression /<expr>/<flags> cx[<regexp>](/<expr>/<flags>)

Function expression (function f (arg1, arg2) { body }) (cx[<function>](
<function number>,
function () { body }

))

With statement with (object) statement cx[<pushWith>](object);
try { statement }
finally { cx[<pop>](); }

Catch block catch ( e ) { statement } catch ( $ c1 ) {
cx[<pushCatch>]( $ c1, "e" );
try { statement }
finally { cx[<pop>](); }

}

When an untrusted script creates a new array, function, regular expression or general-
purpose object, our name resolver must track the initial set of properties of the object
and set its prototype object. This tracking data supports transformations from Tables 2
and 3 that implement prototype chain searching.

Scope chain modifications at run time, specifically by use of the with statement,
have been difficult for other script transformation schemes to handle without undermin-
ing namespace isolation or access control goals [8, 11, 15]. As the transformation rules
show, our solution can naturally support both with statements and catch blocks by
simply pushing an object onto the scope chain stack. We use a try / finally block to
implement the stack operation to ensure the scope chain is properly restored regardless
of how the inner block terminates.

3.4 Scripts Generated at Runtime

Several JavaScript statements can cause additional script code to be created dynami-
cally at runtime, by directly inserting JavaScript code or indirectly via dynamic HTML.
A trivial approach for this issue is to disallow these operations by not defining them in
the interfaces (cf., Section 2.2). However, this will break most third-party scripts such
as advertisements since they depend much on these operations. SAFESCRIPT thus sup-
ports these operations by defining them in the interfaces for the untrusted code. The
implementation of these operations must capture the generated scripts and transform
them to the same namespace as their parent code according to the interposition rules
given previously. We divide these operations into two categories and handle them as
described below. For brevity, we omit the implementation details.
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Direct script generation. Script code can be added to the document directly via the
eval(), setTimeout(), setInterval(), addEventListener() and similar func-
tions. These functions can accept an expression parameter that is evaluated and con-
verted into a string. The browser then executes this string as JavaScript code. SAFE-
SCRIPT defines and mediates these functions for each untrusted code. Script code as a
string argument of these functions is also transformed into the namespace of its parents
before execution by the browser. As our rewriter is written in JavaScript, it is a straight-
forward operation. For example, the eval interface for an untrusted JavaScript program
is implemented as native window.eval(transform(script, namespace));

where native window is the original window object stored for the untrusted script,
transform is the rewriter function, script is the script code given as an argument of
the operation, and namespace is the namespace of the untrusted code.

Indirect script generation. Scripts can be generated indirectly via DOM operations
including (1) those that add additional script code in the form of <script> ele-
ments1, and (2) those that can add HTML to the page such as document.write(), the
innerHTML property of a DOM node, thus can inject script code via event attributes
(e.g., onclick) or even script nodes. For operations in (1), we check if the injected
element is a script node, then the script code is retrieved from the URL source into a
string variable (c.f., Section 2.1), and is executed through the eval interface that will
transform the code as described above. For the HTML string added at runtime, our tech-
nique is to use the browser’s parser to convert the string into an HTML tree2. This can
be done by assigning the string to the innerHTML property of a new temporary node
e.g., <ins>. From the tree we can get any script code, either in the form of a <script>
node or script string, and invoke the rewriter to transform the code accordingly.

3.5 Transformation Optimizations

The above section describes the transformation rules that are sufficient to support our
approach. In this section we provide details on four optimizations we have implemented
to improve the speed at which instrumented programs execute.

Delayed object creation. Every time a JavaScript function is invoked, an arguments

object is implicitly created as an alternative interface to function parameters and other
data. Properties of the arguments object that correspond to formal parameter names
must have their values linked, such that modification of a linked property will be re-
flected in the corresponding formal parameter. Setting up this object and its special
characteristics takes time, which is wasted if the arguments object is never actually
referenced. Therefore, we create the arguments object on-demand the first time it is
accessed, thereby avoiding the costs of unnecessary initialization.

1 These include appendChild, insertBefore, insertAfter, and replaceChild.
2 document.write needs a special treatment since malicious scripts can use it to obfuscate

the code. Our treatment for this method is to buffer strings passed to it. When evaluation of the
program is completed (as it is executed via the exec script function described in Section
2.1), these buffered strings are proceeded as one.
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Static name resolution. JavaScript makes extensive use of statically-scoped variables.
Because of this feature, many references that result in a scope chain search can be
resolved statically during script transformation. We leverage this fact to augment calls to
cx[<sRead>](), for instance, with parameters indicating the precise internal storage
location for the searched value. This way the scope chain does not need to be searched
for the requested identifier, thus saving a significant time cost.

Static name resolution can be used for scope chain searches, but not for prototype-
chain searches. A related point is that this optimization can be thwarted by scope-chain
searches that incur an implicit prototype-chain search. For instance, if an object is
pushed onto the scope chain via a with statement, it blocks the visibility of statically-
scoped identifiers lower in the scope chain. Our implementation takes care to recognize
this situation and forces dynamic scope chain searches when necessary. This situation
can also occur if a global variable defined in one execution context is referenced in a
second execution context. As each execution context is transformed separately, they do
not share knowledge of each other’s global variables and thus must search for them.
This is also the case for built-in and host-defined objects which can be affected by pol-
icy decisions and are not known at transformation time.

Efficient string searching. For scope and prototype chain searches that can not be re-
solved statically, we have to locate the correct identifier via a series of string compar-
isons. This is mostly due to our requirement that values be stored in arrays, because we
do not presume it is safe to create object properties using untrusted identifiers without
triggering unexpected browser features. Thus we can not leverage JavaScript’s native
hashing features.

To reduce the need for extensive string comparison searches, we employ hash tables
for fast look-ups. Our implementation uses the djb2 hash algorithm [19]. Furthermore,
hashes are calculated statically during script transformation whenever possible, to fur-
ther improve runtime performance. For instance, if a hash value is used inside a func-
tion, we will only have to spend time calculating the hash code once no matter how
many times the function is invoked.

DOM interface templates. Several types of host objects are accessible via the Document
Object Model (DOM) interface and should be accessible to untrusted scripts, albeit with
some policy-based restrictions. The properties and methods on these objects are defined
by the DOM specifications [18]. If we were to track all of these properties and methods
for every DOM object used by a script, there would be a significant cost in terms of
both execution speed and memory overhead.

To solve this problem, we implement a set of DOM interface templates that are
shared by all DOM objects. The templates implement a copy-on-write model such that
instance-specific data is created and maintained in an on-demand manner, and instance
data is not shared by objects that employ interface templates.

Interface templates also offer a convenient position to implement policy-based con-
straints. By applying a security monitor to the DOM Element interface, for example,
one can be assured that the same policy will govern all element objects.
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4 Evaluation

4.1 Security Analysis

SAFESCRIPT enforces security properties on untrusted JavaScript code statements by
transforming them and interposing on their execution. SAFESCRIPT enables the integra-
tor to take complete control of a document rendered in a browser, by rewriting untrusted
scripts to safe equivalents and enforcing rich security policies at runtime that mediate
individual script actions. To assure security, these properties must be achieved: (1) no
interference among principals, including untrusted programs and the trusted code in
the global context, (2) mediation on sensitive APIs is complete, and (3) the rewritten
untrusted code cannot tamper with SAFESCRIPT. In this subsection, we reason about
these properties of SAFESCRIPT.

In our approach, each untrusted JavaScript program is rewritten based on the iden-
tifier resolution process. SAFESCRIPT also rewrites all language constructs that in-
volve native identifier resolution (cf., Section 2.2), thus it completely replaces native
JavaScript identifier resolution. Dynamically generated code is also transformed ac-
cording to the same rules as its parent code (c.f., Section 3.4). Therefore, after trans-
formation, the code can only resolve identifiers in its own namespace, i.e. it can only
access the objects bound to its namespace. Thus any interference among principals is
prevented.

The transformed code can interact with the page through the interfaces that are ex-
plicitly defined by SAFESCRIPT. SAFESCRIPT follows a whitelist approach to imple-
menting the interfaces. Whitelisting has a natural fail-safe property; any property or
API access that is not permitted by the whitelist is automatically denied3. As all identi-
fier resolution of untrusted code is controlled by the monitor, it can only access the API
provided in the interfaces, which mediate the interactions with the real page. The only
way transformed code can bypass the mediation is to access indirect objects. However,
as SAFESCRIPT replaces the native identifier resolution, it can control and prevent the
access, thus assuring complete mediation.

As mentioned above, the transformed untrusted code can only access the objects
bound to its namespace and those provided in the interfaces; it cannot access the global
scope. This implies that SAFESCRIPT code is tamper-proofed from the untrusted code.

4.2 Micro-benchmarks

For our performance evaluation, we conducted experiments that focused on applying
SAFESCRIPT on untrusted JavaScript. We used a desktop machine running GNU/Linux
OS (kernel version 2.6.24). All experiments were performed on Mozilla Firefox
version 3.0. We also compared the performance of our approach with two related dy-
namic approaches for script transformation: the Caja [8] tool from Google and Browser-
Shield [15] from Microsoft. Both these efforts focus on securing untrusted JavaScript
via source code transformation, to interpose runtime policy checks, providing isola-
tion and access control. We installed and customized Caja (revision 3522) on our web

3 The lacking of defining an API may lead to a malfunction of untrusted code of but never lead
to an access violation.
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servers. The Caja testbed was used to obtain cajoled output for the JavaScript code.
Caja’s JavaScript runtime library was customized to carry benchmark code and the cus-
tom transformed output was included into our testbed build to measure the overhead of
rendering the content on a browser. The source code for BrowserShield was not avail-
able, so we simply report the numbers for the corresponding operations from [15].

We evaluated SAFESCRIPT’s performance overhead and slowdown. Table 5 shows
microbenchmarks that measure the overhead of performing some simple JavaScript ac-
tions both on SAFESCRIPT and Caja and BrowserShield. Table 6 shows a micro bench-
mark that measures the overhead of performing other DOM actions using SAFESCRIPT.
All results are shown in ms and every DOM action was run 10,000 times and the num-
bers are averages over 10 trials to show the comparison effectively. Comparison of the
results indicates that our method is highly competitive.

Table 5. SAFESCRIPT Micro-benchmarks for JavaScript actions. All statements were run 10,000
times. *BrowserShield slowdowns are as shown in [15].

Code Before Trans- SAFESCRIPT SAFESCRIPT Caja BrowserShield
formation (ms) Transformed(ms) slowdown (x) slowdown (x) slowdown (x)

i++ 7 45 6.43 191.86 1
a = b + c 7 118 16.86 307.86 1
x.a = b 6 144 24 298 342
No-op function call 9 471 52.33 126.22 44.8

Table 6. Micro-benchmarks for DOM actions. Slowdown is the average ratio of SAFESCRIPT

transformed code and that of original code. All statements were run 10,000 times.

Code Before SAFESCRIPT SAFESCRIPT Caja
document. Transformation (ms) transformed (ms) slowdown (x) slowdown(x)

createElement() 110 1034 9.40 58.47
getElementByID() 34 490 14.41 58.32
createTextNode() 103 1051 10.20 50.61
appendChild() 87 802 9.22 37.49

The unary increment operation i++ and the assignment a = b + c perform slower
after transformation. Since SAFESCRIPT follows a whitelist approach, every variable
statement of the JavaScript code is rewritten. BrowserShield’s approach is based on
callee-wrapping and therefore doesn’t rewrite these assignments actions and hence
incurs no slowdown. On the other hand, the Caja sanitizer rewrites all free variable
as properties of a container-provided “IMPORTS ” object and declared variables as
bound in a module. When Caja transforms these actions, it incurs a slowdown of 192
and 308 respectively.
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The assignment x.a = b incurs a noticeable slowdown of 24 by SAFESCRIPT, be-
cause property write initiates a prototype chain search on object x to locate the prop-
erty a, then read variable b and write to the x’s property a. Per the transformation
rules in Table 2, x.a = b transforms to invocations of cx[<sRead>]() on x and
cx[<sRead>]() on b and cx[<pWrite>]() on x.a. We experienced a slowdown
of 24. Cajita, for property accesses, exercises one of the slowest paths in their imple-
mentation and hence incurs a slowdown of 298. BrowserShield’s slowdown is 342 for
the same operation.

Function declaration and function call requires heavy transformations. In SAFE-
SCRIPT, for each function declaration, an identifier array is created; all the formal pa-
rameters and unique identifiers for the function are passed at runtime. Function bodies
are transformed by inserting a call that passes the value of the ‘this’, ‘arguments’
object and a unique function identifier. Some further performance penalty is incurred
due to the internal bookkeeping actions for function initializations. Because we intro-
duce additional logic around transforming function calls, transforming a simple no-op
function call incurs a slowdown of 52 which is slightly higher than BrowserShield’s
slowdown of 45 but is significantly lesser than Caja’s slowdown of 126. Thus SAFE-
SCRIPT’s performance for a function call is somewhere between BrowserShield’s and
Caja’s.

In SAFESCRIPT, all DOM objects share a set of DOM interface templates. Any DOM
action, such as, getElementByID() or createElement(), simply gets a reference to
the wrapper function instead, and the wrapper function in turn calls the actual function,
thus incurring a minimal slowdown of 14 and 9 respectively. On the other hand, Caja’s
slowdown is considerably high in these DOM operations because of its rewrite algo-
rithm. Since document.getElementById is one of the most used functions and one
of the least object-capability-like operations, instead of turning off getElementById,
which will be a severe functionality failure, Caja’s solution is a new getElementById

function on the Node. For Node.getElementById(), each module is assigned a
namespace. IDs written by modules are transformed to a concatenation of the id and
the namespace. Since the namespace argument is optional for getElementById, first
the Node’s subtree is searched for id with namespace, if not found, then the func-
tion searches the Node’s subtree for id without namespace and finally for id with any
namespace.

4.3 Compatibility and Render Overhead

We chose some online JavaScript snippets that are small but perform useful functional-
ity, transformed it using SAFESCRIPT, enforced a whitelist policy, and rendered the con-
tent to test the functionality and measure the rendering overhead. We also implemented
a case study of context-sensitive advertisement to evaluate the compatibility. In all the
above scenarios, we loaded these scripts on a browser and navigated through those web
pages to ensure they are functional. We transformed these scripts using SAFESCRIPT

and tested it on various browsers. The output of the execution of modified scripts was
similar to that of the original scripts. We recorded the rendering time of two versions
and reported the slowdown. Similar experiments were done using Caja transformation.
In each case, the script was run 100 times to show the comparison effectively. SAFE-
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SCRIPT incurred a slowdown of 64 while Caja incurred a slowdown of 315 ( ref. to the
overheads from each DOM and JavaScript action in Tables 5 and 6).

5 Related Work

There are three basic approaches in the literature for safely executing untrusted
JavaScript in a web browser. The first approach assumes changes can be made to web
standards and web browsers and explores possible defenses in this context. Second,
some works restrict untrusted code to a limited subset of the JavaScript language,
thereby simplifying source code analysis to determine whether a script is benign or
malicious. Third, scripts can be transformed to support dynamic runtime monitoring to
ensure they always exhibit benign behaviors.

Changes to browsers and standards. Modification of a browser’s JavaScript engine
can be used to enforce fine-grained security policies for untrusted code with minimal
overheads. This approach is illustrated by CoreScript [20], End-to-End Web Appli-
cation Security [6], Content Security Policies [16], ConScript [12], WebJail [1], and
AdSentry [4] in the literature. These methods require changes to web standards and
web browsers, therefore they are not of immediate benefit for today’s deployed web
applications. In contrast, our mechanism does not require browser modifications or new
JavaScript standards.

Restricting scripts to a safe subset of JavaScript. Several recent approaches [3, 7, 9,
10, 11] propose limiting the JavaScript language features that untrusted scripts are al-
lowed to use. The limitation is enforced statically by checking the untrusted script and
ensuring it conforms to the language restrictions. Only those language features that are
statically deterministic and amenable to analysis are allowed. Since much of the pol-
icy enforcement is done statically, these solutions typically have good runtime perfor-
mance. In the cases of FBJS [7] and ADsafe [3], untrusted scripts are allowed to make
calls to a runtime access-controlled DOM interface, which incurs some overhead but
affords some additional control. The most significant problem with these approaches
is that they are not applicable when untrusted code included by the integrator does not
conform to this subset. This includes typical constructs of the JavaScript language such
as the with statement or the ability to use objects as associative arrays (i.e., hash tables),
even though the scripts using these could be benign.

Code transformation and runtime monitoring approaches. Many recent approaches
[2, 8, 13, 14, 15, 20] transform untrusted JavaScript code or wrap the DOM to interpose
runtime policy enforcement checks and thereby prevent attacks. Among these, Ofuonye
and Miller [13], BrowserShield [15] and Caja [8] are closest to our SAFESCRIPT frame-
work. BrowserShield [15] is designed to enable a single principal to execute code on
a page without triggering known browser vulnerabilities. Caja transforms CSS, HTML
and scripts into a safe version to ensure the security of the web page. For access con-
trol, BrowserShield inserts pointers to security monitor functions into the JavaScript
environment’s scope and prototype chains, thereby masking references to actual sensi-
tive APIs. Caja [8] uses a whitelist to identify sensitive browser APIs for the purposes
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of access control. Conversely, BrowserShield uses a blacklist approach, which has less
complexity and overhead but may leave unanticipated vulnerabilities exposed. Since
BrowserShield and Caja perform deep runtime parsing and transformation of the page,
the methods pay great overheads as reported in their works. Ofuonye and Miller [13]
implemented some optimization techniques to improve performance. Different from
these works, SAFESCRIPT uses a lightweight transformation approach based on identi-
fier resolution. The implementation uses a JavaScript interpreter to instrument the code,
and, as demonstrated in Section 4, the runtime overhead of SAFESCRIPT is highly com-
petitive compared to BrowserShield and Caja. In addition, SAFESCRIPT also supports
principal-based security policy enforcement, which is lacking in the above mentioned
methods.

6 Conclusion

We have presented SAFESCRIPT, a dynamic JavaScript transformation technique for
enforcing security properties on untrusted JavaScript code. By taking complete control
of the JavaScript identifier resolution mechanism, we assure that the runtime policy
enforcement mechanism can isolate namespacees and control a principal’s access to
sensitive objects.

SAFESCRIPT provides support for all standard APIs and assures strong security
through complete mediation. It is a forward-compatible solution since future versions
of ECMA standards are expected to have similar native features for isolating untrusted
code. Therefore, the deployment effort required by SAFESCRIPT, which includes en-
suring a clear separation of trusted from untrusted code and specification of which sen-
sitive APIs are made available to untrusted code, will contribute to the effort required
to deploy future browser code isolation features.

Though the absolute performance of SAFESCRIPT has room for further improve-
ment, it is very effective in case of small, light untrusted user scripts and advertisements
on web pages. SAFESCRIPT is a promising and effective solution for today’s web model
that can safeguard web applications and end users from advertisements and other forms
of untrusted JavaScript content.
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Abstract. Securing communication in large scale distributed systems is
an open problem. When multiple principals exchange sensitive informa-
tion over a network, security and privacy issues arise immediately. For
instance, in an online auction system we may want to ensure that no
bidder knows the bids of any other bidder before the auction is closed.
Such systems are typically interactive/reactive and communication is
mostly asynchronous, lossy or unordered. Language-based security pro-
vides language mechanisms for enforcing end-to-end security. However,
with few exceptions, previous research has mainly focused on relational
or synchronous models, which are generally not suitable for distributed
systems.

This paper proposes a general knowledge-based account of possibilistic
security from a language perspective and shows how existing trace-based
conditions fit in. A syntactic characterization of these conditions, given
by an epistemic temporal logic, shows that existing model checking tools
can be used to enforce security.

Keywords: possibilistic information flow, logic of knowledge, language-
based security, verification.

1 Introduction

The emergence of ubiquitous computing paradigm makes software security more
and more a real concern. Web browsers, smartphones, clouds are only few exam-
ples where untrusted and partially trusted code is regularly executed alongside
applications processing personal sensitive data. In addition, current trends in
computing such as code mobility and platform independence make the situation
even worse. Attackers can then exploit vulnerabilities and deduce information
about sensitive data by observing the behavior of malicious, or simply buggy,
programs.

Information flow security policies [1], if successfully enforced or verified,
prevent different types of confidentiality and integrity attacks. Language-based
security provides end-to-end guarantees by means of programming language
techniques. However, most work on language-based security models of informa-
tion flow assumes synchronous or relational communication [2, 3, 4]. Although
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these models are important in many settings, they are not obviously well suited
for distributed programs where communication is interactive/reactive, nondeter-
ministic and mostly asynchronous, lossy or unordered. The result is that pro-
grams that are considered insecure in one model may be secure in another, and
vice versa.

Moreover, information flow policies are hard to verify in practice. The majority
of static analyses for information flow security use standard methods such as
security type systems [5, 3]. These analyses are efficient and attempt to ensure a
strict separation, up to declassification and endorsement, between the sensitive
part of the computation and the observable part of the computation. Obviously,
if both parts are separated, it is impossible to learn anything about the sensitive
data by observing the public data. Despite their efficiency, these methods lack
the precision needed to handle programs where public and sensitive information
are securely interwoven. Few works [6, 7, 8], at least in the setting of software
security, attempt to deduce what is learned by observing the public effects of
the computation, and then verify that the acquired knowledge does not break a
given information flow policy toward sensitive data.

Motivating Example. An online auction is a distributed system consisting of
an auctioneer A and several bidders Bi competing for items Ik . Such systems
are complex and usually involve both message passing and shared memory. For
example, the auctioneer may receive messages from bidders who want to par-
ticipate in the auction and associate a dedicated thread to each request. Then,
depending on the auction protocol, each thread may read and write to a private
shared array containing bids for all bidders and items. Several information flow
policies may be worth enforcing in this scenario1.

P1 : The authentication code (pwd) of bidder Bi is always (G) secret wrt. any
bidder Bj . In logic: G¬KBj (pwdBi = v).

P2 : The sequence of bids of bidder Bi remains secret wrt. all bidders Bj until
(W ) the auction is closed. In logic: LBj (secArray = v)W aClosed .

P3 : Only the first 3 bids of bidder Bi are considered secret wrt. any bidder Bj

until the auction is closed. In logic: LBj (φ(b
i
1, b

i
2, b

i
3))W aClosed .

P4 : Any bid of bidder B3 remains secret wrt. a colluding attack of B1 and B2.
In logic: GLB1,B2(b

3 = v).
P5 : The system may nondeterministically select a subset of bids from the pri-

vate array, compute the maximum and promote an item I ∗ to the winner
B∗. The output of this process may be considered secret wrt. any bidder
Bj �= B∗. In logic: G¬KBj (out(B

∗, I ∗)).

As illustrated above, several issues should be handled to enforce the secu-
rity policies of such systems. First, they are inherently nondeterministic, hence
possibilistic notions of information flow security are needed. Second, distributed
programs are usually interactive/reactive, which requires protection of sequences
of (input or output) events as opposed to classical relational models where the

1 The reader can already get the flavor of the logic used for security specifications.



86 M. Balliu

input is read in the beginning of execution. Third, security policies are usually
dynamic and involve controlled release of secret information. Finally, in dis-
tributed settings attackers may collude and share their observations to disclose
secret information.

In this paper we model distributed systems in a trace-based setting where
an execution trace is a sequence of events on channels. Security properties are
expressed in terms of knowledge-based (epistemic) conditions over system traces.
The security model brings out what eventsO on channels an observer can see and
what observations on events P should be protected. Then the system is secure
if the knowledge about events in P of an observer who makes observations in
O, at any point in the execution trace, is in accordance with the security policy
at that point. Namely, the observer is unable to learn more information than
what is allowed at a given point while moving to a successive point of the same
trace and possibly making a new observation. This model fits well with current
knowledge-based approaches to information flow security [9, 6, 10], and, inspired
by work of Guttman and Nadel [11], by being explicit about the information that
needs to be protected, it allows a very general treatment of secret information,
both as high level input and output events, and as relationships between events,
say ordering, multiplicity, and interleaving. We show that several possibilistic
conditions such as Separability, Generalized Noninterference, Nondeducibility,
Nondeducibility on Outputs and Nondeducibility on Strategies are accurately
reflected in the epistemic setting.

Then we turn to the verification problem and present a linear time epistemic
logic, with past time operators, which allows us to syntactically characterize
security properties. The logic can be used as specification language for expressing
possibilistic information flow policies. This enables modeling of the intricate and
precise policies described in the motivating example and, at the same time,
ensures separation between the actual code and the policy. Recent advances
software model checking and automated theorem proving show that verification
of temporal epistemic properties for distributed systems is feasible [12]. Our
tool, ENCoVer [13], an extension of Java Pathfinder, can verify information flow
policies for interactive sequential programs. However, scalability and complexity
of verification are issues that we postpone to future work. An extended version
of the present paper, which includes the proofs, can be found in [14].

2 Security Model

Program Model. A model M is a set of finite or infinite traces induced by the
program semantics. A trace τ is a sequence of actions relevant to the analysis. For
instance, it can be messages sent over channels, read/write operations to shared
memory, logical time ticks and so on. We write |τ | for the length (number of
actions) of the trace τ . Whenever |τ | = ∞, the trace has infinite length. A
point is a pair (τ, i), where τ is a trace and 0 ≤ i ≤ |τ |. The function trace
maps trace points to the prefix of the trace up to that point, namely trace(τ, i)
denotes the sequence of actions αj , where 0 ≤ j < i . In our setting, the actions
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belong to a set Act = {out(c, v), in(c, v) | v ∈ Val , c ∈ Chan} ∪ {ε}, where
Val is the domain of values and in(c, v) (resp. out(c, v)) denotes the input
(output) of value v on channel c ∈ Chan. The silent action is ε. We write τ1 • τ2
for concatenation of two traces and τ • α for concatenation of trace τ with
action α. The empty trace is ε and trace interleaving �(τ1, τ2) is a set of traces
coinductively defined as expected. The set inclusion is denoted as  and τ(i) is
the i-th action of trace τ . The projection of a trace τ on a set of actions A ⊆ Act
is defined as the subsequence of actions from A and denoted as τ↓A. Models can
be enriched with structure by defining particular relations. In particular, given
a poset (S ,�), an upper closure operator (for short uco) is a function ρ : S → S
such that (a)∀s ∈ S . s � ρ(s), (b)∀s1, s2 ∈ S . s1 � s2 ⇒ ρ(s1) � ρ(s2),
(c)∀s ∈ S . ρ(s) = ρ(ρ(s)).

Security Policy. We are mainly concerned with protecting confidentiality of ac-
tions on channels, hence we assume a set of security levels L for confidentiality
and a relation � over L. Moreover, we consider two observers (potentially sets
of agents), one of security level H and the other of security level L, which interact
with the system by providing inputs and receiving outputs on channels of the
same security level. Each agent has different clearance represented by a poset
(L,�) of two elements L = {H, L} with L � H. A partial function S : Chan ⇀ L,
mapping channels to security levels, determines the set of channels accessible
to each observer. Then the security policy is defined as a pair Pol = (O,P)
where O is the set of channels that an observer can control and P is the set of
channels to be protected. Usually we define O = {c ∈ Chan | S(c) = L} and
P = {c ∈ Chan | S(c) = H}. The fact that S is partially defined allows us to
model channels which are invisible to the observer, yet not subject to protection.

Security Condition. The security condition determines when a model M is se-
cure with respect to a security policy (O,P). Here we define security in terms
of the knowledge of an observer who knows the system specification2 and inter-
acts through channels in O. The security condition prevents the observer from
learning information about (properties of) interactions through channels in P .
First we define the observer knowledge at point (τ, i) as

K(τ, i ,O) = {τ ′ | τ ′ ∈M∧ (τ ′, i ′) =↓O (τ, i) ∧ |i − i ′| ≤ t}

where t is a synchrony parameter of the observer, 0 ≤ i ′ ≤ |τ | and (τ ′, i ′) =↓O
(τ, i) if the projection of (τ, i) and (τ ′, i ′) on actions in O is the same, namely,
(τ ′, i ′)↓O = (τ, i)↓O . Intuitively, K(τ, i ,O) represents the set of traces that the
observer considers possible based on its observations up to point (τ, i) and having
synchrony parameter t . In particular, in a synchronous system t = 0, i.e. the
observer knows the exact logical time. An asynchronous system can similarly
be modeled by t =∞. Models of semi-synchronous systems, where the observer

2 In a language-based security setting the attacker is usually assumed to have complete
knowledge of the program code.
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knows the time approximately, can also be expressed. Then we define projection
of trace τ on a set of channels C, where e(c, v) denotes an event on channel c.

τ↓C ::=

⎧⎨
⎩

ε if τ = ε
e(c, v) :: τ ′↓C if c ∈ C and τ = e(c, v) • τ ′
τ ′↓C if c �∈ C and τ = e(c, v) • τ ′

Notice that we leave the meaning of the :: operator undefined. By default we in-
terpret :: as concatenation, however it need not be, as we will see when discussing
different security policies.

At this point we have all ingredients to present the knowledge-based security
condition. The intuition is simple: given a model M and a security policy Pol =
(O,P), the condition ensures that for each point i + 1 of trace τ , the observer’s
knowledge about actions in P is not greater than its knowledge at the previous
point i .

Definition 1 (Knowledge-based Security). Let M be a model and Pol =
(O,P) a security policy. Then M is secure wrt. Pol if for all τ ∈M, 0 ≤ i < |τ |

K(τ, i ,O)↓P  K(τ, i + 1,O)↓P

We illustrate the main idea behind the security condition with an example.

Example 1. Consider a program P ::= in(c1, x );out(c2, x ) which receives a
boolean value on input channel c1 and sends it on output channel c2. The
model MP of P consists of two traces τ1 = in(c1, true) • out(c2, true) and
τ2 = in(c1, false) • out(c2, false). The goal is to check whether MP satisfies the
policy Pol = (O,P), where O = {c2} and P = {c1}. Namely, we check if agent
L, the attacker, who knows MP and observes values on channel c2, can deduce
information about activity of agent H on channel c1. We identify agent L with O
and agent H with P . Then, applying Def. 2, we obtain (k ∈ {1, 2}):
– K(τk , 0, L)↓H = K(τk , 1, L)↓H = {in(c1, true), in(c1, false)}
– K(τ1, 2, L)↓H = {in(c1, true)} and K(τ2, 2, L)↓H = {in(c1, false)}

The program is insecure since K(τ1, 1, L)↓H � K(τ1, 2, L)↓H. Namely, when the
attacker observes out(c2, true), he refines his knowledge about secret actions
from {in(c1, true), in(c1, false)} to {in(c1, true)} and deduces that value true
was input on channel c1 by agent H.

The security condition in Def. 1 can be relaxed to deal with different forms of
dynamic policies [15, 10]. A release (or declassification) policy R(τ, i ,P) at point
(τ, i) is a property of P , i.e., subset ofM↓P , representing the knowledge that the
observer is allowed to learn at that point. Consequently, a program is secure if
the attacker’s knowledge and the released knowledge at point (τ, i) is not greater
than the attacker’s knowledge at point (τ, i + 1).

Definition 2 (Security wrt. Release). Let M be a model with security policy
Pol = (O,P) and release policy R(τ, i ,P). Then M is secure wrt. Pol and
R(τ, i ,P) if for all τ ∈M, 0 ≤ i < |τ |

K(τ, i ,O)↓P ∩R(τ, i ,P)  K(τ, i + 1,O)↓P
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If no action from P is released,R(τ, i ,P) = M↓P and Def. 1 and Def. 2 coincide.
Reconsider Ex. 1 with release policyR(τ1, 1, H) = {in(c1, true)} andR(τ2, 1, H) =
{in(c1, false)}. Then P is secure as K(τ1, 1, L)↓H ∩ {in(c1, true)}  K(τ1, 2, L)↓H
and K(τ2, 1, L)↓H ∩ {in(c1, false)}  K(τ2, 2, L)↓H.

In a distributed setting, different agents may form coalitions and share obser-
vations in order to disclose secret information about other agents. The following
definition gives a security condition in presence of colluding attacks.

Definition 3 (Security wrt. Collusion). Let M be a model and two agents
a1, a2 observing, resp., O1,O2. Then M secure wrt. a colluding attack on P if
M is secure wrt. policy (O1 ∪ O2,P).

Example 2. Let P be a program with c1 ∈ P , c2 ∈ O1 and c3 ∈ O2. P is secure
wrt. policies Pol1 = (O1,P) and Pol2 = (O2,P), but insecure wrt. a colluding
attack, i.e., the policy Pol = (O1 ∪ O2,P).

P ::=

⎡
⎣ in(c1, x )
if x then out(c2, 0)||out(c3, 1)
else out(c2, 0);out(c3, 1)

To see this, consider the programmodelMP = {in(c1, 1)•out(c2, 0)•out(c3, 1),
in(c1, 1) • out(c3, 1) • out(c2, 0), in(c1, 0) • out(c2, 0) • out(c3, 1)} where the
secret on c1 is binary and || denotes the nondeterministic choice. If an agent
merely observes the value received on his channel, there is nothing he can tell
about the secret bit on c1. However, if they collude, the observation of low
sequence out(c3, 1) • out(c2, 0) reveals that the secret bit was 1.

Trace-Based Conditions. We next introduce several possibilistic information flow
conditions from the literature and briefly discuss the flavor of each. The reason
is two-fold; first to identify which aspects of security they enforce and, second,
to show how these aspects can be captured by the knowledge-based conditions.
We denote projection of trace τ on a set A as τA (instead of τ↓A) to distinguish
from the knowledge-based condition.

Separability was first introduced by McLean [16]. The goal is to ensure a
logical separation between secret and public computations in both directions.

Definition 4 (Sep). A model M satisfies separability if

∀τ, τ ′ ∈ M, ∀τ∗ ∈ �(τL, τ
′
H), τ

∗ ∈ M

A version of separability for synchronous systems has been proposed in [8].

Definition 5 (SSep). A model M satisfies synchronous separability if

∀τ, τ ′ ∈M, ∃τ∗ ∈M. τ∗L = τL and τ∗H = τ ′H

Generalized noninterference is a relaxation of separability and it ensures that
low computation is independent of the sequence of high inputs HI [16].

Definition 6 (GNI). Model M satisfies generalized noninterference if
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∀τ, τ ′ ∈M, ∀τ∗ ∈ �(τL, τ
′
HI), ∃τ ′′ ∈ M, τ∗ = τ ′′L∪HI

Moreover, GNI prevents the low user from deducing information about both
occurrences and non occurrences of high inputs. Nondeducibility, introduced by
Sutherland [17], considers the system as a set of possible worlds W and defines
security in terms of (information) functions f and g, such that for all w1,w2 ∈ W ,
there exists w3 ∈ W and f (w1) = f (w3) and g(w2) = g(w3). If one interprets f as
computing the sequence of high input events and g as computing the sequence
of low events, then nondeducibility can be defined as follows.

Definition 7 (ND). A model M satisfies nondeducibility if

∀τ, τ ′ ∈ M, ∃τ∗ ∈ M. τ∗HI = τHI and τ∗L = τ ′L

One drawback of GNI and ND is that they are not adequate for systems that
need to protect high output events or generate secrets internally. To solve this
issue Guttman and Nadel introduced nondeducibility on outputs which prevents
deductions of high events [11] and allows information flowing from low user
inputs, here LI, to high outputs.

Definition 8 (NDO). A model M satisfies nondeducibility on outputs if

∀τ, τ ′ ∈ M, τLI = τ ′LI, ∃τ∗ ∈ M. τ∗H∪LI = τH∪LI and τ∗L = τ ′L

On the other hand, ND and GNI are too weak to ensure security for systems
that exploit internal nondeterminism to transmit secrets through strategies im-
plemented by high users [18]. A strategy is a function from sequences of high
inputs and high outputs to values in a domain. A high user can use a strategy
to compute the next input value on a high channel, as a function of the history
of high values, and transmit information to a low user.

Definition 9 (NDS). Let M be a model and s1, s2 :M→ Val two high strate-
gies. Then M satisfies nondeducibility on strategies if

∀τ, τ ′ ∈ M, s1(τL) = s2(τ
′
L)⇒ τL = τ ′L

Most of the trace-based conditions assume either synchronous or asynchronous
models. However, in language-based security, the knowledge of program code
can give partial information about the order of events on high and low chan-
nels,and yet the program can be considered secure. We illustrate this fact with
an example.

Example 3. Consider program P where {c1, c2} ∈ P and {c3} ∈ O.

in(c1, secret);out(c2, secret);out(c3, ”Done”)

The program receives a secret input from a high agent, writes to a file of the
same agent and notifies the low agent that the operation is completed. In an
asynchronous model, the secret is first received on c1 and it is sent on c2 or c3
in any order. Hence M consists of the following traces:
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in(c1, vi) • out(c2, vi) • out(c3, ”Done”),
in(c1, vi) • out(c3, ”Done”) • out(c2, vi)

It can be easily checked that M does not satisfy Sep and GNI, since the system
is not closed under interleavings between H and L events. On the other hand, it
seems reasonable to accept P as secure. The knowledge-based condition in Def. 1
accepts M wrt. policy (O,P) as do ND and NDO.

This example raises the question of what security policy a condition is enforcing
and how these conditions can be interpreted in a unified framework.

3 Policies via Examples

We now introduce, by means of examples, different security policies using the
epistemic security conditions. The set of channels in P and the set of channels
in O are, resp., identified with H and L. Moreover, we redefine the semantics of
the :: operator to handle different policies. We always define :: as concatenation
when projecting on channels in O. This reflects the assumption of perfect recall
attacker with unbounded memory. Furthermore, given the set of high channels
in P , we write Set(H) or just H to define :: as set union and Mul(H) to define :: as
multiset union. Finally, Seq(H) defines :: as concatenation, while Seq(H ⊥) defines
:: as concatenation and replaces events in L with the special symbol ⊥. For exam-
ple, (L,Mul(H)) defines a policy which protects the multiplicity of high actions
wrt. an attacker that observes actions in O. Likewise, the policy (L, Seq(H ⊥))
prevents the attacker from deducing information about interleavings of high ac-
tions in P with low actions in O. Whenever the action type is unimportant, we
write l1, l2, · · · for actions in L and h1, h2, · · · for actions in H. In the examples,
traces are numbered as τ1, τ2, · · · following the order they appear in M.

The first point we want to make is what happens in relational models of
information flow where inputs are read in the beginning of program execution.
All direct and implicit flows from high channels to low channels are captured by
the security policy (L, H).

Example 4. Let a model M consist of two traces M = {h1 •h2 • l1, h1 •h3 • l2}.
Is M secure wrt. policy Pol = (L, H)? Intuitively, the answer should be negative
as an attacker can associate h2 with observation l1 and h3 with observation l2.
Applying Def. 1, with 0 ≤ i ≤ 2, we obtain

– K(τ1, i , L)↓H = K(τ2, i , L)↓H = {h1, h2, h3}
– K(τ1, 3, L)↓H = {h1 • h2 • l1}↓H = {h1, h2}
– K(τ2, 3, L)↓H = {h1 • h3 • l2}↓H = {h1, h3}

Theprogram is insecure asK(τ1, 2, L)↓H � K(τ1, 3, L)↓H, i.e.,{h1, h2, h3} � {h1, h2}.
Using the same policy, another modelM′ = {h1 • l1, h2 • l1} is secure.

Example 5. Consider now M = {h1 • h1 • l1, h1 • l2} wrt. security policy Pol =
(L, H). Applying Def. 1, the model is secure. However, there may be cases where
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M is considered insecure. For instance, a low user L may only be interested in
knowing when exactly the system is logging his actions, so that an attack can
be performed stealthy. To capture these cases it is enough to consider a policy
Pol1 = (L,Mul(H)) or Pol2 = (L, Seq(H)). Let i ∈ {0, 1}, then

– K(τ1, i , L)↓Seq(H) = K(τ2, i , L)↓Seq(H) = {h1 • h1, h1}
– K(τ1, 2, L)↓Seq(H) = {h1 • h1, h1}
– K(τ2, 2, L)↓Seq(H) = {h1 • l2}↓Seq(H) = {h1}
– K(τ1, 3, L)↓Seq(H) = {h1 • h1}

Clearly, K(τ2, 1, L)↓Seq(H) � K(τ2, 2, L)↓Seq(H) as {h1 • h1, h1} � {h1}.

It is worth noticing that protecting H and Mul(H) is of little interest for reac-
tive systems that may receive inputs on the same channel multiple times. The
following program is considered secure wrt. both (L, H) and (L,Mul(H)).

P ::=

⎡
⎢⎢⎢⎢⎢⎢⎣

in(c, x )
if x ≥ 0 then out(c′, 1)
else out(c′, 2)
in(c, y)
if y ≥ 0 then out(c′, 3)
else out(c′, 4)

Indeed, if c is a high channel and c′ is a low channel, then MP = {h1 • l1 • h2 •
l3, h2• l2•h1• l4} is secure wrt. both policies. However, when an attacker observes
l1 he knows h1, i.e., the first high input on c was positive, and similarly, when
an attacker observes l3 he knows h2, i.e., the second high input was positive as
well. Hence, the policy (L, Seq(H)) is needed to rule out this program.

Example 6. Let M = {h1 • h2 • l1, h1 • l2 • h2} be a program model. M is
secure wrt. policies in previous examples since the sequence of high actions is
the same for both traces. However, an attacker observing l1 knows that h1•h2 has
occurred, while this is not ensured if he observes l2. Similar security issues may
arise in scenarios discussed in [11]. To capture such flows, we consider a stronger
policy (L, Seq(H ⊥)) which protects the interleavings between high actions and
occurrences of low actions. Let i ∈ {0, 1}, then M is insecure

– K(τ1, i , L)↓Seq(H⊥) = K(τ2, i , L)↓Seq(H⊥) = K(τ1, 2, L)↓Seq(H⊥)

= {h1 • h2• ⊥, h1• ⊥ •h2}
– K(τ1, 3, L)↓Seq(H⊥) = {h1 • h2 • l1}↓Seq(H⊥) = {h1 • h2• ⊥}
– K(τ2, 2, L)↓Seq(H⊥) = K(τ2, 3, L)↓Seq(H⊥) = {h1• ⊥ •h2}

K(τ2, 1, L)↓Seq(H⊥) � K(τ2, 2, L)↓Seq(H⊥) i.e. {h1•h2• ⊥, h1• ⊥ •h2} � {h1• ⊥ •h2}

Dynamic Policies and Declassification. The security condition in Def. 1 is too
strong to be useful in scenarios where high actions are released intentionally. This
is typically the case of dynamic policies where information can be downgraded
or upgraded with time.
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Example 7. Let M = {h1 • l1 • h2 • l2, h1 • l3 • h3 • l4} be a model with two
traces. M is insecure as the attacker can distinguish h2 from h3 after observing,
respectively, l2 and l4. This is captured by the policy (L, H).

– K(τi , 0, L)↓H = K(τi , 1, L)↓H = {h1, h2, h3}
– K(τ1, 2, L)↓H = K(τ1, 3, L)↓H = K(τ1, 4, L)↓H = {h1, h2}
– K(τ2, 2, L)↓H = K(τ2, 3, L)↓H = K(τ2, 4, L)↓H = {h1, h3}

It is clear that K(τ1, 1, L)↓H � K(τ1, 2, L)↓H as {h1, h2, h3} � {h1, h2}. However if
we declassify {h2} and {h3}, resp., at points (t1, i) and (t2, i), for 1 ≤ i ≤ 4 then
the system is secure.

– K(τ1, i , L)↓H ∩ {h2}  K(τ1, i + 1, L)↓H
– K(τ2, i , L)↓H ∩ {h3}  K(τ2, i + 1, L)↓H

4 Equivalences

In this section we show equivalences between knowledge-based conditions and
trace-based conditions from Sect. 2. The first proposition shows that Sep for
asynchronous systems is equivalent to knowledge-based condition with security
policy Pol = (L, Seq(H)).

Proposition 1. Let M be the model of an asynchronous program and closed
under interleavings of τL and τ ′H. Then M satisfies Sep iff M is secure wrt.
(L, Seq(H)).

Proof. We show that M satisfies Sep iff for all traces τ ∈ M, 0 ≤ i < |τ |,
K(τ, i , L)Seq(H) ⊆ K(τ, i +1, L)Seq(H). (⇒) Suppose M satisfies Sep. By definition
∀τ1, τ2 ∈M and ∀τ∗ ∈ �(τ1L, τ2H), τ

∗ ∈ M. We show that for all τ ∈M, for all
0 ≤ i < |τ |, K(τ, i , L)↓Seq(H) ⊆ K(τ, i + 1, L)↓Seq(H). Consider a sequence s∗ such
that s∗ ∈ K(τ, i , L)↓Seq(H) and show that s∗ ∈ K(τ, i + 1, L)↓Seq(H). Let τ

∗ ∈ M
be such that τ∗↓Seq(H) = s∗ and (τ∗, j ) =↓L (τ, i) and 0 ≤ j < |τ∗|. We look for

a trace τ ′ ∈ M with τ ′
�(H) = s∗ and (τ, i + 1) =↓L (τ, j ′), for some j ′. If event

τ(i+1) ∈ H, we pick τ∗ and conclude the proof. Otherwise, τ(i+1) ∈ L. Since Sep
holds, it is possible to interleave the low sequence of events up to point (τ, i +1)
with s∗ and obtain a trace τ ′′ ∈ M such that s∗ ∈ K(τ, i + 1, L)↓Seq(H) and
(τ, i + 1) =↓L (τ ′′, j ′′), for some j ′′. (⇐) Assuming closure under interleavings,
the claim follows immediately.

At this point the reader may wonder if a stronger policy such as (L, Seq(H ⊥))
can avoid the assumption of closure under interleavings. The example shows that
this is not the case. The main reason is that while separability allows observers to
make deductions about future or past occurrences of actions, this is not possible
for the policy (L, Seq(H ⊥)), which protects all interleavings. On the other hand,
ifM lacks some interleavings between sequences of high and low actions and this
doesn’t affect the initial knowledge of the observer, then the system is considered
secure, whilst Sep can still break.
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Example 8. The modelM = {h1•h2•l1•l2, h1•h2•l1•l3} does not satisfy Sep, but
it is secure wrt. the policy (L, Seq(H ⊥)) as the observer knows, from knowledge
of the initial model, all interleavings, i.e, {h1 • h2• ⊥ • ⊥}. On the other hand,
if M = {h1 • l1, l1 • h1, h1 • l2 • l3, l2 • h1 • l3, l2 • l3 • h1} and Pol = (L, Seq(H ⊥)),
then Sep holds. However the epistemic condition does not hold since the sequence
h1• ⊥ • ⊥ is not possible after observing l1.

The next proposition shows that security wrt. policy Pol1 = (L, Seq(H)) is equiv-
alent to security wrt. Pol2 = (H, Seq(L)).

Proposition 2. A model M is secure wrt. (L, Seq(H)) iff M is secure wrt.
(H, Seq(L)).

The next proposition shows the equivalence between Sep and its epistemic sibling
in a synchronous setting.

Proposition 3. Let M be the model of a synchronous program. Then M sat-
isfies SSep iff M is secure wrt. (L, Seq(H)).

It is worth noting that, differently from [8], no additional property on model M
is needed to show the equivalence in Prop. 3. The main reason is that our work
considers traces of both finite and infinite length, hence no property as limit
closure is required.

Proposition 4. Let M be closed under interleavings of τL and τ ′HI. Then M
satisfies GNI iff M is secure wrt. (L, Seq(HI)).

Proposition 5. A model M satisfies ND iff M is secure wrt. (L, Seq(HI)).

Proposition 6. If a model M is secure wrt. (L, Seq(H)) then M satisfies NDS.

Example 9. Consider program P from [18] where a high user transmits a bit z to
a low user by sending z ⊗ x as input on high channel. Let c1 ∈ O and c2, c3 ∈ P .
Then what the low user receives is the exact value of secret z .

P ::= x := 0||1; out(c3, x ); in(c2, y); out(c1, x ⊗ y)

It can be checked that MP is secure wrt. (L, Seq(HI)), i.e. ND, and insecure wrt.
(L, Seq(H)). Hence, P does not satisfy NDS.

The following propositions show that the epistemic conditions can be seen as
closures over a poset where the ordering relation is given by the security pol-
icy. This gives a systematic characterization of security conditions wrt. what is
protected and how powerful an attacker is.

Proposition 7. The security policies Pol = (O,P) are closures over a poset
(℘(E∗),). In particular, (L, H) � (L,Mul(H)) � (L, Seq(H)) � (L, Seq(H ⊥)).

Proposition 8. Let M be a model and Pol1 = (O1,P1), Pol2 = (O2,P2) be
security policies. If Pol1 � Pol2, i.e., O1 � O2 and P1 � P2, then M is secure
wrt. Pol2 if M is secure wrt. Pol1.
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We conclude this section by showing equivalence between nondeducibility on
outputs and its epistemic peer condition. The main advantage of NDO is that
it allows information flow from low user input channels to high output channels
and, at the same time it protects sequences of high actions interleaved with low
inputs. To express such requirements, we make use of the release policy which
allows a low user to declassify information about sequences of low user inputs
and high actions, i.e., Seq(LI+H), given the low input sequence LI of the current
trace, namely, R(τ, i , LI) = {τ∗ ∈ M|τ =LI τ∗}. The other low inputs, system
inputs in [11], are modeled as internal nondeterminism.

Proposition 9. Consider a program model M. Then M satisfies NDO iff
∀τ, i , K(τ, i , L)↓Seq(LI+H) ∩R(τ, i , LI)↓Seq(LI+H)  K(τ, i + 1, L)↓Seq(LI+H).

The following example from [19], shows that our condition handles correctly
information from LI to HO. The key point here is the use of release policy to
break the symmetry inherent in nondeducibility-like conditions.

Example 10. Consider P with low channels c1, c3 and high channels c2, c4.

P ::= in(c1, x );out(c2, x );out(c3, x ); in(c4, y)

If in(c1, x ) is a low user input, the program can be considered secure as nothing
about high actions is revealed. However, if in(c1, x ) is a system input, then the
value is incorrectly transmitted to the low user through out(c3, x ). The security
condition captures both cases.

5 A Logic for Information Flow

In this section we express the security conditions in Sect. 2 in terms of a logic of
knowledge and time. We consider the framework of multi-agent systems [20] and
extend the logic presented in [6] to reason about possibilistic security conditions.

5.1 Knowledge in Multi-agent Systems

The framework of multi-agent systems allows reasoning about knowledge and
time in a distributed system where different agents (users, processes) interact
with each other. The system consists of a set of agents Ag = {ai}ki=1 which have
local state Li at a given point in time. A special agent E , with local state LE ,
models the environment where the distributed system runs. The global state
consists of a tuple of local states, i.e., G = (LE ,L1, · · · ,Lk ). A run is a se-
quence of global states over discrete time. An interpreted system [20] is a pair
I = (R, Π) of runs R and interpretation function Π over a set Φ of atomic
propositions. Program models can be associated with interpreted systems. Given
a point (τ, i), then LE = (trace(τ, i)). The local state of an agent a who observes
O is La = (trace(τ, i)↓O). Then, the global state of a system with k agents who
observe O1, · · · ,Ok is G = ((trace(τ, i)), (trace(τ, i)↓O1 ), · · · , (trace(τ, i)↓Ok

)).
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The atomic propositions in Φ describe basic facts about the model. In our con-
text, the facts refer to actions on channels. The interpretation function Π(p)(G)
assigns a truth value to all p ∈ Φ. To define knowledge, an interpreted sys-
tem I = (R, Π) is associated with a Kripke structure MI = (G, Π, {Ki}ki=1)
where G and Π are as before and Ki is a binary relation over G. In particular,
Ki(G) = {G ′|G ∼i G

′}, where G ∼i G
′ if Li is the same in both states.

5.2 Temporal Epistemic Logic with Past

We now present a logic with temporal and epistemic operators to reason about
security properties in a syntactical manner. Let Φ = {in(c, v),out(c′, v ′)|c, c′ ∈
Chan and v , v ′ ∈ Val} be the set of atomic propositions. We consider a language
containing Φ and closed off under conjunction, negation, knowledge operators
Ka , temporal operators Next X and Until U and past time operators Initially
I , Previous Y and Since S . Let p ∈ Φ,

Definition 10 (Syntax of LKPLTL)
The language LKPLTL of formulas φ, ψ in linear time temporal epistemic logic
with past is given as follows:

φ, ψ ::= p | φ ∧ ψ | ¬φ | Kaφ | Xφ | φUψ | Iφ | Y φ | φSψ

The operator Ka is the epistemic knowledge operator. Kaφ holds if φ holds in
any point equivalent to the current point of agent a. The formula φUψ holds if ψ
holds in a future point and φ holds until reaching that point. Dually, the formula
φSψ holds if ψ was true once in the past and φ has been true ever since. Iφ holds
if φ is true initially, while Xφ (Y φ) hold if φ is true at the next (previous) point.
Various connectives are definable in LKPLTL including boolean operators such as
∨ and →, the truth constants tt and ff , the epistemic possibility operator Laφ
meaning that φ holds for at least one epistemically equivalent point, the future
(past) operator Fφ (Oφ) requiring φ to eventually hold in the future (past),
the always (historically) operator Gφ (Hφ) meaning that φ holds in any future
(past) state, and the weak until φWψ which does not require ψ to eventually
hold. Finally, the operator KG is the group knowledge operator, the formula
KGφ holds if the combined knowledge of G members implies φ. The logic is
sufficiently expressive to specify all information flow policies in Sect. 1.

Definition 11 (Satisfaction). Fig. 1 defines the satisfaction relation M,
(τ, i) |= φ between points in a model M and LKPLTL formulas. In particular, sat-
isfaction relative to model M is defined as M |= φ iff ∀τ ∈M, M, (τ, 0) |= φ.

At this point we have all ingredients to characterize the security condition in
Sect. 2 by means of LKPLTL formulas. First notice that the set K(τ, i ,O) rep-
resents all traces that an observer O considers possible at point (τ, i), which
corresponds to the uncertainty of the observer at that point. Given a policy
Pol = (O,P) and a formula φ specifying properties of P , we show that φ is pos-
sible at any point (τ, i) by means of the operator Laφ. To avoid complications
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M, (τ , i) |= p iff τ(i) = p

M, (τ , i) |= φ ∧ ψ iff (τ , i) |= φ and (τ , i) |= ψ

M, (τ , i) |= ¬φ iff (τ , i) �|= φ

M, (τ , i) |= Xφ iff i + 1 ≤ len(π) and (τ , i + 1) |= φ

M, (τ , i) |= φUψ iff ∃j : i ≤ j ≤ len(τ) such that (τ , j ) |= ψ and ∀k : i ≤ k < j , (τ , k) |= φ

M, (τ , i) |= Iφ iff (τ , 0) |= φ

M, (τ , i) |= Y φ iff i − 1 ≥ 0 and (τ , i − 1) |= φ

M, (τ , i) |= φSψ iff ∃j : 0 ≤ j ≤ i such that (τ , j ) |= ψ and ∀k : j < k ≤ i , (τ , k) |= φ

M, (τ , i) |= Kaφ iff ∀τ ′ ∈ M, ∀(τ ′, i ′) ∈ τ ′ s.t. tracea(τ , i) = tracea (τ
′, i ′), (τ ′, i ′) |= φ

Fig. 1. Satisfaction at trace points

due to observations at the limit, we assume that the models are limit closed.
Namely, all properties of P can be captured by finitely many observations in O.
The view of agent a (group G) observing Oa (OG =

⋃
a∈G Oa) is defined as

tracea(τ, i) = trace(τ, i)↓O (traceG(τ, i) = trace(τ, i)↓OG ). Then the following
theorem relates the semantic conditions to the syntactical ones.

Theorem 1. Consider a model M and a security policy Pol = (O,P). Let also
φ1, · · · , φn be a set of LKPLTL formulas encoding information to be protected,
i.e. M↓P . Then M is secure wrt. Pol iff M |=

∧n
i=1 GLaφi .

Finally it remains to show that the logic can be used describe different protec-
tion policies, as defined in Sect. 3. In particular, each element in M↓P can be
encoded using the logic in Fig. 1. Let p ∈ Φ, then we define auxiliary formulas:
Occ(p) = (O p ∨ F p) meaning that p eventually holds at a (past or future)
point, SV (c) =

∨
v∈Val e(c, v) meaning that an action has happened on chan-

nel c, Occ(p, i) = O (I tt ∧ F (p ∧ X F (p ∧ X F (p ∧ · · · ))) meaning that p
is true in at least i different points in the current trace and a happens-before for-
mula HB(p, q) = O (¬qU (p ∧ F q)) ∨ F (¬qU (p ∧ F q)) meaning that p holds
before q at some point in the current trace. Moreover, auxiliary formulas can be
combined to express facts φ that occur infinitely many times by using the formula
Inf (φ) = G Fφ.

Proposition 10. Consider a model M and a policy Pol = (O,P). Then the
following variants of P can be encoded in LKPLTL,

– Set(H): M |=
∧n

i=1 GLaOcc(ei(ci , vi)), where ci ∈ P
– Mul(H): M |=

∧n
i=1 GLaOcc(ei(ci , vi), ki), where ci ∈ P and ki is the mul-

tiplicity of ei
– Seq(H): M |= La

∧k
j=2 HB(ej−1, ej ) for all high sequences φi

– Seq(H ⊥) iff M |= GLa

∧k
j=2 HB(pj−1, pj ), for all sequences φi such that

pj = SV (c) if ej (c, v) = pj and c ∈ O, or pj = ej (c, v) if c ∈ P
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6 Related Work and Conclusions

We are not the first to examine connection between trace-based and knowledge-
based information flow properties. A closely related work is that of Halpern and
O’Neill [8], who also consider formal definitions of secrecy in multiagent systems.
They show how SEP and GNI fit in the epistemic framework, both in synchronous
and asynchronous setting. In particular, they define knowledge as a set of points
that an agent considers possible based on his local state. By contrast, this paper
defines knowledge as the set of global traces that an agent considers possible based
on his local observations. This allows us to give security conditions which are closer
to what is used in language-based security [21, 10, 7]. Furthermore, the logic we
present here captures directly the security properties of traces.

Recently, knowledge-based conditions for information flow have been popular
in language-based security. Several works [4, 22] explore epistemic conditions for
relational and interactive models, although in a synchronous setting only. Dif-
ferent issues related to declassification [6] and attack models [10] have been con-
sidered using epistemic security conditions. In [23] Sabelfeld and Mantel discuss
information flow security for distributed programs and point out finer-grained
sources of leaks due to encryption, environment totality and timing. All these
subtle flows can be accurately captured by the security condition presented here.

The majority of verification techniques for information flow properties rely
on security type systems, as in [5]. However, several model checking approaches,
which were recently proposed [24, 25], define fragments of logics for which veri-
fication is feasible. An interesting future direction would be to devise fragments
of LKPLTL for which model checking has low complexity.

In conclusion, we have discussed several possibilistic information flow condi-
tions and showed how knowledge-based account can be used to specify these
conditions, both semantically and syntactically. The advantage of using epis-
temic logic is that it can accurately express complex policies and provide a clear
separation between the code and the security annotations. However, complexity
of verification can be very high for large programs. Different remedies to this
issue require further investigation. First, abstraction techniques at the program
level can be used to obtain smaller models which can be easy to verify. Second,
distributed system properties, such as asynchrony, order preservation or lossiness
can be used to decompose the epistemic formulas into simpler ones, which are
easier to verify. Finally, a hybrid verification which combines type checking and
model checking is another path that deserves further exploration.

Acknowledgements. Thanks to Mads Dam for many valuable discussions.
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Abstract. We show how a type system for secure information flow for a
π-calculus with higher-order λ-abstractions can be extended with dynam-
ics without weakening the non-interference guarantees. The type system
for the π-calculus ensures that the traffic on high channels does not in-
fluence the traffic on low channels. λ-abstractions make it possible to
send processes over channels. Dynamics make it possible to send pro-
cesses and other data of different types over the same channel, making
communication between processes easier. If dynamics are used, the types
of some expressions or channels may depend on type variables that are
instantiated at run time. To make it still possible to statically check se-
cure information flow, we ensure that instantiating a type variable in an
expression also instantiates it in the type of the expression.

1 Introduction

The question of information security arises when the inputs and outputs of a
program are partitioned into different security classes. In this case we want the
high-security inputs not inappropriately influence the low-security outputs and
other behaviour observable at low clearance. The strongest such property is non-
interference [10] stating that there is no influence at all; or that variations in
the high-security inputs do not change the observations at the low level.

Over the years, static analyses, typically type systems for verifying secure
information flow have been proposed for programs written in many kinds of
programming languages and paradigms — imperative or functional, sequential
or parallel, etc. Each new construct in the language can have a profound effect
on the information flows the programs may have. For a language to be usable
in practice, it usually needs to have many different constructs, which makes
information flow analysis much more complicated than in simple languages. In
spite of this, there exist some practical languages with information flow type
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systems, such as Jif, which is based on JFlow [13]. Thus typing is a practical
way of checking secure information flow.

In strongly typed functional programming languages, static typing is widely
used to guarantee type safety. In some cases, however, type information only
becomes available at run time. For example, data may be obtained from the
network or from user input. In the case of mobile code, which is becoming ubiq-
uitous, also code is obtained from the network. In these cases, the values (data
or code) may be wrapped in black boxes called dynamics or dynamic values [2]
that in addition to a value also contain the type of this value. The types in these
black boxes can be compared at run time with each other or with statically
known types. If several types are allowed then run-time branching on the types
can be used to exhibit different behavior for different types. In each branch,
enough type information is known statically, so static typing can again be used
to type check the individual branches.

In this paper, we will see that dynamics can be used not only in an ordinary
type system but also in a type system for secure information flow. Here the types
wrapped in dynamics can contain security levels.

Dynamics can be useful in distributed systems where processes send messages
of different types to each other. If messages are wrapped in dynamics by the
sender then a single channel can be used for communication between two pro-
cesses, instead of a separate channel for each possible message type. The receiver
of a message can check that the type wrapped in the dynamic is one of the types
that it expects and can act according to the type. To model such communication,
we use the π-calculus as the base of our language (a good introduction to the
π-calculus can be found in [14]). To be able to also send code between processes,
not only names, we include in the language λ-expressions that can also return a
process. This makes the π-calculus higher-order. Finally, we can add dynamics
to the language.

Let us consider an example. Suppose we have a server that contains some
public and some secret data. The server accepts queries that may need to use
the public or secret data but that may also write data to public or secret channels.
We want to ensure that if a query accesses a public channel then it cannot use the
secret data, which might be leaked to the public channel. Here is the pseudocode:

– server:

• variables pubdata, secdata

• listen to channel serv and for each message query that is received:

∗ if query contains a procedure that uses public channels then execute
query with pubdata as an argument

∗ if query contains a procedure that does not use public channels then
execute query with pubdata and secdata as arguments

– client1:

• send to serv a query that writes pubdata to a global public channel

– client2:

• send to serv a query that writes secdata to a global secret channel
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In Sec. 2.2, we will implement this example in our language. Our type system
will guarantee that no information about secdata is leaked to a public channel.

Our goal was to have non-interference for our language. To make it easier to
achieve this, we take as a base [15], which has the necessary framework needed
to prove non-interference for the π-calculus. The advantage of the framework is
the use of 〈π〉-calculus, which allows the bisimulation relation needed for non-
interference to be derived naturally, instead of having to define it ad hoc. We
adapt the definitions, lemmas, and theorems to our language and extend the
proofs with cases corresponding to the added constructs in our language.

We will begin in Sec. 2 by introducing the syntax and run-time semantics of
our language and continue by discussing an example. We will then see how a
(weak) bisimulation relation arises naturally from a certain projection function.
This is asserted by the lemmas that we will prove. In Sec. 3, we will introduce our
type system for secure information flow and prove that the type of an expression
is retained during reduction. In Sec. 4, we will state the non-interference results.
The proofs for our language are essentially the same as for the language in [15]
and we will not repeat them. In Sec. 5, we will see more examples. We will review
the related work in Sec. 6 and discuss our results in Sec. 7.

2 Syntax and Operational Semantics

2.1 Description

Our language is based on the 〈π〉-calculus, which is defined in [15], augmented
with (recursive) λ-expressions (with a built-in fixpoint operator as in [16]). We
have added dynamics to the language, which allow introducing run-time type
variables using pattern matching. We also allow sending arbitrary values along
channels, not only channel names.

The 〈π〉-calculus adds to the π-calculus a bracket construct 〈e〉i (where i ∈
{1, 2}) that allows packing two high-security expressions into one to facilitate
reasoning about bisimilar expressions. This construct is not meant to be used in
actual programs written in the language. In the following, we use boldface meta-
variables (e.g. e or N) to denote expressions that do not contain this construct.
Such expressions are called standard expressions.

The syntax of our language is given in Fig. 1 and the operational semantics
in Fig. 2. We have the following three definitions (from [15]):

Definition 1. Let {i,j} = {1,2}. The ith projection function, written πi, satis-
fies the laws πi(〈e〉i) = e and πi(〈e〉j) = 0 and is a homomorphism on standard
expression forms.

Definition 2. Structural congruence ≡ is the smallest reflexive, compatible re-
lation over expressions which satisfies the following laws:

1. N+0 ≡ N , N ≡ N+0, N1+N2 ≡ N2+N1, (N1+N2)+N3 ≡ N1+(N2+N3);
2. N | 0 ≡ N , N ≡ N | 0, N1 |N2 ≡ N2 |N1, (N1 |N2) |N3 ≡ N1 | (N2 |N3);
3. νx1 : t1. νx2 : t2. e ≡ νx2 : t2. νx1 : t1. e.
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Definition 3. The raw one-step reduction relation −→ is given by Fig. 2. We
write N1#N2 (read: N1 and N2 may communicate) for ∃e.(N1 |N2 −→ e ∨N2 |
N1 −→ e). Weak reduction, written =⇒, is defined as (≡ ∪ −→)∗.

t ::=
〈
t̃
〉p
l
| Dynamic | t → τ | γ

τ ::= t | Procpc
p ::= − |+ | ± | β

l, pc ::= L |H | α
v ::= x | wrap v : t | fix f.λx : t. e

e ::= v | P | v v | bind x = e in e | v unwrap x :< t � e else e |
| v unwrap x : t � e else e

N ::= x(ỹ). e | x̄ 〈ṽ〉 . e | 0 |N +N

P ::= N | (e | e) | !e | νx : t. e | 〈e〉i

Fig. 1. Syntax and types

We identify expressions up to α-conversion, to facilitate variable substitutions.
In the following, we use an overline to denote a list of something, e.g. αj ⇐ �j
is a list that contains the substitution αj ⇐ �j for each j in some set of indices.
For a single variable without an index, we use a tilde instead of an overline to
avoid confusion with sending on a channel, e.g. ỹ is a list of variables.

An expression (denoted by e) can reduce either to a value (denoted by v)
without making any side effects, or to a procedure (denoted by P ), whose further
reduction may cause side effects but cannot return a value.

Value-level variables are denoted by x (sometimes also y) or f . We use f for
variables that are used for recursive function calls (e.g. in fix f.λx : t. f x the
subexpression f x is a recursive call with the argument x) but such variables are
not syntactically distinguished from ordinary variables. Function applications
are handled by the rule (app). To allow recursion, the rule replaces the variable
f by a copy of the function. This recursion may be non-terminating.

A similar construct, called replication, is available only for procedures, not
arbitrary expressions. The procedure !P allows creating an arbitrary number of
threads (rule (repl)), each executing P .

We distinguish value types (which we call just types and denote by t) and
procedure types (denoted by Procpc). Extended types (denoted by τ) can be
either types or procedure types.

The form of function types t → τ shows that functions can return both
values and procedures but can receive as an argument only values. If we want to
give a procedure P as an argument to a function then we can use the function
fix f.λx : Dynamic. P (with a dummy argument x; the variable f is also not
used) instead.

The channel type
〈
t̃
〉p
l
shows that a channel can be used to transmit a list

of values (with types given by the list t̃). The channel can be used only in the
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E[e] ::= bind x = e in e′ | (e | e′) | (e′ | e) | νx : t. e | 〈e〉i
(fix f.λx : t. e) v −→ e[f ⇐ (fix f.λx : t. e), x ⇐ v] (app)

bind x = v in e −→ e[x ⇐ v] (bind)

t1 ≤ t2
(wrap v : t1) unwrap x :< t2 � e1 else e2 −→ e1[x ⇐ v]

(unwrap-subt)

¬(t1 ≤ t2)

(wrap v : t1) unwrap x :< t2 � e1 else e2 −→ e2
(unwrap-subt-else)

t1 = t2[αj ⇐ �j , βj ⇐ pj , γj ⇐ tj ]

(wrap v : t1) unwrap x : t2 � e1 else e2 −→
−→ e1[x ⇐ v, αj ⇐ �j , βj ⇐ pj , γj ⇐ tj ]

(unwrap-pat)

¬∃(αj , βj , γj). t1 = t2[αj ⇐ �j , βj ⇐ pj , γj ⇐ tj ]

(wrap v : t1) unwrap x : t2 � e1 else e2 −→ e2
(unwrap-pat-else)

e −→ e′

E[e] −→ E[e′]
(context)

x �∈ fn(e2)

(νx : t. e1) | e2 −→ νx : t. (e1 | e2)
(extr)

(N1 + x(ỹ). e1) | (N2 + x̄ 〈ṽ〉 . e2) −→ e1[ỹ ⇐ ṽ] | e2 (comm)

0 −→ νx : t. 0 (new) !e −→ e | !e (repl)

πiN0#N1 {i, j} = {1, 2}
N0 | 〈N1〉i −→ 〈πiN0 |N1〉i | 〈πjN0〉j

(split)
N1#N2

〈N1〉i | 〈N2〉i −→ 〈N1 |N2〉i
(glue)

〈e1 | e2〉i −→ 〈e1〉i | 〈e2〉i (break) 〈νx : t. e〉i −→ νx : t. 〈e〉i (push)

Fig. 2. Operational semantics

context with level l. We have two security levels: low (public) and high (secret),
denoted by L and H , respectively. The polarity p can be − (the channel can be
read), + (it can be written to), or ± (it can be both read and written to).

We also have the type Dynamic, whose values can be constructed with the
construct wrap v : t, which wrap the value v and its type t in a single run-time
value (called a dynamic). The type t can be inferred automatically during type
checking, so the programmer may actually write just wrap v.

The values of type Dynamic can be analyzed using the unwrap constructs,
which allow branching according to the type contained in the dynamic. The first
variant of unwrap (with x :< t) chooses the first branch (rule (unwrap-subt)) if
and only if the type in the dynamic is a subtype of t (i.e. x can be given the
type t), and the second branch (rule (unwrap-subt-else)) otherwise. The second
variant (with x : t) uses t as a type pattern that can contain variables. The
first branch is chosen (rule (unwrap-pat)) if and only if the type in the dynamic
matches the pattern, and the type variables are replaced (at run time) with
concrete types (or parts of types) in this case. If the pattern match fails, the
second branch (rule (unwrap-pat-else)) is chosen.

We introduce three kinds of type pattern variables: α denotes variables that
correspond to a security level (denoted by l or pc), β denotes variables
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corresponding to a polarity (denoted by p), and γ denotes variables correspond-
ing to a (value) type.

We also have a construct bind x = e1 in e2 that fixes the order of evaluation
of e1 and e2: first, e1 is evaluated (using the rule (context)), then its value can
be used to replace the variable x in e2 (rule (bind)). This ensures a call-by-value
semantics.

We also have the standard π-calculus constructs of sending (x̄ 〈ṽ〉 . e) and
receiving (x(ỹ). e) values over channel x (rule (comm)), null process (0), sum
of processes (N + N), parallel composition (e | e), and creating (νx : t. e) a
new channel of type t (rule (extr)). The rules (new), (split), (glue), (break),
and (push) are used only for the 〈π〉-calculus expressions with brackets, and are
similar to those in [15]. Some forms of processes (called normal processes) are
denoted by N instead of P to facilitate the definition of operational semantics.

2.2 Example from the Introduction

We will now see how to implement the example from the introduction in our
language. The code is given in Fig. 3. There we first create a global public
channel, a global secret channel, and another global public channel that will be
listened by the server. Then we create three threads—the server and the two
clients.

The server contains some public and secret data (SomePublicV alue and
SomeSecretV alue, which should be expressions of type Dynamic), which are
written to channels (because we do not have mutable variables). The server lis-
tens to the channel serv (using replication, so that it can handle more than
one query), and when it receives a query (which is contained in a Dynamic), it
branches accrording to the type of the query. If the query contains a high pro-
cedure expecting two arguments then it executes the procedure with the public
and secret data as the arguments. If it contains a low procedure expecting one
argument then it executes the procedure with the public data as the argument.

The first client creates a query that writes the public data in the server to a
global public channel. The second client creates a query that writes the secret
data in the server to a global secret channel. Both clients wrap their queries into
a dynamic and send them to the channel serv.

The server gives the secret data to a secret procedure and the public data
to a public procedure as channel names, not as actual values. This allows the
procedures in the query to also change the data in the server, not only read
it, although the current example does not use this possibility. The public data
is given to a secret procedure as an ordinary value because a secret procedure
must not affect public data. To use the value in a channel, it is first read from
the channel and then immediately written back to it so that it can be read
again later. The write is done in a separate thread, so that the synchronous
write would not block the current thread. To change the value in the channel, a
different value would be written back instead of the one that was just read.
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νpubchan : 〈Dynamic〉±L . νsecchan : 〈Dynamic〉±H . νserv : 〈Dynamic〉±L .

((

νpubdata : 〈Dynamic〉±L . νsecdata : 〈Dynamic〉±H . (

pubdata 〈SomePublicV alue〉 . 0 |
secdata 〈SomeSecretV alue〉 . 0 |
!serv(query).

query unwrap q : (Dynamic → 〈Dynamic〉±H → ProcH) �
pubdata(pubd). (pubdata 〈pubd〉 . 0 | q pubd secdata)

else query unwrap q : (〈Dynamic〉±L → ProcL) � q pubdata

else 0)

) | (
bind queryL = fix f.λpub : 〈Dynamic〉±L .

pub(pubd). (pub 〈pubd〉 . 0 | pubchan 〈pubd〉 . 0) in
serv

〈
wrap queryL : 〈Dynamic〉±L → ProcL

〉
. 0

) | (
bind queryH = fix f.λpubd : Dynamic. fix f.λsec : 〈Dynamic〉±H .

sec(secd). (sec 〈secd〉 . 0 | secchan 〈secd〉 . 0) in
serv

〈
wrap queryH : Dynamic → 〈Dynamic〉±H → ProcH

〉
. 0))

Fig. 3. The example from the introduction in our language

2.3 Lemmas

We will now see how an expression containing brackets is related to the two
standard expressions that are packed into it. We first have an auxiliary lemma.

Lemma 1. Let i ∈ {1, 2}. Then (πie)[ỹ ⇐ πiṽ] = πi(e[ỹ ⇐ ṽ]) and (πie)[ỹ ⇐
πiṽ, αj ⇐ �j , βj ⇐ pj, γj ⇐ tj] = πi(e[ỹ ⇐ ṽ, αj ⇐ �j , βj ⇐ pj , γj ⇐ tj ]).

Proof. πie has the same structure has e, except some subexpressions may have
been replaced by 0. In e[ỹ ⇐ ṽ, αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ], substitutions have
been made in all subexpressions. If we apply πi then the substitutions are still
visible in those subexpressions that were not replaced by 0 and πi is also applied
to those subexpressions that were introduced by the substitution (i.e. ṽ, which
changes to πiṽ; the type-level expressions �j, pj, tj are not affected by πi). Thus,
we get (πie)[ỹ ⇐ πiṽ, αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ]. ��

Now we can prove two lemmas that together show that e and πie (considered
modulo addition and removal of null processes) are weakly bisimilar.

Lemma 2. Let i ∈ {1, 2}. If e −→ e′ then πie =⇒ πie
′.
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Proof. By induction on the derivation of e −→ e′. The cases corresponding to π-
calculus-related constructs ((comm), (extr), (new), (repl), (split), (glue), (break),
and (push)) are handled similarly to the proof of the corresponding lemma in
[15].

Case (app). πi is a homomorphism on all expression forms involved. The result
follows by (app) and Lemma 1.

Case (bind). πi is a homomorphism on all expression forms involved. (πie)[x ⇐
πiv] is πi(e[x ⇐ v]) by Lemma 1. The result follows by (bind).

Case (unwrap-subt). πi is a homomorphism on all expression forms involved.
(πie1)[x ⇐ πiv] is πi(e1[x ⇐ v]) by Lemma 1. The result follows by (unwrap-
subt) (the premise t1 ≤ t2 remains unchanged because types cannot contain
brackets).

Case (unwrap-subt-else). πi is a homomorphism on all expression forms in-
volved.

Case (unwrap-pat). πi is a homomorphism on all expression forms involved.
(πie1)[x ⇐ πiv, αj ⇐ �j , βj ⇐ pj , γj ⇐ tj ] is πi(e1[x ⇐ v, αj ⇐ �j , βj ⇐ pj,
γj ⇐ tj ]) by Lemma 1. The result follows by (unwrap-pat) (the premise remains
unchanged because types, polarities, and levels cannot contain brackets).

Case (unwrap-pat-else). πi is a homomorphism on all expression forms in-
volved.

Case (context). The subcases E = bind x = [] in e2, E = ([] | e2), E = (e2 | []),
and E = νx : t. [] can be handled by using the induction hypothesis, applying
(context), and using the fact that πi is a homomorphism on all expression forms
involved. Let us now consider the subcase E = 〈[]〉j . Then e and e′ are of the form
〈e1〉j and 〈e2〉j , respectively, and e1 −→ e2 holds. If i �= j then πie = πie

′ = 0
and the result is immediate. If i = j then πie = e1 and πie

′ = e2, so πie reduces
to πie

′ as desired. ��

Definition 4. Let ≤0 be the smallest reflexive, compatible relation over expres-
sions which satisfies the law e ≤0 e | 0.

Lemma 3. Let i ∈ {1, 2}. If e −→ e′ and e = πie then there exists some
expression e′ such that e =⇒ e′ and e′ ≤0 πie

′.

Proof. By induction on the derivation of e −→ e′. The cases (comm), (extr),
(repl), and (new) are handled similarly to the proof of the corresponding lemma
in [15].

Before the following cases, we now consider the case where e = 〈e〉i. As
〈e〉i −→ 〈e′〉i by (context), and e′ = πi 〈e′〉i, we can take e′ = 〈e′〉i. Thus, in
the following, we can assume that e �= 〈e〉i.

Case (context). Subcases E = [] | e0 and E = νx : t. [] are handled similarly
to the proof of the corresponding lemma in [15]. Now we consider the remaining
subcase E = (bind x = [] in e0). Here e = (bind x = e1 in e0) and e′ = (bind x =
e′1 in e0). The premise of e −→ e′ gives e1 −→ e′1. Then e is either 〈e〉i or
bind x = e1 in e0, where e1 = πie1 and e0 = πie0. The first case we already
handled. In the second case, the induction hypothesis gives e1 =⇒ e′1 for some e′1
such that e′1 ≤0 πie

′
1. Then, by (context), bind x = e1 in e0 =⇒ bind x = e′1 in e0
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holds, and e′ = E[e′1] ≤0 E[πie
′
1] = πi(bind x = e′1 in e0). Thus we can take

e′ = bind x = e′1 in e0.
Cases (app), (bind), (unwrap-subt), (unwrap-subt-else), (unwrap-pat),

(unwrap-pat-else). Because e �= 〈e〉i, the expression e can only contain brackets
in its proper subexpressions (e.g. v, e1, and e2 for the (unwrap-subt) rule). Thus
we can write e as ê[ek], where ek are the proper subexpressions occurring in e,
e.g. e = ê[v, e1, e2] for the (unwrap-subt) rule. Then e = ê[πiek] because πi is
a homomorphism on ê. We can also write e′ as ê′[πiek]. Because the reduction
ê[πiek] −→ ê′[πiek] holds and its premises and restrictions on the subexpressions
(e.g. that the expression v must be a value) are invariant under projection (and
inverse of projection), we can replace the subexpressions πiek by ek to get a
derivation of the reduction ê[ek] −→ ê′[ek]. Take e′ = ê′[ek]. Then e −→ e′ and
πie

′ = πi(ê
′[ek]) = ê′[πiek] = e′ because πi is a homomorphism on ê′ (here we

use Lemma 1 if necessary). ��

3 Type System

The type system of the language is given in Figures 4 and 5. The types of
channels and the corresponding subtyping rules are from [15]. As security levels
we have only L and H , not an arbitrary lattice.

There are two forms of typing judgements. Both depend on the environment
Γ , which consists of a list of typings of (value-level) variables and a list of
type-level variables. The judgement form Γ �(pc) N is used for some constructs
related to communication. It asserts that the process N has the security level
pc. Most judgements use the form Γ � e : τ , which asserts that e can be given
the extended type τ . The two forms are related by the rule (P-NORMAL). The
meta-expression tyvars(t) used in the rules denotes the set of type variables (of
all three kinds) occurring in the type t.

We give types not only to expressions reducing to values but also to (expres-
sions reducing to) procedures. This is different from [15] because we also need to
be able to return procedures from functions. Procedures have an extended type
of the form Procpc. This means that the procedure has the security level pc. If a
procedure reads or writes to a channel then the security levels of the procedure
and the channel must be equal. The rule (E-SUB) allows a procedure of type
ProcL (a low process) to have a subprocedure of type ProcH (a high process) but
not vice versa. Thus if a low process uses a high channel then the continuation
(that follows the use of the channel) has type ProcH . If it also needs to continue
running in low context then the rule (P-PAR) allows it to fork into two low
processes, one of which changes into high context before using the channel.

The type rules (E-VAR), (E-LAM), (E-APP), (E-BIND), and (E-SUB)
are standard. The rules (N-SEND), (N-RECV), (N-NULL), (N-SUM), (P-
NORMAL), (P-PAR), (P-REPL), (P-NEW), and (P-BRACKET) are similar to
those in [15], except that we allow send arbitrary values (ṽ) in (N-SEND), we have
an explicit type annotation in (P-NEW), we have only one possible non-low secu-
rity level in (P-BRACKET), and we rely on a separate rule (E-VAR) for typing
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l ≤ l L ≤ H p ≤ p ± ≤ + ± ≤ −

t ≤ t
t2 ≤ t1 τ1 ≤ τ2
t1 → τ1 ≤ t2 → τ2

∀i. ti ≤ t′i
t̃i ≤ t̃′i

pc2 ≤ pc1
Procpc1 ≤ Procpc2

p1 ≤ p2 (p2 ≤ − ⇒ t̃ ≤ t̃′) (p2 ≤ + ⇒ t̃′ ≤ t̃)〈
t̃
〉p1
l

≤
〈
t̃′
〉p2
l

Fig. 4. Subtyping rules

Γ (x) = t

Γ � x : t
(E-VAR)

Γ � v1 : t1 → τ2 Γ � v2 : t1
Γ � v1 v2 : τ2

(E-APP)

tyvars(t1) ⊆ Γ Γ ; f : t1 → τ2; x : t1 � e : τ2
Γ � (fix f.λx : t1. e) : t1 → τ2

(E-LAM)

Γ � e1 : t1 Γ ;x : t1 � e2 : τ2
Γ � (bind x = e1 in e2) : τ2

(E-BIND)
Γ � v : t tyvars(t) ⊆ Γ

Γ � (wrap v : t) : Dynamic
(E-WRAP)

Γ � v : Dynamic Γ ;x : t � e1 : τ ′

Γ � e2 : τ ′ tyvars(t) ⊆ Γ

Γ � (v unwrap x :< t � e1 else e2) : τ ′ (E-UNWRAP-SUBT)

Γ � v : Dynamic Γ ;x : t; tyvars(t) � e1 : τ ′ Γ � e2 : τ ′

Γ � (v unwrap x : t � e1 else e2) : τ ′ (E-UNWRAP-PAT)

Γ � e : τ τ ≤ τ ′

Γ � e : τ ′ (E-SUB)
Γ � e : Procpc
Γ � !e : Procpc

(P-REPL)

Γ � x :
〈
t̃
〉+
pc

Γ � ṽ : t̃ Γ � e : Procpc

Γ �(pc) x̄ 〈ṽ〉 . e
(N-SEND)

Γ � x :
〈
t̃
〉−
pc

Γ ; ỹ : t̃ � e : Procpc

Γ �(pc) x(ỹ). e
(N-RECV)

Γ �(pc) 0
(N-NULL)

Γ �(pc) M Γ �(pc) N

Γ �(pc) M +N
(N-SUM)

Γ �(pc) N

Γ � N : Procpc
(P-NORMAL)

Γ � e1 : Procpc Γ � e2 : Procpc
Γ � (e1 | e2) : Procpc

(P-PAR)

tyvars(t) ⊆ Γ Γ ;x : t � e : Procpc t =
〈
t̃
〉p
l

Γ � (νx : t. e) : Procpc
(P-NEW)

Γ � e : ProcH
Γ � 〈e〉i : ProcH

(P-BRACKET)

Fig. 5. The type system

variables. We have tyvars(t) ⊆ Γ as a premise of some rules to ensure that only
those type variables that are in scope are used.

The rule (E-WRAP) ensures that the value and the type wrapped in a dy-
namic correspond to each other. We also have two rules for the unwrap expres-
sions. The rule (E-UNWRAP-SUBT) handles the variant that uses subtyping
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to compare the dynamic and the static type. Here we require all type variables
occurring in t to be in scope, because here we cannot bind new variables. The
rule (E-UNWRAP-PAT) handles the variant that uses pattern matching. Here
we add the variables tyvars(t) occurring in the pattern t to the scope. Currently,
the rule considers all type variables in t to be new variables bound by the pat-
tern even if there already was a variable with the same in the context. It would
also be possible to allow some variables in the pattern to refer to the variables
already in the scope if we syntactically distinguish these variables from pattern
variables.

The two unwrap constructs cannot be united into one that allows both pat-
tern matching and subtyping to be used. Let us consider the type (Dynamic →
ProcL) → ProcH and the pattern (Dynamic → Proca) → Proca. Then
(Dynamic → ProcL) → ProcH ≤ (Dynamic → Proca) → Proca holds for both
a = L and a = H . Thus a is not uniquely defined and there is no reason to prefer
either a = L or a = H because in both cases the inequality is strict (unlike for
Dynamic → ProcH ≤ Dynamic → Proca, where also both a = L and a = H fit
the inequality, but here we can choose a = H because equality holds only in that
case).

We will now prove some lemmas related to the type system. First, a lemma
that allows substituting a variable with a value of the same type.

Lemma 4. Γ ; y : t1 � e : τ and Γ � v : t1 imply Γ � e[y ⇐ v] : τ .

Proof. Take the derivation tree of Γ ; y : t1 � e : t and replace y with v. This
replacement can invalidate only (E-VAR) nodes (used to derive Γ � y : t1). Now
we have to derive Γ � v : t1 instead. Thus we replace these (E-VAR) nodes with
the derivation tree of Γ � v : t1 which we have. Then we get a derivation tree of
Γ � e[y ⇐ v] : τ . ��

Next, we prove a similar lemma that allows substituting type variables in an
expression with type-level entities (types, polarities, and security levels) of the
same kind if we make the same substitution in the type of the expression.

Lemma 5. If none of the variables αj , βj , γj occur in Γ or τ then
Γ ; y : t1;αj , βj , γj � e : τ implies
Γ ; y : t1[αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ] � e[αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ] : τ .

Proof. Apply the substitution [αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ] to the derivation tree
of Γ ; y : t1;αj , βj , γj � e : τ . The substitution does not change Γ (used in (E-
VAR)). Also, the ordering of types (used in (E-SUB)) is not changed by the
substitution. The statement tyvars(t) ⊆ Γ (in (E-WRAP), (E-LAM), and (E-
UNWRAP-SUBT)) is also not invalidated by the substitution. Elsewhere in the
type rules, types or extended types that are denoted by a letter (e.g. t1 or τ ′)
and do not contain other such types, are used in a parametrically polymorphic
way, thus the rules are not invalidated by the substitution. As a result of the
substitution, after dropping the no longer used variables αj , βj , γj from the con-
text, we then get the derivation tree of Γ ; y : t1[αj ⇐ �j , βj ⇐ pj , γj ⇐ tj ] �
e[αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ] : τ . ��
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The following lemma allows substituting both value-level and type-level vari-
ables.

Lemma 6. If none of the variables αj , βj , γj occur in Γ or τ then
Γ ; y : t1;αj , βj , γj � e : τ and Γ � v : t1[αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ] imply
Γ � e[x ⇐ v, αj ⇐ �j , βj ⇐ pj, γj ⇐ tj ] : τ .

Proof. Combine Lemmas 4 and 5. ��

Now we can prove Subject Reduction, which is the main lemma needed for
non-interference. It shows that the security type of an expression does not change
during reduction. Thus, if we have two bisimilar expressions of equal extended
types, they will continue to have equal extended types when we simulate the
reduction steps of one of the expressions in the other.

Lemma 7 (Subject Reduction). If e −→ e′ then Γ � e : τ implies Γ � e′ : τ .

Proof. By induction on the derivation of e −→ e′. We can assume that (E-SUB)
is never used immediately above another (E-SUB) because two or more successive
instances of (E-SUB) can always be replaced by one. We can also assume that
(E-SUB) is not the bottommost rule in the derivation tree of e −→ e′.

Case (bind). Γ � (bind x = v in e2) : τ . The bottommost rule must be (E-
BIND), whose premises give Γ � v : t1 and Γ ;x : t1 � e2 : τ . Lemma 4 now gives
Γ � e2[x ⇐ v] : τ .

Case (app). Γ � (fix f.λx : t1. e2) v : τ . By (E-APP), Γ � (fix f.λx : t1. e2) :
t1 → τ . By (E-SUB) and (E-LAM), Γ ; f : t1 → τ2;x : t1 � e2 : τ2 and Γ � v : t1,
where τ2 ≤ τ . Lemma 4 and (E-SUB) now give Γ � e2[f ⇐ (fix f.λx : t1. e2), x ⇐
v] : τ .

Case (unwrap-subt). Γ � ((wrap v : t1) unwrap x :< t2 � e1 else e2) : τ .
By (E-UNWRAP-SUBT) and (E-WRAP) (we can assume that (E-SUB) is not
used below (E-WRAP) because Dynamic is not a supertype of anything but
itself), Γ � v : t1. (E-SUB) and the premise of (unwrap-subt) give Γ � v : t2.
Combining this with another premise of (E-UNWRAP-SUBT) and Lemma 4,
gives Γ � e1[x⇐ v] : τ .

Case (unwrap-pat). Γ � ((wrap v : t1) unwrap x : t2 � e1 else e2) : τ . By (E-
UNWRAP-PAT), (E-SUB), and (E-WRAP), Γ � v : t1 and Γ ;x : t2; tyvars(t2) �
e1 : τ . The premise of (unwrap-pat) gives Γ � v : t2[αj ⇐ �j , βj ⇐ pj , γj ⇐ tj ].
Lemma 6 (we can use alpha-conversion, if necessary, to achieve that the variables
tyvars(t2) do not occur in Γ or τ , as required by the lemma) now gives Γ �
e1[x⇐ v, αj ⇐ �j, βj ⇐ pj , γj ⇐ tj ] : τ .

Cases (unwrap-subt-else) and (unwrap-pat-else). Immediate (an expression
reduces to a subexpression of the same type).

Case (context). Γ � E[e1] : τ . The premise of (context) and the induction
hypothesis give e1 −→ e′1, where Γ ′ � e1 : τ1, Γ

′ � e′1 : τ1, and e′ = E[e′1]. For
(E-BIND), (P-PAR), and (P-BRACKET), Γ ′ = Γ . For (P-NEW), Γ ′ = Γ ;x : t,
where E = νx : t. []. In each case we can replace e1 with e′1 (and the premise
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Γ ′ � e1 : τ1 with Γ ′ � e′1 : τ1) in the derivation tree of Γ � E[e1] : τ to get
Γ � E[e′1] : τ .

Cases (comm), (extr), (new), (repl), (split), (glue), (break), and (push) are
handled similarly to the proof of the corresponding lemma in [15]. ��

4 Non-interference

The non-interference results for our language are similar to those in [15] and we
omit the proofs here. The proofs use Lemmas 2, 3, and 7, which were proved
for our language in the earlier sections. The necessary definitions are almost the
same as in [15]:

Definition 5. Let α,β,. . . range over names and co-names (x,x̄,. . . ). If α is x
or x̄ then |α| is x. The predicate e ↓α (read: the expression e is observable at α)
is defined as follows:

(N + x(ỹ). e) ↓x (N + x̄ 〈ỹ〉 . e) ↓x̄
e ↓α E does not bind |α|

E[e] ↓α

The evaluation context here is

E ::= ([] | e′) | (e′ | []) | νx : t. [] | 〈[]〉i

i.e. it does not include bind expressions.
e ⇓α stands for (∃e′. e =⇒ e′ ↓α).

Definition 6. Let B be an arbitrary set of names. A binary relation R over
processes is a weak B-simulation if and only if

– e1 R e2 ∧ e1 =⇒ e′1 implies ∃e′2. e2 =⇒ e′2 ∧ e′1 R e′2 and
– |α| ∈ B, e1 R e2, and e1 ⇓α imply e2 ⇓α.

R is a weak B-bisimulation if and only if R and R−1 are weak B-simulations.

Definition 7. Given a type environment Γ , low(Γ ) denotes the largest set B ⊆
N (N is the set of all names) such that x ∈ B and Γ (x) =

〈
t̃
〉p
l
imply l = L.

Lemma 8. Let e1 RΓ e2 hold if and only if, for some process e and some
extended type τ , both Γ � e : τ and e1 ≤∗

0 · π−1
1 e π2 · ≥∗

0 e2 hold. Then, RΓ is
a weak low(Γ )-bisimulation.

Theorem 1. Assume that Γ0 � ei : ProcH holds for i ∈ {1, 2}. Then, for
any context C and for any environment Γ such that Γ � C[] holds under the
assumption Γ0 � [] : ProcH , C[e1] and C[e2] are weakly low(Γ )-bisimilar.

Thus, replacing one high subprocedure (subexpression of type ProcH) with an-
other in an expression changes neither the set of low channels that it can read
nor the set of low channels that it can write to.
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5 More Examples

Our language does not support global definitions, but in the following, we allow
them as syntactic sugar. Thus, if we have global definitions x1 = e1, . . . , xn = en
and a main expression e then we assume the full program to be

bind x1 = e1 in . . . bind xn = en in e

Here is some other syntactic sugar that can be used by the programmer:

λx. e ≡ fix f.λx. e where f is not free in e

Because our language does not have a unit type, we define a dummy value of
type Dynamic:

dummyDyn = wrap (λx : Dynamic. x) : Dynamic → Dynamic

Our language allows using dynamics with pattern matching, similarly to the
dynamics in Clean [19]. For example, we can define a function for dynamic
function applicaton. For ordinary functions this is easy but we can also define
such a function for functions that return procedures. Procedures cannot directly
return a value but we can simulate this by using a channel where the procedure
will write its result. We can create a fresh channel for each procedure call, so
that it would not interfere with other channels. This is done in

dynAppProc =

λdynF : Dynamic. λdynCX : Dynamic. λcont : Dynamic→ ProcL.

dynF unwrap f : γ1 → 〈γ2〉+α → Procα �
dynCX unwrap cX :< 〈γ1〉±α � νcRes : 〈γ2〉±α .

(cont (wrap cRes : 〈γ2〉±α ) | cX(x). (cX 〈x〉 .0| f x cRes))

else dummyDyn

else dummyDyn

The channel where the result will appear is given to the continuation cont be-
cause nothing can be returned from a procedure to the original caller. The con-
tinuation gets the channel immediately, not after f terminates. The value will
appear on the channel later. This allows the continuation to run in low context.

The channel cRes can be used (only in high context, if α = H) to wait for
f to return a value and to read the value, thus cRes is essentially a future [7].
But cRes can be given as an argument to another high procedure (let it be g).
Then g can start running only after a value has arrived at cRes but the future of
g is still returned immediately, even before the value has arrived at cRes. This
allows to sequence high procedures while remaining in low context. This is done
here:

dynAppProc (wrap f) arg (λcRes : Dynamic.

dynAppProc (wrap g) cRes (λfutG : Dynamic. clow 〈futG〉 . 0))
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(here f and g are functions of type Dynamic → 〈Dynamic〉+H → ProcH and clow

is a channel of type 〈Dynamic〉±L ; we omit the annotations in wrap construct, as
they can be inferred by the type checker). The value futG can appear at clow
before f and g have terminated.

Only when waiting for the termination of or reading the result of a high
procedure is desired, is it necessary to switch into high context.

clow(futG).

futG unwrap chigh : 〈Dynamic〉±H � chigh(resG). handle resG else 0

Here handle resG must have type ProcH and it cannot be executed before f
and g have terminated and g has returned the result resG.

This is why we do not distinguish high and low values (of types like DynamicH
and DynamicL) in our language but only high and low channels. The level of a
value that is not on a channel is the level of the context where it is handled. If
we need to use a high value in a low context, we can create a high channel and
use it as a future of the high value. This was done with cRes and futG above.

6 Related Work

Program analyses for secure information flow were first considered by Den-
ning [9], the type systems stem from the work of Volpano et al. [20]. The non-
interference property was first proposed in its modern form by Goguen and
Meseguer [10], while the testing equivalence that we use to express it stems
from [8,6].

A general type discipline for information flow security in π-calculus was pro-
posed by Honda et al. [12]. Our work, however, mostly follows Pottier [15] and
adopts the 〈π〉-calculus presented there for arguing about two processes simulta-
neously. Similar compositions and argument systems have also been considered
for secure information flow in imperative and object-oriented languages [5,18].

Our work also extends the existing type-based information flow analyses for
higher-order languages. The SLam calculus [11], DCC [1] and FlowCaml [16] are
some existing higher-order calculi allowing reasoning about information flow.

Recently, there has been interest in dynamic enforcement of information flow
policies [4,17]. These mechanisms can handle more lax control structures of pro-
grams, similarly to the dynamic types in this paper. Our enforcement mechanism
is fully static but it would be interesting to compare it to dynamic mechanisms.

7 Conclusions

We have presented a type system for information flow analysis for a π-calculus
extended with recursive λ-abstractions and dynamics. Such a language can be
used to model distributed systems where procedure code of different security
levels can be sent over channels and some of the channels must ensure se-
crecy. We saw that the added constructs in our language do not weaken the
non-interference guarantees compared to the ordinary π-calculus.
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Abstract. To preserve confidentiality, information-flow control (IFC)
restricts how untrusted code handles secret data. While promising, IFC
systems are not perfect; they can still leak sensitive information via
covert channels. In this work, we describe a novel exploit of lazy evalua-
tion to reveal secrets in IFC systems. Specifically, we show that lazy eval-
uation might transport information through the internal timing covert
channel, a channel present in systems with concurrency and shared re-
sources. We illustrate our claim with an attack for LIO , a concurrent IFC
system for Haskell. We propose a countermeasure based on restricting
the implicit sharing caused by lazy evaluation.

1 Introduction

Information-flow control (IFC) permits untrusted code to safely operate on secret
data. By tracking how data is disseminated inside programs, IFC can avoid
leaking secrets into public channels—a policy known as non-interference [4].
Despite being promising, IFC systems are not flawless; the presence of covert
channels allows attackers to still leak sensitive information.

Covert channels arise when programming language features are misused to
leak information [6]. The tolerance to such channels is determined by their band-
width and how easy it is to exploit them. For instance, the termination covert
channel, which exploits divergence of programs, has a different bandwidth in
systems with intermediate outputs than in batch processes [1].

Lazy evaluation is the default evaluation strategy of the purely functional pro-
gramming language Haskell. This evaluation strategy has two distinctive features
which can be used together to reveal secrets. Firstly, since it is a form of non-
strict evaluation, it delays the evaluation of function/constructor arguments and
let-bound identifiers until their denoted values are needed. Secondly, when the
evaluation of such expressions is required, their resulting value is stored (cached)
for subsequent uses of the same expression, a feature known as sharing or mem-
oisation. This is known as call-by-need semantics or simply lazy evaluation. In
Haskell, a thunk, also known as a delayed computation, is a parameterless clo-
sure created to prevent the evaluation of an expression until it is required at a
later time. The process of evaluating a thunk is known as forcing. While lazy
evaluation does not affect the denotation of expressions with respect to non-
strict semantics, it affects the timing behaviour of programs. For instance, if a
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function argument is used more than once in the body of a function, it is almost
always faster to use lazy evaluation as opposed to call-by-name, since it avoids
re-evaluating every occurrence of the argument.

From a security point of view, it is unclear what type of semantics (non-strict
versus strict) is desirable in order to deal with covert channels. In sequential
settings, Sabelfeld and Sands [10] suggest that a non-strict semantics might be
intrinsically safer than a strict one. This observation is based on the ability to ex-
ploit the termination covert channel. Although it could avoid termination leaks,
lazy evaluation can compromise security in other ways. For instance, Rafsson et
al. [9] describe how to exploit the Java (lazy) class initialisation process to reveal
secrets. Not surprinsingly, lazy evaluation might also reveal secrets through the
external timing covert channel. This channel involves externally measuring the
time used to complete operations that may depend on secret data.

More interestingly, and totally unexplored until this work, lazy evaluation
might transport information through the internal timing covert channel. This
covert channel arises by the mere presence of concurrency and shared resources.
Malicious code can exploit it by setting up threads to race for a public shared
resource and, depending on the secret, affecting their timing behaviour to de-
termine the winner. With lazy evaluation in place, thunks become shared re-
sources and forcing their evaluation corresponds to affecting the threads’ timing
behaviour—subsequent evaluations of previously forced thunks take practically
no time.

We present an attack for LIO [12], a concurrent IFC system for Haskell, that
leverages lazy evaluation to leak secrets. LIO presents countermeasures for inter-
nal timing leaks based on programming language level abstractions. Since LIO is
embedded in Haskell as a library, lazy evaluation, as a feature that primarily af-
fects pure values, is handled by the host language. Lazy evaluation is essentially
built into Haskell’s internals, hence there are no programming language-level
mechanisms for inspecting or creating thunks that could be used to implement a
countermeasure. Thunks for pure values are transparently injected into LIO com-
putations, so the library could not be capable of explicitly considering whether
they have been memoised at any given time.

This paper is organised as follows. Section 2 briefly recaps the basics of LIO .
Section 3 presents the attack. Section 4 describes a possible countermeasure.
Conclusions are drawn in Section 5.

2 LIO: A Concurrent IFC System for Haskell

In purely functional languages, computations with side-effects are encoded as
values of abstract data types called monads [8]. In Haskell, there are monads
for performing inputs and outputs (monad IO), handling errors (monad Error),
etc. The IFC system LIO is simply another monad in which security checks are
performed before side-effects are performed.

The LIO monad keeps track of a current label. This label is an upper bound
on the labels of all data in lexical scope. When a computation C, with current
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label LC , observes an object labelled LO, C’s label is raised to the least upper
bound or join of the two labels, written LC �LO. Importantly, the current label
governs where the current computation can write, what labels may be used when
creating new channels or threads, etc. For example, after reading an object O,
the computation should not be able to write to a channel K if LO is more
confidential than LK—this would potentially leak sensitive information (about
O) into a less sensitive channel.

Since the current label protects all the variables in scope, in practical programs
we need a way of manipulating differently-labelled data without monotonically
increasing the current label. For this purpose, LIO provides explicit references
to labelled, immutable data through a parametric data type called Labeled . A
locally accessible symbol can bind, for example, a value of type Labeled l Int
(for some label type l), which contains an Int protected by a label different from
the current one. Function unlabel :: Labeled l a → a1 brings the labelled value
into the current lexical scope and updates the current label accordingly.

LIO also includes IFC-aware versions of well-established synchronisation prim-
itives known as MVars [5]. A value of type LMVar is a mutable location that
is either empty or contains a value. Function putLMVar fills the LMVar with a
value if it is empty and blocks otherwise. Dually, readLMVar empties an LMVar
if it is full and blocks otherwise.

3 A Lazy Attack for LIO

Figure 1 shows the attack for LIO . The code essentially implements an internal
timing attack [11] which leverages lazy evaluation to affect the timing behaviour
of threads. We assume the classic two-point lattice (of type LH ) where secu-
rity levels L and H denote public and secret data, respectively, and the only
disallowed flow is the one from H to L. Function attack takes a public, shared
LMVar lmv , and a labelled boolean secret (encoded as an integer for simplicity).
The goal of attack is to return a public integer equal to secret , thus exposing an
LIO vulnerability. In isolation, all the threads are secure. When executed concur-
rently, however, secret gets leaked into lmv . For simplicity, we use threadDelay n,
which causes a thread to sleep for n micro seconds, to exploit the race to lmv—if
such an operation was not allowed, using a loop would work equally well.

The attack proceeds as follows. Threads A and B do not start running until
thread C finishes. This effect can be easily achieved by adjusting the parameter
delay C . The role of thread C is to force the evaluation of the list thunk when the
value of secret is not zero (s �≡ 0). To that end, function traverse goes over thunk ,
returning one of its elements. Condition n>0 always holds and it is only used to
force Haskell to fully evaluate the closure returned by traverse. Threads A and
B will eventually start racing. Thread A executes the command traverse thunk
before writing the constant 1 into lmv (putLMVar lmv 1). Thread B delays
writing 0 into lmv (putLMVar lmv 0) by some (carefully chosen) time delay B .
If s �≡ 0, thunk will have already been evaluated when thread A traverses its

1 Symbol :: introduces type declarations and → denotes function types.
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attack :: LMVar LH Int → Labeled LH Int → LIO LH Int
attack lmv secret

= do let thunk = [1 . . constant ] :: [Int ]

-- Thread C
forkLIO (do s ← unlabel secret

when (s �≡ 0) (do n ← traverse thunk
when (n > 0) (return ())))

threadDelay delay C

-- Thread A
forkLIO (do n ← traverse thunk

when (n > 0) (putLMVar lmv 1))

-- Thread B
forkLIO (do threadDelay delay B

putLMVar lmv 0)

w ← takeLMVar lmv
← takeLMVar lmv

return w

Fig. 1. Attack exploiting lazy evaluation

elements, thus taking less time than thread B’s delay. As a result, value 1 is first
written into lmv . Otherwise, thread B’s delay is shorter than the time taken by
thread A to force the evaluation of thunk . In this case, value 0 is first written
into lmv . Variable w observes the first written value in lmv , which will coincide
with the value of the secret. The precise values of parameters constant , delay C ,
and delay B are machine-specific and experimentally determined.

The following code shows the magnification of the attack for a list of secret
integers.

magnify :: [Labeled LH Int ]→ LIO LH [Int ]
magnify ss = do lmv ← newEmptyLMVar L

mapM (attack lmv) ss

Function magnify takes a list of secret values ss (of type [Labeled LH Int ]).
The magnification proceeds by creating the public LMVar (newEmptyLMVar L)
needed by the attack. Function mapM sequentially applies function attack lmv
(i.e. the attack) to every element in ss and collects the results in a public list
([Int ]).

Below, we present the final component required for the attack:

traverse :: [a ]→ LIO LH a
traverse xs = return (last xs)

This function simply returns the last element of the list given as argument.
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The code for the attack can be downloaded from http://www.cse.chalmers.

se/~buiras/LazyAttack.tar.gz.

4 Restricting Sharing

We propose a countermeasure based on restricting the sharing feature of lazy
evaluation. Specifically, we propose duplicating shared thunks when spawning
new threads. In that manner, sharing gets restricted to the lexical scope of
each thread. Thunks being forced in one thread will then not affect the timing
behaviour of the others. To illustrate this point, consider the shared thunk from
Figure 1. If this countermeasure was implemented, forcing the evaluation of
thunk by thread C would not affect the time taken by thread A to evaluate
traverse thunk , making the attack no longer possible. An important drawback of
this approach is that there would be a performance penalty incurred by disabling
sharing among threads. Benchmarking and evaluation would be necessary to
determine the full extent of the overhead inherent in the technique. Presumably,
programmers could restructure their programs to minimise the effect of this
penalty.

As an optimisation, it is possible to only duplicate thunks denoting pure
expressions. Thunks denoting side-effecting expressions can be shared across
threads without jeopardising security. The reason for that relies on LIO ’s ability
to monitor side-effects. If a thread that depends on the secret forces the eval-
uation of side-effecting computations, the resulting side-effects are required to
agree with the IFC policy. For instance, threads with secrets in lexical scope can
only force thunks that perform no public side-effects; otherwise LIO will abort
the execution in order to preserve confidentiality.

To implement our approach, we propose using deepDup, an operation in-
troduced by Joachim Breitner [2] to prevent sharing in Haskell. Essentially,
deepDup takes a variable as its argument and creates a private copy of the whole
heap reachable from it, effectively duplicating the argument thunk and disabling
sharing between it and the original thunk. In his paper, Breitner shows how to
extend Launchbury’s natural semantics for lazy evaluation [7] with deepDup.
The natural semantics is given by a relation Γ : t ⇓ Δ : v, which represents the
fact that from the heap Γ we can reduce term t to the value v, producing a new
heap Δ. It is the relation between Γ and Δ which captures heap modifications
caused by memoisation. In this setting, the rule for deepDup is

Γ, x !→ e, x′ !→ ê[y′1/y1. . . . , y
′
n/yn], (y

′
i !→ deepDup yi)i∈1...n : x′ ⇓ Δ : z

ufv(e) = {y1, . . . , yn} x′, y′1, . . . , y
′
n fresh

Γ, x !→ e : deepDup x ⇓ Δ : z

where ufv(e) is the set of unguarded2 free variables of e and ê is e with all bound
variables renamed to fresh variables in order to avoid variable capture when

2 Function ufv(e) is defined as the set of free variables that are not already marked for
duplication, i.e. ufv(deepDup x) = ∅, and in the rest of the cases it is inductively
defined as usual.

http://www.cse.chalmers.se/~buiras/LazyAttack.tar.gz
http://www.cse.chalmers.se/~buiras/LazyAttack.tar.gz
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applying substitutions. Note that deepDup x duplicates all the thunks reach-
able from x in a lazy manner: the free variables y1, . . . , yn are replaced with calls
to deepDup for each variable, so these duplications will not be performed until
those variables are actually evaluated. Laziness is necessary to properly handle
cyclic data structures, since the duplication process would loop indefinitely if
it were to eagerly copy all thunks for such structures. As explained below, this
design decision has important consequences for security.

In practice, we would use this primitive every time we fork a new thread: we
take the body of the new thread m1 and the body of the parent thread m2, and
replace them with deepDup m1 and deepDup m2. Due to the lazy nature of
the duplication performed by deepDup, it is necessary to duplicate both thunks,
i.e., m1 and m2. Consider two threads A and B with current labels L and H,
respectively, and suppose that they both have a pointer to a certain thunk x
in the same scope. If we only duplicated the thunk in A (the public thread),
thread B could evaluate parts of x depending on the secret, before they have
been duplicated in thread A—recall that deepDup is lazy. This would cause the
evaluation of the same parts of the duplicated version of x in A to go faster, thus
conveying some information about the secret to thread A. In addition, note that
it is not possible to determine in advance—at the time forkLIO is called—which
thread will raise its current label to H. Therefore, we must take care to duplicate
all further references to shared thunks every time a fork occurs.

As a possible optimisation, we advise designing a data dependency analy-
sis capable of over-approximating which expressions are shared among threads.
Once the list of expressions (and their scope) has been calculated, we would
proceed to instrument the code, introducing instructions that duplicate only the
truly shared thunks at runtime, as opposed to duplicating every pure thunk in
the body of each thread. We believe that HERMIT [3] is an appropriate tool to
deploy such instrumentation as a code-to-code transformation.

5 Conclusions

We describe and implement a new way of leveraging lazy evaluation to leak
secrets in LIO , a concurrent IFC system in Haskell. Beyond LIO , the attack
points out a subtlety of IFC for programming languages with lazy semantics
and concurrency. We propose a countermeasure based on duplicating thunks at
the time of forking in order to restrict sharing among threads. For that, we pro-
pose to use the experimental Haskell package ghc-dup. This package provides
operations that copy thunks in a lazy manner. Although convenient for preserv-
ing program semantics, such design decision has implications for security. To deal
with that, our solution requires duplicating thunks for both the newly spawned
thread and its parent. As future work, we will implement the proposed counter-
measure, prove soundness (non-interference), evaluate its applicability through
different case studies, and introduce some optimisations to reduce the amount
of duplicated thunks.
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Abstract. In Estonia, the X-Road infrastructure for unified governmen-
tal database access has been in use for more than 10 years. The number
of queries mediated over the X-Road has exceeded 240 million per year.
Even though all the queries and replies are signed by using the X-Road’s
own PKI facilities, the resulting signatures are not fully qualified in the
sense of the Estonian Digital Signatures Act that requires the use of
hardware-protected keys. In order to replace software-protected keys in
the X-Road infrastructure with a moderate-cost hardware solution, there
are several technical issues to be solved, most notably performance re-
quirements, since the operations needed to achieve qualified signatures
(obtaining OCSP responses and time stamps) require time. The topic of
this paper is to propose organisational and technical solutions to over-
come these challenges. A novel batch signature and time stamp format is
proposed allowing to perform many PKI operations at the price of one,
helping to meet the performance requirements.

1 Introduction

Recent developments in ICT have made digital communications an integral part
of our everyday life. More and more private and governmental services are pro-
vided and consumed over the Internet. As more and more important decisions
are made based on information obtained over the Internet, it becomes vital to
protect such information with electronic signatures.

In Estonia, there are two foundational electronic frameworks for data protec-
tion and for the use of electronic signatures that have been running for more
than 10 years now and that act as enablers for a large number of other services.
The first of them, the national ID-card infrastructure, was launched in 2002. At
the time of writing (April 2013), there are 1,193,050 active ID-cards1. Currently
there are about 80 different public and private service providers who make use

� This research has been supported by European Union through European Regional
Development Fund under ELIKO Competence Center (EU30017) and EXCS Center
of Excellence in Computer Science.

1 The whole population population of Estonia is roughly 1.3 million according to the
census of 2011. The number of active ID-cards can be seen at http://www.id.ee/,
last accessed April 25th, 2013.
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of ID-card authentication and signature mechanisms, including all the commer-
cial banks and telecom companies, Estonian Tax and Customs Board, Center of
Registers and Information Systems, etc.2

The second important Estonian electronic data protection facility is called
the X-Road, launched already in 2001. It acts as a unified access layer to most
of the governmental registers, allowing secure and efficient data access by both
the relevant authorities and citizens. Currently, more than 100 organizations are
providing services over the X-Road and more than 600 registers are accessible
via the infrastructure.

One of the main issues with the current X-Road implementation is that even
though the SOAP messages internally used by the X-Road are signed, these
signatures do not comply with the Estonian Digital Signatures Act. The Esto-
nian laws only regulate the use of the so-called advanced electronic signatures
based on qualified certificates and created by secure-signature-creation devices.
In EU laws such signatures are also called secure digital signatures, strong digital
signatures, or qualified digital signatures. Effectively, the requirements for that
kind of signatures require the use of hardware-protected keys and there are good
reasons to assume that today the law would be interpreted in a way that the cur-
rent X-Road system would not comply with the requirements of the Estonian
Digital Signatures Act. The X-Road uses its own Certification Authority and
time-stamping service, but relies on software-based signature key management
and a non-standard mechanism for distributing certificate validity information.

This paper describes the efforts made to overcome these problems. We recom-
mend the use of moderate-cost hardware devices. The main issue to tackle is the
performance of the infrastructure. For example, the existing ID-card infrastruc-
ture, even though providing all the required mechanisms (hardware tokens for
key management, Online Certificate Status Protocol (OCSP) responder for cer-
tificate validation, etc.), is not built to handle the volumes currently required by
the X-Road. The number of digital signatures given by all the ID-cards over 11
years is roughly 112 million3, but the number of X-Road requests made per year
exceeded 240 million in 2011 [Kal12], and both the requests and their responses
are signed.

This paper presents both organizational and technical measures to meet these
performance goals. The main technical contribution is the batch data format that
can be used to give many signatures and time stamps in one operation.

The paper is organised as follows. First, Section 2 provides the necessary
background about the X-Road, and covers the requirements for the new tech-
nical solution. It also provides a discussion of organizational measures needed.
Section 3 presents various potential technical solutions and selects the one most
suitable for the X-Road. In Section 4 we discuss its performance and implemen-
tation details. Finally, Section 5 draws some conclusions and sets directions for
further work.

2 http://id.ee/index.php?id=31007, last accessed April 25th, 2013.
3 http://www.id.ee/, last accessed April 25th, 2013.
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2 X-Road

By the early 2000s the level of computerization in the Estonian state databases
had reached both the level of sufficient technical maturity and a certain critical
volume so that creating a unified secure access mechanism was the only practical
way forward. To address that need, the development activities on the modern-
ization of national databases started in the beginning of 2001 [KV02, Kal02].
The first version of the developed X-Road infrastructure was launched on De-
cember 17th 2001. Today, already the fifth generation of the X-Road is in op-
eration [Kal12] and is used by companies, government departments and also
private citizens. Since the first version of the X-Road, several requirements were
governing its development [ABFW03, Kal12]:

– Integrity and authenticity. Since information received over the X-Road will
potentially be used to take legally binding actions, information integrity and
authenticity are the primary security requirements.

– Confidentiality and authentication. Most (though not all) the data trans-
ferred over the X-Road is meant to be processed only by certain authorities.
Thus, strict access control mechanisms had to be built into the system.

– High availability and scalability. Operating as an overlay network on the
Internet, the X-Road is subject to availability threats. Hence it had to be
designed to work even if some central services were unavailable. As a result,
the X-Road is very distributed with only a very limited number of central
services (like certification, directory for distributing authentication infor-
mation, and system event logging). This architecture has also allowed the
infrastructure to scale extremely well. As noted above, in 2011, the number
of queries made over the X-Road per year reached 240 million.

To ensure integrity and access control, the X-Road is provided with its own public
key infrastructure (PKI) solution, where all the service providers have public key
certificates, all the queries and replies are signed and time-stamped [WA08].

By the time the first version of the X-Road was launched, the Estonian na-
tional PKI was still in its infancy (the first ID-cards were issued only in 2002,
i.e. a year after the X-Road was deployed). Hence, the X-Road PKI and the
national PKI were developed independently, and have remained so for 10 years.
Therefore, the legal status of the signatures on the X-Road queries remains un-
clear in the light of the Estonian Digital Signatures Act. Although no X-Road
signatures have ever been disputed in court, it does not make sense to use an
underlying technology that leaves room for such disputes.

The first issue to resolve when trying to turn X-Road signatures into legally
valid ones is the matter of key management, because Estonian law requires the
use of hardware-protected keys. Currently, the service providers use software-
based signature devices run in the X-Road security servers – components that
encapsulate security-related functionality of organisations connected to the X-
Road infrastructure. It is responsible for signing the outgoing messages, verify-
ing signatures on incoming messages, maintaining a secure transaction log, and
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enforcing access control. The security servers act as gateways between organisa-
tions and the X-Road infrastructure.

Even though signing by a security server does not directly contradict the cur-
rent wording of the Digital Signatures Act, there are several indications that in
the near future, it will not be possible to comply with the legal requirements
without keeping the signature keys in a physically protected hardware environ-
ment. For example, Annex III of the Directive 1999/93/EC of the European
Parliament and of the Council on a Community framework for electronic signa-
tures states the requirements put onto secure signature-creation devices. Namely,
the directive states that

Secure signature-creation devices must, by appropriate technical and pro-
cedural means, ensure at the least that:
(a) the signature-creation-data used for signature generation can practi-

cally occur only once, and that their secrecy is reasonably assured;
(b) the signature-creation-data used for signature generation cannot, with

reasonable assurance, be derived and the signature is protected against
forgery using currently available technology;

(c) the signature-creation-data used for signature generation can be reli-
ably protected by the legitimate signatory against the use of others.

Even though to the best of the authors’ knowledge no legal act explicitly states
that these requirements can not be met without hardware-protected signature
keys, we argue that given the current development and sophistication of malware
attacks, software-only protection mechanisms are no more adequate to meet the
above-cited requirements. Hence, a design decision was taken to provide the
next generation of the X-Road with hardware-enabled signature creation devices.
There are two kinds of cryptographic hardware devices available on the market:

– Hardware Security Modules (HSM) provide high throughput for crypto-
graphic operations like signing, but are also rather expensive. Some of the
organizations who have joined the X-Road infrastructure already make use
of HSMs, but it is clear that HSMs are not cost-efficient for most of the
smaller service providers.

– Chip card or USB token based devices are considerably cheaper, but their
performance is considerably slower as well. A typical device of this kind is
capable of giving only a few signatures per second, which is insufficient given
the current volumes of the X-Road traffic (please refer to Section 4 for some
more detailed performance estimates).

Hence one of the key problems to address is enabling low-end cryptographic
hardware to improve the throughput by several orders of magnitude. This can be
done by batching several signature requests into one data structure and taking
just one signature per batch. The details of this solution will be presented in
Section 3.

There are also other aspects to consider when making the X-Road signatures
compatible to the Estonian Digital Signatures Act and the Estonian national
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PKI. First, all digital signatures require a time-stamp. Given that the number of
X-Road queries per day can reach up to one million [Kal12], the time-stamping
service of the Estonian national PKI would not be able to handle this, because
it is based on one central server. Similarly, the OCSP-based certificate validity
confirmation service would not be able to provide sufficient throughput. In prin-
ciple, these problems might be addressed by adding secondary time-stamping
and OCSP responder servers. However, since the service capacity needed by the
X-Road alone exceeds the one provided by the national ID-card infrastructure
by several orders of magnitude, this solution would at some point become im-
practical. There are also other issues with the current X-Road we aim to solve.

The second issue is that the time-stamping and OCSP services may be subject
to availability problems, and their temporary unavailability should not block the
core operations of the X-Road infrastructure. We will discuss both of these issues
in more detail in Section 2.1.

Finally, the signature format currently used by X-Road differs from the one
used in the national PKI. This makes X-Road signatures impossible to verify
with the software available for the standard ID-card operations. As a part of the
projects for updating both the X-Road infrastructure and the Estonian national
PKI, it was decided to improve their interoperability by moving to a unified
signature format.

This process was first started by the developers of the national PKI. After
studying different standards suggested by European Commission [EC211] it was
decided to base the next Estonian digital signature standard on the XAdES
format and ASiC container [XAd10, ASi12].

Given the current state of standards, these choices are indeed reasonable.
However, they do not provide a solution for the high availability requirements
listed above. Presenting such a solution will be the main contribution of this
paper.

2.1 X-Road Message Signature Validation Workflow

X-Road communication operates by exchanging queries and responses, both of
which are signed messages. Signatures are used to provide both authenticity
and integrity, and hence their validity is essential in order to meet the security
requirements put onto the whole infrastructure.

Two main mechanisms are used in conjunction to ensure the validity of the
public key certificate at the moment of signing. First, Online Certificate Status
Protocol (OCSP) is used to make a statement concerning the validity interval
of the certificate, and second, a time-stamp is used to prove that the signature
existed at some moment in time. If this moment falls into the validity interval
granted by the OCSP statement, the certificate and the corresponding signature
are considered to be valid.

In its current setting, the Estonian national PKI solution makes one OCSP
query per signature. By using the hash of the signature as OCSP nonce, it is
possible to obtain behaviour similar to time-stamping (in [ABRW01] it is called
notarization). However, in its vanilla form it has several performance issues.
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1. The OCSP responder is a single point of failure, because there is only a
single responder. Even short-term unavailability of the service would block
the operations of the entire X-Road if every message would need a dedicated
OCSP response.

2. The OCSP server will be overloaded. If a digitally signed OCSP confirmation
would be required for all the X-Road messages, the OCSP server would not
be able to handle this volume because signature creation is computationally
costly.

3. The requirement to make one OCSP request per X-Road message also in-
troduces latency. When the latencies start accumulating in case of complex
X-Road queries, this poses a serious availability threat.

All these issues can be efficiently solved by caching the OCSP responses at the
message sender’s side. This will guarantee the availability of signing functionality
even in case of OCSP responder’s temporary malfunctioning. It will still be
possible to give valid signatures as long as the cached OCSP response remains
fresh. The length of the freshness interval depends on the policy, but it could
be, say, a couple of hours. When a temporarily unavailable OCSP responder
becomes functional again during this period, service continuity is not harmed.

Regarding the possible overload of the OCSP server, caching the responses
allows to use one response for several signatures, hence the number of the re-
sponses does not depend on the number of signatures any more, but rather on
the number of currently valid certificates, which is significantly lower.

Thirdly, a cached copy of OCSP response allows for immediate message sign-
ing, removing the potential threat of latency.

The problems with the time-stamping service are similar. If the signer would
need to wait for the time-stamping server’s reply, this would again create a
single point of failure together with the latency issues and the potential overload
if every message would be required to have a separate time stamp.

The solution to this problem starts from the observation that it is actually
the message receiver who is interested in the validity of the signature, since he
is the one who may need to prove that the actions he took were a consequence
of a valid message.4 Hence we let the message receiver take care of obtaining the
time stamp. The above-mentioned three problems still stand, but are easier to
solve at the message receiver’s end.

Since the OCSP response has a validity interval, it is not necessary to imme-
diately time-stamp the signed message, as we can do it at any moment before
the validity of the OCSP response expires. In fact, the decision whether to re-
quest the time stamp instantly or to queue the request for later, is a policy issue.
As such, it will constitute a trade-off between service availability and the risk
of potential inability to prove the signature validity at a later time in case the
time-stamping server will become unavailable.

4 Note that time-stamping also has other applications where the creator of the message
might be interested in proving the time of the creation. However, in the current paper
we are only concerned with the digital signature use case.
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Request queueing also allows us to solve the problem of time-stamping server’s
overload. This way it will be possible to aggregate the time-stamping requests
into one batch data structure and letting the server time-stamp this instead of
time-stamping all the requests separately.

It turns out that for this purpose, the same data structure can be used as for
batching several signature requests. We will now discuss this solution in detail
in Section 3.

3 Batch Signatures and Timestamps

Signature schemes such as RSA are time-consuming compared to other crypto-
graphic operations like symmetric encryption or hashing. For servers that have
to generate hundreds or thousands of signatures per second it would be desir-
able to have methods that enable more efficient signing than just signing every
message separately.

By a batch signature we mean an algorithm S that, having as input a list
M1, . . . ,M� of messages, creates signatures s1, . . . , s�, so that there is an efficient
verification algorithm V , so that V (si,Mi) = 1 whenever si is properly created
by using S. Batch signature schemes make sense if S uses less computational
resources than signing all messages separately with ordinary signature schemes.
There are several methods known for batch signatures.

3.1 Fiat’s Batch RSA

The first batch signature scheme—batch RSA—was proposed by Amos Fiat in
1989 [Fia89, Fia97]. It enables to effectively perform several modular exponen-
tiations at the cost of a single modular exponentiation, which is very useful if
many RSA signatures (or pure-RSA encryptions instead of hybrid encryptions)
must be performed at some central site. A batch RSA signature looks like an
ordinary RSA signature except that the choice of public exponents is different—
instead of one fixed public exponent, a batch signature scheme uses many public
exponents e1, . . . , e� that are relatively prime to ϕ(N) and to each other. For
signing a batch (M1, . . . ,M�) of messages, the batch RSA computes

M
1
e1
1 mod N, M

1
e2
2 mod N, . . . ,M

1
e�

� mod N ,

at a time using just one full-size modular exponentiation, where N is the RSA
modulus. There are several restrictions when using such a scheme. For example
to use such a scheme for encryption, one must take care that the same message
M is not encrypted with two different relatively prime public exponents ei and
ej because M can easily be computed from the two cryptograms M ei mod N
and M ej mod N .

One more obstacle of using such a scheme in practice is that the public-key
certificates we have to use either have to contain many public exponents instead
of one, which is not supported by standards, or there have to be many different
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public-key certificates issued with different public exponents that all correspond
to the same secret key, which again is not foreseen by standard PKI solutions.
More universal solutions for batch signatures are thereby necessary.

3.2 Simple Batching with Hash Lists

There is a very simple method for converting conventional signature schemes to
batch signature scheme. This method is not as size-efficient as Fiat’s batch RSA,
but is simple and universal. The so-called hash list scheme works as follows. In
order to create a batch signature for a batch M1, . . . ,M�, the signer

1. Hashes all the messages: mi = h(Mi) for all i = 1 . . . �.
2. Creates the hash list L = (m1,m2, . . . ,m�) and computes the hash value

m = h(L) of the list.
3. Signs the hash value m by using an ordinary signature scheme: s = σ(m).
4. The signature si for any Mi is a pair si = (s, L) that consists of the ordinary

signature and the hash list L.

In order to verify (s, L) as the signature of Mi, the verifier:

1. Computes mi = h(Mi);
2. Checks if mi ∈ L;
3. Computes m = h(L); and
4. Verifies the ordinary signature s = σ(m) on m.

This scheme is very easy to implement and is feasible if the batch size is relatively
small. The size of the signature is �· | h | + | s |, where | s | is the size of the
conventional signature and |h | is the number of output bits of h.

A batch signature scheme based on hash lists was recently implemented in
Azerbaijan in a system very similar to X-Road [Kal12]. However, due to its
performance limitations, a more sophisticated solution was required for Estonia,
and we will present this solution in the next Section.

3.3 Signatures with Batch Residue

In 1999, Pavlovski and Boyd [PB99] proposed a general technique for convert-
ing any public-key signature scheme efficiently to a batch signature scheme by
using Merkle hash trees [Mer80]. Their batch signatures s1, . . . , s� for a batch
M1, . . . ,M� consist of an ordinary signature s that depends on all Mi, and a
batch residue ri which varies with every message, i.e. si = (s, ri). Signature ver-
ification consists of recalculating the input to the ordinary signature s using the
message Mi and batch residue ri, and then verifying the ordinary signature s.

The calculation of the batch residue and its verification only use hash compu-
tations. Therefore, creating a batch signature is almost as efficient as generation
of a single ordinary signature. Batch signatures are somewhat longer than ordi-
nary signatures because they contain batch residues of size |h | · log �, where |h |
is the number of output bits of the hash function h.
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m

m12

m1 m2

m34

m3 m4

Fig. 1. A Merkle hash tree for m1, . . . ,m4

For example, in case of � = 4, the batch signature of [PB99] for a batch
M1,M2,M3,M4 is created (by using a hash function h and an ordinary signature
scheme σ) via the following steps:

1. All the messages are hashed: mi = h(Mi) for all i = 1 . . . 4.
2. The Merkle hash tree (Fig. 1) is computed: m12 = h(m1,m2), m34 =

h(m3,m4), m = h(m12,m34).
3. The root hash value m is signed by using the ordinary signature scheme:

s = σ(m).
4. The batch residues are composed as follows: r1 = {m2,m34}, r2 = {m1,m34},

r3 = {m4,m12}, r4 = {m3,m12}.

In order to verify s3 = (s, r3) = (s, {m4,m12}) as the signature of M3, the
verifier:

1. Computes m3 = h(M3);
2. Computes m = h(m12, h(m3,m4)); and
3. Verifies the ordinary signature s = σ(m) on m.

All specific Fiat type batch signatures schemes have some restrictions, in terms
of batch size limitations, being for verification only, having no support for hetero-
geneous signature generation for different recipients, etc. The scheme of [PB99]
has obvious advantages over the Fiat-type schemes, including an improved sig-
nature size, the ability to batch-sign for independent recipients, and unlimited
batch size. Hence, we propose using it to meet the performance requirements set
by the X-Road.

Next, Section 4 discusses the gains of this approach. At the end of the paper
the reader will also find Appendix A presenting the data structure for batch
signatures and time stamps in XML XSD format, and Appendix B with the
corresponding example XML data structures.

4 Discussion

Concluding from Section 2, we had two major improvement targets for the X-
Road. The first target was achieving a clear legal status of the X-Road message
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signatures as qualified ones in terms of the Estonian Digital Signatures Act. This
is achieved by satisfying the main requirement of the Estonian Digital Signatures
Act and enabling hardware-based signature key management. Section 2.1 also
discussed the organizational mechanisms needed to support standard signature
validation mechanisms (OCSP responses and time stamps). Hence we can con-
clude that the first target has been met (at least as far as the technical aspects
are concerned).

The second target was dealing with the performance issues caused by the
heavy and increasing volume of X-Road traffic. As noted in Section 2, affordable
chip card or USB token based solutions do not provide sufficient throughput. For
example, SafeNet’s Smart Card 400 chip card is able to produce one RSA1024
signature in 0.45 and one RSA2048 signature in 1.23 seconds5. At peak loads,
this is performance is insufficient6.

By using the Merkle tree, we will be able to aggregate a large number of
messages into one batch. It is clear that in order to produce a Merkle tree on �
leaves, � − 1 hash evaluations need to be computed. We will use the ECRYPT
II project benchmarks on SHA-3 candidates to evaluate the time needed for
hash computations7. According to this source, Keccak-256 (a member of the
contest-winning SHA-3 family) uses 101.3 cycles per byte for a 64-byte message
on a 2400MHz AMD Athlon processor. This corresponds exactly to our scenario
where the Merkle tree is built stepwise by hashing two values into one digest.
By selecting 64-byte input and 256-bit output, we obtain exactly the required
2-to-1 compression rate at a high security level. In one second, this setup allows
us to perform

2400 · 106
101.3 · 64 ≈ 370000

hash operations on this relatively modest hardware.
To estimate the actual throughput of the signature creation device, we also

need to take the time required to compute the digestsmi from the documents Mi

into account. As the messages Mi may be of different size, we have to measure
their hashing time in terms of elementary 64-byte hashing operations. For that,
we imagine that the messages Mi consist of ni blocks of 32-byte in length and
every elementary hashing operations decreases the number of such blocks by one,
until one single hash value remains which is the output of the hash function.
Exactly ni − 1 such operations are needed for that. Note that this is not the
way the hash is actually computed, but gives an upper bound for the hash

5 http://www.safenet-inc.com/products/data-protection/

two-factor-authentication/smart-card/, last accessed April 29th, 2013.
6 According to the statistics obtained from the X-road manager Heiko Vainsalu, the
current documented peak occurred on April 5th, 2013, when the Digital Prescription
Center had to process 4194 messages during a 5-minute period (11:45-11:50). This
amounts to roughly 14 messages per second on average. However, X-Road load is
expected to grow continuously, and this record is likely to be beaten in the near
future.

7 http://bench.cr.yp.to/results-sha3.html, last accessed on April 29th, 2013.
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computation time—hashing a long message is more efficient in practice than
hashing a number of short messages.

Let � be the batch size and let the smart-card used for batch signatures
be capable of creating one signature per second. If the messages M1, . . . ,M�

have lengths 32 · n1, . . . , 32 · n� bytes, respectively, then hashing them takes
(n1− 1)+ . . .+(n�− 1) = n1+ . . .+n�− � hash operations (with 64-byte input).
In addition, the Merkle tree requires �−1 such hash operations. Hence, the total
number of hash computations is n1 + . . . + n� − 1. If we create one batch per
second, then

n1 + . . .+ n� − 1 ≈ 370000 , (1)

whereas the total throughput of the batch signing device is 32(n1 + . . . + n�)
bytes per second, i.e. n1 + . . .+ n� blocks (of 32-bytes) per second. Hence, from
(1) the througput f of the signing device is

f = 32(n1 + . . .+ n�) ≈ 32 · 370000 = 11.84MB/s ,

which is sufficient considering that the communication lines between the X-Road
security servers would not allow much more traffic anyway.

5 Conclusions and Further Work

This paper discussed some of the problems encountered during the first 11 years
of deployment of the X-Road infrastructure together with possible solutions. The
two central issues we covered were the legal status of the X-Road messages and
rapidly growing performance requirements.

In order to make the signatures on the X-Road messages compliant with the
requirements of the Estonian Digital Signatures Act, two main aspects need to be
improved. First, signature key must be managed in a hardware-protected envi-
ronment (chipcard or HSM), and second, standard signature validation methods
(OCSP and time stamps) must be used. These improvements have their inherent
technical limitations, as the currently available and affordable solutions are not
built to handle the current X-Road communication volumes.

In order to meet these requirements, this paper proposed a set of solutions.
First, to reduce the workload of OCSP and time-stamping servers, OCSP pre-
caching and time-stamp batching were discussed. Second, to allow low-end hard-
ware (chipcards) to produce more signatures, signature batching was proposed.

It turns out that time stamp and signature batches can be built on top of
the same Merkle tree structure. We presented a suitable structure as and XML
schema and evaluated the performance gains it provides. We concluded that us-
ing even a moderate hardware, we can achieve signature device throughput up
to 11.84 MB/s. Clearly, this number can be increased even further by deploying
more advanced hardware. On the other hand it is also clear that for a full imple-
mentation, other operations besides hashing also require time. Hence, the actual
performance benchmarking must still be performed after the implementation of
the proposed scheme.
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Implementation of this scheme is already under way at the time of writing.
Real benchmarking with implementations will remain part of the future work.

Another interesting future challenge will be the deployment of this solution in
an environment other than Estonia, where the legal framework, existing PKI, etc.
might differ considerably. A system based on the Estonian X-Road experience
was recently launched in Azerbaijan [Kal12], but other similar deployments will
depend more on political, rather than the technical issues.
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A XML XSD for Batch Signatures and Timestamps

In this Section, we present the XML XSD that supports presenting the Merkle
hash tree structure for batch signatures and time stamps. The data structure
does not actually contain the whole tree (it may be too large to handle), but just
the minimal part of it to be able to prove that the given leaf item participated
in forming the root value.

For the example presented in Figure 1, in order to prove that the root value
m depends on the leaf m3, we need to add the the batch residue values m4 and
m12, as explained in Section 3. The resulting data structure (m3,m4,m12) is
called a hash chain, and this is essentially what we will formally describe next.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.org/hashchain"

xmlns:tns="http://www.example.org/hashchain"

elementFormDefault="qualified

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<import schemaLocation="xmldsig-core-schema.xsd"

namespace="http://www.w3.org/2000/09/xmldsig#"></import>

The schema defines a new namespace http://www.example.org/hashchain
used to describe the hash tree structure. As a base schema, XMLDsig is used,
as indicated by the ds namespace.

<complexType name="HashChainType">

<sequence>

<element name="DefaultTransforms"

type="ds:TransformsType" minOccurs="0">

</element>

<element name="DefaultDigestMethod"

type="ds:DigestMethodType" minOccurs="0">

</element>

<element name="HashStep" type="tns:HashStepType"

minOccurs="0" maxOccurs="unbounded">

</element>

</sequence>

</complexType>

The main data structure for representing hash computations is hash chain (of
type HashChainType), consisting of a series of hash steps (of type HashStepType).
Before the actual hash function application, some standard canonization
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transformations (of type TransformsType) may be used. It is also possible to
specify the default hash algorithm (of type DigestMethodType) to the whole
tree.

<complexType name="HashStepType">

<sequence>

<choice maxOccurs="unbounded" minOccurs="0">

<element name="HashValue" type="tns:HashValueType"/>

<element name="RefValue" type="tns:RefValueType"/>

</choice>

</sequence>

<attribute name="id" type="ID" use="optional"/>

</complexType>

One hash step (of type HashStepType) can be used to hash together a series
of values (represented either by elements HashValue or RefValue). The values
have the base type AbstractValueType that defines the common elements and
attributes.

<complexType name="AbstractValueType">

<sequence>

<element name="Transforms"

type="ds:TransformsType" minOccurs="0"></element>

<element name="DigestMethod"

type="ds:DigestMethodType" minOccurs="0"></element>

</sequence>

</complexType>

If necessary, it is possible to define non-default transformations and hash
algorithms for some particular hash steps

<complexType name="RefValueType">

<complexContent>

<extension base="tns:AbstractValueType">

<attribute name="URI" type="anyURI"></attribute>

</extension>

</complexContent>

</complexType>
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One of the possible value types to be used as the input for a hash step is
RefValueType. Its value is an URI referring to the leaf data item of the Merkle
tree (m3 in the example above), or to another branch of the tree.

<complexType name="HashValueType">

<complexContent>

<extension base="tns:AbstractValueType">

<sequence>

<element name="DigestValue"

type="ds:DigestValueType">

</element>

</sequence>

</extension>

</complexContent>

</complexType>

The other possible value type to be used as the input for a hash step is
HashValueType. Its values may be the other hash values used in the hash chain
computation (m12 in the example above) or other leaf data items in the Merkle
tree (m4 in the example above).

<element name="HashChain" type="tns:HashChainType"></element>

<element name="HashChainResult" type="ds:ReferenceType"></element>

</schema>

Finally, elements of the defined types are declared. The HashChainResult ele-
ment contains the root hash value (m in the example above) and the HashChain
element contains the hash chain itself ((m3,m4,m12) in the example above).

B Examples of the Data Structures

First we will give an example hash chain for the Merkle tree in Figure 1. The
hash chain contains two hash steps. The first step, m, represents the computation
m = h(m12,m34). Its first hash value is m12 = h(m1,m2), representing the left
subtree. The second hash value in turn refers to the step m34, i.e. the right
subtree. This step represents the computation m34 = h(m3,m4). The first value
in this step is a reference to the concrete message M3 (the file m3datafile.dat),
whereas the second value is the digest m4 = h(M4).
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<HashChain xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns="http://www.example.org/hashchain">

<DefaultTransforms>

<ds:Transform

Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>

</DefaultTransforms>

<DefaultDigestMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

<HashStep id="m">

<HashValue> <!-- Digest m12=h(m1, m2) -->

<DigestValue>8dLS+STphqy...</DigestValue>

</HashValue>

<RefValue URI="#m34"/> <!-- Reference to digest m34 -->

</HashStep>

<HashStep id="m34">

<!-- Reference to data file containing M3 -->

<RefValue URI="/m3datafile.dat"/>

<HashValue> <!-- Digest m4=h(M4) -->

<DigestValue>4kLtO//M3yc...</DigestValue>

</HashValue>

</HashStep>

</HashChain>

The second example shows the file representing the result of the Merkle tree
computation. It contains the result of the hash step m and also a reference to the
corresponding XML element. This file can be signed and verified by standard
digital signature software. Additional software is needed to verify that the signed
Merkle tree top refers to correct hash chain that proves validity of the message
in the file m3datafile.dat.

<?xml version="1.0" encoding="UTF-8"?>

<!-- The URI attribute refers to step m in the hash chain -->

<hc:HashChainResult xmlns:hc="http://www.example.org/hashchain"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

URI="/hashchain3.xml#m">

<ds:Transforms>

<ds:Transform

Algorithm="http://www.w3.org/2006/12/xml-c14n11"/>

</ds:Transforms>

<ds:DigestMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">

</ds:DigestMethod>

<ds:DigestValue>qiTak6MdcsN...</ds:DigestValue>

</hc:HashChainResult>
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1 Introduction 

Today’s software development business requires fast software delivery from the de-
velopment team. For this reason, organizations are transforming their conventional 
development approaches to agile approaches [1,2]. The key aspect of the agile devel-
opment is a flexible structure with faster development time that allows handling 
changes to new requirements easier than the older more rigid processes [3]. Thus 
transformations are performed in an attempt to increase the effectiveness of software 
development and are also a result of more online distributed software products and 
platforms [3]. Agile software development has had a huge impact on how software 
has evolved worldwide recently [4]. A survey by Forrester a few years ago showed 
that more than two thirds of the organizations canvassed either already had a mature 
implementation of agile methods or were midway in implementing such methods [5].  

Even though the agile approach is becoming popular, it is reported to have disad-
vantages related to secure software development [6, 7]. In order to build secure soft-
ware, security-enhanced processes and practices are needed [23]. Security engineering 
(SE) processes can be defined as the set of activities performed to develop, maintain 
and deliver a secure software product; security activities may be either sequential  
or iterative. Due to constraints such as a lack of a complete overview of a product, 
higher development pace and lack of documentation inherent to agile processes [6, 8, 
9], existing SE processes are difficult to implement in such a setting. Moreover, exist-
ing SE processes are designed for a traditional waterfall development approach, i.e. 
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long-term processes with an emphasis on documentation, which are qualitatively and 
quantitatively different from agile processes [10]. 

The growing trend towards the use of agile techniques for building software and 
the increase in security breaches over the past few years means that it is essential to 
integrate existing high-profile SE processes with agile processes. Moreover, as there 
are no SE processes developed specifically for an agile setting, organizations have 
used existing waterfall SE processes in their agile processes. However, the reliability 
of the SE processes commonly used in the waterfall model has not yet been evaluated 
in an agile development setting [3]. Accordingly, existing security activities within 
waterfall SE processes used in current agile processes are investigated. The identified 
security activities are evaluated in terms of both cost and benefit. As a result the most 
compatible and beneficial security activities are identified. Four high-profile waterfall 
SE processes (CLASP, Microsoft SDL, Cigital Touchpoints and Common Criteria) 
were investigated in a survey where developers, working in different agile develop-
ment projects from different locations, have participated.  

The rest of the paper is organized as follows. Section 2 presents the background of 
those SE processes and their activities, which are further used for the survey study. 
Section 3 presents related work, and Section 4 discusses an empirical study design 
and validity threats. The background of the respondents and the results from the em-
pirical studies are provided in Section 5, followed by a discussion in Section 6. Final-
ly, Section 7 concludes the paper with the summary of the major findings. 

2 Background 

The agile software development lifecycle is highly collaborative, iterative and in-
cludes incremental development. It is originally based on the agile manifesto [24] that 
advocates breaking tasks into smaller parts with less need of long-term planning.  

A specific SE process consists of a set of activities, which are merged and subse-
quently organized into different phases of a typical software development process. 
This process typical consists of pre-requirement (PRq), requirement (Rq), design (D), 
implementation (I), testing (T) and release (R), which will be used throughout our 
study. These development phases are applied for any software development in gener-
al, including agile projects. This section discusses four high-profile waterfall SE 
processes used for the development of secure software, i.e. the Comprehensive, 
Lightweight Application Security Process (CLASP), Microsoft’s Secure Development 
Lifecycle (SDL), Common Criteria (CC), and Cigital Touchpoints (CT). The category 
Others (O) includes further SE processes.  

CLASP is a lightweight process for building secure software [13, 15] originating 
from the Open Web Application Security Project. It originally included a set of 24 
independent activities. We exclude 8 security activities from our study, in accordance 
with the suggestions in [14], i.e. activities not matching an agile development process. 
As a result 16 security activities are identified that cover most parts of the software 
development life cycle, except the implementation phase. 

Microsoft’s experience in securing software products is collected and integrated as 
the SDL process [2, 15]. It is a heavyweight and tight process for constructing soft-
ware that helps the software developer resist attacks by addressing security issues 
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repeatedly in their products. This process includes a set of 16 sequential activities that 
cover all parts of the software development life cycle. 

CC is an international standard, ISO15408, certified for computer security [9, 17]. 
It helps developers to specify the security attributes of a product and to evaluate if the 
products meet their claims [17]. This process includes a set of 7 sequential activities 
that cover parts of the software development life cycle, except pre-requirement, im-
plementation and testing phases. 

CT is a lightweight SE process that helps developers to build security into any 
software development process [15, 16]. This process includes a set of 9 sequential 
activities that cover most parts of the software development life cycle, except the pre-
requirement phase. 

Two other (O) security activities that are commonly used in agile development 
recommended in [9, 18, 19] but not included in any of the SE processes mentioned 
above are also identified; countermeasure graphs and pair programming. 

Based on these SE processes, initially a total of 50 security activities were found: 
16 CLASP, 16 SDL, 9 CT, 7 CC and 2 O. After analyzing the similarities between 
security activities, by looking at activities having different names but with the same 
meaning, 9 common security activities were identified as duplicate and, hence, re-
moved from the list. As a result, a total of 41 security activities are obtained which are 
used in the survey study for further investigation (see Table 1).  

3 Related Work 

In response to the increased rate of damages caused by security vulnerabilities in 
software products and the increased use of agile methods in the software industry, 
some efforts have been made to address software security in agile processes [2]. Pre-
vious works in this area focused on theoretical findings and a few studies have used 
industrial experiences and empirical data. 

Researchers have focused on introducing methods for evaluating or integrating se-
curity activities in agile processes. Singhal [11] proposes an approach for measuring 
the degree of agility for different security activities. It determines the degree of com-
patibility of security activities with an agile method, i.e. a way of measuring the com-
patibility of security activities with agile software development processes. In addition, 
a risk removal efficiency factor identifies which security activity can be integrated 
more efficiently than others. Keramati and Mirian-Hosseinabadi [2] introduce a me-
thod for integrating security activities in an agile methodology to enhance the security 
of a software product. The method works by defining the agility degree for each secu-
rity activity and applying an activity integration algorithm with a tunable parameter 
named the agile reduction tolerance. Siponen et al. [8] describe the requirements for 
security techniques to integrate seamlessly into an agile process. They demonstrate 
the requirements selected with an example of an approach for adding security into an 
agile software development methodology. 

A next step is to integrate security methods with an agile model. Ge et al. [12]  
integrate feature-driven development and high-profile security methods, namely  
risk analysis, to address the development of secure web applications. Baca and 
Carlsson identify security activities from three SE processes; Microsoft SDL, Cigital 
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touchpoints and Common Criteria [3, 9]. Then, they compare those security activities 
with a specific agile development process, Scrum, which is used in industry. Finally; 
they produce a security enhanced agile development process by integrating the most 
compatible and beneficial security activities with agile processes. Beznosov and 
Kruchten [6] identify and compare security techniques that fit well with an agile de-
velopment methodology and others that are clear mismatches. 

Few studies identify the security issues in an agile process, but Azham et al. identi-
fy a number of issues from different security aspects of security in the Scrum metho-
dology [1]. They propose the idea of a security backlog that helps to deal with the 
security issues in the Scrum methodology. Bartsch presents a report on interviews 
with practitioners on the effects of agile methods for developing secure software [7]. 
They also study the implications of security awareness and developer expertise on 
how security practices are employed. 

4 Research Design and Validity Threats 

Considering the objectives of the research and the available resources, a survey re-
search method is used to understand practitioners’ perception of the current security 
practices in agile development processes. A survey research method is mainly appro-
priate for gathering self-reported quantitative and qualitative data from a large number 
of respondents [20]. A web-based survey questionnaire is used as data collection in-
strument. A web-based questionnaire is selected in order to obtain information from a 
relatively large number of practitioners around the world, many of whom we would 
not be able to contact personally. An inclusion criterion for identifying a target popu-
lation is used for the survey involving any practitioners in agile software development 
with security experience, i.e. security related responsibilities or activities. A total of 
41 security professionals, who are involved in agile software development, partici-
pated in the survey. Two main approaches have been used to get responses for our 
survey; first responses from people available and willing to participate in the research 
who meet the inclusion criteria and secondly, by asking the participants to nominate 
other people who would be willing to participate. The survey questionnaire was de-
signed using an online survey tool (FluidSurvey). It consists of 20 questions, 4 of 
which concern the respondent information, 6 the current or most recent agile devel-
opment effort, 7 the identification and evaluation of security activities, and the  
remaining 3 are open-ended optional questions about agile and security issues. In 
addition, a coversheet explaining the purpose of the study and procedures, and the 
description of each security activities were attached to the questionnaire.  

The identification and evaluation of the security activities part of the questionnaire 
was designed using a Likert Scale format. The security activities were evaluated in 
terms of two criteria: Cost and Benefit. Cost refers to the difficulty in terms of re-
sources, e.g. money, to integrate a security activity as part of an agile process. Benefit 
refers to the value of continuously using a security activity in agile projects in terms 
of getting a more secure product. The survey instrument was pre-tested and refined by 
conducting a formal pilot study with five people who were considered representative 
of the potential participants of the survey research (practitioners from Ericsson AB 
with more than three years of experience in agile software development and security). 
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For the survey we consider the four perspectives of validity and threats as pre-
sented in Wohlin et al. [22], i.e. Internal validity, External validity, Construct validity, 
and Conclusion validity. 

Internal validity: designing a readable and understandable survey questionnaire mi-
tigates the threats related to internal validity enhanced by the high completion rate of 
the respondents (61%). The survey respondents are selected by using various profes-
sional networks such as LinkedIn and Academia. This indicates that researchers have 
no influence on the selection of the subjects for the survey. Furthermore, the sampling 
error associated with the selection of subject is formally depicted through the use of 
statistical hypothesis testing. 

External validity: The test leaders’ control and influence on the respondent answering 
the questionnaires was limited as the survey was conducted through the web. Also, 
the samples selected for the study were from diverse agile project setting, e.g. regard-
ing the agile methods, application type, project size, project duration, companies and 
distribution of the development effort. In addition, the participants have fairly hetero-
geneous experience in security, agile and waterfall development. Thus, heterogeneous 
experience of the participants, the diverse distribution of the population and a suffi-
ciently large sample size, show the possibility to generalize the survey findings 
beyond the selected sample. 

Construct validity: The security activities in our research are identified and measured 
through the survey using close-ended questions.  Inadequate preoperational explica-
tion of construct threat was avoided by designing the survey instruments in a way to 
clearly represent the objective of the research. This was done by defining the research 
aim, the procedures, the evaluation criteria such as Cost and Benefit in the introducto-
ry section of the survey. Moreover, the definitions of the security activities are also 
linked to the survey questions. As a result of this, Mono-operation bias is avoided. 
The online survey responses were completely anonymous so the evaluation apprehen-
sion is mitigated. Another influential risk is the background of the subjects (e.g. expe-
rience). However, due to the sufficiently large sample size and the respondents’ level 
of experience in agile development and software security, we consider that the risk 
associated with the background of the subjects as limited. 

Conclusion Validity: A normality test was performed in order to see whether score 
results are normal distributed or not. As a result, a majority of the score results ful-
filled the normality assumption and some of them are approximately normal. Thus, 
due to these reasons as well as the sufficiently large sample size we consider that the 
overall influence of the risk related to violation of assumption of statistical tests is 
limited. The research conclusion is purely based on the independent analysis of the 
study outcome. 

5 Results and Analysis 

5.1 Demographic Data 

The respondents were mostly from Europe or North America. Respondents from 
large, medium and small companies such as Microsoft, IBM, Ericsson, HP and ELC 
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Technologies were participating in the survey. Experience of the respondents in the 
agile and waterfall software development had a median of 3 to 5 years and more than 
5 years of experience in agile and waterfall development respectively. Furthermore, a 
large amount of the respondents, 44%, have a development role in current or very 
recent agile projects. Moreover, the sizes and estimated duration of the agile projects 
under investigation have a median of 5-10 people and 3-4 weeks respectively. The 
agile development methods under investigation cover mostly Scrum and Extreme 
Programming. The respondents were asked whether the current product had been 
started in a waterfall setting or not. From the result, a majority of the agile projects 
under investigation, 66%, had not been started in such a waterfall setting.  

5.2 Statistical Test 

In order to identify the most compatible and beneficial security activities for agile 
processes, comparisons were made between the security activities. The derived hypo-
thesis for these comparisons focused on finding a significant difference between any 
two security activities within the same development phase. In order to determine these 
differences, a one-tail independent sample t-test was used [21]. This is done by check-
ing whether one security activity is preferred against the other in terms of both cost 
and benefit provided to agile projects. A significant difference is only accepted, if 
there is at minimum a 95% level of confidence, or at maximum a 5% probability of 
type 1 error is tolerated, i.e. the incorrect rejection of a true null hypothesis [21]. 

5.3 Security Activities Evaluation Results 

Based on the relative weights of the security activities according to the respondents’ 
rankings, a statistical test was conducted in order to investigate the security activities 
that are beneficial and compatible with an agile process. From a confidence level 
point of view, when the respondents judged a security activity as being strongly im-
portant (99.9%), highly important (99%) and merely more important (95%) than the 
others, it was weighted with +++, ++, + respectively as shown in Table 1. In contrast, 
if the majority of the respondents judged a security activity as being strongly less 
important (99.9%), highly less important (99%), and merely less important (95%), it 
was weighted with ---, --, - respectively. The same sign representation is applied for 
the cost comparison as well, i.e. ‘+’ refers to low cost while ‘–’ denotes high cost. 

Table 1 presents the identified security activities and their evaluation result in which 
Group 1 (G1) represents the overall result while Group 2 (G2) represents the results of 
the respondent group who has 3 or more years of agile development experience.  

The following major differences and similarities are observed based on the results 
in Table 1. In the pre-requirement phase for cost, Initial Education is preferred and 
Security Metrics is disliked in G1 while in G2 no security activity is preferred to oth-
ers. In terms of benefit, in both groups no security activity is preferred to the others. 
This may arise from the fact that most agile projects do not include a pre-requirement 
phase. Due to this, respondents may not have enough experience to effectively eva-
luate these security activities. 
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Table 1. Security activities and their evaluation in agile projects: ‘+’ means preferred and ‘–’   
means disliked 

Security Activities Cost Benefit 

Pre-Requirement G1 G2 G1 G2 

Security Metrics  (CLASP) - -       

Initial Education  (CLASP, SDL) + +       

 Cost Benefit 

Requirement G1 G2 G1 G2 

Security Requirements (CLASP, SDL, CT, CC) ++   +++ +++ 

Abuse Cases  (CLASP, CT)   - - - - - - - 

Agree on Definitions (CC) ++ + -   

Role Matrix   (CLASP, SDL) ++ + - -   

Design Requirements (SDL) - - - - - ++ ++ 

Identify Trust Boundary (CLASP) ++ + - - + 

Identify Global Security Policy  (CLASP)   - -  

Specify Operational Environment  (CLASP) ++ +++ + ++ 

Identify Attack Surface   (CLASP) - - - - - 

 Cost Benefit 

Design G1 G2 G1 G2 

Risk Analyses  (CT, CC) ++   +   

Assumption Documentation (CT) +   - - - - 

Critical Assets (CC) - - - + + 

UMLSec (CC) +   - - - 

Quality Gates (SDL) ++ ++ +   

Cost Analysis (SDL) - - - +   

Attack Surface Reduction (SDL) - - - - -     

Security Architecture  (CLASP) - - - ++ ++ 

Secure Design Principles  (CLASP) ++   ++ + 

Security Activities Cost Benefit 

Countermeasure Graphs   (O) ++ +++ -   

Requirements Inspection  (CC) ++   - - - - 

Threat Modeling  (CLASP, SDL) - - - - -   
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Table 1. (continued) 
 

 Cost Benefit 

Implementation G1 G2 G1 G2 

Static Code Analyses  (SDL, CT) - -       

Security Tools (SDL) +       

Coding Rules  (SDL) ++       

Pair Programming (O) -       

 Cost Benefit 

Testing G1 G2 G1 G2 

Vulnerability & Penetration Testing  (CT)   + ++ ++ 

Red Team Testing  (CT)     - - - - 

Risk Based Testing (CT)       - 

Dynamic Analysis (SDL)       - 

Fuzzy Testing  (SDL)   - - - - - 

Code Review  (CLASP, SDL)     - - - - 

Security Testing  (CLASP)     ++   

 Cost Benefit 

Release G1 G2 G1 G2 

External Review (CT) - - - - - -   

Repository Improvement  (CC) +   - - - 

Incident Response Planning (SDL ++ + - - 

Signing the Code  (CLASP) +++ ++ -   

Operational Planning and Readiness  (CLASP) - -   ++ + 

Final Security Review (SDL)   - -   

 
In the requirement phase for cost in both groups Role Matrix, Agree on Defini-

tions, Identify Trust Boundary and Specify Operational Planning are preferred  
whereas Design Requirements and Identify Attack Surface are disliked. In terms of 
benefit, Security Requirements, Design Requirements, and Specify Operational Envi-
ronment are preferred in both groups while Abuse Case and Identify Attack Surface 
are disliked.  

In the design phase for cost, Quality Gates and Countermeasure Graphs are pre-
ferred in both groups. On the contrary, Critical Assets, Cost Analysis, Attack Surface 
Reduction, Security Architecture, and Threat Modeling are disliked in both groups. 
For benefit, Critical Assets, Security Architecture and Secure Design Principles are 
preferred in both groups while Assumption Documentations, UMLSec, and Require-
ments Inspection are disliked.  

In the implementation phase for cost, no significant differences are observed in G2. 
However, in G1 while Security Tools and Coding Rules are preferred, Static Code 
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Analysis and Pair Programming are the disliked activities. For benefit, in both groups 
no significant differences exist. 

In the testing phase in terms of cost, Vulnerability and Penetration Testing are pre-
ferred against Fuzzy Testing in G1. In terms of benefit, Vulnerability and Penetration 
Testing is preferred in both groups, Red Team Testing, Fuzzy Testing and Code Re-
view are disliked in both groups. In addition, Security Testing is preferred in G1.  

In the release phase for cost, Incidence Response Planning and Signing the Code 
are preferred in both groups. In contrast, External Review is disliked in both groups. 
For benefit, Operational Planning and Readiness is preferred in both groups while 
Repository Improvement and Incident Response Planning are disliked. 

5.4 Waterfall SE Processes Evaluation 

In this section the activity coverage of SE processes in agile projects for each devel-
opment phase is presented. The coverage result is derived from the overall result, G1, 
given in Table 1. As shown in Table 2, CLASP and SDL cover more than two third of 
the process activities together. This indicates that CLASP and SDL are the most use-
ful SE processes in current agile development. Furthermore, for each development 
phase, the SE process that covers most is identified. As a result, CLASP is strongly 
chosen in both the pre-requirement and requirement phases. In the design phase SDL 
and CC are weakly selected. SDL is strongly chosen in the implementation phase. In 
the testing phase CT is slightly preferred. Finally, in the release phase CLASP and 
SDL are weakly selected. Moreover, we also must emphasize that not all SE 
processes cover the whole agile development lifecycle, only SDL covers all phases. 

Table 2. SE Processes activity coverage in agile projects, OC means overall coverage 

SE Process 
PRq 
% 

Rq 
% 

D 
% 

I 
% 

T 
% 

R 
% 

OC 
% 

CLASP 75 58 21 0 30 33 34 
SDL 25 19 29 63 30 33 31 
CT 0 8 13 13 40 17 15 
CC 0 14 29 0 0 17 15 
O 0 0 8 25 0 0 5 

 
From the above identified security activities a further evaluation was performed to 

identify the number of compatible and beneficial security activities for an agile 
process. Out of the 41 waterfall security activities used in current agile processes, the 
following conclusions are drawn. From a cost point of view, 18 security activities  
are most compatible with an agile process, i.e. they are easy to introduce in an agile 
environment, 12 security activities are not compatible with an agile process, and the 
remaining 11 security activities are in-between. From a benefit point of view, only 12 
security activities are beneficial to agile processes, i.e. giving high payback to an agile 
process, 19 security activities are not beneficial and the remaining 10 are in-between. 
When considering the cost and benefit of the SE processes, CC has most activities  
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preferred by an agile process (86% and 43% respectively) and CT has the least num-
ber of activities for cost 33% and in SDL only 25% activities are preferred in terms of 
benefit. In terms of number of activities CLASP and SDL are positively dominating 
due to more initial activities present. 

Table 3. SE process evaluation based on the preferred (+)/disliked (-)/in-between number of 
security activities in agile projects 

SE 
Process 

Cost Benefit 
Total 

+ - 
In  

between 
+ - 

In  
between 

CLASP 7 5 4 6 8 2 16 
SDL 7 5 4 4 6 6 16 

CT 3 2 4 3 4 2 9 
CC 6 1 0 3 4 0 7 
O 1 1 0 0 1 1 2 

Duplicate - 6 - 2 - 1 - 4 - 4 - 1 - 9 
Total 18 12 11 12 19 10 41 

5.5 Agile Compatible Security Activities 

The most compatible and beneficial security activities for an agile process are pre-
sented in Table 5. The goal is to create, from existing SE processes, a new SE process 
for an agile process, providing high benefit with low integration cost. The selection is 
performed from the results presented in Table 1. In the selection process, the overall 
group (G1) and the experienced group (G2) results are considered. The two main rea-
sons for including G2 results are: firstly, the answers of G2 are more reliable and 
trusted than those of the less experienced group, as those may not have enough expe-
rience to evaluate security activities effectively and secondly, from the total respon-
dents, a majority of the respondents (60%) are in G2. Three main selection criteria (C1, 
C2, and C3) are used in the selection of the security activities as shown in Table 4.  

Table 4. Agile compatible security activities selection criteria 

# 
Selection Criteria 

First Consideration Second Consideration 
C1 Preferred for Benefit in G1 or G2 Preferred for Cost in G1 or G2 

C2 Preferred for Benefit in G1 or G2 In-between for Cost in G1 or G2 

C3 In-between for Benefit in G1 or G2 Preferred for Cost in G1 or G2 

By considering the above selection criteria, 16 security activities are identified as 
both compatible and beneficial to an agile process, as depicted in Table 5. These secu-
rity activities cover all the phases of a typical agile development project. 



 Identification and Evaluation of Security Activities in Agile Projects 149 

 

Table 5. Agile compatible and beneficial security activities 

Pre-Requirement (PRq) Requirement (Rq) 
Initial Education  (CLASP, 
SDL) 

Security Requirements (CLASP, SDL, CT, CC) 

Design (D) Agree on Definitions (CC)  
Risk Analyses  (CT, CC) Role Matrix (CLASP, SDL) 
Quality Gates (SDL) Identify Trust Boundary (CLASP) 
Secure Design Principles  
(CLASP) 

Specify Operational Environment  (CLASP) 

Counter Measure Graphs (O) Implementation (I)
Testing (T) Security Tools (SDL) 
Vulnerability & Penetration 
Testing  (CT) 

Coding Rules  (SDL) 

Security Testing (CLASP) Release (R)
 Signing the Code (CLASP) 
 Operational Planning and Readiness (CLASP) 

 
Below the definitions of the 16 security activities are presented:  

- Initial Education (PRq):  Everyone on a development project should be aware of 
the importance of security and the basics of SE which includes; teaching the se-
curity concepts, types of security breaches, possible solutions and so on. 

- Security Requirements (Rq): Assign security experts, identify and enumerating 
security and privacy functionality for a given software process. 

- Agree on definitions (Rq): The first task for an organization is to define the 
stakeholders and to agree upon a common set of security definitions, i.e. the de-
finition of the security policies for a software company with the clients as part of 
the stakeholders’ security vision of the IS.  

- Role Matrix (Rq): Identifying all possible user roles and their access level to the 
software. 

- Identify Trust Boundary (Rq): Describe the architecture of the system from the 
perspective of the network, identify data resources that may be used by a pro-
gram and denote where trustworthy and untrustworthy entities interact.  

- Specify Operational Environment (Rq): Document assumptions and require-
ments about the operating environment, so that the impact on security can be as-
sessed.  

- Risk Analyses (D): Security analysts find and prioritize architectural flaws so 
that appropriate mitigations can begin.  

- Quality Gates (D): Create appropriate security and privacy quality measures for 
the entire software development project, including activities that need to be done 
for a fulfillment of the requirement.  

- Security Design Principles (D): Make the application design harder by applying 
security design principles and identify security risks in third-party components.  

- Countermeasure Graphs (D): A risk analyses method that focuses on identifying 
security features and prioritizing them. 
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- Security Tools (I): Define and publish a list of approved security tools to assist 
the project, i.e. commercially available, open source and in-house developed, 
and associated security checks. 

- Coding Rules (I): Determine the list of unsafe functions and replace those unsafe 
functions with safer alternatives. 

- Vulnerability & Penetration Testing (T): Provides a good understanding of 
fielded software in its real environment. This is done by simulating real world 
working conditions and attack patterns. 

- Security Testing (T): Find security problems not found by implementation re-
view and catching failures in design, specification and implementation.  

- Signing the Code (R):  Provide the stakeholder with a way to validate the origin 
and the integrity of the software. 

- Operational Planning and Readiness (R): This includes the writing of user ma-
nuals, documenting the security architecture and so on. 

6 Discussion 

In summary, mainly four high profile SE processes, CLASP, SDL, CC, and CT are 
used for identifying a total of 50 security activities. Then, 9 duplicate security activi-
ties are discarded. As a result, a total of 41 security activities are identified, which are 
used as input for the survey study. From the survey result, it is suggested that out of 
the 41 security activities, only 16 security activities are both compatible and benefi-
cial to an agile process. Accordingly, this set of security activities can be considered 
as a candidate SE process for agile processes. 

In terms of cost, a higher number of CLASP and SDL activities is preferred than 
others. Furthermore, in terms of benefit a higher number of CLASP activities is pre-
ferred than others. As a result, in both cases CLASP activities are preferred. These 
may arise from the fact that CLASP activities are independent while others request a 
sequential approach to secure software development [15]. Thus, the flexibility of the 
CLASP activities makes it easier to implement them in an agile process. Furthermore, 
a majority of the agile projects under investigation were not started in a waterfall 
process, and especially, from the agile project that had been started in waterfall,  
no one uses CLASP as a SE process. This indicates that this process is difficult to 
implement in a waterfall development setting. However, from the study result it is 
proposed that CLASP is preferable to use in an agile process model contrary to CC 
that was chosen as a SE process in a waterfall setting. CC is a lightweight security 
engineering process that integrates core activities in an existing development process 
without having any assigned security activities for the pre-requirement, implementa-
tion and testing phases of an agile process. This is a reason for CC activities not to be 
as preferable as CLASP (and to some extent SDL) in an agile environment.  

When comparing our work with a previous study by Baca and Carlsson [3, 9] con-
ducted in a real industry setting, we note that both studies investigate SDL, CT and 
CC. In the previous study a total of 10 security activities compared to our 16 security 
activities were identified as both compatible and beneficial to agile processes. Since 
CLASP is not included in the previous study, activities that are selected from the 
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CLASP SE process were not included in the comparison. The comparisons of both 
studies are discussed as follow. 

In the pre-requirement phase, we cannot compare our result with the former study, 
where this phase is not included. In the requirement phase, in both studies Security 
requirement and Role matrix are selected. However, in our study more activities are 
selected as compatible to agile projects, these include: Agree on Definitions, Identify 
Trust Boundary and Specify Operational Environment. In the design phase, in both 
studies Countermeasure Graphs is selected. In addition, in our study Risk Analyses, 
Quality Gates and Secure Design Principles are selected, while in the former study 
Assumption Documentation, Abuse Cases, and Requirements Inspection are selected. 

In the Implementation phase, in both studies Coding Rules is selected. In addition, 
in our study Security Tools is selected where Static Code Analyses is selected in the 
former study. In the testing phase, Security Testing and Vulnerability & Penetration 
Testing are selected in our study, while in the previous study only Dynamic Analyses 
is selected. In the release phase, in our study Signing the Code and Operational Plan-
ning & Readiness are selected contrary to selecting Repository Improvement in the 
previous study. The number of common and different security activities selected as 
compatible and beneficial to agile processes in both studies is summarized in Table 6.  

Table 6. Number of security activities selected as both compatible and beneficial to agile 
processes in both studies 

SE Processes Number of security activities 
Our Result Previous Study 

CLASP 6 0 

SDL, CT, CC, O 10 10 

Total 16 10 

Security Activities selected in both -4 -4 

Differences 12 6 

 
The possible causes for these differences include as a first reason the use of one 

more SE process, namely CLASP that is not included in the other study, as six of the 
security activities are identified from this SE process in our study result. A second 
reason is that because of the major differences that exist between our study and the 
former study, i.e., the former study base was in one specific telephone company 
Ericsson AB, while in our study participants from different location and companies 
participated (small to large companies). As an example Static Code Analyses is re-
garded as too costly in the present study while being preferred (and also being a tool 
in use) in the former study, i.e. practical experiences may affect the conducted an-
swers. Also, in the former study interviews were used for evaluating security activi-
ties including a small number of participating agile professionals. In our study, an 
online survey, with a larger number of respondents from different areas, is used to 
answer the survey questions. Finally the former study addresses specifically Scrum 
agile method, while our study addresses all the major agile methods, such as, Scrum, 
XP, FDD, etc. 
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7 Conclusion and Future Work 

Developing secure software in an agile process needs a SE-process that can address 
security issues in every phase of the agile development lifecycle; however any of the 
investigated SE processes was not fully compatible and beneficial to agile projects. 
Our suggestion in this area is that it is necessary to develop specific agile processes 
which are different from existing waterfall SE processes. Redundant or too “heavy” 
activities should be avoided together with insufficient beneficial activities, i.e. not 
enough benefit compared to the effort invested. 

The study conducted is considered as a first step towards the identification and 
evaluation of security activities that are used in current agile processes. Thus, this 
paper contributes to the increasing empirical work within the area, and is supposed to 
provide empirical evidences for practitioners and researchers in the area. 

In addition, since the selected security activities are originally developed for water-
fall development approach, some of the security activities might need modification in 
order to adapt with an agile process. We are not investigating new or pure agile SE-
processes (but a selection of existing/modified security activities as a base for the 
agile development). Therefore, the directions for future work primarily include eva-
luating these security activities that are selected as compatible and beneficial to an 
agile model in a real agile industry setting. These steps will add value to the findings 
and gain acceptance in the real agile industry.  
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Abstract. We present the design and implementation of the PeerShare,
a system that can be used by applications to securely distribute sensi-
tive data to social contacts of a user. PeerShare incorporates a generic
framework that allows different applications to distribute data with au-
thenticity and confidentiality guarantees to authorized sets of recipients,
specified in terms of social relationships. By using existing interfaces in
popular social networks for user authentication and social graph infor-
mation, PeerShare is designed to be easy to use for both end users as
well as developers of applications. We have used PeerShare already in
three different applications and plan to make it available for developers.

Keywords: Data distribution, social networks, access control.

1 Motivation

Key management has been one of the challenging problems in guaranteeing se-
cure communication between parties on the Internet. Although public key tech-
nology holds the promise of simplifying key management, multiple technical,
economic, legal and social reasons prevented PKIs to be successfully deployed
in the Internet, thus leaving the problem of secure key distribution still wide
open [9].

Recent years have also brought a tremendous increase in the popularity of
social networks. Social networks (like Facebook, or Twitter), giving users op-
portunity to share data among their friends and providing APIs for third party
developers, open new possibilities for the creation of applications using social
graph data. The most important aspects of social networks in the context of
data distribution are:

– the possibility of common user authentication by means of the Single Sign-on
service and the OAuth protocol [10],

– the extensive scale of deployment of popular social networks, and
– the ability for users to express social relationships in an intuitive manner

(e.g., “friends”, “colleagues”, “friends of friends” etc.)

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 154–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Our starting point is the observation that one can use social networks to
facilitate the distribution of authentic public keys [14]. One can generalize this
to design a generic framework that allows distribution of arbitrary application-
specific sensitive data with specific security requirements (like authenticity-only
or authenticity and confidentiality) to a specific set of social contacts. The result
is a system we call PeerShare, which we describe in this paper.
Our goal and contribution. In this paper we present PeerShare: the design
and implementation of a system that allows users to distribute data securely.
PeerShare distinguishes itself from other data distribution systems through:

– incorporating a generic framework for data distribution that can be
used by different applications to distribute different types of data (e.g.,
shared secret keys, public keys, other sensitive data) to a specified set of
social contacts with different security guarantees.

– improving usability both for end-users and application developers
by taking advantage of existing and popular social network tools for the user
authentication and distribution of data inside a specific social context.

In our implementation, we use Facebook as the social network. The social
network server is used for user authentication and for users to define social groups
either as pre-defined lists (like “friends” or “friends-of-friends”) or custom lists.
However, our system is generic and can use any social network that supports a
single sign on (SSO) and authorization mechanism (like OAuth 2.0) and provides
an interface for apps access to user’s social graph information. Given the scale of
social networks deployment, the SSO using the social network greatly increases
the usability of user authentication. Social graph information is used only for
obtaining user specific friend lists which can be used to specify access control for
the data being distributed.

The social network server is not involved in actual data distribution; that is
done through the PeerShare server containing database with data to be dis-
tributed to specified users. PeerShare client-side implementation, called the
PeerShare Service, is responsible for uploading new data to the server, deleting
old data items, and periodically querying the server to check if there are any new
data for them uploaded by other devices. PeerShare Service exposes an API to-
wards applications which allow them to make use of PeerShare functionality.
The communication between the client and the server is via an authenticated
secure channel. The PeerShare server is assumed to be a trusted entity. In Sec-
tion 5, we discuss ways of reducing this trust assumption.
Outline. We describe usage scenarios in Section 2 which motivate usage of
PeerShare. Section 3 presents system requirements. Section 4 includes detailed
system design, while Section 5 describes security considerations of the system.
Section 6 presents the related work. Finally, section 7 concludes the paper.

2 Usage Scenarios

Currently PeerShare is already used in three example applications, namely
PeerSense [8], SCAMPI [15] and CrowdShare [1][2].
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PeerSense [8] is a service on a mobile device that senses the presence of
nearby friends. Applications can query PeerSense for the set of nearby friends
at any given moment (e.g. the camera application can query the set of nearby
friends at the time when the shutter is pressed and attach this information as
metadata to the resulting picture [16]. PeerSense uses PeerShare to distribute
the binding between the Bluetooth Device Address (BDADDR) and the social
network identifier of the device user to the set of users whom the device user
wants to be visible to. Although BDADDR itself is not secret, the binding is.
Hence, the data shared via PeerShare needs secrecy and authenticity. At any
given time a device is associated with at most one user, whereas a user may be
associated with multiple devices. Thus, the data is device-specific.

The SCAMPI platform [15] allows mobile devices to communicate in an op-
portunistic network. Mobile devices discover themselves through multicasting
their SCAMPI identifiers, which are hashes of their public keys. As such iden-
tifiers are not very meaningful to use, the SCAMPI platform uses PeerShare
for mapping the SCAMPI identifiers to social identifiers. Similarly to PeerSense,
the exchanged data is a binding, thus it is private and also device-specific.

In the CrowdShare project [1][2], devices in the network are able to share their
resources with one another based on existing social relationships. CrowdShare
presents privacy-preserving friend of friend finder service based on the private
set intersection (PSI) algorithm [5]. The input to PSI consists of a set of “bearer
tokens”. A bearer token is generated by the device of a user and is distributed to
all friends of that user. It serves as a capability for proving the friend relationship.
The data shared using PeerShare are the bearer tokens. They are user-specific
and require both authenticity and integrity.

Furthermore, CrowdShare can optionally make use of user-specific public keys.
Distribution of public keys is done similarly to the SocialKeys project [14], but
using PeerShare. The exchanged data would then be a binding between a public
key and a social identifier. Thus, such a binding is public and user-specific.

Table 1 presents a short summary of existing PeerShare use cases.

Table 1. Summary of existing PeerShare use cases

Use case Type of data Security need Specificity
PeerSense BDADDR:social-ID private device-specific
SCAMPI SCAMPI-ID:social-ID private device-specific
FoF finder bearer token private user-specific

Public key distribution public key public user-specific

Finally, there are also possible situations in which we are interested in mak-
ing a binding between a data item and a specific user that does not use the
PeerShare system. To do this, we introduce the notion of a data binding type.
If data is uploaded normally by the application, we call it an owner-asserted
binding. However, if a user decides to add a binding for another user, such a
binding is called user-asserted, and is only visible to the user that has created it.
An example of such a situation is present in the PeerSense application. A user can
tag a device on the list of scanned devices and assign a name of his/her friend to
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it. Since there is no evidence for the correctness of such a user-asserted binding,
it is not distributed using PeerShare, but is still available via the PeerShare
API in the devices of the user who asserted the binding.

Given the common aspects of these different cases of secure data distribution,
it is evident that designing a generic data distribution framework would improve
ease of development, use and security.

3 System Requirements

PeerShare goals. Our vision of a successful data distribution system sets three
basic goals for it to fulfil. First, we aim at data security assurance, as this is
the most critical requirement to convince users to adopt the system. Secondly,
necessary user interaction should be minimised to secure the usability require-
ment. Deployability is the final goal, since the system should be scalable to
allow various application developers to easily distribute their data through it.
Assumptions. Our threat model assumes that each device has platform security
that isolates applications from one another during execution time and in terms
of persistent storage. Furthermore, platform security should also allow a service
on the device to learn a platform-specific identity of a calling application that
wants to access the service.
Threats. We need to provide protection against Man-in-the-middle Attacks
and Unauthorized Usage. The former is needed, as any network devices that
route messages between the mobile device and the server should not be able to
act as a man-in-the-middle that eavesdrops on or modifies messages. The latter is
necessary, since only the person that has created a data item should be able to later
modify or erase it. Furthermore, as data are created by applications that use the
PeerShare system, only the application that has created the particular data item
should be able to access, modify or delete it. Finally, data should be distributed
by the PeerShare server only to users that are eligible to obtain them.
Security requirements. Communication channel protection is required to pre-
vent a man-in-the-middle attack. The threat of unauthorized usage motivates
usage of server authentication, mobile application authentication, user authen-
tication and application access control.

4 System Design

The PeerShare system allows for the secure creation, storage and distribution
of application specific data. The system consists of two main components: (1)
PeerShare Service, and (2) PeerShare Server, which are described below. Our
technical report [13] describes more details of the system that cannot be pre-
sented in the paper due to space limitations. Figure 1 illustrates the system
overview.
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Fig. 1. PeerShare architecture

4.1 PeerShare Service

The PeerShare Service is the encapsulation of the PeerShare functionality on
the mobile device. It is exposed to other applications via the PeerShare API
described later in the section. It is also responsible for communication with the
PeerShare Server, which is described in the section 4.3, along with the protocol
between the client and the server.

The heart of the service is an internal database that stores data together
with their mappings to social identities, which are obtained from the server.
Database security is guaranteed by mobile platform security. Data are bound to
social identities by means of social network authentication. The service stores
a data item inside the AppData data structure whose attributes are described
in Table 2.

Furthermore, the service provides application level data access control which
guarantees that only authorized applications can modify or delete existing data.
Any application can create data that it intends to share using the system. Dur-
ing the initial data upload process, the service records the calling application
platform specific identifier (e.g. a pair of Android package name and developer
key) and appends it to the created data. As a result, if an application wants to
modify or delete existing data, the service learns the calling application identi-
fier and verifies it against the application identifier recorded in the initial upload
process.

The PeerShare API is the second part of the mobile application. It provides
the interface for third-party applications for creation, modification and removal
of data that an application wishes to share with other application users. The
most important methods are described in Table 3:
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Table 2. Summary of PeerShare data attributes

Data attribute Description
Data type Mapping of data to particular type, or application
Data value Actual value of data

Data description attributes
Provides more detailed description of a data item by
indicating algorithm used for its creation, specificity,
sensitivity and binding type

Data sharing policy Specifies sharing policy for data

Timestamps Indicates timestamps for data creation and its va-
lidity

Social information Social information that is bound to data

Creator application identifier Identifies mobile platform and application that owns
a data item

4.2 PeerShare Server

The PeerShare Server is the trusted entity that is primarily responsible for
secure storage of data. Every data item is bound to a social identifier of the
user (e.g. Facebook user ID) who has created the item. The server authenticates
users by requiring them to provide a valid social network user access token and
verifying its correctness through interaction with the social network server.

The second crucial responsibility of the server is enforcement of access control
policies for stored data. The system allows users to specify who is eligible to
access stored data by allowing them to state the sharing policy from all avail-
able social network user lists of the user. The server queries the social network
server for custom friend lists created in the social network by a user. Such lists
are returned to the PeerShare service and can be further accessed by other
applications to allow them specify the sharing policy. On creating a new data
item, or updating a sharing policy for an existing item, the server queries the
social network server to obtain the list of social user IDs applicable to download
a particular data item. If an application uploading a new data item does not
specify its sharing policy, the data item is by default shared among all user’s
friends.

Table 3. Summary of PeerShare API

Method Description

long addData(AppData data)

Stores application data and uploads it to the
PeerShare Server as soon as the network connec-
tivity to the server is established. Returns object
identifier which is used later to modify/delete it.

int updateData(long objectID,
AppData data)

Modifies already existing data. The object ID ob-
tained in the addData method identifies data to up-
date.

int removeData(long objectID) Deletes existing data. The object ID obtained in the
addData method identifies data to remove.
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Furthermore, the server updates lists of users assigned to a particular friend
list in case of their modification by means of the realtime updates provided by
the social network. If the social network does not have this functionality, the
server must regularly poll the social network server to learn about such changes.

4.3 PeerShare Protocol

The PeerShare service communicates with the server through a JSON encoded
protocol that runs on top of standard HTTPS protocol. It involves the following
operations: user registration and unregistration, data upload and update, and
data download. Because data exchanged between the service and the server are
sensitive, communication security is guaranteed by the TLS layer. Furthermore,
to protect against fake social network application attacks, each request includes
a user access token of the social network, whose validity is verified by the server.

In the REGISTER method, the user registers for the service by informing
the server about his/her social information. In response, the server generates
(or finds if the user is not a new one) user’s PeerShare identifier that is needed
in all subsequent transactions with the server to uniquely identify the correct
person. The PeerShare ID is necessary to properly correlate possible multiple
social identities of the same person. This may happen if someone uses more than
one social network in the PeerShare system (e.g. Facebook and Twitter).

In the UPLOAD method, the service sends to the server all data items
which have been added to the database on the user’s device, but have not been
uploaded on the PeerShare server. The message contains also the PeerShare ID
to map uploaded data to a specific user. Content of each data item is consistent
with data description provided in the section 4.1. In response to the UPLOAD
request, the server sends an array of object IDs that are later used to modify or
delete every data item from the server database.

The UPDATE method is very similar to UPLOAD. The only difference is
that it is not adding any new data on the server, but only updating existing ones.
The object ID returned in the UPLOAD operation is needed to properly identify
the item on the server to modify. If the service wants to update a non-existing
item (i.e., the one that has already been deleted by the user), the server ignores
the request to do it, and sends back in response notification that the data item
does not exist and should be removed from a local database.

The DOWNLOAD method allows the service to fetch all data items that
the registered user is eligible to obtain. It requires the service to provide user’s
PeerShare ID to correlate the request with a correct user. In response, the server
returns an array of data items that contain detailed information about each item
in a format similar to the one used in the UPLOAD or UPDATE request. The
only difference is that personal information (i.e., sharing policy, and object ID)
is not included unless the downloading user owns the item.

The DELETE method is used to erase old and no longer needed data from
the server. Similar to all other methods, it must include the PeerShare ID to
correctly correlate a user with data. In addition, it also contains an array of
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object identifiers that are to be deleted. In response, the server sends just status
information that is either OK if there are no errors, or is an error message.

UNREGISTER is the final method defined in the protocol. It is used to
unregister the user from the PeerShare and delete all data associated with the
user. In a request, the PeerShare ID together with the social network identifiers
are provided. The server responds with OK status, or an error message if the
operation fails.

4.4 Implementation

Our server implementation is written in PHP, and uses the PostgreSQL database
and the Facebook PHP SDK. Currently the server supports only Facebook as
the social network to authenticate with, but the architecture is generic enough,
so that in the future it can be easily extended to support other social networks.
Finally, the server takes advantage of Facebook Realtime Updates functionality
to learn about modifications of user’s lists.

The service implementation is more complex, as it includes the communica-
tion module as well as API for third party applications. Currently we have an
Android implementation of the client package. The service is implemented as a
standard Android background service that runs as an independent process. It
contains an internal SQLite database, where PeerShare data are stored. Ap-
plications using the service bind to it through the AIDL interface. SSO user
authentication is currently provided by the native Facebook library. The service
uses also the Binder interface functionality to learn about service calling appli-
cation identifiers. It allows matching calling applications with data they create,
which is critical to provide application access control.

4.5 Performance Considerations

To evaluate performance of the PeerShare, we have tested the average time
needed for upload and download of data in the WiFi network that uses ADSL
connection. In our test scenarios, a user uploads 1 data item, and downloads 5
data items, as 5 friends share sample data in a test application. Average upload
time measured in 30 runs is 2.02 seconds with standard deviation of 1.33 seconds.
Download operation performance is more stable, as average time is 1.18 seconds
with standard deviation of 0.12 seconds. To compare these numbers with stan-
dard web browsing activities, we conducted similar experiments for downloading
mobile Facebook web pages. The average download time for Facebook web pages
measured in 30 runs is 1.50 seconds with 0.21 seconds of standard deviation.

Furthermore, PeerShare has been designed to allow multiple applications use
the same server. However, if application performance is limited due to server
scalability, each application developer may decide to run its own server. Such a
solution is further discussed in section 5.3 describing possibility of minimizing
the need of trust for the PeerShare Server.
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5 Security Considerations

In this section, we present our security analysis showing that the security re-
quirements presented in section 3 are fulfilled. Then we discuss how to minimize
the level of trust needed to be placed on PeerShare Server.

5.1 Channel Protection

In order to guarantee channel protection, the PeerShare Protocol is executed
over a secure (i.e., confidential and mutually authenticated) channel. The user is
authenticated by the OAuth protocol via the native Android Facebook applica-
tion. Therefore the system relies on the correct behaviour of the native Android
Facebook application.

The PeerShare Server is authenticated via a TLS certificate. We use a form of
“certificate pinning” by embedding the TLS server certificate of the PeerShare
Server in the client implementation. This protects against a rogue server from
masquerading as the PeerShare Server even if the rogue server has succesfully
obtained a certificate for its TLS keypair from one of the dozens of Certification
Authorities that are normally trusted for TLS. If there are many PeerShare
Servers, then instead of hardwiring the TLS server certificate, we can use stan-
dard certificate pinning [7].

5.2 User and Application Authentication

User authentication is obtained through the native Facebook Android library.
Prior to invoking any interaction with the server, the service asks the native
Facebook application (through the library interface) for a valid access token
associated with the authenticated user. Such a valid token must be included
in every message exchanged with the server. The PeerShare Server uses the
Facebook graph API token debug tool to examine its validity by checking the
following:

– does the application identifier encoded inside the token correspond to the
PeerShare Facebook application identifier

– does the user identifier encoded inside the token correspond to the social
identifier included in the sent message

The former check protects the server against allowing a fake Facebook appli-
cation to modify data on the server. The latter one prevents other users from
modifying or deleting data that do not belong to them. Only if both condi-
tions are fulfilled, the PeerShare server proceeds with the request. Otherwise,
it responds to the sender with an authentication error.
User access control. User access control must guarantee that only eligible
users are able to obtain data from the PeerShare server and that only the user
that has created a particular data item can modify or delete it. Correct data
distribution is secured by the server that learns the data sharing policy from the
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request to store/update the data item. For each created/updated sharing policy,
the server interacts with the Facebook graph API to fetch the list of social user
IDs associated with the given policy. Having obtained such a list, the server
stores information about social IDs eligible to download a particular data item.

The second problem is resolved on the device side. Whenever a third party
application makes a request to modify or delete a particular data item, the
PeerShare service checks in the local database if the item has been created
by the user trying to modify it. If this is true, the service grants application
permission to edit or remove the item. Otherwise, it denies application access to
the given item.

Application access control. As multiple applications on one mobile device can
use the PeerShare system, there is a threat that a malicious application using
the system can modify or delete a data item that does not belong to it. In order
to protect against this threat, the PeerShare service has built-in application
level access control enforcement. When an application creates a new data item,
and wants to have it distributed through the PeerShare system, the service tries
to infer the platform specific calling application identifier and appends it to the
uploaded data. For the Android operating system, the application identifier is a
tuple of package name and developer public key that can be obtained through
the Binder interface. On subsequent requests to update/delete the data, the
service again obtains the identifier of the calling application and compares it
with the one associated with object as the creator. In the Android operating
system, this function is performed by verification whether package signatures
match. Unfortunately, some operating systems may not permit the service to
infer the calling application identifier. In such case, the caller must explicitly
specify the application identifier.

5.3 Minimizing the Need to Trust PeerShare Server

Since PeerShare Server has access to all the sensitive data, it needs to be trusted
by all participants. This is a rather strong assumption. There are two ways to
reduce the extent to which PeerShare Server needs to be trusted:
Use of trusted hardware: If PeerShare Server is equipped with a hard-
ware security module (HSM) like the Trusted Platform Module (TPM)1, then
PeerShare server database can be encrypted using a HSM-resident key. The
HSM will decrypt the plaintext and make it available to a process if and only
if the host computer is in the correct configuration (i.e., running the correct
PeerShare Sever software). An attacker will have to subvert PeerShare Server
process at runtime. If the client devices also have the hardware-based trusted
execution environment (like On-board Credentials [12], then the server HSM
can encrypt the sensitive data so that it is accesible only within a client TEE,
thereby not exposing it to the PeerShare Server at all.

1 http://www.trustedcomputinggroup.org/resources/tpm_main_specification

http://www.trustedcomputinggroup.org/resources/tpm_main_specification


164 M. Nagy, N. Asokan, and J. Ott

Application-specific PeerShare Server: Although we designed PeerShare in
such a way that multiple application developers could use the same PeerShare
Server, in practice, each application developer could decide to host her own inde-
pendent PeerShare Server. This would still allow the benefit of developer ease
of use because developers can re-use our PeerShare implementation, without
asking all developers to trust the same server.

6 Related Work

The concept of data sharing with social networks support is present also in other
works. The SocialKeys [14] project proposes the idea of distributing public keys
via social networks. PeerShare extends this concept to various types of data and
multiple applications.

Backes et al. [3] present a generic cryptographic framework that allows social
relations establishment and resource sharing with user anonymity, secrecy of re-
sources, privacy of social relations and access control secured. Unlike PeerShare
that uses social network specified sharing policies, it requires users to explicitly
establish social relationships with other users which makes it less intuitive for
users in real deployments.

Baden et al. have implemented Persona [4], a distributed social network with
distributed data storage. It provides data access control by employing a com-
bination of traditional public key cryptography and attribute-based encryption
(ABE) that involves more complex key management. Safebook [6] is the im-
plementation of the distributed social network that improves privacy protection
mechanisms in comparison to other existing social networks. Improved privacy
results from cooperation between users inside a peer-to-peer overlay network,
named matryoshka, and trust relations among users to achieve integrity and
privacy properties. Unlike concepts presented in these works, our goal is not to
build a new social network, but to make use of existing social networks, as one
of the requirements of the system is its deployability. Obviously, if any of these
social networks proves to be successful, we are interested in taking advantage of
their security and privacy mechanisms in PeerShare.

Jahid et al. have implemented DECENT [11] that is a decentralized social
network system providing confidentiality and integrity of data that due to cryp-
tographic mechanisms can be stored in untrusted nodes. Unlike our system, it
requires users to explicitly specify data sharing policy and build their social
relationships, thus it is more difficult to use in real life than PeerShare.

7 Status and Future Work

PeerShare has already been used by three different applications. We intend
to make it available to other application developers. We plan to extend the
framework to support the use of social networks other than Facebook and port
PeerShare client functionality to other mobile platforms.
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Abstract. In this work we investigate the matter of “secure control”
– a novel research direction capturing security objectives specific to In-
dustrial Control Systems (ICS). We provide an empirical analysis of the
well known Tennessee Eastman process control challenge problem to gain
insights into the behavior of a physical process when confronted with
cyber-physical attacks. In particular, we investigate the impact of in-
tegrity and DoS attacks on sensors which measure physical phenomena.
We also demonstrate how the results of process-aware security analysis
can be applied to improve process resilience to cyber-physical attacks.

Keywords: Cyber-physical attacks, Tennessee-Eastman process, simu-
lations, secure control.

1 Introduction

Advances in computing and networking have added new capabilities to physical
systems that could not be feasibly added before. This has led to the emergence
of engineered systems called cyber-physical systems: systems where the physical
world is measured and controlled thanks to modern advances in computation and
control. Aircrafts, robots, utilities, chemical and food plants and even modern
smartphones are the examples of such systems. In this paper our focus is on
process control systems (PCS).

Modernization of control systems has been motivated by plant operators’ de-
mands for better performance, easier maintenance, and more uptime. What used
to be a panel of relays is now an embedded computer, and what used to be a sim-
ple analog sensor is now a smart transmitter [17] with multiple wired and wireless
communication modes, self-diagnostic capabilities, and even a web-server with
an interactive GUI for device configuration and troubleshooting. While security
engineers try to limit the numbers of access points, helpful vendors are giving
more options on how to access sensors inserted into physical processes.

While this modernization is necessary for improving the efficiency of a process,
over the past decade many concerns have been raised about the vulnerabilities
in industrial control systems to both random cyber failures and security attacks.

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 166–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The primary focus of academia and industry has been on securing the communi-
cation infrastructure and hardening of control systems. There is a large body of
literature on how to adapt existing IT-security methods to the characteristic fea-
tures of the control domain. However modern malware for persistent attacks may
now be equipped with “trusted” certificates, travel in USB sticks and laptops of
“trusted” parties, carrying zero-days exploits, rootkits and propagate through
“trusted” security updates. It is becoming increasingly difficult to prevent, de-
tect and to halt these attacks based solely on technical measures deployed in the
cyber-layer.

To address the limitations of defending a system using only IT methods, a
new line of research has focused on understanding the adversary’s interactions
with the physical system. Analyzing the effects of attacks in the process control
domain is a growing area of research. Some experimental works [11], [5] were
conducted on the basis of a simplified model of the Tennessee Eastman (TE)
process [19]. In the closest work to ours, Yu-Lung Huang et al. [11] proposed
models of cyber attacks in control systems and evaluated physical and econom-
ical consequences of proposed attacks. We extend their results by analyzing the
full model (as opposed to the simplified one) of the TE process with the goal
of analyzing more realistic, larger-scale PCS with multiple control loops and
physical interdependencies. Another addition to work is scrutiny of timing pa-
rameters of the attacks. We also extended the analysis of integrity attacks to
less aggressive modifications of sensor readings to slow down process response
and to analyze process dynamic. Our simulation results do not coincide closely
with their as the simplified model of TE process is only moderately non lin-
ear, whereas the full TE model is highly non linear. Moreover the models follow
different control strategies. The impact of DoS attacks on network routers is
investigated by Chabukswar et al. [5]: in this work few sensors and actuators
at a time become inaccessible for the controller causing process changes from
negligible to drastic. In our work we provide further insights into the impact of
DoS attacks and their timing parameters. The effect of network parameters and
specific properties of control systems in the example of a Boiling Water Power
Plant is evaluated by Genge et al. [8]: they identify that speed of control valves
and task scheduling play an important role in designing processes resilient to
malicious actions.

2 Preliminaries

Addressing the challenges of securing an industrial process requires knowledge
about how the process is actually being managed with the help of actuators
and control laws, and an understanding of the security requirements specific to
process control.

2.1 Process control Fundamentals

In the process industry process refers to the methods of changing or refining raw
materials to create an end product. Process industries include (petro)chemical,
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(a) Single feedback control loop (b) Multi-variable control loop

Fig. 1. Types of control loops

food, water treatment, power and other industries. Control refers to the methods
that are used to control process variables when manufacturing a product. This is
done for three major reasons: (1) reducing variability; (2) increasing efficiency;
(3) ensuring safety. The first two points are important for plant economy. Re-
duced variability lowers operational costs and ensures consistent quality of the
end product. Efficiency refers to the accurate maintenance of optimal produc-
tion conditions to decrease the production bill. Precise control is important for
preventing runaway processes and ensuring safe operations.

The starting point in process engineering is deciding on a setpoint (SP) – the
desired value of a certain process parameter, e.g. a tank level L. Level L is called
measured variable and must be kept as close as possible to the setpoint by the
means of control methods. Level L might be in fact determined indirectly via
measuring two process variables (PV), in- and out-flows. If a level is measured
directly, measured and process variable are the same. Process variables are pro-
cessed by a controller containing a control algorithm based on a complex set
of equations. The controller calculates the offset between SP and PV and out-
puts an actionable manipulated value (MV) to the actuator to bring the process
closer to the SP. Such interactions form a basic feedback control loop as shown
in Fig. 1(a). In practice, control loops can be complex. More common are mul-
tivariable or advanced control loops in which each MV depends on two or more
of the measured variables (Fig. 1(b)). The strategies for holding a process at
setpoint are not trivial, and the interactions of numerous setpoints in the overall
process control plan can be subtle and complex. Process interactions may cause
loop interactions via hidden feedback control loops. This makes controller tuning
difficult and yields unstable loops.

2.2 Secure Control

The security goal in the traditional IT domain is the protection of information,
be it data in storage or in transit. The security goal in the realm of industrial
control systems is to protect the operations from intentional assaults so that,
in the words of Ross Anderson, “the electricity continues to come out of the
wall socket, regardless of the attempts of either Murphy or Satan to interrupt
the supply” [2]. In the language of process control it means ensuring process
survivability or if not possible – its graceful degradation.
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While preserving device-to-device data integrity is of concern, ensuring that
sensors faithfully capture process state (i.e., that the physical measurement is
represented faithfully) is even more important. This security requirement is
called veracity [10]. On one hand this property is crucial for state estimation al-
gorithms, based on which manipulated values are computed. On the other hand,
state estimation may help to identify implausible readings and by that improve
process resilience to sensor manipulation attacks. In ICS with hard real-time
requirements denial of service amounts to milliseconds. In some cases, process
data are only valid for a short time and become irrelevant if arriving too late.
The same applies to the scheduling of needed task actions. Therefore timeliness
must be protected and “stale” data should be detected.

3 Approach

Conducting analysis of the dynamic behavior of a chemical process under cyber-
attacks requires: (1) good knowledge of the process steady-state flow-sheet and
its operating conditions; (2) thorough understanding of process control configu-
ration; (3) defined attack models.

3.1 Process Modeling

The Tennessee Eastman (TE) challenge process [7] is a modified model of a real
plant-wide industrial process. The process produces two liquid (liq) products
from four gaseous (g) reactants involving two irreversible exothermic reactions:

A(g) + C(g) +D(g) → G(liq), Product 1,
A(g) + C(g) + E(g)→ H(liq), Product 2.

The process has five major operation units: the reactor, the product condenser,
a vapor-liquid separator, a recycle compressor and a product stripper as shown
in Fig. 2. The gaseous reactant and products are not specifically identified. Feed
C is not pure and consists of 48.5% A and 51% C. The gas phase reactions
are catalyzed by a substance dissolved in the liquid phase in the reactor. The
reactor is pressurized and relies on an internal cooling system to remove the heat
produced by the reactions. The products and the unreacted ingredients leave the
reactor in the vapor phase, pass through a cooler that condenses the products,
and from there to a vapor-liquid separator. Non-condensed components cycle
back to the reactor feed via a compressor. Condensed components are sent to a
stripping column that removes the remaining reactants. Products G and H exit
the stripper base and are separated in a downstream refining section, which is
not included in the problem statement. The byproducts and inerts are purged
from the system in the vapor phase using a vapor-liquid separator.

The system may be operated in six distinctive modes which are determined
by G/H mass ratios. Mode 1 is a base case with G/H = 50/50. The goal of
plant operation is to maintain desired production rate and product composition
within ±5mol% while keeping other variables within specified operational lim-
its. The process control goal is to minimize variability and absorb disturbances.
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Fig. 2. Tennessee Eastman test problem under control based on [18]

If the process exceeds the safety limits, it automatically shuts down. The initial
problem statement does not give recommendations on how the plant should be
controlled. Instead the authors specify a process flow sheet, steady state material
balance, operating conditions, possible types of plant disturbances and safety con-
straints. The control engineers are challenged to come up with their own control
strategies, e.g. [15], [21], [14]. The original TE process has more degrees of freedom
(valves) than necessary for control and the engineers are free to decide which ones
to engage. The resulting control structures are usually designed to meet a specific
control objective, e.g. optimal steady state, maximum rejection of process distur-
bances, ensuring on-demand production rate, adapting to an on-supply reactants
rate or a combination of few. Optimization of the control strategy is subject to
multiple constraints and an optimal solution is not always feasible.

For our empirical analysis we use the Matlab model of the TE process de-
veloped by Ricker [18]. It is implemented as a C-based MEX S-function with a
Simulink model. The plant operates in mode 1 with a default simulation time of
72 hours and a sampling frequency of 100 measurement samples per hour. The
model does not simulate start-up and shutdown procedures, instead its execution
starts with the predefined base values. The plant has eleven valves for manipula-
tion, and in total 41 measurements are involved in process monitoring. The pro-
posed control configuration consists of 18 proportional-integral (PI) controllers,
16 process measurements XMEAS{1;2;3;4;5;7;8;9;10;11;12;14;15;17;31;40} and 9
setpoints which form 8 multivariable control loops and 1 single feedback con-
trol loop as specified in Table 1. The resulting control structure is depicted in
Fig. 2. There are two auxiliary control loops for improved management of the
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Table 1. Valves and measured variables

MV Valve Variable 1 Variable 2

XMV(1) A-feed rate Recycling rate FI (stream 1)
XMV(2) D-feed rate %G in product FI (stream 2)
XMV(3) E-feed rate %G in product FI (stream 3)
XMV(4) C-feed rate %C in purge FI (stream 4)
XMV(5) Purge flow rate Reactor pressure FI (stream 9)
XMV(6) Separator underflow Separator level FI (stream 10)
XMV(7) Stripper underflow Stripper level FI (stream 11)
XMV(8) Condenser cooler Reactor level TI (stream 13)
XMV(9) Reactor cooler Reactor temperature —–
XMV(10) Compressor (recycle) Not used Not used
XMV(11) Steam feed rate Not used Not used

Table 2. Process operating constraints [7]

Normal operating limits Shutdown limits

Process variable Low limit High limit Low limit High limit

Reactor pressure none 2895 kPa none 3000 kPa
Reactor level 50% 100% 2.0m3 24.0m3

(11.8m3) (21.3m3)
Reactor temperature none 150◦C none 175◦C
Product separator level 30% 100% 1.0m3 12.0m3

(3.3m3) (9.0m3)
Stripper base level 30% 100% 1.0m3 8.0m3

(3.5m3) (6.6m3)

production rate. The first generates a contributory control value which is used in
the calculations of the XMV{1-7}. A second auxiliary loop is used to calculate
additional control values for D- and E-feed rates depending on the G mol% in
the product flow (stream 11).

All process measurements include Gaussian noise with standard deviation
typical of the measurement type. The full notation and units of process char-
acteristics can be found in [7]. From the attacker point of view, the most inter-
esting process information are the operation constraints presented in Table 2.
All 20 disturbances modes IDV{1-20} from the original problem statement are
implemented in the model and can be included in the simulation selectively. Dis-
turbances are an inevitable concern in plant operations. They enlarge variations
in the process dynamics, complicating control and increasing operating costs.
Modes IDV(6) and IDV(8) are the most difficult to handle. IDV(8) introduces
random variations in feed composition of the reactor feed (stream 4). As can be
seen in Fig. 3 it causes greater variability in reactor pressure Preac. However,
the process control scheme successfully rejects this type of disturbance so it does
not affect the production goals. In contrast, the disturbance IDV(6) that shuts
off the A feed cannot be absorbed and the process shuts down on high pressure
in less than 8 hours. Such control deficiencies are usually compensated by the
override controls (e.g. [21], [14]) which are not implemented in the model.
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Fig. 3. Reactor pressure with and without disturbances

3.2 Attack Modeling

The adversary’s goal is to cause tangible impact on the process, either on its
safety or on its economy. In the physical domain, the attacker can either tamper
with the sensor readings or modify the manipulated values issued by the con-
troller. In this work we limit our study to the analysis of sensor compromise. We
assume an adversary capable of either attacking sensors directly or being able to
subvert communication channels and forge messages with respect to the protocol
specification. Let Xi(t) be a measurement of sensor i at time t, where 0 ≤ t ≤ T ,
and T the duration of the simulation. The attack interval Ta is arbitrary and
is limited to the simulation run time. In our setting, we simulate manipulated
sensor readings Xa

i as follows:

Xa
i (t) =

{
Xi(t), for t /∈ Ta

X ′
i(t), for t ∈ Ta,

where X ′
i(t) is the modified reading.

Integrity attacks on process measurements involve forging sensor readings.
Multiple strategies can be applied to falsify a sensor reading. We will investigate
the case when the attacker claims measured physical phenomena as being too
low or too high to deceive the controller and to evoke harmful compensating
reaction. For example, claiming pressure in the reactor being too low will make
the controller take correcting steps to increase the pressure, which with time can
reach an unsafe boundary. To model this attack we first run the model without
any attack to determine the span of PV for each sensor in the presence of the
greatest disturbance, IDV(8). We then determine the boundary values for each
variable. As Xa

i (t) we use correspondingly:

X low
i (t) = min

t∈T
Xi(t) and Xhigh

i (t) = max
t∈T

Xi(t).

The rationale behind using values which are not drastically too low or too high
is to avoid rapid process shutdown due to exceeding of safety limits. This would
not allow us to observe the process dynamic under attack. However, a sensitivity
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analysis of each control loop to the magnitude of the manipulation is required
for a complete analysis. This includes scrutiny of loops under integrity attacks
which consider the full sensing range of a variable as was done in [11].

During a DoS attack sensor signals do not reach the controller. If the attack
starts at time ta, we have:

Xa
i (t) = Xi(ta − 1).

Translated into the real world scenario, the controller’s input register assigned
to storing measurements of a particular sensor will not be overwritten by a fresh
value during the next control cycle run as would happen in a normal case.

4 Experimental Results

One of the original applications of the TE test process is process diagnostic [7]:
testing and evaluation of process performance and reaction to new or unknown
conditions. We analyze its resilience to cyber-physical assaults. Following the
principle of “weakest link” we evaluate the impact of the attacks in the presence
of IDV(8). There are three metrics readily available to evaluate the result of
plant operations: product quality defined as G mol% in the product flow, operat-
ing costs and plant shutdown time (SDT) due to exceeding of safety constraints.
Each simulation run generates in total 53 plots: 41 XMEAS, 11 XMV and oper-
ating costs. Moreover a real-time production monitor is available. We scrutinized
the process for different types, times and durations of the attacks as well as for
different magnitudes of sensor signal manipulations. Below we present some char-
acteristic results to demonstrate how analyzing process reaction to intentional
manipulations can be used to improve the robustness of PCS.

4.1 Integrity Attacks

Our analysis shows that the sensitivity of control loops to integrity attacks varies
greatly. Attacks on certain sensors increase the variability of plant dynamic but
do not endanger plant operations safety. Attacks on other control loops lead to
shutdown with a SDT range from 20 minutes to more than 8 hours. The results
of the simulations are summarized in Table 3. This table gives only a notion
of control loop behavior under the attacks. A full evaluation would require a
thorough individual analysis of each control loop under different types and modes
of attack.

Impact on plant safety. Plant safety issues in general refer to two aspects. One
is process safety itself, to prevent unwanted or uncontrolled chemical reactions.
The other is equipment safety, which aims at preventing equipment failure or
breakage. An example would be preventing pressure in the reactor exceeding
safety limits to stave off reactor burst. There are 8 safety provisions implemented
in the model with predefined thresholds as specified in Table 2.

A chemical reactor is typically the heart of an industrial process and will
probably be a priority target for the adversary. A straightforward attack would
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Table 3. Simulation results of integrity attacks

XMEAS Sensor Attack Impact SDT

(1) A-feed rate Xlow High reactor pressure 3 h

Xhigh High variability –

(2) D-feed rate Xlow High stripper liquid level 4.5 h

Xhigh Low stripper liquid level 3.5 h

(3) E-feed rate Xlow High stripper liquid level 4.5 h
Xhigh Low stripper liquid level 2.5 h

(4) C-feed rate Xlow High reactor pressure 0.35 h

Xhigh High reactor pressure 0.9 h

(5) Recycle flow Xlow High reactor pressure 3.3 h

Xhigh High reactor pressure 6.5 h

(7) Reactor pressure Xlow High reactor pressure 8 h

Xhigh High operating costs –

(8) Reactor level Xlow Low separator liquid level 1.5 h

Xhigh High stripper liquid level 1.2 h

(9) Reactor temperature Xlow High reactor pressure 1.8 h
Xhigh High reactor pressure 0.3 h

(10) Purge rate Xlow High operating costs –

Xhigh High variability –

(11) Separator temperature Xlow High variability –

Xhigh High variability –

(12) Separator level Xlow High separator liquid level 6 h

Xhigh Low separator liquid level 3.5 h

(14) Separator underflow Xlow Low separator liquid level 7 h
Xhigh High stripper liquid level 6.5 h

(15) Stripper level Xlow High stripper liquid level 6 h
Xhigh Low stripper liquid level 5 h

(17) Stripper underflow Xlow Low stripper liquid level 1.1 h

Xhigh High stripper liquid level 1.2 h

(31) %C in purge Xlow High stripper liquid level 1.5 h

Xhigh High reactor pressure 6 h

(41) %G in product Xlow D- and E-feed variability –

Xhigh D- and E-feed variability –

be forging pressure sensor reading as P low
reac to provoke pressure rise. However, the

response to this attack has slow dynamics and and it takes 8 hours to succeed.
The attacker is also free to decide on the duration and frequency of her assault.
Let the attacker launch her attack for 2 hours and wait for 8 hours in a cyclic
fashion. We notice that the controller can recover the system state to the normal
pressure level within 3 hours (Fig. 4(a)). We then investigate the impact of more
frequent attacks on the pressure sensor (every hour). As can be seen in Fig. 4(b),
such a strategy is not helpful in achieving an unsafe pressure rise. In contrast, the
mean pressure level decreases. Although the illustrated timing attack strategies
were not optimal from the attacker’s point of view, timing parameters of the
attack are an important dimension for process resilience analysis.
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Fig. 4. Impact on integrity attack

To maximize the impact a more knowledgeable attacker might prefer to attack
a temperature sensor because the rate r of the reaction depends on temperature
T in an exponential fashion [14]:

r = Afe
−Ea/RT f(Ci).

A small increase in temperature causes an unproportionally big increase in pres-
sure. The TE process does not have an integrated heat exchange and the pres-
sure is controlled by the gas purge valve which is very small and therefore not
effective in controlling rapid pressure rises. Moreover reactor temperature usu-
ally requires a tight control with a proportional-integral-derivative (PID) con-
troller [14], whereas in the model all controllers are PI controllers.

It is apparent that Preac exhibits slow dynamic under one attack and fast
dynamic under another attack. There are many different factors which influence
the behavior of a physical phenomena and of a control loop under attack. Among
others are the kind of a relationship between the interdependent physical param-
eters and the way a physical phenomenon is being controlled, in particular, the
configuration of the control loop which includes the choice of the MV, type of
the control algorithm and tuning parameters of a controller (PI coefficients).
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Oscillation is a very undesirable process behavior and is a prominent symptom
of deteriorated control. Attack F low

sep causes an oscillating response throughout
the entire TE plant which eventually shuts down in 7.5 hours on low separator
liquid level (Fig. 4(c)). In the normal case the responsible controller should be
re-tuned to avoid oscillation. Howbeit it turned out that such process response
to the assault can be also beneficial. For example, attack Lhigh

sep also leads to a

shutdown on Llow
sep . However as can be seen in Fig. 4(d) in this case the level

decreases rectilinearly which significantly reduces SDT.
The results from Table 2 tell us nothing about the sensitivity of control loops

to the magnitude of the manipulation. One of the dimensions for analyzing the
process is measuring STD under the aggressive integrity attacks. In this case
readings of a sensor i are forged as boundary values of the complete sensing
range: Xmin

i and Xmax
i . The analyzed model exhibits most resilience to the

attacks on XMEAS{7;14;15}. However the simulations reveal that aggressive
attacks have no impact in case of tampering with XMEAS(7); slight impact
in case of XMEAS (15) and significant impact for XMEAS (14) leading to a
shutdown in 8 minutes.

Attacks on certain sensors have local effect and on others – plantwide. For
example, attack Fhigh

C has as a consequence shutdown on high reactor pressure

and attack Fhigh
E on low stripper liquid level. Fault propagation is usually un-

desired and especially worrisome for the cases with short SDT. In this case the
operator would have a limited time window for identifying the root cause of the
unwanted behavior and for taking corrective measures.

Attacks on three liquid levels (reactor, separator and liquid) and related sen-
sors exhibit consistent coupled effects. This is because levels are usually assessed
jointly during the individual design of their control loops [14]. If the attacker
is aware of the volumes of the tanks, she can launch an attack strategically to
maximize the impact. Reactor has the biggest volume (16m3) and claiming its
levels as being high or low will cause a chain effect of a high amplitude, which
separator (4.9m3) and stripper tanks (4.4m3) cannot accommodate.

Economic impact. The economical performance of a plant can be estimated
twofold. Firstly, via operating costs, expressed in $/h and calculated as [7]:

(purge costs)+(product costs)+(compressor costs)+(steam costs)=total costs.

Operational costs are primarily determined by the loss of raw materials. The
purge rate has the greatest impact on cost due to material losses in purge and
costs of running the compressor which cycles non-condensed components back
to the reactor feed. Any attacks which have an impact on the purge flow will
have a proportional impact on the production costs. Our analysis reveals that
those integrity attacks which cause great variation of process dynamic have an
impact on the hourly costs rate. However they just cause higher cost fluctuations
without influencing the mean value or compound costs.

Another economic indicator is product quality G mol% in the product flow.
No conducted attack caused an impact on product composition which could be
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Fig. 5. Economic impact of P high
react attack

considered as harmful. This indicates that the implemented control configura-
tion is very robust in keeping the required product composition. Therefore, we
introduced an additional metric – product throughput – to estimate the influence
of an attack on the final product output:

Fstripm
3/h×Gmol% = Gm3/h.

The most effective attack on plant economy is reporting P high
reac in order to

decrease reactor pressure. As shown in Fig. 5 the controller responds to such an
attack by opening the purge valve. This in turn causes a decrease of pressure to a
very low level. High losses in the purge will result in corresponding significantly
increased operation costs. Also, since the feed of the reactants will be regulated
to the lower rate, the output quantity of the final product will also decrease.

4.2 DoS Attacks

As discussed above, during the DoS attack on a sensor a controller stops receiv-
ing fresh measurements. As a result, the controller will keep generating control
commands based on the last received reading. In a certain sense a DoS attack is
similar to an integrity attack with the only difference that the adversary has no
direct influence on Xa

i (t). Instead an adversary can take advantage of the timing
parameters of an attack, such as its starting time ta and the duration Ta. Fig. 6
demonstrates the outcome of the DoS attacks on the reactor pressure sensor at
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Fig. 6. Random DoS attack on Preac, Ta=10 h

a random time with Ta=10 h. As can be observed, depending on ta the impact
varies from negligible to a shutdown. Apparently, the attacker has to develop
a strategy to determine the optimal attack time ta. Furthermore we performed
initial evaluation of how Ta influences the adversary’s chances to bring the plant
into an unsafe state. The simulations revealed that for Ta <10 h the chances are
rather low, whereas for Ta >15 h the chances are rather high.

4.3 Application of the Results

The analysis conducted helps do discover the weaknesses of a process design in
the presence of cyber attacks. Our initial exploratory research into a process can
be used for designing countermeasures as starting points to improve the security
posture of industrial processes.

Security aware control strategy. The design of any control system (as of any
engineering system) starts with the requirements. A viable control strategy not
only satisfies operational and economic goals but is ideally also able to absorb the
greatest anticipated disturbance. Although disturbances are considered as being
fortuitous events, long process operation history has accumulated substantial
experience about the types of possible operational disruptions. Results of the
process-aware security assessment of a plant can equally serve as an input to the
design of the control strategy.
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In practice, it is hardly possible to design a single control structure capable of
accommodating all operational objectives. Therefore often one or more alterna-
tive control strategies are developed in parallel to compensate for the weaknesses
of the other control configurations. This is called dynamic controllability. One
of the most widely applied techniques for alternative control is the usage of an
override controller [13] which can take command of a MV away from another
controller when otherwise the process would exceed some process or equipment
limit or constraint. Such selective control keeps the equipment running although
perhaps at a suboptimal level. Attack Llow

A is similar to the disturbance IDV(6)
from the TE challenge problem. No basic regulatory control strategy can success-
fully reject this disturbance. Therefore most of the developed control structures
are modified with overrides to handle this situation [21], [14]. The approach of
using overrides can be similarly applied to compensate for the other process
impairments caused by the cyber-attacks described above.

The value of classifying control loops according to their importance for plant
operations is also recognized by control engineers [14]. Based on the assessment
of process resilience to the attacks, sensors and control loops can be categorized
based on their impact on plant safety. Those that entail safety compromise in
minutes (e.g. attacks on Treac or FC) could be more closely monitored and
tightly controlled. Moreover, additional protective measures could be applied to
important sensors and controllers, e.g. anomaly detection techniques specific to
cyber-physical systems [16], [4].

Another approach to improve the survivability of physical processes under
cyber-attacks is resilience-aware network segmentation. As proved in [9] such
network design can significantly improve the tolerance period that would give
operator more time to intervene. This is a hybrid strategy when control and
network configurations can be beneficially considered jointly.

Human Response. Requirement for better human responses to abnormal sit-
uations is a recognized industrial problem [1]. Many safety accidents happen
because of the non-identification or late identification of process degradation as
well as because of wrong corrective actions. Operators could be trained to rec-
ognize abnormalities which might be caused by intentional manipulations (in
contrast to natural events) and to divert irregularities away from production- or
safety-critical to non critical variables. Results on control loops resilience to DoS
attacks can be used for intervention action, e.g. for temporary disconnection or
switching off of suspected equipment.

5 Attacks on Situational Awareness

Industrial process dynamic is monitored by operators via a Human Machine In-
terface (HMI) console around the clock. Upon observing an undesired process
behavior, an operator takes corrective measures to bring the process back into
its steady state. Moreover, if the operator attributes the disturbances as being
of unnatural causes, she can initiate an immediate incident investigation. Out of
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this considerations the attacker might prefer to hide the real field data from the
operator. Let the adversary’s goal be to raise the pressure in the reactor to an
unsafe limit without the operator’s awareness. One of the possibilities to achieve
this is to record steady state process data and replay them to the operator during
the attack. As a result, the operator loses situational awareness. This is one of
the most dangerous attacks on process control. If the attacker manages also to
manipulate the safety limit value or suppress the safety systems communication
link, the reactor can actually explode and injure personnel in its vicinity [3].

To model and to detect such type of attacks we have implemented an exper-
imental framework in the form of a hybrid process control environment as de-
picted in Fig. 7. It is based on the Siemens SIMATIC S7-1200+KTP400 Starter
Kit hardware and industrial protocol Modbus/TCP. We use the libmodbus li-
brary [12] to enable communication between the simulated process and the HMI.
The Programmable Logic Controller (PLC) polls selected PV to display them
in the HMI and forwards the setpoints to the process. Modbus protocol utilizes
Client-Server communication model. Therefore it is required to install Modbus
Server and Client on the PLC.

We implemented attacks on situational awareness through manipulation of
the PLC code. During the initial stage of the attack, the PLC records process
measurements during normal plant operations. When the attack begins, the PLC
sends stored data to the HMI whereas the real field data remains undisclosed.
To detect this we implemented an experimental IDS engine. We monitor data
flows between the process and the PLC and between the PLC and the HMI. Any
discrepancy in the process value between indicated data flows will indicate an
attack on data consistency. To watch over the specified data flows on one hand
we query the output registers of the PLC for the data which should be displayed
in the HMI. On the other hand we capture the traffic between the process and
the PLC. If an inconsistency in data is detected as shown in Fig. 7(b), an alarm
is generated by the Alarm Manager.
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6 Final Remarks and Future Work

Establishing control objectives is a first step in a plantwide control design pro-
cedure [14]. Therefore the requirements related to the security aspects of plant
operations should be determined upfront and included among the set of the
control goals.

Conducting process-aware cyber-risk assessment helps in discovering the weak-
nesses of process design in the presence of cyber attacks. However, examination
of the complete set of controllers under multiple types and modes of attacks is
an onerous task. Moreover, this activity will inevitably clash both with the usual
low availability of time and resources to perform such an analysis and with a lack
of expertises on how to recognize, locate and respond to the attacks. This area
of research still needs to be advanced from the process engineering standpoint.

Plant stability is another crucial performance characteristic with a direct im-
pact on the global plant bill. Attacks on certain sensors cause higher variability in
plant dynamic without challenging safety constraints. However such fluctuations
are highly undesirable for two reasons. Firstly, they increase movement of the
valves which not only wears out the equipment, but also introduces additional
disturbances. Secondly, they cause variations in the input and output streams of
the plant which in turn negatively affect interdependent up- and down-stream
operational units.

Operational targets and security requirements may conflict and have to be
considered in conjunction. For instance, it was shown that the optimal operating
steady state condition for Preac is as close as possible to the upper shutdown
limit of 3000kPa and for Lreac to its lower bound [20]. In this case the attacker
will be able to bring the system into an unsafe state quickly. To ensure secure
operations it would be desirable to maintain a sufficient safety margin. However,
maintaining a safety margin for Preac of at least 100 kPa is equivalent to a 5%
increase in cost [21].

The consequences of the attacks were not always predictable. For example,
manipulations of feed flow sensors provoke very diverse system reactions. Also
the time it takes to achieve the attack goal varies from a few minutes to a few
hours. The attacker would need to compromise different sensors if targeting plant
safety, operating costs or plant stability. Therefore attacking a sensor at random
might not help an attacker to achieve her goal at the first attempt. However,
conducting multiple attacks may raise suspicion. We believe that targeted attacks
are to proceed with espionage attacks, e.g. [6].

Future research will concentrate on subsequent experimental work on process
models to develop a systematic approach to cyber-security assessment of indus-
trial control systems. Further work remains to be done on the TE model: (1)
analyzing the impact of DoS attacks on the other sensors; (2) studying the im-
pact of the timing parameters of the attacks, in particular in case of DoS attacks.
Finally we would like to explore the opportunities of responding to attacks by
the means of process control, namely the dynamic reconfiguration of the process
control when confronted with abnormal behavior.
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Abstract. Femtocells are low-powered cellular base stations for mobile
telephone networks, meant for home use, but still operator managed.
They are an increasingly popular solution, with the number of femtocells
expected to outnumber the normal cell towers by Q1 of 2013 [1].

However, femtocells also introduce a number of security concerns. Sev-
eral earlier femtocells have been hacked to varying degree and analyzed.
Naturally, the industry has responded and tries to create more secure
femtocells.

We provide a first comprehensive analysis of the risks of attacks, given
a general femtocell model. This analysis results in two new attacks. We
then illustrate some of the dangers by successfully compromising a spe-
cific femtocell: the SignaalPlus Plug & Play, sold in the Netherlands by
Vodafone.

1 Introduction

In mobile telephony networks such as GSM, UMTS and EV-DO (an American
counterpart to UMTS), service is provided through many antennae that each
cover a geographic area. These areas are called cells and can range in size based
on the transmission power of the signal and the available bandwidth. Within
each cell the coverage is influenced differently by local propagation conditions
which can result in blind spots where signal reception is so poor that no service is
available. To solve this small cells can be created within these blind spots, with a
low power antenna that operates on a different frequency from its containing cell.

Small cells can have different sizes, which are usually subdivided into micro-
cell, nanocell and femtocell, from small to smallest. The normal, much larger,
cell size is referred to as macrocell. The distinction between the types of small
cells is not officially defined, but typically a microcell covers an area the size of
a shopping mall or a transportation hub, a nanocell covers a small business or
an office floor, and the femtocell a small house or several rooms [1].

Besides the coverage size there is a more important distinction between the
femtocell and other small cells. The microcells and nanocells are installed and
maintained by the provider and connect directly to the provider’s core network,
while the femtocell is a consumer-installed (and owned) device and connects to
the core network of the provider through the consumer’s broadband connection.
Naturally this introduces several new security risks for both provider and con-
sumer, since a low-cost device is now placed at the consumer’s home, which has

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 183–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



184 F. van den Broek and R. Wichers Schreur

the ability to act as an authentic cell tower and connects to the provider’s back
end over an untrusted channel.

A femtocell device is a small box with a power and Ethernet connector and
at least one antenna. Some of the femtocells have GPS onboard, to verify their
geographical location. All of them can listen to neighboring cells, in order to
run on a non-interfering frequency. Usually femtocells contain a dedicated chip
that is specifically made for femtocell devices. These chips consist of a base band
processor1, some cryptographic processor and a general purpose processor. All of
the femtocells analyzed so far run some lightweight form of the Linux operating
system.

The rest of this paper is structured as follows. Section 2 gives an overview of
femtocells within a cellular network. Section 3 gives an overview of the femtocell
security model we assume and the most likely attack vectors. In Section 4 we
discuss possible attacks offered by a compromised femtocell against the 3GPP
security goals for UMTS and LTE. A practical security analysis is presented in
Section 5 where we successfully compromise a modern femtocell (the Vodafone
SignaalPlus Plug & Play). Finally, we discuss our conclusions and some ideas
for future work.

Related Work. 3GPP, the standardization body for the GSM, UMTS and
LTE systems, has specified the use of femtocells within mobile telephony net-
works. Of these specifications 25-467 [2] and 33-320 [3] are the most interesting,
and respectively detail the architecture of and the security architecture of the
femtocell (called a Home NodeB or HNB).

Several books have been written on femtocells. “Femtocell Primer” [4] is a
very superficial introduction into femtocells, and focuses more on the economic
aspects of introducing femtocells. Two other books, “Femtocells: Technologies
and Deployment” [5] and “Femtocells: Design and Application” [6] cover fem-
tocells more extensively. They highlight all the technical difficulties in realizing
femtocells from an engineering standpoint. Both books contain a small section
on security, with only a broad overview of the subject.

Some publications analyze possible security problems that arise when femto-
cells are introduced in the network [7,8]. Both are theoretical analyses. Tyler et.
al [9] show the economic incentives of possible attackers to use a compromised
femtocell to DDoS a telecommunications network.

There have also been practical analyses of a physical femtocell device. Indeed
several off-the-shelf femtocells have been hacked with varying consequences. In
2010, a research group that calls itself THC (The Hackers Choice) managed to
gain root access to the Vodafone Sure Signal femtocell [10]. This proved a very
severe security break, based on an easy to guess root password, which allowed
interception of phone calls and allowed attackers to request the current session
keys form any handset, from the Vodafone back end. A Samsung Femtocell was
rooted by a group of researchers from Trustwave’s SpiderLabs in 2011 [11,12].

1 A dedicated processor for signal processing and real-time transmission operations.
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We could not find any publications showing the attack capabilities they gained
with getting root access to this femtocell.

Researchers from the Technical University of Berlin [13] analyzed the secu-
rity of a femtocell by Ubiquisys. They manage to break its security and run
arbitrary code on the femtocell, which also included the functionality to request
session keys for connected phones. They conclude with a rather brief list of pos-
sible attacks against the femtocell and the core network with their compromised
femtocell. A second publication by the same group [14] presents the method
used to break this femtocell and shows that this break compromises all security
requirements.

Theoretical and practical research are combined in a publication from re-
searchers in Birmingham together with the group from TU Berlin [15]. In this
work they formally verified the authentication in the UMTS and LTE systems
using ProVerif, discovered an attack on location privacy, and proved the feasi-
bility of this attack by reprogramming a femtocell.

2 Femtocell Overview

The femtocell idea can be applied to many different cellular communication
networks, such as UMTS, LTE and EV-DO. Since each of these has its own
terminology for network entities, each network also has their own names for
the femtocell and the extra network components required for femtocells. For in-
stance, in UMTS the cell towers are called NodeB, so the femtocell is called HNB
(Home NodeB). In LTE, on the other hand, femtocells are called HeNB (Home
eNodeB). All these different acronyms can make the different specifications diffi-
cult to read. Figure 1 shows a femtocell inside a UMTS network. Here a UE (User
Equipment, the handset) contains a SIM card and connects to the RAN (Radio
Access Network) either via a cell tower, or through a femtocell called a HNB.
For a user who connects to the femtocell, the experience should be indiscernible
from connecting to regular cell towers. So a running session should be seamlessly
handed-over between the HNB and the NodeBs, dependent on signal strength.
From the RAN a connection is made to the Core Network of a provider. The
SeGW (Security Gateway) is the entity in the provider’s core network where
the encrypted connection from the HNB over the untrusted Internet connection
terminates. The HNB-GW (HNB Gateway) then routes the decrypted traffic
inside the provider’s core network. The HNB-GW can be combined with the
SeGW in a single entity. Communication can be routed to the HSS (Home Sub-
scriber Server), which primarily handles the authentication of SIM2 cards. There
is also a HNB Management Server (HMS), which manages practicalities such as
firmware updates and the operational frequencies. The SGSN is also shown as a
part of the core network in Figure 1, but this is merely there for completeness

2 In GSM terminology, SIM card can mean either the physical smart card or the
application which runs on it. For UMTS the physical smart card is called a UICC
and the application is called USIM. For simplicity we only speak of SIM cards here.
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Fig. 1. Diagram of a UMTS network that incorporates a femtocell

Fig. 2. Tunneled communication between handset and core network over a femtocell

sake, as the cell tower’s equivalent of the femtocell’s gateway and not important
for any of the further discussion.

Again different terminology is used by the Small Cell Forum, a consortium of
industry players that advocate the use of femtocells — they actually started out
under the name Femtocell Forum. This terminology is also used in most books on
femtocells and is meant as a communication network independent generalization
of the femtocell idea. They mostly describe the same network entities under a
different name. Here a FAP (Femto Access Point) is used to designate the actual
femtocell radio unit. The Femtocell gateway is often combined with the security
gateway and called the FGW. The HMS is now called a FMS (Femto Manage-
ment Server) and the HSS is replaced by a more generic AAA (Authentication,
Authorization and Accounting) server.

In the rest of this paper we will attempt to avoid any specific terminology,
instead we refer simply to femtocell and handset. However in cases where a
specific term is needed we will use the 3GPP terminology.

3 The Security Model

In earlier cellular systems, such as GSM, the handsets did not authenticate cell
towers. This allowed attackers to impersonate these cell towers. Modern cellular
networks protect against this attack through mutual authentication between
handset and network. The network creates a fresh authentication token based
on a sequence number and a shared symmetric key (stored in the provider’s core
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network and inside the subscriber’s SIM) for each authentication. Handsets will
only connect to cell towers that transmit the correct authentication token. So
the provider’s core network is authenticated and the handset can assume the cell
tower is genuine since it was able to obtain this token. The handset then also
responds to a challenge sent by the network, so it to can be authenticated by
the network.

A femtocell has a wireless connection to a handset and even before the initial
authentication some communication is needed. A femtocell is a device that is sup-
posed to function as a small cell tower and is therefore able to relay the authen-
tication tokens from the core network. Both the connection into the provider’s
core network and the connection a femtocell makes to handsets can be inter-
esting attack vectors that might threaten the cellular network’s security model.
Therefore there are several security features advised for femtocells in several
specifications [2,3,16].

This section gives an overview on the security model of a femtocell.

3.1 The Femtocell Security Model

Figures 1 and 2 give an overview of the femtocell inside a cellular network.
The communication between the femtocell and the core network of the provider
needs to be tunneled through an authenticated and encrypted connection. The
specifications advice the use of an IPSEC connection between the femtocell and
the SeGW, for instance by using IKEv2, which provides authentication based
on PKI certificates and integrity and confidentiality on an IP level.

IKEv2 has been formally analyzed and shown to be a secure protocol [17]
provided both entities keep their secret key hidden. Naturally the keys inside
the femtocell need to be stored securely, for example by placing them on a smart
card or inside a TPM (Trusted Platform Module).

Figure 1 shows that the femtocell can contact the management server directly
or through the secure tunnel. Both scenarios are presented in the specifications,
although the preferred approach is to use the SeGW. For this paper we assume
network designs where the management server is placed behind the SeGW and
all communication between the management server and the femtocell is thus
protected by the IPSEC tunnel. This design seems to make more sense and is
also the only behavior we have encountered in the modern femtocells we have
investigated.

All the communication between a femtocell and the core network are routed
through the IPSEC tunnel. This communication consists of signaling information
and user data. Most of these are again inside their own secure tunnel between
handset and the core network.

A femtocell has to pass on the authentication messages from both the handset
and the core network unaltered for the handset to connect to the femtocell. In
this process the session keys between handset and core network are established,
which are used to create the secure tunnel between handset and core network (the
inner tunnel in Figure 2). These session keys can not be computed or retrieved
by the femtocell.
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It is possible to design a femtocell in such a way that it also stores the session
keys for the secure wireless tunnel. This would seem like a needlessly insecure
option, but it does provide some usability benefits, since Internet traffic can then
immediately be routed onto the Internet from the user’s router, instead of via
the provider’s back end. This feature is referred to as local break-out. We will
use the term “local break-out” to refer to a femtocell that was designed with the
possibility to store or request the user session keys for the secure wireless tunnel,
regardless of the implementation of the local break-out feature. Our practical
experiments were on a femtocell model that did not use local break-out, so we
assume a model in which femtocells do not support this feature.

Femtocells can be run in two different modes: open and closed. These modes
refer to the femtocell’s behavior with respect to handsets that do not belong to
the consumer. In open mode, the femtocell allows any handset (usually only from
subscribers to the same provider) to camp on it. In most cases the subscriber who
bought the femtocell can manage the femtocells operating mode and its CSG.
The 3GPP specifications allow for two types of femtocells, a CSG femtocell and
a non-CSG femtocell [2]. The difference between these femtocells is whether the
femtocell or the core network checks if a handset is a member of the CSG. A CSG
femtocell maintains the Access Control List of identities (IMSIs) allowed within
the CSG, while a non-CSG femtocell is oblivious to the existence of a CSG, all
the CSG management is then handled in the core network of the provider.

3.2 Attack Vectors

Assuming an attacker has no access to the core network of the provider, the
addition of a femtocell into a telco network introduces three new entry points
for an attack: the wireless interface, a direct attack on the femtocell device, and
an attack on the Internet back haul connection.

The first, the wireless interface, is the same as the standard wireless cellular
interface, and so femtocells introduce no new threats compared to the normal
wireless interface of the telco network.

The last, the untrusted Internet back haul, delivers a serious threat to the
overall security of a telco network. This is mitigated by using a secure IPSEC
tunnel, which provides authenticity, integrity and confidentiality.

This makes a direct attack on the femtocell the most viable entry point for
an attack, especially since the femtocell also stores the secrets that are needed
to set up the IPSEC tunnel.

4 Theoretical Security Analysis of Femtocells without
Local Break-Out

This section looks at possible attacks with a compromised femtocell against the
security model of UMTS and LTE. So the weaknesses of GSM and fallback
attacks to GSM are not considered. With a compromised femtocell we mean
a femtocell on which a hacker can execute arbitrary code. This scenario seems
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likely, since a femtocell is a reasonably low-cost device that is placed in the care
of consumers for an extended period of time and which includes a lot of software
on a standard execution platform, running Linux. The hacker might not be able
to learn the securely stored secrets, e.g. those on a smart card or in a TPM, but
he can access the functionality these provide, like signing or encrypting.

We assume a femtocell design that does not receive any user session keys from
the provider’s core network. So we assume a femtocell without local break-out,
which means the attacker is able to listen to, and influence, messages inside
the IPSEC tunnel, but not to messages inside the secure wireless tunnel, nor is
he able to influence any decisions made in the provider’s core network. This is
the main difference with most other analyses [7,14,13,10]. We believe it is more
realistic to assume a femtocell without local break-out, since the femtocell we
investigated does not support it and it seems the most sensible design choice, se-
curity wise. Though certainly femtocells with local break-out exist [10,14], which
are therefore more interesting targets for attackers, it does not seem unreason-
able to assume these devices will be phased out in the future.

The 3GPP standardization organization has specified several security goals for
the UMTS and LTE cellular systems [16,18] which expand the security goals that
were stated for GSM [19]. We will now see what the impact of a compromised
femtocell is on all the goals that could conceivably be influenced by femtocells.
In some cases this will add new attacks that were previously impossible. In
other cases an already existing attack that is currently hard to perform due to
the cost of implementing UMTS/LTE signal processing, could be made easier
to implement with a compromised femtocell, because it already handles all the
signal processing out of the box. This effectively means the introductions of
femtocells can lower the costs of an attack.

User Data Confidentiality and Integrity. These two security goals concern
the confidentiality and integrity of user data against eavesdroppers and active
attackers. Lawful interception is an exception on user data confidentiality.

None of them are weakened by a compromised femtocell, when we assume
that no local break-out is implemented in the femtocell, as there is a secure
tunnel from the handset to the provider’s core network, which is authenticated
and provides both confidentiality and integrity. It is infeasible for a compro-
mised femtocell to decrypt or compromise this traffic (assuming strong enough
encryption and MACs are used, such as the KASUMI cipher in UMTS). It is
also impossible to influence the encryption choice of the network.

Network Authentication. This security goal was specifically added for UMTS
security to mitigate an important weakness of GSM. It aims to protect sub-
scribers from fake cell towers through authentication of the network and is un-
broken by a compromised femtocell.

This authentication is done by the so-called UMTS-AKA protocol. The net-
work provides a handset with cryptographic proof of knowledge of a shared secret
key and a sequence number to prevent retransmission attacks. The UMTS-AKA
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protocol was formally analyzed using enhanced BAN logic and shown to provide
both authentication and confidentiality [17].

The femtocell never learns the secret key shared between handset (more specif-
ically SIM card) and network and is as such unable to fake a connection to the
real network. Retransmission of an authentication token is infeasible because of
the sequence number. When a correct UMTS-AKA run finishes, handset and
network communicate through a secure tunnel. This makes it impossible for a
compromised femtocell to hijack the session without local break-out.

Subscriber Identity Authentication. Subscriber identity authentication is
meant to protect the network against unauthorized use by ensuring that the
subscriber identity transmitted to the provider is the one claimed.

This security goal is ensured through the mutual authentication of handset
and core network. This mutual authentication uses the UMTS-AKA protocol,
which was formally analyzed using enhanced BAN logic, and shown to provide
both authentication and confidentiality [17]. The authentication itself does not
happen on the femtocell, but inside the provider’s core network, so insider at-
tacks, such as swapping the authentication tokens inside the network [20], are
not feasible from a femtocell without local break-out.

So attacks need to circumvent the UMTS-AKA protocol. A possibility is to
place an emergency call at a femtocell and immediately place another call af-
terwards. An emergency call creates an unauthenticated radiolink, and this link
is kept open for the second call. This results in theft of service with a possibly
spoofed subscriber identity. However, this threat is detectable by the core net-
work and as such this risk is accepted in the specifications [3]. This attack does
not require a compromised femtocell, but could be more easily realized with a
compromised femtocell. Due to the detectability the impact is probably small.

Subscriber Identity Confidentiality. Subscriber identity confidentiality
comes down to the secrecy of the IMSI number from eavesdroppers and ac-
tive attackers. This secrecy is already problematic in current networks due to an
identity request procedure, which causes the handset to respond with its IMSI
in plaintext. So, this attack — often referred to as an IMSI catcher attack —
is not introduced by a compromised femtocell, though a compromised femtocell
does make the execution of an IMSI-catcher attack a lot easier [14].

The specifications also explicitly state that there should not be any relation
between the IMSI number and the subscriber’s phone number, other than in
a database in the provider’s back-end. The check whether a handset (or, more
accurately, a SIM card) belongs to the CSG— the Closed Subscribers Group, dis-
cussed in Section 3.1 — can be made inside the femtocell or within the provider’s
core network. In the former case a compromised femtocell can uncover the IMSI-
phone number relation by adding phone numbers to the CSG, which is standard
functionality available to the femtocell owner. The phone numbers need to be
translated to IMSIs by the core network and subsequently stored in a CSG fem-
tocell, where they can be uncovered by an attacker. This attack against the
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subscriber identity confidentiality is more effective than IMSI-catcher attacks,
because victims do not need to be connected to, or even near, the attacker. As
far as we can tell, this IMSI-harvest attack is a new attack, with a higher impact
than other attacks against subscriber identity confidentiality.

Signaling Confidentiality. The signaling messages between handset and net-
work should remain confidential. Since we assume a femtocell without local
break-out, only the signaling that is transmitted outside of the user session
tunnel is subject to confidentiality breaches. Since this concerns all unencrypted
messages on the wireless link, no new weaknesses are introduced by a compro-
mised femtocell, although some attacks are easier to implement with one.

The most prominent attack here is IMSI catching, which is detailed under
the security goal Subscriber identity confidentiality. Another attack vector lies
in the paging channel. Handsets listen to this channel to see if they have incom-
ing transmissions, by looking for occurrences of their IMSI or, more frequently,
their TMSI (a temporary pseudonym for their IMSI). This could lead to a traffic
analysis where all incoming transmissions for subscribers connected to a com-
promised femtocell can be revealed.

Signaling Integrity. An attacker should not be able to alter signalling messages
between handset and network. A compromised femtocell introduces the attack
that makes it possible to alter unencrypted signallng messages.

The user session tunnel guarantees integrity of messages, so any attacks
against signaling integrity, have to be made on untunneled signaling. Attacks
against signaling integrity can lead to DoS attacks, which are discussed in the
section on Availability shown below. Other possible attacks are to fake paging
messages to handsets — which cause a handset to indicate incoming transmis-
sions, when there are none — or abuse of the broadcast messages — such as fake
alert messages of the Public Warning System (PWS) [21].

Subscriber Location Privacy and Untraceability. The current or earlier
location of a subscriber should not be derivable from transmissions on the air
interface.

The recent location privacy attack from Birmingham [15] unveiled a weakness
in the UMTS protocol that can be used to break subscriber location privacy. In
short, cell towers send an authentication request message to a mobile phone. This
message contains both a proof that the network knows the SIM card’s secret key
and a sequence number needed for freshness. The mobile phone responds with
an error message if the proof of knowledge of the secret key is incorrect, or with
a different error message if the sequence number is incorrect. So by replaying
any, earlier recorded, correct authentication request message for a specific phone,
an attacker can see if the target phone is in his current cell.

Their attack was implemented on a femtocell as a proof-of-concept. The im-
plementation showed this attack is indeed viable from any 3G cell tower ranging
from femtocell to macrocell.
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This attack is also viable from a compromised femtocell without local break-
out, since the correct authentication request messages are sent plain text from
the provider’s core network, as no session key is yet established, and can always
be replayed without access to the session secrets.

Availability. Attacks against availability, commonly known as DoS, are con-
sidered in the UMTS/LTE specifications [22], but availability is not officially
stated as security goal [16,18]. DoS attacks performed from a femtocell can be
subdivided into two categories: DoS attacks towards the subscriber and DoS
attacks towards the provider.

DoS attacks towards the subscriber are trivially possible by blocking any
incoming or outgoing data transmissions on a subscriber camping on a compro-
mised femtocell. Another method to perform a DoS attack is to send malformed
packages to the handsets, which attempt to compromise their base-band stack.
This could be done at very low layers of the protocol (for example by changing
something in the waveforms), below the layer with the integrity checks of the se-
cure tunnel, or by attacking all the layers in the untunneled signaling messages,
such as the broadcast and paging messages. This process of creating malformed
packets is called fuzzing. To our knowledge this attack has not been attempted
on UMTS base band stacks. However, several fuzzing attacks against GSM have
shown that older (GSM) base band stacks are vulnerable to this [23].

Another DoS attack that was possible with earlier femtocells [24,14], is no
longer possible on a femtocell without local break-out. In this attack the IMSI
detach message of a camped handset is faked. This will cause the network to
assume a phone has been switched off and therefore hold all inbound transmis-
sions to this handset. However, this attack only works as long as a handset is
connected to the compromised femtocell, and the femtocell needs local break-out
to perform it.

DoS attacks towards the provider’s core network also seem possible. The most
obvious point would be to attack the SeGW, since this entity sets up the IPSEC
connections, and therefore needs to do many calculations in order to send and
verify received cryptographic messages. If many attacking machines attempt to
set up an IPSEC connection with the SeGW it will get overloaded and the con-
nections between the SeGW and genuine femtocells will suffer. An attacker would
not need to compromise a femtocell for this, though access to the secrets needed
to set up the IPSEC tunnel can make this attack more effective, by causing
more computations in the SeGW. Whether it is possible to DoS other entities
in the provider’s core network, such as the AAA/HSS, is hard to predict. As we
discussed, there have been several successful fuzzing attacks against handsets.
So it would seem logical to assume that the base band stack on network equip-
ment is also vulnerable when handling packets just outside of the specifications.
Some attacks against the core network were found by a private security company
[25], which seems to support this assumption, but it remains impossible to test
without access to a test network or by possibly harming the real network.
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5 Practical Security Analysis of the Vodafone Plug&Play
Femtocell

The femtocell itself needs to be a hardened device, since it contains credentials
to authenticate to the provider’s core network and is placed at the subscriber’s
home, but it should still be under the management and control of the provider.
For a practical security analysis on a modern femtocell we looked at the Voda-
fone SignaalPlus Plug&Play, the first commercially available femtocell in The
Netherlands, available for 80 euros. We first give a high level overview of our
attack and discuss its nett effect. We then provide the details for the interested
reader.

Overview of the Attack. We were able to read out the unencrypted memory
of the femtocell, which provided all the secrets needed for our attack. It proved
possible to reboot the femtocell in an insecure recovery state, by sending a com-
mand over the ethernet connection on a TCP port. The firewall that runs on
the femtocell only opens up this port after a secret port-knocking sequence is
completed. Once in recovery mode the femtocell has SSH enabled and attempts
to retrieve a file via a tftp session to a local network address, which it then
executes. We provided the femtocell with a file that gave us a root login on its
SSH prompt.

The recovery mode of the femtocell runs a different Linux version than the
normal mode. From the recovery kernel we can mount all the other partitions,
but we cannot get the femtocell into operation, since most program won’t run
form the recovery kernel version. So getting the femtocell in operation would
require rewriting most of the binaries for this specific kernel version. Also, this
implementation would invariably need to be tested, which could result in some
non standard behavior that might be observable inside the Vodafone back end.

However, we were able to compile programs that run on the femtocell in
recoverymode. This means we can run arbitrary code on this femtocell, in essence
this breaks the security model as detailed in Section 4.

The Details. We first attempted attacks that were successful on older femtocell
models (summarized in Table 1):

Table 1. Overview of successful attacks on femtocells; the last entry is the femtocell
we attack in this paper

Vendor Type Weakness reference

1 Sagemcom Vodafone SureSignal Guessable rootpw [10]
2 Samsung Verizon SCS-24UC4

& SCS-2U01
& Sprint Airave

Adjustable boot loader [12,11]

3 Ubiquisys SFR Home 3G Insecure update procedure [13,14,15]
4 Sagemcom Vodafone SignaalPlus Plug&Play Insecure recovery mode
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Fig. 3. The Vodafone SignaalPlus Plug&Play femtocell

1. There was no SSH running on our femtocell, so easy guessable root passwords
where out.

2. Researchers looked for the differences between the source code made avail-
able by Samsung3, to which they were obliged under GPL, and the stock open
source versions. They found a key that allowed them to enter the boot loader’s
menu via the serial port. In our case the femtocell also uses GPL code, but the
code placed online by Vodafone was not the same as the code that runs on the
device (which we could uncover by dumping the memory chip). Although this
is a clear violation of the GPL license, it did hinder our efforts.

3. Holding the reset button does not prompt our femtocell to connect to an
insecure update server, like the Ubiquisys did.

So, all previous attacks failed. The Vodafone SignaalPlus Plug&Play, shown in
Figure 3, is manufactured by Sagemcom. Inside the casing (which can be removed
without any physical counter measures) there are two connected PCBs, with a
Percello 6000 chip and a flash memory chip. The JTAG connectors are logically
disabled4, but there are active UART connectors that show a console log during
the boot sequence.

The Percello 6000 chip has a built-in TPM that presumably contains the
secrets needed to set up the IPSEC tunnel. The boot logs also show that the
integrity of the code which runs on the femtocell is verified: the hashes of some
files are compared with signed hashes from the TPM.

The data on the flash memory chip is unencrypted and stored in an UBI format
and is divided in several volumes that we were able to dump through direct access
to the memory chip. Nearly every volume needed for normal operation has an
exact duplicate labeled either with an A or B post-fix, which seems built-in
redundancy (for instance in case an update fails and corrupts the file system).
The other partitions also have an exact duplicate, but now with a BKP postfix.
Only the recovery partition has no duplicate.

3 The source code was made available via the webpage
http://www.samsung.com/global/business/telecommunication-systems/

resource/opensource/femtocell.html
4 JTAG (Joint Test Action Group) is an industry standard for debugging access to
embedded processors and printed circuit boards.

http://www.samsung.com/global/business/telecommunication-systems/
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The femtocell runs a firewall that blocks most ports. However, a port-knocking
daemon also runs from the RFS A partition. We set up the femtocell on an
internal network, without outgoing Internet connection. On this internal network
we ran our own DHCP server and DNS gateway. After sending packages to the
femtocell in the order of the porting-knocking sequence, the final port opened in
the firewall for a TCP connection. Reverse engineering the binary that listens to
this newly opened port revealed two commands: “reboot recovery” and “switch
bank”. After the command “switch bank” was sent to the newly opened port,
the femtocell boots from the B partitions (or back from the A partitions). More
interestingly the “reboot recovery” command causes the femtocell to boot into
a recovery mode.

A trace from the WireShark network protocol analyzer showed that in recovery
mode the femtocell attempts establish a tftp session to the fixed IP address
192.168.1.1 and requests a file called femto3xx/originalsin. The LINUX R
volume contains the recovery kernel, which is booted in recovery mode, and
a compressed recovery file system. This filesystem contains a file adam that is
called immediately after the boot procedure. This file proved to be a simple
script in the execline syntax that tries to tftp the file femto3xx/originalsin

into a temporary file eve. This eve file then has the executable bit set and is
executed. Since adam runs with root privileges, the attack file that we offer for
the tftp session can put our public key in the SSH authorized keys file of the
root account. This gives us root access through SSH on the recovery mode of
the femtocell.

We were able to replicate the attack on multiple femtocell devices of the same
version. Through the shadow files we found that the root password is the same
for every device we gained access to. Running John the Ripper on the root
password hash yielded no results.

Using a MIPS compiler we can compile programs that run onto the femtocell,
and this gives us arbitrary code execution on the femtocell.

6 Future Work

A compromised femtocell without local break-out offers some attack possibilities
discussed in Section 4, which should be examined further. Most prominently
these are the integrity attacks against the untunneled signaling messages that
could offer up new attacks. Also, a compromised femtocell can make fuzzing
attacks over UMTS protocols against handsets possible, which to our knowledge
have not been attempted before.

We also see some ways to improve our attack against the Vodafone SignaalPlus
Plug&Play femtocell. It might be possible to reactivate the JTAG connectors.
This would allow a degree of control on the processor that our current attack
does not provide.

Our attack could also be extended in using the TPM as an oracle, in order
to analyze the data sent through the IPSEC tunnel which are not part of the
3G traffic, so all the management data. We are able to execute arbitrary code
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on the femtocell, which makes this approach possible, but in the interest of time
we were unable to perform this attack.

7 Conclusion

We have provided the first comprehensive security analysis of a femtocell with-
out local break-out in Section 4. We have shown that a compromised femtocell
enables attacks that directly impact several security goals:

– Subscriber identity confidentiality
– Signaling integrity
– Availability

Several attacks already exist without a compromised femtocell, but we argue that
some of these are much easier to exploit with the use of a compromised femtocell.
This resulted in easier implementation of attacks against several security goals:

– Subscriber identity authentication
– Subscriber identity confidentiality
– Signaling confidentiality
– Availability

Several attacks using older model femtocells with local break-out, are not possi-
ble in our model of a femtocell without local break-out. Of these, the eavesdrop
attack on subscriber data probably has the most impact. So, the security of a
cellular network with femtocells is improved when the femtocells do not support
local break-out; in essence the provider places less trust in a femtocell.

Our analysis resulted in two new attacks, which to our knowledge were not
published earlier: (i) the IMSI-harvest attack discussed in the section on Sub-
scriber identity confidentiality (Page 190) and (ii) fake Public Warning System
messages, discussed in the section on Signaling integrity (Page 191).

We also show a practical attack on a modern femtocell without local break-
out. A dump of the code of the femtocell enabled us to learn the port-knocking
sequence that allows the femtocell to go into an insecure recovery mode, which
retrieves a file and executes it. With a couple of days of effort, we were able to
gain root access to this device and able to execute arbitrary code on it. We gain
fewer capabilities than previous hacks of older femtocells (which did implement
local break-out). Our femtocell was also secured against earlier known attacks.

We made some interesting observations while examining the femtocell. First
of all, in accordance with the GPL, Vodafone provides a link to source code.
However, the provided source code is not the code that actually runs on the
femtocell. It appears to be code meant for an older version of different hardware
by Alcatel-Lucent, instead of the current version by Sagemcom. This is clearly a
violation of the GPL and it forced us to dump the contents of the memory chip
for analysis.

Secondly, it seems strange to disable SSH access, but to allow access to the
femtocell through the secrecy of a port-knocking sequence, which is poor security,
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since the secret sequence cannot be stored securely. However, the benefit of the
port-knocking defense is that this will only work locally, since most devices will
be placed in a NAT environment in a subscriber’s home, so the router would
already block most ports. SSH on the other hand might be accessible over the
Internet. This would have been especially worrying, since we found that all
devices of this type we bought had the same root password.

Both our theoretical and practical analysis suggest the security of femtocells is
improving. None of the weaknesses from earlier models were present in the new
femtocell. Though the main improvement is that the providers place less trust in
the femtocell devices, because the femtocells do not provide local-breakout. One
should always assume that a femtocell will eventually fall under control of an
attacker, so the less trust that is placed in the femtocell, the better. Femtocells
without local break-out are a definite improvement, as are femtocells that do
not check the membership of the closed subscribers group themselves.

However, femtocells with local break-out are still available on the market
and as long as these can connect to the core network, femtocells without local
break-out add little security. Even with these femtocells without local break-out
some attacks remain possible when a femtocell gets compromised, though these
attacks typically have a lower impact.

Responsible Disclosure and Acknowledgements. We informed Vodafone
Netherlands of our findings. They informed us that recent models of their femto
cell do not expose the recovery mode. We could confirm that our attack indeed
no longer works on these models.

Thanks to Joeri de Ruiter and Roel Verdult for their assistance in the practical
security analysis.
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Abstract. Building automation systems are becoming increasingly common-
place in modern cities, thanks to the advantages they bring in terms of power
efficiency and ease of management. Typically, they are connected to consumer
grade platforms, to perform monitoring and management actions via a proper IP
gateway, possibly from a remote location. In this work, we analyze the direct
threats to the building automation network domain, considering an attacker able
to eavesdrop or modify arbitrarily the packets. We detail the threat model under
consideration, identifying the security desiderata and propose a secure communi-
cation protocol, together with a new distributed key agreement scheme. We ana-
lyze the feasibility of their implementation and the overhead in terms of compu-
tation and communication costs, using the KNX network standard as case study.

1 Introduction

The popularity of home and building automation systems has been increasing signifi-
cantly in recent years due to the advantageous cost-benefit trade-offs provided by ICT
solutions. Also, the concept of the “Internet of Things” has tied in closely with the
general idea of improving interaction among devices typically found in an indoor habi-
tat [25]. Currently, these systems range from simple home automation networks, with
only a handful of devices for the remote control of appliances or features, up to more
complex Building Automation Systems (BAS) made of large installations with thou-
sands of devices, with varying degrees of intelligence and automation as, f.i., in office
buildings, hospitals or warehouses. The fundamental driver of BASs is the increased
user comfort and the reduction of energy consumption of the whole building due to the
optimization of the services management [16]. Usually, they connect building actuators
and sensors to data networks for controlling heating, ventilation, and air-conditioning
(HVAC) systems, lighting, and shading. This allows abnormal or faulty conditions to be
localized and corrected promptly and with minimum personnel effort. This is especially
true when access to the site is offered through a remote connection. Historically, ven-
dors used to provide proprietary, non-publicly documented solutions for isolated BASs.
More recently, a clean division between the Building Automation Network, built on a
specific protocol stack, and the TCP/IP carrier backbone is taking place. The trend is
to opt for open standards for BAN protocol stacks (such as BACnet [5, 20], LonWorks
ISO/IEC-14908 [13], KNX [15] and Modbus [19]) to boost the interoperability among
devices from different producers, as well as to benefit of public scrutiny activities. The
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aforementioned standards achieved considerable attention both worldwide (in case of
BACnet, LonWorks and Modbus) and in the EU (in the case of KNX). One of the most
critical aspects of BASs concerns the increasing integration of sub-systems for access
control and physical intrusion detection. Also, protection against denial-of-service at-
tacks becomes more of an issue as buildings get more dependent on remote-controlled
automation systems. In a realistic scenario an insider or outsider adversary can sub-
vert the usual or correct functioning of sensors and actuators if she is able to gain the
access privileges to drive the nodes of the BA networks either locally (i.e., through di-
rectly accessing the BAS communication bus) or remotely. Altering the temperature in
controlled environment rooms (such as datacenters), causing lockdowns of the HVAC
system functionalities in harsh climates and inappropriate signals sent to sprinklers,
lighting or door control systems may have a significant impact.

Contributions. We propose a scalable and secure communication protocol for BANs,
providing security guarantees against an attacker able to eavesdrop all the communica-
tions and modify their contents at his will, including the deletion and forgery of data. We
also propose a novel multiparty key agreement scheme based on the discrete logarithm
problem, providing both a proof of its correctness and the polynomial Turing equiva-
lence of breaking the scheme and solving the computational Diffie-Hellman problem.
Finally, we provide a feasibility study of the applicability of the proposed scheme, tak-
ing into account the BAN with the tightest communication budget, i.e., the KNX BAN.

2 Preliminaries

In this section we will provide the background on BASs, and the network infrastructure
characterizing them. Building on this background, we will delineate the typical deploy
environment of BASs, and the systems they interact with. Then, we will construct a
threat model, highlighting the critical issues in this scenario.

2.1 BAS Network Analysis

A Building Automation System (BAS) is a digital control and monitoring infrastruc-
ture which can be used to manage several services, e.g., lighting, security systems and
air conditioning. We focus our interest on the BASs where all the nodes of the control
and monitoring infrastructure are endowed with computational capabilities, as opposite
to the Programmable Logic Controller (PLC) based systems, where only a single node
can perform computations. A sketch of the BAS topology of our interest is shown in
Fig. 1. The actors of a BAS are sensors and actuators, communicating over a common
medium via a Building Automation Network (BAN), which allows unicast and broad-
cast communications, with the possibility of multicast for some of the standards. It is
common to connect a BAN to a local TCP/IP based data network via a proper gateway
device, to perform control operations via a management console running on common
computers. It is also frequent to provide these management features to roaming devices
outside the local TCP/IP based network via a VPN connection to the internal LAN. The
access control and authentication issues of the roaming devices are solved via a proper
firewalling and VPN certificate authentication policy [24]. The protocols employed to
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Fig. 1. Typical BAS topology: the BAN links sensors and actuators, while the TCP/IP backbone
network links the BAN routers to the management console and the outside world

communicate on the BAN are either de-facto standards coming which affirmed them-
selves in the PLC era of BAS systems, or actual open standardized protocols. Table 1
reports the characteristic of the four most used protocols in BAN communications.

The KNX protocol [15] is a standardized network protocol stack, and it is in use by
300 manufacturers from 33 different countries, mainly in home automation systems.
KNX nodes communicate by sending datagrams to a group of recipients, over a com-
mon medium which can be either a twisted pair cable or an 868 MHz wireless carrier,
reaching a maximum speed of 9.6 kbps on wired means and 38.4 kbps on wireless
ones. The group of recipients of a communication is identified by a datagram-level ad-
dress and each node is instructed to process a message only if it belongs to the group of
recipients. The typical KNX communications are of a multicast nature with the only ex-
ception of firmware updates which are sent in unicast, specifying a specific flag in the
packet address field. The communications take place with a Carrier-Sense-Medium-
Access (CSMA) strategy, with explicit collision avoidance (CA).

LonWorks [13] is a network and application protocol developed by Echelon Corpo-
ration and standardised as ISO/IEC-14908. The network protocol stack is a simplified
routed network with up to 255 subnets, each one made of at most 127 nodes. Each node
can be member of one of the 256 multicast groups available to obtain greater efficiency
in communication: the multicast packets are routed on a collision domain if there is at
least a member belonging to the correct group. The physical layer is based on a CSMA
strategy, employing active strategies to prevent collisions and endowed with a collision
detection (CD) mechanism, allowing a top throughput of 1.25 Mbps. The LonWorks
network stack supports the use of a single shared key among all devices to initiate com-
munications, employing a challenge-response protocol to ascertain whether the other
endpoint is effectively part of the LonWorks network. The application data are trans-
mitted in clear and without any integrity checking, no security guarantees (except for
the aforementioned network membership check) are provided.

BACnet [20] is a protocol stack standardized as ISO-16484-5. The application layer
defines a set of 40 commands to both probe the status of the devices in a BACnet net-
work and drive their actions. The BACnet standard allows to choose which network
transport stack should be used for its commands among: Ethernet, ARCNET (a 2.5
Mbps token-passing protocol), EIA RS-485 (augmented with a master-slave logical
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Tab. 1. Features comparison of BAN protocols

Protocol
Communication Maximum Medium Security

Pattern Speed Access Services

KNX [15] uni/multi/broadcast 9.6 kbps CSMA/CA None

LonWorks [13] uni/multi/broadcast 1.25 Mbps CSMA/CD
Membership

Check
BACnet [20] uni/broadcast 1 Gbps any None
Modbus [19] uni/broadcast 1 Gbps CSMA/CD None

architecture for frame transmission) and the simple EIA RS-232 point-to-point link. It
is also possible to exploit the LonWorks transport layer to transport BACnet application
datagrams. All the BACnet data are transmitted in clear by default, except for the possi-
ble encryption happening transparently when a TCP/IP transport layer is employed. The
“BACnet Addendum G” provides some suggestions to secure BACnet BANs, however,
without any definite protocol solution.

Modbus [19] is an application layer protocol which provides a client-server commu-
nication scheme employing an underlying transport network. Modbus communications
require an explicit acknowledgement/negative-acknowledgement to each message and
are usually performed over Ethernet, possibly with the use of a TCP/IP stack to provide
reliable transport guarantees, although employing EIA RS-232 and EIA RS-485 is also
possible. As most common Modbus implementations run over Ethernet, it supports uni-
cast and broadcast communications over a shared medium with a CSMA/CD strategy.
Modbus communications are not protected by any cryptographic primitive.

Summing up, the most widespread solutions for BAN protocols do not include any
explicit security feature, and in the vast majority of the cases, it is not possible to exploit
the ones of the underlying transport layer. This is due to the fact that, among the viable
transport layers, only Modbus and BACnet may employ the TCP/IP/Ethernet network
stack, endowed with optional standardized security protocols [24]. The other key point
is that the available bandwidth for BAN communication may be consistently narrow,
especially in the case of KNX devices, where only 9.6 kbps are available. By contrast,
all the BAN network protocols support a physical broadcast transmission mode which
can be successfully exploited to reduce the traffic.

In this work we aim at providing a secure protocol and key management scheme
viable to be employed on all the aforementioned vulnerable scenarios, including the
KNX protocol, where the bandwidth constraint are significant.

2.2 Threat Model

The sensitive information in a BAS transits on two different types of network domains
which should both be secured. It is possible to employ standard SSL based solutions to
provide a secure and authenticated link for the BAS commands transmitted over the por-
tion of the TCP/IP internal backbone which allows the BAN routers to communicate. In
this work we focus on a threat model targeting the BAN infrastructure, i.e., the network
domain including the BAN router, the sensors and the actuators. We assume that the
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BAN router is enclosed in a tamper detecting case, which alerts the maintainer in case
an attacker tries to gain physical access to the device. The BAN endpoints communicate
on a shared medium and is thus reasonable to assume that the attacker is able to eaves-
drop the messages passing on it. This can be achieved either through direct wiretapping
of the bus, or by sniffing the EM emanations of it via a proper antenna [3, 29]. We as-
sume the worst-case scenario, where the actuators and sensors are connected in parallel
on a single twisted pair bus, and can thus be disconnected without disrupting the reg-
ular functioning of the other sensors. We note that scenarios where this disconnection
is detected provide effective simplifications in detecting possible denial of service and
impersonation attacks. The attacker is also assumed to be capable of injecting arbitrary
messages on the BAN network through either directly connecting to the wires or gener-
ating artificial EM interference via a coil or a simple antenna placed near the wall [12].
Similarly, the attacker is supposed to be able to erase messages either inserting a device
acting as a bridge, or through causing disturbances strong enough for the message not
to be received. Summing up, we model the attacker as the one described by the classical
Dolev-Yao attacker [9], which can be stated as follows.

Definition 1 (Attacker model). A Dolev-Yao attacker can effectively emulate the ac-
tions of an arbitrary adversary in such a way i) to obtain any message passing through
the network, ii) to appear as a legitimately connected user from a network standpoint,
and iii) to act as the receiver of any message destined to any user. The net effect on
communications is that the attacker is able to passively eavesdrop, tamper with, inject
and delete an arbitrary number of messages or parts thereof. Consequentially, he is in
full knowledge of all the data transmitted on the network and may keep track of them.

2.3 Security Desiderata

Considering the attacks to be lead under the previous threat model and against the de-
scribed network infrastructure, we now state which are the security services needed to
provide a trustworthy BAN infrastructure. These should be provided keeping into ac-
count the tight computational and communication budget of BANs, which is imposed
directly by the cost envelope of the target devices. Indeed, the cost envelope should be
kept as low as possible due to the large number of devices which need to be deployed
on the field. Since a large install base is already present, taking into account solutions
which are able to cohabitate with preexisting ones is a point the designer should con-
front with. In order to secure the BAN, the aforementioned constraints prevent the de-
signer from adopting solutions based on either PKIs or Identity Based cryptoschemes.
This points towards more lightweight key agreement schemes to derive ephemeral cryp-
tographic keys, to be used with fast symmetric-key primitives. We note that stream ci-
phers do not offer the same robustness and completeness warranties of block cipher
primitives [14]. In addition, as described in Section 4, the hardware implementation of
standard block ciphers within very low power and cost-effective microcontrollers repre-
sents a further push towards their adoption in this context. In the following, we delineate
the security desiderata we will provide with our communication protocol and novel key
agreement scheme:
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Confidentiality. In a BAN, it is worth noting that it may be unnecessary to provide
confidentiality for all the transmitted messages. For instance, the commands sent to an
actuator, which is only able to perform a single, physically evident action (e.g., turn on
the HVAC or turn off the lights), can be fully inferred from an attacker through envi-
ronmental observations. By contrast, in case the transmitted messages carry sensitive
information, such as the access tokens allowing physical access control systems to rec-
ognize users, it is critical to provide full content confidentiality.

Forward Secrecy. A realistic attack scenario involves the fact that attacker may be able
to acquire a BAN node and extract the long term secret contained within it by means
of side channel analysis [17]. The node could be obtained either exploiting a sloppy
decommissioning of electrical equipment or an accidental information disclosure. Con-
sequentially, an attacker may be able to breach the confidentiality of previously recorded
messages, thus gaining access to a significant amount of sensitive information. To miti-
gate this issue, it is possible to provide forward secrecy to the messages being transmit-
ted on the network, i.e., to employ an ephemeral key refreshment scheme.

Message integrity. It is crucial to ensure message integrity as tampering with the trans-
mitted payloads, even without injecting fresh ones or suppressing some, may result in
an undesirable behavior of the BAS.

Immunity from replay attacks. Explicit protection against replay attacks performed
after sniffing valid communications should be provided, as blindly replaying valid com-
mands with the wrong timing could lead to undesired consequences.

Source authentication. All the messages should be bound to a trusted source, both
the ones carrying the sensed information from the sensors, and the ones providing com-
mands to the actuators as well as their corresponding delivery status notifications. This
source authentication should consider the fact that all the legit message sources have
been deployed at setup time thus, they are the only ones expected to be operational
when the system is working correctly.

Availability. In the worst-case BAN scenario, no physical means to detect if a node
goes amiss are provided, as the single bus architecture which characterizes some of
the standard network infrastructures does not trigger an automated notification of such
an event. Therefore, it is important to provide at an higher protocol level the means to
guarantee the notification of possible availability failures.

3 Secure BAN Protocol

In this section we delineate our secure communication protocol for BANs. We will
assume, coherently with the network structures described in Section 2, that the BAN
network is divided in physical collision domains where all the endpoints are able to
listen to all messages. Consequentially, the endpoints able to transmit data on the col-
lision domain are the associated nodes (sensors and actuators) plus the BAN router,
while communications across collision domains are mediated by the BAN router. From
now on, we will consider the messages as they get sent and reconstructed by the un-
derlying network and transport layers, and before they are passed to the higher layers
of the protocol stack. We require the communications over the collision domain to be
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Fig. 2. Description of the secure protocol message m=P||T . The portion of the packet high-
lighted in grey is T , while the remaining portion reports the plaintext content of P .

logically divided in time slots, with each node sending a message during his time slot.
This can be easily obtained emulating it at application level, in case the network and
transport layer do not offer the feature natively. In this case, the beginning of the time
slot for the next node is marked by the reception of the last network packet data unit
composing the current application level datagram. The order of the time slots can be de-
termined by the lexicographical order of the physical node addresses, as the nodes are
supposed aware of their neighbours’ addresses at setup time. Introducing a time-slot
transmission strategy effectively yields a constant latency transmission, which is useful
to detect promptly denial of services, at the cost of inserting a predictable delay in the
communications. The messages sent by the nodes are structured as follows:

Definition 2 (Message Structure). Let physrc be the physical address of the source
node and phydest the one of the destination node, P and T be the payload and integrity
checking tag of the data. The message is composed as m=P||T , with P=Enck(data)
and T =MACk(P||physrc||phydest), where Enc is a symmetric block cipher, MAC is a
strongly unforgeable keyed cryptographic hash function, and k is the encryption key.

The message payload structure depends on the purpose of the message itself. From
an operational point of view, the message purposes are split into two categories: net-
work management and regular functioning. Figure 2 reports the possible contents of the
messages. The first field of the P portion of the message is a single bit field denoting
whether the message belongs to the network management or regular functioning cate-
gory. The second field is a bit indicating whether the message is carrying a command
or providing information, while the third field discriminates the case of a message car-
rying a command from the one carrying a return receipt (that must always be sent as
response to a message). In case the message is not a command, the value of the third
field is ignored. The nonce field of the payload P is a random number employed to both
provide semantic indistinguishability of the encrypted messages and bind a command
message to its return receipt: this is done repeating the same nonce in both the com-
mand message and the corresponding receipt.

Proposed BAN Protocol. The protocol acts in three phases: a bootstrap phase, to be
performed by the installer when the system is deployed; a regular functioning phase,
when the BAN network operates serving its users’ needs; and a key refreshment phase,
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performed to renew the shared ephemeral cryptographic key k employed by the nodes
of the same collision domain to encrypt and compute the MAC of each message. At the
bootstrap phase, all the nodes collect the physical addresses of their neighbours and the
value of the secret ephemeral cryptographic key is set to the same value for all nodes.
Subsequently, the nodes in the collision domain are forced to perform a multiparty key
agreement procedure to determine the first value of the shared ephemeral symmetric
key k to be used. Once this key agreement is completed, the collision domain is ready
to switch into its regular functioning phase. The nodes start communicating in their own
time slot, determining it according to the lexicographical order of the physical addresses
of the others. Note that, each node should keep track of the passing time slots, f.i., by
keeping a counter of the transmitted messages ctr and computing the current time slot
as: (ctr mod |U|). A node willing to send a command during the regular functioning
phase will wait for its time slot, compose the message as described before and send it.
The receiving node will build the corresponding return receipt packet and send it back
to the command sender, taking care of employing the same nonce which appeared in
the command message, as soon as possible. In case the node does not need to send any
message during its time slot, a beacon message is sent to fill it in, providing indistin-
guishability of the node behaviour from when it is actually active. After a predetermined
number of exchanged messages nmax, all the nodes engage in an ephemeral secret key
refreshing procedure, employing the same key agreement scheme used in the bootstrap
phase. To add a node to the collision domain, the node should be directly connected to
the BAN router by the installer so that the current instance of the ephemeral secret key
is copied into it. The public key of the new node, together with its physical address,
are communicated to the current collision domain endpoints via an add node message
(Figure 2), which is acknowledged by all nodes via an explicit return receipt. The new
node will engage in the next key agreement procedure which will take place.

Meeting the security desiderata. The confidentiality requirement is met thanks to the
whole payload encryption performed by the devices. The forward secrecy of the mes-
sages is provided by the periodic key refreshment procedure; the vulnerability window
for the forward secrecy issues is tunable by the designer, reducing the number of pack-
ets (nmax) sent with the same shared ephemeral key. The attacker does not gain any
sensitive information by passively eavesdropping the communications. The integrity of
the message payload is ensured by the MAC computed over it, which effectively pre-
vents an attacker from both tampering with the message contents and injecting forged
ones. The desired binding of a message to the legitimate source is performed including
the physical addresses of both the source and the destination node in the MAC. Doing
so prevents the attacker from both replacing the source address of a packet directed
to the attacked node, and rewriting the destination address of another packet to hijack
it towards the aforementioned attacked node. The presence of beacon messages, sent
whenever a time slot is not employed by a node, provides an active heartbeat signal
which should be observed by all the collision domain endpoints. Thus, in case a time
slot is not filled with a legitimate message it is possible for everyone to detect an artifi-
cial message deletion by an attacker. The attacker is not able to forge a correct beacon
message as it is encrypted and authenticated in the same fashion other legit messages
are. The availability of the nodes is thus provided, as it is possible to promptly detect
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both active attackers and network errors and alert the network administrator. A crucial
point of the proposed protocol is the use of a shared ephemeral secret key agreed among
all the parties in a collision domain in a secure fashion. To this end, we describe a new
multiparty key agreement scheme, able to fulfill the aforementioned desiderata, while
keeping the network traffic down to a minimum.

3.1 Multiparty Key Agreement Scheme

The Diffie-Hellman (DH) key-exchange protocol marked the birth of modern cryptog-
raphy and has since then been one prominent support of both theory and practice of
cryptography, as well as a standard component of any cryptographic suite. While the
basic protocol, as originally proposed, is secure against an eavesdropping-only attacker,
in order to obtain a primitive resistant also to active (MiTM) adversaries it is necessary
to introduce some form of entity authentication. Since the nodes willing to participate to
the key agreement already share an ephemeral secret key, the key agreement messages
are authenticated via the aforementioned message tag T computed via the keyed MAC.

We now provide a generalization of the Diffie-Hellman key agreement to a multi-
party (t≥2) scenario nicely fitting the communication model of a BAN, which is based
on the transmission of broadcast messages among the set of devices specified at the time
of the BAN deployment. We claim that the proposed multiparty key agreement scheme
does not require neither a primary point of trust to organize the sequence of messages
exchanged to establish the common shared secret, nor any form of coordination among
the parties, U={U0, U1, . . . , Ut−1}, to establish an order of the messages transmitted
by each of them. As specified by Algorithm 1, given a publicly known finite cyclic
group (G, ·)=〈 g 〉 with n=|g| elements, each participant Ui randomly selects a local
ephemeral secret ai∈{2, . . . ,n−1} (line 2) and initializes his local value of the shared
common secret kUi to the group generator g (line 3). The protocol goes on repeating
the same steps for t−1 rounds. During each round, the i-th participant Ui broadcasts
the outcome of the exponentiation (kUi)

ai . Note that, the multiplication corresponding
to the internal composition law depends on the group structure. Subsequently, he waits
until the remaining t−1 participants send a message containing a value computed in
the same way (lines 7–8). The received values, kUj with j �= i, are accumulated in a
temporary variable tmp (line 9). Subsequently, the local value of the shared common
secret kUi is updated according to the operation specified at line 10, to both combine
the secret exponents of the other parties and remove the dependence from the local
secret ai. At the end of the main loop (lines 4-10), the local value of the shared com-
mon secret for the participant Ui will be equal to kUi=ga0a1···ai−1ai+1···at−1 . In the
last statement, the value of the shared ephemeral common secret is completed through
computing k=(kUi)

ai (line 11). Theorem 1 formalizes the correctness of the algorithm.

Theorem 1 (Algorithm Correctness). Given a finite cyclic group (G, ·) with gen-
erator g∈G and order n=|g|, each participant Ui in a set U={U0, U1, . . . , Ut−1}
runs Algorithm 1 to compute a shared ephemeral secret k=g

∏t−1
j=0 aj , where each

aj∈{2, . . . , n−1} denotes the ephemeral secret of the j-th participant, 0≤j≤t−1.
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Algorithm 1. Single Participant – Multiparty Key Agreement
Globals: (G, ·)=〈 g 〉, finite cyclic group with order n=|g|
Input: t: number of protocol participants

U : {U0, U1, . . . , Ut−1} set of protocol participants

Output: Shared secret: k=g
∏t−1

j=0 aj

aj∈{2, . . . , n−1} ephemeral secret of the j-th participant
1 begin
2 ai � RANDOM(2, n− 1)
3 kUi � g
4 for r � 0 to t−2 do
5 kUi,r � (kUi)

ai

6 BROADCAST kUi

7 for Uj∈U | Uj �=Ui do in parallel
8 RECEIVE kUj

9 tmp �
∏

Uj∈U,Uj �=Ui

kUj

10 kUi �
(
tmp · (kUi)

−r
) 1

r+1

11 k � (kUi)
ai

12 return k

Proof. Let A={a0, a1, . . . , at−1} be the set of ephemeral secret values chosen by

the t≥2 participants in U . Denote as Az,r+1, with 0≤r≤t−2, z∈
{
1, . . . ,

(
t

r+1

)}
, the

generic element of the power-set 2A composed by r elements of A and denote as

μz,r+1=
(∏

a∈Az,r+1
a
)

the monomial composed by the product of the values included

in Az,r+1: deg(μz,r+1)=r+1. A monomial that includes ai as factor is denoted as

μ
(i)
z,r+1, while μ

(i)
z,r+1 is a monomial that does not include ai. The whole algorithm can

be described by a recursive equation involving the value kUi and the number of the
iterations r∈{0, . . . , t−2}:

kUi,−1 = g r=−1

kUi,0 = g
∑

z μz,1 , for all z = 1, 2, . . . , t s.t. μz,1 �= μ
(i)
z,1 r=0

kUi,r =

(
g

(
r
∑

z μ
(i)
z,r+1 + (r+1)

∑
z μ

�(i)
z,r+1

)
· (kUi,r−1)

−air

) 1
r+1

r>0

It can be easily verified that the last instruction in the body of the main loop of Algo-
rithm 1 computes the same value of the above relation (for r>0) that is:

kUi,r = g
∑

z μ
(i)
z,r+1 for all z = 1, . . . ,

(
t

r+1

)
s.t. μz,r+1 �= μ

(i)
z,r+1

Therefore, after the end of the last iteration (r=t−2), the exponent of the generator g
comes down to a single monomial μz,t−1=(a0 · · · ai−1ai+1 · · · at−1) as all the others(

t
t−1

)
=t−1 monomials includes ai as one of their factors. The algorithm returns the

desired value k through raising kUi,t−1 to ai. ��

Example 1. Consider t=4 participants U={U0, U1, U2, U3} with a set of ephemeral
secretsA={a0, a1, a2, a3} and suppose to run the multiparty key agreement on the side
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of U0. Keeping track of the exponent values during the execution of Algorithm 1 allows
to easily understand how the computation of shared ephemeral key, k=ga0a1a2a3 , can be
performed by each participant without directly knowing any factor of the final exponent
except his own.

– kU0�g at line 3.
– when r=0, tmp�ga1 · ga2 · ga3 at line 9, and

kU0�((ga1+a2+a3) · 1)1 at line 10.
Note that, there are

(
4
1

)
monomials with degree r= 1, but the exponent contains

only the
(
4
1

)
−1= 3 ones, which do not include the term a0.

– when r=1, tmp�ga1(a0+a2+a3) · ga2(a0+a1+a3) · ga3(a0+a1+a2) at line 9, and

kU0�
(
tmp · g−a0(a1+a2+a3)

) 1
2=(g2(a1a2+a1a3+a2a3))

1
2

=ga1a2+a1a3+a2a3 at line 10.
Note that, there are

(
4
2

)
monomials with degree r= 2, but the exponent contains

only the
(
4
2

)
−3= 3 ones, which do not include the term a0.

– when r=2, tmp�ga1(a0a2+a0a3+a2a3) ·ga2(a1a0+a1a3+a0a3) ·ga3(a0a1+a0a2+a1a2)=

kU0�
(
tmp · g−a0(a1a2+a1a3+a2a3)

) 1
3=(g3(a1a2a3))

1
3=

=ga1a2a3 at line 10.
Note that, there are

(
4
3

)
monomials with degree r= 3, but the exponent contains

only the
(
4
3

)
−3= 1 one of them which does not include the term a0.

Finally, the shared ephemeral secret is computed as k=(ga1a2a3)a0=ga0a1a2a3 .

To the end of comparing and discussing the security guarantees provided by the pro-
posed scheme, we recall the ones of the two-party Diffie-Hellman key agreement. The
security of the DH key exchange hinges on the computational intractability of the fol-
lowing problem:

Definition 3 (Computational Diffie Hellman Problem). Let (G, ·) be a finite cyclic
group with order n=|G|, and denote as g∈G one of its generators: (G, ·)=〈g〉. Given
two positive integers a0, a1∈{2, . . . , n−1}, the Computational Diffie Hellman Problem
(CDHP) is defined as the one of computing ga0 a1 , given as input (G, g, ga0 , ga1).

A straightforward reduction of the CDHP to the problem of extracting the discrete log
in a cyclic group gives evidence that the CDHP is no harder than the Discrete Log Prob-
lem (DLP). Viceversa, for a generic cyclic group, it is an open issue whether the most
efficient way of solving the CDHP is by solving the DLP first. An equivalence proof
between CDHP and DLP is provided by Boer [6] and Maurer [18], who proved the
equivalence for groups with prime order such that the Euler totient of n−1, ϕ(n−1), is
smooth. These results have a relevant impact on the practical application of key agree-
ment schemes based on the CDHP, as their parameter generation procedure (〈 g 〉,
n=|g|) can be checked to honor the equivalence conditions. In addition, it is worth
noting that the actual standardized recommendations for employing the Elliptic curve
variant of a DH key agreement [23] honor the aforementioned requirements.

The proposed multiparty key agreement scheme can enjoy the same parameter gen-
eration procedure of the original DH protocol to provide the same security assurances
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of two-party systems based on the CDHP. The computational problem underlying the
proposed multiparty key agreement (MKA) scheme can be formally stated as follows:

Definition 4 (Computational Multiparty Key Agreement Problem). Let (G, ·) be
a finite cyclic group with order n=|G|, and denote as g∈G one of its generators:
(G, ·)=〈g〉. Given an integer t≥2 and a set of values aj∈{2, . . . , n−1}, 0≤j≤t−1, the
Computational Multiparty Key Agreement Problem (CMKAP) is defined as the one of

computing k=g
∏t−1

j=0 aj given all the values of kUi,r by Algorithm 1 for all 0≤r<i≤t−1.

The following theorem specifies the security assurances of the proposed protocol
building on the previously introduced definitions.

Theorem 2 (Polynomial Time Turing Equivalence of CDHP and CMKAP).
Solving the CMKAP problem for t≥2 participants is polynomially equivalent to com-
puting the solution of the Computational Diffie-Hellman problem on the same finite
cyclic group.

Proof. We will show at first that CDHP≤TCMKAP polynomially. Let
OCMKAP(G, g,L, t) be an oracle computing the CMKAP on (G, ·), generated
by g, with t parties, taking as input the list L of intermediate values kUi,r,
0≤r<i≤t−1. It is possible to solve CDHP invoking the oracle OCMKAP once
as OCMKAP(G, g, (ga0 , ga1), 2). The oracle will compute ga0 a1 as required by the
CDHP, since the values ga0 and ga1 match kU0,0 and kU1,0 computed by a two-party
CMKAP key agreement as per Algorithm 1.

We will now prove the converse: CMKAP≤TCDHP polynomially. Let
OCDHP(G, g, gx, gy) be an oracle computing the CDHP on (G, ·), generated by g, tak-
ing as further input gx, gy. Note that it is sufficient to analyze the values kUi,0 to obtain
an effective polynomial reduction of the CMKAP to the CDHP. Consider the form of
the kUi,0 values provided as input to the CMKAP solver: these values are all in the
form kUi,0=gai . Let k01 be the result of OCDHP(G, g, ga0 , ga1). The value k01=ga0a1

is further employed in an oracle call OCDHP(G, g, k01, g
a2) yielding k012. It is possi-

ble to iterate this procedure t−1 times obtaining as the last result the value k=g
∏t−1

j=0 aj ,
which effectively solves the corresponding CMKAP with t participants, employing ex-
actly t−1 invocations to the oracle OCDHP. ��

Having proven the computational equivalence of the CDHP and the CMKAP, we
conclude that mathematically breaking the proposed multiparty key agreement scheme
over the group of points of a standardized elliptic curve or an adequately sized group
�
∗
p, where p is a prime, is equivalent to solving the discrete logarithm problem over the

same group. Finally, we highlight that the computation of t group exponentiations and
the broadcast transmission of t−1 group values, as reported by Algorithm 1, are the
upper bounds for the computational and communication complexities put on each par-
ticipant. Therefore, the proposed MKA scheme is effectively a natural generalization of
the original DH protocol to t≥2 participants, endowed with the feature of being com-
pletely distributed i.e., without any central point of trust for the protocol management.
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4 Feasibility Evaluation

In this section we provide a feasibility study of the implementation of the proposed
protocol to protect a BAN. To the end of providing a fair evaluation, we tackle the KNX
BAN, which is the one having the tightest bandwidth budget among the most popular
technologies. We recall that the KNX protocol achieves a 38.4 kbps transmission rate
over wireless medium and a 9.6 kbps transmission rate over twisted pair cable. The
standard KNX transport packet allows to send up to 16 bytes of payload, while the
extended frame mode allows up to 254 bytes to be sent. The net packet overhead is
7 bytes per packet, including all the control fields [11], while the CSMA/CA medium
access strategy mandates an extra 8 bytes overhead per frame due to the required waiting
time. The transmission time employed by any node to put on the shared medium a
message is computed as payload length in bytes plus 15, divided by transmission rate
(expressed in byte per second). Given the tight constraints in terms of bandwidth and
computing power, as the cryptographic primitives should be computed by low budget
microcontrollers, for our Multiparty Key Agreement scheme we employ the standard
elliptic curve P-160, defined over a 160-bit prime Galois field, and recommended by
NIST in the FIPS 186-3 [21]. An optimized implementation of the group operation over
this curve runs in 0.57 s on an 8 MHz Atmel Atmega Microcontroller [28]. An efficient
primitive to provide the MAC function we need in our secure protocol is the one-key
CBC-MAC (also known as CMAC), recommended by NIST in [22], which requires the
choice of a symmetric block cipher to be used as the core of the computation. Since
a number of microcontrollers [1, 27] from different producers now embed a hardware
implementation of the AES, with a 128-bit key length, we deemed it a worthy choice.

To encrypt the packet payload we consider a CBC-mode encryption, employing the
same Initialization Vector (IV) as the one in CBC-MAC computation (where it is derived
from the cryptographic key). This choice avoids the overhead of transmitting both the
IV value and the last 16 payload bytes over the network, as all the nodes can employ
the packet tag (T =MACk(. . .)) also to decrypt the last part of the encrypted payload.

Considering the message structure in Fig. 2 the size of a command/command-
acknowledgement packet payload can be fixed to exactly 32 bytes choosing a nonce
of 69 bits. Thus, the transmission time of an encrypted and authenticated datagram of
our protocol is 32.5 ms at 9.6 kbps and 8.1 ms at 38.4 kbps. The key agreement packets
take the same amount of time to be transmitted since there is no need for the nonce to
be included in them, thus compensating for the higher quantity of data to be sent.

We choose as target platform for our feasibility study the Atmel Xmega microcon-
trollers line, which features an embedded AES hardware coprocessor. The aforemen-
tioned coprocessor computes an AES encryption in 375 clock cycles, and allows to
input a new value into the cipher state through xor-combining it with the previous one,
making CBC-MAC computation particularly efficient. We provide performance figures
regarding the Atmel Xmega 64A1, which is the smallest and cheapest microcontroller
of the Xmega line, but still fits the hardware requirements for our protocol. Table 2
provides an overview of the performance when running the microcontroller both at full
speed and at half speed to save power. The time required to compute a packet tag T ,
taking into account a 50% computation overhead in addition to the cipher computation
is lower than 100 μs for both configurations, thus more than two orders of magnitude
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Tab. 2. Computation times estimates and power consumption for the proposed protocol on an
8-bit Atmel Xmega 64A1. The transmission time considers the net time to send the packet on the
shared medium. The total time includes both computation and transmission time of a packet

CPU Working
Task

packet tag T Group Op.s Transmission Total Time Energy
Freq. [MHz] [μs] [ms] Time [ms] [ms] [mJ]

16
Command 70.29 – 32.5 32.57 0.57×10−3

1-round MKA 70.29 285 32.5 317.75 2.22

32
Command 35.14 – 32.5 32.53 3.25×10−3

1-round MKA 35.14 142 32.5 174.53 12.7

lower than the network delays. By contrast the total time required to compute and trans-
mit a key agreement datagram is dominated by the group operation performed by the
microcontroller. The table shows that it is possible to employ the proposed authentica-
tion scheme on all the packets, at basically no additional timing overhead, save for the
transmission one, while one round of the proposed key agreement scheme takes less
than a second to be computed and broadcast by each participant.

The worst-case time to send a command, considering the delay imposed by the time-
slotting technique, is 1.3 s in a KNX collision domain with 40 nodes (over a maximum
number of nodes of 64 per line as mandated by the KNX standard). The total time to
perform a key agreement in the same collision domain, considering the delays imposed
by the time slot scheme, amounts to 1′2′′ when the microcontrollers are clocked at
16 MHz, and 56′′ at 32 MHz. Such a delay is reasonable, considering that the nodes
are still able to send and process commands while performing a key agreement, though
simply filling in their transmission time slot with the command which should be ur-
gently delivered. We also recall that all the other BAN technologies, including KNX
over wireless obtain significantly improved timings thanks to their higher communi-
cation bandwidth. In particular, non-KNX standards may achieve speedups in the key
agreement time greater than an order of magnitude.

The net effect is that the key agreement procedure can be performed transparently
in background either when the BAN is less loaded or at fixed intervals. The full load
power draw of the considered microcontroller is well under both the one of a single
actuator of the KNX infrastructure (≈ 290 mW) and the one of a sensor (≈ 140 mW).

5 Related Work

There are several papers addressing the problem of the vulnerability of BAS networks,
highlighting the surface of attack. Differently from our work, none of these articles
provides a secure solution for the BAN portion of a Building Automation System that
can be also adopted by most of the standard without modifying them. The most com-
prehensive works on the security of BAS [10, 11] concern the KNX protocol and are
focused on securing the connection among different KNXNet/IP routers, which may
interact via the IP network. The proposed solution involves adding a non-standard se-
curity layer encapsulating the KNX-over-IP communications. The approach basically
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tackles the transport of packets among KNX routers on the TCP/IP backbone on the
BAS, while the ones on the actual BAN are transmitted without encryption. In [8], the
authors propose the use of a centralized, non standard, controller to be added to the
KNX BAN acting as a proxy for all the commands sent on the network. Every single
KNX node willing to send data to another node, establishes a new ephemeral crypto-
graphic key, via DH-key exchange, with the central proxy. Indeed, it sends the com-
mands to the central proxy, which in turn establishes a communication with the target
node in the same way, and relays the data packets of the original sender. The proposed
solution achieve no security guarantee against an active attacker, which can perform a
man-in-the-middle attack during the ephemeral key setup phase between a node and
the central proxy. As far as other generalizations of the Diffie-Hellman key agreement
protocol go, we note that our proposal has the peculiarity of not requiring any forced
sequentiality in the message exchanges at each round, a property not enjoyed by other
equivalently efficient proposals such as [26]. The protocol in [7] proposes a different
way to extend the Diffie-Hellman key exchange protocol, as the exponent of the shared
secret is obtained as the sum of all the pairwise products of the individual ephemeral
secrets, yielding a 3-round procedure. However, the participants must be ordered, and
each one needs to know his predecessor and successor.

6 Concluding Remarks

We proposed a protocol for BAN networks with strong security guarantees. The proto-
col is based on a logical time slotting and an ephemeral shared secret, which is refreshed
periodically by means of a multiparty key agreement scheme. The computational com-
plexity of the novel multiparty key agreement scheme was shown to be equivalent to a
computational Diffie-Hellman problem. Our solution provides support for secure com-
mand sending in 1.3 seconds, and performs a key agreement, providing forward secrecy,
in roughly one minute of computation and transmission time on the most constrained
BAN network infrastructure: KNX.
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Abstract. It has become increasingly easy to write Web applications
and other distributed programs by orchestrating invocations to remote
third-party services. Increasingly, these third-party services themselves
invoke other services and so on, making it difficult for the original ap-
plication developer to anticipate where his/her data will end up. This
may lead to privacy breaches or contractual violations. In this paper, we
explore a simple distributed programming language that allows a web
service provider to infer automatically where user data will travel to,
and the developer to impose statically-checkable constraints on accept-
able routes. For example, this may provide confidence that company data
will not flow to a competitor, or that privacy-sensitive data goes through
an anonymizer before being sent further out.

1 Introduction

Web-based applications (webapps) are networked applications that use technolo-
gies that emerged from the Web. They range from simple browser-centric web
pages to rich Internet applications such as Google Docs all the way to browserless
server-to-server web services. In all cases, a client invokes a remote computation
and receives a result over the HTTP protocol. To develop webapps, program-
mers often use third-party web services as building blocks. These third-party
services provide specific data and/or processing functionalities that can be ac-
cessed through a web API. Using these services is faster, more reliable, and has
lower cost than developing an in-house solution from the grounds up. Examples
abound in practice: data visualization services such as the Google Maps API
to embed a map into a webpage with custom overlay; web analytics services to
measure and understand how web services and data are being used; advertising
services to embed custom ads into a webpage; credit card verification services to
verify the authenticity of a credit card number for an e-commerce website; and
customer relationship management services (e-CRM) to externalize the manage-
ment of customers, just to cite a few.

From the service consumer perspective, even a trusted service is an opaque
computation that gives little insight about what it is doing with the data sent
to it. In particular, it may outsource part of the processing to a third-party web
service without the consumer being aware of it. This could raise confidentiality or
privacy concerns if this data is sensitive and it is forwarded to untrusted hosts.
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Conventional web service security is often more concerned with constraining
access to services than about controlling what these services do with the data.

In practice, when a reputable site offers a web service, its terms-of-use agree-
ment should mention the third-parties involved. However, consumers rarely read
these agreements (although they should), and providers may forget to update
them when they change third-party services. Furthermore, even when the agree-
ment mentions that the application uses an external service, in most cases it does
not list what third-party web services this service may use. In other words, we
may become aware of just the first few links in a possibly long chain of services.

These practices do not scale. An application provider should have an auto-
mated way to disclose the service locations where user data, or data derived
from it, may end up. Similarly an application developer should be able to spec-
ify which nodes are deemed acceptable recipients of this data, and to check
whether these two lists are compatible. This program has similarities with the
goals of P3P [6]: formalize the handshake between the user and the provider of
a service. It targets however the flow of data beyond the service provider, and is
only concerned with where the data goes rather than finer aspects of privacy.

In this paper, we approach this issue by devising a small web programming
language, QWeSSTϕ, that statically infers an approximation of the flow of data
through web service calls. This allows a service provider to advertise the nodes
that user data, or data derived from it, may go through as a call is serviced. More
precisely, QWeSSTϕ infers structured paths that user data may traverse. Our
language also allows the user to instrument remote service calls with a policy
that specifies acceptable paths for the input data to this service. If the policy
does not permit the advertised flow, the program will not typecheck. We show
that these simple ingredients support useful data flow specifications, some quite
complex such as a form of distributed Chinese wall policy. This study is however
largely foundational and culminates in establishing type safety for our language.

It should be noted that our goal is not to prevent a malicious service provider
from deviating from its advertised data flow—once user data has left the lo-
cal host, no guarantee can be provided short of relying on trusted computing
techniques [10], which are orthogonal to the concerns of this paper. The goal
is instead to mechanize the mutual understanding and mutual agreement be-
tween the service consumer and the service provider. For instance, the service
consumer may express that it does not want supplied data to be forwarded to a
certain host. If the service provider does not list that host among the advertised
third-party services it uses, the data flow satisfies the service consumer policy
and the service call can be executed.

The paper is structured as follows: we introduce a vanilla web language in
Section 2 and use it to illustrate common data flows and desired policies on
them in Section 3. We outline our model for data flow and a policy language
for it in Sections 4 and 5, respectively, and apply them to some examples in
Section 6. We incorporate flow tracking and policies in our language, define its
formal semantics and show its type safety in Section 7. We review related efforts
in Section 8 and outline directions of future work in Section 9.
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2 The Base Language

The starting point of our investigation will be a fragment of QWeSST, a sim-
ple programming language for the Web [14,15]. This fragment, which we call
QWeSST−, is a basic functional language extended with primitives to model re-
mote procedure call (i.e., web services). QWeSST embraces a model of networked
computation consisting of a fixed but arbitrary number of hosts, denoted w pos-
sibly subscripted (we also call them nodes). These hosts are capable of compu-
tation and are all equal, in the sense that we do not a priori classify them as
clients or servers. They communicate exclusively through web services and, just
like we normally view the Web, we assume that every node can invoke services
from every other node that publishes them.

A web service is an expression of type σ�τ : it represents a remote function
located at host w that accepts arguments of type σ and returns results of type
τ . A server w creates a service by evaluating the expression publish x : σ.e where
e is the computation performed by the service when supplied a value for the
formal argument x. This evaluates to a URL w/u, where u is a unique identifier
for this service. Once created, a client w′ can invoke this web service by calling
its URL with an argument of the appropriate type. This is achieved by means
of the construct call e1 with e2 which is akin to function application. It calls the
URL e1 by moving the value v2 of the argument e2 to w, which applies e to v2
and moves the result back to the client w′.

QWeSST− also includes function, unit and pair types with their usual con-
structors and destructors—mainly to make our examples more interesting. For
technical reasons, we restrict the argument of functions and services to non-
functional base types. Altogether, the syntax of QWeSST− is given by the fol-
lowing grammar:

Base types σ ::= unit | σ × σ′

Types τ ::= unit | τ × τ ′ | σ → τ | σ�τ

Expressions e ::= x | λx : τ. e | e1 e2 | 〈e1, e2〉 | fst e | snd e | ()
| w/u | publish x : τ.e | call e1 with e2 | expect e from w

Here, x ranges over variables and u over service identifiers. As usual, we identify
terms that differ only by the name of their bound variables and write [e/x]e′ for
the capture-avoiding substitution of e for x in the expression e′. Service identifiers
are never substituted. The expression expect e from w is used internally during
evaluation and is not available to the programmer. It essentially models a client’s
waiting for the result of a web service call.

3 Motivations and Approach

In this section, we study an example of a sequence of web service calls, trace its
data flow and describe some possible constraints a service consumer may want
to impose on this flow. As we go along, we introduce some terminology that we
use in the rest of the paper.
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client
(service consumer)

w0
(service provider)

w1, w2, w3, w4, w5
(third-party service providers)

client
let e = ()
in call w0/u0 with e
end

↪→ 〈(), ()〉 : unit× unit

w0
publish x : unit.
let x′ = call w1/u1 with x

x′′ = call w4/u4 with x′

x′′′ = call w5/u5 with x′

in 〈x′′, x′′′〉
end

↪→ w0/u0 : unit�unit× unit

w1
publish x : unit.
let x′ = call w2/u2 with x
in call w3/u3 with x′

end

↪→ w1/u1 : unit�unit

Fig. 1. Data Flow Example

Our scenario, shown in Figure 1, consists of a service consumer (client, rep-
resented as an oval), a service provider w0, and five additional nodes w1 to w5

(drawn as rectangular boxes). The consumer invokes service w0/u0 at w0 with
some data v. In order to provide this service, w0 outsources subcomputations
by invoking third-party services w1/u1 on w1, w4/u4 on w4, and w5/u5 on w5.
Node w1 delegates aspects of its subcomputation to nodes w2 and w3. The edges
describe the flow of input v as it travels through these various nodes. Arrows
pointing to the right indicate the flow of data as a service is called. This ser-
vice uses this data to compute an output value which is returned to the caller
through the arrows pointing to the left. We call this output derivative data as
it may depend on the value input to the service.

Figure 1 illustrates three types of flow, which corresponds to different ways
services can be combined.

– Simply invoking a service on a node determines a service flow. Here, client,
w0 and w1 each have service flows. Note that these flows can be cascaded.
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– We have a sequential flow when a node invokes a service with the result
obtained from calling a prior service. For example, servicing w1/u1 sequen-
tializes the flows of w2 and w3.

– Finally, a parallel flow is obtained when calling two services with identical
input and combining their results. This is indicated using the dotted line in
Figure 1: node w1 invokes services w4/u4 and w5/u5 with the same input,
and then combines their output before returning a result to client.

The boxes underneath the representations of client, of w0 and of the other nodes
shows examples of QWeSST− code that could determine this flow. For read-
ability, we rely on an ML-like let construct, where as usual let x = e1 in e2 end
is understood as (λx : σ. e2) e1 for an appropriate type σ. The code for client
simply calls w0/u0 with some expression, here (). The code for w0/u0 invokes
w1/u1 with its input obtaining output x′, then calls w4/u4 and w5/u5 with x′

obtaining outputs x′′ and x′′′ respectively and returning them as a pair. For the
sake of illustration, we wrap this code around publish to show how w0 would cre-
ate it—when evaluated this expression will evaluate to the URL w0/u0 invoked
by client (the actual URL is passed to client out of band). The code for w1/u1 is
shown on the right. The code for the other nodes is omitted.

As a service consumer, client has no way to know that w0/u0 makes use of
third-party web services. While node w0 may be trusted, some of the nodes
among w1 to w5 may belong to competitors, in which case the above flow raises
confidentiality or privacy concerns if w0/u0 is invoked with sensitive data. In-
deed, client will not want w0 to forward (or leak) this data to untrusted service
providers.

The rest of this paper will not only provide a way for w0 to automatically
report on the flows client’s data will be exposed to, but also to allow a service
consumer to instrument service invocations with data flow policies. These poli-
cies will define acceptable paths for the input data sent to a service and will
be checked statically against the flows advertised by the service provider. For
instance, here are two behaviors that client will be able to express as policies:

– The data e submitted to w0/u0 cannot be forwarded to node w3 (which may
be a competitor). This is a simple confidentiality policy.

– The data e submitted to w0/u0 can be forwarded to w3 only if it first goes
through node w2. This node may provide well-known services that anonymize
or sanitize data, thereby making it acceptable for wider distribution (even
to the competitor w3). This policy incorporates elements of privacy.

In this paper, we will do the following:

– Define a model for data flow and provide an automated way to disclose the
data flow incurred by a service as an annotation to its type. Specifically,
we will extend the type system of QWeSST− so that services report the
flow of their input: the type of services will now assume the form σ�μ��τ
where μ is a conservative approximation of the data flow of this service.
This annotation is not input by the user, but inferred by the type checker.
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We similarly instrument other constructs that bind variables, for example
functions.

– Define a policy language so that a developer can attach a policy to a value
passed as input of a service call. In particular, we update QWeSST−’s service
invocation operator of call e1 with e2 to call e1 with e2�ρ� where ρ is a policy
defining constraints on acceptable path for the value e2 sent to the service
e1. Policies are specified by the user.

– Finally, extend the typing semantics of QWeSST− to verify statically that
the policy satisfies the advertised data flow. Policy verification takes place
during typechecking. If a violation is detected, concrete actions could range
from raising an error to issuing a warning.

4 Modeling Data Flow

We want to model data flow and capture it in QWeSST−’s types. This will
enable service providers to advertise the type and the data flow of the services
they offer.

Our notion of data flow closely mimics the modes of composition discussed
in Section 3. In particular, we provide operators to express service, sequential
and parallel flows. Note that other choices are possible: our notion of flow could
have been simply the set of nodes visited during an execution, or it may have
reported minute details of how the data is transformed by the various services.
Our choice strikes a balance between expressiveness and the ability to compute
a meaningful approximation statically.

Our flow language is given by the following grammar:

Possible flows μ ::= | μ
Actual flows μ ::= • | w � μ | μ ; μ′ | μ ‖μ′

where the various operators have the following meaning:

– A local flow, written •, indicates that a service does not use any third-party
service. It is read “here”.

– A service flow, written w � μ, indicates that a service uses a third-party
web service provided by w that itself has flow μ. It is read “will go to w and
then do μ”. It can be interpreted as a modal operator indexed by a host.

– A sequential flow, written μ ; μ′, happens when a service uses a derivative
value from μ in μ′. It can be read as “first μ and then μ′”.

– A parallel flow, written μ ‖μ′, is when a service uses a value for two inde-
pendent calculations μ and μ′. It is read “μ and μ′ at once”.

In addition to these actual flows, a variable x that is never used in a service x.e
(i.e., such that x does not appear free in e) is given flow “ ” (no flow).

We associate the flow of data inferred from a service to its type, which will
assume the form σ�μ��τ . Before showing the flow expression corresponding to
our example from Section 3, it is convenient to introduce some abbreviations.
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We write w for the flow w � •, which goes to node w and nowhere further. It will
also be convenient to consider ; and ‖ as associative operators with • as their
identity.

The overall data flow observed in our example in Figure 1 is captured by the
expression μ0 = w0 � ((w1 � (w2 ; w3)) ; (w4 ‖w5)). This is the flow advertised
by service w0/u0, which has therefore type unit�μ0��(unit × unit). Notice that
each service in that figure advertises some flow. For example, the annotated type
of w1/u1 is unit�w1 � (w2 ; w3)��unit.

5 The Policy Language

We now define a policy language that will allow a service consumer to control
the data flow of a value sent to a service. The goal is to upgrade QWeSST−’s
web service call operator to the form call e1 with e2�ρ� where the value e2 is
protected with the data flow policy ρ. This policy ρ constrains the acceptable
paths that the value e2 can take when sent to the remote service e1. Assuming
that e1 has type σ�μ��τ , the policy ρ shall satisfy the data flow μ advertised in
the type of e1, a constraint that we write μ |= ρ. This will allow us to validate
flows statically in Section 7.

This policy language intersperses operators that mimic data flows with tradi-
tional Boolean connectives:

Policies ρ ::= $ | ⊥ | ¬ρ | ρ1 ∧ ρ2 | ρ1 ∨ ρ2 | • | w � ρ | ρ1 ; ρ2

The meaning of these policy expressions is given by the data flows that satisfy
them. This is specified by the judgment μ |= ρ, seen earlier, where μ is a flow
and ρ a policy. It is defined as follows:

(1) μ |= $
(2) μ |= ¬ρ if μ �|= ρ
(3) μ |= ρ ∧ ρ′ if μ |= ρ and μ |= ρ′

(4) μ |= ρ ∨ ρ′ if μ |= ρ or μ |= ρ′

(5) • |= •
(6) w � μ |= w � ρ if μ |= ρ
(7) μ ; μ′ |= ρ ; ρ′ if μ |= ρ and μ′ |= ρ′

(8) μ ‖μ′ |= ρ if μ |= ρ and μ′ |= ρ

Additionally, |= ρ. Here, (1) states that $ is the maximally permissive policy,
which is satisfied by every data flow. Dually, ⊥ is the unsatisfiable policy, as
witnessed by the absence of an entry for μ |= ⊥. The remaining Boolean op-
erators have a standard interpretation. In particular, ¬ρ complements policy ρ.
The remaining operators are more interesting: items (5–7) in this definition state
that •, � and ; strictly model local, service and sequential flows, respec-
tively. Although we could have defined a policy counterpart of the parallel flow
operator ‖ , we chose in (8) to have parallel flows obey the same policy. The
alternative, supporting a policy constructor of the form ρ ‖ ρ′, seemed artificial
as a parallel flow naturally emerges from evaluating expressions in parallel, and
therefore imposing an order on the constituent flows does not seem appropriate.

The above satisfiability judgment is consistent (we cannot have both μ |= ρ
and μ �|= ρ), complete (either μ |= ρ or μ �|= ρ), and decidable.
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Because the non-Boolean policy operators strictly track the corresponding
notions of data flow, it is convenient to introduce a few derived operators as
syntactic sugar in order to simplify writing actual policies. In particular, we will
permit the following operators, where ws is a set of nodes:

– ρ1 → ρ2 � ¬ρ1 ∨ ρ2
– ws � ρ �

∨
wi∈ws

wi � ρ

– ws �	 ρ � ws � (ws �	 ρ) ∨ (¬(ws � ⊥) ∧ ρ)
– ρ1 ;	 ρ2 � ρ1 ; (ρ1 ;	 ρ2) ∨ (¬ρ1 ∧ ρ2)
– ws �? ρ � ws � (ρ ∨ •)
– ρ1 ;? ρ2 � ρ1 ; (ρ2 ∨ •)

Some of these derived operators deserve an explanation:

– The policy ws � ρ simply specifies that data can flow to any node in the set
ws and then continue as ρ. It is a simple generalization of the service flow
policy w � ρ. We will often use it in situations where ws is the complement
ws ′ of some set ws ′.

– ws �	 ρ and ρ1 ;	 ρ2 are the iterated forms of policies ws � ρ and ρ1 ; ρ2,
respectively. The former describes a policy that allows nested service calls
as long as they involve only nodes in ws , otherwise ρ applies. The latter
specifies a policy corresponding to an arbitrary sequential composition of
flows that satisfy ρ1 followed by a flow that satisfies ρ2.

– The forms ws �? ρ′ and ρ ;? ρ′ describe policies where the policy ρ′ is
optional. Specifically, ws �? ρ′ specifies a flow that, once it has gone to a
node among ws , can either stay there or continue as ρ′. Similarly, ρ ;? ρ′

shall behave as ρ and then can either continue as the sequential flow ρ′ or
stop there.

As in the case of flows, we write w for the policy w � • and generalize it to sets
of nodes, writing ws for ws �	 •. Similarly, we simplify ρ ; • and • ; ρ as ρ,
except for emphasis. Observe that • (“here”) is a very different policy from $
(“anywhere”) and from ⊥ (“nowhere”).

6 Policy Examples

We will now examine several examples of policies based on the scenario intro-
duced in Section 3. In each situation, we will define a policy ρ that client can use
to constrain the acceptable flows during an invocation of w0/u0. In particular
the call to this service will assume the form call w0/u0 with e�ρ� for the various
policies ρ we will consider. As we write them, we will make abundant use of the
derived policy expressions just presented. Recall that each of these policies will
be checked against the flow advertised in the type of w0/u0, which was:

unit�w0 � ((w1 � (w2 ; w3)) ; (w4 ‖w5))��unit

Here are these polices ρ:
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– ρ = w0 � ((w1 � (w2 ; w3)) ; {w4,w5}). Here client defines a policy that
corresponds to the exact flow of w0/u0. If client has prior knowledge of the
data flow of this service, this implements a form of least privilege.

– ρ = w0 � ((w1 � ((w2 � $) ; $)) ; {w4,w5}). Here client trusts w2 calling
any service as needed. Furthermore w1 can do anything with a result coming
from w2. But upon coming back from w1, derivative data shall go to either
w4 or w5.

– ρ = w0 � ((w1 � $) ;? {w4,w5}). Here client trusts w1 calling any services
as needed, and w0 may send the result coming from w1 to w4 and/or w5 if
needed.

– ρ = w0 � (({w1,w4,w5} � $) ;	 ⊥). Here client trusts w1, w4 and w5 calling
any service as needed. However, services from other hosts cannot be called
from w0.

– ρ = ({w0,w1,w2,w3,w4,w5} �	 ⊥) ;	 ⊥. Here client trusts w0, w1, w2, w3,
w4 and w5 only. They can call each other and pass derivative results around.
However, services from any other nodes shall not be involved.

– ρ = {w6} = ({w6} �	 ⊥) ;	 ⊥. Here client trusts any node except w6. (We
will make further references to this particular policy in the remainder of the
paper, and write ws to denote the policy that allows anything except going
to nodes in ws .)

– Next, client does not allow data to go to w5 except if it is a derivative value
that went through w2. First, we define a policy ρw2 that allows a value to
be sent anywhere if it is a derivative value from w2. Second, we define ρ to
allow arbitrary paths as long as either w5 is not involved or the value goes
through a flow specified by ρw2 .

ρw2 = (w2 � $) ;? $

ρ = {w5} ∨ (({w2,w5} �	 ρw2) ;
	 $)

– Finally, we model client wanting to have data flow isolation between w4 and
w5 à la Chinese wall security policy. This means that as soon as the value is
sent to w4 any nested service call or further composition should not involve
w5 and vice versa. Just as in the previous example, we first define a policy
ρw4 where a value can be sent anywhere except to w5 as long as it is a
derivative value from w4. We define ρw5 similarly. Then, ρ allows any data
flow that does not go through either w4 or w5, or if the value goes through
one of the two flows specified by ρw4 and ρw5 .

ρw4 = (w4 � {w5}) ;? {w5}

ρw5 = (w5 � {w4}) ;? {w4}

ρ = {w4,w5} ∨ (({w4,w5} �	 ρw4) ;
	 {w5})

∨ (({w4,w5} �	 ρw5) ;
	 {w4})
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7 Language Semantics

We refer to the variant of QWeSST− obtained by annotating the service types
with the flow they advertise and extending service calls with policies as QWeSSTϕ.
We will now define it formally on the basis of the notions of data flow and policy
introduced in Sections 4 and 5 respectively.

Although inferred flows will be most useful as part of service type annotations,
it will be convenient to associate them with all free variables during typechecking.
We will do so by including these annotations in their context entry. We will
also need to decorate the argument of function types with a flow. As a result,
QWeSSTϕ has the following syntax (base types stay unchanged):

Flow types τ ::= unit | τ × τ ′ | σ�μ� → τ | σ�μ��τ

Expressions e ::= x | λx : τ. e | e1 e2 | 〈e1, e2〉 | fst e | snd e | ()
| w/u | publish x : τ.e | call e1 with e2�ρ� | expect e from w

Flow annotations will be inferred by our type system, which means that the
programmer does not need to specify any flow μ in his/her expressions. Policies
ρ are instead entered by the user. Recall also that expect e from w is an internal
artifact of our evaluation semantics and is also invisible to the user.

Note that our original call construct is simply a service call protected with
the maximally permissive policy, i.e., $. Therefore, we can define that unpro-
tected service call introduced earlier as the derived form call e1 with e2 �
call e1 with e2�$�.

7.1 Static Semantics

The typing semantics of QWeSSTϕ extends the typing rules of QWeSST− [14]
to support: 1) statically inferring the data flow of a service and returning it as a
type annotation, and 2) statically verifying that the policies attached to service
calls are satisfied by the data flow of that service.

The typing judgment for this semantics has the form

Σ | Γ �w e : τ “e has type τ at w w.r.t. Σ and Γ”

where the context Γ records the type of the free variables in e and the ser-
vice typing table Σ lists the types of every service available in the network. In
QWeSSTϕ, we shall also record the inferred flow of variables. Therefore, Γ will
contain declarations of the form x : σ�μ� and entries in Σ assume the form
w/u : σ�μ��τ . These collections are formally defined as

Γ ::= · | Γ, x : σ�μ�

Σ ::= · | Σ,w/u : σ�μ��τ

We will treat them as multisets. We refer to Γ as the local flow typing context
and to Σ as the service typing table.
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Σ | Γ , x : σ�•� �w x : σ
of var

Σ,w′/u : σ�μ��τ | Γ �w w′/u : σ�μ��τ
of url

Σ | Γ �w () : unit
of unit

Σ | Γ �w e1 : τ Σ | Γ ′ �w e2 : τ ′

Σ | (Γ ‖Γ ′) �w 〈e1, e2〉 : τ × τ ′
of pair

Σ | Γ �w e : τ × τ ′

Σ | Γ �w fst e : τ
of fst

Σ | Γ �w e : τ × τ ′

Σ | Γ �w snd e : τ ′ of snd

Σ | Γ, x : σ�μ� �w e : τ

Σ | Γ �w λx :σ. e : σ�μ� → τ
of lam

Σ | Γ �w e1 : σ�μ� → τ Σ | Γ ′ �w e2 : σ

Σ | (Γ ‖(Γ ′ ; μ)) �w e1 e2 : τ
of app

Σ | Γ, x : σ�μ� �w e : τ

Σ | Γ �w publish x : σ.e : σ�w � μ��τ
of publish

Σ | Γ �w′ e : τ

Σ | Γ �w expect e from w′ : τ
of expect

Σ | Γ �w e1 : σ�μ��τ Σ | Γ ′ �w e2 : σ μ |= ρ

Σ | (Γ ‖(Γ ′ ; μ)) �w call e1 with e2�ρ� : τ
of call

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· � ·
st ·

Σ � Δ Σ | x : σ�μ� �w e : τ

Σ,w/u : σ�μ��τ � Δ,w/u ↪→ x :σ.e
st u

Fig. 2. Typing and flow system

The typing judgment Σ | Γ �w e : τ is located at each host w, which is
where the expression e resides. Because e is local to w, so are the variables in
Γ , meaning that they are implicitly typed at w. Instead, URLs used in e may
refer to other hosts, which explains why entries in Σ mention URLs. The idea
of localization, both for typing and evaluation, is inspired by Lambda 5 [7,8].

The rules defining the above judgment are given in the top part of Figure 2.
Ignoring flow inference for a moment, these rules are rather standard.

Data flow for each free variable in an expression is inferred during type check-
ing. Therefore, the flow μ in a context entry x : σ�μ� in the conclusion of any
rule is calculated on the basis of the flow of x in its premises (note that context
variables themselves are instead determined from the bottom up as the deriva-
tion is built). A context entry x : σ� � indicates that the variable x is not used in
the expression being typechecked. We write Γ to mark all variables in context
Γ in this way. In rule of var, the variable x is given local flow • while all other
variables in the context are unused. Unary rules simply propagate data flow an-
notations downwards. Binder rules, here of lam and of publish, copy the data
flow annotation from the context variable in their premise to the bound variable
in their conclusion.

Data flow inference for rules with two typing judgments as their premises
are more interesting, as we must combine the flow annotations that come from
those premises for every variable. Indeed, in these cases the expression e be-
ing typechecked consists of two subexpressions, e1 and e2, both of which may
mention a context variable x and, crucially, may make different uses of it. As
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a consequence, the premises that typecheck e1 and e2 might have two different
flow typing contexts Γ and Γ ′ that mention potentially distinct data flow for
x. We must combine Γ and Γ ′ into a context with common annotations for x.
How to do so depends on the expression e, and indeed rules of pair, of app and
of call take three different approaches to merging local flow typing contexts:

– In the case of of pair, the computation of e1 and e2 are independent which
means that their respective usage of x does not interfere with each other.
We can simply use parallel composition to combine them. This is the gist of
the notation Γ ‖Γ ′ in the conclusion of this rule.

– In the case of of app, the computation of e1 and e2 are independent, which
is similar to the case of of pair. However, the function part may force a
flow μ on its argument, as indicated by the type σ�μ� → τ . Therefore,
assuming a call-by-value semantics, any value substituted for a variable y in
the argument e2 will be subject to the flow μ. So if y has flow μ2 relative
to e2 the value returned from the function call will have flow μ2 ; μ. The
notation Γ ′ ; μ in the conclusion of rule of app post-composes μ to all flows
in Γ ′. Now, because y may also be subject to an independent flow μ1 from
the evaluation of the function part e1, the overall flow of y in e1 e2 shall be
μ1 ‖(μ2 ; μ).

– The case of of call shares similarities with of app. One main difference
however is that the value of argument e2 will be sent to the host w′ where it
invokes a service of type σ�μ��τ . Therefore, before recording the flow μ for
this argument, we shall make a note of the change of host, which is done as
w′ � μ. A second difference is that the call construct carries a policy ρ. It is
in this rule that we check that the advertised flow μ of the service satisfies
the policy. This is done by the third premise of this rule, μ |= ρ.

The rules in Figure 2 use two operators to combine contexts, Γ ; Γ ′ and Γ ‖Γ ′.
It is easy to verify that in both cases these contexts satisfy the invariant that
they contain the exact same variables with the same types (but possibly different
flow annotations). They are formally defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ ; = Γ

Γ ; (w � ) = Γ ; (w � •)
· ; μ′ = ·
(Γ, x : σ� �) ; μ′ = (Γ ; μ), x : σ� �

(Γ, x : σ�μ�) ; μ′ = (Γ ; μ), x : σ�μ ; μ′�⎧⎪⎪⎪⎨
⎪⎪⎪⎩
· ‖ · = ·
(Γ, x : σ�μ�) ‖(Γ ′, x : σ� �) = (Γ ‖Γ ′), x : σ�μ�

(Γ, x : σ� �) ‖(Γ ′, x : σ�μ′�) = (Γ ‖Γ ′), x : σ�μ′�

(Γ, x : σ�μ�) ‖(Γ ′, x : σ�μ′�) = (Γ ‖Γ ′), x : σ�μ ‖μ′�
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7.2 Dynamic Semantics and Meta-Theory

The key feature of QWeSSTϕ is that data flows are inferred during type check-
ing and policies are enforced statically too. Therefore neither plays any role
at run time. In this section, we give a brief account of an execution semantics
for QWeSSTϕ, mostly for the purpose of proving type safety. The treatment is
directly adapted from [14,15], to which we refer the reader for details.

This semantics of QWeSST is expressed by the small-step judgments:

e val “e is a value”
Δ ; e !→w Δ′ ; e′ “Δ; e steps to Δ′; e′”

where w is the host where expression e is being evaluated, and the service repos-
itory Δ is defined as follows:

Global service repository Δ ::= · | Δ,w/u ↪→ x :σ.e

Each item w/u↪→ x :σ.e is a service with URL w/u, formal argument x and body
e. The repository Δ is global as it lists every service in the network. See [15] for
a more realistic approach.

Data flow types and policies do not appear in the dynamic semantics. This is
because our approach focuses on verifying data flow compliance statically. When
an expression typechecks, it means that all service call policies are satisfied and
the execution can take place.

The rules defining the above judgments can be found in [14,15]. Most are
unsurprising and we only report some of the more interesting rules pertaining
to remote invocations.

Δ ; publish x : σ.e !→w (Δ,w/u ↪→ x :σ.e) ; w/u
ev publish

v2 val

(Δ∗,w′/u ↪→ x :σ.e)︸ ︷︷ ︸
Δ

; call w′/u with v2 !→w Δ ; expect [v2/x] e from w′
ev call3

Δ ; e !→w′ Δ′ ; e′

Δ ; expect e from w′ !→w Δ′ ; expect e′ from w′
ev expect1

v val
Δ ; expect v from w′ !→w Δ ; v

ev expect2

The evaluation of publish x : τ.e immediately publishes its argument as a web
service in the repository, creating a new unique identifier for it and returning the
corresponding URL. To call a web service, we first reduce its first argument to
a URL, its second argument to a value, and then carry out the remote invoca-
tion which is modeled using the internal construct expect [v2/x]e from w′. This
implements the client’s inactivity while awaiting for the server w′ to evaluate
[v2/x]e to a value. This is done in rules ev expect1 and ev expect2: the former
performs one step of computation on the server w′ while the client w is essentially
waiting. Once this expression has been fully evaluated, the latter rule kicks in
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and delivers the result to the client. A more realistic multi-threaded semantics
can be found in [15].

The bottom part of Figure 2 defines the judgment Σ � Δ which specifies that
service repository Δ is well-typed with respect to typing table Σ. This judgment
is used to prove that QWeSSTϕ is type-safe.

Like QWeSST, QWeSSTϕ admits localized versions of type preservation and
progress, thereby making it a type safe language. The techniques used to prove
these results are fairly traditional. We used the Twelf proof assistant [11] to
encode each of our proofs and to verify their correctness. These proofs are very
similar to those for QWeSST, which can be found in [15].

Theorem 1 (Type preservation). If Δ ; e !→w Δ′ ; e′ and Σ | · �w e : τ and
Σ � Δ, then Σ′ | · �w e′ : τ and Σ′ � Δ′.

Theorem 2 (Progress). If Σ | · �w e : τ and Σ � Δ, then
• either e val,
• or there exist e′ and Δ′ such that Δ ; e !→w Δ′ ; e′.

8 Related Work

In this work, we examined the dependencies between third-party web services, fo-
cusing on data flow and policies to control them. This is related to the problem of
analyzing library dependencies of non-distributed and single-threaded programs
(also called data flow graph) [12]. This was adapted to the context of web ser-
vices in [2,3], which proposes a model for combining web services. The difference
between these approaches and our work is that, in QWeSSTϕ, services can be
created dynamically as opposed to static library or service identifiers. This is the
reason why we introduced specific flow types to be able to infer the data flow of
a program statically. This idea is also found in the history-based type systems
proposed in [1].

Verifying policy constraints statically entails some restrictions. For instance,
we cannot express a policy that depends on the value of an expression. However,
if the program is correctly typed, it guarantees that the policies are satisfied and
the program can be executed. Similar ideas were explored in [16,17].

The development of QWeSSTϕ shares concerns with recent work from Collin-
son and Pym. In [4,5], they propose to use bunched logic to specify acceptable
composition of shared resources. The work outlined here is specific to the context
of web programming.

Our use of the term data flow should not be confused with information flow
and the large body of work on related concepts such as non-interference and
declassification (see for example [9,13]). The problems they address (inferring
and controlling where data will go in a distributed program and preventing
information leakage in shared multi-user systems) are quite different, possibly
orthogonal. Yet, it will be interesting to see how these two approaches can be used
in conjunction to provide a robust security model for a distributed programming
language.
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The formalization of policies aimed at preventing unwanted dissemination of
possibly sensitive data is a theme that this work has in common with P3P [6] and
related approaches to privacy. QWeSSTϕ is not specifically designed for privacy
applications, although it can express some simple privacy policies. On the other
hand, privacy-oriented systems such as P3P do not try to infer the flow of data
within a network, but to establish and verify precise agreements between the
consumer and the provider of a service.

9 Conclusions and Future Work

In this paper, we introduced a proof of concept for a web based programming
language that automatically predicts how third-party services are composed and
enables service consumers to specify policies that control data sent as inputs to
these third-party services. We started from a fragment of QWeSST, a simple
programming language, and extended it in two ways: first, we defined a data
flow model that allows us to describe the paths taken by a value through a net-
work of web services. Second, we defined a policy language to express constraints
on acceptable paths that a value should take. This allowed us to automatically
infer an approximation of the data flows of program variables and verify that
the policies attached to service calls are satisfied. This verification is done stati-
cally. Therefore, since typechecking takes place locally in the resulting language,
QWeSSTϕ, it means that the service consumer has the guarantee that if one of
its policy was violated the language interpreter would not allow the execution
to take place, thereby preventing any data leakage.

QWeSSTϕ, as presented in this paper, has several limitations that we intend
to resolve in the near future. A first limitation is that functions and services must
have arguments of base type, thereby preventing the definition of higher-order
functions and services. We are investigating ways to allow such entities, which
currently seem to require significant changes to our language. A second limita-
tion is is that, in QWeSSTϕ, flows and policies refer to nodes, which prevents
discriminating between two services, possibly one trusted and the other one not,
coming from the same service provider.

In future work, we also want to refine our data flow model to incorporate a
form of polymorphism at the level of hosts. By doing so, we still would be able
to verify data flow policies statically since the interpreter would be able to infer
potential hosts and potential URLs involved in an expression. Another avenue of
future work is concerned with the direction of our flow inference: in QWeSSTϕ,
we infer where a value supplied to a service may go. Another interesting problem
is to try to infer, statically, where data is coming from.

Acknowledgments. This work was partially supported by the Qatar National
Research Fund under grants JSREP 1-033-1-006 and NPRP 09-1107-1-168.
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Abstract. Modern web applications frequently implement complex con-
trol flows, which require the users to perform actions in a given order.
Users interact with a web application by sending HTTP requests with
parameters and in response receive web pages with hyperlinks that in-
dicate the expected next actions. If a web application takes for granted
that the user sends only those expected requests and parameters, mali-
cious users can exploit this assumption by crafting harming requests. We
analyze recent attacks on web applications with respect to user-defined
requests and identify their root cause in the missing explicit control-flow
definition and enforcement. Then, we evaluate the most prevalent web
application frameworks in order to assess how far real-world web appli-
cations can use existing means to explicitly define and enforce intended
control flows. While we find that all tested frameworks allow individual
retrofit solutions, only one out of ten provides a dedicated control-flow
integrity protection feature. Finally, we describe ways to equip web ap-
plications with control-flow integrity properties.

1 Introduction

Over the past two decades, the Web has evolved from a simple delivery mecha-
nism for static content to an environment for powerful distributed applications.
In spite of these advances, remote interactions between users and web applica-
tions are still handled using the stateless HTTP protocol, which has no protocol
level session concept. Handling session state is fully left to the web application
developer or to high-level web application frameworks.

Web applications often include complex control flows that span a series of
multiple distributed interactions. The application developer usually expects the
user to follow the intended control flow. However, if a web application does not
carefully ensure that interactions adhere to the intended control flow, attackers
can easily abuse the web application by using unexpected interactions. Several
known attacks have exploited this kind of vulnerability in the past. The attacks’
impact ranges from sending more free SMS text messages than actually allowed
[1], over unauthorized access to user accounts [2,3,4], up to shopping expensive
goods with arbitrarily low payments [5].

Almost every web application that implements a business logic spanning sev-
eral request-response round trips has a need for control-flow integrity. So, a
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control-flow integrity module should be reusable. Web application frameworks
provide sets of reusable features to facilitate web application development. In this
paper, we examine the ten most prevalent web application frameworks on their
support for control-flow integrity. This gives us an insight how far the majority
of web applications can use and add control-flow integrity protection without
changing the application or the underlying framework. Looking at it the other
way round, missing support requires developers to manually implement pro-
tection means, which, as history shows, leads to more weaknesses because the
implementation is often either omitted or flawed. We also check two crucial as-
pects of control-flow integrity: parameter integrity, which means that malicious
users can not tamper with the HTTP parameters’ data type, and race condition
protection, which mitigates attack vectors based on the same request sent mul-
tiple times in parallel. The specific contributions are threefold: First, we explore
the vulnerability pattern that leads to control flow-related attacks. Second, we
explain how this class of vulnerabilities can be overcome. Third, we present the
results of our investigative survey on mechanisms in web application frameworks
that help the developer to achieve control-flow integrity.

This paper is structured as follows. In the next section, we explain the techni-
cal details of control-flow integrity. We describe real-world examples of attacks
and identify their root cause. Then, in Section 3, we give the results of our sur-
vey on control-flow integrity means in web application frameworks. We check ten
frameworks for their capabilities to mitigate attacks based on unexpected request
sequences, concurrent requests on the same action, and HTTP parameter ma-
nipulation. In Section 4, we present related approaches concerning control-flow
integrity in web applications. Finally, we conclude in Section 5.

2 Exploring Control Flow in Web Applications

In this section, we investigate in more detail the problem of control-flow integrity
of web applications, analyze several real-world attacks, and discuss their root
causes.

2.1 Technical Background

Modern web applications are usually developed with the help of web application
frameworks. Such frameworks encapsulate basic functionality that can be reused
for application development at a large granularity level. Typical features include
session initialization and cookie delivery as well as HTTP communication and
HTML content generation support. The application code then implements the
actual business logic and uses high-level functions provided by the framework.

Technically, the user’s web browser interacts with the remote application by
sending HTTP requests. HTTP is a stateless protocol without session concept
[6]. This means that each request is independent of all others. The protocol does
not inherently link one request to the next. The logic of current web applications,
however, is stateful. Users expect personalized accounts where they can log in
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and find their accustomed environment like a history of transactions, what their
friends do etc. They can perform actions, for example, buy goods or add new
friends. This requires the web application to keep the current state of the user’s
session, consisting of persistent information (e.g. the friends list) in a database
and temporary information (e.g. the shopping cart) in a so-called session record.

From the web application’s viewpoint, such user actions are composed of
multiple steps, which correspond to multiple HTTP requests from the user to
the web application. For each step, the client receives a web page with hyperlinks
that offer possible next steps to a user. Upon clicking a link, the user’s browser
sends a particular HTTP request to the web application, which then performs
actions in order to progress to the next step in the workflow. The actions are
defined by the URI [7] of the HTTP request, the request parameters, and the
server-side session record. For instance, a shopping workflow might first require
to put items to the cart, then log in, provide a shipping address and shipping
speed, choose a payment option, and finally review the complete order. For every
step, the user is supposed to fill some form and press a button. A web application
has to ensure that a malicious user does not enter the address of the review page
into his browser without providing payment details.

2.2 Root Causes for Weaknesses

Web application developers assume that users first request one of possibly several
application entry points, e.g. the base directory at http://www.example.com.
Upon the first request, the web application sends a given response containing
a set of hyperlinks or a redirect instruction to the user. As users tend to click
on hyperlinks in order to navigate through the application, developers might
assume that only the given requests will be accessed next. However, the user is
technically not bound to click on one of the provided hyperlinks but she can still
send requests that are not provided within this response. Sent requests can differ
from provided hyperlinks in terms of addressed methods and HTTP parameters.
Vulnerable web applications fail to handle unintended user behavior in terms of
sequences of requests.

More formally, web application developers implement implicit control-flow
graphs. In each state, sending a request leads to a subsequent state in the graph.
Executing a step corresponds to changing the server-side state. Control-flow
weaknesses occur if an attacker is able to address at least one method, i.e., cause
a state-changing action, that is not meant to be addressed in the respective
session state. This transition does not exist in the respective control-flow graph
due to the developer’s assumption that the request does not happen at that time.
Vice versa, a web application implementing a control-flow graph with transitions
for all requests in every state is not susceptible to control-flow weaknesses.

Control-flow weaknesses cannot be overcome with usual access control means.
The attack vectors include only requests that are in the scope of the user’s rights.
Access control mechanisms prevent users from accessing sensitive API methods
at all times. Control-flow integrity protection, however, prohibits access to reg-
ular API methods in an unsolicited order or context. The measure to achieve

http://www.example.com
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this can partially overlap with Cross-Site Request Forgery (CSRF) protection:
web applications can issue tickets in the form of nonces that must be appended
to requests [8]. A request without a ticket is not processed. This prevents that
CSRF attackers can craft requests that are finally executed on behalf of the
victim. In some cases, this can also prevent attacks on control-flow integrity:
First, nonces must be unique for every request. Some web applications use only
one ticket for a user session to save server-side resources. While a session-wide
ticket reliably prevents CSRF attacks, it can not prohibit attacks on control-
flow integrity. Second, a ticket must be bound to the whole request including all
parameters. Otherwise, an attacker could tamper with unprotected parameters
and change a request’s context. The first example concerning HTTP parameter
manipulation given in Sec. 2.3 describes such an attack. Third, the ticket must
be invalidated immediately after use to prevent race condition exploits and faults
due to “Back” button usage. Both of these scenarios use correct request-ticket
combinations but more often than expected. Finally, even if all these measures
are taken properly, there is still an open attack vector: the user can start the
same workflow in different sessions up to the point where a race condition exploit
should be run. Then, he can perform the next step in all sessions in parallel with
all requests equipped with correct tickets.

Existing web applications enforce the intended control flow based on session-
contained parameters. This allows only the implicit definition of workflows. The
previous actions are assumed to set the parameters and, thus, allow the execution
of next actions. The actual workflows are not explicitly determined preventing
the proper assessment of enabled workflows. The central and explicit definition
of facilitated workflows provides guarantees of request sequences to the relying
web application. One crucial aspect of reliable request sequences are controlled
HTTP parameters as we will show by the attacks in Section 2.3.

2.3 Examples

Several kinds of attacks exploit the fact that attackers can craft arbitrary
requests instead of clicking on provided hyperlinks. Real-world examples of
control-flow integrity violations are race conditions, manipulated HTTP param-
eters, unsolicited request sequences, and the compromising use of the browser’s
“Back” button.

Race Conditions. In order to exploit race conditions [9] in web applications,
attackers can send several crafted requests almost in parallel. Web applications
are multi-threaded by design and, so, have an inherent concurrency property
when receiving several requests in a short time frame. There is no low-level se-
rialization of requests for performance reasons. If the web application does not
handle concurrent requests by proper synchronization, the actual application
semantics can be changed in this way. In one real-world example, a web appli-
cation provided an interface to send a limited number of SMS text messages per
day [1]. The web application first checked the current amount of sent messages
(time-of-check), then delivered the message according to the received request,
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and finally updated the number of sent messages in the database (time-of-use).
Attackers were able to send more messages than allowed by the web application
by crafting a number of HTTP requests, each containing the receiver and text
of the message to be sent. These requests were sent almost in parallel and the
multi-threaded web application processed the incoming requests concurrently.
This way, the attacker exploited the fact that the messages were sent before
the respective database entry was updated, leading to the delivery of all re-
quested messages. The developers’ underlying assumption was that users finish
one transmission process before sending the next message and do not request
one operation of the workflow several times in parallel. While race conditions are
in general known for years, they are a crucial aspect of control-flow integrity be-
cause the expected sequence of steps in a workflow can be manipulated. Instead
of proceeding to the next step, the same action is executed repeatedly. This way,
the attack leads to a corrupt application state.

Unsolicited Request Sequences Attackers can not only modify the requests’
parameters but also craft requests to any method of the web application. Be-
sides manipulated HTTP parameters, web applications might face unexpected
requests to any method. For instance, in another given scenario by Wang et al.
[5], a malicious shopper was able to add items to her cart between checkout
and payment. She was only charged the value of her cart at checkout time. The
recently added items were not invoiced.

HTTP Parameter Manipulation HTTP requests can contain parameters in
addition to the receiving host, path, and resource. As the parameters are sent
by the client, the user can control the parameters’ values and which parameters
are sent to the web application. Wang et al. [5] found a bunch of logic flaws in
well-known merchant systems and Cashier-as-a-Service (CaaS) services. These
flaws allowed them to buy any item for the price of the cheapest item in the
store.

Compromising Use of the “Back” Button Current web browsers are fitted
with a so-called “Back” button. It is meant to navigate back to the last visited
web page. Depending on the configuration, the last request either has to be
repeated in order to display the page or the content is loaded from the browser’s
local storage (“cache”). In the context of a workflow, the user takes one step back
which in some cases is unwanted and also undetectable by the web application.
In fact, the usage of this button usually invokes the last action again rather than
rolling back the last changes. Hallé et al. [10] describe related navigation errors.

To sum up, we can say that uncontrolled sequences of user requests might
cause confusions on the web application’s state if it does not take care of handling
even unprovided requests. In the next section, we dive deeper into precautions
provided by web application frameworks.

3 Probed Web Application Frameworks

In this section, we describe our survey on control-flow integrity protection means
of the most prevalent web application frameworks. We tested the top 10 web
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application frameworks according to the BuiltWith index [11] on 12 Jan 2013.
The list contains the most common server technologies among the 10,000 most
popular web sites. However, it also includes technologies that are out-of-scope for
our survey because they only denote the platform, e.g. PHP. We are aware that
PHP itself does not provide any control-flow integrity means, thus, we omitted
all technologies that do not fall within the following definition:

“A framework is a set of classes that embodies an abstract design for
solutions to a family of related problems, and supports reuses at a larger
granularity than classes.” [12]

The in that way derived frameworks are Apache Tapestry [13], Google
Web Toolkit [14], Spring [15], CodeIgniter [16], CakePHP [17], Kohana [18],
ASP.NET [19] (Web Forms [20], MVC [21], and Web Pages [22]), and Ruby on
Rails [23]. At the time of publication, Django [24] reached considerable popular-
ity such that we quickly go into Django as well.

The testing procedure included first a check of the manuals on hints concerning
control-flow integrity means. More precisely, we looked for existing functionality
that can be configured, e.g. by providing a policy, and then enforces control-
flow integrity features. The customer should not be required to implement but
only configure enforcement. We compiled a chain of basic web pages that are
connected via links and buttons and supplied a control-flow integrity policy
whenever an enforcement feature is mentioned. Next, we tried to overcome the
intended control flow by crafting requests.

Then, we tested each framework for race condition protection means which
are a crucial part of control-flow integrity (see Section 2.3). We crafted a web
page that accepts user requests and expects a textual parameter. The content of
this parameter is posted to a message board, and a message counter keeps track
on the number of posts. We allowed a maximum of five messages. A small script
quickly sent message requests to that page trying to post more messages than
actually allowed.

Finally, we wanted to learn how the request parser behaves. Therefore, we
changed the given HTTP GET and POST parameters to see whether there is
any enforcement based on the data type or a constant value.

3.1 Enforcing Sequences of Actions

In this section, we describe our findings on control-flow integrity means in the
top 10 web application frameworks (see above). Our first reference point is each
framework’s manual. In case of promising hints, we conducted our practical test
run, a simple flow definition and violating requests.

An incoming request can cause a sequence of server-side operations in Apache
Tapestry [13]. Every request is first handled by a master dispatcher which for-
wards the request to the respective processing and page rendering routines. These
routines can trigger new events (event bubbling). The web application reaches a
stable state when all events finished processing. However, there is no enforcement
mechanism to control the sequence of user actions.
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Google Web Toolkit [14] allows the developer to write Java code which is then
translated to server-side Java classes and client-side JavaScript code by the GWT
SDK (Software Development Kit). Most operations and all user interaction hap-
pen on client side. The client-side code communicates with the web server using
AJAX requests (Asynchronous JavaScript and XML) [25]. These requests are
called remote procedure calls because they call procedures on server-side. There
is no enforcement mechanism concerning the sequence of processed requests.

Spring [15] is actually a modular Java framework. It becomes a web appli-
cation framework by including the web module. In that combination, Spring
implements a model-view-controller (MVC) architecture without any control-
flow integrity protection. However, Spring is extensible by so-called projects1

among which Spring Web Flow [26] is meant to provide flow control for web
applications. It inserts a special web flow controller into the MVC-based appli-
cation in order to ensure that every incoming request can be checked for policy
compliance. Developers can define intended control flows as XML or as Java
code. A control-flow definition contains a number of states and for each state its
outgoing transitions. Processed requests trigger a state transition if they contain
the respective flowExecutionKey and eventID. The flowExecutionKey denotes
the access key to the control flow while the eventID is the transition’s identi-
fier. Both are transmitted as HTTP parameters. This allows Spring Web Flow
to distinguish between tabs and, thus, allow multiple control flows in separate
browser tabs without interference. It can also control side effects caused by the
usage of the browser’s “Back” button in such a way that it prevents accidental
re-execution of the last action (see Section 2.3). In our practical test runs, we
made sure that the flow definition was properly enforced. We crafted requests to
all existing actions but no spoofed request was processed.

CodeIgniter [16] is a PHP-based web application framework implementing
a MVC architecture. A dispatcher receives all incoming requests and forwards
them to their respective controller. A file named routes.php does the assign-
ment of requests to controllers. The included security library2 processes all in-
coming requests and outgoing responses after the dispatcher and before the
controller. However, it only sanitizes user input to prevent cross-site scripting
(XSS) and equips links in outgoing responses with nonces to prevent cross-site
request forgery (CSRF). A control-flow integrity enforcement mechanism is not
part of the framework.

CakePHP [17] like CodeIgniter is a PHP-based web application framework im-
plementing a MVC architecture. The basic request processing is also similar: a
dispatcher forwards all incoming requests to controllers according to the configu-
ration file routes.php. CakePHP comes with a security component3 that can be
used by controllers to prevent CSRF and form tampering, require given HTTP

1 See http://www.springsource.org/projects for a complete list.
2 See http://ellislab.com/codeigniter/user-guide/libraries/security.html

for details.
3 See http://book.cakephp.org/2.0/en/core-libraries/components/

security-component.html for details.

http://www.springsource.org/projects
http://ellislab.com/codeigniter/user-guide/libraries/security.html
http://book.cakephp.org/2.0/en/core-libraries/components/security-component.html
http://book.cakephp.org/2.0/en/core-libraries/components/security-component.html
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methods (i.e. GET, POST, PUT, and DELETE) or SSL, or restrict communi-
cation between controllers. None of these features, however, allows enforcement
of control-flow integrity properties.

Kohana [18] also falls into the category of PHP-based frameworks that imple-
ment a MVC architecture. The central configuration file is named Bootstrap.php.
It gathers the basic configuration, lists included modules which provide addi-
tional functionality, and defines responsible controllers based on the requested
URL. The supplied security class4 offers protection routines against XSS, SQL
injection, and to check input conformity. Control-flow integrity protection is not
offered.

ASP.NET [19] is a web application framework built on the .NET framework
for Windows operating systems. It allows to implement web applications in pro-
gramming languages C# and VB.NET. ASP.NET comprises three distinct ap-
plication paradigms:

– ASP.NET Web Forms [20] generates web applications that consist of objects
called pages. Pages contain HTML code and server side controls. Those con-
trols are triggered on incoming requests and perform data processing before
a response is rendered and sent back to the client. The provided state man-
agement5 offers data storage options across request-response round trips,
similar to cookies and session records. There is no control concerning state
transitions.

– ASP.NET MVC [21] again follows the model-view-controller architecture.
The central dispatcher is named Global.asax. It assigns incoming requests
to their respective controllers. An authorization filter6 can be executed before
the request is processed by the assigned controller. This filter checks a user’s
access rights to the requested action but does not control the sequence of
actions.

– ASP.NET Web Pages [22] is the most lightweight web application frame-
work of the ASP.NET family. Its application model is similar to Web Forms.
Web Pages contain more HTML code enriched by dynamic server-side fea-
tures while Web Forms generate most HTML elements dynamically. From a
control-flow integrity point of view, there is no big difference between both.

With Ruby on Rails [23], a developer implements model-view-controller-based
web applications in Ruby. The underlying principle is equivalent to the above
described MVC-based web application frameworks: The action dispatch compo-
nent forwards requests to controllers based on a given configuration file, named
routes.rb. Filters can be applied before and after the execution of the con-
troller. However, there is no given control-flow integrity protection mechanism.

Django [24] is also MVC-based and uses regular expressions to assign requests
to views. The request can be checked bymiddleware components before and after
being processed by the view.

4 See http://kohanaframework.org/3.3/guide/kohana/security for details.
5 See http://msdn.microsoft.com/en-us/library/75x4ha6s.aspx for details.
6 See http://msdn.microsoft.com/en-us/library/dd505057(v=vs.98).aspx for
details.

http://kohanaframework.org/3.3/guide/kohana/security
http://msdn.microsoft.com/en-us/library/75x4ha6s.aspx
http://msdn.microsoft.com/en-us/library/dd505057(v=vs.98).aspx
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In summary, it can be stated that Spring with Web Flow offers the only
control-flow integrity protection feature in the field of common web applica-
tion frameworks. Common security features are anti-CSRF tokens, authorization
management, and input validation against cross-site scripting and SQL injection.
It seems to us that control-flow integrity has not yet received much attention
and is overlooked in web application development.

3.2 Race Condition Protection

Section 2.3 shows that race conditions can be a severe problem in web appli-
cations. Roughly speaking, they occur whenever some action can be executed
next but only a limited number of times. This is usually the case for repetition-
bounded state changing actions. It depends on the application’s business logic
which actions are concerned. So, a web application framework should offer means
to define such actions and respective requests in order to make the framework
process them sequentially instead of parallel. We could endorse the results given
in Section 3.1 that none of the frameworks offers such protection with the ex-
ception of Spring Web Flow which we will take a deeper look at in this section.

Fig. 1. The intended flow for sending a message. First, the message text is entered.
Next, the message is transmitted, and finally, a confirmation is given.

We implemented a number of web pages that allow the user to first enter
a message text. Then, the message is sent via HTTP POST to the message
board and a confirmation is given in the last step. The intended flow is given in
Figure 1. We crafted the respective Spring Web Flow policy. Listing 1.1 shows
the pseudo code of the method that receives the request.

i f db . sentMessages < 5 {
board . inc ludeMessage (m) ;
db . update ( sentMessages++) ;

}

Listing 1.1. Pseudo code of the message processing method

The goal was to send a high number of messages and make more than five
accepted for the message board. In a first attempt, we requested the message
form, learned the request target and parameters for the message submission
and sent 20 messages almost in parallel. The result shows that only one of the
messages was accepted. It seemed that the flowExecutionKey and eventID were
checked before the actual application code handled the request.
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In a next attempt, we started the same flow in ten distinct browser tabs, thus
obtaining ten different flowExecutionKeys, as Web Flow is able to handle multi-
tabbed browsing. We were able to sent eight messages upon virtually clicking
“Send” simultaneously in all ten tabs. Just for the record, we repeated the last
experiment using ten different browsers instead of browser tabs and succeeded
again. The difference between the last two configurations from the server’s point
of view is that all ten requests belong to the same user session in the first case and
to ten different user sessions in the second case. In both scenarios, the actual
flow definition was not violated because all steps were performed in the right
order and there were no interfering requests within each single flow. The actual
exploit happened on a logical level. The number of parallel executions of the
same control flow within the same session or the same user account was not
limited. There is no policy statement to define such restrictions. So, developers
need to take care and implement customized solutions.

3.3 Parameter Enforcement

Next, we checked whether changes of the expected data type in request pa-
rameters lead to faults in web applications. For instance, we sent a request
http://www.example.com/controller/action/foo while the application ex-
pected a numerical parameter, e.g. http://www.example.com/controller/

action/13.
Our observation shows that the underlying programming language plays

a decisive role: the Java-based frameworks fail while casting the unexpected
string type to the integer variable. Apache Tapestry can not find an
appropriate handler for our request and responded with a default page. Google
Web Toolkit and Spring (incl. Web Flow) raise exceptions, undeclared and
NoMatchingTransitionException respectively. The type-safe nature of Java in
this case prohibits unintended user input, albeit the request is processed in the
opposite case: a method expecting a string also accepted a number which is then,
however, interpreted as a string.

The situation is different for PHP-based frameworks, because PHP does not
have inherent type safety. The web application frameworks, however, all offer
type matching expressions. CodeIgniter knows types :num and :any which in-
clude numerical values and all values respectively. CakePHP and Kohana suggest
to enforce data types by means of regular expressions. The expression ’param’

=> ’[0-9]+’ makes sure that only integers are accepted for parameter param.
There is another problem for ASP.NET web applications because they can be

implemented in C# or VB.NET, thus not benefit from underlying data types.
The attempt to maintain type safety is similar to the PHP world. So-called
constraints can define regular expressions. The integer definition looks like the
following: param = @ "\d +" where d is the symbol for a digit.

Ruby on Rails also accepts constraints, i.e. regular expressions defining the
range of accepted values for parameters. The integer definition is :product =>

/[0-9]+/

http://www.example.com/controller/action/foo
http://www.example.com/controller/
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Finally, Django assigns requests to views based on regular expressions, i.e.
requests with forged parameters can be sorted out before they are processed.

We can conclude that web application frameworks contribute to type safety
in web applications. This makes those attacks harder which rely on request
processing weaknesses based on parameter type manipulation.

3.4 Summary

Our tests show that support for control-flow integrity in web application frame-
works is insufficient. Existing approaches relying on implicit control-flow enforce-
ment are dangerous: Modules are per se not reusable; setting values to indicate
that some action has been performed can have side effects allowing also subse-
quent actions of the same workflow or repeated execution of the next action; and
finally, authorization must always be distributed because the permission is given
in one method while the check is performed in a different method. The need for
framework inherent control-flow integrity can only be fulfilled by Spring Web
Flow (see Table 1).

Table 1. The test results. A plus (+) denotes that the protection feature is provided in
the framework. A minus (–) means that there is no regular support for such protection.
CFI is the property to enforce the right order in request processing. RC stands for race
condition protection. Param. is the ability to ensure type safety of received request
parameters. The Spring Web Flow race condition protection is a special case because
it can only protect against single flow race conditions.

Framework Version CFI RC Param. Lang

Apache Tapestry 5 – – + Java
Google Web Toolkit 2.5 – – + Java
Spring/Web Flow 3.2.2/2.3.0 –/+ –/≈ + Java
CodeIgniter 2.1.3 – – + PHP
CakePHP 2.3.0 – – + PHP
Kohana 3.3.0 – – + PHP
ASP.NET Web Forms 4.5 – – + C#, VB.NET
ASP.NET MVC 4 – – + C#, VB.NET
ASP.NET Web Pages 2 – – + C#, VB.NET
Ruby on Rails 1.9.3 – – + Ruby
Django 1.5.1 – – + Python

Nevertheless, almost all frameworks in scope provide suitable execution points
to hook into. The central dispatchers of the MVC-based frameworks can observe
every request passing by. Equipping those dispatchers with a control-flow in-
tegrity feature seems natural. Moreover, most of the frameworks have filters,
that are executed before and after the controller processes the request. Table 2
gives a list of dispatchers and filters.
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Table 2. The frameworks have single points of processing determined by their design,
so-called dispatchers. Some even provide filter routines that are executed before and
after request processing.

Framework Dispatcher Filters

Apache Tapestry Master Dipatcher –
Google Web Toolkit Web.xml –
CodeIgniter routes.php pre controller,

post controller
CakePHP routes.php beforeFilter, afterFilter
Kohana Bootstrap.php before, after
ASP.NET Web Forms Global.asax –
ASP.NET MVC Global.asax OnActionExecuting, OnAc-

tionExecuted
ASP.NET Web Pages Global.asax –
Ruby on Rails ActionDispatch beforeFilter, afterFilter
Django URLconf Middleware

4 Related Work

The Open Web Application Security Project (OWASP) coined the term Failure
to Restrict URL Access [27] to describe a similar vulnerability as our control-
flow weakness. However, it is more focused on access control flaws that can be
exploited by Forced Browsing attacks [28] to find a deep link [29] to a high
privilege web page. Workflows and control-flow integrity play a tangential role
in the description.

In previous work, we developed a control-flow integrity monitor that is easily
applicable to legacy and new web applications [30]. It is integrated into re-
quest processing between the central dispatcher and the controller in charge.
The monitor expects a policy definition as input and provides guarantees to the
web application concerning the sequence of incoming requests, their parameters
and data types, as well as race condition protection. It supports multi-tabbing
and usage of the “Back” button.

We divide other related work in navigation restriction means (Section 4.1),
detection of server-side state violation (Section 4.2), protection against and de-
tection of client-side manipulation (Section 4.3), and race condition detection
(Section 4.4).

There are different names for the respective attacks and vulnerabilities though
not big differences in their technical details. In some cases, the attack allowing a
malicious user to compose his own sequence of actions is called workflow violation
attack [31], state violation attack [32], workflow attack [33,34] or the attack
exploiting web application logic vulnerabilities [35].

Partial overlap exists with HTTP parameter pollution attacks [36] and param-
eter tampering attacks [37].
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4.1 Navigation Restriction Means

These approaches restrict the web application’s request surface towards the user.
They limit the accepted requests to a predefined set and prevent arbitrary nav-
igation by users.

BAYAWAK [34] is a powerful tool to enforce request integrity. The basic idea
is to prevent access to all server-side resources by giving them unique tempo-
rary interface identifiers (IID). The IIDs are changed with every request. In each
response, the hyperlinks carry the necessary IID to address the intended next re-
sources. Requests to arbitrary resources are prevented due to missing identifiers.
BAYAWAK appends the IID as an HTTP parameter, e.g. ?IID=x. All necessary
attributes in all web pages have to be modified to include the IID. It remains
open how dynamically generated requests are equipped with the IID. By design,
multitabbing and back button support as well as page reloads can not be granted
as the session-bound IID must be outdated. Race condition protection depends
on the actual implementation of this concept, namely whether parallel execution
of requests with the same IID is possible or excluded.

Hallé et al. propose a model checking-based approach to prevent navigation
errors [10]. They explain their navigation state machines that allow the execution
of given actions only immediately after a preceding action. For example, the
modification of user accounts is only admitted if requested right after listing all
user accounts. Moreover, parameter values can be defined as a prerequisite for
actions. The approach focuses more on unintentionally caused errors than on
security issues based on malicious user behavior. Complete workflows can not be
defined explicitly. Instead, only ordered pairs of actions can be set. Multitabbing
and race conditions are not handled.

4.2 State Violation Detection

The approaches that we describe in this section aim at detecting unintended or
unusual server states. The following approaches infer the intended application
states during a training phase or by static code analysis. They raise an alarm
as soon as the detected state deviates from the known states, but they do not
intend to make workflows explicit and control the interactions with users.

MiMoSA [33] detects violations of workflow integrity if intended workflows
are enforced based on PHP session variables, request parameters, and database
tables. It uses a cascade of dynamic and static analysis of PHP code together
with model checking techniques to identify program paths that finally lead to
an insecure state – either due to workflow attacks or due to injection attacks,
like Cross-Site Scripting (XSS) and SQL injection (SQLi).

Swaddler [31] detects anomalous combinations of session states and code exe-
cution points in PHP-based web applications after a learning phase. It assumes
that attacks lead to observable differences in the application’s state with respect
to a threshold. In that sense, it is comparable to the functioning of an intrusion
detection system (IDS).

?IID=x
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BLOCK [32] follows a black box approach to detect state violation attacks
based on input/output invariants. In this case, input means the requested action,
input parameters, and the session state while the output is the new session
state and the HTTP response. The invariants are derived during an attack-
free training phase. Discrepancies between observed input/output and known
invariants cause an alarm.

Waler [35] follows a similar but white box approach. It attempts to infer invari-
ants by running dynamic analysis. Invariants are determined by if statements
and equality relations between session variables and database entries. Finally,
Waler uses model checking to find invariants-violating program paths.

4.3 Client-Side Manipulation Detection

Malicious users not only craft individual HTTP requests or manipulate request
headers to achieve their goals. Depending on the business logic of the web ap-
plication, changes on the client-side JavaScript code can cause damage to the
application provider. The following approaches aim at detecting several kinds of
client-side manipulation.

PAPAS [36] falls into the category of the above mentioned OWASP attack
classes. It discovers HTTP parameter pollution vulnerabilities in web applica-
tions. The approach is to some extent similar to intelligent fuzzing attempts.

Ripley [38] replicates the client-side execution of JavaScript code on a server-
side replica and, thus, detects manipulations, e.g. on AJAX requests. It causes a
higher load on client- and server-side as well as an additional delay of responses.

Guha et al. [39] make use of static analysis to obtain a model of expected
client behavior from the server’s point of view. All requests not matching this
expected behavior are considered harmful and are dropped.

NoTamper [37] detects differences in server-side and client-side validation of
user input and HTTP parameters. Finally, if an input, that is rejected on client-
side, gets accepted on server-side, a possible attack vector may exist by manip-
ulating or disabling client-side checks. This approach is similar to Ripley [38]
which however is supposed to be applied for new applications while NoTamper
is meant for legacy applications that are considered as a black box.

4.4 Race Conditions

Race conditions [9] are explained in detail in Section 2.3. An attacker exploiting
this vulnerability can execute one function more often than intended by the
application developer.

Paleari et al. [1] describe an approach to detect race condition vulnerabilities
in LAMP7-based web applications. They dynamically log SQL queries at runtime
and analyze the log file to find possible race conditions based on the series of
SQL clauses.

7 LAMP stands for Linux, Apache, MySQL, PHP, the classical web server architecture.
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5 Conclusion

We explained the complex problem of control-flow weaknesses and showed its
high practical relevance by real-world examples, i.e. existing vulnerabilities and
attacks. We identified the root causes in the modular addressability of web ap-
plications together with the implicit and scattered definition of workflows. Our
findings on the current support for control-flow integrity in the most prevalent
web application frameworks show that this problem does not yet receive the
attention it deserves. All frameworks but Spring with the Web Flow project
lack related properties. No framework provides race condition protection fea-
tures beyond single flow request sequences. Only type safety of received HTTP
parameters is commonly supported.

Acknowledgments. This work was in parts supported by the EU Project
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acknowledged.

References

1. Paleari, R., Marrone, D., Bruschi, D., Monga, M.: On Race Vulnerabilities in Web
Applications. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 126–142.
Springer, Heidelberg (2008)

2. Chen, S.: Session Puzzles - Indirect Application Attack Vectors. White Paper (May
23, 2012), http://puzzlemall.googlecode.com/files/Session%20Puzzles%

20-%20Indirect%20Application%20Attack%20Vectors%20-%20May%202011%20-%

20Whitepaper.pdf
3. Grossman, J.: Seven Business Logic Flaws That Put Your Website At Risk. White

Paper (May 19, 2012),
https://www.whitehatsec.com/assets/WP_bizlogic092407.pdf

4. The New York Times: Thieves Found Citigroup Site an Easy Entry (May 24, 2012),
http://www.nytimes.com/2011/06/14/technology/14security.html

5. Wang, R., Chen, S., Wang, X., Qadeer, S.: How to Shop for Free Online – Secu-
rity Analysis of Cashier-as-a-Service Based Web Stores. In: IEEE Symposium on
Security and Privacy (2011)

6. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (June 1999),
http://www.w3.org/Protocols/rfc2616/rfc2616.html

7. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI):
Generic Syntax.RFC2396 (August 1998), http://www.ietf.org/rfc/rfc2396.txt

8. Jovanovic, N., Kruegel, C., Kirda, E.: Preventing cross site request forgery attacks.
In: Securecomm (2006)

9. OWASP: Race Conditions (May 23, 2012),
https://www.owasp.org/index.php/Race_Conditions
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Abstract. Hyperproperties were proposed as an abstract formalization
of security policies, but unfortunately they lack a generic verification
methodology. In an attempt to remedy this, we introduced the notion of
incremental hyperproperties (IHPs), motivated by the observation that
they have a clearer and more feasible verification methodology. To show
that verification is indeed feasible, a decidable IHP verification method-
ology via games is presented and evaluated. The main advantage of the
approach is that the games in combination with winning strategy evi-
dence give valuable intuition about the security of a system and are very
helpful when analyzing systems w.r.t. policy specifications.

1 Introduction

Clarkson and Schneider introduced the notion of hyperproperties [3] in an at-
tempt to formalize security policies. A hyperproperty is a set of sets of execu-
tion traces over some alphabet. Hyperproperties are important and intuitively
appealing as they generalize properties and can be seen as very generic system
specifications. Some prominent instances of security-relevant hyperproperties are
the large variety of notions of noninterference [12,21,10].

Unfortunately, hyperproperties lack a generic verification methodology: for
instance, there is no such verification methodology for possibilistic information
flow hyperproperties [3]. In order to make a step towards such a methodology,
in recent work [15] we proposed an incremental approach to both system and
hyperproperty specification and verification. As a result, systems can be seen
as potentially infinite trees and hyperproperties as coinductive predicates on k-
tuples of trees expressed in a logic called IL. Specifications defined in such a
manner are called incremental hyperproperties (IHPs) and we argued that they
have a clear and feasible verification methodology [15]. Given a hyperproperty
H , an IHP H ′ is the greatest fixed point of a monotone function over k-tuples
of trees such that H ′ implies or is equivalent to H . We also introduced H ′-
simulation relations which correspond to a monotone operator whose greatest
fixed point is the coinductive tree predicate H ′. Showing the existence of such a
relation is sufficient to show that H ′ (and thus H) holds [15].

In order to show that IHPs can express a large class of useful, security-
relevant hyperproperties, we demonstrated that our coinductive unwinding rela-
tions (which happen to be H ′-simulations and thus IHPs) can express and reason

H. Riis Nielson and D. Gollmann (Eds.): NordSec 2013, LNCS 8208, pp. 247–262, 2013.
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about arbitrary security-relevant hyperproperties, including but not limited to
noninference [21], generalized noninference [21], generalized noninterference [12]
and the perfect security property [21] (shown in recent work [14]).

However, it turns out that the initially proposed logic IL [15] for IHPs is
undecidable and not expressive enough for a large class of useful IHPs arising
in practice, such as the incremental variants of possibilistic information flow
policies explored in recent work [14]. To address these problems, we investigated
several related logics [13] for IHPs and found out that the most appropriate one
(for the known IHPs) is a fragment ILk

μ of the polyadic mu-calculus Lk
μ [1].

In this paper, we start by proposing a characterization of the satisfaction re-
lation between a system and an IHP in Lk

μ in terms of playing the so called
IHP game. Such games are intimately related to parity games and this is used
to enable model checking IHPs based on game-based, off-the-shelf tools. In par-
ticular, we explore the problem of IHP model checking via games, by proposing
two sound, game-based approaches (one of them based on off-the-shelf tools). In
addition, we show that the games in combination with winning strategy evidence
give valuable intuition about the security of a system and can be very helpful
when analyzing why a system fails to respect some policy specification. We show
that using such techniques and visualizations in terms of games can potentially
result in tools with more intuitive debugging functionality.

The rest of the paper is structured as follows. Section 2 provides background
material. Section 3 proposes the logic ILk

μ which is a fragment of Lk
μ. It also

introduces IHP games for Lk
μ and establishes their relation to parity games. Sec-

tion 4 presents possible model checking approaches and an empirical evaluation
of one of them. Section 5 discusses the advantages of model checking IHPs via
games. In Sections 6 we discuss the main contributions and compare them with
related work. Finally, we conclude and share some ideas for future work.

2 Background

Let A be a fixed alphabet of abstract observations. A string is a finite sequence
of elements of A. The set of all strings over A is denoted A∗. A stream of A’s
is an infinite sequence of elements of A. The set of all streams over A is Aω .
A stream σ can be specified in terms of its first element σ(0) and its stream
derivative σ′, given by σ′(n) = σ(n + 1). A trace is a finite or infinite sequence
of elements of A. The set of all traces over A is denoted A∞ = A∗ ∪ Aω. Let
2 be any two element set. A system is a set of traces. The set of all systems is
Sys = 2A

∞
, the set of infinite systems is Sysω = 2A

ω

.

2.1 Properties vs. Hyperproperties

Clarkson and Schneider present a theory of policies based on properties and
hyperproperties [3]. Our definitions are slight generalizations of the original ones,
as we do not require all traces to be infinite. As a result, termination-sensitive
definitions can be expressed more naturally. A property is a set of traces. The
set of all properties is Prop = 2A

∞
. A hyperproperty is a set of sets of traces or

a set of properties. The set of all hyperproperties is HP = 22
A∞

= 2Prop = 2Sys.
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2.2 Models of Systems

In this work, we model systems as partial automata [16], trees or sets of traces,
as these can be seen as equivalent views [15]. A partial automaton with input
alphabet A and a start state is a 4-tuple 〈S, o, t, s0〉, where set S is the possibly
infinite state space of the automaton, the observation function o : S → 2 indi-
cates whether a state is accepting or not, the function t : S → (1+S)A gives the
transition structure and s0 is the initial state. If t(s) is defined for some a ∈ A,
then t(s)(a) = s′ gives the next state; s′ is then called an a-derivative of s and
denoted sa. When the function t(s) is undefined for some a ∈ A, it is mapped to
⊥. The observation function indicates whether the empty trace is in the set of
traces acceptable by the partial automaton from state s. Note that t(s)(a) = s′

is typically abbreviated as s
a−→ s′ and t(s)(a) = ⊥ as s � a−→.

Alternatively, it is often more intuitive and convenient to think of a system
as being equivalent to its behavior. In such cases, we talk about the unique
tree of system behavior. A tree can be obtained from a partial automaton by
continuously taking derivatives with respect to elements of A. The start state
of the system corresponds to the root of the tree and subtrees are obtained by
taking derivatives. Yet another view of systems is as sets of traces accepted by a
partial automaton. As partial automata, trees and sets of traces are equivalent
views on systems, we often implicitly switch between these views: for instance, we
may write t(T )(a) and Ta, where the type of T is either tree or system. Finally,

for a k-tuple of trees T we use notation T
a−→i T ′ to mean that T ′

i = t(T i)(a),
where T i is the i-th tree in T and for all j s.t. 1 ≤ j ≤ k and j �= i, T ′

j = T j .

2.3 Auxiliary Definitions

For a partition of alphabet A as A = Av ∪ An ∪ Ac, define a view to be a tuple
(Av, An, Ac) corresponding to visible, neutral and confidential events [10]. Let
sets Ai and Ao be inputs and outputs such that Ai ⊆ A, Ao ⊆ A and Ai∩Ao = ∅.

We also introduce definitions from previous work [14]. Coinductively define
noZ : A∞ → 2, which states that there are no events from set Z in a trace as:

coind

noZ(ε)

a ∈ A \ Z noZ (x)
coind

noZ(a · x)

Next, inductively define w�Z a · w′ (for Z ⊆ A, w Z-reveals a with tail w′)

ε�Z ε

a ∈ Z

a · w�Z a · w
b ∈ A \ Z w�Z a · w′

b · w�Z a · w′

Finally, coinductively define weak bisimulation w.r.t. set Z as follows:

coindε∼Z ε
w�Z a · w′ u�Z a · u′ w′ ∼Z u

′
coindw∼Z u

The coinductive definitions are denoted as coind on the right side of the rule.
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2.4 Incremental Hyperproperties as Coinductive Predicates [14]

In recent work [15] we introduced and formalized the notion of incremental
hyperproperties (IHPs). Such a hyperproperty is the greatest fixed point of a

monotone functional over Sysk, given in a fragment of Least Fixed Point Logic
(the extension of first order logic with fixed point operators) [2], denoted IL.

An incremental hyperproperty (IHP) is a coinductive predicate on a k-tuple
of trees that can be specified by some formula φ ∈ IL. The set of all incremental
hyperproperties is {S ⊆ Sysk | S |= φ where φ ∈ IL}. Coupled with an IHP H ′,
we introduced the notion of an H ′-simulation — an n-ary relation R such that
R ⊆ ΨH′(R), where ΨH′ is a monotone operator determined by H ′. To illustrate
these notions, consider a variant of noninterference (called noninference [14]):

NI (X) =̂ ∀x0 ∈ X ∃x1 ∈ X. (noAc (x1)∧ x1 ∼Av x0).

The corresponding notion of NI ′ is given as follows:

NI ′ =̂ gfpR(s, t) . ∀a ∈ A \Ac ∀sa ∈ Sys.
(
s

a−→ sa →

∃σ ∈ (A \Ac)
∗ ∃tσ ∈ Sys.(t

σ−→ tσ ∧ a∼Av σ ∧R(sa, tσ))
)
∧

∀a ∈ Ac ∀sa ∈ Sys . (s
a−→ sa → R(sa, t)).

It is known [14] that for all T ∈ Sys, NI ′(T, T ) implies NI (T ). As a result, to
show that NI (T ), we can alternatively reason about NI ′(T, T ).

2.5 The Polyadic Modal mu-Calculus Interpreted over Trees [13]

The polyadic modal mu-calculus Lk
μ [1] is a logic whose formulae are interpreted

over k-tuples of transition systems. It is an extension of the modal mu-calculus [2]
with different diamond and box modalities associated with each system (from
the k-tuple). In this work, formulae will be interpreted over k-tuples of trees,
denoted T . The elements of these tuples will be referred to as Ti, where 1 ≤ i ≤ k.

Assume a set Var2 = {X,Y, Z, . . .} of second-order variables and a set P =
{Qi, Oi, . . . : 1 ≤ i ≤ k} of propositional constants. Formulae in Lk

μ have the
following syntax:

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]iΦ | 〈a〉iΦ | νZ.Φ | μZ.Φ,

where tt and ff are the constant true and false formulae, a ∈ A, [a]i and 〈a〉i
are the typical modal operators relativized to the i-th tree, where 1 ≤ i ≤ k. As
usual, μZ and νZ are the least and greatest fixed point operators, respectively.
Sometimes, for K ⊆ A we abbreviate

∧
a∈K [a]iΦ as [K]iΦ and

∨
a∈K〈a〉iΦ as

〈K〉iΦ. Finally, propositional variables are ranged over by second-order variables
from Var2. The semantics of Lk

μ on trees is given in recent work [13].

Any hyperproperty expressed in Lk
μ can be checked in polynomial time [1].

There is an algorithm for deciding T |= Φ, where Φ is closed, T a k-tuple of
finite transition systems with state spaces S1, . . . , Sk and m is the alternating
depth of Φ, in time O(|Φ|m(|S1| . . . |Sk|)m−1|T1| . . . |Tk|). Here |Ti| is the size of
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the underlying state space plus the size of the transition relation plus 1 and |Si|
is the size of the respective state space. The result is applicable to our setting
for reasoning about potentially infinite trees, generated by finite-state partial
automata.

3 Incremental Hyperproperty Checking Games

This section starts by presenting a fragment of Lk
μ which is expressive enough

for the known IHPs. Then it shows how to interpret IHP checking as playing
a game (called an IHP game and related to parity games) and thus lays the
foundations for game-based verification of IHPs.

3.1 A New Logic for Incremental Hyperproperties

The logic ILk
μ, which is a fragment of Lk

μ, is expressive enough for all IHPs

encountered in our former work [15,14]. Formulae in ILk
μ have syntax:

Ψ ::= νZ.Φ Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]iΦ | 〈a〉iΦ | μZ.Φ.

The maximal alternating depth of any formula in ILk
μ is 2, which results in

lower model checking complexity compared with Lk
μ. This is reflected in a result

about the complexity of model checking ILk
μ: there is an algorithm running in

time O(|Φ|2|S1| . . . |Sk||T1| . . . |Tk|) for deciding T |= Φ, where Φ is closed and
T a k-tuple of finite transition systems with state spaces S1, . . . , Sk [13]. The
logic allows (a restricted form of) coinductive/inductive definitions reminiscent
of the idea that any hyperproperty is the intersection of hypersafety and hyper-
liveness [3]: the latter are generalizations of safety and liveness properties.

To illustrate the need of alternation of least and greatest fixed point operators
(and to give intuition why IL is insufficient), consider the coinductive unwind-
ing relation oscV [14] in ILk

μ. Intuitively, oscV gives the indistinguishability of
possible behaviors at level Av, where O1 ↔ O2 means that the related states
have the same observations (both accepting or both rejecting, see Section 2.2).

oscV =̂ νX. O1 ↔ O2 ∧
∧

a∈A\Ac

[a]1μZ.(〈a〉2X ∨ 〈An〉2Z).

Although ILk
μ is expressive enough for the known IHPs, the theory presented in

this paper is more general as it works for the full polyadic modal mu-calculus.

3.2 Incremental Hyperproperty Checking Games (IHP Games)

In this section we propose a game-theoretic characterization of when an IHP
expressed in Lk

μ holds for a k-tuple of trees T , relative to a second-order valu-
ation V. The IHP games presented next are played by two players: refuter (R)
and verifier (V ). R attempts to disprove that T satisfies an IHP H ′, whereas
V attempts to prove that H ′ holds for T . A system satisfies an IHP whenever
player V has a winning strategy for the respective IHP game.
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Assume Φ expresses an IHP. A play of the IHP game HGV((T
1, . . . , T k), Φ)

is a finite or infinite sequence of pairs of k-tuples of trees and Lk
μ formulae:

((T 1
0 , . . . , T

m
0 , . . . , T k

0 ), Φ0) . . . ((T
1
i , . . . , T

m
j , . . . , T k

l ), Φn) . . . .

Note that each formula Φi is a subformula of Φ0 and each tree T j
i is a subtree

of T j
0 . The next move in a play from any position ((T 1

i , . . . , T
m
j , . . . , T k

l ), Φn)
depends on the main connective in Φn. The possible moves are given next:
– If Φn = Ψ1 ∧ Ψ2, then R choses one of the conjuncts Ψi (i ∈ {1, 2}), the k-tuple of trees

(T 0
i , . . . , T

m
j , . . . , T k

l ) remains unchanged and formula Φn+1 = Ψi.

– If Φn = Ψ1 ∨ Ψ2, then V choses one of the disjuncts Ψi (i ∈ {1, 2}), the k-tuple of trees
(T 0

i , . . . , T
m
j , . . . , T k

l ) remains unchanged and formula Φn+1 = Ψi.

– If Φn = [a]mΨ , then R has to move along the transition Tm
j

a−→ Tm
j+1, the k-tuple of trees

(T 0
i , . . . , T

m
j , . . . , T k

l ) becomes (T 0
i , . . . , T

m
j+1, . . . , T

k
l ) and formula Φn+1 = Ψ .

– If Φn = 〈a〉mΨ , then V has to move along the transition Tm
j

a−→ Tm
j+1, the k-tuple of trees

(T 0
i , . . . , T

m
j , . . . , T k

l ) becomes (T 0
i , . . . , T

m
j+1, . . . , T

k
l ) and formula Φn+1 = Ψ .

– If Φn = σZ.Ψ , then formula Φn+1 becomes Z and the k-tuple of trees (T 0
i , . . . , T

m
j , . . . , T k

l )

remains unchanged.
– If Φn = Z and the subformula of Φ0 identified by Z is σZ.Ψ , then formula Φn+1 = Ψ and

the k-tuple of trees (T 0
i , . . . , T

m
j , . . . , T k

l ) remains unchanged.

The winning conditions are considered next. Player R wins a finite play if
a false configuration is reached: the evaluated formula Φn is ff , or position
((T 1

i , . . . , T
m
j+1, . . . , T

k
l ), Z) is reached where Z is free in Φ0 and the k-tuple

(T 1
i , . . . , T

m
j+1, . . . , T

k
l ) �∈ V(Z), or V has to move, but such a move is impos-

sible. The rules for V are dual. The winner in an infinite play depends on the
outermost fixed point subformula that is unfolded infinitely often: if it is a least
fixed point one, R wins; dually, if this is a greatest fixed point one, V wins.

The proposed approach of reasoning about games to determine if a system
satisfies an IHP specification is justified by the following theorem.

Theorem 1 (Correctness of IHP games [13]). The following equivalences
are valid:

1. (T 1, . . . , Tm, . . . , T k) |=V Φ iff player V has a history-free winning strategy
for HGV((T

1, . . . , Tm, . . . , T k), Φ).
2. Dually, (T 1, . . . , Tm, . . . , T k) �|=V Φ iff player R has a history-free winning

strategy for HGV((T
1, . . . , Tm, . . . , T k), Φ).

3.3 From IHP Games to Parity Games

IHP games can be converted into equivalent parity games over k-tuples of trees.
This means that player P ∈ {V,R} has a history-free winning strategy for an
IHP game iff P has a history-free winning strategy for the respective parity
game. This is not surprising, as it is known that the solving of a parity game
has equivalent complexity to the model checking problem for the modal mu-
calculus [2]: the result can be lifted to our polyadic setting. The method for
converting IHP games into parity games is similar to the one used by Stirling [18]
for converting property checking games into (min-) parity games and can be
found in the first author’s PhD thesis [13]. The conversion allows the use of
results and tools developed for solving parity games to model check IHPs.
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4 Model Checking the Polyadic Modal mu-Calculus Lk
µ

This section starts by presenting the use of traditional model checking techniques
for IHPs. Then we introduce two novel, game-based approaches for model check-
ing IHPs. The major advantage of model checking via games is that it gives a
very accurate and intuitive account of whether a system respects a specification.

4.1 Traditional Model Checking of Lk
µ

It is possible to use traditional model checking techniques for IHPs in Lk
μ. Ander-

sen himself proposed a model checking approach for his Lk
μ [1]. The approach is

a reduction of the problem of model checking Lk
μ to model checking the ordinary

modal mu-calculus Lμ on a product of the original system.
Given an n-ary tuple of transition systems (T1, . . . , Tn), define the product

prod(T ) of these to be the labelled transition system (S,−→, i), where S is the
state space given as S =̂ S1 × . . . × Sn, −→ is the transition relation and i the
tuple of the start states. Relation −→⊆ S × (A× N)× S is defined as follows:

(s1, . . . , sn)
a,i−−→ (s′1, . . . , s

′
n) iff si

a−→ s′i and ∀j.(1 ≤ j ≤ n ∧ j �= i) → sj = s′j .

Next, define prod(Φ) as the homomorphic map on formulae in Lk
μ such that

prod(〈a〉iΦ) = 〈(a, i)〉prod(Φ). Note that instead of 〈(a, i)〉Φ we typically write
〈ai〉Φ. It is clear that prod(T ) is a single system (vs. tuple of systems) and
prod(Φ) is defined over such systems.

Theorem 2 (Reduction of Lk
μ to Lμ [1]). Consider an n-tuple of transition

systems T and an Lk
μ formula Φ, as well as the respective prod(T ) and prod(Φ)

as defined above. Then the following equivalence is valid:

T |= Φ iff prod(T ) |= prod (Φ).

This result is important, as it suggests the use of standard model checking tech-
niques for verification of IHPs expressed in the polyadic modal mu-calculus Lk

μ.
We next propose two model checking approaches for IHPs via games. The

first is based on the combination of IHP games and the parity game solver PG-
Solver [5]. The second is based on the use of several tools (including MLSolver [6],
a tool to reason about satisfiability and validity of modal fixed point logics) and
has the advantage that it can be fully automated. Both approaches are based on
creating and solving the appropriate parity game, eventually using PGSolver [5].

4.2 Model Checking IHP Games

Start with some IHP game HGV((T
1, . . . , Tm, . . . , T k), Φ).

1. Convert HGV((T
1, . . . , Tm, . . . , T k), Φ) into the equivalent min-parity game

PGV((T
1, . . . , T k), Φ) (See Section 3.3 and our recent work [13]).

2. Use PGSolver to convert PGV((T
1, . . . , T k), Φ) to its equivalent max-parity

game PGmax
V ((T 1, . . . , T k), Φ), as PGSolver solves max-parity games.
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3. Use PGSolver to solve the parity game PGmax
V ((T 1, . . . , T k), Φ).

To know if (T 1, . . . , Tm, . . . , T k) |=V Φ holds or does not hold, it is enough to
solve the game locally for the start node. We have shown the correctness of
IHP games and of the conversion to parity games [13]. Hence, if player V has a
history-free winning strategy, then it has to be that (T 1, . . . , Tm, . . . , T k) |=V Φ;
if player R has a winning strategy, it has to be that (T 1, . . . , Tm, . . . , T k) �|=V Φ.

Example 1. Let V0 be the view of Av = {l1, l2}, An = ∅ and Ac = {h}. Consider
the (termination-insensitive version of) IHP definition NI ′ (see Section 2.4):

NI ′
V0

=̂ νX.[l1]1〈l1〉2X ∧ [l2]1〈l2〉2X ∧ [h]1X.

Consider system T , given by the omega regular expression (l1hl2 | l1l2)ω. The
respective IHP game is given in Fig. 1. We next illustrate the use of PGSolver for
solving IHP games. We can convert game HGV((T, T ),NI

′
V0
) into a parity game

PGV((T, T ),NI
′
V0
) (see Fig. 2, the conversion method is from [13]). The resulting

parity game PGV((T, T ),NI
′
V0
) can be specified in PGSolver as follows:

pa r i ty 17 ;
0 2 0 1 ”1” ;
1 2 0 2 ”10”;
2 1 1 3 ,4 ” 1 9 ” ; . . .

In such a specification, the first line is optional and gives the highest identifier.
Each further line specifies a vertex by giving it an identity number, its parity,
its owner, the vertices that are successors and an optional, symbolic name of the
vertex [5]. PGSolver converts and solves the parity game globally:

Player 0 wins from nodes :
{0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 14 , 15 , 16}
with s t r a t egy [0−>1,1−>2,3−>3,5−>6,8−>8,11−>13,13−>14,15−>16,16−>1]
Player 1 wins from nodes : {12 , 17} with s t r a t egy [12−>12,17−>17]

1

2

 3  R

15 R  16  R

18  R 

30 R 40 R 

 

 

31
 

32  

33 V   

34 V   35 V   

36  

37 V  

38 V  39 V
 

17  

V 

R 

R 

V 

1 : ((T, T ), νX. 31 : ((T, T ), μZ.
[l]1μZ.(〈l〉2X ∨ 〈τ 〉2Z) ∧ [h]1X) (〈l〉2X ∨ 〈τ 〉2Z))
2 : ((T, T ), X) 32 : ((T, T ), Z)
3 : ((T, T ), 33 : ((T, T ), 〈l〉2X ∨ 〈τ 〉2Z)
[l]1μZ.(〈l〉2X ∨ 〈τ 〉2Z) ∧ [h]1X) 34 : ((T, T ), 〈l〉2X)
15 : ((T, T ), [l]1μZ. 35 : ((T, T ), 〈τ 〉2Z)
(〈l〉2X ∨ 〈τ 〉2Z)) 36 : ((T, Tτ ), Z)
16 : ((T, T ), [h]1X) 37 : ((T, Tτ ), 〈l〉2X ∨ 〈τ 〉2Z)
17 : ((Th, T ),X) 38 : ((T, Tτ ), 〈l〉2X)
18 : ((Th, T ), 39 : ((T, Tτ ), 〈τ 〉2Z)
[l]1μZ.(〈l〉2X ∨ 〈τ 〉2Z) ∧ [h]1X) 40 : ((Th, T ), [h]1X)
30 : ((Th, T ), [l]1μZ. (〈l〉2X ∨ 〈τ 〉2Z))

Fig. 1. The game graph of HGV((T, T ),NI ′
V0
)
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Fig. 2. Parity game PGV((T, T ),NI ′
V0
)

The winning positions for V and R are presented, as well as the positional
strategy from each node. As V has a history-free winning strategy from the
start node, it follows that (T, T ) |= NI ′V0

. Hence NI V0(T ) holds [14]. The strategy
itself (and not only its existence) is important, as it provides a witness why a
hyperproperty holds or does not hold, as well as some intuition. Alternatively, if
we were only interested in the validity of the checked formula, we could simply
use PGSolver to perform local model checking and determine whether V has
a winning strategy from the start node. One obvious way of automating this
approach is to use a tool to create an IHP game from the formula and system.
However, it is more convenient to convert the (product of) transition systems
and formula into a parity game, and then solve that game. This would allow the
use of existing tools (e.g. MLSolver and mCRL2 [7]) and can be fully automated.

4.3 Model Checking without Going through IHP Games

The alternative approach that constructs the parity game automatically and
does not rely on an IHP game is presented next. The needed steps, given systems
(T 1, . . . , Tm, . . . , T k) and formula Φ, are:

1. Make the product of the systems denoted prod(T 1, . . . , Tm, . . . , T k), as out-
lined in Section 4.1. This can be done in mCRL2 using the parallel com-
position operator (||) and disabling the simultaneous occurrence of multiple
actions, as we are not interested in those for the product (see Section 4.2).

2. Convert system prod(T 1, . . . , Tm, . . . , T k) into MLSolver [6] format.
3. Convert formula Φ to work on the product prod(T 1, . . . , Tm, . . . , T k). In

essence, each action in the formula is given a subscript linking it with a
particular transition system. The result is prod(Φ) (see Section 4.1).

4. Use MLSolver to create a parity game for system prod(T 1, . . . , Tm, . . . , T k)
and formula prod(Φ).
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5. Use PGSolver to solve the parity game resulting from step 4.

The correctness of such an algorithm results from Theorem 2 and the suitable
construction of the product. In principle, writing a tool for fully automating
these steps is straightforward. For the model checking performed in this work,
we only wrote a script automating (the most tedious) step 2.

Example 2. Let view V1 be: Av = {l}, An = {τ} and Ac = {h}. Consider the
system S given as (hl | τhτ)ω . We use mCRL2 to build the product prod(S1, S2):

act h1, h2, l1, l2, τ1, τ2;
proc T1 = h1.l1.T1 + τ1.h1.τ1.T1; T2 = h2.l2.T2 + τ2.h2.τ2.T2; S = T1||T2 ;
init allow({h1, h2, l1, l2, τ1, τ2}, S) ;

The policy of interest is prod(NI ′V1
), here in the format for MLSolver:

nu X . (([l1]mu Z . (〈l2〉X | 〈τ2〉Z)) & ([h1]X)) .

s0

s1

s2

s3

s4

s5

s6 s7

s8

s9

s10

s11

s12

s13

s14

s15

h1

τ1

h2

τ2

l1

h2

τ2
h1

h2

τ2

h1

τ1

l2

h1

τ1

h2

l1
l2

l1h2

τ1

h2

τ2

h1

l2

h1
h2

h1

τ1

τ2

l1

τ2

τ1

l2

τ1

h2
h1

τ2

τ1

τ2

Fig. 3. The product prod(S1, S2)

The resulting transition system of prod(S1, S2) can be seen in Fig. 3. The
specification format (given next) is simple. The first line says that the transition
system has 16 states, the second line gives the start state 1. Each further line
specifies a state and lists its successors together with the respective labels. The
specification of the transition system is encoded in MLSolver as follows:

lts 16;
start 1;
1 h1 : 2, τ1 : 3, h2 : 4, τ2 : 5;
2 l1 : 1, h2 : 6, τ2 : 7; ...

The output (checking whether prod(NI ′V1
) holds for prod(S1, S2)) in MLSolver:

Game has 15 s t a t e s . F in i shed s o l v i ng : 0 . 00 sec .
Trans i t i on system i s no model o f the formula !

Hence, we may conclude that (S, S) �|= NI ′V1
. Instead of directly solving the

game, it is possible to display the parity game using MLSolver and the strategy
using PGSolver. For instance, the strategy is given as follows:
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Player 0 wins from nodes : {2 , 7} with s t r a t egy [ ]
Player 1 wins from nodes : {0 , 1 , 3 , 4 , 5 , 6 , 8 , 9 , 10 , 11 , 12 , 13 ,
14 , 15} with s t r a t egy [1−>3,3−>4,5−>6,6−>8]

4.4 Experiments

A number of experiments on relatively large (albeit admittedly artificial) systems
have been performed and reported in Table 1. The policy was always a variant
of the policy prod(NI ′V ), the approach is the one from Section 4.3.Although the
system products become large quite fast, the games are substantially smaller.
Proving a formula that is true requires more time than disproving the same
formula for a slight variant of the system, having the same number of states
(obtained by relabeling). We have not continued this experiment to obtain much
larger games, as such experiments for games exist [5]. It would be interesting to
further evaluate the approach on large reactive systems (left for future work).

Table 1. Proof of concept evaluation of the approach from Section 4.3

Program Domain size(product) Time(in sec)-secure Time(in sec)-insecure Game Size
1 1816 0 0 124
2 10139 0 0 330
3 18415 1 1 672
4 22645 8 6 550
5 63271 13 9 1925
6 78392 34 19 2988
7 79500 36 20 3942
8 122492 60 55 4103

5 Advantages of Model Checking via Games

Two of the presented approaches are game-based and this section presents some
of the advantages of these in comparison with traditional approaches, such as the
one presented in Section 4.1. Although game graphs similar to the one in Fig. 1
are useful for visualizing the respective games, there is more that can be done for
understanding and analyzing IHP games. To show this, we introduce two new
views of IHP games. These views allow focusing on interesting aspects of the
game and are based on information calculated by the model checking algorithm.

We first present notation needed for the formalization of the game graphs
(of IHP games) and the new views. Let σ = {V,R} denote the set of players.
A game graph can be formalized as the tuple (V,−→, L), where V is the set of
positions (vertices), −→ is a binary relation on vertices, and the partial function
L : V → σ, when defined, denotes whose turn it is at a position. The games we
consider are positionally determined [13]. Hence, the strategy for player σ is a
partial function fσ : Vσ → V, where v ∈ Vσ iff L(v) = σ. Let Winσ be the set
of winning positions for player σ. Technically, WinV and WinR are not part of
the game graph and need to be calculated by the model checking algorithm.

We next present the extended game graph view, which enhances the game
graph with the winning strategy and the complete winning positions. An
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extended game graph view is a 3-tuple (G, fG
σ ,WinG), including the graph view

G, the winning strategy fG
σ , where σ ∈ {V,R}, for the winner from the start

node, and the set of winning positions for both players denoted WinG = WinG
V ∪

WinG
R. A simple extended game graph view is presented in Fig. 4. The graph

additionally includes the progression of k-tuples of trees along the graph.
The second view is the tree view of the game — a finite list of the states

visited in a play with stuttering states removed, starting at the root of the
game tree and ending at the current position. A tree view for an IHP game
HGV((T

1, . . . , T k), Φ) at position HGV((T
1
l , . . . , T

k
m), Φn) is a list of states, start-

ing with (T 1, . . . , T k) and ending at (T 1
l , . . . , T

k
m), without repeating states. As

an example, the tree view at position 12 in Fig. 4 is: (T, T ), (Th, T ), (Thl, T ).
This is essentially a view showing the history of a game. The rules for this game
come from the policy to be checked; the arena of the game (k-tuple of trees)
together with the current position and the rules determine which next moves
are possible. Such games capture the intuition behind H ′-simulations well.

The ability of users to see and cross-reference both views introduced above
and to play interactively in IHP games in the role of V can be useful for debug-
ging: the fact that the system does not satisfy some policy (in Lk

μ) can be seen
interactively as the inability of V to win the respective game [19]. An advantage
of the views is that they are computed during the model checking process. A
tool such as PGSolver comes up with a winning strategy and winning positions
for the respective parity game automatically. Thus, the views can be constructed
automatically with relatively minor modifications of existing tools.

In order to better visualize the strategy-based evidence and show that it is
useful to enhance the user’s understanding (why a policy does not hold when R
has a winning strategy), we propose to combine the extended game graph view
with the tree view. This visualization can be done by a specially constructed
interactive tool, similar to the one proposed for property checking games [19].
The visualization starts by showing the part of the extended game graph view,
for which no player is responsible (such as initial positions) in combination with
the respective tree view. At each point in time there are several options. If the
current vertex is labeled R, then V has no choice but to observe what the next
position, determined by the winning strategy for R, is. The play goes into the
new position, the extended view is changed appropriately and the tree view is
changed when necessary. If the current vertex is labeled V , it is V ’s turn to choose
a move and the tool presents the possible next moves. If the current vertex is not
labeled, the game progresses automatically. At any time, both views are given
to the user (Fig. 4 and 5) and the combined information helps V to make an
informed choice. V is also able to backtrack and explore different plays.

Example 3. To illustrate these ideas, consider the system T given by the omega-
regular expression (hlh | τhτ)ω . We want to check whether (T, T ) |= NI ′ti ,
where NI ′ti is the termination insensitive version of NI ′ (restricted to some view
(Av, An, Ac) with Av = {l}, An = {τ} and Ac = {h}), given as follows:

NI ′ti =̂ νX. ([l]1μZ.(〈l〉2X ∨ 〈τ〉2Z)) ∧ [h]1X.

The extended game graph is given in Fig. 4. Player R has a winning strategy
for the IHP game HGV((T, T ),NI

′
ti). The strategy is given as the red (grey)



Incremental Hyperproperty Model Checking via Games 259

1

V 

2

3

4 5

6

7

8 9
V 

10
11 12

13 14
R 

15

16

17 18
R R 

((Thl, T ), 〈l〉2X)

((Thl, Tτ ), 〈l〉2X) ((Thl, Tτ ), 〈τ〉2X)

(T, T )

(Th, T )

R

R

R

V

V

V

(Thl, T )

(Thl, Tτ )

((T, T ), [l]1μZ.(〈l〉2X ∨ 〈τ〉2Z))

((Th, T ), [h]1X)

R

1 : ((T, T ), νX. ([l]1μZ.(〈l〉2X ∨ 〈τ〉2Z)) ∧ [h]1X)
2 : ((T, T ), X)
3 : ((T, T ), ([l]1μZ.(〈l〉2X ∨ 〈τ〉2Z)) ∧ [h]1X)
4 : ((T, T ), [l]1μZ.(〈l〉2X ∨ 〈τ〉2Z))
5 : ((T, T ), [h]1X)
6 : ((Th, T ),X)
7 : ((Th, T ), ([l]1μZ.(〈l〉2X ∨ 〈τ〉2Z)) ∧ [h]1X)
8 : ((Th, T ), [l]1μZ.(〈l〉2X ∨ 〈τ〉2Z))
9 : ((Th, T ), [h]1X)
10 : ((Thl , T ), μZ.(〈l〉2X ∨ 〈τ〉2Z))
11 : ((Thl , T ), Z)
12 : ((Thl , T ), 〈l〉2X ∨ 〈τ〉2Z)
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17 : ((Thl , Tτ ), 〈l〉2X)
18 : ((Thl , Tτ ), 〈τ〉2Z)

Fig. 4. The extended game graph view of HGV((T, T ),NI ′
ti)

arrows. We next illustrate a visualization, building incrementally the views, that
is helpful for the user to understand why the policy NF ′

ti is violated by system T .
Fig. 5 presents the positions (and their respective tree views) corresponding
to the interesting plays of the game, namely the plays witnessing the winning
strategy for R. The visualization of the tree view can be seen as a game in its
own right: on the arena of two copies of T , player R moves in the first tree and
has a red (light grey) token, player V moves in the second tree and has a blue
(dark grey) token. The rules are implicit and depend on the policy, here NF ′

ti .
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Fig. 5. The tree views of game HGV((T, T ),NF ′
ti) at different positions/states

Initially, player V (i.e. the user) sees the extended graph until position 3 and
the tree view in Fig. 5(a). The next two moves are automatic and determined
by the winning strategy for R. The play is now at position 6, the extended view
consists of positions 1, . . . , 6 and the tree view is the one in Fig. 5(b). At positions
7 and 8 R follows her winning strategy. The extended game graph progresses
and is built to position 10, the respective tree view is the one in Fig. 5(c).
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Positions 10 and 11 are not labeled so the play goes to position 12, which is the
first possible choice for player V : she is now asked to choose between actions l
and τ , i.e. whether to go to position ((Thl, T ), 〈l〉2X) or ((Thl, T ), 〈τ〉2X). If V
chooses the first option (position 13), she loses the game. This can be seen in
the tree view, as V has to make an l-move in the second tree, but making such
a move is impossible. The user can backtrack to position 12 and choose to go to
position 14 instead. Player V continues playing and now the tree view changes
to the one in Fig. 5(d). The play then goes on until position 16, where V has to
again choose between l and τ , i.e. whether to go to positions ((Thl, Tτ ), 〈l〉2X) or
((Thl, Tτ ), 〈τ〉2X). Choosing either position, the user loses. Consulting the tree
view in Fig. 5(d), the user can see that neither action l nor τ can be performed at
position (Thl, Tτ ) and this is the reason for losing. Interestingly, this is also the
reason why the policy does not hold on the system. The two views have helped
identify and visualize the problem. Thus the views can be used to provide useful
intuition as to what goes wrong with the system-policy interaction.

The techniques presented here can be used to explore any IHP game in Lk
μ on

any finite-state system. The user can systematically explore different paths and
strategies to play against player R. As shown above, this helps with understand-
ing both the policy and system behavior, as well as their interaction.

6 Discussion and Related Work

This work enables practical reasoning about security-relevant hyperproperties
via IHPs and games. To achieve this, we propose two game-based model checking
approaches reusing some results on model checking parity games, in particular
algorithms and tools [19,22,20,17]. In this sense, using the tool PGSolver is par-
ticularly beneficial, as it implements most known algorithms for model checking
games, both local, on-the-fly and global ones, as well as heuristics to improve
performance. Thus, depending on the particular problem, one may choose an
algorithm with good theoretical properties or experiment with a multitude of
different algorithms. More importantly, such a tool is an excellent candidate to
build upon, as it calculates all the data needed to create the proposed views.
As a result, one can easily build an interactive visualization tool, allowing users
to play against player R to enhance their understanding of problematic system-
policy interaction. Building such a tool is left for future work.

The idea of using strategies for analyzing why a system does not satisfy a
policy is not new. Stevens and Stirling [19] present a similar idea of using strate-
gies to construct and prove the correctness of local, on-the-fly model checking
algorithms. They also present the idea of visualizing why a property does not
hold as a byproduct of the local model checking algorithm finding the strategy.
In comparison with our idea of visualization via views, their visualization seems
to be less intuitive (it is given by a command line tool). More importantly, our
views present a useful separation of the states, moves and rules of the game. In
addition, the views present a visualization of H ′-simulations.

We have not experimented with model checking very large systems with re-
spect to IHPs, as, due to our reduction of the problem to solving parity games,
doing so would be dependent on the concrete algorithms for solving parity games.
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Instead, we present a short survey of the time complexity of such algorithms.
Currently, the existence of a polynomial time algorithm for solving parity games
is a major open problem [8]. The reason is that solving a parity game is equiva-
lent to the problems of model checking the mu-calculus and the complementation
of ω-tree automata [18]. Most of the algorithms for solving parity games run in
exponential time, for instance this is the case for the recursive algorithm by
Zielonka [22] and the strategy improvement one by Vöge and Jurdziński [20].

Surprisingly, the promising and well-behaved in practice (see [5]) policy it-
eration algorithms, proposed by Vöge and Jurdziński [20] and Schewe [17], can
also take exponential time on some parity games [4]. The theoretically fastest
algorithms for the problem are randomized algorithms by Kalai [9] as well as
by Matoušek, Sharir and Welzl [11]. The fastest deterministic subexponential
(in the size of the game) algorithm for the solution of parity games uses only

polynomial space and runs in time 2O(
√
n log n), where n is the size of the game.

Although there is no proof that there are polynomial algorithms for solving
parity games, Friedmann and Lange [5] show that parity games can be solved
efficiently in practice. One of their results is that the recursive algorithm by
Zielonka [22] has the best performance in practice, being able to handle games of
size up to 1 million nodes. Although these results look promising, we acknowledge
that the topic of practical model checking of IHPs needs further exploration.

7 Conclusion

We have developed a verification methodology for IHPs in ILk
μ and Lk

μ, based
on a characterization of the satisfaction relation between a system and an IHP
in terms of playing a game. This is the first generic verification methodology
(via H ′-simulations and games) that goes beyond k-safety hyperproperties and
additionally enables reasoning about a class of liveness hyperproperties (i.e. the
coinductive variants of possibilistic information flow policies from [14]).

In addition, we have demonstrated the potential of practical game-based
model checking of IHPs using two approaches based on off-the-shelf tools. The
main advantage of these game-based approaches is the possibility of using a win-
ning strategy as a witness why a particular system is or is not secure with respect
to some policy. We also proposed two views that have the potential to facilitate
the illustration of system-policy interactions. Possible directions for future work
include extending the approaches to decidable classes of infinite state systems
and developing a game-theoretic semantics for IHP-preserving refinement.
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Abstract. In this paper we discuss k-anonymous graphs in terms of
modular decomposition and we present two algorithms for the k-anonym-
ization of graphs with respect to neighborhoods. This is the strictest def-
inition of k-anonymity for graphs. The first algorithm is an adaptation
of the k-means algorithm to neighborhood clustering in graphs. The sec-
ond algorithm is distributed of message passing type, and therefore en-
ables user-privacy: the individuals behind the vertices can jointly protect
their own privacy. Although these algorithms are not optimal in terms
of information loss, they are a first example of algorithms that provide
k-anonymization of graphs with respect to the strictest definition, and
they are simple to implement.

Keywords: k-anonymity, graph, modular decomposition, message pass-
ing, distributed algorithm, k-means, user-privacy.

1 Introduction

Data privacy is a field that is concerned with privacy issues that appear in the
collection and distribution of data. A standard example is when data collected
anonymously by a National Statistical Bureau should be made accessible for
researchers. It is well-known that side-information may allow records to be linked
to the individuals they represent. This is a threat, in the first place to the privacy
of the individual, but, in extension, to the correctness of statistical research,
since the citizen may refuse to answer the survey if she holds doubts whether
the survey is really anonymous. Statistical disclosure control (SDC) is a research
area dedicated to the development of data protection techniques that allow for
the anonymous release of data to third parties, or that allow third parties to
query the data that stays on a secure server, so that all released information
respect the anonymity of individuals [11].

Similar privacy issues appear for data collected by companies. Social network
providers hold extensive databases over their users, a goldmine for researchers
in social science and advertising agencies. In 2006 AOL released search logs that
contained 20 million web queries from 658,000 AOL users posted during a period
of 3 months. The released data was anonymized by replacing the identity of the
users by a random index, but this quickly showed insufficient as several sequences
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of queries were linked to real persons. AOL removed the query logs from the
Internet, but the files were of course already downloaded by many people [1].
Because of this accident, most companies probably would not consider to release
data “anonymously”. Still, the high market value of data, and a general tendency
of people to make mistakes and forget, suggest that this was not the last time
such a data leak occurred.

Most methods for SDC have been developed for microdata, data structured in
table form.Avery popular class ofmethods are those that achieve k-anonymity [23,
24, 28]. It is clear that k-anonymity suffers from some weaknesses (see for exam-
ple [17]), however, it is conceptually very simple to understand and it is also achiev-
able, making it attractive when compared to some of its alternatives. For example,
differential privacy is a concept that, apart from beingmore difficult to understand
for the uninitiated, in current implementations would not produce an anonymized
graph. Instead, differential privacy is typically used to ensure that queries on the
data are privacy preserving, while the data itself is not published.

The idea behind k-anonymity is based on the concept of quasi-identifier,
coined by Tore Dalenius in 1986 [4]. A quasi-identifer in a data table is a col-
lection of attributes in the so-called public domain, which, when combined, can
serve as an identifier of at least some records. It can for example be possible
for an adversary holding relevant side-information to reidentify the individual
behind a record from its entries for the attributes address, gender, age. A data
table is k-anonymous with respect to a quasi-identifier QI if every record ap-
pears in at least k copies in the table when restricted to QI. We say that these
copies form an anonymity set with respect to QI.

It is well-known that a graph structure in the data can be used as a quasi-
identifier. For example, in data coming from social networks, the set of friends
of an individual can be used to reidentify her record, even if the identifiers of the
table are removed. However, it has not always been clear how k-anonymization
should be applied to graphs. Indeed, properties like the degree or the centrality of
a vertex in the social graph, can be used for reidentification of individual vertices.
Several graph properties have been pointed out as particularly interesting. The
literature considers k-anonymity for graphs with respect to a list of distinct
quasi-identifiers as for example vertex degree and neighborhood topology.

The main problem in k-anonymity for graphs is still to define efficient algo-
rithms that can transform a given graph into a k-anonymous graph with small
information loss. A variant of this problem is to define distributed algorithms for
the k-anonymization of graphs in which all calculations are performed locally.
Such algorithms would break the ground for systems in which the users of com-
munication systems and social networks would be able to k-anonymize their own
digital footprints, without the collaboration of the server or data holder. One of
the motivations behind this paper is to explore such user-driven anonymization
techniques.

This paper is structured as follows. The second section contains the prelimi-
naries. In the third section we express k-anonymity for graphs in terms of mod-
ular decomposition. Section 4 presents algorithms for clustering of graphs with
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respect to open neighborhoods, which are based on the k-means algorithm. The
paper ends with the conclusions.

2 Preliminaries

2.1 k-Anonymity for Graphs

A graph (V,E) is a set of vertices V and a set of edges E consisting of non-ordered
pairs of elements from V . The open neighborhood of a vertex v ∈ V is the set
N(v) = {u ∈ V : (v, u) ∈ E}. The closed neighborhood of v isN(v) = N(v)∪{v}.
The degree of v is the cardinality of N(v). An adjacency matrix of the graph
is a |V | × |V | matrix A = (aij) with the rows and columns indexed by V and
such that aij = 0 if (i, j) �∈ E and aij = 1 if (i, j) ∈ E. Permuting columns and
rows of an adjacency matrix of a graph produces another adjacency matrix of
the same graph.

An isomorphism f between two graphs G = (V,E) and G′ = (V ′, E′) is a
bijective function f : V → V ′ with an edge-preserving property, i.e. uv ∈ E
if and only if f(u)f(v) ∈ E′. A graph automorphism on a graph G is a graph
isomorphism f : G → G. Given a graph G = (V,E), the set of automorphisms
on G forms a group, denoted by Aut(G). An element f in Aut(G) acts on a
vertex v in V as fv := f(v). The orbit of a vertex v for a subgroup F ⊆ Aut(G)
is the subset of vertices {fv : f ∈ F}.

A (micro-)data set is k-anonymous with respect to a quasi-identifier QI if
every record equals k − 1 other records when restricted to the attributes in QI.
The achieved level of privacy will depend on whether the quasi-identifier was
correctly determined.

When k-anonymity is applied to graphs, typically the goal is to partition the
vertex set into anonymity sets, according to the properties attached to each ver-
tex. Different flavours of k-anonymity for graphs exist in the literature, differing
in choice of quasi-identifier. For example, Liu and Terzi developed methods for
k-anonymity with respect to the degrees of the vertices [14], Zhou and Pei con-
sidered k-anonymity with respect to isomorphic neighborhoods [30], and other
authors considered more generic structural quasi-identifiers [3, 9, 31]. Methods
that these authors use for k-anonymization are, for example, simulated anneal-
ing and greedy algorithms which heuristically aim at minimizing some measure of
information loss. There are also approaches for edge k-anonymization, in which
the edges are partitioned into anonymity sets instead of the vertices. This list of
previous work is not exhaustive, and an interested reader is referred to surveys
like [15, 19] for further information. Observe that, in general, a graph that is
k-anonymous with respect to some quasi-identifier may fail to be so for another
quasi-identifier.

Actually, it was observed already in 1971 that the computationally correct
quasi-identifier for social networks is the neighborhood of the vertices [16], al-
though the result was not discussed in the context of data privacy, and the
concept of quasi-identifier was not yet defined then. The same fact was later
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rediscovered and explored in [26], which also provided a characterization of k-
anonymous graphs with respect to the open neighborhoods. The same article
sketched an algorithm which, given a graph, transforms it into a k-anonymous
graph (with respect to open neighborhoods). We repeat it here (Algorithm 1),
since it is essential for the content of this paper. In the current article, Algo-
rithm 1 is implemented in combination with a distributed k-means algorithm for
clustering open neighborhoods in graphs.

Graphs that are k-anonymous with respect to open neighborhoods are in gen-
eral not k-anonymous with respect to closed neighborhoods, and vice versa. If the
quasi-identifier is the open neighborhood, then vertices in the same anonymity
set must be disconnected. Indeed, if two vertices u and v are connected, then
v ∈ N(u) and u ∈ N(v), but u �∈ N(u) and v �∈ N(v), so u and v cannot have
the same open neighborhood. If instead the quasi-identifier is the closed neigh-
borhood, then vertices in the same anonymity set must be connected. If two
vertices u and v are not connected then u ∈ N(u) and v ∈ N(v), but u �∈ N(v)
and v �∈ N(u), so they cannot have the same closed neighborhood. Figure 1
shows examples of graphs with these properties.

The correct choice between these two quasi-identifiers depends on the type
of graph that is considered. As was observed in [16], an identity relation in
a (social) network is represented by a self-loop at each vertex. In general, a
relation with this property is called reflexive. If the data represented by the graph
contain such a reflexive relation, then the correct quasi-identifier is the closed
neighborhood. If the graph instead represents a relation that is not reflexive,
so that the graph is without self-loops, then the correct quasi-identifier is the
open neighborhood. The so-called “social graph”, representing friendships in an
online social network, is typically defined as a graph without self-loops. The
correctness of these quasi-identifiers can be understood through the fact that
when any of these two corresponding criteria are satisfied (reflexive relation
together with k-anonymity with respect to closed neighborhoods, or non-reflexive
relation together with k-anonymity with respect to open neighborhood), then an
adjacency matrix of the graph will be k-anonymous with respect to all columns
simultaneously, when considered as a table with |V | rows and |V | columns.

Two vertices u and v in G are structurally equivalent if u relates to every ver-
tex in G in exactly the same ways as v does. If this occurs, then u and v are abso-
lutely equivalent within the graph, indeed they are substitutable. Consequently
a graph that is k-anonymized with respect to open/closed neighborhoods will be
k-anonymized to any other graph property attached to the vertices, when con-
sidered as vertices of a graph without/with a loop at each vertex. Two vertices
with the same neighborhood also share the same degree, centrality, etc.

In some cases, achieving an acceptable privacy level only requires a weaker
form of structural equivalence, like the one in which the anonymity sets are orbits
of the vertices under the action of some subgroup of the automorphism group of
the graph [31]. Observe that k-anonymity with respect to both open and closed
neighborhoods implies k-anonymity in terms of automorphisms, but the contrary
is not true. However, as has been observed by some authors, k-anonymizing a
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graph with respect to automorphisms and with gain in information loss is a com-
putationally difficult problem, while k-anonymity with respect to neighborhoods
is much more straightforward.
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Fig. 1. The graph on the left is not k-anonymous with respect to open neighborhoods,
closed neighborhoods, nor automorphisms, for any k > 1. The graph in the middle is 2-
anonymous with respect to open neighborhoods, but not k-anonymous with respect to
closed neighborhoods for k > 1. It is also 2-anonymous with respect to automorphisms.
The graph on the right is 2-anonymous with respect to closed neighborhoods and
automorphisms, but not k-anonymous with respect to open neighborhoods for k > 1.

The definition of k-anonymity for graphs with respect to neighborhoods is very
strict, implying that k-anonymization may cause large information loss when the
original graph is far from being k-anonymous. However, this information loss may
be proportionally small when there are substantial data quantities attached to
the vertices in the graph. In this case, it is possible to apply hybrid protection
methods to the data set, combining k-anonymity for graphs with, for example,
synthetic data generators applied to the data attached to each anonymity set,
separately [26]. In this process it is of great importance that the anonymity
sets are respected over all columns of the relevant quasi-identifiers. Otherwise
it is possible to attack the protection of the data by intersecting overlapping
anonymity sets.

A graph that is k-anonymous with respect to neighborhoods has a rather
particular structure. As we saw previously, vertices in the same anonymity set
are either all connected (closed neighborhoods) or they are not connected at all
(open neighborhoods). In both cases, two vertices u and v in different anonymity
sets A and B are connected if and only if all vertices in A are connected to all
vertices in B. Therefore, the graph essentially consists of many copies of a smaller
graph: the induced subgraph on a subset of vertices with one vertex from each
anonymity set. With an appropiate drawing of the graph this phenomenon can
be observed easily. This is not fully developed in Figure 2, which represents a
graph with only two anonymity sets, indeed it is the complete bipartite graph
on 7 + 8 vertices.

In some cases it is not necessary to provide a concrete graph as output from
the anonymization algorithm, but it may be enough to present the clusters and
the relations between the clusters [3]. In any case, the choice of the clustering
algorithm is essential, in particular for controlling the information loss. This
article focuses on the k-means clustering algorithm for the k-anonymization of
graphs.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0 0 1 0 0 0 0 1 1 1
1 0 1 1 0 0 0 1 0 1 0 0 0 0 1
1 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0
1 1 0 0 0 1 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 0 0 1
0 1 0 0 0 0 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 0 0 0 0 0 1 1 0 1
1 1 0 0 0 0 0 0 1 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 1 1 1 1 0 0 1 0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. The 7-anonymous graph on the right was obtained through k-anonymization
of the Newman-Watts-Strogatz graph on the left, using Algorithm 1 and Algorithm 4.
Below the adjacency matrices of the two graphs.

2.2 The k-Means Algorithm

In exploratory data mining, clustering is the task of grouping elements together
on the basis of some similarity, dividing data into cells of a Voronoi diagram.
Clustering has many applications in machine learning, pattern recognition, image
analysis, information retrieval, and bioinformatics. In centroid-based clustering,
each cluster is represented by a centroid. The centroid can be for example the
vector representing the average of all the vectors in the cluster. The centroid
does not necessarily belong to the data set.

There is an intrinsic relation between k-anonymity and centroid-based clus-
tering. Indeed, k-anonymity can be attained by clustering the data and replacing
the records by the centroid of the corresponding cluster. One of the most impor-
tant algorithm for centroid-based clustering is the k-means algorithm or Lloyd’s
algorithm (Algorithm 2), defined by Stuart Lloyd in 1957 [13].

There exist variants of the k-means algorithm that replace the original Eu-
clidean average by the median, the mode, etc., see for example [12]. Other vari-
ants explore the possibility to use other similarities than the one induced by the
Euclidean distance, as for example those induced by the Malahanobis distance
or the Hamming distance. For graphs, the similarity induced by the Manhattan
distance and the 2-path similarity were proposed in [27].

There are several ways to initialize cluster centroids for the k-means algorithm,
see for example [22]. Two common procedures are to initialize the centroids as
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Input: A graph G = (V,E) and a natural number k ≤ |V |
Output: A graph G′ = (V,E′) that is k-anonymous with respect to open

neighborhoods
Calculate a family of clusters C of V so that vertices in the same cluster have
similar open neighborhoods;
foreach Ci ∈ C do

foreach (u, v) ∈ Ci do
if uv ∈ E then

Delete uv;
end

end

end
foreach Ci �= Cj ∈ C do

if �{(u, v) ∈ Ci × Cj : ∃uv ∈ E} > |Ci||Cj |/2 then
foreach (u, v) ∈ Ci × Cj do

if uv �∈ E then
Add uv to E;

end

end

end
else

foreach (u, v) ∈ Ci × Cj do
if uv ∈ E then

Delete uv from E;
end

end

end

end
Return G;

Algorithm 1. An algorithm for k-anonymization of graphs

random points in the data domain, or as random points in the data set. In the
first case, the points are not required to belong to the data set. The k-means
algorithm does not have to return a globally optimal result, and the outcome is
typically different for different initial input to the algorithm. A good solution is
to run the algorithm several times, and choose the best result.

2.3 Message Passing Algorithms

A message passing algorithm is an iterative algorithm in which each step is exe-
cuted on the vertices of a graph. The result of this execution is then forwarded
in messages to the neighbors of the vertices in the graph, before the next itera-
tion. There are several important examples of message passing algorithms. Belief
propagation is a message passing algorithm for inference in graphical models as
Bayesian networks or Markov random fields. Sometimes it is used as a synonym
for the sum-product algorithm, originally described by Judea Pearl in 1982 [21],
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Input: A data set of records X = (xj) and an integer k
Output: A list of cluster centers C = (ci)
Initialize a set of cluster centers C′ := C := c1, . . . , ck;
repeat

C := C′;
foreach xj do

Assign xj to the closest cluster centroid ci, creating the Voronoi
diagram with corresponding Voronoi cells Ai;

end
foreach Ai do

Calculate the new centroid of Ai, c
′
i;

end

until C = C′;

Algorithm 2. The k-means algorithm

and with applications for example in the decoding of low-density parity-check
(LDPC) codes. However, in its general form it is simply a message passing al-
gorithm that takes advantage of a factorization of the global function into local
functions of a subset of the variables. Defined in this way, the Viterbi algo-
rithm [29] is another important example of belief propagation.

A belief propagation algorithm has an associated factor graph, which models
the factorization of the problem into local subfunctions. The factor graph is a
bipartite graph with the variables in one set and the subfunctions in the other.
There is an edge between a variable vertex v and a subfunction vertex f if f is
a function of v.

Belief propagation algorithms can typically be proved to be exact on acyclic
graphs (trees). Surprisingly, they also tend to give non-exact but approximately
good result on graphs with cycles. However, then convergence is not ensured,
and oscillation may occur [18].

2.4 Modular Decomposition of Graphs

A module in a graph G = (V,E) is a subset of vertices M ⊆ V that share the
same neighbors in V \M . A strong module is a module that does not overlap
other modules. The modules of a graph form a partitive family defining a decom-
position scheme for the graph with an associated decomposition tree composed
of the graphs strong modules [7]. This tree is a representation of the structure
of the graph and is therefore a first step in many algorithms.

A congruence partition is a partition of the vertices V in which the parts
are modules. A factor is the induced graph on the vertices in one part of a
congruence partition. The modules that are maximal with respect to inclusion
form a congruence partition of V , called a maximal modular partition. Every
graph has a unique maximal modular partition. If two vertices v1 and v2 in two
disjoint modules M1 andM2 are connected, then all vertices in M1 are connected
to all vertices in M2. In particular this is true for the maximal modules. The
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quotient graph of G is defined as the graph with the maximal modules of G
as vertices and an edge between two vertices if the corresponding modules are
connected.

For a survey on algorithms for modular decomposition of graphs, see [8].

3 k-Anonymous Graphs in Terms of Modular
Decomposition

In this section we characterize k-anonymity for graphs with respect to neighbor-
hoods in terms of modular decomposition. It is easy to see that a graph G that
is k-anonymous with respect to open neighborhoods is a graph such that the
cardinality of each part in the maximal modular partition P of G is larger than
or equal to k, and additionally, the factors of G with respect to P are totally
disconnected.

A graph G that is k-anonymous with respect to closed neighborhoods still
has a maximal modular partition P such that each part has cardinality larger
than or equal to k. However, in this case the factors of G with respect to P are
complete graphs. We summarize these results in the following theorem.

Theorem 1. Let G be a graph. If G is k-anonymous with respect to the open
(closed) neighborhoods, thenG has a maximal modular partition P = {V1, . . . , Vm}
such that |V i| ≥ k for all i = 1, . . . ,m and such that the factors of G with respect
to P are completely disconnected (complete) graphs.

Observe that Theorem 1 provides an efficient way of testing for k-anonymity
in graphs. Just apply an algorithm for modular decomposition to obtain the
maximal modular partition and check that the factors are as required. As an
extension, the modular decomposition tree could be used for k-anonymization.

In general, the factors of the maximal modular partition of a graph can be any
graph. This motivates the use of modular decomposition of graphs for a more
flexible definition of k-anonymity, in which only the edges between the different
modules are anonymized. This can be useful for example in cases in which some
edges are considered to be more sensitive than others. As an example of this,
consider a situation in which it can be assumed that some edges are not in
the public domain of knowledge, so that they are not in the quasi-identifier.
Then, according to the model of k-anonymity, these edges cannot be used for
reidentification, and there is no need to k-anonymize them.

4 Algorithms for Clustering of Graphs with Respect to
Open Neighborhoods

This section describes algorithms for centroid-based clustering of graphs with
respect to open neighborhoods. These algorithms can be used in combination
with Algorithm 1 to produce a k-anonymous graph.
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4.1 A k-Means Algorithm for Graphs

Only small modifications to the template of the k-means algorithm is needed in
order to obtain a straight-forward iterative centroid-based clustering algorithm
for graphs, Algorithm 3.

For a vertex v in a graph G = (V,E), represent N(v) as the row vector in
an adjacency matrix of G indexed by v. Then N(v) is a vector in {0, 1}|V |. For
two vectors x and y in {0, 1}|V |, let d(x, y) := |{i : xi �= yi}| be the Hamming
distance of x and y. Observe that for two vertices u, v ∈ V , the Hamming
distance betweeen N(v) and N(u) equals the symmetric difference between the
neighborhoods of u and v as sets.

For a vertex v ∈ V , denote by c(v) the centroid vector c from a set of centroids
C that minimizes d(N(v), c). Denote the clusters by A(c) := {v ∈ V : c(v) = c}.

As we saw in Section 2.2, cluster centroids can be initialized in several ways.
Although there exist more advanced initialization algorithms for the k-means
algorithm, it is commonly accepted that random initialization is a good alter-
native, combined with several runs of the algorithm, see for example [22]. We
suggest that randomly generated centroids should be chosen from a distribution
that adjusts well to the relevant family of graphs. This can be achieved easily
by choosing the centroids randomly from the data set, which is the method that
will be used in this article. Other initialization methods can of course be used.

The k-means algorithm involves a step of calculation of the mean between
several vectors. For open neighborhoods, the mean does not adjust well, since it
is not obvious how to define the mean of a set of neighborhoods. Instead other
aggregation operators can be more suitable. The mode of a set of elements is
the element that appears most often in the set. In contrast to the mean or the
median, the mode can be used also for nominal data. We use the mode for vectors
applied to each coefficients independently. Given a set of vectors it returns the
vector with coefficients equal to the mode of the coefficients of all vectors in the
set. Observe that defined in this way, the mode of a data set of vectors does
not necessarily belong to the data set. The mode of a set of neighborhoods with
threshold t is then a neighborhood that contains a vertex v if a proportion larger
than a threshold t ∈ [0, 1] of the original neighborhoods contain v.

4.2 A Distributed k-Means Algorithm

In this section we present a distributed version of the k-means open neighborhood
clustering algorithm for graphs. The idea is to approximate Algorithm 3 by
decomposing the calculation of one iteration of the algorithm into factors that
can be calculated by each vertex independently, using only local knowledge. As
was pointed out in [27], two vertices in a graph have similar neighborhoods if
their 2-path similarity is high. The 2-path similarity between two vertices u
and v is defined as the number of paths of length two between u and v. It
is therefore clear that all vertices in an anonymity set of a vertex v in a k-
anonymous graph of non-zero degree will all be on distance at most two from v.
This suggests that a clustering in graphs with respect to open neighborhoods can
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Input: A graph (V,E) and an integer m
Output: A set of m cluster centroids C = {c1, . . . , cm}
Initialize a set of cluster centroids C′ := C := {c1, . . . , cm};
repeat

foreach v ∈ V do
C := C′;
Calculate c(v) as c ∈ C minimizing d(c,N(v));
Assign v to A(c(v)).

end
foreach c ∈ C do

Calculate the new centroid c′ of A(c) as the mode with threshold t of
the vectors N(u) for u ∈ A(c);

end

until C = C′;

Algorithm 3. A k-means algorithm for open neighborhood clustering of
graphs

be approximated with local computations on each vertex, requiring a knowledge
of the graph topology that covers vertices at distance at most three, or in other
words, the neighborhoods of the neighbors of neighbors. However, in practice,
the algorithm can be defined so that it requires only message passing between
vertices at distance one. Also, much of the information, the neighborhoods, can
be passed once in the beginning of the algorithm and stored for future use.

The distributed k-means algorithm is described in Algorithm 4. As in Sec-
tion 4.1, for a vertex v ∈ V , denote by c(v) the centroid vector c from a set
of centroids C that minimizes d(N(v), c) and the clusters by A(c) := {v ∈ V :
c(v) = c}.

The algorithm starts by initializing a set of cluster centroids. Also, each vertex
v posts a message to all its neighbors containing its neighborhood N(v), which is
stored by these vertices. The rest of the algorithm is an iteration of the two steps
in Algorithm 3 and an extra third approximation step, adapting the algorithm
to distributed execution. Since the execution of the algorithm moves between
neighbors, it is useful to follow the execution as it moves from one vertex v and
its neighbor u.

In Step 1 each vertex v calculates the cluster centroid that is closest to its
neighborhood N(v) and posts the result to all its neighbors u ∈ N(v). In Step 2
each vertex u updates the cluster centroids C = {c1, . . . , cm}. For each centroid
ci, the new centroid c′i is calculated as the mode of the coefficients of the set of
neighborhood vectors {N(v) : v ∈ N(u) and c(v) = ci}. Then u posts the set of
new centroids C′ to the neighbors v ∈ N(u). In Step 3 each vertex v calculates
an approximation C′′ of the new centroids as a combination of the different C′’s
received from its neighbors. Then the algorithm returns to step 1 with C := C′′.

Instead of having the vertices post the set of new centroids C′ to their neigh-
bors, one can let them post C′ on a public message board. In any case, where the
original k-means algorithm produced one set of new centroids, the distributed



274 K. Stokes

Input: A graph (V,E) and an integer m
Output: A set of cluster centroids C = {c1, . . . , cm}
Globally initialize a set of cluster centroids C′′ := C := {c1, . . . , cm} and post
them to the public board;
foreach v ∈ V do

Post N(v) to u ∈ N(v);
Receive and store N(u) from u ∈ N(v);
repeat

Step 1
Set C := C′′;
Calculate c(v), as c ∈ C′ that minimizes d(c,N(v));
Post c(v) to u ∈ N(v);
Step 2
Receive c(u) from u ∈ N(v);
Calculate the new centroids C′

v := {c′1, . . . , c′m} as the mode of the
neighborhoods in the set {N(u) : u ∈ N(v) ∩A(ci)}, with ci ∈ C;
Post C′

v to N(v);
Step 3
Receive C′

u from u ∈ N(v) and combine them all into new centroids C′′;
until C = C′′;

end

Algorithm 4. A distributed k-means algorithm for clustering graphs

version of the algorithm produces many sets of new centroids that must be com-
bined in some effective way. Our experiments show that it works to combine the
new centroids C′ = {c′1, . . . , c′m} into the vectors C′′ = {c′′1 , . . . , c′′m} that have
ones at the indices where there is at least one c′i with a one at these indices. This
strategy can be used for the calculation of C′′ both locally and globally at the
public message board.

5 Experiments

Algorithm 4 was implemented in Sage [25] and executed on random graphs
generated using the Barabási-Albert model [2] and the Newman-Watts-Strogatz
model [20]. These random graph models were chosen since they share properties
with real social graphs: the former gives graphs that are scale-free and the graphs
generated using the latter model have the small world property.

5.1 The k-Means Algorithm on Graphs

In a first experiment, for each of these two graph models and for each number of
vertices in {30, 60, 120}, Algorithm 4 with public board was tested on 20 different
graphs. For each graph, 10 different initializations of the cluster centroids were
tried, and the result with the smallest information loss was chosen. In this ex-
periment, information loss was measured as the sum of the symmetric difference
error (SSDE), the symmetric difference between the cluster centers (considered
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as sets of vertices) and the neighborhoods of the vertices in each cluster, summed
over all vertices of the graph. The number of iterations on each initialization was
set to 15, since it was observed that in general convergence was achieved well
before 10 iterations. Table 1 shows the average information loss in SSDE among
20 tested graphs on |V | vertices, divided by the number of vertices |V |.

Table 1.

|V | e m SSDE/|V |
30 3 3 3.9
60 3 3 4.8
120 3 3 5.3

|V | e p k SSDE/|V |
30 4 0.2 3 3.9
60 4 0.2 3 4.0
120 4 0.2 3 4.2

Barabási-Albert graphs Newman-Watts-Strogatz graphs
with parameters (|V |, e) with parameters (|V |, e, p)

5.2 Constructing k-Anonymous Graphs

In a second experiment, once the clusters were obtained, Algorithm 1 was ap-
plied to the original graph, and a k-anonymized graphs was constructed. For
each of the two random graph models, and for each number of vertices |V | in
{30, 60, 120}, Algorithm 4 was first applied to 20 different graphs, with the same
settings as the experiment in Section 5.1. The only change was the use of an x-
factor when updating the centroids, allowing to adjust the approximate number
of vertices in the centroids. Then Algorithm 1 was applied, using the resulting
clusters to construct a k-anonymous graph.

Several problems were observed during both experiments described in this
article. For example, although m centroids were demanded, the algorithm typ-
ically returned fewer centroids. Also, the k-means algorithm is not designed to
ensure that clusters contain at least k vertices. Since our goal is to construct
a k-anonymous graph, this was an issue. In particular, outliers were a prob-
lem, creating clusters with single vertices. All these problems are typical for the
k-means algorithm and there are methods to deal with them available in the
literature. Note though that for all the tested graphs, 10 different initializations
were enough in order to automatically find a clustering such that each cluster
contained at least k vertices. The results presented in Table 2 all correspond to
graphs that are k-anonymous.

Currently, there is no measure of information loss for graphs that can be
considered to be clearly better than other measures. In general, information
loss should be quantified according to the utility of the anonymized graph in
the context in which it should be used. This means that the best measure of
information loss may vary with the context. Sometimes it may be interesting
to preserve some particular property of the graph, i.e. diameter, girth, degree
sequence. Then, please note then that a graph that is k-anonymous with respect
to neighborhoods, with k ≥ 2 and minimum degree 2, must have girth 3 if
neighborhoods are closed and can not have girth larger than 4 if neighborhoods
are open. To see this, fix a vertex v and observe that there must be a vertex
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Table 2.

|V | e k SSDE/|V | ED/|V |
30 3 3 4.13 4.16
60 3 3 5.56 6.68
120 3 3 6.64 10.75

|V | e p k SSDE/|V | ED/|V |
30 4 0.2 3 3.93 3.68
60 4 0.2 3 4.51 4.95
120 4 0.2 3 4.61 6.6

Barabási-Albert graphs Newman-Watts-Strogatz graphs
with parameters (|V |, e) with parameters (|V |, e, p)

u �= v with the same neighbors as v. Since v has at least two neighbors, if
neighborhoods are closed, there will be a cycle of length 3, if neighborhoods
are open, there will be a cycle of length 4. Therefore the girth is not a very
interesting measure of information loss in this context.

In this experiment, information loss was measured both as in Section 5.1 and
as the number of edges that had to be removed or added in order to construct the
k-anonymous graph from the original graph. In Table 2, the average of the infor-
mation loss over the 20 graphs is presented as the sum of symmetric difference
error (SSDE), the symmetric difference between centroids and neighborhoods as
sets as in Table 1, and as the edge difference (ED), the number of edges added
or removed by the anonymization algorithm. In both cases, information loss was
divided by the number of vertices in the graphs. The SSDE was slightly higher
than in Table 1, due to the use of the x-factor.

6 Conclusions

The contribution of this article was two-fold. On the one hand we have char-
acterized k-anonymous graphs in terms of modular decomposition, motivating
a more flexible definition of k-anonymity for graphs. On the other hand we
have described two algorithms for the k-anonymization of graphs with respect
to open neighborhoods. Algorithm 3 is an adaptation of the k-means algorithm
to the open neighborhood clustering problem in graphs. Algorithm 4 is a dis-
tributed version of Algorithm 3. The algorithms have been implemented using
Sage [25]. Applications for distributed algorithms for k-anonymization of graphs
can be found for example in user-driven privacy enhancing technologies for social
networks.
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Abstract. Confidentiality and integrity of data in Infrastructure-as-a-
Service (IaaS) environments increase in relevance as adoption of IaaS
advances towards maturity. While current solutions assume a high degree
of trust in IaaS provider staff and infrastructure management processes,
earlier incidents have demonstrated that neither are impeccable.

In this paper we introduce Domain-Based Storage Protection (DBSP)
a data confidentiality and integrity protection mechanism for IaaS envi-
ronments, which relies on trusted computing principles to provide trans-
parent storage isolation between IaaS clients.

We describe the building blocks of this mechanism and provide a set
of detailed protocols for generation and handling of keys for confidential-
ity and integrity protection of data stored by guest VM instances. The
protocols assume an untrusted IaaS provider and aim to prevent both
malicious and accidental faulty configurations that could lead to breach
of data confidentiality and integrity in IaaS deployments.

1 Introduction

Following a period of establishment and early adoption, cloud computing is gain-
ing widespread popularity and is now present in the product portfolio of many
large software vendors in one of the three archetypes outlined by the US Na-
tional Institute of Standards and Technology (NIST): Infrastructure-as-a-Service
, Platform-as-a-Service or Software-as-a-Service [1]. Other factors which testify
to the impact of the field are the emergence of legal frameworks that regulate
provisioning and usage of public cloud computing services [2] and protection
of data transferred to public cloud storage [3]. However, despite growing popu-
larity, cloud computing continues to present a wide range of unsolved security
concerns [4, 5, 6]

Considering that security concerns were long cited as barriers to wider adop-
tion of public cloud services, emerging regulation will likely require public cloud
providers to operate with an even wider set of tools to safeguard when needed the
confidentiality, integrity, authenticity and even geolocation of data stored in pub-
lic clouds. Governmental programs, such as e.g FedRAMP in the USA propose
a ”standardized approach to security assessment, authorization, and continuous
monitoring for cloud products and services” [7]. While such programs are an
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important extension of the cloud security ecosystem, they often assume manual
execution steps which can not reliably exclude audit or reporting errors due to
human factors. In addition, the outcome of such programs is a certification result
based on a snapshot view of the public cloud providers’ infrastructure, processes
and policies, while an adversary with full logical access to the underlying infras-
tructure can conceal traces of an eventual security breach. Thus, while security
assessment and continuous monitoring of the infrastructure are valuable tools in
ensuring security of IaaS infrastructure deployments, we consider that effective
prevention mechanisms have a higher potential to increase the IaaS customers’
trust with respect to data processing and storage in public IaaS environments.

A core enabling technology of IaaS is system virtualization [8], which en-
ables hardware multiplexing and redefinition of supported hardware architec-
tures into software abstractions. This redefinition is performed by the hypervi-
sor, a software component that abstracts the hardware resources of the platform
and presents a virtualized software platform where guest virtual machine (VM)
instances can be deployed. In addition, the hypervisor also manages the I/O
communication between VM instances and external components, including stor-
age devices allocated to the VM instance. This is one of the vulnerable areas
of IaaS environments since, as demonstrated in [6], improper allocation of block
storage can lead to a breach of data confidentiality.

Certain aspects of IaaS security have been addressed through the use of
Trusted Computing technologies as defined by the Trusted Computing Group
(TCG) [9]. A core component in the TCG-defined security architecture is the
Trusted Platform Module (TPM), a cryptographic module that offers protected
storage for sensitive parameters and can be used as trust anchor for software
integrity verification in open platforms. TPM usage and deployment models for
IaaS clouds have already been addressed in earlier research [10,11,12,13,14,15].
The early principles of a trusted IaaS platform [13] were later extended to cover
both trusted VM launch [14, 16] and VM migration [15].

These results demonstrate the capabilities resulting from combining basic
TPM attestation mechanisms with standard cryptographic techniques to de-
sign an infrastructure for VM protection. However, while much of the research
effort has been directed towards protection of VM instances in IaaS environ-
ments, ensuring the protection of data generated by such instances has received
far less attention. We address this aspect in the current paper.

Contribution

The focus of this paper is DBSP, a trusted storage protection mechanism which
provides per-VM instance access control, allowing the client to control a VM
instance’s read and write access rights over a storage unit at launch time.

- In this paper we introduce an approach to ensuring confidentiality and in-
tegrity of stored data in public IaaS deployments with the additional ca-
pability of domain-based isolation. Such Domain-Based Storage Protection
allows a IaaS Compute Host (CH) to encrypt and integrity protect data
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before it is stored. Encryption and integrity protection is performed using
TPM-protected keys which are only available to a CH in a trusted state,
which excludes the possibility of decryption and/or modification on a simu-
lated deployment. Furthermore, DBSP allows to enforce storage management
policies to provide control over allocation of and access to storage in a fully
virtualized environment.

- We introduce a storage allocation protocol that reduces the risk of acciden-
tal or premeditated breach of data isolation between different tenants (an
attack vector introduced in [17] with actual vulnerabilities described in [6])
by introducing and enforcing the concept of administrative domains in the
context of storage resources.

- We present a set of protocols for transparent full disk encryption performed
at the hypervisor level; while hypervisor-based background encryption has
been explored earlier [18], our protocol focuses on a different key handling
mechanism where the control over the domain master keys protecting the
data storage is transferred to an external trusted party.

- We extend previously introduced protocols for trusted launch of VM in-
stances in public IaaS environments [14,16] by introducing additional param-
eters to direct the allocation of storage resources to a certain administrative
domain.

2 System Model

In this paper we assume an IaaS deployment model as defined by NIST, where
an IaaS client is able to provision processing, storage, networks, and other funda-
mental computing resources as well as able to deploy and run arbitrary software
supported by the hypervisor. [1]; moreover, the same definition explicitly states
that IaaS clients do not have control over the underlying infrastructure. In a
typical usage scenario, IaaS clients communicate over an insecure network with
the IaaS platform which provisions computing resources and launches guest VM
instances1 and allocates storage resources.

According to our system model, the domain of the IaaS provider is limited
to the IaaS software platform and the hypervisor environment (including the
hypervisor itself, any administrative domains, e.g. Dom0 according to the Xen
hypervisor model [19] and the communication channels between administrative
domains and the VM instances). Practical IaaS deployments assume that the VM
image repository and data storage provided for the VM instances could be either
controlled by the IaaS provider or by a third party. We assume for simplicity
(but without affecting the applicability of DBSP) that the IaaS provider is in full
control of both the image store and the data storage. The IaaS provider domain
is marked with bold dashed lines in Figure 1.

We share the attack model with [13, 14, 15, 16], which assume that privileged
access rights can be maliciously used by IaaS provider system administrators

1 VM images can originate from the clients themselves, the IaaS provider or a public
image repository.
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Fig. 1. Data flow in the cloud

(Ar) with remote access. In addition, Ar can obtain root access on any host
maintained by the IaaS provider, but not can not obtain physical access.

We assume that an Ar obtaining remote root access to a compute host within
the secured IaaS provider perimeter will not be able to access the volatile memory
of any VM instance residing on the compute host at that time, i.e. the compute
host offers VM instances a closed box execution environment2, e.g. similar to
the model in [20]. The attack model also includes unintentional configuration
errors caused by Ar, such as incorrect allocation of storage devices or unintended
network connectivity between physical or virtual devices.

Runtime attacks on the hypervisor are excluded from the model, since they
represent a separate research topic. One promising solution towards this problem
is presented in [21]. Denial-of-Service attacks are also explicitly excluded from
our model, because according to the definition of the IaaS model in [1] the
client has limited access to the networking infrastructure of the IaaS deployment
and the IaaS provider could start a DoS attack simply by severing the network
communication between the client and the VM instance.

We consider a VM trusted if the integrity of the VM image used for launch
is ensured, the VM instance is spawned on a trusted compute host and the VM
instance can prove knowledge of a client-verification token (see section 4.1).

Based on the model presented above, we define a set of requirements towards a
solution which aims to ensure the confidentiality and integrity of data processed
and stored by a VM instance in an untrusted IaaS setting.

1. The solution must ensure integrity and confidentiality protection of data
processed and stored by VM instances on resources hosted by an untrusted
IaaS provider.

2. The solution must be capable to enforce access rights, such that a guest VM
only can access a certain storage domain if explicitly assigned by the IaaS
client.

3. The solution must prevent both accidental and intended breaches of storage
resource isolation between VM instances triggered by IaaS Ars.

2 This does not include any VM instances part of the hosting infrastructure, such as
administrative VMs
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These requirements will be revisited in section 5 as part of the evaluation of
the proposed solution.

3 Building Blocks

Before presenting the set of protocols comprising DBSP, we provide some details
about essential components of the proposed solution and component specific
properties which we rely on in the remainder of this paper.

3.1 Trusted Platform Module

The Trusted Platform Module (TPM) is a cryptographic coprocessor, developed
according to the specifications of the Trusted Computing Group (TCG) [9].
Given that the final specification for TPM version 2.0 is not yet released at the
time of writing, we assume TPM version 1.2 for the remainder of this paper.

TPM provides a set of standard, unmodifiable functionality implemented by
vendors according to the specifications published by the TCG and offers data
protection through asymmetric cryptography using internally maintained keys.
Two of the operations supported by the TPM that are particularly relevant for
the proposed solution are bind and seal. According to [9], a message encrypted
(”bound”) using a particular TPM’s public key can only be decrypted using the
private key of the same TPM. Sealing is a special case of binding, where an
encrypted message produced through binding can only be decrypted in a certain
platform state (defined through the platform configuration register values) to
which the message is sealed. Refer to [9] for a detailed description of the bind
and seal operations.

3.2 Trusted Third Party

For the purposes of the protocol, we introduce a standalone component referred
to as trusted third party (TTP). We assume that the security guarantees pro-
vided by the trusted third party with regard to guest VM launch and storage
protection are sufficient for the IaaS client. We further assume that the IaaS
provider allows communication between its servers and the TTP for platform
attestation and key management purposes. We continue by enumerating of the
functionality assumed to be provided by the TTP:

– Communication with components deployed on the compute host, such as
integrity attestation information, authentication tokens and cryptographic
keys;

– Integrity attestation based on the integrity attestation quotes provided by
the TPM hardware component installed on the compute host;

– Verification of client supplied electronic signature authenticity;
– Sealing of data to a certain trusted compute host configuration;
– Generation of nonce values and of confidentiality and integrity protection

keys according to the input data received from the compute host.
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Given the central role the TTP plays in our model, we assume that the TTP
communicates with the components of the IaaS deployment through reliable
channels.

3.3 Secure Component

Another part of the proposed solution is a verifiable execution module referred
to as the ”Secure Component” (SC) in the protocols. The secure component
provides the following functionality:

– Communication with the TTP for authentication and cryptographic key ex-
change;

– Verification of VM instance access rights to storage resources;
– Fetching, caching and storing confidentiality and integrity protection keys

per guest VM instance;
– Encryption, decryption, integrity protection and verification of data written

or read to/from allocated storage resources;

Having defined the responsibilities of SC, we turn to the possible ways to inte-
grate it into currently used virtualization stacks. Figure 2 shows a Xen hypervisor
deployed on a hardware node, with a set of boxes on top of it representing the
guest VM instances (DomU1 to DomUN ), along with an administrative VM
instance, Dom0. While implementing SC as part of Dom0 is feasible, this would
only increase the (already large) amount of code that must be included in the
trusted computing base.

Fig. 2. Typical representation
of a Xen hypervisor

Fig. 3. Representation of a Xen hypervisor
in the proposed model

An alternative implementation of SC on a Xen virtualization platform fol-
lows the disaggregation principles described in [22] to implement a ”DomSC”
executing the functionality of the secure component described above. The trusted
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computing base is thus be reduced to the underlying hardware, the bare-bones
hypervisor, a necessary minimum of Dom0 and DomSC, as depicted in Figure 3
(the TCB within the dashed line). While full exclusion of Dom0 from the trusted
computing base is indeed desirable, it is a non-trivial task, as discussed in [22].

Implementation(s) of the SC for Xen and/or KVM is planned as future work.

4 Design Principles

We assume a scenario where data is stored in an IaaS storage using any suit-
able units, such as block storage devices (iSCSI or similar). Confidentiality and
integrity of the data during storage is ensured by the secure component, as
described in section 3.3.

All data stored at the IaaS provider using the scheme described in this paper
is associated with specific storage domains. A storage domain in this context
typically corresponds to a particular organization or administrative domain that
utilizes public cloud services (including the storage service) offered by an IaaS
provider, i.e. a single administrative entity that typically only handles data stor-
age for its own domain and not for any other domains. All data in a single
domain is protected with the same storage protection domain master key, de-
noted by KM . This key is generated by the TTP and cannot leave TTP’s logical
perimeter.

We assume that at guest VM launch, the VM instance is assigned a unique
identifier (IDVM ). During the entire lifetime of the VM instance, IDV M is reli-
ably associated with a particular storage domain. Keys used for data confiden-
tiality and integrity protection and verification in a single domain are derived
by the TTP.

Below we describe three protocols necessary for the data handling function-
ality of a VM instance, namely protocols for secure VM instance launch plus
initial and subsequent storage usage. Migration of VM instances is a relevant
and important topic, but due to space considerations it is out of the scope of
this paper.

4.1 VM Instance Launch

We suggest the following principles for securely associating a VM instance with
a particular storage domain at VM launch. It is important to note that the
following launch protocol description (also presented in Figure 4 focuses mainly
on the extensions to the trusted launch protocol in [16] and does not revisit all its
details. In the following description, the extensions to the protocol are marked
with a bold font.

1. Client C prepares a VM launch package similar to the one described in [16]
or [14]. The launch package contains a launch message, M, which consists
of the following parameters:
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:C :S :CH :T T P:C :S :CH :T T P

2. Make token

TTTP

3. Launch args

4. Launch args

5. Attestation data

7. MTTP

sealed

11. Launch trusted

Trusted V M instance

ok

ok

Fig. 4. Trusted VM launch protocol: C: Client; S : Scheduler; CH: Compute Host; T T P:
Trusted Third Party;

(a) The identifier of the VM to be launched, IDVM .
(b) A storage domain identifier, IDD. For this protocol assume IDD =

A.
(c) An assertion, AS, proving to the TTP, that C is authorized

to request the launch of VM instances with access to storage
domain A.3

(d) A nonce (N ) encrypted with the public key of the TTP (PKTTP ); denote
the resulting encrypted nonce by NPKTTP

(e) Optional additional parameters, such as required target platform Secu-
rity Profile (SP ) and a hash HV M of the target VM image4.

2. The client produces a digital signature, SIG, over all the values in
M using the client’s Private Key (PrKC), with the corresponding
public key certified in CertC. Denote the data structure containing M,
SIG and CertC by TTTP .

3. TTTP is sent to the IaaS provider along with VMimage or an indication of
the VM Image (IDV Mimg) that should be chosen for launch from a publicly
available VM image repository.

4. The scheduler (S) selects a suitable available compute host in the provider
network and transfers TTTP and VMimage/IDVMimg to the chosen compute
host.

3 We assume here that an assertion in the SAML format is used.
4 Here we assume that an unmodified, ”vanilla” VM image available from a public
image repository is used. The protocol can be adapted for client-customized images,
by encrypting the image with a symmetric key K, protecting K with PKTTP and
including that into M.
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5. Once the compute host receives TTTP , it sends TTTP to the TTP for verifi-
cation.

6. The TTP follows the below steps to verify the contents of the received TTTP ,
attest the trustworthiness of the compute host and generate the necessary
keys:
(a) TTP verifies CertC and the signature SIG and if they are valid,

TTP proceeds to the next step; otherwise it aborts with an
error message to CH.

(b) TTP checks the assertion, AS (using the client’s identity and
key information provided in CertC) and verifies that the client
is authorized to use storage domain A5. If that is true, TTP pro-
ceeds with next step, otherwise it aborts with an error message to the
compute host.

(c) Using its private key, TTP decrypts the received NPKTTP contained in
M.

(d) TTP generates a session domain key for the domain specified
by IDD (in this example we assume domain ”A”) and the target
platform. We denote this key by SDKA.

7. Parameters IDVM and SDKA (together with other parameters such as
N and HV M , similar to the mechanism in [16]) are TPM sealed to a
protected state of the compute host and only made available to
a trusted state of the compute host. The encrypted message, denoted
MTTP

sealed, is sent back to the compute host, which concludes the trusted
launch. We maintain our earlier assumption that C has requested the launch
of a publicly available VM image and provided HVM for verification:

8. The compute host unseals MTTP
sealed and ensures SDKA is available to

the secure component running on the platform.
9. The compute host compares the receivedHVM with the hash of the available

VM image to ensure its integrity.
10. The VM is assigned IDVM and is launched in a secure isolated

execution compartment on the trusted platform.
11. The compute host injects N into the VM image prior to launching the VM

instance, launches the VM instance and returns an acknowledgement to the
client to confirm a successful launch.

12. To verify that the VM instance has been launched on a trusted platform,
the client challenges the VM instance to prove its knowledge of N .

4.2 Initialization and First Time Data Writes

The protocol for set up and first time data write is presented in Figure 5 and
explained in detail below.

1. The VM instance on the compute host requests access to a new storage
resource, e.g. a block device or database in the provider network; the storage
resource is denoted by SR.

5 We assume that remote attestation of the compute host will also be performed at
this point; however this is not included in the current description
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:VM :SC :SR :T T P:VM :SC :SR :T T P

1. writex

2. Wrequest

6. Wresponse

8. metadatax
WT , MACWT

ok

9. data
Ke

x, Ki
x

x

ackdata

ackdata

Fig. 5. Secure block write procedure: VM: VM instance; SC: Secure component; SR:
Storage resource; T T P: Trusted Third Party;

2. The storage resource reference is denoted SRR. Using SRR as reference, the
VM specifically requests a data write to a storage entity, x, in SR (this being
a block or other storage structure).

3. This request is intercepted or received by the secure component.
4. The secure component sends, protected under key SDKA, a write request

(Wrequest) to the TTP for new storage entity keys for entity x, domain A
and SRR from the VM instance identified by VMID. The request is confi-
dentiality and integrity protected using SDKA

6.
5. The TTP executes the verification steps outlined below:

(a) TTP verification, using SDKA, that Wrequest is correct, which includes
a verification of the domain access rights of the key SDKA. The protocol
execution only proceeds if the key SDKA is associated with the requested
domain.

(b) If so, TTP fetches the master key KM for the requested domain A and
generates a nonce N TTP .

(c) Next, TTP uses a suitable pseudo-random function, PRF (KM , N TTP )
to generate data encryption and integrity protection keys. In this way,
the generated keys are associated with a specific domain indicated by
the domain identifier provided by the customer. The VMID is associated
with the domain for ancillary purposes, such as billing.

(d) Denote encryption and integrity protection keys by Ke
x and Ki

x respec-
tively7.

6 Several alternatives for confidentiality and integrity protection are applicable using
well-established protocols, e.g. TLS with pre-shared keys.

7 In certain cases, only integrity or only confidentiality of data is required and thus one
of the two keys suffice. Here we assume both confidentiality and integrity protection
is needed.



Domain-Based Storage Protection (DBSP) in Public Infrastructure Clouds 289

(e) Next the TTP generates a token (WT ) consisting of N TTP , A and SRR.
(f) The TTP uses an internal integrity key, which never leaves the logical do-

main of the TTP, to calculate an integrity check value overWT , denoted
as MACWT .

6. Next, the write response token Wresponse (containing WT , MACWT , K
e
x,

Ki
x) is confidentiality and integrity protected using SDKA

8 and sent to the
secure component.

7. The secure component receives Wresponse from the TTP, decrypts WT ,
MACWT , K

e
x and Ki

x and associates them with domain A and VMID.
8. The secure component stores WT and MACWT received from TTP as part

of storage metadata for the new storage entity x in SR.
9. The secure component uses keys Ke

x and Ki
x to protect the confidentiality

and integrity of the data stored in storage entity x in SR.

Performance and Efficiency Considerations. The storage entity unit should
be selected so that the communication frequency between the secure component
and TTP on one hand and the secure component’s activities on the other hand
do not incur a larger performance penalty than what is acceptable by the in-
volved parties. Also, the storage entity unit should be selected so that integrity
protection meta-data does not consume a larger portion of storage than what is
acceptable by the involved parties.9

4.3 Subsequent Data Reads and Writes

The protocol for subsequent data reads and writes is introduced and explained
in detail below; a high-level view of the key retrieval protocol is presented in
Figure 6.

The VM identified to the compute host by VMID requests a data write or data
read from entity x using SRR as a reference handle. This request is intercepted
or received by the secure component and the following procedure applies:

1. The secure component checks if the required integrity and confidentiality
keys needed to verify and decrypt the requested storage entity x are cached
locally. If that is the case, it proceeds to step 5. Otherwise, the protocol
executes the following steps:

2. First, it locates WT and MACWT used to protect x in SR in the meta data
of storage entity x.

3. The secure component sends to the TTP a read-write request (RWrequest)
containing WT , MACWT , A, SRR and the VMID, and a request for the
data entity keys for x. The write request is confidentiality and integrity pro-
tected under key SDKA

6. The TTP executes the following steps to provide
the necessary encryption and integrity protection keys:

8 Several alternatives for confidentiality and integrity protection are applicable using
well-established protocols, e.g. TLS with pre-shared keys.

9 We plan to investigate the relation between the storage entity unit size and perfor-
mance penalty in a prototype implementation.
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:SC :T T P:SC :T T P

3.
get keys x

{WT , MACWT , A, SRR}SDKA

3.(a) verify(WT )

correct

3.(b) verify(IDD, SRR)

correct

3.(c) PRF (KM , N TTP )

Ke
x, Ki

x

3.(d) {Ke
x, Ki

x}SDKA

4. decrypt{Ke
x, Ki

x}SDKA

Ke
x, Ki

x

Fig. 6. key retrieval procedure for subsequent data reads and writes: SC: Secure com-
ponent; T T P: Trusted Third Party;

(a) The TTP verifies the correctness of the RWrequest and of the tokenWT
(using its own internal MAC key). Similar to the initialization protocol,
the TTP verifies the domain access rights associated with SDKA and
only proceeds if the key SDKA is associated with the domain identifier
requested by the secure component.

(b) If WT is valid, TTP checks that the domain identifier and SRR con-
tained in WT match the IDD and SRR indicated by the secure compo-
nent.

(c) If all the above verifications are successful, TTP uses the KM domain
master key and N TTP in WT to derive Ke

x and Ki
x for VM instance

VMID.
(d) Next, the TTP sends to the secure component the keys Ke

x and Ki
x in a

read-write response message (RWresponse) which is confidentiality and
integrity protected using SDKA

6.
4. The secure component receivesRWresponse from TTP and decrypts the keys.
5. The secure component uses Ke

x and Ki
x to encrypt and/or integrity protect

(write) or decrypt and/or integrity check (read) data at storage entity x.

5 Security Evaluation

To assess the solution, we first discuss the involved components and the ex-
pected security properties and continue with a brief discussion of the protocol
verification using ProVerif, a cryptographic protocol verifier [23].
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In the system model currently considered, integrity of VM images is univer-
sally important, while confidentiality is mostly relevant in the case of client-
customized VM images. In the proposed solution, integrity is ensured by calcu-
lating SIG of the HV M on the client side and verifying it on the compute host
at the time of launch. We apply previously introduced principles for trusted VM
instance launch [14, 16] in order to ensure that the respective VM instance has
been launched on a trusted compute host, i.e. on a compute host running a
trusted code base, attested by a TTP. The TTP has, within the scope of this
protocol, extensive responsibilities and must itself be protected from software
attacks10.

A key assumption of the protocol is the reliance on an attested and trusted
compute host, which is performed by the TTP using Direct Anonymous Attes-
tation [25] defined in version 1.2 of the TCG specification.

Integrity verification of the stored data is performed using integrity keys Ki
x,

which are generated by the TTP. Key generation requires the presence of the
correct session domain key SDK, which is sealed to the trusted configuration of
the compute host. According to TPM properties, the sealed SDK can only be
decrypted by the compute host if it is in the trusted state the key was sealed
to [9]. Consequently, a compute host booted into an untrusted state (config-
uration) or a malicious third party would be unable to obtain Ki

x. The same
mechanism protects the confidentiality protection key Ke

x. Security of the keys
Ke

x and Ki
x regenerated for subsequent reads and writes is ensured by the in-

tegrity verification of the token WT created by the TTP and stored in the meta
data.

Enforceable access rights management is ensured by the requirement for the
VM launch process to present an assertion AS generated by the client to the
TTP. If no such assertion is available, the VM launch process is aborted by
the TTP (the IaaS can still launch a VM instance, however such an instance
would not be trusted by the IaaS client). Furthermore, possession of a session
domain key for the respective domain generated in the process of trusted launch
is necessary to obtain the integrity and confidentiality protection keys Ke

x and
Ki

x. Thus, a VM instance which does not possess the client-provided AS for a
certain domain would not complete a trusted launch procedure and would not
obtain the session domain key for the respective administrative domain. The step
requiring the VM launch process to present a client-generated assertion during
the guest VM launch procedure to obtain a session domain key which is in turn
necessary for data access operations satisfies requirement 2 by enforcing access
rights based on the credentials provided by the IaaS client.

Domain isolation of data is cryptographically enforced by the TTP in several
steps. First, session domain keys SDKA are generated based on the information
received from the client, in particular assertion (proving to the TTP that the

10 Anecdotal cases, such as NIST taking the National Vulnerability Database (NVD)
offline in response to learning that it had been hacked [24] point to the fact that at-
testation services (such as the TTP) are important attack vectors and must therefore
be closely monitored.
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client is authorized to launch VM instances with storage access to a certain
domain) and the client certificate. Subsequent generation of confidentiality and
integrity protection keys Ke

x and Ki
x is only done by the TTP based on the

possession of a correct session key for the respective domain. A VM instance can
thus only obtain read or write access if it has been launched in the same domain
and the respective assertion has been provided by the IaaS client. Malicious
or accidental allocation of the respective storage resource to an arbitrary VM
instance would not have any effect on the confidentiality of the data protected
under Ke

x. Such cryptographic isolation satisfies requirement 3 stated above.

5.1 Protocol Verification with ProVerif

We have verified the security properties of the proposed protocol using ProVerif,
an automatic cryptographic protocol verifier in the formal (Dolev-Yao) model
[23]11. The verification has demonstrated the confidentiality of both the stored
data and consequently of the confidentiality protection keys12, as well as of the
TTP-generated nonce that is necessary in order to regenerate the confidentiality
and integrity protection keys Ke

x and Ki
x, demonstrating that requirement 1 has

been satisfied.

6 Related Work

The importance of data confidentiality protection and isolation of data between
tenants in a IaaS environment is underlined by the attention it has received
from the research community. However, many public IaaS providers still har-
bour ”low hanging fruits” in terms of vulnerabilities, such as for example the
one addressed in [6], when researchers have identified vulnerabilities in the disk
allocation procedure whereby the disk space allocated to a certain tenant would
contain fragments of information written by other previous tenants. This partic-
ular vulnerability was caused by the fact that the hosting OS’s file API, which
by default zeroes uninitialized data, was not used in the disk allocation process.
Our approach prevents such cases by encrypting the data prior to writing it to
disk. Management of allocated disk space according to security domains is an-
other barrier that would prevent an attacker from gaining access to disk space
potentially containing remnants of data. In this scenario, in case an improperly
sanitized disk is allocated to a guest VM from a different administrative domain,
the guest VM would only access encrypted data.

While the authors in [6] suggest full disk encryption as one of the mitigation
techniques, management of encryption keys is not trivial and has been the focus
of a large body of research. For example, [26] focuses on managing access rights
upon shared versioned encrypted data on cloud infrastructure for a restricted,
flexible group. The authors base their model on several components, namely a

11 The ProVerif script is available at https://github.com/nicopal/dbspVerification
12 The verification model assumes confidentiality protection also includes integrity pro-

tection so not separate integrity verification of data was modelled.

https://github.com/nicopal/dbspVerification
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Key Graph, encrypted updates to the Key Graph (denoted as Key Trails) as
well as actual versioned data, where the latter two are stored in the untrusted
cloud and the first one is stored with a trusted third party. Key Trails are used
to both adapt on the fly the Key Graph based on granted or revoked data access,
as well as format for deltas between two versions of the Key Graph. This model
focuses on key management, leaving the encryption and decryption operations
to the clients of the cloud storage. The approach builds on earlier research in the
area, namely [27] and utilizes the generation of encrypted key updates by storing
Key Trails on highly available and scalable but untrusted cloud infrastructures
parallel to the encrypted data. All keys are versioned equivalent with the data,
in order to allow a rather granular data access control, where the client can
access a certain version or all previous versions of the data. The authors also
describe a potential extension of the scheme that would allow a granular, per
version client access to the data. While this approach is attractive in many ways,
especially considering the granular control of data, the requirement for client-
side encryption limits the applicability of the scheme for client guest VMs that
(for any reason) do not have the ability to run custom confidentiality/integrity
protection code. In addition, our proposed solution allows protection of persistent
data at storage in an IaaS deployment almost transparently from the client point
of view.

The trusted hypervisor approach has received much attention in the research
community, as builds on the idea of separating resource allocation from resource
isolation, such that a specialized, trusted hypervisor is deployed on ring 0 below
the commodity hypervisor and protects the memory space of a guest VM from
an untrusted commodity hypervisor. This is done without intentionally interfer-
ing with resource allocation, which is usually left to the commodity hypervisor,
hence the separation between resource allocation and isolation. Variations of this
scenario include eliminating the commodity hypervisor as a whole and relying
on a trusted hypervisor with reduced functionality (e.g. support of a single guest
VM). Below follow two examples of this approach, which could be used in com-
bination with the protocols described in this paper. BitVisor (introduced in [28]
and further in [29]) is a thin hypervisor based on Intel VT-x and AMD-V de-
signed to enforce I/O device security of virtualized guests. The hypervisor uses
a parapass-through architecture that allows to forward a subset of the I/O in-
structions (keyboard and mouse actions) without modification in order to have
a minimal impact on the performance of the VM instances. The approach de-
scribes a method to offer access to both encrypted and unencrypted areas of
the disk in a manner transparent to the VM instance. Different from other ap-
proaches, BitVisor assumes a minimal hypervisor functionality which facilitates
deployment efforts.

While it introduces several novel ideas and has a code implementation which
also has been extended by other researchers, BitVisor trades the ability to have
concurrently executing VM instances for simplicity and ease of installation. This
limitation severely reduces the applicability of BitVisor in virtualized IaaS en-
vironments, where hardware multiplexing is an important requirement.
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In [30] the authors propose a full disk background encryption model by in-
troducing TCVisor, a BitVisor-based hypervisor with a parapass-through archi-
tecture which introduces a novel key-management approach and TPM support.
Support for TPM is added in order to store parts of cryptographic keys and
whole-disk checksums for integrity checking. The authors use Merkle trees for
integrity verification and protect the root value relying on TPM functionality.
However, the exact procedure of storing or sealing the root value of the Merkle
tree hash is not discussed. A modified version of AES is used for data encryption;
however the undisclosed modifications to AES raise concerns about the necessity
of modifying a standard verified encryption algorithm and about the effects the
of introduced modifications. The authors also examine the topic of key revoca-
tion and propose an aggressive key revocation scheme triggered by user input.
The approach suggested in the paper does indeed address some aspects of pro-
tecting privacy-sensitive data in IaaS storage. However, by building TCVisor on
top of BitVisor, the model inherits the limitations of BitVisor, e.g. support for
only one executing VM instance.

As mentioned above, the DBSP protocols presented in this paper can be
applied as an extension of trusted hypervisor approaches, since similar to such
hypervisors, DBPS protocols require external attestation from a third party.

7 Conclusion

In this paper we have introduced a set of complementary protocols intended to
ensure transparent domain-based isolation between data stored by guest VMs.
Transparency is ensured by introducing a ’secure component’ SC, which is
trusted by the hypervisor. This secure component performs key management
on the compute host side, along with background confidentiality and integrity
protection of stored data. We furthermore introduce domain-based isolation,
which uses symmetric encryption to ensure that guest VMs only obtain data
read or write access if they are authorized to do so by the IaaS client. We rely
on trusted computing principles and earlier defined trusted VM launch protocols
in order to ensure that guest VM instances are only launched on trusted IaaS
compute hosts. We perform a theoretical security evaluation of the proposed so-
lution. Description and evaluation of an implementation of the solution on either
the Xen or KVM virtualization platforms are left for future work.
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Abstract. As network attacks become more complex, defence strategies must
provide means to handle more flexible and dynamic requirements. The Multi-
protocol Label Switching (MPLS) standard is a promising method to properly
handle suspicious flows participating in such network attacks. Tasks such as alert
data extraction, and MPLS routers configuration present an entailment to activate
the defence process. This paper introduces a novel framework to define, gener-
ate and implement mitigation policies on MPLS routers. The activation of such
policies is triggered by the alerts and expressed using a high level formalism. An
implementation of the approach is presented.

Keywords: Network Security, Policy Management, MPLS, OrBAC.

1 Introduction

Nowadays, protecting data and network resources requires a whole new set of pro-
cesses and technology challenges [30]. In [16] we presented HADEGA, a novel and
efficient mitigation technique to counter network attacks. HADEGA relies on MPLS
(Multiprotocol Label Switching [25]). The MPLS technology is widely used by ser-
vice providers (i.e. to establish VPN, or to maintain service level guarantees, etc.) and
presents a de-facto standard practice for Traffic Engineering and Differentiated Ser-
vices. In HADEGA, MPLS is used for the sake of network security: through the set-
tlement of various routing and QoS schemes on suspicious communications flowing
across service providers’ networks.

As it happens with many other mitigation technologies, HADEGA requires the en-
forcement of appropriate security rules triggered by adaptive defence processes (e.g.,
monitoring tools reporting incidents via alerts). However, in the original proposal of
HADEGA, the management aspect of the solution was omitted. The goal of this paper
is, therefore, to complement the HADEGA approach by addressing this crucial aspect.
Our goal is to develop a policy-based management tool that post-processes the output
of monitoring tools (e.g., incident alerts) and provide the appropriate mitigation scripts
necessary to configure MPLS routers. For this purpose, we use a high level formalism
based on the OrBAC model [21]. OrBAC is chosen for its expressiveness and transfor-
mation capabilities, which are rich enough to cover all the necessities of our approach.
The OrBAC model is used in a top-down fashion, to properly generate MPLS router
configuration rules from high-level (abstract) routing and QoS mitigation policies.
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We validate our proposal by presenting an ongoing prototype developed under the
open source MotOrBAC framework [2]. MotOrBAC already provides some of the nec-
essary elements of our approach, such as the OrBAC policy editor and a powerful Appli-
cation Programming Interface (API) to extend the capabilities of the editor. In our case,
we extend such capabilities by adding (1) a new policy instantiation engine to provide
the mapping between OrBAC policies and alerts; and (2) a policy transformation engine
to translate the inferred rules into MPLS configuration scripts.

Paper organization — Section 2 elaborates further on our motivation problem and pro-
vides some background and state of the art literature. Sections 3 and 4 address the mod-
eling of MPLS reaction policies using the OrBAC formalism. Section 5 overviews the
ongoing development of a practical implementation of our approach. Section 6 presents
a discussion and some related work. Section 7 concludes the paper.

2 Background

2.1 HADEGA

In the normal context, an MPLS domain is responsible to direct packet flows along a
predetermined path in a per-route scheme. It also defines packets behaviour in a per-hop
scheme. These dual schemes are achieved in MPLS through Traffic Engineering [5] and
Differentiated Services [14] strengths. We presented in [16] HADEGA, a novel miti-
gation technique that benefits from these strengths to mitigate and reduce the impact
of suspicious flows. In HADEGA, each MPLS domain is seen as a single packet for-
warding component that first aggregates the suspicious flows, and second controls them
(e.g., de-prioritizes their treatment or points them to a blackhole). The network suspi-
cious flows are associated to suspicious traffic classes. The definition of these classes
relies on network and assessment information. Mapping the suspicious flows to these
classes is achieved via the data extracted from the alerts raised by monitoring tools.
Then, MPLS labels are associated to those suspicious flows. These labels bounded to
suspicious packets are used to make the treatment and forwarding decision all over
the MPLS domain. From a life-cycle perspective, HADEGA consists of the following
processes:

Planning Process: it consists of the definition of a pool of class of suspicious services,
paths and forwarding behaviour treatments. The suspicious class of services are fixed
based on security assessment attributes. The paths are distinguished by their distinct per-
route attributes (i.e., number of hops, minimum/maximum bandwidth, link colors, etc.).
The forwarding behaviour treatments have different per-hop attributes (i.e., scheduling,
dropping policy, etc.). These paths and forwarding behaviour treatments handle the sus-
picious flows. We call them suspicious paths and forwarding behaviour treatments. The
planning process is based on the predicted state of traffic load and existing traffic views.
It consists of long-term strategies. It is done off-line taking into account global network
conditions and traffic load.

Reaction Process: it consists of responding to alerts on both network (i.e., perfor-
mance) and security (i.e., threat) levels. The reaction process is divided into two aspects:
(1) network adaptation and (2) flow admission control.
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– Network adaptation control is a short-term aspect, limited to minutes or hours.
It is triggered by network performance alerts reporting significant changes in the
traffic load or the network topology, or the inability of the long-term strategies
defined in the planning process to adapt properly. It consists of employing certain
dynamic resources and route management procedures for the previously established
suspicious paths and forwarding behaviour treatments.

– Flow admission control extends throughout the reaction process. It is based on se-
curity alerts. The network attributes of security alerts, such as IP addresses and port
numbers, are used to define and control suspicious flows through Forward Equiva-
lence Class (FEC) definition. Assessment attributes, such as impact and confidence,
are used to map these flows to their corresponding path and forwarding behaviour.
Mapping these FECs to a single or a set of Next Hop Label Forward Entry (NHLFE)
—via FEC-to-NHLFE tables— permits the assignment of these suspicious packets
to the previously established suspicious paths and forwarding behaviour treatments.

The reaction process arises the essential need of an automated and adaptive manage-
ment tool addressing both the network and security levels. A policy-based approach is
the adequate solution for the management of such tool. It permits the adaptability to
dynamic changes on both levels. It allows as well the application of the policy rules to
the MPLS large-scale networks and heterogeneous routers.

2.2 Policy-Based Management

Policy-based management improves flexibility within the management system. Policies
can be considered as guidelines for the behaviour of a system [28]. The IT communities
are performing research and implementation activities of policy-based techniques in
several fields, such as: network, caching, security management and others. Two main
frameworks are relevant in our work: network and security based frameworks.

Network policy-based management frameworks are extensively adopted for QoS
matters. They aim at driving network devices and resources to meet system require-
ments, e.g., Service Level Agreement (SLA) assignments [17]. Several work has been
performed in the literature to consistently adapt to these assignments in a Differentiated
Service capable networks, such as the work of Snir et al. [29], Verma et al. [33] and
Stone et al. [31]. Other presented frameworks for representing MPLS policies, includ-
ing MPLS for traffic Engineering and QoS, such as the work of Isoyama et al. [19] and
Brunner et al. [6].

Security policy-based management frameworks focus on the protection of system and
network resources. They are commonly used to express access control or usage policies.
These policies define the high-level rules specifying the conditions under which subjects
are permitted to access targets [26]. For instance, RNBS [18] is a security policy-based
management frameworks based on the Role-Based Access Control (RBAC) model [27]
to manage access control rules on firewalls. Other examples such as [8] and [15] include
the use of the Organization Role-Based Access Control (OrBAC) model [21] to refine and
deploy global security policies into other network security components, such as intrusion
detection systems and VPN routers.
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Policy languages are classified into different groups, according to their application
scenarios [17]. Network policy languages include Ponder [10], PDL [22] and oth-
ers. Security policy languages include XACML [32], REI [20] and others. Our policy
driven approach consists of expressing two reaction policies that handle the security
and the network management levels. The high level language needed has to be expres-
sive enough. It should be capable of expressing policies for both network and security
management. We base our approach on OrBAC to specify these reaction policies.

2.3 OrBAC

Organization is the centric concept in the OrBAC model [21]. An organization is con-
sidered any entity in charge of managing a security policy. The goal of the OrBAC
model is to specify security policies abstractly from implementation details. It proposes
reasoning with the roles that subjects, actions or objects play at an organizational level.
A subject is empowered into a role, an action is considered to implement an activity,
and an object is used in a view (cf. Listing 1.1 in Appendix A).

By adopting this abstract conception, each organization can then set security rules
which specify that some roles are permitted, prohibited or obliged to perform some
other actions. The activation of these security rules may depend on contextual stipula-
tions. To this end, the concept of context is explicitly introduced in OrBAC. By using a
formalism based on first order logic, security rules are modelled using a 6-tuple predi-
cate as per the following rule:

security_rule(type, organization, role, activity, view, context)

The type belongs to permission, prohibition, or obligation. Organization, role, activ-
ity, view and context concepts can be structured hierarchically. Permission, prohibition
and obligation rules are inherited through these hierarchies [9].

A context is used as a supplementary condition that must be satisfied to activate a
given privilege (i.e. permission, prohibition or obligation). Using this notion, the Or-
BAC model provides the means to deal with flexible and dynamic requirements. In [7],
they presented several types of context – temporal, spatial, prerequisite, user-declared
and provisional contexts – and explained how to model them in the OrBAC model.

In [12,13], the OrBAC model is used to express reaction policies. A threat con-
text manages the intrusion detection alerts which are expressed in the Intrusion De-
tection Message Exchange Format (IDMEF) [11]. The threat context first specifies the
alert classification, and second triggers the activation and the mapping between alert
attributes and concrete entities of the OrBAC model. In [4], an extension to the previ-
ous approach is presented. The novelty is the use of dynamic organizations to ease the
definition and enforcement of more elaborated reaction requirements. The dynamic or-
ganization concept is used to map the alerts and the policy using entities at the abstract
level of the OrBAC model, through XPath expressions. In the sequel, we show how to
use these previous efforts based on the OrBAC formalism to properly generate MPLS
router rules to enforce the dual reaction policies of the HADEGA approach.
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2.4 MPLS Reaction Policies Using OrBAC

HADEGA relies on two reaction policies: (1) a network management policy and (2) an
access control policy. Figure 1 depicts the work-flow associated to each policy.

– Network management policy permits the adaptation of network resources. It is trig-
gered by performance alerts; these alerts are raised by network monitoring tools. A
performance context is activated to manage the given performance alert. The acti-
vation of this context specifies a network adaptation rule expressed as an obligation
security rule. This rule consists of establishing network management changes, such
as changing the routing and QoS scheme of paths inside the MPLS domain.

– Access control policy provides the flow admission control. It is triggered by security
alerts; when a security monitoring tool raises an alert, and the alert diagnosis data
identify a suspicious flow as a part of an attack, a flow admission rule expressed as
a permission security rule is activated. It affects the suspicious flow to the proper
routing and QoS scheme inside the MPLS domain. The process is set off by the
activation of a threat context that manages the given security alert.

Each type of reaction policy requires a different modelling due to different inputs
and entities involved in each aspect. Next, we develop the modelling of each policy.
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Table 1. Concrete entities

Concrete level Definition Attributes

Subject MPLS path ingress & egress router, identifier
Action reroute, deactivate, etc. explicit, implicit
Object routing and QoS schemes resource class, bandwidth set-up/hold priority, etc.

3 Network Adaptation Policy

The network adaptation is established via network management policies. These poli-
cies include modifying the path and/or the forwarding behaviour treatment for certain
packets. Such policies are established on the network-level. They are performed by the
ingress router and take effect on all the domain via MPLS paths. The network manage-
ment policies include also changing queue length or scheduler weight. These policies
are considered as device level; therefore the configurations apply for the specific de-
vice [6]. Although HADEGA proposes changes on these two levels, we address solely
the policy that takes effect on the network-level.

Let us consider the following network management policy statement: In the satu-
ration network phase, paths holding high level suspicious flows must be pointed to a
blackhole. The ingress router maintains this policy by triggering the process of path
and forwarding behaviour modification. Therefore, if a performance alert is received
with a classification that maps to the saturation performance context, then this context
is activated in the corresponding sub-organization and the network adaptation rule or
a subset of rules are activated. These rules are turned into configuration rules on the
ingress router of the MPLS domain suffering from saturation usage.

3.1 Concrete Entities

Table 1 summarizes our proposed set of concrete entities.

– Subject: we call it MPLS path. This path supports Diff-Serv e.g., the L-LSP or E-
LSP (defined in [14] to map DiffServ treatment into MPLS paths). The MPLS path
is distinguished by its start and end point which are the ingress and egress router
and by certain identifier e.g., the NHLFE (the LSP Next Hop for a particular FEC
is the next hop as selected by the NHLFE table entry [25]).

– Action: the basic network operation significant for Traffic Engineering and Diff-
Serv. It can be a reroute, establish, deactivate, etc. Such action can be performed
(1) explicitly by including all or some hops or (2) dynamically via certain path
computation engine and signalling protocols.

– Object: represents the routing and QoS schemes that model the MPLS path. It is
defined by different attributes like bandwidth, set-up priority, hold priority, link
color affinity, scheduling/queuing priority, discarding policy, hops, etc.

3.2 Abstract Entities

Table 2 summarizes our proposed set of abstract entities. We assume the following
entities in the network adaptation policy:
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Table 2. Abstract entities associated to the DomainAdapt organization

Abstract level Definition Examples

Role path and forwarding behaviour gold_path, suspicious_path
Activity operation modify, remove

View network resources nodes, links, bandwidth

– Organization: Domain adapt (DomainAdapt) can be inherited from higher organi-
zation associated to the service provider. This organization is in charge of adapting
the MPLS domain.

– Role: abstraction of the path and forwarding behaviour. They reflect different level
of QoS provided inside a single MPLS domain. For instance, suspicious paths pro-
vide degradable quality inside the MPLS domain.

– Activity: abstraction of the operations that can be performed on paths and forward-
ing behaviours. Such abstraction can be seen as a modification or removal of spe-
cific paths.

– View: abstraction of resources presented in the network. We call it network re-
sources. Such abstract resources include nodes, links, bandwidth, scheduling, etc.

3.3 Performance Contexts

We consider the scenario adopted in [16]. We assume three different performance con-
texts. The default context corresponds to a stable core network. The critical context re-
flects network critical phase. The saturation context corresponds to network saturation
phase. The default context consists of the long-term strategies established in the plan-
ning process. The critical and saturation context are the triggers of short-term strategies
of the reaction process. These contexts are initiated by performance alerts sent by net-
work monitoring tools.

For instance, when a performance alert Alerti is generated signalling a saturation
phase, a new sub-organization under the DomainAdapt — called saturation domain
adaptation and denoted as SatDomainAdapti — is created to manage it (cf. List-
ing 1.2 in Appendix A). The saturation assessment context SatAssContext is acti-
vated in SatDomainAdapti to manage the performance alert triggering a network
saturation phase. This context is activated for every triple {subject, action, object} with
the reception of a performance alert (i.e. Alerti) with a network.status attribute equal
or equivalent to saturation (cf. Listing 1.3 in Appendix A).

3.4 Generation of Network Adaptation Rules

In the saturation phase, we consider that the service provider strategy consists on point-
ing the third level and second level suspicious paths to a blackhole. The following two
network adaptation rules, based on OrBAC obligations, reflect this strategy:

security_rule(obligation,DomainAdapt, TLSusPath,Modify,Blackhole,

SatAssessContext)
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Table 3. Concrete entities

Concrete level Definition Attributes

Subject Source AS number, user ID, country, etc.
Action MPLS path ingress and egress router, identifier
Object Flow IP source + IP destination + [Protocol | SPort | DPort | . . .]

security_rule(obligation,DomainAdapt, SLSusPath,Modify,Blackhole,

SatAssessContext)

These security rule means that in the saturation performance context, third level and
second level suspicious paths (i.e., set of MPLS paths) are rerouted to a blackhole capa-
ble node. The activated rules for alert Alerti are deleted when the performance context
is deactivated (i.e., when the network load is stable) by destroying the organization
SatDomainAdmiti. As a result, the organization DomainAdapt is rolled-back to the
DefaultContext (i.e., long-term strategies implemented during the planning process). A
similar modelling approach is applied to the network critical phase.

4 Flow Admission Policy

The definition of suspicious flows and their mapping to the corresponding path and
forwarding behaviour is done at the entry point of each domain, the ingress router. The
configuration of an ingress router contains the policy enforcement that regulates the
access of suspicious flows to a given MPLS domain resources.

Let us assume the following high-level policy statement: any suspicious flow must
be given a de-prioritized path and forwarding behaviour. The ingress router is assumed
to maintain this policy requirement by being a single point through which all commu-
nication between the networks and the MPLS domain must pass and get controlled.
When a security alert is received with an assessment classification that maps to a threat
context, this latter is activated. Moreover, a mapping between network alert attributes
and concrete entities is established to define the newly discovered suspicious flows. The
activation of the context and the definition of these concrete entities are performed into
dynamic sub-organizations. A flow admission rule is activated in order to affect the sus-
picious flow to its routing and QoS scheme inside the MPLS domain. This security rule
is turned into configuration rules on the MPLS ingress router.

4.1 Concrete Entities

Table 3 summarizes our proposed set of concrete entities. We assume the following
entities:

– Subject: source identifier of a flow of packets. It can be the Autonomous System
(AS) number of an Internet Service Provider (ISP), a country, a user ID, etc.

– Action: the MPLS path characterized by its identifier and the ingress and egress
routers.

– Object: any suspicious flow of packets. We characterize such flows by their IP
destination, IP source, port source, and port destination, etc.
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Table 4. Abstract entities associated to the DomainAdmit organization

Abstract level Definition Examples

Role origin customer, outsider
Activity path and forwarding behaviour gold_path, suspicious_path

View session VoIP_session, BestEffort_session

4.2 Abstract Entities

Table 4 summarizes our proposed set of abstract entities. We assume the following
entities in the flow admission policy:

– Organization: Domain admit (DomainAdmit), which in turn can be inherited from
higher level organizational structures, such as the organization associated to an ISP
network in charge of the affected MPLS domains.

– Role: abstraction of the origin of traffic flows. For instance, customers of the ISP
subscribed to certain QoS services, or outsider customers sharing the resources of
the ISP.

– Activity: abstraction of the path and forwarding behaviour. They reflect different
level of QoS provided inside a single MPLS domain.

– View: abstraction of traffic flow. Such abstraction can be seen as session, character-
ized by destination port numbers, such as VoIP sessions, best effort sessions, or by
certain predefined IP addresses such as critical sessions.

4.3 Threat Contexts

We model the management of threat contexts based on the construction of the original
HADEGA proposal presented in [16]. This way, the contexts are based on the alert
attributes: Impact Level (IL), and Confidence Level (CL). Table 5 shows an example
based on such construction.

We assume the reception of security alerts. Each alert transports diagnosis data: as-
sessment and network attributes. A new sub-organization under the DomainAdmit is
created to manage each alert. For instance, the sub-organization FLDomainAdmitj
manages the alert Alertj (cf. Listing 1.4 in Appendix A).

The first level assessment context, denoted as FLAssessContext, is activated in the
FLDomainAdmitj context to manage a given alert Alertj if the definition matches
the classification of the alert. The context is active for every triple {subject, action, ob-
ject}. The classification of the alert is inferred from its assessment attributes (i.e. IL, and
CL). For instance and in case of IDMEF alerts [16], the first level assessment context is
reported by alerts with (1) an impact.severity low or medium and (2) a confidence.rating
low (cf. Listing 1.5 in Appendix A).

We introduce an additional abstract entity, view, in this sub-organization. We call it
first level suspicious flow and denoted as FLSusFlow. The mapping between the alert
Alertj and the FLSuSFlow is done through the view definition. The definition of the
flow, is inferred from the network attributes of the alert (i.e., IP source, IP destination,
port source, etc.). For example and in case of an IDMEF alert, the target.address field
provides the IP destination of the flow (cf. Listing 1.6 in Appendix A).
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Table 5. Context definition, based on the Impact Level (IL) and Confidence Level (CL) alert
attributes

���������������Context

Assessment Attributes
IL CL

low low
First level assessment med low

low med
low high

Second level assessment med med
high low
med high

Third level assessment high med
high high

4.4 Generation of Flow Admission Rules

The generation of flow admission rules consists on defining security rules for each
context. The FLAssessContext is now active, security rule associated with this context
is triggered. The following security rule matches this context:

security_rule(permission,DomainAdmit,Any,FLSusPath,

FLSusF low, FLAssesscontext)

This permission rule means that in the threat context first level assessment, any
first level suspicious flow is affected to the previously established first level suspicious
path FLSusPath. When the flow is not suspicious any more, the threat context is de-
activated by simply deleting the organization FLDomainAdmitj . By destroying this
organization, all related entities disappear and, therefore, the flow receives back a nor-
mal treatment. Similar modelling is applied to the second and third level assessment
contexts.

5 Implementation

We present in this section a practical implementation of our approach. It is based on
the open source MotOrBAC framework [2]. The ongoing prototype already allows the
specification of our modelling approach, and its transformation into security rules for
MPLS-linux routers [3]. From an implementation point of view, the reaction policies
(both flow admission and network adaptation policies) can be executed in the same
way but with different entity and organization definition. The flow admission control
is more complicated because it involves the creation of dynamic entities in the sub-
organizations and invokes mapping a long list of attributes from alerts to policies. We
overview in this section the implementation of the flow admission reaction policy. A
sample screen-shot of such an implementation is shown in Figure 2. We show in the
screen-shot how a concrete OrBAC policy, instantiated via a series of IDMEF alerts,
is processed and transformed into MPLS-linux configuration rules. In the sequel, we
detail the specific steps associated to the enforcement depicted in Figure 2.
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5.1 Policy Instantiation via Mapping of Alerts and Policies

The process for mapping alerts and policies relies on the use of the OrBAC API, avail-
able at the MotOrBAC website [2]. All the necessary functions for the definition of
threat organizations and dynamic abstract entities are directly obtained via such an API.
The combination of threat organizations, dynamic abstract entities and remainder Or-
BAC elements (as defined in Section 4) enable the complete specification of our pol-
icy modelling and corresponding predicates (e.g., permissions). The mapping between
alerts, threat organizations and dynamic entities is done via XML and XPath methods
already available in OrBAC API. Once established, the policy instantiation engine ob-
tains the complete list of security attributes, activates the list of threat contexts, and
instantiates the abstract entities. Finally, and based on the inference engine provided by
the OrBAC API, the complete series of concrete rules are generated and provided as
input to the transformation component of the prototype.

5.2 From Inferred Rules to MPLS Configurations

The translation of concrete rules into MPLS-linux routers’ configurations has been im-
plemented as an OSGi bundle plug-in [1] for MotOrBAC. The plug-in receives as in-
put the instantiated policy and collaborates with the OrBAC API to generate concrete
MPLS routers instructions. The transformation engine relies on the concept of classes

��������

���� ����

Fig. 2. Prototype system developed under the MotOrBAC framework. (a) Dynamic organizations
created upon reception of IDMEF alerts. (b) Concrete permissions inferred from active contexts.
(c) Concrete entities and alert attribute containers. (d) Transformation results, displaying the final
MPLS-linux configuration rules.
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and attributes already provided by the OrBAC API. We described and encapsulated into
generic OrBAC definitions all the complete network semantic required by the reaction
policy. We also encoded a translator into a Java Class. This translator is responsible of
generating MPLS-linux routers’ configurations. The transformation engine parses the
concrete rules and generates the configurations adapting to the mitigation strategy.

6 Discussion and Related Work

The adaptive policy-based framework proposed in this paper has a dual management
aspects: the network management through implementation of network adaptation rules,
and the security management through the flow admission rules.

Most of existing work on network QoS-based policy management [33,31,19,6] does
not support policy rules that can be dynamically triggered by events. Moreover, the
work of IETF policy specification [19,6] is based on directories to store policies but not
for grouping the entities involved in the policies. In another word, it does not have the
concepts of subjects and targets to specify to which components the policy applies. The
work of [29,33,31] aimed more specifically on the management of DiffServ network
solely. The work whose motivation is close to ours was proposed in [23,24] to specify
the network QoS policy. While this work provided an adaptive framework to answer
events on the network level, the abstraction of different entities invoked in the policies
was absent due to the usage of Ponder language [10]. In some policies’ definition the ac-
tion and its target were concrete and clear, in some other their definitions remained very
ambiguous. Moreover, there was a mixing between the Policy Enforcement Point and
the subject entity of the policy. Through the obligation security rule, we used the Or-
BAC to model network management policies. We defined a well-structured two-level
grouping using abstract and concrete entities; thanks to OrBAC model [21]. It com-
pletely distinguishes between the Policy Enforcement Point on which we implement
the configurations and the subject/target on which we are supposed to apply the policy.
The model provides answer to adaptive changes on network level. It supports as well
the roll-back and the update of normal context i.e., long-term strategies modification.

Concerning the security management scheme, most of existing work addressed the
management of firewalls for the simple reason that they form the principal network se-
curity component [18,8,15]. In this paper, we proposed a management framework for
controlling the admission of flows to the MPLS domain through the permission security
rule. Therefore, the ingress MPLS router of the domain is seen as a security component.
While this work is considered the first assuming the MPLS routers as a security compo-
nents, there were some works that addressed mapping the traffic specification e.g., Ser-
vice Level Specification (SLS) assignments into certain established QoS scheme inside
the MPLS domain such as [6,33]. Differently from this work, we provided an adaptive
framework for handling alerts and map its diagnosis data into certain flow classification
and QoS scheme. The model took in consideration the SLSs by providing two entities
that abstract source of flows e.g., gold customer, and the session type e.g., voice session.
Moreover, the use of the dynamic sub-organization concept provided the possibility to
create views for the suspicious flows. Therefore, the roll-back of suspicious flows to the
normal treatment was simply performed by deleting the given sub-organization.
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7 Conclusion

We have introduced an adaptive policy-based framework for handling suspicious flows
via MPLS policies. The framework builds upon the OrBAC formalism. The result is
a top-down enforcement of mitigation policies and its automatic transformation into
MPLS router configuration rules. The framework is divided into two aspects: flow ad-
mission and network adaptation control. In each aspect, different modelling was estab-
lished. We have also presented the implementation of our approach for the generation
of configuration rules for MPLS-linux routers triggered by IDMEF alerts and OrBAC
policies. Future work will aim on managing the conflicts that can be originated from the
selected reaction policies, as well as reducing the complexity in suspicious flows defini-
tion; by including topology-related attributes in dynamic organizations definitions. We
will also study more complex policies by introducing a list of SLSs.
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A Sample OrBAC Security Rules used in HADEGA

Listing 1.1. Roles assignment
empower(org, subject, role): means that in organization
org, subject is empowered in role.

consider(org, action, activity): means that in
organization org, action is considered an implementation
of activity.

use(org, object, view): means that in organization org,
object is used in view.

Listing 1.2. Performance context management
performance_context_management(Alerti,SatDomainAdapti)

Listing 1.3. Activation of saturation performance context
hold(SatDomainAdapti,-,-,-,SatAssessContext)

∧ threat_context_management(Alerti,SatDomainAdapti)
∧ Alerti(network.status)
∧ network.status=saturation

Listing 1.4. Threat context management
threat_context_management(Alertj,FLDomainAdmitj)

Listing 1.5. Activation of first level assessment context
hold(FLDomainAdmitj,-,-,-,FLAssessContext)

∧ threat_context_management(Alertj,FLDomainAdmitj)
∧ Alertj(Assessment)
∧ (Impact(Assessment, ’IL’) ∧ (IL=low ∨ IL=medium))
∧ (Confidence(Assessment, ’CL’) ∧ CL=low)

Listing 1.6. Mapping between the IDMEF alert and View entity
use(FLDomainAdmitj, flow, FLSusFlow)

∧ threat_context_management(Alertj, FLDomainAdmitj)
∧ Alertj(Source, Target)
∧ (Address(Source, ’IP_Src’)
∧ flow.IP_Source = ’IP_Src’)
∧ (Address(Source, ’Port_Src’)
∧ flow.Port_Source = ’Port_Src’)
∧ (Address(Target, ’IP_tgt’)
∧ flow.IP_Destination = ’IP_tgt’)
∧ (Address(Target, ’Port_tgt’)
∧ flow.Port_Destination = ’Port_tgt’)
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Abstract. Keyless Signatures Infrastructure (KSI) is a globally dis-
tributed system for providing time-stamping and server-supported digi-
tal signature services. Global per-second hash trees are created and their
root hash values published. We discuss some service quality issues that
arise in practical implementation of the service and present solutions for
avoiding single points of failure and guaranteeing a service with reason-
able and stable delay. Guardtime AS has been operating a KSI Infras-
tructure for 5 years. We summarize how the KSI Infrastructure is built,
and the lessons learned during the operational period of the service.

1 Introduction

Keyless signatures are an alternative solution to traditional PKI signatures. The
word keyless does not mean that no cryptographic keys are used during the
signature creation. Keys are still necessary for authentication, but the signatures
can be reliably verified without assuming continued secrecy of the keys. Keyless
signatures are not vulnerable to key compromise and hence provide a solution to
the long-term validity of digital signatures. The traditional PKI signatures may
be protected by timestamps, but as long as the time-stamping technology itself
is PKI-based, the problem of key compromise is still not solved completely.

Keyless signatures are a solution to this problem. In a keyless signature
system, the functions of signer identification and of evidence integrity pro-
tection are separated and delegated to cryptographic tools suitable for those
functions. For example, signer identification may still be done by using asym-
metric cryptography but the integrity of the signature is protected by using
keyless cryptography—the so-called one-way collision-free hash functions, which
are public standard transformations that do not involve any secret keys.

Keyless signatures are implemented in practice as multi-signatures, i.e. many
documents are signed at a time. The signing process involves the steps of:

1. Hashing: The documents to be signed are hashed and the hash values are
used to represent the documents in the rest of the process.

2. Aggregation: A global temporary per-round hash tree is created to represent
all documents signed during the round. The duration of rounds may vary
but is set to one second in the working solution.
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3. Publication: The root hash values of the per-round aggregation trees are
collected into a perpetual hash tree (so-called hash calendar) and the root
hash value of that tree is published as a trust anchor.

To use such signatures in practice, one needs a suitable Keyless Signatures’ In-
frastructure (KSI) analogous to PKI for traditional signature solutions. Such an
infrastructure consists of a hierarchy of aggregation servers that, in co-operation,
create the per-round global hash trees. First layer aggregation servers, so-called
gateways, are responsible of collecting requests directly from clients, and every
aggregation server receives requests from a set of lower level servers, hashes them
together into a hash tree, and sends the root hash value of the tree as a request
to higher-level servers. The server then waits for the response from a higher-level
server and by combining the received response with suitable hash chains from
its own hash tree responds to lower-level servers.

In this paper, we discuss some service quality and availability issues that arise
when maintaining this tree in practice and describe solutions to overcome them.
The implementation avoids single points of failure and guarantees reasonable and
stable service latency. Guardtime AS has been operating a KSI Infrastructure for
5 years—sufficiently long time to draw some conclusions about the availability,
scalability and practical lessons learned during the operational phase. This paper
summarizes how the KSI Infrastructure is built, its main components and the
operational principles. We provide a brief overview of the security aspects of the
service, including design decisions that minimize possible risks.

2 Hash Trees and Hash Calendars

Hash Trees: Hash-tree aggregation as a technique was first proposed by Merkle
[6] and first used for digital time-stamping by Haber et al [5]. Hash-tree time-
stamping uses a one-way hash function to convert a list of documents into a fixed
length digest that is associated with time. User sends a hash of a document to
the service and receives a signature token—a proof that the data existed at the
given time and that the request was received through a specific access point. All
received requests are aggregated together into a large hash tree; and the top of
the tree is fixed and retained for each second (Fig. 1). Signature tokens contain
data for reconstructing a path through the hash tree—starting from a signed
hash value (a leaf) to the top hash value. For example, to verify a token y in the
place of x1 (Fig. 1), we first concatenate y with x1 (part of the signature token)
and compute a hash value y2 = h(x1 | y) that is used as the input of the next
hash step, until we reach the top hash value, i.e. y3 = h(y2 | x34) in the example
case. If y3 = xtop then it is safe to believe that y was in the original hash tree.

Hash Calendar: Root hash values for each second are linked together, into a
globally unique hash tree called a hash calendar, so that new leaves are added
only to one side of the tree. Time value is encoded as the shape of the calendar
the modification of which would be evident to other users. The top hash of the
calendar is periodically published in widely witnessed media.
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y

xtop = h(x12|x34)

x12 = h(x1|x2) x34 = h(x3|x4)

x1 x2 x3 x4

y3 = h(y2|x34)

y2 = h(x1|y)

x34

x1

Fig. 1. Computation of a hash tree (left), and verification of y at the position of x2

There is deterministic algorithm to compute top of the linking hash three,
giving us distinct top level hash value at each second. Also there is an algorithm
to extract time value from the shape of the linking hash tree for each second,
giving us a hard-to-modify time value for each issued token.

Security Against Back-Dating: Security against back-dating means that ma-
licious servers must be unable to add new fresh requests to already published
hash trees. It has been shown [4,3,2] that if the hash function is secure in ordi-
nary terms (one-wayness, collision-resistance, etc.) and the aggregation tree is
of limited size, then the scheme is indeed secure against back-dating.

3 System Architecture

An Application (Fig. 2) computes a hash of the document that is going to be
signed and sends a request to a Gateway—a server that delivers the service
to end-users. Gateway aggregates the requests received during an aggregation
cycle and sends its top hash value as a request to the upstream aggregation
cluster. The request is aggregated through multiple layers of Aggregator servers,
and the globally unique top hash value is created by the Core cluster. The
response (that consists of verifiable hash tree paths) is sent immediately back
through the aggregation layers. The top hash values for each second are collected
to Calendar Archive and distributed through the Calendar Cache layer to the
Extender service, usually co-located with the Gateway host. Client applications
use the Extender service for the verification of signatures.

Aggregation Network: An aggregator is a system component that builds hash
trees from all incoming requests and passes root hash values to upstream sys-
tem components. Aggregators work in rounds of equal duration. The requests
received during a round are aggregated into the same hash tree. After receiving a
response from an upstream component, an aggregator immediately delivers the
response to all child aggregators together with hash paths of its own tree. Sub-
sequent responses from upstream components for the same round are ignored.
The aggregation tree is split to four layers, and an aggregation infrastructure
was built so that the top layer is close to the Core cluster (see the next section),
two intermediate layers provide geographic scale. The bottom layer is bundled
with Gateways and hosted typically at the end user premises. Each downstream
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Fig. 2. High-level system architecture and the aggregation network

client or aggregator has its reserved spot in the hash tree—this allows to prove
which server was involved in the creation of a particular signature token.
The aggregation tree scales well. In order to double the system capacity we have
to add only one hash value to the signature token. Current hash-tree depth is
fixed at 50 steps, giving us theoretical maximum capacity of 250 ≈ 1015 signa-
tures per second. This initial configuration is believed to cover possible signature
needs for the foreseeable future. Each gateway and aggregation server generates
constant upstream network traffic which does not depend on the actual load.
This isolates the customers, does not leak information about the actual service
usage, and provides reasonable denial-of-service attack protection. Also in order
to scale up the service it is easy to add resources with linear increase in capacity.

Core Cluster consists of top-level aggregators and is a distributed synchronized
machine responsible for producing the hash calendar and propagate it through
the aggregation network. The root hash values of the calendar are archived and
distributed to verification servers, through guaranteed integrity archiving and
“dumb” caching layers. The roots of intermediate aggregation trees are only
stored in relevant signature tokens. Top level aggregators guarantee that the
time value of the calendar corresponds to the UTC time. Gateways fetch their
copies of the Calendar from the cache servers using the HTTP protocol. Local
copy of the Calendar data is used for signature token verification.

Gateway: Gateway works as a protocol adapter, accepting requests in applica-
tion specific formats (RFC3161, OpenKSI) and forwarding them to designated
Aggregator(s). In practice, first level of aggregation happens already at a Gate-
way host, giving us low and predictable communication bandwidth between the
Aggregators and Gateway. Gateways host a Verifier (or Extender)— a signature
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verification assistant. Extender has a fresh copy of the calendar, and it builds
hash chains from signed hash values to the published hash values. This cannot
be done immediately after signing, because part of the calendar is not yet known
at the signing time. The hash chains created by the Extender and validated in
client APIs. Client applications may store the verified token with full information
for re-creation of the hash-chain by creating so-called “extended” token.

4 Availability and Service Quality

To increase the availability of the service, single points of failure must be avoided
and we have to use redundancy everywhere in the system. Every aggregation
server is replaced with a geographically dispersed cluster of servers that work in
parallel, so that lower-level servers send requests to the whole cluster and will
use the first received valid reply. If the availability coefficient of a single server is
assumed to be 0.99 (approximate downtime is 3.5 days per year), then a cluster
with two servers has availability about 0.9999, assuming total independence of
downtime events. The clusters can be enlarged without downtime.

The response time of the service may depend on several characteristics of the
network and if no measures are taken may vary considerably. Below we describe
how we eliminated the “long tail” of the service response time.

Simplified Approach. The aggregation network is redundant, i.e. it has a clus-
ter of m aggregators instead of one. Every aggregator has a certain aggregation
period d (in time units). The larger the aggregation period is, the larger service
delay it creates, i.e. a request that receives at random time will be aggregated
(i.e. the Merkle tree built, the root hash calculated and sent to the parent clus-
ter) approximately after d/2 units of time. This means that every aggregator in
the path from a client to the core-cluster adds d/2 time units of service delay.

If an aggregation round begins at 0 and ends at d, then a request that arrives
at t (in [0 . . . d]) will have service delay d− t, i.e. the larger t is, the smaller will
be service delay. The requests that arrive later (just before the round is closed)
have smaller service delays.

The main idea is to adjust the round schedules of the aggregators in the same
cluster so that the average delay of requests will be minimal. For example, if
we have two aggregators in the cluster both with round length d (in time units)
and the round of the second aggregator begins at time d/2 (instead of 0), then
(as every request is sent to both aggregators), the average service delay is d/4
instead of d/2. This is because the delay for a request received at t is now the

following function δ(t) = d
2 (1 + '2t/d() − t =

{
d/2− t if t ∈ [0 . . . d/2]
d− t if t ∈ [d/2 . . . d]

and

the average value of this function in [0 . . . d] is d/4. In general, if we have m
aggregators in the cluster, and the round of the i-th aggregator in the cluster
begins at time i/m, then δ(t) = d

m (1+ 'mt/d()− t and the average delay is d
2m .

This method reduce the service delay by interleaving the aggregation rounds
in a cluster. The simplified approach is useful if the delay is almost completely
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random, i.e. has a large standard deviation comparable to the duration of ag-
gregation rounds. Such extreme conditions are very rare in practice.

Practical Approach. A network delay between a child aggregator C and a
parent aggregator P consists of several components:

– Propagation delay caused by the basic fact of physics and which depends on
the length of wires between C and P . This delay cannot be eliminated.

– Serialization delay caused by global cloud of network routers that choose
the paths in the network that are used to send data from C to P .

– Jitter. Mostly caused by varying utilization which creates processing queues
and causes retransmissions.

All these component-delays create a probability distribution that is not uniform
but a rather sharp bell-curve. For example, if we know that 95 per cent of the
requests (of C to P ) have delays between 25 − 40ms (milliseconds), then we
can adjust the round schedules of C and P , so that their rounds (if they are of
equal duration d) begin at t and t+ 40ms, respectively. This means that 95 per
cent of the requests send by P to C have additional delay less than 40ms. Note
that in practice, the delay is much smaller than d/m, where m is the number of
aggregators in a cluster and d is the aggregation period.

Message flow between the aggregation layers is depicted in Fig. 3. The vertical
axis represents layers of the aggregation tree, and the horizontal axis represents
time-flow in seconds. Left drawing illustrates the unsynchronized case with two
requests, first one being worst case and second one being best case. As request

Fig. 3. Message flow through the aggregation layers (AL → AS → AN → ATL → Core
and back). Horizontal axis represents the flow of time in seconds.
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travels upstream it waits for end of the aggregation round at each layer, and first
requests narrowly misses the end of 1-second top level aggregation cycle. Second
requests arrives just before the end and response for both requests arrives at the
same time. Right drawing depicts the ideal case with synchronized layers.

5 Practical Results

Test Setup: The test was performed during the service expansion to Japan,
topologically very distant location from the Core cluster which is distributed
between the different jurisdictions in Europe. Service was already extensively
tested in the laboratory environment, so that its performance in presence of non-
ideal network conditions was already mapped. Also, its latency, when operated
within a single continent, had been proven to be satisfactory. We rented some
physical and some virtual servers from 5 different service providers based on
Tokyo and Nagano. There were also some non-formal testing objectives, like
(1) finding set of service providers with least dependent resources, especially
ISP peering; (2) testing service quality provided by different sizes of clusters of
physical and virtual servers, finding cost effective combination; (3) testing effect
of different aggregation periods; (4) testing effect of other system parameters;
(5) providing data to draft the Service Level Agreements. Load was generated
remotely, measurements were performed at the Gateway host, so that client
application to gateway connection did not impact the measurements. Tests were
run for 24 hour periods, for at least 3 consecutive days. If possible then ISP-s
with worst quality of service were used (they were dropped in production).

Results: The main goal was to improve the service quality, i.e. provide minimal
and deterministic latency of the signing service to the end users; and also to find
cost effective setup to guarantee reasonable availability. The progress is presented
with the before and after response timing histograms in Fig. 4. The left graph
depicts the initial real-life signing response timing distribution. Note that there
are no failed requests because of the redundancy and automatic retry mechanism
on all aggregation layers. Response latency histogram after the synchronization
of the aggregation layers and other optimizations like tuning host network stack
and Linux kernel parameters is depicted at Fig. 4 (right). Here latency is mostly
dictated by the underlying network delays as RTT (round-trip delay) from AN to
ATL is approximately 270ms, other network delays are below few milliseconds.
Clock drift at all layers is less than 4ms and Core protocol voting time is 48ms.
Final optimizations and findings included:

– The lowest latency was achieved by the aggregation period of 200...400ms.
We started with 200ms and later reverted to 400ms for less data traffic.

– In redundant clusters, virtual servers are reasonably good. Three virtual
servers cost less and provide better service than 2 dedicated physical servers.

– Virtualized servers can have choppy flow of time; it helps to keep local disk
IO minimal. For our case it was necessary to set up network logging.

– Although being easier to implement the TCP based network protocol had
some unwanted quirks, especially the “TCP slow start after idle” feature.
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Fig. 4. Real-life response time histograms before and after the optimizations. Vertical
axis is the number of samples, horizontal scale is the latency in seconds.

In practice, the synchronization involved setting up reasonably good configura-
tion of Internet-based NTP time synchronization and configuring optimal timing
offsets based on measured RTT between the aggregation layers at each Aggre-
gator site. Depending on availability requirements 2 or 3 Aggregation servers in
a cluster provided satisfactory results.
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