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Abstract. Complex networks are ubiquitous in real word and represent
a key model for both human made and natural systems. An important
characteristics that distinguishes technological networks from biological
networks is the assortativity, i.e. the correlation among the degrees of
connected nodes. We apply spectral analysis to investigate how assor-
tativity influences the robustness of a network with respect to failure
propagations or epidemic spreading. We find a no free lunch situation:
while disassortative networks are more robust since they have a higher
failure threshold, in assortative networks there is more time for interven-
tion before total breakdown.

1 Introduction

Complex Networks have been applied to a wide range of sectors, from techno-
logical fields like the Internet or power grids to biological fields like genomics
or ecosystems [1,2]. A network is anything that can be represented by a set of
elements called nodes connected by links representing some relationship among
nodes: as an example, in social networks the nodes are people and the links
between them can be relationships like friendship, political alliance or collabo-
ration. The structure of the networks is linked to topological metrics like the
degree distribution (the degree of a node is the number of its neighbours) and it
plays a key role in determining the robustness, the resilience ad the response of
a network [3]. Real networks in most cases show non-trivial topological correla-
tions; in particular, many networks show ‘‘assortative mixing’’ on their degrees,
i.e. high-degree vertices tend to be attached to high-degree ones, while other net-
works show disassortative mixing, i.e. high-degree vertices tend to be attached
to low-degree ones. The network’s degree–degree correlation can be quantified
by a single scalar α called the assortativity coefficient [4] which assumes val-
ues α = 0 for degree-uncorrelated networks, α > 0 for assortative networks and
α < 0 for disassortative networks. Assortative correlations are typically observed
in social networks [4]; on the other hand, disassortative connections are mainly
found in technological and biological networks [5]. We want to investigate the
consequences of the assortativity on the characteristics of a network.
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2 Monte Carlo

To randomize a networks one possible procedure consists into reshuffling links
while keeping the degree of each node constant [6]; it has already been noticed
that link-swap moves can be assortative, disassortative or neutral [7]. We intro-
duced a means to sample the space of networks of different assortativity sharing
the initial degree distribution. While our procedure is general, in this paper
we will concentrate on initial network configurations obtained by the Barabasi-
Albert preferential attachment procedure [8].

We define a fictive energy H (G) = −∑
ij kiAijkj that has the property that

on average H decreases if the assortativity increases and vice-versa We can
therefore use the fictive energy H to sample the space of assortative networks
via a Monte Carlo procedure in which we assign the weight ∝ exp [−βH (G)]
to the configuration G and we accept a link reshuffling move with probability
exp {−β [H (G′)−H (G)]}. The parameter β looks like the analogous of an in-
verse temperature in the canonical ensemble, but in order to be able to sample
both assortative and disassortative configurations we have to allow β to be both
positive and negative. The resulting sampling of the assortativity α respect to
the parameter β is monotonously increasing.

3 Spectral Analysis

A powerful tool in assessing the general characteristic of a network is the spectral
analysis of its associated matrices [9].

Formally, a network (or a graph) is defined as a couple G = (V,E) where V
is the set of NV nodes and E is the set of NE links; each link joins two nodes.
To each graph G we associate its adjacency matrix A, defined as Aij = 1 if
nodes i,j are connected, Aij = 0 otherwise. The networks we are considering
are simple (no self loops, i.e. Aii = 0) and undirected (Aij = Aji). The degree
of node i is therefore ki =

∑
j Aij ; nodes are labelled for increasing degree:

k1 ≤ k2 ≤ . . . ≤ kN .
The eigenvalues of A are real as A is Hermitian (we are considering undirected

networks); moreover ΛN is positive as A is a positive matrix.
The propagation of epidemics on networks is clearly linked to the adjacency

matrix A that dictates which nodes can be infected by a virulent node; moreover
the dynamics of epidemics in certain cases can be related to the dynamics of
failure propagation. The maximum eigenvalue ΛN has a particular status as it
is linked to the epidemic threshold. The epidemic threshold τ of a network can
be thought as the fraction of nodes to immunize in order to stop an infection
with a fixed disease propagation rate; Wang and coauthors have shown that in
networks the epidemic threshold scales as τ ∼ 1/Λ1 [10,11].

We find that Λ−1
1 decreases with assortativiy: in the range of correlation we

explore, disassortative networks show an epidemic threshold up to 20% higher
than assortative ones (Fig.1). Our findings confirm the idea that avoiding di-
rect connections between hubs (highly connected nodes) may provide protection
against epidemics [12].
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Fig. 1. The epidemic threshold Λ−1
1 decreases with assortativity (networks of 10000

nodes)

Fig. 2. For diffusion-like processes, the longest time to explore the network is propor-
tional to λ−1

2 . For our networks of 10000 nodes, it increases with the assortativity.

The Laplacian matrix of a network is defined as L ≡ D − A, where D is
the diagonal matrix of degrees Dij = kiδij . It is the analogous of the Laplacian
operator and describes the diffusion of random walkers on the network. The
eigenvalues of L are λ1 = 0 ≤ λ2 ≤ . . . ≤ λN ; the eigenvector (mode) associated
to the zero-th eigenvalue λ1 is the equilibrium distribution for a diffusive pro-
cess on the network. The first non-zero eigenvalue λ2 is the inverse diffusional
timescale of slowest mode, i.e. it is a measure of the longest time for a random
walker to explore the whole network. Therefore, a lower value λ−1

2 means that
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there is less time for intervention before a network is totally compromised by
randomly propagating failures or epidemics; in such respect assortative networks
show times up to 60% higher than disassortative ones (Fig. 2).

4 Conclusions

We have investigated via spectral methods some effects of the assortativity on
the robustness of a network with respect to randomly propagating failures and
epidemics. We have found a “no free lunch” situation: while disassortative net-
works have a higher failure threshold, assortative networks give more time for
intervention before total breakdown.
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