
15Georg Cantor: Diagonal Method

Georg Cantor discovered his famous diagonal proof method, which he used to give
his second proof that the real numbers are uncountable. It is a curious fact that Can-
tor’s first proof of this theorem did not use diagonalization. Instead it used concrete
properties of the real number line, including the idea of nesting intervals so as to
avoid overlapping a given countable sequence.

This brings us to discuss the famous second proof: the diagonal method of Can-
tor.

In my teaching experience, students find it hard to believe Cantor’s diagonal
method. Perhaps it is my fault, but I have talked to others who teach the same result,
and I hear the same comments. The diagonal method is elegant, simple, and deep.
Students usually follow the method line by line, but I am sure that many really fail
to get it. Perhaps that it is a proof by contradiction makes it hard to follow? But,
they seem to get other proofs by contradiction. Or is the key problem that it is about
infinities?

Here is an interesting quote by the logician Wilfrid Hodges:

I dedicate this essay to the two-dozen-odd people whose refutations of Cantor’s diagonal
argument have come to me either as referee or as editor in the last twenty years or so.
Sadly these submissions were all quite unpublishable; I sent them back with what I hope
were helpful comments. A few years ago it occurred to me to wonder why so many people
devote so much energy to refuting this harmless little argument—what had it done to make
them angry with it? So I started to keep notes of these papers, in the hope that some pattern
would emerge. These pages report the results.

You might enjoy his essay—it is a careful treatment of some of the issues that people
have in following Cantor’s famous argument.

Let’s turn to prove the famous result.

15.1 Proofs

I will give two different proofs that the reals are not countable. Actually, I will
prove the statement that no countable list of infinite sequences of 0–1’s can include
all such sequences.
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This is enough because of two observations. First, it is enough to show that the
interval [0,1] is uncountable. Second, the reals in the interval have the same cardi-
nality as the set of all of the infinite 0–1 sequences.

The first proof is essentially the famous diagonal proof, with a slight—very
slight—twist. The second is a proof based on probability theory.

15.2 A Variant of the Classic Proof

Consider the following triangular array of bits that has an infinite number of rows:

s1(1)

s2(1) s2(2)

s3(1) s3(2) s3(3)
...

The ith row is

si(1) si(2) . . . si(i)

where each si(j) is a 0 or a 1.
Our plan is to construct an infinite sequence t (n) that is different from each row.

Let’s construct t . We need that t is different from s1(1) so there is no choice: set
t (1) equal to ¬s1(1). Note, there was no choice here: often the lack of choice is a
good thing. In a proof if there is no choice, then you should be guided to the right
choice. Henry Kissinger, as given by the website “Brainy Quote,” once said:

The absence of alternatives clears the mind marvelously.

Next we must make t different from s2(1)s2(2). We could be lucky and

t (1) �= s2(1).

But, we must be prepared for the worst case. So we set t (2) equal to ¬s2(2). This
forms a pattern: the simple rule is to set t (i) to ¬si(i).

Look at the triangular array again and we see that t is just equal to the negation
of the diagonal elements:

s1(1)

s2(1) s2(2)

s3(1) s3(2) s3(3)
...
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This is why we call it the diagonal method. What does this have to do with the
reals being uncountable? Suppose that now we have an array where each row is
infinite too:

s1(1) s1(2) s1(3) . . .

s2(1) s2(2) s2(3) . . .

s3(1) s3(2) s3(3) . . .
...

We want to construct a t so that it is different from each row. Just forget about
the extra part of the array: use only one from the first row, two from the second row,
and so on. The above just becomes our old friend:

s1(1)

s2(1) s2(2)

s3(1) s3(2) s3(3)
...

But, we just constructed a t that is different from each row. I claim that t works
with the array that has rows of infinite length. The key observation is trivial: if t

differs from the start of a row, it certainly is different from the whole row. That is it.

15.3 A Probability-Based Proof

In this proof we use the probabilistic method. We just pick a random 0–1 sequence
t , and claim with positive probability that it is not equal to any sequence in the list
s1, s2, . . . . Thus, such a t must exist.

Let En,i be the following event:

t (1), . . . , t (n) = si(1), . . . , si(n).

Clearly,

Prob[En,i] = 2−n.

The key is the event E defined as

E2,1 ∨ E3,2 ∨ E4,3 ∨ · · · .

The probability of E is at most

Prob[E2,1] + Prob[E3,2] + · · ·
which is equal to

1/2 = 1/4 + 1/8 + 1/16 + · · · .

Thus, the probability of the complement event E is 1/2.
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But, E is true provided t is not equal to any si . For suppose that t was equal to
si , then it must be the case that

t (1), . . . , t (n) = si(1), . . . , si(n)

for any n. In particular, the event Ei+1,i must be true, which is a contradiction since

E = E2,1 ∧ · · · ∧ Ei+1,i ∧ · · · .

Even though the methods look different, if you look closely you would notice
that they both have Cantor’s diagonal method at their heart.

15.4 Open Problems

There are many other papers on alternative approaches to proving the reals are un-
countable. One is by Matthew Baker, titled “Uncountable Sets and an Infinite Real
Number Game” (referenced in the end notes). Baker gives a great explanation of his
method, which is close to the first proof that Cantor found.

Did you always believe the classic proof that the reals are uncountable? Or did
this discussion help? I hope it increased your understanding, rather than decreased
it.

15.5 Notes and Links

Original post:
http://rjlipton.wordpress.com/2010/01/20/are-the-reals-really-uncountable/

Previous post on Cantor’s “first proof” of his theorem:
http://rjlipton.wordpress.com/2009/04/18/cantors-non-diagonal-proof

Wilfrid Hodges’ observations:
http://www.math.ucla.edu/~asl/bsl/0401/0401-001.ps

Kissinger quote:
http://www.brainyquote.com/quotes/authors/h/henry_a_kissinger_2.html

Matthew Baker, “Uncountable sets and an infinite real number game,” Mathematics
Magazine 80(5), December 2007, 377–380. Also available at

http://people.math.gatech.edu/~mbaker/pdf/realgame.pdf
This post had an especially lively comment discussion. Fields Medalist Terence Tao
remarked:

Cantor’s theorem is part of a general family of results that show that the class of all “po-
tential” solutions to some problem is far larger than the class of “explicitly describable” or
“actually solvable” solutions. . .

and gave seven further examples.

http://rjlipton.wordpress.com/2010/01/20/are-the-reals-really-uncountable/
http://rjlipton.wordpress.com/2009/04/18/cantors-non-diagonal-proof
http://www.math.ucla.edu/~asl/bsl/0401/0401-001.ps
http://www.brainyquote.com/quotes/authors/h/henry_a_kissinger_2.html
http://people.math.gatech.edu/~mbaker/pdf/realgame.pdf
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