
11Enrico Bombieri: On Intuition

Enrico Bombieri is one of the world leaders in many areas of mathematics, including
number theory, algebraic geometry, and analysis. He has won many awards, and is
a Fields Medalist.

We will discuss the notion of intuition in mathematics. I am curious what it is,
how to get it, and how to use it.

One story, perhaps an urban legend, is that a senior expert in real analysis was
once sent a paper that “proved” a surprising theorem. The expert looked at the proof,
and was immediately skeptical. The “theorem” seemed to be too surprising. His
intuition, based on his great experience, was that the theorem could not be true.
Yet even after hours of studying the proof he could not find any mistakes. But his
intuition continued to bother him. He finally looked even more carefully, and found
the problem. The author of the proof had used a lemma from a famous topology
book. He had used the lemma exactly as it was stated in the famous textbook. But
there was a typo in the book. Somehow the words “closed” and “open” had been
exchanged in the statement of the lemma. This made the lemma false, caused a
gap in the proof of the surprising theorem, and left the poor author with a buggy
paper.

Proving theorems is not mechanical. Yes it does require formal manipulation.
Yet proving theorems also requires the use of intuition, the ability to see what
is reasonable or not, and the ability to put all components together. Blindly us-
ing a lemma from even the most famous textbook can be dangerous, as the story
shows.

I once lost several months of hard work trying to use a published theorem to solve
an open problem. I almost had a proof, but eventually—as in the story—I found a
bug in the published result. The result was the sole result of a friend’s PhD thesis.
Oh well. This is not an urban legend; I was there, but I will leave it to another time.

For now let’s turn to the discussion of intuition in mathematics.

In mathematics you don’t understand things. You just get used to them. John von Neumann
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11.1 Number Theory

I think that it is not too hard to have a reasonable intuition in number theory, espe-
cially concerning the behavior of prime numbers. A pretty fair approximation is to
try the distribution of primes as “random.” That is primes in the range [N,N + �]
are roughly randomly selected odd numbers with the correct density: the number of
primes in such an interval for � is about �/ lnN . This of course follows from the
prime number theorem.

A classic example of this is the conjectured behavior of twin primes. If primes
are random, then one would expect that there are about

CN/ ln2 N

twin primes in [1,N] where C is a constant. Godfrey Hardy and John Littlewood
made an even more detailed conjecture, which included the value of the constant C.
They guessed that C is

∏

p≥3

p(p − 2)

(p − 1)2
≈ 0.6601 . . . .

Of course there are local properties that need to be added to the model. The
number of primes p so that p + 2 and p + 4 are also primes is not

CN/ ln3 N,

but one. This follows since one of p, p + 2, p + 4 is divisible by 3: so p must be
equal to 3.

I once had a proof that needed only a lemma about the structure of the primes
to be complete. It was about a communication complexity lower bound that I was
working on at the time with Bob Sedgewick. We could not prove the lemma, nor
could we find any references to anything like it. So we made an appointment to see
the famous number theorist, Enrico Bombieri. He is a member of the Institute for
Advanced Study, and was there at the time. So Bob and I went over to ask him about
our lemma.

Bombieri listened very politely, asked a question or two for clarification, and
said, “Yes, that lemma is surely correct.” We were thrilled, since this would make
our proof complete. I then asked him for a reference. He looked at me and said:

Of course the lemma about primes is true, but it is completely hopeless to prove it.

He had great intuition about primes, but proving certain results was then and still is
today completely beyond anything anyone can do.

http://en.wikipedia.org/wiki/Twin_prime
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11.2 Geometry

My intuition in geometry, especially in high dimensions, is very poor. I have proved
basic geometry theorems that hold in n dimensions, but I have terrible geometric
intuition.

I am not sure why. I am not sure what makes geometry so hard for me, but it
is very different from the study of prime numbers. There are plenty of geometric
questions that I would not have any idea how to conjecture what is true. Perhaps it
is just a defect in my abilities, but geometry seems to be orders of magnitude trickier
than number theory.

John Moller of the University of Utah writes a blog titled “On Topology,” and
gave some helpful insights into high-dimensional geometry in a March 3, 2009
post titled “Reasoning in Higher Dimensions: Hyperspheres” (referenced in the end
notes).

11.3 Groups

My intuition about finite groups is even worse than my geometric intuition. No, that
is not quite right. In a sense my intuition about groups is really very good. Over the
years I have hit upon a rule in thinking about groups. I figured out that if I thought
that X was a reasonable theorem that should hold for finite groups, then X was likely
to be false.

Of course, this is a bit silly. It is like having a really poor sense of picking
stocks—if you were always wrong, then there would be a great strategy. But, some-
how I do believe there is something to what I am saying. My intuition is so bad that
after a while I just started to guess the opposite of whatever I first thought.

Chapter 10 is a perfect example. At the time, I had a series of conjectures about
solvable groups. The conjecture I listed took an expert, Colin Reid, a few minutes to
disprove. He is a group theorist. I should have known better, as my intuition about
groups is terrible, even though groups may play an important role in our understand-
ing of computer science theory.

11.4 Reid’s Proof

Colin Reid posted his proof that a problem I had called SOLVE is impossible in
the comments section of the post on which Chap. 10 is based. The parts of his
comments using angle brackets were snipped as HTML-style tags, so the following
is an expanded version fixing the glitches. Ken and I have also replaced his quotient-
subgroup notation by homomorphism notation.

Let G be a non-trivial solvable group—some say soluble group. The composition
series is defined by G0 = G, and for i ≥ 1, Gi = [Gi−1,Gi−1] = the subgroup
generated by the commutators [u,v] = uvu−1v−1 for u,v ∈ Gi . Solvability of G

means that some Gi is the trivial subgroup {1}, whereupon the series terminates. The
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important facts are that not only is every Gi normal in its predecessor, it is normal
in the entire group G, and that the immediate quotients Gi−1/Gi are Abelian. This
means that we can define a homomorphism π on all of G whose kernel is Gi , and
for all c, d ∈ Gi−1, π(c) and π(d) commute. The reason for the latter is that

dc = cdk where k is the commutator
[
d−1, c−1],

so π(d)π(c) = π(dc) = π(cdk) = π(c)π(d)π(k) = π(c)π(d), since k is in the ker-
nel Gi .

Now recall that SOLVE asserted the existence in G of elements a, b, c, d such
that some conjugates xax−1 of a and yby−1 of b are in 〈c, d〉, where x, y ∈ G,
and likewise some conjugates of c and d are in 〈a, b〉, with a third condition on the
orders of these elements in G. The condition is that o(a)o(b) be relatively prime to
o(c)o(d), and this is what finally prevents the existence of a, b, c, d .

For contradiction, suppose a solvable group G with such elements exists. Then
in the composition series, there is some i such that Gi−1 contains all of a, b, c, d ,
but Gi does not. By symmetry, without loss of generality, we can suppose Gi does
not have a. Take a′ = xax−1 as above, so a′ ∈ 〈c, d〉. It does not matter whether
c or d belongs to Gi ; that both belong to Gi−1 is enough. Since a′ is a conjugate,
o(a′) = o(a). Now take the homomorphism π with Gi as kernel, and observe:
(1) π(a′) ∈ 〈π(c),π(d)〉.
(2) o(π(c)) divides o(c), o(π(d)) divides o(d), and o(π(a′)) divides o(a′) = o(a).
(3) Since c and d are in Gi−1, π(c) and π(d) commute.
(4) Hence π(c) and π(d) can generate at most m = o(π(c))o(π(d)) different ele-

ments.
(5) Put more strongly, the subgroup 〈π(c),π(d)〉 they generate is also a subgroup of

the Abelian group generated by π(c) and π(d), which has exactly m elements.
Hence by Lagrange’s theorem the order of 〈π(c),π(d)〉 divides m.

(6) Since π(a′) is in 〈π(c),π(d)〉, it follows that o(π(a′)) divides m, which divides
o(c)o(d).

(7) However, since o(π(a′)) divides o(a) which is relatively prime to o(c)o(d), the
only way this can happen is o(π(a′)) = 1.

(8) That means π(a′) = 1, so a′ ∈ Gi since Gi is the kernel of π .
(9) But Gi is normal in G, not just in Gi−1, so xa′x−1 is in Gi . This puts a into

Gi , which yields a contradiction.
To someone with good algebraic intuition this comes trippingly off the tongue,

which is why it is a service to communicate in public. So we thank Colin Reid—and
we will see if the insight gained works against our more-complicated stratagems of
this kind. At the time he was a graduate student at Queen Mary College, University
of London.

It may be that deterministically simulating each level of a Boolean circuit simply
must bump you one step along a composition series, which in a solvable group G is
a finite, non-renewable resource.

However, we also have other ideas. Perhaps we can get mileage out of choosing
different solvable groups G for different input sizes n. This relates complexity ques-
tions to ones about the possible lengths of composition series in groups of certain

http://qmul.academia.edu/ColinReid
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sizes—although what we know about such sizes is not so promising. But perhaps a
randomized simulation can possibly avoid these limitations.

11.5 Complexity Theory

I think we have good intuition here, but I have seen many surprises in my career:
• Linear programming is in polynomial time.
• Nondeterministic space is closed under complement.
• Polynomial-size bounded-width branching programs are powerful.
• Permanent has random self-reduction.
• Quantum polynomial time can factor integers.
• Random walks for undirected graphs can be de-randomized.
• Proofs can be checked in constant time.
• Zero-knowledge protocols exist for natural problems.
• . . .

I have reasonable intuition, yet all of these were surprising to me—even some
that I worked on and contributed to their development.

11.6 Open Problems

Is intuition simply built up by learning more and more about an area? Or is intuition
something that is separate from just being an expert in an area? Can you be quite
strong in an area and still have weak intuition, or is that impossible?

11.7 Notes and Links

Original post:
http://rjlipton.wordpress.com/2010/10/01/mathematical-intuition-what-is-it/

Twin primes:
http://en.wikipedia.org/wiki/Twin_prime

Blog item on higher-dimensional geometry:
http://ontopo.wordpress.com/2009/03/03/reasoning-in-higher-dimensions-
hyperspheres/

Colin Reid’s homepage:
http://qmul.academia.edu/ColinReid

http://rjlipton.wordpress.com/2010/10/01/mathematical-intuition-what-is-it/
http://en.wikipedia.org/wiki/Twin_prime
http://ontopo.wordpress.com/2009/03/03/reasoning-in-higher-dimensions-hyperspheres/
http://ontopo.wordpress.com/2009/03/03/reasoning-in-higher-dimensions-hyperspheres/
http://qmul.academia.edu/ColinReid
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