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Abstract There is a need for very fast option pricers when the financial objects are
modeled by complex systems of stochastic differential equations. Here the authors
investigate option pricers based on mixed Monte-Carlo partial differential solvers
for stochastic volatility models such as Heston’s. It is found that orders of magni-
tude in speed are gained on full Monte-Carlo algorithms by solving all equations
but one by a Monte-Carlo method, and pricing the underlying asset by a partial
differential equation with random coefficients, derived by Itô calculus. This strat-
egy is investigated for vanilla options, barrier options and American options with
stochastic volatilities and jumps optionally.
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1 Introduction

Since the pioneering work has been achieved by Phelim Boyle [6], Monte-Carlo
(or MC for short) methods introduced and shaped financial mathematics as barely
any other method can compare. They are often appreciated for their flexibility and
applicability in high dimensions, although they bear as well a number of drawbacks:
error terms are probabilistic and a high level of accuracy can be computationally
burdensome to achieve. In low dimensions, deterministic methods as quadrature and
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quadrature based methods are strong competitors. They allow deterministic error
estimations and give precise results.

We propose several methods for pricing basket options in a Black-Scholes frame-
work. The methods are based on a combination of Monte-Carlo, quadrature and par-
tial differential equations (or PDE for short) methods. The key idea was studied by
two of the authors a few years ago in [14], and it tries to uncouple the underlying
system of stochastic differential equations (or SDE for short), and then applies the
last-mentioned methods appropriately.

In Sect. 2, we begin with a numerical assessment on the use of Monte-Carlo
methods to generate boundary conditions for stochastic volatility models, but this is
a side remark independent of what follows.

The way of mixing MC and PDE for stochastic volatility models is formulated
in Sect. 3. A numerical evaluation of the method is made by using closed form solu-
tions to the PDE. In Sects. 6 and 4, the method is extended to the case of American
options and to the case where the underlying asset is modeled with jump-diffusion
processes.

In Sect. 5, a method reducing the number of samples is given based on the smooth
dependence of the option price on the volatility.

Finally, in Sect. 7, the strategy is extended to multidimensional problems like
basket options, and numerical results are also given.

Moreover, some related results can be found in [5, 8, 9, 16–18].

2 Monte-Carlo Algorithm to Generate Boundary Conditions
for the PDE

The diffusion process that we have chosen for our examples is the Heston stochastic
volatility model (see [12]). Under a risk neutral probability, the risky asset St and
the volatility σt follow the diffusion process

dSt = St

(
rdt + σtdW 1

t

)
, (2.1)

dvt = k(θ − vt )dt + δ
√

vtdW 2
t , (2.2)

and the put option price is given by

Pt = e−r(T −t)
E
[
(K − ST )+|St , vt

]
, (2.3)

where vt = σ 2
t , E(dW 1

t ·dW 2
t ) = ρdt , E(·) is the expectation with respect to the risk

neutral measure, and r is the interest rate on a risk less commodity.
The pair (W 1,W 2) is a two-dimensional correlated Brownian motion, with the

correlation between the two components being equal to ρ. As it is usually observed
in equity option markets, options with low strikes have an implied volatility higher
than that of options at the money or with high strikes, and it is known as the smile.
This phenomenon can be reproduced in the model by choosing a negative value
of ρ.
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The time is discretized into N steps of length δt . Denoting by T the maturity of
the option, we have T = Nδt . Full Monte-Carlo simulation (see [10]) consists in a
time loop starting at S0, v0 = σ 2

0 of

vi+1 = vi + k(θ − vi)δt + σi

√
δtN2

0,1δ with σi = √
vi, (2.4)

Si+1 = Si

(
1 + rδt + σi

√
δt
(
N1

0,1ρ + N2
0,1

√
1 − ρ2

))
, (2.5)

where N
j

0,1 (j = 1,2) are realizations of two independent normal Gaussian vari-

ables. Then set P0 = e−rT

M

∑
(K − Sm

N)+, where {Sm
N }Mm=1 are M realizations of SN .

The method is slow, and at least 300000 samples are necessary for a precision of
0.1 %. Of course acceleration methods exist (quasi-Monte-Carlo, multi-level Monte-
Carlo etc.), but alternatively, we can use the PDE derived by Itô calculus for u below
and set P0 = u(S0, v0, T ).

If the return to volatility is 0 (i.e., zero risk premium on the volatility (see [1])),
then u(S, y, τ ) is given by

∂τ u − yS2

2
∂SSu − ρλSy∂Syu − λ2y

2
∂yyu − rS∂Su − k(θ − y)∂yu + ru = 0,

u(S, y,0) = (K − S)+.

(2.6)

Now instead of integrating (2.6) on R
+ × R

+ × (0, T ), let us integrate it on Ω ×
(0, T ), Ω ⊂ R

+ ×R
+, and add Dirichlet conditions on ∂Ω computed with MC by

solving (2.4)–(2.5).
Notice that this domain reduction does not change the numerical complexity of

the problem. Indeed to reach a precision ε with the PDE, one needs at least O(ε−3)

operations to compute the option at all points of a grid of size ε with a time step of
size ε. Monte-Carlo needs O(ε−2) per point S0, v0, and there are O(ε−1) points on
the artificial boundary, when the number of discretization points in the full domain
is O(ε−2). However, the computation shown in Fig. 1 validates the methodology,
and it may be attractive to use it to obtain more precision on a small domain.

3 Monte-Carlo Mixed with a 1-Dimensional PDE

Let us rewrite (2.1) as

dSt = St

[
rdt + σt

√
1 − ρ2dW̃

(1)
t + σtρdW̃

(2)
t

]
, (3.1)

where W̃ 1
t , W̃ 2

t are now independent Brownian motions.
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Fig. 1 Put option with Heston’s model computed by solving the PDE by implicit Euler + FEM
using the public domain package freefem++ (see [11])
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Drawing a trajectory of vt by (2.4), with the same δt and the same discrete tra-
jectory W

(2)
i+1 = W

(2)
i + N2

0,1

√
δt , we consider

dSt = St

[
μtdt + σt

√
1 − ρ2dW̃

(1)
t

]
, (3.2)

μt = r + ρσt

W
(2)
i+1 − W

(2)
i

δt
− 1

2
ρ2σ 2

t , t ∈ [ti , ti+1[. (3.3)

Proposition 3.1 As δt → 0, St given by (2.4) and (3.2)–(3.3) converges to the solu-
tion to Heston’s model (2.1)–(2.2). Moreover, the put P = e−rT

E(K − ST )+ is also
the expected value of u(S0,0), with u given by

∂tu + 1

2

(
1 − ρ2)σ 2

t S2∂SSu + Sμt∂Su − ru = 0, u(S,T ) = (K − S)+ (3.4)

with σt given by (2.4) and μt given by (3.3).

Proof By Itô’s formula, we have

d log(St ) = dSt

St

+ 1

2
(logS)′′

(
S2

t σ 2
t

(
1 − ρ2)dt

)= dSt

St

− σ 2
t

2

(
1 − ρ2)dt

= μtdt +
√

1 − ρ2σtdW̃
(1)
t − (

1 − ρ2)σ
2
t

2
dt

≈ rδt + ρσtδW
(2)
t − ρ2σ 2

t

2
δt +

√
1 − ρ2σtδW̃

(1)
t − (

1 − ρ2)σ
2
t

2
δt

≈ rdt + ρσtdW
(2)
t +

√
1 − ρ2σtdW̃

(1)
t − σ 2

t

2
dt. (3.5)

Consequently,

St = S0 exp

(∫ t

0
μtdt +

∫ t

0

√
1 − ρ2σtdW

(1)
t −

∫ t

0

1

2

(
1 − ρ2)σ 2

t dt

)
. (3.6)

�

Proposition 3.2 If we restrict the MC samples to those that give 0 < σm ≤ σt ≤ σM ,
for some given σm,σM , then equations (2.4) and (3.3)–(3.4) are well-posed.

Proof Let

Λτ =
∫ T

T −τ

μξ dξ, y = S

K
eΛ(τ). (3.7)

Then u(t, S) = v(T − t, S
K

eΛ(τ)), where v is the solution to

∂τ v − 1

2

(
1 − ρ2)σ 2

T −τ y
2∂yyv = 0, v(0, y) = (1 − y)+. (3.8)
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Table 1 Precision versus ρ

ρ −0.5 0 0.5 0.9

Heston MC 11.135 10.399 9.587 8.960

Heston MC+BS 11.102 10.391 9.718 8.977

Speed-up 42 44 42 42

If 0 < σm ≤ σt ≤ σM almost surely and for all t , then the solution exists in the sense
of Barth et al. [3]. �

Remark 3.1 Note that (3.6) is also

σ 2 = 1 − ρ2

T

∫ T

0
σ 2

t dt, m = r − σ 2

2
+ ρ

T

∑

i

σti

(
W

(2)
ti+1

− W
(2)
ti

)
, (3.9)

ST (x) = S0 exp(mT + σT x). (3.10)

Therefore,

E
[
u(S0,0)

]= e−rT

∫

R+

(
K − S0emT +σT x

)+ e− x2
2T√

2πT
dx. (3.11)

There is a closed form for this integral, namely the Black-Scholes (or BS for short)
formula with the interest rate r , the dividend m + r and the volatility σ .

3.1 Numerical Tests

In the simulations, the parameters are S0 = 100, K = 90, r = 0.05, σ0 = 0.6, θ =
0.36, k = 5, λ = 0.2, T = 0.5. We compared a full MC solution with M samples to
the new algorithm with M ′ samples for μt and σt given by (2.4). The Black-Scholes
formula is used as indicated in Remark 3.1.

To observe the precision with respect to ρ (see Table 1), we have taken a large
number of Monte-Carlo samples, i.e., M = 3 × 105 and M ′ = 104. Similarly, the
number of time steps is 300 with 400 mesh points and Smax = 600 (i.e., δS = 1.5).

To study the precision, we let M and M ′ vary. Table 2 shows the results for
5 realizations of both algorithms and the corresponding mean value for PN and
variance.

Note that one needs many more samples for pure MC than those for the mixed
strategy MC+BS. This variance reduction explains why MC+BS is much faster.
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Table 2 Precision study with respect to M and M ′. Five realizations of pure MC and MC+PDE
for various M ′ and M

MC+BS: M ′ = MC: M =
100 1000 10000 3000 30000 300000

P 1 10.475 11.129 11.100 11.564 11.481 11.169

P 2 10.436 11.377 11.120 11.6978 11.409 11.249

P 3 11.025 11.528 11.113 11.734 11.383 11.143

P 4 11.205 11.002 11.113 11.565 11.482 11.169

P 5 11.527 11.360 11.150 11.085 11.519 11.208

P = 1
5

∑
P i 10.934 11.279 11.119 11.529 11.454 11.187√

1
5

∑
(P i − P )2 0.422 0.188 0.0168 0.232 0.0507 0.0370

4 Lévy Processes

Consider Bates model (see [4]), i.e., an asset modeled with stochastic volatility and
a jump process,

dvt = k(θ − vt )dt + ξ
√

vtdW
(2)
t , σt = √

vt , (4.1)

dXt =
(

r − σ 2
t

2

)
dt + σt

(√
1 − ρ2dW̃

(1)
t + ρdW̃

(2)
t

)+ ηdNt, (4.2)

where Xt = lnSt and Nt is a Poisson process. As before, this is

dXt = μ̃tdt + σt

√
1 − ρ2 dW̃

(1)
t + ηdNt, (4.3)

μ̃t = r − σ 2
t

2
+ ρσt

δW(2)

δt
. (4.4)

By Itô, a put on St with u(T ) = (K − ex)+ satisfies

∂tu − ru + 1

2

(
1 − ρ2)σ 2

t ∂xxu + μ̃t ∂xu

= −
∫

R

[(
u(x + z) − u(x)

)
J (z) − ∂xu(x)

(
ez − 1

)
J (z)

]
dz. (4.5)

Let us apply a change of variables τ = T − t , y = x − ∫ T

T −τ
μtdt with μt = μ̃t −∫

R
(ez − 1)J (z)dz, and use

v(y, τ ) = e(r+∫
R

J (z)dz)τ u

(
y +

∫ T

T −τ

μtdt, T − τ

)
. (4.6)
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Table 3 9 realizations of ( 1
T

∫ T

0 σ 2
t dt)

1
2 for M ′ = 100 and 500

M′ T1 T2 T3 T4 T5 T6 T7 T8 T9 Mean

100 0.3470 0.3482 0.3496 0.3484 0.3474 0.3548 0.3492 0.3492 0.3502 0.3493 ± 0.002

500 0.3490 0.3481 0.3488 0.3493 0.3502 0.3501 0.3501 0.3489 0.3488 0.3493 ± 0.0007

Proposition 4.1

∂τ v − 1

2

(
1 − ρ2)σ 2

T −τ ∂yyv −
∫

R

v(y + z)J (z)dz = 0, v(y,0) = (
K − ey

)+
.

(4.7)

Proof Let r = r + ∫
R

J (z)dz. Then

∂τ v = erτ

[
−
(

r +
∫

R

J (z)dz

)
u + μT −τ ∂xu − ∂tu

]
,

∂yv = erτ ∂xu, ∂yyv = erτ ∂xxu. (4.8)

Therefore,

e−rτ

[
∂τ v − 1

2

(
1 − ρ2)σ 2

τ ∂yyv −
∫

R

v(y + z)J (z)dz

]

=
(

r +
∫

R

J (z)dz

)
u + μt∂xu − ∂tu − (

1 − ρ2)σ
2
t

2
∂xxu −

∫

R

u(x + z)J (z)dz,

which is zero by (4.5). �

Remark 4.1 Once more, we notice that the PDE depends on time integrals of μ̃t

and σt , and integrals damp the randomness and make the partial integro-differential
equation (or PIDE for short) (4.7) easier to solve. Table 3 displays 9 realizations of√

1
T

∫ T

0 σ 2
t dt for M ′ = 100 and 500.

Remark 4.2 Let f τ = 1
τ

∫ T

T −τ
f (t)dt . From (4.6), we see that the option price is

recovered by

u(S, t) = e−(r+∫
R

J (z)dz)(T −t)v

(
lnS −

(
r − σ 2

t |t
2

−
∫

R

(
ez − 1

)
J (z)dz

+ ρσt

δW(2)

δt

∣
∣∣∣
t

)
(T − t), T − t

)
,



Mixing Monte-Carlo and Partial Differential Equations for Pricing Options 331

where v is the solution to (4.7). For a European put option, with the standard
diffusion-Lévy process model and the dividend q , the formula is

u(S, t) = e−(r+∫
R

J (z)dz)(T −t)v

(
lnS −

(
r − q − σ 2

2

−
∫

R

(
ez − 1

)
J (z)dz

)
(T − t), T − t

)
,

∂τ v − 1

2
σ 2∂yyv −

∫

R

v(y + z)J (z)dz = 0, v(y,0) = (
K − ey

)+
.

(4.9)

It means that any solver for the European put option, with the standard diffusion-
Lévy process model and the dividend q , can be used provided that the following
modifications are made:

(1) In the solver, change σ 2 into (1 − ρ2)σ 2
t |t .

(2) Change q into q + ρ2σ 2
t |t − ρσt

δW(2)

δt
|t .

4.1 The Numerical Solution to the PIDE by the Spectral Method

Let the Fourier transform operators be

F(u) =
∫

R

e−iωxu(x)dx and F
−1(̂u) = 1

2π

∫

R

eiωxû(ω)dω. (4.10)

Applying the operator F to the PIDE (4.7) for a call option gives

∂τ v̂ − Ψ v̂ = 0 in R, v̂(ω,0) = F
(
ex − K

)+
, (4.11)

where Ψ is

Ψ (ω) = −(1 − ρ2)σ
2
t

2
ω2 − ϕ(ω), ϕ(ω) =

∫

R

eiωyJ (y)dy. (4.12)

So, with m indicating a realization, the solution is

u

(
x −

∫ T

T −τ

μtdt

)

= 1

M ′
∑

m

e−rT
(
K − F

−1[{
Fv0}(ω)e−ϕ(w)τ−ω2 1−ρ2

2

∫ T
T −τ σm

t
2dt
])+ (4.13)

with μ̃t given by (3.3) and μt = μ̃t + ∫
R
(ez − 1)J (z)dz.
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Remark 4.3 The Car-Madan trick in [7] must be used, and v0 must be replaced by
e−ηS(S − K)+, which has a Fourier transform, in the case of a call option. Then in
(4.13) F−1χ̂ must be changed into

Kη

π

∫ ∞

0

(e−iωSχ̂(ξ + iη)

)
dξ.

Remark 4.4 As an alternative to the fast Fourier transform (or FFT for short) meth-
ods, following Lewis [13], for a call option, when �ω > 1,

Fv0 = F
(
ey − K

)+ = −elnK(iω+1)

ω2 − iω
. (4.14)

Using such extended calculus in the complex plane, Lewis obtained for the call
option,

u(S,T ) = S −
√

KS

π

∫ ∞

0


[

eiukφT

(
u − i

2

)]
du

u2 + 1
4

(4.15)

with k = ln S
K

, where φt is the characteristic function of the process, which, in the
case of (4.7) with Merton Kernel (see [15])

J (x) = λ
e
− (x−μ)2

δ2

√
2πδ2

,

is

φT (u) = exp

(
iuwT − 1

2
u2Σ2T + T λ

(
e− δ2u2

2 +iμu − 1
))

with Σ2 = 1
T

∫ T

0 σ 2
τ dτ and w = 1

2Σ2 − λ(e
δ2
2 +μ − 1). The method has been tested

with the following parameters:

T = 1, μ = −0.5, λ = 0.1, δ = 0.4, K = 1, r = 0.03, σ0 = 0.4,

θ = 0.4, κ = 2, ρ = −0.5, ξ = 0.25, M ′ = 10000, δt = 0.001.

(4.16)

Results for a put are reported in Fig. 2. The method is not precise out of the money,
i.e., S > K . The central processing unit (or CPU for short) is 0.8′′ per point on the
curve.

4.2 Numerical Results

The method has been tested numerically. The coefficients for the Heston+Merton-
Lévy are T = 1, r = 0, ξ = 0.3, v0 = 0.1, θ = 0.1, k = 2, λ = 0.3, ρ = 0.5. This
gives an average volatility 0.27. For the Heston and the pure Black-Scholes for
comparison, T = 1, r = 0, σ = 0.3, λ = 5, m = −0.01, v = 0.01.

The results are shown in Fig. 3.
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Fig. 2 Put calculated with
Bates’ model by mixing MC
with Lewis’ formula (see
(4.15))

Fig. 3 Call calculated by a
Heston+Merton-Lévy by
mixed MC-Fourier (see the
blue curve), and compared
with the solution to the
2-dimensional PIDE
Black-Scholes+Lévy (see the
red curve), and a pure
Black-Scholes (see the green
curve)

5 Conditional Expectation with Spot and Volatility

If the full surface σ0, S0 → u(σ0, S0,0) is required, MC+PDE becomes pro-
hibitively expensive, much like MC is too expensive if S0 → u(S0,0) is required
for all S.

However, notice that after some time t1 the stochastic differential equation (or
SDE for short) for σt will generate a large number of sample values σ1. Let us take
advantage of this to compute u(σ1, S1, t1).

5.1 Polynomial Fits

Let τ = T − t1 for some fixed t1.
Instead of gathering all u(·, τ ) corresponding to the samples σm

τ with the same
initial value σ0 at t = 0, we focus on the time interval (t1, T ), consider that σm

t is
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a stochastic volatility initiated by σ
(m)
t1

, then search for the best polynomial fit in
terms of σ for u, i.e., a projection on the basis φk(σ ) of R, and solve

min
α

J (α) := 1

M

∑

m

1

L

∫ L

0

∥∥∥∥
∑

k

αk(S)φk
(
σ (m)

τ

)− u(m)(S, τ )

∥∥∥∥

2

dS.

It leads to solving, for each Si = iδS,

(
1

M

∑

m

φk

(
σ (m)

τ

)
φl

(
σ (m)

τ

))
αi

k = 1

M

∑

m

u(m)(Si, τ )φl

(
σ (m)

τ

)
. (5.1)

5.2 Piecewise Constant Approximation on Intervals

We begin with a local basis of polynomials, namely, φk(σ ) = 1 if σ ∈ (σk, σk+1)

and φk(σ ) = 0 otherwise.

Algorithm 5.1

(1) Choose σm,σM, δσ,σ0.
(2) Initialize an array n[j ] = 0, j = 0, . . . , J := σM−σm

δσ
.

(3) Compute M realizations {σ (m)
ti

} by MC on the volatility equation.
(4) For each realization, compute u(·, τ ) by solving the PDE.

(5) Set j = σ
(m)
τ −σm

δσ
and n[j ]+ = 1, and store u(·, τ ) in w(·)[j ].

(6) The answer is u(σ ;S, τ) = w(S)[j ]
n[j ] with j = σ−σm

δσ
.

5.3 Polynomial Projection

Now we choose φk(σ ) = σk .

Algorithm 5.2

(1) Choose σm,σM, δσ,σ0.
(2) Set A[·][·] = 0, b[·][·] = 0.
(3) Compute M realizations {σ (m)

ti
} by MC on the volatility equation and for each

realization.

(i) Compute u(·, τ ) by solving the PDE.
(ii) Do A[j ][k]+ = 1

M

∑
m(σ

(m)
τ )j+k, j, k = 1, . . . ,K .

(iii) Do b[i][k]+ = 1
M

u(iδS, τ )(σ
(m)
τ )k, k = 1, . . . ,K .

(4) The answer is found by solving (5.1) for each i = 1, . . . ,N .



Mixing Monte-Carlo and Partial Differential Equations for Pricing Options 335

5.4 The Numerical Test

A Vanilla put with the same characteristics as in Sect. 3.1 has been computed by
Algorithm 5.2 for a maturity of 3 years. The surface St1, σt1 → u is shown after
t1 = 1.5 years in Fig. 4. The implied volatility is also shown.

6 American and Bermudan Options

For American options, we must proceed step by step backward in time as in the
dynamic programming for binary trees (see [2]).

Consider M ′ realizations [{σm
t }t∈(0,T )]M ′

m=1, giving [{μm
t }t∈(0,T )]M ′

m=1 by (3.3). At
time tn = T , the price of the contract is (K −S)+. At time tn−1 = T − δt , it is given
by the maximum of the European contract, knowing S and σ at tn−1 and (K − S)+,
i.e.,

un−1(S) = max

{
1

|Mσ |
∑

m∈Mσ

um
n−1(S), (K − S)+

}
, (6.1)

where um
n−1 is the solution at tn−1 to

∂tu + (
1 − ρ2) (Sσm

t )2

2
∂SSu + Sμm

t ∂Su − ru = 0, t ∈ (tn−1, tn),

un := u(S, tn),

(6.2)

where un is known, and Mσ is the set of trajectories which give a volatility equal to
σ at time t .

Here we have used the piecewise constant approximation intervals to compute
the European premium. Alternatively, one could use any projection method, and the
backward algorithm follows the same lines.

As with American options with binary trees, convergence with optimal order will
hold only if δt is small enough. Mσ is built as in the previous section.

To prove the concept, we computed a Bermudan contract at 1
2T by the above

method, using the polynomial basis for the projection. The parameters are the same
as above except K = 100. The results are displayed in Fig. 5. To obtain the price
of the option at time zero, the surface of Fig. 5, i.e., (6.1), must be used as time-
boundary conditions for the MC-PDE mixed solver for t ∈ (0, 1

2T ), while for Amer-
icans, this strategy is applied at every time step, but here it is done once only at 1

2T .

7 Systems of Dimension Greater than 2

Stochastic volatility models with several SDEs for the volatilities are now in use.
However, in order to assess the mixed MC-PDE method, we need to work on a
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Fig. 4 Both surfaces (a) and (b) are on top of each other, indistinguishable
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Fig. 5 A Bermuda option at 1
2 T with Heston’s model compared with (K − S)+

systems for which an exact or precise solution is easily available. Therefore, we
will investigate basket options instead.

7.1 Problem Formulation

We consider an option P on three assets whose dynamics are determined by the
following system of stochastic differential equations:

dSi,t = Si,t (rdt + dWi,t ), t > 0, i = 1,2,3 (7.1)

with initial conditions Si,t=0 = Si,0, Si,0 ∈ R
+. The parameter r (r ∈ R≥0) is con-

stant, and Wi := ∑3
j=1 aijBj are linear combinations of standard Brownian mo-

tions Bj , such that

Cov[Wi,t ,Wj,t ] = ρijσiσj t, t > 0.

We further assume that Ξ := (ρij σiσj )
3
i,j=1 is symmetric positive definite with

ρij = 1 (i = j) or ρij ∈ (−1,1) otherwise.

The coefficients aij (aij ∈ R) have to be chosen, such that

Cov[Wi,t ,Wj,t ] = E[Wi,tWj,t ]
= E

[
(ai1B1,t + ai2B2,t + ai3B3,t )(aj1B1,t + aj2B2,t + aj3B3,t )

]
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= ai1aj1E
[
B2

1,t

]+ ai2aj2E
[
B2

2,t

]+ ai3aj3E
[
B2

3,t

]

= (ai1aj1 + ai2aj2 + ai3aj3)t, t > 0,

or equivalently,

AAT = Ξ,

where A := (aij )
3
i,j=1. Without loss of generality, we may set the strict upper trian-

gular components of A to zero and find

A =

⎛

⎜⎜⎜
⎝

σ1 0 0

σ2ρ21 σ2

√
1 − ρ2

12 0

σ3ρ31 σ3
ρ32−ρ21ρ31√

1−ρ2
12

σ3

√
1 − ρ2

31 − (
ρ32−ρ21ρ31√

1−ρ2
12

)2

⎞

⎟⎟⎟
⎠

.

The option P has the maturity T (T ∈ R
+), the strike K (K ∈R

+) and the payoff
function ϕ : R+3 →R,

ϕ(x) =
(

K −
3∑

i=1

xi

)+
, x = (x1, x2, x3)

T ∈ R
+3

.

The Black-Scholes price of P at time 0 is

P0 = e−rT E∗
[(

K −
3∑

i=1

Si,T

)+]
, (7.2)

where E∗ denotes the expectation with respect to the risk-neutral measure.

7.2 The Uncoupled System

In order to combine different types of methods (Monte-Carlo, quadrature and/or
PDE methods), we will uncouple the SDE in (7.1), we start with a change of variable
to logarithmic prices. Let si,t := log(Si,t ), i = 1,2,3, and then Itô’s lemma shows
that

dsi,t = ridt + dWi,t , t > 0 (7.3)

with initial conditions si,t=0 = si,0 := log(Si,0). The parameters ri (i = 1,2,3) have

been defined as ri = r − a2
i1
2 − a2

i2
2 − a2

i3
2 = r − σ 2

i

2 . In the rest of the section, the time
index of any object is omitted to simplify the notation.
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We note that (7.3) can be written as
⎛

⎜
⎝

ds1 − r1dt

ds2 − r2dt

ds3 − r3dt

⎞

⎟
⎠=

⎛

⎜
⎝

a11 0 0

a21 a22 0

a31 a32 a33

⎞

⎟
⎠

⎛

⎜
⎝

dB1

dB2

dB3

⎞

⎟
⎠ .

Then, uncoupling reduces to Gaussian elimination. Using the Frobenius matrices

F1 :=
⎛

⎜
⎝

1 0 0

− a21
a11

1 0

− a31
a11

0 1

⎞

⎟
⎠ , F2 :=

⎛

⎜
⎝

1 0 0

0 1 0

0 − a32
a22

1

⎞

⎟
⎠ ,

we write

F2F1(ds + rdt) = Diag(a11, a22, a33)dB,

where s = (s1, s2, s3)
T, r = (r1, r2, r3)

T and B = (B1,B2,B3)
T. We set L−1 :=

F2F1, and define

s̃ := L−1s and S̃ := eL−1s .

Remark 7.1 (i) The processes s̃1, s̃2 and s̃3 are independent of each other, and are
analogous with S̃1, S̃2 and S̃3, respectively.

(ii) Let r̃ := L−1r . Then

d̃s = r̃dt + Diag(a11, a22, a33)dB.

(iii) The coupled system expressed in terms of the uncoupled system is s = L̃s.
(iv) In the next section, we will make use of the triangular structure of L =

(Lij )
3
i,j=1 and L−1 = ((L−1)ij )

3
i,j=1,

L =
⎛

⎜
⎝

1 0 0
a21
a11

1 0
a31
a11

a32
a22

1

⎞

⎟
⎠ and L−1 =

⎛

⎜
⎝

1 0 0

− a21
a11

1 0
a21a32
a11a22

− a31
a11

a32
a22

1

⎞

⎟
⎠ .

(v) The notation has been symbolic and the derivation heuristic.

7.3 Mixed Methods

We describe nine combinations of Monte-Carlo, quadrature (or QUAD for short)
and/or PDE methods.

Convention If Z is a stochastic process, we denote by Zm a realization of the
process. Let M ′ stand for a fixed number of Monte-Carlo samples.
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Basic Methods (i) MC3 method
Simulate M ′ trajectories of (S1, S2, S3). An approximation of the option price P0

is

P a
0 := e−rT 1

M ′
M ′∑

m=1

ϕ
(
Sm

1,T , Sm
2,T , Sm

3,T

)
.

(ii) QUAD3 method
In order to use a quadrature formula, we replace the risk neutral measure in

P0 = e−rT E∗[(K − e(L̃sT )1 − e(L̃sT )2 − e(L̃sT )3
)+]

by the Lebesgue-measure. Note

s̃i,t ∼ N
(
μi,t , a

2
ii t
)
, 1 ≤ i ≤ 3,

where μi,t = s̃i,0 + r̃i t . Let fi,t be the density of s̃i,t , i.e.,

fi,t (xi) = 1√
2πaii

√
t
e
− 1

2 (
xi−μi,t

aii
√

t
)2

, xi ∈ R, 1 ≤ i ≤ 3.

Due to the independence of s̃1,t , s̃2,t and s̃3,t , the density of

(
K − e(L̃sT )1 − e(L̃sT )2 − e(L̃sT )3

)+

is

(x1, x2, x3) �→ f1,T (x1)f2,T (x2)f3,T (x3), (x1, x2, x3) ∈R
3.

The formula for the option price becomes

P0 = e−rT

∫

R3

(
K − e(Lx)1 − e(Lx)2 − e(Lx)3

)+
f1,T (x1)f2,T (x2)f3,T (x3)dx.

Now, a quadrature formula can be used to compute the integral.
The methods, which are based on a combination of quadrature and some other

methods, will be presented for the case, where the trapezoidal rule is used. Next we
show how the trapezoidal rule can be used to compute the integral. This allows us
to introduce the notation for the description of methods, which are combinations of
quadrature and some other methods.

To compute the integral, we truncate the domain of integration to κ standard
deviations around the means μ1,T , μ2,T and μ3,T . Let

xi,0 = μi,T − κa2
ii ,

xi,n = xi,0 + nδxi, n = 1, . . . ,NQ,

1 ≤ i ≤ 3, where δxi = 2κ
NQ

, NQ.
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The option price P0 is then approximated by

P a
0 := e−rT

N∑

n1,n2,n3=1

(
3∏

i=1

χni
δxifi,T (xi,ni

)

)
(
K − e(Lxn)1 − e(Lxn)2 − e(Lxn)3

)+
,

where xn := (x1,n1 , x2,n2 , x3,n3)
T and

χn =
{

0.5, if n = 0 or n = NQ,

1, otherwise.

(iii) MC2-PDE1 method (combination of two methods)
Note

P0 = e−rT E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T S̃3,T

)+]

= e−rT E∗[(K − ˜̃S3,T )+
]
,

where

K := K − S1,T − S2,T ,

and ˜̃S3 is the solution to the stochastic initial value problem

d˜̃S3,t = ˜̃S3,t (̃̃r3dt + a33dB3,t ),

˜̃S3,t=0 = αS̃3,0

with parameters ˜̃r3 := r̃3 + a2
33
2 and α = S

−2(L−1)31
1,T S

−(L−1)32
2,T .

The method is then as follows. Simulate M ′ realizations of (S1, S2) and set K
m =

K − Sm
1,T − Sm

2,T and αm = Sm
1,T

−2(L−1)31Sm
2,T

−(L−1)32 . Compute an approximation
of P0 by

P a
0 := 1

M ′
M ′∑

m=1

u
(
x3, t;Km)∣∣

x3=αmS̃3,0,t=T
,

where u is the solution to the initial value problem for the one-dimensional Black-
Scholes PDE with the parametrized (β) initial condition

∂u

∂t
− (a33x3)

2

2

∂2u

∂x2
3

−˜̃r3x3
∂u

∂x3
+˜̃r3u = 0 in Ω × (0, T ), (7.4a)

u(t = 0) = u0 in Ω, (7.4b)
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where Ω = R
+ and

u0(x3;β) := (β − x3)
+, x3 > 0.

(iv) QUAD2-PDE1 method
Note

P0 = e−rT

∫

R2
E∗[(K − eL11x1 − eL21x1+L22x2

− eL31x1+L32x2 eL33̃s3,T
)+]

f1,T (x1)f2,T (x2)dx1dx2.

The option price P0 is approximated by

P a
0 :=

NQ∑

n1,n2=1

(
2∏

i=1

χni
δxifi,T (xi,ni

)

)

u(x3, t;Kn1n2)|x3=αn1n2 S̃3,0,t=T ,

where

Kn1n2 := K − eL11x1,n1 − eL21x1,n1 +L22x2,n2 ,

αn1n2 := eL31x1,n1 +L32x2,n2 ,

and u denotes the solution to (7.4a)–(7.4b).
(v) MC1-PDE2 method
Note

P0 = e−rT E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T S̃3,T

)+]
.

Simulate M ′ realizations of S̃3. The option price P0 is then approximated by

P a
0 := 1

M ′
M ′∑

m=1

u
(
x1, x2, t; S̃m

3,T

)∣∣
x1=S1,0,x2=S2,0,t=T

,

where u denotes the solution to the initial value problem for the 2-dimensional
Black-Scholes PDE with the parameterized (β) initial condition

u0(x1, x2,0;β) = (
K − x1 − x2 − x

−2(L−1)31
1 x

−(L−1)32
2 β

)+
, x1, x2 > 0.

The problem is

∂u

∂t
−

2∑

i,j=1

xixj�ij

∂u

∂xi

∂u

∂xj

− r

2∑

i=1

xi

∂u

∂xi

+ ru = 0 in Ω × (0, T ), (7.5a)

u(t = 0) = u0 in Ω, (7.5b)
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where Ω = R
+ ×R

+ and

� = (�ij )i,j=1,...,3 = 1

2

(
a2

11 a11a21

a11a21 a2
21 + a2

22

)
. (7.6)

(vi) QUAD1-PDE2 method
Note

P0 = e−rT

∫

R

E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T ex3

)+]
f3,T (x3)dx3.

With the notation above, another approximation of the option price P0 is

P a
0 :=

NQ∑

n=1

δx3f3,T (x3,n)e
−rT E∗[(K − S1,T − S2,T − S

2(L−1)31
1,T S

−(L−1)32
2,T ex3,n

)+]

=
NQ∑

n=1

δx3f3,T (x3,n)u(x1, x2, t;x3,n)|x1=S1,0,x2=S2,0,t=T ,

where u is the solution to the initial value problem (7.5a)–(7.5b).
(vii) MC1-QUAD2 method
Reformulating (7.2), we deduce

P0 = e−rT E∗
∫

R2

(
K − e(Lx)1 − e(Lx)2 − eL31x1+L32x2+̃s3,T

)+

× f1,T (x1)f2,T (x2)dx1dx2,

and obtain the following method.
Compute M ′ realizations of s̃3,T , and approximate P0 by

P a
0 := e−rT 1

M ′

NQ∑

n1,n2=1

M ′∑

m=1

(
2∏

i=1

χni
δxifi,T (xi,ni

)

)

· (K − ex1,n1 − eL21x1,n1 +x2,n2 − eL31x1,n1 +L32x2,n2 +̃s m
3,T
)+

.

(viii) MC2-QUAD1 method
Note

P0 = e−rT

∫

R

E∗[(K − S1,T − S2,T − S
−2(L−1)31
1,T S

−(L−1)32
2,T ex3

)+]
f3,T (x3)dx3.

The method is as follows. Simulate M ′ realizations of (S1, S2), and compute

P a
0 := e−rT 1

M ′
M ′∑

m=1

NQ∑

n=1

χnδx3f3,T (x3,n)
(
K − Sm

1,T − Sm
2,T

− Sm
1,T

−2(L−1)31Sm
2,T

−(L−1)32 ex3,n
)+

.
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(ix) MC1-QUAD1-PDE1 method (combination of three methods)
Note

P0 =
∫

R

f2,T (x2)e
−rT E∗[(K − ẽs1,T − eL21̃s1,T +x2

− e(−2(L−1)31−(L−1)32L21 )̃s1,T −(L−1)32x2 S̃3,T

)+]dx2.

Then an approximation to P0 is

P a
0 := 1

M ′
M ′∑

m=1

NQ∑

n=1

χ2δx2f2,T (x2,n)u
(
x3, t;Km

n

)∣∣
x3=αm

n S̃3,0,t=T
,

where

K
m

n := K − es̃m
1,T − eL21̃s

m
1,T +x2,n2 ,

αm
n := e(−2(L−1)31−(L−1)32L21 )̃s

m
1,T −(L−1)32x2,n ,

and u denotes the solution to (7.4a)–(7.4b).

7.4 Numerical Results

This section provides a documentation of numerical results. We have considered
European put options on baskets of three and five assets, and used mixed methods
to compute their prices. If the method is stochastic, i.e., if a part of it is Monte-Carlo
simulation, then we have run the method with different seed values several times
(NS ) and computed mean (m) and standard deviation (s) of the price estimates. If
the method is deterministic, we have chosen the discretization parameters, such that
the first three digits of P a

0 remained fix, while the discretization parameters have
been further refined. Instead of solving the 1-dimensional Black-Scholes PDE, we
have used the Black-Scholes formula.

(i) European put on three assets
The problem is to compute the price of a European put option on a basket of three

assets in the framework outlined in Sect. 7.1.
We have chosen the parameters as follows: K = 150, T = 1, r = 0.05, S0 =

(55,50,45),

ρ =
⎛

⎜
⎝

1 −0.1 −0.2

−0.1 1 −0.3

−0.2 −0.3 1

⎞

⎟
⎠ , σ = (

0.3 0.2 0.25
)T

.

We have used various (mixed) methods to compute approximations to P0 (see
(7.2)).
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Table 4 Pricing a European put option on a basket of three assets, i.e., estimates of the option
price at time 0. Columns 1–3: the method used to approximate P0. Columns 4–6: the discretization
parameters. M ′ is the number of Monte-Carlo samples, NQ is the number of quadrature points, NS
is the number of samples used to compute the mean (m) and the standard deviation (s). Column 9:
the computing time

MC PDE QUAD M ′ NQ NS m s CPU

3 – – 107 – 10 3.988 0.002 22.46

3 – – 25000 – 100 3.994 0.046 0.147

2 1 – 25000 – 100 3.989 0.029 0.162

1 2 – 100 2601 10 3.886 0.195 372.5

– – 3 – – – 3.984 – 0.005

– 1 2 – – – 3.987 – 0.005

– 2 1 – 2601 – 4.016 – 42.24

1 – 2 25000 – 100 3.991 0.022 2.723

2 – 1 25000 – 100 3.987 0.032 0.369

1 1 1 25000 – 100 3.990 0.023 0.514

We have used freefem++, and the rest is programmed in C++. The implemen-
tation in freefem++ requires a localization and the weak formulation of the Black-
Scholes PDE. The triangulation of the computational domain and the discretization
of the Black-Scholes PDE by conforming P1 finite elements are done by freefem++.

A reference result for P0 has been computed by using the Monte-Carlo method
with 107 samples.

The numerical results are displayed in Table 4. One can see that the computa-
tional load for the PDE2 methods (i.e., MC1-PDE2, QUAD1-PDE2) is much larger
than that for the other methods. Furthermore, the results seem to be less precise
than those in the other cases. The results have been obtained very fast if just quadra-
ture (i.e., QUAD3) or quadrature in combination with the Black-Scholes formula
(i.e., QUAD2-PDE1) was used. In these cases, the results seem to be very precise
although the discretization has been coarse (NQ = 12). Comparison of the results
obtained by the MC3 method with the results obtained by the MC2-PDE1 method
shows that the last mentioned seems to be superior. The computing time is about
equal, but the standard deviation for MC2-PDE1 is much less than that for MC3.

(ii) European put on five assets
Let P be a European put option on a basket of five assets, with payoff

ϕ(x) =
(

K −
5∑

i=1

xi

)+
.

The system of stochastic differential equations, which describes the dynamics of the
underlying assets, has the usual form. We have set K = 250, T = 1, r = 0.05,

S0 = (40,45,50,55,60)T,

σ = (0.3,0.275,0.25,0.225,0.2)T,
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Table 5 Pricing a European put option on a basket of five assets, i.e., estimates of the option
price at time 0. Columns 1–3: the method used to approximate P0. Columns 4–6: the discretization
parameters. M ′ is the number of Monte-Carlo samples, NQ is the number of quadrature points, NS
is the number of samples used to compute the mean (m) and the standard deviation (s). Columns
7–9: the numerical results. Column 7: the mean of P0. Column 8: the standard deviation of P0.
Column 9: the computing time

MC PDE QUAD M ′ NQ NS m s τ

5 – – 107 – 10 1.159 0.001 27.67

5 – – 25000 – 100 1.161 0.019 0.162

4 – 1 25000 – 100 1.156 0.015 0.174

– – 5 – 10 – 1.161 – 0.082

– 1 4 – 10 – 1.159 – 0.036

3 1 1 25000 10 100 1.158 0.013 0.442

ρ =

⎛

⎜⎜
⎜⎜
⎝

1 −0.37 −0.40 −0.44 −0.50
−0.37 1 −0.50 −0.46 −0.05
−0.40 −0.50 1 0.51 0.29
−0.44 −0.46 0.51 1 0.20
−0.50 −0.05 0.29 0.20 1

⎞

⎟⎟
⎟⎟
⎠

.

We approximated the price of P at time 0 by various (mixed) methods. The re-
sults are displayed in Table 5. One can see that for all tested methods the (mean)
price has been close (±0.003) to the reference price (1.159). Since NQ = 10 turned
out to be enough, the computational effort has been very low for QUAD5 and
QUAD4-PDE1. In the case, the method is stochastic, and deterministic methods
allow to reduce the variance, such as in MC4-QUAD1 and MC4-PDE1-QUAD1.

8 Conclusion

Mixing Monte-Carlo methods with partial differential equations allows the use of
closed formula on problems which do not have any otherwise. In these cases, the
numerical methods are much faster than full MC or full PDE. The method works
also for nonconstant coefficient models with and without jump processes and also
for American contracts, although proofs of convergence have not been given here.

For multi-dimensional problems, we tested all possibilities of mixing MC and
PDE and also quadrature on semi-analytic formula, and we found that the best is to
apply PDE methods to one equation only.

The speed-up technique by polynomial fit has been discussed also, but we plan
to elaborate on such ideas in the future particularly in the context of reduced basis,
such as POD (proper orthogonal decomposition), ideally suited to the subproblems
arising from MC+PDE, because the same PDE has to be solved many times for
different time dependent coefficients.
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