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Preface

We are proud to present the proceedings of the 12th International Symposium
on Intelligent Data Analysis, which was held during October 17–19 in London,
UK. The series started in 1995 and was held biennially until 2009. In 2010, the
symposium re-focussed to support papers that go beyond established technology
and offer genuinely novel and game-changing ideas, while not always being as
fully realized as papers submitted to other conferences.

IDA 2013 continued this approach and sought first-look papers that might
elsewhere be considered preliminary, but contain potentially high-impact re-
search. The IDA Symposium is open to all kinds of modelling and analysis
methods, irrespective of discipline. It is an interdisciplinary meeting that seeks
abstractions that cut across domains. IDA solicits papers on all aspects of intel-
ligent data analysis, including papers on intelligent support for modelling and
analyzing data from complex, dynamical systems.

Intelligent support for data analysis goes beyond the usual algorithmic offer-
ings in the literature. Papers about established technology were only accepted if
the technology was embedded in intelligent data analysis systems, or was applied
in novel ways to analyzing and/or modelling complex systems. The conventional
reviewing process, which favours incremental advances on established work, can
discourage the kinds of papers that IDA 2013 has published. The reviewing pro-
cess addressed this issue explicitly: referees evaluated papers against the stated
goals of the symposium, and any paper for which at least one program chair ad-
visor wrote an informed, thoughtful, positive review was accepted, irrespective
of other reviews. Indeed, it was noted that this had notable impact on some of
the papers included in the program.

We were pleased to have a very strong program. We received 84 submissions
from 215 different authors from at least 23 different countries on 6 continents.
As in IDA 2012, we included a poster session for PhD students to promote their
work and also introduced the use of a 2-minute video slot for all PhD posters
and standard posters with a prize for the best.

We were honored to have distinguished invited speakers at IDA 2013:

– David Hand from Imperial College, London talked about the opportunities
in big and open data, examining the statistical, data mining, and machine
learning tools which are currently in use, and the potential that lies ahead.

– John Quinn from Makerere University, Kampala, Uganda discussed data
analysis in developing countries, focussing on techniques for rapid, accurate
and low-cost crop disease monitoring in Uganda.

– Tijl de Bie from Bristol University, UK talked about subjective interesting-
ness in exploratory data mining, and highlighted the importance of focussing
on the user and their notion of interestingness.



VI Preface

The conference was held at the Royal Statistical Society in London (a stone’s
throw from Reverend Thomas Bayes’ grave). We wish to express our gratitude
to all authors of submitted papers for their intellectual contributions; to the
Program Committee members and the additional reviewers for their effort in
reviewing, discussing, and commenting on the submitted papers; to the mem-
bers of the IDA Steering Committee for their ongoing guidance and support;
and to the Senior Program Committee for their active involvement. We thank
Richard van de Stadt for running the submission website and handling the pro-
duction of the proceedings. Special thanks go to the poster chair, Matthijs van
Leeuwen, and the frontier prize chairs, Jaakko Hollmén and Frank Klawonn. We
gratefully acknowledge those who were involved in the local organization of the
symposium: Valeria Bo, Neda Trifonova, Yuanxi Li, Stelios Pavlidis, Mahir Ar-
zoky, Samy Ayed and Stefano Ceccon. We are grateful for our sponsors: Brunel
University, London; The Heilbronn Institute, Bristol; The Artificial Intelligence
Journal; and SMESH. We are especially indebted to KNIME, who funded the
IDA frontier prize for the most visionary contribution presenting a novel and
surprising approach to data analysis in the understanding of complex systems.

August 2013 Allan Tucker
Frank Höppner

Arno Siebes
Stephen Swift
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Data, Not Dogma: Big Data, Open Data,

and the Opportunities Ahead

David J. Hand1,2

1 Imperial College, London
2 Winton Capital Management

Abstract. Big data and open data promise tremendous advances. But
the media hype ignores the difficulties and the risks associated with this
promise. Beginning with the observation that people want answers to
questions, not simply data, I explore some of the difficulties and risks
which lie in the path of realising the opportunities.

1 Introduction

Everyone at this meeting will be fully aware of the power conferred by the ability
to extract meaning from data: you’ve all been doing just that for years. Perhaps,
like me, for many years. But suddenly the world seems to have woken up to
the potential as well. The phrases ‘big data’ and ‘open data’, two particular
manifestations of this sudden dawning of awareness, are just two terms which
appear to be cropping up everywhere.

Big data, obviously enough, refers to massive data sets, but quite what is
meant by ‘big’ depends on the context. ‘Big’, in any case, is likely to grow over
time. However, one quick definition is that it is a data set which is too large to
fit into the computer’s memory in one go.

Open data are data which are released to the public. This will often be official
data, collected, for example, by a National Statistical Institute, but the term
can also refer to scientific data. The open data movement in science is being
parallelled by other similar initiatives, such as open access publishing.

I could give countless examples of the wonderful things that big data and
open data are said to promise, but here are just two.

From McKinsey an example on big data: ‘we are on the cusp of a tremendous
wave of innovation, productivity, and growth, as well as new modes of compe-
tition and value capture - all driven by big data as consumers, companies, and
economic sectors exploit its potential’ [10].

And from Stephan Shakespeare’s review of public sector information in the
UK, published earlier this year [14] a comment on open data: ‘from data we
will get the cure for cancer as well as better hospitals; schools that adapt to
children’s needs making them happier and smarter; better policing and safer
homes; and of course jobs. Data allows us to adapt and improve public services
and businesses and enhance our whole way of life, bringing economic growth,
wide-ranging social benefits and improvements in how government works ... the

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 D.J. Hand

new world of data is good for government, good for business, and above all good
for citizens’.

From these two examples we see a wonderful vision of the future. Unfortu-
nately, I suggest, we also see a vision rather short on content and reality.

My aim in this paper is to look more closely at that vision. To suggest that,
perhaps, all is not quite as wonderful as the quotations above suggest.

2 No-One Wants Data

I think a good place to start is to point out the awkward fact that no-one, or to
be more precise, very few people, want data. In general, people are not interested
in data. What people want are answers. Data are of value only to the extent that
they can lead to answers, just as iron ore is of value only if we can extract the
iron from it.

I think that’s quite a nice analogy: data are the raw material from which we
aim to extract information, meaning, and answers. I almost said, the raw material
which we have to process to turn into something useful. But ‘data processing’ has
rather different overtones. It generally refers to the manipulation - the sorting,
searching, and juggling with data. All rather trivial exercises compared with
the analysis through which information is extracted. Analysis - as in the phrase
intelligent data analysis - is what we are really concerned with. The extraction
of information from data generally requires more than trivial exercises of data
manipulation. It requires us to apply the blast furnaces of statistical inference,
machine learning, pattern recognition, data mining, and so on.

This distinction between what I mean by processing and by analysis is il-
lustrated by the fact that, for most problems, we are not really interested in
describing or summarising the data we have available. What we usually want to
do is to use the data as the basis for an inference: perhaps about the future, per-
haps about a larger population from which those data have been taken, perhaps
about a counterfactual which might have happened, or perhaps for some other
reason. Such inferences will increase our understanding and enable us to make
better decisions. Such inferences go far beyond the mere ‘processing’ of the data.
Inference from the data we have to the data we might have had or might have
in the future is a non-trivial exercise which requires very deep theory.

3 Big Data and Statistical Models

Some have suggested that the new world of big data will sweep away the need
for clever theory. In 2008 Chris Anderson, then editor of Wired magazine wrote
an article called ‘The end of theory: the data deluge makes scientific method
obsolete’. It wasn’t even phrased as a question. He began his article with the
famous comment by the late George Box: all models are wrong, but some are
useful. He also quoted Peter Norvig, Google’s research director, extending Box’s
comment: all models are wrong, and increasingly you can succeed without them.
Anderson wrote ‘Out with every theory of human behavior, from linguistics to



Data, Not Dogma: Big Data, Open Data, and the Opportunities Ahead 3

sociology. Forget taxonomy, ontology, and psychology. Who knows why people
do what they do? The point is they do it, and we can track and measure it with
unprecedented fidelity. With enough data, the numbers speak for themselves.’

But I’m afraid that’s wrong. The numbers don’t speak for themselves. They
only speak if they have a model which can, metaphorically, turn them into
sounds.

Underlying this misunderstanding is the fact that there are two kinds of
model. They go under various names, but here I shall call them substantive and
empirical.

Substantive models are based on substantive theory. That is, they are based
on a theory about the mechanism or process underlying the phenomenon. My
guess is that this is what Anderson means when he thinks of a ‘model’. A familiar
example is the physics model relating the distance a dropped stone has fallen
to the time it has been falling: the inverse square law of gravitational attraction
tells us that the distance is proportional to the square of the time. Substantive
models are simplifying summaries of empirical relationships - stripping out the
superfluous - in this case air resistance, for example. Statistical methods are
needed when building substantive models so that the values of parameters can
be determined (the value of g in the falling stone example), and so that models
can be tested, evaluated, and chosen.

In contrast, empirical models are based solely on data. They are statistical
summaries, which capture the main features of a data set. Like substantive mod-
els, they strip out the irrelevant detail, but they are not based on an underlying
substantive theory relating the variables in the model. Typically empirical mod-
els are constructed with a particular aim in mind. A good example would be
a logistic regression model to predict which applicants are likely to default on
a bank loan. We’ll feed in whatever variables we think might be relevant, and
construct our model based on a data set consisting of these variables and the
observed outcomes - default or not default - of previous customers. It’s unneces-
sary to have any psychological theory in order to construct the model. We simply
know that, in the past, people with certain combinations of characteristics have
had a higher or lower propensity to default, and we assume that similar people
will behave in a similar way in the future - and our logistic regression model
aims to capture this. Of course, there are subtleties. Even if we have a very large
data set it does not mean we can ignore issues of overfitting (just how many
parameters are there in the model?) or nonstationarity (has a dramatic slump in
the economy meant that people are behaving differently or that different types
of people are applying for loans?). In fact, as we will see below, very large data
sets may make us vulnerable to additional dangers.

So what I think Anderson really meant when he said ‘we don’t have to settle for
models at all’ is that tomake predictionswedon’t have to have substantivemodels.

Now it’s not as if empirical models are new. I picked credit scoring as my empir-
ical modelling example above partly because it’s an area I know a lot about, and
partly because there is a long history of highly successful empirical modelling in
this area, going back to the 1960s. Bruce Hoadley [8] gives a very nice description
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of howFair IsaacCorporation developed highly sophisticated empirical credit scor-
ing models decades ago. But with the increasing availability of large data sets the
possibilities of empirical modelling have suddenly been thrust to the fore. You will
doubtless be familiar with the following examples:

– Nate Silver’s correct prediction of the winning candidate in 49 of the 50 states
in the US presidential election in November 2008, and his correct prediction
of all 50 states in the 2012 US presidential election;

– Google Translate, which does not base its translation on grammatical parsing
and deconstructing sentences, but rather on statistical matching between
massive corpora from the two languages - the originals were based on UN
documents, since it publishes in six official languages;

It is certainly clear from these examples that we can do wonderful things with
empirical models. But that does not mean that substantive models are obsolete.
In particular, while empirical models are very useful for prediction, they are
essentially useless for enlightening us about underlying mechanisms. They give
no insight into why variables interact in the way they do. This is in stark contrast
to substantive models, based on some underlying theory. Substantive models are
the core of understanding.

Substantive models also permit generalisation to other contexts in a way which
empirical models do not. Having devised our model saying that the force between
two objects is inversely proportional to their distance, we can model the moon’s
orbit, the apple’s fall, and the shape of the galaxy. In fact I picked that last
example deliberately, since the curious pattern of rotation of stars in galaxies
tells us there must be more to the universe than merely the matter and energy
we can see. Simply modelling the rotation empirically will not tell you about
the existence of dark matter. If you do model the rotational data, all you will
produce is an equation which describes how the galaxies behave, and gives no
insights into why they behave that way or whether it clashes with what you
might have expected.

I have previously described this weakness of empirical models in the context
of credit scoring. Empirical models, by definition, are built only on the available
data. If we are building a model to predict future default probability of loan
applicants, and our data were collected during a benign economic period, we
might expect its performance to deteriorate if the economic situation were to
change. In fact, there is a risk of a ‘cliff-edge’ effect [2,7], in which changing
circumstances provoke a catastrophic change in performance. Substantive models
are less vulnerable to such changes (which does not mean they are unaffected,
or that any effect is necessarily minor) because they are modelling at a deeper
level: at the relationships between variables. Others have also pointed out this
danger of empirical models, though often in different terms (see for example [9]).

All of this means that, when Anderson says ‘This is a world where massive
amounts of data and applied mathematics replace every other tool that might
be brought to bear’, he is simply wrong. Massive data provides additional tools
and additional approaches, but that does not mean the old tools are redundant
or that (substantive) models are unnecessary.
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Empirical models typically have other characteristics which can make them
attractive. They often take the form of multiple applications of relatively simple
component models. In the credit scoring example, the large population of appli-
cants is divided into segments (as in a classification tree) and separate models
(typically models linear in the characteristics describing the applicants) are con-
structed for each segment. Such a model is very easy to describe, even to the
statistically unsophisticated. The whole structure is vastly more accessible than
an elaborate model based on (for example) a belief network summarising the
relationships between multiple interacting characteristics.

Random forest classifiers provide another example. Here many very simple
component classifiers are added to give overall estimated probabilities of class
membership. And in Google Translate, the simple operation of matching text
strings lies at its core.

I have a basic theorem about statistical analysis. This is that sophisticated
and sensitive use of simple models, applied with deep understanding of their
properties and limitations, is more effective than blind application of advanced
methods. Empirical models of the kind I have just described, involving very large
numbers of very simple component models, are an illustration of this.

I’d like to conclude this section by coming back to the comment by George
Box, that all models are wrong, but some are useful, and note the fact that,
by definition, all models are wrong. The point is that all models must be sim-
plifications, and hence wrong. You will have noticed that, in my definitions of
both substantive and empirical models above I commented that they stripped
out the superfluous and removed the detail. As Rosenblueth and Wiener put it
in 1945: ‘No substantial part of the universe is so simple that it can be grasped
and controlled without abstraction. Abstraction consists in replacing the part of
the universe under consideration by a model of similar but simpler structure.’
Abstraction is a necessary and valuable aspect of modelling, whether it takes
the form of ignoring minor fluctuations in data, as in empirical modelling, or of
ignoring minor influences and higher order effects, as in substantive modelling.

I am reminded of the one paragraph story On Exactitude in Science by Jorge
Luis Borges. This describes how cartographers, dissatisfied with the accuracy of
successively larger scale maps, eventually constructed one which was of the same
size as the empire, matching it point for point. Later generations recognised that
this map was useless and let it be destroyed by the elements: ‘...in the Deserts
of the West, still today, there are Tattered Ruins of that Map....’.

This illustration suggests we might go so far as to say that models must be
wrong if they are to be of any use. But they have to be wrong in the right way,
and that’s why data analysis is a skilled profession.

4 Big Data

In the opening, I suggested that one definition of big data is that it is a data set
which is too large to fit into the computer’s memory in one go. There are others.
Big data might be
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– data which are too extensive to permit iterative methods: one pass analysis
is necessary (streaming data would often fall into this category);

– ‘big data refers to datasets whose size is beyond the ability of typical database
software tools to capture, store, manage, and analyze’ [10];

– ‘high volume, high velocity, and/or high variety information assets that re-
quire new forms of processing to enable enhanced decision making, insight
discovery and process optimization’ [3];

– ‘a data set is large if it exceeds 20% of the RAM on a given machine, and
massive if it exceeds 50%’ [1].

I had planned to give examples of big data, but I realised that this is redun-
dant. Countless examples are readily at hand by googling ‘big data’, and the
Wikipedia entry lists many application areas1.

It might seem pretty obvious from these examples, and from the quotes I
opened with, that big data is a new phenomenon. Or, at least, so one would
think. But one would be mistaken. Some thirteen years ago, Hand et al listed
[6]:

– Wal-Mart, with over 7 billion transactions annually;
– AT&T carrying over 70 billion long distance calls per year;
– Mobil Oil aiming to store over 100 terabytes of data;
– the NASA Earth Observing System, which was projected to generate around

50 gigabytes of data per hour.

Now it may be true that modern big data sets are even larger than those, but
surely those would be large by anybody’s standards?

The uncomfortable fact is that the phrase ‘big data’ is just a media rebranding
of what was formerly known as ‘data mining’: the application of data analytic
tools to extract meaningful or valuable information from large data sets. Other
phrases describing very similar ideas, though often in different contexts, have
also come and sometimes gone. ‘Business analytics’ and ‘business intelligence’
are examples.

At first glance, it might look as if big data will require novel analytic tools.
This is partly true. Some problems (e.g. anomaly detection) require elaborate
searches, and large enough data sets make this infeasible. Other problems are
concerned with deeper inferential issues. With a large enough data set, any slight
quirk in the underlying data generating mechanism, no matter how small and
inconsequential in practical terms, is likely to be statistically significant. Large
data sets also invite multiple testing - and as you all know, if you carry out
enough tests you can guarantee finding some significant values. This problem
was the motivation behind the development of false discovery rate: the strategy
here, and one which can be adopted more widely, is to say ‘if we cannot solve
this problem, is there a related one which we can solve and which will shed light
on what we want to know?’

In contrast, as well as motivating deep thought about inferential issues, the
tools used for analysing very large data sets are often very simple (as my opening

1 http://en.wikipedia.org/wiki/Big_data

http://en.wikipedia.org/wiki/Big_data
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examples illustrated). This is partly of necessity - a complex nonlinear model
would take too long to fit, but a collection of linear models (each merely involving
inverting a matrix) would be feasible. But it is also partly because the data are
first split into subsets. The Fair Isaac credit card case illustrates this. As does
MapReduce. In both cases a divide and conquer strategy is being applied: the
biggest army can be defeated if you tackle them one at a time.

Sometimes this splitting goes further, and takes the form of screening. That
is, what at first appears to be a truly massive data set is reduced to manageable
proportions by a process of discarding much of it. For example:

– Graham (2012) gives the example of using Twitter data to understand the
London riots from 2011. He says 1/3 of UK internet users have a Twitter
profile, a small proportion of those produce the bulk of the content, and
about 1% of that group geocode their tweets.

– the Large Hadron Collider at CERN produces about one petabyte of data
per second. An online filter system reduces this by a factor of about 10,000,
and then further selection steps reduce it by a further factor of 100.

It is true that big data provide us with analytic opportunities. These come in
various shapes and forms. One is the possibility of detecting deviations, anoma-
lies, or structural characteristics which are so small they would be imperceptible,
or swamped by noise in anything but a large data set. The financial markets illus-
trate this. The efficient market hypothesis essentially says that it is not possible
to predict the way they will move. In fact, as the success of CTA hedge funds
shows, this ‘hypothesis’ is not true - but it is very nearly true. The ratio of
signal to noise is tiny, so that large data sets are needed to detect a signal with
any degree of reliability. The search for the Higgs boson, already mentioned, is
another example.

Much big data is generated as a consequence of automatic data capture arising
as a side effect of other human activity, such as credit card transaction data,
supermarket purchase pattern data, web search data, phone call data, and social
network data, using tools such as Facebook and Twitter. Such data sets allow
novel insights into how people behave. But all of these examples also have another
characteristic in common - they are streaming data.

Streaming data are data which simply keep on coming. Certainly batches
of the data can be stored for later analysis, perhaps for exploration or model
building, but often this is also associated with an additional requirement for
on-line analysis. Credit card fraud and cyber-security illustrate this: the models
can be built off-line, but they must be applied on-line, to detect fraud as it is
attempted, and the models really need to automatically update and evolve if
they are to be useful.

As well as novel analytic challenges, big data can also pose novel data quality
issues. Close manual examination of a billion data points is impossible, so that a
computer is a necessary intermediary. One can look at the data through the lens
of a particular summary statistic or plot, but no finite number of these can cover
all possible ways in which errors can occur. Particularly pernicious in the big data
context is the possibility of selection bias, because it is often disguised. As will
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be evident, big data most commonly arise as observational data, not collected
from a deliberately designed experiment. Observational data can all too easily
fall prey to all sorts of selection effects. One sometimes hears the phrase ‘natural
experiment’ used to describe a situation where the researcher has been unable to
specify the conditions under which the observations are made, but where these
conditions are determined by the natural course of events. If you hear this phrase
you should be very suspicious!

Here are four examples of selection problems:

– synchronisation issues arise in financial market data and other areas, and
the effects can often be very subtle. Even for assets traded on the same day
problems can arise. Suppose that two assets are being traded, one of which
trades much more frequently than the other. Then the last trade price of the
one which trades more frequently is likely to be taken nearer the end of the
day than the other, so that its price encapsulates more information (about
anything that happened between the last trade prices of the two assets);

– self-selected samples in surveys. This is especially problematic with web sur-
veys, where you may not know who responded, or even how often they re-
sponded, let alone what group of people are more likely to respond - other
than that those with a vested interest may do so. My favourite example in
this area is the (imaginary!) case of the magazine survey which asks the
one question ‘do you reply to magazine surveys’ and, receiving no negative
responses, believes that all its readers reply to such things;

– between June and December 2002 a smoking ban was imposed in all public
spaces in Helena, Montana. During these six months, the heart attack rate
dropped by 60%, increasing again when the bad was lifted. It looks like a
clear argument for banning smoking, but one can only tell if that is the case
if background changes in rates are taken into account.

– the effectiveness of speed cameras is another illustration of the dangers of
relying on purely observational data, free from careful experimental design.
For obvious reasons, such cameras are placed at accident black spots, where
the rates are highest. But doing that invites the phenomenon of regression
to the mean to come into effect: we are likely to see an apparent reduction in
accident rates at those sites, purely by chance, even if the cameras are totally
ineffective. (In fact, careful statistical analysis shows that cameras do have
a beneficial effect, but much smaller than the raw figures would suggest.)

5 Open Data

In [5], on the topic of open data, I wrote: ‘But the word open is a bit of a wriggler.
It is a word which has a huge number of synonyms in different contexts. In some
contexts, the words transparent, evident, explicit, fair, honest, public, disclosed,
unconcealed, and sincere are synonyms for open, and presumably these are the
sorts of things the government had in mind. On the other hand, the words vacant
and empty are synonyms in other contexts, as are indefensible, unprotected,
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unrestricted, artless, and blatant.’ Given that, it is hardly surprising that, like
big data, open data has various definitions. One is: ‘a piece of data is open if
anyone is free to use, reuse, and redistribute it - subject only, at most, to the
requirement to attribute’.

I have already mentioned the UK government’s open data initiative. There
are various claims made for it, including:

– that it enables accountability. That must surely be true. If people can ac-
tually look at the raw data, they can see whether people are doing the job
they are claiming to do, and if they are doing it properly;

– that it empowers communities. The argument here is that it enables people
to see where actions are needed, and how effective they are;

– that it drives economic growth. This is more subtle. The argument derives
from the old adage that knowledge is power. Information, data, can be used
to produce new products and services, and to make older systems more
efficient. A McKinsey report estimated that, if used effectively, public data
assets would benefit the European economy to the tune of some quarter of
a trillion Euros per year ([10], p8).

To make this concrete, here are a couple of examples of open data sets which
are already available for you to download from the web. (You can download
similar data sets for the US from http://www.data.gov/ and for the UK from
http://data.gov.uk.)

– the COINS database. COINS stands for Combined Online Information Sys-
tem, and it is a database of UK Government expenditure. These data are
widely used in government, to produce reports for Parliament, and also by
the Office for National Statistics. COINS raw data were initially released in
June 2010, and further releases have been made since then. To give you an
idea of the amount of data released, this data set alone is of the order of
44Gb.

– crime maps. Originally trialled in Chicago, the advent of the web has per-
mitted the creation of regularly updated maps showing the location and date
of crimes. From the police perspective, crime maps enable better decisions,
better targeting of resources, and improved tactics. From the public’s per-
spective, the maps enable citizens to identify risky areas to avoid, and to
demand more police action if necessary. From May of 2012, the UK public
will also be able to see what action or outcome has occurred after a crime
has been reported

If all of this looks as if it’s too good to be true, then it might well be. The
unfortunate truth is that some data has the potential to do harm. There are
privacy and confidentiality issues. Individual medical or banking records should
certainly not be released. Recent high profile cases of confidential data relating
to US national security being released to the public illustrate the concern.

Academic and other researchers usually require statistical data rather than the
individual records, so the data are condensed and summarised. Unfortunately,

http://www.data.gov/
http://data.gov.uk
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this does not mean that individual information cannot be obtained from them.
One strategy is to make multiple separate queries of a statistical database, cross-
classifying the results. In other cases, individuals might be identified because
they are the only people with a certain combination of attributes. Even more
seriously is the jigsaw effect, whereby different databases are cross referenced.
This can be extraordinarily powerful: if you know just the sex, date and year of
birth, and the city of someone in the US, then 53% of the US population can be
uniquely identified. There have been some recent widely publicised examples of
the power of cross-matching databases:

– on 3rd August 2006, to stimulate research, and following the principle of
crowdsourcing, AOL posted 20 million search queries from some 650,000
users of its search engine. From the perspective of a data geek like myself,
this was a wonderful resource. But the point about being a data geek is
that you are interested in finding things in the data. Although AOL had
attempted to anonymise the release, some people were quickly identified.

– on 2nd October 2006, the online film rental service Netflix released 100 mil-
lion records of film ratings, again after seeking to anonymise the records. In
contrast to AOL, here the aim was not simply to give geeks something to
play with, but to serve as data for a competition (with a million dollar prize),
in which competitors were invited to develop a superior film recommenda-
tion algorithm. Once again, however, researchers soon found that individuals
could be identified on the basis of very little extra information (from other
sources) about them [13].

Other problems arise from lost data: almost every week it seems that the
media describe a disc, memory stick, or laptop containing confidential data has
gone astray.

Lurking beneath all of this is the disturbing fact that the data will be wrong.
I don’t mean all of it, of course, but merely some of it: no large collection of data
should be expected to be free of errors. If the data describe people, then such
errors can be critically important.

To conclude this section, I thought I would give an example of how open data,
while a wonderful aspiration, can create problems of its own. My example refers
to the Crime mapping data mentioned above. Direct Line Insurance conducted
a survey which showed that recording and publishing crime statistics, coupled
with the creation of crime maps, may be making people less willing to report
antisocial behaviour in their neighbourhood, fearing it could have a detrimental
impact on local house prices [12]. The survey found that 11% of respondents
claim to have seen but not reported an incident ‘because they were scared it
would drive away potential purchasers or renters’. I should make a disclaimer
here: this was an internet poll, and we have already seen these may not be
entirely reliable.
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6 Conclusion

Big data, open data, the promise they bring, and the awareness shown by our
politicians and the public are indeed very exciting developments. The opportuni-
ties are very great - not least for the delegates at this conference, who understand
the promise and have the skills to take advantage of the ore that the data rep-
resent. But all advanced technologies have risks as well as benefits, and those
based on sophisticated data analysis are no exception.

Particular risks here are

– extracting useful information from large data sets requires considerable ex-
pertise. It is all too easy to draw incorrect conclusions. This is especially so if
the data are subject to unquantified selection pressures and are of unknown
quality;

– the need for skilled analysts presents its own problems. Although recent
figures suggest the number with appropriate skills being trained at our uni-
versities is beginning to increase, decades of under-supply, during which the
number of competing job opportunities for skilled data analysts has increased
dramatically means that there is considerable catching up to do;

– data, by itself, no matter how much of it there is, cannot necessarily answer
your question. Data collected for a different reason, with a different question
in mind, may be useless for answering your question;

– often a small, targetted, quality controlled, and carefully designed experi-
ment will generate a small data set which is better for answering your ques-
tion than gigabytes of irrelevant material.

Big data and open data have great promise, but we should approach them
with our eyes open.

References

1. Emerson, J.W., Kane, M.J.: Don’t drown in data. Significance 9(4), 38–39 (2012)
2. Hand, D.J.: Mining the past to determine the future: problems and possibilities.

International Journal of Forecasting 25, 441–451 (2008)
3. Gartner (2012), http://www.gartner.com/DisplayDocument?id=2057415&ref=

clientFriendlyUrl

4. Graham, M.: Big data and the end of theory (2012), http://www.guardian.co.uk/
news/datablog/2012/mar/09/big-data-theory?INTCMP=SRCH

5. Hand, D.J.: The dilemmas of open data. In: Herzberg, A.M. (ed.) Statistics, Sci-
ence, and Public Policy XVII: Democracy, Danger, and Dilemmas. Queen’s Uni-
versity, Canada, pp. 67–74 (2013)

6. Hand, D.J., Blunt, G., Kelly, M.G., Adams, N.M.: Data mining for fun and profit.
Statistical Science 15, 111–131 (2000)

7. Hand, D.J., Brentnall, A., Crowder, M.J.: Credit scoring: a future beyond empirical
models. Journal of Financial Transformation 23, 121–128 (2008)

8. Hoadley, B.: Statistical Modeling: The Two Cultures: Comment. Statistical Sci-
ence 16, 220–224 (2001)

http://www.gartner.com/DisplayDocument?id=2057415&ref=clientFriendlyUrl
http://www.gartner.com/DisplayDocument?id=2057415&ref=clientFriendlyUrl
http://www.guardian.co.uk/news/datablog/2012/mar/09/big-data-theory?INTCMP=SRCH
http://www.guardian.co.uk/news/datablog/2012/mar/09/big-data-theory?INTCMP=SRCH


12 D.J. Hand

9. Lucas, R.: Econometric policy evaluation: a critique. Carnegie-Rochester Confer-
ence Series on Public Policy 1, 19–46 (1976)

10. Manyika, J., Chui, M., Brwon, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
R.H.: Big data: the next frontier for innovation, competition, and productivity
(2011), http://www.mckinsey.com/insights/business technology/big data

the next frontier for innovation

11. Rosenblueth, A., Winer, N.: The role of models in science. Philosophy of Science 12,
316–321 (1945)

12. Timmins, N.: Crime maps ‘hit reporting of crime’. Financial Times (July 13, 2011)
13. Narayanan, A., Shmatikov, V.: How to break anonymity of the net-

flix prize dataset. Computing Research Repository cs/0610105 (2006),
http://arxiv.org/abs/cs/0610105

14. Shakespeare, S.: Shakespeare Review: An independent review of public sector in-
formation (2013), https://www.gov.uk/government/publications/
shakespeare-review-of-public-sector-information

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://arxiv.org/abs/cs/0610105
https://www.gov.uk/government/publications/shakespeare-review-of-public-sector-information
https://www.gov.uk/government/publications/shakespeare-review-of-public-sector-information


Computational Techniques for Crop Disease

Monitoring in the Developing World

John Quinn

Department of Computer Science, Makerere University
P.O. Box 7062, Kampala Uganda

Abstract. Tracking the spread of viral crop diseases is critically im-
portant in developing countries. It is also a problem in which several
data analysis techniques can be applied in order to get more reliable
information more quickly and at lower cost. This paper describes some
novel ways in which computer vision, spatial modelling, active learning
and optimisation can be applied in this setting, based on experiences of
surveying viral diseases affecting cassava and banana crops in Uganda.

1 Introduction

The problem of monitoring the spread of infectious disease among crops in de-
veloping regions is interesting in two regards. First, it is of critical practical
significance, as the effects of crop disease can be devastating in areas where one
of the main forms of livelihood is subsistence farming. It is therefore important
to monitor the spread of crop disease, allowing the planning of interventions
and early warning of famine risk. Second, it provides an example of the scope of
opportunity for applying novel data analysis methods in under-resourced parts
of the world.

The standard practice currently in a country such as Uganda is for teams of
trained agriculturalists to be sent to visit areas of cultivation and make assess-
ments of crop health. A combination of factors conspire to make this process
expensive, untimely and inadequate, including the scarcity of suitably trained
staff, the logistical difficulty of transport, and the time required to coordinate
paper reports. Although computers remain a rarity in much of the developing
world, smartphones are increasingly available: for example they account for 15-
20% of all phones in Kenya, projected to be at 50% by the end of 2015 [2], and
there are 8 million mobile internet subscribers [6] in a country with population
of 41 million. Among other benefits, the prevalence of mobile computing devices
and mobile internet makes it easy to collect different types of data, and in new
ways such as crowdsourcing. Once data is collected electronically, this opens up
opportunities to apply computational techniques which allow the process of crop
disease survey in such an environment to be reinvented entirely.

We outline here three ways in which novel data analysis techniques can be used
to improve the speed, accuracy and cost-efficiency of crop disease survey, using
examples of cassava and banana crops in Uganda. After briefly discussing the mo-
bile data collection platform we have implemented for this purpose (Section 2),

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 13–18, 2013.
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we describe automated diagnosis of diseases, and image-based measurement of
disease symptoms (Section 3), possibilities for incorporating spatial and spatio-
temporal models for mapping (Section 4), and ways in which survey resources
can be used optimally by prioritising data collection at the locations that the
spatial model determines to be most informative (Section 5). These methods are
currently being trialled with collaborators in the Ugandan National Crop Re-
sources Research Institute, which specialises in cassava disease, and the Kawanda
Agricultural Research Institute, which specialises in banana disease.

2 Mobile Data Collection

We implemented a system for collecting crop disease survey information with
low cost (under 100 USD) Android phones, based on the Open Data Kit [3].
This provides a convenient interface for digitising the existing forms used by
surveyors, with the ability to also collect richer data including images and GPS
coordinates. Data collected on this system can be plotted on a map in real-
time, see for example http://cropmonitoring.appspot.com. Clearly there are
a number of immediate benefits from simply collecting data on a phone instead
of paper, in that costs are reduced since the time needed to do data-entry and
print paper forms far outweighs the costs of the phones and data, and results are
immediately available. It also means that the survey can be conducted without
experts being required to travel to the field; images can be collected and assessed
remotely. More importantly to the purposes of this discussion, however, it allows
data analysis methods to be applied which have the potential to fundamentally
change the way in which the survey is conducted.

3 Automated Diagnosis and Symptom Measurement

Since the collection of survey data with mobile devices can include images of
crops, removing the requirement for experts to be physically present to carry out
inspection, we next focus on automating the judgements that those experts make
based on images of leaves and roots. A typical national-scale survey of cassava
disease in Uganda, for example, would include judgements about disease status
and levels of symptoms on around 20,000 plants. The automation of judgements
on this quantity of images constitutes a considerable saving of time and resources.
With sufficient labelled training data this is a feasible problem for many diseases
with clearly visible symptoms, and we can therefore collect data more rapidly
and at lower cost. Automatic image-based diagnosis of crop diseases from leaf
images is an active field [10,11,7], though little previous work has focused on
crops grown primarily in developing countries.

Symptoms which need to be assessed for cassava include the extent of necro-
sis of the roots. It is also useful to count the number of whiteflies found on the
leaves, as these are the vectors for multiple viruses. Figure 1 shows the ways in
which we can carry out these measurements using computer vision. Assessment
of roots is currently done in the manual survey by assigning root samples to

http://cropmonitoring.appspot.com
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Fig. 1. Automated symptom measurement. Left: cassava root with necrotisation caused
by cassava brown streak disease; center: classification of pixels to measure proportion
of necrotisation; right: whitely count on cassava leaf.

Fig. 2. Banana leaf image patches. Left: healthy leaf; center: banana bacterial wilt;
right: black sitagoka disease.

one of five categories, from completely healthy to completely necrotised. The
main problem with this process is that the intermediate grades are easily con-
fused; automating the process with image processing leads to more accurate
and standardised results, removing the variability caused by different surveyors.
Counting whiteflies on leaves is an infuriating and slow task for surveyors. The
underside of a cassava leaf might have hundreds of these small, mobile insects,
hence accurate counts are not feasible. In image processing terms, however, this
is not a difficult problem, being essentially a form of blob detection.

Identification of viral diseases from leaf images is also possible given labelled
data for training a classification model. Figure 2 shows examples of a healthy
leaf surface and two diseases common in Uganda, banana bacterial wilt and
black sitagoka disease. We have found that classification based on colour his-
togram features gives good results, though the incorporation of texture features
is likely to improve this further. We have had similar experiences with diagnosis
of cassava diseases from leaf images [1].

We have also found that with such straightforward classification techniques,
it is possible to implement this process directly on the phone being used for the
survey for real-time feedback. Figure 3 shows how the system works when these
elements are combined. Capturing a cassava leaf image on the phone allows us
to obtain an immediate diagnosis, which is uploaded to a server and plotted on
a map online.

4 Incorporating a Spatial Model

Models of crop disease are used for understanding the spread or severity of an
epidemic, predicting the future spread of infection, and choosing disease manage-
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Fig. 3. Phone based survey with automated diagnosis. Left: mobile-phone based survey
of cassava field; center: software on the phone detects cassava mosaic disease from leaf
appearance; right: data collected with the phone is instantly uploaded to the web.

ment strategies. Common to all of these problems is the notion of spatial interpo-
lation. Observations are made at a few sample sites, and from these we infer the
distribution across the entire spatial field of interest. Standard approaches to this
problem (reviewed in [9]) include the use of spatial autocorrelation, or Gaussian
process regression [5]. Often the extent to which each plant is affected by disease
is quantified in ordinal categories, in which case a spatial model which makes effi-
cient use of the available data is Gaussian process ordinal regression [8]. Temporal
dynamics can be added to these models, allowing forecasts to be made.

4.1 Combining Diagnosis and Mapping

The above tasks of estimating the density of an infectious disease in space and
diagnosing that disease in individual cases (as in Section 3) are generally done
separately. Informally, a surveyor may be aware of outbreaks of a disease in
particular places or seasonal variations in disease risk, and they may interpret
test results accordingly. But the diagnosis is not usually formally coupled with
estimates of disease risk from the emerging spatial model.

The tasks of mapping disease density over space and time and of diagnosing
individual cases are complementary, however. A “risk map” can be used to give
a prior in diagnosis of an individual plant with a known location. In turn, the
results of individual diagnoses can be used to update the map in a more effec-
tive way than simply making hard decisions about infection statuses and using
summary count data for the update. The potential for combining maps and diag-
nosis in this way comes about with the possibility of performing diagnosis with
networked location aware devices that can carry out the necessary calculations,
as discussed in Section 3. In practice, this combined inference of spatial disease
density and diagnosis in individual cases can be done with multi-scale Bayesian
models, as described in [4]. By selecting an appropriate model structure, this can
be done tractably even for very large numbers of individual plants as in the case
of a national survey. This can improve both the accuracy of the risk map and of
individual diagnoses, since the uncertainty in both tasks is jointly modeled.
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5 Optimising Survey Resources

A probabilistic spatial or spatio-temporal model is useful not just in building
up a picture of the disease map, but in knowing which locations would be most
informative for collecting new data. While this was impossible in the traditional
paper-based survey system, in which data entry would happen after the return of
surveyors, the methodology described in this paper allows models to be learned
in real-time as data is collected in the field. Therefore our models can be used
to guide surveyors to collect more valuable data, holding fixed their budgeted
number of samples.

This problem is essentially active learning, in which we prefer to collect data
from locations in which the model has the lowest confidence. For example, in a
Gaussian process model, we prefer to sample from locations where the density
estimate has the highest covariance with the data already collected. This ap-
proach would be suitable for example in a crowd sourcing setting: if phones were
given to agricultural extension workers across the country, and micro-payments
are made to those workers in return for sending image data, it would be possi-
ble to adjust the levels of those payments based on location in order to use the
budget optimally with respect to building an informative model.

When we attempt to direct the progress of a survey in which data collection
teams are sent to travel around the country, the situation is a little different.
There is a fixed travel budget, e.g. for fuel, and we cannot simply collect data
from arbitrary locations on the map. Considering the constraints of being able to
travel along a given road network with some budget, this optimisation problem
is in general very complex. However, we can simplify this constraint somewhat
by considering that in rural parts of the developing world, the road network is
often sparse. This makes it reasonable to assume that survey teams will follow
a set route, corresponding to a one dimensional manifold R within the spatial
field. With a survey budget allowing k stops, we are interested in finding a set
of points along R that maximise the informativeness of the survey. Under this
constraint, optimisation is tractable with a Monte Carlo algorithm [8], where we
recompute after each stop the optimal next sample location based on the spatial
model given the most recent observation. This can also be done for multiple
groups of surveyors simultaneously traveling along different routes.

6 Discussion

This paper has outlined various ways in which computational techniques can
make crop disease survey more effective given tight resource constraints. It is an
illustration of one of the ways in which data analysis can be used to address prob-
lems in the developing world, where we often wish to automate the judgements
of experts who are in short supply, collect intelligence about socio-economic or
environmental conditions from different, noisy data sources, or optimise the al-
location of some scarce resource. Similar methods can be directly applied to
the survey and diagnosis of human disease, for example, another active area of
current work.
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Abstract. Exploratory data mining has as its aim to assist a user in
improving their understanding about the data. Considering this aim, it
seems self-evident that in optimizing this process the data as well as the
user need to be considered. Yet, the vast majority of exploratory data
mining methods (including most methods for clustering, itemset and as-
sociation rule mining, subgroup discovery, dimensionality reduction, etc)
formalize interestingness of patterns in an objective manner, disregard-
ing the user altogether. More often than not this leads to subjectively
uninteresting patterns being reported.

Here I will discuss a general mathematical framework for formalizing
interestingness in a subjective manner. I will further demonstrate how it
can be successfully instantiated for a variety of exploratory data mining
problems. Finally, I will highlight some connections to other work, and
outline some of the challenges and research opportunities ahead.

1 Introduction

Exploratory Data Analysis (EDA), introduced and championed by John Tukey in
the seventies, has greatly affected the productivity of statistical analysis. With
EDA Tukey stressed the importance of data for the generation of hypotheses
through interactive exploration of the data by a human user, alongside its use
for hypothesis testing. Since then EDA has only gained in importance: Data has
become a primary source for new scientific discoveries (dubbed the 4th scien-
tific paradigm), insights in businesses and their customers, assisting government
workers in the analysis of security threats, and satisfying the interests of end-
users and consumers more generally.

1.1 The Concept of Interestingness in Data Exploration Tasks

EDA aims to provide insights to users by presenting them with human-digestible
pieces of ‘interesting’ information about the data. While initially this was lim-
ited to simple statistics (such as the ‘five number summary’), this was soon
complemented with sophisticated methods such as Projection Pursuit (PP) [3],
which aims to present the user with interesting low-dimensional projections of
the data. Research into PP focused on the identification of an ‘index’ quantify-
ing how interesting a projection is—this index was sometimes referred to as the
interestingness of the projection [9].

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 19–31, 2013.
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Today, the term interestingness and Interestingness Measure (IM) is still in
use in certain areas of Exploratory Data Mining (EDM), in particular in the con-
text of frequent pattern mining (and notably frequent itemset and association
rule mining—see [5] for an excellent survey, and [13] for a survey of novelty-based
IMs). However, under different names and guises (e.g. ‘objective function’, ‘qual-
ity function’, ‘score function’, or ‘utility function’), the concept of interestingness
remains central to all EDM prototypes, such as clustering, dimensionality reduc-
tion, community detection in networks, subgroup discovery, local pattern mining
in multi-relational databases, and more.

1.2 Flavours of Interestingness

The early work by Friedman and Tukey was informed by actual experiments on
human users and how they manually explore different possible data projections
[3]. In a seminal paper on PP, Huber explicitly stated that “We cannot expect
universal agreement on what constitutes an ‘interesting’ projection” [9].

This early focus on the user makes it remarkable that the vast majority of
contemporary research tacitly attempts to quantify interestingness in an ‘objec-
tive’ way, ignoring variations among users. That is, for a specific EDM task, e.g.
clustering, one attempts to propose a mathematical function of the clustering
pattern—the IM—that quantifies how good the clustering is deemed to be. To
be able to do this, one has no other choice than to design the IM for a prob-
lem setting faced or imagined, with a particular type of intended use or user in
mind. It should be no surprise that this has led to an explosion in the number of
possible IMs for each of the common EDM tasks, including association rule and
frequent itemset mining, frequent pattern mining more generally, subgroup dis-
covery and variants (e.g. exceptional model mining), dimensionality reduction,
clustering, community detection, and multi-relational data mining.

It is not until Tuzhilin, Silberschatz, Padmanabhan, and colleagues that the
term subjective IM was proposed. Their research was centred on association
rule mining, formalizing subjective interestingness of a rule as a quantification
of ‘unexpectedness’ or ‘novelty’ (see e.g. [18,16]). Their focus on association
rule mining is not surprising given that the void between available IMs and
practical needs was probably the widest for such types of pattern. Their approach
relied on the concept of a ‘belief system’, formalizing the beliefs of the data
miner, to which association rules can then be contrasted to determine their
interestingness. Though conceptually groundbreaking in our view, the approach
was still somewhat ad hoc and specific to association rules and related patterns,
limiting the impact of this work.

In the last few years, a number of research groups have emphasized the need to
assess or validate EDM patterns (see e.g. [6,8]). Often, this is done by comparing
the found patterns with a ‘background model’ that represents ‘random data’—
any pattern that can thus be explained by this model can be dismissed as a
fluke. Due to the required complexity of these background models, they are
often specified implicitly by specifying permutation invariants, which allows one
to randomize the data and to use empirical hypothesis testing to quantify to
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which extent the patterns can be explained by random chance. Much of this
work was done (like the work by Tuzhilin et al.) in the area of frequent itemset
and association rule mining.

This more recent line of work can be interpreted as being concerned with
the quantification of subjective interestingness. Indeed, if the background model
is related to the user’s prior knowledge, then the assessment of a pattern is
similar to the quantification of its subjective interestingness. The techniques
also appear more flexible than those from Tuzhilin et al. Yet, their reliance on
empirical hypothesis testing and background models specified in terms of per-
mutation invariants has important disadvantages, such as lack of resolution, the
inability to incorporate anything but relatively simple types of prior knowledge
into the background model, the intractability of the empirical hypothesis test-
ing approach on large datasets, and computational and conceptual difficulties
in updating the background model with new information. As a result, this ap-
proach for assessing data mining results seems limited to their actual assessment
with respect to relatively simple background models, rather than as a generically
applicable way to derive subjective IMs.

Finally, another related area of research attempts to quantify interestingness
in terms of actionability. The actionability of a pattern is meant to quantify
(often in monetary terms) the ‘use’ of a pattern for a particular purpose (e.g.,
a marketeer can be interested in identifying optimal package deals—the goal
is to identify the best package optimizing profits). Clearly, if the purpose is
known, this strategy is the right one. However, we consider such problems outside
the scope of EDM, where the user is interested in exploring without a clear
anticipation of what to expect or what to do with the patterns found.

1.3 Formalizing Subjective Interestingness

It thus appears that the notion of subjective interestingness, while its importance
has been acknowledged, has been elusive to rigorous and comprehensive formal
study. The aim of our research surveyed in this paper is thus to provide a positive
and constructive answer to the following question:

Can we develop a theoretically rigorous while practically applicable frame-
work for the quantification of subjective interestingness of patterns in
EDM?

We argue that this question is well-posed and can be approached in a mathe-
matically rigorous way, with minimal and plausible assumptions on how human
users interact with a data mining system. However, this can only be done if the
data miner (the user) is an integral part of the analysis, considered as much as
the data and the patterns themselves. More specifically, to understand what is
interesting to a user, we will need to understand how to model the beliefs of that
user, how to contrast a pattern with this model, and how that model evolves
upon presentation of a pattern to that user.
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2 A Mathematical Framework for Subjective
Interestingness

In this section we will provide a high-level overview of the formal foundations of
the framework as it has been developed so far.

2.1 Notation and Terminology

We first need to establish some notation and formally define a few concepts.
Arguably the most important concept is the data, which we assume to be drawn
from a set of possible values, to which we refer as the data space. We formally
define and denote them as follows.

Definition 1 (Data and data space). Given a set Ω called the data space,
the data is an element x ∈ Ω.

Common examples of data are: a set of vectors in a vector space; a time series;
a network; a binary matrix representing a market-basket database; a multi-
relational database.

We aim to define the notion of a pattern as generally as possible, as any kind
of information that restricts the range of possible values the data may have. To
avoid having to refer to the form and way in which this information is provided,
we thus choose to define a pattern by specifying this restricted set of values the
data may have, i.e. by specifying a subset Ω′ of the data space: Ω′ ⊆ Ω.

More precisely, we will define patterns in terms of elements from a sigma
algebra F over the data space Ω, thus defining a measurable space (Ω,F). Each
measurable set Ω′ ∈ F then defines a pattern as follows.

Definition 2 (Pattern). Let F be a sigma algebra over Ω, and thus (Ω,F) a
measurable space. We say that a pattern defined by a measurable set Ω′ ∈ F is
present in the data x iff x ∈ Ω′.

Common examples of a pattern are the specification of: a low-dimensional pro-
jection of the data; a clustering in the data; an itemset and the set of transactions
in which it occurs (also known as a tile); a clique in a network.

Remark 1. The definition of a pattern is such that a set of patterns, defined by
the sets Ω′

i ∈ F , is a pattern itself, defined by the set Ω′ =
⋂

iΩ
′
i ∈ F .

Remark 2. It is common to specify a pattern by specifying the value of a measur-
able function f (called a statistic) when evaluated on the data x, i.e. by stating
that f(x) = fx. Then Ω′ defining the pattern is Ω′ = f−1(fx) = {x ∈ Ω|f(x) =
fx}. In such cases we may also denote a pattern by the triple (Ω, f, fx).

Our intention is to define IMs as a subjective concept—i.e. depending on
the user. To achieve this it seems inevitable to let IMs depend also on the a
representation of the ‘state-of-mind’ of the human user. A promising avenue to
do this, which we will pursue here, is to let it depend on the degree of belief the
user attaches to each possible value for the data from the data space. We will
approximate this belief state by means of a so-called background distribution:
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Definition 3 (Background distribution). A background distribution is a
probability measure P defined over the measurable space (Ω,F), such that for
a set F ∈ F , P (F ) approximates the belief that the data miner would attach to
the statement x ∈ F . The set of possible background distributions is denoted as
P.

We can now formally define an IM as follows:

Definition 4 (Interestingness Measure (IM)). An IM I is a real-valued
function of a background distribution P and a pattern defined by Ω′, i.e.

I : F × P → R.

An objective IM is an IM I that is independent of the background model P , i.e.
for which I(P1, Ω

′) = I(P2, Ω
′) for any P1, P2 ∈ P . A subjective IM is an IM

that is not objective.

2.2 Summary of Theoretical Research Results

In our recent research we have laid a number of foundations for the quantifica-
tion of subjective interestingness, roughly relying on the definitions above. We
summarize the key results here.

Modelling the Data Mining Process. Our intended framework, so far most for-
mally presented in [1], is based on a view of the data mining process illustrated
in Fig. 1. In this model, the user is assumed to have a belief state about the
data, which starts in an initial state, and evolves during the mining process.

When a pattern is revealed to the user, this reduces the set of possible values
the data may have. This is reflected in an update of the user’s belief state. We
assume no more than that the update in their belief state is such that the user
attaches no belief to values of the data excluded by the revealed patterns. This
is illustrated in the top row of Fig. 1, for two patterns Ω′ and Ω′′ shown in the
bottom row of Fig. 1: upon presentation of these patterns the belief the user
attaches to values outside Ω′ and subsequently also Ω′′ becomes zero. Clearly,
patterns are subjectively more informative to a user if they exclude regions of
the data space to which the user attached a higher belief.

Continuing this process, the part of the data space to which a non-zero belief
is attached shrinks, and the data miner would ultimately end up knowing the
exact value of the data. Of course, in practice the user would stop the mining
process as soon as they are satisfied with their understanding of the data, or
as soon as their resources (e.g. time, or mental capacity to remember newly
presented information) have run out.

While we postulate the existence of the user’s evolving belief state, we ac-
knowledge that in reality the data mining system will have incomplete knowl-
edge of it at best. Thus, it will need to rely on an evolving proxy. This evolving
proxy is the background distribution P , illustrated in the middle row of Fig. 1.
Shortly below we will discuss how this can initially be obtained based on limited
available information about the prior belief state, and how it can be updated
after the presentation of a pattern to the user.
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Fig. 1. The first row of figures illustrates diagrammatically how the belief state of the
user evolves during the data mining process, the second row illustrates how our model
of this belief state (i.e. the background model) evolves, and the third row illustrates
the data space, the data, and the patterns revealed. Shading illustrates the degree of
belief the user attaches to the data (first row) and the probability under the back-
ground model (second row). The three columns show: (1) the prior beliefs and initial
background model, (2) the effect of revealing a first pattern Ω′ on the user’s beliefs
(all we assume here is that the user will attach 0 belief to data values excluded by
the shown patterns) and on the background distribution used as a proxy for the belief
state (3) the same after revealing a second pattern Ω′′.

Optimizing the Data Mining Process. Crucial in this model for data mining
is that the user is an integral part of it, as much as the data itself. By doing
this we can try and optimize its efficiency from a subjective user perspective.
Indeed, the goal should be to pick those patterns that will result in the best
updates of the user’s belief state, while presenting a minimal strain on the user’s
resources. This means that the IM should be a trade-off between two aspects:
the pattern’s information content (which should quantify how useful it is to the
user in updating her beliefs about the data), and its descriptional complexity
(which should quantify how much resources are used to assimilate it).

In the following paragraphs we briefly discuss how each of these concepts can
be usefully formalized.

Determination of the Initial Background Distribution. In an ideal world, the
process is started by the user doing a ‘brain dump’ to inform the data mining
system about all their prior beliefs about the data, formalized in the form of a
background distribution. Of course, in reality this is impossible, and a lighter
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touch approach is needed to extract as much information as possible. The ap-
proach we have advocated is to let the user specify a number of expectations on
the data, which can be formalized as:

Ex∼P {f(x)} = f̂ ,

where f is a statistic computing a property, of which the user expects the value
to be equal to f̂ .

This type of expectations can be formulated at a specific detailed level, though
in practice it is more useful to formulate large numbers of them in a more generic
way. For example, in a binary matrix the user may have certain expectations on
all row sums and column sums. In a network they may have expectations on the
degrees of the nodes.

This information represents a constraint on the background distribution P ,
thus limiting the set of possible background distributions. Only in contrived
cases will this suffice to uniquely determine it though. Thus, among the possible
choices we need to select one. In [1] we laid out two arguments in favour of
picking the distribution of maximum entropy among those not ruled out by
the constraints. The most intuitive argument goes that the maximum entropy
distribution is the most unbiased one, such that no undue information is injected
into the process.

The Information Content of a Pattern. Recall that a pattern is defined in terms
of the measurable subsetΩ′ from the data space to which it says the data belongs.
The probability P (Ω′) represents the probability for the event x ∈ Ω′, i.e. the
degree of belief the user attaches to this pattern being present in the data x.
Clearly, if P (Ω′) is small, this pattern is subjectively surprising and informative
to the user. Reflecting this, and using formal arguments, in [1] we argued that

InformationContent(Ω′, P ) = − log (P (Ω′))

is a meaningful and robust way to quantify the information content embodied
by that pattern. Note that it depends on the pattern itself as well as on the
background distribution, i.e. it is a subjective quantity. As pointed out in [1],
in special cases this information content reduces to a p-value—i.e. it is strictly
more general than statistical hypothesis testing based interestingness measures.

Updating the Background Distribution. Upon being presented with a pattern,
the user will consciously or unconsciously update their beliefs about the data.
Again in [1], we argued that a robust way of doing this is to simply condition
the background distribution on the new domain Ω′ (see Fig. 1, middle row). As
a result, the beliefs attached to any value for the data outside Ω′ become zero,
and the probability of all values within Ω′ (including the true value x for the
data) is divided by P (Ω′).

This provides one of the formal arguments in favour of quantifying the infor-
mation content as − log (P (Ω′)): the larger this quantity, the larger the increase
in probability of the data x under the background distribution.
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The Descriptional Complexity of a Pattern. The final building block is the de-
scriptional complexity of a pattern. While it is harder to give generic advice on
how to quantify the complexity of a pattern, in practice it is often fairly intuitive
to specify it, perhaps in a parametric way. For example, the specification of a set
of items (e.g. in frequent itemset mining) will typically be more complex for a
human user to assimilate if it contains more items. Similarly, the specification of
the members of a community in a network is more complex if the community is
larger. The dependency on the number of items or on the size of the community
can be parameterized such that the user can adapt it to approximate her own
notion of complexity best, and also allowing the user to zoom in or out to smaller
or larger patterns.1

Trading Off Information Content with Descriptional Complexity. Assuming that
the user is interested in gaining as much information about the data as possible
within a bounded amount of resources, the data mining problem can be for-
malized as an optimization problem: maximize the total amount of information
carried by the conveyed patterns, subject to an upper bound constraint on their
cumulative descriptional complexity.

As we showed in [1], this problem can be reduced to a Weighted Budgeted
Set Coverage (WBSC) problem, which is NP-hard but can be approximated to a
constant factor 1− 1

e using a greedy method. Indeed, a revealed pattern defined by
Ω′ excludes (‘covers’) a part Ω \Ω′ of the data space Ω from the set of possible
values for the data x. The larger the probability P (Ω \ Ω′) (the ‘weight’ of
the excluded subset), the larger the pattern’s information content − log(P (Ω′)).
Thus, to find a set of patterns that have maximal information content, one has
to find patterns that jointly exclude a subset from Ω with maximal probability
under the initial background distribution. This is done within a finite ‘budget’
of cumulative descriptional complexity.

An appealing feature of this greedy approach is that it is not only approxi-
mately optimal at the end but also any intermediate solution is approximately
optimal (with the same approximation factor) given the budget already con-
sumed. This continuous near-optimality of the greedy approach is a strong argu-
ment in favour of the iterative nature of the framework’s view of the data mining
process (Fig. 1), in which patterns are revealed one by one. Indeed, not only is
iterative data mining convenient from a user’s perspective, it is also as close
to optimal as any other computationally efficient one-shot pattern set mining
approach could be.

Conveniently, the greedy criterion to be used in selecting the next pattern
is simply the ratio of the information content (given the current background
distribution) and the descriptional complexity. Thus, it is this ratio that we put
forward as a general subjective IM:

1 A separate rationale for limiting the descriptional complexity of patterns is available
for the special case when the information content is equivalent to a p-value. In
those cases, limiting the complexity will effectively limit the number of hypotheses
considered, controlling the adverse effects of multiplicity.
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I(Ω′, P ) =
InformationContent(Ω′, P )

DescriptionalComplexity(Ω′)
.

Remark 3. Although it is good news that the problem of finding the best set of
patterns can be approximated well using a greedy algorithm, it should be noted
that each greedy step can still be computationally expensive. Whether this is
the case depends on the particular problem setting.

3 Instantiations of the Framework

While abstract, the developed framework is highly practical, and we believe it
has the potential of altering the way EDM is being conducted. To illustrate
this, we survey a few instantiations of this framework we have developed so
far.

3.1 Tile Mining

The first instantiation concerns the tile mining problem. Assume we are given a
rectangular binary matrix, representing e.g. a binary database or an attribute-
value database. Then, a tile is defined as a set of rows along with a set of columns
in this matrix such that all matrix elements in the intersection of these rows and
columns are equal to one [4]. Tiles are similar to frequent itemsets, with as a
difference the fact that also a set of supporting transactions is specified along
with the itemset itself.

In the terminology of the current paper, a tile-pattern is therefore the speci-
fication that a tile is present in the data (the given binary matrix). This limits
the set of possible values of this matrix to only those matrices that have ones in
the intersection of the rows and columns defining the tile.

In practice, the interestingness of a tile is probably a trade-off between its
dimensions as well as other properties such as the density of the rows and columns
covered by the tile. The interestingness of a tile could thus be formalized in a
multitude of ways, each of which could make sense in specific situations.

Our framework allows one to let the IM be dictated by the prior beliefs of
the user—rather than having to design it directly. To demonstrate this we have
taken a number of steps. In a first paper on this topic, we demonstrated the
basic idea of the framework by deriving the IM subject to prior beliefs on the
density of the rows and columns (the so-called row and column marginals) [2],
soon afterward generalized toward noisy tiles [10]. More recently, we expanded
the set of prior belief types to include also prior beliefs on the density of certain
subsets of matrix entries (including rows, columns, and tile areas), on a cluster
structure on the rows of the data, as well as itemset frequencies [11]. This allows
for iterative data mining in a similar vain to [8].
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3.2 Tile Mining in Real-Valued Data, and Iterative Bi-clustering

Our tile-mining work was generalised in [14,15], to include iterative mining of
subjectively interesting bi-clusters from real-valued data matrices. In [14] the
background distribution for real-valued data is also applied for the purpose of
quantifying subjective interestingness of subgroups.

3.3 Clustering and Alternative Clustering

Another EDM task for which the number of IMs available is large and grow-
ing is data clustering. A few examples are the average squared distance to the
nearest cluster centre in K-means clustering, a particular eigenvalue in spectral
clustering, and the likelihood in mixture of Gaussians clustering.

After introducing a simple new way of formalizing a cluster pattern, we were
able to apply our theoretical ideas to formalize the interestingness of a cluster
pattern with respect to a specific type of prior beliefs, namely expectations on
the mean and covariance of the data set [12]. Importantly, we demonstrated
how the background distribution can be updated to account for the knowledge
of a certain clustering pattern, allowing one to use the resulting method in an
alternative clustering setup. In further work we intend to expand the set of prior
belief types that can be used, and explore other clustering pattern syntaxes.

3.4 Multi-relational Data Mining

A last instantiation we wish to highlight is the development of a pattern syntax
for multi-relational data (e.g. data in relational databases, RDF data and the
semantic web, etc.). This work builds on the insights from Sec. 3.1, considerably
broadening its applicability and developing sophisticated algorithms for mining
multi-relational patterns.

The basic ideas were introduced in [19], in [20] the mining algorithm was
substantially improved, and in [21] the pattern syntax, algorithm, and the IM
were generalised to allow for also n-ary relations in the database.

4 Discussion

The novelty of the proposed framework lies mainly in its interpretation and novel
use of pre-existing mathematical tools, including information theory, exponential
family models, and convex optimization theory and duality. Although it has a
number of striking links with other frameworks for data mining and machine
learning, it is unique in its insistence on the central role of the data miner and
subjectivity. Here we point out some similarities and differences with related
frameworks.

TheMinimum Description Length (MDL) principle [7] aims to detect reg-
ularities in data that allow one to describe it in the most compact way. Such
regularities are roughly equivalent to what we call patterns in this paper.
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The MDL principle has been successfully applied for the development of objec-
tive IMs for various data mining problems, notably for frequent itemset mining
[17]. While mathematically the language of MDL is related to the language used
in our framework (especially to the presentation we used in [1]), the emphasis
and interpretation are very different. For example, MDL has inductive infer-
ence as its main goal, and human interpretability of the code is not required in
principle. In contrast, the proposed framework is not concerned with inference
at all, and interpretability is key (i.e. the descriptional complexity should be a
reflection of a perceived complexity by the user). More crucially, the concept
of a background model for the prior beliefs of a user is absent in MDL, such
that IMs derived by the MDL principle are objective ones. Finally, as far as we
know the reduction of the iterative EDM process to a WBSC problem, providing
a solid algorithmic basis to the proposed framework, is absent from the MDL
theory.

In the Introduction we already mentioned hypothesis testing based approaches
to the assessment of EDM results, and the proposed use of (empirical) p-values
as IMs, and we have highlighted some practical disadvantages of this approach.
Other pioneering work that relies on exact hypothesis testing but that seems
more restricted in terms of null hypotheses used includes [22,23]. The similarity
of such approaches with the proposed framework is clear from the fact that
for certain pattern types, the information content is equivalent to a p-value.
However, it differs in being more general (the information content is not always
equivalent to a p-value). More crucially, the null hypothesis (or more generally
the background distribution) is given a precise interpretation by our framework,
as the model for the prior beliefs of the user, and a mechanism for obtaining it
and for understanding its evolution during the mining process is provided.

Mathematically, the proposed framework also seems related to Bayesian in-
ference. However, an important conceptual difference is that the goal of Bayesian
inference is to infer a model for the stochastic source of the data, whereas our
goal is to help the user understand the data itself by unveiling interesting parts
or aspects of it.

We thus believe the proposed framework may serve an important role as an
alternative framework, with a unique focus on subjectivity and bringing the user
into the equation. The first data mining methods that were inspired by it appear
to support this belief.

5 Challenges and Opportunities Ahead

Our ultimate goal is to further develop these initial ideas with the ultimate aim
of transforming the way EDM is done: from an expert-driven process requiring
a thorough understanding of data mining techniques and processes, to a process
where the data mining system thoroughly understands the needs and wishes of
the user, presenting only what is interesting, in a subjective sense.

The instantiations developed so far illustrate the breadth of applicability as
well as the practical usefulness of the simple theoretical foundations we pro-
posed to this end. Nevertheless, significantly more work is needed to ensure a



30 T. De Bie

wide impact of this way of formalizing subjective interestingness: conceptually,
algorithmically, as well as in terms of instantiating the ideas for actual data
mining problems with the aim of making them more user-oriented.

Conceptually, fruitful research avenues may include considering alternative
definitions of a pattern (to include more probabilistic notions), as well as alter-
native kinds of background models and models for how they evolve in response
to the presentation of a pattern. Consideration of cognitive aspects may become
important here as well.

Algorithmically, a characterization of problem types that lead to efficient al-
gorithms is currently beyond reach but would be extremely valuable.

In terms of developing new instantiations: expanding the range of prior belief
types that can be dealt with (along the way expanding the types of data), as
well as developing it for new pattern types and syntaxes, are major challenges
to which we invite the broader research community.

Finally, designing empirical evaluations (short of expensive user studies) for
subjective IMs (or frameworks for designing them) is non-trivial by their very
nature. The associated difficulty in publishing research on this topic thus poses
a serious stumbleblock to this line of research. We therefore believe a broad
discussion on how to evaluate research on subjective IMs is overdue.
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Abstract. Recent advances of modern high-throughput technologies such as
mass spectrometry and microarrays allow the measurement of cell products like
proteins, peptides and mRNA under different conditions over time. Therefore, re-
searchers have to deal with a vast amount of available measurements gained from
accomplished experiments using the above techniques.

In this paper, we set our focus on methods that analyze consistency of time-
resolved replicates by using similarity patterns between measured cell products
over time. This fact led us to develop and evaluate a method for time points es-
timation of a single sample using independent replicate sets taking the existing
noise in the measurements and biological perturbations into account. Moreover,
the established approach can be applied to assess the preanalytical quality of
biobank samples used in further biomarker research.

1 Introduction

Microarray-based genomic surveys and other high-throughput approaches ranging from
genomics to combinatorial chemistry are becoming increasingly important in biology
and chemistry [1]. Therefore, biologists need data analysis approaches to deal with the
complexity of biological systems in order to extract useful and relevant information
from measurements.

To understand and model biological systems, it is necessary to consider their dy-
namics over time. However, due to the restrictions imposed by experimental settings
and measurement devices, in many cases only snapshots of two different states or time
points are taken and compared. The advancement of technologies in recent years allows
to carry out more experiments in which not only two conditions can be compared, but
in which measurements are taken at a number of time points (see for instance [2,3]).
Nevertheless, the number of time points at which measurements can be taken is usually
still very limited and therefore the time points are chosen very carefully, mostly in such
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a way that the most interesting time points are covered. This means that we have to deal
with a small number of time points with varying intervals between them. Therefore, the
term time-resolved data instead of time series data is used.

We are mainly interested in two questions here. Given a number of replicate data
from time-resolved experiments and measurements at a single unknown time point. Can
we make a good estimation of the unknown time point? The second question concerns
data consistency, i.e. do the replicates show a consistent behaviour or do they highly
deviate from each other?

During this work, we studied the relationship between cell products at different time
points using data from more than 30 patients. The correlation derived from the patients
gave a reasonably accurate estimation of time points coming from other independent
samples.

Several realisations of time-resolved experiments often contain systematic variations
of measured values. Furthermore, we need to take the existence of random perturbations
of the biological and medical data into consideration. Therefore, we used the robust rank
correlation measures that are freely available as an R package named Rococo [4] to
derive the relationship between the replicated sets at different time points. This family
of rank correlation measures shows a smoother behaviour with respect to the noisy
numerical data and offers more robustness to noise for small samples [5]. As a result,
the relationship derived from the replicates allow us to gain accurate estimation of a
single sample time course.

The paper is organized into six sections. The next section reviews briefly some tra-
ditional correlation methods as well as the robust rank correlation measures employed
in statistical data analysis. Section 3 presents the problem in abstract terms. In Section
4, a data consistency check is introduced using different correlation methods. While
Section 5 develops an approach used to determine the status of a single sample, section
6 provides an evaluation of our method using real data. Finally, a discussion and some
concluding remarks are given.

2 Rank Correlation Measures

Correlation measures have contributed significantly in order to analyse and understand
biological systems. The coefficient of correlation evaluates the similarity of two sets
of measurements (i.e., two variables obtained in the same observation)[6]. Correlation
measures are applied to pairs of observations

(xi, yi)
n
i=1 (1)

with (n ≥ 2), to measure to which extent the two observations comply with a certain
model. According to [5], the most common approaches of rank correlation measure are
Pearson’s correlation coefficient that assumes a linear relationship as the underlying
model, Spearman’s rank correlation coefficient [7,8] and Kendall’s tau (rank correla-
tion coefficient) [9,10,11]. The basic variant of Kendall’s tau is defined as

τ =
C −D

1
2n(n− 1)

,
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where C and D are the numbers of concordant and discordant pairs, respectively:

C = |{(i, j) | xi < xj and yi < yj}| D = |{(i, j) | xi < xj and yi > yj}|

Gaussian scoring: (with parameter σ > 0)

RGauss
σ (α, β) =

{
1− exp(− 1

2σ2 (α − β)2) if β > α

0 otherwise

with R(α, β) ∈ [0, 1] [12]. For a given scoring function R : R→ [0, 1], an operator
E : R→ [0, 1] was defined in [5] as:

E(α, β) = 1−max(R(α, β), R(α, β)).

Gamma rank correlation coefficient: We can compute the degree to which (i, j) is a
concordant pair as

C̃(i, j) = min(RX(xi, xj), RY (yi, yj))

and the degree to which (i, j) is a discordant pair as

D̃(i, j) = min(RX(xi, xj), RY (yj , yi)),

Then we can compute the overall score of concordant pairs C̃ and the overall score of
discordant pairs D̃, respectively, as sums of the following scores:

C̃ =
n∑

i=1

n∑
j=1

C̃(i, j), D̃ =
n∑

i=1

n∑
j=1

D̃(i, j).

Consequently, we can define the generalized gamma rank correlation measure γ̃ as

γ̃ =
C̃ − D̃

C̃ + D̃
.

With the use of correlation coefficients, it is possible to indicate the amount of com-
mon cell products behaviour that exists between two time points from different obser-
vation sets. It enables us to measure the monotonic relationship between cell products
of two different time points. Since we are dealing with noisy replicated sets which may
obscure monotonic associations, in our experiments, the robust gamma rank correlation
coefficient designed for dealing with noisy numerical data lead to the best results.

3 Formal Problem Statement

Replicated time-resolved data are characterized by non-constant intervals between mea-
sured time points. Additionally, replicates could also have different measured time
courses due to encountered technical difficulties to obtain measurements at exact times
while retrieving samples.
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Table 1. General structure of the data

Time point Replicate1 . . . ReplicateR

Cell product s
(1)
1 . . . s

(T1)
1 . . . s

(1)
R . . . s

(TR)
R

i1 x
(1)
1,1 . . . x

(T1)
1,1 . . . x

(1)
1,R . . . x

(TR)
1,R

...
...

...
...

...
...

...
...

iN x
(1)
N,1 . . . x

(T1)
N,1 . . . x

(1)
N,R . . . x

(TR)
N,R

Table 1 shows the principle structure of the data we intend to analyse. We considerN
cell products (genes, proteins, peptides or metabolites) that are measured in a replicate
r at Tr different time points s(1)r , . . . , s

(Tr)
r and the intervals between time points might

vary [13]. For the N cell products, we have R replicate sets, which would have identical
values in the ideal case. But this usually applies neither to the time points nor to the
measurement values. But we would expect that at similar time points, replicates would
have roughly the same values. It should be noted that there can also be missing values.

The main objective of this work is to develop a method in order to estimate the time
point for a single sample using an independent data set of repeated replicates from
time-resolved data, measured from high-throughput experiments. To achieve reliable
results, two aspects must be considered. Firstly, a measurement error at one time point
of one replicate could affect its trustworthiness and corrupt our estimation. Secondly,
for data consistency, the existing noise in the measurements must be taken into account
by finding out similarity patterns of replicates coming from time-resolved samples.

4 Data Consistency Check

When observing multiple time series generated by a noisy and stochastic process, we
often encounter large systematic sources of variability. For example within a set of
replicate biological time series, the time axis can be variously shifted, compressed and
expanded in complex non-linear ways. Additionally, in some circumstances, the scale
of the measured data can vary from one replicate to another, or even within the same
replicate [14]. Suitable normalisation can sometimes amend this effect. In order to es-
tablish the relationship between different replicate sets we computed various traditional
correlation measures as well as the robust gamma rank correlation coefficient between
all available time points.The tolerance argument of the robust gamma rank correlation
coefficient was chosen as 10 percent of the interquartile range of the data.

Now we consider N cell products that are measured in each replicate set at possibly
different time points. As we mentioned above, time points might vary from one replicate
to another. We consider two replicates x and y. For replicate x each cell product is
measured at K different time points (k ∈ {1, . . . ,K}). For the second time-resolved
replicate y each cell product is measured at L different time points (l ∈ {1, . . . , L}).
For the measured cell products at time point tk of replicate x the maximum degree of
similarity with cell products of replicate y measured at tl is obtained in the following
way:
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topt(tk;x, y) = argmaxl∈{1,...,L}{R(x(tk), y(tl))}
with R being the chosen rank correlation function.

The basic idea behind the calculation of the robust gamma rank correlation between
replicates at all available time points was to detect replicates with consistent behaviour
over time. We expect that two replicates of the same biological process have different
biological speeds, due to the metabolism of organisms. Which means, that cell products
measured at two different time points in one replicate are best correlating with those
measured at one time point of the second replication set.

We consider tl and tl + 1, as the most suitable time points from the replicate set
y for time points tk, and tk + 1 respectively. These time points represent the highest
obtained correlation coefficients. We assume that inconsistent behaviour between the
replicate sets x and y does exist if:

tl > tl+1

Fig. 1. Resulting correlation curve: each time point of replicate x is plotted against the best cor-
relating time point from replicate y

Figure 1 (left) illustrates two replicates x and y with consistent behaviour over
time. Horizontal or vertical segments show that the time point of one replicate highly
correlates with multiple time points of the other replicated set due to differences in
metabolism speed of both organisms. While in Figure 1 (right) an inconsistent be-
haviour between both replicates is clearly detected. A consistent behaviour corresponds
to a non-decreasing graph.

This method of checking consistency is not suitable when cyclic behaviour is ob-
served within replicates, for instance when the biological system is assumed to return
to the original state, e.g. measurements taken before infection, during infection and after
recocery. The speed of the reaction might vary from one organism to another. However
the initial status before the infection and the final status after the treatment are expected
to deliver the same measurements.
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5 Time Point Estimation

The main target of this work is to establish a method to estimate time points for human
plasma and serum time-resolved samples. The repeated measurements of one cell prod-
uct at different time points under the same condition are expected to deliver a similar
behaviour for all replicate sets. A high correlation between cell product measurements
could lead us to the exact time of the measurements. However some of the identified
cell products might do nothing or something completely unrelated to the specific condi-
tion or process of interest. Therefore, they could deteriorate the correlation coefficient
between cell products at a given time point. In order to reduce this effect, we adopted
the solution presented in [15] by not considering the correlation with respect to all cell
products. For each pair of time points, we are allowed to remove a fixed small number p
of cell products that lead to the highest increase of the rank correlation coefficient. For
a given single sample x, N cell products are measured at an unknown time point tk. To
assess the time point tk, the following steps were carried out:

1. By means of the previously mentioned consistency check we can gain insight into
the behavior of the replicate set having the structure mentioned in Table 1. There-
fore, the data set Y will be considered as a training set,

Y = {y1, . . . , yR}

where yr is a replicate set with N cell products that are measured at Lr time points
(lr ∈ {1, . . . , Lr}

2. Remove replicates that raise suspicious behaviour.
3. For measured cell products at the estimation time point tk, we compute the robust

gamma rank correlation coefficient at all available time points of the training data
set.

4. For each replicate of the training data set we choose the time point t(r) that delivers
the highest obtained rank correlation coefficient with measured cell products at tk,
so that:

topt(tk;x, y) = argmaxlr∈{1,...,Lr}{R(x(tk), yr
(lr))}

5. We build the mean value from all obtained time points to assess tk:

tk =

∑R
r=1

(
t(r)

)
r

(2)

A weighted mean or median could also be applied at this level to determine the time
value to be estimated from the different replicates.

6 Evaluation

Our approach is demonstrated using experimental data from human serum samples.
Peptides in human serum samples were measured by nHPLC-MS/MS under the same
condition. However, each replicate set has a specific time course due to the encountered
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Fig. 2. Patient 15

technical difficulties to obtain measurements at exact times. The available serum sets
were collected from three independent patient cohorts. Applying our method described
in Section 5 should asses the sample age in order to judge the quality of the serum sam-
ples and consequently to decide whether to eliminate it or not from further biomedical
studies for instance biomarkers discovery research.

During the evaluation step, the training set was composed of independent donor co-
horts 1 and 2, which were collected from 30 patients. About 60 peptides were measured
at different time points for each sample. As mentioned above, the replicates might have
different time courses. The test set consisted of a third serum sample collected from
more than 20 patients and with different time courses between replicates.

In order to visualize the data consistency check results, we generated a plot for each
replicate set where (R− 1) curves are presented. Each curve presents the highest cor-
relation coefficient between one replicated measured cell products at each of its time
points and one of the (R − 1) replicate time courses. The number of detected inconsis-
tent curves was almost reduced by half when using the robust gamma rank correlation
in comparison to traditional rank correlation methods.

Figure 2 contains 5 out of 29 computed curves plotted between all time points of
patient 15 and all other replicates’ time points. Most of the obtained curves build a
consistent behaviour between the mentioned patient and all other replicates over time.
Patient 11 illustrated in Figure 3 shows an inconsistent behaviour with all other replicate
sets at time point 30 (here only 5 curves are presented). Therefore, patient 11 has been
removed from the training set to avoid the wrong effect on time point estimation of the
test set.
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Fig. 3. Patient 11

Fig. 4. Time Point estimation examples: both presented time points were measured at early stage
with use of three independent data sets

After testing the training set for data consistency and removing potential outliers
like patient 11, we can apply our approach to estimate time courses of a single sample
using the training set already mentioned. For each time point estimation, we compute
the correlation coefficient with all available replicate time points in the training set after
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Fig. 5. Time Point estimation examples: both presented time points were measured at late stage
with use of three independent data sets

Fig. 6. Estimation absolute error of the test set

removing the three peptides that allow the highest increase of the correlation coefficient
during each calculation. Therefore, we obtain from each replicate one time point that
represents the highest obtained correlation coefficient. By computing the mean of the
29 resulting time points, we determined the time point at which the measurement of the
58 peptides was performed.

To visualize our approach, we plotted all computed correlation coefficients with all
available replicates time points in the training set for each time point where each pa-
tient is illustrated with a different colour. The plotted correlation points provide us with
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a primary idea about the behavior of the computed correlation coefficient depending on
the time point we intend to estimate. The average of the selected time points with the
highest correlation from each patient of the training set is displayed as the estimated
time point. The illustration of both estimated time point and real time point, allow
an intuitive visualization and identification of the sufficiency of our presented aging
method.

As illustrated in Figure 4, the presented approach demonstrates a relatively reliable
result at an initial time interval located between 0 and 10 hours, where the biological
process is still active. The lines for estimated time point and the the true time point are
almost identical. At the same time, an estimation inaccuracy occurs at late time span
(after 15 hours) as shown in Figure 5. This inaccuracy might be caused by the end status
that arises at a later stage of the biological process and also by sparsity measurements
of later time points in the data set. At this point, we have to note that the relevant
biological period for biologist is the intitial time span, where reliable estimation results
are required to make further decisions. While at later stage cell products are anyway too
inaccurate to be processed in additional analysis.

In Figure 6, the computed absolute error was plotted against the real time point.
The observed error is increasing in a time dependent manner, so that the assessment
inaccuracy is showing a higher deviation of the estimated time point from the real time
point at later time span.

To judge the reliability of our proposed approach, we intend to determine the stan-
dard deviation of the absolute error. As we mentioned before, an increasing trend is
observed so that fitting a linear regression model to the obtained data can denote the
relationship between the computed error and the real time. Let X denotes the error. We
assume that Xt follows a normal distribution with mean μ equal zero and variance σ2

t .
Therefore the expected value of the absolute error can be written as follows:

E(|Xt|) =
√

2

π
σt ≈ at+ b

and consequently, the standard deviation of the absolute error noted σt can be abtained

by: σt =

√
π

2
(at + b). Based on the resulting coefficient from the linear regression, a

and b were consecutively equal to 0.33 and −0.64.

7 Discussion

During this work, our goal was to develop an approach to determine the time course of
one single sample by using an independent time-resolved data set of repeated replicates
from high-throughput experiments as they are common in genomics, proteomics and
metabolomics.

The provided technique can be used as a quality tool to estimate the analytical
quality of the samples e.g. biobank samples used in biomarker research. With use of
this presented method, the estimation of time points which belong to the initial time
span, considered as the biological relevant period, delivered reliable results that can
be considered as sufficient for the quality judgment of the sample of interest. The data
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consistency check approach provides an intuitive way to judge the replicates consis-
tency and therefore enable biologist to discard unsuitable replicates from additional
analysis. Furthermore the resulting consistency curves can be used for cluster analysis
in order to find groups of replicate sets with similar cell product behaviour over time.

Nevertheless, the presented work is in primary stage and requires more evaluation
with different biological data sets with enlarged numbers of replicates. Besides, the
elaborated algorithm should be adapted to meet requirements of samples with cyclic
behaviour used for instance in infection research studies.
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Abstract. We describe the application of a recently published general
event detection framework, called EVE to the challenging task of molecu-
lar event detection, that is, the automatic detection of structural changes
of a molecule over time. Different types of molecular events can be of in-
terest which have, in the past, been addressed by specialized methods.
The framework used here allows different types of molecular events to be
systematically investigated. In this paper, we summarize existing molecu-
lar event detection methods and demonstrate how EVE can be configured
for a number of molecular event types.

1 Introduction

Research in Chemistry/Chemical Biology has been interested in understanding
molecular dynamics simulations for around 25 years [14,19]. There are many dif-
ferent ways of modeling molecules; here we are primarily interested in molecules
(as in Figure 1) represented as a connected group of multiple atoms, ranging

Fig. 1. Two conformations of alpha-conotoxin pnib (1AKG). The molecule’s atoms
are connected by bonds and the entire arrangement in space represents the molecule’s
conformation.

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 44–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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from tens to several hundreds of atoms and more. The geometrical arrangement
of atoms to each other (known as the conformation of the molecule) under nor-
mal conditions changes continuously, even in a vacuum. These changes range
from small oscillations to drastic changes in the overall molecular shape. It is
important to differentiate between small, unimportant conformational changes
and more important ones, which are relevant e.g. for the biological function of
a molecule. The automatic detection of unexpected or irregular transformations
of the molecule’s conformation is of particular interest.

There are two main reasons why molecular dynamics (MD) is concerned with
simulating data. First of all, monitoring atom positions and hence the molecular
conformation at a sufficiently high resolution (both in terms of time and loca-
tion) is complicated and second the influence of the molecule’s surroundings has
a substantial effect on the molecule’s conformations. Using simulated movements
over time helps to better understand the behavior of a molecule. However, ac-
tually processing the vasts amount of data generated by these simulations poses
enormous problems.

The core idea behind molecular dynamics simulations is to simulate the behav-
ior of molecules, mostly of proteins, over time by using “simple potential-energy
functions” [2]. Hence this is an artificially, but not randomly generated data
set, which depicts the true behavior of the molecule. The forces and reciprocal
effects between the molecule’s atoms and bonds can be explained with fairly sim-
ple mathematical functions. Basically every atom can influence all other atoms
with the bonds between the atoms adding to this effect. The dynamics are cal-
culated by solving equation systems based on all these functions together [2].
By iteratively calculating the steps of the molecule’s internal positions a se-
quence of conformations is generated. This sequence captures the movement of
the molecule, represented by all of the individual atom positions in three dimen-
sional coordinates over time. The interest of molecular event detection lies in
finding unexpected movements among atom positions of a molecule. Such move-
ments can e.g. refer to a conformational change or a folding of the molecule.

The internal relations between molecule’s atoms and bonds are investigated
for other aspects (e.g. kinetic and thermodynamic information [2]) as well in
molecular mechanics [8]. However, in this work we are interested only in the
changes of atom positions over time, hence, in the sequence of molecule confor-
mations. There are various types of molecular events. The key point of interest
is that these structural changes are relevant for the chemical state or mechanism
of the molecule.

In this work we concentrate on the problem of general molecular event de-
tection as an application for change and event detection in high dimension. We
begin by discussing current approaches, starting with an overview of feature
based methods before discussing more recent methods. Afterwards we briefly
summarize the concepts of EVE [1], an event detection framework we use to for-
malize the underlying event detection problem. We conclude by demonstrating
how EVE can be used to detect molecular events of interest for a real molecular
sequence.
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2 Related Work

In the area of data mining and statistics considerable work has already been
invested in the detection of irregularities in series data. Event detection [12],
drift detection [24] and anomaly detection [9] are vibrant research directions.

In this section we focus on how events are detected in molecular dynamics. One
of the main difficulties is the high dimensionality of the feature vector. Following
the structure of a recent survey paper [6] we will first discuss traditional analysis
methods, which are mainly concerned with the extraction of features. Recent
methods regard the molecule’s atoms as the nodes in a graph and apply different
strategies to introduce edges and then monitor changes of the resulting graph
over time.

2.1 Traditional Analysis

A large number of atoms – easily hundreds – is encountered when analyzing
a molecular times series. Using their coordinates and other properties as one
huge feature vector is time consuming and often yields uninterpretable results.
For this reason quite a few applications of molecular event detection are first
concerned with preprocessing the features of the molecule’s conformation.

H Atom Filtering:As already mentioned, molecules consist of many atoms like
carbonate (C), hydrogen (H), or oxygen (O), to name just some of the common
ones. Smaller atoms (like hydrogen), for example, are known to be more prone to
move. Common practice therefore ignores the movements of hydrogens as they
are not related to an overall structural change of the molecule and can easily be
derived from the remainder of the molecular structure anyway.

(a) Time point 6 (b) Time point 143 (c) Time point 496

Fig. 2. The Cα trace of alpha-conotoxin pnib. The Cα atoms are connected to show the
overall structure of the molecule. This reduces the complexity tremendously, as only 16
of the 213 atoms in the molecule remain. The figures show three conformational states
of the molecule, at time points 6, 143 and 496. At step 143 the molecule is folded and
opened again in a last step (496). The three time points were chosen because they
demonstrate the movement of the molecule nicely.
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Cα Atom Extraction: A more compact representation retains only the so
called Cα trace [11], where a Cα-carbon is the central carbon of an amino
acid [21]. Put simply, each protein consists of multiple amino acids, which are
“substructures” of the molecule. In each amino acid the Cα-carbon can be
uniquely determined and all of these carbons are combined to the Cα trace,
which is an abstraction of the overall structural appearance. Therefore only the
Cα carbons are used as features and all other atoms are filtered. This reduction
naturally reduces the dimension immensely. It is questionable whether it also
filters a possible movement from the data. In Figure 2 the Cα trace of 1AKG is
visualized for three consecutive time points.

Distances: One problem when monitoring molecular dynamics is that only re-
lations within the molecule’s atoms are of interest and not an overall movement.
One solution for this problem is to calculate relative distances (e.g. Euclidean or
absolute) between each pair of atoms inside the molecule. The resulting feature
space is quadratic in the number of atoms.

Angles: A second solution for filtering an overall movement from the data is
to use angles between the position of individual atoms. The feature vector then
consists of the angles in three dimensional space.

RMSD: A “well-known and most widely accepted” [15] method for measuring
the similarity between two confirmations of a molecule is the root-mean-square
deviation (RMSD). It is calculated by using the average distance between all
atom positions.

RMSD
(
M (1),M (2)

)
=

√√√√ 1

n

n∑
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i −m
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i |2

M (t) is the conformation of molecule M at time point t and m
(t)
i ∈ R

3 is the
atom position of atom i.

The disadvantage is that the RMSD measure also reacts to movements and
rotations of the molecule. The problem of movements can be resolved by shifting
one molecule and rotation can be solved by pre-applying a rotation. The Kabsch
Algorithm [13] is one of the most popular solutions for this optimization problem
and uses a singular value decomposition to find the minimizing transformation
matrix. A more recent approach uses Quaternions to solve the problem [10].

Visualization: The detection of an event can also be determined by visual in-
spection. In a line plot of the RMSD measure, molecular events are mapped to
peaks in the dissimilarity. More recently heatmaps of the complete distance ma-
trix between all time points are used as well. Areas showing a small in-between
dissimilarity and a large dissimilarity to neighboring times are then further in-
vestigated.
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2.2 Non-traditional Analysis

During the last few years, new methods for analyzing MD simulations came up.
In contrast to traditional analysis methods they are designed to deal with much
larger simulations.

In flexibility analysis [22,4] each atom is individually investigated using a
principal component analysis (PCA). The results enable atoms with fast vibra-
tions or small movements to be filtered and summarize the major states of the
molecule. Finally the flexibility vectors, generated from the PCA, are plotted on
a mean structure of the molecule for further analysis [6]. In the wavelet analysis
of MD simulations [3,7] the atoms are individually analyzed as well. Using a con-
tinuous wavelet transform Benson and Daggett [7] are able to find trajectories
of different proteins that show similar structural movements.

The most recent research direction uses graphs to model the overall dependen-
cies in the molecule. Wriggers et al. [23] presented probably one of the earliest
approaches. In this work a graph is generated from the atoms’ positions. They
propose multiple methods for generating the graph using a distance cut-off,
whereby atoms are connected in the graph if their distance is below a certain
threshold, or the generalized masked delaunay tetrahedralization. Afterwards
changes in the consequent graphs are tracked over time, enabling the number
of appearing and disappearing edges to be counted. Finally they apply different
filters to the achieved series of graph changes to detect the event. The Dy-
namic Tensor Analysis [17,18] applies tensor analysis to identify conformational
substates of the molecular sequence. More recently graphs are generated using
additional expert knowledge of the chemical structures [5].

3 Goals of Molecular Event Detection

As described previously molecular event detection is concerned with the anal-
ysis of movements of molecules over time. The molecule’s movement is simu-
lated in three dimensional space and every few picoseconds, or even less, a snap
shot/conformation of the current positions is calculated. The molecule M is rep-
resented as list of its three dimensional atom positions M = (m1, . . . ,mn)

t,
where mi = (x, y, z)t ∈ R

3. The molecules are generated at time points t =
1 . . .m. The molecule at time point t is entitled M (t).

The goal of molecular event detection is to find interesting changes in the
consequent states of a molecule. Next we assume that a dissimilarity function
d(·, ·) is provided, which is able to calculate the dissimilarity between two con-
formations of a molecule. For example RMSD can be used.

Constant: A molecular dynamics is called constant in a time interval [t0, t1] if
the relations in-between the atom positions do not change
(∃ε ≥ 0 ∀i, j ∈ [t0, t1] : |d(M (i),M (j))| < ε).

Changing: Molecular dynamics change if the dissimilarities increase over conse-
quent time steps. A molecule is changing in the time interval [t0, tp] = (t0, . . . , tp)
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Fig. 3. The process of molecular folding/refolding, illustrated by showing four exem-
plary significant atoms during the process

if the dissimilarity to predecessors increases, hence
∀i ∈ {1, . . . , p− 1} : d(M (t0),M (ti)) < d(M (0),M (tp)).

Reoccurring Change: Achange is regardedas reoccurring if the atoms return to
their previous relations.With respect to the definition of changing, there would be
a second interval where the dissimilarities to predecessors decrease. The interval
[t0, t1] is called a reoccurring change if ∃t2, t3 : [t2, t0] ∪ [t1, t3] is constant. Note
that this type of change is mostly tripartite, starting with a change, followed by a
constant state and finishing with the reoccurrence to the beginning structure.

Outlier: An outlier is defined as a single data point (or only a few) within a
constant state where the molecule shows high dissimilarity to the previous and
following steps. More formally: t is an outlier, if ∃t0, t1, t ∈ [t0, t1] : [t0, t1] \
t not changing. Note that if the step size of the molecular simulation is fine
enough, one would not expect to find such outliers.

A special kind of a reoccurring change is a folding and refolding of the
molecule, which is a particularly interesting molecular behavior. During this
event the molecule changes its shape into a new conformation (where it usually
has a different biological function) and, after a certain time, refolds into the
original conformation. Of key interest here is the identification of the exact start
and end of the process. Figure 3 shows the visualization of a folding with sub-
sequent refolding. We will now focus on illustrating below how these exemplary
molecular event types can be detected using EVE.

4 EVE for the Detection of Molecular Events

This section presents an exemplary setup to demonstrate how EVE is configured
for the application of molecular event detection. In the following the main aspects
of the EVE framework are summarized: for a more detailed discussion see our
previous work [1]. We consequently analyze 1AKG as a relatively small but well
understood example of a molecule.

4.1 The EVE Framework

EVE [1] is a general framework for event detection. The main intention behind
the framework is twofold. The first goal is to model the detection of events in
a general setting. Using EVE it is straightforward to classify existing approaches
as well as emphasizing dissimilarities and similarities between individual event
detection techniques. Secondly, the framework is intended to provide a fast en-
try point to examine new, also complex data types. This fits perfectly for the
application of molecular event detection.
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EVE structures any event detection algorithm into three key components: win-
dow configuration, dissimilarity measure and detection mechanism.

1. Window configuration
Two windows need to be defined, the past and the current window. The
past window models behavior which is assumed to be normal at this point
in time. The current window on the other hand is tested to see if it contains
a possible event. The process of a window over consequent time steps is
defined by two terms. The first refers to the start position which can be
sliding or fixed (short: S or F) and the second one to the window size which
is either constant or growing (short: C or G). Two such windows, one for past
and one for current (e.g. SC ↪→SC), determine the process of a window over
consequent time steps as a window combination.
– FC ↪→SC (Fixed Constant to Sliding Constant): Comparing a window at

the start of the series with a sliding window ending at the most recent
data point.

– FC ↪→FG (Fixed Constant to Fixed Growing): Comparing the start window
with the rest of the following data.

– FG ↪→SC (Fixed Growing to Sliding Constant): The idea behind this con-
cept is to extract statistics or models out of all past information and
compare it to the most recent data points.

– SC ↪→SC (Sliding Constant to Sliding Constant): Comparing two conse-
quent sliding windows.

2. Dissimilarity measure
The goal of the dissimilarity function is to indicate the probability of an
event being detected. By previously building an abstracted model on the
window, multiple possibilities of calculating this dissimilarity are possible.
The Kullback-Leibler distance [16], the Euclidean distance (L2), other L-
norms or classification measures (e.g. the false positive rate) are obvious
examples.

3. Detection mechanism
Detection is performed to identify events by evaluating the previously calcu-
lated dissimilarity measures, often by simply applying a threshold function
or using a control chart [20].

After introducing the main ingredients of EVE, we now demonstrate how it
can be applied to the specific application of molecular dynamics and illustrate
how relevant events of different type can be detected.

4.2 Experimental Setup

For the setup of the EVE framework the representation, dissimilarity function,
and threshold are chosen as follows.

Data Model: When a window contains multiple conformations the positions of
the atoms are averaged to filter out small oscillations of the atoms. This average
structure is calculated as follows:
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Fig. 4. The 0-1-normalized distance of three representation of one molecule (1AKG)
with the same EVE setup (FG ↪→SC and window size 5)
(Legend: x axis: time (ns), y axis: dissimilarity)
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The Root-mean-square deviation (as introduced in Section 2.1) is used as
dissimilarity measure.

As detection mechanism a control chart [20] is used. An event is reported if
the dissimilarity measure exceeds the sum of mean μ and 1.5 fold std. dev. σ.

We investigated four different window combinations:

FC ↪→SC, FC ↪→FG, FG ↪→SC, SC ↪→SC.

In the experiments we used three window sizes: c ∈ {1, 10, 20}.
We here previously filtered the H atoms of the molecule. In Figure 4 the

FG ↪→SC with window size 5 is applied on three representations, Cα-trace, H
atoms filtering and all atoms. We normalized the distance measures to 0-1.
However the visualization shows that the results are very similar and especially
filtering the H atoms only had small effects to the overall error measure.

4.3 Molecular Data Set

The analysis is demonstrated on 1AKG, alpha-conotoxin pnib1 (see Fig. 1),
which is a relatively small molecule, actually a protein, containing 16 amino
acids and 213 atoms. We chose this molecule because it is already well studied
and hence the ground truth, e.g. the interesting events in the series are known.

The behavior of the molecule’s conformation is as follows: During the first
70 time steps it does not change significantly, only small movements inside and
a small overall rotation occur. Afterwards the molecule starts to fold. At time
point ∼ 230 folding reaches a maximum and the folding angles start to decrease
again until time point ∼ 400, where a constant conformation is reached.

In Figure 6 to 8 three windowing concepts are applied to the alpha-conotoxin
pnib over time. The x axis of each plot represents the time and the y axis the
calculated dissimilarity. In all of these visualizations, the dissimilarity measure
is shown in green, the lower bound of the control chart is depicted in blue and
the upper bound is orange.

1 Detailed information can be found in the protein data bank:
http://www.rcsb.org/pdb/explore.do?structureId=1akg

 http://www.rcsb.org/ pdb/explore.do?structureId=1akg
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Fig. 5. FC ↪→FG (Fixed Constant to Fixed Growing): When comparing a start window to
the rest of the data there are two assumptions. First the past window has to represent
the data nicely. The model of the current window should be able to smoothen events
over time. This is not the case here, as the constant increase of all four windows does
not reveal any insights.
(Legend: x axis: time (ns), y axis: dissimilarity)

4.4 Discussion of Experiments

In this section we discuss the analysis results of the molecular event detection
using EVE.

The first type of window combination investigated is the FC ↪→FG because it is
the one with the most irrelevant result. Figure 5 shows the error calculated for
the FC ↪→FG on four different window sizes. The constant phase in the beginning
of the molecular series is determined. However, afterwards the mean structure of
the current window is not representative as it contains the change and the base
line.

In addition to the changes of interest, the molecules’ conformation changes
steadily as the atoms are constantly see-sawing and there is always a lot of
movement in smaller regions as well. This is clearly visible e.g. in the SC ↪→SC of
window size c = 1 (Figure 6a). There is so much movement in the dissimilarity
function that the number of false positives is much too high. These oscillations
can be filtered by adjusting the window sizes accordingly. However using a win-
dow size that is too big can smooth out possible events. In FC ↪→FG (Figure 5)

(a) c = 1 (b) c = 10 (c) c = 20

Fig. 6. SC ↪→SC (Sliding Constant to Sliding Constant): Comparing two sliding windows
worked out very nicely for 1AKG. While smaller window sizes contain much noise,
c = 20 clearly show 3 very significant events.
(Legend: x axis: time (ns), y axis: dissimilarity, green: dissimilarity measured, blue:
μ− 1.5 ∗ σ, orange: μ+ 1.5 ∗ σ)
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(a) c = 1 (b) c = 10 (c) c = 20

Fig. 7. FC ↪→SC (Fixed Constant to Sliding Constant): In this analysis one can see, that
the conformation of the molecule is less similar to the original state in the middle of
the series and in the end returns to the initial conformation.
(Legend: x axis: time (ns), y axis: dissimilarity, green: dissimilarity measured, blue:
μ− 1.5 ∗ σ, orange: μ+ 1.5 ∗ σ)

an increasing line only is visible for all combinations, due to the fact that the
second window is too big to produce meaningful results. However the opposite
concept FG ↪→SC (as can be seen in Figure 8 works well. The outlier is observed
with the window size c = 1 (Fig. 8a).

The second part of our analysis was concerned with the question whether a
reoccurring change can also be detected in the data. Two insights were provided
by the FC ↪→SC combination. The first part of the window up to time point
100 does not change very much, however, there is an outlier at time point 52
indicating a high dissimilarity to the baseline window. Although the outlier was
smoothed out by bigger windows, they showed the overall movement trend in
the conformational states of the molecule much more clearly. Considering the
dissimilarity for FC ↪→SC and window size c = 20, the constant phase in the
beginning, the change, which was previously marked as a folding; and finally
the return to the initial state can be seen clearly (Figure 7). The reoccurring
change also becomes clear by inspecting Figure 8b where the constant behavior
is reached again after time step 400.

The last observation is provided by the plots of the SC ↪→SC combination
(Figure 6). A window size of c = 10 yields good results on the first view. When

(a) c = 1 (b) c = 10 (c) c = 20

Fig. 8. FG ↪→SC (Fixed Growing to Sliding Constant): The beginning and the end of the
change can be seen in all three error plots. However the recorring can not be detected
with the control chart.
(Legend: x axis: time (ns), y axis: dissimilarity, green: dissimilarity measured, blue:
μ− 1.5 ∗ σ, orange: μ+ 1.5 ∗ σ)
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the default threshold (μ+1.5 ∗ σ) is used, the start of the change, which should
be detected at around time 70, is not detected. The first event would therefore
not have been recognized. Using a window size of c = 20, on the other hand,
does allow this event to be detected.

5 Conclusion

In this paper we demonstrated how the EVE framework can be applied to a
complex problem, namely molecular event detection. Using this framework we
were able to identify the points of interest and demonstrated that EVE can be
used to detect events in challenging real world problems in a structure manner.
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Abstract. We are interested in objective functions for clustering
undirected and unweighted graphs. Our goal is to define alternatives
to the popular modularity measure. To this end, we propose to adapt
statistical association coefficients, which traditionally measure the prox-
imity between partitions, for graph clustering. Our approach relies on
the representation of statistical association measures in a relational for-
mulation which uses the adjacency matrices of the equivalence relations
underlying the partitions. We show that graph clustering can then be
solved by fitting the graph with an equivalence relation via the maxi-
mization of a statistical association coefficient. We underline the connec-
tions between the proposed framework and the modularity model. Our
theoretical work comes with an empirical study on computer-generated
graphs. Our results show that the proposed methods can recover the
community structure of a graph similarly or better than the modularity.

Keywords: Graph clustering, Community detection, Statistical
association measures, Modularity.

1 Introduction

Many real-world problems can be designed using graphs where entities of the
studied system are represented as nodes and their relationships as edges between
nodes. In many domains such as biology, ecology, social network analysis . . . ,
graph theory tools are employed as means for representing complex systems.
In this context, graph clustering consists in partitioning nodes into groups such
that vertices belonging to the same group are better interconnected to each
other than to vertices outside of the group. Discovering such clusters can lead to
new and important insights. In biology for example, clustering a protein-protein
interaction network helps to find proteins with the same biological function.
Another example is in social network analysis, where graph clustering leads to
the detection of community structures [1]. Such knowledge can help to better
understand the social system and its related phenomenons.

There exist many graphs clustering techniques. We particularly focus on meth-
ods that optimize an objective function. The benefit criterion aims at reflecting
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the quality of a clustering. In this context, density-based objective functions are
well-known approaches. In these cases, clusters are defined as sub-graphs with
high densities of edges. The modularity measure proposed by Newman and Gir-
van in [2] is a popular density-based objective function. It assumes that two
nodes belong to the same community if the number of edges between them is
greater than the expected number of edges under a null random model.

We address the graph clustering task from a viewpoint different from the one
underlying the modularity. We suppose that an undirected and unweighted graph
can be seen as a perturbed equivalence relation and finding groups of nodes can
be interpreted as fitting the graph with a partition. To this end, we need to quan-
tify the proximity between two partitions. In the statistical literature there are
numerous coefficients addressing this exact problem. These criteria are known
as statistical association measures (SAM) between categorical variables or par-
titions. Our proposal is thus to fit a given graph with a partition by maximizing
a SAM. However, using such measures in this context is not straightforward.
Indeed, these coefficients are typically defined by using contingency tables over
the set of categories of the two partitions. Yet, the contingency table between a
given graph (which is not an equivalence relation) and a partition does not ex-
ist. To overcome this drawback, we review the research works of Marcotorchino
who showed in [3,4], that many SAM can be equivalently expressed through the
adjacency matrices of the equivalence relations underlying the categorical vari-
ables. Based on this approach, we show how we can convert SAM to define new
density-based quality functions for graph clustering.

In section 2, we recall some density-based objective functions for graph clus-
tering. We particularly emphasize the modularity concept. Then, in section 3,
we introduce our framework. We recall SAM both in their contingency and their
relational formulations. Then we show how these measures can lead to graph
clustering methods. Moreover, we study the relationships between the modular-
ity and SAM. Next, in section 4, we empirically examine the behaviors of the
proposed objective functions on artificial graphs and we compare their results
with the ones provided by the modularity. We finally conclude and sketch some
future works in section 5.

2 Related Work: Modularity Optimization

There are several types of density-based benefit functions for graph clustering
[5,6]. One first family is based on graph cuts measures which iteratively split
the set of nodes of a graph into two, providing that the density of edges be-
tween the two clusters is low. To apply such methods, one can generally use any
max-flow/min-cut algorithm such as the Ford-Fulkerson one. Another method is
spectral clustering which computes the Fiedler eigenvector of the Laplacian of
the graph. Edges cuts criteria and the aforementioned algorithms are particu-
larly used to tackle graph partitioning problems. These tasks are slightly distinct
from graph clustering problems. In graph partitioning, the number of clusters
and their sizes are known and one has to recover the correct partition given
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these pieces of information. In contrast, in graph clustering, we do not assume
any information about the number nor the shape of the communities.

In order to better deal with the graph clustering task, Newman and Girvan
proposed the modularity concept [2]. Their approach has the advantage to better
formalize the concept of community and to avoid setting the number of clusters
manually. This measure is denoted by Q and it can be expressed as follows [7] :
Q = Number of edges within communities− Expected number of such edges.

More formally, let us assume that we are given a graph with n vertices and
m edges. Its adjacency matrix is denoted by A. Let us denote by P the pairwise
matrix of general term Pij which is the expected number of edges between nodes i
and j. Since we are concerned with undirected and unweighted graph, Pij can be
interpreted as the probability to have an edge between i and j. The modularity
can be formulated by the equation below [7] :

Q(A, δ) =
1

2m

n∑
i=1

n∑
j=1

(Aij − Pij) δ(gi, gj) . (1)

where gi is the cluster of i and δ(gi, gj) = 1 if gi = gj and 0 otherwise.
From this general formulation, Newman adopted different assumptions which

led to the definition of a specific null random model. His hypothesis are the
following ones [7] : (i) since the graph is undirected then P should satisfy the
relation, ∀i, j : Pij = Pji; (ii) Q should be null when all vertices are in a single
group and thus1

∑
i,j Aij =

∑
i,j Pij = 2m; (iii) the degrees distribution of the

random model should be approximately the same as the one of the given graph
which leads to the following constraint, ∀i :

∑
j Pij = ki where ki =

∑
j Aij is

the observed degree of node i; (iv) edges should be placed at random meaning
that the probability of observing an edge between i and j should be independent
from the probability of observing an edge involving i and the probability of ob-
serving and edge involving j. Under these assumptions, the simplest null random
model is when ∀i, j : Pij = kikj/2m [7]. Accordingly, the following modularity
formulation is the one which is commonly used in the literature :

Q(A, δ) =
1

2m

n∑
i=1

n∑
j=1

(
Aij −

kikj
2m

)
δ(gi, gj) . (2)

It is worthwhile to mention that apart from (2), other coefficients relying on
the modularity concept could be designed from (1). In that perspective, New-
man suggested that the assumptions (i) and (ii) are fundamental and should be
considered as axioms of the modularity framework unlike (iii) and (iv) [7].

Adopting (2), one can optimally solve the graph clustering problem via mod-
ularity maximization with the following integer linear program (see for e.g. [8]) :

max
Y

1

2m

∑
i,j

(
Aij −

kikj
2m

)
(1− Yij) subject to :

{
Yik ≤ Yij + Yjk ∀i, j, k
Yij ∈ {0, 1} ∀i, j .

(3)

1 In order to lighten the notations we write
∑

i,j as a shortcut for
∑n

i=1

∑n
j=1.
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where Yij = 1 if i and j are not in the same cluster and 0 otherwise.
However, optimizing the modularity (and any other objective functions) over

the set of possible partitions is an NP-hard problem. As a result, many research
works have been devoted to approximately maximize the modularity with dif-
ferent strategies and heuristics [5,6].

The application of modularity to the graph clustering task has demonstrated
good performances both on artificial and real-world networks. However, some
recent works have highlighted certain limits of this method [9]. In particular,
optimizing the modularity tends to split large groups while small communities
below a certain threshold are not correctly detected.

In the next section, we introduce new quality functions for graph clustering
which provide alternatives to the modularity criterion given in (2).

3 The Proposed Approach: Statistical Association
Measures (SAM) Optimization

Density-based techniques typically rely on the definition of a community and use
heuristics to discover sub-graphs satisfying this definition. From our viewpoint,
since clustering a given graph consists in detecting a hidden community struc-
ture, we can interpret the graph as an equivalence relation perturbed by noise.
Thereby, we argue that graph clustering can be thought of as recovering the
real community structure and this can be achieved by fitting the graph with a
partition. This approach assumes there is a way to assess the proximity between
the graph and a partition. In what follows, we introduce some statistical asso-
ciation measures which aim at measuring the similarity between two partitions
by means of contingency tables. Then, we recall the relational formulation of
these coefficients due to Marcotorchino. Using the latter expressions of SAM, we
show how to use these coefficients as benefit functions for the graph clustering
task. In that perspective, we underline some theoretical links between SAM and
the modularity concept in order to bring into light some conceptual similarities
between these two frameworks in the context of graph clustering.

3.1 SAM and Their Relational Representation

Let us assume two categorical variables V k and V l with respectively pk and
pl categories. Note that a categorical variable infers a set of disjoint groups of
items which in turn can be interpreted as a partition or a clustering or an equiv-
alence relation2. In categorical data analysis, in order to analyse the relationship
between two categorical variables, we use the contingency table of dimensions
(pk × pl) denoted by N whose general term is defined by : Nuv = Number of
items belonging to both category u of V k and category v of V l.

Then, a core concept in categorical data analysis is the deviation from the
statistical independence situation which occurs when for all pairs of categories

2 Therefore, we will use these different terms interchangeably.
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(u, v), the probability of jointly observing u and v equals the product between
the probability of observing u and the probability of observing v. Using N, this
principle translates into the following formula3 : ∀(u, v) : Nuv/n = (Nu.N.v)/n

2

where Nu. =
∑

v Nuv. In this context, the greater the difference between Nuv

and (Nu.N.v)/n (for all pairs (u, v)), the stronger the relationship between the
categorical variables.

Accordingly, we propose to study the following coefficients :

B(V k, V l) =

pk∑
u=1

pl∑
v=1

(
Nuv −

Nu.N.v

n

)2

. (4)

E(V k, V l) =

pk∑
u=1

pl∑
v=1

(
N2

uv −
N2

u.N
2
.v

n2

)
. (5)

J(V k, V l) =
1

n

pk∑
u=1

pl∑
v=1

(
Nuv

(
Nuv −

Nu.N.v

n

))
. (6)

LM(V k, V l) =

pk∑
u=1

pl∑
v=1

N2
uv

Nu.
− 1

n

pl∑
v=1

N2
.v . (7)

The SAM B, E, J and LM are respectively the Belson [10], Marcotorchino’s
square independence deviation [3], the Jordan4 [11] and the Light-Margolin [12]
criteria. They are all null in case of statistical independence. B and LM can
only have positive values while E and J can be either positive or negative [3].
Given V k, these coefficients achieve their maxima when V l is exactly the same
partition as V k [3].

The contingency representation is the usual way to introduce SAM. However,
there exists an equivalent representation of these coefficients which emphasizes
the relational nature of categorical variables. Indeed, as we mentioned before-
hand, categorical variables are equivalence relations and such algebraic struc-
tures can be represented by graphs. This point of view was adopted by Mar-
cotorchino and enabled him to formulate SAM with adjacency matrices5 [3,4].
Let us denote by Ck the adjacency matrix6 associated to V k. Its general term is
defined by Ck

ij = 1 if i and j belong to the same category and 0 otherwise. Mar-
cotorchino provided correspondence formulas between the contingency table N
on the one hand and the relational representations Ck and Cl on the other hand
[3,4]. Here are some of these transformation formulas : (i)

∑pk

u=1

∑pl

v=1 N
2
uv =∑n

i=1

∑n
j=1 C

k
ijC

l
ij ; (ii)

∑
u N

2
u. =

∑
i,j C

k
ij ; (iii)

∑
u,v NuvNu.N.v =

∑
i,j((C

k
i.+

3 In order to lighten the notations we write
∑

u as a shortcut for
∑pk

u=1.
4 It is actually an interpretation of Jordan’s measure given by Marcotorchino in [3].
5 The study of association and aggregation of binary relations using graph theory
and mathematical programming led to the Relational Analysis method developed
by Marcotorchino and which has many applications in statistics, data-mining and
multiple-criteria decision making (see for e.g. [13] and references therein).

6 Also called relational matrix in the Relational Analysis framework.
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Ck
.j)/2)C

l
ij ; (iv)

∑
u,v(N

2
uv/Nu.) =

∑
i,j(2C

k
ij/(C

k
i. + Ck

.j))C
l
ij where Ck

i. =∑
j C

k
ij and Ck

i. = Ck
.i since Ck is symmetric.

Applying these correspondence formulas enables the following expressions of
SAM in terms of Ck and Cl :

B(Ck, Cl) =

n∑
i=1

n∑
j=1

(
Ck

ij −
Ck

i.

n
−

Ck
.j

n
+

Ck
..

n2

)
Cl

ij . (8)

E(Ck, Cl) =

n∑
i=1

n∑
j=1

(
Ck

ij −
Ck

..

n2

)
Cl

ij . (9)

J(Ck, Cl) =
1

n

n∑
i=1

n∑
j=1

(
Ck

ij −
1

2

(
Ck

i.

n
+

Ck
.j

n

))
Cl

ij . (10)

LM(Ck, Cl) =

n∑
i=1

n∑
j=1

(
2Ck

ij

Ck
i. + Ck

.j

− 1

n

)
Cl

ij . (11)

It is noteworthy that the different formulations of the statistical independence
deviation with contingency tables in (4), (5), (6) and (7), translate into different
types of deviation concepts in the relational representation (8), (9), (10) and
(11). Such properties were examined in [14] and led to the formalization of the
central tendency deviation principle in cluster analysis. Indeed, one can observe
the following central tendencies : in (9) Ck

../n
2 is the mean average over all the

terms of Ck; in (10) (Ck
i. + Ck

.j)/2n is the arithmetic mean of Ck
i./n and Ck

.j/n
and in (11) 1/n is the mean average over all terms of the matrix of general term
2Ck

ij/(C
k
i. + Ck

.j) (which is equivalent to Ck
ij/C

k
i.). Regarding (8), the central

tendency concept is of geometrical nature. Since Ck is a dot product matrix (or
Grammatrix) the transformation of Ck

ij into C
k
ij−Ck

i./n−Ck
.j/n+Ck

../n
2 is known

as the double centering (or Torgerson) transformation. This operation results in
dots products between vectors centered with respect to the mean vector.

Now that we have provided the expression of SAM using the graph relations
underlying partitions, we show in the next paragraph how to employ such criteria
for clustering graphs.

3.2 Graph Clustering by Maximizing SAM

We interpret a given undirected and unweighted graph as a perturbed equiv-
alence relation and clustering the graph can be seen as attempting to recover
the real partition. To solve the graph clustering task, we thus propose to fit
the graph encoded by its adjacency matrix A with an equivalence relation by
maximizing one of the SAM introduced previously. In other words, we want to
find the partition that is the most similar to A according to a given SAM. More
formally, we introduce the following benefit functions for clustering graphs :

B(A,X) =
n∑

i=1

n∑
j=1

(
Aij −

(
Ai.

n
+

A.j

n
− A..

n2

))
Xij . (12)
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E(A,X) =

n∑
i=1

n∑
j=1

(
Aij −

A..

n2

)
Xij . (13)

J(A,X) =
1

n

n∑
i=1

n∑
j=1

(
Aij −

1

2

(
Ai.

n
+

A.j

n

))
Xij . (14)

LM(A,X) =
n∑

i=1

n∑
j=1

(
2Aij

Ai. +A.j
− 1

n

)
Xij . (15)

where X is the adjacency matrix of the partition we want to recover and whose
general term is Xij = 1 if nodes i and j are in the same cluster and 0 otherwise.

X represents an equivalence relation which, from an algebraic standpoint, is
a binary relation with the following properties : (i) reflexivity (Xii = 1, ∀i); (ii)
symmetry (Xij = 1 ⇔ Xji = 1, ∀i, j) and (iii) transitivity (Xij = 1 ∧ Xjk =
1⇒ Xik = 1, ∀i, j, k). Marcotorchino and Michaud showed that these relational
properties can be formulated as linear constraints throughX [15] and this finding
allowed them to model the clustering problem as an integer linear program :

max
X

Δ(A,X) subject to :

⎧⎪⎪⎨⎪⎪⎩
Xii = 1 ∀i
Xij −Xji = 0 ∀i, j
Xij +Xjk −Xik ≤ 1 ∀i, j, k
Xij ∈ {0, 1} ∀i, j

. (16)

where, in our case, Δ(A,X) is either (12) or (13) or (14) or (15).
It is important to mention that this integer linear program allowed Marco-

torchino to design the maximal association model for clustering data described by
categorical variables. In Marcotorchino’s works, A was considered as an equiva-
lence relation [15] or the sum over several equivalence relations [16]. Our proposal
can thus be understood as the extension of the maximal association framework
to graph clustering by considering A to be a general adjacency matrix without
any particular property (except being undirected).

Before moving to the section dedicated to the experiments, we establish some
interesting relationships between the modularity framework and our proposal
based on SAM.

3.3 Some Relationships between Modularity and SAM

Firstly, using the notations introduced previously, the standard modularity de-
fined in (2) can be reformulated as below :

Q(A,X) =
1

A..

n∑
i=1

n∑
j=1

(
Aij −

Ai.A.j

A..

)
Xij . (17)

In addition to the correspondence formulas given in paragraph 3.1, let us intro-
duce the following identity : (v)

∑
v(
∑

u Nu.Nuv)
2 =

∑
i,j C

k
i.C

k
.jC

l
ij [4]. From

this equation, if we identify Ck and Cl to A and X respectively and if we assume
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A and X to be partitions associated to two categorical variables V k and V l, we
can easily show that the modularity given in (17) can be expressed by means of
a contingency table as follows :

Q(V k, V l) =
1∑pk

u=1 N
2
u.

⎛⎝ pk∑
u=1

pl∑
v=1

N2
uv −

1∑pk

u=1 N
2
u.

⎛⎝ pl∑
v=1

(
pk∑
u=1

Nu.Nuv

)2
⎞⎠⎞⎠ .

(18)
Then, one can easily check that Q(V k, V l) is null in case of statistical indepen-
dence between V k and V l. This outcome shows the potential application of the
modularity measure in categorical data analysis.

Let us now place the SAM in the context of the modularity concept developed
by Newman. Let us formally introduce the following central tendencies : μQ

ij =

Ai.A.j/A..; μ
B
ij = Ai./n+A.j/n−A../n

2; μE
ij = A../n

2; μJ
ij = Ai./(2n)+A.j/(2n)

and μLM
ij = 1/n. In that case, (17), (12), (13), (14) and (15) can all be refor-

mulated as : α
∑n

i=1

∑n
j=1(Aij − μZ

ij) with Z ∈ {Q,B,E, J, LM}, α = 1 when
Z ∈ {B,E,LM}, α = 1/A.. when Z = Q, α = 1/n when Z = J and by substi-

tuting Aij with Âij = 2Aij/(Ai. +A.j) when Z = LM . This expression of SAM
better underlines the connections between the general modularity framework
given in (1) and cluster analysis methods based on the central tendency devia-
tion principle [14]. Furthermore, one can easily check that Newman’s axioms we
recalled in section 2 are both satisfied by all SAM under study except the LM
method : (i) ∀i, j : μZ

ij = μZ
ji for Z ∈ {B,E, J, LM}; (ii)

∑
i,j Aij =

∑
i,j μ

Z
ij for

Z ∈ {B,E, J}. As a result, B, E and J fit in the modularity model. However,
hypothesis (iii) and (iv) are not satisfied by any SAM under study except B for
which we have (iii) ∀i :

∑
j μ

B
ij = ki = Ai..

In such a context, it is also interesting to notice that the SAM E given in (13)
corresponds to another suggested modularity model which assumes a Bernoulli
distribution for Pij in (1) and which boils down to the following constant7,
Pij = A../n

2, ∀i, j [7].
After having introduced the proposed objective functions and some properties

about the relationships between the modularity concept and SAM, we examine
in the next section if our proposals lead to interesting graph clustering methods
from an empirical standpoint. Another goal of these experiments is to enable
us to initiate a comparison between the modularity framework and SAM based
optimization with regard to the hypothesis underlying each method.

4 Experiments

Our experiments are based on computer-generated graphs of different sizes. We
give below the details about the algorithm we used to maximize the different
density-based objective functions presented previously. We explain the tool we

7 Note that in the case of E, we assume that the graph is reflexive unlike Q. In the
latter case, the constant is A../(n(n− 1)).
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employed and the parameters we set to generate the artificial graphs. We then
analyse the quality of the graph clustering results obtained with the different
techniques.

4.1 Greedy Optimization by Agglomerative Hierarchical Clustering

The optimization problems given in (16) and (3) are NP-hard8, and thus, numer-
ous heuristics attempting to provide sub-optimal solutions have been proposed
(see for e.g. the surveys [5,6,1]). In our experiments, we used the greedy optimiza-
tion algorithm proposed by Newman in [17] in order to maximize the modularity
criterion given in (2).

This heuristic is based on a simple agglomerative hierarchical clustering strat-
egy. It starts with n distinct clusters and at each iteration it merges the two
clusters that allow the best improvement of the modularity value. The merging
process goes on until there is no pair of clusters whose fusion enables increas-
ing the modularity value. This heuristic has the advantage to avoid fixing the
number of clusters as a parameter.

This algorithm can be applied to other kinds of quality measures and in order
to provide a fair comparison between the different objective functions, we thus
used this technique to maximize (12), (13), (14) and (15) as well.

4.2 LFR Benchmark Graphs

The computer-generated graphs we analyzed in our experiments rely on the
LFR benchmarks proposed by Lancichinetti, Fortunato and Radicchi in [18,19].
These benchmarks aim at providing the research community with graphs whose
properties reflect real-world cases. Indeed, observed complex networks are char-
acterized by heterogeneous distributions both for node degrees and cluster sizes.
As a consequence, the authors developed a model that generates graphs which
satisfy these features. They also implemented a freely available tool9 that we
used to conduct our empirical work.

Their approach is based on the planted l-partition model in which node de-
grees follow a power law distribution with exponent τ1 and clusters size a power
law distribution with exponent τ2. Overall the parameters of their model are :
(i) n the number of nodes; (ii) the average degree of nodes; (iii) the maximum
degree of nodes; (iv) τ1; (v) τ2 and (vi) μ ∈ [0, 1] the mixing parameter. The
latter parameter μ is the one that allows gradually monitoring the presence or
the absence of a community structure in the graph. It represents the percent-
age of edges that a node shares with vertices that do not belong to its group.
Therefore, as μ grows, the community structure progressively degrades and the

8 Note that the constraints in (16) and in (3) are equivalent : the former models
the properties of an equivalence relation while the latter models the properties of the
complementary of an equivalence relation which is a distance relation satisfying the
triangle inequality constraint.

9 http://santo.fortunato.googlepages.com/inthepress2

http://santo.fortunato.googlepages.com/inthepress2
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limit case μ = 1 corresponds to the situation where edges are totally placed ran-
domly. Typically, we assume that there is a strong community structure within
the graph as long as μ < 0.5.

4.3 Experiments Settings and Results

We studied graphs of different sizes : 500, 1000 and 2000 nodes. We used the same
parameters values as in [19] : the average degree was set to 20; the maximum
degree to 50; τ1 = 2; τ2 = 1 and we vary μ from 0 to 0.7 with a 0.1 step.

The LFR benchmark graphs also provide a built-in community structure
which allowed us to compare the clustering results with the real partition. To
assess the proximity between the found partition and the ground-truth, the nor-
malized mutual information (NMI) measure was used. Let us denote by V k the
clustering output of our algorithm with pk clusters and by V l the real clustering
with pl groups. Let P (V k = u, V l = v) = P (u, v) = Nuv/n be the probability
of jointly observing u and v and let P (u) = Nu./n and P (v) = N.v/n be the
probability of observing u and v respectively. The mutual information measure
between V k and V l denoted by I(V k, V l) is defined as follows : I(V k, V l) =∑pk

u=1

∑pl

v=1 P (u, v) log(P (u, v)/(P (u)P (v))). Its normalized version denoted by
NMI(V k, V l) is then given by NMI(V k, V l) = 2I(V k, V l)/(H(V k) + H(V l))
where H(V k) = −

∑
u P (u) log(P (u)) is the entropy of V k. The NMI measure

ranges from 0 and 1. It equals 1 when V k = V l and it is null when V k and V l

are statistically independent. Note that we used the NMI coefficient to assess
our clustering models because this measure is often used in the graph clustering
literature (see for e.g. [19]). In that way, we can also position our contributions
with respect to other papers and graph clustering techniques.

To have a better estimation of the performances, we generated 5 different
graphs for each distinct parameter setting and we took the median value. The
experimental results obtained for NMI measures are shown in the first row of
Fig. 1. We also computed the number of clusters found by each method in order
to examine if the different techniques are able to recover the right number of
clusters. In this case, we also took the median over the 5 trials. These results
are shown in the second row of Fig. 1.

The first row of Figure 1 allows us to compare the quality of the clustering
outputs found by the different methods. We claim the following outcomes : (i) as
expected, all the methods have their quality diminishing as μ grows; (ii) the LM
coefficient dominates the modularity Q and other methods and this superiority
seems to grow with the size of the graphs; (ii) B and J perform similarly than
Q whatever the size of the graphs; (iii) E is the less good approach and it
particularly performs the worst when μ ∈ [0.3, 0.7].

Concerning the number of clusters found, we can make the following observa-
tions from the second row of Fig. 1 : (i) the number of real communities provided
by the LFR benchmarks is stable and varies around 20, 40 and 80 for graphs of
size 500, 1000, 2000 respectively; (ii) except for E with graphs of size 500, all
the techniques produce less clusters than the correct number of groups; (iii) as μ
grows the number of clusters decreases for all the methods and beyond a certain
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Fig. 1. First row : NMI values (vertical axis) versus mixing parameters μ (horizontal
axis). Second row : Number of clusters found (vertical axis) versus mixing parameters
μ (horizontal axis). We show the curves for each objective function. From left to right,
the plots correspond to graphs with 500, 1000 and 2000 nodes respectively.

point (approximately 0.6 for Q, B, LM ; 0.5 for J and 0.3 for E), it tends to
either grow or stabilize; (iv) the LM criterion tends to produce more clusters
than Q, B and J .

Overall, B and J are comparable to Q while LM is clearly a better objective
function than the other ones. One reason that could explain the superiority of
LM is the fact that it implicitly transforms the binary matrix A into a non
negative one, Â whose general term is Âij = 2Aij/(Ai. + A.j). Then its related
central tendency scheme, μLM

ij = 1/n, gives the same value for all pairs of nodes
(i, j). Such an approach is indeed different from the other quality functions
we examined, since they all keep the binary matrix but what changes from
one function to the other is the underlying central tendency scheme μZ , Z ∈
{Q,B, J,E} as we underlined in paragraph 3.3.

Moreover, our experimental results invite us to further analyze the hypothesis
underlying the different objective functions. Regarding Newman’s assumptions
for the modularity given in (2), it is interesting to notice that B and J perform
similarly than Q despite the fact they do not satisfy all the hypothesis assumed
by the latter criterion. More importantly, LM violates most of Newman’s hy-
pothesis but outperforms all other methods including Q.

5 Conclusion

We have proposed new objective functions for clustering undirected and un-
weighted graphs. Our method consists in maximizing SAM represented in their
relational representation, in order to fit the given graph with a partition. Our
empirical study on artificial graphs has shown encouraging results. Most of the
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proposed SAM perform equivalently or better than the modularity criterion.
In particular, the Light-Margolin coefficient dominates the latter approach. As
for future work, we plan to develop the analysis provided in paragraph 3.3 and
leverage the empirical results presented previously by further comparing the
modularity concept and SAM from a theoretical viewpoint. We also plan to ex-
tend our experiments on larger graphs both for computer-generated cases and
for real-world networks in order to further validate our findings.
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Universitat Politècnica de Catalunya
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Abstract. The practical success of association rule mining depends
heavily on the criterion to choose among the many rules often mined.
Many rule quality measures exist in the literature. We propose a proto-
col to evaluate the evaluation measures themselves. For each association
rule, we measure the improvement in accuracy that a commonly used
predictor can obtain from an additional feature, constructed according
to the exceptions to the rule. We select a reference set of rules that are
helpful in this sense. Then, our evaluation method takes into account
both how many of these helpful rules are found near the top rules for
a given quality measure, and how near the top they are. We focus on
seven association rule quality measures. Our experiments indicate that
multiplicative improvement and (to a lesser extent) support and leverage
(a.k.a. weighted relative accuracy) tend to obtain better results than the
other measures.

Keywords: Association rules, Feature Extraction, Prediction, Support,
Confidence, Lift, Leverage, Improvement.

1 Introduction and Preliminary Definitions

Association rules have the syntactic form of implications, X → A, where X is a
set of items and A is an item. Although several works allow for several items in
the right-hand side (often under the term partial implications, e.g. [20]), here,
like in many other references, we follow [2,6] and restrict ourselves to single-
item consequents. Semantically, association rule X → A is expected to mean
that A tends to appear when X appears. However, there are many different
formalizations for such a relaxed implication; this issue applies both to supervised
learning and in the context of associations, see [13,15,17,18,24].
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We aim at finding ways to objectively evaluate the rule quality measures
themselves. One existing approach consists of generating algorithmically datasets
where certain itemsets are to be found later [27]. We explore an alternative ap-
proach to the same end. This paper is based on the following informal working
hypothesis: since different rule quality measures select different association rules,
we might be able to compare objectively these sets of “top” rules by combining
them with other Data Mining decision processes, and evaluating their contribu-
tion. Specifically, here we relate associations with feature extraction and with
predictors.

In classification problems of Machine Learning, feature selection and extrac-
tion are processes, often considered as preprocessing, through which better ac-
curacies can be sometimes obtained. Along these processes, every observation
acquires, explicitly or implicitly, additional columns, that may even fully replace
the original features. It is a wide area with a large body of references: see [16]
and the references there.

In our previous paper [4], we explored the average accuracy improvements
(which can be negative) of predictors as new features are added to the observa-
tions. Each of these added features is Boolean, and flags exceptions to association
rules. In turn, these association rules are picked as the “top-N”, according to
each of several popular rule quality measures. In that paper, our results indi-
cated, essentially, very little average positive accuracy increment or, in many
cases, none at all. Also, the differences among the average accuracy increments
for several quality measures were rather marginal.

Hence, we focus now on individual rules that actually do improve accuracy.We
propose to evaluate rule quality measures according to how many of these helpful
rules are found among the top-quality rules for the measure, and how close to
the top they appear. We study two variants, depending on whether it is desired
to employ the new feature for actual classification tasks. We demonstrate our
new score on seven quality measures, and find that multiplicative improvement
and, to a lesser extent, support and leverage (a.k.a. weighted relative accuracy)
tend to obtain better scores.

We must point out here that we do not wish to argue, nor even implicitly
suggest, that helpfulness for classifiers, at the current status of our understand-
ing, is to be equated with subjective interest for the user. However, our proposal
combines, in an interesting, novel way a precise formal definition, leading to
numeric scores, with other data mining processes that could take place on the
same data.

2 Setting

Our notation is standard. The reader is assumed to be familiar with association
rules (see the survey [9]), and with the C5.0 tree-based predictor, an improved
version of C4.5 [23]. See also e.g. [25] and the references there.

For our development, we need our datasets both in relational and transac-
tional formats. In transactional datasets, each observation (“row” or “transac-
tion”) consists of a set of items. In the relational case, each observation (“row”)



70 J.L. Balcázar and F. Dogbey

consists of an observed value for each of a fixed set of attributes (“columns”). We
use a relational and a transactional variant for each dataset. Association rules
are computed on the transactional variant, then used to add extra features (new
columns) to the relational variant before passing it on to the predictor. Trans-
actional data can be seen as relational in several non-equivalent ways; here, we
consider one binary column per item. Thus the association rules only use positive
appearances from the relational table. Relational datasets are casted in trans-
actional form through the fully standard approach of adding one item for each
existing pair 〈attribute,value〉.

The support of an itemset in a transactional dataset is the number of trans-
actions in which it is contained. It is used often normalized, by dividing by the
total number of transactions, and then it is akin to a frequentist estimator of
the probability of the itemset. Accordingly, we will denote by p(X) the normal-
ized support of itemset X . This notation is naturally extended to conditional
probabilities p(A|X) = p(AX)/p(X).

2.1 Rule Quality Measures

There are literally dozens of measures proposed in the literature for choosing
association rules. They assign a real number as a value to each association rule.
This value can be used either by thresholding, thus discarding rules that re-
ceive low value, or by priorization, by sorting the rules obtained according to
their value. There are many studies of the properties of the different measures;
see [15,17,18,24]. To evaluate association rule X → A, most measures involve
an arithmetic combination of the quantities p(X), p(A), and p(XA). We define
now the measures we are interested in.

Definition 1. [1] The support of association rule X → A is s(X → A) =
p(XA).

Definition 2. [1,20] The confidence of association rule X → A is c(X → A) =
p(A|X) = p(XA)/p(X).

The most basic and widely applied scheme for selection of association rules
consists in imposing thresholds for the support (thereby reducing the exponen-
tially growing exploration space of itemsets) and for the confidence.

Definition 3. [17] The relative confidence of association rule X → A, also
called centered confidence or relative accuracy, is r(X → A) = p(A|X)−p(A) =
c(X → A)− c(∅ → A).

The relative confidence is, therefore, measuring additively the effect of “adding
the condition” or antecedent X on the support of the consequent A.

Definition 4. [8] The lift of association rule X → A is (X → A) = p(XA)
p(X)×p(A) .

Definition 5. [17,22] The leverage of association rule X → A is v(X → A) =
p(XA)− p(X)× p(A).
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Both in lift and in leverage, if supports are unnormalized, extra factors n are
necessary. A widespread criticism of lift and leverage is that they are symmetric,
that is, give the same value to the rule obtained by permuting antecedent and
consequent, and, therefore, fail to support the intuitive directionality of the
syntax X → A.

In case of independence of both sides of the rule at hand, p(XA) = p(X)p(A);
therefore, both lift and leverage are measuring deviation from independence:
lift measures it multiplicatively, and leverage does it additively. By multiplying
and dividing by p(X), it is easy to check that leverage can be rewritten as
v(X → A) = p(X)(p(A|X) − p(A)) = p(X)r(X → A), and is therefore called
also weighted relative accuracy [17].

One of the few published measures that do not depend only on the supports
p(X), p(A), p(XA), and similar quantities, but requires instead exploring a larger
space, is:

Definition 6. [5,19] The improvement of association rule X → A, where
X �= ∅, is i(X → A) = min{c(X → A)− c(Y → A)|Y ⊂ X}.

Improvement generalizes relative confidence by considering not only the alter-
native rule ∅ → A but all rules where the left-hand side is some proper subset of
X . The same process can be applied to lift, which is, actually, a multiplicative,

instead of additive, version of relative confidence: (X → A) = p(XA)
p(X)×p(A) =

c(X→A)
p(A) = c(X→A)

c(∅→A) . Taking inspiration in this correspondence, we introduced

in [4] a multiplicative variant of improvement that generalizes lift, exactly in the
same way as improvement generalizes relative confidence:

Definition 7. The multiplicative improvement of association rule X → A,
where X �= ∅, is m(X → A) = min{c(X → A)/c(Y → A)|Y ⊂ X}.

2.2 Datasets

A key condition we have imposed on our empirical study is to employ datasets
that allow for sensible relational and transactional formulations without resorting
to further algorithmics. In this sense, numeric attributes may need a discretiza-
tion process and, then, it would be far from clear how to tell which empirical
effects were due to the interaction between the associator and the classifier, as we
wish to study, and which ones were introduced by the discretization phase. We
restrict ourselves to datasets that allow for direct run of a standard associator.

We introduce now the datasets on which we run our tests. They are among
the far most common benchmark datasets in association rule quality studies. All
of them are publicly available [11].

Cmc is short for Contraceptive Method Choice, and contains data from an
Indonesian survey of demographic features, socio-economic features and con-
traceptives choices (predicted attribute) among married women. The dataset is
made up of 1473 observations and 10 attributes. Adult contains census infor-
mation, extracted from questionnaire data. It has 48842 observations and 11



72 J.L. Balcázar and F. Dogbey

Table 1. Size, items, support, rules, and initial accuracies of C5.0

Dataset Size Nb. of items Attrib. Predict Supp. Nb of rules C5.0 Accur.

Cmc 1473 74 Contracep. Meth. 1% 19067 50.17%
Adult 48842 272 Income 1.18% 19840 83.49%
German 1000 1077 Customer class 11.75% 19762 72.69%
Votes 435 50 Party 22.5% 19544 95.40%
Mushroom 8124 119 Cap surface 15.9% 19831 53.30%

attributes. As usual for this dataset, we predict whether the annual income of
individuals is over a certain threshold (50K). We prepared the adult dataset by
merging the known train and test sets. We removed the four numeric attributes
fnlwgt (final weight), education-num (which is redundant), capital-gain, and
capital-loss. German is a dataset on credit scoring from Germany. There, the
data from clients must be used to predict whether the client is a good candi-
date to receive a loan. It has been suggested that prediction should be made by
weighting differently (by a factor of 5) mistakes in predicting good than mis-
takes in predicting bad; however, in order to keep fair comparisons with all our
other datasets, here we did not weigh differently the mistakes. Votes records
votes of representatives from the US Congress to a number of law proposals in
1984; the attribute to be predicted is the party the representative belongs to.
Finally, Mushroom reports characteristics that can appear together in a sam-
ple of certain mushroom species. The usual prediction task for this dataset is
whether the exemplar is edible or poisonous. However, the predictor attains full
accuracy directly on the original data, which renders the task useless to evaluate
association rule quality measures according to our proposal. Therefore, we only
report on results predicting the sort of “cap surface” of the exemplar, given the
rest of the attributes. The attributes to be predicted are two-valued for all the
datasets, except for Cmc and Mushroom, where predictions are respectively
three-valued and four-valued.

Table 1 indicates the main characteristics of the chosen datasets. The size is
the number of observations; the number of items is the total of different values
existing for all the attributes, and, therefore, coincides with the number of items
in the transactional version of the dataset. For each dataset, we impose a support
constraint and compute association rules with no confidence constraint with a
standard Apriori associator [6]. Since our purposes are essentially conceptual,
here we are not (yet) after particularly fast algorithmics, and that associator
was often fast enough. The support is set at a value appropriate for Apriori to
yield between 19000 and 20000 rules in these conditions. These supports were
identified manually, and are also reported in the table, together with the number
of rules. We also report in the table the baseline accuracies of C5.0, for each
dataset, before any extra features are added.

The feature extraction and accuracy test is developed as follows. For a given
association rule, an enlarged relational version of the dataset is fed to the predic-
tor: it contains one additional binary column, which indicates whether each row is
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an exception of the association rule, that is, fulfills the antecedent of the rule but
not the consequent. Only rules of confidence higher than 50% and strictly lower
than 100% (in order to ensure the presence of exceptions) are recorded; also,
only rules with nonempty antecedent are employed: otherwise, the additional
feature would be redundant, flagging just failure of the consequent. The param-
eter settings of C5.0 are left at their default values. The accuracy of the predictor
on the enlarged dataset is compared to the accuracy obtained on the original
unexpanded dataset. All accuracies are computed by 10-fold cross-validation.

In [4], for each rule quality measure under study, the top N rules were
recorded, and the accuracy test performed as just described; then, the process
continued by averaging, separately by measure, the resulting accuracy changes.
The average accuracy, however, changed little if we compare among them the
different rule quality measures, and its ability to evaluate rule quality measures
is, thus, debatable. Thus, a finer analysis is needed. This is the aim of the present
paper.

3 A Score for Rule Quality Measures

This section describes our major contribution: a score for association rule quality
measures in terms of usefulness for predictive tasks. Our proposal for a finer
evaluation of the rule quality measures is as follows: first, one identifies a number
of “good”, helpful, rules, that is, rules whose corresponding new features do
improve clearly the accuracy of the predictors. Then, we can evaluate how many
of these good rules actually appear among the top N rules according to each of
the measures. Thus, we ask ourselves which rule quality measure is able to pick
these “good” rules.

Let us move on into the details. First of all, we need to fix a predictor. We
use one of the most popular options, namely C5.0. Other commonly employed
predictors might be studied in later work; but we note here that [4] included
Näıve Bayes predictors (see our discussion of its inappropriateness there), and
that numerically-based Support Vector Machines are difficult to conciliate with
the categorical attributes that we look for in order to have sensible transactional
versions of our datasets without resorting to additional discretizations.

Then, we require to work with a set of rules that, through our feature addition
process, increase the C5.0 accuracy by a certain amount. We denote the set of
selected rules as G. For each dataset, we select for G those association rules that
lead to noticeable accuracy improvements, after adding the new feature flagging
exceptions to the rule, as indicated above. In order to be somewhat fair, these
rules are taken from the joint pool of all the top-N rule sets provided by all our
measures. In our case, we will use N = 50. More precisely, from all these rules,
50 from each measure (with a handful of duplications), in turn,

1. the dataset is expanded with one further feature flagging the exceptions, as
already indicated,

2. the predictor is run both on the expanded dataset and on the original dataset,
3. the respective accuracies are evaluated via 10-fold cross-validation, and
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4. the relative improvement of accuracy (ratio among both accuracies) is
determined.

This allows us to identify the set G of helpful rules: those that increase by ε
the accuracy of the predictor upon having the new feature available. We set
ε = 0.5%. To each quality measure, we can assign now a score related to how
many of these rules from G do actually appear among the top N rules.

We observe that it is better if helpful rules are captured near the top. Hence,
we wish to assign a higher score for a measure both if more helpful rules from
G are captured, and if they are captured near the top. More precisely, assume
that any given measure has, among its top N rules, k rules from G, and that
they are in positions a1, . . . , ak, for 1 ≤ ai ≤ N . Then, we assign to it the score

1

ZD

k∑
i=1

(N + 1− ai) =
1

ZD
(k(N + 1)−

k∑
i=1

ai)

In this way, hitting a helpful rule as first one (ai = 1) contributes N units to
the score; ai = 2 contributes N − 1, and so on. The value N + 1 ensures that
even the rule at the N -th place, ak = N , would contribute something, if little.
The value ZD is a dataset-dependent normalization factor, defined as the highest
score reached by any of the measures for that dataset. Its aim is to provide us
with a way of comparing the outcomes of the experiments on different datasets
along the same scale: ZD is set in such a way that the rule quality measure that
reaches highest score is scored exactly at 1. (A different option for normalization
could be the maximum reachable value. We prefer this ZD as the other option
leads to very small values, harder to undertand, for all measures tested.) Then,
the presence of values substantially less than 1 means that some rule quality
measures are substantially worse than the best one, whereas, if all scores are near
1, it means that the dataset is such that the different measures score relatively
similarly.

In a sense, this proposal corresponds to the natural “tuning” of an Area-
Under-Curve (AUC) approach [7,10]. In the usual computation of AUC, binary
predictions are ranked, and low-ranked predictions are expected to correlate
with negative labels, and high-ranked predictions with positive labels. On the
other hand, here, many of the rules in the set G may not be “ranked” at all by
a given measure, if they do not appear among the top-N . Of course, we must
take this fact into account. Except for this, our score can be seen actually as an
area-under-curve assessment.

4 Empirical Results

We report the scores for our datasets, and provide below also the outcome of a
variant of the process, in which we will disallow the access to some attributes
at the time of computing association rules. In the first variant, though, the
associator has no such limit.
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Table 2. Scores and other parameters at 0.5% accuracy increase

Dataset Conf. Lift R. conf. Impr. M. impr. Supp. Lev. |G| Max. ZD

Adult 0 0.25 0 0.24 0.28 1 0.02 34 20 507
Cmc 0.95 0.98 0.93 1 0.97 0.98 0.94 253 47 1220
Votes 0.22 0.52 0.35 0.64 0.82 0.67 1 71 17 425
German 0.17 0.56 0.46 0.79 1 0.35 0.21 72 27 745
Mushroom 0.41 0 0.22 0.49 1 0.56 0.26 18 4 148
(predict cap surface)

4.1 Associator Accesses All Attributes

Our experiments use, as indicated, a very mild threshold of at least ε = 0.5%
accuracy increase in determining the helpfulness of a rule; see Table 2. We also
ran experiments on a quite large dataset with census data of elderly people
(about 300000 transactions) but, after considerable computational effort, no rule
at all was found helpful for that dataset.

Both in this table and in the next, different typefaces mark the highest and the
lowest nonzero scores per dataset: boldface marks the measure scoring highest
and italics the measure(s) scoring lowest; if some are zero, the lowest nonzero is
also marked. We also report the value of ZD to show how the unnormalized-sum
score varies considerable among the datasets. We report as well the size of the
set of helpful rules and the maximum amount of helpful rules, “Max.”, found
among the top 50 rules as all measures are considered. Except for one dataset,
this column shows that only a small part of the top rules for each measure are
actually helpful.

Generally speaking, we see that multiplicative improvement tends to attain
higher values of our score, whereas both confidence and relative confidence tend
to perform rather poorly; support, leverage, and, to a lesser extent, also lift and
improvement offer relatively good scores. Altogether, however, each measure only
catches a handful of the set of good rules.

4.2 Disallow the Associator Access to the Predicted Class

We explore now the following issue: besides the usage for ranking rule quality
measures, do we intend to actually employ the new features obtained from the
helpful rules to improve the performance of the classifiers?

This question is relevant because, in the affirmative case, we cannot afford
to make use of the predicted attribute for the computation of the new features:
upon predicting, it will be unavailable. Thus, this attribute is to be excluded
from the computation of association rules.

The price is that we rely on hypothetical correlations between the class at-
tribute and the exceptions to rules that do not involve the class attribute; these
correlations may not exist. In contrast, in the previous section, exceptions to all
rules, whether they involve or not the class attribute, are available. The results
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Table 3. Scores at 0.5% accuracy increase (class disallowed)

Dataset Conf. Lift R. conf. Impr. M. impr. Supp. Lev. |G| Max. ZD

Cmc 0.88 0.90 0.89 0.91 0.96 0.99 1 261 48 1236
Votes 0.87 0.53 0.22 0.90 0.53 0.76 1 47 9 264
German 1 0.59 0.34 0.70 0.68 0.61 0.34 39 8 250
Mushroom 0.18 0.41 0.15 0.56 1 0.57 0.57 20 9 216
(predict cap surface)

in this section were therefore obtained by excluding the predicted attribute from
the computation of the association rules, all the rest being the same. The results
are given in Table 3. There was only one helpful rule for the Adult dataset:
|G| = 1; hence, it is omitted from this table.

The figures support the candidacy of leverage, multiplicative improvement,
and support as occassionally good measures; however, all show some cases of
mediocre performance. The outcomes are also less supportive of lift. The unreli-
ability of relative confidence is confirmed, and the behavior of confidence is more
erratic than in the previous case: top or close to the top for some cases, low and
close to the minimum scores in others.

A fact we must mention is the direct effect of allowing the class attribute to
appear in the associations. Comparing both tables, we see that several datasets
provide a larger |G| if the class is available, but not substantially larger; and it
is in fact smaller for other datasets. In general, with or without access to the
predicted class attribute, in most datasets, few helpful rules are captured by
each measure (“Max.” columns in both tables). The access to the class attribute
is not, therefore, as key a point as it could be intuitively expected.

5 Conclusions and Further Work

Along a wide study of proposals to measure the relevance of association rules,
we have added a novel approach. We have deployed a framework that allows us
to evaluate the rule quality evaluation measures themselves, in terms of their
usefulnes for subsequent predictive tasks.

We have focused on potential accuracy improvements of predictors on given,
public, standard benchmark datasets, if one more Boolean column is added,
namely, one that is true exactly for those observations that are exceptions to one
association rule: the antecedent holds but the consequent does not. In a sense, we
use the association rule as a “hint of outliers”, but, instead of removing them,
we simply offer direct access to this label to the predictor, through the extra
column.

Of course, in general this may lead astray the predictor instead of helping it.
In our previous work [4] we presented an initial analysis of the average change
of accuracy, and saw that it may well be negative, and that, generally speaking,
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it does not distinguish well enough among various rule quality measures. There-
fore, we have concentrated on an analysis based on selected rules that actually
provided accuracy increases. We defined a score for rule quality measures that
represents how well a given measure is able to bring, near the top, rules that are
helpful to the predictor. We account both for the number of helpful rules among
the top-k, and for how close to the top they appear, by means of a mechanism
akin to the AUC measure for predictor evaluation.

Our experiments suggest that leverage, support, and our recently proposed
measure, multiplicative improvement, tend to be better than the other measures
with respect to this evaluation score. Leverage and support are indeed known
to offer good results in practice. Possibly further empirical analysis of the mul-
tiplicative improvement measure may confirm or disprove whether it has similar
potential.

5.1 Related Work

We hasten to point out the important differences of association rules versus
classification tasks: they differ in the consideration of locally applicable patterns
versus modeling for prediction in the global dataset; in association tasks, no
particular attribute is a “class” to be predicted, and the aim is closer to providing
the user with descriptive intuitions, rather than to foresee future labels. An
interesting related discussion is [12].

As a token consequence of the difference, we must observe that, in a context
of associations, “perfect” rules of confidence 1 (that is, full implications without
exceptions) are, in the vast majority of cases, useless in practice—a surprising
fact for those habitued to using rules for classification, where finding a predictive
rule without exceptions is often considered progress. See additional discussion
in [3].

That said, the idea of evaluating associators through the predictive capabili-
ties of the rules found has been put forward e.g. in [21]. The usage of association
rules for direct prediction (where the “class” attribute is forced to occur in the
consequent) has been widely studied (e.g. [26]). In [21], two different associators
are employed to find rules with the “class” as consequent, and they are com-
pared in terms of predictive accuracy. Predictive Apriori turns out to be better
than plain Apriori, but neither compares too well to other rule-based predictor.
(We must point out as well that this reference employs datasets with numeric
attributes that are discretized, see our discussion in Section 2.2.) Our work can
be seen as a natural next step, by decoupling the associator from the predic-
tor, as they do not need to be the same sort of model, and, more importantly,
conceptually decoupling the rule quality measure employed to rank the output
associations from the algorithm that is actually used to construct the rules.

5.2 Future Work

A number of natural ideas to explore appear. We have evaluated only a handful
of rule quality measures; many others exist. Also, other related explorations
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remain open: we limited, somewhat arbitrarily, to 50 the top rules considered
per measure, but smaller or larger figures may provide different intuitions. Our
choice was dictated by the consideration that the understanding of 50 association
rules by a human expert would require some time, and one hardly could expect
this human attention span to reach much further.

Also, we only tried one popular predictor, C5.0, and we could study others;
one could run as well heavy, exhaustive searches in order to find the best set
of helpful rules G on which to base the score. The alternative normalization
mentioned in the text, instead of ZD, could be explored, and might end up
in figures offering more clear cross-comparison among different datasets. Other
evaluations of the predictor could substitute accuracy. Yet other variations worth
exploring would be to flag conformance to a rule instead of being an exception to
it, that is, marking those observations that support both the antecedent and the
consequent of the rule; to explore partial implications, that is, association rules
with more than one item in the consequent, where multiplicative improvement
would partially correspond to confidence boost [3]; and to allow addition of more
than one feature at a time. We hope to explore some of these avenues soon.

Additionally, we consider that our approach might be, at some point, of in-
terest in subgroup discovery (see [14] for its connection to association rules via
the common notion of closure spaces, and the further references in that paper).
The new features added in our approach, in fact, do identify regions of the space
(identified by the antecedent of the association rule, hence having a geometric
form of Boolean hypersubcubes) where the consequent of the rule behaves quite
differently than in the general population. How this relates to the other existing
proposals of subgroup discovery, and whether it is efficient at all in that sense,
remains an interesting topic for further research.
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Barbará, D., Kamath, C. (eds.) SDM. SIAM (2003)

27. Zimmermann, A.: Objectively evaluating interestingness measures for frequent
itemset mining. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng,
V.S. (eds.) PAKDD 2013 Workshops. LNCS, vol. 7867, pp. 354–366. Springer,
Heidelberg (2013)

http://archive.ics.uci.edu/ml


Towards Comprehensive Concept Description

Based on Association Rules

Petr Berka

University of Economics
W. Churchill Sq. 3, 130 67 Prague, Czech Republic

berka@vse.cz

Abstract. The paper presents two approaches to post-processing of as-
sociation rules that are used for concept description. The first approach
is based on the idea of meta-learning; a subsequent association rule min-
ing step is applied to the results of ”standard” association rule mining.
We thus obtain ”rules about rules” that in a condensed form represent
the knowledge found using association rules generated in the first step.
The second approach finds a ”core” part of the association rules that can
be used to derive the confidence of every rule created in the first step.
Again, the core part is substantially smaller than the set of all associ-
ation rules. We experimentally evaluate the proposed methods on some
benchmark data taken from the UCI repository. The system LISp-Miner
has been used to carry out the experiments.

Keywords: concept description, association rules, meta-learning.

1 Introduction

Concept description is one of the typical data mining tasks. According to CRISP-
DM methodology concept description ”aimes at understandable descriptions of
concepts or classes” [9]. Concept description is thus similar to classification as
there are predefined classes (given by values of the target attribute) we are
interested in. But unlike to classification, the focus of concept description is on
understandability not on classification accuracy. So association rules, decision
rules or decision trees are preferred to model the concepts.

In our paper we will focus on concept description using association rules.
Association rules have been proposed by R. Agrawal in the early 90th as a tool
for so called market basket analysis [2]. An association rule has the form of an
implication

X =⇒ Y

where X and Y are sets of items and X ∩ Y = �. An association rule expresses
that transactions containing items of set X tend to contain items of set Y , so e.g.
a rule {A,B} =⇒ {C} says, that customers who buy products A and B also often
buy product C. Such statements can be used to guide the placement of goods
in a store, for cross-selling or to promote new products. This idea of association
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rules can be applied to any data in the tabular, attribute-value form. So data
describing values of attributes can be analyzed in order to find associations
between conjunctions of attribute-value pairs (categories). Let us denote these
conjunctions as Ant (antecedent) and Suc (succedent) and the association rule
as

Ant =⇒ Suc.

When using association rules for concept description, Suc will be a category of
the target attribute.

The two basic characteristics of an association rule are support and confi-
dence. Support is the estimate of the probability P (Ant ∧ Suc), (the frequency
of Ant∧Suc is the absolute support), confidence is the estimate of the probability
P (Suc|Ant).

In association rule discovery the task is to find all rules with support and
confidence above the userdefined thresholds minconf and minsup. There is a
number of algorithms, that perform this task. The probably best-known algo-
rithm apriori proceeds in two steps. All frequent itemsets are found in the first
step during breath-first search in the space of all frequent itemsets. Then, asso-
ciation rules with a confidence of at least minconf are generated in the second
step [2]. Another well known algorithm is FP-Growth. This algorithm uses FP-
tree to generate frequent itemsets. This way of representing the itemsets reduces
the computational costs because (unlike apriori) it requires only two scans of
the whole data [12]. The found frequent itemsets are then again splitted into
antecedent and succedent to create a rule. The search space of all possible item-
sets (or conjunctions of categories) can be very huge. For K items, there is 2K

itemsets, for K categorial attributes A1, A2, ...AK , having v1, v2, ...vK distinct
values, the number of all possible conjunctions is

K∏
i=1

(1 + vi) − 1. (1)

The main problem when using association rules for data mining is their in-
terpretation. Usually we end up with a huge number of associations and each of
them might be interesting for the domain expert or end-user. So some automatic
support for the interpretation in the form of association rules post-processing
would be of a great help. We present some ideas in this direction and show their
experimental evaluation using LISp-Miner, a data mining toolbox for mining dif-
ferent types of rules, that is under development at the University of Economics,
Prague [16,18].

The rest of the paper is organized as follows. Section 2 reviews work related to
the problem of post-processing of association rules, section 3 gives an overview
of GUHA method and the 4FT rules, section 4 introduces the concept of as-
sociation meta-rules and describes how they can be obtained using 4FT-Miner

procedure, section 5 presents KEX, another procedure of the LISp-Miner system
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and shows how the resulting rules can be understand as condensed representa-
tion of association rules, section 6 summarizes the experimental evaluation of the
proposed approach on some benchmark datasets from the UCI Machine learning
repository, and section 7 concludes the paper.

2 Related Work

Various approaches have been proposed in the past to post-process the huge list
of found associations. These approaches can be divided into several groups. One
group are methods for visualization, filtering or selection of the created rules.
This are the standard options in most systems.

Second group contains methods that use some algorithms to further process
the rules: clustering, grouping or using some inference methods fits into this
group as well as our approach. An application of deduction rules to post-process
the results of GUHA method is described in [15]; these rules allow to remove as-
sociation rules that are logical consequences of another association rules. Similar
idea, but applied to ”Agrawal-like” association rules can be found in [19]. This
paper also describes clustering of association rules that have the same succedent;
the distance between two rules is defined ”semantically”, i.e. as the number of
examples covered only by one of the rules. Both semantical and syntactical (i.e.
based on the lists of attribute-value pairs that occur in the rules) clustering of
association rules can be found e.g. in [17].

The third possibility is to post-process the rules using some domain knowl-
edge. So e.g. An et all use expert-supplied taxonomy of items for clustering the
discovered association rules with respect to the taxonomic similarity ([1]), or
Domingues and Rezende ([10]) iteratively scan the itemset rules and updates a
taxonomy that is then used to generalize the association mining results.

An additional possibility is to filter out consequences of domain knowledge
via application of logic of association rules [15].

3 GUHA Method and 4FT Rules

GUHA is an original Czech method of exploratory data analysis developed since
1960s. Its principle is to offer all interesting facts following from the given data
to the given problem. A milestone in the GUHA method development was the
monograph [11], which introduces the general theory of mechanized hypothesis
formation based on mathematical logic and statistics. Association rules defined
and studied in this book are relations between two general Boolean attributes
derived from the columns of an analyzed data table. Various types of relations
of Boolean attributes are used including relations corresponding to statistical
hypothesis tests.

Within the GUHA framework, we understand the association rule as the
expression

Ant ≈ Suc/Cond,
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where Ant, Suc and Cond are conjunctions of literals called antecedent, succe-
dent and conjunction, and ≈ denotes a relation between Ant and Suc for the
examples from the analyzed data table, that fulfill the condition Cond. The rule
Ant ≈ Suc/Cond is true in the analyzed data table, if the condition associated
with ≈ is satisfied for the frequencies a, b, c, d of the corresponding contingency
table. Here a denotes the number of examples, that are covered both by Ant and
Suc, b denotes the number of examples, that are covered by Ant but not covered
by Suc, c denotes the number of examples, that are covered by Suc but not
covered by Ant and d denotes the number of examples that are covered neither
by Ant, nor by Suc. When comparing this notion of association rules (we will
call them 4FT rules) with the ”standard” understanding, we will find, that:

– 4FT rules offer more types of relations between Ant and Suc; we can search
not only for implications (based on standard definitions of support and con-
fidence of a rule), but also for equivalences or statistically based relations.
In the sense of 4FT rules ”classical” association rules can be considered as
founded implications (for examples of various 4FT relations see Table 1.

Table 1. Examples of 4FT-relations

4ft relation ≈
Name Symbol ≈ (a, b, c, d) = 1 iff

Founded implication ⇒p,B
a

a+b
≥ p ∧ a ≥ B

Founded double implication ⇔p,B
a

a+b+c
≥ p ∧ a ≥ B

Founded equivalence ≡p,B
a+d

a+b+c+d
≥ p ∧ a ≥ B

Simple deviation ∼δ,B
ad
bc

> eδ ∧ a ≥ B

χ2 quantifier ∼2
α,B

(ad−bc)2

rkls
n ≥ χ2

α ∧ a ≥ B

Above average dependence ∼+
q,B

a
a+b

≥ (1 + q) a+c
a+b+c+d

∧ a ≥ B

– 4FT rules offer more expressive syntax of Ant and Suc; Ant and Suc are
conjunctions of literals (i.e. expressions in the form A(coef) or ¬A(coef),
where A is an attribute and coef is a subset of possible values), not only
of attribute-value pairs (which are literals as well). If e.g. the analyzed data
contain attribute A with values a, b, c, attribute B with values x, y, z, and
attribute C with values k, l, m, n, then a 4ft-rule can be e.g.

A(b) ∧B(x ∨ y)⇒p,B ¬C(k)

– a 4FT rule consists not only of Ant and Suc but can contain also a condition
Cond; this condition is generated during the rule learning process as well.

There is also an important difference in the process of generating the rules
itself. Unlike apriori or FP-Growth where the whole frequent itemsets (or con-
junctions of categories) are created first and these itemsets are then splitted into
antecedent and succedent of a rule, in 4FT-Miner, antecedent, succedent (and
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eventually condition) are generated separately, so we can easily set the target
attribute as the only one that can occur in the succedents. Moreover, we can con-
trol the complexity of the searched rule space by determining (using parameters
maxlenA, maxlenS and maxlenC) the maximal number of literals that can oc-
cur in conjunctions of antecedent, succedent or condition of a rule. So 4FT-Miner
is better suited for concept description tasks than apriori or FP-Growth.

4 Association Meta-rules

We propose to apply association rule mining algorithm to the set of original
association rules obtained as a result of a particular data mining task. This idea
thus follows the stacking concept that is used to combine classifiers, but that
has not been presented yet for descriptive tasks. The input to the proposed
meta-learning step will be association rules encoded in a way suitable for asso-
ciation rule mining algorithm; the result will be a set of association meta-rules
uncovering relations between various characteristics of the original set of rules.

In [7] we proposed several types of association meta-rules: qualitative and
quantitative, and frequent cedents. Out of them, qualitative meta-rules and fre-
quent cedents can be adopted to find condensed concept description. Qualitative
meta-rules will in general represent the meta-knowledge in the form ”if original
association rules contain a conjunction Ant, then they also contain the conjunc-
tion Suc”, i.e. qualitative rules have the form

Ant =⇒ Suc.

Here these rules represent the knowledge about what conjunctions occur fre-
quently together in the concept description.

By frequent cedents we understand conjunctions of categories, that frequently
occur in the list of original association rules. With respect to the concept de-
scription task, these cedents represent a meta-knowledge about frequent co-
occurrence of specific categories in the concept description.

We used LISp-Miner to find association meta-rules and frequent cedents we
used, but any other association rule mining algorithm can be used as well. En-
coding of the original rules is thus the key problem of this approach. Ant and
Suc can be encoded either (1) using binary attributes, where each attribute
represents one possible literal or (2) using the attributes from the original data
set. Another open question concerning the representation of a rule is whether
categories not occurring in the rule should be treated as missing or as negative
ones. In the first approach, attributes not used in the rule will be encoded using
missing value code. In the second approach, when using the binary representa-
tion, categories not used in the rule will get the value false, and when using the
original attributes, categories not used in the rule will get a new special value
interpreted as not used.

In the experiments reported in this paper, we:

– represent a rule using the original attributes. This leads formally to the same
structure of data table as for original data (i.e. the table representing the
association rules has the same columns as the table representing the data).
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– used missing value code to represent categories not occurring in a rule. This
option is more suitable as it will prevent the meta-learning step to generate
a great number of meta-rules about non-occurrence of literals in the origi-
nal rules, this option also corresponds to the original notion of association
rules where only items that do occur in the market baskets are taken into
consideration.

This approach is not limited to binary classification problems where the data
can be considered as examples or counter-examples of a single concept. We can
use this approach to a data containing examples of arbitrary number of con-
cepts (in our experiments reported in section 6 such data are represented by the
Iris dataset). In such a case, when creating the association meta-rules using
LISp-Miner we can set the condition Cond to take the values of the target at-
tribute and thus obtain meta-rules only from original rules covering a specific
concept.

We will illustrate the concept of association meta-rules using the Monk1 dataset
from the UCI repository [20]. This dataset consists of 123 examples and fol-
lowing six attributes: head shape, body shape, smile, holding, jacket color,
tie (these attributes are the input ones), and class (this is a binary tar-
get attribute). Running 4FT-Miner with the input parameters maxlenA = 6,
minsup = 5%, minconf = 0.9, we obtain 34 association rules, some of them
listed in Tab 2. These rules have been turned into examples for the subsequent
run of 4FT-Miner (Table 3, shows the representation of rules from Table 2).
Table 4 shows some meta-rules we obtained (we used the same settings for in-
put parameters as before), and table 5 shows some obtained frequent cedents.
Notice, that among the meta-rules and cedents, there are rules with similar syn-
tax as have the association rules. But their interpretation is of course different.
Compare the association rule

Body(o) ∧ Head(o) =⇒ Class(+)

the meta-rule

Body(o) =⇒ Head(o)

and the frequent cedent

=⇒ Body(o) ∧ Head(o)

The association rule says, that the concept Class(+) can be described using
the conjunction Body(o) ∧ Head(o), the meta-rule says, that whenever the con-
cept is described using Body(o), it is also described by Head(o), and the frequent
cedent says, that the conjunction Body(o) ∧ Head(o) frequently occurs in the
concept description. We can also see a significant ”compression” of the list of
the build association rules; while we obtained 34 4FT rules, we have only 14
4FT meta-rules (this makes the reduction to 41 % of the number of association
rules) and 13 frequent cedents (this makes the reduction to 38 % of the number
of association rules). We use these numbers to evaluate the results for other data
as presented in section 6 as well.
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Table 2. Example 4FT rules for Monk1 data

Body(o) =⇒ Class(+) (0.1951, 1)
Body(o) ∧ Head(o) =⇒ Class(+) (0.1301, 1)

Body(o) ∧ Head(o) ∧ Holding(b) =⇒ Class(+) (0.0569, 1)
Body(o) ∧ Head(o) ∧ Holding(s) =⇒ Class(+) (0.0569, 1)
Body(o) ∧ Head(o) ∧ Smile(n) =⇒ Class(+) (0.0569, 1)
Body(o) ∧ Head(o) ∧ Smile(y) =⇒ Class(+) (0.0732, 1)
Body(o) ∧ Head(o) ∧ Tie(n) =⇒ Class(+) (0.0894, 1)

. . .

Table 3. Example 4FT rules for Monk1 data encoded as data

id Head Body Smile Holding Jacket Tie Class support confidence

1 ? o ? ? ? ? + 0.1951 1
2 o o ? ? ? ? + 0.1301 1
3 o o ? b ? ? + 0.0569 1
4 o o ? s ? ? + 0.0569 1
5 o o n ? ? ? + 0.0569 1
6 o o y ? ? ? + 0.0732 1
7 o o ? ? ? n + 0.0894 1

. . .

Table 4. Example 4FT meta-rules for Monk1 data

Body(o) =⇒ Head(o)
Body(s) =⇒ Head(s)
Head(o) =⇒ Body(o)
Head(o) =⇒ Jacket(r)

. . .

Table 5. Example 4FT frequent cedents for Monk1 data

=⇒ Body(o)
=⇒ Body(s)
=⇒ Body(o) ∧ Head(o)
=⇒ Head(s)
. . .
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5 KEX Rules

KEX is an algorithm that learns rules in the form

Ant⇒ C(w)

where Ant is a conjunction of categories, C is a category of target attribute and
w (called weight) expresses the uncertainty of the rule [5,6].

KEX performs a heuristic top-down search in the space of candidate rules.
In this algorithm the covered examples are not removed during learning, so
an example can be covered by more rules. Thus more rules can be used dur-
ing classification each contributing to the final assignment of an example. KEX
uses a pseudo-bayesian combination function borrowed from the expert system
PROSPECTOR [8] to combine contributions of more rules:

w1 ⊕ w2 =
w1 × w2

w1 × w2 + (1− w1)× (1− w2)
. (2)

KEX works in an iterative way, testing and expanding an implication Ant ⇒
C in each iteration. This process starts with a default rule weighted with the
relative frequency of class C and stops after testing all implications created
according to user defined criteria. The induction algorithm inserts only such
rules into the knowledge base, for which the confidence (defined in the same way
as the confidence of association rules) cannot be inferred (using formula 2) from
weights of applicable rules found so far. A sketch of the algorithm is shown in
Fig. 1.

KEX algorithm

Initialization
1. forall category (attribute-value pair) A add A ⇒ C to OPEN
2. add empty rule to the rule set KB

Main loop
while OPEN is not empty
1. select the first implication Ant ⇒ C from OPEN
2. test if this implication significantly improves the set of rules KB built

so far (using the χ2 test, we test the difference between the rule validity
and the result of classification of an example covered by Ant) then add
it as a new rule to KB

3. for all possible categories A
(a) expand the implication Ant ⇒ C by adding A to Ant
(b) add Ant ∧ A ⇒ C to OPEN so that OPEN remains ordered

according to decreasing frequency of the condition of rules
4. remove Ant ⇒ C from OPEN

Fig. 1. Simplified sketch of the KEX rule learning algorithm
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The KEX procedure has been designed to create a set of classification rules.
So for a new example, all rules that cover this example are used to compute
the composed weight of the target class. But we can also use KEX to ”compress”
the set of association rules to get more condensed representation. The rules
generated by KEX can be understood as a ”core” set of association rules in such a
sense that for each association rule created using the same settings for minconf ,
maxlengthA and minsup:

– either the composed weight exactly corresponds to the confidence of the
association rule (if this association rule is part of the core set),

– or the composed weight doesn’t significantly differ from the confidence of
the association rule (if this rule is not a part of the core set).

So we can use the rule set created by KEX to ”query” about confidences of all
association rules created (with the same settings for minconf , maxlengthA and
minsup) to describe the concept C.

6 Experiments

The experiments were carried out on several benchmark data sets from the UCI
Machine Learning Repository [20]. The characteristics of the data (number of
examples, number of attributes and number of concepts) are shown in Table 6.
The Agaricus, Breast, Kr-vs-kp, Monk1, Tic-tac-toe and Vote datasets con-
tain only categorial attributes, the numeric attributes occurring in the remaining
datasets were discretized prior to using LISp-Miner and KEX.

Table 7 summarizes the results. The first column in this table shows the
numbers 4FT (association) rules, that were created in the first step. Here we were
looking for strong concept descriptions, so we set the parameters minsup = 5%
and minconf = 0.9. Then the number of KEX rules, 4FT qualitative meta-
rules and 4FT frequent cedents is shown together with the relative size of the
corresponding rule set with respect to the 4FT rules created in the first step. So
the relative size is computed as number of rules in the respective rule set divided
by the number of rules in the 4FT rule set. To make the numbers comparable
we set minconf = 0.9 and minsup between 1% and 5% for the second step (i.e.
for creating KEX rules, 4FT meta-rules and 4FT cedents). With the exception
of Tic-tac-toe data and 4FT meta-rules for Iris data, we always reduced the
number of original 4TF rules to less than one half.

There is no straightforward relationship between the size of analyzed data
(number of objects, number of attributes), the number of 4FT rules and the
number of 4FT meta-rules. High relative size of the set of 4FT meta-rules just
means low redundancy in the set of 4FT rules and low relative size of the set
of 4FT meta-rules means high redundancy in the set of 4FT rules. And low
redundancy in the set of 4FT rules is usually related to smaller size of this set
of rules.



Towards Comprehensive Concept Description Based on Association Rules 89

Table 6. Data description

data set examples attributes concepts

Agaricus 8124 22 2
Australi 690 14 2
Breast 289 9 2
Diab 769 8 2
Iris 150 4 3

JapCred 125 10 2
Kr-vs-kp 3196 36 2
Monk1 123 6 2

Tic-tac-toe 958 9 2
Vote 435 16 2

Table 7. Summary of results

data set 4FT rules KEX rules 4FT meta-rules 4FT cedents
rules rules size rules size rules size

Agaricus 2072 883 43% 12 0.6% 22 1%
Australi 1734 274 16% 226 13% 25 1%
Breast 93 24 26% 16 17% 8 9%
Diab 106 50 47% 44 42% 19 18%
Iris 58 21 36% 36 62% 16 28%

JapCred 777 55 7% 23 3% 14 2%
Kr-vs-kp 972 61 6% 74 8% 47 5%
Monk1 34 14 41% 14 41% 13 38%

Tic-tac-toe 18 18 100% 12 67% 9 50%
Vote 5554 967 17% 25 0.5% 9 0.2%

7 Conclusions

We present two methods of post-processing of association rules that were created
for concept description. The first approach is based on the idea of meta-learning;
a subsequent association rule mining step is applied to the results of ”standard”
association rule mining. We thus obtain ”rules about rules” that in a condensed
form represent the knowledge found using association rules generated in the first
step. The second approach finds a ”core” part of the association rules that can
be used to derive the confidence of every rule created in the first step.

The reported experiments support our working hypothesis, that the number of
KEX rules as well as the meta-rules will be significantly smaller than the number
of original rules. Thus the interpretation of meta-rules by domain expert will be
significantly less time consuming and less difficult compared to the interpretation
of the original association rules. Beside this, the meta-rules can give the user a
summarized interpretation of the original rules. The KEX rules on the contrary
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should be used to automated answering the questions about the confidence of
any of the original association rules.

Anyway, the interpretation of the found meta-rules by domain experts in
respective problem area is necessary to validate the usefulness of the proposed
methods.
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5. Berka, P., Ivánek, J.: Automated Knowledge Acquisition for PROSPECTOR-like
Expert Systems. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS (LNAI),
vol. 784, pp. 339–342. Springer, Heidelberg (1994)

6. Berka, P.: Learning compositional decision rules using the KEX algorithm. Intelli-
gent Data Analysis 16(4), 665–681 (2012)

7. Berka, P., Rauch, J.: Meta-learning for Post-processing of Association Rules. In:
Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS,
vol. 6263, pp. 251–262. Springer, Heidelberg (2010)

8. Duda, R.O., Gasching, J.E.: Model design in the Prospector consultant system for
mineral exploration. In: Michie, D. (ed.) Expert Systems in the Micro Electronic
Age. Edinburgh University Press, UK (1979)

9. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C.,
Wirth, R.: CRISP-DM 1.0 Step-by-step data mining guide. SPSS Inc. (2000)

10. Domingues, M.A., Rezende, S.O.: Using Taxonomies to Faciliate the Analysis of
the Association Rules. In: Second International Workshop on Knowledge Discovery
and Ontologies (KDO 2005), ECML/PKDD, Porto (2005)
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Abstract. Analysis of data from networked digital information systems
such as mobile devices, remote sensors, and streaming applications, needs
to deal with two challenges: the size of data and the capacity to be
adaptive to changes in concept in real-time. Many approaches meet the
challenge by using an explicit change detector alongside a classification
algorithm and then evaluate performance using classification accuracy.
However, there is an unexpected connection between change detectors
and classification methods that needs to be acknowledged. The phe-
nomenon has been observed previously, connecting high classification
performance with high false positive rates. The implication is that we
need to be careful to evaluate systems against intended outcomes–high
classification rates, low false alarm rates, compromises between the two
and so forth. This paper proposes a new experimental framework for
evaluating change detection methods against intended outcomes. The
framework is general in the sense that it can be used with other data
mining tasks such as frequent item and pattern mining, clustering etc.
Included in the framework is a new measure of performance of a change
detector that monitors the compromise between fast detection and false
alarms. Using this new experimental framework we conduct an evalu-
ation study on synthetic and real-world datasets to show that classifi-
cation performance is indeed a poor proxy for change detection perfor-
mance and provide further evidence that classification performance is
correlated strongly with the use of change detectors that produce high
false positive rates.

Keywords: data streams, incremental, dynamic, evolving, online.

1 Introduction

Real-time analytics is a term used to identify analytics performed taking into
account recent data that is being generated in real time. The analytical models

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 92–103, 2013.
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should be up-to-date to match the current distribution of data. To be able to do
that, models should be able to adapt quickly. Drift detection is a very important
component in adaptive modeling, detecting a change gives a signal about when to
adapt models. Typically, the streaming error of predictive models is monitored
and when the detector raises a change alarm, then the model is updated or
replaced by a new one.

Currently, drift detection methods are typically evaluated by the final clas-
sification accuracy [1,2]. For example, in [2], the authors notice that for a real
dataset, the Electricity Market Dataset [3], performance increases when there
is a large number of false positives (or low ARL0): “Interestingly, the fact that
the best performance is achieved with a low ARL0 suggests that changes are oc-
curring quite frequently.” Thus, evaluating drift detection methods only using
classifiers may not be informative enough, since the adaptation strategy occludes
change detector performance. Further, given that classification is not the only
context for change detection we need to match our drift detection evaluation
methodologies with what it is that we want to achieve from the task as a whole.

This paper investigates change detection for real time predictive modeling,
and presents the following contributions:

1. CD-MOA, a new experimental framework for evaluating concept drift
detection methods,

2. MTR, a new measure of performance of a concept drift detection method.

It is important to note that the framework generalises to other tasks but in
this paper our focus is on change detection in the context of classification. The
proposed framework is intended to serve as a tool for the research community and
industry data analysts for experimentally comparing and benchmarking change
detection techniques on synthetic data where ground truth changes are known.
On real data, the framework allows to find changes in time series, and monitor
the error in classification tasks. The framework and the proposed techniques are
implemented in the open source data stream analysis software MOA and are
available online1.

In Section 2 we present the new change detection framework and propose a
new evaluation measure for change detection. Section 3 presents the results of
our experimental evaluation. We conclude the study in Section 4.

2 Experimental Framework

CD-MOA is a new framework for comparing change detection methods. It is
built as an extension of MOA. Massive Online Analysis (MOA) [4] is a software
environment for implementing algorithms and running experiments for online
learning from data streams.

CD-MOA contains a graphical user interface where experiments can be run.
Figure 1 shows the GUI. It contains three different components. The first is the

1 http://moa.cs.waikato.ac.nz/

http://moa.cs.waikato.ac.nz/
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Fig. 1. Example of the new CD-MOA framework graphical user interface

panel where the user can specify the experiment they would like to run. Another
panel in the middle shows the numeric results of the experiment, and the panel
at the bottom displays a plot of the experiment, showing graphically where the
change has been detected.

CD-MOA contains a Java API for easier customization, and implementation
of new methods and experiments. The main components of CD-MOA are:

– Tasks: experiments to run combining change detectors and streams
– Methods: change detection algorithms used to detect change
– Streams: time series used to run the experiment. If they have been artificially

generated and have ground truth, then the system will output the statistics
about detection time.

CD-MOA is connected to MOA, and it is easy to use the change detec-
tor methods in CD-MOA to evaluate classifiers, checking how their accuracy
evolves. For evaluation purposes, all the methods in CD-MOA have a measure
of the resources consumed: time, memory, and RAM-Hours, a measure of the
cost of the mining process that merges time and memory into a single measure.

2.1 Evaluation of Change Detection

Change detection is a challenging task due to a fundamental limitation [5]: the
design of a change detector is a compromise between detecting true changes and
avoiding false alarms.
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When designing a change detection algorithm one needs to balance false and
true alarms and minimize the time from the change actually happening to de-
tection. The following existing criteria [5,6] formally capture these properties for
evaluating change detection methods.

Mean Time between False Alarms (MTFA) characterizes how often we
get false alarms when there is no change. The false alarm rate FAR is defined
as 1/MTFA. A good change detector would have high MTFA.

Mean Time to Detection (MTD) characterizes the reactivity of the system
to changes after they occur. A good change detector would have small MTD.

Missed Detection Rate (MDR) gives the probability of not receiving an
alarm when there has been a change. It is the fraction of non-detected
changes in all the changes. A good detector would have small or zero MDR.

Average Run Length (ARL(θ)) generalizes over MTFA and MTD. It quan-
tifies how long we have to wait before we detect a change of size θ in the
variable that we are monitoring.

ARL(θ = 0) = MTFA, ARL(θ �= 0) = MTD

Our framework needs to know ground truth changes in the data for evaluation
of change detection algorithms. Thus, we generate synthetic datasets with ground
truth. Before a true change happens, all the alarms are considered as false alarms.
After a true change occurs, the first detection that is flagged is considered as
the true alarm. After that and before a new true change occurs, the consequent
detections are considered as false alarms. If no detection is flagged between
two true changes, then it is considered a missed detection. These concepts are
graphically illustrated in Figure 2.

Fig. 2. The setting of change detection evaluation

We propose a new quality evaluation measure that monitors the compromise
between fast detection and false alarms:

MTR(θ) =
MTFA

MTD
× (1−MDR) =

ARL(0)

ARL(θ)
× (1−MDR). (1)

This measure MTR (Mean Time Ratio) is the ratio between the mean time
between false alarms and the mean time to detection, multiplied by the proba-
bility of detecting an alarm. An ideal change detection algorithm would have a
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low false positive rate (which means a high mean time between false alarms), a
low mean time to detection, and a low missed detection rate.

Comparing two change detectors for a specific change θ is easy with this new
measure: the algorithm that has the highest MTR(θ) value is to be preferred.

2.2 Change Detectors

A change detector or drift detector is an algorithm that takes a stream of in-
stances as input and outputs an alarm if it detects a change in the distribution of
the data. A detector may often be combined with a predictive model to output a
prediction of the next instance to come. In general, the input to a change detec-
tion algorithm is a sequence x1, x2, . . . , xt, . . . of data points whose distribution
varies over time in an unknown way. At each time step the algorithm outputs:

1. an estimate of the parameters of the input distribution, and

2. an alarm signal indicating whether a change in this distribution has occurred.

We consider a specific, but very frequent case, of this setting with all xt

being real values. The desired estimate is usually the current expected value
of xt, and sometimes other statistics of the distribution such as, for instance,
variance. The only assumption about the distribution of x is that each xt is
drawn independently from each other. This assumption may be not satisfied if
xt is an error produced by a classifier that updates itself incrementally, because
the update depends on the performance, and the next performance depends on
whether we updated it correctly. In practice, however, this effect is negligible, so
treating them independently is a reasonable approach.

The most general structure of a change detection algorithm contains three
components:

1. Memory is the component where the algorithm stores the sample data or
data summaries that are considered to be relevant at the current time, i.e.,
the ones that describe the current data distribution.

2. Estimator is an algorithm that estimates the desired statistics on the in-
put data, which may change over time. The algorithm may or may not use
the data contained in Memory. One of the simplest Estimator algorithms
is the linear estimator, which simply returns the average of the data items
contained in Memory. Other examples of run-time efficient estimators are
Auto-Regressive, Auto Regressive Moving Average, and Kalman filters [7].

3. Change detector (hypothesis testing) outputs an alarm signal when it detects
a change in the input data distribution. It uses the output of the Estimator,
and may or may not in addition use the contents of Memory.

There are many different algorithms to detect change in time series. Our new
framework contains the classical ones used in statistical quality control [6], time
series analysis [8], statistical methods and more recent ones such as ADWIN[9].
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2.3 Statistical Tests with Stopping Rules

These tests decide between the hypothesis that there is change and the hypoth-
esis that there is no change, using a stopping rule. When this stopping rule
is achieved, then the change detector method signals a change. The following
methods differ in their stopping rule.

The CUSUM Test. The cumulative sum (CUSUM algorithm), which was first
proposed in [10], is a change detection algorithm that raises an alarm when the
mean of the input data is significantly different from zero. The CUSUM input εt
can be any filter residual, for instance the prediction error from a Kalman filter.

The stopping rule of the CUSUM test is as follows:

g0 = 0, gt = max (0, gt−1 + εt − υ), if gt > h then alarm and gt = 0

The CUSUM test is memoryless, and its accuracy depends on the choice of
parameters υ and h. Note that CUSUM is a one sided, or asymmetric test. It
assumes that changes can happen only in one direction of the statistics, detecting
only increases.

The Page Hinckley Test. The Page Hinckley Test [10] stopping rule is as
follows, when the signal is increasing:

g0 = 0, gt = gt−1 + (εt − υ), Gt = min(gt, Gt−1)

if gt −Gt > h then alarm and gt = 0

When the signal is decreasing, instead of Gt = min(gt, Gt−1), we should use
Gt = max(gt, Gt−1) and Gt−gt > h as the stopping rule. Like the CUSUM test,
the Page Hinckley test is memoryless, and its accuracy depends on the choice of
parameters υ and h.

2.4 Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [1] controls the
number of errors produced by the learning model during prediction. It compares
the statistics of two windows: the first contains all the data, and the second
contains only the data from the beginning until the number of errors increases.
Their method doesn’t store these windows in memory. It keeps only statistics
and a window of recent errors data.

The number of errors in a sample of n examples is modelled by a binomial
distribution. For each point t in the sequence that is being sampled, the error
rate is the probability of misclassifying (pt), with standard deviation given by
st =

√
pt(1 − pt)/t. They assume that the error rate of the learning algorithm

(pt) will decrease while the number of examples increases if the distribution of
the examples is stationary. A significant increase in the error of the algorithm,
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suggests that the class distribution is changing and, hence, the actual decision
model is supposed to be inappropriate. Thus, they store the values of pt and st
when pt + st reaches its minimum value during the process (obtaining pmin and
smin). DDM then checks if the following conditions trigger:

– pt+st ≥ pmin+2 ·smin for the warning level. Beyond this level, the examples
are stored in anticipation of a possible change of context.

– pt + st ≥ pmin + 3 · smin for the drift level. Beyond this level the concept
drift is supposed to be true, the model induced by the learning method is
reset and a new model is learnt using the examples stored since the warning
level triggered. The values for pmin and smin are reset.

In the standard notation, they have two hypothesis tests hw for warning and hd

for detection:

– gt = pt+st, if gt ≥ hw then alarm warning, if gt ≥ hd then alarm detection,
where hw = pmin + 2smin and hd = pmin + 3smin.

The test is nearly memoryless, it only needs to store the statistics pt and st, as
well as switch on some memory to store an extra model of data from the time
of warning until the time of detection.

This approach works well for detecting abrupt changes and reasonably fast
changes, but it has difficulties detecting slow gradual changes. In the latter case,
examples will be stored for long periods of time, the drift level can take too much
time to trigger and the examples in memory may overflow.

Baena-Garćıa et al. proposed a new method EDDM (Early Drift Detection
Method) [11] in order to improve DDM. It is based on the estimated distribution
of the distances between classification errors. The window resize procedure is
governed by the same heuristics.

2.5 EWMA Drift Detection Method

A new drift detection method based on an EWMA (Exponential Weighted Mov-
ing Average) chart, was presented by Ross et al. in [2]. It is similar to the
drift detection method (DDM) described previously, but uses an exponentially
weighted moving average chart to update the estimate of error faster.

This method updates the following statistics for each point t in the sequence:

pt = pt−1(t− 1)/t+ εt/t, st =
√

pt(1− pt)

g0 = p0, gt = (1− λ)gt−1 + λεt, s
(g)
t = st

√
λ(1 − (1− 2λ)2t)/(2− λ)

EWMA uses the following trigger conditions:

– gt > hw for the warning level, where hw = pt + 0.5Lts
(g)
t .

– gt > hd for the drift level, where hd = pt + Lts
(g)
t .

The values of Lt are computed using a different polynomial for each choice of
MTFA of the form L(pt) = c0+c1pt+· · ·+cmpmt using a Monte Carlo approach.
A value of λ = 0.2 is recommended by the authors of this method.
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2.6 ADWIN: ADaptive Sliding WINdow Algorithm

ADWIN[12] is a change detector and estimator that solves in a well-specified way
the problem of tracking the average of a stream of bits or real-valued numbers.
ADWIN keeps a variable-length window of recently seen items, with the prop-
erty that the window has the maximal length statistically consistent with the
hypothesis “there has been no change in the average value inside the window”.

More precisely, an older fragment of the window is dropped if and only if
there is enough evidence that its average value differs from that of the rest of
the window. This has two consequences: one, that change can reliably be declared
whenever the window shrinks; and two, that at any time the average over the
existing window can be reliably taken as an estimate of the current average in the
stream (barring a very small or very recent change that is still not statistically
visible). These two points appears in [12] in a formal theorem.

ADWIN is data parameter- and assumption-free in the sense that it automat-
ically detects and adapts to the current rate of change. Its only parameter is a
confidence bound δ, indicating how confident we want to be in the algorithm’s
output, inherent to all algorithms dealing with random processes.

Table 1. Evaluation results for an experiment simulating the error of a classifier,
that after tc instances with a probability of having an error of 0.2, this probability is
increased linearly by a value of α = 0.0001 for each instance

Method Measure No Change tc = 1, 000 tc = 10, 000 tc = 100, 000 tc = 1, 000, 000

ADWIN 1-MDR 0.13 1.00 1.00 1.00
MTD 111.26 1,062.54 1,044.96 1,044.96
MTFA 5,315,789
MTR 6,150 5,003 5,087 5,087

CUSUM(h=50) 1-MDR 0.41 1.00 1.00 1.00
MTD 344.50 902.04 915.71 917.34
MTFA 59,133
MTR 70 66 65 64

DDM 1-MDR 0.44 1.00 1.00 1.00
MTD 297.60 2,557.43 7,124.65 42,150.39
MTFA 1,905,660
MTR 2,790 745 267 45

Page-Hinckley(h=50) 1-MDR 0.17 1.00 1.00 1.00
MTD 137.10 1,320.46 1,403.49 1,431.88
MTFA 3,884,615
MTR 4,769 2,942 2,768 2,713

EDDM 1-MDR 0.95 1.00 1.00 1.00
MTD 216.95 1,317.68 6,964.75 43,409.92
MTFA 37,146
MTR 163 28 5 1

EWMA Chart 1-MDR 1.00 1.00 1.00 1.00
MTD 226.82 225.51 210.29 216.70
MTFA 375
MTR 2 2 2 2
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Table 2. Evaluation results for an experiment simulating the error of a classifier, that
after tc = 10, 000 instances with a probability of having an error of 0.2, this probability
is increased linearly by a value of α for each instance

Method Measure No Change α = 0.00001 α = 0.0001 α = 0.001

ADWIN 1-MDR 1.00 1.00 1.00
MTD 4,919.34 1,062.54 261.59
MTFA 5,315,789.47
MTR 1,080.59 5,002.89 20,320.76

CUSUM 1-MDR 1.00 1.00 1.00
MTD 3,018.62 902.04 277.76
MTFA 59,133.49
MTR 19.59 65.56 212.89

DDM 1-MDR 0.55 1.00 1.00
MTD 3,055.48 2,557.43 779.20
MTFA 1,905,660.38
MTR 345.81 745.15 2,445.67

Page-Hinckley 1-MDR 1.00 1.00 1.00
MTD 4,659.20 1,320.46 405.50
MTFA 3,884,615.38
MTR 833.75 2,941.88 9,579.70

EDDM 1-MDR 0.99 1.00 1.00
MTD 4,608.01 1,317.68 472.47
MTFA 37,146.01
MTR 7.98 28.19 78.62

EWMA Chart 1-MDR 1.00 1.00 1.00
MTD 297.03 225.51 105.57
MTFA 374.70
MTR 1.26 1.66 3.55

ADWIN does not maintain the window explicitly, but compresses it using a
variant of the exponential histogram technique storing a window of length W
using only O(logW ) memory and O(logW ) processing time per item.

3 Comparative Experimental Evaluation

We performed a comparison using the following methods: DDM, ADWIN, EWMA
Chart for Drift Detection, EDDM, Page-Hinckley Test, and CUSUM Test. The
two last methods were used with υ = 0.005 and h = 50 by default.

The experiments were performed simulating the error of a classifier system
with a binary output 0 or 1. The probability of having an error is maintained as
0.2 during the first tc instances, and then it changes gradually, linearly increasing
by a value of α for each instance. The results were averaged over 100 runs.

Tables 1 and 2 show the results. Every single row represents an experiment
where four different drifts occur at different times in Table 1, and four different
drifts with different incremental values in Table 2. Note that MTFA values come
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Table 3. Evaluation results of a prequential evaluation using an adaptive Naive
Bayes classifier on Electricity and Forest Covertype datasets: accuracy, κ, and number
of changes detected

Forest Covertype Electricity
Change Detector Warning Accuracy κ Changes Accuracy κ Changes

ADWIN No 83.24 73.25 1,151 81.03 60.79 88
CUSUM No 81.55 70.66 286 79.21 56.83 28
DDM Yes 88.03 80.78 4,634 81.18 61.14 143
Page-Hinckley No 80.06 68.40 117 78.04 54.43 10

EDDM Yes 86.08 77.67 2,416 84.83 68.96 203
EWMA Chart Yes 90.16 84.20 6,435 86.76 72.93 426

from the no-change scenario. We observe the tradeoff between faster detection
and smaller number of false alarms. Page Hinckley with h = 50 and ADWIN are
the methods with fewer false positives, however CUSUM is faster at detecting
change for some change values. Using the new measure MTR, ADWIN seems to
be the algorithm with the best results.

We use the EWMA Chart for Drift Detection with Lt values computed for
a MTFA of 400. However it seems that this is a very low value compared with
other change detectors. EDDM has a high number of false positives, and performs
worse than DDM using the new measure MTR.

This type of test, has the property that by increasing h we can reduce the
number of false positives, at the expense of increasing the detection delay.

Finally, we use the change detector algorithms inside the MOA Framework
in a real data classification task. The methodology is similar to the one in [1]:
a classifier is built with a change detector monitoring its error. If this change
detector detects a warning, the classifier begins to store instances. After the
change detector detects change, the classifier is replaced with a new classifier
built with the instances stored. Note that this classifier is in fact similar to a
data stream classification algorithm that exploits a window model. The size of
this window model is not fixed and depends on the change detection mechanism.
We test the change detectors with a Naive Bayes classifier, and the following
datasets:

Forest Covertype Contains the forest cover type for 30 x 30 meter cells ob-
tained from US Forest Service (USFS) Region 2 Resource Information Sys-
tem (RIS) data. It contains 581, 012 instances and 54 attributes. It has been
used before, for example in [13,14].

Electricity Contains 45, 312 instances describing electricity demand. A class
label identifies the change of the price relative to a moving average of the
last 24 hours. It was described by [3] and analysed also in [1].

The accuracy and κ statistic results using prequential evaluation are shown
in Table 3. The classifier that uses the EWMA Chart detection method is the
method with the best performance on the two datasets. It seems that having
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a large amount of false positives, detecting more changes, and rebuilding the
classifier more often with more recent data helps to improve accuracy for these
datasets. For the classification setting, the fact that the detector has a warning
signal detection helps to improve results. Also, the success of EWMA Chart may
be due to the fact that Naive Bayes is a high-bias algorithm, which can attain
good performance from smaller batches of data.

However, as we have seen, the fact that a change detection algorithm produces
high accuracy figures in a classification setting does not necessarily imply a low
false alarm rate or a high MTR value for that algorithm. It should be possible,
for example, to tune all the detectors in the framework to produce better clas-
sification results by deliberately raising their false positive rates. Additionally,
it should be possible to demonstrate that under normal circumstances, low-bias
algorithms suffer high false positive rates.

4 Conclusions

Change detection is an important component of systems that need to adapt to
changes in their input data. We have presented a new framework for evaluation
of change detection methods, and a new quality measure for change detection.
Using this new experimental framework we demonstrated that classification per-
formance is a poor proxy for change detection performance and provide further
evidence that if high classification performance is a requirement then using a
change detector that produces a high false positive rate can be beneficial for
some datasets. We hope that the new framework presented here will help the
research community and industry data analysts to experimentally compare and
benchmark change detection techniques.

Acknowledgements. I. Žliobaitė’s research has been supported by the
Academy of Finland grant 118653 (ALGODAN).
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Abstract. Microarrays have allowed biologists to better understand
gene regulatory mechanisms. Wheat microarray data analysis is a com-
plex and challenging topic and knowledge of gene regulation in wheat
is still very superficial. However, understanding key mechanisms in this
plant holds much potential for food security, especially with a chang-
ing climate. The purpose of this paper is to combine multiple microar-
ray studies to automatically identify subnetworks that are distinctive to
specific experimental conditions. For example, identifying a regulatory
network of genes that only exists under certain types of experimental
conditions will assist in understanding the nature of the mechanisms.
We derive unique networks from multiple independent networks to bet-
ter understand key mechanisms and how they change under different
conditions. We compare the results with biclustering, detect the most
predictive genes and validate the results based upon known biological
mechanisms. We also explore how this pipeline performs on yeast mi-
croarray data.

1 Introduction

Microarray data measures the simultaneous expression of thousands of genes al-
lowing the modelling of the underlying mechanisms of gene regulation through
Gene Regulatory Networks (GRNs). In this paper we explore the use of GRNs
to analyse wheat microarray data from a number of independent studies. Un-
derstanding of gene regulation in wheat is challenging because of the size and
complexity of its genome and gaining a deeper knowledge of this plant may
lead to improved food security under different climate scenarios. Because the
knowledge of wheat gene regulation is still very young, we aim to automatically
identify some basic regulatory mechanisms as well as how they differ between a
number of independent studies in order to better understand those mechanisms.
Microarray data consists of many thousands of genes and generally only a few
samples. What is more, the integration of data collected from different studies
is an ongoing problem but with some reported successes [4]. In [2] more robust
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models are built from multiple datasets by ordering them based on the level of
noise and informativeness and using different Bayesian classifiers to select the
informative genes. Steele et.al [16] combine various microarray datasets using
post-learning aggregation to build robust regulatory networks. We adopt a sim-
ilar approach here but focus less on generating the consensus of all datasets
and more on identifying mechanisms that are specific to a subset of studies. [17]
also explore consensus approaches but use a clustering technique coupled with a
statistically based gene functional analysis for the identification of novel genes.
Often the sheer number of genes makes the understanding of GRNs difficult
and sometimes modules are created by grouping genes that perform some simi-
lar function [15]. Networks of these modules can then be discovered to identify
mechanisms at a more general level. Clustering helps to preserve all information
but might increase noise and bias. In [19] two cancer datasets are compared (case
and control). For each dataset gene-pair expression correlation is computed and
then used to build a frequency table whose values are used to build a weighted
gene co-expression frequency network. After this they identify sub-networks with
similar members and iteratively merge them together to generate the final net-
work for both cancer and healthy tissue. Alaakwaa et.al [1] instead explore the
biclustering technique [3] which aims to cluster both genes and samples simul-
taneously. They apply six different biclustering methods and use the resulting
biclusters to build Bayesian Networks for each and finally merge the results in
one single network which captures the overall mechanism. In this paper, instead
of focusing only on consensus networks/clusters we explore a method to “home
in” on both the similarities and differences of GRNs generated from different
studies by using a combination of clustering, network discovery and graph the-
ory. What is more, we go beyond the simple pairwise correlations between genes
which is common in many studies e.g. [19]. We build independent networks for
each study using the R package glasso [5] which identifies the inverse covariance
matrix using the lasso penalty to make it as sparse as possible. We compare the
networks obtained for each study using graph similarity techniques and cluster
studies with similar regulatory behaviour and network structures. At this point
we detect the glasso networks that are unique for each “study-cluster”. Further-
more, we exploit these results to build Bayesian Networks for each study-cluster
to identify the most predictive group of genes. As a validation of our pipeline
we compare the results with the ones obtained with a popular state-of-the-art
technique known as Biclustering which aims to simultaneously cluster genes and
samples. We also explore our approach in yeast to demonstrate the generalisation
of the approach to different microarray data.

2 Methods

In this paper we analyse a number of publicly available wheat transcriptome
datasets derived from multiple experiments from plants subjected to a range
of treatments: stress, development, cultivar, etc. The number of common genes
to all studies is 61290 and 595 samples that can be grouped into 16 differ-
ent studies representing different treatments the plant has undergone as shown
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in Table 1. Each study contains data derived from treated and non-treated
samples. Studies 1-6, 12, and 13 were considered stress-enriched, the remain-
ing as non-stressed treatments. Labels and details for each study are available
http://www.ebi.ac.uk/arrayexpress/.

Table 1. Study numbers, labels, number of samples and descriptions

Study Label Number samples Description

1 E-MEXP-971 60 Salt stress
2 E-MEXP-1415 36 S and N deficient conditions
3 E-MEXP-1193 32 Heat and Drought Stress
4 E-MEXP-1694 6 Re-supply of sulfate
5 E-MEXP-1523 30 Heat stress
6 E-MEXP-1669 72 Different nitrogen fertiliser levels
7 E-GEOD-4929 4 Study parental genotypes 2
8 E-GEOD-4935 78 Study 39 genotypes 2
9 E-GEOD-6027 21 Meiosis and microsporogenesis in hexaploid bread wheat
10 E-GEOD-9767 16 Genotypic differences in water soluble carbohydrate metabolism
11 E-GEOD-12508 39 Wheat development
12 E-GEOD-12936 12 Effect of silicon
13 E-GEOD-11774 42 Cold treatment
14 E-GEOD-5937 4 Parental genotypes 2 biological replicates from SB location
15 E-GEOD-5939 72 36 genotypes 2 biological replicates from SB location
16 E-GEOD-5942 76 Parental and progenies from SB location

In this work, to demonstrate the generalisation of the approach, we also anal-
yse Saccharomyces cerevisiae (82 different studies). We applied to both types of
data the following general steps:

1. Select the most informative genes to reduce the number of variables,
2. Build a network for each study using glasso,
3. Create consensus network by identifying links common to a proportion of

the discovered GRNs,
4. Apply graph similarity analysis in order to identify similarities between the

different studies and therefore cluster them,
5. Identify unique networks,
6. Build Bayesian networks for each study-cluster
7. Identify the most predictive genes

2.1 Selection of Informative Genes and Networks Construction

For computational and practical reasons we need, first, to reduce the number
of the variables. To prevent noise and bias, we choose to avoid clustering but
discard all the non informative genes. Firstly, we discard those genes that are
currently not in the Gene Ontology (GO) database, meaning we can focus on
genes that have some annotation.We then discard those genes for which the
standard deviation of expression values across all experiments was less than 2.
After this step still many genes survive in each study. Thus, to further reduce
their number we select only those that survived in at least 4 studies (25% of the
studies in wheat).

GRNs have two main components: nodes which represent the variables/genes
and edges that encode the joint probability distribution by representing condi-
tional independences between variables. In this paper we want to identify net-
works that go beyond simple pairwise relationships so our procedure is centred
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around using glasso. The problem of identifying the structure of the network
can be solved by estimating the relationships between variables. In the case of
undirected graphs it is the same as learning the structure of the conditional inde-
pendence graph (CIG), which in the case of Gaussian random variables, means
to identify the zeros of the inverse covariance matrix (also called precision or con-
centration matrix). Given a p-dimensional normally distributed random variable
X, assuming that the covariance matrix is non-singular, the conditional indepen-
dence structure of the distribution can be represented by the graphical model
G = (N, E) where N = (1,..,p) is the set of nodes and E is the set of edges in
N×N. If a pair of variables is not in the set E it means that the two variables
are conditionally independent given the other variables. This corresponds to a
zero in the inverse covariance matrix. Therefore it imposes an L1 penalty in the
estimation of the inverse covariance matrix in order to increase its sparsity [5].

The glasso package in R estimates a sparse inverse covariance matrix using
a lasso (L1) penalty. Suppose, we have N multivariate normal observations of
dimension p, with mean μ and covariance Σ. The problem is to maximizes the
penalized log likelihood log detΘ − tr(SΘ) − ρ ‖Θ‖1 where Θ = Σ−1, S is the
empirical covariance matrix and ‖Θ‖1is the L1 norm the sum of the absolute
values of the elements of Σ−1and ρ is the regularization parameter. The pa-
rameter ρ can be a scalar (typical situation) or a p×p matrix. ρ = 0 means no
regularization. As stated earlier, in this paper we apply the glasso package to
build one network for every single study.

2.2 Graph Similarity and Unique Networks

This pipeline automatically identifies subnetworks distinctive to specific studies.
The first important step, then, is to be able to automatically detect groups of
similar studies. Wheat datasets were therefore selected which have 595 samples
derived from 16 different studies listed in Table 1. But different studies still
have some network paths in common, the more they have, the more similar they
might be. Because we want to identify mechanisms common to similar studies
we cluster them using the sensitivity metric. We consider the connections in
common between two study-networks and build a contingency table. To verify
the reliability of the clusters, we compare the results with the description of the
studies in Table 1.

We explored a number of clustering techniques but found that k-means (R
function based on [7]) generated the most convincing, based on Table 1, study-
clusters. Table 1 demonstrates that the studies can be grouped in two: stress-
enriched and non-stress conditions. We explored different values of k but found
that 3 clusters were the most revealing: The resulting clusters are: {2, 5, 6, 10, 12},
{1, 3, 4, 9, 11, 13} and {7, 8, 14, 15, 16} based upon the studies numbering from
Table 1. While the third cluster clearly groups together all the non-stress studies,
the other two reflect studies that are stress enriched. In the process of identifying
unique networks we first build the consensus network [16] for each study-cluster
as a representative of the general mechanism for that group of studies. Then we
select only those edges that exist in the consensus-study network in consideration
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but not in the remaining ones. The resulting list of nodes involved in the unique
connections are used to build the unique networks as explained in details in
the next section. We also compare our results (the discovered clusters and their
associated networks) with Biclustering which aims to cluster samples and genes
simultaneously.

2.3 Bayesian Networks, Prediction and Biological Validation

We choose to validate the networks through prediction and Bayesian Networks
(BNs) which naturally perform this given the graphical structure obtained using
the gene in the unique networks provided by glasso. BNs [8,6] are a class of
graphical models that represent the probabilistic dependencies between a given
set of random variables. A Bayesian network has a set of variables called nodes
and a set of directed edges between variables called arcs. The nodes and arcs
together form a directed acyclic graph (DAG) G=(V,A). Each variable in the net-
work has attached a conditional probability table of itself given the parents. The
reason why we chose BNs at this specific point of the work is because this tech-
nique uses probability to measure the available knowledge which means that the
more the knowledge we have the lesser the uncertainty. Given the conditional
probability table BNs allow to work from parent to child but also backwards
from child to parent (cause → effect and cause← effect). BNs treat uncertainty
explicitly and allow to include experts’ knowledge in the form of a prior distri-
bution. Furthermore, the directed graph aspect of this representation simplifies
the identification of important paths. Having reduced the number of variables
and samples by identifying the unique networks, we build one BN for each of the
study-clusters previously identified focusing on the genes involved in the unique
connections detected with the glasso networks. To do this we used the R pack-
age bnlearn [13,14]. After this we are interested in finding the most predictive
and predictable genes within and outside the study-clusters using the leave one
out cross validation technique. Given the m studies and n genes within each
studies-cluster we use m-1 studies as a training set and the remaining one as
test set. Then we use the n-1 genes to predict the one left out. We do this
within all the studies-clusters and for all the combinations of training and test
set of studies and genes. The prediction is made with the R package gRain [9].
Finally, we need to make sure that the subnetworks we identified principally
with glasso have some biological meaning. To do this we exploit two pieces of
software:

1. Mapman [18] which explores gene-by-gene the functions related to it and
returns a list of functions and a graph of connections

2. The software described in [11] returns the highlighted biological functions in
Table 2 which further reinforce the validity of the discovered genes returned
by Mapman.
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3 Results

In the figures below we show the unique-networks, learnt with bnlearn, for wheat
in one of the two study-clusters of stress-enriched conditions and the unique
network for the non-stress conditions cluster. The numbers identify the genes
and the black circles represent in both the genes that are involved in biotic
(caused by living organisms, such as insects and microbes) and abiotic (caused
by non-alive factors such as heat, drought, cold and agronomy practices) stress
response. In both networks we clearly see specific paths and groups of genes
that are highly connected. Using Mapman we were able to associate a function
to each gene. Focusing on the stress-enriched conditions network, the proce-
dure has managed to identify a relatively small number (58) of well connected
nodes. In fact only one node is isolated while the others form a distinctive path.
We see that genes involved in both kinds of stress response (biotic and abi-
otic stress) are involved in the network. Specifically the first four genes that
start the network pathway (29 - 47 - 17 - 30) are all involved in biotic stress.
The remaining highlighted genes instead are mostly involved in heat stress. A
good number of photosynthesis related genes are also involved, in particular (18
- 27 - 21 - 28 - 6 - 22). On the non-stress network, we have again identified
a reasonable number of genes though these are less connected. However, one
very well defined pathway exists that consists mainly of photosynthesis-related
genes (not highlighted). Fewer genes are found that are related to stress re-
sponse and those that do appear are much less connected, except for the path
formed by (46 - 57 - 26 - 50) nodes. The software described in [11] returns
the following (see Table 2) highlighted biological functions which go to rein-
force the results from Mapman. Higher values of Information Content (IC) are
associated with more informative terms. Values greater than 3 are generally
considered to be biologically informative. In Figures 3 and 4 we show the pre-
dictive accuracy for each gene. What we expect is a better prediction within
the study-clusters and a weaker one outside the clusters. Each boxplot repre-
sents the percentage of how many times the gene has been predicted correctly
among all the different given samples. The chance of correctly predicting the
genes randomly is one in three (there are three possible states for each gene:
under-regulated, normal, over-regulated ). Values above this can be considered
better than random. In the figures we clearly see that the internal predictions
(predictions made by cross validating within a study-cluster) are quite high for
most of the genes with little variations. For the external predictions (predictions
on data outside of the study-cluster), however, the mean prediction values are
mostly not better than chance as one would expect, and the standard devia-
tions are very high making them not reliable. This implies that the identified
subnetworks are indeed specific to their study cluster, making them easier to
characterise.
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Fig. 1. Unique-Network for wheat under stress-enriched conditions

Fig. 2. Unique-Network for wheat under non-stress conditions
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Fig. 3. Boxplot internal prediction in wheat. The figure shows that given n genes in
the network, using n-1 genes as predictor, the probability of correctly predicting the
value of the remaining gene is almost always better than chance (0.3). This means
that for each unique network, considering only the genes involved in it gives a better
understanding of the behaviour under specific conditions.
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Fig. 4. Boxplot external prediction in wheat. Example for training group 1. Here, we
consider only the genes involved in each studies group unique network, but to predict
we used data of the genes from studies outside the studies group. The figure shows
that the external prediction ability for the first studies group has a weaker mean and
a larger range meaning instability. This proves that the mechanisms discovered in each
studies group unique network is very specific to describe what is happening inside each
studies group and is not for all the other studies.
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Table 2. Unique networks biological process functions from Gene Ontology as de-
scribed in [11]

Unique network GO Id GO Name IC Term

1 GO:0019538 protein metabolic process 3.19
1 GO:0006950 response to stress 3.96
1 GO:0071840 cellular component organization or biogenesis 3.98

2 GO:0006950 response to stress 3.96
2 GO:0071840 cellular component organization or biogenesis 3.98
2 GO:0019684 photosynthesis, light reaction 8.32
2 GO:0044267 cellular protein metabolic process 3.45

3 GO:0006950 response to stress 3.96
3 GO:0015979 photosynthesis 7.13
3 GO:0071840 cellular component organization or biogenesis 3.98
3 GO:0009628 response to abiotic stimulus 4.97
3 GO:0042221 response to chemical stimulus 4.12
3 GO:0006091 generation of precursor metabolites and energy 5.14
3 GO:0044267 cellular protein metabolic process 3.45

3.1 Comparison with Bicluster

Finally we compare the results obtained with our algorithm in wheat with the
one obtained using Bicluster [3]. The biclustering technique identifies a subset of
genes and a subset of conditions simultaneously. There are various methods in
the literature for biclustering [12] but for this work we specifically chose the BCS
method implemented in the R package biclust. This is a state-of-the-art method
that normalizes the data matrix and looks for checkerboard structures using the
well known technique of singular value decomposition in eigenvectors applied
to both rows and columns [10]. It is important to highlight that biclustering
works on each sample and not on the studies. The method, after appropriately
tuning the parameters, identifies 17 biclusters. On the wheat data each resulting
bicluster highlights a different set of samples but the same set of six genes, 5 of
which are related to abiotic heat stress. The genes highlighted by biclustering
are also in the list of genes detected by the algorithm described in this paper,
specifically we can see five of these genes also highlighted in Figure 1 (23 -25 -
41 - 46 - 53). This discovery points out the importance of these 5 stress-related
and 1 protein-degradation-related genes but unfortunately biclustering fails at
identifying other equally important stress-related genes identified by our algo-
rithm. In addition the six genes that are identified do not seem to be associated
with a specific subset of samples. Rather each of them have been detected in
all of the biclusters. Regarding the samples, about half of the biclusters manage
to group together samples of stress-enriched studies but split samples from the
same study. Unfortunately, none of the biclusters group the non-stress studies ac-
curately enough to identify specific non-stress clusters. Furthermore, considering
that each study consists of both actual treatment samples and a small number
of controls it might be that biclustering merges together the control samples
of the stress-conditions with non-stress samples but this union occurs too often
and with too many samples for this to be considered the case. In conclusion,
we have found that the resulting biclusters do not properly cluster the samples
together, even ones belonging to the same study. Every bicluster highlights the
same group of genes preventing any discovery of differences between treatments.
It still discovers some important genes but much less than the ones we are able
to find with the method proposed in this paper.
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3.2 Results in Yeast

For the yeast data, following the same steps as in the wheat dataset, we found
9 study-clusters. Here most internal predictions are good though one cluster re-
sults in poor accuracies that are not much better than chance. Table 3 shows
the internal and external mean and variance prediction for each study-cluster.
Within study prediction is high. Unlike the wheat, it seems that the gene net-
works identified are a little better at predicting between different studies. This
might be because of the larger variety of available studies (82), that cluster
together supplying the networks with more data resulting in reasonably good
prediction even outside the study-cluster.

Table 3. Internal and External prediction accuracy for Yeast

Studies-group Internal Mean Internal Variance External Mean External Variance

1 0.33 0.08 0.34 0.12
2 0.72 0.11 0.50 0.10
3 0.71 0.09 0.53 0.09
4 0.53 0.12 0.52 0.08
5 0.47 0.13 0.40 0.09
6 0.62 0.08 0.60 0.08
7 0.63 0.07 0.58 0.08
8 0.48 0.11 0.52 0.09
9 0.62 0.12 0.54 0.08

4 Conclusions

There is a large number of microarray data sets available and the relatively new
interest in wheat renders the exploration of complexity of biological mechanisms
within the plant all the more important. Gene regulatory networks (GRNs)
can help in the exploration and understanding of biological processes operating
under different conditions. The complexity of networks learnt from all studies
can involve a large number of genes, making it very difficult to identify the most
important. In this paper we focus on the most relevant genes to different clusters
of studies. To do this we derive “unique network” using a combination of filtering,
clustering and consensus network modelling. We evaluated the predictive power
of our unique networks using Bayesian networks for each study-cluster. We have
shown that this sequence of steps automatically identifies subnetworks that are
characteristic (and more predictive) of a specific group of studies, in particular
highlighting two pathways involved in two types of stress-conditions. Future work
will involve further exploration of graph theoretic approaches to comparing the
glasso networks, further analysis of the discovered genes and pathways, and a
better understanding of the performance of the algorithm using simulated data.
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Abstract. We consider the task of finding frequent patterns in parallel
point processes—also known as finding frequent parallel episodes in event
sequences. This task can be seen as a generalization of frequent item set
mining: the co-occurrence of items (or events) in transactions is replaced
by their (imprecise) co-occurrence on a continuous (time) scale, meaning
that they occur in a limited (time) span from each other. We define the
support of an item set in this setting based on a maximum independent
set approach allowing for efficient computation. Furthermore, we show
how the enumeration and test of candidate sets can be made efficient by
properly reducing the event sequences and exploiting perfect extension
pruning. Finally, we study how the resulting frequent item sets/patterns
can be filtered for closed and maximal sets.

1 Introduction

We present methodology and algorithms to identify frequent patterns in parallel
point processes, a task that is also known as finding frequent parallel episodes in
event sequences (see [7]). This task can be seen as a generalization of frequent
item set mining (FIM)—see e.g. [2]. While in FIM items co-occur if they are con-
tained in the same transaction, in our setting a continuous (time) scale underlies
the data and items (or events) co-occur if they occur in a (user-defined) limited
(time) span from each other. The main problem of this task is that, due to the
absence of (natural) transactions, counting the number of co-occurrences (and
thus determining what is known as the support of an item set in FIM) is not a
trivial problem. In this paper we rely on a maximum independent set approach,
which has the advantage that it renders support anti-monotone. This property
is decisive for an efficient search for frequent patterns, because it entails the
so-called apriori property, which allows to prune the search effectively. Although
NP-complete in the general case, the maximum independent set problem can be
solved efficiently in our case due to the restriction of the problem instances by
the underlying one-dimensional domain (i.e., the continuous time scale).

The application domain that motivates our investigation is the analysis of
parallel spike trains in neurobiology: sequences of points in time, one per neu-
ron, representing the times at which an electrical impulse (action potential or
spike) is emitted. Our objective is to identify neuronal assemblies, intuitively

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 116–126, 2013.
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understood as groups of neurons that tend to exhibit synchronous spiking. Such
neuronal assemblies were proposed in [5] as a model for encoding and process-
ing information in biological neural networks. In particular, as a (possibly) first
step in the identification of neuronal assemblies, we look for frequent neuronal
patterns (i.e., groups of neurons that exhibit frequent synchronous spiking).

The remainder of this paper is structured as follows: Section 2 covers basic
terminology and notation. In Section 3 we compare two characterizations of syn-
chrony: bin-based and continuous, exposing the challenges presented by them.
In Section 4 we present our maximum independent set approach to support
counting as well as an efficient algorithm. In Section 5 we employ an enumera-
tion scheme (directly inspired by common FIM approaches) to find all frequent
patterns in a set of parallel point processes. In particular, we introduce core
techniques that are needed to make the search efficient. In Section 6 we present
experimental results, demonstrating the efficiency of our algorithm scheme. Fi-
nally, in Section 7 we draw conclusions from our discussion.

2 Event Sequences and Parallel Episodes

We (partially) adopt notation and terminology from [7]. Our data are (finite)
sequences of events of the form S = {〈e1, t1〉, . . . , 〈ek, tk〉}, for k ∈ N, where ei in
the event 〈ei, ti〉 is the event type (taken from a domain set E) and ti ∈ R is the
time of occurrence of ei, for all i ∈ {1, ..., k}. We assume that S is ordered with re-
spect to time, that is, ∀i ∈ {1, ..., k−1} : ti ≤ ti+1. Such data may be represented

as parallel point processes L = {(a1, [t(1)1 , . . . , t
(1)
k1

]), . . . , (am, [t
(m)
1 , . . . , t

(m)
km

])} by
grouping events with the same type ai ∈ E and listing the times of their oc-
currences (also sorted with respect to time) for each of them.1 We employ both
representations, based on convenience. In our motivating application (i.e., spike
train analysis), the event types are given by the neurons and the corresponding
point processes list the times at which spikes were recorded for these neurons.

Episodes (in S) are defined as sets of event types in E embedded with a
partial order, usually required to occur in S within a certain time span. Parallel
episodes have no constraints on the relative order of their elements. An instance
(or occurrence) of a parallel episode (or a set of synchronous events) A ⊆ E
in S with respect to a (user-specified) time span w ∈ R

+ can be defined as a
subsequence R ⊆ S, which contains exactly one event per event type a ∈ A and
in which any two events are separated by a time distance at most w.

Event synchrony is formally characterized by means of the operator σC :

σC(R, w) =

{
1 if max{|ti − tj | | 〈ei, ti〉, 〈ej , tj〉 ∈ R} ≤ w,
0 otherwise.

In words, σC(R, w) = 1 if all events in R lie within a distance at most w from
each other; otherwise σC(R, w) = 0. The set of all instances of parallel episodes

1 We use square brackets (i.e., [. . .]) to denote lists.
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(or all sets of synchronous events) of a set A ⊆ E of event types is denoted by
E(A,w), which we formally define as

E(A,w) =
{
R ⊆ S | A = {e | 〈e, t〉 ∈ R} ∧ |R| = |A| ∧ σC(R, w) = 1

}
.

That is, E(A,w) contains all event subsets of S with exactly one event for each
event type in A that lie within a maximum distance of w from each other.

3 Event Synchrony

Although the above definitions are clear enough, the intuitive notion of the (to-
tal) amount of synchrony of a setA of event types suggested by it poses problems:
simply counting the occurrences of parallel episodes of A—that is, defining the
support of A (i.e. the total synchrony of A) as s(E(A,w)) = |E(A,w)|—has
undesirable properties. The most prominent of these is that the support/total
synchrony of a set B ⊃ A may be larger than that of A (namely if an in-
stance of a parallel episode for A can be combined with multiple instances of a
parallel episode for B \ A), thus rendering the corresponding support measure
not anti-monotone. That is, such a support measure does not satisfy ∀B ⊃ A :
s(E(B,w)) ≤ s(E(A,w)). However, this property is decisive for an efficient search
for frequent parallel episodes, because it entails the so-called apriori property:
given a user-specified minimum support threshold smin, we have ∀B ⊃ A :
s(E(A,w)) ≤ smin ⇒ s(E(B,w)) ≤ smin (that is, no superset of an infrequent set
is frequent). This property allows to prune the search effectively: as soon as an
infrequent set is encountered, no supersets need to be considered anymore.

In order to overcome this problem, many approaches to find frequent paral-
lel episodes resort to time binning (including [7] and virtually all approaches
employed in neurobiology): the time interval covered by the events under con-
sideration is divided into (usually disjoint) time bins of equal length (i.e., the
originally continuous time scale is discretized). In this way transactions of clas-
sical frequent item set mining (FIM) [2] are formed: events that occur in the
same time bin are collected in a transaction and are thus seen as synchronous,
while events that occur in different time bins are seen as not synchronous. Tech-
nically, time binning can be characterized by the synchrony operator σB, defined
as follows for R ⊆ S and w now representing the bin width:

σB(R, w) =

{
1 if ∃k ∈ Z : ∀〈e, t〉 ∈ R : t ∈ (w(k − 1), wk],
0 otherwise

(implicitly assuming that binning is anchored at 0). Clearly, this solves the prob-
lem pointed out above: counting the bins in which all event types of a given set A
occur (or, equivalently, counting the number of sets of synchronous events of A—
at most one per time bin) yields an anti-monotone support measure. However,
this bin-based model of synchrony has several disadvantages:

– Boundary problem. Two events separated by a time distance (much)
smaller than the bin length may end up in different bins and thus be re-
garded as non-synchronous. Such behavior is certainly undesirable.
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– Bivalence problem. Two events can be either (fully) synchronous or non-
synchronous. Small variations in the time distance between two spikes (pos-
sibly moving one of them over a bin boundary) cause a jump from (full)
synchrony to non-synchrony and vice versa. This may be counter-intuitive.

– Clipping. In neurobiology the term clipping refers to the fact that in a bin-
based model it is usually considered only whether a neuron emits a spike in
a time bin, not how many spikes it emits in it. The same can be observed
for general event types in many settings employing time binning.

Some of these disadvantages can be mitigated by using overlapping time bins,
but this causes other problems, especially certain anomalies in the counting
of parallel episodes if they span intervals of (widely) different lengths: parallel
episodes with a short span may be counted more often than parallel episodes
with a long span, because they can occur in more (overlapping) time bins.

Due to these problems we prefer a synchrony model that does not discretize
time into bins, but rather keeps the (time) scale continuous: a continuous syn-
chrony model, as it was formalized in Section 2. This model captures the intended
characterization of synchrony in the bin-based approach, solves the boundary
problem and overcomes the effects of clipping, while it keeps the synchrony no-
tion bivalent (for a related continuous model with a graded notion of synchrony
see [8]). In order to overcome the anti-monotonicity problem pointed out above,
we define the support of a set A ⊆ E of event types as follows (see also [6] for a
similar characterization):

s(E(A,w)) = max
{
|H | | H ⊆ E(A,w)∧ �∃R1 ,R2 ∈ H : R1 �= R2∧R1∩R2 �= ∅

}
.

That is, we define the support (or total synchrony) of a pattern A ⊆ E as the size
of a maximum independent set of instances of parallel episodes of A (where by
independent set we mean a collection of instances that do not share any events,
that is, the instances do not overlap). Such an approach has the advantage that
the resulting support measure is guaranteed to be anti-monotone, as can be
shown generally for maximum independent subset (or, in a graph interpretation,
node set) approaches—see, e.g., [3] or [10].

4 Support Computation

A core problem of the support measure defined in the preceding section is that
the maximum independent set problem is, in the general case, NP-complete and
thus not efficiently solvable (unless P = NP). However, we are in a special
case here, because the domain of the elements of the sets is one-dimensional
and the elements of the considered sets are no more than a (user-specified)
maximum distance w apart from each other. The resulting constraints of the
possible problem instances allow for an efficient solution, as shown in [9].

Intuitively, the constraints allow to show that a maximum independent set can
be found by a greedy algorithm that always selects the next (with respect to time)
selectable instance of the parallel episode we are considering. The idea of the
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type train = (int, list of real); (∗ pair of identifier and list of points/times ∗)
(∗ points/times are assumed to be sorted ∗)

function support (L: set of train, w: real) : int;
begin (∗ L: trains to process, w: window width ∗)

s := 0; (∗ initialize the support counter ∗)
while ∀(i, l) ∈ L : l = [] do begin (∗ while none of the lists is empty ∗)

tmin = min {head(l) | (i, l) ∈ L}; (∗ get smallest and largest head element ∗)
tmax = max{head(l) | (i, l) ∈ L}; (∗ and thus the span of the head elements ∗)
if tmax − tmin > w (∗ if not synchronous, delete smallest heads ∗)
then L := {(i, tail(l)) | (i, l) ∈ L ∧ head(l) = tmin}

∪ {(i, l) | (i, l) ∈ L ∧ head(l) = tmin};
else L := {(i, tail(l)) | (i, l) ∈ L}; (∗ if synchronous, delete all heads ∗)

s := s+ 1; end (∗ (i.e., delete found synchronous points) ∗)
end (∗ and increment the support counter ∗)
return s; (∗ return the computed support ∗)

end (∗ support() ∗)

Fig. 1. Pseudo-code of the support computation from a set of trains/point processes

a) b) c)

d) e) f)

Fig. 2. Illustration of the support computation with a sliding window for three parallel
point processes. Blue lines connect selected (i.e. counted) groups of points/times.

proof is that starting from an arbitrary maximum independent set, the selection
of the sets can be modified (while keeping the number of sets and thus the
maximality property of the selection), so that events occurring at earlier times
are chosen. In the end, the first selected set contains the earliest events of each
type that together form an instance of the parallel episode A under consideration.
The second selected set contains the earliest events of each type that form an
instance of the parallel episode A in an event sequence from which the events
of the first instance have been removed, and so on. As a consequence, always
selecting greedily the next instance of the parallel episode in time that does not
contain events from an already selected one yields a maximum independent set.
The details of the proof can be found in [9].

Pseudo-code of the resulting greedy algorithm to compute s(E(A,w)), which
works on a representation of the data as parallel trains (or parallel point pro-
cesses) is shown in Figure 1. An illustration in terms of a sliding window that
stops at certain points, namely always the next point that is not yet part of a
selected set or has already been considered, is shown in Figure 2.
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function isect (I : list of interval, l: list of real, w: real) : list of interval;
begin (∗ — intersect interval and point list ∗)

J := []; p := −∞; q := −∞; (∗ init. result list and output interval ∗)
while I = [] ∧ x = [] do begin (∗ while both lists are not empty ∗)

a, b := head(I); t := head(l); (∗ get next interval and next point ∗)
if t < a then l := tail(l); (∗ point before interval: skip point ∗)
elif t > b then I := tail(I); (∗ point after interval: skip interval ∗)
else x := max{a, t− w}; (∗ if current point is in current interval, ∗)

y := min {b, t+ w}; (∗ intersect with interval around point ∗)
if x ≤ q then q := y; (∗ merge with output interval if possible ∗)
else if q > −∞ then J.append([p, q]); p := x; q := y;
l := tail(l); (∗ store pending output interval, ∗)

end (∗ start a new output interval, and ∗)
end (∗ finally skip the processed point t ∗)
if q > −∞ then J.append([p, q]); end (∗ append the last output interval ∗)
return J ; (∗ return the created interval list ∗)

end (∗ isect() ∗)

function recurse (C,L: set of train, I : list of interval, w: real, smin: int);
begin (∗ — recursive part of CoCoNAD ∗)

while L = ∅ begin (∗ while there are more extensions ∗)
choose (i, l) ∈ L; L := L− {(i, l)}; (∗ get and remove the next extension ∗)
J := isect(I, l); (∗ intersect interval list with extension ∗)
D := {(i′, [t | t ∈ l′ ∧ ∃j ∈ J : t ∈ j]) | (i′, l′) ∈ C ∪ {(i, l)}};
s := support(D,w); (∗ filter collected trains with intervals, ∗)
if s < smin then continue; (∗ compute support of the train set and ∗)
report {i′ | (i′, l′) ∈ C}with support s;(∗ skip infrequent/report frequent sets ∗)
X := {(i′, [t | t ∈ l′ ∧ ∃j ∈ J : t ∈ j]) | (i′, l′) ∈ L};
recurse(D,X, J,w, smin); (∗ filter extensions with interval list and ∗)

end (∗ find frequent patterns recursively ∗)
end (∗ recurse() ∗)

function coconad (L: set of train, w: real, smin: int);
begin (∗ L: list of trains to process ∗)

recurse([], L, [[−∞,+∞]], w, smin); (∗ w: window width, smin: min. support ∗)
end (∗ coconad() ∗) (∗ initial interval list is whole real line ∗)

Fig. 3. Pseudo-code of the recursive enumeration (support computation see Fig. 1)

5 Finding Frequent Patterns

In order to find all frequent patterns we rely on an enumeration scheme that
is directly inspired by analogous approaches in FIM, especially the well-known
Eclat algorithm [11]. This algorithm uses a divide-and-conquer scheme, which
can also be seen as a depth-first search in a tree that results from selecting edges
of the Hasse diagram of the partially ordered set (2E ,⊆)—see, e.g., [2]. For a
chosen event type a, the problem of finding all frequent patterns is split into two
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subproblems: (1) find all frequent patterns containing a and (2) find all frequent
patterns not containing a. Each subproblem is then further divided based on
another event type b: find all frequent patterns containing (1.1) both a and b,
(1.2) a but not b, (2.1) b but not a, (2.2) neither a nor b etc. More details of
this approach in the context of FIM can be found in [2]. Pseudo-code of this
scheme for finding frequent patterns is shown in Figure 3, particularly in the
function “recurse”: the recursion captures including another event type (first
subproblem), the loop excluding it afterwards (second subproblem). Note how
the apriori property (see above) is used to prune the search.

A core difference to well-known FIM approaches is that we cannot, for ex-
ample, simply intersect lists of transaction identifiers (as it is done in the Eclat
algorithm, see [11] or [2]), because the continuous domain requires keeping all
trains (i.e. point processes) of the collected event types in order to be able to
compute the support with the function shown in Figure 1. However, simply
collecting and evaluating complete trains leads to considerable overhead that
renders the search unpleasantly slow (see the experimental results in the next
section). In order to speed up the process, we employ a filtering technique based
on a list of (time) intervals in which the points/times of the trains have to lie to
be able to contribute to instances of a parallel episode under consideration (and
its supersets). The core idea is that a point/time in a train that does not have
a partner point/time in all other trains already collected (in order to form an
instance of a parallel episode) can never contribute to the support of a parallel
episode (or any of its supersets) and thus can be removed.

The initial interval list contains only one interval that spans the whole real
line (see the main function “coconad” in Figure 3). With each extension of the
current set of event types (that is, each split event type in the divide-and-conquer
scheme outlined above), the interval list is “intersected” with the train (that is,
its list of points/times). Pseudo-code of this intersection is shown in the function
“isect” in Figure 3: only spikes lying inside an existing interval are considered.
In addition, the intervals are intersected with the intervals [t−w, t+w] around
the point/time t in the train, where w is the (user-specified) window width that
defines the maximum time distance between events that are to be considered
synchronous. The resulting intersections are then merged into a new interval list.

These interval lists are used to filter both the already collected trains before
the support is determined (cf. the computation of the set D in the function
“recurse” in Figure 3) as well as the potential extensions of the current set of
event types (cf. the computation of the set X). Preliminary experiments that we
conducted during the development of the algorithm showed that each of these
filtering steps actually improves performance (considerably).

A common technique to speed up FIM is so-called perfect extension pruning,
where an item i is called a perfect extension of an item set I if I and I ∪ {i}
have the same support. The core idea is that a subproblem split (as described
in the divide-and-conquer scheme above) can be avoided if the chosen split item
is a perfect extension. The reason is that in this case the solution of the first
subproblem (include the split item) can be constructed easily from the solution
of the second (exclude the split item): simply add the perfect extension item
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to all frequent item sets in the solution of the second subproblem (see [2] for
details). However, for this to be possible, it is necessary that the property of
being a perfect extension carries over to supersets, that is, if an item i is a
perfect extension of an item set I, then it is also a perfect extension of all
item sets J ⊃ I. Unfortunately, this does not hold in the continuous case we
consider here: there can be patterns A,B ⊆ E, with B ⊃ A, and a ∈ E such
that s(E(A,w)) = s(E(A ∪ {a}, w)), but s(E(B,w)) > s(E(B ∪ {a}, w)). As a
consequence, perfect extension pruning cannot be applied directly.

Fortunately, though, we are still able to employ a modified version, which
exploits the fact that we can choose the order of the split event types inde-
pendently in different branches of the search tree. The idea is this: if we find a
perfect extension (based on the support criterion mentioned above), we collect it
and only solve the second subproblem (exclude the split event type). Whenever
we report a pattern A as frequent we check whether this set together with the
set B of collected perfect extensions has the same support. If it does, the prop-
erty of being a perfect extension actually carries over to supersets in this case.
Therefore we can proceed as in FIM: we report all sets A∪C with C ⊆ B, using
the same support s(E(A,w)). If not, we “restart” the search using the collected
perfect extensions as split/extension items again. Note that due to the fact that
we know the support of the set A∪B (computed to check whether A and A∪B
have the same support), we have an additional pruning possibility: as soon as we
reach this support in the restarted recursion, the remaining perfect extensions
can be treated like “true” perfect extensions. (Note that this technique is not
captured in the pseudo-code in Figure 3; for details refer to the source code,
which we made available on the internet—see below).

Finally, we consider filtering for closed and maximal frequent patterns, which
is a common technique in FIM to reduce the output size. For applications in
spike train analysis we are particularly interested in closed frequent patterns,
because they capture all frequency information without loss, but (usually) lead
to (much) smaller output (while maximal frequent patterns, which can reduce
the output even more, lose frequency information and cause certain unpleasant
interpretation problems). Because of this filtering for closed sets of neurons that
frequently fire together as an indication of assembly activity, we call our algo-
rithm CoCoNAD (for COntinuous-time ClOsed Neuron Assembly Detection—
see Figure 3, although the pseudo-code does not capture this filtering).

The main problem of filtering for closed and maximal sets are the “eliminated
event types,” that is, event types which have been used as split event types and
w.r.t. which we are in the second subproblem (exclude item). While event types
that have not been used on the current path in the search tree are processed
in the recursion and hence it can be returned from the recursion whether there
exists a superset containing them that has the same support (closed sets) or
is frequent (maximal sets), eliminated event types need special treatment. We
implemented two approaches: (1) collecting the (filtered trains of the) eliminated
event types and explicitly checking the support of patterns that result from
adding them and (2) using (conditional) repositories of (closed) frequent sets as
suggested for FIM in [4]. (Again these techniques are not captured in Figure 3;
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details can be found in the source code). The latter has the disadvantage that
it requires extra memory for the (conditional) repositories, but turns out to be
significantly faster than the former (see next section).

6 Results

We implemented our algorithm scheme in both Python and C (see below for the
sources) and tested it on the task of identifying all frequent patterns in data
sets with varying parameters in order to assess its efficiency. Parameters were
chosen with a view on our application domain: data sets with a varying number
of event types (i.e. neurons in our application domain), chosen based on the
number of neurons that can be simultaneously recorded with current technology
(around 100, cf. [1]). Event rates were chosen according to typical firing rates
observed in spike train recordings (around 20–30Hz), which usually comprise
a few seconds. Several minimum support thresholds and window widths were
considered as an illustration. Window widths were selected based on typical time
bin lengths in applications of the bin-based model of synchrony (1 to 7 milli-
seconds). Support thresholds were considered down to two sets of synchronous
events to demonstrate that highly sensitive detections are possible.

The first three diagrams in Figure 4 show execution times of our algorithm
on some of these data sets to give an impression of what impact the parameters
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Fig. 4. Execution times in different experimental settings. Default parameters (unless
on horizontal axis or in legend) are 5s recording period, 100 event types, 30Hz event
rate, smin = 2, w = 5ms, closed item sets filtered with (conditional) repositories.
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have on the execution time.2 The last diagram compares the performances of
the algorithmic variants described in Section 5. In this diagram “basic” refers to
an algorithm without filtering of point processes, that is, as if the pseudo-code
in Figure 3 (cf. function “recurse”) used the assignments D := C ∪ {(i, l)} and
X := L, that is, as if the complete trains were maintained; “trains” means an
algorithm with filtering of point processes, where the trains of eliminated items
are collected and used to check at reporting time for closed patterns; while
“repository” means an algorithm with filtering of point processes, but using
(conditional) repositories of already found closed patterns to filter for additional
closed patterns. Note that filtering the point processes contributes most to make
the search efficient (it reduces the time by about two orders of magnitude).

7 Conclusion

We presented an efficient algorithm scheme aimed at identifying frequent pat-
terns in parallel point processes. This task can be seen as a generalization of
frequent item set mining to a continuous (time) scale, where items or events co-
occur (that is, are synchronous and thus constitute a set of synchronous events)
if they all lie within a certain user-defined (time) span from each other. The
main problem of this task is that, due to the absence of natural transactions (on
which standard frequent item set mining is based), counting the number of sets
of synchronous events (i.e., assessing the support) of a pattern is not a trivial
matter. In this paper the support of a pattern is defined as the maximum num-
ber of non-overlapping sets of synchronous events that can be identified for that
particular set. This has the advantage that it renders support anti-monotone
and thus allows to prune the search for frequent patterns effectively. Computing
the support thus defined becomes an instance of the maximum independent set
problem that, although NP-complete in the general case, can be shown to be
efficiently solvable in our case due to the restriction of the problem instances by
the underlying one-dimensional domain (i.e., the continuous time scale).

In order to make the search for frequent patterns efficient we introduced sev-
eral core techniques, such as filtering the point processes to reduce them to the
relevant points and using (conditional) repositories to filter for closed (or max-
imal) patterns. These techniques contribute substantially to speeding up the
search, as is demonstrated by the experiments reported in this paper.

Software and Source Code

Python and C implementations of the described algorithm as command line
programs as well as a Python extension module that makes the C implementation
accessible in Python (2.7.x as well as 3.x) can be found at these URLs:

www.borgelt.net/coconad.html www.borgelt.net/pycoco.html

2 All tests were run on a standard PC with an Intel Core 2 Quad 9650@3GHz pro-
cessor, 8GB RAM, Ubuntu Linux 12.10 64bit operating system, using the C imple-
mentation of our algorithm compiled with GCC 4.7.2.

www.borgelt.net/coconad.html
www.borgelt.net/pycoco.html
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Abstract. Groups of (parallel) point processes may be analyzed with a
variety of different goals. Here we consider the case in which one has a
special interest in finding subgroups of processes showing a behavior that
differs significantly from the other processes. In particular, we are inter-
ested in finding subgroups that exhibit an increased synchrony. Finding
such groups of processes poses a difficult problem as its näıve solution
requires enumerating the power set of all processes involved, which is a
costly procedure. In this paper we propose a method that allows us to
efficiently filter the process set for candidate subgroups. We pay special
attention to the possibilities of temporal imprecision, meaning that the
synchrony is not exact, and selective participation, meaning that only a
subset of the related processes participates in each synchronous event.

Keywords: point processes, clustering, spike train analysis.

1 Introduction

Point processes occur in many different situations, such as arrivals of customers
or phone calls, accidents on highways or firing of neurons in artificial or natural
neural networks [8]. They generate a series of points in time or space and can be
used to describe different kinds of event sequences. The work we report about in
this paper is motivated by the analysis of (parallel) spike trains in neurobiology
[14]: each train refers to a neuron, the associated point process records the times
at which the neuron emitted an electrical impulse (action potential or spike).

The mechanisms by which a single neuron is activated by the release of neuro-
transmitters and emits electrical impulses are fairly well understood. However,
how groups of neurons interact with each other and collectively encode and pro-
cess information (like stimuli) is still the subject of ongoing research and intense
debate in the neuroscience community. Several competing theories have been
proposed to describe this processing. In particular, neuron assemblies have been
suggested by Hebb [15] as the key elements of information processing in the cor-
tex. Hebb suggested that such assemblies should reveal themselves by increased
synchronous activity, i.e. they tend to produce (roughly) coincident spikes.

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 127–137, 2013.
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Fig. 1. Two sets of (artificial) parallel spike trains. Right: independent trains, generated
as Poisson processes; left: coincident spiking events of 20 neurons (randomly selected)
injected into an independent background (see also: [13,12,3]).

Since today the recording of several hundred(s) of spike trains in parallel is
possible, there is an increased need for efficiently analyzing the data and to test
the assembly hypothesis accordingly. The objective is to detect those groups of
neurons (or spike trains) that show more synchronous activity than we would
expect to see under the assumption that they are all independent.

The main obstacles we need to deal with in this task are threefold: in the
first place, the possible combinations of neurons that may form an assembly
increases exponentially with the number of neurons recorded. Furthermore we
have to cope with temporal imprecision and selective participation. Temporal
imprecision means that we cannot expect two events that originate from the
same underlying coincident event to actually appear at (exactly) the same point
in time in the spike trains. This may be due to the underlying biological process
that generates the spikes but also due to the measurement procedure in which
one probe records the electrical potential of (possibly) several neurons in parallel
which then have to be separated in a process called spike sorting.

Selective participation means that not each and every neuron that belongs to
an assembly actually takes part in every coincidence; rather some neurons may
miss some of the coincidences. This is quite likely to occur in real neural networks
as neurons need some time (so-called refractory period) after they emitted a
spike to regenerate and be able to emit the next spike. Selective participation
may even lead to situations where we do not even see a single coincidence in
which all neurons forming the assembly took part.

In this paper we analyze the task of distinguishing between groups of spike
trains that contain just random noise (independent spike trains) and groups
that exhibit increased synchronous firing, allowing for temporal imprecision as
well as selective participation, but without actually identifying the assemblies
themselves. Figure 1 shows two samples of parallel spike trains where in the left
case 20 neurons are firing with higher synchrony while the right picture shows
independent trains. This is to emphasize the difficulty of the problem posed.
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The remainder of this paper is organized as follows: in Section 2 we briefly
review related work on methods for the analysis of parallel spike trains. In Sec-
tion 3 we describe how our method works and evaluate it on artificially generated
train sets in Section 4. Section 5 concludes the paper with a discussion of the
results and an outlook on future research on this topic.

2 Related Work

The problem of finding cell assemblies in parallel spike train data has been the
subject of research for quite some time. Early algorithmic attempts to detect
assemblies date back at least to [11] where assemblies are detected by performing
several pairwise χ2-tests for independence on the time-discretized spike trains.
The pair of spike trains yielding the lowest p-value is then merged into a single
spike train, containing only the coincidences. The result of this merger is then
added to the pool of spike trains (keeping the originals for further tests) and the
tests are repeated until no further significant pairs can be found.

Generally, attempts to identify assemblies in parallel spike train data can be
(roughly) categorized in three classes: (1) finding out whether there is (at least)
one assembly present in the data (e.g. [18,21,22]), (2) answering for each neuron
whether it belongs to such an assembly (e.g. [3]) and (3) actually identifying the
assemblies (e.g. [10] or for selective participation [2]). The approach we present in
this paper belongs to the second category, which is particularly useful for prepro-
cessing, and results from previous work we did on the generation of prototypes
for the analysis of spike trains on a continuous time domain [6].

Methods that test whether a neuron belongs to an assembly or not (like [3])
sometimes rely on the generation of surrogate data. Such surrogates are spike
trains that retain some (desirably: most) of the statistical properties of the orig-
inal spike trains while other properties (for instance, synchronous spiking) are
destroyed on purpose in order to be able to test for this property. Simple exam-
ples are the generation of a spike train that contains the same number of spikes
but at different points in time or a spike train that has the same distribution
of inter-spike intervals. One may then calculate some statistics for each of the
surrogates and if the behavior seen in the original spike train does not occur (or
occurs only very rarely) in the surrogates one can assume that it is not the prod-
uct of a random process. However, though fairly simple and statistically sound,
generating surrogates for a large set of spike trains is a very time-intensive proce-
dure that can quickly become infeasible if a large number of surrogate data sets
need to be generated to meet a chosen significance level. Methods that allow for
faster decision on whether a neuron belongs into an assembly or not are desire-
able and are very useful as a preprocessing step, and then later (computationally
more expensive) analysis can be focused on promising subsets.

In this paper we introduce a method that allows for such quick preprocessing
of a data set of parallel spike trains by analyzing the overall behavior of the
spike trains, especially w.r.t. synchronous events, which groups them by their
behavior rather than by their actual coincident events. In this sense it may be
seen as a classification algorithm [16].
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Fig. 2. Spike profile for a set of 100 spike trains with an injected assembly of size 10

3 Behavioral Clustering

In this section we describe how to compute a clustering of neurons into potential
assembly neurons and background neurons from parallel spike train data. The
method we propose here circumvents an interpretability problem that occurs
when calculating metric representatives for the spike trains (see [5]) in the sense
that we do not cluster the spike trains directly but rather their behavior: spike
trains that belong to no assembly should behave essentially randomly, while the
other spike trains should show a different, more organized behavior.

A spike train is essentially a point process, that is, a set of events that are
identified by a point in time. We denote such a set by T , every event (or rather
the point in time at which it occurs) by ti ∈ T . Spike trains are often discretized
to form an n-dimensional binary vector, each component of which describes one
time bin and records whether the neuron emitted a spike in the corresponding
time interval or not. As this approach suffers from various problems (especially
the boundary problem, which results from how the bin boundaries fall relative
to possible synchronous events), we choose a dynamic window placement. That
is, by placing windows of a user-specified length 2δt around each event (spike),
we model the events not as single points in time but as intervals during which
they may be considered as coincident with other events. Formally we define:

fT (t) =

{
1 if ∃ti ∈ T : ti − δt ≤ t ≤ ti + δt,
0 otherwise.

Spike trains are thus effectively encoded as interval lists that describe the com-
bined influence of all contained spikes. Note that the above definition merges
overlapping intervals into a single, longer interval and thus the interval list may
contain fewer intervals than the original point process contains points.
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A set of parallel recorded spike trains S = {T1, . . . , Tn} can now be represented
by its spike profile which is simply the sum of all individual influence functions
(cf. Figure 2):

fS(t) =
∑
T∈S

fT (t).

To distinguish spike trains that form an assembly from those that do not we need
a representation of the spike trains that allows us to study their behavior. As we
pointed out in the motivation, we are looking for a subgroup of processes that
exhibits higher synchronous activity than we would expect under independence.
Synchronous activity should show itself by several spike trains containing events
that occur (roughly, in the presence of temporal imprecision) at the same time.
As a pairwise comparison of the interval data would be too costly we can use
the profile to identify the behavior of each spike train individually with respect
to the other spike trains.

To extract what may be called a “behavior profile”, we create different interval
lists from the spike profile by using a flooding-like approach. That is, we extract
from the spike profile all intervals where fS(t) > 0 holds. This, as we may
say, “prototype” interval list is then compared to each individual spike train
(or rather its representation as an interval list). To this end we calculate the
overlap between the interval lists. Formally, we compute Px = {t | fS(t) ≥ x}
as a “prototype” interval list and then calculate sT (x) = d(T, Px) ∀T ∈ S,
∀x ∈ {0, 1, . . . ,max fS(t)}, where d is the overlap of the two interval lists T
and Px. More technically, we define the cut level function (for level x)

fS,x(t) =

{
1 if fS(t) ≥ x,
0 otherwise

and then sT (x) =

∫
fS,x(t) · fT (t) dt.

That is, the function sT (x) describes the total length of the time intervals in
which both the cut level function (for level x) and the spike train function are 1.
For a sample set of 100 spike trains with an injected assembly of size 10 the
resulting curves can be seen in Figure 3 (left diagram, δ = 3ms).

The profile curves of the assembly can already be distinguished by visual
inspection on this leftmost graph as they descend slightly later. To enhance
the distinction, we exploit the plausible argument that higher levels are more
important to detect synchronous activity. Therefore we weight each point of the
behavior profile with the square of the level, i.e., the number of participating
spike trains. Formally, we have ∀T ∈ S : ∀x ∈ {0, 1, . . . ,max fS(t)} :

s′T (x) = x2 · sT (x).

The resulting curves are shown in the middle diagram of Figure 3.
Finally, in order to make the assembly stand out even more, we normalize the

curves by subtracting for each point the minimum value over the spike trains.
Formally, we have ∀T ∈ S : ∀x ∈ {0, 1, . . . ,max fS(t)} :

s′′T (x) = x2 · sT (x) −mx where mx = min
T∈S

(
x2 · sT (x)

)
.
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Fig. 3. Profile curves for a set of 100 spike trains with an assembly of size 10 injected.
Left: similarity with the prototype/cut level; middle: similarity with the prototype/cut
level, weighted with the square of the number of participating neurons (i.e., the level
height); right: similarity with the prototype/cut level, weighted with the square of the
number of participating neurons (i.e., the level height) and normalized by subtracting
the minimum value over all spike trains.

The resulting curves are shown in Figure 3 on the right. Here the assembly
clearly stands out from the rest of the spike trains so that we may use the
profile curves obtained from the function s′′ to describe the behavior of a spike
train and perform a clustering on this data, using the vector of values s′′T (x) for
x ∈ {0, 1, . . . ,max fS(t)} as points in a metric space.

To automatically separate the two groups we decided to test both a density-
based clustering algorithm (DBSCAN, [9]) and a simple hierarchical clustering
with complete linkage. While the former should be able to detect the number
of assemblies as well, the latter was set to report only two clusters. Directly
reporting the assemblies contained in the set of spike trains would be a nice
feature, as it would lift the method from a pure classification of neurons (into
assembly and non-assembly neurons) to an assembly detection algorithm. But
unfortunately the assembly neurons behave very similar when compared against
the rest of the spike trains as can be seen in Figure 4 where two assemblies are
shown as red and green lines respectively. Only if the two assemblies differed
significantly in size and/or activity the curves would be different enough to
become distinguishable. For the time being we consider them indistinguishable
and leave better approaches for future work. As we want a procedure that decides
without taking too much time if a spike train should be considered noise, we chose
to still evaluate DBSCAN as it showed promising results in separating at least
noise from assembly spike trains.

As input both algorithms received a similarity matrix, computed from the
squared point-wise difference, i.e. the squared Euclidean distance, of the “behav-
ior profiles”. The calculation of this matrix is much faster than the calculation
of a similarity matrix as we employed it in [5].



Behavioral Clustering for Point Processes 133

0

1

2

3

4

5

6

7
s T

(x
)
·1

0

0 5 10 15 20 25
number of firing neurons

0

1

s′ T
(x

)/
1
0

0 5 10 15 20 25
number of firing neurons

0

1

s′
′ T
(x

)/
1
0

0 5 10 15 20 25
number of firing neurons

Fig. 4. Profile curves for a set of 100 spike trains with two assemblies injected, each of
size 10. Noise is colored in blue, assemblies in red or green. The two disjoint assemblies
are nearly indistinguishable.

Both algorithms may report the clusters found in arbitrary order so that we
still need a criterion to distinguish them. For that we first calculate the mean
profile curve as

mC(x) =
1

‖C‖
∑
T∈C

s′′T (x)

for each cluster C found and then calculate the area under the curve (AUC)
for each mC . The one that yields the smallest AUC has the smallest overlap
with time frames that many spike trains have contributed to. So it is fair to
assume that this is the prototype for the behavior of the noise. The remaining
spike trains will be labeled as potential assembly candidates and can be further
processed with other methods.

As we only need to decide which spike trains should be labeled as noise and
which as assembly candidates, we can also justify the choice of restricting the
hierarchical clustering to report exactly two clusters. One will be the noise while
the other one will contain the assembly spike trains.

4 Evaluation

To evaluate the method we proposed in Section 3 we generated several artificial
sets of spike trains and ran our algorithm to report assembly and non-assembly
spike trains. As this is a kind of classification, we can use classification quality
measures such as the Adjusted Rand Index (ARI, [20]), Adjusted Mutual In-
formation (AMI, e.g. [23]) and others for the evaluation of our method. Both
aforementioned measures calculate the agreement between two different cluster-
ing results based on the predicted cluster labels but independent of the order of
the cluster labels. The first is based on the absolute number of agreements while
the latter is based on the mutual information shared by both clusterings.

To generate an artificial spike train, we sample the inter-spike intervals (time
between two subsequent events) from an exponential distribution until a specified
length of the spike train is reached (i.e., we generate Poisson point processes).
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Fig. 5. Results for 1000 sets of parallel spike trains of 10 seconds length with an
assembly of 20 spike trains injected, analyzed with DBSCAN

Firing rates were set to 20Hz for the non-assembly spike trains (which is a typ-
ical reference in the field). For the assembly spike trains a mother process was
generated from which the coincident events were copied into the assembly spike
trains with a certain probability (c = 1.0 if full participation was to be present,
c < 1.0 if selective participation was to be modeled). The background firing was
adjusted such that the overall firing rate (background and coincidences) was the
same as for the noise spike trains (20Hz). Thus the spike trains cannot be dis-
tinguished by merely looking at the number of spikes. The temporal imprecision
was modeled by shifting each spike after its generation by a certain, specified
amount (here: ±5ms, i.e. ∀ti : ti := ti + U(−5, 5); or δt = 5ms).

For our experiments we generated 1000 sets of parallel spike trains, consisting
of 100 spike trains each. 20 of the spike trains form a single assembly with
a coincidence rate of 5Hz embedded. The length of the simulated recording
was 10 seconds in the first trials with copy probabilities of 1.0, 0.8 and 0.6.
Each of these sets has been analyzed in the same way with either DBSCAN or
hierarchical clustering grouping the spike trains together. To show the effects of
the assembly size on the detection quality we ran the same number of tests on
sets of parallel spike trains with an assembly size of only 10 and only 6 seconds
length. The results of these tests can be seen in Figures 5 and 6 respectively for
DBSCAN. Please note that the boxplots used seem to disappear in some cases.
This is due to the fact that (almost) all values for the quality measures are
actually 1.0 which means that the algorithm returned a clustering that perfectly
matched the ground truth. Even if we reduce the copy probabilities to 0.6 all
non-perfect results have to be considered outliers (i.e. they lie at least 2.698σ /
outside the 99% interval from the median).

As the result for shorter spike trains with an average participation probability
of 0.8 was significantly worse than we expected, we also used hierarchical cluster-
ing to analyze the last set of spike trains (see Figure 7). For copy probabilities of
c = 0.8 the results are clearly better than when using density-based clustering,
but for smaller copy probabilities the results are still bad albeit better. With
only 10 spike trains forming an assembly and only six of them taking part in
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Fig. 6. Results for 1000 sets of parallel spike trains of 6 seconds length with an assembly
of 10 spike trains injected, analyzed with DBSCAN
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Fig. 7. Results for 1000 sets of parallel spike trains of 6 seconds length with an assembly
of 10 spike trains injected, analyzed with hierarchical clustering

a coincidence on average the number of events we can use for the detection of
the assembly neurons is already close to the number of coincidences we would
expect to see in totally independent processes.

5 Conclusion and Future Work

In this paper we presented a method to group sets of point processes by the
similarity of their behavior with respect to the behavior of the other processes
by means of clustering algorithms. Synchronization between processes can be
detected quite well for processes of different length and under additional obsta-
cles such as selective participation and temporal imprecision. We evaluated our
method in several different settings of artificially generated spike trains, i.e. point
processes as they commonly appear in neurobiology. The artificial nature of our
data allows us to control the experiments and perform a much more restrictive
analysis as we can clearly calculate the number of false-positive or false-negative
results. We use different measures for classification evaluation to aggregate these
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rates and the results show that our method is capable of recognizing and dis-
tinguishing groups of synchronized processes quite well from those that show
no synchronization. We have to admit, though, that our method is not (yet)
capable of reporting different groups present in the data. However, it is valuable
as a preprocessing method that can focus more expensive methods for actual
assembly detection on a set of promising candidates.
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Abstract. Decision trees estimate prediction certainty using the class
distribution in the leaf responsible for the prediction. We introduce an
alternative method that yields better estimates. For each instance to
be predicted, our method inserts the instance to be classified in the
training set with one of the possible labels for the target attribute; this
procedure is repeated for each one of the labels. Then, by comparing the
outcome of the different trees, the method can identify instances that
might present some difficulties to be correctly classified, and attribute
some uncertainty to their prediction. We perform an extensive evaluation
of the proposed method, and show that it is particularly suitable for
ranking and reliability estimations. The ideas investigated in this paper
may also be applied to other machine learning techniques, as well as
combined with other methods for prediction certainty estimation.

Keywords: Decision trees, prediction certainty, soft classifiers.

1 Introduction

In classification, it is often useful to have models that not only have high accu-
racy, but can also tell us how certain they are about their predictions. Classifiers
that output some kind of reliability or likelihood of the quality of predictions
are called soft classifiers [1]. A common example of a soft classifier is a probabil-
ity estimator, which estimates the probability that a data instance belongs to a
certain class. Rankers and reliability estimators are other forms of soft classifiers.

The standard way of turning decision trees (DTs) into soft classifiers consists
of inferring the certainty of a prediction from the class distribution in the leaf
responsible for the prediction. For example, if an instance x is classified in a
leaf node with 90% of positive examples, we say that x has 90% probability
of being positive. However, it has been shown that these proportions can be
misleading: the smaller the leaf is, the more likely the proportion is accidental,
and not inherent to the population distribution in the leaf [2,3]; and, as DT
learners try to make the leaves as pure as possible, the observed frequencies are
systematically shifted towards 0 and 1 [3].
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In this paper, we propose an alternative method to estimate prediction cer-
tainty in DTs. Assume that, given data set D and k classes c1, . . . , ck, we want
to make a prediction for an unseen instance x. Suppose that we learn a tree T
that predicts with high “certainty” (according to leaf proportions) that x has
class c1. Logically speaking, if we would give the learner the prior knowledge
that x has class c1 (by simply adding (x, c1) to D), the learner should not return
a tree Tc1 that predicts with less certainty that the class of x is c1. If it does,
there is a logical contradiction, in the sense that more evidence about some fact
being true leads to less certainty about it. Moreover, if we add (x, c2) to D, and
it turns out that the tree learned from the new dataset Tc2 makes a different
prediction than Tc1 , also with high certainty, then we, as observers, know that
there is actually high uncertainty about the class.

More specifically, our method works as follows. Given an unseen instance x,
we can, for i = 1, . . . , k, add (x, ci) to D, giving a dataset Di from which a
tree Tci is learned, and look at the prediction Ti makes for x. If all Tci predict
the same class c, we can be quite certain that c is the correct class. If multiple
trees predict different classes, each with high certainty, we must conclude that
these predictions are highly uncertain. We also propose a way to combine the
predictions of the resulting trees.

We perform an extensive evaluation of the proposed method on 48 randomly
selected UCI datasets. We compare our results to those of a standard DT learner
and a standard ensemble method. The results show that our method tends to pro-
duce better ranking and reliability estimates than the other methods, while pro-
ducing better probability estimates than standard trees and comparable proba-
bility estimates to ensembles. Additionally, compared to a closely related method
for reliability estimation, we show that our method produces better estimates.

The remainder of the text is organized as follows. In Section 2 we discuss
basic concepts related to prediction certainty in soft classifiers, with special focus
on DTs; we also discuss related work and point the main differences w.r.t our
method. In Section 3 we describe our new method in detail. In Section 4 we
present experiments and results, and in Section 5 we conclude.

2 Background and Related Work

We first discuss three different ways of interpreting prediction certainty and how
to evaluate them. Then, we briefly recall DTs and discuss related work.

2.1 Prediction Certainty in Soft Classifiers

The notion of certainty associated to soft classifiers has been defined in different
ways in the literature. We discuss three of them: probability, ranking and relia-
bility estimations. For each one of them we present a measure to evaluate it; we
use these measures to evaluate our method in the experimental section.

We say that a soft classifier is a probability estimator when it estimates for
every possible class the true probability that a random instance with the given
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attribute values belongs to that class. Probability estimations are usually evalu-
ated with the Brier score [4] (Equation 1), which is also known as mean squared
error. In Equation 1, n iterates over all the N predictions, i iterates over all the
k classes, t(ci|xn) is the true probability that instance xn belongs to class ci,
and p(ci|xn) is the estimated probability. When the true label of a prediction is
given but its true probability is unknown, t(ci|xn) is defined to be 1 if the true
label of xn is ci, and 0 otherwise.

Brier score =

∑N
n=1

∑k
i=1(t(ci|xn)− p(ci|xn))

2

N
(1)

A ranking estimator orders the instances from high to low expectation that
the instance belongs to a certain class c. For every pair of instances (x1,x2), the
ranking defines if x1 is more likely, equally likely or less likely to belong to c than
x2. As ranking estimation is defined in terms of pairs of sequences, we can say
that this is a relative estimation. Probability estimation, on the other hand, is an
absolute estimation, since the estimation for each prediction can be interpreted
on its own. The ranking ability of a classifier is usually assessed using the area
under the ROC curve (AUC). A ROC curve is a two-dimensional plot with the
true positive rate in the y-axis and the false positive rate in the x-axis which is
obtained by varying the discrimination threshold.

Finally, Kukar and Kononenko [5] use the term “reliability” to define the
probability that a prediction is correct. This is, in principle, the same as prob-
ability estimation for the predicted class. However, Kukar and Kononenko [5]
consider reliability in a more general way. They consider a prediction to be more
“reliable” when it is has a higher probability to be correct, and evaluate the
reliability skill of a classifier by assessing how well it can distinguish between
correct and incorrect predictions based on the calculated reliability for each pre-
diction. This is in fact a ranking evaluation where the predictions define only
one rank over all classes together (in terms of correct and incorrect predictions),
instead of internally to each class, as for standard ranking evaluation. For this
evaluation, we can use the AUC; we call it AUC reliability to avoid confusion
with the aforementioned AUC calculation.1

2.2 Decision Trees and Certainty Estimates

A decision tree (DT) [6] is a tree-shaped predictive model that assigns to a
given instance a prediction by determining the leaf that the instance belongs to,
and making a prediction based on this leaf. In a classification context, the pre-
dicted class is typically the one that occurs most frequently among the training
instances covered by that leaf.

When a certainty estimate is needed, the relative frequency of the predicted
class among the training instances covered by the leaf is often used as a proba-
bility estimate. However, it is well-known that standard DT learners do not yield

1 In their original evaluation framework, Kukar and Kononenko [5] use information
gain to evaluate the rank of reliability scores. The advantage of using AUC is that
the evaluation is not dependent on a fixed discrimination threshold.
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very good probability estimates [2,3]. Especially for small leaves, the sample class
distribution can significantly deviate from the population class distribution, and
it typically deviates towards lower class entropy (or higher purity), due to the
learning bias of the tree learner. Moreover, DTs assign the same certainty esti-
mates for instances falling into the same leaf, and do not exploit the fact that
even in the same leaf there might be prediction certainty differences. For exam-
ple, it is reasonable to assume that a borderline prediction in a leaf is more likely
to be a misclassification than the other predictions in that leaf.

Several methods have been proposed in the literature to improve estimates
in DTs. One approach is to apply a smoothing correction (e.g., the Laplace or
m-estimate smoothing) to unpruned trees [2,1]. These corrections are used to
avoid extreme estimates (i.e, 0 or 1). Other group of methods either modify
the decision tree learning (e.g., by learning fuzzy [7] or lazy DTs [8,9]) or the
way in which the predictions are made (e.g., by propagating the test instances
across multiples branches of the tree and combining estimates from different leaf
nodes [10], or by using internal nodes to make predictions [3]). Other methods
use alternative probability calculations, e.g., by combining the class distribution
from different nodes in the path taken by the test instance [11].

In contrast to these methods, which either develop a new type of DT learner or
use different probability estimations, we propose a new way of using the results
that can be obtained using any traditional DT learner. We do this by learning
multiple trees, and combining their predictions. In contrast to ensemble methods,
which also learn multiple trees, we modify the training data in a very restricted
and controlled way to obtain different trees. We do this by just complementing
the training data with a labeled version of the instance to be classified.

Our method is similar to the method for reliable classification proposed by
Kukar and Kononenko [5]. Their method estimates a reliability score for each
prediction based on a two-step approach: first an inductive learning step is per-
formed, followed by a transductive step. More specifically, given an unseen in-
stance x, the method makes a prediction for x using a standard machine learning
method (e.g., a DT learner). The output of this inductive step is then used as
input to the transductive step: x is added to the training data with the predicted
label c and a new classifier is learned. Finally, the probability distributions out-
put by both steps are compared in order to infer the reliability of predicting x as
belonging to class c. The idea behind this reliability estimation is that the more
different the probability distributions are, the less reliable the prediction is. This
idea is based on the theory of randomness deficiency [12,13]. Once a reliability
score has been calculated for every prediction, the predictions are ranked ac-
cording to their reliability, and a threshold is defined to separate the predictions
into two populations: unreliable and reliable predictions. Kukar and Kononenko
[5] propose a supervised procedure to find this threshold automatically.

In contrast to this method, we measure the sensitivity of the learned model
w.r.t. all possible labels, instead of only using the label which is believed (pre-
dicted) to be the correct one. Our hypothesis is that measuring this sensitivity
is crucial to obtaining good certainty estimates for DTs.
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Related is also the method of conformal prediction [14], which aims to give
confidence bounds on predictions by returning a set of predictions that cover a
predetermined (typically 95%) confidence interval. Conformal prediction uses a
nonconformity measure to estimate the distance of a new example x from a set of
previously seen examples. This estimation is then used to predict a set of one or
more labels for x (called the prediction region for x), which is assumed to contain
the correct label, given the confidence interval. Intuitively, this only predicts
labels that do not result in outliers with the given nonconformity measure. The
method of conformal prediction differs from our method in the sense that it may
output more than one predicted label for each test instance, while our method
aways assign only one label to each prediction.

3 Proposed Method

We start by giving the intuition of our method. Then, we describe its algorithm.

3.1 Intuition of the Proposed Method

We want to investigate the following questions w.r.t. the instance we want to
classify: (1) “If we add the test instance to the training set with a different label
than the correct one, will the DT learner find a tree that is consistent with this
instance according to the wrong label?”; (2) “How certain will the tree be about
this prediction?”; (3) “How does this situation compare to the one where the
instance is added to the training set with the correct label?”.

Our method is therefore based on the idea that the learned DT can be de-
pendent on the label of a single instance. One example of this effect can be seen
in Fig. 1, which shows two DTs built to classify an instance x1 from the Iris
dataset [15]. For the left tree, x1 was included in the training data with the cor-
rect label, Iris-virginica, while for the right one, x1 was included with the wrong
label Iris-versicolor. Observe that the trees make different predictions based on
the pre-defined label for x1. Intuitively, we cannot be very certain about the
predicted label when the prediction model itself depends on the label we give to
the instance. This uncertainty is not reflected in a certainty measure based only
on leaf proportions. This intuition leads to the method we discuss next.

3.2 Description of the Method

The proposed method estimates the prediction certainty by comparing trees
generated for the test instance x using different labels. As the correct label of x
is not known to the method, we try all possibilities. More specifically, to classify
an instance x, the method builds k trees, where k is the number of possible labels
for the target attribute. For each label, we insert x in the training set with that
label and induce a DT. In the end, we combine the prediction of all the trees.

To combine the predictions, we first calculate the prediction estimates for
each tree by applying the Laplace smoothing (with α = 1), then average over
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Fig. 1. Two DTs built for the same instance (x1) of the Iris dataset. Left: x1 was
added in the training data with the correct label, Iris-virginica. Right: x1 was added
with label Iris-versicolor. For both cases the tree predicts x1 with the pre-defined label.

the predicted values (Equation 2). In Equation 2, Pred(c) is the prediction for
(probability of) class c, Li is the leaf node responsible for the prediction in tree
Ti, |T | is the number of trees (|T | equals the number of classes), |Li(c)| is the
number of instances belonging to class c within Li, and |Li(¬c)| is the number
of instances belonging to a different class within Li. This strategy was chosen
during the fine-tuning of our method on six validation datasets, which were not
included in our experimental results.

Pred(c) =

∑|T |
i=1

|Li(c)|+1
|Li(c)|+|Li(¬c)|+|T |

|T | (2)

The validation of our method also showed that our combination strategy ben-
efits from pruning. In our strategy, pruning is important to avoid predictions
from very small leaves, since such leaves can cause “overfitting” on any label
assigned by our method, including the incorrect ones. This conclusion is, how-
ever, based on experiments where only one pruning procedure was considered.
More specifically, we used the same pruning procedure used by the decision tree
learner C4.5 [16]. The investigation of the effect of different pruning procedures
on our strategy is an interesting venue for future work.

Pseudocode. The algorithm is described in pseudocode in Fig. 2, where x is
the test instance, D is the original training data and C is the set of possible
classes. The procedure LearnTree builds a DT for the given training data, and
the procedure CombinePred combines the predictions of the resulting trees T.
Note that, as we have a double loop in the procedure CombinePred, we need
two variables (i and j) to iterate over the k possible labels in C. We use the
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variable j in the outer loop so that the formula to combine the trees’ predictions
is consistent with the one we showed in Equation 2.

Fig. 2. Pseudocode to obtain the prediction for an instance

This procedure works fine in many cases, but sometimes an additional modifi-
cation of the tree induction procedure LearnTree is needed. DTs typically handle
continuous attributes by comparing them with a threshold. This threshold is
put between two values belonging to instances with different classes. If we add a
test instance to the training set, this introduces an additional possible threshold.
This can have undesired effects, as shown in Fig. 3. In this example, the instance
x, which is represented in Fig. 3.a as a circle, is a positive instance. This instance
is far enough from the negative class (so that a standard DT would not have
problems classifying it correctly), but is the positive instance the closest to the
negative ones. If we allow our method to use the attribute values of x, it will
always choose a decision boundary that perfectly separates the instances depend-
ing on the label attributed to x (as shown in Figs. 3.b and 3.c). This would lead
our method to conclude that x is a difficult case to be classified, while actually
it is not. To avoid this, the attribute values of x are not used when determining
the possible split (test) values of the tree. However, they are still used when
determining the heuristic value (information gain) of these possible splits.
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Fig. 3. Undesired effects of using a test instance when constructing decision boundaries

4 Empirical Evaluation

We present an extensive evaluation of our method, which we implemented as an
extension of the DT learner Clus (http://dtai.cs.kuleuven.be/clus/); we call it
Clus-TPCE (transductive prediction certainty estimation).
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4.1 Experimental Setup

In total we use 48 randomly selected UCI datasets [15] in the experiments. For
the datasets with no pre-defined test set, we use leave-one-out validation.

With these experiments we want to answer the question: “Does the proposed
method yields better prediction certainty estimates than a standard DT?”; for
this comparison we use the original version of Clus, which we refer to as Clus-
Orig.2 One could argue, however, that this comparison is not entirely fair since
our method uses multiple trees to make the final prediction, and it is known
that ensembles tend to yield better estimates than single trees [2]. Therefore,
to ensure that an improvement of Clus-TPCE is not simply due to “ensemble
effects”, we also compare to standard bagging (Clus-Ens) with the same number
of trees as we use for Clus-TPCE. For all methods, we use information gain as
the splitting criterion.

We evaluate the results as (a) ranking estimates, (b) probability estimates,
and (c) reliability estimates. For the reliability estimation evaluation, we include
the results for the procedure proposed by Kukar and Konenko [5] (see, Section
2.2). We implemented this procedure to estimate the reliability estimation of the
predictions given by Clus-Orig; we call it Clus-K&K.

For each comparison, additionally to the results themselves, we also report
the p-value of a two-sided Wilcoxon signed-rank. With this test we verify the
hypothesis that the method with the largest number of wins, in terms of the
evaluation measure in consideration, is statistically superior to the other one.

4.2 Evaluating Probability Estimation

We start by evaluating the results in terms of probability estimation, using the
Brier score. The results are shown in Fig. 4 and summarized in Table 1.

Table 1. Number of wins for each method, in terms of the Brier score, along with the
p-value resulting from a two-sided Wilcoxon signed-rank test and the average estimates

Clus-TPCE vs. Clus-TPCE vs. Average
Clus-Orig Clus-Ens Brier score

Clus- Ties Clus- Clus- Ties Clus- Clus- Clus- Clus-
TPCE Orig TPCE Ens TPCE Orig Ens

36 0 12 21 0 27 0.087 0.109 0.096

p-value < 0.0001 p-value = 0.5686

Clus-TPCE obtains 36/0/12 wins/ties/losses compared to Clus-Orig, and a
smaller average Brier score. When compared to Clus-Ens, Clus-TPCE obtains

2 As we use pruned trees in Clus-TPCE, the results we report for Clus-Orig are also
based on pruned trees. Additional experiments revealed that the conclusions pre-
sented in this paper also hold for the case when we compare with Clus-Orig based
on unpruned trees. Namely, Clus-TPCE outperforms Clus-Orig based on unpruned
trees w.r.t. probability, ranking, and reliability estimations.
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Fig. 4. Brier scores: Clus-TPCE vs. Clus-Orig (left); Clus-TPCE vs. Clus-Ens (right)

a smaller number of wins (21 wins against 27 wins for Clus-Ens), but has a
smaller average Brier score. Interestingly, for the cases where both Clus-TPCE
and Clus-Ens have a larger Brier score, the advantage is always in favor of Clus-
TPCE (c.f. Fig. 4). For the cases with low scores, the results are in favor of
Clus-Ens, but with a smaller difference. This explains why Clus-TPCE has a
smaller average Brier score, even though it has a smaller number of wins.

4.3 Evaluating Ranking Estimation

We now compare the methods w.r.t. their ranking ability. We generate a ROC
curve for each class against all the other ones and report the average AUC value.
The results are shown in Fig. 5 and summarized in Table 2.
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Fig. 5. AUC: Clus-TPCE vs. Clus-Orig (left); Clus-TPCE vs. Clus-Ens (right)

The results show that Clus-TPCE has a better ranking ability than the other
methods. It obtains 37/3/8 wins/ties/losses compared to Clus-Orig and 29/1/18
wins/ties/losses compared to Clus-Ens. Note that these results are more in favor
of Clus-TPCE than for the probability estimation evaluation. This is not unex-
pected. Clus-TPCE tends to shift the probability distribution output for some
instances towards the uniform probability. This effect is stronger for the cases
for which the method finds evidence that there is a high degree of uncertainty
associated to their predictions. While this results in a better ranking estimation,
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Table 2. Number of wins for each method, in terms of AUC, along with the p-value
resulting from a two-sided Wilcoxon signed-rank test and the average estimates

Clus-TPCE vs. Clus-TPCE vs. Average
Clus-Orig Clus-Ens AUC

Clus- Ties Clus- Clus- Ties Clus- Clus- Clus- Clus-
TPCE Orig TPCE Ens TPCE Orig Ens

37 3 8 29 1 18 0.868 0.814 0.849

p-value < 0.0001 p-value = 0.1706

it might affect negatively the probability estimation, since the Brier score as-
sumes that the method should ideally report a probability of 1 for the true class
and 0 for the other classes.

4.4 Evaluating Reliability Estimation

Finally, we evaluate Clus-TPCE w.r.t. reliability estimation. To that aim, we use
the probability output for the predicted class as the reliability that the prediction
is correct. We apply the same procedure for Clus-Orig and Clus-Ens. For Clus-
K&K, we use the procedure proposed by Kukar and Kononenko [5]. To evaluate
the reliability estimations, we use AUC reliability, as discussed in Section 2.1.
The results are shown in Fig. 6 and summarized in Table 3.
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Fig. 6. AUC reliability: Clus-TPCE vs. Clus-Orig” (left); Clus-TPCE vs. Clus-Ens
(center); Clus-TPCE vs. Clus-K&K (right)

Table 3. Number of wins for each method, in terms of AUC reliability, along with the
p-value resulting from a two-sided Wilcoxon signed-rank test and the average estimates

Clus-TPCE Clus-TPCE Clus-TPCE Average AUC
vs. Clus-Orig vs. Clus-Ens vs. Clus-K&K reliability

Clus- Ties Clus- Clus- Ties Clus- Clus- Ties Clus- Clus- Clus-
TPCE Orig TPCE Ens TPCE K&K TPCE Orig

39 3 6 33 1 14 33 2 13 0.7969 0.6498

Clus- Clus-
p-value < 0.0001 p-value = 0.0208 p-value < 0.0001 Ens K&K

0.7681 0.6836
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Clus-TPCE outperforms the other three methods in terms of reliability es-
timation: it obtains 39/3/6 wins/ties/losses compared to Clus-Orig, 33/1/14
wins/ties/losses compared to Clus-Ens, and 33/2/13 wins/ties/losses compared
to Clus-K&K. Furthermore, Clus-TPCE obtains the largest average AUC relia-
bility, and the statistical tests indicate that the difference in the results is sta-
tistically significant. These results confirm the good performance of our method
in ranking probabilities.

5 Conclusions

We proposed a method for estimating prediction certainty. The new method was
implemented as an extension of the DT learner Clus, but the ideas investigated in
this paper can also be applied to other machine learning methods, in particular
those where the label of a single example can influence the learned model.

Our new method builds a DT for an input data consisting of the training data
plus the instance to be classified, which is labeled with one of the possible class
values. This procedure is repeated for every class, and in the end all induced
trees are compared. This comparison allows us to identify instances that might
present difficulties to be correctly classified, and to attribute some uncertainty to
their predictions. We evaluated our method on 48 UCI datasets, and compared
it to the original Clus and to standard bagging. The results showed that the new
method yields better ranking and reliability estimates than the other methods.
Regarding probability estimation, the proposed method yields better estimates
than the original method and comparable estimates to the ensemble method.
We also compared to the method by Kukar and Kononenko [5] w.r.t. reliability
estimation, and show that our method produces better estimates. Based on these
results, we recommend to use our method for relative probability estimation
(ranking or reliability estimation) rather than for absolute estimation.

Since our method is complementary to the other methods suggested in the lit-
erature (see Section 2.2), they can be easily combined: simply use those methods
instead of Clus to learn multiple trees for different versions of the test instances.
Investigating these combinations is a very interesting avenue for future work.

Note that our method makes predictions for only one instance at a time, which
increases its computational cost. This raises the question if the method can be
extended in order to be able to perform the whole process once for a whole
batch of unseen instances. A straightforward extension of the method consists of
generating the same number of trees as the number of possible labels (once for all
instances), where for every tree each instance to be classified receives a random
label, with the constraint that the same instance will never receive the same label
in two or more trees. This constraint assures that each instance receives each
possible label once, allowing us to apply the same strategy to combine predictions
used in this paper. However, as each generated tree is not only subject to the
influence of the labeling of a single instance (but a batch of instances instead),
it is not trivial to analyze if the prediction obtained for an instance is a result
of how that instance was labeled, and/or how the other instances were labeled.
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In fact, we have performed preliminary experiments with this extended method
to test its ranking ability, and the results showed that it produces better results
than a standard tree learner, but slightly worse results than standard bagging.
Therefore, the extension of the proposed method remains for future research.
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Abstract. Although subgroup discovery aims to be a practical tool for
exploratory data mining, its wider adoption is hampered by redundancy
and the re-discovery of common knowledge. This can be remedied by
parameter tuning and manual result filtering, but this requires consid-
erable effort from the data analyst. In this paper we argue that it is
essential to involve the user in the discovery process to solve these is-
sues. To this end, we propose an interactive algorithm that allows a user
to provide feedback during search, so that it is steered towards more in-
teresting subgroups. Specifically, the algorithm exploits user feedback to
guide a diverse beam search. The empirical evaluation and a case study
demonstrate that uninteresting subgroups can be effectively eliminated
from the results, and that the overall effort required to obtain interesting
and diverse subgroup sets is reduced. This confirms that within-search
interactivity can be useful for data analysis.

Keywords: Interactive data mining, pattern set mining.

1 Introduction

Informally, subgroup discovery [12,18] is concerned with finding subsets of a
dataset that have a substantial deviation in a property of interest when com-
pared to the entire dataset. It can be regarded as an exploratory data analysis
task, with a strong emphasis on obtaining comprehensible patterns in the form
of subgroup descriptions. In the context of a bank providing loans, for example,
we could find that 16% of all loans with purpose = used car are not repaid,
whereas for the entire population the proportion is only 5%. Subgroup discov-
ery algorithms can cope with a wide range of data types, from simple binary
data to numerical attributes and structured data. Various quality measures have
been proposed to quantify subgroup interestingness, for which generally both the
amount of deviation and the size of the subset are taken into account.

Subgroup discovery aims to be a practical tool for data exploration, and many
case studies on real-world applications have been performed; see Herrera et al.
[11] for a recent overview. Unfortunately, obtaining interesting results is usually a
time-consuming job for which expertise on subgroup discovery is required. This is
due to two main reasons: 1) large amounts of subgroups are found, of which many
are redundant, and 2) background knowledge of the domain expert is not taken

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 150–161, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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into account. To remedy these issues, careful tuning of the algorithm parameters
and manual filtering of the results is a necessity. This requires considerable effort
and expertise from the data analyst, and this clearly hampers the wider adoption
of subgroup discovery as a tool for data exploration.

To address the pattern explosion in subgroup discovery, Diverse Subgroup Set
Discovery (DSSD) [14] was recently proposed in an attempt to attain diverse
rather than redundant subgroup sets. The main idea is to integrate pattern set
mining into a levelwise search, so that diversity is maintained throughout search.
Specifically, heuristic methods for selecting diverse subgroup sets are used to
select a beam on each level, resulting in a diverse beam search.

Case Study: Sports Analytics. To illustrate the problems of existing methods
and the potential of our proposed approach, we investigate the use of subgroup
discovery in the context of sports analytics. There has recently been a signifi-
cant interest in data mining in the professional sports community1. ‘Black box’
approaches that do not explain their outcomes would never be accepted, but
subgroup discovery has the advantage that its results are interpretable.

The case study concerns a dataset containing information about games played
by the Portland Trail Blazers in the 2011/12 season of the NBA2. Each tuple
corresponds to a segment of a game played by the same group of 10 players
(including 5 players on the opposing team). The attributes include 18 binary
variables indicating presence of a particular player on the court, a nominal vari-
able representing the opposing team, a numeric attribute pace3, and 3 binary
variables per team indicating whether offensive rating4 and offensive/defensive
rebound rates5 of a team are higher than the season average.

We select offensive rating as the target property of interest, and the com-
monly used Weighted Relative Accuracy as the quality measure (see Section 5
for further details). This means that high-quality subgroups represent common
situations in which the team is likely to have a high offensive rating, described
in terms of players, opponents, and the course of the game.

To assess whether Diverse Subgroup Set Discovery gives satisfactory results,
we ran the algorithm on the NBA data with default settings (cover-based heuris-
tic with default quality-diversity trade-off [14]). We asked for the discovery of five
subgroups, which are all shown in Table 1. The results suffer from two severe prob-
lems: 1) the results are clearly redundant, i.e. diversity could not be attained with
the default parameter settings, and 2) none of the discovered subgroups is inter-
esting to a domain expert, as the descriptions contain no surprising and/or action-
able information. For example, it is a trivial fact for experts that poor defensive
rebounding by an opponent (opp def reb = F ) eases the task of scoring, whereas

1 See for example http://www.sloansportsconference.com/
2 Data source: http://basketballvalue.com/downloads.php
3 Pace captures the speed of the game and is indicative of the team’s playing style.
4 Offensive rating is computed as the average number of points per shot.
5 Rebound rate estimates how effective a team is at gaining possession of the ball after
a missed shot, either by an opponent or by one of its own players.

http://www.sloansportsconference.com/
http://basketballvalue.com/downloads.php
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Table 1. Five subgroups discovered by Diverse Subgroup Set Discovery [14]; cover-
based approach with default quality-diversity trade-off. For each discovered subgroup
its description, size and quality are given.

Description Size Quality

opp def reb = F ∧ opponent = ATL ∧ thabeet = F 219 0.0692
opp def reb = F ∧ opponent = ATL 222 0.0689
opp def reb = F ∧ opponent = ATL ∧ ajohnson = F 222 0.0689
opp def reb = F ∧ thabeet = F ∧ opponent = PHI 225 0.0685
opp def reb = F ∧ opponent = PHI 228 0.0682

absence of reserve players (thabeet and ajohnson) is not useful for decision mak-
ing either.

Aims and Contributions. We argue that it is essential to actively involve
the user in the discovery process to ensure diverse and interesting results. Even
when diversity can be obtained through a fully automated discovery process, on
itself this is not sufficient to guarantee interesting results. The main reason is
that the user’s background knowledge and goals are completely ignored. Some
existing algorithms that try to leverage expert knowledge require specifying it in
advance, but this is a hard task and may therefore be barely less time-consuming
than post-processing humongous result sets.

We propose an interactive subgroup discovery algorithm that allows a user to
provide feedback with respect to provisional results and steer the search away
from regions that she finds uninteresting, towards more promising ones. The
intuition behind our approach is that the ‘best’ subgroups often correspond
to common knowledge, which is usually uninteresting. Users expect to obtain
novel, unexpected insights, and therefore our system is designed to eliminate
such uninteresting subgroups already during search.

The Interactive Diverse Subgroup Discovery (IDSD) framework that we pro-
pose builds upon DSSD by re-using the diverse beam search. However, we aug-
ment it by making the beam selection interactive: on each level of the search,
users are allowed to influence the beam by liking and disliking subgroups. One
of two subgroup similarity measures is then used to generalise this feedback to
all subgroups for a specific level, by re-weighing qualities. The adjusted quality
measure affects the (diverse) beam selection and hence the search can be guided.

Since it is hard to evaluate interactive data mining methods, we perform two
types of evaluations. First, we perform an extensive quantitative evaluation in
which user feedback is emulated. For this we treat a set of high-quality subgroups
as ‘background knowledge’ in which the user is not interested, based on which
we emulate the user feedback. The purpose of these experiments is to show that
undesired results can be effectively avoided, which in return leaves space for
novel, potentially more interesting results.

Second, we turn back to the case study that we introduced in this section. We
asked a domain expert to use our interactive discovery system, and he successfully
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foundmore interestingpatterns thanwith the standarddiverse approach.This con-
firms that human-computer interaction makes it possible to discover interesting
subgroups with much less effort than using standard algorithms.

2 Related Work

Subgroup discovery can be seen as an instance of supervised descriptive rule dis-
covery [13], like contrast set [3] and emerging pattern mining [5]. Apart from
DSSD, which was inspired by pattern set mining, several local approaches to
redundancy elimination have been proposed: closed sets for labeled data [9] ap-
plies only to binary targets, a recent approach uses quadratic programming to do
feature selection prior to the discovery process [15].

The importance of taking user knowledge and goals into account was first em-
phasised by Tuzhilin [17]. More recently De Bie argued that traditional objective
quality measures are of limited practical use and proposed a general framework
that models background knowledge as a Maximum Entropy distribution [4].

Applications of subgroup discovery in various domains often involve itera-
tive refinement of results based on feedback of experts, e.g. in medicine [7,8].
A classification of background knowledge relevant to subgroup discovery was de-
veloped [1], and some of the insights were used in the VIKAMINE tool, which
enables knowledge transfer between otherwise independent search sessions [2].
SVMs were applied to learn subgroup rankings from user feedback [16], but the
feedback phase was not integrated into search.

Outside subgroup discovery, ideas regarding interactive search have been ex-
plored in Redescription Mining [6], but we go much further with the influence of
users on beam selection. Finally, MIME is an interactive tool that allows a user
to explore itemsets using traditional interestingness measures [10].

3 Preliminaries

We consider datasets that are bags of tuples. Let A = {A1, . . . , Al−1, Al} denote
a set of attributes, where each attribute Aj has a domain of possible values
Dom(Aj). Then a dataset D = {x1, . . . , xn} ⊆ Dom(A1) × . . . × Dom(Al) is
a bag of tuples over A. The attribute Al is a binary target attribute, i.e. the
property of interest. Attributes D = {A1, . . . , Al−1} are description attributes.

The central concept is the subgroup, which consists of a description and a
corresponding cover. In this paper, a subgroup description d is a conjunction of
boolean expressions over D, e.g. D1 = a ∧ D2 > 0. A subgroup cover G is a bag
of tuples that satisfy the predicate defined by d: Gd = {∀t ∈ D : t ∈ G⇔ d(t) =
true}, the size of the cover |G| is also called subgroup coverage.

Subgroup quality measures generally balance the degree of deviation and the
size of a subgroup. We use Weighted Relative accuracy, given by ϕWRAcc(G) =
|G|
|D| ×(1G−1D), where 1G (resp. 1D) is the proportion of positive examples in G

(resp. D). The previous allows us to define top-k subgroup discovery:
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Problem 1 (Top-k Subgroup Discovery). Given a dataset D, a quality measure
ϕ, and integer k, find the k top-ranking subgroups with respect to ϕ.

Bottom-up search is usually applied to solve this problem. The search space
consists of all possible descriptions and is traversed from short to long descrip-
tions. Common parameters to restrict the search space are a minimum coverage
threshold (mincov), and amaximum depth (maxdepth). Either exhaustive search
or beam search can be used, where the latter has the advantage that it is also
feasible on larger problem instances. It explores the search space in a levelwise
manner, and at each level only the w highest ranking candidates with respect
to ϕ (the beam) are selected for further refinement, where beam width w is a
user-supplied parameter. This makes it ideal for our current purposes.

Diverse Subgroup Set Discovery. We recently introduced the DSSD frame-
work [14], which uses heuristic pattern set selection to select a more diverse beam
on each level of beam search. The purpose of this approach is to achieve globally
less redundant and therefore more interesting results.

The diverse beam selection strategies add a candidate subgroup to the beam
only if it is sufficiently different from already selected subgroups. In this paper
we use description-based beam selection because preliminary experiments showed
that it works well for our purposes; our prototype discovery system primarily
presents subgroup descriptions to the user. It first sorts all candidates descending
by quality and initialises Beam = ∅, then iteratively considers each subgroup
in order until |Beam| = w, and selects it only if there is no subgroup in the
(partial) beam that has equal quality and the same conditions except for one.

We use cover redundancy (CR) to quantify redundancy of a subgroup set, i.e.

CR(G) = 1

|D|
∑
t∈D

|c(t,G)− ĉ|
ĉ

, where G is a set of subgroups, c(t,G) is the cover

count of a transaction, i.e. the number of subgroups that cover t, and ĉ is the
average cover count over all t ∈ D. Essentially, it measures the deviation of the
cover counts from the uniform distribution. Although absolute values are not
very meaningful, CR is useful when comparing subgroup sets of similar size for
the same dataset: a lower CR indicates that fewer tuples are covered by more
subgroups than expected, therefore the subgroup set must be more diverse.

4 Interactive Diverse Subgroup Discovery

We now present the Interactive Diverse Subgroup Discovery (IDSD) algorithm,
which employs user feedback to guide a beam search. Main design goals are to
develop 1) a simple interaction mechanism that 2) requires little user effort. We
rely on two observations to achieve these goals. First, it is easier for a user to
assess patterns rather than individual transactions or attributes. Second, it is
possible to generalise user feedback using similarities between subgroups.

To involve the user already during the discovery process, the central idea is
to alternate between mining and user interaction: the algorithm mines a set of
patterns, a user is given the opportunity to provide feedback, the feedback is
used to steer the search, and the algorithm mines a new set of patterns.
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Algorithm 1. Interactive Diverse Subgroup Discovery (IDSD)

Input: Dataset D; beam selection S; subgroup similarity σ; mincov, w, maxdepth
Output: Set of k subgroups R

1: beam ← {∅}, I ← ∅, R ← ∅, depth ← 1
2: repeat � Generate all candidates for this level
3: cands = {c ∈ Extensions(beam) | Coverage(c,D) ≥ mincov∧

¬∃n ∈ Ineg : IsExtension(c, n)}
4: beam ← ∅
5: repeat � Selection and interaction loop
6: beam ← SelectBeam(S, cands, ϕ′, w, beam)
7: I ← I ∪GetFeedback(beam)
8: R ← R ∪ Ipos
9: beam ← beam \ Ineg, cands ← cands \ Ineg

10: until |beam| = w � No patterns were disliked
11: for all c ∈ cands do
12: UpdateTopK(R,k × 100, c, ϕ′(c, I, σ))

13: depth ← depth+ 1
14: until depth > maxdepth
15: return SelectBeam(S,R,ϕ′, k, ∅) ∪ Ipos � Selection from large overall top-k

As a levelwise search procedure that takes only a limited number of interme-
diate solutions to the next level, beam search provides an excellent framework to
implement this high-level procedure. That is, on each level we let the user influ-
ence the beam by liking and disliking subgroups. Patterns that are disliked are
immediately removed from the beam and replaced by others, effectively guiding
search away from those apparently uninteresting branches of the search space.

This approach has the advantage that it is relatively easy to evaluate sub-
groups with short descriptions at early levels, while this has a strong influence
on search. Providing feedback at later levels allows fine-tuning, and search pa-
rameters such as maxdepth and w allow a user to manage her efforts.

Algorithm Details. Algorithm 1 presents the method that we propose. In the
following we focus on how the DSSD diverse beam search, as briefly explained in
the Preliminaries, is modified to incorporate user feedback. Essentially it is still
a level-wise beam search, but with a modified strategy for selecting the beam
that both achieves diversity and allows for interactivity.

Feedback elicitation – Feedback elicitation is performed on line 7, after a beam
has been selected (line 6, see also below). All w selected subgroups are presented
to the user in a GUI, and she can provide feedback before continuing.

As feedback, the user can mark each subgroup in a beam as interesting (‘like’)
or uninteresting (‘dislike’). Let Ipos (resp. Ineg) denote the set of all positively
(resp. negatively) evaluated subgroups. Additionally, let I = Ipos ∪ Ineg be the
set of all evaluated subgroups. Note that a user is not obliged to provide any
feedback, hence I might not include all subgroups that are in the current beam
and it might even be empty. In the latter case the resulting search is equal to
that of (non-interactive) DSSD.
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If any subgroups are disliked in this phase, they are removed from the beam
(line 9) and lines 5-9 are repeated until a complete beam consisting of w sub-
groups is obtained.

Candidate generation – On each level, initially all direct extensions of all sub-
groups in the current beam are generated as candidates (line 3). Here, a direct
extension is a subgroup description augmented with one additional condition.
Subgroups with too small coverage and all direct extensions of negatively evalu-
ated subgroups in Ineg are removed. Note that this does not necessarily result in
the complete pruning of the corresponding branch in the search tree. Consider
the following example: A∧B∧C may be generated as extension of B∧C, even if
A was disliked and thus added to Ineg at depth-1. This preserves the capability
to discover high-quality subgroups via other branches.

Feedback-driven subgroup selection – Since feedback only concerns individual
subgroups, we need to generalise it to the complete candidate set. We achieve this
through modification of the qualities of all subgroups in Cands: starting from
the ‘prior’ given by ϕ, the qualities are updated according to how similar they
are to the evaluated subgroups. This way, we obtain a quality measure ϕ′ that
takes user feedback into account and effectively re-ranks all possible subgroups.
Subsequently, we use the regular diverse beam selection strategy on line 6, with
the only difference that the modified qualities are used.

For this to work we need a notion of subgroup similarity: subgroups that are
similar to interesting subgroups get a higher quality, whereas subgroups that
are similar to uninteresting subgroups get a lower quality. Let c ∈ Cands and
i ∈ I, and let dx resp. Gx denote the description resp. cover of a subgroup x.
We propose the following two subgroup similarity measures:

σdescription(c, i) =
|dc ∩ di|

|dc ∪ di| − 1
, σcover(c, i) =

|Gc ∩Gi|
|Gc|

(1)

Description similarity is almost equal to Jaccard similarity; −1 is added to the
denominator so that a subgroup and any of its direct extensions have maximal
similarity of 1. Cover similarity is based on the overlap coefficient and has the
same property for direct extensions.

Finally, given a subgroup similarity measure σ, the modified subgroup quality
measure ϕ′ that takes user feedback into account is defined as:

ϕ′(G) =
1 +

∑
i∈Ipos

σ(G, i)

1 +
∑

i∈Ineg
σ(G, i)

× ϕ(G) (2)

It re-weighs the ‘base quality’ ϕ with a factor based on similarity to evaluated
subgroups in I. Note that ϕ′ is equivalent to ϕ when I = ∅. Also, values of ϕ′

change immediately after each round of feedback elicitation, hence feedback has
an immediate effect on (incremental) beam selection.

Overall results – During search a large overall ‘top-k’ is maintained using the
re-weighed quality measure ϕ′ (line 12). At the end of the algorithm (line 15),
a set of k subgroups is selected from this overall large top-k using the subgroup
selection procedure just described. Note that all positively evaluated subgroups
are added to this final result set R regardless of their qualities.
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5 Experiments

5.1 Quantitative Evaluation

In order to be able to perform a large series of experiments, we emulate user
feedback. We select a set of high-quality subgroupsBK that serves as background
knowledge; subgroups in BK are already known and should therefore be avoided
as much as possible. The intuition behind this approach echoes the example
in Section 1: top subgroups usually correspond to common knowledge and are
therefore uninteresting.

BK is selected from the output of a standard subgroup discovery algorithm.
Selection depends on the subgroup similarity measure used: when using descrip-
tion similarity, we iteratively select the highest quality subgroup having a de-
scription with ≤ 3 conditions that does not overlap with the description of any
previously selected subgroup; for cover similarity, we only select the highest qual-
ity subgroup. During search, BK is used to emulate evaluations: any subgroup
s in the beam for which ∃b ∈ BK : σ(s, b) > β is automatically ‘disliked’ by
adding it to Ineg. Parameter β allows varying the amount of evaluated subgroups:
larger values result in fewer negative judgements. Note that no positive feedback
is emulated.

To evaluate the effectiveness of the algorithm in eliminating undesired condi-
tions or tuples from the results, we compute the overlap of the discovered sub-
groups with elements of BK. Depending on the subgroup similarity measure this
is either overlapdesc(s,BK) = maxb∈BK |ds ∩ db| or overlapcov(s,BK = {b}) =
|Gs ∩Gb|. We report the average overlap for all subgroups included in result set
R, i.e. overlap(R,BK) = 1

|R| ×
∑

s∈R overlap(s,BK).

Table 2. Datasets and background knowledge

|D| |A| Desc.BK Cov.BK

|BK| |dBK | |GBK |
breast-w [bw] 683 11 2 2.0 137
credit-a [ca] 653 17 3 3.0 325
credit-g [cg] 1000 22 2 3.0 394
diabetes [db] 768 10 2 3.0 82
liver [lv] 345 8 2 3.0 107
nba 923 26 6 2.8 228

Dataset properties are
listed in Table 2, together
with size, average description
length, and coverage of the
generated background knowl-
edge. Except for nba, which
was introduced in Section
1, all were taken from the
UCI repository6. The datasets
were pre-processed as follows:
transactions with missing val-
ues were removed, and all nu-
meric attributes were discre-
tised into 6 bins using equal-width binning.

Search parameters were set to the following values in all experiments:mincov =
0.1× |D|,maxdepth = 5, w = 20, k = 100. Note that small values of w and k are
chosen in order to match the limited processing capabilities of a human user. We
first focus on a single dataset, credit-g, and then discuss the results of experiments
with multiple datasets.

6 http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
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Fig. 1. Results for credit-g, description subgroup similarity. N/A corresponds to the
non-interactive algorithm. The subgroup quality plot depicts averages, standard devi-
ations and maxima of the individual (unweighed) qualities in the subgroup sets found.

A Characteristic Experiment in Detail. Figure 1 shows the results that
we obtained on credit-g for various values of β, which controls the amount of
emulated negative feedback. Also, we experimented with both standard and
(description-based) diverse beam search. The left plot shows that the average
overlap with BK decreases considerably when β decreases and thus more sub-
groups are evaluated negatively. This demonstrates that re-weighing subgroup
quality using description-based similarity is effective at eliminating undesired
conditions from the beam and final results. Only modest numbers of negative
evaluations (8 to 12) were required to achieve this.

The middle plot shows that both maximum and average qualities of the sub-
group sets decrease. This is as expected though: the user emulation scheme was
designed to prune high-quality subgroups. Nevertheless, the algorithm succeeds
in discovering (other) subgroups of quite high quality. Finally, the right plot
shows that redundancy slightly decreases as I grows. Although the differences
between the standard and diverse beam search appear to be small, the diverse
results are clearly less redundant: in particular for lower β, cover redundancy is
lower and standard deviation of the subgroup qualities is higher.

Overall Results. For the experiments in Table 3 we use diverse beam selection,
with either description (β = 0.35) or cover (β = 0.5) subgroup similarity.

In general, both approaches adequately eliminate undesired subgroups from
the result set, whether it is through negatively marked conditions or tuples. This
is demonstrated by the consistently decreasing overlap with the background
knowledge. Importantly, the number of evaluations required to achieve this is
generally modest, i.e. |I| ≤ 25 for all cases except two. This makes the approach
practically useful and usable for a domain expert. As expected, average and
maximum subgroup qualities decreases. Only the effect on cover redundancy
varies depending on the dataset, but the difference is often small. We conclude
that interaction and quality re-weighing work well together with the diverse
beam selection.
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Table 3. Overall results of feedback emulation

σ D |I | Standard diverse → Interactive
Avg.overlap(BK) ϕavg ϕmax CR

Desc

bw 8 1.37 → 0.80 .187 → .171 .200 → .184 1.20 → 1.26
ca 24 1.65 → 0.89 .178 → .088 .181 → .131 1.00 → 0.90
cg 8 1.80 → 0.66 .072 → .046 .074 → .049 1.22 → 1.15
db 12 1.99 → 0.25 .077 → .048 .084 → .056 0.66 → 1.17
lv 12 1.20 → 0.38 .042 → .041 .047 → .045 0.83 → 0.97
nba 78 1.57 → 1.09 .067 → .058 .071 → .064 1.50 → 1.57

Cover

bw 17 125.37 → 120.09 .187 → .176 .200 → .200 1.20 → 1.12
ca 157 318.95 → 232.68 .178 → .013 .181 → .025 1.00 → 0.18
cg 7 353.49 → 168.50 .072 → .046 .074 → .049 1.22 → 1.15
db 1 61.22 → 62.13 .077 → .077 .084 → .084 0.66 → 0.64
lv 2 57.57 → 27.66 .042 → .041 .047 → .047 0.83 → 1.26
nba 1 218.28 → 117.88 .067 → .036 .071 → .058 1.50 → 0.75

5.2 Case Study: Sports Analytics

As we have seen in Section 1, the subgroups discovered by DSSD were unsatis-
factory. To demonstrate that the proposed interactive approach can be used to
improve on this, we asked a basketball journalist to use IDSD and evaluate the
results. In the following we set the search parameters to mincov = 50, w = 10,
maxdepth = 3, and k = 5, and we use description similarity.

Table 4. Top five subgroups discovered by IDSD
with description-based similarity. For each discov-
ered subgroup its description, size and quality are
given.

Description Size Quality

crawford = F ∧matthews = T 96 0.0382
hickson = T 186 0.0219
crawford = F ∧ hickson = T 328 0.0211
matthews = T ∧ hickson = T 290 0.0163
matthews = T ∧ pace < 88.518 303 0.0221

The domain expert evaluated
18 subgroups during an interac-
tive search session, 13 of length-
1 and 5 of length-2. Exam-
ples of liked subgroups include
crawford = F , pace < 88.977,
and matthews = T ∧hickson =
T (7 subgroups in total). Ex-
amples of disliked subgroups are
opp def reb = F , thabeet = F ,
and pace < 88.977∧opponent �=
MIA (11 subgroups in total).
The discovered subgroups are presented in Table 4. Although the objective qual-
ities of the subgroups are lower than the maximum, the results were considered
more interesting as they provided novel insights about relevant players.

A user needs to consider subgroups one by one when processing results and
providing feedback. Hence, we can estimate user effort E by counting the sub-
groups she had to consider. The effort induced by non-interactive diverse sub-
group discovery is then equal to the lowest rank of an interesting subgroup
in the result set sorted by quality. The effort induced by the interactive ap-
proach also includes the number of subgroups presented during the search:
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EIDSD = maxdepth × w + |Ineg |. In this case we have EDSSD = 1049 and
EIDSD = 5 + (3× 10 + 11) = 46, which confirms that within-search interaction
substantially reduces the effort required to discover interesting results.

Discussion. Although this is a good example of a successful interactive session,
in some other sessions the domain expert deemed the results unsatisfactory. In
some cases the search space was pruned too eagerly, or positive and negative
evaluations were not properly balanced. Also, the expert did not find the ap-
proach using cover similarity useful, as this resulted in descriptions that were
were not interpretable. Training of the domain expert might solve this and re-
sults obviously also depend on the data, but this also shows that it is worth
investigating more elaborate similarity measures to generalize user feedback.

Another crucial drawback is an unintuitive effect on beam selection, e.g. dis-
liking a large subgroup based on its description (cf. reserve player = F ) steers
the search away from promising regions. Another concern is the capacity to
discover novel subgroups (as opposed to simply replicating the feedback). Mul-
tiple sessions might be required to explore unrelated regions. However, given the
significantly lower effort, the cumulative effort is still reduced.

6 Conclusions and Future Work

We argued that it is essential to actively involve the user in the discovery pro-
cess to obtain results that she finds interesting. To this end, we proposed the
Interactive Diverse Subgroup Discovery (IDSD) algorithm that allows a user to
provide feedback to provisional results already during search. It augments a di-
verse beam search by letting the user ‘like’ and ‘dislike’ subgroups in the beam.
Although this interaction mechanism is conceptually simple and easy to use, it
allows a user to guide the search effectively.

In the quantitative evaluation, we emulated the feedback of a user that wants
to avoid the re-discovery of common knowledge. Experiments show that unde-
sired results can be eliminated, whereas other, potentially more interesting sub-
groups are found. Furthermore, we conducted a case study in which a domain
expert was able to find more interesting patterns when compared to the results
of standard algorithms. This confirms that within-search human-computer inter-
action can contribute to a substantial reduction in the effort needed to discover
interesting subgroups.

Future Work. This paper presents only a first step towards user-driven pat-
tern discovery, but since the user is too often still neglected we believe it is an
important step. In the future, one obvious line of research is to investigate what
features other than inclusion/exclusion of individual conditions and tuples are
relevant to the user, and are therefore useful to infer subjective interestingness.

A second direction that will be essential to research is pattern visualisation. In
our prototype, we mainly focused on presenting subgroup descriptions, but in the
future it will be important to visualise the different aspects of the patterns. Not
only descriptions and covers should be visualised, but also other relevant features
such as traditional interestingness and surprisingness measures. We deem this
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particularly important for larger datasets and/or beam widths. Only then will
it be possible for the user to interactively explore the data in an intuitive way.
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Abstract. Gaussian mixture models provide an appealing tool for time
series modelling. By embedding the time series to a higher-dimensional
space, the density of the points can be estimated by a mixture model.
The model can directly be used for short-to-medium term forecasting and
missing value imputation. The modelling setup introduces some restric-
tions on the mixture model, which when appropriately taken into account
result in a more accurate model. Experiments on time series forecasting
show that including the constraints in the training phase particularly re-
duces the risk of overfitting in challenging situations with missing values
or a large number of Gaussian components.

Keywords: time series, missing data, Gaussian mixture model.

1 Introduction

A time series is one of the most common forms of data, and has been studied
extensively from weather patterns spanning centuries to sensors and microcon-
trollers operating on nanosecond scales. The features and irregularities of time
series can be modelled through various means, such as autocovariance analysis,
trend fitting, or frequency-domain methods. From a machine learning perspec-
tive, the most relevant tasks tend to be prediction of one or several future data
points, or interpolation for filling in gaps in the data. In this paper, we study a
model for analysing time series, which is applicable to both tasks.

For uniformly sampled stationary processes, we propose a versatile method-
ology to model the features of the time series by embedding the data to a high-
dimensional regressor space. The density of the points in this space can then be
modelled with Gaussian mixture models [1]. Such an estimate of the probability
density enables a direct way to interpolate missing values in the time series and
conduct short-to-medium term prediction by finding the conditional expecta-
tion of the unknown values. Embedding the time series in a higher-dimensional
space imposes some restrictions on the possible distribution of points, but these
constraints can be accounted for when fitting the Gaussian mixture models.
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The suggested framework can readily be extended to situations with several
related time series, using exogenous time series to improve the predictions of a
target series. Furthermore, any missing values can be handled by the Gaussian
mixture model in a natural manner.

This paper is structured as follows. Section 2 presents the procedure for mod-
elling time series by Gaussian mixture models, the constraints on the Gaussian
mixture model due to time series data are discussed in Section 3, and some exper-
iments showing the effect of selecting the number of components and introducing
missing values are studied in Section 4.

2 Mixture Models for Time Series

Given a time series z of length n, corresponding to a stationary process:

z0, z1, z2, . . . , zn−2, zn−1,

by choosing a regressor length d we can conduct a delay embedding [2] and form
the design matrix X,

X =

⎡⎢⎢⎢⎣
z0 z1 . . . zd−1

z1 z2 . . . zd
...

...
...

zn−d zn−d+1 . . . zn−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x0

x1

...
xn−d

⎤⎥⎥⎥⎦ . (1)

The rows of X can be interpreted as vectors in R
d. We can model the density of

these points by a Gaussian mixture model, with the probability density function

p(x) =

K∑
k=1

πkN (x | μk,Σk) (2)

where N (x | μk,Σk) is the probability density function of the multivariate
normal distribution, μk represents the means, Σk the covariance matrices, and

πk the mixing coefficients for each component k (0 < πk < 1,
∑K

k=1 πk = 1).
Given a set of data, the standard approach to training a Gaussian mixture

model is the EM algorithm [3,4] for finding a maximum-likelihood fit. The log-
likelihood of the N data points is given by

logL(θ) = log p(X | θ) =
N∑
i=1

log

(
K∑

k=1

πkN (xi | μk,Σk)

)
, (3)

where θ = {πk,μk,Σk}Kk=1 is the set of parameters defining the model. The
log-likelihood can be maximised by applying the EM algorithm. After some ini-
tialisation of parameters, the E-step is to find the expected value of the log
likelihood function, with respect to the conditional distribution of latent vari-
ables Z given the data X under the current estimate of the parameters θ(t):

Q(θ | θ(t)) = EZ|X,θ(t)

[
logL(θ;X,Z)

]
(4)
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This requires evaluating the probabilities tik that xi is generated by the kth
Gaussian using the current parameter values:

t
(t)
ik =

π
(t)
k N (xi | μ(t)

k ,Σ
(t)
k )∑K

j=1 π
(t)
j N (xi | μ(t)

j ,Σ
(t)
j )

. (5)

In the M-step, the expected log-likelihood is maximised:

θ(t+1) = argmax
θ

Q(θ | θ(t)) , (6)

which corresponds to re-estimating the parameters with the new probabilities:

μ
(t+1)
k =

1

Nk

N∑
i=1

t
(t)
ik xi , (7)

Σ
(t+1)
k =

1

Nk

N∑
i=1

t
(t)
ik (xi − μ

(t+1)
k )(xi − μ

(t+1)
k )T , (8)

π
(t+1)
k =

1

N

N∑
i=1

t
(t)
ik . (9)

Here Nk =
∑N

i=1 t
(t)
ik is the effective number of samples covered by the kth

component. The E and M-steps are alternated repeatedly until convergence.
As the algorithm tends to occasionally converge to sub-optimal solutions, the
procedure can be repeated to find the best fit.

2.1 Model Structure Selection

The selection of the number of components K is crucial, and has a significant
effect on the resulting accuracy. Too few components are not able to model the
distribution appropriately, while having too many components causes issues of
overfitting.

The number of components can be selected according to the Akaike informa-
tion criterion (AIC) [5] or the Bayesian information criterion (BIC) [6]. Both are
expressed as a function of the log-likelihood of the converged mixture model:

AIC =− 2 logL(θ) + 2P , (10)

BIC =− 2 logL(θ) + log(N)P , (11)

where P = Kd + 1
2Kd(d+ 1) + K − 1 is the number of free parameters. The

EM algorithm is run for several different values of K, and the model which
minimises the chosen criterion is selected. As log(N) > 2 in most cases, BIC
more aggresively penalises an increase in P , generally resulting in a smaller
choice for K than by AIC.
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2.2 Forecasting

The model readily lends itself to being used for short-to-medium term time series
prediction. For example, if a time series is measured monthly and displays some
seasonal behaviour, a Gaussian model could be trained with a regressor size of
24 (two years). This allows us to take the last year’s measurements as the 12 first
months, and determine the conditional expectation of the following 12 months.

The mixture model provides a direct way to calculate the conditional expec-
tation. Let the input dimensions be partitioned into past values P (known) and
future values F (unknown). Then, given a sample xP

i for which only the past
values are known and a prediction is to be made, calculate the probabilities of
it belonging to each component

tik =
πkN (xP

i | μk,Σk)∑K
j=1 πjN (xP

i | μj ,Σj)
, (12)

where N (xP
i | μk,Σk) is the marginal multivariate normal distribution proba-

bility density of the observed (i.e., past) values of xi.
Let the means and covariances of each component also be partitioned accord-

ing to past and future variables:

μk =

[
μP
k

μF
k

]
, Σk =

[
ΣPP

k ΣPF
k

ΣFP
k ΣFF

k

]
. (13)

Then the conditional expectation of the future values with respect to the com-
ponent k is given by

ỹik =μF
k +ΣFP

k (ΣPP
k )−1(xP

i − μP
k ) (14)

in accordance with [7, Thm. 2.5.1]. The total conditional expectation can now
be found as a weighted average of these predictions by the probabilities tik:

ŷi =

K∑
k=1

tikỹik . (15)

It should be noted that the method directly estimates the full vector of future
values at once, in contrast with most other methods which would separately
predict each required data point.

2.3 Missing Values and Imputation

The proposed method is directly applicable to time series with missing values.
Missing data in the time series become diagonals of missing values in the design
matrix. The EM-algorithm can in a natural way account for missing values in
the samples [8,9].

An assumption here is that data are Missing-at-Random (MAR) [10]:

P (M | xobs, xmis) = P (M | xobs) ,
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i.e., the event M of a measurement being missing is independent from the value
it would take (xmis), conditional on the observed data (xobs). The stronger as-
sumption of Missing-Completely-at-Random (MCAR) is not necessary, as MAR
is an ignorable missing-data mechanism in the sense that maximum likelihood
estimation still provides a consistent estimator [10].

To conduct missing value imputation, the procedure is the same as for pre-
diction in Section 2.2. The only difference is that in this case the index set P
contains all known values for a sample (both before and after the target to be
predicted), while F contains the missing values that will be imputed.

2.4 Missing-Data Padding

When using an implementation of the EM algorithm that is able to handle
missing values, it is reasonable to consider that every value before and after the
recorded time series consists is missing. This can be seen as “padding” the design
matrix X with missing values (marked as ‘?’), effectively increasing the number
of samples available for training from n− d+ 1 to n+ d− 1 (cf. Eq. (1)):

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

? ? . . . ? z0
? ? . . . z0 z1
...

...
...

...
? z0 . . . zd−3 zd−2

z0 z1 . . . zd−2 zd−1

...
...

...
...

zn−d zn−d+1 . . . zn−2 zn−1

zn−d+1 zn−d+2 . . . zn−1 ?
...

...
...

...
zn−1 ? . . . ? ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

x1

...
xd−2

xd−1

...
xn−1

xn

...
xn+d−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

Fitting the mixture model using this padded design matrix has the added advan-
tage that the sample mean and variance of (the observed values in) each column
is guaranteed to be equal. The missing-data padding can thus be a useful trick
even if the time series itself features no missing values, particularly if only a
limited amount of data is available.

3 Constraining the Global Covariance

The Gaussian mixture model is ideal for modelling arbitrary continuous distri-
butions. However, embedding a time series to a higher-dimensional space cannot
lead to an arbitrary distribution. For instance, the mean and variance for each
dimension should equal the mean and variance of the time series. In addition, all
second-order statistics, such as covariances, should equal the respective autoco-
variances of the time series. These restrictions impose constraints on the mixture
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model, and accounting for them appropriately should lead to a more accurate
model when fitting to data.

In the EM algorithm, we estimate means μk, covariances Σk, and mixing
coefficients πk for each component k, and then the global mean and covariance
of the distribution defined by the model is

μ =

K∑
k=1

πkμk , Σ =

K∑
k=1

πk

(
Σk + μkμ

T
k

)
− μμT . (17)

However, the global mean and covariance correspond to the mean and autoco-
variance matrix of the time series. This implies that the global mean for each
dimension should be equal. Furthermore, the global covariance matrix should be
symmetric and Toeplitz (“diagonal-constant”):

Σ ≈ Rz =

⎡⎢⎢⎢⎣
rz(0) rz(1) rz(2) . . . rz(d− 1)
rz(1) rz(0) rz(1) . . . rz(d− 2)
...

...
...

...
rz(d− 1) rz(d− 2) rz(d− 3) . . . rz(0)

⎤⎥⎥⎥⎦
where rz(l) is the autocovariance of the time series z at lag l.

In practice, these statistics usually do not exactly correspond to each other,
even when training the model on the missing-data padded design matrix dis-
cussed in Section 2.4. Unfortunately, the question of how to enforce this con-
straint in each M-step has no trivial solution. Forcing every component to have
an equal mean and Toeplitz covariance structure by its own is one possibility,
but this is far too restrictive.

Our suggestion is to calculate the M-step by Eqs. (7–9), and then modify the
parameters as little as possible in order to achieve the appropriate structure. As
θ = {μk,Σk, πk}Kk=1 contains the parameters for the mixture model, let Ω be
the space of all possible values for θ, and T ⊂ Ω be the subset such that all
parameter values θ ∈ T correspond to a global mean with equal elements, and
Toeplitz covariance matrix by Eq. (17).

When maximising the expected log-likelihood with the constraints, the M-step
should be

θ(t+1) = argmax
θ∈T

Q(θ | θ(t)) , (18)

but this is not feasible to solve exactly. Instead, we solve the conventional M-step

θ′ = argmax
θ∈Ω

Q(θ | θ(t)) , (19)

and then project this θ′ onto T to find the closest solution

θ(t+1) = argmin
θ∈T

d(θ, θ′) (20)

for some interpretation of the distance d(θ, θ′). If the difference is small, the
expected log-likelihood Q(θ(t+1) | θ(t)) should not be too far from the optimal
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maxθ∈T Q(θ | θ(t)). As the quantity is not maximised, though it can be observed
to increase, this becomes a Generalised EM (GEM) algorithm. As long as an
increase is ensured in every iteration, the GEM algorithm is known to have
similar convergence properties as the EM algorithm [3,4].

Define the distance function between sets of parameters as follows:

d(θ, θ′) =
∑
k

‖μk − μ′
k‖

2
+
∑
k

‖Sk − S′
k‖

2
F +

∑
k

(πk − π′
k)

2 , (21)

where Sk = Σk + μkμ
T
k are the second moments of the distributions of each

component and ‖·‖F is the Frobenius norm. Using Lagrange multipliers, it can
be shown that this distance function is minimised by the results presented below
in Eqs. (22) and (23).

3.1 The Mean

After an iteration of the normal EM-algorithm by Eqs. (7–9), find the vector
with equal components which is nearest to the global mean μ as calculated
by Eq. (17). This is done by finding the mean m of the components of μ, and
calculating the discrepancy δ of how much the current mean is off from the equal
mean:

m =
1

d

d∑
j=1

μj , δ = μ−m1 ,

where 1 is a vector of ones. Shift the means of each component to compensate,
as follows:

μ′
k = μk −

πk∑K
j=1 π

2
j

δ ∀k . (22)

As can be seen, components with larger πk take on more of the “responsibility”
of the discrepancy, as they contribute more to the global statistics. Any weights
which sum to unity would fulfil the constraints, but choosing the weights to be
directly proportional to πk minimises the distance in Eq. (21).

3.2 The Covariance

After updating the means μk, recalculate the covariances around the updated
values as

Σk ← Σk + μkμ
T
k − μ′

kμ
′T
k ∀k .

Then, find the nearest (in Frobenius norm) Toeplitz matrix R by calculating the
mean of each diagonal of the global covariance matrix Σ (from Eq. (17)):

r(0) =
1

d

d∑
j=1

Σj,j , r(1) =
1

d− 1

d−1∑
j=1

Σj,j+1, r(2) =
1

d− 2

d−2∑
j=1

Σj,j+2, etc.
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The discrepancy Δ from this Toeplitz matrix is

Δ = Σ−R, where R =

⎡⎢⎢⎢⎣
r(0) r(1) r(2) . . . r(d − 1)
r(1) r(0) r(1) . . . r(d − 2)
...

...
...

...
r(d− 1) r(d− 2) r(d − 3) . . . r(0)

⎤⎥⎥⎥⎦ .

In order to satisfy the constraint of a Toeplitz matrix for the global covariance,
the component covariances are updated as

Σ′
k = Σk −

πk∑K
j=1 π

2
j

Δ ∀k , (23)

the weights being the same as in Eq. (22). Eqs. (22) and (23), together with
π′
k = πk, minimise the distance in Eq. (21) subject to the constraints.

3.3 Heuristic Correction

Unfortunately the procedure described above seems to occasionally lead to ma-
tricesΣ′

k which are not positive definite. Hence an additional heuristic correction
ck is applied in such cases to force the matrix to remain positive definite:

Σ′′
k = Σk −

πk∑K
k=1 π

2
k

Δ+ ckI ∀k. (24)

In the experiments, the value ck = 1.1|λk0| is used, where λk0 is the most negative
eigenvalue of Σ′

k. The multiplier needs to be larger than unity to avoid making
the matrix singular.

A more appealing correction would be to only increase the negative (or zero)
eigenvalues to some acceptable, positive, value. However, this would break the
constraint of a Toeplitz global covariance matrix, and hence the correction must
be applied to all eigenvalues, as is done in Eq. (24) by adding to the diagonal.

3.4 Free Parameters

The constraints reduce the number of free parameters relevant to calculating the
AIC and BIC. Without constraints, the number of free parameters is

P = Kd︸︷︷︸
means

+
1

2
Kd(d+ 1)︸ ︷︷ ︸
covariances

+ K − 1︸ ︷︷ ︸
mixing coeffs

,

where K is the number of Gaussian components, and d is the regressor length.
There are d − 1 equality constraints for the mean, and 1

2d(d − 1) constraints
for the covariance, each reducing the number of free parameters by 1. With the
constraints, the number of free parameters is then

P ′ = (K − 1)d+ 1︸ ︷︷ ︸
means

+
1

2
(K − 1)d(d+ 1) + d︸ ︷︷ ︸

covariances

+ K − 1︸ ︷︷ ︸
mixing coeffs

.
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The leading term is reduced from 1
2Kd2 to 1

2 (K − 1)d2, in effect allowing one
additional component for approximately the same number of free parameters.

3.5 Exogenous Time Series or Non-contiguous Lag

If the design matrix is formed in a different way than by taking consecutive
values, the restrictions for the covariance matrix will change. Such cases are
handled by forcing any affected elements in the matrix to equal the mean of the
elements it should equal. This will also affect the number of free parameters.

As this sort of delay embedding may inherently have a low intrinsic dimension,
optimising the selection of variables could considerably improve accuracy.

4 Experiments: Time Series Forecasting

To show the effects of the constraints and the number of components on the
prediction accuracy, some experimental results are shown here. The studied time
series is the Santa Fe time series competition data set A: Laser generated data
[11]. The task is set at predicting the next 12 values, given the previous 12.
This makes the regressor size d = 24, and the mixture model fitting is in a
24-dimensional space. The original 1000 points of the time series are used for
training the model, and the continuation (9093 points) as a test set for estimating
the accuracy of the prediction. Accuracy is determined by the mean squared
error (MSE), averaging over the 12 future values for all samples. No variable
selection is conducted, and all 12 variables in the input are used for the model.
The missing-data padded design matrix of Section 2.4 is used for the training,
even when the time series otherwise has no missing values.

4.1 The Number of Components

Gaussian mixture models were trained separately for 1 through 30 components,
each time choosing out of 10 runs the best result in terms of log-likelihood. In
order to provide a perspective on average behaviour, this procedure was repeated
20 times both with and without the constraints detailed in Section 3.

The first two plots in Fig. 1 show the MSE of the prediction on the training
and test sets, as an average of the 20 repetitions. It is important to note that the
model fitting and selection was conducted by maximising the log-likelihood, and
not by attempting to minimise this prediction error. Nevertheless, it can be seen
that the training error decreases when adding components, and is consistently
lower than the test error, as expected. Notably, the difference between train-
ing and test errors is much smaller for the constrained mixture model than the
unconstrained one. Also, the training error is consistently decreasing for both
models when increasing the number of components, but for the test error this is
true only for constrained model. It appears that the unconstrained model results
in overfitting when used with more than 10 components. For 1 to 10 components,
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Fig. 1. Results on the Santa Fe A Laser time series data, including the average MSE
of the 12-step prediction on the training and test sets, AIC and BIC values for both
the constrained and unconstrained mixture models for 1 through 30 components.

there is no notable difference in the test error between the two models, presum-
ably because around 10 components are required for a decent approximation
of the density. However, for 10 or more components, the constraints provide a
consistent improvement in the forecasting accuracy.

The third and fourth plots in Fig. 1 shows the evolution of the average AIC
and BIC of the converged model. The line plots show the average value of the
criterion, and the asterisks depict the minimum AIC (or BIC) value (i.e., the
selected model) for each of the 20 runs. As results on the test set are not available
in the model selection phase, the number of components should be chosen based
on these criteria. As the log-likelihood grows much faster for the unconstrained
model, this results in a consistently larger number of components as selected by
both criteria. Comparing the AIC and BIC, it is clear that BIC tends to choose
fewer components, as expected. However, the test MSE for the constrained model
keeps decreasing even until 30 components, suggesting that both criteria may be
exaggerating the penalisation in this case when increasing the model size.

4.2 Missing Data

To study the effect of missing values, the modelling of the Santa Fe Laser time
series is repeated with various degrees of missing data (1% through 50%). In the
training phase, missing data is removed at random from the time series before
forming the padded design matrix. To calculate the testing MSE, missing values
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Fig. 2. Results on the Santa Fe A Laser time series data with 10% missing values,
including the average MSE of the 12-step prediction on the training and test sets for
both the constrained and unconstrained mixture models for 1 through 20 components.
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Fig. 3. Results on the Santa Fe A Laser time series data for various degrees of missing
values, including the number of components selected by AIC (left) and BIC (right) and
the resulting MSEs of the corresponding test set predictions.

are also removed from the inputs (i.e., the past values from which predictions
are to be made) at the same probability. The MSE is then calculated as the error
between the forecast and the actual time series (with no values removed).

The training and test MSE for 10% missing values are shown in Fig. 2. The
behaviour is similar to the corresponding plots in Fig. 1, although the difference
in the testing MSE appears more pronounced, and for a lower number of com-
ponents. This supports the notion that the constraints help against overfitting.

Fig. 3 shows the number of components selected by AIC and BIC, and the
corresponding test MSEs, for various degrees of missing values. As expected, the
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forecasting accuracy deteriorates with an increasing ratio of missing data. The
number of components selected by the AIC remains largely constant, and the
constrained model consistently performs better. The BIC, on the other hand,
seems to selected far too few components for the constrained model (the MSE
plots in Figs. 1 and 2 suggest five components are far from sufficient), resulting
in a reduced forecasting accuracy.

Figs. 1 and 3 reveal largely similar results between using AIC and BIC for
the unconstrained case. However, for the constrained model, BIC is clearly too
restrictive, and using AIC leads to more accurate results.

5 Conclusions

Time series modelling through Gaussian mixture models is an appealing method,
capable of accurate short-to-medium term prediction and missing value interpo-
lation. Certain restrictions on the structure of the model arise naturally through
the modelling setup, and appropriately including these constraints in the mod-
elling procedure further increases its accuracy. The constraints are theoretically
justified, and experiments support their utility. The effect is negligible when
there are enough samples or few components such that fitting a mixture model
is easy, but in more challenging situations with a large number of components
or missing values they considerably reduce the risk of overfitting.
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When Does Active Learning Work?
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Abstract. Active Learning (AL) methods seek to improve classifier per-
formance when labels are expensive or scarce. We consider two central
questions: Where does AL work? How much does it help? To address
these questions, a comprehensive experimental simulation study of Ac-
tive Learning is presented. We consider a variety of tasks, classifiers and
other AL factors, to present a broad exploration of AL performance in
various settings. A precise way to quantify performance is needed in order
to know when AL works. Thus we also present a detailed methodology
for tackling the complexities of assessing AL performance in the context
of this experimental study.

Keywords: classification, active learning, experimental evaluation, al-
gorithms.

1 Introduction

Active Learning (AL) is an important sub-field of classification, where a learn-
ing system can intelligently select unlabelled examples for labelling, to improve
classifier performance. The need for AL is often motivated by practical concerns:
labelled data is often scarce or expensive compared to unlabelled data [9].

We consider two central questions: Where does AL work? How much does
it help? These questions are as yet unresolved, and answers would enable re-
searchers to tackle the subsequent questions of how and why AL works.

Several studies have shown that it is surprisingly difficult for AL to outperform
the simple benchmark of random selection ([3,8]). Further, both AL methods and
random selection often show high variability which makes comparisons difficult.
There are many studies showing positive results, for example [9,5]. Notably there
are several studies showing negative results, for example [2,8]. While valuable,
such studies do not permit any overview of where and how much AL works.
Moreover, this contradiction suggests there are still things to understand, which
is the objective of this paper.

We take the view that a broader study should try to understand which fac-
tors might be expected to affect AL performance. Such factors include the clas-
sification task and the classifier; see Section 2.3. We present a comprehensive
simulation study of AL, where many AL factors are systematically varied and
subsequently subjected to statistical analysis.

Careful reasoning about the design of AL experiments raises a number of
important methodological issues with the evaluation of AL performance. This
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paper contributes an assessment metholodology in the context of simulation
studies to address those issues.

For practical applications of AL, there is usually no holdout test dataset
with which to assess performance. That creates major unresolved difficulties,
for example the inability to assess AL method performance, as discussed in [8].
Hence this study focusses on simulated data, so that AL performance can be
assessed.

The structure of this paper is as follows: we present background on classifica-
tion and AL in Section 2, then describe the experimental method and assessment
methodology in Sections 3 and 3.1. Finally we present results in Section 4 and
conclude in Section 5.

2 Background

This section presents the more detailed background on classification and AL.

2.1 Classification

Notationally, each classification example has features xi and a corresponding
label yi. Thus each example is denoted by {xi, yi}, where xi is a p-dimensional
feature vector, with a class label yi ∈ {C1, C2, ..., Ck}.

A dataset consists of n examples, and is denoted D = {xi, yi}n1 . A classifier is
an algorithm that predicts classes for unseen examples, with the objective of good
generalisation on some performance measure. A good overview of classification
is provided by [7, Chapter 1,2].

2.2 Active Learning

The context forAL is where labelled examples are scarce or expensive. For ex-
ample in medical image diagnosis, it takes doctors’ valuable time to label images
with their correct diagnoses; but unlabelled examples are plentiful and cheap.
Given the high cost of obtaining a label, systematic selection of unlabelled exam-
ples for labelling might improve performance. An AL method can guide selection
of the unlabelled data, to choose the most useful or informative examples for la-
belling. In that way the AL method can choose unlabelled data to best improve
the generalisation objective. A small set of unlabelled examples is first chosen,
then presented to an expert (oracle) for labelling.

Here we focus on batch AL; for variations, see [9,4]. A typical scenario would
be a small number of initially labelled examples, a large pool of unlabelled ex-
amples, and a small budget of label requests. An AL method spends the budget
by choosing a small number of unlabelled examples, to receive labels from an
oracle.

An example AL method is uncertainty sampling using Shannon Entropy (de-
noted SE). SE takes the entropy of the whole posterior probability vector for all
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classes. Informally, SE expresses a distance metric of unlabelled points from the
classifier decision boundary.

Entropy = −
k∑

i=1

p(yi|xj)× log(p(yi|xj)).

Another example AL method is Query By Committee (denoted QBC), de-
scribed in section 4.2.

The oracle then satisfies those label requests, by providing the labels for that
set of unlabelled examples. The newly-labelled data is then combined with the
initially-labelled data, to give a larger training dataset, to train an improved clas-
sifier.

The framework for AL described above is batch pool-based sampling; for
variations see [4,9].

2.3 Active Learning Factors

Intuitively there are several factors that might have an important effect on AL
performance. An experimental study can vary the values of those factors sys-
tematically to analyse their impact on AL performance.

One example of an AL factor is the nature of the classification task, including
its difficulty and the complexity of the decision boundary. The classifier can
be expected to make a major difference, for example whether it can express
linear and non-linear decision boundaries, and whether it is parametric. The
smoothness of the classification task input, for example continuous or discretised,
might prove important since that smoothness affects the diversity of unlabelled
examples in the pool. Intuitively we might expect a discretised task to be harder
than a continuous one, since that diversity of pool examples would decrease.
Other relevant factors include the number of initial labels (Ninitial) and the size
of the label budget (Nbudget).

Some of these factors may be expected to materially determine AL perfor-
mance. How the factors affect AL performance is an open question. This exper-
imental study evaluates AL methods for different combinations of factor values,
i.e. at many points in factor space. The goal here is to unravel how the factors af-
fect AL performance. A statistical analysis of the simulation study reveals some
answers to that question, see Section 4.1.

Below the factor values are described in detail.
Four different simulated classification tasks are used, to vary the nature and

complexity of the classification problem. We restrict attention to binary classifi-
cation problems. Figure 1 shows the classification tasks. These tasks are created
from mixtures of Gaussian clusters. The clusters are placed to create decision
boundaries, some of which are simple curves and others are more involved. In
this way the complexity of the classification problem is varied across the tasks.

Still focussing on the classification task, task difficulty is varied via the Bayes
Error Rate (BER). Input smoothness is also varied, having the values continuous,
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(a) Task sd10 (b) Task sd2 (c) Task sd7 (d) Task sd8

Fig. 1. Density contour plots to elucidate the classification problems

discretised, or amixture of both. BER is varied bymodifying the Gaussian clusters
for the problems; input smoothness is varied by transforming the realised datasets.

Another factor to vary is the input dimension p, by optionally adding extra
dimensions independent of the class. An interaction is expected between p and
the initial amount of labelled data Ninitial, since higher dimensional data should
require more datapoints to classify successfully.

Four different classifiers were used: Logistic Regression (LogReg), Quadratic
Discriminant Analysis (QDA), Random Forest (RF) and Support Vector Ma-
chines (SVM), to provide a variety of classifiers: linear and non-linear, para-
metric and non-parametric. These classifiers are described in [7]. The default
parameters for RF are the defaults from R package RandomForest version 4.6-7;
the default parameters for SVM are the defaults from R package RWeka version
0.4-14 (the complexity parameter C is chosen by cross-validation, the kernel is
polynomial).

The amount of initial labelled data Ninitial is also varied. This factor is ex-
pected to be important, since too little data would give an AL method nothing to
work with, and too much would often mean no possible scope for improvement.

The AL factors are summarised in Table 1.

Table 1. Active Learning Factors

Name Values

Classification Task sd10, sd2, sd7, sd8 (see Figure 1)

Task Input Type Continuous, Discretised, Mixed

Task Input Dimension 2, 10

Classifier LogReg, QDA, RF, SVM

Ninitial 10, 25, 50, 100

Bayes Error Rate 0.1, 0.2, 0.35

Classifier Optimum Error Rate [inferred]

Space for AL [inferred]

The optimum error rate for the classifier on a specific task is evaluated exper-
imentally, by averaging the results of several large train-test datasets, to provide
a ceiling benchmark.

We also consider the potential space for AL to provide a performance gain. In
the context of simulated data all labels are known, and some labels are hidden to
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perform the AL experimental study. The classifier that sees all the labelled data
provides a ceiling benchmark, the score Sall. The classifier that sees only the
initially labelled data provides a floor benchmark, the score Sinitial. To quantify
the scope for AL to improve performance, we define the space for AL as a ratio
of performance scores: (Sall − Sinitial)/Sall. This provides a normalised metric
of the potential for AL to improve performance.

A Monte Carlo experiment varying these factors provides the opportunity to
statistically analyse the behaviour of AL. To get to this point, both a careful
experiment and a refined methodology of performance assessment are required.

3 Experimental Method

AL is applied iteratively in these experiments: the amount of labelled data grows
progressively, as the AL method spends a budget chunk at each time point. We
may choose to spend our overall budget all in one go, or iteratively, in smaller
batches.

In that sense the experimental setup resembles that of the AL challenge de-
scribed in [5]. We use this iteration over budget because it is realistic for practical
AL applications, and because it explores the behaviour of AL as the number of
labelled examples grows. Experiments consider AL methods SE and QBC.

To motivate our experimental method, we present the summary plots of the
relative performances of AL and RS over time, see Figures 2a and 2b.

The experimental setup is as follows. Firstly, sample a pair of datasets [Dtrain,
Dtest] from the classification task. To simulate label scarcity, split the training
dataset into initally labelled data Dinitial and an unlabelled pool Dpool.

The output of one experiment can be described in a single plot, for example
Figure 2a. That figure shows the trajectory of performance scores obtained from
progressive labelling, as follows. At each time point the AL method chooses
a small set of examples for labelling, which is added to the existing dataset of
labelled data. This selection happens repeatedly, creating a trajectory of selected
datasets from the unlabelled pool. Each time point gives a performance score, for
example error rate, though the framework extends to any performance metric.
This gives the overall result of a trajectory of scores over time, denoted Si: an
empirical learning curve. Here i denotes the time point as we iterately increase
the amount of labelled data, with i ∈ [0, 100].

Given several instances of RS, we form an empirical boxplot, called a sampling
interval. Figure 2a shows the trajectory of scores for the AL method, and the
vertical boxplots show the sampling intervals for the scores for RS.

Once this iterative process is done, we obtain a set of scores over the whole
budget range, denoted Si. Those scores are used to calculate various performance
comparisons, specifically to see whether AL outperformed RS, see Section 3.1.

The AL method now has a score trajectory Si: a set of scores over the whole
budget range. All trajectories begin at the floor benchmark score Sinitial and
terminate at the ceiling benchmark score Sall. From the score trajectory Si a
set of score differences δSi is calculated via δSi = Si−Si−1. The need for and
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usage of the score differences is detailed in Section 3.1. The chosen AL method
is evaluated alongside several instances of RS, the latter providing a benchmark.
Experiments are repeated to generate several instances of RS, since RS shows
substantial variability.

To illustrate the trajectories of the performance scores Si, Figure 2a shows
those scores for the AL method SE and comparison with RS.
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Fig. 2. Scores Si in subgraph (a) and score differences δSi in subgraph (b), for AL
method Shannon Entropy vs Random Selection

3.1 Methodology to Evaluate AL Performance

This section elucidates the difficulties with existing AL performance metrics, and
contributes a novel assessment metholodology to address those complexities. The
primary goal of every AL performance metric is to quantify the AL performance
gain from a given experiment, as a single scalar summary.

Any AL performance methodology must first address two preliminary issues:
the benchmark for AL to outperform, and how to handle the variability of that
benchmark. The first issue is to decide which benchmark should be used to
compare AL methods against. One option is to compare AL performance to the
initial classifier. However, that ignores the fact that the labelled dataset is larger
in the case of AL: even random selection of further examples for labelling would
be expected to improve performance on average, since the classifier sees a larger
training dataset. Thus a better benchmark for AL is random selection (RS), that
sees exactly the same amount of labelled data as the AL method.

The second issue concerns the high variability of the benchmark, given that
experiments show RS to have high variability. The approach used here is to
evaluate multiple instances of RS, to get a reasonable estimate of both location
and dispersion of performance score. From those multiple instances we can form
a sampling interval of the RS score, and thus capture its high variability.

Score Trajectories under Experimental Budget Iteration. Having es-
tablished the benchmark of RS, we consider the score trajectories in the exper-
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imental context of budget iteration, to better understand how to compare AL
against its benchmark.

We begin with the score trajectories Si derived from the budget iteration
process. The budget is iterated over the entire pool in 100 steps; during that
iteration, the amount of labelled data grows from its minimum Ninitial to its
maximum Ntrain. At each budget iteration step, the available budget is small
compared to the total size of the pool. This is illustrated in Figure 2a.

Each score trajectory Si has significant autocorrelation, since each value de-
pends largely on the previous one. To see this for the score trajectory, recall that
for each budget iteration step, the available budget is small. Hence the score at
one step Si is very close to the score at the previous step Si−1. Thus the scores
Si only change incrementally with each budget iteration step, giving rise to high
degrees of autocorrelation.

In contrast, the score differences δSi are expected to be substantially less
autocorrelated. This belief is confirmed experimentally by ACF graphs, which
show significant autocorrelation for the scores but not for the score differences.
This contrast matters when comparing different AL performance metrics.

Comparing AL Performance Metrics. We now address different AL perfor-
mance metrics, each designed to measure the performance of AL methods. Two
common AL performance metrics are direct comparisons of the score trajectories,
and the Area Under the Active learning curve (AUA) (see [5]).

The autocorrelation of score trajectories Si means that directly comparing
two score trajectories is potentially misleading. For example, if an AL method
does well against RS only for a small time at the start, and then does equally
well, this would lead to the AL method’s score trajectory dominating that of
the RS over the whole budget range. This would present a false picture of where
the AL method is outperforming RS. Much of the AL literature suggests that
this early AL performance zone is precisely to be expected ([9]), and thus this
comparison may often be partially flawed. Further, this same case shows that
the AUA (see [5]) would overstate the AL performance gain; see Figure 2a which
shows the score trajectories.

Here we resolve that problem by considering the score differences δSi, not
the scores themselves Si. Those differences show much less autocorrelation than
the scores (this is shown by ACF graphs).

An example of the score differences δSi is shown in Figure 2b. Our new
methodology is based on examining these score differences.

A New Methodology to Evaluate AL Performance. Our new methodol-
ogy is based on comparing the score differences δSi, as a way to compare AL
against its benchmark RS. This is done in two stages.

The first stage is to seek a function that quantifies the result of the comparison
between two score differences, δSi

SE for AL method SE and δSi
RS for RS. To

ensure fair comparisons, ties need to be scored differently to both wins and losses.
The approach adopted here is to use a simple comparison function f :
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f(x, y) =

⎧⎨⎩1 : x > y
0.5 : x = y
0 : x < y.

This comparison function f is applied to two score differences, e.g.
f(δSi

SE , δSi
RS). The motivation here is to carefully distinguish wins, losses and

ties, and to capture those three outcomes in one scalar summary. Applying that
comparison function to compare all the score differences of SE and RS generates
a set of comparison values, denoted Ci, each value ∈ [0, 1]. Several instances of
RS generate several such sets of values, one for each instance.

We use several instances of RS to capture its high variability, the number of RS
instances being NRS . Each instance j has its own set of comparison scores Cj

i .

Those comparison values Cj
i are then averaged to form a single set of averaged

comparison values, denotedAi =
1

NRS

∑NRS

j=1 Cj
i . Further, each valueAi ∈ [0, 1].

That single set of values Ai provides a summary of the overall performance
comparison between the AL method and RS. That comparison is illustrated in
Figure 3 which shows those average comparison values Ai over the whole budget
range.

The final stage of the new method is interpreting the averaged comparison
values Ai. The aim is to extract the relationship between Ai and budget, with
a confidence interval band.

The lower 80% confidence interval is chosen to form a mildly pessimistic esti-
mate of AL performance gain. We fitted a Generalised Additive Model (GAM)
to this set of values (given the need for inference of confidence intervals). The
GAM is chosen using a logit link function, with variable dispersion to get better
confidence intervals under potential model mis-specification (see [6]). The GAM
is implemented by R package mgcv version 1.7-22; the smoother function de-
fault is thin plate regression splines. The GAM relates the expected value of the
distribution to the covariates thus:

g(E(Y )) = β0 + β1f1(x1).

The fitted GAM is shown in Figure 3. The estimated effect seems roughly
linear. The baseline level of 0.5 is shown as a dotted line, which represents an
AL method that ties with RS, i.e. does not outperform it.

Given the intricacies of evaluating AL performance, a primary goal for this
methodology is to quantify AL performance from a given experiment as a single
result. The GAM curve shows where the AL performance zone is, namely the
initial region where the curve is significantly above 0.5. We consider the initial
region, as much AL literature suggests that the AL performance gain occurs
early in the learning curve, see [9]. Thus the length of the AL performance zone
is the single result that summarises each experiment.

Overall, this methodology addresses some of the complexities of assessment of
AL performance in simulation contexts. As such it provides a milestone on the
road to more accurate and statistically significant measurements of AL perfor-
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mance. This is important given that many authors find that the AL performance
effect can be elusive (e.g. [5,3]).

This methodology is illustrated with specific results in Figures 2a, 2b and 3.
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Fig. 3. Averaged Comparison Values Ai with Generalised Additive Model curve and
pointwise 80% confidence interval

4 Results and Discussion

The dependent variable is the AL performance zone length, an integer count. That
value is obtained via the methodology described above, which includes fitting a
GAM to ensure statistical significance. The factors are given in Table 1.

4.1 Negative Binomial Regression Analysis

The experimental output includes the AL performance zone length (derived from
the GAM) to the AL factors. Given the form of the aggregate experimental
output, the appropriate initial analyses were Poisson and Negative-Binomial
regression. A Poisson regression model was found to be over-dispersed. We fit a
negative binomial regression generalised linear model, which fits reasonably well
with significant under-dispersion:

Yi ∼ NegBin(μi, κ)

with
log(μi) = xi · β

where κ is a dispersion parameter.
The significant results of that model are summarised in Table 2.
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Table 2. Negative Binomial Significant Results

Name Coefficient p-value

Intercept −1.695 1.70e-12

Specific Classifier, Logistic Regression 1.142 <2e-16

Specific Task, labelled sd7 −0.481 0.000405

Input Type, Continuous 0.578 1.11e-09

Input Type, Discrete −1.235 <2e-16

There are several results from the negative binomial regression which were
not anticipated. For example, LogReg shows more improvement, all things being
equal, than SVM, for AL method SE.

This may be due to classifier mis-match: one might conjecture that AL works
better when the classifier is mis-matched to the task, because the range of exam-
ple quality within the unlabelled pool might be much higher under mis-match.

Here classifier mis-match means the experimental metric of the classifier’s sub-
optimality on a given task. Classifier mis-match is the performance difference
between this classifier and the optimal Bayes classifier on the task. Informally,
mis-match measures how ill-suited a classifier is to a given task.

Under correct classifier match, most examples will improve a classifier’s perfor-
mance, whereas under mis-match, some examples may reduce the performance
while others improve it, leading to a greater range of example quality under
mis-match.

The choice of task is significant: the third task is worse than the fourth. The
fourth task has a more complex decision boundary than the third, leading to
expected greater model mis-match for this task. The fact that the third is worse
for AL than the fourth is also consistent with the conjecture described above,
that AL works better under mis-match.

There is a widespread belief in the AL literature that the AL performance zone
is early in the budget range (see [9]). In other words, as we progressively increase
the amount of the labelled data, AL provides its performance gain earlier more
than later. AL methods are expected to select the more useful examples from
the pool, and the greatest range of usefulness would exist early on. In practical
applications, AL is usually required work earlier rather than later, since the
essential context of AL is label scarcity. This belief is confirmed by the analysis:
for the experiments that showed an AL performance gain, the mean and median
lengths of the AL performance zone length were 38 and 32 respectively, out of a
maximum of 200.

It is notable that input dimension turns out not to be significant.
It was quite rare for AL to show a performance gain at all, compared to RS,

only in around 11% of experiments. This confirms existing studies that the AL
performance gain is often elusive ([2,3,8]). It also emphasises the clear need for
a precise reasoned methodology to analyse AL performance, hence the detailed
methodology described in Section 3.1.
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4.2 Results from QBC

To explore the importance of the AL method used, experiments evaluated a
different AL method, QBC, using average KL-divergence as the disagreement
measure. The two AL methods SE and QBC are very different in both algorith-
mic details and overall motivation (see [9,4]), making it worthwhile to compare
their results.

The AL method QBC takes a committee of classifiers, and scores an unlabelled
example xj by how much disagreement there is within the committee. Disagree-
ment measures include Vote Entropy and Average K-L Divergence; see [4,9].
For QBC the classifier committee was Logistic Regression, k-nearest-neighbour
(with k = 5 and k = 21), Support Vector Machine and Random Forest.

The experimental setup was identical, and the results were analysed in the
same way: by a negative binomial regression analysis. That model fits reasonably
well. The results from QBC are somewhat different to those from the SE.

The QBC analysis confirms that input type is significant, with continuous
input giving significantly greater AL performance than mixed; and mixed signif-
icantly greater than discrete. This confirms that a discretised task is harder than
a continuous one, with discretisation reducing the the diversity of pool examples.

It is interesting that two very different AL methods lead to similar results for
how AL performance depends on specific factors. We may explain this behaviour
in part as follows. With Active Learning there are two distinct stages: firstly the
selection of examples for labelling, and secondly the use of those examples in
training a particular classifier. With SE the same classifier is used for both
stages, whereas QBC uses a classifier committee for selection. The QBC results
found that classifier was not significant, in contrast to the SE results which found
that Logistic Regression is significantly better than SVM.

This suggests that QBC may be selecting examples which are useful indepen-
dently of the classifier: good datapoints which benefit any classifier. That in itself
is interesting, as it is a very plausible prior belief that the quality of datapoints
would be strongly classifier dependent.

5 Conclusion

There are two central questions: Where does AL work? How much does it help?
By examining a variety of experiments across a range of points in AL factor
space, some conclusions can be drawn.

Overall AL failed to demonstrate a performance gain far more often than not
(11% for SE, 6% for QBC). This is consistent with several other authors who
reported largely negative results using AL ([1,8]). The analysis also confirmed the
general belief in the literature that AL provides its performance gain early on in
the budget range. Both AL methods, SE and QBC, showed that the smoothness
of the input type makes a significant difference to AL performance.

In future we will extend this work, for example by including many more
datasets, some from simulated data, other from real applications, e.g. [5]. Fu-
ture results should enable recommendations of AL method for applications, by
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relating the type of classification task to the relative performances of different
AL methods.

This experimental study has generated some unexpected results about the
factors that determine where AL works. This study has shown many complexities
with the assessment of AL performance. It has contributed a new methodology
to assess AL performance.

Acknowledgement. The work of Lewis P. G Evans is supported by an EPSRC
doctoral training award.
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Abstract. Due to the complexity of the task, partially ordered pattern
mining of sequential data has not been subject to much study, despite
its usefulness. This paper investigates this data mining challenge by de-
scribing OrderSpan, a new algorithm that extracts such patterns from
sequential databases and overcomes some of the drawbacks of existing
methods. Our work consists in providing a simple and flexible framework
to directly mine complex sequences of itemsets, by combining well-known
properties on prefixes and suffixes. Experiments were performed on dif-
ferent real datasets to show the benefit of partially ordered patterns.

Keywords: Data Mining, Sequential patterns, Partial orders.

1 Introduction

Sequential pattern mining is a very active research area, which is linked to the
exponential growth of temporal and spatio-temporal databases. Many studies
have demonstrated the usefulness of such patterns for analysis [1], classification
[2][3] or prediction [4]. These patterns were introduced in [5] and are an extension
of association rules [6]. Information is totally ordered according to a specific cri-
terion, which is most often temporal. For instance, let us take an environmental
database where the pattern 〈(Pollution)(Dead animals)〉 is found. This means
that the event Pollution is temporally followed by the eventDead animals. Min-
ing such related items according to temporal aspects is very useful for specialists
in various domains such as software engineering [7], medicine [8] or marketing
[9]. Despite their advantages, sequential patterns have often limited value since
they only provide totally ordered information about data. For example, let us
consider a second pattern, 〈(Pollution)(Dead vegetation)〉, discovered in the
same database. The coexistence of the two patterns is not taken into account
using this method. However, they can be synthesized based on partial ordering.

Figure 1presents a so-calledpartially orderedpattern that combines the twopre-
vious sequential patterns. This pattern means that the pollution event is followed

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 186–197, 2013.
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Pollution
Dead_animals

Dead_vegetation

Fig. 1. Example of partially ordered pattern

by two other eventsDead animals andDead vegetationwhich themselves are not
ordered.We focus our study onmining closed partially ordered patterns since they
reduce information redundancy and limit result size. Furthermore, in the general
case, partially ordered patterns can be used in all kinds of sequential databases and
have many other advantages: (1) they provide more detailed information on order
among elements; (2) they are represented using a directed acyclic graph, which is
easy to understand; (3) they summarize sequential pattern sets. In this paper, we
present a new method designed to directly extract partially ordered patterns in a
general case of sequences of itemsets with item repetitions. We propose an algo-
rithm called OrderSpan that explores the search space andmines the complete set
of closed partially orderedpatterns. Relying on existingwork on sequential pattern
mining, OrderSpan performs the extraction of partially ordered patterns based on
the prefix and suffix properties of sequences.

This paper is organized as follows. Section 2 gives some preliminar definitions
on sequences and partially ordered patterns. Section 3 studies existing works
on partially ordered pattern mining. Section 4 defines the OrderSpan algorithm
and its different steps. The experimental results are presented in Section 5. We
conclude our study while providing some prospects in Section 6.

2 Problem Definition

Before presenting the notion of partially ordered pattern, we provide some im-
portant definitions relative to closed sequential pattern mining. As we will see
later, a partially ordered pattern is a more open structure composed of closed
sequential patterns.

Definition 1 (Sequence)
Let I = {I1, I2, . . . , Im} be a set of items. An itemset IS is a non empty,
unordered, set of items denoted as (Ij1 . . . Ijk ) where Iji ∈ I. Let IS be the
set of all itemsets built from I. A sequence S is a non empty ordered list of
itemsets denoted as 〈IS1IS2 . . . ISp〉 where ISj ∈ IS.

Definition 2 (Sub-sequence)
A sequence Sα = 〈IS1IS2 . . . ISp〉 is a sub-sequence of another sequence
Sβ = 〈IS′

1IS
′
2 . . . IS

′
m〉, denoted as Sα �s Sβ, if p ≤ m and if there are integers

j1 < j2 < . . . < jk < . . . < jp such that IS1 ⊆ IS′
j1 , IS2 ⊆ IS′

j2 , . . . , ISp ⊆ IS′
jp .

Definition 3 (Sequential pattern)
Let SP be a sequence. Let S ′ be the set of sequences such that ∀Si ∈ S ′, SP �s

Si. |S ′| is called the support of SP . SP is called a sequential pattern, denoted
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by seq-pattern, when Support(SP ) ≥ θ where θ is a given value (minimum
support).

Definition 4 (Closed sequential pattern)
Let SP be a sequential pattern, SP is a closed sequential pattern if there
is no other sequential pattern SP ′ such that SP �s SP

′ and Support(SP ) =
Support(SP ′).

Table 1. An example of a database of
sequences

ID Sequence

S1 〈(af)(d)(e)(a)〉
S2 〈(e)(abf)(g)(bde)〉
S3 〈(e)(a)(b)(g)〉

Table 2. Set of closed sequential patterns
with the minimum support θ = 2

ID Sequence

{S1, S2, S3} 〈(e)(a)〉
{S1, S2} 〈(af)(d)〉
{S1, S2} 〈(af)(e)〉
{S2, S3} 〈(e)(a)(b)〉
{S2, S3} 〈(e)(a)(g)〉
{S2, S3} 〈(e)(b)(g)〉

To illustrate these different aspects, we use the database in Table 1 as a refer-
ence example. This database contains three different sequences of itemsets based
on the alphabet Σ = {a, b, d, e, f, g}. Given this database with a minimum sup-
port θ = 2, the sub-sequences 〈(e)〉, 〈(a)〉 and 〈(e)(a)〉 are supported by sequences
S1, S2 and S3, and their support is equal to 3. Thus, these sub-sequences are seq-
patterns because 3 ≥ θ. But sequences 〈(e)〉 and 〈(a)〉 are not closed sequences
since the sequence 〈(e)(a)〉 is such as 〈(e)〉 �s 〈(e)(a)〉 and 〈(a)〉 �s 〈(e)(a)〉 with
an equivalent support. Therefore, these two sequences are redundant and can be
skipped during pattern extraction to only retain closed sequences. Finally, the
sequences 〈(e)(a)〉, 〈(af)(d)〉, 〈(af)(e)〉, 〈(e)(a)(b)〉, 〈(e)(a)(g)〉 and 〈(e)(b)(g)〉
in Table 2, give the complete set of closed seq-patterns. These closed sequential
patterns can be extracted using an algorithm such that BIDE [10] or ClopSpan
[11]. Below, we highlight the link between seq-patterns and partially ordered pat-
terns, this permits us to convert this sequence mining problem into a directed
acyclic graph mining problem.

Table 2 gives the complete set of closed seq-patterns with θ = 2 and their
associated set of supporting sequences. Some sets of closed seq-patterns are sup-
ported by the same set of sequences. For instance 〈(e)(a)(b)〉, 〈(e)(a)(g)〉 and
〈(e)(b)(g)〉 are supported by S2 and S3. Thus, a partial order can be defined
to obtain a synthetic representation of these closed seq-patterns relative to the
sequence set {S1, S2}. We can define as many partial orders as there are corre-
sponding sets of sequences. In our example, these sets are {S1, S2, S3}, {S1, S2}
and {S2, S3} respectively. Figures 2, 3 and 4 give the three partial orders cor-
responding to each set of sequences. We use two vertices labeled ”〈” and ”〉”,
representing the beginning and the end of each pattern.
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Fig. 2. Closed partial or-
der G1 on S1, S2 and S3

Fig. 3. Closed partial or-
der G2 on S1 and S2

Fig. 4. Closed partial order
G3 on S2 and S3

In the following, these structures are called partially ordered patterns and are
defined as follows:

Definition 5 (Partially ordered pattern)
A partial order is a directed acyclic graph G = (V , E). V is the set of
vertices and E is a set of directed edges such that E ⊆ V × V. With such a
structure, we can determine a partial order on vertices, i.e. u < v if there is
a directed path from u to v. However, if there is not a path from u to v, these
elements are not comparable. Each path in a partial order is a seq-pattern. Let
θ be the minimum support and S ′ be the set of sequences that support all paths
in G, such that |S ′| is the support of G. G is considered as a partially ordered
pattern, denoted by po-pattern, if |S ′| ≥ θ.

Definition 6 (Sub-partially ordered pattern)
A partially ordered Gα is a sub-partially ordered pattern of another par-
tially ordered pattern Gβ, denoted Gα �g Gβ, if for all paths pathαi in Gα

there is a path pathβj in Gβ such that pathαi �s pathβj.

Definition 7 (Closed partially ordered pattern)
Let G be a partially ordered pattern, G is a closed partially ordered pat-
tern if there is no other partially ordered pattern G′ such that G �g G′ and
Support(G) = Support(G′).

Let us consider the po-pattern G3 given in Figure 4, which covers the se-
quences S2 and S3. There are two paths between the itemset (e) and the item-
set (g) given by the sequences 〈(e)(b)(g)〉 and 〈(e)(a)(g)〉, thus (e) < (g) and
Support(G3) = 2. Given the po-pattern G1, we observe that G1 �g G3 since
the path 〈(e)(a)〉 in G1 is included in the paths 〈(e)(a)(g)〉 and 〈(e)(a)(b)〉. Po-
patterns are separated from each other according to the set of sequences they
are included in.

3 Related Work

In the literature, po-patterns mining has been studied in two main contexts. The
first involves mining po-patterns as frequent episodes occurring within a single
sequence of events. In the second one, po-patterns are mined over a sequence
database.
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Mining episodes in a single sequence is very different from mining po-patterns
in a sequence database. Episodes are po-patterns representing a piece of repet-
itive information in a sequence, according to a temporal slide window. Mining
episodes has been first introduced by Mannila et al. [12]. The proposed algo-
rithm, Winepi, mines episodes in an Apriori way by using a sliding window of
fixed width. This method has drawbacks since mining huge databases leads to a
significant overhead. In addition, the algorithm does not merely extract closed
patterns but the complete set of po-patterns, therefore the number of patterns
can be quite large. Some authors [13,14] propose new algorithms to only mine
closed episodes. Both use a pattern-growth paradigm in order to explore the
search space. They have to keep in computer memory the complete set of ex-
tracted patterns to verify if each episode is closed or not, during the process [14]
or alternatively during a post-processing step [13].

In [15], Pei et al. studied the problem of mining po-patterns in string databases.
Despite the good performance of the Frecpo algorithm, they are able to only ex-
tract patterns on simple sequences that have non-repetitive items and no item-
sets. This considerably reduces the potential applications of the algorithm as
nowadays, temporal databases are composed of multiple types of information
for the same timestamp, and the same piece of information can appear several
times in a sequence. Alternatively, Garriga [16] presents another algorithm to ex-
tract closed po-patterns. It first extracts closed seq-patterns using an algorithm
such as CloSpan [11] or BIDE [10], and then performs a postprocessing operation
to convert a set of closed seq-patterns into po-patterns. Thus, the algorithm does
not directly extract patterns, but uses an existing closed seq-pattern algorithm.

The proposal in this paper shows how to directly mine closed po-patterns
in a sequence database using a pattern-growth approach. Our method man-
ages repetitive items and sequences composed of itemsets. In addition, closeness
checking is directly performed during the process without having to consider al-
ready extracted po-patterns. Furthermore, mining only closed po-patterns gives
a smaller set of results without any information loss. The information obtained
is also more semantically relevant compared to results obtained with seq-pattern
mining.

4 The OrderSpan Algorithm

We now present the OrderSpan algorithm which is designed to meet the previ-
ously enumerated challenges inherent to po-pattern mining: (1) mining directly
po-patterns from a sequential database; (2) focusing extraction on closed po-
patterns, in order to reduce the result size; (3) considering sequences of itemsets
with repetitive items. This algorithm relies on a two-phase approach, based on
prefix and suffix properties of sequences. The following subsection presents the
Pattern-Growth paradigm which is well-known in seq-pattern mining and is used
as a basis for our method.
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Fig. 5. The prefix tree representing the search space of the database in Table 1 with a
minimum support θ = 2

4.1 The Sequential Pattern Mining Paradigm

Several useful methods had been proposed to tackle the problem of mining se-
quences. We choose to base our algorithm on the Pattern-Growth paradigm
which uses a divide-and-conquer approach. This paradigm was first implemented
in the PrefixSpan algorithm [17], which is currently one of the most efficient al-
gorithm for extracting seq-patterns, both in terms of computation time and
memory consumption.

To illustrate this paradigm, let us consider the tree in Figure 5, which gives
us the complete seq-pattern mining search space from the database of Table
1, with θ = 2. Each node represents the last item of a sequence and, start-
ing from the root, it is recursively possible to retrieve the complete set of seq-
patterns. The number above each vertex is the support of the corresponding
seq-pattern. Thereby, given the sub-tree starting from the labeled vertex ’a’
under the root, we obtain the following seq-patterns: 〈(a)〉, 〈(af)〉, 〈(af)(d)〉,
〈(af)(e)〉, 〈(a)(b)〉, 〈(a)(d)〉, 〈(a)(e)〉, 〈(a)(g)〉. Two operations are available in
this tree, the I-Extension and the S-Extension. Conceptually, given a sequence
S = 〈IS1IS2...ISp〉 and an item α, the operation S � α concatenates the item α
to S. The I-Extension, noted S �i α, concatenates α in the last itemset ISp of
S, e.g. 〈(a)〉 �i f gives the sequence 〈(af)〉. The S-Extension concatenates α in
a new itemset following ISp, e.g. 〈(af)(e) is a S-Extension of 〈(af)〉 with e. In
Figure 5, a node starting with symbol ’ ’ represents a I-Extension, otherwise it
represents a S-Extension.

Based on a depth-first search approach, the Pattern-Growth paradigm recur-
sively divides the database by using database projections. Such projections are
made according to a seq-pattern, called a prefix [17]. Given a sequence prefix
p, a projected sequence S from p is noted S|p, that is a suffix of S according to
the first appearance of the prefix p in S. For instance, 〈(ab)(bc)(ac)(b)〉|〈(a)(c)〉 =
〈(ac)(b)〉 and 〈(ab)(bc)(ac)(b)〉|〈(a)(b)〉 = 〈( c)(ac)(b)〉. For each node in the tree,
it is possible to build a projection DB|p of the complete database according
to the pattern p given by the node. Given DB the sample database in Table 1,
DB|〈(e)(a)〉 = {〈〉, 〈( bf)(g)(bde)〉, 〈(b)(g)〉}. By scanning this projected database,
we find the frequent items b and g with a support equal to 2. Thus, DB will be
recursively projected by prefixes 〈(e)(a)(b)〉 and 〈(e)(a)(g)〉.
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4.2 From Sequential Pattern Mining to Partially Ordered Pattern
Mining

A closed po-pattern is a representation of the complete set of closed seq-patterns
given a set of sequences S. In our case, the representation of a po-pattern is given
by a sub-prefix-tree in the overall search space. Indeed, in the prefix-tree, it is
easy to retrieve the seq-patterns that coexist in a same set of sequences. Let
us consider the po-pattern G3 (Figure 4). Its sub-prefix-tree representation is
given Figure 6. This sub-prefix-tree represents the complete set of seq-patterns
appearing in sequences S2 and S3 of the sample database given in Table 1. For
all seq-patterns SP in the tree, there is at least one path p in G3 such that
SP �s p. Therefore, for each sequence subset in a sequential database, there is
a sub-prefix-tree representing all the seq-patterns covering them.

b

g ga b

gb g

e ga

b g

Fig. 6. The sub-prefix-tree representing
the po-pattern G3

<

a

b

e

b

g
>

a

b

Fig. 7. Merging operation on the sub-
prefix-tree corresponding to Figure 6

The first algorithm step is based on this property. Algorithm 1 extracts the
complete set of sub-prefix-trees. Let us take a set of sequences S, the algorithm
first initializes a sub-prefix-tree which covers all sequences in S. Then, all fre-
quent sub-prefix-trees on sub-sets in S are extracted recursively. This is based
on the following assumption: for a sequence sub-set in the database, there is
only one closed po-pattern, i.e. a sub-prefix-tree, describing its sequences [16].
To address this issue and prevent redundancy in extracted patterns, we use a
data structure called ListSet. It contains the list of sequence sub-sets covered
by a previously extracted po-pattern.

Lines [1-3]: a directed acyclic graph is initialized. To fit definitions given
in Section 2, directed acyclic graphs contain two nodes representing the begin-
ning and the end of the po-pattern, labeled ”〈” and ”〉” respectively. Each node
contains: (1) a label representing the extracted information, i.e. an itemset; (2)
the projected database containing the suffixes of sequences in S, according to
the prefix, i.e seq-pattern, given from the root in the sub-prefix-tree until the
node. A queue called NodeQueue is initialized with the ”begin” node of the po-
pattern. Lines [4-20]: NodeQueue is empty when there are no more nodes to
be extended, i.e. the sub-prefix-tree is extracted. Lines [7-12]: this part extends
the current po-pattern, i.e. sub-prefix-tree, when an occurrence has a support
equal to |S| to cover sequences in S. The I-Extension and the S-Extension are
performed in line 10. Lines [13-19]: discovering occurrences that have a support
lower than the sequence set cardinality |S|, which means that there is a more
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Algorithm 1: ForwardTreeMining

input : S a sequence set, θ a minimum support, ListSet the set of sequence
database sub-sets already explored

1 PartialOder ← new DAG;
2 PartialOder.begin.database = new ProjectedDatabase(S);
3 NodeQueue = ∅ ∪ PartialOder.begin;
4 while NodeQueue is not empty do
5 Node = NodeQueue.pop back;
6 ListOcc ← getListOccurences(Node.databse, θ);
7 foreach Occ in ListOcc such that Occ.support = |S| do
8 N ′ = Node.new;
9 N ′.database = N.database.projectOn(Occ.item);

10 Extends the current node N with N ′;
11 NodeQueue = NodeQueue ∪N ′;
12 end
13 foreach Occ in ListOcc such that Occ.support < |S| do
14 if ListSet does not contain the set of sequences covered by the

occurrence Occ then
15 S ′ = the set of sequences covered by the occurrence Occ;
16 ListSet = ListSet ∪ S ′;
17 ForwardTreeMining(S ′, θ, ListSet);
18

19 end

20 end
21 MergingSuffixTree(PartialOder.end);
22 print(PartialOder);

specific po-pattern covering a subset S ′ such that S ′ ⊂ S. Therefore, if there
is not a po-pattern covering this subset S ′, a new one is extracted by calling
recursively ForwardT reeMining on S ′. Line [21]: after having extracted the
complete sub-prefix-tree, the method MergingSuffixT ree is applied on the po-
pattern in order to prune and merge the redundant vertices. This operation is
presented in the next section.

4.3 Pruning and Merging a Sub-suffix-Tree

Since we use the prefix property to mine the complete set of sub-prefix-trees, we
obtain a lot of redundancy. Let us consider the sub-prefix-tree given by Figure 6:
(1) It represents the complete set of seq-patterns on sequences S2 and S3. Some
of these seq-patterns are not closed and generate redundant information. For in-
stance the sequences 〈(a)(b)〉 and 〈(a)(g)〉 are included in sequences 〈(e)(a)(b)〉
and 〈(e)(a)(g)〉, respectively; (2) By starting from the sub-prefix-tree leaves, ver-
tices with the same label can be merged by using the suffix property on sequences.
Indeed, merging these vertices maintains element order. For example, sequences
〈(e)(a)(g)〉 and 〈(e)(b)(g)〉 are both suffixed by the suffix 〈(g)〉, and in the sub-
prefix-tree, vertices with the label {g} can be merged into only one vertex {g}.
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Then, by starting from the end vertex {〉} and by using the suffix property on se-
quences, it is possible to recursively merge all the redundant vertices within a po-
pattern, i.e. a sub-prefix-tree.

Figure 7 provides an example of such an operation on the sub-prefix-tree ex-
tracted from sequences S2 and S3. To illustrate the method, the operation is
only performed on the parent nodes of the ending vertex. First, the vertices
representing the suffix 〈(b)〉 and labeled {b}, are merged together by retaining
edges from their respective parent nodes. Next, the same operation is performed
on the vertices labeled {g} for the suffix 〈(g)〉. Once a set of vertices related to
a same suffix are merged together into one vertex V , this operation is recur-
sively carried out on each parent nodes. Therefore, the operation executed on
parent nodes of the merged vertex {g} will merge all vertices labeled {a} and
subsequently all vertices labeled {b} which corresponds to suffixes 〈(a)(g)〉 and
〈(b)(g)〉, respectively.

During this process an issue can emerge. Retaining edges from all parent
nodes can generate transitive redundancy in the po-pattern. Indeed in Figure
7, the dotted edge from the beginning to the merged vertex {(g)} is redundant
since the order information is already given by paths represented by sequences
〈(b)(g)〉 and 〈(e)(a)(g)〉. Thus, after having applied the MergingSuffixT ree
operation on a vertex V , we check for each parent node V ′ of V , if there is
another parent node V ′′ such that V ′ is a parent of V ′′. If this is the case, the
edge (V ′, V ) is removed from the po-pattern. Thus, by removing transitive re-
dundancy during the process, this operation ensures that all non closed paths,
i.e. non closed seq-patterns, are removed. Using prefix and suffix properties en-
sures that all shared middle parts of sequences are considered in po-patterns.
The MergingSuffixT ree operation removes transitive redundancy and, at the
same time, recursively merges the commonly shared information.

5 Experiments

In this section, some tests conducted on different kinds of sequential databases
are presented. The experiments were performed on a laptop computer with an
Intel Core i7 and 8 Gb of main memory, running on Debian stable 7.0. We
implemented the OrderSpan algorithm in C++. To illustrate the usefulness of
directly mining closed po-patterns in the case of complex sequences, we compared
the number of total closed po-patterns with the number of closed seq-patterns.
Two real, but very different datasets are chosen. The BreastCancer dataset [18]
contains 677 gene sequences having a constant length of 128 non-repetitive items.
This dataset is very dense as each gene appears in each sequence, therefore, each
sequence is composed of 128 different items. A huge set of po-patterns can be
extracted at very high support levels such as 90%. The Fresqueau dataset1 is
composed of 2505 sequences with a length variability between 1 and 277. It can
have repetitive items and itemsets for a maximal length of 856. This dataset is
very sparse with 4000 different items and a very heterogeneous distribution.

1 http://engees-fresqueau.unistra.fr/

http://engees-fresqueau.unistra.fr/
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Fig. 8. Performances Fig. 9. Scalability test

We conducted a performance assessment of OrderSpan on the Fresqueau
dataset. Figure 8 shows the computation time (in milliseconds) of the algo-
rithm according to the relative minimum support (in percents). Computation
cost grows exponentially as the minimum support decreases. For example, given
a relative minimum support of 69% on the Fresqueau dataset, runtime is equal
to 5.892 seconds and increases to 24.964 seconds given a support of 67%. Then,
we tested the performance scalability of the algorithm on this dataset. We fixed
the minimum support at 69% and we replicated the sequences from 2 to 16 times.
Figure 9 shows a linear scalability of OrderSpan given a minimum support equal
to 69%. It increases from 5.892 seconds to 97.545 seconds when the database is
replicated 16 times, with 97.545/5.892=16.555.

Fig. 10. A po-pattern extracted from
the Fresqueau dataset

Table 3. Comparing the number of pat-
terns on the two datasets

BreastCancer dataset
θ Closed po pat. Closed seq pat.

100% 1 382
95% 234 1678
90% 1297 8733

Fresqueau dataset
θ Closed po pat. Closed seq pat.

72% 14 19
69% 84 133
67% 347 758

Closed po-patterns and closed seq-patterns have been mined over a minimum
support θ. Table 3 compares the number of extracted closed po-patterns and
closed seq-patterns in the two datasets. When the minimum support θ is varied
the number of closed po-patterns is always smaller than the number of closed seq-
patterns. This is because closed po-patterns synthesize sets of closed seq-patterns
appearing in the same sub-sets of sequences in a database. The experiments show
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that there is an ubiquitous po-pattern that covers all the BreastCancer dataset.
This pattern is composed of 128 different vertices, as each of the 128 genes ap-
pears in each sequence. Figure 10 illustrates such a closed po-pattern extracted
from the Fresqueau dataset. It provides specialists with the temporal order of
sampled pesticides, concerning 1741 river stations. Pesticide MCPA is tempo-
rally found before pesticides DichloBenza, 5-T , DB and MCPB, which are
not ordered except for 5-T and DB which appear together. Specialists are con-
cerned by environmental impacts of pesticides on water quality. Water quality
is defined by flora and fauna species living in the river. Detecting the different
pesticides and the order in which they contaminate the river can explain bio-
diversity changes. Thus, extracting such patterns instead of closed seq-patterns
is of great interest for analysts. It provides a better information about the or-
der between elements covering the data, with a smaller result set. Furthermore,
with the ability to mine sequences of itemsets, we can extract knowledge from
temporal databases such as the Fresqueau dataset.

6 Conclusion

Po-pattern mining requires the development of new techniques to extract such
patterns in the general context of large temporal databases. The work of dis-
covering partial orders instead of total orders implies greater complexity and a
much vaster search space.

This paper details a two-phase approach, called OrderSpan, which can be
used to mine the complete set of closed po-patterns. Our method uses both the
prefix and suffix properties of seq-patterns, based on ForwardT reeMining and
Merging-SuffixT ree operations, respectively. It is able to directly mine all
kind of sequential databases with sequences of itemsets. It overcomes previous
work limitations, by directly mining po-patterns neither by generating them from
seq-pattern sets, nor by only considering simple sequences with no item repe-
titions. Moreover, in comparison to seq-patterns, po-patterns are more relevant
for specialist analysis due to the synthetic information they provide.

During sub-prefix-trees extraction, we deliberately refrain from using opti-
mizations such as those proposed in [11] or [10]. The aim is to present a general
and flexible framework, designed to be easily complexified and optimized us-
ing existing works in closed seq-pattern mining. Concerning future works, we
aim at optimizing the OrderSpan method and generalizing the process to others
patterns.

Acknowledgment. This work was funded by the French National Research
Agency (ANR), as part of the ANR11 MONU14 Fresqueau project.
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Abstract. In real applications, time series are generally of complex
structure, exhibiting different global behaviors within classes. To discrim-
inate such challenging time series, we propose a multiple temporal match-
ing approach that reveals the commonly shared features within classes,
and the most differential ones across classes. For this, we rely on a new
framework based on the variance/covariance criterion to strengthen or
weaken matched observations according to the induced variability within
and between classes. The experiments performed on real and synthetic
datasets demonstrate the ability of the multiple temporal matching ap-
proach to capture fine-grained distinctions between time series.

1 Introduction

The problem of exploring, classifying or clustering multivariate time series arises
in a natural way in a lot of domains, inducing a notable increase activity in this
area of research these last years. The Dynamic Time Warping (dtw) [1] is fre-
quently and successfully used in many domains to classify time series that share
similar global behaviors within classes subject to some delays. However it fails on
complex time series, namely, that present different global shapes within classes,
or similar ones between classes. In fact, the applied dtw alignment yields a lo-
cal view, as it is performed in light of a single pair of time series, ignoring all
other time series dynamics within and between clusters; furthermore, the align-
ment process used is achieved regardless of the analysis process (as clustering
or classification), weakening its efficiency on complex data. Several variants of
dtw have been proposed to improve performance in classification or clustering.
They mostly aim to more finely estimate the dtw parameters, namely, warping
constraints, the time weighting, or the underlying divergence function between
mapped values. Without being exhaustive, the first part of these works mainly
rely on the Sakoe-Chiba, Itakura or Rabiner [2] approches to constrain globally
or locally the dtw warping space [3]. The second propositions concentrate on the
estimation of time weighting functions [4], whereas the last works pay particular
attention to the definition of adaptive divergence functions involving both values
and behaviors components of time series [5]. Although these approaches yield
more accurate temporal alignments, time series of the same class are assumed
to share a single global behavior. In real application time series are generally of

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 198–209, 2013.
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more complex structure. In particular, time series may exhibit different global
behaviors within classes, or similar ones between classes. Consequently, for clas-
sification purpose, it appears important that the temporal alignment relies on
the commonly shared features within the classes and the most differential ones
between classes. Such challenging problem is addressed in some recent works. In
particular, Ye [6] proposed shapelets extraction for time series classification. A
pool of candidate shapelets is first generated by using a sliding window to ex-
tract all of the possible subsequences of all possible lengths from the time series
dataset. Then, similar to the split criterion defined in [7], an euclidean distance
and a maximization information gain criterion are used to both learn distance
thresholds and to select the discriminative shapelets. For the same aim, a top-
down and one-pass extraction of the discriminative sub-sequences is proposed in
[5], while the involved metric is adaptive within a classification tree induction.
In [8], [9] a learning pattern graphs from sequential data is proposed. For time
series, such linkages are hardly reachable by conventional alignments strategies
that are mainly limited to monotone warping functions preserving temporal or-
der constraints [1].

We propose in this paper a new approach for multiple temporal alignment
that highlights class-specific characteristics and differences. The main idea rely
on a discriminant criterion based on variance/covariance to strengthen or weaken
links according to their contributions to the variances within and between classes.
The variance/covariance measure is used in many approaches, including ex-
ploratory analysis, discriminant analysis, clustering and classification [10]. How-
ever, to the best of our knowledge, it has never been investigated to define
temporal alignment for time series classification. To this end, we propose a new
formalization of the classical variance/covariance for a set of time series, as well
as for a partition of time series (Section 2). In Section 3, we present a method
for training the intra and inter class time series matching, driven by within-class
variance minimization and between-class variance maximization. Subsequently,
the learned discriminative matching is used to define a locally weighted time
series metric that restricts the time series comparison to discriminative features
(Section 4). In Section 5, the experiments carried out on both simulated and
real datasets reveal the proposed approach able to capture fine-grained distinc-
tions between time series, all the more so that time series of a same class exhibit
dissimilar behaviors.

2 Variance/Covariance for Time Series

We first recall the definition of the conventional variance/covariance matrix,
prior to introducing its formalization for time series data. Let X be the (n× p)
data matrix containing n observations of p numerical variables. The conventional
(p× p) variance/covariance matrix expression is:

V = Xt(I − UP )tP (I − UP )X (1)

where, I is the diagonal identity matrix, U the matrix of ones, and P a diag-
onal weight matrix of general term pi = 1

n for equally weighted observations.
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In the following, we provide a generalization of the variance/covariance expres-
sion Eq.(1) to multivariate time series observations.

Variance Induced by a Set of Time Series. For a set of time series, let X
be the (nT × p) matrix providing the description of n multivariate time series
S1, ..., Sn by p numerical variables at T time stamps. The matching between n
time series can be described by a matrix M of positive terms composed of n2

block matrices M ll′ (l = 1, ..., n; l′ = 1, ..., n). A block M ll′ is a (T × T ) matrix

that specifies the matching between Sl and Sl′ , of general term mll′
ii′ ∈ [0, 1]

giving the weight of the link between the observation i of Sl and i′ of Sl′ . Then,
the (p×p) variance/covariance matrix VM induced by a set of time series S1, ..., Sn

connected to one another according to the matching matrix M can be defined
on the basis of Eq.(1), as:

VM = Xt(I −M)tP (I −M)X (2)

where P is a (nT × nT ) diagonal matrix of weights, with pi = 1
n T

for equally
weighted observations. Note that for a complete linkage matching, M is equal to
UP and VM leads to a conventional variance covariance V Eq.(1). For clarity and
to simplify notation, we focus for the theoretical developments on univariate time
series. The extension to the multivariate case is direct and will be used in the
experiments. Thus, let xl

i be the value of the variable X taken by Sl (l = 1, ..., n)
at the ith time stamp (i = 1, ..., T ).

Definition 1. The variance VM of the variable X is given by:

VM =

n∑
l=1

T∑
i=1

pi(x
l
i −

n∑
l′=1

T∑
i′=1

ml l′
i i′x

l′
i′)

2 (3)

Note that each value xl
i is centered relative to the term

∑n
l′=1

∑T
i′=1 m

l l′
i i′x

l′
i′

estimating the average of X in the neighborhood of the time i of Sl. The neigh-
borhood of i is the set of instants i′ of Sl′ (l′ = 1...n) connected to i with
mll′

ii′ �= 0. We now proceed to define the variance within and between classes
when the set of time series is partitioned into classes.

Variance Induced by a Partition of Time Series. Let us now consider a set
of time series S1, ..., Sn partitioned into K classes, with yi ∈ {1, ..., K} the class
label of Si and nk the number of time series belonging to class Ck. The definition
of the within variance (i.e. the variance within classes) and the between variance
(i.e. the variance between classes) induced by K classes is obtained by using the
expression given in Eq.(2) based on a matching M specified below.

Definition 2. The within variance with an intra-class matching matrix M is
given by:

WVM =
1

nT

K∑
k=1

nk∑
l=1

T∑
i=1

(xl
i −

nk∑
l′=1

T∑
i′=1

mll′
ii′x

l′
i′)

2
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with

M ll′ =

⎧⎨
⎩

I if l = l′

= 0 if yl = yl′ and l = l′

0 if yl = yl′
(4)

where I and 0 are the (T × T ) identity and zero matrices, respectively.

The general setting for the blocks M ll′ of the intra-class matching M is based on
three considerations: (a) the Euclidean alignment (M ll = I) linking each time
series to itself ensures a variance of zero when comparing a time series with itself,
(b) time series within the same class should be connected, while (c) time series
of different classes are not connected, as they do not contribute to the within
variance. Similarly, we have:

Definition 3. The between variance with an inter-class matching matrix M
is given by:

BVM = 1
nT

∑K
k=1

∑nk
l=1

∑T
i=1(x

l
i

−(mll
iix

l
i +

∑
k′ �=k

∑nk′
l′=1

∑T
i′=1 m

ll′
ii′x

l′
i′))

2

with

M ll′ =

⎧⎨
⎩

I if l = l′

0 if yl = yl′ and l = l′

= 0 if yl = yl′
(5)

where I and 0 are the (T × T ) identity and zero matrices, respectively.

The setting of the inter-class matching M is symmetric with respect to the
preceding one, matching between time series of the same class being forbidden,
while matching between time series of different classes is taken into account.

As one can note, the matching matrix M plays a crucial role in the definition
of the within and between variances. The main issue for time series classification
is therefore to learn a discriminative matching that highlights shared features
within classes and distinctive ones between classes. To do so, we look for the
matching matrix M , under the general settings given in Eqs. (4) and (5), that
minimizes the within variance and maximizes the between variance. We present
an efficient way to do this in the following section.

3 Learning Discriminative Matchings

We present here an efficient method to learn the matching matrixM , so as to con-
nect time series based on their discriminative features. The proposed approach
consists of two successive phases. In the first phase, the intra-class matching
is learned to minimize the within variance. The learned intra-class matching
reveals time series connections based on class-specific characteristics. In the sec-
ond phase, the learned intra-class matching is refined to maximize the between
variance.
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Learning the Intra-class Matching. We are interested in inferring commonly
shared structure within classes, that is in identifying the set of time stamps i′

connected to each time stamp i regardless of their weights. Thus, the problem of
learning the intra-class matching matrix M to minimize the within variance. We
introduce here an efficient approach that iteratively evaluates the contribution
of each linked observation (i, i′) to the within variance; the weights mll′

ii′ are then
penalized for all links (i, i′) that significantly increase the within variance. For a
given class Ck, this process, called TrainIntraMatch, is described in Algorithm 1
and involves the following steps.

Algorithm 1 TrainIntraMatch(X,α, k)

M = complete intra-class matching Step 1

for all (l, l′) with yl = yl′ = k and l �= l′ do
for all (i, i′) ∈ [1, T ] × [1, T ] do

Cll′
ii′ evaluation with Eq. (7) Step 2

end for
end for
repeat

LinkRemoved = false
for all (i, l) ∈ [1, T ] × [1, n] do

Link = argmaxi′,l′(C
ll′
ii′ ) satisfying Eq. (9) Step 3

if Link �= ∅ then

Remove Link (ml,l′
i,i′ = 0) and

Update weights with Eq. (8)
Update contributions
LinkRemoved = true

end if
end for

until ¬LinkRemoved Step 4

return(MIntra = M)

1. Initialization (Step 1). A complete linkage is used to initialize the intra-
class matching matrix M , to ensure that all possible matchings are consid-
ered and that no a priori constraints on the type of matching one should
look for are introduced.

M ll′ =

⎧⎨
⎩

I if l = l′
1
T
U if yl = yl′ and l = l′

0 if yl = yl′
(6)

2. Computing link contributions (Step 2). We define the contribution

Cl1l2
i1i2

of the link (i1, i2) between Sl1 and Sl2 (yl1 = yl2) as the induced
variation on the within variance after the link (i1, i2) has been removed:

Cl1l2
i1i2

= WVM −WVM\(i1,i2,l1,l2) (7)

where M\(i1, i2, l1, l2) denotes the matrix obtained from M by setting ml1l2
i1i2

to 0 and re-normalizing its ith1 row:

ml1l
′

i1i′ ←
ml1l

′
i1i′

1−ml1l2
i1i2

(8)



Learning Multiple Temporal Matching for Time Series Classification 203

The evaluated contributions reveal two types of links: the links of positive
contribution Cll′

ii′ > 0 that decrease the within variance if removed, and the

links of negative contribution Cll′
ii′ < 0 that increase the within variance if

removed.

3. Link deletion (Step 3). The deletion of a link with positive contribu-
tion ensures that the within variance will decrease. In addition, if all links
within a row have a negligible contribution to the variance, one can dispense
with removing them in order to (a) avoid overtraining and (b) speed up the
process. Thus, a link (i, i′) between Sl and Sl′ is deleted if it satisfies:

Cll′
ii′ > α.WVM1 and

T∑
i′′=1,(i′′ �=i′)

mll′
ii′′ > 0 (9)

where α ∈ [0, 1] and WVM1 is the initial within variance.
Because the normalization in Eq.(8) performed after the deletion of (i1, i2)
impacts only the weights of the ith1 row, deleting a single link per row at
each iteration of the process guarantees that the global within variance will
decrease. Thus, at each iteration one can simply delete the link on each row
of maximal contribution compliant with Eq.(9).

4. Stopping the learning process (Step 4). The algorithm iterates steps
2, 3 and 4 until there are no more links satisfying the conditions specified in
Eq.(9).

From the learned intra-class matching obtained at step 4, noted MIntra, one may
induce for each time series Sl one intra-blockM l.

Intra to indicate the characteristic
linkage between Sl and time series of the same class. This intra-block is obtained
by summing the block matrices learned for Sl, as follows:

M l.
Intra =

∑
l′∈1,...,nk

M ll′
Intra (10)

Learning the Inter-class Matching. The goal of this second phase is to
refine the highlighted connections in MIntra (i.e., that connects shared features
within classes) to capture the links that are additionally differentiating classes.
For this, we refer to a similar algorithm called TrainInterMatch, where the inter-
class matching is initialized with MIntra, then trained to maximize the between
variance BVM of Definition 3. As for the within variance minimization problem,
we adopt the same approach, which consists in iteratively evaluating the con-
tribution of each linked observations (i, i′) to the between variance; the weights
mll′

ii′ are then penalized for all links (i, i′) significantly decreasing the between
variance. We now turn to the application of the learned matching matrix to time
series classification.

4 Time Series Classification Based on the Learned
Matching

Our aim here is to present a way of using learned discriminative matching to lo-
cally weight time series for k-nearest neighbor classification. The purpose of the
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proposed weighting is to restrict the time series comparison to the discriminant
(characteristic and differential) features. Let M∗ be the discriminative matching
learned by the TrainIntraMatch and TrainInterMatch algorithms, where dis-
criminant linkages are highly weighted. For each Sl of the training sample, we
note M l .

∗ the average of the learned matrices M ll′
∗ (yl′ �= yl = k):

M l .
∗ =

1

(n− nk)T

∑
l′

M ll′
∗

It defines the linkage schema of Sl to a given time series (of the same or of
different class) according to Sl own discriminative features. To damp the effect
of outliers, the geometric mean could be used for M l .

∗ as well.
In k-nearest neighbor classification, one can compare a new time series Stest to
a sample series Sl of Ck based on its learned discriminative matching M l .

∗ . This
can be achieved by looking for the delay r that leads to the minimal distance
between Stest and Sl:

Dl(Sl, Stest) = min
r∈{0,..,T−1}

(
∑

|i−i′|≤r; (i,i′)∈[1,T ]2

ml .
ii′∑

|i−i′|≤r m
l .
ii′

(xl
i − xtest

i′ )2) (11)

where r corresponds to the Sakoe-Chiba band width [2]. Note that for r = 0,
Dl defines a locally weighted Euclidean distance involving the diagonal weights
ml.

ii.

5 Experiments

Synthetic Datasets. The first objective of these experiments is to show through
challenging synthetic datasets that the proposed approach successes to recover
the a priori known discriminative features. For this, two synthetic datasets bme
and umd are considered, where a given class may be composed of time series
of different global behaviors and including amplitude and delay variations. bme
is composed of three classes Begin, Middle, and End of time series of length
128. Figure 1 illustrates the time series variability within each class, it shows
the profile of one time series (in black) compared to the remaining time series
(in grey) of the class. In the Begin (respectively the End) class, time series are
characterized by a small bell arising at the initial (respectively final) period. The
overall behavior may be different within a same class depending on whether the
large bell is up or down positioned. Furthermore, time series of the Begin and
the End classes composed of an up-positioned large bell are quite similar to the
Middle class time series. The second dataset umd, composed of three classes
Up, Middle, and Down (time series length of 150), introduces an additional
complexity with the Up and Down classes characterized by a small bell that
may occur at different time stamps, as illustrated in Figure 1.

Electric Power Consumption Classification. The proposed approach is mo-
tivated by a classification problem of a real electrical power consumption of cus-
tomers, to adequately meet consumer demands. To classify such challenging data,
we refer to the proposed approach to: a) localize the periods that characterize the
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Fig. 1. bme (top three classes) and umd (bottom three classes) datasets

daily power consumption of each class, b) highlight periods that differentiate the
power consumption of different classes, c) and classify new power consumption
based on the learned discriminative features.

The application relies on two public datasets1 conslevel and consseason
providing the electric power consumption recorded in a personal home over al-
most one year (349 days). Each time series consists of 144 measurements that
give the power consumption of one day with a 10 minute sampling rate. con-
slevel is composed of 349 time series distributed in two classes (Low and High)
depending on whether the average electric power during the peak demand period
[6:00pm-8:00pm] is lower or greater than the annual average consumption of that
period. Figure 2 shows the electric consumption profiles within the conslevel
classes; the red frames delineate the time interval [108,120], corresponding to the
peak period [6:00pm-8:00pm]. On the other hand, consseason is composed of
349 time series distributed in two season classes (Warm and Cold) depending
on whether the power consumption is recorded during the warm (from April
to September) or cold (from October to March) seasons (Figure 2). Note that
the electric power consumption profiles differ markedly within classes in both
datasets.

Character Trajectories Classification. The objective of this latter dataset
is to verify whether the proposed approach can recover standard time series
structures within classes, namely, when the classes are mainly composed of time
series of similar global behaviors. For this, we have considered a standard dataset
on character trajectories traj [12], where time series share a quite similar global
behavior within classes (20 classes of 50 time series each).

1 These data are available at http://bilab.enst.fr/wakka.php?wiki=HomeLoadCurve,
and analyzed in [11]
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Fig. 2. The electrical power consumption of Low and High conslevel classes

Validation Protocol. The proposed approach is applied for the classification of
the above datasets. First, the discriminative features are localized, then used to
define a locally weighted time series metric d as given in Eq.(11). The relevance
of the learned discriminative features and of the induced metric is then studied
through a k-nearest neighbor classification for several neighborhood sizes k =
1, 3, 5, 7. For bme and umd datasets a training and test sets of 360 and 1440 time
series, respectively, are considered. For the real datasets the performances are
evaluated based on 10-fold cross-validation protocol. Finally, the results obtained
are compared to two baselines: the Euclidean de and dynamic time warping dtw
distances (Table 1).

Results and Discussion. The algorithms TrainIntraMatch and TrainInter-
Match are applied to the above datasets with α = 0.5%. As an example, let us
first illustrate, for the bme dataset, the progression of the within and between
variances during the learning processes (Figure 3). The clearly monotonically de-
creasing (respectively increasing) behavior of the within (respectively between)
class variance, which ends at a plateau, assesses: a) the pertinence of the con-
ducted links penalization to minimize the within variance and maximize the
between variance, b) the convergence of the proposed algorithms.

For conslevel, Figure 4 shows the learned intra-class (left) and inter-class
(right) blocks for a given time series of the Low class. The intra-class block
reveals a checkerboard structure, indicating that the electric power consump-

Fig. 3. The within and between variance progression for bme dataset
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Fig. 4. The intra (left) and inter (right) class matching learned for Low class

tion within the Low class alternates, in a daily period, between a low and a
moderately high consumption. The corresponding inter-class block shows the
discriminative matching between the considered Low class time series and time
series of the High class (on column). This block displays many discriminative
regions; for example, it shows that the power consumption within the High class
within the period underlined in red (prior to 6:00pm-8:00pm) is especially im-
portant in predicting the consumption during the peak period. For each above
described dataset, a locally weighted time series metric d is defined based the
learned discriminative matching, as given in Eq.(11), then used for the time se-
ries classification. The relevance of the proposed approach and of the induced
metric are studied according to the validation process described above. The re-
sults obtained are compared to two baselines: the Euclidean de and dynamic
time warping dtw distances.

The misclassification error rates obtained in Table 1 show the efficiency of
the proposed locally weighted metric d in discriminating between complex time
series classes, compared to standard metrics for time series. In particular, one
can note that for all datasets but traj, the best results (in bold) are obtained

Table 1. k-Nearest Neighbor classifi-
cation error rates on synthetic data

k d de dtw
1 0.032 0.165 0.130

bme 3 0.034 0.208 0.132
5 0.062 0.234 0.136
7 0.079 0.297 0.191
1 0.055 0.173 0.121

umd 3 0.111 0.333 0.177
5 0.173 0.343 0.225
7 0.222 0.378 0.274

Table 2. k-Nearest Neighbor classifi-
cation error rates on real data

k d de dtw
1 0.056 0.306 0.289

conslevel 3 0.044 0.267 0.261
5 0.028 0.233 0.239
7 0.017 0.233 0.233
1 0.094 0.239 0.283

consseason 3 0.128 0.228 0.311
5 0.205 0.200 0.300
7 0.111 0.222 0.306
1 0.014 0.012 0.019

traj 3 0.018 0.017 0.022
5 0.022 0.021 0.028
7 0.019 0.021 0.026
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Fig. 5. The learned discriminative matching for the characters ”c”, ”o”, ”i”,”e”,”u”,
and ”a” of traj dataset

with d. For traj, the three metrics lead to comparable results suggesting that
the Euclidean alignment is an appropriate matching for this dataset. In Figure
5, we can see that the learned discriminative matching, for example, for ”c”,
”o”, ”i”,”e”,”u”, and ”a” characters is close to the Euclidean one, which shows
the ability of the proposed approach to recover standard time series alignments.
In addition, one can see that for nearly all datasets the best performances are
obtained for k = 1. For conslevel, a slight improvement is reached for k = 7,
indicating a great clusters overlap for this dataset.

Conclusion and Future Works
Thedtw is frequently and successfully used inmany domains to classify time series
that share similar global behaviors subject to some delays within classes. All the
interest of the proposed approach rely on complex time series for which dtw fails
; namely, that describe different global shapes within classes, or similar ones be-
tween classes. The achieved results support the promising abilities of the learned
temporal matching to discriminate finely such challenging time series. However,
the current learning algorithms are not scalable owing to the induced complexity.
Thus, our future work will mainly focus on calculus complexity reduction to en-
sure the proposed method be useable for large scale data. The main idea consists
to sparse the initial intra-class matching matrixM . For this, we first segment each
time series into a set of salient sub-segments, subsequently, each bloc Mll′ is de-
fined as a set of diagonal alignments linking all pairs of sub-segments of Sl and S′

l .
Performances of the scalable variant of the approach will then be compared to al-
ternative methods on large scale and complex time series data. On the other hand,
we aim to study new ways to define weighted metrics based on the discriminative
masksM l .∗ , for instance, by generalizing conventional dtw to achieve alignments
limited to the discriminative regions ofM l .

∗ .



Learning Multiple Temporal Matching for Time Series Classification 209

References

1. Kruskall, J., Liberman, M.: The symmetric time warping algorithm: From continu-
ous to discrete. In: Time Warps, String Edits and Macromolecules. Addison-Wesley
(1983)

2. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Process-
ing 26(1), 43–49 (1978)

3. Yu, D., Yu, X., Hu, Q., Liu, J., Wu, A.: Dynamic time warping constraint learning
for large margin nearest neighbor classification. Information Sciences 181, 2787–
2796 (2011)

4. Jeong, Y., Jeong, M., Omitaomu, O.: Weighted dynamic time warping for time
series classification. Pattern Recognition 44, 2231–2240 (2011)

5. Douzal-Chouakria, A., Amblard, C.: Classification trees for time series. Pattern
Recognition 45(3), 1076–1091 (2012)

6. Ye, L., Keogh, E.: Time series shapelets: A new primitive for data mining. Data
Min. Knowl. Disc. 22, 149–182 (2011)

7. Yamada, Y., Suzuki, E., Yokoi, H., Takabayashi, K.: Decision-tree induction from
time-series data based on standard-example split test. In: Proceedings of the 20th
International Conference on Machine Learning, pp. 840–847. Morgan Kaufmann
(2003)
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On the Importance of Nonlinear Modeling
in Computer Performance Prediction
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Abstract. Computers are nonlinear dynamical systems that exhibit complex and
sometimes even chaotic behavior. The low-level performance models used in the
computer systems community, however, are linear. This paper is an exploration of
that disconnect: when linear models are adequate for predicting computer perfor-
mance and when they are not. Specifically, we build linear and nonlinear models
of the processor load of an Intel i7-based computer as it executes a range of dif-
ferent programs. We then use those models to predict the processor loads forward
in time and compare those forecasts to the true continuations of the time series.

1 Introduction

Accurate prediction is important in any number of applications. In a modern multi-core
computer, for instance, an accurate forecast of processor load could be used by the op-
erating system to balance the workload across the cores in real time. The traditional
methods that are used in the computer systems community to model low-level per-
formance metrics like processor and memory loads are based on linear, time-invariant
(and often stochastic) techniques, e.g., autoregressive moving average (ARMA), mul-
tiple linear regression, etc. [13]. While these models are widely accepted—and for the
most part easy to construct—they cannot capture the nonlinear interactions that have
recently been shown to play critical roles in computer performance [23]. As computers
become more and more complex, these interactions are beginning to cause problems—
e.g., hardware design “improvements” that do not work as expected. Awareness about
this issue is growing in the computer systems community [22], but the modeling strate-
gies used in that field have not yet caught up with those concerns.

An alternative approach is to model a computer as a nonlinear dynamical system
[23,24]—or as a collection of nonlinear dynamical systems, i.e., an iterated function
system [1]. In this view, the register and memory contents are treated as state variables
of these dynamical systems. The logic hardwired into the computer, combined with the
code that is executing on that hardware, defines the system’s dynamics—that is, how its
state variables change after each processor cycle. As described in previous IDA papers
[2,10], this framework lets us bring to bear the powerful machinery of nonlinear time-
series analysis on the problem of modeling and predicting those dynamics. In particular,
the technique called delay-coordinate embedding lets one reconstruct the state-space
dynamics of the system from a time-series measurement of a single state variable1.

1 Technically, the measurement need only be a smooth function of at least one state variable.

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 210–222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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One can then build effective prediction models in this embedded space. One of the
first uses of this approach was to predict the future path of a ball on a roulette wheel,
as chronicled in [3]. Nonlinear modeling and forecasting methods that rely on delay-
coordinate embedding have since been used to predict signals ranging from currency
exchange rates to Bach fugues; see [5,28] for good reviews.

This paper is a comparison of how well those two modeling approaches—linear
and nonlinear—perform in a classic computer performance application: forecasting the
processor loads on a CPU. We ran a variety of programs on an Intel i7-based machine,
ranging from simple matrix operation loops to SPEC cpu2006 benchmarks. We mea-
sured various performance metrics during those runs: cache misses, processor loads,
branch-prediction success, and so on. The experimental setup used to gather these data
is described in Section 2. From each of the resulting time-series data sets, we built two
models: a garden-variety linear one (multiple linear regression) and a basic nonlinear
one: the “Lorenz method of analogues,” which is essentially nearest-neighbor predic-
tion in the embedded state space [18]. Details on these modeling procedures are covered
in Section 3. We evaluated each model by comparing its forecast to the true continua-
tion of the associated time series; results of these experiments are covered in Section 4,
along with some explanation about when and why these different models are differently
effective. In Section 5, we discuss some future directions and conclude.

Modeling low-level hardware metrics like processor and memory loads is a very dif-
ferent, and arguably harder, problem than modeling the actions of the software. Nonlin-
ear machine-learning techniques have been used quite successfully to model computer
dynamics at the software level—e.g., what compiler flag settings work well for a given
program [6] or what code characteristics cause massive slowdowns [12]. These models
can be very useful in post facto design and optimization. The application tackled here
is fundamentally different: we are interested in real-time prediction of low-level per-
formance metrics in real machines—something to which machine-learning techniques
have not, to our knowledge, been applied. (One group has done some preliminary work
on neural-net based runtime algorithms for allocating the workload of several programs
across the resources of a given computer [20], but this has only been tested in simulated
computers, whose low-level performance dynamics have been shown to differ greatly
from those of real machines [7,23].)

2 Experimental Methods

The testbed for these experiments was an HP Pavilion Elite computer with an Intel
Core R© i7-2600 CPU running the 2.6.38-8 Linux kernel. This so-called “Nehalem” chip
is representative of modern CPUs; it has eight cores running at 3.40Ghz and an 8192
kB cache. Its kernel software allows the user to monitor events on the chip, as well as
to control which core executes each thread of computation. This provides a variety of
interesting opportunities for model-based control. An effective prediction of the cache-
miss rate of individual threads, for instance, could be used to preemptively migrate
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threads that are bogged down waiting for main memory to a lower-speed core, where
they can spin their wheels without burning up a lot of power2.

To build models of this system, we instrumented the kernel software to capture
performance traces of various important internal events on the chip. These traces are
recorded from the hardware performance monitors (HPMs), specialty registers that are
built into most modern CPUs in order to log hardware event information. We used the
libpfm4 library, via PAPI [4], to interrupt the executables periodically and read the
contents of the HPMs. At the end of the run, this measurement infrastructure outputs the
results in the form of a time series. In any experiment, of course, one must be attentive
to the possibility that the act of measurement perturbs the dynamics under study. For
that reason, we varied the rate at which we interrupted the executables, compared the
results, and used that comparison to establish a sample rate that produced a smooth mea-
surement of the underlying system dynamics. A detailed explanation of the mechanics
of this measurement process can be found in [2,23,24].

The dynamics of a running computer depend on both hardware and software. We ran
experiments with four different C programs: two benchmarks from the SPEC cpu2006
benchmark suite (the 403.gcc compiler and the 482.sphinx speech recognition
system) and two four-line programs (col major and row major ) that repeatedly
initialize a matrix—in column-major and row-major order, respectively. These choices
were intended to explore the range of current applications. The two SPEC benchmarks
are complex pieces of code, while the simple loops are representative of repetitive nu-
merical applications. 403.gcc works primarily with integers, while 482.sphinx is
a floating-point benchmark. Row-major matrix initialization works naturally with mod-
ern cache design, whereas the memory accesses in the col major loop are a serious
challenge to that design, so we expected some major differences in the behavior of
these two simple loops. Figure 1 shows traces of the instructions executed per cycle,
as a function of time, during the execution of the two SPEC benchmarks on the com-
puter described in the first paragraph of this section. There are clear patterns in the
processor load during the operation of 482.sphinx . During the first 250 million in-
structions of this program’s execution, roughly two instructions are being carried out
every cycle, on the average, by the Nehalem’s eight cores. Following that period, the
processor loads oscillate, then stabilize at an average of one instruction per cycle for
the period from 400-800 million instructions. Through the rest of the trace, the dy-
namics move between different regimes, each with characteristics that reflect how well
the different code segments can be effectively executed across the cores. The proces-
sor load during the execution of 403.gcc , on the other hand, appears to be largely
stochastic. This benchmark takes in and compiles a large number of small C files,
which involves repeating a similar process, so the lack of clear regimes makes sense.
The dynamics of row major and col major (not shown due to space constraints)
were largely as expected. The computer cannot execute as many instructions during
col major because of the mismatch between its memory-access pattern and the de-
sign of the cache, so the baseline level of the col major trace is much lower than

2 Kernels and operating systems do some of this kind of reallocation, of course, but they do so
using current observations (e.g., if a thread is halting “a lot”) and/or using simple heuristics
that are based on computer systems knowledge (e.g., locality of reference).
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Fig. 1. Processor load traces of the programs studied here

row major . Temporally, the row major trace looks very much like 403.gcc :
largely stochastic. col major , on the other hand, has a square-wave pattern because
of the periodic stalls that occur when it requests data that are not in the cache.

The following section describes the techniques that we use to build models of these
time-series data sets.

3 Modeling Computer Performance Data

3.1 Overview

The goal of this paper is to explore the effectiveness of linear and nonlinear models of
computer performance. Many types of models, of both varieties, have been developed
by the various communities that are interested in data analysis. We have chosen mul-
tiple linear regression models as our linear exemplar because that is a standard in the
computer systems literature [22]. In order to keep the comparison as fair as possible, we
chose the Lorenz method of analogues, which is the simplest of the many models used
in the nonlinear time-series analysis community, as our nonlinear exemplar. In the re-
mainder of this section, we give short overviews of each of these methods; Sections 3.2
and 3.3 present the details of the model-building processes.

Multiple Linear Regression Models. Suppose we have a set of n observations from
a system, where the ith observation includes m + 1 measurements: a scalar response
variable ri and a vector of m explanatory variables [ei1, . . . , eim]. Working from those
n observations {([ei1, . . . , eim], ri)}ni=1, multiple linear regression (MLR) models the
future value of the response variable via a linear combination of the current explanatory
variables—that is:

ri+1 = [1, ei1, ..., eim]β (1)

where β = [β1, . . . , βm+1]
T is a vector of m+1 fit parameters [13]. We estimated β by

using ordinary least squares to minimize the sum of squared residuals (SSR) between
the set of observations and the set of hyperplanes defined in equation (1):

SSR(β) =

n−1∑
i=1

(ri+1 − [1, ei1, ..., eim]β)2 = (r − Eβ)T (r − Eβ)
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Here, E is a (n − 1) by (m + 1) matrix, with rows {[1, ei1, ..., eim]}n−1
i=1 . The β that

minimizes this sum, β̂ = (ETE)−1ET r, is called the ordinary-least-squares estimator
of β.

In practice, it is customary to measure everything that might be an explanatory vari-
able and then use a method called stepwise backward elimination to reduce the model
down to what is actually important. And in order to truly trust an MLR model, one
must also verify that the data satisfy some important assumptions. These procedures
are discussed in more detail in Section 3.2.

Advantages: MLR models are simple and easy to construct and use, as they
only require a small vector-vector multiplication at each prediction step.

Disadvantages: strictly speaking, MLR can only be used to model a linear de-
terministic system that is measured without any error. MLR models involve
multiple explanatory variables and cannot predict more than one step ahead.

Nonlinear Models. Delay-coordinate embedding [25,26,27] allows one to reconstruct
a system’s full state-space dynamics from time-series data like traces in Figure 1. There
are only a few theoretical requirements for this to work. The data, xi(t), must be evenly
sampled in time (t) and both the underlying dynamics and the measurement function—
the mapping from the unknown d-dimensional state vector Y to the scalar value xi

that one is measuring—must be smooth and generic. When these conditions hold, the
delay-coordinate map

F (τ, dembed)(xi) = ([xi(t), xi(t+ τ), . . . , xi(t+ dembedτ)]) (2)

from a d-dimensional smooth compact manifold M to R
2d+1 is a diffeomorphism

on M [26,27]: in other words, that the reconstructed dynamics and the true (hidden)
dynamics have the same topology. This method has two free parameters, the delay τ
and the embedding dimension dembed, which must also meet some conditions for the
theorems to hold, as described in Section 3.3. Informally, delay-coordinate embedding
works because of the internal coupling in the system—e.g., the fact that the CPU cannot
perform a computation until the values of its operands have been fetched from some
level of the computer’s memory. This coupling causes changes in one state variable to
percolate across other state variables in the system. Delay-coordinate embedding brings
out those indirect effects explicitly and geometrically.

The mathematical similarity of the true and reconstructed dynamics is an extremely
powerful result because it guarantees that F is a good model of the system. As de-
scribed in Section 1, the nonlinear dynamics community has recognized and exploited
the predictive potential of these models for some time. Lorenz’s method of analogues,
for instance, is essentially nearest-neighbor prediction in the embedded space: given a
point, one looks for its nearest neighbor and then uses that point’s future path as the
forecast [18]. Since computers are deterministic dynamical systems [23], these meth-
ods are an effective way to predict their performance. That claim, which was first made
in [10], was the catalyst for this paper—and the motivation for comparison of linear and
nonlinear models that appears in the following sections.



On the Importance of Nonlinear Modeling in Computer Performance Prediction 215

Advantages: models based on delay-coordinate embeddings capture nonlinear
dynamics and interactions, which the linear models ignore, and they can be
used to predict forward in time to arbitrary horizons. They only require mea-
surement of a single variable.

Disadvantages: these models are more difficult to construct, as estimating good
values for their two free parameters can be quite challenging in the face of noise
and sampling issues in the data. The prediction process involves near-neighbor
calculations, which are computationally expensive.

3.2 Building MLR Forecast Models for Computer Performance Traces

In the experiments reported here, the response variable is the number of instructions per
cycle (IPC) executed by the CPU. Following [22], we chose the following candidate
explanatory variables (i) instructions retired (ii) total L2 cache3 misses (iii) number of
branches taken (iv) total L2 instruction cache misses (v) total L2 instruction cache hits
and (vi) total missed branch predictions. The first step in building an MLR model is
to “reduce” this list: that is, to identify any explanatory variables—aka factors—that
are meaningless or redundant. This is important because unnecessary factors can add
noise, obscure important effects, and increase the runtime and memory demands of the
modeling algorithm.

We employed the stepwise backward elimination method [8], with the threshold
value (0.05) suggested in [13], to select meaningful factors. This technique starts with
a “full model”—one that incorporates every possible factor—and then iterates the fol-
lowing steps:

1. If the p-value of any factor is higher than the threshold, remove the factor with the
largest p-value

2. Refit the MLR model
3. If all p-values are less than the threshold, stop; otherwise go back to step 1

For all four of the traces studied here, this reduction algorithm converged to a model
with three factors: L2 total cache misses, number of branches taken, and L2 instruction
cache misses.

To predict IPC (the response variable) using the reduced MLR model, one takes a mea-
surement of each of the factors that appear in the reduced model (say, [en1, . . . , enm])
and then simply evaluates the function [1, en1, . . . , enm]β̂ and assigns that outcome to
the next time-step, i.e, rn+1. That is how the predictions in the next section were con-
structed.

Like any model, MLR is technically only valid if the data meet certain conditions.
Two of those conditions are not true for computer-performance traces: linear relation-
ship between explanatory and response variables (which was disproved in [23]) and
normal distribution of errors, which is clearly not the case in our data, given the nonlin-
ear trends in residual quantile-quantile plots of our data (not shown). Despite this, MLR

3 Modern CPUs have many levels of data and instruction caches: small, fast memories that are
easy for the processor to access. A key element of computer design is anticipating what to
“fetch” into those caches.
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models are used routinely in the computer systems community [22]. And they actually
work surprisingly well, as indicated by the results in Section 4.

3.3 Building Nonlinear Forecast Models for Computer Performance Traces

The first step in constructing a nonlinear forecast model of a time-series data set like
the ones in Figure 1 is to perform a delay-coordinate embedding using equation (2).
We followed standard procedures [14] to choose appropriate values for the embedding
parameters: the first minimum of the mutual information curve [9] as an estimate of the
delay τ and the false-nearest neighbors technique [16], with a threshold of 10-20%, to
estimate the embedding dimension dembed. For both traces in Figure 1, τ = 100000
instructions and dembed = 12. A plot of the reconstructed dynamics of these two traces
appears in Figure 2. The coordinates of each point on these plots are differently delayed
elements of the IPC time series: that is, IPC at time t on the first axis, IPC at time t+ τ
on the second, IPC at time t + 2τ on the third, and so on. An equivalent embedding
(not shown here) of the row major trace looks very like 403.gcc : a blob of points.
The embedded col major dynamics, on the other hand, looks like two blobs of points
because of its square-wave pattern. Recall from Section 3.3 that these trajectories are
guaranteed to have the same topology as the true underlying dynamics, provided that τ
and dembed are chosen properly. And structure in these kinds of plots is an indication of
determinism in that dynamics.
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Fig. 2. 3D projections of delay-coordinate embeddings of the traces from Figure 1

The nonlinear dynamics community has developed dozens of methods that use the
structure of these embeddings to create forecasts of the dynamics; see [5,28] for
overviews. The Lorenz method of analogues (LMA) is one of the earliest and sim-
plest of these strategies [18]. LMA creates a prediction of the future path of a point
xo through the embedded space by simply finding its nearest neighbor and then using
that point’s future path as the forecast4. The nearest neighbor step obviously makes this
algorithm very sensitive to noise, especially in a nonlinear system. One way to mit-
igate that sensitivity is to find the l nearest neighbors of xo and average their future
paths. These comparatively simplistic methods work surprisingly well for computer-
performance prediction, as reported at IDA 2010 [10]. In the following section, we
compare the prediction accuracy of LMA models with the MLR models of Section 3.2.

4 The original version of this method requires that one have the true state-space trajectory, but
others (e.g., [15]) have validated the theory and method for the kinds of embedded trajectories
used here.
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4 When and Why Are Nonlinear Models Better at Predicting
Computer Performance?

4.1 Procedure

Using the methods described in Sections 3.2 and 3.3, respectively, we built and eval-
uated linear and nonlinear models of performance traces from the four programs de-
scribed on page 212 (403.gcc , 482.sphinx , col major and row major ),
running on the computer described in Section 2. The procedure was as follows. We
held back the last k points of each time series (referred to as “the test signal,” ci). We
then constructed the model with the remaining portion of the time series (“the learn-
ing signal”) and used the model to build a prediction p̂i. We computed the root mean
squared prediction error between that prediction and the test signal in the usual way:

RMSE =

√∑k
i=1(ci − p̂i)2

k

To compare the results across signals with different units, we normalized the RMSE as
follows:

nRMSE =
RMSE

max{ci} −min{ci}
The smaller the nRMSE , obviously, the more accurate the prediction.

4.2 Results and Discussion

First, we compared linear and nonlinear models of the two SPEC benchmark programs:
the traces in the top row of Figure 1. For 403.gcc , the nonlinear LMA model was bet-
ter than the linear MLR model (0.128 nRMSE versus 0.153). For 482.sphinx , the
situation was reversed: 0.137 nRMSE for LMA and 0.116 for MLR. This was contrary
to our expectations; we had anticipated that the LMA models would work better because
their ability to capture both the gross and detailed structure of the trace would allow
them to more effectively track the regimes in the 482.sphinx signal. Upon closer ex-
amination, however, it appears that those regimes overlap in the IPC range, which could
negate that effectiveness. Moreover, this head-to-head comparison is not really fair. Re-
call that MLR models use multiple measurements of the system—in this case, L2 total
cache misses, number of branches taken, and L2 instruction cache misses—while LMA
models are constructed from a single measurement (here, IPC). In view of this, the fact
that LMA beats MLR for 403.gcc and is not too far behind it for 482.sphinx is
impressive, particularly given the complexity of these programs. Finally, we compared
the linear and nonlinear model results to a simple “predict the mean” strategy, which
produces a 0.140 and 0.250 nRMSE for 403.gcc and 482.sphinx , respectively—
higher than either MLR or LMA.

In order to explore the relationship between code complexity and model perfor-
mance, we then built and tested linear and nonlinear models of the row major and
col major traces. The resulting nRMSE values for these programs, shown in the
third and fourth row of Table 1, were lower than for 403.gcc and 482.sphinx ,
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Table 1. Normalized root-mean-squared error between true and predicted signals for linear
(MLR), nonlinear (LMA), and “predict the mean” forecast strategies

Program Interrupt Rate (cycles) LMA nRMSE MLR nRMSE naive nRMSE
403.gcc 100,000 0.128 0.153 0.140

482.sphinx 100,000 0.137 0.116 0.250
row major 100,000 0.063 0.091 0.078
col major 100,000 0.020 0.032 0.045
403.gcc 1,000,000 0.196 0.208 0.199

482.sphinx 1,000,000 0.137 0.187 0.462
row major 1,000,000 0.057 0.129 0.103
col major 1,000,000 0.028 0.305 0.312

supporting the intuition that simpler code has easier-to-predict dynamics. Note that the
nonlinear modeling strategy was more accurate than MLR for both of these simple
four-line matrix initialization loops. The repetitive nature of these loops leaves its sig-
nature in their dynamics: structure that is exposed by the geometric unfolding of the
embedding process. LMA captures and uses that global structure—in effect, “learning”
it—while MLR does not. Again, LMA’s success here is even more impressive in view
of the fact that the linear models require more information to construct. Finally, note
that the LMA models beat the naive strategy for both row major and col major ,
but the linear MLR model did not.

Another important issue in modeling is sample rate. We explored this by changing the
sampling rate of the traces while keeping the overall length the same: i.e., by sampling
the same runs of the same programs at 1,000,000 instruction intervals, rather than every
100,000 instructions. This affected the accuracy of the different models in different
ways, depending on the trace involved. For 403.gcc , MLR was still better than LMA,
but not by as much. For 482.sphinx , the previous result (MLR better than LMA)
was reversed. For row major and col major , the previous relationship not only
persisted, but strengthened. In both of these traces, predictions made from MLR models
were less accurate than simply predicting the mean; LMA predictions were better than
this naive strategy. See the bottom four rows of Table 1 for a side-by-side comparison of
these results to the more sparsely sampled results described in the previous paragraphs.

To explore which model worked better as the prediction horizon was extended, we
changed that value—the k in Section 4.1—and plotted nRMSE . (Note that this does
not involve an iterative reimplementation of the prediction strategy, but rather a series
of disjoint experiments designed to test whether the accuracy degrades with increas-
ing horizon. The results of the shorter-horizon runs are not used to inform the longer-
horizon runs.) In three of the four traces—all but 482.sphinx—the nonlinear model
held and even extended its advantage as the prediction horizon lengthened; see Fig-
ure 3 for some representative plots. The initial variability in these plots is an artifact of
normalizing over short signal lengths and should be disregarded. The vertical disconti-
nuities (e.g., at the 1300 and 2100 marks on the horizontal axis of the col major plot,
as well as the 1600 and 3000 marks of 482.sphinx ) are also normalization artifacts5.

5 When the signal moves into a heretofore unvisited regime, that causes the max − min term
in the nRMSE denominator to jump.
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Fig. 3. nRMSE versus prediction horizon.Top: col major Bottom: 482.sphinx

The sawtooth pattern in the top two traces in col major nRMSE are due to the cycli-
cal nature of that loop’s dynamics. LMA captures this structure, while MLR and the
naive strategy do not, and thus produces a far better prediction.

Experimental computer science involves a number of unexpected challenges, includ-
ing the variability and nonstationarity of hardware and software. Since software plays
such an important role in the dynamics, and since modern computers run so much
housekeeping software, this is a real issue. The routine software updates that most
computers receive periodically via the web, for instance, can completely destroy ex-
perimental repeatability. To control for these effects, the computer used in the experi-
ments reported here was completely isolated from any network and its routine software
update facility was disabled. Even so, experimental repeatability was an issue. Sev-
eral months after the results above were gathered, we went back and re-ran the same
482.sphinx and 403.gcc tests repeatedly in order to do some statistical testing on
the results. One of these tests caused the machine to halt; after that, the dynamics were
completely different. We are currently working to understand this effect, which we sus-
pect is due to an old version of the PAPI software that reads the values of the hardware
performance registers.

The issues raised in the previous paragraph are a large part of why it is so important
to build predictive models in real time—as is done here. Post facto machine-learning
strategies that learn patterns from a large collection of examples cannot track the quickly
changing behavior of modern computer systems. Variability is another important is-
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sue. Identical machines with the same nominal hardware configuration—even from the
same manufacturing run—can have very different dynamics. This obviously makes it
a challenge to repeat experiments across ensembles of machines. It also underlines the
importance of working with real machines. Simulated computers, as studied in [20], do
not model these subtle but important hardware effects.

5 Conclusion

The experiments reported in this paper indicate that even a very basic nonlinear model
is generally more accurate than the simple linear model that is considered to be the
state-of-the-art in the computer performance literature. This result is even more striking
because those linear models require far more information to build and they cannot be
used to predict further than one timestep into the future. It is somewhat surprising that
these linear models work at all, actually, since many of the assumptions upon which
they rest are not satisfied in computer performance applications. Nonlinear models that
work in delay-coordinate embedding space may be somewhat harder to construct, but
they capture the structure of the dynamics in a truly effective way.

It would be of obvious interest to apply some of the better linear models that have
been developed by the data analysis and modeling communities to the problem of com-
puter performance prediction. Even a segmented or piecewise version of multiple linear
regression [17,21], for instance, would likely do a better job at handling the nonlinearity
of the underlying system. This idea, which we are currently exploring, involves a major
challenge: how to choose the breakpoints between the segments. Because of the complex
nonlinear behavior, simple change-point detection techniques are not up to this task; be-
cause of the need for real-time detection of the regime shifts, sophisticated techniques
that employ geometric or topological techniques (e.g., [1]) do not apply. And MLR is
not really designed to be a temporal predictor anyway; linear predictors like the ones
presented in [19] might be much more effective. Better nonlinear models are another ob-
vious piece of our research agenda. There are regression-based nonlinear models that we
could use, for instance, such as [11], as well as the many other more-sophisticated mod-
els in the nonlinear dynamics literature [5,28]. It might be useful to develop nonlinear
models that use sliding windows in the data in order to adapt to regime shifts, but the
choice of window size is an obvious issue. Nonlinear models that use multiple probes—
like MLR does—could be extremely useful, but the underlying mathematics for that has
not yet been developed. All of this work could be usefully informed by a broader set of
experiments that brought out the connections between performance dynamics patterns
and model accuracy. This, too, is underway in our lab.
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Abstract. This paper follows our earlier publication [1], where we in-
troduced the idea of tuned data mining which draws on parallel resources
to improve model accuracy rather than the usual focus on speed-up. In
this paper we present a more in-depth analysis of the concept of Widened
Data Mining, which aims at reducing the impact of greedy heuristics by
exploring more than just one suitable solution at each step. In particu-
lar we focus on how diversity considerations can substantially improve
results. We again use the greedy algorithm for the set cover problem to
demonstrate these effects in practice.

1 Introduction

In [1], we claim that utilizing parallel compute resources to improve the accuracy
of data mining algorithms and to obtain better models is of merit and is an
important, emerging area of research in the the field of (parallel) data mining.
The main reason for data mining algorithms not finding optimal solutions, is
the usually enormous solution space, which requires the use of a – often greedy
– heuristic. While this helps in finding a solution in reasonable time, it limits
the exploration of the solution space and often leads to suboptimal solutions.
In [1] we presented two generic strategies for using parallel resources to improve
a greedy data mining heuristic, namely Deepening and Widening. Deepening
focuses on smarter strategies to pick temporary solutions by looking several
steps ahead and selecting a temporary solution, which has shown potential to
perform better further down the search. The goal of Widening, in contrast, lies
on achieving better accuracy by exploring more solutions simultaneously, not
just the locally optimal one. We then demonstrated that both of these tuning
methods offer potential for improvement using a widened versions of the greedy
base algorithm for the set cover problem and a deepened decision tree learner.

In this paper we again focus on our key goal: the development of algorithm
and architecture-independent generic strategies, which can be applied to a broad
spectrum of data mining heuristics in order to improve their accuracy, while
keeping the runtime constant. At the same time we wish to abstract away from
implementation details, such as parallelization models. We will focus primarily
on Widening in this paper and mechanisms to further improve the search.

The ideal goal of Widening is, given a sufficient (and hence usually enormous)
number of parallel resources, to enable full exploration of the search space and
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guarantee the discovery of the optimal solution. In practice this is, of course,
usually not feasible. Instead we need to make sure we make best use of every
parallel resource available towards the goal of improvement of solution quality,
while still keeping the runtime of the widened heuristic the same as the runtime
of the original heuristic. The goal of cost-effective investment of parallel resources
is closely related to the concept of diverse exploration of the search space, which
is the main focus of this paper. The main goal of Diversity-driven Widening is
to force different workers to investigate substantially different models, hence re-
sulting in a diverse set of final solutions. Ideally this increases our chances to find
an even better model than the standard heuristic. We describe simple ways to
achieve diversity and illustrate how enforcing diversity in widening techniques
helps to further improve the accuracy of the data mining heuristic. However,
ensuring diversity often adds computational overhead which contradicts the sec-
ond goal of Widening: keeping the runtime constant. We therefore investigate
and compare Widening techniques with and without communication between
the parallel workers. We demonstrate these different practical techniques on the
greedy algorithm for the set cover problem.

2 Related Work

Trading quantity (of computational resources) for quality (of discovered solu-
tions) has already been published before. In [2] the authors focus on a broad
range of applications, ranging from cryptography to game playing. We, instead,
focus on data mining algorithms which allows us to formalize a number of con-
straints based on the underlying model search space.

Plenty of related work exists in others areas, e.g. parallel data mining. We do
not have the space to discuss all of this in detail and only briefly summarize the
main trends and mainly focus on improvements of search heuristics through the
use of diversity, as this is most relevant for the focus of this paper.

Speed-Up through Parallelization. For the vast majority of parallelizations
of data mining algorithms, the aim is to improve efficiency. Comprehensive sur-
veys are found in [3,4,5,6]. A large amount of work focuses on the parallelization
of decision tree learning. One of the earliest distributed decision tree algorithms,
SPRINT [7], has served as the basis for many subsequent parallel decision tree
approaches. Some noteworthy examples include [8] (employing data parallelism),
[9] (using task parallelism), and [10,11] (presenting hybrid approaches). Probably
the second most researched area is parallel association rule mining algorithms.
Extensive surveys exist in this area as well [12]. Parallelism in clustering algo-
rithms has been used for both efficient cluster discovery and more efficient dis-
tance computations. Partitioning clustering algorithms are parallelized mostly
using message-passing models, examples are presented in [13,14]. Examples for
hierarchical clustering, which is more costly, include [15,16]. However, as dis-
cussed above, speed-up is not the primary goal of Widening.

In recent years specialized frameworks have also emerged, allowing data min-
ing algorithms to be implemented in a distributed fashion and/or operating on
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distributed data. MapReduce [17] is the most prominent paradigm for process-
ing parallel tasks across very large datasets and allows for massive scalability
across thousands of servers in a cluster or a grid. Due to its inherent structure,
MapReduce requires specialized versions of the data mining algorithms to be
developed. Chu et al. [18] present a general approach by using a summation
representation of the algorithms. While offering amazing scalability, MapReduce
has inherent flaws – it is not designed to deal well with moderate-size data
with complex dependencies; it is not suitable for algorithms that require com-
munication between the parallel workers or impose other dependencies across
iterations (see [19] for more details). So whereas MapReduce offers the potential
for creating better models based on processing more data, Widening focuses on
improving model quality using normal amounts of data. This does not exclude
Widened MapReduce style implementations, of course, but it is not at the core
of this paper.

Model Quality Improvement. A number of papers also concentrate on im-
proving the accuracy of the models. Some approaches learn more models to be
used in concert (ensembles) or in a randomized fashion (meta heuristics).

Ensembles use multiple models to obtain better predictive performance than
could be obtained from any of the constituent models. The most notable ex-
amples are bootstrap aggregating or bagging [20], boosting [21], and random
forests [22]. However, a high degree of accuracy comes at the price of inter-
pretability, as these methods do not result in a single interpretable model, which
is contrary to the goal of Widened Data Mining.

Learners based on stochastic learning algorithms, such as genetic algorithms
are naturally parallelizable. Parallelization can be achieved by way of indepen-
dent parallel execution of independent copies of a genetic algorithm, followed by
selecting the best of the obtained results. This results in improved accuracy [23].
This is similar to Widening, however, Widening aims at exploring the search
space in a structured way as opposed to the randomized nature of these other
methods.

Using Diversity to Improve Search Heuristics. There is a wealth of lit-
erature focusing on the improvement of (greedy) search algorithms in general.
In [24], an approach is presented for incorporating diversity within the cost
function, which is used to select the intermediate solution. In [25], the authors
use the observation that, in most cases, failing to find the optimal solution can
be explained by a small number of erroneous decisions along the current path.
Therefore, their improved search first explores the left-most child at a given
depth as suggested by the current heuristic function. If no solution is found, all
leaf nodes are tried that differ in just one decision point from the heuristic func-
tion choice. The algorithm iteratively increases the deviation from the greedy
heuristic. The Widening proposed here performs a similar search for alterna-
tives, but in parallel. In [26] the idea of adding diversity by a simple K-best
first search was explored and shown empirically to be superior to the greedy
(best-first) search heuristic.
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Improving Set Covering. And finally, we should not forget to mention that
a vast amount of literature addresses improving the greedy algorithm for the
set cover problem [27,28]. Since we use this to illustrate the effects of Widening,
we hasten to add that we do not intend to compete with these approaches!
However, the greedy base set covering algorithm allows the benefits of Widening
to be demonstrated well and intuitively.

3 General Widening of a Greedy Heuristic

We can view many of the data mining algorithms as a greedy search through a
space of potential solutions, the model search space. This search space consists
of model candidates, from which the greedy algorithm chooses a locally optimal
solution at each step, until a sufficiently good solution is found, based on some
stopping criteria. The greedy search can, therefore, be schematically presented
as an iterative application of two operators: refinement r and selection s.

During the refinement operation, a temporary model m is made more specific
to generate new, potentially better, models (which we refer to as refinements).
The selection operator chooses the locally best model from all possible refine-
ments.

For the purpose of this paper it is sufficient to assume the existence of a family
of modelsM, that constitutes the domain of the two operators. The refinement
operator is model and algorithm specific and the selection operator is usually
driven by the training data. We will investigate the selection operator in more
detail, as it will be the tool we use to widen a greedy heuristic. It is usually
based on a given quality measure ψ, which evaluates the quality of a model m
from a family of models M (and therefore also its refinements):

ψ :M→ R.

Employing this notation, we can present one iterative step of the greedy search
as follows:

m′ = sbest(r(m)),

where
sbest(M) = argmax

m′′∈M
{ψ(m′′)} ,

that is, the model from the subset M ⊆ M which is ranked highest by the
quality measure is chosen at each step. Figure 1 depicts this view of a greedy
model searching algorithm.

We can now also specify how we got to a certain model and define the concept
of selection path, which defines how a specific model is reached:

Ps (m) = {m(1),m(2), . . . ,m(n)},

where the order is specified via the refinement/selection steps, that is

∀i = 1, . . . , n− 1 : m(i+1) = s(r(m(i))).
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Fig. 1. The classic heuristic (often greedy) search algorithm. On the left (a), the current
model m is depicted in green, the refinement options r(m) are shown gray. The selection
operator s picks the yellow refinement (b) and the next level then continues the search
based on this choice.

and m(n) = m and m(1) is a root model for which no other model exists that it
is a refinement of. Note that the selection path depends heavily on the chosen
selection operator s, which will come in handy later.

3.1 Widening of a Greedy Heuristic

In order to improve the accuracy of the greedy algorithm one has to deal with
its inherent flaw – the fact that a locally optimal choice may in fact not lead
us towards the globally optimal solution. To address this issue, we can explore
several options in parallel – which is precisely what Widening is all about. How
those parallel solution candidates are picked is the interesting question, which
we will address later, but let us first look into widening itself in a bit more
detail. Using the notation introduced above, one iteration of Widening can be
represented as follows:

M ′ = {m′
1, . . . ,m

′
k} = swidened

( ⋃
m∈M

r(m)

)
.

That is, at each step, the widened selection operator swidened considers the re-
finements of a set M of original models and returns a new set M ′ of k refined
models for further investigation. We will refer to parameter k as the width of the
widened search. Intuitively, it is clear that the larger the width, i.e. the more
models (and hence selection paths) are explored in the solution space, the higher
our chances are of finding a better model in comparison to the normal greedy
search. Figure 2 illustrates this process.

An easy implementation of the above (what we will later refer to as top-k
Widening) is a beam search. Instead of following one greedy path, the path of
k best solution candidates is explored. However, this does not guarantee that
we are indeed exploring alternative models – on the contrary, it is highly likely
that we are exploring only closely related variations of the locally best model.
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Fig. 2. Widening. From a set of models M (green circles), the refinement operator
creates several sets of models (gray), shown on the left (a). The selection now picks a
subset of the refined models (yellow circles in (b)) and the search continues from these
on the right (c).

Fig. 3. Normal Widening may lead to local exploitation only (a). Adding diversity
constraints encourages broader exploration of the model space (b).

In the area of genetic algorithms this effect is known as exploitation, that is, we
are essentially fine tuning a model in the vicinity of an (often local) optimum.

3.2 Diversity-Driven Widening

In order to avoid the local exploitation, as discussed above, we can add diversity
constraints which enforces the search to more broadly investigate our search
space. In genetic algorithms this is often called exploration. Figure 3 illustrates
the difference between local exploitation and global exploration. This effect has
also been shown to improve results quite considerably for other beam search type
problems, as we briefly discussed in Section 2. By forcing the parallel workers to
consider not only multiple selection paths, but also diverse ones simultaneously,
we aim to obtain better exploration of the search space and escape entrapment
by local optima. Techniques for this type of Diversity-driven Widening are the
main focus of this paper.
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4 Techniques for (Diversity-Driven) Widening

In this section we will describe several specific techniques for Widening. We start
by establishing the base top-k Widening, describe the diversity-driven version,
and then focus on approaches that require less or no communication effort.

Top-k Widening. In [1] we already described this approach to Widening. It
is the most obvious approach and identical to a classic beam search. In each
iteration of top-k Widening each parallel worker selects the top k choices for the
refinements of its model and from the resulting k2 choices, the top k are chosen:

{m′
1, . . . ,m

′
k} = stop-k

⎛⎝ ⋃
i=1,...,k

stop-k (r(mi))

⎞⎠
where stop-k selects the top k models from a set of models according to the given
quality measure ψ. Obviously, stop-1 = sbest.

In [1] we demonstrate that top-k Widening leads to an improved quality, with
larger width k leading to better accuracy. However, two main flaws exist. The first
problem, as mentioned above already, is that possibly only a small neighborhood
of the best solutions is explored. Secondly, continuous communication is required
between threads which contradicts our goal of wanting to keep the time constant.

Diverse Top-k Widening. As discussed above we can tackle the first flaw
of Top-k Widening by enforcing diversity. One simple way to add diversity can
be achieved by using a fixed diversity threshold θ, a distance function δ, and
by modifying the selection operator stop-k,δ to iteratively pick the best k refine-
ments, that satisfy the given diversity threshold. This can be summarized as
follows:

1: Mall = ∪i=1,...,kr(mi) create set of all possible refinements
2: m1 = argmaxm∈Mall

{ψ(m)} pick the locally optimal model as first model
3: M1 = {m1} add as initial model to solution
4: for i = 2, . . . , k: iteratively pick next, sufficiently diverse model:
5: mi = argmaxm∈Mall

{ψ(m) | ¬∃m′ ∈Mi−1 : δ(m,m′) < θ}
6: Mi = Mi−1 ∪ {mi}
7: endfor
8: return Mk

This is a known approach for diverse subset picking, however, our second problem
persists: we still require frequent communication among our parallel workers to
make sure we pick a diverse solution subset among all intermediate solutions at
each iteration.

Communication-Free Widening. In order to achieve communication-free
Widening, we must force each worker to focus on its own subset of models without
continuously synchronizing this with the other workers. Ideally, communication-
freeWidening is achieved via partitioning the model search space between the par-
allel workers in such a way, that the full search space is covered by the partitioning,
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Fig. 4. Communication-free Widening: two different selection paths generated by two
different selection operators s1 and s2.

every model is reachable in at least one partition, and there is no overlap between
different partitions. Evenmore ideally, those partitions contain sufficiently diverse
solutions. However, those objectives are difficult to meet in practice. Our current
goal is moremodest: we aim to enforce diverse selection paths to be explored by the
different parallel workers, which will hopefully lead to diverse final solutions. We
approach this goal indirectly, by assigning a modified quality measure ψi to each
selection operator si (of worker i), which, when given a choice, has a personalized
preference for a (different) subset of models. If this individualized assignment is
properly implemented, each parallel worker iwill explore a different selection path
Psi if refinements with sufficiently similarly high quality exist.

Figure 4 illustrates two different selection paths generated by two different se-
lection operators s1 and s2. Our goal that each individualized selection operator
explores a different and diverse path through the search space can be achieved
by a modification of the selection operators which we describe below.

Diverse Communication-Free Widening. As described above, we need to
ensure that the explored selection paths by the parallel workers i = 1, . . . , k
are sufficiently diverse. To increase the chances for different parallel workers to
explore diverse paths, we modify the k quality measures ψi of operator si so
that each ψi assigns different preferences for the models in the search space. In
the most subtle case, this will only break ties between models differently when
we have more than one refinement with the (locally) optimal quality. However,
to achieve real exploration, we will also want to lift slightly worse models above
better ones for some of our workers but we need to ensure that at least one worker
still investigates the locally optimal choice. It is important to note that while we
want to explore different and diverse selection paths, we also do not want to focus
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solely on diversity. Random diverse exploration may lead to investing resources
in the discovery of many degenerate solutions. We will need to balance between
the two notions “diversity” and “quality”. This trade-off was already visible in
the case of the diverse top-k approach discussed above, where the threshold θ
determines how much the selection operator stop-k,δ is influenced by diversity
and how much by the quality of the remaining solutions.

Enforcing diversity by modifying the underlying quality measures tends to
be fairly algorithmic specific. Generally, the quality measures can assign diverse
preferences directly to models (or parts of models), which we call model-driven
diversity or by assigning preferences based on data points, which we term data-
driven diversity. We will show examples for these approaches in the following
section.

5 Diversity-Driven Widening of Set Covering

Various data mining problems employ strategies that are similar to the set cover
problem. We have already used this algorithm in [1] to illustrate the benefits of
Widening and will use it here as well.

5.1 The Set Cover Problem

We consider the standard (unweighted) set cover problem. Given a universe X
of n items and a collection S of m subsets of X : S = {S1, S2, . . . , Sm}. We
assume that the union of all of the sets in S is X :

⋃
Si∈S Si = X . The aim is

to find a sub-collection of sets in S, of minimum size, that contain (“cover”) all
elements of X .

The standard iterative algorithm [29] follows a greedy strategy, which, at
each step, selects the subset with the largest number of remaining uncovered
elements. Using the formalizations introduced above, a single iterative step of
the algorithm operates as follows: if m is the temporary cover, a refinement
generated by rgreedySCP(m) represents the addition of a single subset, not yet
part ofm, tom. From all of the possible refinements, generated by rgreedySCP(m),
sgreedySCP picks the one with the largest number of covered elements as the
new intermediate cover. The quality measure ψ, used by the selection operator,
sgreedySCP , therefore simply ranks the models based on the number of elements
they cover.

5.2 Diversity-Driven Widening of Set Covering

In the following we will discuss how we can use the widening strategies described
above for the greedy algorithm for the set cover problem. Note that our goal here
is not to outperform other algorithmic improvements of the standard greedy set
covering algorithm but instead use this to illustrate the benefits of Widening
itself.



232 V.N. Ivanova and M.R. Berthold

Top-k Widening and Diversity. Instead of selecting one locally best inter-
mediate cover, the top-k Widening of the greedy SCP algorithm selects k best
covers at each given step. To implement diversity, we can use a a simple thresh-
old based on the Jaccard distance and enforce that the chosen k intermediate
covers chosen by the selection operator stop-k,δ at each step have a minimum
distance:

δ(mi,mj) = 1− |mi ∪mj|
|mi ∩mj|

.

(Each model m covers a set of elements, so we are interested in picking interme-
diate models that are sufficiently different.)

Communication-Free Widening: Model-Driven Diversity. Enforcing di-
versity without continuously comparing intermediate models is more difficult.
We can define individual quality measures ψi, by enforcing different preferences
for different subsets. Given an intermediate cover m, ψi evaluates the refinement
m′ = m ∪ Sj for an additional subset Sj based on the original quality measure
and an individual preference weight wi ∈ (0, 1) for the subset Sj :

ψi(m ∪ Sj) = ψ(m ∪ Sj) + t ∗ wi(Sj),

The set of weights wi(·) for a given ψi defines an order πi on the set of subsets
S for a particular parallel worker i:

wi(Sπi(1)) > · · · > wi(Sπi(|S|))

Our goal is to have k diverse orders π1, . . . , πk of the subsets by ensuring that
the inversion distances between different orders are maximized. The inversion
distance between two ordered sets calculates how many pairs of elements are
present in a different order in the two orders πp and πq:

dinv(πp, πq) =
∑
k �=l

{
1 if (πp(k)− πp(l)) · (πq(k)− πq(l)) < 0

0 else
.

Assigning preferences in this fashion will steer the selection operators based on
characteristics of the models (or model fragments), hence the term model-driven
diversity.

By varying parameter t, we can control how much the selection paths of the
parallel workers deviate from the selection paths explored by the greedy SCP
algorithm. The parameter t controls the relative importance of the factors quality
and diversity. For parameter t ≤ 1, the parallel workers explore different selection
paths of the greedy algorithm, only considering different paths that have equally
good, local quality. Here the different orders πi only serve to differentiate the tie
breaking. For parameter values t > 1, the selection paths of the parallel workers
also include locally sub-optimal solutions. Large values of t (� 1) will lead to
random exploration of the search space.
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Communication-Free Widening: Data-Driven Diversity. In contrast to
the model (fragment) driven diversity described above, we can also ensure di-
versity by weighting data elements. To accomplish this we enforce diverse pref-
erences for the elements from X for the different selection operators si:

ψi(m ∪ Sj) = ψ(m ∪ Sj) + t · 1

|{e ∈ Sj ∧ e �∈ m}|
∑

e∈Sj∧e�∈m

wi(e),

the preference for different elements is again defined via weights wi(e) and the
weights define an ordering on the elements where we again aim for k different
orderings via sufficient inversion distance. Note that this approach bears some
similarities to boosting because we weight the impact of data elements on the
model quality measure differently.

It must be noted, that, while using diverse quality measures can help steer
the parallel workers into diverse selection paths, it by no means guarantees it.
Choosing different models at each step can still lead to having the same final
solution, just generated along a different paths. Implementing selection in such a
way that diversity of the obtained final solutions is guaranteed is an interesting
focus of future work. In the following section, however, we will demonstrate
that regardless of the lack of theoretical guarantees, our simple approaches to
Diversity-driven Widening are beneficial.

6 Experimental Evaluation and Discussion

In this section we demonstrate the impact of the Widening techniques discussed
above using three benchmark data sets: rail507, rail516, and rail582 [30]. We
aim to demonstrate how different widths of the search affect the quality of the
solution and the additional benefit of enforcing diversity on the widened searches.
Each experiment was repeated 50 times. For diverse top-k Widening, a Jaccard
distance threshold of 0.01 was used in all experiments.

Figure 5 shows the results for top-k Widening with and without diversity.
Figure 6 shows the results for communication-free Widening without diversity
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Fig. 5. Results from the evaluation top-k Widening with and without diversity
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Fig. 6. Results from communication-free Widening without diversity, with data-driven
and model-driven diversity, for parameter t = 1

●

●

●

●

●

●

11
2

11
4

11
6

11
8

12
0

12
2

12
4

12
6

Data Driven Widening(diff. t), rail−507

1 10 20 50 10 20 50
Width

simple greedy
t =1
t=1.5

S
iz

e 
of

 S
et

 C
ov

er

●●

14
5

15
0

15
5

16
0

Data Driven Widening(diff. t), rail−516

1 10 20 50 10 20 50
Width

simple greedy
t =1
t=1.5

S
iz

e 
of

 S
et

 C
ov

er

●●
14

5
15

0
15

5

Data Driven Widening(diff. t), rail−582

1 10 20 50 10 20 50
Width

simple greedy
t =1
t=1.5

S
iz

e 
of

 S
et

 C
ov

er

Fig. 7. Results from communication-free Widening using data-driven diversity for dif-
ferent values of parameter t

and with data- resp. model-driven diversity enforcement using a fixed trade-off
parameter t = 1, while Figure 7 demonstrates the impact of trade-off parameter
t for data-driven diversity.

From the above results two main trends become clear. As expected, a larger
width of the search does improve the quality of the solution. Enforcing diversity
improves the results even further. For communication-free Widening, the first
set of tests simply enhances the greedy algorithm by exploring different options
when breaking ties in-between equally good intermediate solutions. By increasing
parameter t to t = 1.5 the widened algorithm is allowed to also explore paths
of non-locally optimal choices, which further improves the results. The optimal
value for parameter t depends heavily on the dataset, and if fine-tuning is applied,
more improvement can be expected. Obviously, if t is too large, this will turn the
algorithm into an almost data-independent, random search process, deteriorating
solution quality again.

7 Conclusions and Future Work

We continued earlier work on the impact of Widening on data mining algorithms.
A number of practical techniques to implement Widening focusing on reduction
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of communication and enhancing the exploration of the solution space were pre-
sented. The latter shows promise to further increase the accuracy of Widening as
we have demonstrated using the base greedy set covering algorithm. Focusing on
better ways to enforce diversity without the need for extensive communications
is an area of future work, as is the application of the presented techniques to
other data mining algorithms.
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Abstract. Signing avatars are becoming common and being published on the 
World Wide Web at an incredible rate. They are actually used in education to 
help deaf children and their parents to learn sign language thanks to many 3D 
signing avatars systems. In Tunisia, signing avatars have been used since 
several years as part of the WebSign project. During the last few years, 
thousands of 3D signing avatars have been recorded using WebSign and few 
other systems. One of the major challenges that we was facing is how to index 
and retrieve efficiently this huge quantity of 3D signed scenes. Indexing and 
cataloging these signed scenes is beyond the capabilities of current text-based 
search engines. In this paper, we describe a system that collects 3D signed 
scenes, processes and recognizes the signed words inside them. The processed 
scenes are then indexed for later retrieval. We use a novel approach for sign 
language recognition from 3D scenes based on the Longest Common 
Subsequence algorithm. Our system is able to recognize signs inside 3D scenes 
at a rate of 96.5 % using a 3D model dictionary. We present also a novel 
approach for search and results ranking based on the similarity rates between 
3D models. Our method is more efficient than Hidden Markov Models in term 
of recognition time and in the case of co-articulated signs. 

Keywords: Sign language, virtual reality, signing avatars, websign, content 
based, search engine, 3D retrieval. 

1 Introduction 

Sign language is a visual/spacial language used by deaf individuals. No one of sign 
language is universal; different sign languages are used in different countries or 
regions [1] [1]. In the USA, the language used by the deaf community is ASL 
(American Sign language). In Tunisia, different sign languages are used in different 
regions. Unlike spoken language, sign languages are based on iconic signs [2, 3, 4] [2, 
3, 4] which make this means of communication more complex. Unfortunately deaf 
youngsters lack access to many sources of information and are not exposed to media 
(radio, television, conversations around the dinner table etc.) where concepts related 
to science may be discussed. Therefore, some concepts that hearing children learn 
incidentally in everyday life may have to be explicitly taught to deaf pupils in school. 

Signing avatars have the potential to overcome the barriers faced by deaf people to 
access to sources of information. These 3D animated characters are able to interpret 
and provide sign language translation to any type of media including educational 
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resources. Even though videos of real signers are the common way for providing 
signed translations to educational material as well as full dictionaries1 for many sign 
languages 2 , signing avatars are progressively getting interest and seem to have 
promising future despite the fact that understandability issues of 3D sign language 
have been reported [5]. In this context, in Tunisia, we have been using signing avatars 
to teach deaf children and their parents since several years. More than one thousands 
of 3D signed “phrases” have been created as part of the WebSign project [6] [6] for 
teaching purposes [7] as well as translation purposes. H-animator [8] and Vsigns [9] 
have been used to create teaching material3 as well. Unfortunately, the huge amount 
of 3D signed scenes collected thus far is not indexed and retrieved efficiently. In fact, 
to search for a sign inside the data repository, the user has two choices: either explore 
and play all the scenes until the wanted sign is found or insert a query in order to 
match scenes according to their filenames. Both of two choices might generate 
irrelevant results because the scenes are not indexed according to what is being 
signed. 

The main contribution of this study is that we propose effective and efficient 
indexing and matching algorithm for content-based signing avatars retrieval. The 
proposed framework’s anatomy is similar to a search engine where we proposed new 
approaches for:  

• Motion extraction and normalization from Web3D signing avatars 
• 3D Signs automatic recognition using dynamic programming 
• 3D scenes indexing using SML (Sign Markup Language) 
• User query interpretation and results sorting according to similarity measures 

The proposed system can be used by anyone who uses signing avatars which are 
compliant with Web3D standards (H-anim and X3D/VRML). A pre-treatment is 
necessary and done automatically before a scene is indexed. In fact, the system first 
checks the processed scene structure and description and verifies its compliance with 
Web3D standards. The remainder of this paper is organized as follows. In section 2 
we make review on previous work on sign language recognition and 3D motion 
indexing and retrieval. In section 3, we give details of the proposed system’s 
architecture and the main approaches used to recognize and index 3D sign language 
scenes. Before concluding, experimental results are discussed in section 4. 

2 Related Work 

Since 3D signing avatars contain rich spatial-temporal data, our work actually belongs 
to both sign language recognition (classic approaches applied to videos of real 
                                                           
1  http://www.aslpro.com 
  http://www.signingsavvy.com 
  http://www.sematos.eu/lsf.html 
  http://www.lsfplus.fr/ 
  http://www.pisourd.ch/index.php?theme=dicocomplet 
  http://www.wikisign.org 
2 Sign languages for different countries and different regions. 
3 Websites, interactive learning environments , etc. 
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signers) and 3D motion retrieval (gestures and motion recognition from 3D virtual 
humans). In this section, we make a brief review on previous work on 3D motion 
analysis and synthesis as well as a detailed review on classical approaches used in the 
context of sign language recognition from video data. 

2.1 3D Motion Retrieval 

Automatic retrieval of actions/gestures in 3D space is a challenge but useful 
technique. Motion tracking and recognition of human interactions by a multi-layer 
finite state machine is presented in [10]. By using body pose vectors, human gestures 
recognition is presented in [11][11]. Retrieval of actors in a 3D scene becomes a 
useful technology [12] [13] [13], if animated actors in a scene database are to be 
reused [14]. Instead of using user pre-defined metadata [14], 3D animations should be 
retrieved based on the existing animation models. We are actually involving in one 
particular domain which is VRML/X3D animated characters that “speak” sign 
language. These animated characters are recorded and reused in the context of virtual 
learning environments (VLE). The appropriate technique for 3D motion recognition 
and retrieval depends on the input data. We distinguish 2 main methods: model based 
methods and appearance based methods. In our case, knowing that we deal with 
VRML/X3D scenes, where important parameters like palm position and joints angles 
are available, we use skeletal based methods. In fact, skeletal algorithms make use of 
segments mapping of the body. With the skeletal representation of the human body4, 
it is possible to use pattern matching against a model database. 

2.2 Sign Language Recognition 

Researches on sign language automatic recognition began in 1990s. At the beginning, 
the recognition concerned mainly finger spelling from isolated signs. In this context, 
Takahashi and Kishino [15] in 1991 proposed an approach that relied on wired gloves 
the user had to wear. The system was capable of recognizing handshapes, but ignored 
any other features and was limited to finger spelling. Their experiments showed that 
30 out of 46 pre-defined gestures of the Japanese kana manual alphabet could be 
recognized. For specific gestures, additional information such as “fingertips touching” 
were required, but not supplied by the gloves. A later approach in 1995 by Starner and 
Pentland featured real-time recognition of American Sign language from video and 
made use of Hidden Markov Models (HMMs). It required the user to wear solid 
colored gloves for better stability. Several restrictions were imposed, for instance 
some features of ASL (referencing objects by pointing at them, as well as all facial 
features) were ignored, and only sentences of a specific type (personal pronoun,verb, 
noun, adjective, same personal pronoun) were regarded. The system had a word 
accuracy of 99.5% of 395 sentences on training with grammar restrictions enabled, 
and 92% with grammar restrictions disabled. A problem with disabled restrictions 
was multiple insertions of the same sign, even if it was only signed once. 

                                                           
4 H-anim description of the skeleton. 
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Vogler and Metaxas[16] used 3D data for their system in 1998 by setting up a system 
of three orthogonally placed webcams. After recovering the body parts from video, the 
data were used as input for HMMs for continuous (rather than isolated) signer-
dependent sign language recognition. They experimented with 2D data input and the 
results showed that by using 3D data, higher word accuracy could be achieved. 

In 2008, Dreuw et al [17] [17] proposed a signer-independent system for sign 
language recognition based on speech recognition techniques, using a single webcam, 
without the need for any gloves. After several optimizations, the word error rate could 
be decreased to 17.9% on a vocabulary of 104 signs signed by three speakers. Unlike 
previous works that concentrated on manual features only, a more recent approach in 
2009 by Kelly et al [18] also incorporates a non-manual feature, namely head 
movement. The system relies on a single webcam and the user wearing colored gloves 
for continuous sign recognition. Testing of the framework consisted of 160 video clips 
of unsegmented sign language sentences and a small vocabulary of eight manual signs 
and three head movement gestures. A detection ratio of 95.7% could be achieved. 

3 Framework Overview 

As we mentioned previously, the target scenes are compliant with H-anim. The 
Humanoid Animation standard (H-anim) 5  was developed by the Humanoid 
Animation Working Group of Web3D consortium6.  H-anim specifies a hierarchy of 
89 joint with 89 segments, and in its brand new version, a node called End Effector 
that supports animation using Inverse-Kinematics has been added.  This standard 
specifies how to define the form and the behavior of 3D humanoids with standard 
Virtual Reality Modeling Language (VRML) [19] or its successor Extensible 3D 
Graphics (X3D) [20]. Knowing that X3D is XML-based; it is actually widely used for 
rendering 3D web applications. The user only needs an X3D/VRML compliant player 
to view the rendered animations 7 . More recently, X3D has been integrated with 
HTML58 thanks to its X3DOM node and does not subsequently need any plugin 
since it uses only WebGL9 and JavaScript10 to render 3D contents. 

3.1 Motion Extraction and Representation 

The extraction of key-frames from Web3D scenes comes after validating those scenes 
to be sure that they are compliant with H-anim. During the validation phase, we use 
an XSD (XML schema Description) provided by the H-anim working group. We 
surely treat only the joints where some motion is applied in the scene graph. Even 
though the processed scenes are compliant with H-anim, we still need to normalize 
the rotation values that have been grabbed from the animated joints. In this context, 
the majority of signing avatars systems use the Quaternion representation of 3D 

                                                           
5  http://www.h-anim.org/ 
6  http://www.web3d.org/ 
7  http://www.web3d.org/x3d/content/examples/X3dResources.html 
8  http://www.w3.org/TR/html5/ 
9  http://www.khronos.org/webgl/ 
10 http://www.web3d.org/x3d/wiki/index.php/ 

X3D_and_HTML5#X3DOM_proposal 
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rotations, some other scenes uses the Euler representation. During the motion 
extraction process, a conversion to Quaternion is applied. 

The table below shows a portion of a returned array by our algorithm. For every 
time slot, we obtain all rotation values of the avatar’s animated joints. To represent 
3D rotations, we adopt the representation based on quaternion (x,y,z,w). The 
conversion from any representation to quaternions is presented  Euclidean space11 

Table 1 is a portion of extracted rotation values from an avatar signing the word 
“bonjour”. We selected the rotation values concerning two joints “r_elbow” and 
“r_index”. This motion was detected at t = 0.5 seconds. 

Table 1. Extracted motion sequence using Fetch_Rotation Algorithm 

 

 

 

0.5 

JointName r_elbow 

RotationValue X Y Z W 

-0.498537 1.092814 -0.108278 1.955234 

JointName r_index1 

RotationValue X Y Z W 

-12.37785 0.000000 0.000000 0.161756 

 
Once the motion sequence is extracted and normalized, we have to represent the 

extracted data through an adequate model. For this reason, we use SML (Sign 
language Markup language) [6], which based on a phonologic representation. The 
SML tree is used to index motion in an efficient way that allows us to retrieve and 
reuse this motion. Below is the figure 1 that represents the index structure used to 
store 3D sign language scenes in the dictionary. The tags “wordn” are only inserted if 
a signed word from the dictionnary has been matched. 

 

Fig. 1. SML tree for data representation and storage 

                                                           
11  http://www.euclideanspace.com 
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3.2 Motion Retrieval 

The extracted data (see table1) represents a sequence of 3D key-frames that have to 
be retrieved against a database (Dictionary). Known that scenes to be processed are 
issued from different systems, the number of keyframes and their rotation values 
could be different from those recorded in our dictionary. Thus, our problem is similar 
to the Longest Common Subsequence (LCS) problem [21] where:  

- The scene to be processed is the Text: T[Key-Frame1,..,Key-Framen], where 
key-frames are the returned 3D rotation values by our Fetch_Rotations 
algorithm. 

- The Signed word (recorded in the dictionary) to search in the scene is the 
pattern: P[KeyFrame1,..,KeyFramem].  

- Every Key-Frame belongs to ∑ alphabet which is composed by joints names 
as described by H-anim.                   

o ∑ , , , , …  

3D Key-Frames Comparison: Key-frames are 3D postures extracted from the scenes 
with quaternion rotation values. We are in the context of a 4-dimension space. In this 
context, the similarity of two postures is computed by a metric distance in the 4-
dimensional space of feature vectors. In the literature, the Minkowski family of 
distances ( ) is commonly used in the case of 3D objects matching. Examples of 
these functions are ( ), which is the Manhattan distance, ( ), which is called the 
Euclidean distance. Minkowski distance is used in our context. This feature-based 
approach has several advantages compared to other approaches for implementing 
similarity search. The extraction of features from multimedia data like 3D scenes is 
usually fast and easily parametrizable. Metrics for FVs (Feature vectors) such as the 
Minkowski distances can also be efficiently computed. Spatial access methods or 
metric access methods can be used to index the obtained FVs [22]. To measure the 
similarities of 3D keyframes, we used a generalized form of Minkowski distance of 
order 4. This distance is an generalized form of Euclidean and manhattan distances 
which takes into account the 4 extracted metrics (X,Y,Z,W) This allows us to compute 
the distance between a KeyFrame1 and a KeyFrame2 using the formula below. 

    4 | |  
Motion Recognition and Retrieval : In this section we adapt the Longest Common 
Subsequence method.  X is a signed word recorded in the dictionary and Y is the 
scene that contains a signed sentence. We apply the dynamic programming to find out 
the LCS(X, Y). If the length of returned LCS is equal to the length of X then the word 
exists in the scene. 

• X=[r_wrist(0 0 0 1), r_elbow(0.5 0 0 0.5), r_index(1 1 1 1) ]  
• Y= [r_wrist(0 0 0 1), r_elbow(0.5 0 0 0.5 ), r_elbow( 0 0 1 0), r_index(1 1 1 1), 

r_elbow(0.1 0 0 -1.3), r_wrist(0 0 0 0 ) , l_wrist(1.5 0 0 1) ]. 
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To solve the LCS problem we proceed in two steps as follows: 

1. Distance matrix computing using the following adapted formula :  T , 0  0  01, 1 1  0   0   ,max  1, , , 1  0  0   ,  

2. The second step consists on performing a back-trace to find the LCS(X,Y). We 
adapted the backtrace algorithm so that it can use similarity as well. The algorithm 
takes the scene Y of length n, the pattern X of length m and the distance matrix T 
computed in the previous step. The table 2 shows the way our algorithm works on 
the example given previously where the pattern r_wrist, r_elbow, r_index was 
indeed found. 

Table 2. Illustration of the Back-Trace algorithm  

 
 
In the above case, the length of the LCS of the pattern X and the scene Y is equal to 

3 which is the length of the pattern X. this means that the pattern was totally matched 
in the scene. The min length of the LCS is a parameter that we can set as a threshold 
to decide whether there is a match or not. In the experimentations, several thresholds 
have been tested and the value of 0.9 was noticed as the best value.  

4 Evaluation of the System 

The system described above has been implemented and tested. The data used during 
the testing phased was composed of: 

• A database (dictionary) of patterns which are 3D signed words (FSL) where 
every word is referenced with its adequate SML code as mentioned in 
section 2.1. This database is used in order to process text-based queries 
where the user is expected to search for 3D signed translation of a given 
word. The dictionary contains over 800 3D signed words that have been 
recorded using H-animator, and WebSign. Both of the two used systems are 
compliant with H-anim knowing that all the records have been preprocessed 
with the indexing algorithm in order to extract the key-frames and generate 
the SML tree for all of them. 
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• The processed data is composed of more than 600 scenes grabbed from the 
internet and/or recorded using Vsigns 12 , H-animator and WebSign. We 
should notice that the scenes recorded using WebSign are continuous 
scenes 13  and have not been generated automatically, meaning that the 
dictionary of signs has been used. The test data is composed of 3 sets: 3D 
scenes containing 1 word, 3D continuous scenes where 2 words are 
combined and a set of 3 signed words scenes. 

The system we designed was implemented; a user interface has been developed as 
well. The user interface allows users to insert two types of queries. Text based queries 
and 3D signed scenes queries. The first type of queries consists of submitting a word 
glosses14 and launch a search in the index. The processed scenes are preprocessed in 
order to extract key-frames and generate the SML tree. In the second step, the 
dictionary of patterns (FSL 3D signed words) is used to retrieve eventual words 
contained in those scenes. 

4.1 Queries Description 

A user interface has been developed aiming to allow us to insert two types of queries: 

Text-Based Queries: a collection of keywords to search for in the index. This type of 
query is used when we want to search for a sequence of words which are recorded in 
the dictionary and recognized (or not) in the processed scenes. Once a word is 
recognized from a 3D scene, it is stored in the index using the path of the scene, and 
the similarity rate. Then, we compute the signature of the word according to MD5 
hashing functions 15  and put it in the index precisely in a field called WordID. 
Concretely, after splitting the user’s query, a signature for every token is generated 
using the same hashing function as in the indexing stage. This enables as to have 
faster matching and relevant results. Next, we use the following ranking algorithm to 
sort the matched scenes: 

For each word from query list 
  For each scene containing the word 
     Add the similarity of the word to the scene’s 
current score 
Sort the results according to their score values by 
descending  
Return results 

3D –Based Queries: the system also processes 3D scenes as queries. The inserted 
scenes are first checked to validate their conformance with Web3D and H-anim 

                                                           
12 http://vsigns.iti.gr:8080/VSigns/index.html?query=car 
13 Continuous scenes contain signed phrases : combining signed words. 
14 Keywords which don’t necessary constitue a meaningful sentence. 
15 http://en.wikipedia.org/wiki/MD5 
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standards. Then, the key-frames are extracted and the SML tree is generated. The last 
step is the matching against the constructed index. The 3D queries processing is 
logically slower than the text-based queries due to the preprocessing of the scenes. 
The results are ranked using the same algorithm as for text based queries. 

4.2 Retrieval Performance 

To evaluate the performance of our matching method, two parameters are necessary 
to apply our adaptation of the LCS algorithm for retrieving motion: The Minkowski 
similarity that measures the distance between two key-frames and the accepted length 
of a potential alignment of two motions. During the tests, several values of these two 
parameters were used in order to decide which value is the best. The figure below 
shows the results of the performance tests. We have to notice that after several tests, 
we decided to set the length of acceptable alignments to 0.9 of the shortest sequence. 
Each of the 3 sets of data was matched against the dictionary of signed words (French 
Sign language). The average precision graph shows the fraction of relevant 3D signs 
that have been retrieved. The average recall shows the fraction of the retrieved 3D 
signs which are relevant. It is clear that the best performance rates have been noted 
for the WebSign 3D scenes which is normal since those scenes are generated using 
the same dictionary as for recognition process. The few mismatches concerning 
WebSign scenes are due to the concatenation of two or more signed words where the 
3D rendering engine applies automatically interpolation between two signs. The result 
is a co-articulation meaning that there is no reset to original position and 
subsequently, similarity could not reach 100%. Concerning the H-animator, the set of 
3D scenes were generated manually in conformance with FSL dictionary. The best 
precision rate reached 80% for a Minkowski value of 0.94. Concerning Vsigns, the 
average precision rate reached 75%. This relatively low performance is due to the 
different (from WebSign and H-animator) key-framing method used by Vsigns. 
Moreover, the collected signs looked like similar to what we have recorded with 
WebSign and H-animator. However, the gestures were far from being similar. 

 

 

Fig. 2. Retrieval precision and recall 

In order to compare our approach of dynamic programming with the most 
commonly used approach for both visual and model-based sign language; we 
implemented Hidden Markov Model recognizer. For this purpose, all the processed 
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data for each posture are sent to the HMM toolkit called HTK16 which handles all 
training and recognition steps. Regarding the training and processed data, we 
collected 20 isolated signs from each system describe above, 15 continuous sequences 
containing 2 co-articulated signs and 15 sequences containing 3 co-articulated signs. 
All of the scenes include only right-handed signs. HMM assumes a probabilistic 
model for the input data. The model of each posture P produces an observation Y with 
probability P (P,Y). The aim is to decode the posture data with observation so that the 
posture reaches the maxim a posteriori probability. 

To estimate the probability of an extracted key-frame from our 3D scenes, we used 
the distribution of 8 joints rotation values for the hand in a specific posture. Since the 
joints values are continuous, we used a discrete function to obtain intervals of values 
that are used as membership thresholds. During the training phases, We built 30 left-
right Hidden Markov Models for the 30 basic postures with all states transition 
probabilities in order to calculate their P(Y|P). For recognition, the HTK’s Viterbi 
recognizer was used. The recognition precision rate reached 97.61% (table 4) which is 
higher than our method, however, when it is comes to analyze co-articulated signs, 
the rate falls dramatically. This can be explained by the fact that signs are inflected17 
which affects the probabilities. These rates could be improved by the use of grammars 
[16]. Moreover, the execution time in our method is better than in HMM based 
method. In fact, building of large matrices of probabilities combined with dynamic 
programming the Viterbi’s back-trace is more time consuming than the LCS method. 

Table 3. Comparison of the HMM and LCS performances 

 Recognition Rate average 
(Precision) 

Recognition Time 
average 

HMM LCS HMM LCS 
Isolated Signs 97.61% 96.2% 1.2s 0.97s 

2 Coarticulated Signs 78.23% 92.11% 6.9s 6.31s 
3 coarticulated Signs 66.3% 92.10% 10.02s 9.33s 

5 Conclusion 

In this paper, we proposed a new system aiming to catalog 3D signed scenes based on 
their contents. The 3D scenes are indexed thanks to a segmental representation of sign 
language named and implemented as an SML tree. Our method of indexing runs in 3 
steps. The first step consists on checks if the processed scene is compliant with the 
standards. In the second step, we extract the motion key-frames and we generate the 
SML tree. The third step is the recognition of the content. The retrieval is based on 
dynamic programming which computes the best alignment of two given 3D 
sequences. We used Minkowski similarity to compare each of the key-frames 
extracted from the scenes. Moreover, the set of answers are ranked thanks a new 

                                                           
16 http://htk.eng.cam.ac.uk/ 
17 The the beginning of one sign is influenced by the end of the previous sign. 
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method of ranking based on the cumulated Minkowski similarity values. To test the 
performance of our approaches, we implemented the algorithm in a framework and 
used 3 sets of data issued from WebSign, H-animator and Vsigns. The precision 
average of the retrieval method reached up to 96.5% of relevant matches. The system 
is able to process 3D scenes queries as well as text-based queries since we used an 
FSL Word/sign dictionary. Our method is more efficient than HMM based in term of 
time consuming. It also produced better recognition rates when the processed signs 
are co-articulated. 

During the tests, several distance measures have been tested and the Minkowski 
similarity showed the best performances. However, other distances and method exist 
and will be studied in the future. At time of writing, we work on the possibility to 
generalize our method to different 3D signed scenes with different geometries and 
which are not compliant to the standards. To eliminate the dependence to dictionaries, 
a method based on sign language parameters (Hand shape, orientation, movement, 
location) classification is ongoing. 
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Abstract. We present vote estimation results on the largely unexplored
Reddit voting dataset that contains 23M votes from 43k users on 3.4M
links. This problem is approached using Variational Bayesian Principal
Component Analysis (VBPCA) and a novel algorithm for k-Nearest
Neighbors (k-NN) optimized for high dimensional sparse datasets without
using any approximations. We also explore the scalability of the algo-
rithms for extremely sparse problems with up to 99.99% missing values.
Our experiments show that k-NN works well for the standard Reddit
vote prediction. The performance of VBPCA with the full preprocessed
Reddit data was not as good as k-NN’s, but it was more resilient to
further sparsification of the problem.

Keywords: Collaborative filtering, nearest neighbours, principal com-
ponent analysis, Reddit, missing values, scalability, sparse data.

1 Introduction

Recommender systems (RS) are software tools and techniques providing sugges-
tions for items or objects that are assumed to be useful to the user [11]. These
suggestions can relate to different decision-making processes, such as which books
might be interesting,which songs youmight like, or people youmayknow in a social
network.

In this paper, we focus on an RS in the context of reddit.com [10], which is
a type of online community where users can vote links either up or down, i.e.
upvote or downvote. Reddit currently has a global Alexa rank of 120 and 44 in
the US [2]. Our objective is to study whether the user will like or dislike some
content based on a priori knowledge of the user’s voting history.

This kind of problem can generally be approached efficiently by using collabora-
tive filtering (CF) methods. In short, collaborative filtering methods produce user
specific recommendations of links based on voting patterns without any need of
exogenous information about either users or links [11]. CF systems need two differ-
ent entities in order to establish recommendations: items and users. In this paper
items are referred to as links. With users and links, conventional techniques model
the data as a sparse user-link matrix, which has a row for each user and a column
for each link. The nonzero elements in this matrix are the votes.
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The two main techniques of CF to relate users and links are the neighborhood
approach and latent factor models. The neighborhood methods are based on find-
ing similar neighbors to either links or users and computing the prediction based
on these neighbors’ votes, for example, finding k nearest neighbors and choosing
the majority vote. Latent factor models approach this problem in a different
way by attempting to explain the observed ratings by uncovering some latent
features from the data. These models include neural networks, Latent Dirichlet
Allocation, probabilistic Latent Semantic Analysis and SVD-based models [11].

1.1 Related Work

Probably themost knowndataset for vote prediction is the Netflix dataset [8]. This
paper is heavily based on a master’s thesis [7], and uses the same preprocessed
datasets as introduced in the thesis.Theapproachof estimatingvotes fromtheRed-
dit dataset in this paper is similar to [9], although they preprocessed the dataset in
a different way and used root-mean-square error as the errormeasurewhile this pa-
per uses classification error and class average accuracy. There has also been some
research on comparing a k-NN classifier to SVM with several datasets of differ-
ent sparsity [3], but the datasets they used were lower-dimensional, less sparse and
not all users were evaluated in order to speed up the process. Still, their conclusion
that k-NN starts failing at a certain sparsity level compared to a non-neighborhood
model concurs with the results of this paper.

2 Dataset

Reddit dataset originated from a topic in social news website Reddit [6]. It
was posted by a software developer working for Reddit in early 2011 in hopes of
improving their own recommendation system. The users in the dataset represent
almost 17% of the total votes on the site in 2008.

The original dataset consists of N = 23 091 688 votes from n = 43 976 users
over d = 3 436 063 links in 11 675 subreddits. Subreddits are similar to subforums,
containing links that are similar in some aspect, but this data was not used in
the experiments. The dataset does not contain any additional knowledge on the
users or the content of the links, only user-link pairs with a given vote that is
either -1 (a downvote) or 1 (an upvote).

Compared to the Netflix Prize dataset [8], Reddit dataset is around 70 times
sparser and has only two classes. For the missing votes, there is no information
on whether a user has seen a link and decided not to vote or simply not having
seen the link at all. In this paper, the missing votes are assumed to be missing at
random (MAR) [12]. This is a reasonable assumption due to high dimensionality
of the data and low median number of votes per user.

2.1 Preprocessing

The dataset can be visualized as a bipartite undirected graph (Figure 1). Even
though no graph-theoretic approaches were used in solving the classification prob-
lem, this visualization is particularly useful in explaining the preprocessing and the
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concept of core of the data. In graph theory, the degree of a vertex v equals to the
number of edges incident to v. If the degree of any vertex is very low, there may
not be enough data about the vertex to infer the value of an edge, i.e. the vote. An
example of this can be found in Figure 1 between link 4 and user 7, where the de-
gree of user 7 is 1 and the degree of link 4 is 3. This is a manifestation of the new
user problem [1], meaning that the user would have to vote more links and the link
would have to get more votes in order to accurately estimate the edge.

Example of Reddit data

link_1 link_2 link_3 link_4link_5

user_1

1 1 1 -11

user_2

1

user_3

1

user_4

1 1

user_5

1

user_6

1 -1 1 1

user_7

?

user_8

?

Fig. 1. Bipartite graph representation of Reddit data. Subreddits are visualized as
colors/shades on the links (square vertices). The vote values {-1,1} are represented as
numbers on the arcs, where “?” means no vote has been given.

These kinds of new users and unpopular links make the estimation task very
difficult and should be pruned out of the data. This can be done by using cutoff
values such that all the corresponding vertices having a degree below the cutoff
value areprunedoutof thedata.Withhigher cutoffvalues, only a subset of thedata,
i.e. core of the data remains, which is similar to the idea of k-cores [13]. This subset
contains themost active userswhohave voted a large part of all the remaining links,
and the most popular links which are voted by almost every user. The full Reddit
datasetwas pruned into two smaller datasets, namely, the big dataset using 4 as the
cutoff value for all vertices (users and links), and the small dataset with a stricter
cutoff value of 135. See [7] for more details on these parameters.

The resulting n× d data matrices M were then split randomly into a training
set Mtrain and a test set Mtest, such that the training set contained 90% of the
votes and the test set the remaining 10%, respectively. The splitting algorithm
worked user-wise, i.e., it randomly divided a user’s votes between the training
set and test set for all users such that at least one vote was put into the test set,
even if the user had given less than 10 votes.

Training set properties are described in Table 1 which shows that the ratio of
upvotes gets higher as the pruning process gets closer to the core of the data. In
general the estimation of downvotes is a lot more difficult than upvotes. This is
partly due to the fact that downvotes are rarer and thus the prior probability
for upvotes is around six to nine times higher than for the downvotes. Summary
statistics of the nonzero values in the training sets are given in Table 2. Small
test set contained 661,903 votes and big test set 1,915,124 votes.
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Table 1. Properties of votes given by users and votes for links for the preprocessed
datasets

Ratio of
Dataset Users (n) Links (d) Votes (N) Density ( N

nd
) upvotes

Small 7,973 22,907 5,990,745 0.0328 0.9015
Big 26,315 853,009 17,349,026 0.000773 0.8688
Full 43,976 3,436,063 23,079,454 0.000153 0.8426

Table 2. Summary statistics of the training sets on all given votes in general. Down-
votes and upvotes are considered the same here.

Mean Median Std Max

Small dataset: Users 751.4 354 1156.2 15820
Links 261.5 204 159.49 2334

Big dataset: Users 659.3 101 2335.7 82011
Links 20.3 7 55.6 3229

3 Methods

This section describes the two methods used for the vote classification prob-
lem: the k-nearest neighbors (k-NN) classifier and Variational Bayesian Princi-
pal Component Analysis (VBPCA). The novel k-NN algorithm is introduced in
Section 3.2.

3.1 k-Nearest Neighbors

Nearest neighbors approach estimates the behavior of the active user u based
on users that are the most similar to u, or likewise, find links that are the most
similar to the voted links. For the Reddit dataset in general, link-wise k-NN
seems to perform better than user-wise k-NN [7], so every k-NN experiment was
run link-wise.

For the k-NN model, vector cosine-based similarity and weighted sum of oth-
ers’ ratings were used [14]. More formally, when I denotes the set of all links,
i, j ∈ I and i, j are the corresponding vectors containing votes for the particular
links from all users, the similarity between links i and j is defined as

wij = cos(i, j) =
i · j
‖i‖‖j‖ . (1)

Now, letNu(i) denote the set of closest neighbors to link i that have been rated
by user u. The classification of r̂ui can then be performed link-wise by choosing
an odd number of k neighboring users from the set Nu(i) and classifying r̂ui to
the class that contains more votes. Because the classification depends on how
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many neighbors k are chosen in total, all the experiments were run for 4 different
values of k. For better results, the value of parameter k can be estimated through
K-fold cross validation, for example.

However, this kind of simple neighborhood model does not take into account
that users have different kinds of voting behavior. Some users might give down-
votes often while some other users might give only upvotes. For this reason it is
good to introduce rating normalization into the final k-NN method [14]:

r̂ui = r̄i +

∑
j∈Nu(i)

wij(ruj − r̄j)∑
j∈Nu(i)

|wij |
. (2)

Here, the term r̄i denotes the average rating by all user to the link in i and is
called the mean-centering term. Mean-centering is also included in the nominator
for the neighbors of i. The denominator is simply a normalizing term for the
similarity weights wij .

The algorithm used for computing link-wise k-NN using the similarity matrix
can generally be described as:

1. Compute the full d×d similarity matrix S from Mtest using cosine similarity.
For a n× d matrix M with normalized columns, S = MTM .

2. To estimate r̂ui using Eq. (2), find k related links j for which ruj is observed,
with highest weights in the column vector Si.

For the experiments, this algorithm is hereafter referred to as “k-NN full”.

3.2 Fast Sparse k-NN Implementation

For high-dimensional datasets, computing the similarity matrix S may be in-
feasible. For example, the big Reddit dataset would require computing half of
a 853,009×853,009 similarity matrix, which would require some hundreds of gi-
gabytes of memory. The algorithm used for computing fast sparse k-NN is as
follows:

1. Normalize link feature vectors (columns) of Mtrain and Mtest.
2. FOR each user u (row) of Mtest DO

(a) Find all the links j for which ruj is observed and collect the corresponding
columns of Mtrain to a matrix Au.

(b) Find all the links j for which r̂uj is to be estimated and collect the
corresponding columns of Mtest to a matrix Bu.

(c) Compute the pseudosimilarity matrix Su = AT
uBu which corresponds to

measuring cosine similarity for each link between the training and test
sets for user u.

(d) Find the k highest values (weights) for each column of Su and use Eq. (2)
for classification.

3. END
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This algorithm is referred to as “k-NN sparse” in Sec. 4. Matrix Su is called
a pseudosimilarity matrix since it is not a symmetric matrix and most likely
not even a square matrix in general. This is because the rows correspond to
the training set feature vectors and the columns to the test set feature vectors.
The reason this algorithm is fast is due to the high sparsity (smaller N) and
differentiating between only 2 classes. Also the fact that only the necessary
feature vectors from training and test sets are multiplied, as well as parallelizing
this in matrix operation. On the contrary, for less sparse datasets this is clearly
slower than computing the full similarity matrix S from the start.

If the sparsifying process happens to remove all votes from a user from the
training set, a naive classifier is used which always gives an upvote. This model
could probably be improved by attempting to use user-wise k-NN in such a case.
With low mean votes per user, the matrices Su stay generally small, but for the
few extremely active users, Su can still be large enough not to fit into memory
(over 16GB). In these cases, Su can easily be computed in parts without having
to compute the same part twice in order to classify the votes.

It is very important to note the difference to a similar algorithm that would
classify the votes in Mtest one by one by computing the similarity only between
the relevant links voted in Mtrain. While the number of similarity computations
would stay the same, the neighborsNu(i) would have to be retrieved from Mtrain

again for each user-link pair (u, i), which may take a significant amount of time
for a large sparse matrix though the memory usage would be much lower.

3.3 Variational Bayesian Principal Component Analysis

Principal Component Analysis (PCA) is a technique that can be used to com-
press high dimensional vectors into lower dimensional ones and has been exten-
sively covered in literature, e.g. [5].

Assume we have n data vectors of dimension d represented by r1, r2, . . . , rn
that are modeled as

ru ≈Wxu +m, (3)

where W is a d× c matrix, xj are c× 1 vectors of principal components and m
is a d× 1 bias vector.

PCA estimates W ,xu and m iteratively based the observed data ru. The
solution for PCA is the unique principal subspace such that the column vectors
of W are mutually orthonormal and, furthermore, for each k = 1, . . . , c, the first
k vectors form the k-dimensional principal subspace. The principal components
can be determined in many ways, including singular value decomposition, least-
square technique, gradient descent algorithm and alternating W-X algorithm.
All of these can also be modified to work with missing values. More details are
discussed in [4].

Variational Bayesian Principal Component Analysis (VBPCA) is based on
PCA but includes several advanced features, including regularization, adding
the noise term into the model in order to use Bayesian inference methods and
introducing prior distributions over the model parameters. VBPCA also includes
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automatic relevance determination (ARD), resulting in less relevant components
tending to zero when the evidence for the corresponding principal component
for reliable data modeling is weak. In practise this means that the decision of
the number of components to choose is not so critical for the overall perfor-
mance of the model, unless the number of maximum components is too low. The
computational time complexity of VBPCA using the gradient descent algorithm
per one iteration is O((N + n + d)c). More details on the actual model and
implementation can be found in [4].

In the context of the link voting prediction, data vectors ru contain the votes
of user u and the bias vector m corresponds to the average ratings r̄i in Eq. (2).
The c principal components can be interpreted as features of the links and people.
A feature might describe how technical or funny a particular link i is (numbers
in the 1× c row vector of Wi), and how much a person enjoys technical or funny
links (the corresponding numbers in the c × 1 vector xu). Note that we do not
analyse or label different features here, but they are automatically learned from
the actual votes in an unsupervised fashion.

4 Experiments

The experiments were performed on the small and big Reddit datasets as de-
scribed in Section 2. Also, we further sparsified the data such that for each step,
10% of the remaining non-zero values in the training set were removed com-
pletely at random. Then the models were taught with the remaining training
set and error measures were calculated for the original test set. In total there
were 45 steps such that during the last step the training set is around 100 times
sparser than the original. Two error measures were utilized, namely classifica-
tion error and class average accuracy. The number of components for VBPCA
was chosen to be the same as in [7], meaning 14 for the small dataset and 4 for
the big dataset. In short, the heuristic behind choosing these values was based
on the best number of components for SVD after 5-fold cross validation and
doubling it, since VBPCA uses ARD. Too few components would make VBPCA
underperform and too many would make it overfit the training set, leading to
poorer performance.

The k-NN experiments were run for all 4 different k values simultaneously,
which means that the running times would be slightly lower if using only a single
value for k during the whole run.

Classification error was used as the error measure, namely #{r̂ui �= rui}/N .
Class average accuracy is defined as the average between the proportions of
correctly estimated downvotes and correctly estimated upvotes. For classification
error, lower is better while for the value of class average accuracy higher is better.

VBPCA was given 1000 steps to converge while also using the rmsstop cri-
terion, which stops the algorithm if either the absolute difference |RMSEt−50 −
RMSEt| < 0.0001 or relative difference |RMSEt−50 − RMSEt|/RMSEt < 0.001.
Since VBPCA parameters are initialized randomly, the results and running times
fluctuate, so VBPCA was ran 5 times per each step and the mean of all these
runs was visualized.
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Table 3. Metrics for different methods on the small Reddit dataset

Class
Classification average

Method Accuracy error accuracy Downvotes Upvotes

Naive 0.9018 0.0982 0.5000 0.0000 1.0000
Random 0.8225 0.1775 0.4990 0.0965 0.9016
k-NN User 0.9176 0.0824 0.6256 0.2621 0.9890
k-NN Link 0.9237 0.0763 0.6668 0.3470 0.9865
VBPCA 0.9222 0.0778 0.6837 0.3870 0.9805
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Fig. 2. Figures of the experiments on small dataset: Time versus sparsity (a). Classi-
fication error versus sparsity (b). Classification error versus sparsity for various k (c).
Downvote estimation accuracy versus sparsity (d).

In addition to k-NN and VBPCA, naive upvote and naive randommodels were
also implemented. Naive upvote model estimates all r̂ui as upvotes and naive
random model gives an estimate of upvote with the corresponding probability of
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Fig. 3. ROC curves on small dataset (a). ROC curves on big dataset (b).

Table 4. Metrics for different methods on the big Reddit dataset

Class
Classification average

Method Accuracy error accuracy Downvotes Upvotes

Naive 0.8687 0.1313 0.5000 0.0000 1.0000
Random 0.7720 0.2280 0.5002 0.1316 0.8689
k-NN User 0.8930 0.1070 0.6738 0.3766 0.9711
k-NN Link 0.9048 0.0952 0.7091 0.4438 0.9745
VBPCA 0.8991 0.1009 0.6929 0.4132 0.9726

upvotes from the training set, e.g. p = 0.9015 for small dataset, and a downvote
with probability 1− p.

All of the algorithms and experiments were implemented in Matlab running on
Linux using an 8-core 3.30GHz Intel Xeon and 16GB of memory. However, there
were no explicit multicore optimizations implemented and thus k-NN algorithms
were practically running on one core. While VBPCA toolbox is able to utilize
multiple cores, the experiments were run using only one core for comparison.

4.1 Results for Small Reddit Dataset

The results for the methods on the original small Reddit dataset are seen in Table
3, which includes the user-wise k-NN before sparsifying the dataset further. The
naive model gives a classification error of 0.0982, the dummy baseline for the
small dataset. The running time of k-NN full is slightly lower than k-NN sparse in
Figure 2a during the first step, but after sparsifying the training set, k-NN sparse
performs much faster. It can be seen from Figure 2b that the k-NN classifier
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Fig. 4. Figures of the experiments on big dataset: Time versus sparsity (a). Classifi-
cation error versus sparsity (b). Classification error versus sparsity for various k (c).
Downvote estimation accuracy versus sparsity (d).

performs better to a certain point of sparsity, after which VBPCA is still able to
perform below dummy baseline. This behavior may partly be explained by the
increasing number of naive classifications by the k-NN algorithm caused by the
increasing number of users in Mtrain with zero votes given. Figure 2c indicates
that the higher the number of neighbors k, the better. Downvote estimation is
consistently higher with VBPCA than with k-NN (Figure 2d). ROC curves are
displayed in Figure 3a.

4.2 Results for Big Reddit Dataset

Classification error for the dummy baseline is 0.1313 for the big dataset. Fig-
ure 4b indicates that the fast k-NN classifier loses its edge against VBPCA
quite early on, around the same sparsity level as for the small dataset. However,
VBPCA seems to take more time on converging (Figure 4a). Higher k values
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lead to better performance, as indicated in Figure 4c. Downvote estimation with
k-NN seems to suffer a lot from sparsifying the training set (Figure 4d), while
VBPCA is only slightly affected. ROC curves for the big dataset are shown in
Figure 3b.

5 Conclusions

In our experimental setting we preprocessed the original Reddit dataset into
two smaller subsets containing some of the original structure and artificially
sparsified the datasets even further. It may be problematic or even infeasible to
use standard implementations of k-NN classifier for the high-dimensional very
sparse 2-class dataset such as the Reddit dataset, but this problem was avoided
using the fast sparse k-NN presented in Sec. 3. The results on the small dataset
indicate that when the density of the dataset gets below around 3%, the fast
sparse k-NN becomes faster than standard k-NN. This result most likely can
be extended to similar datasets, since fast sparse k-NN gains advantages from
sparsity. While initially k-NN classifier seems to perform better, VBPCA starts
performing better when the sparsity of the datasets grow beyond approximately
0.99990. VBPCA is especially more unaffected by the increasing sparsity for the
downvote estimation, which is generally more difficult than upvote estimation.

There are many ways to further improve the accuracy of k-NN predictions.
The fact that the best results were obtained with the highest number of neighbors
(k=51) hints that the cosine-based similarity weighting is more important to
the accuracy than a limited number of the neighbors. One could, for instance,
define a tunable distance metric such as cos(i, j)α, and find the best α by cross-
validation. The number of effective neighbors (sum of weights compared to the
weight of the nearest neighbor) could then be adjusted by changing α while
keeping k fixed to a large value such as 51.
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Abstract. In this paper we propose a framework for analysing the struc-
ture of a large-scale social media network, a topic of significant recent
interest. Our study is focused on the Wikipedia category network, where
nodes correspond to Wikipedia categories and edges connect two nodes
if the nodes share at least one common page within the Wikipedia net-
work. Moreover, each edge is given a weight that corresponds to the
number of pages shared between the two categories that it connects.
We study the structure of category clusters within the three complete
English Wikipedia category networks from 2010 to 2012. We observe
that category clusters appear in the form of well-connected components
that are naturally clustered together. For each dataset we obtain a graph,
which we call the t-filtered category graph, by retaining just a single edge
linking each pair of categories for which the weight of the edge exceeds
some specified threshold t. Our framework exploits this graph structure
and identifies connected components within the t-filtered category graph.
We studied the large-scale structural properties of the three Wikipedia
category networks using the proposed approach. We found that the num-
ber of categories, the number of clusters of size two, and the size of the
largest cluster within the graph all appear to follow power laws in the
threshold t. Furthermore, for each network we found the value of the
threshold t for which increasing the threshold to t+1 caused the “giant”
largest cluster to diffuse into two or more smaller clusters of significant
size and studied the semantics behind this diffusion.

Keywords: graph structure analysis, large-scale social network analy-
sis, Wikipedia category network, connected component.

1 Introduction

Wikipedia is one of the most popular large social media networks and has expe-
rienced exponential growth in its first few years of existence in terms of articles,
page edits, and users [4]. Moreover, this large network has been studied exten-
sively; for example, analysis of the social networks emanating from the Wiki-talk
page or discussions page reveals rich social interactions between editors [1,8,11].
On the other hand, the Wikipedia network of category links, which indirectly
implies social relations when authors assign their articles into specific categories,
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has received much less attention from the research community, in particular in
terms of large-scale structural social network analysis. Current research on the
Wikipedia category network has mainly concentrated on content-based analysis.

The Wikipedia category network mainly consists of categories, where two
categories are connected by an edge if they have some “similarity”. In our setting,
similarity is expressed by the number of pages shared between two categories.
In other words, the weight of an edge is equal to the number of common pages
between the categories, and hence expresses the similarity between them: the
higher the weight, the higher the similarity.

Wikipedia categorisation refers to assigning an article to at least one category
to which it logically belongs. The Wikipedia categorisation system is likely to be
improved in the long run, as category policies are still being refined1. There is
no limit to the size of the categories, but when a category becomes very large, it
may be diffused (or broken down) into smaller categories or subcategories. This
phenomenon is called large category diffusion.

Our objective in this paper is to examine the structural properties of the
category clusters within the Wikipedia category network by identifying well-
connected components in the graph. These components can be used for com-
parison with the Wikipedia category tree, based on the expectation that cate-
gories falling into same cluster should have a high degree of proximity within
the Wikipedia tree.

Our key contributions are summarized as follows:

• We present t-component, a framework for identifying natural category clus-
ters in the form of well-connected components in a category-links network
that employs an edge-weight threshold t regulating the “strength” of the
components.

• Using the proposed framework, we study several structural properties of the
Wikipedia network, such as the number of non-trivial category clusters, the
size of the largest category cluster, and the number of the smallest category
clusters, and how they evolve as the edge-weight threshold increases.

• We observe the diffusion of the largest category cluster as a “giant”-cluster
splitting into smaller sub-clusters and examine their contents.

• We find that the largest connected component shrinks at a power-law rate as
the edge-weight threshold t increases. This is consistent with similar obser-
vations for various properties of social networks, such as the Barabasi-Albert
model, which is considered a reasonable generative model of the Web.

2 Related Work

Analysis of web social networks has become a popular research area, especially in
the context of online social networking applications. Some large-scale networks
have been analysed recently. For example, social interactions have been analysed
in Twitter [10], Wattenhofer et al. [18] analysed the nature of the YouTube

1 http://en.wikipedia.org/wiki/Wikipedia:FAQ/Categorization

http://en.wikipedia.org/wiki/ Wikipedia:FAQ/Categorization
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network, Sadilek et al. [12] modelled the spread of diseases by analysing health
messages from Twitter, Volkovich et al. [17] analysed structural properties and
spatial distances of the Spanish social network Tuenti, and finally Goel et al. [3]
studied user browsing behaviour changes.

Wikipedia, which is one of the most popular social media networks has been
studied extensively. For example, Hu et al. [4] analysed and predicted user col-
laborations, Leskovec et al. [9] investigated the promotion process from the point
of view of the voters engaged in group decision-making, and Jurgens et al. [5]
investigated trends of editor behaviour. The page links structure has also been
studied. For instance, Buriol et al. [2] examined the page links structure and its
evolution over time and Kamps et al. [6] compared the Wikipedia link structure
to other similar web sites. Also, a survey on graph clustering methods by Scha-
effer [13] provides a thorough review of different graph cluster definitions and
measures for evaluating the quality of clusters.

There were a lot of studies of the Wikipedia user talk pages in the context of
its induced social network, which contains rich social interactions in the “talk”
domain. Examples include analysing the policy governance discussed on user
talk pages [12] and detecting structural patterns forming a tree structure [8].

In general, category links in the Wikipedia category network have been studied
using text analysis. For example, Schonhofen [14] attempted to identify docu-
ment topics, while Kittur et al. [7] represented topic distribution mapping with
category structure, and Jiali et al. [19] studied document topic extraction. While
Zesch and Gurevych [20] analysed the Wikipedia category graph from a natu-
ral language processing perspective, the large-scale Wikipedia network structure
has been studied much less. For example, Suchecki et al. [16] investigated the
evolution of the English Wikipedia category structure from 2004 to 2008, but
focusing merely on the structure of the documentation of knowledge.

3 Preliminaries

In this paper, we focus on the Wikipedia category network, which we describe
next. Then we provide the necessary background definitions to be used in the
remainder of this paper.

3.1 The Wikipedia Category Network

Wikipedia contains knowledge in the form of Wiki pages and is edited collabora-
tively by millions of volunteer authors in 285 different languages, among which
the English Wikipedia contains the largest number of articles. In Wikipedia, each
article is assigned to at least one category, while a categorised article should be
assigned to all of the most specific subcategories to which it logically belongs.

Assigning pages to the categories induces a social network of pages and cat-
egories established by the editors. This network can be considered as a graph,
representing a set of relationships between pages and categories, or only between
categories.
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3.2 Problem Setting

Let P = {p1, . . . , pn} be the set of n Wikipedia pages and C be the set of m
Wikipedia categories. Each page pi ∈ P belongs to at least one category cj ∈ C.
A graph G = (V,E) is defined as a set of vertices V and a set of edges E, such
that each edge ek ∈ E connects two vertices vi, vj ∈ V , which is denoted as
vi →ek vj .

Categories
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C2
6 4

7 2

3

1

1 4

3
2

4 2

1

(a) a category graph

C1

C7

C6

C5

C3

C2
6 4

7

4

4

Categories

(b) the 4-filtered category
graph of (a)

Fig. 1. Examples of two category graphs

Definition 1. (page-category graph)

A page-category graph is a bipartite graph GPC that represents the network of
connectivity between Wikipedia pages and Wikipedia categories. The set of ver-
tices is P ∪C and there is an edge p→ c whenever page p ∈ P belongs to category
c ∈ C.

Each page in P belongs to at least one category in C. A page that belongs to a
single category is called an isolated page.

Definition 2. (edge-weighted category graph)

An edge-weighted category graph GEW is a graph where the set of vertices corre-
sponds to the Wikipedia categories C. Each edge ek between two vertices vi and
vj (corresponding to categories ci and cj, respectively) is assigned with a weight
wk ∈ N equal to the number of common pages in both ci and cj, or equivalently

wk = |{p ∈ P | p ∈ ci and p ∈ cj}|

Note that an edge ek with weight wk = 1 is called a feeble edge and a category
that is not sharing any page with any other category is called an isolated or
trivial category. It follows that pages connected to an isolated category are
necessarily isolated.

Definition 3. (t-filtered category graph)

A t-filtered category graph GEW
t is obtained from an edge-weighted category graph

GEW by the removal of every edge ek with weight less than t ∈ N, i.e., ek is in
GEW

t if and only if
wk ≥ t , ∀ek ∈ E.
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In Figure 1 we see two examples of category graphs. The first one (on the left) is
a category graph where no filtering has been applied, while the second one (on
the right) is the corresponding 4-filtered category graph of the one on the left.
We note that the t-filtered graph is closely related to the m-core of a graph [15,
pp. 110-114].

Definition 4. (category cluster)

A category cluster C(GEW , t) is a well-connected component of an edge-weighted
category graph GEW , and is obtained as a connected component of the corre-
sponding t-filtered category graph GEW

t for a specified threshold t ≥ 2.

Using the above definitions we can now formulate the problem studied in this
paper as follows.

Problem 1. Given a Wikipedia page-category graph GPC and a threshold t ∈ N,
identify the largest category cluster in the corresponding t-filtered category graph
GEW

t .

A Large                
Page-category graph

Isolated 
Categories

Edge-weighted range 
category graphs

N Edge-weighted 
Category subgraphs

Isolated 
Pages

Partitioning 
The page-category graph

Transforming 
Page-category subgraphs into 

Edge-weighted category graphs

Assigning all edges into
Edge-weighted range category graphs

N Page-category 
subgraphs

Feeble edges and
Isolated categories

Phase I: Partitioning

Edge-weighted range 
category graphs

Phase II 

Phase II: Filtering

 t-filtered category 
graphs

Filtering 
Edge-weighted range category graphs

Phase III: Merging

Category Clusters

Combining 
All category clusters of the  subgraphs 

Combined 
Category Clusters

Identifying
Well-connected components 

Fig. 2. An overview of the six steps of the t-component framework

4 The t-Component Framework

The t-component framework consists of the three main phases as shown in Figure
2: (I) partitioning the edge-weight category graph, (II) filtering the subgraphs,
and (III) merging the subgraphs. Next we describe each phase in more detail.
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4.1 Phase I: Partitioning

Due to the difficulty of manipulating the entire page-category graph, which is
very large, in this phase, the input bipartite page-category graph GPC is par-
titioned into a set of N page-category subgraphs {GPC

1 , . . . , GPC
N }. The split is

performed ensuring that: (1) each page p ∈ P appears in only one subgraph and
(2) all subgraphs have approximately the same number of pages. In addition, all
isolated pages are eliminated.

Next, each page-category subgraph GPC
i is transformed into its correspond-

ing edge-weighted category subgraph GEW
i , following Definition 2. Note that all

isolated categories are eliminated. An important observation here is that, during
this process, the same edges may appear in more than one edge-weighted cat-
egory subgraph. In other words, we could have different sets of pages shared
between the same two categories ci, cj within different subgraphs. We note
that GEW is the union of all edge-weighted category subgraphs GEW

i , for i =
1, 2, . . . , N . Due to its size we cannot explicitly construct GEW .

Therefore, we construct a collection of edge-disjoint category graphs whose
union is GEW . Towards this end, we split the initial set of categories C into a
set of R category ranges R = {r1, . . . , rR} of approximately equal length, where
each range rt = [rlt, r

u
t ) defines a lower (rlt ∈ [|C|]) and upper (rut ∈ [|C|]) value

of the category id belonging to that range. Note that [n] = {1, 2, . . . , n}. In
order to ensure that all subgraphs are edge-disjoint, we reassign each edge in the
current set of edge-weighted subgraphs to a new subgraph GEW

ra,rb
that contains

only those edges ci → cj , where ci ∈ ra and cj ∈ rb. More formally, GEW
ra,rb

is
defined as follows.

Definition 5. (edge-weighted range category graph)

Given two ranges ra, rb ∈ R (where possibly a = b), the edge-weighted range cat-
egory graph GEW

ra,rb is the new edge-weighted category graph containing precisely

those weighted edges ci →ek cj in GEW for which ci ∈ ra and cj ∈ rb.

Assuming R ranges, this results in R(R+1)/2 edge-disjoint edge-weighted range
category graphs. The union of these graphs is the edge-weighted category graph
GEW =

⋃
ra,rb∈RGEW

ra,rb(V,E), which corresponds to the Wikipedia category
network; i.e., our partitioning operations do not lose any information.

4.2 Phase II: Filtering

In the second phase, we introduce a threshold parameter t ∈ N that will be used
to obtain the filtered category graph GEW

t . To do this, for each GEW
ra,rb

⊂ GEW ,

all edges with weight less than t are removed. Hence, each GEWt
ra,rb is converted to

its corresponding t-filtered category graph GEW
ra,rb,t. It is easy to see that GEW

t =⋃
ra,rb∈R GEW

ra,rb,t(V,E). Note that during this phase all isolated categories are
removed.
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4.3 Phase III: Merging

In the third phase, we first identify the connected components within each
GEW

ra,rb ⊂ GEW using Breadth First Search (BFS). Each connected component

corresponds to a category cluster C(GEW
ra,rb , t) , by Definition 4. Merging all con-

nected components of all these subgraphs of GEW
t by combining components

that share at least one category, we obtain the complete set of category clusters
for threshold t as the connected components of GEW

t .

5 Experiments

5.1 Setup

We used the English Wikipedia category network for evaluating the performance
of the proposed framework. We studied three years: 2010, 2011, and 2012. Each
year was studied separately as an individual dataset. The data is freely available
online 2.

For each year we used the same number of partitions of the initial page-
category graph, i.e., N = 2, 000. During this process we eliminated all isolated
pages and then transformed each page-category graph to its equivalent edge-
weighted category graph by assigning the edge weights accordingly and elimi-
nating all isolated categories. Next, we eliminated duplicate instances of category
pairs within different partitions by splitting the categories into ranges (as indi-
cated by Phase I of the framework). We used 70 ranges, i.e., R = 70, resulting
in a total of 2, 485 edge-disjoint edge-weighted range category graphs.

In addition, we studied different values for the t threshold, ranging from 2 to
4096. Note that all feeble edges (having weight equal to 1) were removed from
the network as required by the framework.

The framework was implemented in Java on an Intel i5 processor. The execu-
tion time depends critically on the number of edges and the size of the clusters.
For example, for t = 2 it took over a week, while for t = 4096 it took less than
a minute to perform all the computations.

5.2 Results

Our experimental findings on the three English Wikipedia category networks
are presented next. We present the structural properties of the networks and
investigate the structural behaviour of the clusters with respect to the threshold
t.

Structural Properties
The structural properties of the three Wikipedia category networks are sum-
marised in Table 1. It can be observed that, from 2010 to 2012, the number of

2 http://dumps.wikimedia.org/index.html

http://dumps.wikimedia.org/index.html
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pages and categories increased by around 40% and 50%, respectively. However,
it is interesting to note that, although the number of isolated pages increased by
around 60%, the number of isolated categories was almost unchanged. A possible
explanation for this is that, when new categories are added to the network, they
are likely to be linked to existing pages as well as new pages. They will therefore
be related to existing categories. We also note that the number of page-category
links (i.e. edges in the page-category graph) increased by around 50%. A conse-
quence of this, which can be checked using Table 1, is that the average degrees,
both pages per category and categories per page, were substantially unchanged.

Table 1. Structural Properties of English Wikipedia Category Link Networks

Network Properties English 2010 English 2011 English 2012

Number of pages 8,989,264 12,182,689 12,453,596
Number of categories 567,939 801,902 858,869
Number of page-category links 39,484,287 56,969,309 60,386,600
Number of isolated pages 1,083,655 1,735,857 1,755,160
Number of isolated categories 7,443 7,858 7,375
% Isolated pages 12.05% 14.25% 14.09%
% Isolated categories 1.31% 0.98% 0.86%

Structural Behaviour of Category Clusters
We studied how the category clusters depend on the weight threshold t. Specif-
ically, we studied all values of t from 2 to 4096. Some of our most important
findings are shown in Figure 3. The charts show the number of categories (ex-
cluding isolated categories) in the complete category networks in (a), the number
of the category clusters in (b), the number of clusters of size 2 in (c), and the
size of the largest clusters in (d). A very significant finding here is that all four
log-log plots appear to exhibit power-law behaviour with respect to t. It also
seems that the power law exponent is not significantly changing over the time
period studied in this paper.

In addition, we note in Figure 3(d) that there is a threshold value for each of
the three datasets where the size of the largest category cluster drops sharply.
This suggests that each large category (for each of the three years) has diffused
into smaller categories or a subcategories. Taking a closer look at these diffusion
points, we observed that, in all three cases, the largest cluster was split into
two large subclusters. Hence, we plot those diffusion points and display them
individually for the 2010 (Figure 4) and 2012 (Figure 5) networks. Due to space
limitations, we omit year 2011. In both figures we can see the significant diffusion
points (t threshold values) and the corresponding sizes of the first and second
largest category clusters.

Semantics of the Cluster Diffusion
We studied the semantics of the category cluster diffusion. Specifically, we com-
pared the categories that appeared in the original large cluster and then those
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(a) number of non-isolated categories (b) number of clusters

(c) number of smallest clusters (d) size of largest cluster

Fig. 3. Log-log plots of (a) the number of non-isolated categories, (b) the number of
category clusters, (c) the number of clusters of size 2, and (d) the size of the largest clus-
ter, for different weight threshold values for the English Wikipedia Category Network
2010 - 2012.

that appeared in the two largest clusters right after the diffusion. Almost all
categories were preserved after the diffusion, but were split between the two
clusters so very few categories diffused into smaller components.

In addition, we note that, after the diffusion, a small fraction of the categories
present in the initial cluster were not part of any of the new diffused clusters.
In the case of year 2010, there were twelve categories missing, for 2011 there
were none, while for 2012 there was only one. Hence, based on the previous
observation, we investigated whether there exists any semantic connection or
relation between the categories within the two diffused clusters. Specifically, we
observed that the frequent categories in the two clusters were substantially dif-
ferent. One cluster would typically contain more general category types, such
as “start-class”, “stub-class”, “people”, and “articles”, while the second cluster
would contain more specific category types, such as “players”, “american arti-
cles”, and “footballers”. Some examples of the dominant category titles can be
seen in Figure 4(b) for the 2010 network and in Figure 5(b) for the 2012 network.
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Fig. 4. (a) English Wikipedia Category 2010 Log-log plots of the largest and second
largest cluster sizes and (b) examples of the category titles of the diffused clusters
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Fig. 5. (a) English Wikipedia Category 2012 Log-log plots of the largest and second
largest cluster sizes and (b) examples of the category titles of the diffused clusters

6 Summary and Conclusions

In this paper we presented a framework for manipulating a largeWikipedia page-
category network. The proposed framework was used to analyze the structure of
the network. We obtained, in the Wikipedia category network, global category
clusters in the form of well-connected components.

In our experiments, we demonstrated the applicability of the proposed frame-
work to several instances of the English Wikipedia category network and ob-
served that, over the years 2010 to 2012, the number of pages, categories, page-
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category links and isolated pages all increased by 40-60%, but the number of
isolated categories was fairly constant. The most significant finding was that the
number of non-isolated categories, the number of clusters, the number of clusters
of size two, and the size of the largest cluster all appear to follow power laws with
respect to the threshold t. This behaviour is observed for each of the three years
of the English Wikipedia category network studied in the paper. Furthermore,
for each network we found the value of the threshold t for which increasing the
threshold caused the largest cluster to diffuse into two smaller category clusters
of significant size. We also observed that this diffusion is typically the result of
a “giant” cluster splitting into smaller sub-clusters.

Future work includes the study of our framework using other language
Wikipedia category networks. Based on our current investigations, the Wikipedia
category graphs for several other languages appear to show a similar cluster
structure. In addition, other possible graph clustering techniques are being con-
sidered, in particular, the k-core of the category graph and how it relates to the
components of the t-filtered category graph.
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Abstract. SAX (Symbolic Aggregate approXimation) is one of the
main symbolization techniques for time series. A well-known limitation
of SAX is that trends are not taken into account in the symbolization.
This paper proposes 1d-SAX a method to represent a time series as a
sequence of symbols that each contain information about the average
and the trend of the series on a segment. We compare the efficiency
of SAX and 1d-SAX in terms of goodness-of-fit, retrieval and classifica-
tion performance for querying a time series database with an asymmetric
scheme. The results show that 1d-SAX improves performance using equal
quantity of information, especially when the compression rate increases.

1 Introduction

Time series data mining (TSDM) has recently attracted the attention of re-
searchers in data mining due to the increase availability of data with temporal
dependency. TSDM algorithms such as classification/clustering of time series,
pattern extraction or similarity search require a distance measure between time
series. The computation of these distances is mainly done using the classical Eu-
clidean distance or the Dynamic Time Warping distance. These computations
may lead to untractable costs for long series and/or huge databases. Hence,
many approximate representations of time series have been developed over the
last decade. Symbolic representation is one technique to approximate time se-
ries. The most used symbolization technique is called SAX (Symbolic Aggregate
approXimation) [7]. It is a very simple technique to symbolize time series with-
out the need for any a priori information. It has been shown to provide good
performance for TSDM purposes. Some extensions to the SAX representation
have been proposed to take into account the slope information in the time series
segments [2,8,11]. In this paper we propose a novel symbolic representation for
time series, based on the quantization of the linear regression of segments of the
time series. We first show that this novel symbolic representation fits the origi-
nal data more accurately than the SAX representation for the same number of
symbols available. Then, this symbolic representation is used to make efficient
similarity search in a time series database. We propose an asymmetric querying
scheme based on our symbolic representation and compare its performance with
the one based on SAX representation.

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 273–284, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Background and Related Work

In the domain of time series data mining, approximated representations of time
series are needed to enable efficient processing. Many methods have been pro-
posed for dimensionality reduction, most of them being numerical e.g. discrete
Fourier transform (DFT), discrete wavelet transform (DWT), singular value de-
composition (SVD), principal component analysis (PCA), adaptive piecewise
constant approximation (APCA), piecewise aggregate approximation (PAA), etc
(see [1] for a survey). Symbolic methods have also been widely used because,
beyond simplicity, readability and efficiency for time series representation, al-
gorithms from other domains such as text processing and information retrieval,
or bioinformatics can be used. Among symbolic representation methods, SAX
proposed by Lin et al. [7] earned a large success. SAX is based on PAA and
assumes that PAA values follow a Gaussian distribution. SAX discretizes PAA
values according to equal-sized areas under the Gaussian curve yielding so-called
breakpoints. Using lower bounds that are cheap to compute helps focusing on
a small subset of the database sequences for which exact distance can later be
computed [10].

The quality of the SAX representation of a time series depends on i) the number
of PAA coefficients, i.e. the number of segments the time- series is divided in, ii)
the number of symbols used for quantization (the alphabet size), iii) the gaussian-
ity assumption. Several works have addressed these problems. In [9], Pham et al.
alleviate the gaussianity assumption by introducing adaptive breakpoint vectors
acting on segment size and alphabet size. However, the simplicity of SAX is lost by
introducing a preprocessingphase using a clusteringmethod.Other approachesat-
tempt to enrich the PAA representation and, further, the SAX symbols. Extended
SAX (ESAX)[8] associates the symbolic minimum and maximum of the PAA seg-
ment to the related SAX symbol as well as the order of their occurrences. This de-
fines an abstract shape that gives finer results in time series retrieval. However,
the size of the ESAX representation is 3 times the size of the SAX representation.
Froman efficiency point of view, authors did not compare theirmethodwith a SAX
representation of the same size. In [3], authorsmake use of piecewise linear approx-
imation (PLA), but only in a post-processing step and without quantizing PLA
values. Several very recent works attempt to introduce a symbolic representation
of the segment trend into the SAX representation. In [2], Esmael et al. associate
one of the trend values U (up), D (down) and S (straight) to each SAX symbols
computed from the segment trend. This yields a symbolic representation alternat-
ing SAX and trend values, having twice the size of the SAX representation. Trend
approximations are obtained by linear regression and quantizing the line slope.
No details are given about slope quantization and about the justification of using
only three values. In [11], Zalewski et al. represent the slope information by quan-
tizing the differences between the PAA values of two successive segments in the
time series. A quantization algorithm separates difference values into k classes and
determines the related centroids. The symbolic value affected to some difference
value is the symbol associated to the closest centroid. Several quantization meth-
ods are evaluated. The main drawback of this method is the loss of simplicity and
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readability by switching to a first order derivative representation. In [6], authors
introduce TSX, a Trend-based Symbolic approXimation. TSX divides a segment
into 3 sub-segments determined by the most peak (MP) point, the most dip (MD)
point and the bounds of thePAA segment.Then, TSX associates to each SAX sym-
bol the trend information (symbolic slope) of its related sub-segments.This yields a
4-tuple symbolic series representation of time series. This representation is close to
the ESAX representation but it is finer. A static lookup table is given for selecting
the slope breakpoints in theTSX representation.However, the authors did not take
into account the fact that slope breakpoints are dependent on the selected segment
size.

In this paper we propose a symbolic representation that quantizes both the
average and slope values of the time series on each segment. It hence produces
one symbol per segment, each symbol can be interpreted in terms of an average
and a slope value related to the linear regression on the segments.

3 The 1d-SAX Symbolic Representation

Our novel symbolic representation for time series is detailed in this section. We
first review the main principles of the SAX method, before explaining how we
propose to extend it.

3.1 SAX Representation

SAX transforms a numerical time series into a sequence of symbols taking their
values in a finite alphabet. This method is very simple and does not require any
a priori information about the input time series (apart from the distribution
should be Gaussian with zero mean and unit variance). SAX representation is
based on three steps:

1. Divide a time series into segments of length L
2. Compute the average of the time series on each segment
3. Quantize the average values into a symbol from an alphabet of size N

SAX makes the assumption that time series values follow a Gaussian distri-
bution. The quantization step makes use of (N − 1) breakpoints that divide the
area under the Gaussian distribution into N equiprobable areas. These break-
points can be found in lookup tables. Hence, the average values computed for
each segment of the time series (step 2 above) are then quantized according to
the breakpoints of the Gaussian distribution. Fig. 1 shows an example of the
SAX representation of a time series with N = 4.

3.2 1d-SAX Representation for Time Series

In this section we detail a novel symbolic representation of time series. The ra-
tionale behind this representation is the following. The SAX representation ex-
plained above relies only on the average value of the time series on each segment.



276 S. Malinowski et al.

Fig. 1. Example of the SAX representation of a time series with N = 4. The dotted
lines on the figure represent the three breakpoints of the Gaussian distribution N (0, 1).
SAX symbols are represented by their binary values.

Hence, two segments having different behaviors but with close averages will be
quantized into the same symbol. For instance, a time series with an increasing
trend can be mapped into the same bin as a time series with a decreasing trend
if their respective means are close.

We propose here to integrate into the SAX representation an additional in-
formation about the trend of the time series on each segment. This new repre-
sentation is denoted 1d-SAX in the following. It is based on three main steps,
similarly to SAX:

1. Divide of the time series into segments of length L
2. Compute the linear regression of the time series on each segment
3. Quantize these regressions into a symbol from an alphabet of size N .

For each segment generated by step 1, the linear regression is computed and
then quantized into a finite alphabet. The linear regression is computed using
the least square estimation : let V1, . . . , VL, be the values of a time series V on
the time segment T = [t1, . . . , tL]. The linear regression of V on T is the linear
function l(x) = sx + b that minimizes the distance between l and V on T . It is
entirely described by the two values s and b. s represents the slope of l and b
the value taken by l for x = 0. The least square optimization leads to:

s =

∑L
i=1(ti − T )(Vi − V )∑L

i=1(ti − T )2
, and b = V − s× T , (1)

where T and V represent respectively the average values of V and T .
In the following, we choose to describe a linear regression of V on a time

segment T by its slope value (s above), and the average value a of l on the
segment. a is defined by a = s × (t1 + tL)/2 + b. After this step (second step
above), the original time series is represented by a pair (s, a) on each segment
it has been divided in. We then need to quantize these pairs into an alphabet of
N symbols. For that purpose, the two values are quantized separately and later
combined into a symbol. Statistical properties of the linear regression ensure that
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Fig. 2. Obtaining 1d-SAX binary symbols from the quantization of both the average
and the slope values of the linear regression. The number of symbols is equal to 16, 4
levels are given to average values and 4 to the slope.

both the distribution of the average values and the slope values are Gaussian
of mean 0. The variance of the average values is equal to 1, while the one of
the slope values σ2

L is a decreasing function of L. According to these properties,
quantization of the average and slope values can be done as in the SAX repre-
sentation. The average values are quantized on Na levels (Na < N) according to
the Na quantiles of the Gaussian distribution N (0, 1), while the slope values are
quantized on Ns levels (Ns < N) according to the Ns quantiles of the Gaussian
distribution N (0, σ2

L). The choice of this parameter σ2
L is important. From the

analysis of the impact of σL on many time series with Gaussian distribution,
σ2
L = 0.03/L appears to be a good compromise. The value of σL will be fixed

for the experiments presented in Section 5. We assume here for clarity purposes
that Na and Ns are powers of two, i.e. Na = 2na , and Ns = 2ns . The quan-
tization of the average value leads to a na-bit symbol, while the quantization
of the slope value leads to a ns-bit symbol. na is then interleaved with ns to
give a (na + ns)-bit symbol, that represents the quantized value of the linear
regression on N = 2(na+ns) levels. Fig. 2 shows how to obtain N = 16 symbols
with Na = Ns = 4. Na − 1 breakpoints are computed to define symbols for the
average values, Ns breakpoints are computed to define the symbols for the slope
values and these symbols are interleaved to get the final symbols on N levels.

The 1d-SAX representation allows for different configurations (for a same
number N of levels) depending on the number of levels given to the average
values and to the slope values. For instance, a symbolic representation on 64
levels can be obtained with 32 levels for the average and 2 levels for the slope,
or 16 for the average and 4 for the slope, etc. The impact of these configurations
will be discussed in Section 5.

This technique defines, for a given set of parameters (L,Na, Ns), N = Na×Ns

binary symbols that represent linear functions on the segment [1, . . . L]. A symbol
obtained from a segment of a time series is a binary word ω of N bits. From ω, we
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Fig. 3. A time series together with its SAX and 1d-SAX representation. The numbers
of levels for the quantization here is 64. 1d-SAX uses here 16 levels for the average
values and 4 for the slope values.

can extract ωa and ωs, the binary words representing respectively the quantized
average and slope values of the linear regression of the time series on the segment.
The value of ωa indicates that the average value of the linear regression on the
segment lies between two breakpoints of the N (0, 1) distribution : βa

k and βa
k+1

for instance. Similarly, the slope values of the linear regression on the segment
lies between two breakpoints of the N (0, σ2

L) distribution : βs
l and βs

l+1. We can
get from these intervals an approximation of the average and slope values of the
linear regression by taking the median values on each interval. These median
values are also given by the quantiles of the Gaussian distribution. Following
that procedure, we can obtain a numerical approximation of a time series from
its quantized version (with SAX or 1d-SAX).

Fig. 3 shows an example of a time series together with its SAX and 1d-SAX
representations. On this example, 64 levels have been used for the quantization,
1d-SAX uses here 16 levels for the average values and 4 for the slope values. We
can see on this example that the 1d-SAX representation fits the time series more
accurately than the SAX representation. This result will be highlighted in the
experimental results section.

4 Asymmetric Querying for Time Series Database Search

We have applied this novel time series representation to the 1-nearest neighbour
search (1-NNS) problem. The aim of this application is the following. Let us
consider that we have a database D containing #D time series. Given a query
q, we want to find the time series in D that is most similar to q. We assume
in the rest of this paper that all the time series in the database have the same
length, also equal to the length of the queries. The brute force method consists
in calculating the distances between the query and all the series of the database
and return the one that is most similar to q. The number of distances to compute
is hence equal to #D. Taking advantage of the approximate representation to
speed-up the search in big database of time series is interesting in that case.
SAX representation has been for instance used to index and mine terabytes of
time series [10].
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We define in this section an asymmetric querying method for approximate
search in time series database. The term asymmetric means that the queries are
not quantized to avoid having a double quantization error (when both queries
and series of the database are quantized). Performing asymmetric querying has
been shown to improve the accuracy of the distance approximation for vector
searches [4]. We propose a method based on this idea to perform approximate
search in time series database.

Let us assume that D contains time series, as well as their symbolic represen-
tation (1d-SAX) for a given set of parameters (L,Na,Ns). This set of parameters
completely defines the Na×Ns symbols s1, . . . , sN that are used to quantize the
time series. The numerical approximation of these symbols can be computed as
explained at the end of Section 3. The algorithm to search the 1-NN of a query
q is :

1. Split q into segments of length L : q = q1, . . . , qw
2. Compute the Euclidean distances between every segment of q and the sym-

bols sj , 1 ≤ j ≤ N . These distances are put in a lookup table A = (ai,j) of
dimension w × N , where ai,j = ED(qi, sj)

2. ED represents the Euclidean
distance.

3. For every time series d in D, the quantized version of d, d̂ = d̂1, . . . , d̂w is
available. An approximate distance Distasym between q and d̂ is obtained
by

Distasym(q, d̂) =

w∑
i=1

ED(qi, d̂j)
2 =

w∑
i=1

ai,sd̂j
, (2)

which is just obtained by accessing the lookup table and summing over w
elements.

After these steps, the approximate distances between q and all the time se-
ries in D are available. These distances can be used to select the approximate
nearest neighbours of q. The number of elementary arithmetical operations νq
to compute for a query search using this method is

νq = (3L− 1)× w ×N + (w − 1)×#D, (3)

where the left part represents the cost of step 2 above and the right part the one
of step 3. The number of elementary operations in the case of the brute force
method is (3Lw−1)×#D. The computation cost is lower with this approximate
retrieval scheme for large databases where N ≤ #D.

5 Experimental Evaluations

In this section we evaluate the performance of our symbolic representation of
time series in terms i) of goodness-of-fit to the input data, ii) of retrieval per-
formance when used to query a database of time series using our asymmetric
scheme and iii) quality of classification using a k-nearest-neighbour classification
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Table 1. Average approximation error (in terms of Euclidean distance) between a
time series and its symbolic representation (SAX, 1d-SAX with 4 levels for the slopes
and 1d-SAX with 8 levels for the slopes) for N = 256. Results are evaluated for two
different values for L : L1 and L2.

w × L L1 SAX 1d-SAX 1d-SAX L2 SAX 1d-SAX 1d-SAX
Dataset Ns = 4 Ns = 8 Ns = 4 Ns = 8

Beef 450 10 3.733 2.545 2.611 50 9.602 6.851 6.286
CBF 120 10 5.511 4.963 4.862 20 6.936 5.785 5.570
Coffee 250 10 4.288 2.538 2.309 50 10.907 8.061 7.588

FaceFour 350 10 10.825 8.186 7.592 50 17.826 17.081 16.961
Fish 450 10 2.027 0. 957 1.206 50 9.183 4.203 2.792

Gun-Point 150 10 2.250 1.208 0.969 25 4.559 2.529 2.153
Lighting2 500 10 10.730 10.269 10.394 50 14.564 12.983 12.478
Lighting7 250 10 8.371 7.960 8.043 50 11.538 10.316 10.040
OSULeaf 420 10 4.493 2.034 1.935 35 11.985 6.862 6.271

Random walks 500 10 3.924 2.939 2.934 50 8.558 6.365 5.876
Swedish Leaf 120 10 4.302 2.324 2.063 30 9.803 5.718 4.886

Wafer 150 10 6.597 5.2789 4.799 25 11.787 10.987 10.789
50Words 270 10 4.661 3.091 3.127 30 9.999 6.667 5.878
Yoga 420 10 2.371 1.298 1.319 35 7.475 3.424 2.767

scheme. We have used 13 datasets provided by the UCR Time Series Data Min-
ing archive [5] and one dataset of random walks. Other data sets from the UCR
archive have not been considered here due to small lengths of the time series
particularly. Each of these dataset is decomposed into a training set and a test
set. The query used for time series retrieval are taken in the test sets while the
train sets represent the different databases. For all the results presented in this
section, we fixed σ2

L = 0.03/L, which turned out to be a good trade-off for all
the datasets.

5.1 Quality of Representation

We first evaluate the proposed symbolic representation of time series in terms
of the approximation error induced by the quantization of a time series, that
we define here as the Euclidean distance between an original time series and
its numerical approximation obtained with the 1d-SAX method (2). The lowest
this distance the better the fit to the original time series. We have plotted in
Fig. 4 the average approximation error versusN for the 50Words dataset and two
different values of L (L = 10 and L = 30) and compared the error obtained with
SAX and 1d-SAX for the same numbers of symbols used for the symbolization
(i.e. same quantity of information). We can see on the left part of this figure
that when L is small, the gain brought by the slope information begins to be
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Fig. 4. Average approximation error versus N (50Words dataset) for two different
values of L

significant for N ≥ 64. The best configuration from N = 64 is the one with
Ns = 4 (4 levels to quantify the slope values), while the one with Ns = 8 gets
closer at N = 256. When L is higher (right part of Fig. 4), we can see that
this phenomenon is amplified: the gain brought by 1d-SAX over SAX is much
bigger, even for small values of N . In addition, we can see that for this value
of L, the best configuration tends to be the one with Ns = 8. Similar results
from all the datasets are given in Table 1. In this table, N is set to 256 and two
values of L have been tried for each dataset. The same conclusion can first be
drawn: the gain in terms of approximation error increases with L. This result
makes sense: representing a time series on a small segment by its average value
is less restrictive than on a long segment. We can also draw another conclusion:
the number of levels Na given to the average values should be higher than the
one given to the slope values Ns. This means that a balance between Na and
Ns (assuming that their product is fixed and equal to N) has to be found to
optimize the performance of the 1d-SAX representation. Most of the time, for
all the datasets that we use, the best configuration for small L (less than 25) was
obtained with Ns = 2 or Ns = 4, while it was obtained with Ns = 4 or Ns = 8
for longer values of L (more than 25).

5.2 Retrieval Performance

We exploited the property of having a symbolic representation closer to the orig-
inal time series in a time series retrieval scheme. In this section we present some
experimental results of the retrieval scheme presented in Section 4. The results
are given in terms of the recall@R measure. This measure reflects the probability
of finding the true nearest neighbor in the R sequences of the dataset that are
closer to the query q in terms of the approximate distance. It is hence equal to
the probability of retrieving the correct 1-NN if computing exact distance only
for the best R candidates. Fig. 5 shows the recall@R performance of our scheme
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Table 2. Recall@R performance of the 14 datasets considered in this paper. Two values
of L are considered for each dataset. N is set to 256. Only the performance of the best
configuration (Na, Ns) is given for sake of conciseness.

L1 R@1 R@1 R@5 R@5 L2 R@1 R@1 R@5 R@5
Dataset SAX 1d-SAX SAX 1d-SAX SAX 1d-SAX SAX 1d-SAX

Beef 10 0.933 0.933 1 1 50 0.866 0.833 1 1
CBF 10 0.708 0.734 0.969 0.994 20 0.596 0.653 0.941 0.971
Coffee 10 0.893 0.893 1 1 50 0.607 0.571 0.928 0.928

FaceFour 10 0.784 0.795 0.989 1 50 0.454 0.454 0.795 0.818
Fish 10 0.92 0.954 1 1 50 0.508 0.611 0.874 0.943

Gun-Point 10 0.920 0.907 1 1 25 0.713 0.733 0.987 0.993
Lighting2 10 0.557 0. 574 0.918 0.934 50 0.328 0.377 0.738 0.836
Lighting7 10 0.397 0.466 0.849 0.877 50 0.205 0.288 0.589 0.726
OSULeaf 10 0.950 0.942 1 1 35 0.479 0.739 0.884 0.996

Random walks 10 0.903 0.902 1 1 50 0.479 0.657 0.943 0.992
Swedish Leaf 10 0.646 0.691 0.923 0.955 30 0.146 0.169 0.395 0.459

Wafer 10 0.653 0.627 0.920 0.919 25 0.472 0.440 0.830 0.824
50Words 10 0.863 0.859 0.998 0.998 30 0.488 0.618 0.800 0.954
Yoga 10 0.963 0.964 1 1 35 0.825 0.834 0.995 0.997

Table 3. Classification performance (percentage of correct classification) of SAX and
1d-SAX. Two values of L are considered for each dataset. N is set to 256.

L1 Correct classif. Correct classif. L2 Correct classif. Correct classif.
Dataset SAX 1d-SAX SAX 1d-SAX

Beef 10 0.7 0.7 50 0.7 0.667
CBF 10 0.891 0.896 20 0.863 0.898
Coffee 10 0.964 0.964 50 0.679 0.857

FaceFour 10 0.636 0.648 50 0.477 0.716
Fish 10 0.760 0.766 50 0.606 0.749

Gun-Point 10 0.773 0.793 25 0.840 0.900
Lighting2 10 0.803 0. 803 50 0.705 0.738
Lighting7 10 0.630 0.658 50 0.644 0.658
OSULeaf 10 0.483 0.492 35 0.455 0.504

Swedish Leaf 10 0.758 0.769 30 0.448 0.491
Wafer 10 0.818 0.818 25 0.817 0.819

50Words 10 0.657 0.664 30 0.622 0.675
Yoga 10 0.963 0.964 35 0.825 0.834
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Fig. 5. Recall@R measure (50words dataset) for N = 64 and two values of L

using 1d-SAX and SAX for the 50Words dataset and two different values of L.
We can see that for small values of L, the gain brought by our symbolic represen-
tation is not significant, while this gain increases with the length L of segments.
As in Section 5.1, configurations with Ns = 2 or Ns = 4 are better for small
L and configurations with Ns = 4 or Ns = 8 are better for long L. Recall@1
and Recall@5 values for all the datasets considered in this paper are given in
Table 2. These values are obtained for N = 256, and only the best configuration
for 1d-SAX is given in the table for sake of conciseness.

Finally, we also give some results in terms of quality of classification. In the
considered data sets, every time series (in both training and test sets) is labeled
by a class. We used these labels to evaluate the performance of 1d-SAX in terms
of classification. For that purpose, we used the classical k-nearest-neighbour
scheme. For each time series of the test set, we estimate its label by looking at
the labels of the k nearest time series in the corresponding training set. Results
are given in Table 3 for k = 5.

6 Conclusion and Discussion

In this paper we propose a novel symbolic representation for time series. This
representation is based on the quantization of the linear regression of the time
series on subsegments. Symbols take into account information about the average
values and the slope values of the time series. One of the main advantage of the
proposed method over other representations is that the quantity of information
needed to represent a time series is the same as the one needed by SAX, for a
same number of symbols N . We have shown that our 1d-SAX method allows
for a better fitting of the original time series: the approximation error induced
by the symbolization is reduced compared to SAX. Furthermore, we have used
this representation to the application of time series retrieval and classification



284 S. Malinowski et al.

in databases and shown that better performance in terms of recall measure and
percentage of correct classification are obtained in comparison with SAX. Only
one additional parameter needs to be adjusted according to our method: the
ratio between the number of levels for the average values (Na) and the one for
the slope values (Ns). Learning the optimal configuration (Na versus Ns) is a
challenging work that we are considering to focus on in a close future.
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Abstract. We propose the LEMAIO multi-layer framework, which
makes use of hierarchical abstraction to learn models for activities in-
volving multiple interacting objects from time sequences of data concern-
ing the individual objects. Experiments in the sea navigation domain
yielded learned models that were then successfully applied to activity
recognition, activity simulation and multi-target tracking. Our method
compares favourably with respect to previously reported results using
Hidden Markov Models and Relational Particle Filtering.

1 Introduction

Many practical problems including activity recognition, multi-target tracking
and detection of activity, require reasoning about the interactions of multiple re-
lated objects. A complex activity (such as exchanging goods between two ships)
is a type of interaction usually realized as a sequence of lower-level actions that
may involve multiple objects. Given a model of how an activity is decomposed,
it is possible to effectively recognize an ongoing activity by observing low-level
attributes (such as position, speed and color) [3,17]. However, the model for
such activities is usually unknown. We investigate one possible solution: learn-
ing such a model directly from sensor data. This paper introduces a framework,
called LEMAIO (LEarning Models of Activities involving Interacting Objects),
for learning probabilistic models of complex activities involving multiple interact-
ing objects from sensor data. This framework is capable of inferring the interac-
tions between the objects, while also inferring how complex activities decompose
into lower level actions.

An activity is usually recognized from the sequence of the attribute values
of the interacting objects. An example of an activity in the soccer domain is
“passing the ball”, which can be recognized observing the sequence of positions
of the players and the ball over time. The same activity can be undertaken in
many ways, represented as different sequences of attribute values, e.g., all the
ways in which the ball can be passed from one player to another. To avoid
listing all possible realizations of an activity, we need an abstract representation
(a model) of it. This model should be such that an automatic system can use
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it efficiently to recognize an activity from (noisy) data (activity recognition),
simulate it (activity generation), or track it (multi-target tracking).

Since activities often involve multiple objects, modeling the relations between
them is crucial for capturing their behaviour. Consider the difference between
the activities of “passing” and “intercepting” a ball: both activities result in a
new player having control of the ball but the former requires the two players
to be on the same team (to be in the relation of having the same value for
the team attribute), while the latter requires them to be on different teams. We
distinguish between atomic activities (called simply “activities” in [1]), involving
coordinated actions among multiple agents at one time, and complex activities,
which are sequences of atomic activities. We do not assume we know the relations
between objects: we know that objects might interact, but we do not know how.
We assume all relations are pairwise.

We are given a training set where each instance is a sequence of attribute
values describing the complete state of the world, along with a label identifying
the complex activity represented and we adopt a probabilistic viewpoint: the
problem is to learn from this training set a probabilistic model able to identify
complex activities in new data, track individual objects while complex activi-
ties are occurring, and generate sequences of synthetic data simulating complex
activities. The LEMAIO framework addresses this problem by learning a three-
layer hierarchical model from the bottom up that can be mapped into a Dynamic
Bayesian Network.

The main contributions of our work are: (1) a general top-supervised learning
framework to learn a hierarchical probabilistic model for complex activities from
low-level data; (2) the decomposition of complex activities into lower level actions
and interactions between objects and the explicit modelling of objects’ interac-
tions; (3) an implementation of the framework based on Expectation Maximiza-
tion and clustering; (4) empirical evidence of the effectiveness of our approach
in learning models able to recognize, track, and generate complex activities.

2 The LEMAIO Framework

To describe the LEMAIO framework, we first explain the four levels of abstrac-
tion. Then we describe how a three-layered model is learned that allows values
at any level to be generalized to the next higher level. Finally, we show how the
model is used to generate synthetic data corresponding to specified activities.

Our learning approach is top-supervised: labels are available in the training
data only at the top (complex activity) level. The learned model is able to assign
a label to a complex activity represented by an unseen sequence of low-level data
and is also able to recognize the lower-level constituents of the activity.

2.1 Levels of Abstraction in LEMAIO

The LEMAIO framework uses four levels of abstraction: (0) attribute values
for objects (raw data), (1) single object activities (activities involving only one
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object), relations between pairs of objects at a single time, and changes in re-
lations over time, (2) atomic activities and (3) complex activities. We assume
that during any time interval an object can be involved in at most one single
object activity and a set of related objects can only be involved in at most one
atomic activity and at most one complex activity. In this section, we consider
each level in turn. These levels of abstraction are general and the decomposition
of a complex activity into atomic activities, relations, changes of relations and
single object activities can be applied to a variety of domains.

Level 0: We collect all attribute values of the objects in the world at consecutive
time steps while some complex activity is occurring. We assume the attribute
values correspond to noiseless observations from sensors that coincide with the
actual state of the world (in presence of noisy observation we could filter the

data before learning). Let s
(i)
t be the state of the object o(i) at time t. The state

of the world st can be represented as the vector of the states of all individual
objects in the world at time t . The training data consists of pairs of sequences of
consecutive states of the world from time 1 to time T and labels of the complex
activity represented by the sequence (s1:T , γ). Assuming that we have labels
for complex activities is restrictive but fair: it is easier for a person to classify a
complex activity (providing a labeled instance) than to describe such an activity.

Level 1: At level 1 we represent how objects behave individually, how they
interact and how their interactions change over time.

– single object activities are associated with changes over time in the attribute

values of single objects. e
(i)
(t−1,t) represents the single object activity that o(i)

performs in time interval (t−1, t) and assumes values in E = {ε1, ε2, · · · , εnE}.
– relations represent degrees of similarity between attribute values of objects

at the same time. We assume pairwise relations. r
(i,j)
t represents the relation

between o(i) and o(j) and assumes values in R = {ρ1, ρ2, · · · , ρnR}.
– changes in relation represent changes in the degree of similarity over time.

d
(i,j)
(t−1,t) represents the change of relation between o(i) and o(j) during the time

interval (t−1, t) and assumes values in D={δ1, δ2, · · · , δnD}.

From data classified into single object activities, relations and change in the
relations we can learn distributions for atomic activities.

Level 2: Atomic activities describe how one object behaves with respect to an-

other during the time interval between consecutive time points. a
(i,j)
t represents

an atomic activity involving the related objects o(i) and o(j) in the interval (t−1, t)
and it is learned from vectors of the form a

(i,j)
t = [e

(i)
(t−1,t), e

(j)
(t−1,t), r

(i,j)
t , d

(i,j)
(t−1,t)].

We define the set of all possible atomic activities as A = {α1, α2, · · · , αnA}.
Level 3:A complex activity c(i,j) is represented by a sequence of atomic activities
that involve o(i) and o(j); c(i,j) can assume values in C = {γ1, γ2, · · · , γnC}.

Example: Let us focus on two possible complex activities (Rendezvous and
Avoidance) that can occur at sea. They consist of two vessels approaching each
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Fig. 1. left: The LEMAIO hierarchy with layers. right: The Dynamic Bayesian Net-
work learned by LEMAIO.

other and subsequently going apart. In the latter only one of the two vessels
changes its speed to avoid the other ship, but in the former, when the vessels
are close to each other, they stay close with speed near zero to illegally exchange
goods. The state of the world is indicated by the position, name and class of
each vessel. The training set consists of pairs of a sequence of states and the
label (R or A) of the complex activity. A single object activity can encode the
movement of a ship (e.g., moving fast towards north); a relation can give the
separation distance between two ships or if they are of different/equal type; a
change in relation can tell whether the distance between two ships is increasing
or decreasing during a time interval; and an atomic activity can describe the
idea of “approaching” (e.g., two ships have decreasing distance over time). A
complex activity modeling a Rendezvous could be composed as a sequence of
atomic activities such as “approaching”, “staying together” and “going apart”
(each possibly repeated).

2.2 Learning with LEMAIO

In order to model the uncertainty about which activities are currently being per-
formed and how a complex activity decomposes into lower-level constituents, we
introduce a number of probability distributions. These are models that, given
an observed pattern and using the Bayes theorem, (1) assign probabilities to
the events that associate the pattern with any (single object, atomic, or com-
plex) activity and (2) assign probabilities to the future. In this way, the learned
model can be used for classification and generative purposes. We separate our
presentation into levels based on the abstraction hierarchy shown in Fig. 1 left.

Single Object Activities and Relations: To learn models for these quantities
we preprocess the data into three sets of differences.

– Δ
(i)
(t−1,t) denotes the difference between the states of o(i) at two consecutive

time points: Δ
(i)
(t−1,t)=s

(i)
t −s

(i)
t−1, where t>0;
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– Δ
(i,j)
t denotes the distance between the states of o(i) and o(j) at the same

time step: Δ
(i,j)
t =dist(s

(i)
t , s

(j)
t ), where t ≥ 0, i �= j;

– Δ
(i,j)
(t−1,t) is short for: Δ

(i,j)
(t−1,t)=Δ

(i,j)
t −Δ

(i,j)
t−1 ,where t>0, i �= j.

Since single object activities involve only one object, they can be seen as the
change in the attribute values for one object. Given a sequence of states (our
training data), for all the attribute values of every object of every pair of consecu-

tive time steps we compute Δ
(i)
(t−1,t). From these data, we learn a model for single

object activities. The model consists of the prior of the single object activity

class, p(e
(i)
(t−1,t)=εk), and the probability density function p(Δ

(i)
(t−1,t)|e

(i)
(t−1,t)=εk).

A relation is a difference between the attribute values of two objects at a
single time point. We learn a probability distribution for relations from data of

the form Δ
(i,j)
t obtained from the states of every pair of objects in the training

data at the same time step. The model consists of the prior of the relation class,

p(r
(i,j)
t =ρk), and the probability density function p(Δ

(i,j)
t |r(i,j)t =ρk).

A change in relation is a difference between the relation of two objects over

time. From Δ
(i,j)
(t−1,t), we learn the prior of the classes of changes in relations,

p(d
(i,j)
(t−1,t)=δk), and the probability density function p(Δ

(i,j)
(t−1,t)|d

(i,j)
(t−1,t)=δk).

According to the Bayes formula the probability of a single object activity class

εk, given the observed data Δ
(i)
(t−1,t), is the posterior

p(e
(i)
(t−1,t)=εk|Δ(i)

(t−1,t))=
p(e

(i)
(t−1,t)=εk)p(Δ

(i)
(t−1,t)|e

(i)
(t−1,t)=εk)

p(Δ
(i)
(t−1,t))

. (1)

Such a posterior can be used for classification purposes. Similar posteriors can
be derived for relations and changes in relations.

Atomic Activities: To learn a model for atomic activities we first apply the
probabilistic models learned at layer 1 (Eq. 1) to classify data into single ob-
ject activities, relations and changes of relations. Secondly, by considering every
time interval in every input sequence, we collect vectors v(i,j) of single object
activities, relations and changes in relations for every pair of related objects:

v(i,j) = [e
(i)
(t−1,t), e

(j)
(t−1,t), r

(i,j)
t , d

(i,j)
(t−1,t)]. (2)

We then cluster these vectors for all (i, j) pairs according to a distance measure
f . Next, for each cluster (αk) we select one vector (vαk

) to represent all vectors in
the cluster. Finally we map each cluster into the set of labels inA. We assume the
probability that a vector v(i,j) is in cluster αk, p(v

(i,j)|a(i,j)=αk), is given by one
minus its normalized distance from vαk

: p(v(i,j)|a(i,j)=αk)=1 − f̃(v(i,j), vαk
).

We learn the prior p(a(i,j)=αk) proportional to the number of the data points
in the training set that fall in cluster αk. To classify vectors of the form of Eq.
2 into atomic activities we can use the posterior

p(a(i,j)=αk|v(i,j)) ∝ p(a(i,j)=αk)p(v
(i,j)|a(i,j)=αk).
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Complex Activities: Complex activities are defined as sequences of atomic
activities. We group the data in the training set according to their complex
activity label and, using the distributions learned at the previous layers, we map
them into sequences of atomic activities. From these sequences we learn the
probability that an atomic activity αk follows a sequence of atomic activities

a
(i,j)
1:t−1 given a particular complex activity γk:

p(a
(i,j)
t =αk|c = γk, a

(i,j)
1:t−1). (3)

The probability p(a1=αk) is proportional to the number of times it occurs at
time t=1 in the training set. The prior p(c=γk) is proportional to the number of
occurrences of γk in the training set. We classify a sequence of atomic activities

a
(i,j)
1:t = {a(i,j)1 , a

(i,j)
2 , · · · , a(i,j)t } as the complex activity c=γk that is associated

with the highest value of p(c=γk|a(i,j)1:t ), where

p(c = γk|a(i,j)1:t ) =
p(a

(i,j)
t |c = γk, a

(i,j)
1:t−1)p(a

(i,j)
1:t−1, c = γk)

p(a
(i,j)
1:t )

. (4)

The overall learned model is depicted in Fig. 1 right.

2.3 Activity Generation with LEMAIO

Activity generation aims at generating sequences of states that match a given
complex activity c = γk. Assume we are given a sequence of states s0:t−1 that
matches complex activity γk. Given the probability distributions learned so far,

s0:t−1 can be classified into sequences of atomic activities a
(i,j)
1:t−1. We want to

generate the next atomic activity a
(i,j)
t such that the sequence a

(i,j)
1:t is con-

strained to be associated with complex activity c = γk. To do so, we sample

from the probability distribution p(a
(i,j)
t |c= γk, a

(i,j)
1:t−1) learned at layer 3. Sup-

pose a
(i,j)
t =αk. Next, we sample a vector v(i,j) from the probability distribution

p(v(i,j)|a(i,j)t = αk) learned at layer 2. Suppose v(i,j) = [εi, εj, ρl, δm], telling us
the generated single object activities, relations and changes of relations.

Knowing the current state st−1, single object activities (εi and εj), relations
(ρl) and change in relations (δm) we can generate the next state st by sampling
from the probability distributions learned at layer 1. To model the change in

relation, let us introduce a random variable Dm: Dm∼ p(Δ
(i,j)
(t,t−1)|d

(i,j)
(t,t−1) = δm).

Let q be the distribution of the random variable Δ
(i,j)
t−1 +Dm. We can sample a

value for Δ
(i,j)
t from the probability

p(Δ
(i,j)
t |d(i,j)(t−1,t)=δm, r

(i,j)
t =ρl, Δ

(i,j)
t−1 )=q(Δ

(i,j)
t−1 +Dm)p(Δ

(i,j)
t |r(i,j)t = ρl),

estimated from the distributions of the relations and their changes.
To simplify the following explanation, we assume the only objects in the world

are o(i) and o(j). Given the sampled value forΔ
(i,j)
t , we can sample st = [s

(i)
t , s

(j)
t ]
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from p(st|εi, εj, st−1, Δ(i,j)
t ). That, assuming p(s

(i)
t |s

(i)
t−1, Δ

(i,j)
t ) = p(s

(i)
t |s

(i)
t−1), can

be factored as:

p(st|εi, εj, st−1, Δ(i,j)
t )=

p(s
(i)
t |εi, s

(i)
t−1)p(s

(j)
t |εj , s

(j)
t−1)p(s

(j)
t |s

(j)
t−1, Δ

(i,j)
t , s

(i)
t )

p(s
(j)
t |s

(j)
t−1)

. (5)

With this assumption, we can first sample the state of o(i) and then sample
the state of o(j) taking into account the state of o(i) already sampled and their
relations. This assumption is equivalent to assuming one of the two objects (o(i)

in this case) is the “leader” and can be loosened in practice by exchanging the
order in which the objects are processed at each time step.

2.4 An Implementation

In our LEMAIO-1 implementation of the LEMAIO framework, we use mixtures
of Gaussians, for the distributions at layer 1, a mixture of categorical distribu-
tions at layer 2 and a mixture of Markov chains at layer 3.

LEMAIO-1 Layer 1: Since the same approach is used for the three kinds
of entities at layer 1, here we present only the procedure for learning single
object activities. We use Expectation Maximization (EM) to learn the prior of
the classes of single object activities and the probability density function of the
data given the class that maximize the likelihood of the data [6]. Assuming we

have observed a particular change in one object’s attribute values (Δ
(i)
(t−1,t)), the

likelihood of the observed data given the parameters Θ of the distributions is

calculated as: p(Δ
(i)
(t−1,t)|Θ) =

∑K
k=1 p(εk)p(Δ

(i)
(t−1,t)|εk, Θ) where K is the number

of classes represented in the data, chosen to minimize the Bayes Information
Criterion (BIC) [7], and Θ is the vector of the means and variances of the chosen
Gaussian distributions.

LEMAIO-1 Layer 2: To cluster vectors v(i,j) (cf. Eq. 2) into atomic activity
classes we use the K-medoids clustering algorithm [14]. We compute the distance
measure f(v1, v2) on which the clustering is based in the following way: first we
map each element in v1 and in v2 into the mean of the Gaussian distribution that
best fits the class represented by the element; then we compute the Euclidean
distance between these elements and average over the elements of the vectors.
The number of clusters K is chosen such that it maximizes the intracluster
similarity of our data. The number of distributions and the number of clusters
K is chosen given a maximum number of sets K.
LEMAIO-1 Layer 3: Given sequences of atomic activities labeled with the
same complex activity (c = γk), we learn a Markov chain. In a Markov chain,
the probability of an atomic activity at time step t depends only on the value of
the atomic activity at time step t−1 and on the current complex activity c=γk.

We thus have (Eq. 3): p(a
(i,j)
t = αk|c = γk, a

(i,j)
1:t−1) = p(a

(i,j)
t = αk|c = γk, a

(i,j)
t−1 ).

Modeling the transitions between atomic activities with a Markov chain allows
us to simplify the classification of complex activities writing Eq. 4 as:
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p(c = γk|a(i,j)1:t )=p(c = γk)

T∏
t=2

p(a
(i,j)
t =αk|c = γk, a

(i,j)
t−1 ). (6)

3 Experiments

We experimented with our implementation on the sea navigation data set pro-
vided in [4]. This data set is composed of 37 sequences called encounters. An
encounter is a sequence of 96 time steps recording the 2D positions of two ships
involved in either a rendezvous or an avoidance; there are 19 rendezvous encoun-
ters. In the following, we describe how we applied LEMAIO-1 to learn models
from this dataset and how we tested the resulting models.

In our data set the state s
(i)
t is the vector [xi

t, y
i
t] of the position of o(i).

As distance between s
(i)
t and s

(j)
t we use the Euclidean distance. In this way

we learn the following probabilistic models: i) for single object activities from
vectors representing the movement of individual objects, ii) for relations from
distances between objects and iii) for changes in relations from differences of
distances during time. Given the small number of encounters in the data set, we
adopted the leave-one-out cross-validation technique [10].

At the first level, to choose K, we set K1 to 10 and apply BIC. We restrict
the EM algorithm to iterate for a maximum of 1000 times and add a small
regularization factor (1e−5) to the diagonal of the covariance matrices to ensure
they are positive-definite. For the K-medoid algorithm, we fix K2 to 20 and the
maximum number of iterations to 500. On average, the number of Gaussians
learned for single object activities is 9, for relations 7 and for changes of relations
9. On average, the number of clusters the K-medoid algorithm finds is 19. Similar
results were obtained with different values of K. We learned two Markov chains,
one for each type of encounters. To avoid having transitions of probability 0 for
unobserved patterns, we used Laplace’s succession rule.

We tested the models learned by LEMAIO-1 on activity classification, activ-
ity generation, and multi-object tracking. Moreover, we tested these models on
online activity recognition and compared the results to [17].

Experiment 1: Encounter Classification

Rendezvous (Positive) 19
Avoidance (Negative) 18

True Negative 11
True Positive 19
False Positive 7
False Negative 0

Accuracy 0.81
True Negative Rate 0.61

Recall (True Positive Rate) 1
Precision 0.73
F-measure 0.84
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To test an unseen encounter, our classification method assigns it the label (ren-
dezvous or avoidance) associated with the Markov chain with the highest likeli-
hood. Since the data includes 37 encounters, we trained and tested 37 different
models: each model was trained on 36 of the 37 encounters and tested on the re-
maining encounter. The results are reported in the table above. Our method had
an F-measure of 0.84. A lower F-measure of 0.72 was previously reported [17]
on the same data set using hidden Markov models, obtained with a supervised
approach, whereas our system is (only) top-supervised.

Experiment 2: Encounter Generation
To evaluate the suitability of the models learned by LEMAIO-1 for generating
encounters probabilistically, we ran two experiments of increasing complexity.

In Experiment 2a (generation given a sequence of atomic activities), for each
learned model, we took the encounter part of the test set, and classified it to give
a sequence of atomic activities. From this sequence we generated the low-level
data representing an encounter, i.e., we generated the positions of the two ships.
One of these encounters is shown in Fig. 2 left, where the original rendezvous
from the test set is shown at the top and a rendezvous generated by the learned
model is shown at the bottom. Notice that the generated tracks follow the paths
of the original ones, as dictated by the recognized atomic activities.

In Experiment 2b (generation given a complex activity; by first generating a
sequence of atomic activities and then generating encounters from them), for
each model we generated a sequence of atomic activities a1:T for the rendezvous
complex activity and another sequence for the avoidance activity. We sampled
the atomic activity sequence according to the Markov chain learned, by first
sampling the first atomic activity a1 according to the vector of priors in the
Markov chain (associated with the relevant encounter) and then sampling the

Fig. 2. left: An example encounter generated given the atomic activities: (a) the orig-
inal encounter from the test set and (b) an encounter generated from the atomic ac-
tivities recognized from the original encounter. right: Two examples of encounters
generated given complex activities: (a) a rendezvous and (b) an avoidance.
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atomic activity at+1 according to the probability of transition from the atomic
activity at. Fig. 2 on the right represents a rendezvous (top) and an avoidance
(bottom) generated from one model learned by LEMAIO-1. In both cases the
ships are approaching at the beginning and going apart at the end. In the ren-
dezvous, there is a distinctive behaviour localized in the center where the two
ships stay close together for a while; this does not happen in the avoidance.

For both Experiment 2a and 2b the generation of a sequence of positions given
a sequence of atomic activities is done with sampling. From each atomic activity
in the sequence we sample a particular vector of probabilistic models that gives

us the single object activities of o(i) (e
(i)
t ), and of o(j) (e

(j)
t ), their relation r

(i,j)
t

and the change of their relations d
(i,j)
t at time t. For each atomic activity we

generate M2 = 100 vectors and from each of these M1 = 100 positions following
Eq. 5. We sample M1 positions of o(i) and o(j) independently from p(sit|εi, sit−1)
and p(sjt |εj , s

j
t−1), resp. We sample M1 distances Δ

(i,j)
t from Eq. 5 on the line

(sit, s
j
t ) and, for each sample, we fix one of the sampled s

(i)
t or s

(j)
t and pick the

other at the opposite side at distance Δ
(i,j)
t . To avoid preferential treatment, we

exchange the order in which s
(i)
t or s

(j)
t are chosen at each time step.

Experiment 3: Tracking
We evaluate the tracking ability of the models learned by LEMAIO-1. This ex-
periment makes use of the 3PF algorithm presented in [17] coupled for the pre-
diction step with the same transition model used for the generation experiments
and learned by our LEMAIO-1 implementation. Each particle first samples the
distribution of complex activities, then samples the atomic activities using the
appropriate Markov chain, and then predicts the next position of each object
based on the atomic activities. Thus, while tracking, the algorithm is also able
to recognize the activity online. When an observation arrives the tracker filters
it by weighting the particles according to a sensor model that takes into account
their distance from the observation. For comparison purposes we used the same
sensor model used in [17] and the same number of particles (M = 100).

We compare the tracking performance of the 3PF algorithm using the models
learned by LEMAIO-1, with the performance of the original 3PF (that uses a
model manually optimised for tracking) and a standard particle filtering algo-
rithm (PF)1. The mean of the tracking errors on 37 encounters for 3PF using
LEMAIO-1 models is 0.27, for the original 3PF is 0.15 and for the standard PF
is 1.68. As expected, the tracking error with the LEMAIO-1 models is higher
than that obtained with the hand-crafted model, but it was substantially better
than the standard PF. The accuracy for the activity recognition task is 0.95.

4 Discussion

The LEMAIO multi-layer framework learns models for activities involving mul-
tiple interacting objects from sequences of attribute values for the individual

1 The tracking error for an encounter is computed as the mean distance between the
filtered and actual positions of the ships across all time points.
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objects. Our experiments show the validity of the models learned on a publicly
available data set. In particular, our results are better than previously reported
results using Hidden Markov Models (for activity recognition) and Relational
Particle Filtering (for tracking).

Numerous researchers have dealt with the problem of modeling and recogniz-
ing the actions of a single agent [2,19]. Single object activities can be used to
recognize the action of an agent in a time interval. In practice, many activities
of interest involve several agents, which interact with each other and with the
environment. LEMAIO is better suited to such problems than the single agent
approaches because it learns a model for the relations between interacting objects
and the way these relations change over time, in contrast to other approaches
that consider relations between objects by either limiting the interactions to
particular types [9] or constraining the objects and their interactions to be fixed
over time [8]. Many works have dealt with the problem of representing and rec-
ognizing complex activities from data [20,21,22]. These approaches typically
rely on a model of the activity being provided by a domain expert. Such models
are rarely available for real life systems featuring many variables with complex
interdependencies. As well, many of these models are inflexible and can be used
for recognition but not for generation or tracking. In contrast, LEMAIO learns
its own model, which can be used for recognition, generation and tracking. Some
existing approaches use a hierarchy of actions specified by a stochastic context
free grammar [13,15], making them less flexible than LEMAIO.

Several approaches have dealt with learning concepts similar to the ones
learned at the various layers of the LEMAIO framework. For example, the equiv-
alent of single object activities has been learned in various computer vision sys-
tems [16]. Atomic activities have been used, for example, to recognize robot
actions by various RoboCup competitors [18] taking as given the interpretation
of low level attribute values. Bobick [1] distinguished the concepts of actions,
characterized by simple motion patterns typically executed by a single agent,
and activities, which are more complex and involve coordinated actions among
multiple agents. To the best of our knowledge LEMAIO is one of the first ap-
proaches to put these concepts together and is the first approach to learn models
for relations.

Other previous approaches studied the behaviour of several objects moving
together by considering them as a single entity [5,11]. Our aim is to model
the behaviour of interacting objects pursuing an activity that is permitted to
be something other than moving together. For this reason, we chose to learn
a model of the relations that is separate from the model of the activities of
the single objects. The relations studied in this paper were based on distance
or similarity. We hypothesize that the LEMAIO framework can learn models
for relations that are not distance or similarity relations, such as ”passing an
obstacle on the left” or ”being on the same team”.

In future work, we will investigate the use of different probability distribu-
tions. We think that, especially at the second layer, the use of time windows
may improve the accuracy of the model. Therefor, we will investigate the use
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of Temporal Nodes Bayesian Networks [12]. The assumption that relations are
pairwise is certainly a limitation, but investigating all possible combinations of
related objects while learning is computationally intractable for a large number
of objects. We are investigating the use of non-parametric methods to discover
which objects are related while performing a particular activity.
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Abstract. Many stream classification algorithms use the Hoeffding In-
equality to identify the best split attribute during tree induction.

We show that the prerequisites of the Inequality are violated by these
algorithms, and we propose corrective steps. The new stream classifi-
cation core, correctedVFDT, satisfies the prerequisites of the Hoeffding
Inequality and thus provides the expected performance guarantees.

The goal of our work is not to improve accuracy, but to guarantee
a reliable and interpretable error bound. Nonetheless, we show that our
solution achieves lower error rates regarding split attributes and sooner
split decisions while maintaining a similar level of accuracy.

1 Introduction

After the seminal work of Domingos and Hulten on a very fast decision tree for
stream classification [1], several decision tree stream classifiers have been pro-
posed, including CVFDT [7], Hoeffding Option Tree [9], CFDTu [11], VFDTc
[3], as well as stream classification rules (e.g. [8,4]). All of them apply the Ho-
effding Bound [6] to decide whether a tree node should be split and how. We
show that the Hoeffding Inequality has been applied erroneously in numerous
stream classification algorithms, to the effect that the expected guarantees are
not given.

We propose correctedVFDT, which invokes the Inequality with correct param-
eter settings and uses a new split criterion that satisfies the prerequisites. Thus,
correctedVFDT provides the expected performance guarantees. We stress that
our aim is not a more accurate method, but a more reliable one, the performance
of which can be properly interpreted.

The paper is organised as follows. In the next section, we present studies
where problems with the usage of the Hoeffding Bound have been reported and
alternatives have been proposed. In section 3, we explain why the usage of the
Hoeffding Inequality in stream classification is inherently erroneous. In section 4
we propose a new method that alleviates these errors, and in section 5, we prove
that it satisfies the prerequisites of the Hoeffding Inequality and thus delivers
the expected performance guarantees. In section 6, we show that our approach
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has competitive performance on synthetic and real data. Section 7 summarizes
the findings and discusses remaining open issues.

2 Related Work

Concerns on the reliability of stream classifiers using the Hoeffding Bound have
been raised in [9]: Pfahringer et al. point out that ”Despite this guarantee,
decisions are still subject to limited lookahead and stability issues.” In Section
6, we show that the instability detected in [9] is quantifiable.

Rutkowski et al. [10] claim that the Hoeffding Inequality [6] is too restrictive,
since (A) it only operates on numerical variables and since (B) it demands an
input that can be expressed as a sum of the independent variables; this is not
the case for Information Gain and Gini Index. They recommend McDiarmid’s
Inequality instead, and design a ’McDiarmid’s Bound’ for Information Gain and
Gini Index [10]. However, as we explain in Section 3, the most grave violation of
the Hoeffding Inequality in stream classification concerns the independence of
the variables (prerequisite B). This violation of the Inequality’s assumptions is
not peculiar to the Hoeffding Inequality, it also holds for the way the McDiarmid
Bound uses the McDiarmid Inequality. Replacing one Inequality with another
does not imply that the prerequsite is satisfied. Hence, we rather replace the split
criterion with one that satisfies its prerequisites. We concentrate on the Hoeffding
Inequality in this work. The McDiarmid Inequality is more general indeed and
we can study it in future work. For the purposes of stream classification, though,
the Hoeffding Inequality seems sufficient, because restriction (A) is irrelevant:
the split functions return real numbers anyway.

3 Hoeffding Bound – Prerequisites and Pitfalls

The Hoeffding Inequality proposed by Wassily Hoeffding [6] states that for a
random variable Z with range R, the true average of Z, Z, deviates from the
observed average Ẑ not more than ε, subject to an error-likelihood δ:

|Z − Ẑ| < ε ,where ε =

√
R2 · ln(1/δ)

2n
(1)

where n is the number of instances. Inequality 1 poses following Prerequisites:

1. The random variables must be identically distributed and almost surely
bounded; the variable ranges are used when computing the bound.

2. Random observations of the variables must be independent of each other.

In many stream classification algorithms, Z is the value returned by the func-
tion computing the ’goodness’ of a split attribute. Given a significance level δ,
the Hoeffding Inequality states whether the instances n seen thus far are enough
for choosing the best split attribute. This is mission-critical, since wrong splits
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(especially for nodes close to the root) affect the performance of the classifier neg-
atively. In the presence of drift, this may also lead to uninformed decisions about
discarding or replacing a subtree. We show that stream classification methods
violate the prerequisites of the Hoeffding Inequality (subsection 3.1) and that
the decision bound is wrongly set (3.2).

3.1 Violation of Prerequisites

Domingos and Hulten [1] proposed Information Gain (IG) and Gini Index (GI)
as exemplary split functions appropriate for the Hoeffding Bound: at each time
point, the data instances in the tree node to be split are considered as the
observations input to the Hoeffding Inequality, and the values computed upon
them by IG/GI are assumed to be averages.

Violation 1: The Hoeffding Inequality applies to arithmetical averages only [6].
IG and GI ”can not be expressed as a sum S of elements” (i.e. ”of the independent
variables”) [10]. We do not elaborate further on this issue, since it is obvious.

Violation 2: The variables, i.e. the observations used for the computation of the
split criterion must be independent (Prereq. 2). However, consider a sliding
window of length 4 and assume the window contents w1 = [x1, x2, x3, x4] and
then w2 = [x3, x4, x5, x6], after the window has moved by two positions. Obvi-
ously, the window contents overlap. When a function like IG computes a value
over the contents of each window, it considers some instances more than once.
Thus, the computed values are not independent.

3.2 A Decision Bound That Cannot Separate between Attributes

Domingos and Hulten specify that the Hoeffding Bound should be applied as
follows, quoting from [1], second page, where G is the split function:

”Assume G is to be maximized, and let Xa be the attribute with highest
observedG after seeing n examples, and Xb be the second-best attribute.
Let ΔG = G(Xa)−G(Xb) ≥ 0 be the difference between their observed
heuristic values. Then, given a desired δ, the Hoeffding bound guarantees
that Xa is the correct choice with probability 1 − δ if n examples have
been seen at this node and ΔG > ε.” 1 , 2

Claim. The Hoeffding Bound does not provide the guarantee expected in [1].

Proof. Assume that the split candidates are X,Y with IG values GX and GY ,
observed averages ĜX , ĜY and real averages GX , GY (cf. Figure 1). Considering

1 In [1], this text is followed by a footnote on the ”third-best and lower attributes” and
on applying Bonferroni correction to δ if the attributes in the node are independent.

2 Note: we use ε instead of ε, Z for the true average and Ẑ for the observed one.
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Fig. 1. Observed vs real averages of two random variables: the observed averages differ
by more than ε, but the Hoeffding Bound does not guarantee that GY is superior

n observations in range R (of the split test), the probability that the real average

Z deviates from the observed one Ẑ by more than ε is bounded by Ineq. 1 [6]:

Pr(Ẑ − Z ≥ ε) ≤ exp(
−2nε2
R2

) (2)

In Figure 1, we see that ĜY is greater then ĜX by more than ε, but this
does not hold for the real averages GY and GX . Hence, a span of one ε is not
sufficient to guarantee separation of the gain values.

This claim holds also when we consider GX −GY as a single random variable
ΔG (as done in [1]): the range of ΔG is the sum of ranges of GX and GY , again
requiring a change of the decision bound. We give the correct bound in 4.1.

4 New Method for Correct Usage of the Hoeffding Bound

Our new core correctedVFDT encompasses a correction on the decision bound,
and a new split function that satisfies the prerequisites of [6] (cf. section 3).

4.1 Specifying a Proper Decision Bound

Domingos and Hulten define ΔG = GY −GX as a random variable with range
R = logc (for Information Gain IG, c is the number of classes) and check whether

Δ̂G−ΔG exceeds ε [1], where ε is a positive number. However, this definition of
ΔG assumes that it is already non-negative, i.e. there exists some non-negative
constant k, so that |GY −GX | ≥ k holds.

Assume that there exists a k > 0 so that the true average 3 E(|GY −GX |) is
≥ k. The absolute value is a convex function and |GY − GX | does not follow a
degenerate distribution, so Jensen’s inequality holds in its strict form, i.e.:

E(|GY −GX |) > |E(GY −GX)| ≡ |E(GY )− E(GX)| (3)

So, we cannot conclude that |GY − GX | ≥ k, i.e. even if the true average of
|GY −GX | exceeds some positive value, we cannot say that Y is superior to X .

3 We temporarily change the notation from Z to E(Z) for better readability.
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We must thus perform two tests with the Hoeffding Inequality, (1) for ΔG1 :=
GY −GX under the assumption that ΔG1 ≥ 0, and (2) for −ΔG1 := GX −GY ,
assuming that ΔG1 < 0. Equivalently, we can perform a single modified test on
a variable ΔG := GY − GX that ranges over [− log c; + log c], i.e. it may take
negative values! Consequently, the new range of the variable ΔG that we denote
as R′ is twice as high as the original range R. To apply the Hoeffding Inequality
on such a variable, we must reset the decision bound to:

ε′ =

√
R′2 · ln(1/δ)

2n
=

√
4
R2 · ln(1/δ)

2n
= 2 ·

√
R2 · ln(1/δ)

2n
(4)

i.e. to twice the bound dictated by Ineq. 1. Then, the correctness of the split
decision is guaranteed given δ. Alternatively, we can keep the original decision
bound and adjust the error-likelihood to δ4. Further, a larger number of instances
is required to take a split decision. We study both effects in Section 6.

4.2 Specifying a Proper Split Function

Functions like Information Gain cannot be used in combination with the Hoeffd-
ing Inequality, because they are not arithmetic averages [10]. We term a split
function that is an arithmetic average and satisfies the two prerequisites of the
Hoeffding Inequality (cf. Section 3) as proper.

For a proper split function, we need to perform the computation of the ex-
pected quality of a node split on each element of the node independently. We
propose Quality Gain, which we define as the improvement on predicting the
target variable at a given node v in comparison to its parent Parent(v), i.e.

QGain(v) = Q(v)−Q(Parent(v)) (5)

where the quality function Q() is the normalized sum:

Q(v) =
1

|v|
∑
o∈v

oq(o) (6)

and oq() is a function that can be computed for each instance o in v. Two possible
implementations of oq() are: isCorrect() (Eq. 7), whereas Q() corresponds to the
conventional accuracy, and lossReduction() (Eq. 8) that can capture the cost of
misclassification in skewed distributions:

isCorrect(o) =

{
1, if o is classified correctly

0, is misclassified
(7)

lossReduction(o) = 1−misclassificationCost (o) (8)

We use isCorrect() to implement oq() hereafter, and term the so implemented
QGain() function as AccuracyGain. However, the validation in the next Section
holds for all implementations of oq(). In the research regarding split measures
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the misclassification error has been indicated as a weaker metric than e.g. infor-
mation gain [5]. Our goal is, however, not to propose a metric that yields higher
accuracy of a model, but one that can be used together with the Hoeffding
Bound without violating its prerequisites and thus allowing for interpretation of
the performance guarantees given by this bound. In Section 6.2 we show that
this metric is competitive to information gain in terms of accuracy and it reveals
further positive features important for a streaming scenario.

5 Validation

We first show that our new split function satisfies the prerequisites of the Hoeffd-
ing Inequality. Next, we show that no correction for multiple testing is needed.

5.1 Satisfying the Assumptions of the Hoeffding Bound

Quality Gain, as defined in Eq. 5 using a quality function as in Eq. 6, satisfies
the Prerequisites of the Hoeffding Inequality. Prereq 1 (cf. Section 3) says
that the random variable has to be almost surely bounded. The implementations
of oq() in Eq. 7, range in [0, 1] and the same holds for the quality function Q()
in Eq. 6 by definition. Hence Prereq 1 is satisfied.

Prereq 2 (cf. Section 3) demands independent observations. In stream min-
ing, the arriving data instances are always assumed to be independent observa-
tions of an unknown distribution. However, as we have shown in subsection 3.1,
when Information Gain is computed over a sliding window, the content over-
lap and the combination of the instances for the computation of entropy lead
to a violation of Prereq 2. In contrast, our Quality Gain considers only one
instance at each time point for the computation of Q() and builds the arithmeti-
cal average incrementally, without considering past instances. This ensures that
the instances are statistically independent from each other. The Quality Gain
metric uses those independent instances to compute the goodness of a split. The
result of this computation depends, however, on the performance of the classifier.
Since, we consider a single node in a decision tree, the classifier and the entire
path to the given node remain constant during the computation of the Hoeffding
Bound. Consequently, all instances that fall into that node are conditionally in-
dependent given the classifier. This conditional independence of instances given
the classifier allows us to use the Hoeffding Bound upon our split function.

5.2 Do We Need to Correct for Multiple Testing?

As explained in subsection 4.1, the split decision of correctedVFDT requires two
tests on the same data sample: we compute ε for the best and second-best at-
tributes. Since the likelihood of witnessing a rare event increases as the number
of tests increases, it is possible that the α-errors (errors of first type) accumulate.
To verify whether a correction for multiple tests (e.g. Bonferroni correction) is
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Fig. 2. When stating that Y is superior to X with confidence 1−δ, the error likelihood
is δ; error and non-error areas are represented by numbers I - IV

necessary, we consider the different possible areas of value combinations sepa-
rately. The areas, enumerated as I-IV, are depicted in Figure 2.

Figure 2 depicts a situation where the Hoeffding Bounds of attributes X and
Y are separable, and allow us to state with confidence 1 − δ that Y is superior
to X . There is a chance of δ that this statement is wrong. We distinguish three
cases for variable X (and equivalently for Y ):

Case (1): the true averageX is indeed in the ε-vicinity of X̂: X̂−ε ≤ X ≤ X̂+ε
(area represented by II in Figure 2)

Case (2): X is left to the ε-vicinity of X̂: X < X̂ − ε (area I)

Case (3): X is right to the ε-vicinity of X̂: X > X̂ + ε (areas III and IV)

According to the Hoeffding Inequality, the likelihood of the Case (1) is 1− δ;
we denote this case as normal or (n). We assume that the likelihood of error δ

is distributed symmetrically around the ε-vicinity of X̂ , hence the likelihood of
Case (2) and of Case (3) is equal to δ/2. In Case (2), the real average X is at
the left of the ε-vicinity, hence the split decision would be the same as in Case
(1). Therefore, we mark Case (2) as not harmful (nh). In contrast, Case (3) for
variable X may lead to a different split decision, because we would incorrectly
assume that X is higher than it truly is. This is represented by areas III and IV
in Figure 2. We mark Case (3) as harmful (h).

In Figure 3 we show all possible combinations of cases and their likelihoods.
This tree depicts the likelihood of the outcome of each combination; the middle
level corresponds to the first test, the leaf-level contains the outcomes after the
first and the second test. For instance, the left node on the middle level denotes
the not harmful (nh) error of the first test. At its right we see the normal case
(n) with likelihood 1 − δ. The leaf nodes of the tree represent the likelihood of
outcomes after performing two tests: green nodes correspond to the not harmful

outcomes (n), (nh); red ones are potentially harmful (h); the blue ones contain
both harmful and not harmful outcomes.

Even if we consider all blue solid nodes as harmful, the sum of the likelihoods
of harmful outcomes (cf. Eq. 9) is still smaller than δ, hence a correction for
multiple tests (e.g. Bonferroni correction) is not necessary.

δ2

4
+

δ

2
(1 − δ) +

δ2

4
+

δ

2
(1− δ) +

δ2

4
= δ − δ2

4
(9)
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Fig. 3. Likelihood of all possible test outcomes. The middle level of the tree stands
for outcomes of the first test. The leafs correspond to likelihood of outcomes after
performing two tests. Green dashed leafs stand for no error (n) or not harmful error
(nh). Red dotted ones denote harmful error (h). Blue solid leafs combine harmful and
not harmful errors, so they have no label.

6 Experiments

We evaluate our correctedVFDT with oq() implemented as isCorrect() (Eq. 7),
i.e. with AccuracyGain as our split function (cf. end of Section 4). We measure
the impact of the modifications to VFDT [1] on classifier performance.

To quantify the impact of the improper use of the Hoeffdingin Inequality we
use two indicators: the number of Incorrect Decisions and the average number
of instances (Average n) considered before taking a split decision. For this ex-
periment, a dataset with known ground truth is necessary. The artificial dataset
and the experiment are described in 6.1.

When experimenting on real data, we quantify the performance of the stream
classifier asAvg. Accuracy and the tree size asAvg. # Nodes. For this experiment,
presented in subsection 6.2, we use the Adult dataset from the UCI repository[2].

6.1 Experimenting under Controlled Conditions

For the experiment under controlled conditions, we generate a dataset with a
discrete multivariate distribution, as described in Table 1. The dataset has two
attributes: A1 with three discrete values in {A,B,C}, and A2 with two discrete
values in {D,E}. The target variable takes values from {c1, c2}.

In this experiment, we simulate a decision tree node and observe what split
decision is taken in it. Since the distribution of the dataset is known , the at-
tribute that each split function should choose at each moment is known. As we
show in Table 2, we consider VFDT with IG - denoted as ’InfoGain’ (cf. first
two rows of Table 2 below the legend) for a decision bound of 1ε and 2ε, and
we compare with our correctedVFDT with Accuracy Gain - denoted as ’Accu-
racyGain’ (cf. last two rows of Table 2), again for 1ε and 2ε. This means that
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Table 1. Joint probability distribution of the synthetic dataset

A2 D E

A1

A c1 : 0.0675 c2 : 0.1575 c1 : 0.0675 c2 : 0.1575
B c1 : 0.1350 c2 : 0.0900 c1 : 0.1575 c2 : 0.0675
C c1 : 0.0450 c2 : 0.0050 c1 : 0.0450 c2 : 0.0050

Table 2. Results of 100 000 repetitions of decision process on a split attribute at a
node in a decision tree. We compare VFDT with ’InfoGain’ to correctedVFDT with
’AccuracyGain’ for the incorrect invocation of the Hoeffding Inequality (decision bound
1ε) and for the correct invocation (decision bound 2ε). For the performance indicators
’Incorrect Decisions’ and ’Average n’ lower values are better. The last column shows
the results of the significance test on the deviation of the measured error from the
theoretically permitted one, depicted in the ’Alternative Hypothesis’ column, where
the error-likelihood δ of the Hoeffding Bound is set to 0.05.

Setup Incorrect
Decisions

Average n Alternative Hypothesis p-value

InfoGain, 1ε 25738 117.31 P(incorrect decision) > 0.05 < 2.2e − 16

InfoGain, 2ε 1931 1671.53 P(incorrect decision) < 0.05 < 2.2e − 16

AccuracyGain, 1ε 3612 17.68 P(incorrect decision) < 0.05 < 2.2e − 16

AccuracyGain, 2ε 22 37.45 P(incorrect decision) < 0.05 < 2.2e − 16

we consider both the erroneous decision bound 1ε and the corrected invocation
of the Inequality with 2ε (cf. 4.1) for both VFDT and correctedVFDT.

In Table 2 we show the results, aggregated over 100,000 runs. In the second
column, we count the ’Incorrect Decisions’ over a total of 100,000 decisions. The
third column ’Average n’ counts the number of instances seen before deciding
to split a node. The confidence level of the Hoeffding Inequality was set to
1 − δ = 0.95, hence only 5,000 (5%) incorrect split decisions are theoretically
permitted. We run a binomial test to check whether the difference between the
observed error and the expected one is significant (column before last) and return
the computed p-value (last column of Table 2).

The original VFDT (1st row below legend in Table 2) exceeds the theoretical
threshold of 5000 Incorrect Decisions by far. The corrected invocation of the
Hoeffding Inequality (subsection 4.1) reduces the number of incorrect decisions
by 92.497% (cf. 2nd row in Table 2), but at the cost of increasing the number of
instances required to make a split from 117.31 to 1671.53. This means that the
learner would wait approximatively 10 times longer to take a split decision and
would abstain from possibly good split decisions. In contrast, correctedVFDT
makes less incorrect decisions and decides sooner, as seen in the last two rows
of Table 2. The 3rd row shows that even with the incorrect decision bound,
correctedVFDTmakes less incorrect decisions than the theoretic threshold. Best
results are achieved for the correct decision bound of course (4th row): only 22
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Table 3. Results analogous to those in Table 2, but with a confidence level of 0.99

Setup Incorrect
Decisions

Average n Alternative Hypothesis p-value

InfoGain, 1ε 14034 347.55 P(incorrect decision) > 0.01 < 2.2e − 16

InfoGain, 2ε 339 2872.24 P(incorrect decision) < 0.01 < 2.2e − 16

AccuracyGain, 1ε 1062 22.42
P(incorrect decision) < 0.01 0.9757
P(incorrect decision) > 0.01 0.02617

AccuracyGain, 2ε 2 49.7 P(incorrect decision) < 0.01 < 2.2e − 16

of the total 100,000 decisions are wrong, corresponding to an improvement of
99.915 %. At the same time, our method for 2ε needs only 2.24% of the instances
needed by VFDT, i.e. correctedVFDT converges much sooner than VFDT.

To ensure that these results are statistically significant we present the results
of the binomial tests. The alternative hypothesis in the 4th column in Table 2
differs from row to row. In the first row, the alternative hypothesis says that the
number of incorrect decisions will be higher than the theoretic bound (by the
Hoeffding Inequality); the p-value in the last column states that the alternative
hypothesis should be accepted already at a confidence level lower then 2.2e−16.
Hence, the theoretical bound is clearly violated by the original VFDT. The
alternative hypothesis in the other three rows states that the number of incorrect
decisions will stay within bound; this hypothesis is accepted.

In Table 3, we compare VFDT to correctedVFDT at a confidence level 1 −
δ =99%. The results are similar to Table 2, except for the correctedVFDT with
incorrect decision bound: the theoretic bound is violated (significantly, see last
column), i.e. even a good method will ultimatively fail if the Hoeffding Inequality
is invoked erroneously: both the corrected decision bound and a proper split
function are necessary for good performance (see last row).

6.2 Experiments on a Real Dataset

We have shown that the correctedVFDT with Accuracy Gain and correct deci-
sion bound (2ε) leads to an essential reduction of incorrect split decisions and
that the decisions are taken much sooner. We now investigate how these new
components influence the classification performance and size of created models
on a real dataset. We use the dataset ”Adults” from the UCI repository [2].

Stream mining algorithms are sensitive to the order of data instances and to
concept drift. To minimize the effect of concept drift in the dataset, we created
10 permutations of it and repeated our tests on each permutation, setting the
grace period of each run to 1. Therefore, the results presented in this section
are averages over ten runs. This also increases the stability of the measures and
lowers the effect of random anomalies.

For the two algorithms, we used the parameter settings that lead to best
performance. For VFDT, these were 1−δ = 0.97 and decision bound ε = 0.05, i.e.
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Table 4. Performance of VFDT and correctedVFDT of it on the ”Adult dataset”. The
columns ”Avg. Accuracy” and ”Avg. # Nodes” denote the accuracy and the number
of nodes of the decision trees, as averaged over ten runs.

Algorithm Avg. Accuracy Avg. # Nodes

VFDT 81,992 863.7

correctedVFDT 80,784 547.2

the invocation of the Hoeffding Inequality is incorrect. According to subsection
4.1, the true confidence is therefore much lower. For correctedVFDT, the correct
decision bound 2ε was used, the confidence level was set to 1 − δ = 0.6. The
second column of Table 4 shows the average accuracy over the 10 runs, the third
columns shows the average number of nodes of the models built in all runs.

According to the results in Table 4, VFDT reached a high accuracy, but it
also created very large models with 863.7 nodes on average. That high amount
of nodes not only consumes a lot of memory, but it also requires much com-
putation time to create such models. Furthermore, such extensive models often
tend to overfit the data distribution. In the second row of the table we see that
correctedVFDT maintained almost the same accuracy, but needed only 63.36%
of the nodes that were created by VFDT.

Our correctedVFDT does not only have the advantage of lower computation
costs regarding time and memory usage, but also a split confidence that is in-
terpretable. As we have shown in the previous subsection, the Hoeffding Bound
of the VFDT cannot be trusted, for it does not bound the error the way it is
expected. Consequently, setting the split confidence to 0.97 does not mean that
the split decisions are correct with this level of confidence. In contrast to that,
our method does not violate the requirements for using the Hoeffding Bound
and thus, we can rely on the split decisions with the confidence that we have set.

For this particular amount of data and concept contained in this dataset
(approximatively) optimal results have been achieved using the confidence of
0.6. This is much lower than 0.97 used with the VFDT, but this is only an
illusory disproportion. In fact, the confidence guaranteed by the VFDT was much
lower due to the violations of the requirements of the Hoeffding bound and it is
probably not possible to estimate it. Usage of our method allows to interpret the
results. We can see that it is necessary to give up the high confidence to achieve
the best result on a so small dataset.

7 Conclusions

We have shown that the prerequisites for the use of the Hoeffding Inequality in
stream classification are not satisfied by the VFDT core [1] and its successors. In
a controlled experiment, we have demonstrated that the prerequisite violations
do have an impact in classifier performance.

To alleviate this problem, we have first shown that the Hoeffding Inequality
must be invoked differently. We have adjusted the decision bound accordingly.
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We have further specified a family of split functions that satisfies the Inequal-
ity’s prerequisites and incorporated them to our new core correctedVFDT. Our
experiments on synthetic data show that correctedVFDT has significantly more
correct split decisions and needs less instances to make a decision than the orig-
inal VFDT. Our experiments on real data show that correctedVFDT produces
smaller models, converges faster and maintains a similar level of accuracy. More
importantly, the performance results of correctedVFDT are reliable, while those
of the original VFDT are not guaranteed by the Hoeffding Inequality.

We are currently extending correctedVFDT to deal with concept drift. Fur-
ther, we want to explicate the premises under which arithmetical averages and
more elaborate computations on the arriving stream (as in [10] for McDiarmid’s
Inequality) satisfy the prerequisite of independence. In our future work we are
also going to investigate the performance of Accuracy Gain, its robustness to
noise and concept drift on further datasets.
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Abstract. Exploratory data analysis is a fundamental stage in data
mining of high-dimensional datasets. Several algorithms have been im-
plemented to grasp a general idea of the geometry and patterns present
in high-dimensional data. Here, we present a methodology based on the
distance matrix of the input data. The algorithm is based in the number
of points considered to be neighbors of each input vector. Neighborhood
is defined in terms of an hypersphere of varying radius, and from the dis-
tance matrix the probability density function of the number of neighbor
vectors is computed. We show that when the radius of the hypersphere
is systematically increased, a detailed analysis of the probability density
function of the number of neighbors unfolds relevant aspects of the overall
features that describe the high-dimensional data. The algorithm is tested
with several datasets and we show its pertinence as an exploratory data
analysis tool.

Keywords: exploratory data analysis, high-dimensional data, probabil-
ity density function, neighborhood analysis.

1 Introduction

Exploratory data analysis (EDA) is a set of methodologies and techniques that
aid in the identification of general patterns present in data. In general, it is
based in visual inspection of some aspects of data, and it is considered to be a
preliminary stage within the process of data mining [1].

Since the seminal works of Tukey strong attention has been paid to computa-
tional tools to extract as much information from data as possible. The original
idea stands on the fact that there is no need of applying high-order statistics,
which in general is computationally expensive, to grasp some relevant aspects of
data [2]. For a panoramic revision of EDA, see [3,4].

The exploration of high-dimensional data presents several challenges. Among
them, the construction of algorithms that are able to capture not only the most
relevant, but also some subtle relationships between vectors as well, is of major
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relevance. In [5,6] can be found a wide discussion about the open problems and
some of the drawbacks of many of the most common high-dimensional data
analysis techniques.

Of particular relevance is the distance matrix (DM) of the vectors practitioners
are interested to explore. The information encoded in the DM is exploited in dif-
ferent ways by several algorithms. For example, hierarchical clustering finds the
nearest pair of vectors and constructs a new element that replaces both of them,
and iteratively constructs a tree [7]. Multidimensional scaling and non-linear
projections such as self-organizing maps can also construct a low-dimensional
representation of the distribution of high-dimensional data by processing the
distance matrix [8,9].

In an application to information retrieval, the structure of data in high-
dimensional spaces is grasped by computing the relative probability of the dis-
tance between pairs of randomly chosen vectors [10]. There, the distribution of
pairwise distances reveals the existence of some structure of the data when the
distribution deviates from the expected distribution of a random collection of
vectors. We continue into that direction but with some modifications.

In this contribution we apply distance-based concepts to construct the prob-
ability density function of the number of neighbors in a high-dimensional space.
Neighbors are defined as those points or vectors separated by a distance lower
than a given threshold, and we compute the histogram for the number of possi-
ble neighbors each vector has. By varying the neighborhood threshold, we can
obtain relevant information about the distribution followed by data in the high-
dimensional feature spaces.

The vast majority of tools to explore high-dimensional data are static in the
sense that they present a unique map, a tree or a set of rules that describes
the distribution followed by data in a high-dimensional space. We follow here a
somehow different route: we present a simple methodology that presents some
general properties of the geometry of data in a high-dimensional space and, at
the time that allows us to track individual vectors and in their relationships
with other vectors. The rest of the contribution goes as follows. In section 2
we describe the methodology to explore data by means of probability density
distribution, whereas in section 3 we present the results of analyzing several
datasets. Finally, in section 4 we present some conclusions and discussion.

2 The Proposed Algorithm

It is a common interest among practitioners to detect general properties of the
distribution followed by data embedded in high-dimensional spaces. The algo-
rithm we describe is based on the probability density function of the number of
neighbors. A vector or data has as its neighbors all other vectors within a certain
distance. The methodology is called Exploratory Data Analysis through system-
atic inspection of the Probability density Function of the number of Neighbors,
hereafter EDAPFuN .

Let H represent the high-dimensional data, and N be the number of vectors in
H (N = |H |). First, the distance matrix M is computed from H . The metric can
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capture different properties of data [11]. Let r be the radius of the hypersphere
that defines the neighborhood. Next, the probability density function of the
number of neighbors (PDF for short) is obtained by counting the number of
vectors that have within a distance r all possible number of vectors as neighbors.
It is better to express the number of neighbors as a probability, so hereafter we
will refer to the fraction of the total number of analyzed vectors that a given
vector has as its neighbors. Let γr be the PDF observed when neighborhood
is defined with an hypersphere of radius r, whereas γi

r refers to the probability
of having a fraction of i neighbors when the hypersphere is of radius r. Fig. 1
describes this stage of the algorithm.

Fig. 1. The first stage of the algorithm EDAPFuN . PDF are obtained for several
neighborhood values (r)

When we vary r from zero to the maximum distance in H , we obtain different
γr. The idea of the methodology here described is to study these PDF’s and how
they vary with r. Note that if r = 0, then γr will be described as a spike for
zero value since all vectors will have zero neighbors, and thus, the probability
that a vector chosen at random will have zero neighbors is 1. In this case, the
probability that a vector has one or more neighbors is zero. On the other hand, if
r is maximal, then we observe a spike for the case of i = 1 since the neighborhood
is large enough so that every vector has the maximum number of neighbors.

With EDAPFuN, instead of analyzing data in a high-dimensional space, we
can analyze it in the three-dimensional space defined by r and γr. γr is two-
dimensional, since in one axis it maintains the fraction of neighbors (n), and in
the other, the probability of finding a vector with that fraction of neigbors (Pn).
Since the computation of γr can be very demanding, and as it is not efficient to
compute it from scratch for each value of r, we followed the algorithm depicted
in 1:

Besides the visual inspection of PDF, several attributes from the obtained γr
can be computed so as to unveil relevant aspects from data in H . We present
some of those quantities in the next list.
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Algorithm 1. EDAPFuN algorithm

Let N be the list of high-dimensional vectors to be analyzed.
Let R be the list of values r can take.
Let DM be the distance matrix for vectors in N .
Let NN be the matrix of R rows and N columns that maintains the
number of vectors that have the specified number of neighbors i for a
specific neighborhood r: NNr

i

for all i ∈ N do
for all j ∈ N, i = j do

Let L = fit− radius(r,R,DM j
i )

for all k ∈ L do
nvk ← nvk + 1

end for
end for
for all r ∈ R do

NN
nv[r]
r ← NN

nv[r]
r + 1

end for
end for
γr is the normalization of NNr

– γr is the PDF when a neighborhood is defined by an hypersphere of radius
r. Since the number of possible neighbors is discrete, γr is represented by
a list with elements [i, pi] where i is the number of neighbors and pi is the
probability that a vector, chosen at random, will have i neighbors.

– rN the lowest r for which the probability of having as neighbors the maxi-
mum possible number of vectors (N − 1) is greater than zero. That is, rN
refers to the value of r at which at least one vector has as its neighbors all
other vectors. We just have to check the lowest r such that N−1 ∈ nr, in γr.
rN is then a measure of centrality. In a random distribution, it is expected
that pn is half the maximum possible distance in H .

– rl is the smallest value of r for which the probability of having zero neighbors
is zero for all vectors. That is, rl is the r for which all vectors have at least
one neighbor (0 �∈ nr).

– rz is the lowest value of r for which at least one vector has at least one
neighbor. That is, ∃ iγi

r > 0.
– Cr is the smallest r with the largest continuous nr.
– Dr is be the smallest r with the largest nr (not necessarily continuous).

It is time to observe what this representation can offer. First, note in fig. 2
how the PDF looks like for several benchmarks from the UCI repository [13].
γr is shown for 0 <= r < max, where max is the maximum distance between
two vectors in the dataset (diameter). Several metrics were considered and they
can be contrasted there. The interpretation of the figures goes as follows. For a
fixed r, γr represents the probability (in the z axis) of finding a vector with a
fraction n of neighbors. We will refer to the z axis simply as p, the probability
that a vector has the specified fraction of neighbors n for a radius r. Also, the
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Algorithm 2. fit radius function

function fit-radius(r, R, d):
L = [], x = |R|, cont = 1
while cont == 1: do

if d ≤ Rx then
L ← L+ x

else
return L

end if
x ← x− 1
if x == 0 then

cont = 0
end if

end while

projections to the space (r, n) (neighborhood of radius r and fraction of vectors
as neighbors n), (r, p), and (n, p) are shown.

We can observe in the three datasets that the spectrum of γr is deviated from
what it is expected for random distributions. For the Iris dataset, rN > max/2.
Also, we can observe that rl and rz are larger than expected. There can be seen
large discontinuities for values of 3 < r < 6, which express the existence of
clusters, since there are several vectors with a large number of neighbors, and
then, several vectors with a much lower number of neighbors, but no vectors
with an intermediate number of vectors.

For the red wine dataset, it is observed that rN is very low, which says data is
compacted within a subregion of the 11-dimensional space. There are, however,
some vectors very isolated from the rest. There are also several discontinuities
which unveils the existence of clusters.

Deviations from expected results for random distributions are a clue to grasp
general properties in H . In fig. 3 a three-dimensional dataset is presented. The
dataset consists of three clusters, each one with 350 points. It is observed that
there are deviations from the expected PDF if vectors were randomly distributed.
The minimum distance between points in different clusters is 0.29, and the max-
imal distance between points in the same cluster is also 0.29. It is observed that
γ̄0.29 presents a very different behavior that the one expected for randomly dis-
tributed vectors. Also, n0.29 is smaller that the corresponding number of possible
neighbors for the random dataset (see fig. 2).

The deviations tell some relevant facts. First, at a given neighborhood, the
maximum probability for some r is greater than expected. This is related to
the existence of clusters in data. EDAPFuN finds patterns in data, that is, non-
random distributions in data.

Table 1 shows the listed quantities for the two-dimensional datasets shown in
figs. 2-3. In the next section, we apply the algorithm to several datasets.

rN is expected to be max/2 for random distributions. If rN < max/2, then it
reflects that data is compacted, whereas if rN > max/2, then data is disperse.
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Fig. 2. PDF for several neighborhood values r (γr). Three datasets are included: Iris,
red wine and a five-clustered two-dimensional data set. Besides the PDF for 0 <= r <
max, it is also shown the projection over (r, n), (n, p), and (r, n).

rl takes into account isolated vectors. If there are isolated vectors, rl will be
higher. It can be observed in table 1 that this parameters are different for all
two-dimensional datasets. Cr is a measure of continuity in data: if there are
clusters, then Cr will tend to be smaller than expected for random distributions.
Dr is also a measure of

Let γr(v) be the fraction of neighbors that vector v has when considering a
neighborhood of radius r. Let κr(v) be the list of vectors that are neighbors of
vector v for a radius r. Let Wr(v) be the list of vectors with the same fraction
i of neighbors as that of vector v when radius is r. With these three quantities
and γr we can apply EDAPFuN in a different way. EDAPFuN allows not only to
grasp some properties of data, it also allows a dynamic track of each vector and
observe for each radius r the list of vectors that are its neighbors. This property
will be explored further in the next section, by showing several examples.
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Fig. 3. EDAPFuN for a three-dimensional dataset with three clusters

Fig. 4. EDAPFuN for some 2D artificial dataset, including a random distribution

Table 1. Attributes computed from γr for the datasets shown in previous figures

2D square 2 clusters 3 clusters 4 clusters 2D circle 2D circle bump ring ”Ef”

max 1.36 1.36 1.36 1.36 1.0 1.1 1.0 1.38
rN 0.66 1.07 1.05 1.12 0.5 0.5 0.62 0.68
rl 0.04 0.04 0.04 0.03 0.05 0.05 0.04 0.06
rz 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Cr 0.6 0.1 0.1 1.16 0.5 0.52 0.51 0.47
Dr 0.6 1.05 0.7 0.8 0.5 0.52 0.51 0.55
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Fig. 5. SOM U-matrix and HC for the presence/absence of 715 kinases along 160
pathways

3 Results

We present in this section the results of analyzing two dataset from the molecular
biology community. We contrast the analysis obtained by EDAPFuN with the
more traditional tools of hierarchical clustering (HC) and self-organizing maps
(SOM).

The first dataset consists of the presence/absence of 715 kinases in 168 path-
ways, derived from [12]. If we are interested in the general distribution of the 715
vectors in the 168-dimensional space, we will need to construct a low-dimensional
representation. In fig. 5-b) it is presented a HC, whereas a SOM is shown in 5-
a). In contrast, we applied EDAPFuN to the dataset and some outputs of the
system are displayed in fig. 6.
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Fig. 6. EDAPFuN for the presence/absence of kinases along 160 pathways. It is shown
the tracking of kinases AKT1, MAPK3, PCK1, and HIPK1

Fig. 7. EDAPFuN for different organisms
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In the SOM and HC it is clear that some of the vector are located in a cluster
very different to the rest of the vectors (upper right corner for the SOM, kinases
MAPK3 and AKT1). However, in the EDAPFuN analysis it is even clearer this
property, as it is shown by the steady probability of having a small and fixed
fraction of neigbors for a large range of values for r. It is only when the radius
r is large enough that the vectors in the isolated cluster start to have a larger
fraction of neighbors (black line for MAPK3, and blue line for AKT1).

The relationship between any number of vectors can be traced. In fig. 6 four
vectors are followed and marked by lines. The lines join the probability of finding
vectors with a fraction of n neighbors for a radius r. If we are interested to know
what are actually the neighbors of a relevant vector we can display them as
κr(v) maintains that information. In fig. 6-b it is shown the neighbors for one
of the vectors. Finally, if we want to know what other vectors present the same
fraction n of neighbors as the relevant vector v, we can also display it from
the information contained in Wr(v). Fig. 6-c shows those neighbors for a fixed
vector.

In the second dataset, several genomes were analyzed using EDAPFuN. Each
genome was divided in genes, and those genes were mapped to a high-dimensional
space defined by the relative abundance of each of the 4k possible sequences of
length k (there are four possible bases: A, C, T, G). Each gene was then assigned
to a position in the 4k-dimensional space. We show in fig. 7 some results from
EDAPFuN the case for k = 3 (64 dimensions), and four genomes where the
number of genes varied from 3035 to 1986. It is observed that there are variations
for what should have been expected for random distributions.

Also, it allowed us to identify genes atypically isolated in the high-dimensional
kmer-abundance spaces. Fig 8 shows the cases for one of the genomes in which
genes isolated genes in the 64-dimensional space were discovered. These isolated
genes may be related to genes acquired by an horizontal transference event [14].

Fig. 8. EDAPFuN for B. Burgdorferi
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4 Conclusions and Discussion

We have presented in this contribution a general overview of an exploratory
data analysis methodology. It is based on the probability density function of
the number of neighbors. The methodology, EDAPFuN from exploratory data
analysis based on the probability density function of the number of neighbors,
can aid in the task of finding general patterns of the distribution followed by
data in high-dimensional spaces.

The algorithm obtains the PDF for several neighborhood thresholds. The
variation of that PDF as a function of the neighborhood threshold is a tool
that allows us to have a better idea of data distribution in high-dimensional
spaces. EDAPFuN is based on the matrix distance of vectors, but it presents the
information on it in a special format that allows that relevant information about
the spatial distribution of high-dimensional data to be detected. That format is
the PDF, and from a single distance matrix, several PDF’s can be generated.

We have applied EDAPFuN to several datasets and it was able to unveil
general attributes, such as the existence of clusters, and the sparseness of data.
Also, several quantities that can help to abstract general properties of data
can be computed from the obtained PDF, such as the minimum neighborhood
threshold for the existence of a vector that has all the remaining vectors as
neighbors.

We suggest that EDAPFuN may accompany existing high-dimensional data
analysis tools, since it offers complementary information. It is not the intention
of this paper to bring the drawbacks of HC or SOM, but just to contrast the
information that can be retrieved from EDAPFuN with the one that can be
inferred from the mentioned methods. Finally, the software was developed in
Python and is available from authors webpage.
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SNI - CONACYT México. We thank colleagues at the Complex Systems Group
at the Universidad Autónoma de la Ciudad de México for fruitful discussions.
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Abstract. We propose a model of glaucoma progression based on the applica-
tion of Cellular Automata (CA) to visual field (VF) data, obtained through au-
tomated perimetry. VF sensitivities are converted into ganglion cell loss and 
CA are utilised to model the gradual deterioration of vision, mimicking degene-
ration of the actual ganglia. First we discuss the construction of a grid that ap-
proximates the VF map and the corresponding layer of ganglia in terms of cell 
counts in individual fields. The grid is populated with dead cells in accordance 
with patients’ tests, and then we run a CA, utilising a majority and a probabilis-
tic rule. Preliminary results are presented, showing that during its evolution, the 
CA often converges to configurations where the death of cells resembles VF da-
ta of the same patients, at later time. That is, the percentage loss of cells in VF 
fields observed in the CA resembles the real VF data. 

Keywords: Predictive Modelling, Cellular Automata, Genetic Algorithms, Vis-
ual Field Testing. 

1 Introduction 

Glaucoma is an optic neuropathy accompanied by the progressive deterioration of 
vision with structural defects such as evident optic disc damage [1]. It constitutes the 
second major cause of blindness (8%) after cataracts, affecting millions of people 
worldwide [2]. Glaucoma progression is characterized by a gradually increasing func-
tional deficit of the eye, with loss of VF, that is, the proportion of the space through 
which light can enter the eye and reach the retina. It has been established that early 
treatment can be extremely beneficial, to prevent irreversible loss of vision and per-
manent damage to the optic apparatus, hence prompt diagnosis is essential [3]. 

Understanding the mechanisms underlying glaucoma onset and progression is an 
active area of research, with substantial room left for investigation. The increasing 
availability of VF data has facilitated the application of machine learning methodolo-
gies to expand our knowledge and elucidate the various features of this ophthalmic 
condition. To date, research dealing with learning models of glaucoma progression 
from longitudinal data is somewhat limited. A few earlier studies have concentrated 
on basic methodologies, such as trend and event analysis [4,5]. More recent research 
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has utilized multivariate time series statistical modelling and Bayesian Network  
classifiers [6,7]. Additionally, in [8], the authors examine the application of temporal 
abstraction, producing qualitative interval-based patterns from temporal data, in con-
junction with association rule mining. 

Here, we propose the use of CA to produce models of glaucoma progression. Our 
paper is organised as follows; the background section elaborates on glaucoma and 
establishes the conceptual relevance of a CA model to ganglion cell death. Then the 
construction of an appropriate grid system that models the VF and maps cells to VF 
points is discussed. The results produced by the CA model utilising the grid are pre-
sented and commented on, followed by conclusions and directions for future work. 

2 Background 

While the deeper underlying cause of glaucoma is still to be deciphered, it is believed 
that it is due to a blockage in part of the eye, preventing fluid draining out. This in 
turn leads to increased intraocular pressure, causing damage to the optic nerve, con-
necting the eye to the brain, and the nerve fibres from the retina. Hence, excluding 
low and normal tension glaucoma, the advance of the condition is accompanied by 
morphologic changes at the retinal nerve fibre layer and the optic nerve head [3,9].  

Importantly, it has been established that the progressive loss of vision in glaucoma 
is due to the death of retinal ganglion cells and the degree of deterioration of vision is 
related to the extent of the loss [10,11]. More recently, a number of studies have pro-
vided quantitative relationships between the loss of ganglion cells and VF sensitivity 
[12-15]. These findings support the application of perimetry tests, widely used in 
clinical practice to acquire an estimate of the severity/stage of glaucoma.  

In brief, tests consist of light stimuli production, which the patient is asked to con-
firm seeing. The spots of lights are located at several locations on a VF map, with 
different tests using a variety of maps and test programs. Currently, computerized 
automated perimetry is the test of choice in clinical practice, commonly utilizing 
Humphrey Field AnalyzersTM under the 24-2 program (HFA, Carl Zeiss Meditec, Inc., 
Dublin, CA). In this case, the intensity of stimuli that the subject is able to see, at 52 
distinct locations, excluding the 2 blind spots, serves as means of estimating the sensi-
tivity of retina to light. A fovea-centred coordinates system, using a unique identifica-
tion number for each area, is utilized, as shown in Fig. 1. 

More precisely, for each VF location, a subject is shown a stimulus of adequate in-
tensity, in terms of age and other parameters. If seen, intensity is decreased by a cer-
tain amount, and the process repeated until the stimulus cannot be perceived. The 
process is then reversed, with intensity gradually increased until the subject reports 
seeing the stimulus again. The two thresholds, known as first and second reversal 
respectively, serve to estimate a mean value of sensitivity per spot [16]. 

What is of particular interest for the research presented here is that the retinal layer 
this map represents consists of an estimated 1.2 and 1.5 million ganglion cells [17]. 
They connect to sensitive photoreceptors known as rods and cones, forming a layer 
above them, constituting their receptive field [18]. The 24-4 Humphrey visual field 
test, samples about 650,000, roughly 60% of the total number of cells [15]. Important-
ly, it has been suggested that the loss of ganglion cells may follow particular spatial 
patterns. In [19] the authors examine the hypothesis that ganglion cell death has an  
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3 Methods 

3.1 Grid Preparation 

A model of estimating ganglion cells density (D) in a retinal location based on its 
eccentricity was utilised [24]. The aim is to approximate the number of cells con-
tained in each region, as given by [15], as closely as possible. Starting from the centre 
of the visual field, we estimate ganglion cell density (D) in degrees, according to [24], 
then converting it into distance (Dist) between adjacent cells, using equation (1). We 
store this value and move to an adjacent cell on the horizontal axis. Based on the new 
eccentricity of this cell, we perform a new calculation of cell distance. The process is 
repeated until the Humphrey field is covered, reaching the eccentricity of the corner 
most VF location on the horizontal axis. The process is then repeated to obtain the 
eccentricity (e) of all cells on the vertical axis, crossing the centre of the VF map. 
Once the distance of cells on the horizontal and vertical axis is computed, using equa-
tion (2), we estimate the eccentricities of diagonally located cells, and again using 
equation (1) the distances between them. Since the eccentricity of VF locations on the 
24-4 Humphrey test is known, the above information allows us to map each cell on 
the grid to a VF location. 

 D
Dist
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1=
 (1) 

 ( ) ( ) 




 += − 221 )tan()tan(tan vhe  (2) 

In an attempt to further improve the mapping of cells on a square grid to VF fields, a 
heuristic search was also employed [26]. Given a grid (e.g. Figure 1) we move the 
threshold lines, which separate distinct VF locations. In particular, we implemented a 
genetic algorithm (GA) [27], where a vector represents the x and y coordinates of the 
threshold lines indicated on Figure 1. To avoid the grid moving around, the central 
coordinates (y5, x6) were set and not subjected to change. Hence, we work with a vec-

tor G∈  {0-1000} 171×  where gi represents a coordinate of a threshold line. An upper 
value of 1000 corresponds to a grid of 1,000,000 cells, allowing it to contain 650,000 
cells in the area corresponding to a Humphrey 24-2 VF map. Here, g1 to g8 represent 
threshold coordinates y1 to y9, excluding y5, while g9 to g17 coordinates x1 to x10, ex-
cluding x6. Naturally, the GA population consists of list of such vectors. A mutation 
consists of an increase or decrease of a value within a chromosome, thus, a movement 
of the threshold line. Uniform crossover was also utilised, allowing for chromosomes 
to exchange parts. Parameters were tested and judged according to the produced grid.  

Additionally, we work with CA∈  {0,1} 1000 1000 × , representing a CA grid. The 
membership of each cell to a particular VF location as well as the total number of 
cells in a VF is readily available to us, as it is defined by the coordinates of the thre-
shold lines. For example, the number of cells within VF location 1, is equal to (y2-
y1)×(x5-x4), which, for our vector, is equal to (g2-g1)×(g14-g13). Hence, we obtain, for a 
set of coordinates, the number of cells in the matrix corresponding to each VF  
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location Vi. For example the vector [1 10 20 30 40 50 60 70 80 1 10 20 30 40 50 60 
70 80 90], with centre thresholds included for visualization purposes, would produce 
a regularly spaced grid, by ten cells, similar to the one in Figure 1. 

The fitness of a vector/solution is estimated using the mean of percentage absolute 
differences between V̂ and V , for each location in the VF map, using equation (3). 
V represents a vector, where vi equals the number of cells in VF field i, according to 

[15], V̂  a vector of estimated values produced by the GA, while N the number of VF 
fields, i.e. 52. Importantly, the algorithm was seeded with vectors corresponding to 
the grid produced with equations (1) and (2), which represents a configuration more 
similar in terms of cells contained in VF fields than a random or regularly spaced 
vector. 
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3.2 CA Implementation 

Having acquired a grid that approximates the Humphrey 24-2 visual field, we proceeded 
with the implementation of a CA according to the following rationale. First, from a data-
set of VF tests from Moorfields Eye Hospital, pairs of tests were extracted, correspond-
ing to patients’ subsequent tests, taken one year apart, resulting in 1125 pairs of tests. 
This is a reasonable time interval to observe progression given the nature of glaucoma 
[28]. The total deviations (td) from normal sensitivity to light, for each VF location, were 
transformed into percentage of loss of ganglia with equation (4) [15]. 
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Based on the percentage of dead cells, from the first test of a patient, we seed VF 
locations on the CA grid (produced by the GA) with ones, representing these dead 
cells. Naturally, zeros represent healthy ganglia. As the CA evolves we examine the 
similarity of each generation to the second test of a patient, in terms of average per-
centage difference in cell loss. 

At this early stage of the project, to study the merit of the discussed modelling ap-
proach, the CA was tested utilising some basic rules. First, the majority rule, where a cell 
surrounded by four or more dead neighbours (out of 8) dies (turns to “1”) was used. 
Second, a probabilistic model was utilised, according to equation (5). Here, P is the prob-
ability of a cell dying and c the number of dead neighbours surrounding it, taking into 
account two layers of surrounding cells. Using two layers and thus 24 neighbours allows 
the probability value to vary more substantially. With no dead neighbours (c=0) aP =0

, 

while with all 24 neighbours dead the probability becomes 24
1

×−×= λeaP . Hence λ can 

be estimated according to equation (6). By setting the probability of a cell dying, even if 
surrounded by healthy cells, to a value above zero, we account for random death. This is 
in agreement with medical rationale, as ganglia do gradually die throughout a person’s 
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lifetime [28]. In addition, having an increasing probability of a cell dying in a damaged 
area of the retina, that follows the degree of the damage, rather than a simple determinis-
tic rule, seems more sensible from a biological point of view. 

 ceaP ×−×= λ  (5) 
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4 Results and Discussion 

4.1 Grid Construction 

The grid obtained utilising equations (1) and (2) is a better approximation of the retin-
al layer represented by the Humphrey 24-2 map, than a regularly spaced grid, contain-
ing the same number of cells in each VF location. Still cells contained in each VF 
location differ about 50% on average, in terms of numbers, from actual estimations. 
Plausible reasons for this discrepancy include the fact that retinal ganglion cells are 
located on an elliptical layer rather than a flat surface. Additionally, equations (1) and 
(2) are only estimates and their repeated use exacerbates any existent error. Further-
more, cell configuration is not exactly similar to a square grid and it has been sug-
gested that it resembles a hexagonal grid [25]. Nevertheless, for practical purposes of 
running an efficient CA, it is convenient to use a square grid as an approximation. 

Importantly, the GA produced a grid where numbers of cells in VF locations are on 
average 87% similar to those reported in [15] (Figure 2). Hence a much better approx-
imation of ganglion numbers in the VF points than the one produced with equations 
(1) and (2). Figure 3 displays the difference in terms of cell numbers between actual 
observations ([15]) and the initial method, utilising equations (1) and (2), as well as 
the seeded GA. 

 

Fig. 3. Percentage difference between actual cell counts VF map and cells in the constructed 
grid, for the initial and GA method 
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4.2 CA Evolution 

At this early stage of research, initial CA rule exploration was performed based on a 
set of pairs of VF tests of the same patient, taken a year apart. The grid was seeded 
with dead cells according to the first test of each patient and the CA was imple-
mented, using the majority rule and the probabilistic model (section 3.2) with two sets 
of Po and P1 probabilities (table 1). 

We observed that in a substantial number of cases subsequent generations of the 
CA converged towards a configuration that resembles the test taken a year later, be-
fore diverging. That is, the percentage of dead cells in the 52 VF fields resembled the 
one estimated with equation (4), for the second VF test. In each case the CA was run 
10 times and the similarity between runs was found to be very high, with standard 
deviation of less than 0.1%. In particular, for the majority rule the CA converged 
towards a state more similar to the second VF test of a patient in 346 instances, in 
each of the 10 runs. Cases of convergence were significantly higher for the probabilis-
tic model. The generation at which the most similar state was reached showed some 
variability for different patients, with some requiring only a few generations to reach 
the maximum similarity and others over a hundred. However, it was remarkably close 
for runs on the same patient, often reaching the same state at the same number of 
generations in each run. 

 

Fig. 4. Similarity in cell loss % between the evolving CA and the actual cell loss according to 
the VF data transformed with equation (4) 
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Table 1 summarises the results for the three CA rules, while Figure 4 displays an 
example of convergence of the CA to a subsequent VF test for each of the rules on 
table 1. The observation that incorporating the probability of random death leads to 
increased similarity between the CA and expected cell death, according to the data, is 
biologically sensible, as ganglion cells do degenerate with time. Finally, it should be 
mentioned that the blind spot area is not taken into account, as it is empty of ganglion 
cells. 

Table 1. Comparison of results produced by the CA for different spatial rules 

Rules 
 

Number of experiments converging to-
wards VF test 

Mean similarity reached/ 
Standard deviation 

Majority 346 92.3%    5.3% 

P0=0.1 
P1=0.9 

508 92.9%    5.1% 

P0=0.1 
P1=0.5 

610 93.1%    4.9% 

5 Conclusions and Future Work  

This paper proposes the utilisation of CA to model the progression of glaucoma, pre-
senting the construction of a grid closely approximating the retinal ganglion cells 
tested by the Humphrey 24-2 VF method. Some preliminary work utilising a simple 
majority rule and a probabilistic rule for the CA were presented. The approximation 
of the second test of patients, by the CA following these initial rules, is interesting and 
strengthens the hypothesis that ganglion cell death may follow spatial patterns. It is 
plausible that different sets of rules may apply to different patients, varying with un-
derlying glaucoma causes and individual medical factors. The application of a CA for 
modelling such patterns seems appealing. 

Naturally, further research is clearly needed to establish the merit of the proposed 
approach. Rules of cell death need to be explored, in terms of the area of the neigh-
bourhood of cells which influence the survival of a cell and the probabilistic model. 
Here, only the immediate eight (one layer) or 24 (two layers) neighbours were consi-
dered, but it is worth expanding the area and implementing varying probabilities. It 
should be noted that cell death probability may be related to eccentricity, in the sense 
of varying ganglion cell density and configuration. Furthermore, sequence pattern 
mining of the order of depression of VF locations could be beneficial, for establishing 
if certain areas tend to be depressed first. This approach could be utilised to establish 
varying probability of cell death according to VF topography. 

In addition, there is evidence that vision improves in some patients following 
treatment, which suggests that some damaged cells may recover [14]. Hence, a three 
state CA, with ‘dead’, ‘alive’ and ‘diseased’ cells, and rules allowing recovery of the 
latter, seems a more realistic and promising approach. 
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Given the large dataset that we have at our disposal, reverse engineering of CA 
rules based on patients that have taken a number of VF test is worth exploring. In 
addition, a CA can be seeded with a patient’s test and allowed to evolve as proposed 
here. Then mapping of all subsequent tests of the same patient to later CA genera-
tions, in terms of similarity, can be examined. For this, a parallel CA, utilising GPU 
programming to massively increase speed, is worth consideration [29]. 

Finally, at later stage, when CA rule exploration has been performed, the predictive 
value of the model will be considered in regard to other work [6-8]. 
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Abstract. Knowledge discovery and computational creativity have until lately
been investigated by two separate research communities. However, research in
bisociative, cross-context knowledge discovery has recently started addressing
creative tasks, including creative literature mining. This paper contributes to this
effort by investigating an approach to cross-context link discovery based on
banded matrices, aimed at identifying meaningful bridging terms (b-terms) at
the intersection of two different domains. The proposed approach was applied
to a simplified computational creativity task of narrative ideation from pairs of
short sentences. As input, we took sentences from two different contexts: what-if
sentences retrieved from Twitter, and morals from Aesop’s fables, respectively.
The approach resulted in a list of linked pairs of sentences from these two do-
mains, illustrating the potential of the proposed approach to cross-context narra-
tive ideation.

1 Introduction

The rate at which novelties are introduced in modern life has been so rapid that it invites
changes in the way humans cope with creativity, especially how we gather information
and how we make new connections between pieces of information. In the emerging field
of computational creativity, Wiggins [1] has proposed the following definition: “com-
putational creativity refers to performance of tasks (by a computer) which, if performed
by a human, would be deemed creative”.

This paper addresses a creative task of bisociatively connecting narratives from dif-
ferent domains. According to Koestler [2], a bisociation can be defined as (sets of)
concepts that bridge two otherwise not (or very sparsely) connected domains. In his
view, bisociative thinking occurs when a problem, idea, event or situation is perceived
simultaneously in two or more different “matrices of thought” or domains. When two
matrices of thought interact with each other, the result is either their fusion in a novel
intellectual synthesis or their confrontation in a new aesthetic experience. Koestler re-
garded many different mental phenomena which are based on comparison (such as
analogies, metaphors, jokes, identification, anthropomorphism, and so on), as special
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cases of bisociation. Following Koestler’s ideas, the goal of this paper is the develop-
ment of a computational system, which blends elements drawn from two previously
unrelated matrices of thought into a new matrix of meaning.

In the area of knowledge discovery and literature mining, cross-domain connections
have been the topic of recent research. In the area of bisociative knowledge discov-
ery, Berthold [3] defines that two concepts are bisociated if there is no direct, obvious
evidence linking them and if one has to cross different domains to find the link. Further-
more, a new link must provide some novel insight into the problem addressed. Several
approaches to cross-domain knowledge discovery have been recently developed and re-
ported [3]. In literature mining, on the other hand, cross-domain links in medical litera-
ture has been a topic of extensive research since early 1980s. For example, Smalheiser
and Swanson [4] developed an online system ARROWSMITH which is supported by
Swanson’s ABC model approach. ARROWSMITH takes as an input two sets of titles
from disjoint domains A and C and lists terms that are common to A and C. The result-
ing bridging terms (b-terms, forming set B) are further investigated for their potential
to generate new scientific hypotheses.

Recently, the developers of the CrossBee system [5] investigated a specific form
of bisociation, by exploring terms that appear in documents which represent bisocia-
tive links between concepts of different domains. Their methodology is based on an
ensemble of specially tailored text mining heuristics which assign the candidate bridg-
ing concepts a bisociation score. The resulting ranked list of potential domain bridging
terms enables the user to start inspecting b-terms with top-ranked terms, which should
result in higher probability of finding observations that may lead to the discovery of new
bridges between different domains. As described, the creative act is to find links which
cross two or more different domains, leading out of the original “matrix of thought” or
“out-of-the-plane” in Koestler’s terms [2].

In our work we study heuristics for b-term ranking, resulting in an ordered list of
potential bridging terms. The novel methodology introduced in this paper uses banded
matrices [6] to discover structures which reveal the relations between the rows (rep-
resenting documents) and columns (representing words/terms) of a given data matrix
(representing a set of documents). We use this information in developing new heuristics
for evaluating words/terms according to their bridging term (b-term) potential. In addi-
tion, the method enables the identification of document outliers, but this is out of the
scope for this paper. While this methodology is mainly targeting cross-context knowl-
edge discovery, this paper focuses on its use in the context of computational creativity
for bisociative, cross-context narrative ideation. In the simplified narrative ideation sce-
nario addressed in this paper, we use the proposed methodology for b-term ranking on
documents from two domains to discover the bridging terms with the aim of combining
sentences from the two domains. In our illustrative example, the first domain consists
of 94 What-if sentences taken from Twitter, while the second domain consists of 277
morals from Aesop’s fables. The presented approach resulted in a list of interesting
linked pairs of sentences from both contexts. An example of such a pair of sentences is:
“What if humans could actually breathe in space and the government says we can’t so
we don’t try to escape? Nothing escapes the master’s eye.”
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The paper is structured as follows. In the next two sections, we describe the method-
ology of discovering links between two unrelated contexts by using banded matrices.
In the experimental section, we present the results of our methodology in a simplified
narrative ideation scenario, to combine statements from two different domains. We con-
clude the paper by highlighting the most important findings and providing some plans
for further work.

2 Banded Matrices: Definition and a Motivating Example

Our research aims at finding cross-domain links by exploring the bridging terms (b-
terms) at the intersection of domains that establish links between two domains of interest.
The proposed approach follows the work of Juršič et al. [5], which already contributed to
b-term detection in cross-context literature mining. The approach to cross-context link
discovery that we investigate in this paper is new: it is based on banded matrices [6].

Our methodology works by first encoding the documents from the two domains into
the standard Bag-Of-Words (BOW) vector representation and then transforming the
binary matrix of BOW vectors to its banded structure. The proposed banded matrices
methodology is based on the assumption that similar documents, as well as the words
that appear in the same document, will appear closer to each other in the matrix and will
therefore form “clusters” along the main diagonal of the matrix in its banded form1.
Our work is based on the intuition that terms that connect different domains will be
positioned at the edges of clusters from different domains: we have developed different
heuristics that should be able to identify these b-terms by ranking them high in the
ranked list of terms with high potential for cross-context link discovery. We introduce
below the banded matrices, and follow this with a toy example illustrating the approach.

2.1 Definition of Banded Matrices

Uncovering structures that reveal the nature of relations between rows and columns
of data matrices is an important step towards solving real-world problems, as binary
data occur in numerous real-world applications. Recent research in social networks,
bioinformatics, and human genomics has shown the benefits of banded representations
of matrices [7]. These representations have contributed to bringing huge performance
boosts in various mathematical operations, including matrix multiplication.

To explain the algorithm that transforms a matrix into its banded structure we first
need to define the basic concepts. A binary matrix has a banded structure if we can find
a permutation of rows and columns such that the 1s exhibit a staircase pattern down the
rows along the leading diagonal, as illustrated in Figure 1.

A binary matrix M is fully banded if there exists a permutation of rows κ and a permu-
tation of columns π such that:

1. for every row i in Mπ
κ the entries with 1s occur in consecutive column indices

ai, ai + 1, . . . , bi, and
2. the values of starting indices for 1s in successive rows (i and i+1) satisfy ai ≤

ai+1 and bi ≤ bi+1.

1 A correspondence between bi-clustering and banded structures has been shown in [7].
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A necessary precondition for (1) to hold is that matrix M satisfies the consecutive-ones
property: a binary matrix satisfies this property if it is possible to order the columns so
that in every row the non-zero entries occur in consecutive positions.

As banded structured matrices cannot be expected to arise in noisy real-world envi-
ronments, we need to redefine the problem in the sense that it is applicable to a wider
range of real-world situations. We aim to minimize the number of transformations one
needs to perform on a binary matrix to unveil a banded structure. The number of such
transformations will measure how far the matrix is from being fully banded. The algo-
rithm presented in the next section (following the motivating example) aims to solve
this optimization problem.

Fig. 1. An example of a fully banded matrix Fig. 2. Documents (rows) and words
(columns) in an ideal-world domain. The
color of the row indicates the domain of the
document (blue for domain A and red for
domain C).

2.2 A Motivating Example

Let us have two sets of documents A and C. For the purpose of explaining the method-
ology we constructed a small ideal-world dataset, which consists of 6 clusters of docu-
ments, 3 of which belong to domain A, while the others belong to domain C. Initially,
we took a set of 120 different randomly selected words and randomly divided them into
6 clusters, so that there were no intersections, i.e., each word belonged to one cluster
only. The number of possible words per cluster was 20, while each document in the
cluster was randomly assigned only 15 of these words. Using a banded matrix algo-
rithm presented in the next section this document set would first be transformed into
the structure shown in Figure 3 and finally into a fully banded matrix form shown in
Figure 4.

In order to illustrate our methodology, we randomly chose 8 words from each of the
two domains A and C to act as artificially defined, preselected bridging terms. This
effect was achieved by inserting the preselected terms into every document in every
cluster with a 10% chance, thus spoiling the original clean separation of words within
documents of different clusters. The resulting matrix showing documents as rows, and
words as columns, is depicted in Figure 2, where the green vertical lines represent the
artificially inserted b-terms. As the aim of our method is to identify the bridging terms,
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Fig. 3. Final result of our methodology: ma-
trix of documents from Figure 2 permuted
using row and column permutations ob-
tained from the transformation of the matrix
into its fully banded structure

Fig. 4. Matrix of documents shown after the
transformation of documents in Figure 2
into a fully banded matrix structure. Rows
represent the documents, while columns
represent the terms. The green vertical lines
represent the terms which were inserted as
potential bridging terms to the documents.

we conducted experiments to check how the designed preselected terms will be ranked
by our heuristics.

Having used our methodology on the ideal-world toy domain of Figure 2, we got
the result shown in Figure 3. The green vertical lines represent the terms which were
deliberately acting as bridging terms in this experiment. As can be seen from Figure 3,
similar documents (documents from the same cluster) and similar terms (terms that are
contained in the same document cluster) are located close to each other. As a result,
the “clusters” along the matrix leading diagonal are clearly visible. Note that the pres-
elected bridging terms occur mainly on the transitions between the clusters. All of our
heuristics (explained in the next section) correctly assigned a b-term score greater than
0 only to the preselected bridging terms, which served as a proof-of-concept for the toy
experiment.

Let us now consider a single document only. A document from domain A (repre-
sented with a horizontal yellow line on Figures 2, 3 and 4 consist of the following words:
magnesium blood cell prophylaxi relationship lithium red calcium effect sodium con-
trol membrane measurement potential perfuse ophthalmoplegic simultaneous, where
the first 15 words were randomly selected from the document’s cluster term set, while
the two words in bold were randomly inserted from the preselected set of bridging
terms. The blue dots on of the horizontal yellow line in Figure 3 consequently symbol-
ize the above words. According to the banded structure of the matrix (see Figure 4) the
words simultaneous and ophthalmoplegic belong to word clusters of domainsA and C,
respectively. While the observed document belongs to domain A, the term ophthalmo-
plegic is representative for the documents from domain C. Therefore, our methodology
should be able to identify this term as a potential b-term. In contrast, as the word simul-
taneous is used in the documents from the same domain A, it should not be considered
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as a b-term. Indeed, our heuristics (presented in the next section) have only identified
ophthalmoplegic as a b-term. Figure 4 shows the final result of the banded matrix algo-
rithm and will be used in the next section for the explanation of our heuristics.

3 A Methodology for B-Term Ranking Using Banded Matrices

Our approach is designed to find links between two domains, named A and C, by ex-
ploring the bridging terms that connect these two separate domains. The methodology
works as follows. First, we preprocess the documents from the two domains using stan-
dard text mining techniques [8]. This is performed through a number of steps: stop-word
removal, stemming or lemmatization, usage of synonym dictionaries, construction of n-
grams of words and, finally, transformation to a Bag-Of-Words representation. Next, the
result of the preprocessing step, i.e., the binary matrix of “Bag-Of-Words” vectors (the
BOW matrix), is transformed to its banded matrix structure. Finally, we sort the terms
according to their scores representing their bridging term potential, computed accord-
ing to the new heuristics described below. In the following subsections, each step of the
proposed bridging term detection and ranking methodology is described in detail.

3.1 Constructing a Banded Structure Using a Bidirectional MBA Algorithm

The optimization problem addressed to make a banded matrix is labeled Bidirectional
Minimum Banded Augmentation (bidirectional MBA) [6] and is defined as follows:

Given a binary matrix M, find the minimum number of bidirectional flips (flips from
both 1s to 0s and 0s to 1s) so that M becomes fully banded.

Algorithm 1: Bidirectional MBA algorithm
1. Find fixed permutation of columns π.
2. Solve the consecutive-ones property on the column permuted matrix Mπ .
3. Resolve Sperner conflicts (defined later in this section) between rows in Mπ .
4. Sort the rows in Mπ and return the row permutation.

The presented MBA algorithm discovers a single band by first fixing the column per-
mutations of the data matrix before proceeding with the rest of the algorithm. A good
permutation of columns tends to put similar columns (i.e., terms) closer to each other.
We use the Jaccard coefficient as a column similarity measure: J(Ma,M b) = Ma∩Mb

Ma∪Mb .
In our example, this similarity measure returns the highest value of 1 when two terms
occur in the same set of documents. We used the spectral ordering algorithm [9] to find
the fixed column permutation π of matrix M .

Next, the algorithm deals with solving the consecutive-ones properties on rows of
matrix Mπ, which is an essential step in finding the row permutation κ. Solving the
consecutive-ones problem for row Mπ

i with bidirectional flips corresponds to solving
the maximum sub-array problem on matrix W j

i [6], defined as follows:
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W j
i :=

{
1 if M j

i = 1

−1 if M j
i = 0

.

The objective of solving the maximum sub-array problem is to find the sub-array of
the matrix that has the maximum sum of numbers. This problem can be solved in linear
time with respect to the size of the array using the scan-line algorithm [10]. This method
returns the interval boundaries which we use to solve the consecutive-ones problem in
Mπ

i by setting the fields in Mπ
i between the boundaries to 1 and others to 0.

Next, the algorithm deals with removing the Sperner conflicts between the rows of
matrix Mπ. A matrix has Sperner conflicts if its rows do not form a Sperner family of
intervals:

Two rows Mi = [a, b] and Mj = [a′, b′] with consecutive-ones property, where i �= j,
form a Sperner family of intervals if they are overlapping such that (a ≥ a′ ∨ b′ ≥
b) ∧ (a′ ≥ a ∨ b ≥ b′).

Additional flips on rows of Mπ need to be made in order to ensure that rows have the
Sperner family of intervals property.

Let M̂ be the binary matrix M augmented with Mij = Mi\Mj for every two rows
Mi ⊂ Mj . Note that M is fully banded if and only if M̂ has the consecutive-ones
property (proof in [6]).

To eliminate all Sperner conflicts between row intervals of Mπ, the algorithm has to go
through all extra rows described in M̂ and make sure that they have the consecutive-
ones property. This can be done by solving the maximum sub-array problem on the extra
rows of M̂ . We perform additional flips in order for the rows to obtain consecutive-ones
property. Lastly, we update the rows in Mπ according to the changes made over M̂ in
order to get a banded matrix.

Finally, the algorithm sorts rows [a, b] of Mπ in an ascending order of as, while de-
ciding ties with the ascending order of their bs. The result of the algorithm is a banded
matrix Mband, along with details of the row and column permutations that were per-
formed. We use these permutations on our original matrix M, as the objective is to pro-
duce a matrix without distorting the data (i.e. without making the bidirectional flips). In
the next section, we present the heuristics for calculating the b-terms potential scores.

3.2 New Heuristics for B-Terms Potential Evaluation

Here we describe the details of the four heuristics which we propose for computing the
bridging term potential scores. After completing the step of term score computation, we
sort the terms according to the values of one of the heuristics and present the top-ranked
terms (hopefully representing the most interesting b-term candidates) to the expert. The
designed heuristics should favor b-terms over non-b-terms by pushing interesting b-
term candidates higher to the top of the ranked term list. For easier definition of the
proposed heuristics we define variable didx to represent the row index of document d
in the banded matrix Mband and tidx to represent the column index of term t in Mband.
Note that in order to compute the score of the proposed heuristics, we distinctively take



340 M. Perovšek et al.

into account the document-term matrix in two forms, banded (as shown in Figure 4)
and full (as shown in Figure 3).

Heuristic 1: This is a frequency based heuristic for computing the b-term potential.
If all document-term pairs in the tidx-th column of matrix MBand, which equal to 1,
belong to the same domain, we denote this domain as D1. Note that in such a case,
the tidx-th column, which represents term t in the banded matrix, should be “single-
colored” in the matrix visualization in Figure 4. If the documents in the MBand for
term t do not belong to the same domain, the heuristic returns score 0 for this term
(h1score(t) := 0). Otherwise, the score of Heuristic 1 for term t is defined as:

h1score(t) := countDocD2(t),

where countDocD2(t) is the number of documents that contain term t and belong to
domainD2 (do not belong to domainD1) in the matrix shown in Figure 3. This heuristic
is based on the assumption that terms which strongly represent one domain (the single-
colored column in the banded matrix of Figure 4), and at the same time there are many
documents from the other domain that contain these terms, have a higher chance of
being the bridging terms between the two domains.

Heuristic 2: This is also a frequency based heuristic. Similarly as described in Heuris-
tic 1, if all documents for which the tidx-th column of matrix MBand equals to 1 belong
to the same domain, we label this domain as D1. Otherwise, the heuristic returns score
0 for term t (h2score(t) := 0). Heuristic 2 score for term t is defined as:

h2score(t) =
countDocD2(t)

countOnDiagDocD1(t)
,

where countDocD2(t) is the number of documents from domain D2 that contain term
t, and countOnDiagDocD1(t) is the count of document-term pairs equaling 1 in the
tidx-th column of the banded matrix MBand: countOnDiagDocD1(t) := |{didx; d ∈
D1 ∧MBand(didx, tidx) = 1}|. Therefore, for term t h2score(t) is the ratio between
the count of documents that belong to domain D2 and the documents in the MBand for
term t which belong to domain D1. The intuition behind this heuristic is that a term that
strongly represents a given domain according to the banded matrix, and is at the same
time also contained in many documents of the other domain, should also have a high
b-term potential score.

Heuristic 3: This is an inverse of Heuristic 2, defined as:

h3score(t) :=

{
0 if h2score(t) = 0

1
h2score(t) otherwise

The intuition behind this heuristic is that a term that strongly represents a domain in
banded matrix Mband should get a higher score compared to the other terms. The num-
ber of documents on the diagonal should be as high as possible: column tidx should
contain as many document-term pairs from the same domain.
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Heuristic 4: If the documents in MBand for term t do not belong to the same domain,
this heuristic returns a score of 0 (h2score := 0). Otherwise, we label this domain as
D1 and define the Heuristic 4 score for term t as follows:

h4score(t) =
countOnDiagDocD1(t)

countDocD1(t)
∗ countDocD2(t),

where countOnDiagDocD1(t) is the count of document-term pairs in the
tidx-th column of banded matrix MBand, and where documents belong to domain
D1: countOnDiagDocD1(t) = |{didx; d ∈ D1 ∧ MBand(didx, tidx) = 1}|;
countDocD1(t) denotes the number of documents from domain D1 that contain term t,
while countDocD2(t) is the number of documents from domain D2 that contain term
t. The bridging term potential score for term t is the ratio of documents from domain
D1 that lay on the diagonal multiplied by the number of documents from the other do-
main. The intuition behind this heuristic is that for term t, the more the term represents
a domain (has a large proportion of document on the diagonal of the banded matrix)
and also the more documents from the other domain that contain t exist, the higher the
potential of term t to be a bridging term between the two domains.

All the heuristic scores are normalized by dividing the term scores with the highest
score. The result of our methodology is a list of terms sorted by their b-term potential
scores. It should be left to the domain expert to check whether the discovered bridging
term suggests a valid, new and interesting relation. While the methodology has been
currently applied to bridging two domains only, the method can be generalized to con-
necting several different domains, which is the topic of our further research.

4 Using Banded Matrix-Based B-Term Ranking for Bisociative
Morals Ideation

Although not primarily designed for this task, our methodology can be used for creating
pairs of sentences from different domains, which combine into surprising, funny or
even insightful pieces of text when put together and considered as a whole. Bridging
terms, appearing in both sentences, detected by our methodology function as a kind of
glue, contributing to the coherency and increasing the potential for combinations to be
meaningful.

To illustrate the potential of the proposed approach for narrative ideation, we chose
two domains: What-if sentences and Aesop’s fables’ morals. The first domain con-
sists of 94 What-if sentences, retrieved from Twitter (using hash tag #whatif) and the
UKWaC British English web corpus. For instance, here is example of such a sen-
tence: “What if Google someday went down and we couldn’t Google what happened
to Google?” The Aesop’s fables2 morals dataset is a collection of 277 fable morals. We
created this dataset by crawling the Aesop’s fables online collection.

2 Aesop was a Greek fabulist, known as author of numerous fables; these are characterized by
animals, which solve problems and have human characteristics. See
http://www.aesopfables.com/

http://www.aesopfables.com/
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Table 1. Results of our methodology: combinations of what-if sentences with Aesop’s fable
morals. In the brackets are the fable titles, which were not part of the document’s contents, but
are given here as an additional piece of information. The bridging terms are shown in bold.

What if life is one big dream, and when we die, we wake up. Evil tendencies are shown in early
life. (The Man, the Boy and the Donkey)

What if we woke up, as a baby, and our whole life had been a dream? Evil tendencies are shown
in early life. (The Man, the Boy and the Donkey)

What if, like Bhutan, we gauged our life’s success by how happy we are, not by how big the
house is, the number. Evil tendencies are shown in early life. (The Man, the Boy and the Donkey)

What if someone you love dearly gave you a surprise bday party and when you arrived every1
was exchanging gifts but not nary a 1 was for you! Misery loves company. (The Fox Who Had Lost

His Tail)

What if someone you love dearly gave you a surprise bday party and when you arrived every1
was exchanging gifts but not nary a 1 was for you! Even the wildest can be tamed by love. (The

Lion in Love)

What if there are other beings in the same room as us but we can’t see them and they can’t see
us. Not everything you see is what it appears to be. (The Dancing Monkeys)

What if there are other beings in the same room as us but we can’t see them and they can’t see
us. Gossips are to be seen and not heard. (The Eagle the Cat and the Wild Sow)

What if we don’t see tomorrow and everything you said today couldn’t be undone. Would you
be proud? Not everything you see is what it appears to be. (The Dancing Monkeys)

What if we don’t see tomorrow and everything you said today couldn’t be undone. Would you
be proud? Gossips are to be seen and not heard. (The Eagle the Cat and the Wild Sow)

What if eyeballs had butts but we couldn’t see them because they’re hidden in our skulls? Not
everything you see is what it appears to be. (The Dancing Monkeys)

What if eyeballs had butts but we couldn’t see them because they’re hidden in our skulls?
Gossips are to be seen and not heard. (The Eagle the Cat and the Wild Sow)

What if humans could actually breathe in space? And the government says we can’t so we don’t
try to escape? Nothing escapes the master’s eye. (The Stag in the Ox-Stall)

What if humans could actually breathe in space? And the government says we can’t so we don’t
try to escape? We had better bear our troubles bravely than try to escape them. (The Kings Son and

the Painted Lion)

What if you simply stopped doing whatever it is that isn’t a part of your success? The best
intentions will not always ensure success. (The Monkeys and Their Mother)

What if, like Bhutan, we gauged our life’s success by how happy we are, not by how big the
house is, the number. The best intentions will not always ensure success. (The Monkeys and Their

Mother)

Each what-if sentence as well as each Aesop’s fables’ moral was treated as a separate
document. The documents from both domains were preprocessed using standard text
mining techniques, described in the methodology section. This resulted in 383 distinct
terms from all the obtained documents. We applied our methodology to find terms with
the highest b-term potential. For simplicity, the terms were sorted using the scores of
Heuristic 4, which we consider the most complete among the presented heuristics. The
five terms with the highest b-term potentials were used to create all pairs of sentences
sharing the selected bridging term (with the first sentence being from the what-if domain
and the second from the Aesop’s fables domain). The 15 highest scoring b-term based
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concatenated pairs of sentences which resulted are shown in Table 1. These results
show–subjectively–that using the terms with the highest b-term potential resulted in
several meaningful, creative combinations of sentences. Moreover, it is clear that a large
proportion of the sentence pairs in Table 1 have meaningful relations which could form
the basis of artefacts such as poems or stories. We can argue that it would be quite
a laborious task to find similarly valuable combinations from all possible pairs (143)
of sentences from the given domains without guidance provided by bridging terms. We
plan to use crowd-sourcing to test the hypothesis that our approach can reliably produce
such valuable combinations.

5 Conclusions and Further Work

The experimental evidence above indicates that the methodology presented in this paper
has the potential for supporting the users in the task of bisociative, cross-domain narra-
tive ideation. Banded matrices help us to discover the structures which reveal the nature
of relations between terms and documents. We have shown that the approach can be
used to construct creative combinations of sentences from different domains, coupled
with bridging terms with the highest b-term potential. The results confirm the potential
of the proposed approach to identify meaningful bridging concepts in the intersection
of texts from different domains.

In further work, we will upgrade the methodology to combine not only pairs of sen-
tences from two domains, but also to compose longer chains of sentences, resulting in
narrative ideation. Another line of research will address more subtle connections be-
tween sentences. For instance, there is a semantic connection between baby and early
life in “What if we woke up, as a baby, and our whole life had been a dream? Evil
tendencies are shown in early life.” However, this connection arises purely by coin-
cidence: it was not detected by the system. Furthermore, introducing more semantic
understanding into the ranking could substantially improve the performance. We fur-
ther plan to improve to the set of heuristics, e.g., by introducing a more global view
taking into consideration a term’s local neighbourhood, and exploring the potential of
outlier documents in guiding search. We plan to apply this narrative ideation approach
to knowledge discovery in different domains, working with experts from different fields
to address real-life artistic and scientific domains and getting valuable feedback from
them.

An important next step will be to crowd-source opinions about how reliable the pro-
cess is at producing sentence pairs (and larger constructs) which can be meaningfully
interpreted in such a way that intelligence and possibly creativity are projected onto
the software producing them. After the analysis of the results and further refinement
of the techniques, we plan to embed fictional ideation processes and idea expansion
via bisociation into software for generating artefacts of cultural value such as poems,
stories and scientific hypotheses. We hope to show that the kinds of cross-context link
discovery methods presented here can be used generically in Computational Creativity
projects across domains.
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Abstract. The visualization of the clusters obtained by a partitioning
procedure is very informative as this helps to a better overview of the
contents of a data table. For co-clustering, the latent block mixture model
is very effective. We propose to define generative self-organizing maps
with this model for Gaussian blocks. A perspective is the analysis and
the visualization of continuous data.

Keywords: latent block mixture model, generative topographic map-
ping, block expectation maximization, variational expectation maximiza-
tion.

1 Introduction

In data analysis, the reduction of the dimensions of a numerical data matrix leads
to synthetic and understandable representations in a low dimensional space. The
variables of a numerical matrix can be continuous, binary or discrete. For para-
metric modeling, one of the most studied data table is for continuous variables.
When the data matrix is large, a clustering may lead to a quicker and easier ac-
cess to the hidden contents of the data in comparison with a method which only
reduces the dimensionality by projection. Moreover, combining clustering and
reduction is often more informative. For instance, it is possible to show not only
each datum by a point on a two dimensional map, but also their clusters which
are obtained from a given algorithm. It is also possible to model the projection of
clusters of rows (resp. columns) rather than the rows (resp. columns). This may
be an interesting approach for data analysis because this can induce a reduction
of the number of variables before a clustering. But most of the time, mapping
and clustering operate separately [2], and one has to decide which method must
be devoted to each problem. On the contrary, it exists a family of methods which
solves them simultaneously.

The Kohonen’s maps and more generally self-organizing maps (SOM) [1] are
modified clustering methods for continuous variables most often. They are able to
learn a relation of vicinity between the clusters and can induce a visualization by
post-processing. Some modified versions are able to provide more suitable results
in particular situations like the analysis of discrete data. Moreover, a parametric
model is very flexible and even scalable when it is defined and learned properly.
Hence, a probabilistic model for SOM is interesting for these diverse reasons.

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 345–356, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The Generative Topographic Mapping (GTM) [3] is a generative SOM with a
more restricted set of parameter values than the Kohonen’s map. It is extensively
studied and improved ([4,5,6]) recently for data analysis purposes. It formulates
a self-organizing map by adding the constraints of vicinity between the clusters
at the level of the expectations of a Gaussian mixture model (GMM) [7].

These methods can be useful for many domains which need the analysis of
a large amount of data such as often met today. In bioinformatics, Kohonen’s
maps are very useful [8,9,10] for the analysis of microarrays. The clustering of
their variables is also a main concern because for instance only a few genes
are expressed, activated or switch on in a particular biological situation. Here,
the clustering of the two dimensions of a data matrix is therefore essential [11].
For all these reasons, we propose an extension of GTM with the help of a co-
clustering model, the latent block mixture model (LBM) [12] for data matrices
which have a block structure. An example in the presented experimental part
is a preliminary test of the method with a real dataset of gene expression in a
microarray.

The paper is organized as follows. In section 2, we review LBM with a Gaus-
sian setting, and the related criterion to optimize for the parameters estimation.
In section 3, we add the constraints in this model and we propose a learning
algorithm. Two different approaches for the regularization of the parameters
are considered: L2 for a first method named GBGTM and L1 for a second one
named GBGTM-S. In section 4 we present the numerical experiments with the
proposed methods. Finally, in section 5 we summarize the contribution and the
perspectives.

2 LBM with Gaussian Blocks

Let us denote x = (x11, x12, . . . , xij , . . . , xnd), the data matrix in a latent block
model. I is the set of the rows and J is the set of the columns. A possible
assignment of I is modeled with the binary classification matrix z = (zik)n×g,
it is such that zik = 1 indicates the component of the row i, and

∑g
k=1 zik = 1.

Similarly for the assignments of J it is denoted the binary matrix w = (wj
)d×m.
The two sets of possible assignments w and z partition the cells of the matrix
x into a number of contiguous, non-overlapping blocks. A block k is defined as
the set of cells {xij ; zi = k, wj = }. For a latent block model, the n× d random
variables which generate the observed cells xij of the data matrix are assumed
to be independent, once z and w are fixed, they permit to define a co-clustering
model.

2.1 Latent Block Model

The probability density function (p.d.f.) of a latent block model is defined as the
following decomposition. It is obtained by independence of z and w, by summing
over all the assignments [12]:

fLBM (x; θ) =
∑

(z,w)∈Z×W P (z)P (w)Pθ(x|z,w)

=
∑

(z,w)∈Z×W
∏

i pzi
∏

j qwj

∏
i,j ϕ(xij ;αziwj ) ,

(1)
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where the set of all the possible assignments is denoted Z for I and W for J ,
while ϕ(.;αk
) is a probability density function defined for the cell (ij) on the set
of reals R and {αk
} are unknown parameters. The vectors of the probabilities
pk and q
 that a row (resp. a column) belongs to the k-th component (resp. -
th component) are denoted p = (p1, . . . , pg) (resp. q = (q1, . . . , qm)). The set of
parameters is denoted θ. It is compound of p, q and α = (αk
) which aggregates
the parameters from all the p.d.f. of the blocks, θ = (p,q,α). Hereafter, to
simplify the notation, the sums and the products relating to rows, columns
or clusters will be subscripted respectively by the letters i, j, k, or  without
indicating the limits of variation, which are implicit. The set of parameters θ of
the model can be estimated by maximizing the log-likelihood:

L(x; θ) = log fLBM (x; θ). (2)

The block model is dramatically more parsimonious than the usual mixture
model where each dimension of the data matrix is modeled separately. Next, we
describe the latent block model where ϕ is a Gaussian density.

2.2 Univariate Gaussian Density Function

When the cells are generated with a Gaussian distribution, the density function
for the block (k) is written:

ϕ(xij ;αk
) =
exp(−|xij − μk
|2/2σ2

k
)√
2πσk


, (3)

where the mean is μk
 and the variance σ2
k
 such that αk
 = (μk
, σ

2
k
). With this

distribution the model is called GLBM (see [13]). Next paragraphs, we review
the criterion and the algorithm for an estimation of α.

2.3 Objective Function and EM

For the co-clustering model which is considered, we aim to address the problem
of parameters estimation by a maximum likelihood (ML) approach such that:

θ̂ = argmaxθL(x; θ) . (4)

Let us focus on the estimation of a value of θ by the maximum likelihood ap-
proach associated to the block mixture model. For this model, the completed
data are taken to be the vector (x, z,w) where the latent vectors z and w are
the random labels for the rows and the columns respectively. The classification
log-likelihood can then be written:

LC(z,w;x, θ) = logPθ(x|z,w) + logP (z) + logP (w) .

Here, without loss of generality, it is supposed that the mixing coefficients are
equiproportional, pk = g−1 and q
 = m−1. From the definition of the model,
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it is clear that the probabilities involving the vector (x, z,w) can be written
explicitly. The log-likelihood of the completed data is considered in the next
paragraphs for the inference by taking benefit of the introduced latent variables.
The EM algorithm [14] maximizes the log-likelihood w. r. to θ iteratively by
maximizing the conditional expectation of the log-likelihood of the completed
data w. r. to θ given a previous current estimate θ(t) and the observed data x,

Q(θ, θ(t)) =
∑

z,w Pθ(t)(z,w|x)LC(z,w;x, θ) , (5)

with the probabilities that the cell (i, j) belongs to the cluster (k, ) condition-
ally to the whole table. The index (t) permits to denote a current estimation
of a parameter or a function of the parameters. The probability mass function
involved in the expectation (5) may be obtained by the Bayes rule but the struc-
ture of dependence among the random cells (taking for values xij) of the data
table makes intractable their exact computation and an alternative is required.

2.4 Block EM Algorithm

The approach based on a generalized EM and a variational approximation has
been proposed in [15] and named Block EM (BEM). Roughly speaking, the
approximation used consists in replacing P (z,w|x) by P (z|x)P (w|x). The al-
gorithm proceeds by defining a lower bound of the log-likelihood (see [15]) and
repeats the two following steps:

- E-step: The posterior probabilities are found with the fixed point relations:

c
(t)
ik ∝ e

∑
j,� d

(t)
j� logϕ(xij ;α

(t)
k� ) and d

(t)
j
 ∝ e

∑
i,k c

(t)
ik logϕ(xij;α

(t)
k� ) . (6)

- M-step: A temporary value of the parameters is found by solving:

θ(t+1) = argmaxθ

∑
i,j,k,
 c

(t)
ik d

(t)
j
 logϕ(xij ;αk
) . (7)

Here the objective function is denoted Q̃LBM (θ|θ(t)). It is denoted the
variational probabilities cik such that

∑
k cik = 1, and also dj
 such that∑


 dj
 = 1. For 1 ≤ k ≤ g and 1 ≤  ≤ m, it is denoted the aggregated

statistics, y
(t)
k
 =

∑
i,j c

(t)
ik d

(t)
j
 xij , and c

(t)
k =

∑
i c

(t)
ik , d

(t)

 =

∑
j d

(t)
j
 .

Hence, the parameters are estimated by an iterative way. The BEM algorithm
proceeds by an alternated maximization of Q̃ and converges to a final solution
which maximizes (locally) the log-likelihood of the latent block model. The mod-
els, the learning algorithms implementing BEM and the corresponding M-step
have been proposed previously in the literature (see [13]). In the following, we
explain how to adapt the model in order to make it capable of mapping directly
the data to the plane.
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3 Parsimonious Topographic Mapping

The parameters αk
 are re-parameterized with two sets of vectors, one for the
dimension k, and one for the dimension . A particular choice for the mixing
probabilities is also decided, these prior are chosen fixed and equiproportional.
By this way, we define a general model for a parsimonious parametric SOM in
order to map the rows of a numerical tables with a large number of columns into
the plane. This family of methods is named Topographic latent block model or
Block GTM. In the Gaussian case and with a bayesian setting, the log-likelihood
can be written:

LGBGTM (x; θ̄) = logEz,w,Ω,β

[
P (z,w,Ω,β;x, θ̄)

]
= logEz,w,Ω,β

[
P (x|z,w,Ω,β; θ̄)P (Ω|β)P (β)P (z)P (w))

]
.

The hidden matrix Ω is defined hereafter in sections 3.1 and 3.2 while β is a
parameter for its hierarchical prior. The general quantity θ̄ is the covariance
matrix Σ = (σ2

k
) which aggregates the variance parameters and is kept non
random. Note that the distribution of the block model is recognized with a
specific parameterization for handling the nonlinear mapping. In the section,
the problem we address is to define more precisely the new log-likelihood and to
estimate the parameters with a variational EM algorithm as explained next.

3.1 Parameter Transformation

It is defined a set of constant bivariate vectors sk, the coordinates of the nodes of
an had hoc regular rectangular planar mesh. By attaching the parameters of one
cluster to the coordinates of one node, this may induce the wanted constraints
for the self-organization of the row clusters. For nontrivial problems, the data
cloud has a complex shape and higher dimensions than two are required for the
modeling. Hence, the 2-dimensional coordinates sk are transformed into higher
dimensional vectors ξk. This leads to a discretization and modelization of the
latent space where the data are projected, a square [−1; 1]× [−1; 1]. The nodes
of the rectangular mesh have a similar role than in the algorithm of Kohonen’s
maps. Finally, the discretized latent space is modeled as follows.

Nodes of a Mesh: The coordinates of these nodes can be written:

S =

{
sk =

(
sk1

sk2

)
; k = 1, ..., g

}
.

This set is used for a ranking of the clusters of GLBM along the mesh such
that it is attributed a unique coordinate sk to each cluster k of the rows. Then
the distance between the coordinates of two nodes from the mesh is related
to the similarity of the contents of the two corresponding clusters. Note that
we are mainly interested by a squared map in the experimental part, hence
k = k1 + (k2 − 1)×√g where (k1, k2) ∈ {1, · · · ,

√
g} × {1, · · · ,√g}.
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Transformed Nodes: Each coordinate sk is projected into a space of h di-
mensions with the help of well defined basis functions φ. This is written for
1 ≤ k ≤ g and 1 ≤ s ≤ h:

ξk = (φ1(sk), φ2(sk), · · · , φh(sk))
T ,

where

φs(sk) ∝ exp[−||sk − μφs ||2/2ν2φs
] .

These functions φs are typically Gaussian density functions with mean centers
μφs ∈ R

2 and standard deviation νφs . Note that the choice of h may have a
consequence on the accuracy of the clustering and mapping. For the constraints
on the row clusters, a matrix aggregates the basis functions for all the nodes as
follows, Φ = [ξk| · · · |ξg]T . Next paragraph, we introduce the parameters for the
columns in order to model the probabilities αk
.

Transformed Parameters: A set of latent vectors related to the clustering
of the columns is defined as

{
w
 ∈ R

h, 1 ≤  ≤ m,h ∈ N
∗
+

}
, and its estimation

is required. For modeling the dependence of each parameter αk
 with ξk and w
,
it is considered their inner product. To map an inner product (wT


 ξk ∈ R) onto
its corresponding parameter (αk
 ∈ [0; 1]), it is then considered:

αk
 = wT

 ξk for 1 ≤ k ≤ g and 1 ≤  ≤ m. (8)

This function may be different for each model ϕ, and is here the identity matrix
for a Gaussian law.

3.2 Parameters and Variational Criterion

The reduced g×m matrices (μk
) and (σ2
k
) in the previous co-clustering model

are replaced by one matrix Ω = [w1|w2| · · · |wm]T . The resulting model remains
parsimonious because h is small, less than half of one hundred in general. But
for an even more parsimonious setting, a bayesian L1 penalization can be used in
order to cancel out some components of each vector w
. Let’s have N (y;μ,Σ) for
y distributed as a Gaussian p.d.f. of mean μ and variance Σ, while G(y; d0, c0) is
for y distributed as a Gamma distribution with two real parameters d0 and c0.
Let’s have θ̃ = {z,w,Ω,β} for the random variables. Then, the new parameters
which are involved in the E-step are θ̃. In the M-step, this is θ̄. Then, a hierarchi-
cal prior is defined from Gaussian and Gamma distributions for a penalization
in the new completed log-likelihood which can be written:

L̃C(z,w,Ω,β;x, θ̄) = LC(z,w;x, θ(Ω))
+
∑

s logN (w(s); 0m, V(s)) +
∑

s
 logG(βs
; dβ0
s
, cβ0

s
) .

Here, β = (βs
) is a h ×m real matrix, w(s) is a h-dimensional column of Ω,
and V(s) = diag1≤
≤m(βs
) while 0m = (0) is the h-dimensional null vector.
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The parameter θ(Ω) stands for the transformed quantities αk
 with the new
matrix Ω, as defined in (8). The components of θ defined for the regularization
are independent and the hierarchical setting can induce parsimony [16], while
the hyperparameters (dβ0

s
) and (cβ0

s
) remain constant (for instance 10−3). Note

that a related hierarchical prior has been proposed recently [17] for GTM, with
dramatic improvements. Here, each column of the matrix defined for the non-
linear mapping is independent and has a Gaussian distribution with random
parameters for the regularization.

For the distributions defined for the variational bound, the law of (z,w) re-
mains identical. The other parameters have related distributions as defined just
below for Ω and for β,

Q(Ω) =
∏


N (w
;μ
, S
) and Q(β) =
∏


,s G(βs
; dβs�
, cβs�

) .

By this way it is possible to have a new function to optimize which handles the
regularization. For large values of βs
, the corresponding cells in Ω might cancel
out, leading to a parsimonious matrix as expected. The different variables in θ̃
are supposed independent such that the related density Q is a product. Let’s
also have H(Q) stands for the entropy of Q. Following the extensive literature
on variational learning, it can be written with this approach:

LGBGTM ≥ E
Q
z,w,Ω,β

[
L̃C(z,w,Ω,β;x, θ̄)

]
−H(Q) . (9)

Here the right member is the new function involved in the variational maximiza-
tion, F(Q, θ̄) with an expectation w.r. the distribution Q. This is a surrogate
criterion for the estimation of the parameters. An algorithm for learning the
parameters is presented next paragraphes.

3.3 General Algorithm

The purpose is to iteratively update a current value of the parameters such that
the function F is increased. The algorithm BEM is altered in order to handle the
randomness of Ω (and β) and finally reach a local ML solution. In a variational
EM, the two following steps are repeated:

- The distribution of each parameter for Q are found by maximizing the free
energy F after marginalizing out other parameters conditionnally to a known

value θ̄
(t)
, in a E-step:

Q(t)(θ̃r) ∝ exp
{
E
Q(t)

θ̃−r

[
L̃C(z,w,Ω,β;x, θ̄

(t)
)
]}

. (10)

Here, it is denoted θ̃r ∈ θ̃ while θ̃−r is the result of removing θ̃r from θ̃.
- The eventual remaining parameters θ̄ where no prior is assumed can be
estimated for a new current value by maximizing F with respect to θ̄, after
expectation with the obtained variational Q(t) distribution, in a M-step:

θ̄
(t+1)

= argmaxθ̄E
Q(t)

θ̃

[
L̃C(z,w,Ω,β;x, θ̄)

]
. (11)

This is solved as follows. Actually, for z and w, the previous update formula for
the posterior probabilities in (6) might be relevant at least approximatively.
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3.4 Detail of the Algorithm

When Λ
(t)
β,
 stands for the regularizing matrix at the current time, it can be

written:

Λ
(t)
β,
 =

⎧⎪⎨⎪⎩diag1≤s≤h

{
dβ0

s
+ 1

2

cβ0
s
+ 1

2 (μ2
s�+σ2

S,s�)

}
with parsimony by (10) ;

diag1≤s≤h

{
10−3 d

(t)



}
without parsimony.

(12)

For the usual L2 normalization, a simple constant 10−3 d
(t)

 in the diagonal of the

regularizing matrix has been generally useful instead of the bayesian estimation
for the case L1. This regularization does not induce parsimonious values for the

components of μ
. Here, σ
2
S,s
 is the sth diagonal component of S

(t)

 while μs
 is

the sth component of μ
(t)

 . When βs
 = βs ∀, then the regularizing matrix is

denoted Λ
(t)
β , with in the numerator m

2 which replaces 1
2 , and in the denominator

a sum
∑


(μ
2
s
 + σ2

S,s
) instead of the -st component.

Let’s have the matrix Υ
(t)

 = diag1≤k≤g ({σ

(t)
k
 }−2) where σk
 is updated as

in the unconstrained case. Morever, for the variational parameters, the updates
may be obtained by a Laplace approximation with the particular new values for
1 ≤  ≤ m:

S
(t)

 =

{
d
(t)

 ΦTΥ

(t)

 G(t)Φ+ Λ

(t)
β

}−1

, and μ
(t)

 = S

(t)

 ΦTΥ

(t)

 y

(t)

 . (13)

Here, G(t) = diag1≤k≤g(c
(t)
k ) is a diagonal matrix, and y

(t)

 = (y

(t)
k
 ) is a g-

dimensional vector. In this version, for the variance, it is kept the fuzzy mem-
berships for the columns, such that the update formula is:

Σ(t+1) =

(∑
ij c

(t)
ik d

(t)
j
 (xij − ak
)

2

c
(t)
k d

(t)



)
. (14)

Note that it is clear that the proposed model is a generalization of the generative
topographic mapping [3]. Finally, the algorithm repeats the computational steps:

1. Update c
(t)
ik or d

(t)
j
 with (6)

2. Update Λ
(t)
β,
 with (12)

3. Update S
(t)

 with (13)

4. Update μ
(t)

 with (13)

5. Update Σ(t+1) with (14)
6. Return to 1. until stop.

Note that when instead of (12), this is Λ
(t)
β which is in stake, then the aggregated

version of the update replaces the step (2.) in the algorithm. The stopping cri-
terium may be a maximal number of steps, typically less than 200 for instance.
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Finally, the procedure converges towards (μ̂1, · · · , μ̂m, Ŝ1, · · · , Ŝm, Λ̂β,1, · · · ,
Λ̂β,m, Σ̂), the final value of the parameters. The final classification matrices

Ĉ = (ĉik) for the rows and D̂ = (d̂j
) for the columns are also obtained.

4 Experiments

A first experiment with a biological dataset illustrates the interest of the block
model and the normalization. Other results with simulated datasets have con-
firmed the better behaviour of the proposed method in comparison with GTM
for data matrices with a block structure. We are interested in this section on the
comparison of GTM and GBGTM when the data is the gene expression from
the microarray of the Colon tissue samples [18].

4.1 Post-treatment and Experimental Settings

Clustering and Mapping: When a row i ∈ I has a higher posterior prob-
ability ĉik for a cluster k then it belongs to this cluster and the label for the
ith row is estimated by ẑi = k such as, ẑi = argmaxk ĉik. Moreover, the set of
two-dimensional coordinates S of the g clusters leads to the projections of the
rows on the latent space. A row i has a representative on the latent space, a
point with the coordinates, ŝMAP

i = sẑi . By performing this procedure for each
row i, the model builds a reduced view of the n elements of I. When two nodes
have their coordinates sk and sk′ near in the latent space, their corresponding
clusters might have their parameters αk
 and αk′
 similar, so their corresponding
contents should be also similar. A projection can be obtained by computing an
average position of each row i with the posterior probabilities, ŝi =

∑g
k=1 ĉiksk.

If the vector of probabilities (ĉi1, ĉi2, · · · , ĉig) is binary, then the row i is in the

cluster ẑi, and ŝi = ŝMAP
i .

Experimental Settings: After the estimation of the parameters, several in-
dicators are computed for the comparison. By using the estimated label ẑi, the
error rate is the percentage of missclassified when each node is labelled by ma-
jority vote, denoted Error-rate. When the mapping is continuous by using the
coordinates {ŝi}, it can be computed other indicators than related to the classi-
fication error rate in order to reveal the quality of the projection onto the plane,
the DB-Index [19] and also the average of the Silhouettes [20] denoted S-Index.
The quality of the mapping and the accuracy of the clustering, which are ob-
tained from the topographic latent block model are compared with the original
GTM. Two different approaches for the regularization of the parameters are con-
sidered: L2 for a first method named GBGTM and L1 for a second one named
GBGTM-S. In the following subsection, we consider a real dataset. The maps
are obtained for the following sizes:

g ∈ {52, 62} and m = 40 .

For these settings, the resulting three indicators and the final maps from the
points ŝi are presented herefater.
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Fig. 1. Indicators obtained in the experiments for the methods GTM, GBGTM and
GBGTM-S for several values of g and m

4.2 Output for a Biological 62 × 2000 Table

In this paragraph, we present the output for a real biological dataset. Among
the samples, there 40 are tumour and 22 are normal. Initially there were 6500
genes for all the tissues on the Affymetrix array. Following previous authors,
the genes are selected, filtered and the values are scaled with a logarithmic
transformation plus a standardisation of the rows. This leads to finally about
1000 genes for the same number of samples 62. Note that this choice is random
because the normalisation is decided from a training subsample. As the sample
size is small, the clustering error is decreasing with the number of clusters for
our method because the underlying metrics is well suited while on the contrary
GTM has a higher error. For this sample the two versions of GBGTM have a
similar behaviour from the point of view of the visual indicators. According to
Figure 1, our new method is clearly able to outperform the usual GTM with
an enhancement of both the clustering and the mapping. For an overview of
the visualization obtained by the different approaches with this data, the maps
which have been constructed from the final parameters of the three methods
are also proposed in Figure 2 in order to help their comparisons. If the two
versions of GBGTM gives almost similar maps, the available implementation of
GTM leads to a map where a first part of the clusters have fuzzier posterior
probabilities while another large part is empty. Finally, the consequence of the
L1 regularisation is more parsimony because useless cells of the matrix Ω may
cancel out. The number of parameters is dramatically reduced in comparison
with GTM, the reduction factor is about 3m

2d .
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GTM GBGTM GBGTM-S

Fig. 2. Final maps from the experiments for the methods GTM, GBGTM and
GBGTM-S for g = 52 and m = 40, after same jittering

5 Conclusion and Discussion

Herein, we have proposed a new model for the projection of continuous data
tables with a block structure. The approach is parsimonious and flexible. In the
experiments, it is observed that our model is able to outperform GTM. Several
perspectives are possible. The exact variational posterior probabilities for the
clustering of the rows and columns should be preferred for the L1 regulariza-
tion. A penalization for the variance parameters can be introduced. The column
clusters offer additional information on the relations between the variables and
can be discussed further. Additional simulations for the comparisons can be
considered also in future. Unbalanced mixing coefficients are also interesting.
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Abstract. This paper outlines an approach developed as a part of a company-
wide churn management initiative of a major European telecom operator. We 
are focusing on explanatory churn model for the postpaid segment, assuming 
that the mobile telecom network, the key resource of operators, is also a churn 
driver in case it under delivers to customers’ expectations. Typically, insights 
generated by churn models are deployed in marketing campaigns; our model’s 
insights are used in network optimization in order to remove the key network 
related churn drivers and therefore prevent churn, rather than cure it. The in-
sights generated by the model have caused a paradigm shift in managing the 
network with the operator where the research was conducted. 

Keywords: Mobile Network, Churn Prevention, Postpaid, Explanatory Model, 
Customer Centricity. 

1 Introduction 

The phenomenon of churn, which denotes loss of a client to competitors, is a key 
problem across industries. New customers are difficult to find, especially in saturated 
markets, such as the European mobile communications market. Furthermore, it is far 
less expensive to retain existing customers than to acquire new ones. Retention is 
usually a process that identifies customers that are likely to churn, using various pre-
dictive modeling techniques, followed by approaching these customers with suitable 
offers that would persuade the customer into extending the contract. But, can the cus-
tomer be prevented from even wanting to churn? Can the main churn drivers be miti-
gated beforehand? 

This paper is focused on a company-wide churn reduction initiative conducted in 
one of the largest European telecom operators. As explained above, churn/customer 
retention is typically a marketing based process. But, despite of the involvement of 
predictive analytics, this process is in its nature reactive, because the customer has 
already decided to churn and an action is being taken to stop this. 

In this research we are taking a completely different approach: the model generated 
here is not to be used for campaigning. Our method attempts to tackle churn by identi-
fying the key reasons why customers decide to churn in order to alleviate them, rather 
than identify prospective churners. This approach is even more justified taking into 
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account the current and future stringent European Data Privacy regulations, which 
limit operators use of customers’ data for campaigning purposes. This is especially 
the case with Internet usage data. 

The mobile telecommunications network is a key resource for telecom operators. It 
is the means of service delivery as well as the most frequent touch-point with the 
customers. Problems with ability to use the network (services) have been identified by 
surveys internal to the company, as well as in literature (section 2), as one of the key 
reasons to churn. But, most of the time, customers are not experts and cannot pinpoint 
what exactly is going wrong. Most of the time, this is generalized as “coverage prob-
lems”. This research is taking a deep dive into various network problems and their 
relation to customer churn. The main objective here is to identify the problems that 
customers that have churned were experiencing, so that they can be corrected for the 
current customer base and reduce their likelihood of churn. In other words, rather than 
treating symptoms, we are treating the cause of the disease. This research and its out-
come have caused a paradigm shift in managing the network with the operator where 
the research was conducted. 

In this research we are focusing on the post-paid customer segment. Even though 
these customers are bound by contract, which makes the task of churn prediction 
slightly less challenging, the revenues that are typically generated here are much 
higher than in the prepaid segment. Furthermore, postpaid customers’ service usage is 
much higher, compared to the prepaid segment; therefore they would be more prone 
to experiencing network related issues which can potentially lead to churn. The com-
bination of higher usage and revenues makes it easier to justify the network invest-
ments needed to remedy their problems. 

The rest of the paper is structured as follows. Section 2 describes the related work 
on telecom churn. Section 3 discusses the dataset and methodology we used. Section 
4 contains the results, their application. Limitations and future work are discussed in 
section 5. Finally, we present our conclusions in section 6. 

2 Telecom Churn in Literature 

Churn in various industries has been a growing topic of research for the last 15 years 
[1]. According to [2], churn management consists of predicting which customers are 
going to churn and evaluating which action is most effective in retaining these  
customers. Retention strategies are in the focus of [3]. However, most often churn 
prediction and improving model performance is analyzed following one of these two 
strategies: adding/improving the data to mine and inventing new algorithms or im-
proving the existing ones [2]. 

The remark above is certainly valid in the case of telecom churn literature. Many 
papers are trying to find the best algorithm that would outperform all others: Logistic 
Regression, Decision Trees, Neural Networks, evolutionary learning, discriminant 
analysis, Bayesian approaches are examined in [4,5,6,7]; Support Vector Machines, 
Random Forest, Rotation Forest, Bagging and Boosting are analyzed in [1,8,9,10]. In 
our view, the value of this research is somewhat limited, at least for real world data 
mining, given the No Free Lunch theorem [11]. In recent years the overwhelming  
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theme in (telecom) churn research is Social Networks Analysis (SNA), claiming to 
largely improve on existing churn models [12,13,14,15,16,17,18,19]. However, some 
of our recent work has demonstrated that this claim is not generally applicable, at 
least not in prepaid churn prediction on a European market [20]. Most of the SNA 
research focuses on the Asian or US Markets. 

Taking into account the data perspective, most of the literature, especially the one 
focusing on SNA, is using features extracted from Call Detail Records (CDRs). Con-
tractual, demographic, billing, handset, customer service, market (competitor’s of-
fers), and customer survey data is used by [3,4,5,6,7,8] in addition to CDRs. Just a 
few of these papers take into account any network usage related problems as possible 
factors affecting churn. For instance, dropped calls are considered in [4,21] as poten-
tial churn influencers. Service quality in general and innovativeness is marked as 
churn detractor by [22]. 

Predictive models trying to explain churn have not received as much attention in li-
terature [2,23]. Nevertheless, there are studies in industries other than telecom illu-
strating the need to gain insight into causes of churn [24,25]. Furthermore, research 
based on customer surveys claims that network coverage, mobile signal strength and 
voice call drops are reasons for customers to churn [21,22,26,27,28]. However, all 
these papers are based on survey data, thus perception of quality and not actual net-
work counters. 

It is apparent that in most recent telecom churn research the physical telecom net-
work- the means of delivering telecom services, has been largely neglected. At best 
quality (or the lack of) of voice call usage is considered. То the best of our know-
ledge, there is little or no research on how Internet usage on a mobile network and its 
quality parameters might affect churn. This is one of the key reasons why the topic of 
our research is an explanatory churn model for telecommunications with actual  
network quality usage parameters as its focus, not just the customers’ perception of 
network quality. In addition, this model, unlike the related work, is not focusing on 
retention; instead, it is concentrating on eliminating what we see as one of the crucial 
causes of telecom churn- poor experience using the services on the network. 

3 Dataset and Methodology 

In this section we will describe the process and the data set used in this research. As 
mentioned previously, this research was not started with retention campaigns in mind. 
It was a part of a cross departmental company-wide churn tackling initiative, executed 
in parallel with regular churn campaigns. Therefore, the objective of this research was 
not to compete with churn models created for campaigning, but to detect whether 
there are telecom network quality related factors influencing churn and identify poten-
tial remedies. 
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Table 1. List of contractual, demographic and CDR based features 

Table 2. List of network quality features per category 

3.1 Dataset 

The results presented here are based on a random sample of 150,000 consumer post-
paid subscribers of the operator from September 2012. This is just a fraction of the 
overall base, the exact percentage is confidential. There was a limitation enforced on 
the dataset related to contract expiry date:  the sample was limited to subscribers 
whose contracts were expiring in three months or have already expired; thus only 
customers at risk of churn were taken into account. Churn was measured for the fol-
lowing two months, October and November 2012, combined. 

The final dataset consisted of 750 features, gathered by merging tables from CRM 
and Network databases. In addition to the attributes similar to what was described in 
section 2 (see Table 1) we added so called Network quality or usability features [29] 
(see Table 2). The features extracted from CDRs and the network quality features 
represent monthly aggregates. We also examined their respective three-month aggre-
gates, as well as if there is a rising or declining trend in the past three months for any 
of these features and use these as potential predictors of churn. 

3.2 Methodology 

Our research setup is similar to what we have described in [29]. The data originally 
residing in various CRM and Network quality databases was collected into a single 
Oracle database, which allowed easier manipulation and data cleansing [30]. For Data 

Contractual and demographic features Features Extracted from CDRs 

Contract expiry 
List of services/ products used 

Subscription fee 
Monthly Bill for each of services 

Age, gender, zip code 
Handset 

Amount of Voice Calls, SMS and Inter-
net Volume (MB) used, both local and 

roaming 
Breakdowns of Voice Calls and SMS 

onto national-international, internal-
external(competitors network) 

General Network 
Quality Voice and SMS quality Internet quality 

2G and 3G Cov-
erage at home 
Provisioning Er-

rors 

Voice Call and SMS 
Dropped 

Voice Call Setup Failures 
Voice Call and SMS drop 

rate 
Voice Call Setup Duration 
(Maximum and Average) 

3G and 2G Data Attempts 
3G and 2G Data Errors 

3G and 2G Success Rate 
Ratio of 3G usage vs.  2G 

usage 
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analysis, Predictor Selection and Model Development and Assessment we used the 
commercial tool Pegasystems Predictive Analytics Director [31].  

We divided the sample into training, validation and testing set using the ratio 
50:25:25. The validation set is used during the data analysis stage as a “pre-test” set, 
in order to verify the univariate performance of each predicting variable with relation 
to churn, established on the training set. 

The performance measure used to evaluate the performance of each individual pre-
dictor, as well as the models, was Coefficient of Concordance (CoC), a rank correla-
tion measure related to Kendall’s tau, suitable for evaluating scoring models [31,32]. 
The CoC (Figure 1) is a measure equivalent to the Area under the ROC (AUC). One 
interpretation of the CoC measure is that in a scoring model it gives the probability 
that a randomly chosen positive case will get a higher score than a randomly chosen 
negative case. The CoC measures the grey area in the graph depicted on Figure 1 and 
can thus be translated to the Gini coefficient. The CoC value ranges from 50 to 100. 
The random choice has a CoC value of 50. 

All models developed are scoring models, i.e. we calculate probabilities that some-
one will churn, without setting a cutoff point. As mentioned above, these models are 
not to be used for campaigning, but for network improvements, therefore setting a 
cutoff point to strictly classify whether an instance is a churner or not is not neces-
sary. For this reason, using measures such as recall and precision are not applicable in 
our case. 

During the data analysis stage, the continuous variables are discretized into bins. 
Bins without significant performance difference are then grouped together. Basically, 
this is a supervised, bottom-up approach to discretization of continuous variables. One 
of the advantages of this approach is that it can address non-linear effects of variables 
onto churn: namely, each separate bin gets a score which is concordant to churn and 
this score is used for modeling. This process is similar for symbolic variables. Va-
riables can be inspected via histograms and the discretization settings can be manually 
changed if deemed necessary. The next step in the process is predictor grouping 
which assists feature selection. Namely, variables that are correlated to each other are 
grouped together. A given predictor may have a high univariate performance, but also 
be correlated with other candidate predictors that are even stronger, hence not adding 
value to a model. 

 

Fig. 1. Coefficient of Concordance 
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We first used the best predictor of each group and then selected/deselected  
variables manually to develop the models with a good performance, but also good 
explanatory value. 

As explained previously, the topic of this research is not finding the next best algo-
rithm. That is why we used standard algorithms, such as Logistic Regression and 
Decision Trees based on the CHAID splitting method [33]. These methods also per-
fectly fit the explanatory nature of our research, because they are easy to interpret. 
This is an advantage in commercial settings, where people that need to make invest-
ment decisions based on the model and implement its results are not data miners. 

The modeling process results in scoring models: each instance is allocated a rank 
score concordant with the probability of being a churner. The CoC (AUC) measure is 
used to measure model quality. In addition, we use gain charts as visual representation of 
model performance. On the y-axis, these charts show the captured proportion of the de-
sired class (i.e. churners in selection divided by total number of churners) with increasing 
selection sizes (x-axis, from highest scoring to lowest scoring) (see Figure 2). 

4 Results, Application and Discussion 

Even though optimizing model performance is not the topic of our paper, we deem it 
necessary to benchmark our network against the campaigning model. The perfor-
mance (CoC) of the models we created is presented on Table 3. 

It is worthwhile mentioning that all models presented here were built using Deci-
sion Trees with CHAID splitting criterion, which have an inherent characteristic of 
dealing with non-linear data. We also tested models using Logistic Regression, but 
they had somewhat worse performance (0.5 CoC points). Please note that due to the 
discretization process described in the methodology section, this implementation of 
logistic regression is able to handle non-linear dependencies too. It is worthwhile 
mentioning that in order to test for non-linear interaction effects between a combina-
tion of two variables and churn we created close to 280,000 new predictors using two 
way combinations of all of the 750 variables. However, no strong non-linear effects 
were noted.  

Table 3. Model Performance  

Model Description 
Number of 
Predictors 

Performance on 
Training set 

(CoC) 

Performance  
on Test set 

(CoC) 

Campaign 3 76.0 75.9 

Campaign_PlusNetwork 6 76.8 76.7 

ContractEnd_PlusNetwork 5 75.1 74.7 

Campaign_MinusContractEnd 5 68.7 68.1 

PurelyNetworkBased 5 66.6 66.5 
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Fig. 2. Gain Charts of Models used 

As can be seen on Table 3, adding network related features to a campaigning mod-
el (Model Campaign_PlusNetwork) only marginally increases performance (1 CoC 
point), visible on Figure 2 only after the 40th percentile of cases ranked by churn, 
which confirms our result from [29]. However, campaigning wise, this has no mean-
ing because rarely do campaigns address more than 40% of the base that is at churn 
risk. 

The PurelyNetworkBased model, which is the topic of our research, has the weak-
est performance. Nevertheless, just for comparison reasons, we built Campaign mod-
els without the strongest predictor - Contract End (Campaign_MinusContractEnd) and 
a model based on a combination of just the Contract End and Network Factors  
(ContractEnd_PlusNetwork). The Campaign_MinusContractEnd performs only 
somewhat better than the Pure Network Model (1.5 CoC on the test set in Table 3, or 
5% more churners in the Top 20% of the scores on Figure 2), and the Model Contrac-
tEnd_PlusNetwork performs only marginally worse than the campaigning model (1.3 
CoC on the test set in Table 3, or 4% less churners in the Top 20% of the scores on 
Figure 2). The conclusion here is that, less the Contract End variable, the network 
quality parameters from our Purely Network Based Model perform nearly as well as 
the other predictors. 

However, performance was not the main topic of our research. The main aim was 
explanatory value of our model. On Figure 2 it is shown that Purely Network Based 
Model can address the 35% of churners in the top 20% of scores, while the Campaign 
model addresses nearly 55% of all churners in the top 20% of scores. This may be 
interpreted as the Network factors being “responsible” for the 35% out of 55% of 
churners in the Top 20% of all scores and that correcting these parameters would 
mitigate at least a part of them1. The rest of the churn (the other 20%) is due to other 
reasons, e.g. a better competitor offer. Having this in mind, it was worthwhile analyz-
ing the parameters that constitute this Purely Network Based model. 

 

                                                           
1 In retention campaigns too, one cannot expect 100% acceptance rate. 
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Table 4. Univariate performance of predictors (CoC)  

Variable Performance 
(CoC) 

Contract End Date 73.1 
Total Duration of Provisioning Errors in the past six months 62.5 
Average Ratio of 2G and 3G Data Events in the past three Months 59.2 
Count of 2G Data Events in the past three Months 57.5 
Sum of Call Drops and Call Setup Failures in the past three months 56.8 
Average Voice Call Setup Duration for the past three months 52.4 

Due to confidentiality reasons we cannot disclose the exact numbers and weights 
of the parameters constituting our model. Nevertheless, we can disclose parameters of 
which our network model is consisted, ranked by their individual performance (CoC): 
The Total Duration of Provisioning Errors in the past six months; The Average Ratio 
of 2G and 3G Data Events in the Past three months; The Count of 2G Data Events in 
the past three Months; The Sum of Call Drops and Call Setup Failures in the past 
three months and The Average Voice Call Setup Duration for the past three months. 
The individual influence (CoC) of each of these parameters onto churn is presented on 
Table 4. Just for comparison, we also show the performance of the best predictor, the 
contract end date, which has a superior prediction power. However, the purpose of 
these models is to models is to investigate why customers churn from a network pers-
pective and offer means of alleviating these reasons. In this case, the relationship with 
contract end date is secondary. When customers get closer to the end of their contract, 
there is a higher risk of churn. Moreover, customers out of contract for a longer period 
of time have proven to be loyal, as the other customers have left. 

The influence of each of these parameters onto customer experience and therefore 
churn can be explained and is agreed upon by the company experts. First of all, it is 
interesting to note that the Sum of Call Drops and Call Setup Failures in the past three 
months is not a rate, but an absolute count. Namely, it is irrelevant if a customer 
dropped two calls out of 30 or out of a 100, the two dropped calls drive churn.  
The parameter Average Voice Call Setup Duration for the past three months implies 
that customers do not appreciate having to wait a long time to establish a voice call. 
Provisioning errors are errors where customers have not been enabled to use certain 
services on the network even though they have subscribed for them (e.g. not being 
provisioned to use Internet), or do not have the appropriate quality of service (e.g. 
being provisioned to used Internet at 1 Mbps when subscribed to 3 Mbps). These 
errors do not occur frequently but are deemed by experts to have a severely negative 
influence onto satisfaction even if they occur once during the contract duration; there-
fore we summed up six months of these errors’ history. It is interesting to see the 
growing influence of mobile Internet services onto churn, especially the strong prefe-
rence of customers to use the 3G network, which is by design much faster than the 2G 
network2. The low 2G speed is not deemed satisfactory, it can be in fact perceived by  
 

                                                           
2 3G networks reach speed of 21Mbps, while for 2G the maximum speed is only 64 Kbps. 
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the customers as not being connected at all. The influence of quality of Internet ser-
vices onto churn is represented via the Number of 2G Data Events and the Ratio of 
3G vs. 2G Data Events. 

The added value of these parameters is that they denote clear actions for the tech-
nology department on which actions to take in order to prevent churn. In order to 
develop these actions, we went back to analyzing the predictors mentioned above. 
Namely, we were looking for thresholds in these parameters that, once crossed, point 
to higher churn probabilities (e.g. Customers having more than 5 dropped calls in 3 
months are 2 times more likely to churn). Projects have been developed to maintain 
and correct these parameters and their respective critical values (increased churn risk 
thresholds). This also had a profound effect onto the mindset of the department main-
taining the network: the focus has shifted from a network centric approach to a cus-
tomer centric approach in managing the network. We will explain what this means 
using the example of Voice Call Drops. The network centric approach in managing 
this key performance indicator would be to just measure a network wide call drop rate 
and attempt to maintain it above a certain threshold by giving priority to fixing net-
work cells with a large number of dropped calls. The customer centric approach in 
managing this parameter is to monitor the number of customers experiencing dropped 
calls and giving highest priority to network cells where most customers experience 
dropped calls. The customer centric approach allows addressing the problem of a 
higher number of customers, rather than focusing on network cells where only few 
customers experience a large number of dropped calls. It has already been imple-
mented and has helped reduce the number of customers experiencing dropped calls in 
general, which resulted in improved satisfaction in customer surveys (internal to the 
operator), implicating that churn reduction should follow. Similar approaches are 
developed to address the other parameters from our model. Also, it is possible that the 
solution applied to a given network cell to reduce the number of customers experienc-
ing dropped voice calls may also influence some of the other quality parameters, es-
pecially in a case of a 3G network cell (e.g. increasing the coverage area or adding 
extra capacity to a 3G cell might reduce both the number of customers experiencing 
dropped calls and prevent them from falling back to a neighboring 2G cell when using 
Internet). As an extension of this approach, it can be envisioned that cells where a 
high number of customers that are already at churn risk experience dropped calls are 
given priority, but this is subject to legal limitations with regard to data privacy3. 

To summarize, even though our churn model based entirely on network quality pa-
rameters has lesser performance compared to a normal campaigning models, it does 
have many other advantages: it addressed churn in a preventive manner, as it is not 
necessary to run retention campaigns with it; it provided guidance on what are the 
critical network parameters that need to be corrected in order to address churn from a 
network perspective; and it created a mind-shift in the department managing the net-
work into a customer centric perspective, which already resulted in increased custom-
er satisfaction. 

                                                           
3 It involves storing the cells/locations of particular customers.  
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5 Limitations and Future Work 

The first limitation we would like to address is the lack of coverage data per custom-
er. We were only able to calculate (not measure) the coverage at home for each cus-
tomer. Loss of coverage for each customer is impossible to measure from the network 
side. Having adequate coverage information could have improved our model. Howev-
er, the Ratio between 2G and 3G data events does imply the influence of loss of 3G 
coverage or insufficient 3G capacity in certain areas onto churn. 

Other limitations of this research are of legal nature. Namely, in most European 
countries stringent Data Privacy Acts or Net Neutrality Laws (will soon) exist. This 
makes it impossible to look into individual consumption of different types of Internet 
use (e.g. browsing, streaming, messaging, VoIP etc), which could provide even better 
insights into what type of service degradation leads to churn.  

Next, as usage patterns change, so do the expectations from the service quality that 
the network provides. Therefore, in time we expect a change in the influence on churn 
of the various factors that we discussed which makes the model outdated. This will 
especially be the case after the introduction of 4G (LTE) networks, which allow much 
faster Internet speed (throughput). However, these issues can be addressed by re-
modeling. 

As future work, we would like to go one step further, and investigate the benefits 
network experience measured directly on the phone, via a preinstalled app, of course 
with customers’ permission. We believe that this would provide a 360 degrees view 
of customers’ network experience and close the gap created by the data that is diffi-
cult to obtain due to technical or legal limitations. Measurements taken directly on the 
phone are the ultimate determinant of customer’s network experience. 

6 Conclusions 

In this paper we presented an atypical approach to churn management in commercial 
settings. We succeeded in explaining at least a part of churn via actual measurements 
of network quality. The main benefits of our approach are the following: First, we 
managed to build an explanatory churn model by sacrificing only a part of the per-
formance. Second, our churn model is based on features that are extracted from actual 
network parameters rather than surveys (real network experience vs. perception). 
Third, this model generates insights on which network parameters are necessary to be 
corrected in order to reduce churn, which is a new way of churn reduction. The in-
sights generated caused a shift from network centricity towards customer centricity in 
managing the telecom network. Using this process, the churn mitigation process is no 
longer just a retention campaign: the churn efforts are no longer the responsibility of 
just the CRM teams, Marketing and Customer service, but also the Technology de-
partment, managing the network is involved. Finally, our research is deployed and in 
use in one of the largest European telecom operators and has already contributed to 
increased customer satisfaction, implicating that churn reduction should follow.  
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Last but not least, we would like to point out the possibility of applying our re-
search onto domains other than mobile telecom. Obviously, this approach can be mir-
rored onto fixed telecommunications and potentially into churn in other industries, but 
also in many other cases where prevention is more important than the cure, like cer-
tain medical research. 
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Abstract. From the earliest days of computing, there have been tools to
help shape narrative. Spell-checking, word counts, and readability anal-
ysis, give today’s novelists tools that Dickens, Austen, and Shakespeare
could only have dreamt of. However, such tools have focused on the word,
or phrase levels. In the last decade, research focus has shifted to support
for collaborative editing of documents. This work considers more sophis-
ticated attempts to visualise the semantics, pace and rhythm within a
narrative through data mining. We describe real life applications in two
related domains.

Keywords: Visualisation, narrative, HCI, data mining.

1 Introduction

This work considers sophisticated attempts to visualise pace and rhythm within
a narrative. The key insight of these techniques is not to replace a qualitative
evaluation (the reading of the text) with a quantitative assessment, but, by
means of a rigorous deterministic process, to extract relationships from input
data and display them for interpretation. In essence, one qualitative evaluation
(of the text) is augmented with another (of an image); however, the qualitative
evaluation of the image has the advantage that it is not only vastly faster, but
also independent of both language and reader familiarity.

Fiction writing is a competitive industry, and supports several sub-sectors
in the form of writing classes, manuscript consultants, and networking events.
Writers face challenges in getting feedback on their work, particularly in terms of
rhythm and pace. Not only is quality subjective, the process is extremely time-
consuming for the reader. Moreover, if the writer is to iterate through drafts of
their work, then the feedback of any given reader becomes less and less useful as
the reader becomes familiar with the text. There are also situational difficulties,
such as if the writer simply doesn’t accept aspects of the criticism as valid.

A näıve tool might split a narrative into chapters and then plot a chart showing
how a measure like the Flesch reading index [10] changed between chapters. Such
a chart would have limited general use; however, if a chapter had a significantly
different index it would be sensible to conclude that the chapter was considerably

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 369–379, 2013.
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different in style to the surrounding chapters and that the writer should be aware
of this. It is key that the writer certainly shouldn’t be expected to change the
narrative simply because one chapter is somewhat unusual by some measure.
There are many possible reasons for the anomaly, but it is our position that it is
to the writer’s advantage that they are aware of both the result and the tool, so
they can reason about why the result occurred. If the writer has purposely caused
the effect to further the narrative, then such a result would be a validation,
otherwise, if the writer has accidentally caused the effect then they can consider
the worth of the effect and potentially adjust or remove it.

This work uses a framework for narrative analysis proposed in [19] and applies
such techniques to two example domains, with a view to evaluating the system
to see if it can provide insights of value in literary research. One domain is
in the traditional agent/consultant model, whereas the other is a group process,
situated much closer to writing for TV or film scripts. Of course, our comparisons
are not an adequate or complete way of assessing individual style; they are
nonetheless an element that can be employed usefully for our specific purpose.

This paper first details work in related areas and places the techniques exam-
ined here in an insightful and innovative context. The following sections describe
the operational use domains. Visualisations of the narrative mapping are de-
scribed. The analysis of these mappings is accompanied by examples and notes
on how the use was suited, or not, to particular aspects of each domain.

2 Previous Work

Previous work relating narrative and computer science tends to focus on creation
– for example, designing systems that produce emergent narrative [3, 13, 14]
or by modelling an existing narrative as a sequence of actions with pre and
postconditions [21]. There are also many instances where media outlets have
announced computer systems that can pick the next bestselling book, script, or
music [23]. The failure of these systems to live up to the hype has led people to
be naturally cautious about any analysis system in the creative domains.

The techniques examined in this work were first used in [19, 20] to distinguish
the style and structure of film and TV scripts. Murtagh et al. focused on cap-
turing the semantics of the data and the plausibility of taking text as a practical
expression of underlying story. This work can be characterised as providing a
platform to construct visual representations of semantics encoded in the data.

There is an overlap with the area of sentiment analysis, which analyses user-
generated content: often by determining if the author of a blog comment or
tweet is in favour of, or against, a product. Although visualisations have been
constructed this way [4? ], such approaches are based, thus far, in examining
a small set of sentiment-bearing words, and they consider the source text as a
single block, rather than a set of discrete scenes comprising a narrative arc.
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3 Methodology and Evaluation Domain

This section presents details of domains of deployment. Later sections will evalu-
ate how different information mapping methods are used to enhance the workflow
of each. Our evaluation is based on testimonials and our observations.

Interviews conducted with experts in the publishing industry that made it
clear that there was a large degree of resistance to what the industry might see
as “replacement by robots”. The two mapping through visualisation techniques
we evaluate here are of interest because they require a level of interpretation
from the user, and so may be much more acceptable to the industry.

The use of these techniques was evaluated in two domains, which were selected
to represent the extremes of creative writing. The Writer’s Desk is a consul-
tancy offering a very traditional feedback mechanism to authors, whereas Project
TooManyCooks models the deadline-driven high intensity creativity found in
group writing for TV, film, or magazines.

3.1 Project TooManyCooks

Project TooManyCooks (TMC) (described briefly in [18]) is a creative writing
project that runs camps of 8 to 10 student writers who collaboratively create
a novel (depending on the age of the students this is normally in the 30,000 to
65,000 word range) over a period of five days. It has two core goals: to increase
the contact time and feedback between students interested in fiction writing;
and to give students experience of the lifecycle of the novel from inception to
printing. Example outputs include [5–8]. In this domain, users were particularly
interested in using the analysis techniques to quickly alert them to sections that
in some sense didn’t follow the overall voice of the rest of the novel. The project
was also interested in mapping and visualisation of overall plot arcs: allowing
them to reorder sections in such a way that particular scenes do not overshadow
each other within the narrative.

3.2 The Writer’s Desk

The Writer’s Desk (TWD) is a commercial entity specialising in the review of
manuscripts for authors [12]. TWD’s role is in giving professional feedback to
authors over the style and structure of their work. This study spent six months
providing narrative analysis for a selection of the submissions they received. The
analysis reports were either used internally for developing TWD feedback or
passed on to authors as an appendix1. TWD and their writers were particularly
interested in seeing the chapter-to-chapter flow and, as an extension of this, how
an author’s work sits as a whole. As a commercial enterprise, TWD was also
interested in identifying target markets – and in grooming submissions to hit an
area of particular interest to the public more precisely.

1 An example of a report prepared for TWD can be found at
http://www.cs.rhul.ac.uk/home/joseph/hosted/angel.eps

http://www.cs.rhul.ac.uk/home/joseph/hosted/angel.eps
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4 Visualisations

This work reports experiences using two mappings to express the narrative arc.
Firstly, quite general frequency of occurrence data is determined for word usage
in context. Based on all interrelationships between words and text segments, a
mapping is obtained that is Euclidean and hence easly visualised as a map-like
representation. From that, and aided greatly by the Euclidean map – most often,
of full inherent dimensionality and hence not suffering any loss of information –
a tree or hierarchical visualisation is obtained. A further innovative development
is to have such a hierarchy respect a given ordering of the input text related to
narrative development or chronology.

Each input text is automatically divided into a number of segments, with
chapter headings being used to delimit segments2. Given these segments and a
list of unique words in the input text, a cross-tabulation is constructed which
gives the count of the occurrences of a given word in a given segment. From a
machine-learning perspective our data was semi-structured, in that it is organ-
ised into discrete chapters or segments.

One can use correspondence analysis to extract from a cross-tabulation some
level of structure from the text in the form of an embedding in Euclidean space.
Details of the construction are available in [18, 19]. We refer to the extracted
structure as mapping the semantics of the text, because each word is a weighted
average of text segments, and each text segment is a weighted average of the
words it contains. Both the tree visualisations to be presented use Euclidean
space embedding as a starting point. For each visualisation, a description is given
with examples and then a detailed analysis is reported on of the advantages and
also limitations of the visualisation in each domain.

4.1 Unordered or Geometric

The relationships in the data given by the set of all frequency of occurrence
(including 0 = no presence) values can be projected into two dimensions to show
the relative position of each chapter (text segment) in the projection. Figure 1
shows such a projection from Owen Noone and the Marauder [9], with each
segment of the text represented by a point on the projection. Since the process
used the relative word counts as its starting point, two segments in the novel
will appear closer to each other in the projection if they have similar relative
word frequencies. It is our position that when an author writes a segment in a
distinctly different style or tone (examples might be moving to a different tense
or a sudden change in the tension in the storyline) then these word frequencies
will change significantly and be visible on the projection for interpretation.

For example, Figure 1 shows a tight core grouping over to the right hand side
of the projection, with a number of outliers. Subjectively one might say that this
grouping represents the “voice” of the author or novel – and it may be considered

2 If there are no chapters in the text, but sections are divided by some distinct typo-
graphical convention, then section boundaries may be used instead.
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Fig. 1. Owen Noone and the Marauder as a geometric, best planar projection, visuali-
sation

worthwhile to investigate the nature of those segments that did not fit in with
this voice. If one examines segment 69, which is the most extreme outlier, it
can been seen that it is written as a fictional extract from the newspaper USA
Today, as opposed to the majority of the novel, which is written with a more
conventional third-person narrator. The author very much intended to give this
segment a different “voice”. In this particular work, the majority of the other
relative outliers are similar plot devices in the form of radio announcements,
magazine articles and so on. Of course, the software makes no judgement here.
It simply displays the information for an expert evaluation.

The example of Owen Noone is a static study of a published novel after a
rigorous proofing and editing process. We shall shortly show how TWD used the
visualisation to examine a snapshot of styles to position a novel in the market,
while TMC used the visualisation to track the progress of construction over time.

TooManyCooks. One of the core goals within the TooManyCooks process
was to give the appearance of having one single author with a clear style and
“voice”. The group originally relied on the “wikipedia effect” – that is that
if enough different authors proofread and rewrite the same section repeatedly,
then differences in style become invisible to the causal reader. However the 2-
dimensional projection allowed users to visualise the style and see which sections
might benefit from a stylistic rewrite.

It is tempting to assume that this “core style” was simply the average of the
styles of the writers. In fact, this was the working model used in TwoManyCooks
– this visualisation was introduced in the proofreading stages as a way of applying
a consistent style across the novel. During the latter two days of a TooManyCooks
project, the current draft of the novel is repeatedly printed out, proofread, and
has changes made to it (generally on the order of three iterations per day).
In early iterations, group coordinators would identify outliers – evaluate each
of them to see if the outlier was an intentional outlier and, if not, paired it



374 J. Reddington, F. Murtagh, and D. Cowie

with another segment that was in some sense opposing the first. The group
members who wrote the first drafts of each of these were instructed to copy-edit
each other’s draft with the intention that the stylistic differences would cancel
out. One could imagine a similar process pairing writers and sub-editors on a
magazine or a newspaper. In later iterations, this becomes much more a process
of identifying unintentional outliers and focusing the stronger writers on those
chapters for rewriting, while other writers polished more minor corrections in
those chapters that hadn’t shown as outliers.

Later work provided more grist for the mill of our thinking. A recent TooMany-
Cooks group was selected from students who had won a short story competition.
Figure 2 shows a projection in which the short stories are compared with both
the novel that the writers produced, and (for context) the popular novels Harry
Potter and the Half Blood Prince [22], represented by H, and Pride and Prej-
udice [1], represented by P. The short stories, represented by the I symbols,
unexpectedly do not surround the novel that the authors later collaborated on
(represented by S symbols). This suggests that in fact the core clustering is more
a result of the group of writers improving the consistency of their prose with re-
gard to an intended style, rather than being shackled to a literary fingerprint.
Note also that the clustering of the TooManyCooks novel is much less tight than
either of the two popular authors, which is probably to be expected from a small
group of 6th-form students3 writing over a five day period.

The major use of the unordered visualisation for the TooManyCooks project
was in identifying sections of unusual style and being able to evaluate each for its
role in the story. Being able to highlight those aspects of the story that did not
have the same “voice” as the main narrative allowed the writers to streamline
the feedback process and present to readers a more consistent narrative.
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The Writer’s Desk (TWD). An attraction of the projections for TWD was
the ability to quickly compare with other artists within the same genre. A regular
complaint of publishers and agents is that they are sent manuscripts for genres
in which they do not specialise and end up rejecting the vast majority of these
out of hand. At the fine-grained level, editors have regularly commented that an
author does not necessarily write in the style that they believe they do and, more
crucially, they do not necessarily aim at a market segment that they are best
suited for. By using the projection visualisation to compare a target manuscript
with a selection of commercial novels one can compare explicitly.

For example, TWD had a commission to examine a particular target novel
that was aimed at the style of romance novel exemplified by Danellie Steel. Fig-
ure 3 shows the the target novel text (T), compared with several other novels.
These are: Kaleidoscope, by Danellie Steele (S); Emma, by Jane Austen (A); and
Eclipse, by Stephanie Meyer (M) [25, 2, 15]. This allowed TWD to evaluate, to
their own satisfaction, if the style and word choice in this instance was closer
to the Steele-style romance than either the classic or teen styles of the other
examples. Furthermore, the overall consistency of the text is similar to what
would be expected from a published novel. There is, of course, a psychological
component to some of this feedback. Some authors react viscerally to the idea
of this sort of analysis, fearing that the approach reduces creativity, while some
react very favourably, having more faith in their own interpretation of the visu-
alisations than they necessarily have in their agents or editors (who they might
see as sparing them hard truths).

The ability to highlight anomalous sections was also of great interest within
the TWD domain as it provided a useful metric for working one-on-one with
authors, and to invite them to interpret the results in relation to their work.
This allowed the conversation to be more about the guiding of the author and
not about a difference in personal tastes between people.

Feedback from the company was universally positive, particularly in the area
of how comfortable they were in interpreting the visualisation for themselves,
and in helping with the more commercial aspects of the business.
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4.2 Ordered or Hierarchical

Although the planar presentations are useful, they do not address the fact that
the narrative is consumed linearly, and so they reflect only those differences
that we are referring to as style or mood between any given successive pair
of segments. To gain more insight into the actual structure of the narrative, a
visualisation is used that respects the sequentiality of the segments. This section
evaluates this hierarchical arrangement of the information, again starting from
quite generic text/word association data with relatively minimal pre-processing..

The hierarchical clustering algorithm used here is detailed in [16], and was
used as a device to deconstruct the film Casablanca in [19]. Briefly, the algorithm
repeatedly merges the least dissimilar pair of adjacent scenes to form a tree-like
structure that shows how segments of a narrative cluster together.

This sequential ordering allows the viewer to notice how, although a chapter
or set of chapters may fit within the overall ‘style’ of a novel, they may not
necessarily match with their immediate neighbours. Once again, there can be
outliers, and a human can decide if an outlier is there to intentionally shape the
narrative or not.

For example, Figure 4 shows the ordered visualisation of Harry Potter and
the Half-Blood Prince by J.K. Rowling [22], in which each segment is a chapter
in the novel. Viewing the structure, one can see that the cluster comprising only
the first chapter is rated as being remarkably dissimilar to the cluster containing
all other chapters. The opening chapter of the novel is a conversation between
the Prime Minister of the UK, and the Minister for Magic; the chapter is used
mainly for setting up the narrative and the mood, and neither character features
significantly in the remainder of the text. A subjective reading of the novel may
support that the first chapter was separate structurally from the text. Although
the comparative deconstructing of such works to a much lower level of detail
is a fascinating subject in its own right, it is outside the scope of this work.
In particular, our two target domains focus much more heavily on the use of
this ordered visualisation for examining novels as works-in-progress. For more
information on this clustering see, e.g. [16, 17].

Project TooManyCooks. Figure 5 shows a dendrogram using an early draft
of The Shadow Hours, which was the test novel for the TooManyCooks Project.
The major anomalous section in Figure 5 (chosen by eye) is 44, followed by 26,
27, and 6. Section 44 happens to be the smallest section in the narrative in
that draft – and the only one that hadn’t been expanded from a skeletal outline
into a draft section so it required attention. Sections 26 and 27 were character
development of one of the minor characters; they had been drafted by one team
member and had not been reviewed yet by other team members.

Examining Figure 6, which shows a slightly later draft of the same novel, in
this draft section 44 is still a clearly anomolous section, but by much less of
a degree, and 26, 27, and 6, now merge much more closely with the surround-
ing chapters. This is compared with contemporaneous notes from the project
showing that 44 had now been drafted, and the other scenes were going though
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second drafts. In this case the dendrogram allowed an “at a glance” notification
of areas that required particular attention and revealed that a section had been
missed due to a communication error in the team.

The Writer’s Desk (TWD). Given the much greater amount of time that staff
at TWD had to examine a manuscript, the ability to “immediately evaluate” the
structure of a document was less important. Instead the structural diagrams were
used to validate, and later guide, the reviewer’s own evaluation. During the early
stage of the project, staff reviewed documents as normal, and then examined the
structural diagrams to see how much their interpretation of the diagram agreed
with their interpretation of the text. As trust built, this progressed to reviewing
documents before using the diagrams to check that no obviously anomoulous
sections were missing, and then to reviewing both the text and the diagram at
the same time, allowing the reviewer to re-examine text on the fly and get a
much stronger impression of not only where the current section of text is going
but how it slots into the overall narrative.
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Fig. 6. Structure of The Shadow Hours, second snapshot from drafts

5 Discussion and Future Work

We have developed tools that we have used effectively to augment and improve
upon qualitative analyses of narrative. Our findings are that these techniques
can be effective, depending greatly on the situation they are applied in. Given
the reported benefits of data visualisation [26, 24], the publishing sector has been
slow to engage in use of visualisation. In a set of interviews with 14 industry
representatives that were conducted as part of the research, without exception
the interviewees reported no use of software for anything other than counting
words, and only a fraction of the interviewees were interested in seeing demos
of any kind of supporting technology. However, some publishing staff have been
very positive about the idea of at-a-glance market placement and the added-
value of being able to check that the section of the book that one has read is
typical of the author’s voice. Those who have made use of the technology are
positive, and provided us with testimonials.
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Abstract. The concept of a negative class does not apply to many prob-
lems for which classification is increasingly utilized. In this study we
investigate the reliability of evaluation metrics when the negative class
contains an unknown proportion of mislabeled positive class instances.
We examine how evaluation metrics can inform us about potential sys-
tematic biases in the data. We provide a motivating case study and a
general framework for approaching evaluation when the negative class
contains mislabeled positive class instances. We show that the behavior
of evaluation metrics is unstable in the presence of uncertainty in class
labels and that the stability of evaluation metrics depends on the kind
of bias in the data. Finally, we show that the type and amount of bias
present in data can have a significant effect on the ranking of evaluation
metrics and the degree to which they over- or underestimate the true
performance of classifiers.

Keywords: Evaluation, Classification, False Negatives.

1 Introduction

Classification is often applied in cases where only one class is well defined. In
the biological domain, scientists can identify protein interactions with high confi-
dence but negative interactions can never be measured. When training classifiers
on such data, the classifier is trained on a positive class consisting of truly in-
teracting proteins and a negative class consisting of proteins that have not been
observed interacting. Thus the negative class exhibits bias, as it may—and often
does—consist of many interacting proteins which have been mislabeled as not
interacting. Similarly, in the medical field we can be confident that a patient
who has been diagnosed with a disease has in fact contracted the disease, while
a patient who has not been diagnosed may simply not yet have been tested for
that disease. Knowing the reliability of a classifier’s prediction in the presence
of noise is essential in these fields.

Standard classifiers are often applied to data with a poorly defined negative
class [1]. In many cases, there is an implicit assumption that data are mislabeled
completely at random. This is common even among algorithms that are designed
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for mislabeled positive class data [2]. This assumption is unrealistic in real world
scenarios where there may be multiple sources of different systematic biases
in experimentation and data collection. Furthermore, the proportion of true
negative class instances to mislabeled positive class instances is often expected
to be overwhelmingly large. While this would seem to validate the assumption
of completely random data bias, it has not been shown to be a safe assumption
for an unknown proportion of mislabeled instances with unknown bias.

We motivate this study through the analysis of real world experiment that
is used to try to address some of the most pressing issues in biology today. In
performing the study we uncover additional critical questions that must be ad-
dressed in order to answer our motivating question, “How reliable are evaluation
metrics when the negative class contains an unknown proportion of mislabeled
positive class instances?”

2 Case Study

Physical interactions between proteins are one of the primary mechanisms by
which a cell carries out its function. While there are high-throughput methods
to measure protein-protein interactions (PPI), expense, noisy measurements,
and the sheer number of possible interactions in even relatively simple organ-
isms renders complete tests for all interactions infeasible. The identification of
interacting proteins based on known interactions and related information is a
common classification task in the biological domain [3].

The discovery of unknown protein interactions can have significant impact in
pharmaceuticals and biology. With this in mind, we trained naive Bayes classi-
fiers on incremental updates to known protein interactions in yeast. We collected
these data from BIOGRID, a curated repository for protein interaction data sets
from multiple organisms. These data provide a real world case in which misla-
beled class instances (unknown protein interactions) were incrementally revealed
to be positive class instances with each update of the system [4]. Features con-
sisted of expression data, Gene Ontology information, and known pathways.
Each of these types of data have been used in the classification of protein inter-
actions [5].

Expression data measure the amount of gene product (i.e. RNA) produced by
each gene. It is an indirect way to measure the amount of protein produced by a
cell. We gathered two features from expression data: one from a line cross exper-
iment, in which two strains of yeast were bred, and one from a compendium of
treatments in which yeast were exposed to chemicals and given mutations before
measurements were taken [6,7]. We collected a third feature based on the Gene
Ontology (GO). The GO is a hierarchy of categories that describe the function,
process, and biological components in which genes are involved. This feature was
created by counting the number of GO slim terms (a high level set of GO terms)
shared between each pair of genes. We used the number of shared pathways be-
tween genes as the fourth feature [8]. Pathways describe a series of interactions
that lead to a product or change in a cell. Yeast has approximately 6,000 genes,
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translating to roughly 18 million unique protein interactions. We trained naive
Bayes classifiers on this data set for five versions of BIOGRID. There was an av-
erage difference of about 20,000 interactions between each version of BIOGRID.
Each data set contained 8 million instances with all positive protein interactions
from that version of BIOGRID. The remainder of the instances were randomly
under-sampled from the remaining potential protein interactions.

In order to evaluate classifier performance, we measured both the area un-
der the receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPR) of models trained on data using five versions of
BIOGRID. We were interested in how accurate the evaluation metrics were in
measuring classifier performance when many of the positive class instances were
mislabeled. To this end, we measured the AUROC and AUPR based on the class
labels from each given version of the BIOGRID database and the class labels
from a more recent version of BIOGRID (version 3.1.85). We call the AUROC
and AUPR that are based on the class labels from earlier versions of BIOGRID
the “bias class AUROC and bias class AUPR” because of the presence of misla-
beled instances. Similarly, we call the AUROC and AUPR that are based on the
class labels from the most recent version of BIOGRID the “true class AUROC
and true class AUPR” because of the additional positive class instances that are
correctly labeled.
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Fig. 1. (a) AUROC and AUPR of classifiers trained to predict protein interactions. The
x-axis shows the BIOGRID update used to label positive interactions. (b) Histogram
of positive class (interacting protein) probabilities based on known interactions from
BIOGRID version 2.0.25. For clarity, only the 47 smallest bins are shown.

Figure 1a shows the difference between the true and bias class AUROC and
the true and bias class AUPR of classifiers trained on the PPI data sets. Both
the bias class AUROC and the bias class AUPR tend to overestimate classifier
performance. The fact that the difference between the true class and bias class
for both metrics does not reliably improve suggests that additional correctly
labeled positive class instances are not giving the classifier enough information
about the remaining mislabeled instances. In other words, the decision boundary
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remains noisy despite the smaller number of mislabeled positive class instances.
Figure 1b further supports this assessment.

Figure 1b shows a bar chart of the instances colored according to their class la-
bels. True positives, false positives, true negatives, and false negatives were iden-
tified by comparing the predicted class labels from classifiers trained on known
interactions from the earliest BIOGRID version to the “true class” labels from
the latest version of BIOGRID. For example, true positives are instances that
are known to be positive protein interactions in the latest version of BIOGRID
that were also predicted as positive class by classifiers trained on known protein
interactions from the first version of BIOGRID. The distribution appears multi-
modal, indicating that there is information within the given features that clearly
separates many protein interactions into distinct groups. False negatives appear
randomly spread throughout the true negatives. This may indicate that protein
interactions classified as false negatives are not related within the features in
this data set to the protein interactions identified correctly as interacting.

Figures 1a and 1b demonstrate that our evaluation of the classifier is op-
timistic and that the addition of correctly labeled proteins does not seem to
reliably affect classifier performance. This may indicate that the mislabeled pos-
itive class instances are mislabeled completely randomly. However, there is in
fact at least one known systematic bias in the data used for this study. The
Gene Ontology contains many more annotations for genes that are known to
be related to heavily researched topics than for genes related to less interesting
biological functions or processes [9]. Is there a latent variable that captures this
notion of “interestingness?” Is the absence of a latent variable or the presence
of sufficient information within our data suggested by the evaluation? Does the
lack of reliable improvement as more mislabeled interactions were corrected sug-
gest that the proportion of mislabeled instances does not affect the classifier, or
does the slight improvement in the last BIOGRID version indicate that there is
some important threshold? There may be specific answers to these questions for
this data set, but we attempt to answer these questions more generally in the
following sections.

3 Generalizing the Problem

Many of the questions brought up by the case study concern whether or not the
mislabeled positive class instances are mislabeled systematically. In real world
problems, we often know that there is bias in the data, but we do not know
what kind of bias exists. In biology, there is a bias in the well studied protein
interactions that is related to how interesting the protein’s function is. As a
result, the poorly understood proteins may be poorly characterized in the data,
confounding attempts at classification. In such cases we often know that instances
may be mislabeled, but are unable to ascertain how the data are mislabeled. Bias
in the data may be systematic or random. Furthermore, it may be expressed as
mislabeled instances or missing data. While bias in the data is a commonly
studied problem in the literature, the focus has been on learning in biased data
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sets [10]. It is equally important to study the effect of bias on the performance
metrics used to evaluate the performance of learning algorithms.

Generally speaking, data can be missing in three ways, mirroring the miss-
ingness mechanisms set out by Allison et al.: missing at random (MAR) when
values are missing in a way that is explained within the data; missing not at
random (MNAR) when values are missing in a way that could be explained by a
latent variable to which a learner does not have access; and missing completely
at random (MCAR) when values are missing and there is no variable, latent
or observed, that explains the missing values [11]. In this work we consider an
analogous problem in which the bias takes the form of mislabeled instances in
the data rather than missing instances. We term these cases BAR, BCAR, and
BNAR for this type of bias. These three cases may have marked effects on the
evaluation of classifier performance.

In a typical supervised learning scenario, classifiers can be trained and ranked
by any of a large number of evaluation metrics [12]. This situation is complicated
by the presence of bias in the data. Not only can different evaluation metrics give
conflicting rankings, but they may react to the presence of different types of bias
in different ways. We focus on the AUROC and the AUPR. These measures are
commonly used as a single representative number to describe classifier perfor-
mance. AUROC and AUPR have been studied in the context of class imbalance
and in comparison to each other [13]. However, AUROC and AUPR have not
been studied in the context of mislabeled bias.

4 Systematic Bias in Class Labels

We consider class labels to be poorly defined if the positive class contains only
correctly labeled instances, whereas the negative class contains both correctly
labeled and incorrectly labeled instances. While many data sets can be consid-
ered poorly defined, the underlying cause can vary greatly between data sets.
In particular, depending on how the data are collected, different types of biases
may be injected into the mislabeling of instances in the data set (e.g., a positive
class instance may not have a completely random chance of being mislabeled).
Therefore, in this section we discuss the various types of biases that can be found
in real world data sets, and the way in which we simulate each of the types of
bias. Note that in each of the bias injection mechanisms, only one class (the
positive class) can have its labels flipped.

4.1 Injecting Bias

We modeled each type of bias by injecting it into data sets. This approach may
compound existing bias in the data sets, but our assumption is that the data sets
are correctly labeled. Completely random bias (BCAR) was injected into data
sets by changing the label of positive class instances uniformly at random. We
injected random bias (BAR) into data sets by sorting the data by a single feature
and flipping the class label of the first X% of the positive class instances. Data
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sets were made to be biased not at random (BNAR) by sorting the instances
by a single feature, flipping the class label of the first X% of the positive class
instances, and removing the feature that was used to sort the data.

In order to isolate the effect of correlated features on the bias, we injected bias
into data sets based on the most independent feature f as defined in Equation 1.

f = argmin
i

∑
j∈X,i�=j

|corr(Xi, Xj)| (1)

This equation minimizes the absolute value of the correlation between each
pair of features, where X is the set of feature vectors and corr(Xi, Xj) is the
Pearson correlation coefficient computed between features i and j.

5 Experimental Design

It is difficult to separate the behavior of an evaluation metric from specific clas-
sifiers. To approach this problem we observe how AUROC and AUPR behave
over multiple classifiers trained on the same data sets. To preserve the validity
of comparisons, we trained classifiers on the same folds with the same randomly
permuted data with precisely the same biased instances.

In order to highlight differences between the two evaluation metrics, we mea-
sure both using the true class labels and the flipped class labels. This allows us
to measure the AUROC and AUPR under two common scenarios in the practice
of data mining: one in which classifiers are trained on data with an unknown
bias and one in which classifiers are trained on data with an unknown bias but
true class labels are discovered afterwards.

We simulate these two scenarios by measuring the AUROC and AUPR with
the flipped class labels (the first scenario) and the true class labels (the second
scenario). Classifiers were trained on data with varying levels of bias. We used the
probability estimates output by classifiers to rank the instances. We then used
the ranking and the biased class labels to calculate the “bias class” AUC and the
true class labels to calculate the “true class” AUC. This enables us to measure the
effects of bias on the performance measures, and how robust each of the metrics
and classifiers are to varying degrees of bias. If the performance on the “true”
labels is much worse than that of the performance on the “biased” labels, the
classifier metric combination is not effective at ascertaining the true performance
of the classifier on the problem. Similarly, if the “true” class performance is much
better than the “biased” class performance, then the metric is overly pessimistic,
and not suitable for cases where there is noise in the negative class label.

5.1 Evaluation Metrics

ROC curves compare true positive rate and false positive rate while precision-
recall curves compare precision to recall (or true positive rate). ROC curves
measure the “completeness” of predictions as the amount of false positives in-
creases while precision-recall curves measure the “purity” of predictions as the
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Table 1. Data sets used in this study

Name Features Feature type Instances Name Features Feature type Instances
letter 16 continuous 20000 credit-a 15 mixed 690
ism 6 continuous 11180 crx 15 mixed 690
page 10 continuous 5473 vote 16 discrete 435
estate 12 continuous 5322 vote1 15 discrete 435
krkp 36 discrete 3196 horse-colic 22 mixed 368
hypo 25 mixed 3163 ion 34 continuous 351
SVMguide1 4 continuous 3089 bupa 6 continuous 345
segment 19 continuous 2310 heart-c 12 mixed 303
artificial 8 continuous 2000 threenorm 19 continuous 300
splice 60 continuous 1000 twonorm 20 continuous 300
tic-tac-toe 9 discrete 958 heart-h 13 mixed 294
oil 49 continuous 937 breast-y 9 mixed 286
pima 7 continuous 768 sonar 59 continuous 208
breast-w 9 continuous 699 heart-v 13 mixed 200

amount of captured true positives increases. This difference underlies some of
the observed strengths and weaknesses of using the area under these curves.

AUROC can be overly optimistic in cases of imbalanced data while making
fewer assumptions about misclassification costs than other metrics such as accu-
racy [14]. This makes sense in the context of viewing ROC as a measurement of
“completeness,” as a model may have a low precision but a high recall. AUPR
has been used to overcome this concern in highly skewed data sets [15]. It has
been shown that AUPR and AUROC can give conflicting rankings for different
classifiers trained on the same data [13]. We will demonstrate that this occurs
across data sets and at various levels of bias.

5.2 Classifiers

To minimize the likelihood of sampling error, we trained classifiers on 100 random
permutations of each data set in Table 1 using 10-fold cross validation. Classi-
fiers included C4.5 decision trees (C4.5), naive Bayes (NB), 5-nearest neighbors
(NN), support vector machines (SVM), and multilayer perceptrons (MLP). We
used unpruned and uncollapsed C4.5 trees with Laplace smoothing at the leaves.
These are common parameters for C4.5 when used in imbalanced problems [16].
Unspecified parameters remained as their default in WEKA [17]. These algo-
rithms were chosen to provide a range of classification approaches. AUROC and
AUPR calculations were averaged across folds and permutations of the data.

5.3 Data Sets

We selected 27 real data sets from the UCI repository, and generated one artifi-
cial data set [18]. The real data sets were selected to maximize diversity, allowing
us to draw conclusions based on a wide range of evidence. These data sets were
considered ground truth data, with accurately labeled instances, thereby allow-
ing us to construct the “true” baseline performance. Regardless of the accuracy
of this assumption, the availability of the original class labels allows us to cal-
culate performance metrics with both true and biased data. Combined with the
injection of different types of bias, this allows us to evaluate the stability of
performance metrics. All data sets are listed in Table 1.
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6 Results

In order to determine how AUROC and AUPR behave under different levels
and types of bias, we used signed rank tests to evaluate the hypothesis that
the mean rank of a classifier as given by the true class AUC was less than
or equal to the mean rank of the classifier as given by the bias class AUC.
Tied ranks corresponded to data sets. This test was done for each classifier and
with each type and level of bias. Significant values indicate that the bias class
AUC overestimates performance. We also tested the opposite hypothesis, that
the mean rank of a classifier as given by the true class AUC was greater than
or equal to the mean rank of the classifier as given by the bias class AUC.
This corresponds to the bias class AUC underestimating performance. P-values
shown in Tables 2a and 2b reflect tests of the first hypothesis, and numbers in
bold indicate significance at a level of α = 0.01 for either test. Values in bold
that are greater than 0.01 indicate that the second hypothesis was rejected.

Most of the significant differences occur in data that are BAR, but some are
present in BNAR data sets. Some differences are consistent between BAR and
BNAR for C4.5, NB, and NN in both Tables 2a and 2b. Comparing the two
tables, we see that the bias class AUROC for C4.5 classifiers tends to overes-
timate performance, while the bias class AUPR underestimates performance.
NB classifiers show the opposite trend, where the bias class AUROC underes-
timates performance, while the bias class AUPR overestimates performance. It
is interesting to note this statistically significant difference in light of the fact
that AUROC and AUPR both overestimated classifier performance in the case
study.

7 Case Study Revisited

Now that we have observed how AUROC and AUPR behave with a variety of
classifiers trained on data with different systematic biases and different levels of
bias, we can make better-informed conclusions about where to look for bias and
what type of bias to expect. These observations may guide us to improve the
performance of classifiers on these data.

It is important to note that the ranking of classifiers given by AUROC and
AUPR are different. The fact that both overestimate classifier performance in
the case study indicates that the ranking is neither optimizing completeness nor
precision in the mislabeled positive class instances. Recall that there is a known
bias in the GO feature related to how interesting researchers find particular
genes or functions. Given the behavior of AUROC and AUPR for NB classifiers
in Table 2, if the bias in the data were BAR, we would expect the AUROC and
AUPR to under- and overestimate classifier performance, respectively. However,
both AUROC and AUPR overestimated performance in Figure 1a. This suggests
a few possibilities. First, the data may not be BAR. This is strongly suggested
by the results in Table 2 and by our use of a reduced set of GO terms. Second,
there may be a latent variable, either “interestingness” of particular proteins to
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Table 2. True class versus bias class AUC. Signed rank tests compared the rank of
classifiers across data sets to determine if the mean rank given by the true class AUC
was less than or equal to the mean rank given by the bias class AUC.

(a) True class AUROC versus bias class AUROC. Signed rank tests compared the rank of clas-
sifiers across data sets to determine if the mean rank given by the true class AUROC was less
than or equal to the mean rank given by the bias class AUROC.

True class AUROC versus bias class AUROC
Bias Classifier 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

BCAR

C4.5 1.000 0.977 0.386 0.681 0.986 0.682 0.293 0.212 0.074 0.120
MLP 1.000 1.000 0.681 0.807 0.044 0.386 0.807 0.981 0.978 0.681
NB 1.000 1.000 0.681 0.977 0.977 0.977 0.825 0.117 0.963 0.979
NN 1.000 0.977 0.681 0.074 0.579 0.383 0.425 0.579 0.579 0.960

SVM 1.000 0.173 0.977 0.977 0.579 1.000 1.000 0.500 1.000 0.049

BAR

C4.5 1.000 0.026 0.003 0.000 0.000 0.000 0.001 8e-05 0.000 8e-05
MLP 1.000 0.033 0.021 0.004 0.028 0.035 0.015 0.559 0.822 0.740
NB 1.000 0.982 0.999 1.000 0.999 0.999 0.998 0.991 0.997 0.992
NN 1.000 0.932 0.426 0.911 0.986 0.999 0.987 0.999 0.975 0.719

SVM 1.000 0.977 0.978 0.991 0.975 0.956 0.995 0.954 0.912 0.918

BNAR

C4.5 1.000 0.388 0.579 0.152 0.133 0.196 0.297 0.755 0.951 0.519
MLP 1.000 0.681 0.330 0.027 0.003 0.009 0.014 0.087 0.138 0.784
NB 1.000 0.970 0.936 0.974 0.998 0.998 0.997 0.920 0.836 0.943
NN 1.000 0.286 0.283 0.548 0.666 0.813 0.500 0.696 0.529 0.529

SVM 1.000 0.977 0.500 0.579 0.500 0.087 0.500 0.173 0.060 0.153

(b) True class AUPR versus bias class AUPR. Signed rank tests compared the rank of classifiers
across data sets to determine if the mean rank given by the true class AUPR was less than or
equal to the mean rank given by the bias class AUPR.

True class AUPR versus bias class AUPR
Bias Classifier 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

BCAR

C4.5 1.000 0.273 0.536 0.500 0.029 0.586 0.623 0.099 0.370 0.777
MLP 1.000 0.035 0.546 0.304 0.932 0.372 0.793 0.589 0.537 0.682
NB 1.000 0.133 0.060 0.120 0.286 0.867 0.286 0.536 0.030 0.021
NN 1.000 0.967 0.669 0.931 0.396 0.010 0.003 0.006 0.039 0.231

SVM 1.000 0.931 0.809 0.802 0.870 0.972 0.985 0.990 0.991 0.972

BAR

C4.5 1.000 0.952 0.996 1.000 1.000 1.000 0.998 1.000 0.998 0.995
MLP 1.000 0.812 0.992 0.994 0.982 0.625 0.749 0.625 0.571 0.401
NB 1.000 0.003 0.001 0.000 0.000 0.001 0.002 0.054 0.122 0.018
NN 1.000 0.762 0.606 0.323 0.151 0.025 0.003 0.005 0.001 0.416

SVM 1.000 0.204 0.627 0.404 0.518 0.580 0.658 0.102 0.292 0.187

BNAR

C4.5 1.000 0.647 0.897 0.792 0.860 0.853 0.329 0.240 0.554 0.918
MLP 1.000 0.637 0.964 0.810 0.500 0.841 0.970 0.988 0.837 0.935
NB 1.000 0.007 0.015 0.015 0.006 0.004 0.017 0.040 0.018 0.008
NN 1.000 0.986 0.585 0.156 0.314 0.095 0.076 0.445 0.663 0.750

SVM 1.000 0.411 0.420 0.981 0.994 0.980 0.993 0.963 0.862 0.802

researchers or something else that could provide the classifier vital information to
improve the ranking. This is further suggested by the middle mode in Figure 1b.
Third, and most likely of all, there may be a combination of systematic biases
in the data. Each feature was drawn from data gathered through experiments
with their own biases and may combine to create data that seem BCAR. From
this analysis, we can conclude first, that the data are not simply BCAR, and
second, that the first place to start looking for additional features that explain
the mislabeled positive class instances is the middle mode in Figure 1b.
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8 Discussion

An understanding of the strengths and limitations of evaluation metrics can allow
us to use and interpret them more effectively. Knowing the expected behavior
of a performance metric under specific conditions can facilitate the detection of
anomalous behavior and help to more accurately measure performance. While
the expected behavior of any combination of evaluation metric and classifier does
not mean the same behavior will be observed on a specific data set, it can be
used to guide investigation and identify potential sources of systematic bias.

The approach taken in this study can be used more generally as a framework to
approach the analysis of data with a poorly defined negative class. If researchers
have access to a data set with incremental updates as we did in our case study,
then the ideas of “true class” and “bias class” can be used to make an educated
guess about what kind of bias is being added to the data set. Additionally,
the use of multiple evaluation metrics helped to identify anomalous behavior
and their agreement in our case study allows us to more confidently assess the
usefulness in the ranking of false negatives. Each figure gave us further insight
into the data. Namely, how the evaluation metrics were over- or underestimating
performance (Figure 1a), how the classifier grouped the data (Figure 1b), and
how informative the ranking was about mislabeled positive class instances.

In this work we sought to address the question “How reliable are evaluation
metrics when the negative class contains an unknown proportion of mislabeled
positive class instances?” We showed that there is much that we can uncover
about the nature of bias in the data and the reliability of evaluation. We ad-
dressed two key questions in this study. First, “how do AUROC and AUPR
behave under varying levels of bias in the data set?” Our experiments show that
the trend to over- or underestimate classifier performance (Tables 2a and 2b) is
fairly stable across levels of bias. A second question addressed is, “What is the
effect of different types of bias in the data on AUROC and AUPR?” Tables 2a
and 2b indicate that the type of bias does have an effect on whether the class
AUROC and class AUPR tend to under- or overestimate the performance of NB
and C4.5 classifiers. Of course, it is difficult to observe the behavior of an evalu-
ation metric outside of the context of classifiers. Indeed, we found that different
combinations of classifier and evaluation metric have different behaviors.

One concern that arose while studying how the amount of mislabeled data
affects evaluation was that the class imbalance rose with the proportion of mis-
labeled instances. A data set with evenly balanced classes would end up with a
19:1 class imbalance ratio when 90% of the class labels were flipped. The added
effects of the imbalance problem could have a confounding effect on the evalu-
ation metrics. Regardless, because we observed changes in AUROC and AUPR
across all proportions of mislabeled instances, we feel that the effect of the class
imbalance problem is controlled in our experiments.

This study relied on an idealized scenario in which only one type of bias
affected a data set at a time through a single feature. The combinatorial problem
of applying each type of bias to each feature was prohibitive both in terms of
time as well as complexity of analysis. However, we showed that in many data
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sets, even if data are mislabeled with respect to the least dependent feature,
AUROC and AUPR can over- or underestimate classifier performance.

We focused on AUROC and AUPR, but it is reasonable to expect still more
different behaviors from additional evaluation metrics. One future direction might
be to investigate the use of combinations of evaluation metrics to overcome in-
dividual biases. Perhaps the tendency of AUROC to overestimate performance
and the tendency for AUPR to underestimate performance for C4.5 (and the
opposite tendencies for NB) can be used together to get a measure that is more
robust to mislabeled instances. By exploring these sorts of possibilities, future
work may be able to provide principled methods for overcoming the problem of
missing negative class labels.
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Abstract. Dynamic Bayesian networks (DBNs) are a class of probabilistic
graphical models that has become a standard tool for modeling various stochas-
tic time-varying phenomena. Probabilistic graphical models such as 2-Time slice
BN (2T-BNs) are the most used and popular models for DBNs. Because of the
complexity induced by adding the temporal dimension, DBN structure learning
is a very complex task. Existing algorithms are adaptations of score-based BN
structure learning algorithms but are often limited when the number of variables
is high. We focus in this paper to DBN structure learning with another family of
structure learning algorithms, local search methods, known for its scalability. We
propose Dynamic MMHC, an adaptation of the "static" MMHC algorithm. We
illustrate the interest of this method with some experimental results.

Keywords: Dynamic Bayesian networks, structure learning, scalability, local
search methods.

1 Introduction

Bayesian networks (BNs) are one of the most complete and consistent formalisms for
the acquisition and representation of knowledge and for reasoning from incomplete
and/or uncertain data. Structure learning of these models from data is an NP-hard prob-
lem [1]. Many studies have been conducted on this subject, leading to three different
families of approaches: (1) constraint-based methods, (2) score-based methods, and (3)
hybrid methods combining the advantages of both previous families. These last meth-
ods deal with local structure identification and global model optimization constrained
with these local information. These methods are able to scale to distributions with more
than thousands of variables.

Dynamic Bayesian networks (DBNs) are a general and flexible model class for rep-
resenting complex stochastic processes [9] and are used in several areas such as speech
recognition, target tracking and identification or genetics. Because of the complexity
induced by adding the temporal dimension, DBN structure learning is also a very com-
plex task. Existing algorithms [6,16,17,20,8] are adaptations of score-based BN struc-
ture learning algorithms, but are often limited when the number of variables is high.
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Some others more scalable algorithms [5,21,18] have been proposed for a subclass of
DBNs.

We focus in this paper to DBN structure learning with local search methods, by
adapting the MMHC algorithm proposed by Tsamardinos and al. [14], one of the "state
of the art" algorithms of this family. We claim that these local search algorithms can
easily take into account the temporal dimension.

Section 2 provides the background of our work with a brief introduction to DBN
structure learning and to MMHC algorithm. In section 3, our proposed algorithm Dy-
namic MMHC is explained in three sub-algorithms. We present the related works in
section 4. Section 5 describes our experimental results. Finally, section 6 presents con-
clusions and perspectives.

2 Background

2.1 Dynamic Bayesian Networks

A DBN is a probabilistic graphical model devoted to represent sequential systems
[9]. More precisely, a DBN defines the probability distribution over X[t] where X =
{X1 . . . Xn} are the n variables observed along discrete time t.

In this work, we consider a special class of DBNs, namely the 2-Time slice BN (2T-
BN). A 2T-BN is a DBN which satisfies the Markov property of order 1 X[t − 1] ⊥
X[t + 1] | X[t]. As a consequence, a 2T-BN is described by a pair (M0,M→).

M0 (initial model) is a BN representing the initial joint distribution of the process
P(X[t = 0]) and consisting of a direct acyclic graph (DAG) G0 containing the variables
X[t = 0] and a set of conditional distributions P(Xi[t = 0] | paG0 (Xi)) where paG0 (Xi)
are the parents of variable Xi[t = 0] in G0.

M→ (transition model) is another BN representing the distribution P(X[t+1] | X[t])
and consisting of a DAG G→ containing the variables in X[t] ∪ X[t + 1] and a set
of conditional distributions P(Xi[t + 1] | paG→ (Xi)) where paG→ (Xi) are the parents of
variable Xi[t + 1] in G→, parents which can belong to time t or t + 1.

2.2 Local Search Algorithms

Local search algorithms are hybrid BN structure learning methods dealing with local
structure identification and global model optimization constrained with these local in-
formation.

Several local structure identifications for static BNs have been proposed, dedicated to
discover the candidate Parent-Children (PC) set of a target node algorithm [13,10] or the
Markov Blanket (MB) i.e. parents, children and spouses, of the target node [15,11,10].
If the global structure identification is the final goal, Parent-Children identification is
sufficient in order to generate a global undirected graph which can be used as a set of
constraints in the global model identification. For instance, the recent Max-Min Hill-
Climbing algorithm (MMHC) (cf. algorithm 1) proposed by Tsamardinos and al. [14]
combines the local identidication provided by Max-Min Parent Children (MMPC) al-
gorithm [13] and a global greedy search (GS) where the neighborhood of a given graph
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Algorithm 1. MMHC(D)
Require: Data (D)
Ensure: BN structure (DAG)

1: Gc � �, G � �, S � 0
% Local identification

2: for all X ∈ X do
3: CPCX=MMPC(X,D)
4: end for
5: for all X ∈ X And Y ∈ CPCX do
6: Gc � Gc

⋃
(X,Y)

7: end for
% Greedy search (GS) optimizing score function in DAG space

8: T est � True, S � Score(G,D)
9: while T est=True do

10: N � Generate_neighborhood(G,Gc )
11: Gmax= arg maxF∈NScore(F,D)
12: if Score(Gmax,D) > S then
13: G � Gmax

14: S � Score(Gmax,D)
15: else
16: T est � False
17: end if
18: end while
19: return the DAG G found

Algorithm 2. MMPC(T,D)
Require: target variable (T ); Data (D)
Ensure: neighborhood of T (CPC)

1: ListC =X \{T }
2: CPC = MMPC(T,D, ListC)

% Symmetrical correction
3: for all X ∈ CPC do
4: if T � MMPC(X,D,X \{X}) then
5: CPC = CPC \ {X}
6: end if
7: end for

is generate with the following operators: add_edge (if the edge belongs to the set of
constraints and if the resulting is acyclic DAG), delete_edge and invert_edge (if the
resulting is acyclic DAG) (this algorithm is not describe for lack of space).

The MMPC local structure identification, described in Algorithm 2, is decomposed
into two tasks, the neighborhood identification itself (MMPC), completed by a symmet-
rical AND correction (X belongs to the neighborhood of T if the opposite is also true).
The neighborhood identification (MMPC), described in Algorithm 3, uses the Max-Min
Heuristic defined in Algorithm 4 in order to iteratively add (forward phase) in the candi-
date Parent-Children set (neighborhood) of a target variable T the variable the most di-
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Algorithm 3. MMPC(T,D, ListC)
Require: target variable (T ); Data (D); List of potential candidates (ListC)
Ensure: neighborhood of T (CPC)

1: CPC = ∅
% Phase I: Forward

2: repeat
3: <F, assocF>=MaxMinHeuristic(T,CPC, ListC)
4: if assocF � 0 then
5: CPC = CPC

⋃{F}
6: ListC = ListC \ {F}
7: end if
8: until CPC has not changed or assocF = 0 or ListC = ∅

% Phase II: Backward
9: for all X ∈ CPC do

10: if ∃S ⊆ CPC and assoc(X; T |S ) = 0 then
11: CPC \ {X}
12: end if
13: end for

Algorithm 4. MaxMinHeuristic(T,CPC, ListC)
Require: target variable (T ); current neighborhood (CPC); List of potential candidates (ListC)
Ensure: the candidate the most directly dependent to T given CPC (F) and its association mea-

surement (AssocF)

1: assocF = maxX∈ListC MinS⊆CPC Assoc(X; T |S )
2: F = argmaxX∈ListC MinS⊆CPC Assoc(X; T |S )

rectly dependent on T conditionally to its current neighborhood (line 1 in algorithm 4).
This procedure can potentially add some false positives which are then deleted in the
backward phase. Dependency is measured with an association measurement function
Assoc like χ2, mutual information or G2.

3 Dynamic Max-Min Hill-Climbing

3.1 Principle

Local search methods have been proposed to solve the problem of the structure learning
in high dimension for static BN. The dimensionality of the search space also increases
for DBN, because of the temporel dimension. We think that these methods could be
adapted and give relevant results for 2T-BN models.

In 2T-BN models, temporality is constrainted by the first order Markov assumption.
We claim that local search algorithms can easily take into account this temporal con-
straint. We propose this adaptation as a general principle of hybrid structure learning
methods (local identification with global search). This paper proposes a new DBN struc-
ture learning algorithm inspired from local search methods, by adapting the MMHC al-
gorithm described in the previous section. But an adaptation of other local identification
methods is also possible.
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Algorithm 5. DMMPC(T,D)
Require: target variable (T ); Data (D)
Ensure: neighborhood of T in G0 (Ne0) and in G

�
(Ne+)

% search Ne0 of T in t = 0
1: ListC0 = X[0]\{T }⋃ X[1]
2: Ne0 =MMPC(T,D, ListC0)

% search Ne+ of T in t > 0
3: ListC = X[t-1]

⋃
X[t] \{T }⋃ X[t+1]

4: Ne+ =MMPC(T,D, ListC)

Inspired from MMHC algorithm detailed in section 2.2, Dynamic MMHC algorithm
proposes to identify independently these graphs by applying a GS algorithm (adapted
by [6] for 2T-BN) (cf. Algorithm 3) constrained with local informations. These infor-
mations are provided by the identification of the neighborhood Ne0 (resp. Ne+) of each
node in G0 (resp. G

�
) (cf. Algorithm 5) .

By mimicking the decomposition procedure of MMHC, our local structure identi-
fication DMMPC will be decomposed into two tasks: the neighborhood identification
itself (DMMPC) completed by a symmetrical correction. We notice here that because
of the non-symmetry of temporality, our local structure identification will be able to
automatically detect some directed parent or children relationships if the corresponding
variables do not belong to the same time slice.

3.2 Neighborhood Identification and Symmetrical Correction

DMMPC algorithm consists of two phases detailed in Algorithm 5 respectively dedi-
cated to the identification of the neighborhood Ne0 (resp. Ne+) of a target variable T in
G0 (resp. G

�
).

X[0] and X[1] respectively denote the variables X for t = 0 and t = 1. We recall that
the 2T-BN model is first-order Markov. Hence, it is possible that the neighborhood Ne0

of a variable T in X[0] can belong to X[0] and X[1].
Let us define CPC0 the parents or children of T in slice 0 and CC1 the children of T

in slice 1.
In DMMPC, we propose using the static MMPC algorithm with the candidate vari-

ables ListC0 = X[0] ∪ X[1] \{T } in order to identify Ne0. Because of the temporal
information, we will then be able later to separate Ne0 = CPC0 ∪CC1.

In the same way, X[t-1], X[t] and X[t + 1] respectively denote the variables X for
times t − 1, t and t + 1. Ne+ of a variable T in X[t] can belong to X[t − 1], X[t] and
X[t + 1].

So let us define CPCt the parents or children of T in slice t, CCt+1 the children of T
in slice t + 1 and CPt−1 the parents of T in slice t − 1.

We propose using the static MMPC algorithm with the candidate variables ListC =
X[t − 1] ∪ X[t] ∪ X[t + 1]\{T } in order to identify Ne+. Because of the temporal infor-
mation, we will then be able later to separate Ne+ = CPCt ∪ CCt+1 ∪ CPt−1.
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Algorithm 6. DMMPC(T,D)
Require: target variable (T ); Data (D)
Ensure: neighborhood of T in G0 (Ne0) and G

�
(Ne+)

1: Ne0 = DMMPC(T,D, ).Ne0 % the set of all neighborhoods of T in G0 returned by DMMPC
2: Ne+ = DMMPC(T,D).Ne+ % the set of all neighborhoods of T in G

�
returned by DMMPC

% symmetrical correction Ne0 of T in t = 0
3: CPC0 = Ne0

⋂
X[0],CC1 = Ne0

⋂
X[1]

4: for all X ∈ CPC0 do
5: if T � DMMPC(X,D).Ne0 then
6: CPC0 = CPC0 \ {X}
7: end if
8: end for
9: for all X ∈ CC1 do

10: if T � DMMPC(X,D).Ne+ then
11: CC1 = CC1 \ {X}
12: end if
13: end for
14: Ne0 = CPC0

⋃
CC1

% symmetrical correction Ne+ of T in t > 0
15: for all X ∈ Ne+ do
16: if T � DMMPC(X,D).Ne+ then
17: Ne+ = Ne+ \ {X}
18: end if
19: end for
20: CPC = Ne+

⋂
X[t] ; CC = Ne+

⋂
X[t + 1] ; CP = Ne+

⋂
X[t − 1]

Algorithm 7. DMMHC(D)
Require: Data D
Ensure: G0 and G

�

% Construction initial model G0

1: for all X ∈ X[0] do
2: CPCX=DMMPC(X,D).CPC0

3: CCX=DMMPC(X,D).CC1

4: end for
% Greedy search (GS)

5: Only try operator add_edge Y � X if Y ∈ CPCX

% Construction transition model G
�

6: for all X ∈ X[t] do
7: CPCX=DMMPC(X,D).CPC ; CCX=DMMPC(X,D).CC ; CPX=DMMPC(X,D).CP
8: end for

% Greedy search (GS)
9: Only try operator add_edge Y � X if Y ∈ CPCX and {X,Y} ∈ X[t]

10: Only try operator add_edge X � Y if Y ∈ CCX and X ∈ X[t] and Y ∈ X[t + 1]
11: Don’t try operator reverse_edge X � Y if Y ∈ CCX and X ∈ X[t] and Y ∈ X[t + 1]

As its static counterpart, DMMPC algorithm described in Algorithm 6 has to per-
form a symmetrical correction. Because of the non-symmetry of temporality, we have
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to adapt this correction. When t = 0, we have to apply separately the symmetrical cor-
rection on CPC0 and CC1 because for all X ∈ CC1, X doesn’t belong to slice t = 0 but
to slice t = 1 and its temporal neighborhoods are given by Ne+(X).

3.3 Global Model Optimization

Our Dynamic MMHC algorithm described in Algorithm 7 proposes to identify inde-
pendently these graphs by applying a greedy search algorithm constrained with local
information. These information are provided by the identification of the neighborhood
Ne0 (resp. Ne+) of each node in G0 (resp. G

�
).

As its static counterpart, DMMHC will consider adding an edge during the greedy
search, if and only if the starting node is in the neighborhood of the ending node. G0

learning only concerns the variables in slice t = 0, so we can restrict the add_edge
operator only to variables found in a CPC0 of another variable.

G
�

is a graph with variables in slices t−1 and t but this graph only describes temporal
dependencies between t − 1 and t and "inner" dependencies in t. So we also restrict
our operators in order to consider adding edges with these constraints and we don’t
authorize reversing temporal edges.

3.4 Time Complexity of the Algorithms

This section presents the time complexity of the algorithm. In the static case and ac-
cording to the work from Tsamardinaos and al. [14] the number of independence tests
for all variables with the target conditioned on all subsets of CPC (target parents and
children set) is bound by O(|V |.2|CPC|), where |V | the number of all variables in the BN
and |CPC| is the number of all variables in the parents/children set of target. The overall
cost of identifying the skeleton of the BN is O(|V |2 2|PC|), where PC is the largest set of
parents and children overall variables in V.

In our dynamic (temporal) case, as for the static, we first identify the number of tests
in the DMMPC. In this part we have two cases to present (i.e. t=0 and t>0). We start
with t=0, DMMPC will calculate the association of all variables in time slices t=0 and
t=1 with target in slice t=0 conditioned on all subsets of Ne0 (in the worst case). Thus,
when t=0, the number of tests is bounded by O(|2V |.2|Ne0|), where V is the set of all
variables in a time slice. For t>0 case, the number of tests is bounded by O(|3V |.2|Ne+|),
because DMMPC calculates the association of all variables in three time slices t, t-1,
t+1 with the target in slice t conditioned on all subsets of Ne+ (in the worst case).

The total number of tests in both phases at t = 0 and t > 0 is bounded respectively
by O(|2V |.2|Ne0|) and O(|3V |.2|Ne+|). Thus, the total number of tests in both phases is
bounded by O(|3V |.2|Ne+|). The overall cost of identifying the skeleton of initial and
transition models in DBN (i.e., calling DMMPC with all targets in G0 and G

�
) is

O(|3V |2.2|Ne|), where Ne is the largest set of neighborhood over all variables in the time
slice t.

4 Related Works

Daly and al. [2] propose a recent and interesting state of the art about BN and DBN.
We focus here in 2T-BN structure learning. Friedman and al. [6] have shown that this
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task can be decomposed in two independent phases: learning the initial graph G0 as
a static BN structure with a static dataset corresponding to X[t = 0] and learning the
transition graph M→ with another "static" dataset corresponding to all the transitions
X[t] ∪ X[t + 1]. Then they proposed to apply usual score-based algorithms such as
greedy search (GS) in order to find both graphs.

Tucker and al. [17] propose an evolutionary programming framework in order to
learn the structure of higher order kT-BN. Gao and al. [8] develop another evolutionary
approach for 2T-BN structure learning. Wang and al. [20] also look at using evolution-
ary computation in 2T-BN structure learning by incorporating sampling methods.

All these approaches are validated on benchmark models with about 10 variables.
In a more general context, due to inherent limitations of score-based structure learning
methods, all these methods will have a very high complexity if the number of variables
increases. With the help of local search, DMMHC is able to constraint the search space
in the final global optimization (GS). By this way, we can theoritically work in high
dimensions like MMHC with static BNs.

Another way to deal with scalability is to restrict the class of 2T-BN by only con-
sidering parents of Xi[t+1] in time slice t (for 2T-BN) or any previous time slice (for
kT-BN). Dojer [5] proposes a score based method named polynomial time algorithm
for learning this class of DBN (with BDe and MDL scores). The implementation of this
algorithm is given in [21]. An experimental study have been conducted with microarray
data and about 23 000 variables. The time running is about 48 hours with the use of
MDL score and 170 hours with the use of BDe score.

Vinh et al. [19] propose another polynomial time algorithm in the same context
(equicardinality requirement) with other scoring function (MIT). Vinh et al. [18] pro-
pose another score based algorithm without equicardinality assumptions named MIT-
global. Also, they propose another contribution in this work consist to an hybrid method
with local Blanket identification (MIT-MMMB). An experimental study have been con-
ducted with 1595 variables and show that the local search MIT-MMMB and global-MIT
have similar results better than advanced score based algorithm (simulated annealing).

DMMHC and MIT-MMMB are both hybrid methods with local search and global
optimization. When DMMHC try to identify the candidate parents/children CPC set of
a target variable in a 2T-BN, MIT-MMMB try to identify the (more complex) Markov
Blanket MB but in a restricted subclass of 2T-BNs. In one hand, this assumption per-
mits to simplify both MB discovery and global optimization. In other hand, contrary to
DMMHC, MMMB is not able to identify the intra-time dependencies.

5 Experimental Study

5.1 Algorithms

We have implemented the Greedy Search (GS) for 2T-BN such as described in section
4. This algorithm is considered as the reference algorithm for DBN structure learn-
ing. More complex evolutionary algorithms exist (cf. section 4) but there no available
implementation for these specific algorithms.

We have also implemented our proposal, DMMHC, described in section 3. As a first
step in our study, our algorithm uses a constrained greedy search, whereas the original
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MMHC algorithm proposes using a Tabu search. Extending our approach by using this
Tabu search is a simple task and will be one of our immediate perspectives.

We implemented these algorithms in our structure learning platform in C++ using
Boost graph1 and ProBT 2 libraries.

The greedy search used in GS and DMMHC optimizes the BIC score function.
DMMPC also uses χ2 independence test with α = 0.05 as Assoc function.

Experiments were carried out on a dedicated PC with Intel(R) Core(TM) 2.20 Ghz,
64 bits architecture, 4 Gb RAM memory and under Windows 7.

5.2 Networks and Performance Indicators

Contrary to static BN, evaluating a DBN structure learning algorithm is more difficult.
First reason is the unavailability of standard benchmarks, except for instance some ref-
erence networks with a small number of variables (less than 10). Second reason is the
articles about DBN structure learning use different indicators to argue about the relia-
bility of their proposals.

In [12], we provided tools for benchmarking DBN structure learning algorithms by
proposing a 2T-BN generation algorithm, able to generate large and realistic 2T-BNs
from existing static BNs. Our companion website3 proposes some 2T-BNs generated
from 6 well-known static BNs (Asia, Alarm, Hailfinder, Win95pts, Andes and Link)
with a number of variables in G

�
from 16 to 112 for the 3 first 2T-BNs and from 156 to

1448 for the 3 last ones. For each of these 2T-BNs, we have respectively sampled with
Genie/Smile software 4 2.000, 5.000 and 10.000 sequences of length equal to 6, which
correspond to datasets of size 2.000, 5.000 and 10.000 for G0 structure learning and
5x2.000, 5x5.000 and 5x10.000 for G

�
structure learning. In [12], we also proposed

a novel metric for evaluating performance of these structure learning algorithms, by
correcting the existing Structural Hamming distance (SHD) in order to take into account
temporal background information. As 2T-BNs are defined by two graphs G0 and G

�
,

the distance between one theoretical 2T-BN and the learnt one is defined as the pair of
the SHD for initial and transition graphs.

Running time is also measured (in seconds). Experiments are canceled when com-
putations did not complete within four days.

5.3 Empirical Results and Interpretations

Figure 1 presents the average results of SHD and running time obtained by GS and
DMMHC algorithms with respect to sample size. Figure 1.(a) describes results for ini-
tial model corresponding to six (small and large) benchmarks (Asia, Alarm, Hailfinder,
Win95pts, Andes, Link). Figure 1.(b) describes results for transition model correspond-
ing to benchmarks used before. We can notice that for every benchmark, DMMHC
algorithm obtains better SHD than GS. Also, we can observe than DMMHC overper-
forms GS running time. This situation is really significant even for benchmarks with a

1 http://www.boost.org/
2 http://www.probayes.com/index.php
3 https://sites.google.com/site/dynamicbencmharking/
4 http://genie.sis.pitt.edu/

http://www.boost.org/
http://www.probayes.com/index.php
https://sites.google.com/site/dynamicbencmharking/
http://genie.sis.pitt.edu/
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(a) (b)

Fig. 1. Average SHD vs running time obtained by GS and DMMHC with respect to sample size.
(a) Initial graph (b) Transition graph.

small number of variables. Unlike GS, DMMHC is able to provide results in a decent
time for large benchmarks (Andes and Link).

From these results, we can see that DMMHC is an efficient algorithm for 2T-BN
structure learning. The quality of the learnt structure is better for our reference algorithm
(2T-BN greedy search) with a better scalability: results are obtained in a lower running
time and DMMHC can manage high dimensional benchmarks such as 2T-BN generated
from Andes and Link.

Comparison with existing works is a difficult task because existing works about 2T-
BN structure learning deal with specific benchmarks or specific evaluation metric, such
as reported in [12]. As a first comparison, learning the initial model is very similar to
static structure learning. As we created our 2T-BN benchmarks from usual static BNs,
we can compare the results of our implementations to static ones. [7] provides one com-
parative study involving GS and MMHC for Alarm, Hailfinder and Link benchmarks
with 5000 samples, with BDeu score (and similar results for BIC score). [4] provides
SHD results for Alarm and Hailfinder with 5000 samples for another structure learn-
ing algorithm, Greedy Thick Thinning (GTT) [3], a two-phases hill-climbing heuristic.
Table 1 summarizes the SHD obtained for 3 different hill-climbling algorithms and 2
implementations of MMHC, in about the same contexts (5000 samples). We can ob-
serve than our implementation give similar results than concurrent ones for Alarm and
Link benchmarks. Some strange results occur for Hailfinder benchmark. [7] reports
SHD results equal to 114 (resp. 88) for GS (resp. MMHC) and our implementation ob-
tains 54 (resp. 46) when [4] obtains 48. A deeper study is currently being conducted in
order to understand this phenomenon.

It is the first time that existing static benchmarks have been extended for 2T-BN
structure learning. It is also the first time that the SHD has been used for 2T-BN, with a
temporal correction as described in [12]. For these reasons, comparisons with existing
results obtained by concurrent 2T-BN structure learning algorithms are not possible. We
intend to disseminate our benchmarks and performance indicators in order to propose a
unified evaluation framework for 2T-BN structure learning.
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Table 1. SHD comparison with existing static structure learning approaches with 5000 samples

Networks GS[7] GTT[4] GS(G0) MMHC[7] DMMHC(G0)
Alarm 47 44 40 24 27
Hailfinder 114 48 54 88 46
Link 687 650

6 Conclusion and Perspectives

We propose in this paper a new 2T-BN structure learning algorithm dealing with real-
istic networks. Inspired from the MMHC algorithm proposed by Tsamardinos and al.
[14] for static BNs, DMMHC algorithm is a local search algorithm dealing with lo-
cal structure identification (DMMPC) and global model optimization constrained with
these local information.

We have shown that the local structure identification can easily take into account the
temporal dimension in order to provide some additional information about temporality
that can then be used with a greedy search in order to learn the global structure of the
initial model G0 and the transition one G

�
. As far as we know, no method able to learn

dynamic network models with such approaches has been proposed previously. We also
tested DMMHC in high dimensional domains, with thousands of variables.

Our main immediate perspective concern local improvements of our algorithm. We
think that our scalability can be improved during the local structure identification by
using temporality constraints in DMMPC in order to decrease the number of Assoc
calls. We also think that the quality of reconstruction can be improved during the global
optimization by using a more evolved meta-heuristic such as a Tabu search. Moreover,
we will extend our dynamic approach with the use of others local identification methods
such as PCD algorithm [10] provably correct under faithfulness assuption. we have also
seen that [18] local approch has good properties in a specific subclass of 2T-BNs. our
last perspective is to adapt our algorithm in this context and compare it with this state
of art scalable algorithms.
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Abstract. We present a new system for video auto tagging which aims
at correcting the tags provided by users for videos uploaded on the In-
ternet. Unlike most existing systems, in our proposal, we do not use the
questionable textual information nor any supervised learning system to
perform a tag propagation. We propose to compare directly the visual
content of the videos described by different sets of features such as Bag-
Of-visual-Words or frequent patterns built from them. We then propose
an original tag correction strategy based on the frequency of the tags in
the visual neighborhood of the videos. Experiments on a Youtube corpus
show that our method can effectively improve the existing tags and that
frequent patterns are useful to construct accurate visual features.

1 Introduction

As a result of the recent explosion of online multimedia content, it is more
and more important to index all forms of web content for various search and
retrieval tasks [13]. Classic text-based search engines already offer a good access
to multimedia contents in the online world. However, these search engines cannot
accurately index the extensive resource of online videos unless these videos are
carefully annotated (mostly by hand) while being uploaded on the web. However,
user-provided annotations are often incorrect (i.e. irrelevant to the video) and
incomplete. The reason for the former is because uploaders might want to rapidly
increase the video’s number-of-view by tagging it with a popular tag such as
“Harry Potter”, even though that video has no relationship with this famous
book series. Incompleteness means that a given list of correct tags might not be
sufficient to describe the video. Because of these two issues, a lot of online videos
are hidden to text-based search engines (i.e. to users).

To overcome these drawbacks, we will focus on the task of improving annota-
tions of web video data. Our aim is to set up a system which would be able to
handle the two above drawbacks. There have been many efforts to automatically
annotate videos (e.g [10], [13]). However, most of the current proposed systems
use limited concepts (tags) and some supervised information to learn one or
multiple classifiers to tag a video dataset. These approaches seems inappropri-
ate to correct the tags of any video on a large website such as Youtube where the

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 404–415, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Video tag propagation process

number of possible tags is infinite and where the ground truth (true labels) is
inaccessible a priori. Thus, we would like to propose an unsupervised approach
based on the comparison of the visual content of the videos to propagate the
tags of the most similar videos based on their textual frequency. In this approach
the major scientific issues lie in: i) the choice of the features that are used to
make relevant unsupervised comparisons, ii) the comparison method itself, iii)
the propagation process and iv) the evaluation of the entire system.

The remainder of this paper is organized as follows. A review of related works
concerning the above mentioned problems is given in Section 2. In Section 3, we
describe in details how to apply data mining techniques as well as our proposed
method to compare videos. Experiments on a real Youtube dataset converted
into a huge transactional dataset are presented in Section 4 and show that our
system can correct relevant tags. We conclude in Section 5.

2 Related Works on the General Framework

The first step of our system (described in Fig. 1) is to decompose a video into
a sequence of keyframes (using for example [24]). In the following, the words
frame and keyframe will be used interchangeably. The related works concerning
the subsequent steps taken in our tag correction approach are presented below.
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2.1 Relevant Features (step 2)

Depending on the task you wish to perform on video, the best suited features can
be different. So, the current trend in computer vision is to concatenate different
kinds of low level features into a high dimensional vector that will be subse-
quently used for solving the vision tasks. For example, when dealing with video
comparison for automatic tagging, [11] uses edge distribution histograms, color
moments or wavelet texture color autocorrelograms. [21] uses both audio and vi-
sual features or Histograms of Oriented Gradient (HOG) from [4] as additional
features. In [10], frame features include other kinds of global color histograms,
and Haar and Gabor wavelets. Another very popular technique is to construct
Bag Of visual Words [20] (BOW) from the original low-level feature vectors.
These BOW are built by applying a clustering algorithm on the low-level de-
scriptors (e.g. color RGB 3-D vectors). The number k of clusters is the number
of different visual words. A frame can then be encoded by an histogram of the
visual words it contains called a BOW.

However, when using only the visual content to compare videos, the above-
mentioned features might not be accurate enough. Frequent pattern mining
techniques are more and more often used in the computer vision community
to provide better features (see e.g. [22] and [7]). Those approaches often rely on
class information to select, in a post-processing step, a compact set of relevant
features from the output of the mining algorithms. Without this selection step,
this output would not be usable in practice to describe images.

2.2 Video Similarity (step 3)

Even though a video is considered as a sequence of images, variation in the
videos duration or in the number of keyframes makes them more difficult to
compare. We describe three categories of methods to compare videos. The first
one consists in considering the average of the features of the keyframes. For
example [21] consider the average of all frame histograms to produce a single
histogram for the whole video. The histogram can be thresholded to remove some
potential noise. Here classical distance functions such as L1 or L2 or histogram
intersection can be used to estimate the similarity between videos. Even if this
method is computationally efficient, one loses a lot of the available information
by averaging all the frames. The second approach consists in comparing pairs
of keyframes. For example in [11], the authors measure the similarity between
two videos as the similarity between the two most similar frames of the videos.
The comparison of the two videos is made using a unique pair of frames and
no sequential information is taken into account. The last approach makes use of
common identical frames called near duplicate to compare videos (see e.g. [23]).
These frames are visually similar but different in terms of formatting, viewpoint,
change in camera parameters, etc. but their common parts can still be used to
compute a similarity score. Even though near-duplicate phenomenon appears
quite often on video sharing sites, this approach can not be applied to all videos
and especially not for the large set of videos found, e.g., on YouTube.



Accurate Visual Features for Automatic Tag Correction in Videos 407

2.3 Tag Propagation (step 4)

The problem of automatic tag corrections of videos has often been tackled in the
literature especially during the TRECViD [12] competition. However, it is often
treated as a multi-label classification problem [16] or as a tag ranking problem
[8,5]. The latter consists in finding a list of the most relevant tags for a new
video given information about its neighborhood (this information can be visual
as in our case or, for example, social in the context of social networks). Even if
they are close to our problem, these two methods assume that the number of
tags is fixed and known in advance and that they can have access to a perfectly
tagged set of videos to learn a good model for each tag.

Since most video auto tagging systems use a supervised approach, the tag
propagation step is not needed. However [23] uses such propagation procedure on
which we base ours. For each video v, a list of possible-relevant tags is obtained
from the k most similar videos (using a k-nearest neighbor algorithm). After
that, a score function is applied for each tag to estimate its relevance according
to the video v. This score function depends on the tag frequency (the higher the
frequency, the higher the score), the number of tags associated with a video (the
higher the number, the smaller the score), and the video similarity (the higher
the similarity, the higher the score). Finally, all scores that are larger than a
predefined threshold will be considered as suitable tags for the video v. Other
tags (with smaller scores) will be deleted if they appear in Video v tag list.

This approach is similar to the collaborative filtering (CF) approach [15] which
is a successful method to build recommender systems. In CF, some user’s at-
tributes (here, the attributes are tags and the user is a video) are predicted using
the information about these particular attributes for similar users. In CF, the
similarities between users would typically be computed on the other common
tags of the videos (the one that are not being predicted). Our approach is dif-
ferent since neighborhood videos do no necessarily contain similar tags and, in
particular, their distribution can be completely different. Besides, contrarily to
CF, we do not assume that the tags already present are correct, and we even
allow the system to remove some.

3 Our Auto-tagging System

3.1 Proposed Features

As explained in the introduction, we can use many possible features to describe
a video and this is a crucial point to work on to get a relevant tag propagation
at the end of the process. As our low level features, we propose, as often sug-
gested in the literature to describe images, to use 1,000-dimensional (1,000-D)
BOW constructed from SIFT descriptors [9] (128-D descriptors) obtained regu-
larly on a grid. However, as suggested in [7], we propose to extract those BOW
locally from each frame to obtain more relevant frequent patterns later on. More
precisely, for each point on the grid, we will create a BOW by counting the
visual words which corresponds to that point and to its 18 nearest neighbors.
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This arbitrary number depends on the resolution of the video but roughly cor-
responds to a local description of half overlapping windows around each point.
Each keyframe is thus described by a large number of BOW (in practice around
250 per frame).

Data Mining Techniques to Find More Discriminative Features. As mentioned
in section 2, the data mining techniques used in the literature to obtain better
features for video processing (for example APRIORI [1] or LCM [18]) output a
huge number of patterns (exponential in the number of dimension of the binary
vectors). Those patterns can be filtered out using supervised information as, e.g,
shown in [3]. However, in our case, no supervised information is available thus
different criteria have to be proposed.

Both KRIMP [19] and SLIM [14] algorithms have been proposed to reduce
the number of output patterns without relying on supervised information but
by optimizing a criterion based on the Minimum Description Length principle.
Both algorithms solve a minimal coding set problem but they differ in the way
they choose the collection of candidate patterns. KRIMP follows a straightfor-
ward two-phases approach: it first mines a collection of frequent itemsets, then
it considers these candidates in static order, accepting a pattern if it improves
a compression criterion. However, mining candidates is expensive and by con-
sidering candidates only once, and in a fixed order, KRIMP sometimes rejects
candidates that could have been used latter on. SLIM greedily constructs pat-
tern sets in a bottom-up fashion, iteratively joining co-occurring patterns such
that compression is maximized. It employs a simple yet accurate heuristic to
estimate the gain or cost of adding a candidate. For this reason, SLIM is faster
and can handle larger datasets than KRIMP. In conclusion, SLIM seems a good
candidate algorithm to filter out our patterns.

Converting Features into Binary Form. Most frequent pattern mining techniques
use binary or transactional data. Therefore, the BOW must be converted into
binary vectors. The most simple (and classical) method to do so is to transform
all non-zero values into one. A lot of information is lost during this conversion
if the original histogram is dense with many different values for each bin of the
histogram. However, in our case, the 1,000-D histogram contains at most 19
non null values (corresponding to the 18 neighbors of the current visual word +
itself) and this is also the maximum value for a bin. This simple procedure thus
seems appropriate to avoid unnecessary large binary vectors.

Encoding videos with BOW and FP. If F is the set of frequent patterns obtained
using SLIM, we build a binary vector V of size |F | for each keyframe. In this
vector, V (i) is set to 1 if the ith pattern of F appears in this keyframe and 0
otherwise.

In our experiments, we encode our videos using BOW vectors, frequent pattern
vectors (FP) built from them or with both of them (BOW+FP). For this last
case, we need to normalize the feature vectors since both types of features have
different distributions. Let NBOW , σ2

BOW be the number and the variance of the
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values in the BOW sub vector; and NFP , σ
2
FP the number and variance of the

values in the FP sub vector. We modified all the values of the FP vector as
follows:

FPnew [i] = FP [i] ∗ σBOW

σFP
∗ NBOW

NFP

The new BOW+FP feature vector is the concatenation of BOW and FPnew .

3.2 Proposed Asymmetrical Video Similarity Measure

We propose an asymmetrical similarity measure inspired by the video pairwise
comparison techniques to increase the relevance of the video comparison. The
first step consists in calculating all the pairwise similarities between all the
keyframes of two videos. After that, instead of taking the optimum value of
all the pairwise similarity scores (as in [23]), we propose to take the average of
all maximum similarities corresponding to one video. In other words, for each
keyframe of a video A, we search in all the keyframes of video B for the highest
pairwise matching score and we keep this value. Then, we take the average of all
the computed values for all the keyframes of the video A to return the similarity
score of video A towards video B. If we denote A(i) the ith keyframe of A and
|A| the number of keyframes in A, then

sim(A,B) =
1

|A|
∑
i

max
j

sim(A(i), B(j)).

The similarity sim(A(i), B(j)) between frames is just the inverse of a distance
between the vectors representing the frames (in the experimental section, we
use the histogram intersection [17]). When the two frames are identical, this
asymmetrical similarity is set to a maximal value.

3.3 Proposed Tag Propagation Algorithm

As explained in Section 2, to tag a given video v ∈ V , we rely on the tags t ∈ T
of the k most similar videos in its neighborhood. To propagate a given tag t to
v, one need to set a threshold on the number of times t should appear in the
neighbors. However, given the very different distribution of each tag, we decided
to use two comparison statistical tests between the distribution of a tag in the
entire dataset and its distribution in the k nearest neighbors. The first one states
that the probability of a given tag should be significantly greater than 0 in the
entire dataset to be propagated and the second one states that it should be
significantly more present in the neighbors than in the entire dataset. Formally:

– (Global scale) A tag can be propagated if:

p̂ ≥ uα
2

√
p̂(1− p̂)

N

where p̂ is the proportion of a tag over the whole dataset, N is the total
number of videos, uα/2 is 1−α

2 percentile of a standard normal distribution.
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Fig. 2. Different strategies to obtain an accurate set of frequent patterns

– (Local scale) A tag is propagated if:

p̂1 ≥ p̂+ uα
2

√
p̂1(1− p̂1)

k
+

p̂(1− p̂)

N

where p̂1 is the proportion of a tag in the k neighbors.

We arbitrarily decide to remove a tag from a video if it is never present in its
neighbors. Note that the central limit theorem applies whenever k ≥ 30.

4 Experiments

4.1 Protocol

Dataset. We pre-processed a Youtube dataset [2] with more than 10, 000 videos
already decomposed into shots and keyframes. There are about 18 shots per video
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and 1.5 keyframes per shot, i.e. about 27 keyframes for one video. We first decided
to focus on videos with some common tags to obtain an interesting sample of
the original dataset. For that, we focused on the 500 most frequent tags in the
original set. In practice, the tail of the tag distribution will not be modified by
our method. We then removed the articles, pronouns, prepositions, words with
less than two letters and the 50 most common tags in the remainder list (those,
such as the word “video”, were considered too frequent to be informative). This
gave us a list of 150 authorized tags. We then kept the videos that contains at
least 5 of those 150 tags and more than 1 keyframe. That led us to consider
a corpus of 668 videos. Note that this is smaller than the 10, 000 initial videos
but enough to illustrate our method. From this set of videos and from the local
SIFT-BOW feature vectors computed from the keyframes we created a binary
dataset of about 6, 000, 000 1,000-D transactions.

Evaluation of the Results. We randomly chose 50 videos from the 688 videos,
and tagged them by hand using the 150 authorized tags to obtain a ground truth.
We ran our tag propagation method on the 688 videos and reported the accuracy
results for these particular 50 videos. This accuracy is measured in terms of
“percentage of good corrections” (PGC). Let Tadd,correct be the correctly added
tags out of Tadd,total added tags and Tremove,correct be the correctly removed
tags out of Tremove,total removed tags.

PGC =
Tadd,correct + Tremove,correct

Tadd,total + Tremove,total

If PGC is larger than 0.5, our system improves the tags in the videos. Note
that since most existing tag correction systems use some supervised information,
we do not compare our system to them. The following experiments stand for a
proof of concept of our system.

Frequent Patterns Mining. As explained in Sect. 3, we first decided to use
SLIM on the original transactional dataset. However, SLIM did not provide any
fixed results after more than a week running. We then decided to use the well
known and fast LCM algorithm [18] to mine closed or maximal patterns first
and use SLIM as a post-processing step to select a less redundant number of
patterns. The different strategies are shown in Figure 2.

Without tag information. We use LCM to find closed and maximal frequent
patterns from the dataset made up of the 6, 000, 000 original 1,000-D transac-
tions. The support threshold was set as low as possible which corresponded for
us to 500 (less than 1%). LCM produces 700, 000 closed and 550, 000 maximal
patterns as shown in Fig. 2 (outputs 3 and 4). We then used SLIM to select a
smaller set of around 5, 000 non redundant patterns (final output of SLIM).

With tag information. For this experiment, we concatenate all these 1,000-D
vectors to 150-D vectors which describe for each transaction belonging to a
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Fig. 3. Number of nearest neighbor
videos that contain (plain line) or
should contain to trigger the prop-
agation step (dashed line) the tag
“amanda” according to the number of
nearest neighbors for 2 different videos.
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Fig. 4. of good corrections according to
the number of neighbors in 50 videos
represented with 1) SIFT-BOW (base-
line) and frequent patterns obtained
with 2-3) LCM (closed and max) with
a post-processing using SLIM and 4-5)
LCM (closed and max) with SLIM and
some tag information.

frame of a given video, the list of tags that were associated with this video.
Each of the 6, 000, 000 transactions is thus described by a sparse 1,150-D binary
vector. As shown in Fig. 2 (outputs 1 and 2), LCM is first used to produce
around 5, 000, 000 closed and 1, 200, 000 maximal frequent patterns in a couple
of hours. In this experiment, we make use of the existing tag information to filter
out relevant patterns. A pattern is considered relevant for a certain tag if it is
five times more frequent in videos that contain that tag than in videos that do
not contain it. It is kept if it is relevant for at least one tag (note that this is
similar to the concept of emerging patterns [6]). After going through this filtering
process, the number of pattern is reduced to about 90, 000 for the maximal and
34, 000 for the closed. Then, SLIM is used to produce (also in a couple of hours)
around 600 non redundant patterns.

4.2 Tag Propagation Results

Test and Neighbors. As explained in Sect. 3, the number of neighbors considered
for the tag propagation and the statistical tests are directly responsible for the
propagation (or the removal) of a tag. To evaluate our choices experimentally,
we selected a frequent tag (“amanda”) in our video and 2 videos that should not
be tagged with this particular tag. Fig. 3 shows the number of nearest neighbor
videos that contain the tag “amanda” for the 2 different videos (plain lines). It
also shows how many nearest neighbor videos should contain the tag “amanda”
to trigger the propagation step (dashed line). Since the tag should not be prop-
agated to these videos, the plain lines should stay below their corresponding
dashed line. This is correct for 30 nearest neighbors. It is not correct anymore
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information, and 3) the concatenation
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Baseline

Fig. 6. Percentage of good correc-
tions when counting only the deletions
(dashed lines), the additions (dashed-
dotted lines) and both (solid lines) ac-
cording to the number of neighbors for
propagation results obtained with 1)
SIFT-BOW (baseline) and 2) frequent
patterns obtained with LCM (closed),
a post-processing step with SLIM and
some tag information.

when increasing the number of neighbors. This means that for this particular
tag, increasing the number of neighbors will actually degrade the propagating
system. Other similar experiments tend to confirm the relevance of choosing 30
neighbors.

Figure 4 shows the results for the 5 experimental settings described above.
Note that, as explained in Sect. 3, using less than 30 neighbors questions our
statistical tests. On the contrary, using 100 videos out of 668 clearly introduces
a lot of noise. The best results are obtained using the combination of LCM
(closed), SLIM and the tag information (output 1 of Fig. 2). In this case for 30
neighbors, the system is able to produce around 65% of good corrections which
means that 54 correct tags were added or deleted in the process (28 were wrong
propagations). For the same setting, the baseline only allows us to produce 57%
good corrections. Figure 5 and 6 focus on the baseline and the best case. It
also shows the results when both vectors are concatenated. The concatenation
produces worse results than the best case which means that the information
given by the baseline is not complementary to the information given by the
frequent patterns.

Figure 7 shows a comparison between our proposed asymmetrical similarity
measure and the basic method which consists in simply averaging for one video
all the keyframe features and computing an histogram intersection between the
feature vectors representing two videos. Our proposed method does give better



414 H.-T. Tran et al.

results but the difference is not significant using 30 neighbors. The frame average
method may thus be preferred for efficiency reasons.

Fig. 7. Percentage of good correc-
tions to the number of neighbors for
a video dataset represented by fre-
quent patterns obtained with LCM
(closed, post-processing using SLIM,
tag information), using the asym-
metrical similarity measure and sim-
ply averaging the keyframes fea-
tures and computing an histogram
intersection.
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5 Conclusion

We have presented a complete tag correction system which corrects and com-
pletes original tags on videos without learning any model. We have proposed a
new high level video feature vector to describe our videos based on frequent pat-
terns and decided to compare the videos directly using an histogram intersection
distance function. We have evaluated our method on a real Youtube dataset and
shown that our system can effectively be used to correct tags.

However, the new proposed feature vector and the pairwise video comparison
procedure do not always make a significant improvement compared to naive
methods which use simple BOW features (from SIFT) and averaging over the
videos. As future work, we thus propose to take into account the sequential
information in the video to create better high level features (such as frequent
sub sequences). Besides, our proposed method should clearly be used off-line
since the mining part takes a substantial amount of time. Efficient algorithms
(for example able to deal with streams) should also be designed to tackle a
Youtube-scale dataset.
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Abstract. An ontology database system is a basic relational database manage-
ment system that models an ontology plus its instances. To reason over the transi-
tive closure of instances in the subsumption hierarchy, an ontology database can
either unfold views at query time or propagate assertions using triggers at load
time. In this paper, we present a method to embed ontology knowledge into a
relational database through triggers. We demonstrate that by forward computing
inferences, we improve query time. We find that: first, ontology database sys-
tems scale well for small and medium sized ontologies; and second, ontology
database systems are able to answer ontology-based queries deductively; We ap-
ply this method to a Glass Identification Ontology, and discuss applications in
Neuroscience.

1 Introduction

Researchers are using Semantic Web ontologies extensively in intelligent information
systems to annotate their data, to drive decision-support systems, to integrate data,
and to perform natural language processing and information extraction. Researchers
in biomedicine use ontologies heavily to annotate data and to enhance decision support
systems for applications in clinical practice [24] .

An ontology defines terms and specifies relationships among them, forming a logical
specification of the semantics of some domain. Most ontologies contain a hierarchy of
terms at minimum, but many have more complex relationships to consider. Ontologies
provide a means of formally specifying complex descriptions and relationships about
information in a way that is expressive yet amenable to automated processing and rea-
soning. As such, they offer the promise of facilitated information sharing, data fusion
and exchange among many, distributed and possibly heterogeneous data sources.

However, the uninitiated often find that applying these technologies to existing data
can be challenging and expensive. What makes this work challenging in part is: to have
systems that handle basic reasoning over the relationships in an ontology in a simple
manner, that scales well to large data sets. In other words, we need the capabilities of an
efficient, large-scale knowledge-based system (such as Semantic Web Ontology), but
we want a solution as simple as managing a regular relational database system, such as
MySQL. We argue that: when used in the proper context, regular databases can behave
like efficient, deductive systems.

In this paper, we present an easy method for users to manage an ontology plus its
instances with an off-the-shelf database management system like MySQL, through trig-
gers. We call these sorts of databases ontology databases.

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 416–426, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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An ontology database system takes a Semantic Web ontology as input, and gener-
ates a database schema based on it. When individuals in the ontology are asserted in
the input, the database tables are populated with corresponding records. Internally, the
database management system processes the data and the ontology in a way that main-
tains the knowledge model, in the same way as a basic knowledge-base system.

After the database is bootstrapped in this way, users may pose SQL queries to the
system declaratively, i.e. based on terms from the ontology, and they get answers in re-
turn that incorporate the term hierarchy or other logical features of the ontology. In this
way, our proposed system is useful for handling ontology-based queries. That is, users
get answers to queries that take the ontological subsumption hierarchy into account.

We find that ontology databases using our trigger-based method scale well.
The proposed method can be extended to perform integration across distributed, het-

erogeneous ontology databases using an inference-based framework [10].
The rest of the paper is organized as follows: in Section 2 we review related work

and provide background information; in Section 3 we discuss the main ideas behind
ontology databases and the proposed method; in Section 4 we present case studies; in
Section 5 we suggest directions for the future and conclude.

2 Related Work

Knowledge-Based Systems. Knowledge-based systems (KBs) use a knowledge rep-
resentation framework, having an underlying logical formalism (a language), together
with inference engines to deductively reason over a given set of knowledge. Users can
tell statements to the KB and ask it queries [20], expecting reasonable answers in return.
An ontology, different from but related to the philosophical discipline of Ontology, is
one such kind of knowledge representation framework [15]. In the Semantic Web [4],
description logic (DL) [2] forms the underlying logic for ontologies encoded using the
standard Web Ontology Language1 (OWL). One of the major problems with Semantic
Web KBs is they do not scale to very large data sets [18].

Reasoning. Researchers in logic and databases have contributed to the rich theory of de-
ductive database systems [12], [13]. For example, Datalog [25] famously uses views for
reasoning in Horn Logic. We already mentioned EKS-V1 [27]. Reasoning over nega-
tions and integrity constraints has also been studied in the past [19]. Of particular note,
one of the side-remarks in one of Reiters papers [22] formed an early motivation for
building our system: Reiter saw a need to balance time and space in deductive systems
by separating extensional from intensional processing. However33 years laterspace has
become expendable. Other works move beyond Datalog views to incorporate active
rules for reasoning. An active rule, like a trigger in a database, is a powerful mech-
anism using an event-condition-action model to perform certain actions whenever a
detected event occurs within a system that satisfies the given condition. Researchers
in object-oriented and deductive database systems use active technologies in carefully
controlled ways to also manage integrity constraints and other logical features [7], [26].
Researchers are studying how to bring database theory into the Semantic Web [21], but
more work is needed in that regard.
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Scalability. Since reasoning generally poses scalability concerns, system designers
have used the Lehigh University Benchmark (LUBM) [16] in the past, to evaluate and
compare knoweldge-based (KB) systems. The Lehigh University authors have also pro-
posed the Description Logic Database (DLDB) [17]. We would charactarize DLDB as
an ontology database because it is similar to our proposed system. It mimics a KB sys-
tem by using features of a basic relational database system, and it uses a decomposition
storage model [1] and [6] to create the database schema.

Information Integration. Another important motivation for using ontologies is the
promise they hold for integrating information. Researchers in biomedical informatics
have taken to this idea with some fervor [14]. One system in particular, OntoGrate,
offers an inferrential information integration framework using ontologies which inte-
grates data by translating queries across ontologies to get data from target data sources
using an inference engine [8]. The same logical framework can be extended to move
data across a network of repositories.

3 Ontology Database System

In the following sections, we use a simple running example, the SisitersSiblings exam-
ple, to illustrate how we implement an ontology database system. We begin with the
basic idea, and then explain how we structure the database schema and implement each
kind of logical feature using triggers and integrity constraints.

3.1 The Basic Idea

We can perform rudimentary, rule-based reasoning using either views or triggers. For
example, suppose we assert the statement (a rule): All sisters are siblings. Then we as-
sert the fact: Mary and Jane are sisters. Logically, we may deduce using modus ponens
(MP) that Mary (M) and Jane (J) are siblings. The notation {x/M, y/J} denotes that the
variable x gets substituted with M, y with J, and so on, as part of the unification process.

Sisters(x, y)→ Siblings(x, y)Sisters(M,J)

Siblings(M,J)
MP{x/M, y/J}

If sibling and sister facts are stored in two-column tables (prefixed with a to denote
an asserted fact), then we can encode the rule as the following SQL view:

CREATE VIEW siblings(x, y) as
SELECT x,y FROM a siblings
UNION
SELECT x,y FROM sisters

In the view-based method, every inferred set of data necessarily includes its asserted
data (e.g., siblings contains a siblings and sisters contains a sisters). Note: when the
view is executed, the subquery retrieving sisters will unfold to access all asserted sis-
ters data. Recursively, if sisters subsumes any other predicate, it too will be unfolded.
Database triggers can implement the same kind of thing:
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CREATE TRIGGER subproperty sisters siblings
ON INSERT (x, y) INTO sisters
FIRST INSERT (x, y) INTO siblings

The deduction is reflected in the answer a query such as Who are the siblings of
Jane? Of course, the answer returned, in both cases, is: Mary. We easily formulate the
SQL query:

SELECT x FROM siblings WHERE y=Jane

What differentiates these two methods is that views are goal-driven: the inference is
performed at query time by unfolding views. Whereas, triggers forward propagate facts
along rules as they are asserted, i.e., at load time. We advocate a trigger-based approach
as our preferred method of implementation. If we consider the spacetime tradeoff: es-
sentially, triggers use more space to speed up query performance. The technique has
some of the advantages of materialized views but it differs in some important ways,
specifically: deletions. Assume we assert the following in order: A → B, insert A(a),
delete A(a). Next, ask the query B(?x). A trigger-based implementation returns {x/a}.
A view-based implementation returns null. In addition, triggers can differentiate nega-
tion from deletion. Finally, aside from rule-based reasoning, triggers support other logi-
cal features we find important, such as domain and range restrictions, and inconsistency
detection. We describe the methods for handling each case in the following implemen-
tation details.

3.2 Implementation Details

Decomposition Storage Model. We use the decomposition storage model [1], [6] be-
cause it scales well and makes expressing queries easy. Arbitrary models result in ex-
pensive and complicated query rewriting, so we would not consider them. The two other
suitable models in the literature are the horizontal and vertical models. Designers rarely
use the horizontal model because it contains excessively many null values and is expen-
sive to restructure: The administrator halts the system to add new columns to service
new predicates. The vertical model is quite popular because it avoids those two draw-
backs. Also, the vertical model affords fast inserts because records are merely appended
to the end of the file. Sesame [5] and other RDF stores use the vertical storage model.

However, the vertical storage model is prone to slow query performance because
queries require many joins against a single table, which gets expensive for very tall
tables. Furthermore, type-membership queries are somewhat awkward. As a typical
workaround, designers first partition the vertical table to better support type-membership
queries, then they partition it further along other, selected predicates which optimize
certain joins based on an informed heuristic. However, this leads back toward compli-
cated query rewriting because the partitioning choices have to be recorded and unfolded
in some way.

We view the decomposition storage model as a fully partitioned vertical storage
model, where the single table is completely partitioned along every type and every
predicate. In other words: each type and each predicate gets its own table. When taken
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to this extreme, query rewriting becomes simple, because each table corresponds di-
rectly to a query predicate. In this way, the decomposition storage model keeps the
advantages of the vertical model while improving query performance (because of the
partitions) without introducing complex query rewriting. Figure 1 illustrates the three
different models using the Sisters - Siblings example.

Fig. 1. The SistersSiblings examples using the 1(a) horizontal, 1(b) vertical, and 1(c) decomposi-
tion storage model

Subsumption. Ontology engineers often specify subclass relationships in Semantic
Web ontologies, which form a subsumption hierarchy. That constitutes the majority
of reasoning for biomedical ontologies [2] as well. As we mentioned earlier (Section
3.1), we handle subclass relationships by using triggers.

The same can be handled by using Views in Datalog. However, Datalog views differ
from inclusion axioms in description logic [3]. In other words, the semantics of these
two logical formalisms differ:

Sisters→ Siblings �= Siblings ⊆ Sisters

The literature suggests that these differences are formally captured using modal logic
[3]. In our proposed method, we ensure that the contrapositive of the rule is enforced
as an integrity constraint [23] (and not as a rule): if Siblings(M,J) is not true, then Sis-
ters(M,J) cannot possibly be true (otherwise, raise an inconsistency error). We, there-
fore, implement the contrapositive as a foreign-key constraint as follows:
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CREATE TABLE Siblings(
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-Sisters-Siblings
FOREIGN KEY subject, object
REFERENCES Sisters(subject, object) ...)

Figure 2(a) illustrates the two parts of an inclusion axiom graphically. The trig-
ger rule event is indicated in the figure by the a star-like symbol, denoting that the
detected assertion causes a trigger to fire. In this example, we enforce the following
rule: Allfemalesareperson(s), i.e., Female → Person. Therefore, asserting Fe-
male(Mary) causes the trigger to actively assert Person(Mary).

Finally, the contrapositive is checked using the foreign key. Note: consistency re-
quires that forward-propagations occur before integrity checking, which explains using
the keywords before or first in our trigger definitions.

Fig. 2. The star-like symbol denotes an event fires a trigger rule. The checkmark symbol denotes
an integrity check occurs. (a) Subsumption is implemented using a combination of triggers and
integrity constraints. (b) Domain and range restrictions are implemented using foreign-key (f-
key) constraints.

Domain and Range Restrictions. Another important feature of Semantic Web ontolo-
gies are domain and range restrictions. These restrict the possible set of instances that
participate in property assertions. For example, Only person(s) may participate in the
sisters relationship. Restrictions are formalized using modal logic. They correspond
to integrity constraints. In our proposed method, we implement them as foreign key
constraints on the subject or object (i.e. domain and range) of the property.

CREATE TABLE Sisters(
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-Sisters-Subject-Person
FOREIGN KEY subject
REFERENCES Person(id) ...)
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4 Experiment

We apply our proposed trigger-based ontology database system method to a Glass Iden-
tification Ontology. Next, we discuss its application for a Neural ElectroMagnetic On-
tology.

Glass Identification. We apply our proposed method to a Glass Identification Ontology
- shown on Figure 3. The Glass Identification Dataset [11] is donated by the Central
Research Establishment, Home Office Forensic Science Service, Reading, Berkshire,
England. The study of classification of types of glass was originally motivated by crim-
inological investigation. At the scene of the crime, the glass left can be used as evidence,
if it is correctly identified.

Fig. 3. Glass Identification Ontology

Applying the decomposition storage model [1], [6], we obtained a table for each
glass type, i.e. FloatProcessedBuildingWindow, BuildingWindow, Glass, Container, and
so on. We implement the subclass relationships in Glass Ontology, which form a sub-
sumption hierarchy, through triggers. For instance:

CREATE TABLE FloatProcessedBldWin(
subject VARCHAR NOT NULL,
object VARCHAR NOT NULL,
CONSTRAINT fk-FloatProcessedBldWin-BuildingWindow-Glass
FOREIGN KEY subject, object
REFERENCES Sisters(subject, object) ...)
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We implement domain and range restrictions as foreign key constraints. These re-
strict the possible set of instances that participate in property assertions. For example,
Only Windows may participate in the Glass - BuildingWindow relationship. Restrictions
correspond to integrity constraints.

We apply Lehigh University Benchmarks (LUBM) [16] to evaluate the performance
of this system. It consists of a set of 14 queries for evaluating load time and query time of
knowledge bases. A data generator generates assertins, i.e. datainstances, which can
be saved as a set of Web Ontology Language (OWL) files and loaded into a knowledge
base for evaluation. The main idea is to vary the size of the data instances to quantify the
scalability of a Semantic Web Knowledge Base. Mesuring both load time and query time
with respect to the imput parameters provides an evaluation of the total performance. We
confirmed that by using triggers to materialize inferences, query performance improves
by several orders of magnitude. That comes at the cost of load time. Load time is slower.
The proposed trigger method increases the disk space required by roughly three times.
In other words, our proposed method improves query speed, by costing more space. The
proposed approach scales well to very large datasets, and medium-sized ontologies.

Neural ElectroMagentic Ontology. Our ontology database system can be applied to a
Neural ElectroMagentic Ontology (NEMO) [9]. NEMO records experimental measur-
ments from brainwave studies, which classify, label, and annotate event related poten-
tials (ERP) using ontological terms. Brainwave activity is measured when certain event
happens - such as a word or a sentence is read or heard. Information about scalp distri-
bution, and neural activity during cognitive and behavioral tasks is included. A partial
representation is shown on Figure 4.

We show that our propsoed method is useful for answering queries that take sub-
sumption into account - answering queries deductively. In other words, we are able to
answer Ontology-Based Queries. For example, the following query requires taking the
submsumption hierarchy into account:

Return all data instances that belong to ERP patter classes,
which have a surface positivity over frontal regions of interst and
are earlier than the N400.

In this query, frontal region can be unfolded into constituent parts (ex. right frontal,
left frontal) as shown in Figure 4. At higher abstraction level, the N400 is a pattern class
that is also associated with spatial, temporal, and functional properties. The patter class
labels can be inferred by applying a set of conjunctive rules. This can be implemented
by using Semantic Web Rule Language.

Preliminary results indicate that neurosientists are attracted by the ability to pose
queries at the conceptual level, without having to formulate SQL queires; which, would
require taking complex logical interactions and reasoning aspects into consideration.
Those high-level, logical interactions are modeled only once by specifying the ontology.
Other examples of conceptual level queries include:

Which patterns have a region of interest that is left-occipital
and manifests between 220 and 300ms?

What is the range of intensity mean for the region of interst
for N100?
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Fig. 4. Neural ElectroMagnetic Ontology (NEMO)

5 Conclusions and Directions for the Future

We present an ontology database system, a tool for modeling ontologies plus large num-
bers of instances using off-the-shelf database management systems such as MySQL. An
ontology database system is useful for answering ontology-based, scientific queries that
require taking the subsumption hierarchy and other constraints into account (answering
queries deductively). Furthermore, our trigger implementation method scales well with
small and medium-sized ontologies, used with very large datasets.

The proposed method pre-computes inferences for the subsumption hierarchy, so
larger and deeper ontologies will incur more costly up-front penalties. However, the
query answering time is significantly improved at the end.

Mapping rules between ontologies also can be implemented as trigger-rules, giving
us an efficient and scalable way to exchange data among a distributed ontology database
systems.

With Ontology Database Systems, it is possible to integrate two knowledge bases.
The key idea is to map ontology terms together, then to reason over them as a whole,
which comprizes - a merged ontology. We can use namespaces to distinguish terms from
each knowledge base; next, we can map the ontologies together using bridging axioms
[10]; and finally, we can reason over the entire merged ontology to achieve integration.
As a direction for the future, we can adopt the Dou and LePendu [10] approach for
ontology-based integration for relational databases.

Further future steps include studying ontology evolution and concept drift to propa-
gate changes within an ontology database. Changes in the ontology affect the structure,
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rules and data for an ontology database, which makes efficiently managing the knowl-
edge model a challenging problem.
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Abstract. Conventional approaches to reinforcement learning assume availabil-
ity of a numerical feedback signal, but in many domains, this is difficult to define
or not available at all. The recently proposed framework of preference-based re-
inforcement learning relaxes this condition by replacing the quantitative reward
signal with qualitative preferences over trajectories. In this paper, we show how
to estimate preferences over actions from preferences over trajectories. These ac-
tion preferences can then be used to learn a preferred policy. The performance
of this new approach is evaluated by a comparison with SARSA in three com-
mon reinforcement learning benchmark problems, namely mountain car, inverted
pendulum, and acrobot. The results are showing convergence rates that are com-
parable, but achieved with a much less time consuming tuning of the setup.

1 Introduction

Most common methods for reinforcement learning are facilitating feedback in the form
of numerical rewards. This form of feedback is very informative, which eases the learn-
ing process, but it is often not easy to define. Numeric reward definition often requires
detailed knowledge of the task at hand. In some domains, there is no natural choice, so
that certain outcomes have to be associated with arbitrary reward signals. As an exam-
ple, consider the cancer therapy domain studied by Zhao et al. [15], in which a negative
reward of −60 has been assigned to the death of the patient in a medical treatment.
Even for classical benchmark problems such as the inverted pendulum or the mountain
car, there are many choices for modeling the reinforcement signal. The most natural
choice, giving a positive reinforcement if the problem has been solved (i.e., the car gets
up the mountain) is not sufficient because solution length is a crucial factor (the quicker
the car manages to get up the mountain, the better). Thus, one has to use step penal-
ties, trace decay or a reinforcement signal that depends on solution length. Again, these
choices result in different results and convergence speeds. Moreover, these choices in-
teract with the definition of features representing a state, possibly the parameterizable
policy, as well as the parametrization for the learning algorithm itself. Our main goal is
to overcome those problems for easing the use of reinforcement learning and to expand
its applicability to domains where numerical feedback is not readily available.

The growing field of preference learning [6] enables an intuitive form of feedback,
which does not require numerical values. For reinforcement learning, preference-based
feedback signals can be modeled as pairwise comparisons of trajectories [7]. This form
of feedback does not require detailed knowledge about the problem domain and can
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often be given by non-expert users. We also only expect feedback based on complete
trajectories. For keeping the process as simple as possible, states are only represented
in a tabular way and the policy learned is not parameterized. Additionally, we are con-
sidering approaches requiring only a minimal amount of hyper-parameters for tuning
the algorithm.

Our main contribution is hence an policy iteration algorithm which is able to learn
from such preference-based feedback (Section 3). This step towards ready-to-use black-
box algorithms is evaluated on three common reinforcement learning benchmark prob-
lems: mountain car, inverted pendulum and acrobot. (Section 4 & 5)

2 Problem Definition

In this paper, we formally define a problem setting, which we call preference-based
sequential decision processes (PSDP). While this setting shares many similarities with
Markov decision processes, the basic scenario in which most reinforcement learning
algorithms operate, there are some important differences, most notably the absence of
a numerical reward signal.

A PSDP {S,A, δ,"} is defined by a state space S = {si}, i = 1 . . . |S|, a finite
action space A = {aj}, j = 1 . . . |A|, a stochastic state transition function δ : S ×A×
S → [0, 1], and a preference relation " that is defined over trajectories through this
state space. Each state s is associated with a set of available actions A(s). A state is an
absorbing state, if there are no actions available, i.e., the set of all absorbing states is
SF = {s ∈ S|A(s) = ∅}. A (stochastic) policy π is a probability distribution over the
actions in each states, i.e., π : S ×A→ [0, 1], where

∑
a′∈A(s) π(s, a

′) = 1.
A trajectory is a state/action sequence T = (s0, a0, s1, ..., an−1, sn) where si ∈

S, ai ∈ A(si), and sn ∈ SF is an absorbing (final) state. The set of states occurring in
a trajecory T is denoted as S(T ), the set of actions as A(T ). We also write (s, a) ∈ T
when we want to denote that in trajctory T , action a has been taken in state s. Note that
the same state may occur multiple times in a trajectory, so for two actions a �= a′, it can
be the case that both (s, a) ∈ T and (s, a′) ∈ T .

The associated learning problem assumes that the learner is able to observe a set P
of trajectory preferences, i.e., P = {T 1

i " T 2
i }, i = 1 . . .N . The goal of the learner is

to find a policy, which respects these observed preferences.
In this paper, we assume that the underlying preference relation" forms a total order.

Admitting partial orders (i.e., pairs of trajectories that cannot be compared), could yield
a set of optimal policies, as opposed to a single one.

3 The Policy Iteration Cycle

Our approach is part of the class of Policy Iteration algorithms [12]. In each iteration,
a small amount of preferences is requested, based on trajectory samples of the current
policy. Based on those samples, we are determining the probability that an action choice
(s, a) is belonging to a set of preferred actions. Because we are restricted to feedback
in form of pairwise preferences, we are only calculating this probability for a pairwise
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comparison to another action. It is not easily possible to determine by ”how much” an
action should be preferred over another one, hence we are assuming that an action is
maximal preferred, if its part of the set of preferred actions. (See sec. 3.2) The prob-
ability of membership to this set is then used to update a probabilistic value function
(Section 3.1, 3.4). Section 3.3 is concerned with the exploration/exploitation dilemma
that has to be considered in reinforcement learning scenarios.

3.1 Probabilistic Value Function

In this paper, we make the assumption that the order between trajectories is total. In fact,
we assume that we can represent the policy with a value function V (s, a) that induces
an ordering on the actions a in each state s. However, the semantics of this function
is not the expected reward of selecting action a in state s (which we cannot compute
because we do not have a reward signal), but instead the value function should estimate
the probability Pr(a|s) that action a is the most appropriate action in state s.

For computing V (s, a) = Pr(a|s) we rely on comparisons between pairs of actions.
Let Pr(a " a′|s) denote the probability that action a is preferred over action a′ in state
s. As we assume a total order, Pr(a " a′|s) = 1 −
Pr(a′ " a|s). The problem of reconstructing Pr(a|s) from such probabilities for pair-
wise comparisons is known as pairwise coupling [8]. Several approaches have been
proposed in the literature [14]; we rely on the suggestion of Price et al. [9], who esti-
mate Pr(a|s) as

Pr(a|s) = 1∑
a′∈A(s),a′ �=a

1
Pr(a�a′|s) − (|A(s)| − 2)

.
(1)

3.2 Policy Evaluation

For estimating Pr(a " a′|s), which is needed in Eq. (1), we use the current policy
to sample a fixed number of K trajectories, starting in the same state s0, for which
we obtain their total order as a feedback signal. In the simplest case K = 2, i.e., we
only compare a pair of trajectories, for larger K , we will obtain K(K − 1)/2 pairwise
preferences for these K trajectories.

Given T1 " T2, we want to estimate the probability Pr(a " a′|s, T1 " T2) that an
action a, (s, a) ∈ T1 is preferred over an action a′, (s, a′) ∈ T2, a �= a′ in a particular
state s ∈ S(T1) ∩ S(T2). For doing so, we make the following assumptions:

1. The reason for T1 " T2 can be found in the overlap of states N = S(T1) ∩
S(T2), n = |N | if we are following an optimal policy in all other states.

2. For each state s in an unknown subset M , the action a taken in T1 is preferable to
the action a′ taken in T2, i.e.

Pr(a " a′|s, T1 " T2, s ∈M) = 1.

We call M the set of decisive states.
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3. The probability T1 " T2 is proportional to the ratio of decisive states M to all
overlapping states N , meaning the more often we did pick a preferred action, the
more probable is the resulting trajectory preferred.

Pr(T1 " T2|m = p) =
p

n
(2)

m = |M | denotes the number of decisive states and n = |N | is the amount of
overlapping states. p is the number of decisive states assumed to exist. Note that a
state may occur multiple times in each trajectory and therefore also in M and N .

For estimating Pr(a " a′|s, T1 " T2), we require Pr(s ∈M |T1 " T2) to be able to
resolve equation (3).

Pr(a " a′|s, T1 " T2) = Pr(a " a′|s, T1 " T2, s ∈M) · Pr(s ∈M |T1 " T2) (3)

This is reduced to Pr(a " a′|s, T1 " T2) = Pr(s ∈ M |T1 " T2), because of
assumption 2, which is in-line with our approach (Sec. 3), where we assume that it is not
possible to determine the exact value of Pr(a " a′|s, T1 " T2, s ∈ M) easily. Pr(s ∈
M |T1 " T2) can be calculated directly for specific m, using the a priori probability
Pr(s ∈M) = 1

2 as well as m = |M | and n = |N |. (Equation 4)

Pr(s ∈M |m = p, T 1 " T 2) =
p

n
(4)

The observed probabilities Pr(s ∈ M) could not be used because of computational
reasons, namely time and numerical stability problems.

Assuming a binomial distribution induced by Pr(s ∈ M) = 1
2 , we obtain Pr(m =

p) =
(
n
p

)
· 12

n
. Using Bayes theorem, eq. (2) and the prior probabilityPr(T1 " T2) =

1
2 ,

yields

Pr(m = p|T1 " T2) =
Pr(T1 " T2|m = p) Pr(m = p)

Pr(T1 " T2)
=

p

n

(
n

p

)
1

2

n−1

We can now determine Pr(s ∈M |T1 " T2) by calculating the combined probability
and summing over all possible cases for p:

Pr(s ∈M ∩m = p|T1 " T2) = Pr(s ∈M |m = p, T1 " T2) Pr(m = p|T1 " T2)

Pr(s ∈M |T1 " T2) =
n∑

p=0

Pr(s ∈M ∩m = p|T1 " T2) =
n+ 1

2n
(5)

Equation (5) is now used to determine the value of eq. (3). The case T2 " T1 can be
mapped to Pr(a " a′|s, T1 " T2) by using Pr(a " a′|s, T1 " T2) = 1 − Pr(a′ "
a|s, T2 " T1), as mentioned in sec. 3.1.

Of course, we have to be able to assume that the decisive action(s) did really occur
in a state s ∈ S(T1)∩ S(T2). This can be achieved by always applying a deterministic,
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optimal policy π∗ in all states s ∈ S(T1), s �∈ S(T2) and vice versa. This will yield the
same, optimal outcome for all non-overlapping states. Of course, π∗ is unknown, but
we can use the current best approximation π̃∗(s, a):

π̃∗(s, a) =

{
1 if a = argmaxa′(Pr(s|a′))
0 else

(6)

This means we are applying π̃∗(s, a) to all states s �∈ S(T (π)) with T (π) as the set
of trajectories already sampled for evaluating policy π. It should be noted, that we
are sampling the first trajectory of each policy evaluation with the stochastic policy
mentioned in section 3.3, because we need to guarantee, that every (s, a) can be sampled
infinitely often [12]. Due to acting always deterministically for all s �∈ S(T (π)), we do
need to ensure that each state (s, a) can be part of the first trajectory T ∈ T (π). This
can be resolved by using a stochastic policy, that guarantees π(s, a) > 0.

It should also be noted, that all samples for a policy π are starting in the same state s0,
because defining preferences over trajectories starting in different states is non trivial.
Of course, s0 is randomly picked for each iteration of π.

3.3 The Exploration/Exploitation Dilemma

It is still required to solve the exploration/exploitation dilemma [12] in a way that guar-
antees π(s, a) > 0 which can be achieved by applying algorithms like EXP3 [4]. Our
method was inspired by this policy, because it is an stochastic action selector, that can
be applied to adversarial bandit problems. We chose to respect adversarial bandits, for
reducing the amount of prequirements that have to be considered.

g̃s,a,i =
Prπi(a|s)

EXP3(s, a)i
1s∈P

πi
s

G̃s,a,i =

i∑
t=1

g̃s,a,t

EXP3(s, a)i+1 =
η

|A| + (1− |A(s)| η|A| )
exp( η

|A|G̃s,a,i)∑
b∈A(s)

exp( η
|A|G̃s,b,i)

(7)

This formulation (Eq. 7) is equivalent to Audibert and Bubeck [2], with gi,t = Prπi(a|s).
Prπi(a|s) is an action preference sample obtained from the i-th policy evaluation, which
is comparable to a reward sample r(s, a).

But Pr(a|s) is not 0 for state action pairs (s, a) that have not been evaluated, because
we have to assume Pr(a " a′|s) = 1

2 without further information. Hence we are
updating all pairwise action probabilities, concerning Pr(a|s), s ∈ P πi

s . Additionally,
we did replace η with η

|A| to be able to define η ∈ (0, 1] instead of η ∈ (0, 1
|A| ].

3.4 Policy Improvement

We are now updating Pr(a " a′|s) by applying eq. 8. Any update on Pr(a " a′|s) will
result in a divergence from Pr(a " a′|s) = 1

2 , because eq. (5) can never become 1
2 in a

finite horizon scenario. This increases the probability to pick the action a in s.

Pr(a " a′|s) = (1− α) Pr(a " a′|s) + αP̃r
π
(a " a′|s) (8)
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P̃r
π
(a " a′|s) is the probability obtained from evaluating all samples from policy π

and α defines a learning rate. Prπj (a " a′|s, T1 " T2) ∈ P π
s is the j-th action prefer-

ence sample, obtained by evaluating policy π. Note that a single trajectory preference
can result in multiple Prπ(a " a′|s, T1 " T2), concerning the same state. P π

s is the
subset of action preferences for state s only. For determining the best approximation
P̃r

π
(a " a′|s, T1 " T2) available, those samples are averaged (P̃r

π
(a " a′|s) =

1
|Pπ

s |
∑
Pπ

s

Prπj (a " a′|s, T1 " T2)).

4 Experiments

We compare our algorithm to SARSA(λ) [12] in two test domains. We chose SARSA(λ)
because it is a well-known, widely used, but not specialized algorithm. It is required to
decrease the SARSA ε parameter over time for guaranteeing convergence [11], hence
we decided to use an εn-greedy decay scheme (εn = min{1, c|A|

d2t }), presenting a
generic solution to the problem [3]. For keeping our comparison as fair as possible,
we are only using terminal rewards, and are setting the step reward to 0. This is in-line
with our preference approach, which is also only having access to feedback based on
complete solutions (pairs). It should be noted, that even terminal-only numeric rewards
are still much more informative than preferences, because they define a relation to all
other solutions, as opposed to a singular, binary preference relation.

Our first testing domain is the well known mountain car problem, parameterized as
defined by Sutton and Barto [12]. The state is defined by creating a tabular represen-
tation based on a 40 equal-width bins discretization of the position and 20 bins for the
velocity. The horizon was set to 500 and start states are random. As a second testing
domain, we are using the inverted pendulum problem [5]. The parametrization is mostly
the same as defined by Dimitrakakis et al., namely: F = −50N/0N/50N ± 10,m =
2kg,M = 8kg, l = 0.5m, τ = 0.05, horizon = 500. The discretization was per-
formed with 10 equal-width bins each for θ and θ̇ and the setup is using a fixed start
state. The third testing domain, acrobot, was again parameterized as defined by Sutton
and Barto [12], also using a 10 equal-width bin discretization. We introduced a transi-
tion noise of 20% for all scenarios, in order to have a bit more realistic problems.

SARSA was run in two settings: With λ = 0.9̄ (exact: 1− 10−15), because our own
algorithm is also not using any decay and with an optimized λ value for showing a com-
parison to the best possible setting. The terminal reward was set to horizon-stepcount
for mountain-car and -(horizon-stepcount) for inverted-pendulum, because it is required
to define a reward (or decay) that allows distinguishing solutions by length. The decay-
ing version is using a terminal reward of 1 (−1 for inverted-pendulum).

The optimal hyper-parameter set for SARSA has been determined by 250 random
search trials, followed by 625 (54) grid search trials within the boundaries of the min/max
values found for the best (by terminal policy) 20 random trials, except for λ which was
fixed to the best value found within the random trials. This two step approach was cho-
sen for reducing the amount of required experiments without using any assumptions.
For our own approach, we only used 100 grid search trials, because of the lower param-
eter count. We only need to tune EXP3-η and α, opposed to the parameters λ,α,ε and
the ε-decay scheme (which contributes two additional parameters in our case) required
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for applying SARSA. All values have been uniformly selected within the given [0, 1]
range, except for ε.c which was uniformly sampled within [1, 1000]. A single trial is an
average over 100 repeated runs in all cases.

5 Results

Figure 1 shows the results for the best configuration found for SARSA, SARSA(0.9̄),
and our preference-based approach. The best result was picked out of all available re-
sults by comparing the terminal policy quality. Note that the values reported for moun-
tain car and acrobot are negative, because of the step-penalty, as opposed to the step-
reward used in the inverted pendulum problem. We can see that preference-based rein-
forcement learning converges more slowly than SARSA(λ) for the first steps, but that
was to be expected due to the lower information content available within the feedback
for each solution.

Additionally, it is clearly visible that decay is better suited for learning by solution
length than the more sophisticated reward structure used for the SARSA(0.9̄) scenario.
The results for the inverted pendulum, shown in Figure 1(b), are similar. The advantage
of a well tuned decay is even more significant, supporting our claim that a good setup
is essential for a successful application of SARSA. Especially the progress made in the
first iterations seems to greatly depend on the parameterization. The acrobot domain
(Figure 1(c)) seems to be quite a bit more challenging and our algorithm is not able to
reach the quality of the SARSA(λ) solution within the given episode count, but it is still
outperforming the SARSA(0.9̄) configuration. The differences between the SARSA(λ)
and the SARSA(0.9̄) are also much greater than for the other testing domains.

Figure 2 shows the results obtained with different amounts of trajectory samples per
iteration (K = 2, 4, and 10, cf. section 3.2). The setup with K = 2 is worse than
the other parameterizations in both domains, but the differences between K = 4 and
K = 10 are insignificant. The advantage of higher pairings is especially prominent in
the inverted pendulum domain. Better results of the higher pairings are probably due
to the higher amount of information available per evaluation. It should be noted, all
configurations are generating the same amount of trajectories in total, but a higher K
value results in a higher amount of preferences that need to be requested (see section
3.2).

6 Related Work

A preliminary version of this paper appeared as [13]. We improved this version by not
using an index function but instead replacing the fixed scoring of action preferences
with the probabilistic version of Section 3.2, by using a better founded pairwise cou-
pling function, and by introducing some improvements concerning the application of
EXP3 to preference learning.

The work of Fürnkranz et al. [7] is also comparable. They are also identifying action
preferences, but based on a roll-out sampling method that is not considering trajectory
overlaps, as well as requiring evaluations for multiple states for each policy iteration
cycle. Each trajectory preference is only used to update a single state. This means each
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(a) Mountain Car

(b) Inverted Pendulum

(c) Acrobot

Fig. 1. Average step-penalty for the best result compared with SARSA for 2000 episodes
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(a) Mountain Car

(b) Inverted Pendulum

(c) Acrobot

Fig. 2. Average step-penalty for our new algorithm with different K for 2000 episodes
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policy update is more reliable, but the intermediate state information of the trajectory is
not exploited, resulting in less training data. Additionally, they are using a non-tabular
state representation, enabling policy generalization to unseen states, which they are uti-
lizing with a multilayer perceptron. This property and some missing detail information
prevented a direct comparison.

The approach of Akrour et al. [1] is related, but they assume that a trajectory is
already defined by the visited sensori-motor states (sms) of the underlying robotics
agent. Preferences are used to determine an expected weighting of those sms, which is
used to calculate an approximate value of an policy. Due to requiring a parameterizable
policy, it is possible to create a new policy utilizing an evolutionary strategy and the
mentioned policy value. Besides optimizing a policy, they are also working on reducing
the amount of preference feedback required, because they are considering problems
which can not be easily simulated, requiring a human evaluation. This combines the
preference learning domain with active learning, which we are not considering at the
moment.

Wilson et al. [16] is also utilizing a parameterizable policy, but the optimisation is
preformed directly in the policy space using a bayesian framework. Additionally, the
used preferences are only concerning short trajectory snippets and not complete ones.

Our work is also related to the domain of inverse reinforcement learning (e.g. [10]),
but with one significant difference: Inverse Reinforcement Learning assumes a demon-
stration of perfect behavior, which should be mimicked. Preference learning does only
require information about solutions relative to each other, which is much less demand-
ing for the expert giving the feedback.

7 Conclusion

Our results show that preference-based reinforcement learning can offer a performance
comparable to SARSA, but with a simpler feedback structure and a lower amount of
hyper-parameters. This results in a substantially decreased amount of work required
for tuning the setup. The results are also suggesting, that a high amount of preferences
per iteration is not needed for learning, because the differences between K = 4 (6
preferences per iteration) and K = 10 (20 preferences per iteration) are minimal. Only
going below these values (K = 2) is significantly reducing the convergence speed.

Acknowledgments. This work was supported by the German Research Foundation
(DFG) as part of the Priority Programme 1527. We would like to thank Gerhard Neu-
mann and the reviewers for helpful suggestions.
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Abstract. Annotating a dataset is one of the major bottlenecks in su-
pervised learning tasks, as it can be expensive and time-consuming. In-
stead, with the development of crowdsourcing services, it has become
easy and fast to collect labels from multiple annotators. Our contribution
in this paper is to propose a Bayesian probabilistic approach integrating
annotator’s uncertainty in the task of learning from multiple noisy an-
notators (annotators who generate errors). Furthermore, unlike previous
work, our proposed approach is directly formulated to handle categorical
labels. This is an important point as real-world datasets often have mul-
tiple classes available. Extensive experiments on datasets validate the
effectiveness of our approach against previous efficient algorithms.

Keywords: supervised learning, multiple annotators, uncertainty.

1 Introduction

A classical supervised classification problem aims at assigning a class label for each
input example. Let us consider a training dataset {(xi, yi)}Ni=1, where xi ∈ #D is
an instance described by D descriptors, and yi ∈ {0, 1, 2, ...,K} is the class label.
The goal is to learn a function f that classify a new unseen example x as f(x) ≈ y.
However, in many application fields, obtaining the ground truth label yi for each
instance xi of the dataset is a major bottleneck: it is often time-consuming, expen-
sive and even sometimes impossible. For example, in medical images, only a biopsy
can detect the presence of cancer. Even so, this is clearly a risky and costly proce-
dure.One approach to tackle this issue is to make use of the vast human resources
available on the Internet such as Amazon’s Mechanical Turk1. It provides an ideal
solution to collect labels from a large number of annotators in a very short amount
of time: the unknown ground truth label y for an instance x is replaced by multiple
judgments y1, y2, ..., yT given by T annotators.

Combining the knowledge from different sources is far from being a solved
problem. Indeed, one major drawback of most crowdsourcing services is that we
do not have control over the quality of each labeler. Consequently, crowdsourced

1 http://www.mturk.com

A. Tucker et al. (Eds.): IDA 2013, LNCS 8207, pp. 438–449, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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labels tend to suffer from poor quality control, as they are typically not free of
errors and exhibit high variance. Hence, an important research question occurs:
how to learn a good classifier when we have multiple annotators providing noisy
labels instead of one absolute gold standard?

Very recently, a few approaches that aim at addressing the challenges provided
by this new setting have been proposed, including [4,7,6]. The common target
of this family of work is both to learn a good classifier and to evaluate the
trusthworthiness of each annotator.

Although various successful techniques have been proposed to solve the prob-
lem of learning from multiple annotators, a significant obstacle remains: they
all focus on the knowledge of the annotators without trying to learn from their
uncertainty. However, uncertainty may be widely present in this type of data.
Therefore, machine learning methods which deal with annotations from differ-
ents sources should overcome both the inconsistency and unreliability of anno-
tators. In this paper, we are interested in the situation where the annotations
are dominated by uncertain annotators, that is, annotators with a significant
lack of knowledge. We develop an effective probabilistic Bayesian approach to
learning from multiple noisy labelers, and we show that our method is clearly
more robust than other efficient algorithms when confronted with high levels of
uncertainty. Another strength of our proposed algorithm is that it is directly
formulated in order to handle multi-class classification. Indeed, most of the pre-
vious work focused on the solution in the two class case, where the labels yi can
only take the modalities 0 and 1. We believe this is a major drawback as many
real-world applications have more than two classes to deal with. Typical exam-
ples include text categorization, object and gesture recognition, and microarray
data analysis.

This paper is organized as follows; the next section reviews related work in
the literature. Section 3 explains in detail the proposed framework, followed by
the empirical evaluation in Section 4. Finally, Section 5 presents our conclusions.

2 Background

The problem of building classifiers in the presence of several labelers has been
receiving increasing attention over the past years in many areas. For example,
in the computer vision community [9] and in the natural language processing
[8], authors use Amazon’s Mechanical Turk to collect annotations from multiple
labelers. In [5], authors show that building a classifier using annotations from
many people can be potentially as good as employing one annotation provided
one single expert.

In a more supervised learning context, a very recent and important work has
been developed by Raykar and al. in [4]: their EM-based algorithm estimates the
actual hidden labels and evaluates the reliability of each annotator. Many other
papers aim at addressing the same problem. In [7,6], a probabilistic model is
developed for learning a classifier from multiple annotators, where the effective-
ness of an annotator may vary depending on both his reliability, and the data
instance presented.
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All the above works aim to address the problem of learning from multiple
noisy annotators, i.e, annotators that generate errors when labeling. However,
they all focus on the annotators’ knowledge without trying to learn from their
uncertainty. We here believe this is a major drawback of all these previous works
as uncertainty and fuzziness are widely present in this kind of study.

Introduced in [10], uncertainty is widely present in many application areas
and several different approaches have been developed dealing with this issue. In
a context of multi-class classification, we are not aware of any approach inte-
grating annotator’s uncertainty in order to generate a classifier. We address the
issue by simultaneously generating a classifier and estimating the performance
of each annotator. Annotators may have a significant lack of knowledge and may
feel uncomfortable with labeling an instance in unsure situations. Therefore, un-
like [4,7,6], we let annotators express their uncertainty by adding the flag ’?’
to the label they propose. Our classifier is then generated taking both annota-
tors knowledge and uncertainty into consideration. Finally, an entire spectrum
of different levels of uncertainty exists, ranging from the unachievable ideal of
complete understanding at one end of the scale to total ignorance at the other.
For seek of simplicity, we consider in this paper the case where uncertainty is
equivalent to total ignorance. From this point, the closest approach to our work
has been studied in [11], where a classification method integrating annotator’s
ignorance has been developed. However, their model only handles binary classi-
fication, and we here believe this is a major drawback as real datasets have often
multiple classes available.

In this paper, we present a probabilistic Bayesian method to learning from
multiple uncertain annotators. Extensive experiments on several datasets vali-
date the effectiveness of our approach against the baseline method of Raykar et
al. [4].

3 Problem and Solution Overview

Given N instances {x1, ..., xN}, each data point xi is described by D descriptors
and labeled by T noisy annotators. In order to obtain a classifier dealing with
the uncertainty issue, the labelers are asked to mark ’?’ in unsure situations, in
addition to the label they give. From this point, for (K+1) possible classes we

have yti ∈ Y = {0, 1, ...,K} ∪ {(k, ?)}Kk=0. Let zi be the true label for the i-th
instance, zi is unknown and zi belongs to Z = {0, 1, ...,K}. For compactness,
we define the matrices X =

[
xT
1 ; ...;x

T
N

]
∈ RN×D is the matrix transpose, Y =[

y
(1)
1 , ..., y

(T )
1 ; ...; y

(1)
N , ..., y

(T )
N

]
∈ RN×T and Z = [z1, ..., zN ]

T
.

One question occurs: how to integrate all uncertain labels {(k, ?)}Kk=0 in our
approach? In other word, how uncertainty should be modeled ? For the sake of
simplicity, we consider in this paper uncertainty as a state of total ignorance (cf
Section 2), and we define the matrix of Ignorance H ∈ RN×T as follows:

ht
i =

{
1 if yti = ′?′

0 otherwise
(1)
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H has been introduced in [11] in case of binary classification. We here ex-
tend it to handle categorical variables. From this point, H can be seen as the
traceability of the ignorance of the annotators. For compactness, we set H =[
h
(1)
1 , ..., h

(T )
1 ; ...;h

(1)
N , ..., h

(T )
N

]
∈ RN×T .

Conditionally to the uncertainty (i.e ignorance) of each labeler, our goal is to:

(1) Estimate the ground truth labels Z,
(2) Produce a classifier to predict the label z for a new instance x,
(3) Estimate the reliability of each annotator.

The joint conditional distribution can be expressed as P (X,Y, Z|H,Θ), where
Θ is the set of parameters to be estimated (defined later in the paper). In this
model, the annotation provided by labeler t depends on the unknown ground
truth label z, but also on the domain of ignorance h of each annotator.

P (X,Y, Z|H,Θ) is estimated using a Bayesian approach: we set different prior
distributions on the parameters depending on whether the annotator is sure or
not of his response. If ht

i = 0, we assume labeler t is almost sure of his label
for the instance xi. Therefore, a high prior is considered in this case. On the
contrary, if ht

i = 1, labeler t is uncertain about the label to assign, and a less
informative prior is set in this case.
All the parameters Θ are estimated by maximising the log-posterior with the
maximum-a-posteriori estimator (MAP):

Θ̂MAP = argmaxΘ {lnPr[X,Y, Z|H,Θ] + lnPr[Θ]} (2)

These estimates are obtained using a combination of the Expectation-
Maximization (EM) Algorithm [2] and the Newton-Raphson update.

4 The Model

4.1 Maximum a Posteriori Estimator

In this work, we make the assumption that the labelers (resp. the instances)
are independent from each other. As the ground truth labels z are supposed
unknown for all instances, we first estimate the probability P (X,Y |H,Θ). z
will be integrated later in the model as missing variables. The likelihood of
P (X,Y |H,Θ) can be written as follows:

Pr(X,Y |H,Θ) =

N∏
i=1

T∏
t=1

Pr[yti |xi, h
t
i, Θ]Pr[xi|ht

i, Θ] (3)

∝
N∏
i=1

T∏
t=1

Pr[yti |xi, h
t
i, Θ] (4)

where the term Pr(X |H,Θ) is dropped as we are more interested in the other
conditional distribution. Conditionning on the ground true label zi, and also
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making the assumption yti is conditionally independent (of everything else) given
Θ and zi, the likelihood of P (X,Y, Z|H,Θ) can be decomposed as:

Pr[X,Y, Z|H,Θ] ∝
N∏
i=1

K∑
k=0

Pr(zi = k|xi, Θzk)
T∏

t=1

Pr(yti |zi = k, ht
i, Θ

t
yk
) (5)

We estimate each conditional-distribution individually.
Concerning Pr(zi = k|xi, Θzk), while the proposed method can use any other
multi-class classifier, we set for simplicity a multinomial logistic regression dis-
tribution, i.e:

Pr(zi = k|xi, Θzk) =

⎧⎪⎨⎪⎩
ew

T
k xi

1+
∑K−1

k=0 ew
T
k

xi
∀k �= K

1

1+
∑K−1

k=0 ew
T
k

xi
otherwise

(6)

Hence, we have Θzk = {wk} , ∀k ∈ {0, 1, ...,K}

Concerning Pr(yti |zi = k, ht
i, Θ

t
yk
), we model it as a mixture of two multi-

nomial distributions, depending on the value of h. We introduce two vectors of
multinomial parameters αt

k = (αt
k0, ..., α

t
kK) and βt

k = (βt
k0, ..., β

t
kK) such as:

yti ∼
{
Multinomial(αt

k) if ht
i = 0

Multinomial(βt
k) otherwise

with
∑K

c=0 α
t
kc = 1 and

∑K
c=0 β

t
kc = 1. Here, αt

kc (resp. β
t
kc) denotes the prob-

ability that the annotator t assigns class c to an instance given the ground truth
label k in case of knowledge (resp. uncertainty).
Our motivation to model yti as a mixture of two multinomial distributions comes
from the fact that later in the paper, we will set different prior distributions on
the parameters depending on the value of h.

From this point, we have Θt
yk

= {αt
k, β

t
k} , ∀k ∈ {0, 1, ...,K} , ∀t ∈ {1, 2, ..., T },

and:

P (yti |zi = k, ht
i, Θ

t
yk
) = (1 − ht

i) ∗
K∏
c=0

(αt
kc)

δ(yt
i ,c) + ht

i ∗
K∏
c=0

(βt
kc)

δ(yt
i ,c) (7)

where δ(u, v) = 1 if u = v, 0 otherwise.

We denote:
pki = P (zi = k|xi, Θzk) (8)

aki =

T∏
t=1

Pr(yti |zi = k, ht
i, Θ

t
yk
) (9)
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Finally, the likelihood can be written:

Pr(X,Y, Z|H,Θ) ∝
N∏
i=1

K∑
k=0

pki a
k
i (10)

where Θ =
{
Θzk , Θ

t
yk

}
= {wk, α

t
k, β

t
k}.

Next section describes which prior is assumed on each parameter.

4.2 Prior Distributions

Different prior distributions are set on the parameters, depending on the behavior
of the annotator when labeling. More precisely, we assume that an annotator is
almost sure of his response when he labels an instance. Hence, a high prior is
fixed in this case. On the contrary, he labels ’?’ in case of doubt, and a less
informative prior is fixed.

Prior on Certain Annotations. In case of knowledge, the parameters to take
into consideration are the parameters {αt

kc} of the Multinomial distribution. A
prior often used for this distribution is the Dirichlet prior, as it represents its
conjugate prior. Hence, we set a Dirichlet distribution with parameters {γt

kc} on
all parameters {αt

kc}, and we have:

αt
k = (αt

k0, α
t
k1, ..., α

t
kK) ∼ Dirichlet(γt

k0, γ
t
k1, ..., γ

t
kK)

Parameters {γt
kc} are estimated as follow: Let λ = {λ1, λ2, ..., λN} be the

parameters of a Dirichlet distribution X = {X1, X2, ..., XN}. λ is estimated by
fixing the mean and the variance, and solving:

E [Xi] =
λi∑N
i=1 λi

(11)

V ar [Xi] =
λi(

∑N
i=1 λi − λi)

(
∑N

i=1 λi)2(
∑N

i=1 λi + 1)
(12)

Solving these equations according to λi, we obtain λi = E [Xi]
∑N

i=1 λi with∑N
i=1 λi = E[Xi](1−E[Xi])

V ar[Xi]
− 1. As ht = 0, we assume annotator t is sure when

labeling. Hence, we set E [αt
kk] = 0.9, and as

∑K
c=0 α

t
kc = 1, we have E [αt

kc] =
0.1/K ∀ k �= c. Concerning the variance, we set V ar [αt

kc] = 0.01 to reflect a high
confidence on the prior. Finally, equations (11) and (12) are used to estimate
the parameters γt

kc.

Prior on Uncertain Annotations. In case of uncertainty, the parameters to
be estimated in the model are the parameters {βt

kc} of the multinomial distribu-
tion. We consider and analyse three different less informative prior distributions:
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Dirichlet Prior: As for αt
k, a Dirichlet prior can also be fixed on βt

k. Hence, we
have:

βt
k = (βt

k0, β
t
k1, ..., β

t
kK) ∼ Dirichlet(φt

k0, φ
t
k1, ..., φ

t
kK)

However, as ht = 1, we assume that annotators ignore the label to give. Hence,
we set E [βt

kc] = 1/(K + 1) and V ar [βt
kc] = 0.01, ∀ {k, c} ∈ {0, 1, 2, ...,K}.

Equations (11) and (12) are used again to estimate the parameters {φt
k}.

Uniform Prior: Non-informative priors are often used to model ignorance, as
they reflect a situation where there is a lack of knowledge about a parameter.
A non-informative prior often used is the uniform distribution, which can be
written with a dirichlet distribution as follows: βt

k ∼ Dirichlet(1).

Jeffreys Prior: Another non-informative prior widely used is Jeffreys prior [3].
For βt

k, we obtain: βt
k ∼ Dirichlet(0.5).

Prior on the Weights {wk}. For the sake of completeness, we assume a
zero mean Gaussian prior on the weights w with inverse covariance matrix Γ :
wk ∼ N(wk|0, Γ−1

k ).

4.3 Computing Issues

We want to estimate the parameters Θ̂MAP by calculating (2). This maximisa-
tion problem can be simplified a lot using the Expectation-Maximisation (EM)
algorithm [2]. Indeed, the EM algorithm is an iterative method for finding maxi-
mum likelihood or maximum a posteriori (MAP) estimates of parameters in sta-
tistical models, when the model depends on unobserved variables. In our case,
the ground truth label z are unknown and will be considered as the unobserved
variables. The EM algorithm alternates between two steps: the expectation step
(E-Step), which creates a function for the expectation of the log-likelihood, and
the Maximisation step (M-Step), which computes parameters maximizing the
expected log-likelihood found on the E-Step.
Applying the EM algorithm in our model we obtain:

E-Step: The conditional expectation is computed as

E [ln Pr [Y, Z,X |H,Θ]] ∝
N∑
i=1

K∑
k=0

μk
i ln

[
pki a

k
i

]
+ ln[Pr(Θ)] (13)

where μk
i = Pr

[
zi = k|y1i , ..., yTi , xi, h

1
i , ..., h

T
i , Θ

]
.

Using Bayes theorem and equations (8) and (9), we obtain the following ex-
pression for μk

i :

μk
i ∝ P (zi = k|xi, Θzk)

T∏
t=1

Pr(yti |zi = k, ht
i, Θ

t
yk
) (14)

=
pki ∗ aki∑K
k=0 p

k
i a

k
i

(15)
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M-Step: Parameters Θ are estimated by equating, according to each parameter,
the gradient of (13) to zero. In our case, if αt

k ∼ Dirichlet(γt
k0, γ

t
k1, ..., γ

t
kK) and

βt
k ∼ Dirichlet(φt

k0, φ
t
k1, ..., φ

t
kK), we obtain:

αt
kc =

γt
kc − 1 +

∑
i∈{i|ht

i=0} μ
k
i δ(y

t
i , c)∑K

c=0 γ
t
kc − (K + 1) +

∑
i∈{i|ht

i=0} μ
k
i

(16)

βt
kc =

φt
kc − 1 +

∑
i∈{i|ht

i=1} μ
k
i δ(y

t
i , c)∑K

c=0 φ
t
kc − (K + 1) +

∑
i∈{i|ht

i=1} μ
k
i

(17)

Concerning wk, ∀k ∈ {0, 1, ..,K} we use the Newton-Raphson method given
by:

wq+1
k = wq

k − ηΩ−1
k gk (18)

where gk is the gradient vector, Ωk the Hessian matrix and η the step length.
The gradient vector is given by:

gk(wk) =

N∑
i=1

[
μk
i − pki

]
xi − Γkwk (19)

and the Hessian matrix is given by

Ωk(wk) = −
N∑
i=1

[
pki
] [
1− pki

]
xix

T
i − Γk (20)

The steps E and M are iterated until convergence.. μk
i initialized using

1
T

∑T
t=1 δ(y

t
i , k). Once the parameters are estimated in the EM algorithm, a new

instance xi is classified by calculating p(zi = k|xi) = (1+ exp(−wT
k xi))

−1, ∀k ∈
{0, 1, ...,K}, the probability that xi has the ground truth label k.

5 Experiments

5.1 Data Description and Preprocessing

Simulations have been performed on twelve datasets from the UCI Machine
Learning Repository [1] for which categorical labels are available. The number
of classes ranges from 3 to 10, the number of samples ranges from 106 to 6435
and the number of attributes ranges from 4 to 36. Each data has been randomly
divided into two folds: a training and a testing set, representing respectively 80%
and 20% of the data. See Table 1 for more details. For each training dataset D,
we simulate T=5 annotators as follows:

1. D is divided into T folds {d1, d2, ..., dT } using K-means.



446 C. Wolley and M. Quafafou

Table 1. The description of datasets

Dataset name Id # trainings # tests # attributes # classes

Breast Tissue 1 85 21 10 6
Cardiotography 2 1701 425 23 3
Ecoli 3 269 67 8 8
Iris 4 120 30 4 3
Seeds 5 168 42 19 7
Image Segmentation 6 1848 462 19 7
Vertebral Column 7 248 62 6 3
Wine 8 143 35 13 3
Yeast 9 9 1188 496 8
Dermatology 10 293 73 34 6
Satimage 11 5148 1287 36 6
Vehicle 12 757 189 18 4

Table 2. Experimental results (error mean ± std) of Multinomial Logistic Regression,
Baseline, Dirichlet prior, Jeffreys prior and Uniform prior for all datasets

Error rate across different ignorance levels
Id MLR Baseline Dirichlet Jeffreys Uniform

1 0.622 ± 0.006 0.561 ± 0.003 0.419 ± 0.004 0.414 ± 0.004 0.404 ± 0.003
2 0.567 ± 0.005 0.541 ± 0.004 0.495 ± 0.001 0.493 ± 0.001 0.493 ± 0.001

3 0.247 ± 0.013 0.210 ± 0.008 0.163 ± 8 × 10−4 0.166 ± 8 × 10−4 0.171 ± 8 × 10−4

4 0.228 ± 0.002 0.192 ± 0.001 0.174 ± 1 × 10−4 0.176 ± 1 × 10−4 0.173 ± 1 × 10−4

5 0.119 ± 0.003 0.071 ± 0.001 0.066 ± 5 × 10−4 0.067 ± 2 × 10−4 0.057 ±4 × 10−4

6 0.354 ± 0.003 0.298 ± 3 × 10−4 0.096 ± 6 × 10−4 0.100 ± 9 × 10−4 0.107 ± 0.001

7 0.613 ± 0.003 0.587 ± 0.003 0.530 ± 3 × 10−4 0.539 ± 6 × 10−4 0.535 ± 6 × 10−4

8 0.247 ± 0.013 0.210 ± 0.008 0.166 ± 8 × 10−4 0.166 ± 8 × 10−4 0.171 ± 9 × 10−4

9 0.539 ± 0.005 0.461 ± 0.002 0.448 ± 1 × 10−4 0.448 ± 1 × 10−4 0.449 ± 2 × 10−4

10 0.216 ± 0.020 0.187 ± 0.014 0.081 ± 3 × 10−4 0.081 ± 3 × 10−4 0.082 ± 3 × 10−4

11 0.236 ± 0.008 0.180 ± 0.001 0.156 ± 5 × 10−4 0.145 ± 4 × 10−4 0.172 ± 4 × 10−4

12 0.294 ± 0.005 0.268 ± 0.002 0.222 ± 1 × 10−4 0.232 ± 2 × 10−4 0.225 ± 1 × 10−4

Mean 0.356 ± 0.007 0.314 ± 0.004 0.252 ± 8 × 10−4 0.252 ± 7 × 10−4 0.253 ± 6 × 10−4

2. We assume annotator t is an expert for the set dt, i.e:{
Error(t, dt) = 10%
Uncertainty(t, dt) = 0%

In other word, annotator t always gives the correct label and is always con-
fident for the set dt.

3. On the rest of the data d̄t, we assume annotator t makes 10% of errors and
U% of uncertainty, U ∈ {0%, 10%, ..., 80%, 90%} :{

Error(t, d̄t) = 10%
Uncertainty(t, d̄t) = U%

Let E be the set of instances with errors, U the set of instances with uncer-
tainty and R the rest of the instances. We have:⎧⎨⎩Label(t, Ei) = {0, ...,K} − zi

Label(t,Ui) = Random(0, ...,K)
Label(t,Ri) = zi

In our experiments, uncertain annotations ’?’ are replaced by simulating ran-
domly any label. This choice is motivated by the fact that in our approach,
we considered uncertainty as a form of total ignorance, which means that
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Fig. 1. Comparison of Multi-class AUC between Multinomial Logistic Regression,
Baseline, Dirichlet prior, Jeffreys prior, Uniform prior



448 C. Wolley and M. Quafafou

annotators give randomly any label in unsure situations. We simulate our
method for different levels of uncertainty in order to test how robust is our
method when confronted with ignorance. Each model has been simulated a
hundred times using the bootstrap method.

5.2 Results Analysis

In this section, we compare the performance of our approach with two methods:
the baseline method developed in [4], and a more classical multinomial logistic
regression (MLR). For the MLR method, we perform a MLR model on each
annotator for each instance, and majority voting is finally used to estimate the
hidden true label z. Two criteria are used to evaluate our method: the multi-
class AUC (Area Under roc Curves) and the classification error rate cross the
different levels of uncertainty. The AUC is a widely used measure of performance
of supervised classification rules. However, the simple form is only applicable to
the case of two classes. An extended version of AUC called multi-class AUC
(M-AUC) has been proposed in [12] in order to handle the case of more than
two classes by averaging pairwise comparisons.

In our experimental results, the mean of all the M-AUC obtained using the
bootstrap method is calculated. In Figure 1, we plot the evolution of the resulted
M-AUC for each dataset considering the different levels of ignorance. For both
baseline and MLR methods, the bootstrap M-AUC collapses when the ignorance
rates increases. On the contrary, our proposed method is clearly more robust
when confronted with ignorance, for all the prior distributions tested. In addition,
for each data test we compute the mean of the error rate classification and its
standard deviation over the different levels of ignorance. Results are reported
in Table 2. The error rate prediction over the different levels of ignorance is
significantly lower in our models (around 0.252 for our models, 0.356 for MLR
and 0.314 for the baseline). Furthermore, the calculated standard deviation also
confirms its stability compared to the other two baseline methods (around 10−4

in our models, 0.007 for MLR and 0.004 for the baseline).
To conclude, the obtained results show clearly the efficiency and the stability

of our approach compared to both baseline and regression methods, especially
when the ignorance (uncertainty) increases. This validates the effectiveness of
learning from uncertain annotators.

6 Conclusion

We presented in this paper a novel probabilistic approach to learning from mul-
tiple doubtful annotators in a context of multi-class classification. Our main
contribution was a comprehensive algorithm that lets the labelers express their
uncertainty using a specific ”uncertain” flag, and further integrates these labels
using different prior distributions. Our model goes beyond current state of the
art algorithms as it is formulated to handle categorical labels. Indeed, this is an
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important property of our model because real-world datasets usually have mul-
tiple classes available. Results of our experiments over many datasets validate
our approach and prove that it outperforms previous efficient algorithms.
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Abstract. We address the problem of learning static spatial represen-
tation of a robot motor system and the environment to solve a general
forward/inverse kinematics problem. The latter proves complex for high
degree-of-freedom systems. The proposed architecture relates to a recent
research in cognitive science, which provides a solid evidence that percep-
tion and action share common neural architectures. We propose to model
both a motor system and an environment with compositional hierarchies
and develop an algorithm for learning them together with a mapping
between the two. We show that such a representation enables efficient
learning and inference of robot states. We present our experiments in a
simulated environment and with a humanoid robot Nao.

Keywords: compositional hierarchy, sensorimotor representation, com-
putational modeling.

1 Introduction

Learning to play a cello and improving your skills in a video game surprisingly
have a lot in common. In both cases, the interaction between perceptual and
motor learning is a crucial term of success [35]. As the pitch helps a cello player
to improve his/her grip on the strings, vision guides a game player to shorten
the reaction time or improve on the accuracy. In the early stage of learning, the
motor system samples the sensory space, which iteratively helps to improve the
skills of the motor system [11,10]. This intertwined learning process is building
our inner sensorimotor representation [20,15], which has developed a plethora of
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remarkable capabilities through evolution, such as efficient learning and gener-
alization, and the ability of abstraction that enables reasoning.

Although computational models of sensorimotor systems [22,4,33] have made
great progress in the last decade, the gap between the performance of the ar-
tificial sensorimotor systems and a human is still huge. The advantages of the
state-of-the-art robotic systems are in sensor accuracy and high speed processing
while they are significantly lacking in the efficient architecture of the sensorimo-
tor systems.

In this paper, we present a computational representation inspired by the ar-
chitecture of human brain. The properties of the brain that we try to mimic in
the suggested representation are the following [2,9]:

– deep architecture: mammalian brain is organized in a deep architecture
where perceptual input presents at multiple levels of abstraction. Learning
deep architectures was introduced in [12].

– sparse distributed representation: many neurons get activated simultane-
ously. In each level of abstraction, the concepts are compositions of lower-
level features sharing the features across different domains/tasks [26,19,2].

– unsupervised learning: learning deep architectures is carried out layer by
layer in an unsupervised manner [12].

Specifically, we address the problem of learning a static spatial representa-
tion of robot/human motor system, representation of the environment and the
connection between the two. We focus on Compositional Hierarchical Abstract
Representation of Motor System (CHARMS), which is based on motor primi-
tives [7]. In our setting, motor primitives are joint angles, i.e. the angles formed
at the joints of the robot. CHARMS combines and abstracts motor primitives
into higher layer concepts. The proposed architecture relates to recent research
in cognitive science [33,16,36], which suggests that hierarchical representations
are best suited for computational models of human cognition [6,3,33]. Similarly,
in computer vision, the principle of hierarchical compositionality has recently
proved very successful for visual object categorization [8].

CHARMS can generalize learning from motor primitives across different types
of behavior. In robotics, several impressive examples of motor learning have
been presented [14,21,23,32], yet only recently [34,17,1], the authors addressed
the problem of generalization without re-learning the task. The approach we
propose here, fundamentally differs from the above since it is biologically inspired
and relates to memory models rather than differential equations. Our work also
relates to the field of learning robot control [28], more specifically to learning
sensorimotor models based on motor primitives [7,30,18]. To our knowledge,
the existing work in this area uses dynamic movement primitives [29] either in
learning by imitation or reinforcement learning. The models are predominantly
expressed in the forms of differential equations [14,5,17].

The organization of the paper is as follows: first, we propose our computa-
tional model of sensorimotor system and introduce the architecture through a
simple example. We continue by describing the process of building a hierarchical
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structure from sensorimotor data. We present the experiments in a simulated en-
vironment and humanoid robot Nao. In the simulator, we observed a n-degrees of
freedom (DOF) manipulator acting in a planar task-space. We modeled the for-
ward and inverse kinematics for different degrees-of-freedom and different sizes
of training data.

Forward kinematics traditionally refers to using kinematic equations of a robot
to compute the position of its end-effector given positions of its joints (i.e. joint
configuration). Similarly, inverse kinematics refers to the mapping in the oppo-
site direction: compute the positions of the joints given the position of the robot’s
end-effector. The mappings between robot’s inner coordinate system (configu-
ration space) and its environment (work space) are important because motor
commands control the robot in the configuration space while the tasks for the
robot are usually defined in its work space. In practice, kinematic models are
either too complex, inaccurate or uncalibrated with robot’s sensors perceiving
the environment (e.g. cameras). In these situations, learning forward/inverse
kinematics [7] provides an alternative way to analytical solutions.

In our setting, the training data were collected by motor babbling - randomly
generated motor commands. First, we analyzed the generalization property of
our representation by measuring root mean squared error (RMSE) in 10-fold
cross-validation and varying the parameters: the size of the learning set and
DOF. We show that the error decreases exponentially with the increasing size of
the training set. Second, we studied the spatial complexity of the representation
by measuring the number of nodes in each layer of the compositional hierarchy.
While the convergence is quite slow when the compositional hierarchy (CH) is
learned from motor babbling data, we show that learning from traces of intended
actions induces rather small compositional hierarchies. We illustrate this by cap-
turing the whole body motion of humanoid robot Nao (26 DOF). We conlude
with the discussion of the results and possible future work.

2 Sensorimotor Representation

A human or a robot operating in a physical environment needs to combine
the sensory information about the environment and the inner representation
of its own embodiment. The sensory information typicaly comes from several
different sources/sensors, e.g. visual [27], audio [25], touch sensors [35]. By the
inner representation of the embodiment we refer to the coordinate system of the
joints. In the following we propose a sensorimotor representation that combines
the representation of the environment and the representation of the motor system
in the form of compositional hierarchies.

2.1 The Architecture: Compositional Hierarchy

Compositional hierarchy (CH) is a hierarchical AND-OR graph, where AND
nodes represent compositions and OR nodes represent alternative options. The
bottom layer of a CH, L0, is a set of primitive nodes that represent the features
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of the given domain. The layers of the CH represent different levels of abstraction
of the domain. The representation is built bottom-up, starting with singletons,
which we combine and abstract in the subsequent layers. The process of com-
position/abstraction is recursively repeated until the level of abstraction covers
the entire domain.

For example, let us represent a vector in a given domain by a compositional
hierarchy. Let x, y, z be variables defined over the same domain I = [0, 8] and let
{1, 2, . . . , 8} be the finest quantization (resolution) of I. Our goal is to represent
the point P = (2, 7, 4) in the domain I × I × I.

In the primitive layer L0, P is represented by nodes x = 2, y = 7 and z = 4.
The resolution of L0 is 1, i.e. variables x, y and z are quantized into intervals
[i, i + 1) for i = 0, . . . , 7. Layer 0 nodes are combined pairwise into three L1

nodes. Note that in L1 we also reduce the resolution from 1 to 2 units, so the
layer L1 is an abstraction of the primitive layer L0. In this simple example,
there is only a single L2 node that can be constructed in three different ways.
In layer 2, the dimensionality of the node equalizes with the dimensionality of
the domain. The layer L3 only abstracts L2 but can not do node compositions.
Since L3 node covers the entire domain, no further abstractions are possible.

Our representation of the domain I × I × I has 4 layers. The top layer is
a single (root) node that covers the entire domain. The root node is the most
abstract node in the hierarchy, i.e. it has the lowest possible resolution. Figure 1
shows the formal AND-OR graph representation of the compositional hierarchy.

layer resolution

L3

L2

L1

L0

8◦

4◦

2◦

1◦ x = 2 y = 7 z = 4

x, y ∈ [2, 4]× [6, 8] x, z ∈ [2, 4]× [4, 6] y, z ∈ [6, 8]× [4, 6]

x, y, z ∈ [0, 4]× [4, 8]× [4, 8]

x, y, z ∈ [0, 8]× [0, 8]× [0, 8]

Fig. 1. An example representation of point P = (2, 7, 4)

To illustrate the benefits of compositionality and abstraction, let us examine
the complexity of the above representation and compare it with a flat repre-
sentation of the domain. We measure the complexity by counting the number of
nodes in the representation. Flat representation of our domain has 8×8×8 = 512
three-dimensional features.

In layer L0, our representation has 8 features per variable, i.e. 3 × 8 = 24
nodes. We combine L0 nodes into L1 nodes, but we reduce the resolution by
half. So in L1, the quantization of each variable is {2, 4, 6, 8}, which gives 4 ×
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4 × 4 = 64 possible nodes in L1. The L1 nodes are two-dimensional. There are
3 different combinations of variables x, y, z, each having 4 × 4 = 16 possible
features. Compositional hierarchy therefore contains 3× 16 = 48 nodes in layer
L1.

The resolution is again decreased in L2, where two-dimensional nodes from
L1 are combined into three-dimensional nodes. The quantization in L2 is {4, 8},
which gives 2 × 2 × 2 = 8 possible concepts. Altogether, spatial compositional
hierarchy needs 24 + 48 + 8 = 80 nodes instead of 512 + 64 + 8 = 584 as a non-
compositional hierarchical structure would. The savings increase by increasing
dimensionality and the complexity can be controlled by changing the resolution
in each layer.

The representation of the environment. Our representation of the envi-
ronment is a compositional hierarchy similar to the one from the introductory
example - in a way it is even simpler as we only deal with two-dimensional envi-
ronment in our experiments. Our experimental domain consists of 106 primitive
features, covering the space of 1000× 1000 points.

Motor-system representation. Compositional hierarchy of robot’s motor
system (CHARMS ) builds upon the motor primitives that reside in the primitive
layer. A motor primitive is a one-dimensional feature representing the state of
the joint/motor. For example, a node ϕ3 = 30◦ represents the joint ϕ3 at position
30◦.

The nodes of both hierarchies are linked during the learning process so that
the corresponding body postures match the positions in the coordinate system
of the environment, for example, the nodes describing the positions of all the
joints of the arm are linked to the nodes representing the position of the tip
of the finger on the table. The proposed computational model of perception-
action cycle corresponds to recent research in cognitive science [24,13], cognitive
and developmental psychology, and cognitive neuroscience that provide strong
empirical evidence for perception-action cycle [31].

3 Learning Compositional Hierarchies of a Motor System
and the Environment

Learning a sensorimotor model refers to learning the compositional hierarchies
of the motor system and the environment from traces of sensorimotor data and
linking the corresponding nodes of the hierarchies.

Input data is a trace of learning examples e = (ϕ1, . . . , ϕn, x, y), where ϕi rep-
resents a state of the motor i (i.e. the angle of the joint i), while sensory variables
x and y are the coordinates of the end-effector. Motor and sensory variables are
used separately to learn each of the two hierarchies. The corresponding nodes of
the hierarchies are linked regarding the relationship between the motor and the
sensory variables as given by e.

Besides learning examples, the abstraction structure is also given, specifying
the resolution at each layer. For example, the abstraction structure may state
that the resolution is decreasing exponentially from the primitive layer to the



Learning Compositional Hierarchies of a Sensorimotor System 455

root node of the hierarchy. In all the experiments described below the quanti-
zation in layer Li is 2i, i = 0, . . . , 9, so L0 has the highest and L9 the lowest
resolution.

3.1 Learning the Structure

The learning is layer-wise incremental. Given learning example e, the joint angles
ϕi (i = 1, . . . , n) form n primitive nodes. Primitive nodes in L0 are abstracted
and combined into L1 nodes. The process of abstracting and combining nodes
is recursively repeated until the node combines all n features. We call such
nodes full compositions. Full compositions end the composition process while the
abstraction proceeds in the higher layers until the root node of the hierarchy.

During the process described above, many nodes are reused again and again,
possibly forming different combinations, which leads to one node having many
alternative pairs of children in a layer below. Shareability of nodes is one of the
key properties of the proposed representation.

The way the nodes are combined greatly influences the space complexity and
thus the scalability of the representation. In our experiments, we combine the
adjacent joints (1 and 2, 3 and 4, etc.) as given in the learning data. We ignore
other potentialy interesting combinations of joints for the sake of simplicity and
leave this for future work.

The CH of the environment is learned in the same way and is similar to our
introductory example. Since the workspace in our case is two dimensional, we find
the full compositions already in layer L1 of CH of the environment. Altogether,
the CH of the environemnt in our example has eleven layers, with quantization:
1 (L0), 2, 4, 8, . . . 1024 (L10). The top layer covers the entire domain, 1000×1000.

3.2 Linking and Inference

The main objective of the sensorimotor representation is to efficiently deal with
forward and inverse kinematics by establishing the mapping between the inner
coordinate system and the environment. Here we present our approach to solv-
ing forward/inverse kinematics with compositional hierarchies. We start with a
formal definition and conclude with an illustrative example.

To enable the interaction between the motor system and environment, we
have to properly link both representations. Given joints’ states and the cor-
responding position of the end-effector, e = (ϕ1, . . . , ϕn, x, y), the joint vector
(ϕ1, . . . , ϕn) should relate to the corresponding workspace point (x, y) in the
highest resolution. In order to do so for a large data set of (joints, point) pairs
and to enable generalization, the mapping should connect the nodes across all
the layers of both compositional hierarchies. More specifically, all the nodes cov-
ering (ϕ1, . . . , ϕn) in CHARMS should be linked to all the nodes covering (x, y)
in CH of the environment.

Note that both forward and inverse mappings are of type many-to-many.
Whereas this makes perfect sense for the inverse kinematics the forward kine-
matics should only yield a single solution in the workspace. Many solutions are
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due to the fact that a great deal of information is lost because of the abstrac-
tion and space complexity reduction. We propose the following way of mapping
reconstruction that solves the mapping in both directions at the same time.

Let C be a configuration space hierarchy, i.e. an AND-OR graph representing
robot configurations, and similarly let W be the workspace hierarchy, represent-
ing positions of robot’s end-effector in the work space. Let f : C → W and
g :W → C be multi-valued functions. We observe the composite mappings of f
and g and define:

– Forward kinematics: given configuration c ∈ C, the corresponding position
of the end-effector w is a fixed point of mapping f ◦ g, f(g(w)) = w.

– Inverse kinematics: given the position of the end-effector w ∈ W , the corre-
sponding configuration c is a fixed point of g ◦ f , g(f(c)) = c.

Let us illustrate the mapping mechanism through the following example of in-
verse kinematics of 5-DOF manipulator operating in two-dimensional workspace.
Suppose the end-effector is at point w = (wx, wy) and for the sake of simplicity,
suppose w has been visited before - we examine a general case in our experiments
in section 4. Inverse kinematics in our sensorimotor representation starts by acti-
vating the primitive nodes wx and wy in W . The signals propagate from wx and
wy to their common parent in L1 and subsequent parent nodes in higher layers.
Eventually, the tree Te representing the current position of the end-effector in all
resolutions is activated. At the same time, the links from Te to C are activated.
The end-nodes of these links reside in different layers of C. We proceed in L3

of C, which in this case is the lowest layer with full composition nodes. These
abstract nodes have many possible realizations in the primitive layer, C ⊂ C, i.e.
several different combinations of primitive nodes exist that share these abstract
higher layer nodes. We map each ci ∈ C back to W . Each mapping proceeds
analogously as described above but in the opposite direction, yielding a set Wi

of possible positions of the end-effector. The configuration ci corresponds to
end-effector position w = (wx, wy) if w ∈ Wi.

4 Experimental Results

To study the proposed approach, we designed two types of experiments. First,
we run a set of experiments in which we observed the generalization property of
CHARMS. We measured the accuracy of the model for a different set of param-
eters in simulated motor babbling. Second, we observed the space complexity of
the proposed representation. By training the models from traces of intended ac-
tions of humanoid robot Nao, we show that compositional hierarchies can scale
well when learned from real, high DOF data.

4.1 Generalization Property of CHARMS

In this set of experiments our goal was to find out how well CHARMS can gener-
alize. To this end we measured the accuracy of our sensorimotor representation
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learned from motor babbling data in a kinematic simulator. Our goal was to
learn the forward and inverse kinematics of the robot. The accuracy refers to
the precision of the end-effector.

The input data was a set of learning examples, where a learning example
is a vector (ϕ1, . . . , ϕn, x, y), as defined above. In our experiments, we var-
ied the number of learning examples (N) in the learning set as well as the
number of degrees of freedom of the robot, n. The domain of joint angles,
ϕi, was the interval [−180◦, 180◦], while the position of the end-effector was
(x, y) ∈ [0, 1000]× [0, 1000], which defined the workspace. Neither learning nor
test data had duplicate examples and there was no intersection between the
learning and the test set.
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Fig. 2. Results of 10-fold cross-validation for different sizes of the learning sets. Colors
indicate experiments for different values of degrees of freedom: blue (3 DOF), green (5
DOF), red (10 DOF), black (20 DOF). The overlap of the curves suggests that degrees
of freedom do not affect the accuracy of sensorimotor model.

We observed RMSE in 10-fold cross-validation for different values of N and
robots with different DOF (n). The experiments showed that RMSE converges
with increasing N (see Fig. 2), which means that the larger learning data set
implies higher accuracy of sensorimotor model. To achieve better precision of
the end-effector, we can increase the resolution of the primitive layer. Note that
the actual points have resolution 2, since a point only emerges in the first layer.
The error does not depend on the number of degrees of freedom as indicated
by the overlapping lines in Fig.2 but only on the number of learning data. The
results also show that the error of sensorimotor model decreases very quickly
and is negligible after N = 15000. Even for low sampling frequencies, e.g. 1 s,
this means that after 6 hours of babbling, sensorimotor model would be suffi-
ciently well trained. Since babbling samples the workspace relatively uniformly,
generalization is good enough even with relatively small amount of learning data.
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4.2 Space Complexity of Motor Memory

We measure space complexity of the representation by the number of nodes per
layer. The latter is very difficult to compute analytically. We can estimate the
absolute upper bound of the number of nodes per layer Li with resolution ri,
i = 1, 2, . . ., by (

n

i

)(
D

ri

)i

where n is the degree of freedom of the robot and D is the quantization of the
domain in the primitive layer, e.g. robot’s joints are quantized into D = 360
angles.

Our goal is to show that despite the combinatorial explosion implied by the
above formula, the constraints imposed by the embodiment and the workspace
enable the representation to be useful in practice. To this end we present a set of
experiments with humanoid robot Nao performing a set of predefined intended
actions and learning CHARMS.

Humanoid Robot Nao. We applied the same methodology as described above
to the humanoid robot Nao. We studied the space complexity of Nao performing
several intended actions. For all actions, we observed the whole body motion
(26 DOF) although some joints were not used in certain actions. In each experi-
ment, we measured the number of nodes per layer w.r.t. the number of learning
examples.

We summarize the results in Table 1. It shows the increasing complexity
of motor memory while Nao performing additional actions. For all actions, we
observe whole body motion, i.e. the values of all 26 joints. The actions are as
follows. Nao started a straight 10 m walk from its initial standing posture after
which it performed the left and the right turn respectively. During walking, Nao
is also moving its arms, each arm following the opposite leg. When it stops
walking, Nao makes a bow with its head, joining both hands in front of its head
and returns to the initial pose after the bow. Then it performs three actions with
its right arm: a wave, a hand shake and pushing of the ball. Finally, it uses the
whole body again while leaning forward and picking up an object from the floor.
Training data is collected while Nao is performing each action and CHARMS
is updated after each action is completed. Column N in Table 1 indicates the
number of training examples in the execution trace, i.e. the total number of
samples collected during the execution of all the actions so far (e.g. Nao collected
6501 samples while walking straight ahead and additional 1003 while making a
left turn, which sums to 7504; altogether Nao collected 10587 samples after
performing all the actions). The columns L0, . . . ,L9 denote the number of nodes
at each layer of CHARMS trained on the samples collected up to the current
action. Note that the compositions are performed up to layer L5 while from L6

to L9 only the abstractions take place; compositionality stops when the nodes
cover a full configuration of joints, e.g. all 26 joints in this experiment. After the
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whole repertoire of actions, the number of nodes per layer is still small compared
to the results from motor babbling experiments with similar DOF manipulator.

Table 1. The number of nodes per layer in compositional hierarchy representing Nao’s
whole body configurations (26 DOF) while performing different actions

Robot’s action N L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

Straight walk 6501 508 781 738 409 195 69 9 4 3 1

+ Left turn 7504 562 996 1025 550 267 92 10 4 3 1

+ Right turn 8507 915 1382 1386 730 336 131 23 6 4 1

+ Bow 9008 1116 1581 1513 830 367 154 32 12 9 1

+ Wave 9509 1217 1724 1646 946 398 171 38 18 13 1

+ Hand shake 10010 1281 1824 1736 1030 416 183 39 18 13 1

+ Push 10511 1405 2138 1981 1211 486 211 52 30 17 1

+ Pick up 10587 1526 2435 2185 1341 558 250 79 50 24 1

5 Conclusions

We proposed a computational model of sensorimotor system that consists of
compositional hierarchies of motor system and the environment. It provides an
alternative approach to mathematical models that have been used traditionally
for modeling robot and human motion. The proposed representation of the motor
system, CHARMS, is learned from the training data and does not require a
kinematic model of the robot. Additionally, the compositional hierarchy of the
environment is learned and linked to CHARMS to form the sensorimotor model.
This model enables forward and inverse kinematics, is immune to singularities
and can cope with many degrees of freedom. In the ongoing work we focus on
including dynamics in the proposed representation.
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