
Chapter 5
PUF-Based Entity Identification
and Authentication

5.1 Introduction

5.1.1 Motivation

Due to its combination of uniqueness and reproducibility, a PUF embedded by an
entity serves as an identifying feature of that entity, as already intuitively expressed
by Definition 9. Moreover, the physical unclonability exhibited by an embedded
PUF construction provides even strong security guarantees regarding this expressed
identity, which could be used for authentication purposes. However, in order to be
of any practical value, the security and robustness of a PUF-based identification or
authentication needs to be quantified based on its experimentally verified behavioral
characteristics.

Entity Authentication

In information security, the term ‘authentication’ has a very broad meaning, which
often leads to confusion when not described in more detail. First of all, authen-
tication can relate to entities or to data. In the former case one speaks of entity
authentication, while the latter is called message authentication. Since a PUF pro-
vides a measure of an entity-specific physical feature, we particularly consider entity
authentication in this chapter. Whenever we talk about PUF-based authentication,
entity authentication is implied.

Entity authentication by itself is still a catchall for a collection of techniques
used to check and be assured of the identity of an entity. The Handbook of Applied
Cryptography [96] defines entity authentication as:

Definition 25 An entity authentication technique assures one party, through acqui-
sition of corroborative evidence, of both: (i) the identity of a second party involved,
and (ii) that the second party was active at the time the evidence was created or
acquired.

R. Maes, Physically Unclonable Functions, DOI 10.1007/978-3-642-41395-7_5,
© Springer-Verlag Berlin Heidelberg 2013

117

http://dx.doi.org/10.1007/978-3-642-41395-7_5


118 5 PUF-Based Entity Identification and Authentication

Besides giving convincing proof of its identity, an entity authentication technique
also needs to guarantee that the authenticating entity is actively present in the au-
thentication.

Identification

The Handbook of Applied Cryptography [96] treats ‘identification’ and ‘entity au-
thentication’ as synonyms. However, in this book, as in many other treatises of the
subject, we consider identification to be a related but significantly weaker concept
than authentication (see also [96, Remark 10.2]). Identification is the mere claim-
ing or stating of its identity, without necessarily presenting any convincing proof
thereof. While not strictly a security technique since it doesn’t fulfill any meaning-
ful security objective, identification still has very useful qualities:

• Identification is in many cases a necessary precondition for entity authentication
and hence an inherent part of most entity authentication techniques. An entity that
cannot be identified, cannot be individually authenticated.1

• For applications without strict security objectives, identification can be a suffi-
cient condition, e.g. for applications which involve the tracking of products in a
closed system.

• In certain situations, identification is sufficient to achieve entity authentication,
since the authentication conditions are implicitly met.

For this reason, we will first discuss PUF-based identification in this chapter, before
we treat PUF-based authentication.

5.1.2 Chapter Goals

The primary goal of this chapter is to propose practical methods for achieving entity
identification and authentication based on the uniqueness and unpredictability of a
PUF’s challenge-response behavior, and introduce a methodology for quantifying
the resulting identification and authentication performance in terms of security and
robustness. More specifically, we aim to:

• Study how to use an entity’s inherent PUF responses as an identifying feature in
an identification system, and how this relates to classic identification based on
assigned identities.

• Derive performance metrics for such a PUF-based identification system and apply
these on the experimentally derived intrinsic PUF characteristics from Chap. 4, to
provide an objective comparison of the identification performance and efficiency
of the studied PUFs.

• Develop an entity authentication protocol which: (i) uses a PUF’s unique and un-
predictable responses directly as an authentication secret, (ii) can be deployed

1In an anonymous credential scheme, an entity can prove its group membership without revealing
its individual identity.



5.2 PUF-Based Identification 119

based on existing intrinsic PUFs, and (iii) is sufficiently lightweight to be imple-
mented on resource-constrained devices.

• Derive the performance metrics of the developed authentication scheme and
equivalently apply them to the experimental intrinsic PUF characteristics from
Chap. 4 to make an objective comparison of their authentication performance.

5.1.3 Chapter Overview

How to safely and reliably identify an entity based on its inherent PUF responses
is discussed and analyzed in Sect. 5.2, and a performance overview of the different
intrinsic PUFs studied in Chap. 4 is given. In Sect. 5.3, we first describe the op-
eration of an earlier proposed basic PUF-based challenge-response authentication
scheme and point out its perceived shortcomings. Based on this analysis, we pro-
pose a new and more practical PUF-based mutual authentication scheme and study
its authentication performance. Finally, we conclude this chapter in Sect. 5.4.

5.2 PUF-Based Identification

5.2.1 Background: Assigned Versus Inherent Identities

When we compared PUFs to human fingerprints in Sect. 2.1.1, we introduced the
concept of an inherent identifying feature, i.e. an entity-specific characteristic that
arises in the creation process of the entity. As opposed to inherent identities, an
entity can also have assigned identities. In the analogy with human beings, this is the
distinction we make between fingerprints, which are inherent, and, e.g. a person’s
name, which is ‘assigned’ after birth. The inherency of its instance-specific behavior
was indicated as one of the key conditions for a construction to be called a PUF.

An inanimate object can also have an assigned identity, e.g. a unique serial num-
ber or barcode which is printed on its surface, and in most applications that require
entity identification, assigned identities are currently standard practice. In particular
for digital silicon chips, unique bit strings which are programmed in a non-volatile
memory embedded on the chip were until recently the only way of identifying a spe-
cific chip in a digital interaction. With the introduction of silicon PUF technology,
it is now possible to also use inherent unique features of a silicon chip for instance
identification.

Identity Provisioning Versus Enrollment

Identification techniques based on assigned as well as on inherent identities typically
work in two phases. The first phase is different for both types:

• For assigned identities, the first phase of any identification technique consists
of providing every entity that needs to be identified with a permanent unique
identity. We call this the provisioning phase.



120 5 PUF-Based Entity Identification and Authentication

• For inherent identities, the first phase of any identification technique consists of
collecting the inherent identities of every entity that needs to be identified. We
call this the enrollment phase.

The second phase is very similar for both types and consists of an entity presenting
its identity, either assigned or inherent, when requested. This is called the identifi-
cation phase.

Practical Advantages of Inherent Identities

The differences between provisioning, for assigned identities, and enrollment, for
inherent identities, highlight interesting practical advantages of the latter:

• A unique assigned identity needs to be generated before it is assigned to an en-
tity. To ensure that all generated identities are unique (with high probability), the
provisioning party either needs to keep state, e.g. using a monotonic counter, or
requires a randomness source, e.g. a true random-number generator. For inher-
ent identities this is not required, since their uniqueness results from the creation
process of the entities.

• When assigning an identity to an entity, the provisioning party needs to make per-
manent (or at least non-volatile) physical changes to each entity. This needs to be
supported by the entity’s construction. In particular for silicon chips, the inclusion
of a non-volatile digital memory can induce a non-negligible additional cost. Ev-
idently, inherent identities do not require additional physical storage capabilities.

• Enrollment (reading an identity) is generally less intrusive than provisioning
(writing an identity); hence it can be done faster and with a higher reliability.
This is of particular interest for entities created in high-volume manufacturing
flows (like silicon chip products), where unit cost is directly affected by the yield
and processing time of each manufacturing step.

On the downside, there is no direct control over the actual values taken by inherent
identifiers. This is an issue if one wants to assign a meaning to an identifier value,
e.g. a serial number which is based on an entity’s creation date. For assigned identi-
ties, one has absolute control over the identifier values. Another peculiarity of most
inherent identities is their so-called fuzzy nature, which we discuss next.

5.2.2 Fuzzy Identification

Fuzzy Nature of Inherent Identifiers

A particular trait of most types of inherent identifying features which needs to be
dealt with is that they show fuzzy random behavior.2 We say that a random vari-

2When we use the term ‘fuzzy’ in this book, we relate to the notion of fuzziness as introduced
by Juels and Wattenberg [61] to describe fuzzy commitment, which was later extended to fuzzy



5.2 PUF-Based Identification 121

able, like a PUF response or a biometric feature, shows fuzzy behavior if: (i) it
is not entirely uniformly distributed, and (ii) it is not perfectly reproducible when
measured multiple times. For PUF responses, both fuzzy characteristics are caused
by the physical nature of their generation. Random physical processes that intro-
duce entity-specific features during manufacturing are typically not uniformly dis-
tributed. Also, as already discussed in detail in Sect. 3.2.2, the response evaluation
mechanisms of a PUF construction are subject to physical noise and environmental
conditions which cause a non-perfect reproducibility of a PUF response value.

Assigned identities on the other hand are typically not fuzzy. The provisioning
party can make sure that the assigned identities are generated from a uniform distri-
bution. Also, once provisioned, an entity can typically reproduce its assigned iden-
tity with near-perfect reproducibility.

Fuzzy Identification with a Threshold

The fuzziness of a PUF response is most clearly depicted by its inter- and intra-
distance distributions. When we consider binary response vectors and fractional
Hamming distance as a distance metric, then perfectly uniformly random responses
would have an expected inter-distance of exactly 50 %. It is clear from our litera-
ture overview of intrinsic PUF results in Sect. 2.4.8, as well as from our summa-
rized experimental results on intrinsic PUFs in Sect. 4.5, that none of the existing
intrinsic PUF constructions meet this condition, although some have an average
inter-distance very close to 50 %. Equivalently, no intrinsic PUF exhibits perfect
reproducibility with a fixed intra-distance of 0 %, and many are only reproducible
up to an average intra-distance of 10 % or even more.

To assess the extent to which a PUF response can be used as an inherent identifier,
we need to take its fuzziness into account. This is where the earlier discussed PUF
property of identifiability comes into play (cf. Definition 9). We defined a PUF class
to exhibit identifiability if with high probability its responses’ intra-distances are
smaller than their inter-distances. In this section, we make this intuitive definition
very tangible, by computing the identifying power of a PUF’s responses based on
their intra- and inter-distance distributions.

Figure 5.1 shows an example of an estimated distribution of the inter- and intra-
distances of a PUF’s response. For this example, we consider a D flip-flop PUF
which produces a 16-bit response. As an estimate for both distributions, we assume
a binomial distribution with parameters the binomial probability estimators p̂inter

P
and p̂intra

P resulting from the experimental analysis from Chap. 4 and summarized in
Sect. 4.5. The process by which we computed these estimators guarantees that the
assumed binomial distributions provide an accurate estimation, in particular for the

vaults by Juels and Sudan [60] and finally to fuzzy extractors by Dodis et al. [32, 33]. We are not
referring to the homonymous but unrelated use of the word ‘fuzzy’ as used in fuzzy logic and fuzzy
set theory. To avoid any confusion, we will also not use the ambiguous term fuzzy random variable
in this context.



122 5 PUF-Based Entity Identification and Authentication

Fig. 5.1 Example: estimated
inter- and intra-distance
distributions for 16-bit
responses from the
D flip-flop PUF

right tail of the intra-distance distribution and for the left tail of the inter-distance
distribution. As will become clear, this is specifically the region of interest for most
applications.

From Fig. 5.1, it is clear that this PUF construction exhibits some level of iden-
tifiability, since the expected intra-distance is noticeably smaller than the expected
inter-distance. However, there is also a significant overlap between the curves of
the two distributions, which points out the issue of identification based on fuzzy
responses. When an observed distance between responses from the enrollment and
the identification phase falls in this overlapping region, it can be a result of intra-
distance, in which case it is the same entity, or of inter-distance, in which case it
concerns a different entity, and there is no way of distinguishing between the two
cases. In a practical identification system for fuzzy identities, one needs to deter-
mine a rather pragmatic response distance threshold. Distances smaller or equal to
this threshold are assumed to be intra-distances between responses from a single en-
tity, while distances above this threshold are assumed to be inter-distances between
responses from different entities. We call this threshold the identification threshold.

False Acceptance, False Rejection, and Equal Error Rates

During the identification phase of a PUF-based identification system, the generated
response of an entity is checked against a list of enrolled responses. When an en-
rolled response is found whose distance from the presented response is smaller than
or equal to the identification threshold, then the entity is identified as the matching
entry in the list. It is clear that a fuzzy identification system based on such a prag-
matic identification threshold is not 100 % reliable, especially when there is a large
overlap between inter- and intra-distance distribution, as for the example in Fig. 5.1.
When comparing a presented entity response to a response from the enrollment list,
four possible situations can arise:

1. The presented entity is the same entity that produced the enrolled response, and
manages to reproduce the enrolled response with an intra-distance smaller than
the identification threshold. The presented entity is correctly identified. This is
called a true acceptance.



5.2 PUF-Based Identification 123

2. The presented entity is the same entity that produced the enrolled response, but
is not able to reproduce the enrolled response with an intra-distance smaller than
the identification threshold. The presented entity is mistakenly rejected. This is
called a false rejection.

3. The presented entity is not the same entity that produced the enrolled response,
but happens (by chance) to produce a response whose inter-distance to the en-
rolled response is smaller than the identification threshold. The presented entity
is mistakenly identified. This is called a false acceptance.

4. The presented entity is not the same entity that produced the enrolled response,
and it produces a response whose inter-distance is larger than the identification
threshold. The presented entity is correctly rejected. This is called a true rejec-
tion.

It is clear that false rejections and false acceptances are both undesirable for a practi-
cal identification system. The probability that a random identification attempt results
in one of these cases is respectively expressed as the false rejection rate or FRR and
as the false acceptance rate or FAR of the system. FAR expresses the security of an
identification system, since a low FAR means that there is little risk of misidenti-
fication which could lead to security issues. FRR on the other hand expresses the
robustness or usability of a system, as it expresses the risk of wrongfully reject-
ing legitimate entities, which would be very impractical. For a usable identification
system, both FAR and FRR need to be as small as possible, but it is evident that
they cannot be both minimized at the same time. As is often the case, an acceptable
trade-off between security and usability needs to be made.

For a given identification system, FAR and FRR depend on the choice for the
identification threshold value, which we denote as tid. A high threshold minimizes
the risk of a false rejection but increases the likelihood of false acceptances, and vice
versa for a low threshold. When the distributions of the inter- and intra-distances of
the considered PUF are known, the respective relations between FAR, FRR and tid
can be computed:

• FAR is the probability that the inter-distance is smaller than or equal to tid. This
is equivalent to the evaluation of the cumulative distribution function of the inter-
distance at tid.

• FRR is the probability that the intra-distance is larger than tid. This is equivalent
to the complement of the evaluation of the cumulative distribution function of the
intra-distance at tid.

For the example presented in Fig. 5.1, we have assumed a binomial distribution for
both inter- and intra-distances; hence FAR and FRR become:

FAR(tid) = Fbino
(
tid;16, p̂inter

P
)
,

FRR(tid) = 1 − Fbino
(
tid;16, p̂intra

P
)
,

with Fbino(t;n,p) the cumulative binomial distribution function with parameters n

and p evaluated in t , and p̂inter
P and p̂intra

P the binomial estimators for the D flip-flop



124 5 PUF-Based Entity Identification and Authentication

Fig. 5.2 Example: identification metrics for a threshold identification system based on the PUF
described by Fig. 5.1

PUF taken from Table 4.10. The resulting FAR and FRR for every identification
threshold value between 0 and 16 are plotted in Fig. 5.2a. From this figure it is clear
that there is a threshold, and a corresponding error rate, where the plots of FAR and
FRR intersect. We call this the equal error threshold tEER and the corresponding
error rate the equal error rate or EER. For discrete distributions, FAR and FRR will
never be exactly equal for a discrete threshold, and in that case tEER and EER are
defined as:

tEER
�= argmint

{
max

{
FAR(t),FRR(t)

}}
,

and

EER
�= max

{
FAR(tEER),FRR(tEER)

}
.

The equal error rate is also indicated in Fig. 5.2a.
When designing a PUF-based identification system, the FAR and FRR plots as

shown in Fig. 5.2a can be used to find a suitable trade-off meeting the application
requirements. This can, but does not need to be the EER, e.g. in some applications
more care is given to security than to usability, or vice versa. A more convenient
way for assessing the FRR-vs-FAR trade-off is the plot of FRR as a function of FAR
as shown in Fig. 5.2b. Such a plot is also called the receiver-operating characteris-
tic or ROC plot of the system. In a ROC plot, the EER is found as the intersection
with the identity function which we have labelled the equal error line in Fig. 5.2b.
ROC curves completely summarize the identification performance of an identifica-
tion system and are particularly useful for comparing the performance of different
systems. A more condensed performance qualifier of a particular identification sys-
tem is given by its EER value.



5.2 PUF-Based Identification 125

Fig. 5.3 Comparison of ROC curves for identification systems based on 64-bit responses from
each of the eight experimentally verified intrinsic PUFs which are summarized by Table 4.10

5.2.3 Identification Performance for Different Intrinsic PUFs

In Sect. 5.2.2 we presented a toy example of a 16-bit D flip-flop PUF identification
system and used it to introduce the different performance metrics of fuzzy identifica-
tion systems. Now, we will use these introduced metrics to objectively compare the
identification performance of the different intrinsic PUFs which were experimen-
tally studied in Chap. 4. As in Sect. 5.2.2, we will assume a binomial distribution
for both the inter- and intra-distances of these intrinsic PUFs and use the binomial
probability estimators as summarized in Table 4.10. This assumption is justified by
the fact that these estimators where derived to accurately describe the critical region
of both distributions, i.e. the part where both probability mass functions overlap.

We will first compare the identification performance of all considered PUFs for
a fixed length response. Afterwards, we compare the required parameters of the
different PUFs in order to obtain the same identification performance. Ultimately,
we combine these obtained parameters with each PUF’s area estimation to generate
an objective as possible comparison of identification performance versus silicon
area use for each of the intrinsic PUF constructions.

Comparison of ROC Curves for 64-bit Identification with Different PUFs

We consider an identification system based on 64-bit PUF responses and apply the
methods introduced in Sect. 5.2.2 to derive the ROC curves for all eight considered
intrinsic PUFs, based on their parameters from Table 4.10. All eight ROC curves
are plotted on the same graph in Fig. 5.3.



126 5 PUF-Based Entity Identification and Authentication

When reading a ROC curve, it is important to know that the more one moves to
the left (up) on a curve, the more secure an identification system becomes, i.e. the
less likely that a misidentification will happen. On the other hand, moving down (to
the right) on a ROC curve gives more robust systems, i.e. systems which are less
likely to result in an unjustified rejection. In this respect, the closer to the lower
left corner a particular ROC curve is situated, the better its overall identification
performance and the easier to make a meaningful security-usability trade-off.

Analyzing the ROC curves from Fig. 5.3, it is clear that an identification sys-
tem based on 64-bit responses from the ring oscillator PUF with pairwise compar-
ison greatly outperforms all the other PUFs and is the only PUF which obtains an
EER ≤ 10−6. Looking at Table 4.10, the high identification performance of this ring
oscillator PUF is caused by a combination of having nearly the highest inter-distance
parameter (second to the 2-XOR arbiter PUF) and by far the best intra-distance pa-
rameter. The ROC curves of the SRAM PUF and the basic arbiter PUF follow at
a considerable distance, both reaching an EER ≤ 10−4. Notable is the fact that the
2-XOR arbiter PUF, while having a better inter-distance parameter than the basic
arbiter PUF, performs significantly worse due to its much worse intra-distance be-
havior. At the bottom of the ranking we find the latch PUF which performs very
weakly. It does not even reach an EER ≤ 10 %, which means that over one in ten
identification attempts will either be rejected or misidentified. In fact, looking at the
inter- and intra-distance parameters of the latch PUF in Table 4.10, we may con-
clude that the latch PUF hardly exhibits identifiability (and can hence only barely
be called a PUF), since its average intra-distance is only slightly smaller than its
average inter-distance.

Comparison of PUF Parameters and Areas for Practical Identification
Requirements

The required identification performance of an identification system is determined by
its application, but for most practical applications FAR and FRR both ≤ 10−6, and
hence EER ≤ 10−6, is minimally desired. For many applications, EER even needs to
be considerably smaller, e.g. EER ≤ 10−9 or even EER ≤ 10−12 can be required for
critical systems. Aiming for a lower EER also provides more freedom in selecting
an optimal FAR-vs-FRR trade-off. The results from Fig. 5.3 show that with a 64-bit
PUF response, only the pairwise-comparison ring oscillator PUF achieves EER ≤
10−6. In order to obtain a better identification performance based on the same PUF,
longer responses need to be considered as identifiers. In the following we examine
which response lengths, denoted as nid, are needed for every considered PUF to
reach an identification performance of respectively EER ≤ 10−6, EER ≤ 10−9 and
EER ≤ 10−12.

To ultimately obtain an objective comparison of the identification performance
of the different considered PUFs, we also need to take their silicon area efficiency
into account. After determining the minimal required response length nid to achieve
a certain identification performance, we estimate the required silicon area a PUF



5.2 PUF-Based Identification 127

construction needs to occupy in order to produce a response of that length. These
area estimations are based on the area breakdown of our test chip as presented in
Table 4.1. We use the following approach for scaling the area of the different PUFs:

• For the memory-based PUFs, we scale the area completely bitwise, i.e. the esti-
mated silicon area of the entire PUF block as presented in Table 4.1 is divided by
the total number of bit cells of the considered PUF implemented on the test chip
and multiplied by nid. This is a very rough estimation as it does not take fixed
overhead into account, and it assumes bit cells can be instantiated one by one. Es-
pecially for the SRAM PUF this is not very accurate since it neglects the overhead
of the address decoder, sense amplifiers, readout circuitry, etc. Moreover, typical
SRAM array implementations come in multiples of kilobytes, not bits. However,
given the limited knowledge we have about the implemented PUF areas, this is
the best estimate we can give. For the other memory-based PUFs the estimate is
better since they can be instantiated on a bit by bit basis. For the D flip-flop PUF
with the chained read-out implementation, this estimation is even fairly accurate.

• For both arbiter-based PUFs, the silicon area is relatively independent of the re-
quired number of response bits, since a single 64-bit arbiter PUF can technically
produce 264 response bits. It will become clear that for most applications, large
problems arise when too many response bits of a single arbiter-based PUF are
used, but for plain identification (no authentication) this is not an issue. This
means that the identification performance of a single arbiter PUF is virtually
unlimited. The area of a single basic arbiter PUF is estimated by dividing the
estimated area of the entire arbiter PUF block as reported in Table 4.1 by the total
number of instantiated arbiter PUFs on the test chip. The estimated area of the
2-XOR arbiter PUF is that of two basic arbiter PUFs.

• For both ring oscillator PUFs, responses are bit vectors which are computed
from 16 simultaneously measured ring oscillator frequencies. The pairwise com-
parison method produces 8 bits per response, and the Lehmer-Gray method
49 bits. Multiples of these response lengths are obtained by incrementing the
number of oscillators in each of the 16 batches by the same amount. The required
area for these ring oscillator PUFs is estimated by dividing nid by 8 and 49 re-
spectively, and multiplying the ceiled outcome of this division with the area of a
set of 16 oscillators. The area of a single oscillator is estimated by dividing the
total area of the ring oscillator block from Table 4.1 by the number of oscillators
implemented on the test chip. This estimation is not very accurate as it neglects
the overhead of the frequency counters.

The results of these estimations are presented in Tables 5.1, 5.2 and 5.3, respectively
for EER ≤ 10−6, EER ≤ 10−9 and EER ≤ 10−12. We want to point out again that
the reported silicon area results need to be considered as rough estimates at best,
and even better as indications of order of magnitude.

From Tables 5.1 to 5.3 we conclude that, even though only based on rough esti-
mations, SRAM PUFs exhibit by far the best area efficiency for a required identifica-
tion performance, being an order of magnitude smaller than the next best PUF. This
is due to a combination of their relatively strong PUF behavior, and in particular



128 5 PUF-Based Entity Identification and Authentication

Table 5.1 Comparison of PUF parameters and estimated silicon area for an identification system
with EER ≤ 10−6

PUF class nid tid log10 FAR log10 FRR Silicon area
(µm2)

SRAM PUF 89 21 −6.00 −6.03 72.3

Latch PUF 9344 2664 −6.00 −6.01 77562.5

D Flip-Flop PUF 448 128 −6.05 −6.16 5359.4

Buskeeper PUF 223 72 −6.03 −6.05 1034.4

Arbiter PUF (basic) 101 23 −6.13 −6.21 1089.8

Arbiter PUF (2-XOR) 142 42 −6.06 −6.12 2179.7

Ring Oscillator PUF (P.C.) 62 12 −6.06 −6.20 7531.3

Ring Oscillator PUF (L.G.) 121 30 −6.12 −6.24 2824.2

Table 5.2 Comparison of PUF parameters and estimated silicon area for an identification system
with EER ≤ 10−9

PUF class nid tid log10 FAR log10 FRR Silicon area
(µm2)

SRAM PUF 143 34 −9.11 −9.04 116.2

Latch PUF 14881 4243 −9.00 −9.02 123523.9

D Flip-Flop PUF 703 201 −9.00 −9.09 8409.9

Buskeeper PUF 355 115 −9.02 −9.09 1646.7

Arbiter PUF (basic) 160 37 −9.04 −9.39 1089.8

Arbiter PUF (2-XOR) 226 67 −9.15 −9.09 2179.7

Ring Oscillator PUF (P.C.) 104 20 −9.83 −9.28 12238.3

Ring Oscillator PUF (L.G.) 192 48 −9.13 −9.36 3765.6

Table 5.3 Comparison of PUF parameters and estimated silicon area for an identification system
with EER ≤ 10−12

PUF class nid tid log10 FAR log10 FRR Silicon area
(µm2)

SRAM PUF 196 47 −12.0 −12.1 159.3

Latch PUF 20464 5835 −12.0 −12.0 169867.2

D Flip-Flop PUF 968 277 −12.0 −12.1 11580.1

Buskeeper PUF 488 158 −12.1 −12.0 2263.7

Arbiter PUF (basic) 217 50 −12.1 −12.1 1089.8

Arbiter PUF (2-XOR) 312 93 −12.1 −12.3 2179.7

Ring Oscillator PUF (P.C.) 155 29 −14.8 −12.4 18828.1

Ring Oscillator PUF (L.G.) 260 65 −12.1 −12.2 5648.4



5.3 PUF-Based Entity Authentication 129

their very small cell area. Pairwise comparison ring oscillator PUFs, though show-
ing the overall best identification performance in Fig. 5.3, are very area-inefficient,
which makes them almost the least favorable choice for a required performance.
Latch PUFs still behave the worst, even when taking into account their silicon area,
because they require huge response lengths to provide meaningful levels of identifi-
cation performance.

5.3 PUF-Based Entity Authentication

5.3.1 Background: PUF Challenge-Response Authentication

When an entity wants to authenticate itself to an another party, typically called the
verifier, it needs to provide, besides plain identification, also corroborative evidence
of its presented identity, i.e. evidence which could only have been created by that
particular entity. An entity typically achieves this goal by proving to the verifier
that it knows, possesses or contains a particular secret which only that entity can
know, have or contain. In addition, the entity also needs to convince the verifier
that it was actively, i.e. at the time of authenticating, involved in creating that ev-
idence. In this section, we discuss how an entity can authenticate itself based on
the possession/containment of a unique PUF instance. An authentication scenario is
considered with a centralized verifier and entities which authenticate to the central
verifier, not to each other.

There are two main approaches towards developing a PUF-based authentication
system. The first approach is to develop an authentication scheme which directly
deploys the unique and unpredictable challenge-response behavior of a particular
PUF instance. The second approach consists of deriving a robust and secure crypto-
graphic key from a PUF response and using this key in an existing classic key-based
cryptographic authentication protocol. PUF-based key generation is discussed in de-
tail in Chap. 6. In this section, we focus on the challenge-response approach, which
is usually more efficient, since it does not require an additional implementation of a
key generation algorithm and other keyed cryptographic primitives.

Basic PUF-Based Challenge-Response Authentication

The basic PUF-based challenge-response entity authentication scheme, among oth-
ers described by Gassend et al. [42], Ranasinghe et al. [108] and Devadas et al. [30],
consists of two phases, enrollment and verification:

1. Before deployment, every entity goes through enrollment by the verifier. During
the enrollment phase, the verifier records the identity3 ID of every entity, and

3Identification can happen with both assigned or inherent identifiers, as discussed in detail in
Sect. 5.2. For simplicity, but without loss of generality, we assume an entity identifies with an
assigned identifier ID in this section.



130 5 PUF-Based Entity Identification and Authentication

collects a significant subset of challenge-response pairs of every entity’s PUF,
for randomly generated challenges. The collected challenge-response pairs are
stored in the verifier’s database DB, indexed by the entity’s ID.

2. During the verification phase, an entity identifies itself to the verifier by sending
its ID. The verifier looks up the ID in its DB, and selects a random PUF challenge-
response pair stored with that ID. The PUF challenge is sent to the entity; the en-
tity evaluates its PUF with that challenge and replies with the obtained response.
The verifier checks whether the replied response is close to the response it has
in its database, i.e. both responses differ no more than some predetermined au-
thentication threshold tauth. If this check succeeds, the entity is authenticated,
otherwise the authentication is rejected. The used challenge-response pair is re-
moved from DB.

The correctness of this authentication scheme is ensured by the fact that PUF re-
sponses are reproducible over time, up to a small intra-distance. If tauth is set large
enough such that with high probability the intra-distance is smaller, the authentica-
tion of a legitimate entity succeeds. For the security of the authentication, the verifier
relies on the fact that PUFs are unique and unclonable, and only the genuine PUF
can with high probability reproduce a close response to a previously unobserved and
random challenge.

Drawbacks of the Basic Protocol

Unfortunately, while strikingly simple and low-cost, this basic protocol exhibits a
number of major shortcomings and drawbacks:

• It is clear that challenge-response pairs cannot be reused in order to avoid replay
attacks, and a used pair is therefore removed from DB after the protocol finishes.
This entails that the verifier needs to store a large number of pairs for each entity
to make sure that every entity can be authenticated a reasonable number of times.
Maintaining such a large database is a significant effort. Moreover, it requires that
the considered PUF construction has a large challenge set to begin with, which
already rules out a significant number of proposed PUF constructions.

• When the stored challenge-response pairs in DB of an entity run out, the entity
can no longer be authenticated by the verifier. To make further authentications
possible, the entity needs to be re-enrolled. This requires either a physical with-
drawal of the entity from the field to undergo re-enrollment at the verifier’s se-
cured premises, or an elaborate and costly extension of the basic protocol to make
remote re-enrollment possible.

• The basic protocol only provides authentication of an entity to the verifier; no
mutual authentication can be supported without significantly extending the basic
protocol.

• The basic protocol is only secure for truly unclonable PUFs (cf. Definition 13),
i.e. PUFs which are also mathematically unclonable. PUFs which can be cloned
in a mathematical sense (and which are hence still considered PUFs according to



5.3 PUF-Based Entity Authentication 131

Definition 16) do not offer secure authentication, since the basic protocol can no
longer distinguish between the real entity with the physical PUF and an imper-
sonator with a mathematical clone of that PUF. From Table 3.1, it is clear that
only the optical PUF presents convincing evidence to be considered mathemati-
cally unclonable, which means the basic scheme is currently only secure when an
optical PUF is deployed.4

Improvements and extensions of this basic protocol have been proposed, e.g. by
Bolotnyy and Robins [9] and Kulseng et al. [71], to relax the strict requirements
on the PUF construction and the database. However, these proposals do not com-
pletely succeed in overcoming the shortcomings of the basic protocol, or they intro-
duce new restrictions. Some of these proposals are moreover shown to be insecure,
e.g. Kardas et al. [63] point out significant security weaknesses of the proposal by
Kulseng et al. [71].

Motivation

The simplicity of the basic PUF-based challenge-response authentication protocol
is very appealing, especially when entities are heavily constrained silicon devices
such as RFID tags, which cannot dedicate many resources to implementations of
cryptographic building blocks. A possibly significant improvement in the resource-
security trade-off of such devices is possible, if they can be authenticated only based
on an efficient embedded intrinsic PUF implementation. Unfortunately, no intrinsic
PUF candidates currently exist which meet the very strong requirement of mathe-
matical unclonability needed to make the basic challenge-response authentication
protocol secure. Constructing a practical intrinsic PUF for which strong guarantees
of mathematical unclonability can be provided is currently considered an important
open problem in the study of PUFs and their constructions.

Instead of attempting to tackle this difficult open problem, we will propose an
alternative PUF-based authentication protocol in this section, which has consider-
ably relaxed requirements for the PUF used, and which moreover provides mutual
authentication. We need a little more complexity than the basic protocol (less is vir-
tually impossible), but aim to keep it at a minimum, especially on the entity’s side,
which we consider to be a resource-constrained device like an RFID tag.

5.3.2 A PUF-Based Mutual Authentication Scheme

Rationale

The premise on which we base our proposed protocol is that the amount of unpre-
dictability in the challenge-response behavior of an intrinsic PUF instance is strictly

4Intrinsic PUF constructions have been proposed which are candidates for mathematical unclon-
ability, but currently they lack convincing argumentation to be classified as such.



132 5 PUF-Based Entity Identification and Authentication

limited, and increasing it comes at a high relative implementation cost. Note that
this is the case for all currently known intrinsic PUF constructions. It is therefore
not recommendable to publicly disclose challenge-response pairs in the protocol’s
communications, as the basic protocol does, since every disclosed pair significantly
reduces the remaining unpredictability of the PUF’s behavior. This quickly results in
a situation where the PUF-carrying entity can no longer be securely authenticated.

In classic cryptographic challenge-response authentication protocols based on
symmetric-key techniques (cf. [96, Sect. 10.3.2]), an entity also does not authen-
ticate itself by disclosing its secret key, since this would render the authentication
insecure after one protocol run. Instead, an entity only proves its knowledge of the
secret key by showing that it can calculate encryptions or keyed one-way func-
tion evaluations of randomly applied challenges, without revealing any information
about the key’s value. We follow the same line of thought in our protocol: an entity
demonstrates its possession of a PUF instance by demonstrating that it can calculate
a function evaluation which takes an unpredictable PUF response as input, with-
out fully disclosing the unpredictable nature of the response in the result of this
evaluation.

An obvious choice for such a concealing function would be a one-way function,
e.g. instantiated as a cryptographic hash function, since a one-way function eval-
uation of a PUF response does not disclose any significant information about the
response value. The verifier could then calculate the same one-way function evalu-
ation on the response in its database and check if this matches the entity’s response.
However, this runs into the problem of the non-perfect reproducibility of the PUF’s
responses. Whereas the entity’s PUF response value will typically be close to the
enrolled PUF response value in the verifier’s database, the one-way function evalu-
ations of both are completely independent and cannot be meaningfully matched to
each other. This is also a consequence (in this case negative) of the one-way function
destroying any predictability between input and output.

To overcome this issue, we need to deploy some form of error-correction in the
protocol to make sure that both parties, the entity and the verifier, compute the one-
way function on exactly the same PUF response value. In order to be able to do this,
the entity and the verifier need to publicly exchange an amount of information about
the PUF response. This is typically called side information, or also helper data in
the context of PUF-based key generation algorithms (cf. Chap. 6). We show that it
is possible for some intrinsic PUFs to find a good balance between the amount of
side information one needs to disclose and the amount of unpredictability that is left
in the PUF response after observing the side information, to obtain a reliable but
secure authentication. Note that at no point in our proposed protocol do we derive a
cryptographically secure key or do we use a keyed cryptographic primitive. More-
over, while being related to the key-generation algorithms discussed in Chap. 6, the
used error-correction technique in this protocol is considerably less computationally
expensive, especially on the entity’s side.

Background The mutual authentication scheme as described in [151], of which a
slightly adapted version is presented in this section, is the shared result of numerous



5.3 PUF-Based Entity Authentication 133

fruitful discussions and an intense research collaboration between the author and
Anthony van Herrewege, Roel Peeters and Prof. Ingrid Verbauwhede (all of the
University of Leuven), and Christian Wachsmann, Prof. Stefan Katzenbeisser and
Prof. Ahmad-Reza Sadeghi (all of the Technische Universität Darmstadt). The key
idea and development of the “reverse” secure sketch is due to the author.

“Reversed” Secure Sketching Based on Linear Block Code Syndromes

The error-correction technique we deploy in the protocol is a practical version of
the syndrome construction of a secure sketch, as described by Dodis et al. [32, 33],
with the sketching procedure executed by the entity, and the recovery procedure
executed by the verifier. Note that this execution order implies that the entity gener-
ates the “correct” version of the PUF response and the verifier needs to correct his
stored response value to match that of the entity. This is the opposite way, as secure
sketching is typically deployed, e.g. in PUF-based key generation, with the verifier
storing a single fixed secret key and helper data string and requiring the entity to
correct its noisy response, with the help of the helper data, to generate the same key
as the verifier. For this reason, we call this a reverse secure sketch. The use of such
a reverse secure sketch has some peculiar and interesting side effects:

• Since the entity’s PUF response is only non-perfectly reproducible, the actual
response value on which the authentication is based will possibly be different for
each run of the protocol. This means the exchanged side information will also be
different for each run. Since the side information partially discloses the response
value, we need to consider this when showing the security of the protocol, i.e. we
do not want multiple runs of the protocol to disclose the full response value.
We are able to prove that even after an indeterminate number of protocol runs,
with each a possibly different side information string based on a different noisy
response value, the remaining unpredictability of the PUF response remains high.

• Since the sketching procedure of a secure sketch is typically much less computa-
tionally complex than the recovery procedure, it can be efficiently implemented
by each entity using a small amount of resources. The central verifier is assumed
to be less resource-constrained and easily capable of implementing the recovery
procedure.

Secure sketch constructions based on linear block codes are explained in detail
in Sect. 6.2.1. We refer to that section for more background on the operation of the
syndrome construction used in our protocol. Summarized very briefly:

• The sketching procedure of the syndrome construction, executed by an entity,
consists of a binary matrix multiplication of the entity’s PUF response evaluation
with the parity-check matrix of a linear block code, resulting in the side informa-
tion for the protocol run: wi := y′

i · HT.
• The recovery procedure, as executed by the verifier, consists of three steps:

(i) a syndrome is calculated based on the received side information and the stored
PUF response value from the verifier’s database: si := wi ⊕yi ·HT ≡ ei ·HT, with



134 5 PUF-Based Entity Identification and Authentication

Entity Enti : IDi ,pufi Verifier Ver : DB

pufi → y′
i

wi := y′
i · HT

r1
$← {0,1}� IDi ,wi ,r1−−−−−−−−−−→ Identify IDi : DB[IDi ] → yi

y′′
i := Recover(yi ,wi)

r2
$← {0,1}�

Hash(IDi ,wi, y
′
i , r1, r2)

?= u1
u1,r2←−−−−−−−−−− u1 := Hash(IDi ,wi, y

′′
i , r1, r2)

· No match → Abort
· Match → Accept Ver

u2 := Hash(IDi , y
′
i , r2)

u2−−−−−−−−−−→ Hash(IDi , y
′′
i , r2)

?= u2

· No match → Abort
· Match → Accept Enti

Fig. 5.4 A PUF-based mutual authentication scheme between a PUF-carrying entity and a central
verifier

ei = (y′
i ⊕ yi); (ii) the syndrome is decoded to an error string: Decode(si) → e′

i ,
with e′

i = ei if HD(yi;y′
i ) ≤ tauth, with tauth the bit error correction capacity of

the underlying code; (iii) the response reconstruction: y′′
i := yi ⊕ e′

i , with y′′
i = y′

i

if HD(yi;y′
i ) ≤ tauth.

The Mutual Authentication Protocol

The execution flow of our proposed PUF-based mutual authentication protocol is
shown in Fig. 5.4. This is a modified version of the protocol we have introduced
in [151], the main difference being the reversal of the authentication checks such
that an entity will only authenticate to a legitimate verifier. We explain the different
operations in more detail:

• Each entity (Enti ) is assigned a unique identifier ID and equipped with a unique
PUF instance pufi . We only require a single challenge-response pair per PUF;
hence we do not explicitly write the challenge: pufi → y′

i .• Prior to deployment, all entities are enrolled by the verifier (Ver), which keeps
a database DB of a single response evaluation yi of every entity’s PUF, indexed
by the entity’s ID. PUF responses can only be enrolled once. This is enforced
by physically blocking or even destroying the entity’s enrollment interface which
directly outputs the PUF response.

• Each entity implements the sketching procedure of the secure sketch, which is
simply a binary matrix multiplication with a parity-check matrix HT of a linear
block code. Due to the special structure of these matrices for many block codes,
this multiplication can often be very efficiently implemented in digital hardware.

• The verifier implements the recovery procedure of the secure sketch: Recover(yi,

wi). This procedure contains an error-correction decoding algorithm which typi-
cally requires a considerable computational effort.



5.3 PUF-Based Entity Authentication 135

• Each entity, as well as the verifier, implements a cryptographically secure hash
function: Hash(·).

• Each entity, as well as the verifier, has access to a cryptographically secure ran-
dom bit generator which they use to generate random nonces used in the protocol:
ri ← {0,1}�. The nonces are used to introduce freshness in the protocol’s mes-
sages in order to avoid replay attacks. Later we propose a possible optimization in
which entities do not need to produce a nonce and hence do not require a random
bit generator.

Correctness

The correctness of the protocol is guaranteed by the error-correction capability of
the underlying linear block code of the secure sketch. If, with high probability, the
intra-distance between the PUF response produced by a legitimate entity during a
protocol run and the response in the legitimate verifier’s database is smaller than
or equal to the error-correcting capacity tauth of the underlying block code, then
the verifier is able to recover the same response value produced by the entity. In
that case, both hash value checks will succeed and mutual authentication is accom-
plished. Based on the intra-distance distribution of the deployed PUF construction, a
code with an appropriate error-correction threshold is selected. This will ultimately
result in a false rejection rate, in a manner equivalent to PUF-based identification as
discussed in Sect. 5.2.2.

Security

Next, we discuss the different security aspects of the protocol. We refer to [151] for
a detailed security analysis, including a security proof, of a variant of the presented
protocol.

Physical Unclonability Due to the physical unclonability of the deployed PUFs,
an impersonation attempt of an entity carrying a different PUF will fail with high
probability. Equivalently to the identification system discussed in Sect. 5.2.2, a false
acceptance rate can be computed which depends on the inter-distance distribution
of the PUFs, the number of bits nauth in the considered PUF responses, and the se-
lected error-correction threshold tauth. Note that this false acceptance rate expresses
the probability that two different PUFs are, coincidentally, similar enough to im-
personate each other. The actual false acceptance rate of the overall protocol also
depends on the collision resistance of the used hash function and could be consider-
ably higher.

Replay Attacks The random nonces r1 and r2 respectively generated by the entity
and the verifier preclude replay attacks from both sides, by introducing freshness in
the protocol communications. An adversary trying to replay protocol messages in



136 5 PUF-Based Entity Identification and Authentication

order to impersonate the verifier will fail since the entity will present a different
nonce value and the adversary cannot recompute the hash evaluation over this new
nonce since he doesn’t know the PUF response. The same holds for an adversary
trying to impersonate an entity by replaying earlier recorded messages from a suc-
cessful entity authentication. Under certain conditions, the nonce generated by the
entity can even be omitted. This is the case if the expected intra-distance on the en-
tity’s PUF response is large enough such that it is highly unlikely that exactly the
same response value will ever be reproduced. In that case, the freshness of the pro-
tocol is guaranteed by the noise on the entity response, given that it is large enough.
A practical advantage of this variant is that entities do not need access to a random
bit generator any longer, which reduces the resource requirements of the protocol.

Response Unpredictability We still need to assess the unpredictability of re-
sponses, given that the adversary can observe multiple side information strings
from many successful authentication attempts of an entity. We first consider the
unpredictability of a response after observing one side information string. After ob-
serving a protocol run, an adversary can launch an offline attack on the unknown
response value y′

i based on the observed quartet (IDi , r1,wi, u1), by guessing a re-

sponse value y∗
i and checking whether Hash(IDi ,wi, y

∗
i , r1)

?= u1. Note that, by ob-
serving the side information, an adversary gains quite some information about the
response value y′

i , since every bit of wi is a linear combination of bits from y′
i ,

which helps it in the guessing attack. We express the remaining unpredictability of
the response as its conditional entropy when conditioned on the side information.
It is rather trivial to show that H(Y ′

i |Wi) ≥ H(Y ′
i ) − |Wi |. This means that to en-

sure there is any unpredictability left, the length of the side information needs to
be smaller than the response’s entropy. Now we show that the unpredictability of
the PUF response remains this high even after observing many side information
strings computed over different (possibly noisy) evaluations of the same response,
by proving the following lemma:5

Lemma 1 If ∀j : Y ′
i and Dintra

j are pairwise independently distributed, then:

H
(
Y ′

i |f
(
Y ′

i

)
, f

(
Y ′

i ⊕ Dintra
1

)
, f

(
Y ′

i ⊕ Dintra
2

)
, . . . , f

(
Y ′

i ⊕ Dintra
q

)) = H
(
Y ′

i |f
(
Y ′

i

))
,

for any positive integer q and for any linear function f .

Proof

H
(
Y ′

i |f
(
Y ′

i

)
, f

(
Y ′

i ⊕ Dintra
1

)
, f

(
Y ′

i ⊕ Dintra
2

)
, . . . , f

(
Y ′

i ⊕ Dintra
q

))
,

(f is a linear function),

= H
(
Y ′

i |f
(
Y ′

i

)
, f

(
Y ′

i

) ⊕ f
(
Dintra

1

)
, f

(
Y ′

i

) ⊕ f
(
Dintra

2

)
, . . . , f

(
Y ′

i

) ⊕ f
(
Dintra

q

))
,

5Note that this proof differs from the security proof given in [151].



5.3 PUF-Based Entity Authentication 137

= H
(
Y ′

i |f
(
Y ′

i

)
, f

(
Dintra

1

)
, f

(
Dintra

2

)
, . . . , f

(
Dintra

q

))
,

(∀j : Y ′
i and Dintra

j are independent
)
,

= H
(
Y ′

i |f
(
Y ′

i

))
. �

The assumption of independence between the distributions of response values
and intra-distances is very reasonable since they originate from different physical
processes. This lemma is directly applicable to our situation, since every helper data
string is a linear function of a response evaluation. Based on a similar reasoning,
one can also show that the remaining min-entropy remains high. This is proven in
a generalized form by Boyen [13]. The response’s unpredictability as expressed by
H(Y ′

i |Wi) measures the resistance against an offline attack; hence it needs to be
sufficiently large to offer long-term security.

5.3.3 Authentication Performance of Different Intrinsic PUFs

Proposed Entity Design

We first determine a concrete and realistic design of an entity which is used to
compare the authentication performance of different intrinsic PUFs in the proposed
protocol. The main design choice is the selection of the underlying error-correcting
linear block code of the secure sketch. We refer to Burr [18, Chap. 6] for a detailed
introduction to block codes. We propose using a concatenation of a simple repeti-
tion code followed by a BCH code as introduced by Hocquenghem [51] and Bose
and Ray-Chaudhuri [12], which yields an overall syndrome construction with a rel-
atively high error correction performance. The BCH code’s parameters are [nBCH,

kBCH, tBCH], which means that it has code words of length nBCH and dimension kBCH,
and up to tBCH bit errors in a single code word can be corrected. The corresponding
parameters of the repetition code are [nREP,1, nREP−1

2 ], with nREP odd.
An [n, k, t] binary linear block code can be fully described by its generation

matrix Gk×n or its corresponding parity-check matrix H(n−k)×n, which meet the
condition G · HT = 0. For a repetition code, a multiplication of an nREP-bit word
with the code’s parity-check matrix can be implemented straightforwardly in hard-
ware using (nREP − 1) 2-input XOR gates. Due to its special algebraic structure, the
multiplication of an nBCH-bit word with the parity-check matrix of a BCH code can
also be implemented very efficiently using an (nBCH − kBCH)-bit linear feedback
shift register (LFSR) with the feedback taps determined by the generator polyno-
mial of the BCH code. The overall side information generation of a concatenated
repetition and BCH code can hence be efficiently implemented using only minimal
resources on the entity’s side. A schematic representation of the side information
generator is shown in Fig. 5.5. Note that in the proposed design, the BCH code’s
side information and the verifier authentication hash value are only computed over



138 5 PUF-Based Entity Identification and Authentication

Fig. 5.5 Design of an entity’s side information generator, based on a concatenated repetition and
BCH block code, and the corresponding verifier authentication check

every nREP’th response bit. Since the remaining nREP − 1 bits are immediately dis-
closed by the repetition code’s side information, it makes no sense to consider them
further for authentication and they are discarded.

For the hash function implementation, we propose using a lightweight hash
function. In our prototype implementation in [151] we used the SPONGENT hash
function as proposed by Bogdanov et al. [8]. To keep the side information gen-
erator small, we constrain the repetition code to nREP ≤ 11 and the BCH code to
nBCH ≤ 255. We now investigate the implementation parameters of this proposed
design, within these constraints, when the deployed PUF is one of the intrinsic PUFs
studied in Chap. 4. In particular, we determine the required code parameters based
on the intrinsic PUFs’ statistics summarized in Table 4.10. Based on these code
parameters, the required number of PUF response bits, and ultimately the required
PUF silicon area to reach a particular authentication performance, can be calculated.

Example of Authentication Performance Calculation

We demonstrate how the authentication performance is calculated for a single PUF
in an exemplary but realistic scenario. Next, we present the results of the same
calculations for all the intrinsic PUFs studied in a number of possible scenarios.

As an example, we consider the SRAM PUF, and we aim for an authentica-
tion performance with EER ≤ 10−9 and an unpredictability of at least 128 bits,
i.e. H(Y |W) ≥ 128. Searching the design space constrained by the proposed entity
design above yields the following parameters:

• A [nREP = 3,1,1] repetition code and a [nBCH = 223, kBCH = 83, tBCH = 21]
BCH code are used. In total, 3× a BCH code length is required.



5.4 Conclusion 139

• These code parameters achieve an overall FRR = 10−9.63 and FAR = 10−104.84.
• The total number of required PUF response bits is nauth = 3 × nREP × nBCH =

2007.
• The total number of exchanged side information bits is �auth = 3 × (nREP ×

nBCH − kBCH) = 1785.
• The remaining entropy is calculated as H(Y |W) ≥ H(Y) − |W | = nauth ×

ρ(Y nauth) − �auth = 2007 × 94.09 % − 1758 = 130.4 bits.

Note that these parameters are optimized within the given constraints to yield to
smallest possible number of required PUF bits. For most intrinsic PUFs, the entropy
density ρ(Y nauth) is a constant and independent of the number of considered re-
sponse bits, as shown in Table 4.10. However, for both arbiter-based PUFs, ρ(Y nauth)

is a decreasing function of the required number of bits nauth, of which an upper
bound is given by Fig. 4.5.

Performance Comparison of Different Intrinsic PUFs

Now we apply the same calculation as in this example on all studied intrinsic PUFs
for three different authentication performances:

1. A low-cost security scenario with EER ≤ 10−6 and H(Y |W) ≥ 80.
2. A realistic security scenario with EER ≤ 10−9 and H(Y |W) ≥ 128.
3. A critical security scenario with EER ≤ 10−12 and H(Y |W) ≥ 256.

Based on the number of response bits needed, the required silicon area is also cal-
culated in the same manner (and with the same disclaimers) as in Sect. 5.2.3. The
results are presented in Table 5.4.

From Table 5.4, it is clear that for many studied intrinsic PUFs, no parameter
solutions meeting the presented design constraints can be found. This is mostly a
result of a too high average intra-distance, a too low entropy density, or a combina-
tion of both. Only the SRAM PUF and the pairwise comparison ring oscillator PUF
succeed in providing a solution for all three considered scenarios. The SRAM PUF
solution offers a better area efficiency than the ring oscillator PUF by almost two
orders of magnitude.

5.4 Conclusion

In Sect. 5.2 of this chapter, we have successfully demonstrated that a PUF response
can be used as a secure and reliable inherent identifier of a PUF-embedding en-
tity. The identification performance, in terms of false acceptance, false rejection and
equal error rate, scales only with the bit length of the PUF response. For the intrinsic
PUFs studied in Chap. 4, this ultimately comes down to a scaling with the required
silicon area needed to implement the PUF. The scaling factor is different for ev-
ery intrinsic PUF construction and is determined by the characteristics of its inter-



140 5 PUF-Based Entity Identification and Authentication

Ta
bl

e
5.

4
R

eq
ui

re
d

co
de

pa
ra

m
et

er
s,

PU
F

re
sp

on
se

bi
ts

an
d

es
tim

at
ed

si
lic

on
ar

ea
fo

r
ac

hi
ev

in
g

th
re

e
di

ff
er

en
ta

ut
he

nt
ic

at
io

n
pe

rf
or

m
an

ce
s.

‘/
’

m
ea

ns
th

at
no

pa
ra

m
et

er
so

lu
tio

n
w

ith
in

th
e

gi
ve

n
de

si
gn

co
ns

tr
ai

nt
s

ca
n

be
fo

un
d

PU
F

cl
as

s
E

E
R

≤
10

−6
an

d
H

(Y
′ |W

)
≥

80
Si

lic
on

ar
ea

(µ
m

2
)

×B
C

H
n

R
E

P
n

B
C

H
k

B
C

H
t B

C
H

lo
g 1

0
E

E
R

H
(Y

′ |W
)

n
au

th

SR
A

M
PU

F
1

3
24

8
12

4
18

−7
.0

5
80

74
4

60
4.

5

L
at

ch
PU

F
/

/
/

/
/

/
/

/
/

D
Fl

ip
-F

lo
p

PU
F

/
/

/
/

/
/

/
/

/

B
us

ke
ep

er
PU

F
/

/
/

/
/

/
/

/
/

A
rb

ite
r

PU
F

(b
as

ic
)

/
/

/
/

/
/

/
/

/

A
rb

ite
r

PU
F

(2
-X

O
R

)
1

5
23

2
10

0
19

−6
.2

80
11

60
21

79
.7

R
in

g
O

sc
ill

at
or

PU
F

(P
.C

.)
2

1
21

6
52

25
−6

.1
81

43
2

50
83

5.
9

R
in

g
O

sc
ill

at
or

PU
F

(L
.G

.)
/

/
/

/
/

/
/

/
/

E
E

R
≤

10
−9

an
d

H
(Y

′ |W
)
≥

12
8

SR
A

M
PU

F
3

3
22

3
83

21
−9

.6
3

13
0

20
07

16
30

.7

A
rb

ite
r

PU
F

(2
-X

O
R

)
/

/
/

/
/

/
/

/
/

R
in

g
O

sc
ill

at
or

PU
F

(P
.C

.)
2

3
16

7
91

10
−9

.1
9

12
8

10
02

11
79

11
.1

E
E

R
≤

10
−1

2
an

d
H

(Y
′ |W

)
≥

25
6

SR
A

M
PU

F
7

3
24

9
81

26
−1

2.
37

25
7

52
29

42
48

.7

R
in

g
O

sc
ill

at
or

PU
F

(P
.C

.)
8

1
25

4
46

42
−1

4.
35

26
0

20
32

23
91

17
.2



5.4 Conclusion 141

and intra-distance distributions. A comparative analysis, as presented in Tables 5.2
and 5.3, indicates that for a given silicon area, the SRAM PUF provides the best
identification performance in terms of equal error rate. The latch PUF on the other
hand exhibits very poor identification capabilities, which severely undermines its
usage as a PUF.

We build upon these identification capabilities of intrinsic PUFs to provide se-
cure entity authentication. In order to obtain a cryptographic level of authentication
security, we proposed a new authentication protocol between a central verifier and
a deployed entity, shown in Fig. 5.4, that utilizes a unique and unpredictable re-
sponse of a PUF instance embedded by each entity as an authentication secret. The
protocol requires some form of error-correction which we accomplish by using a
secure sketch in a ‘reversed’ mode of operation, i.e. an entity generates new side
information in each protocol run and the verifier uses this side information to mod-
ify its fixed PUF response to match the current response evaluation of the entity.
Based on the linearity of the sketching procedure, we are able to prove that even
after many protocol runs, the unpredictability of the PUF response remains high.
The authentication performance metrics of this protocol are derived in a similar
way as for the PUF-based identification, and applied on the experimental intrinsic
PUF results. From this analysis, summarized in Table 5.4, it is clear that most of the
intrinsic PUFs studied in Chap. 4 are not able to achieve a high-level authentica-
tion performance within a resource-constrained environment. The SRAM PUF and
the pairwise-comparison ring oscillator PUF, and to a lesser extent also the 2-XOR
arbiter PUF, are the only constructions which are sufficiently unpredictable and re-
producible to be practically usable in the protocol, with the SRAM PUF exhibiting
the best silicon area efficiency.


	Chapter 5: PUF-Based Entity Identiﬁcation and Authentication
	5.1 Introduction
	5.1.1 Motivation
	Entity Authentication
	Identiﬁcation

	5.1.2 Chapter Goals
	5.1.3 Chapter Overview

	5.2 PUF-Based Identiﬁcation
	5.2.1 Background: Assigned Versus Inherent Identities
	Identity Provisioning Versus Enrollment
	Practical Advantages of Inherent Identities

	5.2.2 Fuzzy Identiﬁcation
	Fuzzy Nature of Inherent Identiﬁers
	Fuzzy Identiﬁcation with a Threshold
	False Acceptance, False Rejection, and Equal Error Rates

	5.2.3 Identiﬁcation Performance for Different Intrinsic PUFs
	Comparison of ROC Curves for 64-bit Identiﬁcation with Different PUFs
	Comparison of PUF Parameters and Areas for Practical Identiﬁcation Requirements


	5.3 PUF-Based Entity Authentication
	5.3.1 Background: PUF Challenge-Response Authentication
	Basic PUF-Based Challenge-Response Authentication
	Drawbacks of the Basic Protocol
	Motivation

	5.3.2 A PUF-Based Mutual Authentication Scheme
	Rationale
	"Reversed" Secure Sketching Based on Linear Block Code Syndromes
	The Mutual Authentication Protocol
	Correctness
	Security

	5.3.3 Authentication Performance of Different Intrinsic PUFs
	Proposed Entity Design
	Example of Authentication Performance Calculation
	Performance Comparison of Different Intrinsic PUFs


	5.4 Conclusion


