
Chapter 4
Implementation and Experimental Analysis
of Intrinsic PUFs

4.1 Introduction

4.1.1 Motivation

All currently known intrinsic PUF implementations are silicon-based and obtain
their PUF behavior from process variations during the manufacturing of silicon
chips. These PUFs are of particular interest, because their response values can be
used as a secret element in a larger security implementation on the same silicon chip.
Deploying an intrinsic PUF in a security application in this way provides interesting
practical and security advantages. We will discuss applications of intrinsic PUFs
and their added value in great detail, respectively for PUF-based authentication in
Chap. 5 and PUF-based key generation in Chap. 6.

The realization that a silicon intrinsic PUF can serve as an integral hardware
security primitive with valuable properties such as uniqueness and unpredictabil-
ity, and in particular physical unclonability, which cannot be obtained solely from
algorithmic constructions, has led to a great interest into its constructions. Many
intrinsic PUF implementations were proposed over time and are discussed in de-
tail in Sect. 2.4. When one actually wants to deploy an intrinsic PUF in a hardware
security system, interest goes out to the levels of efficiency and performance of
all these different constructions, both from a PUF perspective (which construction
shows the best PUF behavior) as well as from a typical hardware design perspective
(which construction offers the lowest area, highest speed, lowest power use, etc.).
Section 2.4.8 provides an overview of known experimental results concerning PUF
behavior, but it is also made clear that a comparison of different proposals solely
based on these results is not entirely objective, for a number of reasons:

1. For all known intrinsic PUF constructions, as for nearly all hardware security
primitives, there exists a trade-off between area/speed and security, i.e. larger
and/or slower implementations typically offer higher levels of security. In the
overview in Sect. 2.4.8, which lists experimental PUF results available in liter-
ature, some of the considered implementations are heavily biased towards opti-
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mizing their PUF behavior by greatly sacrificing on implementation area and/or
speed, while others are not.

2. Experimental PUF results always focus on two properties, reliability and unique-
ness, which are mostly summarized by calculating the average response intra-
distance (μintra

P ) and inter-distance (μinter
P ) of the experiment. Good PUF behavior

is expressed by a small μintra
P and a large μinter

P . However, it is not immediately
clear how to combine both measures into a single quality parameter for a partic-
ular PUF construction.

3. The results presented in Sect. 2.4.8 come from implementations using a variety
of different technologies and platforms. It is typically hard to accurately scale
implementation results such as area and speed from one technology to another,
e.g. between different CMOS technology nodes, and scaling between different
platforms, e.g. from FPGA to ASIC, can only be done very roughly. Extrapola-
tion of PUF behavior results to different technologies and platforms is virtually
impossible.

The first two issues cannot be dealt with for bare PUFs, but need to be considered
in the application context of the bigger system deploying the PUF. The optimal
trade-off between security and efficiency, as well as the relation between reliability
and uniqueness, are determined by the requirements and constraints of the security
system as a whole. Optimizing the PUF implementation is an entangled part of a
bigger design optimization process which will be discussed in detail for PUF-based
authentication systems in Chap. 5 and for PUF-based cryptographic key generation
in Chap. 6.

The last issue can be approached by implementing different intrinsic PUF pro-
posals on the same platform and using the same technology. This will be the main
topic of this chapter. A selection is made of intrinsic PUF proposals which were
proven to show acceptable PUF behavior, and a number of instantiations of each
of them is integrated in an ASIC design. This ASIC design is processed and a sig-
nificant set of silicon chips implementing it is manufactured. Based on this set of
devices, valuable experimental PUF data is gathered which can be cross-compared
without restraint, since it results from PUF constructions implemented on the same
silicon die.

Background Designing and manufacturing an ASIC is a complex, time-consum-
ing, and costly undertaking with significant risk of failure. The findings presented
in this chapter are the joint successful result of a European research project called
‘UNIQUE’ in which the author’s institution was a partner [149]. We definitely want
to acknowledge the other project partners which contributed heavily to the design,
production and evaluation of the test chip discussed in this chapter.

4.1.2 Chapter Goals

The main goal of this chapter is to produce a practical and an objective analysis and
comparison of different intrinsic PUF constructions, by implementing them on the
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same platform, evaluating them under the same conditions, and assessing them on
the same characteristics. In this chapter we plan to:

• Discuss the design process and implementation details of a custom test chip car-
rying instantiations of six different intrinsic PUFs.

• Present an in-depth analysis of the uniqueness and reproducibility of the evalu-
ation results of the test chip implementations, including the influence of varying
evaluation conditions. This analysis should result in a practically usable charac-
terization of these properties for every PUF instance, which can be immediately
plugged into the design and optimization process of an application seeking to
deploy one of these PUF implementations.

• Discuss the notion of PUF response entropy and introduce a number of practi-
cal entropy bounds which can be computed based on experimentally obtained
response evaluations, including a method to calculate a PUF response entropy
bound based on the results of a modeling attack.

4.1.3 Chapter Overview

Section 4.2 discusses the realization of the intrinsic PUF test chip, from its initial
design rationale and requirements, through its architecture and the description of its
building blocks, to its manufacturing flow details. In Sect. 4.3, we describe how the
test chip samples were evaluated and we present a complete analysis of uniqueness
and reproducibility based on a large data set of evaluation results. The entropy of
a PUF response is described in Sect. 4.4 as a measure of its unpredictability. We
introduce a number of increasingly tighter bounds on the response entropy of a
PUF, based on considering increasingly more advanced adversary models. Finally,
the main results of this chapter are summarized in Sect. 4.5.

4.2 Test Chip Design

4.2.1 Design Rationale

The rationale behind the design of the test chip is guided by two main considera-
tions:

(i) In the end, the goal of the test chip is to collect statistically significant ex-
perimental data from intrinsic PUF implementations. Ideally, we would like
to implement as many and as large instances as possible from as many different
intrinsic PUF proposals as possible and evaluate them in a quick, easy and real-
istic manner, taking into account that the available area budget should be more
or less evenly distributed among the different PUFs.
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(ii) Designing and producing an ASIC is a very complex process with a minimal
margin for error. The probability of critical failures increases steadily with the
size and complexity of the design. Since the coordinating project provides only
a single opportunity for ASIC production, it needs to be first-time-right and any
risk of failure should be minimized.

These two considerations lead to the following design choices:

• To minimize risk, the overall architecture is kept minimalistic, with the major
portion of the silicon area budget devoted to implementations of PUF instances.

• We mainly choose to implement PUF constructions which (at the time) were
proven to show PUF behavior in earlier experiments.

• The additional components are kept to the bare minimum required to realistically
evaluate the PUFs. This leaves the most area to the actual PUF implementations.
All measurement post-processing is done off-line.

• The measurement communication interface, being a single-point-of-failure in the
whole design, is kept as simple as possible to minimize all risk. This comes at a
significant sacrifice in measurement speed.

• Whenever possible, standard design flows are used. Except for the low-level im-
plementation of some of the PUFs, the whole design is described at the RTL level
and synthesized using reliable third-party standard cell libraries for the consid-
ered technology.

4.2.2 Design Requirements

PUF Selection

Six intrinsic PUF structures are selected for integration on the test chip:

1. The ring oscillator PUF as proposed by Suh and Devadas [136].
2. The latch PUF as proposed by Su et al. [135].
3. The SRAM PUF as proposed by Guajardo et al. [45].
4. The D Flip-Flop PUF as proposed by Maes et al. [84].
5. The arbiter PUF as proposed by Lee et al. [75].
6. The buskeeper PUF as proposed by Simons et al. [132].

The first five PUF constructions are selected because they were proven to show
PUF behavior in earlier implementations. The buskeeper PUF is a newly proposed
PUF construction by Simons et al. [132]. For the ring oscillator and the arbiter PUF
structures, we analyse two different evaluation methods (cf. Sect. 4.3.1) resulting in
a total of eight different PUF constructions on the chip.

Evaluation Control

Additional control over the evaluation conditions of the selected PUF implementa-
tions is desirable:
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• In order to study the effects of the power-up conditions on the PUF constructions
which depend on power-up behavior, a number of PUF instances are grouped
under a separate power supply on the chip. This allows us to test instances on the
same chip under different supply voltage conditions.

• In a realistic application, a PUF is integrated on the same silicon die implementing
the complete hardware system, including a large amount of rapidly switching
logic. This might have an effect on the PUF’s behavior, e.g. because it introduces
switching noise on the supply voltage. To mimic this behavior, we implement an
active core on the test chip whose sole purpose is to generate switching activity
while the PUFs are evaluated.

Interfacing

To transfer the measurement data off-chip we require a communication interface
which offers reasonable transfer rates at minimal design complexity and low pin-
count. We prefer a standardized interface for easy integration with other compo-
nents. A Serial Peripheral Interface (SPI) [98] was selected.

Internally, the different building blocks on the chip need to be accessible in a
straightforward manner. However, since all blocks operate in slave-mode, we don’t
require advanced communication control and we don’t want to dedicate silicon area
to complex bus interfaces. We opted for a memory-mapped organization, with a sin-
gle address decoder controlling which building block is being read from or written
to. Since most selected PUF blocks are inherently memory elements, they are triv-
ially integrated in this organization. For the other building blocks, input and output
ports are being accessed through addressable registers.

4.2.3 Top-Level Architecture

Figure 4.1 indicates the top-level architecture of the test chip design. All data com-
munication is done through the SPI/memory-mapped interface, except for the basic
clock and power domain controls which has dedicated control and status pins. The
SPI encoder and decoder is a standard design supporting the SPI protocol. The ac-
tive core is basically an implementation of a large number of unrolled rounds of a
random substitution/permutation layer, with the only intention of generating a lot of
switching activity. The memory mapper consists of a large multiplexer and demul-
tiplexer which direct data to and from the addressed building block. Internally, data
interfaces are 32-bit signals and the address is a 19-bit signal.

Figure 4.2 details the memory map of the different building blocks onto the ad-
dress space. The three most significant address bits are used to select a particular
building block. The next four address bits select a particular instance within the
building block, e.g. a particular instance of a PUF type. The remaining 12 address
bits are used for addressing within a single instance.
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Fig. 4.1 Top-level block diagram of the test chip

Fig. 4.2 Address structure of the internal memory map of the test chip

4.2.4 PUF Block: Arbiter PUF

We design the arbiter PUF according to the original construction from Lee et al. [75],
as shown in Fig. 2.1. The switch blocks are constructed using two 2-to-1 multiplex-
ers. The arbiter is an SR latch consisting of two cross-coupled NAND-gates. Each
arbiter PUF has a delay chain consisting of 64 concatenated switch blocks, which
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is long enough to accumulate sufficient delay randomness in order to exhibit an
observable difference between the two lines and with high probability avoid the ar-
biter going into the metastable state. This also means the arbiter PUF takes 64-bit
challenges. Using more switch blocks gives even longer challenges, but does not
substantially increase the arbiter PUF’s unpredictability and does result in larger
area use and slower evaluation. To minimize bias in the delay lines and in the arbiter
circuit, the whole arbiter PUF is a full custom design, i.e. all design steps including
the geometrical sizing, placement and routing of the transistors and interconnecting
metal lines are done by hand. Special attention is paid to the symmetry of the arbiter
circuit and to balancing the parasitic capacitances of the delay lines as closely as
possible. The test chip contains 256 instantiations of this arbiter PUF design, which
are grouped into eight instances of 32 arbiter PUFs each. This grouping is only
for evaluation performance reasons (32 arbiter PUF response bits can be read out
simultaneously over the 32-bit data bus), since all instantiations are identical.

4.2.5 PUF Block: Ring Oscillator PUF

The design of the ring oscillator PUF is based on the construction from Suh and De-
vadas [136] which is depicted in Fig. 2.3. A ring oscillator consists of 80 chained in-
verters and one NAND gate to control the oscillation. The number of looped invert-
ers roughly determines the nominal frequency of the ring oscillator, and in the order
of 60∼80 inverters are required to obtain frequencies in the range of 500∼700 MHz,
which are countable with regular digital counters in the targeted technology. Of this
ring oscillator, 4096 identical copies are implemented on the test chip, arranged
in 16 batches of 256 oscillators each. Every batch has a single frequency counter
and a 256-to-1 multiplexer connects one of the batch’s oscillators to the counter.
To cope with the high frequency oscillations, the counter is implemented as a 32-
bit toggle counter which has a very short critical path. Since there are 16 batches,
each with its own counter, 16 oscillation frequencies can be measured in parallel.
The measurement time during which oscillations are counted is determined as a
particular number of oscillations of an independent, slightly faster, oscillator (64 in-
verters + NAND) which feeds a timer. The exact number of oscillations of this
timing loop can be set by the user. The actual response bit generation is not imple-
mented on the test chip, but the counter values are measured directly. The response
bit generation based on the measured frequencies is performed off-line, using an
algorithm of one’s choice. The response evaluation methods we use are detailed in
Sect. 4.3.1.

4.2.6 PUF Block: SRAM PUF

The SRAM PUF, as proposed by Guajardo et al. [45], basically consists of standard
SRAM cells of which the power-up value is measured. We implement an SRAM
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PUF using a third-party (TSMC) SRAM IP block implementing an addressable ar-
ray of 2048×32 SRAM cells, each cell consisting of six MOSFETs. Each of these
blocks can generate 65536 response bits (64 kbit). Four of these SRAM PUF in-
stances are placed on the test chip.

4.2.7 PUF Blocks: D Flip-Flop PUF, Latch PUF
and Buskeeper PUF

The design of these three PUFs basically consists of instantiations of the basic el-
ements: D flip-flops, latches and buskeeper cells. For our test chip, the operation
of all three of these PUFs is based on the power-up behavior of their basic cells.
The design of each of these cells comes from a third-party (TSMC) standard cell
library. The only other difference between these PUFs is the number of cells which
are instantiated and the way the cells are organized in arrays.

D Flip-Flop PUF Block

One D flip-flop PUF is designed containing 8192 D flip-flop standard cells. Four of
these PUFs are instantiated on the test chip. In the first two instances, the D flip-flops
are organized in a long scan chain, allowing them to be read out sequentially. In the
last two instances, the flip-flops are organized in a large multiplexer tree, allowing
them to be addressed individually. The flip-flops in the multiplexer tree have their
data inputs connected to the write input of the memory map, which is grounded
when the D flip-flop PUF is not addressed.

Latch PUF

We design a latch PUF which consists of 8192 standard cell latches, and four of
these latch PUFs instances are implemented on the test chip. Again, the first two
instances have a scan chain-based organization while the latter are organized in a
multiplexer tree. For latches, the scan chain design is slightly more advanced. Be-
cause latches are level-triggered, as opposed to flip-flops which are edge-triggered,
they cannot be all clocked at the same time to shift their values in a chain. The
latches in the multiplexer tree have their data inputs grounded.

Buskeeper PUF

The buskeeper PUF design contains 8192 buskeeper cells, and two of the buskeeper
PUFs are instantiated on the test chip. Both are organized in an addressable mul-
tiplexer tree, since buskeeper cells cannot be chained (they have only a single-bit
bidirectional port).
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Practical Comparison

D flip-flop, latch and buskeeper PUFs are very similar in design, the main difference
being the implementation of their basic cells. The following practical considerations
can be made:

• Buskeeper cells, consisting of two inverters, are the smallest of the three, which
makes the buskeeper PUF the most area-efficient in terms of response bits per
silicon area. However, since they cannot be chained, they do require a (rather
large) multiplexer tree to read them out.

• Latches, which consist of two cross-coupled NAND or NOR gates, are larger than
buskeeper cells, but smaller than D flip-flops. They can be chained, but this is not
trivial.

• D flip-flops are typically constructed from two latches and are therefore the
largest of all three basic cells, but they can be easily chained. Moreover, D flip-
flops are also a very common cell in regular digital designs, which could make
them reusable for other purposes after they have generated their PUF response bit
at power-up.

In comparison to SRAM PUFs, these three PUF types are less efficient since SRAM
arrays are heavily area-optimized. However, their cell-based design allows us more
flexibility since they can be instantiated one cell at a time, while SRAM only comes
in bulky arrays. This also allows us to spread, e.g. a D flip-flop PUF, randomly over
the whole area of a silicon die, which adds a layer of physical obscurity against
optical scrutiny attacks. SRAM arrays on the other hand are easily spotted due to
their large and very regular matrix structure.

Besides these practical observations, the PUF behavior of each of these memory-
based PUFs should of course also be taken into account. This is the goal of the test
chip as discussed in this chapter.

4.2.8 Power Domains

The test chip design contains two separate core power domains. The primary goal of
the separated power domain is to ease reading out the memory-based PUFs which
require a power cycle. This way, the main part of the test chip core containing the
communication interface can stay active while some of the memory-based PUFs in
the separate power domain are power-cycled to generate a new response. Besides
this goal, the separate power domain is also convenient when performing reliability
tests under varying supply voltages.

The separate power domain contains one SRAM PUF instance (out of four), one
D flip-flop PUF instance (out of four), one latch PUF instance (out of four), and one
buskeeper PUF instance (out of two). The separate power domain has independent
supply voltage and ground pins. Moreover, all signal lines connecting the two power
domains can be blocked, effectively electrically isolating the PUF instances in the
separate power domain.
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Fig. 4.3 Floor plan of the structures on the test chip

4.2.9 Implementation Details

Floor Plan

The schematic floor planning for the different PUF instances and other building
blocks on the test chip’s silicon die area is shown in Fig. 4.3. The separate power do-
main is also depicted, and as shown it contains one instance from all four memory-
based PUFs. The active core is placed in the free space in between the different
instances, in order to increase the impact of its toggling activity on the PUF evalua-
tions.

Development Flow

Except for the arbiter and ring oscillator PUF blocks, the whole test chip design
is described at the RTL level using a hardware description language (VHDL) and
synthesized using a standard cell library. The back-end design is done by an external
party (Invomec). The arbiter PUF is designed as a full-custom layout to have the
most control over delay line and arbiter circuit balancing. The ring oscillator PUF is
designed as an array of identically laid out hard-macro copies of an inverter chain.
This is to make sure that all oscillators have the same nominal frequency, and any
frequency difference is only caused by silicon process variations.

Implementation Technology

The final design of the test chip is implemented in 65 nm low-power CMOS tech-
nology (TSMC 65 nm CMOS Low Power MS/RF and TCBN65LP (nominal Vt)
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Table 4.1 Silicon area breakdown of the different test chip building blocks

Building block Silicon area
(mm2)

Relative area
(·/total logic)

Building block content

Ring Oscillator PUF 0.241 10.7 % 4096 ring oscillators + 16 ×
32-bit counters + control

Latch PUF 0.272 9.5 % 4 × 8192 latches + 2 ×
multiplexer tree

SRAM PUF 0.213 12.1 % 4 × 64 kbit SRAM array

D Flip-Flop PUF 0.392 17.4 % 4 × 8192 D flip-flops + 2 ×
multiplexer tree

Arbiter PUF 0.279 12.4 % 256×64-bit arbiter PUF+control

Buskeeper PUF 0.076 3.4 % 2 × 8192 buskeeper cells + 2 ×
multiplexer tree

Active Core 0.353 15.7 % 32 × 128-bit substitution-
permutation rounds

Additional Blocks 0.425 18.9 % SPI interface, memory mapping,
power control, . . .

Total Logic Area 2.251 100.0 % all of the above

Overhead 1.405 62.4 % I/O pads, power/ground rings,
empty space, . . .

Complete Test Chip 3.656 162.4 % 1912 µm × 1912 µm silicon die

standard cell library). Both power domains of the core logic are nominally powered
by Vdd = 1.2 V, and the I/O voltage is Vio = 2.5 V. The resulting silicon die is
packaged in an LQFP64 package. In total, 192 packaged chips are produced.

Area Breakdown

Table 4.1 shows an estimate of the silicon die area breakdown of the different build-
ing blocks on the test chip. The estimates in this table are used in Chaps. 5 and 6
to estimate the required PUF size for a PUF-based application with given require-
ments. This provides an as objective as possible comparison between the different
PUF constructions.

4.3 Experimental Uniqueness and Reproducibility Results

4.3.1 Evaluation of Delay-Based PUFs

Before we present the statistics of the experimental data, we first need to describe the
manner in which we evaluate bit responses for the delay-based PUF constructions,
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i.e. the arbiter and the ring oscillator PUFs. The evaluation of the memory-based
PUFs follows trivially from their design.

Arbiter PUF Evaluation Modes

The basic arbiter PUF already produces single bit responses. We also consider
2-XOR arbiter PUFs as proposed by Majzoobi et al. [94] by pairing up arbiter PUFs
and perform an XOR-operation on their outputs to produce a single bit response.
The XOR-operation is not implemented on the test chip but is performed off-line on
the evaluated response bits of the basic arbiter PUFs.

Ring Oscillator PUF Evaluation Modes

As mentioned in Sect. 4.2.5, the ring oscillator PUF design outputs the frequency
counter values directly. While these values already show some PUF behavior, it is
difficult to use them as such in an application. For ease of integration, the frequency
counter values need to be encoded in a meaningful binary response format. This will
also make the comparison with the other PUF types more relevant. Ring oscillator
PUF response bits are typically generated based on the relative comparisons be-
tween measured frequencies, as these comparisons are much more resilient to noise
and varying evaluation conditions than the absolute frequency values. We present
two encoding methods based on relative orderings of the frequency counter values.

The first method is a basic pairwise comparison (P.C.) between counted frequen-
cies from different but simultaneously measured oscillators, as was proposed by
Suh and Devadas [136] (but without the 1-out-of-k masking technique). A single
response bit is generated based on the outcome of each comparison. To ensure in-
dependent responses, every oscillator is only used for the generation of a single
bit. The arrangement of our ring oscillator PUF design in 16 batches, with 256
oscillators and one frequency counter per batch, allows us to measure 16 frequen-
cies simultaneously and hence produce eight response bits in one evaluation. Us-
ing this evaluation method, the complete ring oscillator PUF design can generate
256 × 8 = 2048 response bits.

In [87], we developed a new response bit generation method for ring oscillator
PUFs based on the ordering of the measured frequencies. Suh and Devadas [136]
and Yin and Qu [157] observed that the amount of information in the ordering of n

independent and identically distributed frequencies is as high as log2 n!. If one can
find an efficient and noise-resilient encoding of such an ordering, this will lead to
a significant increase in the number of independent response bits, since log2 n! =∑n

i=2 log2 i ≈ n · log2
n
e

is superlinear in n, as opposed to the pairwise comparison
method, which can only produce a number of response bits that is linear in n, i.e. n

2 .
In [87], we propose using a Lehmer encoding [76, 125] to represent the ascending

order of a vector of simultaneously measured frequencies, followed by a Gray en-
coding [44] of the Lehmer coefficients. A Lehmer code is a unique numerical repre-
sentation of an ordering (permutation) which is moreover efficient to obtain since it
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does not require explicit value sorting. If f n = (f1, . . . , fn) is a vector containing n

frequency measurements, then the Lehmer code of the ascending order of these val-
ues is a coefficient vector rn−1 = (r1, . . . , rn−1) with ri ∈ {0,1, . . . , i}. It is clear that
rn−1 can take 2 × 3 × · · · × n = n! possible values, which is exactly the number of
possible orderings of f n; hence each ordering has a unique Lehmer code represen-
tation. The Lehmer coefficients are calculated from f n as rj = ∑j

i=1 gt(fj+1, fi),
with gt(x, y) = 1 if x > y and 0 otherwise. The Lehmer encoding has the nice
property that a minimal change in the sorted ordering, caused by two neighbor-
ing values swapping places after sorting, only changes a single Lehmer coefficient
by ±1. Using a binary Gray encoding for the Lehmer coefficients, this translates to
only a single bit difference, which makes the overall response bit generation particu-
larly noise-resilient. The length of the binary representation becomes

∑n
i=2�log2 i�,

which is a nearly optimal representation of the actual amount of information in the
ordering, i.e.

∑n
i=2 log2 i.

For our ring oscillator PUF design on the test chip, we apply this Lehmer-Gray
(L.G.) encoding off-line on each vector of n = 16 simultaneously measured fre-
quencies, yielding 49 response bits. In total, the ring oscillator PUF can generate
256 × 49 = 12544 response bits using this method, which is over six times more
than when using the pairwise comparison method.

4.3.2 PUF Experiment: Goals, Strategy and Setup

Experiment Goals

The goal of the experiments on the test chip is to characterize the meaningful prop-
erties of the eight studied PUF constructions as realistically and as accurately as
possible. As explained in Sect. 4.1.1, it is not possible to make a comprehensive
ranking of the different PUFs solely based on their bare characteristics. In order to
make such an objective comparison, the envisioned application needs to be taken
into account as well. We will do this respectively in Chaps. 5 and 6 for PUF-based
authentication and PUF-based key generation. However, a common interface is de-
sirable, i.e. a uniform set of characterization parameters for the meaningful prop-
erties of every PUF construction, which can be used in an unambiguous manner to
determine their usability in a particular application. Here, we will provide such char-
acterization parameters for the uniqueness and reproducibility of all studied PUF
constructions, respectively in Sects. 4.3.3 and 4.3.4. The unpredictability of the dif-
ferent PUF constructions is discussed based on the response entropy in Sect. 4.4.

Experiment Strategy and Setup

To realistically determine the behavior of the different PUFs, in particular regarding
their reproducibility, they need to be tested under varying conditions. In particu-
lar, we consider variations in test chip’s supply voltage, Vdd = 1.02 V . . .1.32 V,
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and environment temperature, Tenv = −45 °C . . .85 °C, during evaluation. These
conditions are created by powering the test chip with a variable power supply and
placing it in a climate chamber with temperature control. To comprehensibly as-
sess the PUF’s behavior over these intervals, we test it at the four extreme corner
conditions:

• The low-low corner (LL) or αLL = (Tenv = −45 °C,Vdd = 1.02 V).
• The low-high corner (LH) or αLH = (Tenv = −45 °C,Vdd = 1.32 V).
• The high-low corner (HL) or αHL = (Tenv = 85 °C,Vdd = 1.02 V).
• The high-high corner (HH) or αHH = (Tenv = 85 °C,Vdd = 1.32 V).

In addition, the test chip is also evaluated at the nominal reference condition: αref =
(Tenv = 25 °C,Vdd = 1.20 V).

At all considered conditions, all PUF constructions on all Npuf = 192 test chips
are evaluated for all their possible challenges, except for the arbiter PUFs, which
are only evaluated on a set of 256 randomly generated challenges. In fact, for
the memory-based PUFs, the notion of ‘number of challenges’ is rather arbitrary
since it depends on how many bits one considers to be in a response, which we
denote by �resp. In that respect, it is much more natural to detail the total num-
ber of generated response bits instead, denoted as Nbits ≡ Nchal × �resp. Since all
considered evaluation methods for the delay-based PUFs also generate bitwise re-
sponses, we also describe them in this manner. For the arbiter PUFs, we consider
all bits generated by all arbiter PUFs at the same time; hence for the basic ar-
biter PUF experiment, Nbits = 256 × 256 = 65536, and for the 2-XOR arbiter PUF,
Nbits = 256 × 128 = 32768. All response bits are evaluated Nmeas = 20 times under
each condition for all PUFs on all chips.

4.3.3 Experimental PUF Uniqueness Results

Uniqueness Quantifiers

As expressed in Definition 8, the uniqueness of a PUF class is determined by the
distribution of its inter-distance, in particular at nominal conditions. To study this
distribution, we calculate the inter-distances Dinter

Exp(P)
on the measured responses for

all PUF constructions and report the most important statistics on the observed inter-
distances in Table 4.2. Since all responses are bitwise, all inter-distances are mea-
sured using Hamming distances. However, to make it easier to compare the different
PUF constructions, we report them as fractional Hamming distances, i.e. the Ham-
ming distances are expressed as a ratio of the total number of evaluated response
bits Nbits.

The basic inter-distance statistics we report in Table 4.2 are:

• The sample mean μinter
P and the sample standard deviation σ inter

P , respectively
expressing the location and dispersion of the inter-distance distribution.
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• The first percentile P [1 %]inter
P of the samples and the sample minimum mininter

P .
These two order statistics give a good idea of the left tail of the distribution, which
is of interest when quantifying identifiability later.

In addition to these standard statistics, we introduce a custom statistic which will be
of use later on: the inter-distance binomial probability estimator p̂inter

P . For many ap-
plications, we need to make assumptions about the distribution of the inter-distance
of a PUF construction. In particular, we often need to extrapolate the observed em-
pirical distribution to very small or large probabilities for which we have no reliable
measurements. For efficiency reasons it is important that this be done as accurately
as possible. However, any overestimation of the uniqueness could be disastrous for
the security requirements of an application and should be avoided at all cost. For
extrapolations beyond the observed inter-distance values, we make the assumption
that the inter-distance is binomially distributed with parameter p̂inter

P . This param-
eter is chosen to be as large as possible, but sufficiently small such that all three
following constraints are met, with Fbino(x;n,p) the cumulative binomial distribu-
tion function with parameters n and p, evaluated in x:

1. Fbino(μ
inter
P · Nbits;Nbits, p̂

inter
P ) ≥ 50 %, i.e. the estimated binomial distribution

should produce values smaller than or equal to the observed sample mean with a
probability of at least 50 %.

2. Fbino(P [1 %]inter
P · Nbits;Nbits, p̂

inter
P ) ≥ 1 %, i.e. the estimated binomial distribu-

tion should produce values smaller than or equal to the observed first percentile
with a probability of at least 1 %. If this is not the case, values smaller than
or equal to the first percentile of the samples are unlikely to occur as often as
they do in the experiment, which means the estimated binomial distribution is an
overestimation.

3. Fbino(mininter
P ·Nbits;Nbits, p̂

inter
P ) ≥ 10−6, i.e. the estimated binomial distribution

should produce values smaller than or equal to the observed sample minimum
with a probability of at least 10−6 (the total number of observed samples is in
the order of one million). If this is not the case, the observed sample minimum is
unlikely to occur in the experiment according to the estimated binomial distribu-
tion, which is hence an overestimation.

The largest value for p̂inter
P meeting all these three constraints is computed for all

the PUF constructions and reported in Table 4.2. When the inter-distance is ap-
proximately binomially distributed, the value for p̂inter

P should closely match that
for μinter

P . When this is not the case, the three constraints make sure that the bino-
mial estimation based on p̂inter

P at least accurately models the left tail of the actual
inter-distance distribution, to avoid overestimation for extrapolations to small prob-
abilities.

Discussion on Uniqueness Results

When presented as fractional Hamming distance, the optimal inter-distance is 50 %,
which indicates two response bit vectors are maximally uncorrelated. A reported
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inter-distance sample mean (and binomial probability estimator) close to 50 %
hence indicates high uniqueness. In this respect, the SRAM PUF and the buskeeper
PUF perform particularly well, whereas the D flip-flip PUF and the latch PUF show
slightly reduced uniqueness. In particular latch PUF instance number 3, with an
average inter-distance of merely 16 %, shows strikingly little uniqueness, even in
comparison to the other latch PUF instances. This is a sign of a possible imple-
mentation error in this latch instance. The basic arbiter PUF shows high uniqueness,
which is an indication that the full-custom design approach succeeded in minimizing
the arbiter PUF bias. For the 2-XOR arbiter PUF the uniqueness is evidently even
higher. Both ring oscillator PUF evaluation methods also offer high uniqueness. The
pairwise comparison approach has slightly better uniqueness than the Lehmer-Gray
encoding, but the latter method of course produces significantly more response bits
from the same amount of oscillators. For all the PUFs, the comparison between the
inter-distance sample mean and binomial probability estimator is also an indication
of how closely their inter-distance distribution resembles a binomial distribution.

4.3.4 Experimental PUF Reproducibility Results

Reproducibility Quantifiers

The reproducibility of a PUF class is determined by the distribution of its intra-
distance (cf. Definition 7), in particular at the most extreme reference corner condi-
tions. To study these distributions, we calculate the intra-distances Dintra

Exp(P)
on the

measured responses for all PUF constructions at the reference condition αref, and at
all four corner conditions, αLL, αLH, αHL, αHH, and report the most important statis-
tics on the observed intra-distances. Tables 4.3, 4.4, 4.5, 4.6 and 4.7 respectively
report the intra-distance statistics for the experiments under conditions αref, αLL,
αLH, αHL and αHH.

The basic intra-distance statistics we report in these tables are:

• The sample mean μintra
P and the sample standard deviation μintra

P , respectively
expressing the location and dispersion of the intra-distance distributions.

• The 99th percentile P [99 %]intra
P of the samples and the sample maximum

maxintra
P . These two order statistics give a good idea of the right tail of the dis-

tribution, which is of interest when quantifying identifiability later.

In addition to these standard statistics, we again introduce a custom statistic for re-
alistically approximating the observed distribution by a binomial distribution: the
intra-distance binomial probability estimator p̂intra

P . This time, this estimator is con-
strained to at least accurately model the right tail of the distribution to avoid un-
derestimation of the intra-distance distribution at high values. The reported values
for p̂intra

P are computed to be as small as possible, but sufficiently large such that all
three following constraints are met.
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1. Fbino(μ
intra
P · Nbits;Nbits, p̂

intra
P ) ≤ 50 %, i.e. the estimated binomial distribution

should produce values larger than or equal to the observed sample mean with a
probability of at least 50 %.

2. Fbino(P [99 %]intra
P · Nbits;Nbits, p̂

intra
P ) ≤ 99 %, i.e. the estimated binomial distri-

bution should produce values larger than or equal to the observed 99th percentile
with a probability of at least 1 %. If this is not the case, values larger than or
equal to the 99th percentile of the samples are unlikely to occur as often as they
do in the experiment, which means the estimated binomial distribution is an un-
derestimation.

3. Fbino(maxintra
P ·Nbits;Nbits, p̂

intra
P ) ≤ 1−10−6, i.e. the estimated binomial distribu-

tion should produce values larger than or equal to the observed sample maximum
with a probability of at least 10−6 (the number of samples in the experiment is
in the order of one million). If this is not the case, the observed sample maxi-
mum is unlikely to occur in the experiment according to the estimated binomial
distribution, which is hence an underestimation.

When the intra-distance is approximately binomially distributed, the value for p̂intra
P

should closely match that for μintra
P . When this is not the case, the three constraints

make sure that the binomial estimation based on p̂intra
P at least accurately models

the right tail of the actual intra-distance distribution, to avoid underestimation for
extrapolations to larger probabilities.

Discussion on Reproducibility Results

The intra-distance statistics reported in Tables 4.3 to 4.7 clearly show that the eval-
uation conditions impact the reproducibility of a PUF. For integration in a realistic
application, we are particularly interested in the worst-case reproducibility behavior
over all considered conditions. In Table 4.8, we summarize the worst-case results
from Tables 4.3 to 4.7, i.e. the statistics from these tables which show the largest
intra-distances. Note that different worst-case results can come from different con-
ditions.

Studying the worst-case intra-distance statistics in Table 4.8, we see that of all the
memory-based PUF constructions the SRAM PUF is particularly reproducible, with
even worst-case maximal intra-distances smaller than 10 %. The buskeeper, D flip-
flop and latch PUFs have a considerably worse reproducibility. We also remark two
outlying behaviors:

1. Latch PUF instances numbers 2 and 3 show lower intra-distances than the other
two, which is a side effect of them already having low uniqueness. This is most
likely a result of an implementation fault in these instances, which we also al-
ready spotted based on the outlying uniqueness results. Note that latch instances
numbers 2 and 3 deploy the rather complex scan chain-based read-out technique,
as opposed to the other two which use a multiplexer tree, which is likely the
cause of this problem.
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2. D flip-flop PUF instance number one shows considerably larger intra-distances
than the other three instances. The cause for this is unknown, but is likely also
due to an implementation fault.

To prevent these outlying results from affecting this objective comparison between
different PUF constructions, we will ignore them in all following analysises.

The delay-based PUFs also show relatively good reproducibility. The worst-case
statistics of the basic arbiter PUF are nearly identical to those of the SRAM PUF. For
the 2-XOR arbiter PUF, the intra-distances get approximately twice as large, which
follows from their construction: when one of the two XOR-ed arbiter PUFs produces
a faulty bit, the XOR-ed result will also be wrong. The ring oscillator PUF response
bits based on pairwise comparison of frequencies are extremely reproducible, which
proves the strength of this method. The Lehmer-Gray encoding method has worse
reproducibility than the pairwise comparison method, but is still fairly good with a
worst-case average smaller than 10 %.

4.4 Assessing Entropy

For many applications, and in particular for PUF-based key generation, it is im-
portant to accurately estimate the entropy of a random PUF response. Entropy is a
function of the distribution of a random variable and expresses the amount of un-
certainty one has about the outcome of the random variable. In the case of PUF
responses, it represents a generalized and unconditional upper bound on the aver-
age predictability of an unobserved random outcome Y of a response evaluation.
However, in general it is also very difficult or even impossible to calculate the en-
tropy of a PUF response exactly. In the end, the distribution of most PUF responses
is determined by very complex and even chaotic physical processes, and it cannot
be learned in the complete detail which is required to calculate its entropy exactly.
Typically, only estimated upper bounds on the underlying entropy can be provided.
These bounds are either derived from a high-level physical model of the PUF con-
struction, or based on the experimental data one observes.

In this section, we will present increasingly tighter upper bounds on the entropy
of a PUF response based on increasingly more powerful adversary models, i.e. ad-
versaries which gain more and more insight into the underlying distribution of the
PUF’s responses. We do this for all eight PUF constructions studied on the test chip
and we compute entropy bounds based on the experimentally observed response
distributions of these PUFs.

4.4.1 Adversary Models and Basic Entropy Bounds

In the following, Yn represents a random bit vector of length n, and Yi ←
{0,1} is a binary random variable whose distribution is completely determined by
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pi
�= Pr(Yi = 1). We also use the following notation for the conditional distribu-

tion of Yi conditioned on the previous bits Y (i−1) = (Y1, . . . , Y(i−1)) : pi|y(i−1)
�=

Pr(Yi = 1|Y (i−1) = y(i−1)). An overview of the general notions of probability the-
ory and information theory used in this section is found in Appendix A.

Completely Ignorant Adversary

An adversary which is completely ignorant of the underlying distribution of the
responses can make no better prediction than just guessing every bit completely at
random. To him, it looks as if the PUF response has full entropy. Based on this
adversary, we can introduce the following trivial response entropy bound:

H(Yn) ≤ n.

Using entropy density, this bound is denoted as

ρignorant(Y
n)

�= 100 %,

such that ρ(Y n) ≤ ρignorant(Y
n). This ignorant entropy bound is very trivial, but we

include it nonetheless for completeness and to detail the manner in which we will
discuss the following bounds.

Adversary Knows Global Bias

The most basic deviation from a completely uniform and independent distribution
of the response bits is caused by an overall global bias, i.e. on average every bit is
more likely to be either ‘0’ or ‘1’. Such a global bias in the response Yn can be
expressed as:

pglobalbias = 1

n
E

[
n∑

i=1

Yi

]

.

An adversary with knowledge of this global bias can make better than random pre-
dictions by guessing in favor of the bias, i.e. if pglobalbias < 50 % it predicts a ‘0’
and else a ‘1’. To the adversary, it looks as if all PUF response bits are independent
and identically distributed (i.i.d.) according to a Bernoulli distribution with parame-
ter pglobalbias. Based on such an adversary, the following response entropy bound is
introduced:

H(Yn) ≤ n · h(pglobalbias).

This global bias entropy bound is expressed using entropy density as ρ(Y n) ≤
ρglobalbias(Y

n), with:

ρglobalbias(Y
n)

�= h(pglobalbias).
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Adversary Knows Bit-Dependent Bias

In a more realistic setting, every bit position in a PUF response vector will have its
own bias, as expressed by pi = Pr(yi = 1). An adversary knowing these individual
bit-dependent biases can make a more accurate prediction by guessing individual
bits in favor of these biases. To the adversary, it looks as if all PUF response bits are
independently, but no longer identically distributed, with each bit sampled from its
own Bernoulli distribution with parameter pi . Taking into account this adversary,
the response entropy bound can be refined further:

H(Yn) ≤
n∑

i=1

h(pi).

Again we rewrite this bit-dependent bias entropy bound using entropy density as
ρ(Y n) ≤ ρbitbias(Y

n), with:

ρbitbias(Y
n)

�= 1

n

n∑

i=1

h(pi).

Adversary Knows Inter-Bit Dependencies

In the previous three adversary models, we moved from an adversary that sees a
PUF response as an i.i.d. uniformly random bit vector to one that observes it as a
vector of independently distributed bits which are no longer uniform or identically
distributed. The next improvement to the adversary model would be to give it insight
into the dependencies between different response bits, i.e. it no longer assumes that
the response bits are completely independently distributed. It is clear that full knowl-
edge of all inter-bit dependencies is generally unattainable since that would give the
complete and exact distribution of the responses. Instead, we assume an adversary
which has a certain realistic yet only partial model of the inter-bit dependencies. We
consider two such partial dependency models:

1. The adversary has insight into the pairwise joint distributions p(yi, yj ) of all
possible pairs of response bits in Yn. This is a natural extension of insight into
the bit-dependent bias of individual bits.

2. The adversary has partial insight into the conditional distribution p(yi |y(i−1)) of
a response bit Yi given the observation of the previous response bits Y (i−1) =
y(i−1). This is typically the case when the adversary deploys a successful next-
bit modeling attack on response bits, with a prediction model which is trained on
earlier observed responses.

We discuss both these adversarial models separately.
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Adversary Knows Pairwise Joint Distributions

When an adversary knows all pairwise joint distributions between the response bits
in Yn, the response entropy bound is further lowered to:

H(Yn) ≤
n∑

i=1

h(pi) −
n−1∑

i=1

I (Yi;Yi+1).

We call this the pairwise joint distribution entropy bound and using entropy density,
we write ρ(Y n) ≤ ρpairjoint(Y

n), with:

ρpairjoint(Y
n)

�= 1

n

(
n∑

i=1

h(pi) −
n−1∑

i=1

I (Yi;Yi+1)

)

.

The mutual information values, i.e. the information shared by consecutive pairs of
random bits, are subtracted from the bit-dependent bias entropy bound since they are
in a way counted twice. The mutual information between two consecutive random
bits can be computed from their pairwise joint distribution. Note that the subtracted
amount is dependent on the way the individual random bit variables are ordered
in Yn, since the mutual information is computed over consecutive pairs (Yi, Yi+1)

from Yn = (Y1, . . . , Yn). Without loss of generalization, we assume that the bits are
ordered in such a way as to maximize the subtracted amount. This yields the tightest
lower bound on the response entropy.

Adversary Deploys Next-Bit Modeling Attack

In this model, we assume an adversary can perform a modeling attack on the PUF
response bits, which after having been trained with (i − 1) previously observed
response bits, can predict the i-th bit with an average success probability of pmodel(i).
This results in a response entropy bound of:

H(Yn) ≤
n∑

i=1

h(pmodel(i)).

We call this the model entropy bound, and in terms of entropy density this becomes
ρ(Y n) ≤ ρmodel(Y

n), with:

ρmodel(Y
n)

�= 1

n

n∑

i=1

h(pmodel(i)).

The tightness of this bound depends on the strength of the assumed model, and
hence on the information and computational power available to the adversary in
order to build this model. The goal of the model is to exploit dependencies be-
tween bits in order to make a better than random prediction for the next bit. In gen-
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eral, the model’s success rate gets better and better as it is trained on more re-
sponses, i.e. pmodel(i) increases with i. This also means that ρmodel(Y

n), unlike
for the previously discussed bounds, is not a constant, but is dependent on n. In
general, ρmodel(Y

n) decreases for increasing n. For example, if a model produces
near-perfect predictions after having been trained with a large number of observed
response bits, all following response bits will no longer contribute any meaningful
entropy since they are perfectly predictable. Hence, producing more response bits
will only increase the response length and not the entropy, i.e. the entropy density
of the response decreases.

4.4.2 Entropy-Bound Estimations Based on Experimental Results

Next, we evaluate the different entropy bounds on the measured responses obtained
from the performed experiments which were discussed in Sect. 4.3. All entropy
bounds are expressed using entropy density, allowing us to make an easy comparison
between different PUF constructions.

Bound Estimation Strategy

For all memory-based PUF instances, we consider a response bit vector containing
n = 5000 bits to estimate the following entropy bounds:

• The ignorant entropy bound is trivially equal to 100 % for all PUFs.
• For the global bias entropy bound, we estimate the global bias by computing the

response bit sample mean over all 5000 considered bits on all 192 devices.
• For the bit-dependent bias entropy bound, we estimate the bit-dependent biases

by computing the response bit sample mean over all 192 devices for every bit
individually.

• For the pairwise distribution entropy bound, we estimate the pairwise joint dis-
tributions of all possible pairs of the considered response bits, by counting the
occurrences of each of the four possible outcomes (0,0), (0,1), (1,0) or (1,1)

for each considered pair on all 192 devices.

We do not consider the model entropy bound for memory-based PUFs, as no suc-
cessful modeling attacks on memory-based PUFs are known. All bound estimations
are done based on responses measured at nominal conditions.

For the delay-based PUF instances, we differentiate between the arbiter and the
ring oscillator PUFs. For both response generation methods of the ring oscilla-
tor PUF, we perform the same bound estimations as for the memory-based PUFs,
only on different sizes of response bit vectors, respectively n = 2048 for the pair-
wise comparison method and n = 12544 for the Lehmer-Gray method. No model-
building attacks for these ring oscillator PUFs are known.
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For the arbiter PUF we take a slightly different approach. The first four bounds
are computed for response bit vectors of only n = 256 bits, for each of the 256 ar-
biter PUF instances and 128 2-XOR arbiter PUF instances on the test chip individ-
ually, but we report only the results for the worst observed instance. Besides these
four bounds, we also consider the model entropy bound for both types of arbiter
PUFs. This is discussed in more detail in Sect. 4.4.3.

Bound Estimation Results

The results for the estimations of the ignorant entropy bound, the global bias entropy
bound, the bit-dependent bias entropy bound and the pairwise distribution entropy
bound are presented in Table 4.9. From these results, it is evident that these four
estimates represent consecutively tighter upper bounds on the real response entropy.

4.4.3 Modeling Attacks on Arbiter PUFs

From the initial introduction of arbiter PUFs, it was recognized that they are sus-
ceptible to modeling attacks. This is a result of the reduced complexity of the de-
pendency between arbiter PUF challenges and responses. For the basic arbiter PUF
it was made clear, e.g. by Lee et al. [75], that this dependency is to a high level
of accuracy even a linear system. In that case, the unpredictability of the responses
results only from the unknown parameters of this underlying system, since once
they are learned every response bit is easily predictable with high accuracy. A mod-
eling attack attempts to estimate the unknown model parameters as a function of
observed challenge-response pairs. For more advanced arbiter PUF constructions,
e.g. the 2-XOR arbiter PUF, the underlying model becomes more complex, but as
shown by Rührmair et al. [118], it is still modelable with more advanced modeling
techniques.

Modeling with Machine Learning Techniques

A particularly interesting set of modeling techniques are based on machine learn-
ing [99]. Machine learning algorithms are able to automatically learn complex be-
havior and unknown model parameters by generalizing on presented training exam-
ples. Another strong motivation for using machine learning algorithms in modeling
attacks is that they are generic, i.e. they have the ability to learn any complex be-
havior and are not a priori restricted to a particular model description (e.g. a linear
model).

In [55], we apply two basic machine learning techniques to our experimental ar-
biter PUF results to test for modelability: (i) artificial neural networks or ANNs [99],
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Fig. 4.4 Average success
rate of a machine-learning
attack on basic and 2-XOR
arbiter PUFs. The success
rate pmodel(n) presents the
probability of correctly
predicting the n-th response
bit after having been trained
with (n − 1) previously
observed bits

and (ii) support-vector machines or SVMs [26]. Both techniques have been demon-
strated to be able to effectively model basic arbiter PUFs, respectively by Gassend
et al. [43] and Rührmair et al. [118]. However, we apply these attacks on PUF re-
sponses resulting from a modern implementation (65 nm CMOS), as opposed to
these earlier results which work with older technologies [43] or only with simulated
data [118]. For this analysis of the model entropy bound, we are mainly interested
in the results of these modeling attacks. For more details on their implementation,
we refer to [55].

Modeling Results

Using both ANN and SVM, we were able to successfully model both basic and
2-XOR arbiter PUFs. Both ANN and SVM first take a number of known arbiter
PUF challenge-response pairs which they use to train their model. Afterwards, their
modeling performance is evaluated by their success rate of accurately predicting
unobserved responses when presented with a challenge from a large test set. It is
evident that, the more training examples a machine learning algorithm is allowed
to use, the better its modeling accuracy becomes. In Fig. 4.4, we summarize the
outcome of our machine learning modeling attacks on the experimental data from
the basic and the 2-XOR arbiter PUFs. It shows the average success rate (pmodel(i))
of the best machine learning technique, ANN or SVM, after having been trained
with (i − 1) earlier observed response bits.

We can draw some conclusions on the machine learning results as represented in
Fig. 4.4:

• The 2-XOR arbiter PUF is more difficult to model with our techniques than the
basic arbiter PUF, as expressed by the larger number of training examples re-
quired to achieve the same modeling success rate. This is a result of the challenge-
response relation being more complex for the 2-XOR arbiter PUF.
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Fig. 4.5 Estimated entropy
density bounds for the basic
and 2-XOR arbiter PUFs,
based on a modeling
adversary deploying the
machine-learning attack
results presented in Fig. 4.4

• The basic arbiter PUF can be modeled with ≈90 % accuracy after training with
≈500 examples and with ≈95 % accuracy after training with ≈2000 examples.
Note that the maximal attainable success rate of any modeling attack is naturally
limited by the reproducibility of the considered PUF instance. In that respect, the
obtained modeling accuracy of ≈97 % after training with ≈5000 examples can
be considered perfect, given that the average intra-distance of the basic arbiter
PUF at nominal conditions is about 3 % (cf. Table 4.3). This means that all fol-
lowing response bits do not contribute any entropy except for their reproducibility
uncertainty.

• The 2-XOR arbiter PUF can be modeled with ≈75 % accuracy after training with
≈4000 examples and with nearly 90 % after training with 9000 examples.

Modeling Entropy Bound

Using the machine learning modeling attack results as presented in Fig. 4.4, we
can calculate the model entropy bound as ρmodel(Y

n) = 1
n

∑n
i=1 h(pmodel(i)). The

resulting entropy bound, as a function of n, is presented in Fig. 4.5.
From Fig. 4.5 we learn that for the basic arbiter PUF, ρmodel(Y

100) < 90 % and
ρmodel(Y

1000) ≈ 50 %. For response bit vectors of more than 1000 bits, the en-
tropy density drops drastically as each additional response bit adds very little en-
tropy. After about 5000 bits, each additional response bit only adds a little noise
entropy, which is not useful. For the 2-XOR PUF, the results are less severe with
ρmodel(Y

5000 < 90 %) and ρmodel(Y
8000 < 80 %).

As a final remark, we want to make clear that the obtained model entropy bounds
are likely not very tight, since our machine-learning modeling attacks are not op-
timal. More advanced or more fine-tuned modeling techniques are likely to obtain
even higher success rates, and hence lower model entropy bounds, than our results,
which are based on relatively basic machine learning algorithms.
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4.5 Conclusion

In this chapter, we have presented a detailed discussion on the realization, evalua-
tion and analysis of a collection of different PUF constructions in a realistic, practi-
cal and objective manner. We have developed and produced a test chip carrying six
different intrinsic PUF implementations: four memory-based PUFs (SRAM, latch,
D flip-flop and buskeeper) and two delay-based PUFs (arbiter and ring oscillator).
Both delay-based PUFs are evaluated (off-line) using two different methods, giving
a total of eight studied PUF constructions. A large-scale experimental evaluation
is performed of all eight PUF constructions on 192 manufactured test chips un-
der different temperature and supply voltage conditions. The large response data
set produced by this experiment is meticulously analyzed in order to assess the be-
havior of the different PUF constructions, with regard to their reproducibility, their
uniqueness and the entropy of their responses.

4.5.1 Summary of PUF Behavior Results

As a final conclusion, we present a concise summary of the most important results
related to the PUF behavior of the different intrinsic PUF implementations which
we studied in this chapter. We characterize the different PUFs for each of the three
analyzed properties (reproducibility, uniqueness and response entropy) in a single
quantifier which will be of particular practical use in the following chapters, which
discuss PUF-based applications. The three quantifiers we consider are:

1. The intra-distance binomial probability estimator p̂intra
P as a characterization of

reproducibility. This will allow us to accurately and safely estimate the right
tail of the intra-distance distribution, i.e. the probability that the intra-distance
becomes very large.

2. The inter-distance binomial probability estimator p̂inter
P as a characterization of

uniqueness. This quantifier allows us to accurately and safely estimate the left tail
of the inter-distance distribution, i.e. the probability that very low inter-distances
occur.

3. The tightest upper bound on the response entropy density ρ(Y n) as a characteri-
zation of response entropy.

For all three quantifiers, we selected the worst-case measured values over all im-
plemented instances of the individual PUF types, respectively from Tables 4.8, 4.2
and 4.9. Note that we discarded all results from latch PUF instances numbers 2 and
3 and from D flip-flop PUF instance number 1, since they exhibit a strong outlier
behavior which is likely caused by an implementation error. For the entropy density
bound on the basic and 2-XOR arbiter PUFs, we cannot provide a single constant
quantifier, since their entropy density bound depends on the considered response
length. Instead, we refer to Fig. 4.5, which shows this relation for the machine-
learning modeling attacks we performed. Relating to the reported entropy density
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Table 4.10 Summary of the most important results on the PUF behavior of the implemented
intrinsic PUFs

PUF class P p̂intra
P p̂inter

P ρ(Y n)≤

SRAM PUF 7.78 % 48.72 % 94.09 %

Latch PUF 26.33 % 30.77 % 71.92 %

D Flip-Flop PUF 19.23 % 39.50 % 81.34 %

Buskeeper PUF 19.07 % 48.27 % 93.00 %

Arbiter PUF (basic) 7.75 % 46.43 % Fig. 4.5

Arbiter PUF (2-XOR) 14.25 % 49.71 % Fig. 4.5

Ring Oscillator PUF (P.C.) 3.88 % 49.54 % 94.69 %

Ring Oscillator PUF (L.G.) 9.89 % 46.45 % 86.63 %

results, we also point out that these are merely upper bounds and that the actual
response entropy is smaller.

The summary of PUF behavior results in Table 4.10, together with the overview
of the area breakdown of the different PUF implementations on the test chip pre-
sented in Table 4.1, will be of great value for assessing and optimizing the deploy-
ment of these PUF constructions in actual applications.
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