
Chapter 3
Physically Unclonable Functions: Properties

3.1 Introduction

3.1.1 Motivation

In Chap. 2, we introduced the PUF concept and illustrated it by means of an ex-
tensive enumeration of exemplary constructions which have been proposed over the
years. From this list it is clear that the term ‘PUF’ has been used, in printed publica-
tions but even more so in colloquial speech, as a label for a wide variety of different
constructions. However, intuitively it is clear that all these constructions share a
number of specific properties. When properly and unambiguously described, these
properties allow us to define a PUF, i.e. to identify the specific attributes which make
us intuitively label certain constructions as PUFs and others not.

In many publications which introduce a new PUF construction, a definition for
the more general PUF concept is attempted, using varying degrees of formalism.
While often fitting for the construction proposed in the same publication, most of
these definitions run into problems when applied to the wider group of different
PUF constructions, as discussed in Chap. 2:

• Some proposed definitions are too strict since they clearly exclude a number of
constructions which are labelled as PUFs, e.g. the early definition of a physical
one-way function as proposed by Pappu [104] includes a one-wayness property,
but almost none of the PUF constructions proposed afterwards meet this very
strict condition.

• Other definitions are too loose, i.e. they apply equivalently to constructions which
are generally not considered as PUFs, e.g. true random number generators.

• Many of the proposed definitions are an ad hoc listing of the perceived quali-
ties of the simultaneously proposed new PUF construction, and lack a degree of
generalization.

These issues, combined with the fact that there are nearly as many different PUF
definitions as there are PUF constructions, have caused confusion and even lead to
problematic situations. One particular problem which occurs regularly is that some

R. Maes, Physically Unclonable Functions, DOI 10.1007/978-3-642-41395-7_3,
© Springer-Verlag Berlin Heidelberg 2013

49

http://dx.doi.org/10.1007/978-3-642-41395-7_3


50 3 Physically Unclonable Functions: Properties

of these ad hoc properties which often appear in PUF definitions are quickly gener-
alized to all PUFs, whereas many proposed PUF constructions do in fact not meet
them. It becomes even worse when some recurring properties are in practice even
assumed for a newly proposed PUF construction, without ever actually verifying
if the construction meets them. It goes without saying that this can lead to disas-
trous failures when security-sensitive systems using such a PUF construction rely
on these properties.

Most of these PUF definitions are moreover of an informal nature. While not
problematic by itself, this does cause issues when PUFs are deployed in formal
systems such as cryptographic algorithms and protocols. Designers of such formal
systems are typically not familiar with the physical intricacies of a PUF construction
and need to rely on a strictly defined formal model of the PUF. On the other hand,
it turns out to be particularly difficult to capture the physical behavior in an un-
ambiguous and meaningful formal description. Either the description is not formal
enough, which significantly reduces the usability for a formal designer, or it is too
formal, which makes it impossible for practice-oriented PUF developers to evaluate
the strict formal conditions for their PUF construction. Especially in the latter case,
there is the risk of introducing a model which is picked up in the formal world, but
which has no realistic connection to actual implementations any more.

3.1.2 Chapter Goals

Whereas Chap. 2 was intended as an exploration of the expanding field of physically
unclonable functions, the goal of this chapter is to introduce a classification in this
large and widely differing collection of PUF proposals based on the algorithmic
properties of their challenge-response behavior. In this chapter we aim to:

• Give a detailed overview of significant properties which have, at one point or
another, been attributed to PUFs, and propose a semi-formal definition of these
properties based on their intuitive description.

• Make a comparative analysis of the defined properties on a representative sub-
set of PUF proposals in order to distinguish between defining and nice-to-have
characteristics. This analysis will yield a much more tactile definition of what we
have intuitively called a PUF in Chap. 2.

• Discuss a formal framework for deploying PUFs in formal security models, which
is partially based on this semi-formal study. The objective is to develop a frame-
work which is formal enough to allow meaningful security reductions, but at the
same time sufficiently realistic and flexible to actually demonstrate the formally
defined properties for real PUF implementations.

3.1.3 Chapter Overview

In Sect. 3.2, we do a study on the many different PUF properties which have been
proposed over time. By means of a comparative analysis over a representative set



3.2 A Discussion on the Properties of PUFs 51

of PUF constructions, we identify which properties are defining and which are only
nice to have. This study is an extended and updated version of our earlier work in
[83, Sect. 4]. In Sect. 3.3, we propose a set of formal definitions of the most im-
portant PUF properties, which is intended as a carefully balanced interface between
practical PUF developers and theorists. This section is based on our work in [3]. We
conclude this chapter in Sect. 3.4.

3.2 A Discussion on the Properties of PUFs

In this section, we start by listing a number of properties which are sensible to
assess for PUFs, and most of them have therefore been attributed at one or more
occasions to particular PUF constructions. We define these properties in a semi-
formal way using the notation introduced in Sect. 2.2. The definitions are semi-
formal in the sense that, while attempting to be as unambiguous as possible, we
refrain from introducing a plethora of quality parameters which would make the
notation needlessly complex. In that respect, we use informal qualifiers like easy
and hard, small and large, and high and low to express the bounds imposed by most
properties.

To avoid confusion, we want to state explicitly that at this moment we only define
a number of properties, and we make no claims yet as to which PUF constructions
satisfy which properties, or as to which properties are naturally implied for all PUFs.
Such an analysis is only done in Sect. 3.2.9 based on a representative subset of
proposed PUF constructions and is discussed in Sect. 3.2.10.

3.2.1 Constructibility and Evaluability

The notion of evaluability of a PUF construction is a purely practical and rather
basic consideration expressing the fact that the required effort to obtain a meaningful
outcome of a PUF instance should be feasible. Before defining evaluability, we first
want to introduce the even more basic notion of constructibility, i.e. the condition
that it is actually possible to produce instantiations of a particular PUF design.

Constructibility

Definition 5 A PUF class P is constructible if it is easy to invoke its Create pro-

cedure and produce a random PUF instance puf ← P .Create(rC $← {0,1}∗).

It is hard to discuss the remaining properties for proposals which have no feasible
instantiations. Constructibility is therefore a conditio sine qua non for evaluability,
and by extension for all of the following properties listed here. The qualifier ‘easy’



52 3 Physically Unclonable Functions: Properties

in the definition is context-dependent. Since PUFs are physical objects, their con-
structibility requires at least that they be possible within the laws of physics. From
a more practical viewpoint, ‘easy’ relates to the cost of producing an instance of a
particular PUF class. An important detail in the definition of constructibility is that
it is merely easy to construct a random PUF instance, i.e. without any specific re-
quirements on its challenge-response behavior, whereas constructing a specific PUF
instance can be infeasibly hard. In Sect. 3.2.4, we will discuss why it is even desir-
able that this is hard.

Evaluability

Definition 6 A PUF class P exhibits evaluability if it is constructible, and if for
any random PUF instance puf ∈ P and any random challenge x ∈ XP it is easy to

evaluate a response y ← puf(x).Eval(rE $← {0,1}∗).

Since the following properties all deal with the challenge-response behavior of
PUF instances, it is hard to discuss the meaningfulness of constructions which are
not evaluable. The ‘easiness’ expressed in the definition is again context-dependent.
In a theoretical treatise, this typically points to some variant of ‘in polynomial time
and effort’. Practically however, an easy evaluation means an evaluation which is
possible within the strict timing, area, power, energy and cost budget imposed by the
application. From this point of view, an evaluation which is easy for one application
could be infeasible for another one.

3.2.2 Reproducibility

The first property of a PUF’s challenge-response behavior we will discuss is its
reproducibility, which is technically also of a practical nature. However, as will
become clear later on, it also has strong repercussions on the attainable security
parameters of PUF-based applications.

Definition 7 A PUF class P exhibits reproducibility if it is evaluable, and if

Pr
(
Dintra

P is small
)

is high.

Reproducibility is defined with respect to the distribution of the response intra-
distance of the entire PUF class, i.e. considering evaluations of random challenges
on random PUF instances. This means that with high probability, responses resulting
from evaluating the same challenge on the same PUF instance should be similar,
i.e. close in the considered distance metric. If the evaluation condition (α) has an
impact on the responses, the definition is extended by considering the response intra-
distance under condition α: Dintra

P;α . The qualifiers ‘small’ and ‘high’ in the definition



3.2 A Discussion on the Properties of PUFs 53

are context-specific. Whether an intra-distance is ‘small’ is generally determined in
relation to similar notions in other properties such as uniqueness (cf. Definition 8),
e.g. as made explicit in the definition of identifiability (cf. Definition 9). How ‘high’
the probability needs to be typically follows from the application requirements.

3.2.3 Uniqueness and Identifiability

The most basic security-related property of PUFs is uniqueness: the observation that
a PUF response is a measurement of a random and instance-specific feature.

Uniqueness

Definition 8 A PUF class P exhibits uniqueness if it is evaluable, and if

Pr
(
Dinter

P is large
)

is high.

In the same way as reproducibility, uniqueness is defined with respect to the
distribution of the response inter-distance random variable of the entire PUF class,
i.e. considering evaluations of random challenges on random pairs of PUF instances.
This means that, with high probability, responses resulting from evaluating the same
challenge on different PUF instances should be dissimilar, i.e. far apart in the con-
sidered distance metric. Uniqueness is generally assessed at nominal operating con-
ditions; hence there is no need to extend this definition to varying evaluation condi-
tions. The qualifiers ‘large’ and ‘high’ are again context-specific.

Identifiability

When a PUF class exhibits both reproducibility and uniqueness, it follows that its
PUF instances can be identified based on their responses. We express this in the
separate property of identifiability.

Definition 9 A PUF class P exhibits identifiability if it is reproducible and unique,
and in particular if

Pr
(
Dintra

P < Dinter
P

)
is high.

Identifiability expresses the fact that responses (to the same challenge) coming
from a single PUF instance are more alike than responses coming from different
instances. This means that, using their response evaluations, instances of the PUF
class can state a static identity which is with high probability unique. The details
of how such an identification scheme can be implemented are given in Sect. 5.2.
The extent to which a PUF class is identifiable is often quickly estimated based on



54 3 Physically Unclonable Functions: Properties

experimental results, by comparing the average observed intra- and inter-distances
and demonstrating that μintra

P � μinter
P . From this and the following definitions, it

is also evident why the distributions of Dinter
P and Dintra

P play a pivotal role in the
assessment of the usability of a particular PUF class, and why it is important to get
accurate information about these distributions from experimental statistics.

3.2.4 Physical Unclonability

Assume an adversary which has control over the creation procedure of a PUF class,
i.e. it can influence the conditions, parameters and randomness sources of P .Create
to a certain (feasible) extent. When considering identification based on PUF re-
sponses in the presence of such an adversary, a stronger argument is required to
ensure that all PUF-based identities are unique with high probability. This is be-
cause this adversary can use its control over the instance creation process to attempt
to produce two PUF instances which are more alike than one would expect based
on the uniqueness property. To avoid this, one would like to enforce the uniqueness
property, i.e. to ensure that the uniqueness property is met, even in the presence of
such an adversary. This is what we call physical unclonability.

Definition 10 A PUF class P exhibits physical unclonability if it is evaluable, and
if it is hard to apply and/or influence the creation procedure P .Create in such a way
as to produce two distinct PUF instances puf and puf′ ∈ P for which it holds that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
< Dinter

P (X)
)

is high,

for X ← XP . In extremis, it should be very hard to produce two PUF instances for
which it holds that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
> Dintra

P (X)
)

is low.

The qualifier ‘hard’ in this definition reflects the physical and technical difficul-
ties (or impossibility) in creating such a PUF instance pair. These difficulties need
to be evaluated with respect to the technical capabilities of the adversary, which
ultimately is a function of its expertise and its equipment budget. Note that the dif-
ficulty of producing a non-unique PUF instance pair, as described in the definition,
implies the difficulty of producing a single PUF instance which is more alike to
a given PUF instance than expressed by the uniqueness property. When combined
with constructibility, physical unclonability can be summarized as: it is easy to cre-
ate a random PUF instance, but hard to create a specific one.

A PUF class which exhibits physical unclonability has the interesting security ad-
vantage that even the genuine manufacturer of PUF instances has no way of breaking
the uniqueness property. This means that one does not need to trust the manufacturer
to make sure every PUF instance is unique with high probability, since this is im-
plied by the physical unclonability of the PUF class. This advantage of ‘physically
unclonable PUFs’ is called manufacturer resistance.



3.2 A Discussion on the Properties of PUFs 55

3.2.5 Unpredictability

Many applications of PUFs rely on their challenge-response functionality, i.e. the
ability to apply a challenge and to receive a random response in reply. In that re-
spect, uniqueness, and by extension physical unclonability, are often not sufficient
to ensure security. One also requires unpredictability between responses on a sin-
gle PUF instance, i.e. unobserved responses remain sufficiently random, even after
observing responses to other challenges on the same PUF instance.

Definition 11 A PUF class P exhibits unpredictability if it is evaluable, and if it is
hard to win the following game for a random PUF instance puf ∈ P :

• In a learning phase, one is allowed to evaluate puf on a limited number of chal-
lenges and observe the responses. The set of evaluated challenges is X ′

P and
the challenges are either randomly selected (weak unpredictability) or adaptively
chosen (strong unpredictability).

• In a challenging phase, one is presented with a random challenge X ← XP \X ′
P .

One is required to make a prediction Ypred for the response to this challenge when
evaluated on puf. One does not have access to puf, but the prediction is made by
an algorithm predict which is trained with the knowledge obtained in the learning
phase: Ypred ← predict(X).

• The game is won if

Pr
(
dist

[
Ypred ← predict(X);Y ← puf(X)

]
< Dinter

P (X)
)

is high.

Note the similarity in the expressions involving the distribution of the inter-
distance in this definition and the definition of physical unclonability. However,
instead of considering the distance to a second created PUF instance puf′, here we
consider the distance to a prediction algorithm predict which is trained on an ear-
lier observed set of challenges and responses on the same PUF instance. We use a
game-based description for unpredictability to avoid having to put any restrictions
on the prediction algorithm, i.e. unpredictability is defined with respect to the best
conceivable prediction algorithm which can be built, trained and evaluated within
the capabilities of the adversary. In the best case, one can show that responses to
different challenges are completely independent, which means they cannot be pre-
dicted by any prediction algorithm. However, such a strong quality can rarely be
proven for a PUF construction, and at best one can assume it for certain PUFs based
on a physical motivation.

For other PUF constructions, responses are not independent and their unpre-
dictability relies on the computational difficulty of constructing, training and evalu-
ating an appropriate prediction algorithm. In that case, the extent of unpredictability
can only be estimated in relation to the currently best-known modeling attack, since
there is no guarantee that no better attacks exist. This is similar to the situation for
most cryptographic symmetric primitives, e.g. a block cipher like AES, where a
primitive is only as secure as indicated by the currently best-known attack. Kerck-
hoffs’ principle typically also applies to PUFs, i.e. an adversary has full knowledge



56 3 Physically Unclonable Functions: Properties

about the design and implementation details of a particular PUF construction, except
for the instance-specific random features introduced during the creation process.
The efficiency of a practical model building attack aimed at breaking the unpre-
dictability of a PUF is typically expressed by their prediction accuracy as a function
of the size of the training set, e.g. as done in the description of modeling attacks on
arbiter PUFs in Sect. 2.4.1.

3.2.6 Mathematical and True Unclonability

In the definition of unpredictability, an adversary is restricted to learning a lim-
ited number of (possibly random) challenge-response pairs which it uses to train its
prediction algorithm. This is typically the case in a challenge-response-based pro-
tocol where the adversary eavesdrops on the protocol communications. However,
a stronger adversarial model needs to be considered when the adversary has unlim-
ited physical access to a PUF instance. This means it can learn as many challenge-
response pairs as it is capable of storing and possibly even make useful observations
of the PUF instance beyond the challenge-response functionality.

Definition 12 A PUF class P exhibits mathematical unclonability if it is unpre-
dictable, even if there is no limit on the access to the PUF instance during the learn-
ing phase (as described in Definition 11), besides one’s own capacities.

Mathematical unclonability is hence the extension of unpredictability to an ad-
versary with unlimited physical access to a PUF instance. It is therefore evident that
mathematical unclonability implies unpredictability.

A direct condition for a PUF class P to be mathematically unclonable is that its
challenge set XP be very large, preferably exponential in some construction param-
eter of P . If this is not the case, an adversary with unlimited physical access to a PUF
instance can evaluate the complete challenge set and store the observed responses
in a table. This table then serves as a perfect prediction model of the considered
PUF instance and the unpredictability property is broken (technically, there are no
challenges left to play the challenging phase of the unpredictability game with).
The same argument holds if the challenge set is large, but if a near-perfect response
prediction algorithm can be trained based on a small subset of these challenges.

True Unclonability

We have defined two different notions of unclonability: physical and mathematical
unclonability. Both describe a property with the same objective, i.e. it is hard to
clone a PUF instance, but from completely different perspectives. Physical unclon-
ability deals with actual physical clones of PUF instances, whereas mathematical
unclonability deals only with cloning the challenge-response behavior of a PUF in-
stance. For a PUF class to exhibit true unclonability, both properties need to be
met.



3.2 A Discussion on the Properties of PUFs 57

Definition 13 A PUF class P exhibits true unclonability if it is both physically and
mathematically unclonable.

3.2.7 One-Wayness

We describe a one-wayness property for PUFs similar to the one in the definition of
physical one-way functions as proposed by Pappu [104].

Definition 14 A PUF class P exhibits one-wayness if it is evaluable, and if given
a random PUF instance puf ∈ P , there exists no efficient algorithm invertpuf :
YP → XP which is allowed to evaluate puf a feasible number of times and for
which it holds that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf

(
invertpuf(Y )

)]
> Dintra

P (X)
)

is low,

for X ←XP .

Hence, given a PUF instance and a random response of that instance, there exists
no efficient inversion algorithm acting on the PUF instance, that finds a challenge
that would produce a response close to the given response. This definition resembles
the classic definition of a one-way function in theoretical cryptography, but takes
the unreliability and the uniqueness of a PUF instance into account. However, the
notion of one-wayness is somewhat ambiguous for PUF constructions since, besides
depending on the actual algorithmic complexity of inverting a PUF instance, it also
depends very much on the attainable sizes of the challenge and response sets of the
PUF constructions. For PUF constructions with a small challenge set, one-wayness
is not achievable since the inversion algorithm can easily evaluate every possible
challenge and perform an inverse table lookup to invert a given response. On the
other hand, if the response set is small, the inversion algorithm can evaluate random
challenges on the PUF instance and will quickly encounter one which inverts a given
response.

3.2.8 Tamper Evidence

Tampering is the act of permanently altering the physical integrity of a system,
e.g. of a PUF instance, with the intent of modifying its operation in an unautho-
rized and possibly harmful manner. It is hence a type of physical transformation
which we denote as puf ⇒ puf′ to make clear that physical changes were made.
Directed tampering represents a powerful attack against security implementations.
It can be used to remove or bypass protection mechanisms and leave the imple-
mentation vulnerable, or to obtain information about sensitive internal values and
parameters. Protection against tampering is a matter of detecting tampering and
providing an appropriate reaction, e.g. clearing confidential data and/or blocking all



58 3 Physically Unclonable Functions: Properties

functionality. In order to detect tampering, a security system needs to have some
level of tamper evidence, i.e. a tampering attempt will have an unavoidable and
measurable impact on the system. Certain types of PUF constructions, which rely
on sensitive measurements of random physical features of an instance, cannot be
physically tampered with without significantly changing their challenge-response
behavior.

Definition 15 A PUF class P exhibits tamper evidence if it is evaluable, and if
given a random PUF instance puf ∈P , any physical transformation of puf ⇒ puf′
has the effect that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
> Dintra

P (X)
)

is high,

and ideally that

Pr
(
dist

[
Y ← puf(X);Y ′ ← puf′(X)

]
< Dinter

P (X)
)

is low.

Informally, tamper evidence means that it is very hard to physically alter a
PUF instance without having a noticeable effect on its challenge-response behavior,
i.e. an effect which with high probability is larger than the unreliability of the PUF
as expressed by the distribution of Dintra

P . Ideally, such an alteration even causes the
PUF instance to become a completely different one, i.e. the effect on its challenge-
response behavior is indiscernible from replacing the PUF instance with a different
unique instance as expressed by the distribution of Dinter

P .
In a sense, tamper evidence is an orthogonal property to physical unclonability.

Physical unclonability states that it is very hard to make two distinct PUF instances
more alike than is to be expected from physically different instances. Tamper evi-
dence on the other hand states that it is very hard to physically alter a single PUF
instance resulting in a different PUF instance which is more alike to the original than
is to be expected from physically different instances. Tamper-evident PUFs are self-
protecting in the sense that a tampering attack on their implementation unavoidably
and substantially alters their responses, which generally results in a blocked func-
tionality or a loss of secret information. Moreover, they can also be deployed as
to make a larger security system tamper-resistant by encapsulating the system in a
tamper-evident PUF instance.

3.2.9 PUF Properties Analysis and Discussion

We will now evaluate the properties defined in this section on a representative set
of proposed PUF constructions described in Chap. 2, as well as on a number of
non-PUF reference cases. This analysis will clarify which of these properties are
met by all PUF proposals, which are only met by a few or by none at all, and most
importantly, which subset of properties differentiates the PUF and non-PUF con-
structions.



3.2 A Discussion on the Properties of PUFs 59

Representative Subset of Constructions

We have selected a representative set of both non-intrinsic and intrinsic PUF con-
structions to do this comparative analysis on. We have only selected proposals for
which actual implementations have been done and for which experimental data is
available. The PUF constructions we will consider are:

1. The optical PUF as proposed by Pappu et al. [105].
2. The coating PUF as proposed by Tuyls et al. [147].
3. The simple arbiter PUF as proposed by Lee et al. [75].
4. The feed-forward arbiter PUF as proposed by Lee et al. [75].
5. The XOR arbiter PUF as proposed by Majzoobi et al. [94].
6. The basic ring oscillator PUF as proposed by Suh and Devadas [136].
7. The enhanced ring oscillator PUF as proposed by Maiti et al. [92].
8. The SRAM PUF as proposed by Guajardo et al. [45].
9. The latch, flip-flop, butterfly and buskeeper PUFs as respectively proposed by

Su et al. [135], Maes et al. [84], Kumar et al. [72] and Simons et al. [132].
It is clear that these PUFs will have identical properties since they only differ
slightly in their construction details. Therefore we treat them simultaneously.

10. The glitch PUF as proposed by Shimizu et al. [129].
11. The bistable ring PUF as proposed by Chen et al. [22].

To be able to differentiate between PUFs and non-PUF constructions which are
used to achieve similar objectives, we have selected a representative set of non-PUF
reference constructions. In order to be able to assess the properties of this section on
these non-PUF references, we explicitly state what we consider to be the challenge
and the response. The non-PUF reference cases we consider are:

1. A true random number generator or TRNG. A TRNG is a process which gen-
erates a stream of uniformly random numbers based on measurements of a dy-
namically random physical process. A TRNG’s output is truly random since it
results from a non-deterministic physical process, as opposed to the output of a
mathematical algorithm, known as a seeded pseudo-random number generator,
which only appears random but can in fact be deterministically calculated if the
seed is known. For easy comparison, we say the single challenge of the TRNG is
a request for a random number and the response is a fixed-length random output
string.

2. A very simple, unsecured radio-frequency identification (RFID) scheme. In this
most basic form, an RFID tag is nothing more than a small non-volatile memory
which upon deployment is programmed with a unique identifier string. When
triggered by a reader, the tag broadcasts this string to identify itself. For easy
comparison, we say the single challenge of this RFID scheme is the reader’s
trigger and the response is the identifier string broadcasted by the tag.

3. An implementation of a secure (unkeyed) cryptographic hash function. We say
the challenge is a (fixed-length) message string and the response is the resulting
hash digest of that message.



60 3 Physically Unclonable Functions: Properties

4. An implementation of a secure cryptographic block cipher, with a randomly gen-
erated encryption key which is programmed in a non-volatile memory in the
implementation. We say the challenge of this block cipher is a single block of
message data and the response is the resulting block of ciphertext data.

5. An implementation of a secure cryptographic public-key signature algorithm,
with a randomly generated public/private key pair of which the private key is pro-
grammed in a non-volatile memory in the implementation. We say the challenge
of this signature algorithm is a (fixed-length) message string and the response is
the resulting signature on this message.

Comparative Analysis

For every construction listed above, we have assessed whether it meets the different
properties discussed in this section. The resulting analysis is shown in Table 3.1. We
make four distinctions as to what extent a construction exhibits a certain property:

• V: the construction exhibits the property fully or to a large extent
• X: the construction does not exhibit the property
• !: the construction only exhibits the property under certain conditions
• ?: it is not clear or unknown whether the construction exhibits the property

Note that the assessments presented in Table 3.1 are only a reflection of the current
state of the art, to the best of our knowledge. However, due to the natural progress in
mathematical and physical attacks, and in manufacturing techniques, some of these
classifications can change over time. We will shortly discuss the presented results
for each property and the reasoning behind certain classifications.

Constructibility All considered constructions are constructible since for all of
them known implementations exist. However, some of them require more construc-
tion effort than others. The optical and coating PUFs rely on explicitly introduced
randomness during manufacturing and are therefore non-intrinsic; the other consid-
ered PUF constructions are intrinsic. The RFID scheme, the block cipher and the
signature algorithm also require explicit programming of a random string.

Evaluability All considered constructions are also evaluable since experimental
results are available for all of them. However, some of them require more evaluation
effort than others. The optical PUF evaluation procedure is quite elaborate, requiring
a laser and a very accurate mechanical positioning system. The SRAM PUF and the
flip-flop and buskeeper PUFs require a power cycle to evaluate them, since they rely
on the power-up behavior of their construction.

Reproducibility This is the first differentiating property between PUFs and non-
PUFs, since it clearly distinguishes the PUF constructions from the TRNG. A TRNG
is by definition not reproducible, since this would make it deterministic. The other
non-PUF reference cases are perfectly reproducible, i.e. with zero intra-distance.
The reproducibility of the PUF proposals varies from more than 25 % average intra-
distance for the optical PUF to less than 1 % for the ring-oscillator PUF.



3.2 A Discussion on the Properties of PUFs 61

Ta
bl

e
3.

1
Pr

op
er

tie
s

of
a

re
pr

es
en

ta
tiv

e
su

bs
et

of
PU

F
an

d
no

n-
PU

F
co

ns
tr

uc
tio

ns



62 3 Physically Unclonable Functions: Properties

Uniqueness All PUF proposals exhibit uniqueness with average inter-distances
of merely 23 % and 38 % respectively for the simple and the feed-forward arbiter
PUFs, and very close to 50 % for the other constructions. The TRNG evidently also
exhibits ideal uniqueness. Uniqueness is a differentiating feature between PUFs and
hash functions. Because the considered hash function has no random elements, ev-
ery implementation instance will exhibit exactly the same challenge-response be-
havior. The other three non-PUF constructions are unique if and only if they have
been programmed with a unique bit string, which is true with high probability in the
regular manufacturing process.

Identifiability This is the combination of reproducibility and uniqueness. TRNGs
and hash functions do not meet this property, respectively for not being reproducible
and not being unique. All other constructions exhibit identifiability, with for most of
them even a large separation between the distributions of intra- and inter-distance,
allowing an unambiguous identification based on their responses.

Physical Unclonability As expected, physical unclonability is the great divider
between PUF and non-PUF constructions. The uniqueness of all PUF proposals re-
sults from random physical processes during their manufacturing process, either
implicitly or explicitly, which are so complex that it is considered infeasible to
have any meaningful influence on them. Moreover, for all considered PUF con-
structions, these random processes take effect at microscopic and (deep) submicron
levels, which makes it even more technically infeasible to analyse them or exert any
control over them. This is in great contrast to the uniqueness of the RFID scheme,
the block cipher and the signature algorithm which is based on the programming of
a relatively short random bit string. For an adversary which controls the manufac-
turing process, and hence this programming step, it is not at all difficult to program
more than one instance with the same string. For this reason, these constructions are
not considered physically unclonable.

Unpredictability Following the modeling attacks on simple and feed-forward ar-
biter PUFs as discussed in Sect. 2.4.1, these two constructions only remain unpre-
dictable as long as an adversary does not learn enough challenge-response pairs to
accurately train its model. The actual number of unpredictable responses depends
on the details of the implementation and on the state of the art in modeling attacks,
but this can be very limited: modeling attacks have been presented which achieve
better than random accuracy after less than 100 training responses and improve to
near-perfect accuracy when more responses are learned. For the XOR arbiter PUF
with a sufficient number of XOR-ed arbiters (≥5), no effective modeling attacks are
yet known, and the same holds for the enhanced ring oscillator PUF, the glitch PUF
and the bistable ring PUF, although for none of these four PUFs can strong claims of
independence between response bits be made. For the optical PUF, reasonable argu-
ments are presented by Škorić et al. [133], Tuyls et al. [146] that modeling attacks
are computationally infeasible. For the remaining PUFs, response bits are produced
by physically distinct elements, which is a strong motivation to assume that differ-
ent responses are independent and hence inherently unpredictable. Consequently, no



3.2 A Discussion on the Properties of PUFs 63

modeling attacks are known for these PUFs. All the non-PUF constructions except
for the RFID scheme and the hash function exhibit unpredictability, the TRNG be-
cause of random physical influences and the block cipher and the signature scheme
because of a secret element and computational complexity arguments. The RFID
scheme is trivially predictable since it only has one single fixed response. The hash
function construction contains no unique element (key) and is easily predicted.

Mathematical Unclonability Simple and feed-forward arbiter PUF constructions
are not mathematically unclonable since they are only conditionally unpredictable.
The coating PUF, the ring oscillator PUF, the SRAM PUF and the four other bistable
memory element PUFs do not exhibit mathematical unclonability because the size
of their challenge sets is small, which means they can be fully evaluated to pro-
duce a lookup table as a trivial mathematical clone. For the XOR arbiter PUF, the
enhanced ring oscillator PUF, the glitch PUF and the bistable ring PUF, no practi-
cal mathematical cloning attacks are known, but more research is required before
any strong claims can be made. Škorić et al. [133], Tuyls et al. [146] argue that
the optical PUF is to a large extent mathematically unclonable, since even if (hy-
pothetically) a mathematical model of an optical PUF instance could be created,
it would be computationally too complex to be evaluated. However, this turns out
to be very implementation-dependent, as Rührmair [113] states that a variant of an
optical PUF with reduced randomness can in fact be modeled. Finally, the block
cipher and the signature algorithm are assumed to be mathematically unclonable
under the condition that an adversary is not able to extract the secret key during
its unlimited physical access to an instance. This implies that, besides being algo-
rithmically secure, the implementations of these cryptographic primitives also need
to be physically protected, e.g. against side-channel and fault attacks, and against
reverse-engineering.

True Unclonability This is the combination of physical and mathematical un-
clonability. The optical PUF is the only one of the considered PUF constructions for
which strong claims of true unclonability can be made.

One-Wayness Besides the optical PUF, none of the other studied PUF proposals
can be considered one-way since they either have a small challenge or a small re-
sponse set. Pappu [104] presents strong arguments why his optical PUF construction
does exhibit one-wayness, hence being labelled a physical one-way function. If the
block cipher is algorithmically secure and its key remains secret, it is considered to
be hard to invert. The same holds for the unkeyed hash function. A public-key sig-
nature algorithm is not guaranteed to be one-way, since everyone with knowledge
of the public key can verify the signature, which possibly involves recovering the
signed message.

Tamper Evidence A certain level of tamper evidence was only experimentally
demonstrated for optical PUFs by Pappu [104] and for coating PUFs by Tuyls et al.
[147]. For all other proposed PUF constructions no results on tamper evidence, nei-
ther in the positive nor in the negative sense, are known. Hence no sensible claims



64 3 Physically Unclonable Functions: Properties

Fig. 3.1 Relations between the different described PUF properties and an indication of the PUF
defining properties

on tamper evidence can be made for them. For TRNGs, tamper evidence is not well
defined. The remaining non-PUF proposals are not inherently tamper-evident, but
can be implemented in a tamper-evident fashion by applying tamper detection mea-
sures.

3.2.10 Discussion on PUF Properties

PUF Defining Properties

Looking at the results of the comparative property study in Table 3.1, and assuming
these are representative for all PUF and non-PUF constructions, we can determine
the properties which are defining for PUFs, i.e. which properties do all PUFs meet
that distinguish them from all conceivable non-PUF constructions? The answer to
this question turns out to be identifiability, and to a larger extent physical unclon-
ability, which is in fact the enforcement of uniqueness in the presence of an adver-
sary with control over the instance creation process. Note that these two properties
imply that PUFs are also constructible, evaluable, reproducible and unique. The re-
lations between all discussed properties, as well as an indication of the PUF defining
properties, are shown in Fig. 3.1. Based on this analysis, we tentatively propose a
definition of a PUF class.

Definition 16 A class of physical entities with a challenge-response functional-
ity is called a PUF class if it exhibits identifiability (cf. Definition 9) and physical
unclonability (cf. Definition 10).

In the light of this definition, we argue that the acronym ‘PUF’ as standing for
physically unclonable function, i.e. with the qualifier ‘physically’ reflecting on ‘un-



3.3 Formalizing PUFs 65

clonable’, not on ‘function’, is particularly fitting for the concept. This strong em-
phasis on physical unclonability being the core PUF property also implicates that if
at one point the physical unclonability of a particular PUF construction is disputed,
e.g. due to the natural advancement of manufacturing techniques, it will cease to be
a PUF.

Nice-to-Have PUF Properties

Since only identifiability and physical unclonability actually define PUFs, the re-
maining properties of unpredictability, mathematical and true unclonability, one-
wayness and tamper evidence are merely desirable extras, but are not guaranteed
for any PUF construction. In fact, there currently seems to be only one PUF pro-
posal which meets all these properties, and that is the optical PUF as proposed by
Pappu [104]. This observation, combined with the fact that it was one of the very
first PUF proposals, grants the optical PUF the status of prototype PUF. All fol-
lowing PUF constructions aim to achieve as many of the desirable properties of
the optical PUF as possible, but at the same time aim to provide more integrated
implementations.

Since these remaining properties are only nice-to-have qualities, they cannot sim-
ply be assumed to be present in any PUF. This means that PUF designers need to
present strong arguments, preferably of an experimental nature, if they claim any of
these extra properties for their PUF proposal. (In fact, they also need to show iden-
tifiability and physical unclonability to demonstrate that their proposal is a PUF to
begin with.) For developers of PUF-based applications, this entails that they need to
state explicitly if, and to what extent, they rely on any of these nice-to-have proper-
ties, since it means that not all PUF constructions can be used for their application.

Improving PUF Properties

From Table 3.1 it is clear that mathematical unclonability, and in consequence true
unclonability, and one-wayness are hard to come by for most PUF proposals. When
these properties are required in a PUF-based application, they can be provided by
extending the raw physical PUF instance with an algorithmic primitive exhibiting
these properties, and enforcing that the resulting PUF-system only be evaluated with
this primitive. This is what was defined as a controlled PUF in Sect. 2.5.2.

3.3 Formalizing PUFs

In Sect. 3.2, we described meaningful properties of PUFs, and after a broad com-
parison identified the ones which define a PUF. Based on this analysis, we pro-
ceed towards a strictly formal description of PUFs and their key properties. First,
we study earlier proposed attempts at formally describing PUFs and point out how



66 3 Physically Unclonable Functions: Properties

they fall short. Next we discuss our approach in setting up the framework and in
Sect. 3.3.3 we introduce the basic primitives of the framework itself. Using the
introduced framework, we propose formal definitions respectively for the notions
of robustness, physical unclonability and unpredictability. The rationale behind the
definitions of all concepts and properties in this section is to provide a meaningful
formal model for both hardware engineers (developing PUFs) and cryptographers
(deploying PUFs).

Background The development of the formal framework for physical functions
and the formal definitions of their properties as initially proposed in [3] and dis-
cussed in this section are the shared results of numerous fruitful discussions and
an intense research collaboration between the author and Prof. Frederik Armknecht
(Universität Mannheim), Prof. François-Xavier Standaert (Université catholique de
Louvain), Christian Wachsmann and Prof. Ahmad-Reza Sadeghi (both Technische
Universität Darmstadt).

3.3.1 Earlier Formalization Attempts

Throughout PUF literature, many authors have attempted to generalize the concept
of a PUF in a more or less formal definition, mainly as a means to highlight the
advantageous properties of a simultaneously proposed new PUF construction. We
briefly introduce these definitions and point out why we believe none of them cap-
tures the full spectrum of proposed PUFs and their properties, either by being too
restrictive, i.e. excluding certain PUFs, or by being too ad hoc, i.e. listing perceived
and even assumed properties of certain PUFs instead of providing a generalizing
model. A similar overview and discussion has been presented by Rührmair et al.
[115]. However, we do not completely follow all their arguments and moreover
point out why the new models they propose are still insufficient.

Another approach toward defining the functionality of a PUF comes from the
theoretical corner. Theorists, in an attempt to deploy PUFs in their algorithms and
protocols, provide rather rigid formal descriptions of PUFs on which they can built
security reductions. We also discuss these proposals and their drawbacks.

Physical One-Way Functions

To the best of our knowledge, the first generalizing definition of the PUF concept
is given by Pappu [104], based on the properties of his optical PUF construction.
He focuses on the one-wayness property of this construction and labels it a physical
one-way function (POWF). The first part of the definition of a POWF states that it is
a deterministic physical interaction that is evaluable in constant time but cannot be
inverted by a probabilistic polynomial time adversary with a non-negligible proba-
bility. The second part of the definition focusses on the unclonability of the POWF:
both simulating a response and physically cloning the POWF should be hard. The
POWF definition is solely based on the optical PUF, which at that time was the only



3.3 Formalizing PUFs 67

known PUF. As other PUFs were introduced shortly after, it became clear that this
definition was too stringent, in particular regarding the one-wayness assumption.
While the optical PUF has very large challenge and response sets, many of the later
introduced PUFs do not. For these constructions, one-wayness does not hold any
longer since inverting such a PUF with non-negligible advantage becomes trivial,
as discussed in Sect. 3.2.7. It is also noteworthy that, as pointed out by Rührmair
et al. [115], for most PUF-based security applications, one-wayness is not a re-
quired condition. A final issue with the POWF definition is that it lacks any notion
of noise; in fact it even describes a POWF as a deterministic interaction. This is
contradicted by the fact that virtually all PUF proposals, including the optical PUF,
produce noisy responses due to uncontrollable physical influences affecting a re-
sponse evaluation.

Physical Random Functions

With the introduction of delay-based intrinsic PUFs, Gassend et al. [42], propose the
definition of physical random functions to describe PUFs. In brief, a physical ran-
dom function is defined as a function embodied by a physical device which is easy to
evaluate but hard to predict from a polynomial number of challenge-response obser-
vations. Note that this definition replaces the very stringent one-wayness condition
from POWFs with a more relaxed unpredictability condition. However, the presen-
tation of modeling attacks on simple arbiter PUFs by Lee et al. [75] and on more
elaborate arbiter PUFs by Rührmair et al. [119] demonstrate a significantly reduced
unpredictability of these types of PUFs. Moreover, the later introduced memory-
based intrinsic PUFs only possess at most a polynomial number of challenges and
hence do not classify as physical random functions since they can be easily modeled
through exhaustive readout. Finally, the definition of physical random functions as
proposed by Gassend et al. [42] also does not capture the possibility of noisy re-
sponses.

Weak and Strong PUFs

With the introduction of memory-based intrinsic PUFs, Guajardo et al. [45] fur-
ther refine the formal specification of a PUF. They describe PUFs as inherently
unclonable physical systems with a challenge-response behavior. It is assumed that:
(i) responses to different challenges are independent of each other, (ii) it is difficult
to come up with responses which have not been observed before, and (iii) tamper-
ing with a PUF instance substantially changes its challenge-response behavior. For
the first time, it is made explicit that PUF responses are observed as noisy mea-
surements. This definition also comes with a division of strong and weak PUFs,
depending on how many challenge-response pairs an adversary is allowed to obtain
in order to model the PUF. If the number is exponentially large in some security pa-
rameter, the PUF is called a strong PUF; otherwise the PUF is called weak. It can be
argued that some of the assumptions made in this description do not have a solid ex-
perimental basis, in particular regarding tamper evidence, which has not been tested



68 3 Physically Unclonable Functions: Properties

in practice for any of the intrinsic PUF proposals. Also, strong PUFs are difficult to
characterize in general, as the idea of a security parameter is specific to each PUF
instance, and no practical procedure is proposed to exhibit the required exponential
behavior in practice.

Rührmair et al. [115] build upon the distinction between strong and weak PUFs
from Guajardo et al. [45] and redefine both notions in terms of a security game with
an adversary. Weak PUFs are called obfuscating PUFs and are basically considered
as physically obfuscated keys, as described in Sect. 2.5.1. The main statement in
the definition of obfuscating PUFs is that an adversary cannot learn the key after
having had access to the PUF for a limited amount of time. Strong PUFs are defined
similarly, but here the adversary needs to come up with the response to a randomly
chosen challenge after having had access to the PUF and a PUF oracle for some
limited time. Some issues are again left unresolved in this formalization: first, de-
spite building upon the work of Guajardo et al. [45], responses are not considered
to be noisy. Next, the use of a PUF oracle in the definition of a strong PUF seems
questionable. It is argued that this oracle is introduced to circumvent practical ac-
cess restrictions to the PUF. However, if a PUF-based system is secured against any
attacks possible with the current state of technology, the access to such an oracle
is an unrealistic advantage to the adversary, which weakens the proposed defini-
tion.

PUFs and PUF-PRFs

In [2] we have introduced a first formal PUF model which starts from a theoretical
application perspective, rather than from a practical construction-based perspective
as most earlier proposals. In [2], we aim to use a PUF as part of a cryptographic
algorithm, i.c. a block cipher, and for that goal the previously discussed definitions
prove to be insufficient. We explicitly make a distinction between algorithmic and
physical properties of a PUF. From the algorithmic side, a PUF is said to be a noisy
function for which the distribution of responses is indistinguishable from a random
distribution with a certain amount of min-entropy. From the physical side, a PUF
is assumed to be physically unclonable and tamper-evident. A PUF-PRF is then
defined as a PUF-based system with pseudo-random function-like qualities. We al-
ready pointed out the lack of experimental proof for tamper evidence of intrinsic
PUFs in practice, and the same argument applies to this definition. The description
of uniqueness and unpredictability by means of min-entropy provides convenient
qualities for the theoretical application of PUFs, but as it turns out it is hard to give
strong proof of min-entropy levels for actual PUF constructions. Contrarily to most
of the previous definitions, PUFs are explicitly defined as noisy functions with a
strictly bounded noise magnitude.

PUFs in the Universal Composition Framework

Brzuska et al. [15] continue the theoretical application viewpoint approach to-
ward defining PUFs, and propose a very formal definition which allows them to



3.3 Formalizing PUFs 69

model PUF functionality in the universal composition framework as proposed by
Canetti [20]. As in our definition from [2], they define PUFs based on response
distributions having a certain level of min-entropy and also incorporate a noise
threshold. However, the presented formulation is utterly theoretical, which makes it
unattractive for practice-oriented designers of PUF constructions. Consequentially,
there is a significant probability that an actual PUF construction which lives up to
this stringent definition will never be proposed. Moreover, the strong min-entropy
assumptions on the PUF responses rule out many known PUF constructions and put
strong restrictions on others, leading to practical inefficiency.

3.3.2 Setup of the Formal Framework

Objective

The basic objective of the formal framework presented in [3], and which is discussed
in detail in the following, is to provide a workable model for both practice-oriented
PUF designers as well as theory-oriented cryptographers deploying PUFs in algo-
rithms and protocols. Ideally, the model is sufficiently realistic, capturing measur-
able properties of actual PUF proposals, while at the same time providing sufficient
formalism and rigor to allow theoretical security reductions of systems deploying
a PUF as a primitive. Such a framework could serve as an interface between hard-
ware engineers and theoretical cryptographers, which would be very beneficial for
the continued successful deployment of PUFs in security systems.

Approach

The approach we take is to start from a minimalistic axiomatic framework to de-
scribe physical functions and increment it in a flexible manner; first, by hierar-
chically expanding the notion of a physical function to more extensive construc-
tions, and secondly by defining modular properties of these constructions within the
framework.

The particular difficulty experienced by formal modeling attempts of PUFs is
dealing with the physical aspect. It is hard to argue about the security properties
of a physical object because they typically cannot be captured by classical cryp-
tographic notions such as security parameters or computationally hard problems.
To isolate this difficulty, we capture the physical aspect at the lowest formal level
when we axiomatically describe the notion of a physical function. All higher-level
properties can then be defined using the formalism introduced to describe physical
functions. The particular properties which we consider are robustness, physical un-
clonability and unpredictability. Note that what we call a physical function is a very
general concept, which is broader than PUFs, and physical unclonability is merely
one possible property of a physical function.



70 3 Physically Unclonable Functions: Properties

3.3.3 Definition and Expansion of a Physical Function

Physical Function (pf)

A physical function pf consists of a physical component p and an evaluation pro-
cedure Evalaev . A physical component can be physically stimulated, resulting in a
measurable effect. The evaluation procedure Evalaev translates the physical stimulus
and resulting measurement into digital forms, respectively called the challenge x

and the response y of the physical function. The exact challenge-response behavior
of a pf is determined by both the static and the dynamical physical states of its phys-
ical component, and by an evaluation parameter aev which controls the challenge
and response translation, e.g. the quantization step size of an analog measurement.

Definition 17 A physical function pf is a probabilistic procedure

pfp,aev
: X → Y,

consisting of an evaluation procedure Eval acting upon a physical component p:

y ← pfp,aev
(x) = Evalaev(p;x).

When the physical component and the evaluation parameter are clear from the
context, we simply write pf instead of pfp,aev

.

Extraction Algorithm (Extract)

A physical function is not a function in the classical sense since, when challenged
with the same challenge x twice, it may produce different responses. This is an effect
of the response representing a measurement of a physical component whose physi-
cal state is partially dynamic, e.g. as a result of non-deterministic random physical
noise during the measurement. However, for many applications this is an undesir-
able feature of a physical function, and it is dealt with by an appropriate extraction
algorithm Extractaex for which it is possible to guarantee the reproducibility of its
output. Many instantiations of extraction algorithms exist, including the seminal
fuzzy extractor as proposed by Dodis et al. [32, 33]. As with physical functions, we
describe extraction algorithms as generically as possible to allow the greatest pos-
sible flexibility of the framework. An extraction procedure extracts an output z ∈ Z
from a response y of a pf, and in the process it can also consume and/or produce
some additional side information which we call helper data and denote as w ∈ W .
We also introduce an extraction parameter aex which is used to exactly specify all
the deployment details of the extractor.

Definition 18 An extraction algorithm Extract is a probabilistic procedure

Extractaex : Y ×W → Z ×W,



3.3 Formalizing PUFs 71

which operates in one of two modes depending on the format of the presented helper
data:

[setup] (z,w) ← Extractaex(y, ε),

[reconstruction]
(
z′,w′ = w

) ← Extractaex

(
y′,w 
= ε

)
,

with ε denoting the empty string.

When the extraction parameters are clear from the context, we simply write
Extract instead of Extractaex .

In setup mode, when no helper data is presented as an input (w = ε), the extrac-
tion algorithm produces an output z and helper data w. In reconstruction mode, an-
other possibly noisy evaluation of the response y′ is presented together with helper
data w which was produced in an earlier setup mode of the extractor. The extraction
algorithm re-extracts the output z′ and additionally outputs the unchanged helper
data w. The power of most extraction algorithms is that, under certain conditions
on the pf response distribution, they succeed in recreating exactly the same output
in both setup and reconstruction mode: z = z′, given that the helper data generated
by the setup mode is used during reconstruction mode. Besides this reconstruction
property, an extraction algorithm can also provide guarantees about the randomness
of its output z. The actual implementation of the extraction algorithm, as is the case
for the physical function, is left up to the practical developer. The generic nature of
the definition allows a wide variety of extractor implementations, including using
no extractor at all by making it the identity function.

Physical Function System (pfs)

In many application scenarios, the use of an extraction algorithm is indispensable,
and by consequence a user will only be aware of the challenge provided to the phys-
ical function and the output generated by the extractor. The existence of an inter-
mediate physical function response is transparent to him. Additionally, the relevant
security notions in such a scenario will be determined by the combination of both
the used physical function and the deployed extraction algorithm. For these reasons,
it makes sense to abstract away the separate notions of a physical function and an
extraction algorithm and consider their combination as a single building block. We
call such a combination a physical function system pfs.

Definition 19 A physical function system pfs is a probabilistic procedure

pfsp,aev,aex
:X ×W →Z ×W,

consisting of the concatenation of a physical function (cf. Definition 17) with an
extraction algorithm (cf. Definition 18):

(
z,w′) ← pfsp,aev,aex

(x,w) = Extractaex

(
pfp,aev

(x),w
)
.



72 3 Physically Unclonable Functions: Properties

When the physical component and the parameters are clear from the context, we
write pfs(x,w) instead of pfsp,aev,aex

(x,w).
We believe that, from a theoretical perspective, it is easier to reason about phys-

ical function systems than to deal with the technical peculiarities of physical func-
tions and extractors. Therefore we will define formal properties over physical func-
tion systems, rather than over physical functions, and we only refer to the underlying
physical functions and extractors when necessary.

Physical Function Infrastructure (F )

The physical component p in a physical function pf is the result of a physical cre-
ation process Createacr . The exact manifestation of a created physical component is
determined by stochastic influences during the creation process, and by a controlled
deterministic creation parameter acr which defines the full details of the creation
process.

Definition 20 For a fixed tuple of parameters (acr, aev, aex), the physical function
infrastructure F(acr,aev,aex) refers to the creation process Createacr and the set of all
physical function systems consisting of the extraction algorithm Extractaex , and a
physical function pfp,aev

with a physical component created by Createacr :

F(acr,aev,aex)
�= (

Createacr , {pfsp,aev,aex
: p ← Createacr}

)
.

Finally, a family of physical function infrastructures is defined as a generalization
of a physical function infrastructure for more than one single creation parameter acr:

F(Acr,aev,aex)
�= {Facr,aev,aex : acr ∈ Acr}.

If the parameters aev and aex are clear from the context, we simply write Facr and
FAcr . We use a family of physical function infrastructures to express the control
one has over the creation procedure Createacr , by being able to pick the creation
parameter acr from a certain set Acr.

Overview

In Fig. 3.2, we schematically show the concept of a physical function as the com-
bination of a physical component and an evaluation procedure. Also shown is the
expansion to a physical function system, by combining it with an extraction pro-
cedure, and further to a physical function infrastructure, by combining it with a
creation procedure. Each of the three proposed procedures is possibly probabilistic
and is for the remainder fully determined by its inputs and the respective parameters
aev, aex and acr.



3.3 Formalizing PUFs 73

Fig. 3.2 Schematic overview of the concept of a physical function and its extension to a physical
function system and a physical function infrastructure

3.3.4 Robustness of a Physical Function System

Robustness as defined in this section is the formal counterpart of reproducibility as
described in Sect. 3.2.2, with the difference that reproducibility allows a certain error
between evaluations as long as it is small, whereas robustness describes error-free
reconstructions. In practice, an appropriate extraction algorithm is able to transform
a reproducible PUF into a robust physical function system.

The robustness of a physical function system is defined as the probability that an
output z produced during setup mode can later be reproduced exactly in reconstruc-
tion mode.

Definition 21 The challenge robustness of pfs with respect to x ∈X is defined as

ρpfs(x)
�= Pr

(
(z,w) ← pfs(x,w) : (z,w) ← pfs(x, ε)

)
.

When considering a subset of challenges X ′ ⊆ X , the following related robust-
ness notions can be defined:

• Minimum robustness of pfs with respect to X ′:

ρmin
pfs

(
X ′) �= min

x∈X
{
ρpfs(x)

}
.

This is useful when one requires every considered challenge to exhibit a minimal
level of robustness.

• Average robustness of pfs with respect to X ′:

ρav
pfs

(
X ′) �=

∑

x∈X
ρpfs(x) · Pr

(
x ←X ′).



74 3 Physically Unclonable Functions: Properties

From a practical viewpoint it is often sufficient to have a high enough average
robustness.

This notion of robustness can even be extended further to physical function in-
frastructures. The average robustness of a physical function infrastructure F is de-
fined as:

ρav
F

(
X ′) �=

∑

pfs∈F
ρav
F

(
X ′) · Pr(F ← Create).

When X ′ = X or when the content of X ′ is clear from the context, we simply
write ρmin

pfs , ρav
pfs and ρav

F .

3.3.5 Physical Unclonability of a Physical Function System

Defining a (Physical) Clone

Before we define unclonability, we first need to agree on what we consider to be a
clone. Intuitively, we consider two instances clones if they show ‘similar behavior’.
However, there are a number of technical details which have to be taken into account
in order to turn this intuition into a formal definition.

First of all, we need to make explicit that we consider physical unclonability,
and therefore also only physical clones. Given the definition of a physical function
system, there are a number of non-physical ways one can think of to create ‘similar
instances’. For example, a physical function system deploying an extraction algo-
rithm which outputs a fixed constant is trivial to clone, but it is obvious that we do
not consider this a physical clone. A similar argument holds for the evaluation proce-
dure of the physical function, e.g. imagine an evaluation procedure which quantizes
a physical measurement into a zero bit response, which is basically a fixed value.
We explicitly only consider physical clones by stating that two physical function
systems which are considered clones can only differ in their physical component p,
while their evaluation and extraction procedures and parameters need to be identical.

Secondly, there are many levels of ‘similarity’: two physical function systems can
be ‘less different than expected’ or they can be truly ‘indistinguishable’. This needs
to be captured by a quantitative parameter. Also, we need to consider similarity
with respect to a subset of challenges. If two physical function systems happen to
coincide on a subset of challenges which is critical for a particular application, they
need to be considered clones, even if they show completely different behavior on
the remainder of challenges.

Finally, when attempting to formalize the notion of ‘similarity’ for physical func-
tion systems, we will run into robustness again. How does one define similarity with
respect to a physical function system which even by itself does not always gener-
ate similar outputs? To tackle this issue, we are guided by two intuitive arguments:
(i) every physical function system pfs should be a clone of itself (except for not



3.3 Formalizing PUFs 75

deploying a different physical component), and (ii) a clone of a physical function
system pfs cannot be more similar to pfs than pfs is to itself, as expressed by its
robustness. In other words, the robustness of pfs is a natural upper bound for how
similar a clone can be to pfs. Therefore, we express the similarity of a clone to pfs
relative to its robustness.

Definition 22 For a fixed tuple of parameters (aev, aex), let pfs(= pfsp,aev,aex
) and

pfs′(= pfsp′,aev,aex
) be two physical function systems which are identical except for

their physical components, p 
= p′. We say pfs is a δ-clone of pfs′ with respect to
X ′ ⊆ X , if ∀x ∈ X ′ it holds that

Pr
(
(z,w) ← pfs′(x,w) : (z,w) ← pfs(x, ε)

) ≥ δ · ρpfs(x),

with 0 ≤ δ ≤ 1. In shorthand notation, we write: pfs
δ;X ′
≡ pfs′.

By p 
= p′ we mean that p and p′ are distinct physical entities, i.e. occupying
different positions in space-time, but they are allowed to be physically similar to
any level of precision. Note that, except for their not deploying different physical
components, every physical function system is a (δ = 1,X ′ = X )-clone of itself.

Defining Physical Unclonability

Now that we have a formal definition of a clone, we can define physical unclon-
ability by formalizing the statement: ‘it is difficult to produce a clone’. However,
again some technicalities need to be considered before a formal description can be
presented.

We first need to specify the capabilities of the adversary A that is trying to pro-
duce a clone. In practice, such an adversary will have access to a number of exe-
cutions of the creation procedure of physical components. Possibly, it even has an
amount of control over it, i.e. it can influence the physical processes taking place
during creation within certain boundaries. We capture this formally by allowing the
adversary to select the creation parameter acr from a particular subset Acr. We use
the notion of a family of physical function infrastructures FAcr to describe this. The
adversarial model is described by means of a security game between the adversary
and a creation oracle.

We also need to distinguish between two variants of unclonability:

• Existential unclonability means that it is hard to create a pair of physical function
systems such that one is a clone of the other.

• Selective unclonability means that given a particular physical function system, it
is hard to create a second one which is a clone of the first one.

Note that in general, existential unclonability implies selective unclonability and is
therefore a stronger security notion. We will give a formal definition for existential



76 3 Physically Unclonable Functions: Properties

unclonability, but the same approach as presented here can be applied to describe
selective unclonability.

To formally define (existential) unclonability (or cloning resistance), we first de-
scribe the adversary model A by means of a cloning game Gameclone

A (Acr, q):

• In the cloning game Gameclone
A (Acr, q), an adversary is allowed to make up to q

queries to a creation oracle OCreate
Acr

, with q ≥ 2.

• The creation oracle OCreate
Acr

expects a creation parameter acr as query input. If
acr ∈ Acr, then the oracle invokes the physical component creation procedure with
the queried parameter to create a single physical component Createacr → p and
answers the query with p.

• The adversary is allowed to adaptively change the creation parameter acr of its
queries.

• When the game ends, the adversary is required to output a pair of physical com-
ponents (p,p′) both of which it received as a query reply from the creation oracle
during the game.

Definition 23 A family of physical function instantiations F(Acr,aev,aex) is (γ, δ, q)-
cloning-resistant with respect to X ′ ⊆ X if for every probabilistic polynomial time
adversary A it holds that:

Pr
(
pfsp,aev,aex

δ;X ′
≡ pfs′

p′,aev,aex
: (p,p′) ← Gameclone

A (Acr, q)
) ≤ γ.

The level of control an adversary has over the creation process will to a large
extent determine the cloning resistance of a physical function infrastructure family.
As explained, the influence an adversary has over the creation is represented by Acr.
We distinguish a special case when Acr = {acr}, i.e. the creation process is fixed.
This is typically so for the genuine manufacturer of the physical function systems
and therefore we call this the honest manufacturer adversary model. Note that even
the honest manufacturer can coincidentally create clones but this should only happen
with low probability. In all other cases with more than one element in Acr, it means
that the manufacturer is deliberately influencing the creation process in order to
create a clone. This is called the malicious manufacturer adversary model.

3.3.6 Unpredictability of a Physical Function System

When using a physical function system pfs in a security application, the unpre-
dictability of its output is the most basic expected security requirement. In classic
cryptography, unpredictability is a well-established concept, e.g. for random func-
tions, and it expresses the difficulty of predicting an unobserved output of a func-
tion after having observed different function evaluations. Due to the peculiarities
of physical function systems, as discussed in detail in the previous paragraphs, the
classical definition of unpredictability does not directly apply. We will adapt it in an



3.3 Formalizing PUFs 77

appropriate manner as to make it capture the notion of unpredictability for physical
function systems.

Types of Unpredictability

We distinguish between two different types of unpredictability for physical function
systems: unpredictability with respect to different outputs on the same system, and
unpredictability with respect to the same outputs on different systems. The first type
is typically important when the physical function system is used as a challenge-
response entity, e.g. in an authentication protocol. It would be highly undesirable
if the response in the next run of the protocol could be predicted based on previ-
ously observed runs of the protocol. The second type is mainly of significance when
the physical function system is used as a secure storage mechanism, e.g. to gen-
erate cryptographic keys. In that case, the independence of outputs from different
physical function systems is of the utmost importance to ensure the randomness of
the derived keys. Note that the first type of unpredictability is a direct extension of
the classical unpredictability notion to physical function systems, and a theoretical
definition will be a formal variant of the unpredictability property of PUFs as dis-
cussed in Sect. 3.2.5. The second type of unpredictability, on the other hand, could
be regarded as a generalization of the uniqueness property of PUFs as discussed in
Sect. 3.2.3. Whereas uniqueness only requires that different PUF instances produce
sufficiently different responses, this type of unpredictability additionally requires
a more stringent apparent independence between the outputs of different physical
function systems. The formalization we propose next captures both types of unpre-
dictability in a single definition, as well as the continuum of intermediate cases.

Defining Unpredictability for Physical Function Systems

We again use a game-based approach to describe a model for the adversary A. We
distinguish between a weak and a strong prediction game, based on the control the
adversary has over picking the physical function systems and challenges which are
evaluated.

• The weak prediction game Gamepredict;weak
A (Plearn,Pchal, q) is a game between an

adversary A and an evaluation oracle OEval
Plearn,Pchal

which takes place in two phases:
a learning phase and a challenge phase.

• During the learning phase, A is allowed to query the oracle up to q times. When

queried, OEval
Plearn,Pchal

randomly selects pfsi
$← Plearn and xi

$← X and evaluates
(zi ,wi) ← pfsi (xi, ε). For each of these q queries, the adversary A is allowed to
observe the tuple (pfsi , xi, zi ,wi).

• During the challenge phase, OEval
Plearn,Pchal

randomly selects pfs
$← Pchal and

x
$← X , making sure that the combination (pfs, x) was never evaluated during



78 3 Physically Unclonable Functions: Properties

the learning phase, and evaluates (z,w) ← pfs(x, ε). The adversary A is now al-
lowed to observe the tuple (pfs, x,w).

• At the end of the game, the oracle outputs the tuple (pfs, x, z) and the adversary
outputs a prediction z′.

The strong prediction game Gamepredict;strong
A (Plearn,Pchal, q) is completely equiv-

alent to the weak prediction game, only now physical function systems and chal-
lenges are no longer randomly selected by the oracle, but are adaptively queried by
the adversary. In the learning phase, the adversary queries the oracle with up to q

tuples (pfsi ∈ Plearn, xi,wi) and learns the full evaluations (zi,w
′
i ) ← pfsi (xi,wi)

from the oracle. In the challenge phase, the adversary queries the oracle with a sin-
gle tuple (pfs ∈ Pchal, x,w) such that the combination (pfs, x) was never queried
during the learning phase. The oracle evaluates (z,w′) ← pfs(x,w) but A can only
observe w′ this time.

Definition 24 Let Plearn and Pchal be subsets containing physical function systems
from the same physical function infrastructure F . We say the physical function sys-
tems in Pchal are (λ, q)-weakly unpredictable with respect to Plearn if for every
probabilistic polynomial time adversary A, it holds that:

Pr
(
z = z′ : ((pfs, x, z), z′) ← Gamepredict;weak

A (Plearn,Pchal, q)
) ≤ λ · ρpfs(x).

Similarly, we say the physical function systems in Pchal are (λ, q)-strongly unpre-
dictable with respect to Plearn if for every probabilistic polynomial time adversary A,
it holds that:

Pr
(
z = z′ : ((pfs, x, z), z′) ← Gamepredict;strong

A (Plearn,Pchal, q)
) ≤ λ · ρpfs(x).

Note that Pchal and Plearn do not need to be mutually exclusive and can even be
identical. In fact, if Pchal = Plearn = {pfs}, i.e. we only consider the unpredictabil-
ity of a single pfs with respect to itself, then Definition 24 closely resembles the
classical notion of unpredictability of a random function.

3.3.7 Discussion

Most of the concepts and properties defined in this section are more rigid formal-
izations of concepts and properties which we introduced earlier in a more intuitive
way, respectively in Sects. 2.2.1 and 3.2.

• The formally defined notion of a physical function infrastructure (F ) coincides
almost completely with what we, rather intuitively, have called a PUF class (P) in
Sect. 2.2.1. Both describe a set of instantiations and a creation procedure (Create).

• A PUF instance (puf), described in Sect. 2.2.1 as having a physical state which
can be measured by an evaluation procedure (Eval), is equivalent to a formal phys-
ical function (pf) consisting of a physical component (p) and the same evaluation
procedure.



3.4 Conclusion 79

• Concrete extractor constructions have not yet been described, but are treated in
detail in Chap. 6. It is evident that they are captured formally by the rather generic
extraction procedure introduced in this section. The formal concept of a physical
function system coincides with the concatenation of a PUF with an extractor im-
plementation.

• The formally defined property of robustness of a physical function system is an
extension of the earlier introduced PUF property of reproducibility (cf. Defini-
tion 7), taking into account the effect of the extractor.

• Equivalently, the formal definition of cloning resistance is the extension of phys-
ical unclonability (cf. Definition 10), related to the formal version of robustness.

• The formal notion of unpredictability is defined in a broad sense, considering
both unpredictability with respect to the same instance as well as regarding other
instances. In that aspect, the formal unpredictability is to be considered as the
formalization of the earlier introduced unpredictability notion (cf. Definition 11,
describing unpredictability with regard to different responses on the same PUF in-
stance) in combination with a generalized version of uniqueness (cf. Definition 8,
describing differentness of responses with regard to other PUF instances).

The resemblance between these formal definitions and the rather intuitive con-
cepts and properties which we have defined earlier makes clear that the proposed
framework is of a significant practical value. This is strengthened by the fact that
most of the intuitive properties have been experimentally verified for many PUF
implementations and can hence be directly translated to their formal counterparts.
Evidently, to do this, the effect of the extractor needs to be taken into account.

3.4 Conclusion

Following an extensive study of 11 meaningful PUF properties on a representa-
tive subset of PUF constructions, and on a reference set of non-PUF constructions,
we are able to extract the defining properties of a PUF: identifiability and physical
unclonability, and by implication constructibility, evaluability, reproducibility and
uniqueness. The remaining properties of unpredictability, mathematical and true un-
clonability, one-wayness and tamper evidence are classified as nice-to-have, but are
not strictly required for a construction to be called a PUF. This also means that many
PUF proposals in fact do not exhibit these nice-to-have properties, or at the very best
it remains as yet unclear whether they do. In this light, the optical PUF as proposed
by Pappu et al. [105] serves as an exemplary prototype PUF, meeting all mentioned
properties to a major extent. Most intrinsic PUFs fall short on the property of math-
ematical unclonability, and the existence of a strong intrinsic PUF with motivated
and verified security guarantees remains an open question. One-wayness turns out
to be a particularly unfitting property for intrinsic PUFs, which is partially caused
by the ambiguity of considering the one-wayness of PUFs. Tamper evidence, while
often proclaimed as one of the major advantages of using PUFs, remains a question



80 3 Physically Unclonable Functions: Properties

mark for all intrinsic PUF proposals, as no experimental results on any construction
are known.

Based on these results and with the aim of formalizing these particularly inter-
esting properties, we introduce a framework for working with PUFs (and physical
functions in general) in a theoretical security setting. Using the introduced primi-
tives in this framework, we formally define robustness, physical unclonability and
unpredictability of a physical function.


	Chapter 3: Physically Unclonable Functions: Properties
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Chapter Goals
	3.1.3 Chapter Overview

	3.2 A Discussion on the Properties of PUFs
	3.2.1 Constructibility and Evaluability
	Constructibility
	Evaluability

	3.2.2 Reproducibility
	3.2.3 Uniqueness and Identiﬁability
	Uniqueness
	Identiﬁability

	3.2.4 Physical Unclonability
	3.2.5 Unpredictability
	3.2.6 Mathematical and True Unclonability
	True Unclonability

	3.2.7 One-Wayness
	3.2.8 Tamper Evidence
	3.2.9 PUF Properties Analysis and Discussion
	Representative Subset of Constructions
	Comparative Analysis

	3.2.10 Discussion on PUF Properties
	PUF Deﬁning Properties
	Nice-to-Have PUF Properties
	Improving PUF Properties


	3.3 Formalizing PUFs
	3.3.1 Earlier Formalization Attempts
	Physical One-Way Functions
	Physical Random Functions
	Weak and Strong PUFs
	PUFs and PUF-PRFs
	PUFs in the Universal Composition Framework

	3.3.2 Setup of the Formal Framework
	Objective
	Approach

	3.3.3 Deﬁnition and Expansion of a Physical Function
	Physical Function (pf)
	Extraction Algorithm (Extract)
	Physical Function System (pfs)
	Physical Function Infrastructure (F)
	Overview

	3.3.4 Robustness of a Physical Function System
	3.3.5 Physical Unclonability of a Physical Function System
	Deﬁning a (Physical) Clone
	Deﬁning Physical Unclonability

	3.3.6 Unpredictability of a Physical Function System
	Types of Unpredictability
	Deﬁning Unpredictability for Physical Function Systems

	3.3.7 Discussion

	3.4 Conclusion


