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Preface

This volume contains the proceedings of the Sixth International Symposium on
Algorithmic Game Theory (SAGT) held in Aachen, Germany, in October 2013.

The program of SAGT 2013 consists of three invited lectures and 25 presen-
tations of refereed submissions. The Program Committee selected 25 out of 65
submissions after a careful reviewing process.

The accepted submissions were invited to these proceedings. They cover var-
ious important aspects of algorithmic game theory such as solution concepts
in game theory, efficiency of equilibria and the price of anarchy, computational
aspects of equilibria and game theoretical measures, repeated games and conver-
gence of dynamics, evolution and learning in games, coordination and collective
action, network games and graph-theoretic aspects of social networks, voting
and social choice, as well as algorithmic mechanism design.

We would like to thank all authors who submitted their research work and all
Program Committee members and external reviewers for their effort in selecting
the program for SAGT 2013.

August 2013 Berthold Vöcking
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The Complexity of Fully Proportional Representation
for Single-Crossing Electorates

Piotr Skowron1, Lan Yu2, Piotr Faliszewski3, and Edith Elkind2

1 University of Warsaw, Poland
2 Nanyang Technological University, Singapore

3 AGH University of Science and Technology, Poland

Abstract. We study the complexity of winner determination in single-crossing
elections under two classic fully proportional representation rules—Chamberlin–
Courant’s rule and Monroe’s rule. Winner determination for these rules is known
to be NP-hard for unrestricted preferences. We show that for single-crossing
preferences this problem admits a polynomial-time algorithm for Chamberlin–
Courant’s rule, but remains NP-hard for Monroe’s rule. Our algorithm for Cham-
berlin–Courant’s rule can be modified to work for elections with bounded single-
crossing width. To circumvent the hardness result for Monroe’s rule, we consider
single-crossing elections that satisfy an additional constraint, namely, ones where
each candidate is ranked first by at least one voter (such elections are called nar-
cissistic). For single-crossing narcissistic elections, we provide an efficient algo-
rithm for the egalitarian version of Monroe’s rule.

1 Introduction

Parliamentary elections, i.e., procedures for selecting a fixed-size set of candidates that,
in some sense, best represent the voters, received a lot of attention in the literature. Some
well-known approaches include first-past-the-post system (FPTP), where the voters are
divided into districts and in each district a plurality election is held to find this district’s
representative; party-list systems, where the voters vote for parties and later the parties
distribute the seats among their members; SNTV (single nontransferable vote) and Bloc
rules, where the voters cast t-approval ballots and the rule picks k candidates with the
highest approval scores (here k is the target parliament size, and t = 1 for SNTV and
t = k for Bloc); and a variant of STV (single transferable vote). In this paper, we focus
on two voting rules that, for each voter, explicitly define the candidate that will represent
her in the parliament (such rules are said to provide fully proportional representation),
namely, Chamberlin–Courant’s rule [5] and Monroe’s rule [11]. Besides parliamentary
elections, winner determination algorithms for these rules can also be used for other
applications, such as resource allocation [11,16] and recommender systems [9].

Let us consider an election where we seek a k-member parliament chosen out of m
candidates by n voters. Both Chamberlin–Courant’s rule and Monroe’s rule work by
finding a functionΦ that assigns to each voter v the candidate that is to represent v in the

B. Vöcking (Ed.): SAGT 2013, LNCS 8146, pp. 1–12, 2013.
© Springer-Verlag Berlin Heidelberg 2013



2 P. Skowron et al.

parliament. This function is required to assign at most k candidates altogether1. Further,
under Monroe’s rule each candidate is either assigned to about n

k voters or to none. The
latter restriction does not apply to Chamberlin–Courant’s rule, where each selected can-
didate may represent an arbitrary number of voters, and, as a consequence, the parliament
elected in this manner may have to use weighted voting in its proceedings. Finally, each
voter should be represented by a candidate that this voter ranks as highly as possible.

To specify the last requirement formally, we assume that there is a global dissatis-
faction function α, α : N → N, such that α(i) is a voter’s dissatisfaction from being
represented by a candidate that she views as i-th best. (A typical example is Borda
dissatisfaction function αB given by αB(i) = i − 1.) In the utilitarian variants of
Chamberlin–Courant’s and Monroe’s rules we seek assignments that minimize the sum
of voters’ dissatisfactions; in the egalitarian variants (introduced recently by Betzler et
al. [3]) we seek assignments that minimize the dissatisfaction of the worst-off voter.

Chamberlin–Courant’s and Monroe’s rules have a number of attractive properties,
which distinguish them from other multiwinner rules. Indeed, they elect parliaments
that (at least in some sense) proportionally represent the voters, ensure that candidates
who are not individually popular cannot make it to the parliament even if they come
from very popular parties, and take minority candidates into account. Unfortunately,
these rules do have one flaw that makes them impractical: It is NP-hard to compute
their winners [13,9,3]. Nonetheless, these rules are so attractive that there is a growing
body of research on computing their winners exactly (e.g., through integer linear pro-
gramming formulations [12], by means of fixed-parameter tractability analysis [3], or
by considering restricted preference domains [3,18]) and approximately [9,16,15]. We
continue this line of research by considering the complexity of finding Chamberlin–
Courant and Monroe winners for the case where voters’ preferences are single-crossing.
Our results complement those of Betzler et al. [3] for single-peaked electorates.

Recall that voters are said to have single-crossing preferences if it is possible to
order them so that for every pair of candidates a, b the voters who prefer a to b form
a consecutive block on one side of the order and the voters who prefer b to a form
a consecutive block on the other side. For example, it is quite natural to assume that
the voters are aligned on the standard political left-right axis. Given two candidates a
and b, where a is viewed as more left-wing and b is viewed as more right-wing, the
left-leaning voters would prefer a to b and the right-leaning voters would prefer b to a.
While real-life elections are typically too noisy to have this property, it is plausible that
they are often close to single-crossing, and it is important to understand the complexity
of the idealized model before proceeding to study nearly single-crossing profiles.

Our main results are as follows: for single-crossing elections winner determination
under Chamberlin–Courant’s rule is in P (for every dissatisfaction function, and both
for the utilitarian and for the egalitarian version of this rule), but under Monroe’s rule it
is NP-hard. Our hardness result for Monroe’s rule applies to the utilitarian setting with
Borda dissatisfaction function. Our algorithm for Chamberlin–Courant’s rule extends

1 Under Monroe’s rule we are required to pick exactly k winners. Some authors also impose this
requirement in the case of Chamberlin–Courant’s rule, but allowing for smaller parliaments
appears to be more consistent with the spirit of this rule and is standard in its computational
analysis (see, e.g., [9,3,16,15,18]).
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to elections that have bounded single-crossing width (see [6,7]). Our proof proceeds by
showing that for single-crossing elections Chamberlin–Courant’s rule admits an optimal
assignment that has the contiguous blocks property: the set of voters assigned to an
elected representative forms a contiguous block in the voters’ order witnessing that the
election is single-crossing. This property can be interpreted as saying that each selected
candidate represents a group of voters who are fairly similar to each other, and we
believe it to be desirable in the context of proportional representation.

The NP-hardness result for Monroe’s rule motivates us to search for further domain
restrictions that may make this problem tractable. To this end, we focus on the egalitar-
ian version of Monroe’s rule and, following the example of Cornaz et al. [6], consider
elections that, in addition to being single-crossing, are narcissistic, i.e., have the prop-
erty that every candidate is ranked first by at least one voter. In parliamentary elections,
narcissistic profiles are very natural: we expect all candidates to vote for themselves.
We provide a polynomial-time algorithm for the egalitarian version of Monroe’s rule
for all elections that belong to this class. Our algorithm is based on the observation that
for single-crossing narcissistic elections under the egalitarian version of Monroe’s rule
there is always an optimal assignment that satisfies the contiguous blocks property.

In a sense, our result for single-crossing narcissistic elections is not new: it can be
shown that such elections are single-peaked (this result is implicit in the work of Bar-
berà and Moreno [1]), and Betzler et al. [3] provide a polynomial-time algorithm for
the egalitarian version of Monroe’s rule for single-peaked electorates. However, our
algorithm has two significant advantages over the one of Betzler et al.: First, it has con-
siderably better worst-case running time, and second, it produces assignments that have
the contiguous blocks property.

We omit some of the proofs due to space constraints; the full version of the paper is
available as a technical report [17].

2 Preliminaries

For every positive integer s, we let [s] denote the set {1, . . . , s}. An election is a pair
E = (C, V ) where C = {c1, . . . , cm} is a set of candidates and V = (v1, . . . , vn) is an
ordered list of voters. Each voter v ∈ V has a preference order �v, i.e., a linear order
over C that ranks all the candidates from the most desirable one to the least desirable
one. For each voter v ∈ V and each candidate c ∈ C, we denote by posv(c) the position
of c in v’s preference order (the top candidate has position 1 and the last candidate has
position ‖C‖). We refer to the list V as the preference profile. A list U is said to be a
sublist of a list V (denoted by U ⊆ V ) if U can be obtained from V by deleting voters.
An election (C′, V ′) is said to be a subelection of an election (C, V ) if C′ is a subset
of C and V ′ is obtained by taking a sublist of V and restricting the preferences of the
voters in that sublist to C′. Given a subset of candidates A, we denote by A→ a fixed
ordering of candidates in A and by A← the reverse of this ordering. Given two sets
A,B ⊂ C, we write · · · � A � B � . . . to denote a vote where all candidates in A are
ranked above all candidates in B.

Chamberlin–Courant’s and Monroe’s Rules. Both Chamberlin–Courant’s rule and
Monroe’s rule rely on the notion of a dissatisfaction function. This function specifies,
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for each i ∈ [m], a voter’ dissatisfaction from being represented by candidate she ranks
in position i. Formally, for an m-candidate election, a dissatisfaction function is a non-
decreasing function α : [m]→ N with α(1) = 0. We will typically be interested in fam-
ilies of dissatisfaction functions, (αm)∞m=1, with one function for each possible num-
ber of candidates. In particular, we will be interested in Borda dissatisfaction function
αm
B (i) = αB(i) = i − 1. We assume that our dissatisfaction functions are computable

in polynomial time with respect to m.
Let k be a positive integer. A k-CC-assignment function for an election E = (C, V )

is a mapping Φ : V → C such that ‖Φ(V )‖ ≤ k. A k-Monroe-assignment function for
E is a k-CC-assignment function that additionally satisfies the following constraints:
‖Φ(V )‖ = k, and for each c ∈ C either ‖Φ−1(c)‖ = 0 or 	nk 
 ≤ ‖Φ−1(c)‖ ≤
�nk �. That is, both assignment functions select (up to) k candidates, and a k-Monroe-
assignment function additionally ensures that each selected candidate is assigned to
roughly the same number of voters. For a given assignment function Φ, we say that
voter v ∈ V is represented (in the parliament) by candidate Φ(v). There are several
ways to measure the quality of an assignment functionΦ with respect to a dissatisfaction
function α; we use the following two:

1. �1(Φ) =
∑

i=1,...,n α(posvi(Φ(vi)));

2. �∞(Φ) = maxi=1,...,n α(posvi(Φ(vi))).

Intuitively, �1(Φ) takes the utilitarian view of measuring the sum of voters’ dissatisfac-
tions, whereas �∞ takes the egalitarian view of looking at the worst-off voter only.

We are now ready to define the voting rules that will be the subject of this paper.

Definition 1. For every family of dissatisfaction functions α = (αm)∞m=1, every R ∈
{CC, Monroe}, and every � ∈ {�1, �∞}, an α-�-R voting rule is a mapping that takes
an election E = (C, V ) and a positive integer k with k ≤ ‖C‖ as its input, and returns
a k-R-assignment function Φ for E that minimizes �(Φ) (if there are several optimal
assignments, the rule is free to return any of them).

Chamberlin and Courant [5] and Monroe [11] proposed the utilitarian variants of
their rules and focused on Borda dissatisfaction function (though Monroe also consid-
ered so-called k-approval dissatisfaction functions). Egalitarian variants of both rules
have been recently introduced by Betzler et al. [3].

Single-Crossing Profiles. The notion of single-crossing preferences dates back to the
work of Mirrlees [10]; we also point the reader to the work of Saporiti and Tohmé [14]
for some settings where single-crossing preferences are studied. Formally, this prefer-
ence domain is defined as follows.

Definition 2. An election E = (C, V ), where C = {c1, . . . , cm} is a set of candidates
and V = (v1, . . . , vn) is an ordered list of voters, is single-crossing (with respect to the
given order of voters) if for every pair of candidates a, b such that a �v1 b, there exists
a t ∈ [n] such that {i ∈ [n] | a �vi b} = [t].

Definition 2 refers to the ordering of the voters provided by V . Alternatively, one
could simply require existence of an ordering of the voters that satisfies the single-
crossing property. The advantage of our approach is that it simplifies notation, yet does
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not affect the complexity of the problems that we study: one can compute an order of
the voters that makes an election single-crossing, or decide that such an order does not
exist, in polynomial time [8,4].

3 Chamberlin–Courant’s Rule

We start our discussion by considering the complexity of winner determination under
Chamberlin–Courant’s rule, for the case of single-crossing profiles. A key observation
in our analysis is that for single-crossing profiles there always exists an optimal k-CC-
assignment function where the voters matched to a given candidate form contiguous
blocks within the voters’ order. In what follows, we will say that assignments of this
form have the contiguous blocks property. We believe that this property is desirable
from the social choice perspective: it means that voters who are represented by the
same candidate are quite similar, which makes it easier for the candidate to act in a
way that reflects the preferences of the group he represents. Later, we will see that the
contiguous blocks property also has useful algorithmic implications.

Lemma 1. Let E = (C, V ) be a single-crossing election, where C = {c1, . . . , cm},
V = (v1, . . . , vn), and v1 has preference order c1 � · · · � cm. Then for every k ∈ [m],
every dissatisfaction function α for m candidates, and every � ∈ {�1, �∞}, there is
an optimal k-CC-assignment Φ for α-�-CC such that for each candidate ci ∈ C, if
Φ−1(ci) = ∅ then there are two integers, ti and t′i, ti ≤ t′i, such that Φ−1(ci) =
{vti , vti+1, . . . , vt′i}. Moreover, for each i < j such that Φ−1(ci) = ∅ and Φ−1(cj) = ∅
it holds that t′i < tj .

Proof. Fix a single-crossing election E = (C, V ) with C = {c1, . . . , cm} and V =
(v1, . . . , vn), and let Φ be an optimal k-CC-assignment function for E under α-�-CC.
We assume without loss of generality that for each voter vi in V , the candidate Φ(vi) is
vi’s most preferred candidate is Φ(V ). Let cj be v1’s least preferred candidate in Φ(V ).
Now consider some voter vi such that Φ(vi) = cj . We have Φ(vi′ ) = cj for every voter
vi′ such that i′ > i. Indeed, suppose for the sake of contradiction that Φ(vi′ ) = ck for
k = j. By our choice of cj we have ck �1 cj . On the other hand, we have cj �i ck and
ck �i′ cj , a contradiction with E being a single-crossing election. Hence, the voters that
are matched to cj by Φ form a consecutive block at the end of the preference profile.

To see that for each c ∈ Φ(V ) it holds that voters in Φ−1(c) form a consecutive
block, it suffices to delete cj and the voters that are matched to cj from the profile,
decrease k by one, and repeat the same argument. ��
Lemma 1 suggests a dynamic programming algorithm for Chamberlin–Courant’s rule.

Theorem 1. For every family α of polynomial-time computable dissatisfaction func-
tions and for � ∈ {�1, �∞}, there is a polynomial-time algorithm that given a single-
crossing election E and a positive integer k finds an optimal k-CC-assignment for E
under α-�-CC.

Following the ideas of Cornaz et al. [6,7], we can extend our algorithm to profiles
with so-called bounded single-crossing width.



6 P. Skowron et al.

Definition 3. A set D, D ⊆ C, is a clone set in an election E = (C, V ) if each voter in
V ranks the candidates from D consecutively (but not necessarily in the same order).

Definition 4. An election E = (C, V ) has single-crossing width at most w if there
exists a partition of C into sets D1, . . . , Dt such that (a) for each i ∈ [t] the set Di is a
clone set in E and ‖Di‖ ≤ w, and (b) if we contract each Di in each vote to a single
candidate di, then the resulting preference profile is single-crossing.

Profiles with small single-crossing width may arise, e.g., in parliamentary elections
where the candidates are divided into (small) parties and the voters have single-crossing
preferences over the parties, but not necessarily over the candidates. Using the same
techniques as Cornaz et al., we obtain the following result.

Proposition 1. For every family α of polynomial-time computable dissatisfaction func-
tions and for every � ∈ {�1, �∞}, there is an algorithm that given an election E =
(C, V ) with C = {c1, . . . , cm}, V = (v1, . . . , vn) whose single-crossing width is
bounded by w, a partition of C into clone sets that witnesses this width bound, and
a positive integer k, finds an optimal k-CC-assignment for E under α-�-CC, and runs
in time poly(m,n, k, 2w).

Naturally, for this result to be useful, we need an efficient algorithm that computes
single-crossing width of a profile and an appropriate division into clone sets. Fortu-
nately, such an algorithm is provided by Cornaz et al. [7]. (Interestingly, a very similar
problem of finding a division into clones that results in a single-crossing election with as
many candidates as possible is NP-hard [8]). As a consequence, we have the following
corollary.

Corollary 1. For every family α of polynomial-time computable dissatisfaction func-
tions and for every � ∈ {�1, �∞}, the problem of winner determination for α-�-CC is
fixed-parameter tractable with respect to the single-crossing width of the input profile.

4 Monroe’s Rule

The results of Betzler et al. [3] suggest that winner determination under Monroe’s rule
tends to be harder than winner determination under Chamberlin–Courant’s rule. In this
section, we show that this is also the case for single-crossing profiles: we prove that
for the utilitarian variant of Monroe’s rule with Borda dissatisfaction function (perhaps
the most natural variant of Monroe’s rule) computing winners is NP-hard, even for
single-crossing elections. We then complement this hardness result by showing that for
the egalitarian version of Monroe’s rule winner determination is easy if we additionally
assume that the preferences are narcissistic.

4.1 Hardness for General Single-Crossing Profiles

This section is devoted to proving that winner determination under Monroe’s rule is
NP-hard. The main idea of the proof is to reduce the problem of winner determination
for unrestricted profiles to the case of single-crossing profiles.
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Table 1. The profile used in the proof of Theorem 2. For each voter list Vi, 1 ≤ i ≤ 5, and for
each voter v in Vi we list the (sets of) candidates in the order of v’s preference (we omit the “�”
symbol for readability). Whenever we list a set of candidates as a part of an order, we assume that
the candidates in this set are ordered in some fixed, easily-computable way (for candidates in H
we fix this order to be h1 � · · · � hm−k). Further, when in a line describing a preference order
of an entire collection of voters Vr = (v1, . . . , vs) (specifically, for us r is either 2, 4, or 5, and s
is the number of voters in this list of voters) we include a profile V ′ = (v′1, . . . , v

′
s) (in our case

V ′ is either an R-profile or an Adj-profile), then we mean that for each voter vi, i ∈ [s], in Vr,
this part of this voter’s preference order is the preference order of v′i in V ′.

V1 : H R−1(F1 . . . Fm E Em . . . E1) c1 . . . cm D1 . . . Dm G1 . . . Gm G
V2 : H R(R−1(F1 . . . Fm E Em . . . E1)) c1 . . . cm D1 . . . Dm G1 . . . Gm G

v13 : H F1 · · ·Fm E Em . . . E2 c1 E1 c2 . . . cm D1 . . . Dm G1 . . . Gm G
v23 : H F1 · · ·Fm E D1 Em . . . E3 c2 E2 c3 . . . cm c1 E1 D2 . . . Dm G1 . . . Gm G

...
vm3 :H F1 · · ·Fm E D1 . . . Dm−1 cm Em cm−1 . . . c1 Em−1 . . . E1 Dm G1 . . . Gm G

V4 : H D1 . . . Dm Adj(F1, cm, G1) . . . Adj(Fm, c1, Gm) E Em . . . E1 G
V5 : H R(D1 . . . Dm G1 . . . Gm G) cm . . . c1 F1 . . . Fm E Em . . . E1

Theorem 2. Finding a set of winners under αB-�1-Monroe voting rule is NP-hard,
even for single-crossing preferences.

The proof of this theorem is somewhat involved. We first need the following two
technical lemmas.

Lemma 2. Let E = (C, V ) be an election, where C = {c1, . . . , cm} and V =
(v1, . . . , vn). Let A and B be two disjoint sets of candidates such that ‖A‖ = ‖B‖ =
mn. For each ci ∈ C, there is a single-crossing election AdjV (A, ci, B) with candidate
set A∪B∪{ci} and voter list V ′ = (v′1, . . . , v

′
n) such that posv′

j
(ci) = mn+posvj(ci)

for each j ∈ [n], and the profile (v′0, v
′
1, . . . , v

′
n, v
′
n+1), where v′0 has preference or-

der a1 � · · · � a‖A‖ � ci � b1 � · · · � b‖B‖ and v′n+1 has preference order
b1 � · · · � b‖B‖ � ci � a1 � · · · � a‖A‖, is also single-crossing.

Lemma 3. For every pair of positive integers k, n such that k divides n, and every set
C = {c1, . . . , cm} of candidates, there is a single-crossing profile R(C) with (nk +1)m
voters such that each candidate ci ∈ C is ranked first by exactly (nk + 1) voters.

We also need some additional notation. If C→ is an order of candidates in C, then by
R(C→) we denote the election that we would construct in Lemma 3 if the first voter’s
preference order was C→ (i.e., if we took c1 to be the top candidate according to C→, c2
to be the second one, and so on). By R−1(C→) we denote an orderC′→ of the candidates
in C such that R(C′→) produces an election where the last voter has preference order
C→. We are now ready to give our proof of Theorem 2.

Proof of Theorem 2. Let I be an instance of the problem of finding k winners under
αB-�1-Monroe rule and let (C, V ) be the election considered in I . Set n = ‖V ‖ and
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m = ‖C‖. We assume that n is divisible by k and that n > k (computing αB-�1-
Monroe winners is still NP-hard under these assumptions [3,16]). We will show how to
construct in polynomial time an instance Isc of the problem of finding winners under
αB-�1-Monroe where the election is single-crossing so that it is easy to extract the set
of winners for I from the set of winners for Isc.

We construct Isc in the following way. First, we define the candidate set Csc to be
the union of the following disjoint sets (we provide names of the candidates only where
relevant and abbreviate

∑m
i=1 to

∑
i):

1. H = {h1, . . . , hm−k}, where ‖H‖ = m− k;
2. F1, . . . Fm, where ‖Fi‖ = mn for each i ∈ [m];
3. E1, . . . Em, where ‖Ei‖ = 2m2n+m+ (m− i)(2mn+ 1)nk for each i ∈ [m];
4. E, where ‖E‖ = m2n+m;
5. D1, . . . , Dm, where ‖Di‖ = ‖Ei‖ for each i ∈ [m];
6. G1, . . . , Gm, where ‖Gi‖ = ‖Fi‖ = mn for each i ∈ [m];
7. G, where ‖G‖ = (

∑
i ‖Fi‖+ ‖E‖);

8. C′ = C = {c1, . . . , cm}.
The ordered list Vsc of voters consists of the following five sublists (we only give names
to those voters to whom we will refer directly later; whenever sufficient, we only give
the number of voters in a given list):

1. V1, ‖V1‖ = ‖H‖nk = (m− k)nk ;
2. V2, ‖V2‖ = (

∑
i ‖Fi‖+

∑
i ‖Ei‖+ ‖E‖)(nk + 1);

3. V3 = (v13 , . . . , v
m
3 ), ‖V3‖ = m;

4. V4, ‖V4‖ = n;
5. V5, ‖V5‖ = (

∑
i ‖Di‖+

∑
i ‖Gi‖+ ‖G‖)(nk + 1).

We give the preferences of the voters in Table 1. In the thus-defined profile our goal
is to find a parliament of size ksc = ‖Csc‖ − (m − k). Consequently, each selected
candidate should be assigned to n

k + 1 voters.
We claim that each optimal solution for Isc satisfies the following conditions; we let

Φsc denote one such optimal solution.

(i) Each candidate c ∈ F1∪· · ·∪Fm∪E ∪Em∪· · ·∪E1 is a winner and is assigned
to those voters from V1 + V2 that rank c in position ‖H‖+ 1 = m− k + 1 (note
that only one of these candidates can be assigned to (some of the) voters in V1).

(ii) Each candidate c ∈ D1∪· · ·∪Dm∪G1∪· · ·∪Gm∪G is a winner and is assigned
to those voters from V5 that rank c in position ‖H‖+ 1 = m− k + 1.

(iii) Each candidatehi ∈ H is a winner and is assigned to n
k+1 voters fromV1+V2+V3

(exactly ‖H‖ voters from V3 have some candidate from H assigned to them); each
such voter ranks hi in position i.

(iv) Exactly k candidates from C′ are winners. Each of them is assigned to n
k voters in

V4 and to one voter in V3 that ranks him highest.
(v) The k winners from C′ (let us call them w1, . . . , wk) are also αB-�1-Monroe win-

ners in I and each of them is assigned in Isc to the voters corresponding to those
from the I-solution.
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Let us now show that indeed the optimal solution is of this form. First, we make the
following observations:

(a) By a simple counting argument, at least k of the candidates from C′ must be in-
cluded in the optimal solution.

(b) For each candidate hi in H , if hi is part of the optimal solution then hi is ranked
in the i-th position in the preference order of the voters to which hi is assigned
(candidates from H are always ranked first, in the order h1 � · · · � hm).

(c) For each candidate c ∈ Csc \ (C′ ∪H), if c is included in the optimal solution then
each voter to which c is assigned ranks c in position m − k + 1 or worse (this is
because every voter’s top m− k positions are taken by the candidates from H).

(d) Each voter in V1 + V2 + V5 ranks each candidate in C′ in position worse than
p1 = ‖H‖+∑i ‖Ei‖+

∑
i ‖Fi‖+ ‖E‖ > ‖H‖+

∑
i ‖Ei‖+ 2m2n+m.

(e) Each voter in V4 ranks each candidate in C′ in position better than p2 = ‖H‖ +∑
i ‖Di‖+

∑
i ‖Fi‖+

∑
i ‖Gi‖+m = ‖H‖+∑i ‖Ei‖+2m2n+m, but worse

than p3 = ‖H‖+∑i ‖Ei‖.
(f) p1 > p2.
(g) For each candidate c ∈ C′, there is exactly one voter in V3 that ranks c in a

position no worse than p4 = ‖H‖ +
∑

i ‖Fi‖ +
∑

i<m ‖Ei‖ + ‖E‖ + 1 =
‖H‖+∑i<m ‖Ei‖+ ‖E‖+m2n+ 1 < ‖H‖+∑i ‖Ei‖ = p3; all other voters
in V3 rank c in a position worse than p5 = ‖H‖+∑i ‖Ei‖ +

∑
i ‖Fi‖ + ‖E‖ =

‖H‖+∑i ‖Ei‖+ 2m2n+m = p2.

Let Φ be an optimal assignment function among those that use exactly k candidates
from C′. We claim that Φ satisfies conditions (i)–(iv). This is so, because assigning
voters from V4 to candidates other than those in C′ will result in a strictly worse assign-
ment (the assignment would get worse for the candidates in C′ because of points (d),
(e), (f) and (g), and it would not improve for the other candidates because of points (b)
and (c)). Similarly, each of the k selected candidates from C′ should be assigned to
exactly one voter from V3—the one that ranks this candidate highest. Once we assign
the k winners from C′ to the voters in V4 and to k voters in V3, the optimal way to
complete the assignment is to do so as described in conditions (i)–(iv).

Let Φ be an optimal assignment function for Isc that uses exactly k candidates from
C′ and that satisfies conditions (i)–(iv). We now prove that it also satisfies condition (v).
Consider a candidate ci ∈ C′ that is included in the set of winners under Φ. Let V ci

4 be
the sublist of the voters from V4 that are assigned to ci under Φ (naturally, ‖V ci

4 ‖ = n
k ).

Let V ci be the sublist of V containing the voters corresponding to those in V ci
4 (again,

‖V ci‖ = n
k ). Let s(V ci

4 ) be the dissatisfaction of the voters in V ci
4 under Φ and let

s(V ci) denote the dissatisfaction the voters in V ci would have if they were assigned to
ci (in I). The total dissatisfaction of the voters assigned to ci under Φ is:

(‖H‖+∑j ‖Ej‖+
∑

j ‖Fj‖+ ‖E‖ − ‖Ei‖) + s(V ci
4 ) =

(‖H‖+∑j ‖Ej‖+
∑

j ‖Fj‖+ ‖E‖ − 2m2n−m− (m− i)(2mn+ 1)nk )

+ n
k (‖H‖+

∑
j ‖Dj‖+ (m− i)(2mn+ 1) +mn) + s(V ci)) =

(nk + 1)(‖H‖+∑j ‖Ej‖+mn) + s(V ci),
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which shows that the dissatisfaction of the voters in Isc that are assigned to ci under Φ
differs from the dissatisfaction of the respective voters in I , had they been assigned to
ci, only by a value that depends on n, m, and k (but not on i). Thus condition (v) holds.

It remains to show that an optimal assignment function for Isc uses exactly k candi-
dates from C′. We omit this part of the proof (see the full version of the paper [17]).

We conclude that an optimal assignment function Φsc assigns voters to exactly k
candidates from C′ and that the dissatisfaction of the voters in Isc under Φsc is equal
to the optimal dissatisfaction of the voters in I plus an easily computable value that
depends on m, n, and k only. This completes the proof. �

Betzler et al. [3] have shown a similar hardness result for single-peaked elections; how-
ever, their construction uses an artificial dissatisfaction function rather than Borda. The
complexity of winner determination under αB-�1-Monroe for single-peaked elections is
still an open question. As our result answers this question in the case of single-crossing
elections, it is tempting to ask if our proof approach could be used for single-peaked
elections. Unfortunately, this does not seem to be the case. The difficulty lies in jointly
implementing voters V3+V4 (and, in particular, positioning the candidates c1, . . . , cm).

4.2 �∞-Monroe for Single-Crossing Narcissistic Profiles

Given our hardness result for Monroe’s rule, it is natural to ask if we can further restrict
the problem of computing Monroe winners to obtain tractability. To this end, we focus
on the egalitarian version of Monroe’e rule (the results of Betzler et al. [3] suggest that
it is likely to be more tractable than the utilitarian version of this rule), and consider an
additional domain restriction, namely, narcissistic preferences.

An election is said to be narcissistic if every candidate is ranked first by at least one
voter. Intuitively, such elections arise when candidates are allowed to vote for them-
selves. This notion was introduced by Bartholdi and Trick [2], and was used in the
context of fully proportional representation by Cornaz et al. [6]. It turns out that it is
useful in our setting, too: we will show that the egalitarian version of Monroe’s rule
admits an efficient winner determination algorithm under single-crossing narcissistic
preferences.

Lemma 4. Let E = (C, V ) be a single-crossing narcissistic election with the candi-
date set C = {c1, . . . , cm} and voter collection V = (v1, . . . , vn), where v1 has pref-
erence order c1 � · · · � cm. For every k ∈ [m] and every dissatisfaction function α for
m candidates, there is an optimal k-Monroe assignment Φ for E under α-�∞-Monroe
such that for each candidate ci ∈ C, if Φ−1(ci) = ∅ then there are two integers, ti and
t′i, ti ≤ t′i, such that Φ−1(ci) = {vti , vti+1, . . . , vt′i}. Moreover, for each i < j such
that Φ−1(ci) = ∅ and Φ−1(cj) = ∅ it holds that t′i < tj .

Based on Lemma 4, it is easy to construct a dynamic programming algorithm for
�∞-Monroe.

Theorem 3. For every family α of polynomial-time computable dissatisfaction func-
tions, there is a polynomial-time algorithm that given a single-crossing narcissistic
election E and a positive integer k finds an optimal k-Monroe assignment for E un-
der α-�∞-Monroe.
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Unfortunately, the same approach does not work for the utilitarian variant of the
Monroe’s rule: the full version of this paper [17] contains an example showing that
Lemma 4 no longer holds for the utilitarian setting (with Borda dissatisfaction function).

In a way, Theorem 3 is not new: It can be shown that narcissistic elections are nec-
essarily single-peaked (this is implicit in the work of Barberà and Moreno [1]), and
for single-peaked elections Betzler et al [3] provide a polynomial-time algorithm for
�∞-Monroe (Proposition 5 in [3]). Thus, if we only care about polynomial-time com-
putability, Theorem 3 does not appear to be useful. However, there are two reasons to
prefer the algorithm described in Theorem 3. First, our algorithm is considerably faster:
the running time of Betzler et al.’s algorithm is O(n3m3k3), while for our algorithm
it is O(nm2k). Second, our algorithm produces an assignment that has the contiguous
blocks property. In contrast, in the full version of our paper [17]. we show that this is
not necessarily the case for the algorithm of Betzler et al.

5 Conclusions

We have investiagted the complexity of winner determination under Chamberlin–Cou-
rant’s and Monroe’s rules, for the case of single-crossing profiles. We have presented a
polynomial-time algorithm for Chamberlin–Courant’s rule for single-crossing elections
(and for elections that are close to being single-crossing in the sense of having bounded
single-crossing width), and an NP-hardness proof for Monroe’s rule for the same set-
ting. Our results further strengthen the intuition that Monroe’s rule is algorithmically
harder than Chamberlin–Courant’s rule. Similar conclusions follow from the work of
Betzler et al. [3] and Skowron et al. [16]

Inspired by our negative result for Monroe’s rule, we have sought further natural re-
strictions on voters’ preferences. To this end, we considered single-crossing narcissistic
profiles and developed an efficient algorithm for the egalitarian version of Monroe’s
rule under this preference restriction. However, our approach does not extend to gen-
eral single-crossing elections, or to the utilitarian version of Monroe’s rule (see the full
version of our paper [17]).

Perhaps the most obvious direction for future research that is suggested by our work
is understanding the computational complexity of the utilitarian version of Monroe’s
rule for single-crossing narcissistic elections and of egalitarian version of Monroe’s
rule for single-crossing elections. While we have shown that approaches based on the
contiguous blocks property are bound to fail, other approaches may be more successful.
Going in another direction, perhaps it is possible to obtain efficient algorithms for our
restricted domains when using dissatisfaction functions other than Borda.
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Jérome Lang1, Nicolas Maudet2, and Maria Polukarov3
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Abstract. We consider a voting setting where candidates have preferences about
the outcome of the election and are free to join or leave the election. The cor-
responding candidacy game, where candidates choose strategically to partici-
pate or not, has been studied in very few papers, mainly by Dutta et al. [5,6],
who showed that no non-dictatorial voting procedure satisfying unanimity is
candidacy-strategyproof, or equivalently, is such that the joint action where all
candidates enter the election is always a pure strategy Nash equilibrium. They
also showed that for voting trees, there are candidacy games with no pure strat-
egy equilibria. However, no results were known about other voting rules. Here
we prove several such results. Some are positive (a pure strategy Nash equilib-
rium is guaranteed for Copeland and the uncovered set, whichever is the number
of candidates, and for all Condorcet-consistent rules, for 4 candidates). Some are
negative, namely for plurality and maximin.

1 Introduction

The two main criteria for the evaluation of voting rules are their ability to resist vari-
ous sorts of strategic behaviour and to adapt to changes in the environment. Many (if
not most) papers in computational social choice deal with (at least) one of these issues.
Typically, strategic behaviour is shown by the voters reporting insincere votes (manip-
ulation); by a third party, usually the chair, acting on the set of voters or candidates
(control), or on the votes (bribery and lobbying), or on the voting rule (e.g., agenda
control)1; finally, it can arise among the candidates themselves, who may also have
preferences about the outcome of the election. However, the latter case has received
little attention in (computational) social choice comparing to the former two. One form
thereof involves choosing optimal political platforms, but probably the simplest form
comes from the very ability of candidates to decide whether to run for the election or
not, which is the issue we address in this paper. The following table summarises this
rough classification of strategic behaviour in voting, according to the identity of strate-
gising agent(s) and also to another relevant dimension, namely what the strategic actions
bear on—voters, votes or candidates (we omit the agenda to keep the table small).

1 There are also some forms of strategic behaviour that are specific to multiwinner elections,
such as gerrymandering (by the chair) or vote pairing (by the voters).
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actions→
agents ↓ voters votes candidates

voters strategic participation manipulation -

third party / chair voter control bribery, lobbying
candidate control,

cloning
candidates - - strategic candidacy

Strategic candidacy does happen frequently in real-life elections, both in large-scale
political elections and in small-scale, low-stake elections (e.g., electing a chair in a re-
search group). Throughout the paper we consider a finite set of potential candidates,
which we simply call candidates when this is not ambiguous, and we make the follow-
ing assumptions:
1. each candidate may choose to run or not for the election;
2. each candidate has a preference ranking over candidates;
3. each candidate ranks himself on top of his ranking;
4. the candidates’ preferences are common knowledge among them;
5. the outcome of the election as a function of the set of candidates who choose to run

is common knowledge among the candidates.
With the exception of 3, these assumptions were also made in the original model of
Dutta et al. [5] which we discuss below. Assumption 2 amounts to saying that a candi-
date is interested only in the winner of the election2 and has no indifferences or incom-
parabilities. Assumption 3 (considered as optional in [5]) is a natural domain restriction
in most contexts. Assumptions 4 and 5 are common game-theoretic assumptions: note
that we do not have to assume that the candidates know precisely how voters will vote,
nor even the number of voters—they just have to know the choice function mapping
every subset of candidates to a winner.

Existing work on strategic candidacy is rather scarce. It starts with [5] and [6],
that formulate the strategic candidacy game and prove the following results (among
others): (i) no non-dictatorial voting procedure satisfying unanimity is candidacy-
strategyproof—or equivalently, is such that the joint action where all candidates enter
the election is always a pure strategy Nash equilibrium; (ii) for the specific case of
voting trees, there are candidacy games with no pure strategy Nash equilibria. These
results are discussed further (together with simpler proofs) [7], and extended to voting
correspondences [9,15] and to probabilistic voting rules [14].

Many questions remain unsolved. In particular, studying the solution concepts (such
as Nash equilibria or strong equilibria) of a candidacy game would help predict the set of
actual candidates and hence, the outcome of the vote, and therefore help design better
elections. However, little is known about this: we only know that for any reasonable
voting rule, there are some candidacy games for which the set of all candidates is not a
Nash equilibrium, and that for voting trees, there exist a candidacy game with no pure
strategy Nash equilibrium.

2 In some contexts, candidates may have more refined preferences that bear for instance on the
number of votes they get, how their score compares to that of other candidates etc. We do not
consider these here.
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In this paper, we go further in this direction and prove some positive as well as
some negative results. We first consider the case of 4 candidates and show that a pure
strategy Nash equilibrium always exists for Condorcet-consistent rules. Then we show
that for Copeland and the uncovered set there is always an equilibrium in pure strategies,
whichever is the number of candidates (although strong equilibria are not guaranteed to
exist). On the negative side, we show that for plurality, for at least 4 candidates, and for
maximin for at least 5 candidates, there are candidacy games without Nash equilibria.

Although it seems that strategic candidacy has not been considered yet in computa-
tional social choice, it is related to some questions that have received some attention in
this community. First, the existence of strong equilibria is related to a stronger variant
of candidate control (see the last paragraph of the conclusion). Other somewhat less
related works that also consider a dynamic set of candidates are candidate cloning [8],
possible winners with new candidates [3], and the unavailable candidate model [12].

The paper unfolds as follows. In Section 2 we define the strategic candidacy games
and give a few preliminary results. In Section 3 we focus on the case of 4 candidates,
whereas the case of 5 or more candidates is considered in Section 4. Finally, in Section
5 we discuss further issues, including the relation to candidate control.

2 Model and Preliminaries

In this section, we formally define the model of strategic candidacy and show that it
induces a normal form game. We then present two simple results on the existence of
Nash equilibria and strong equilibria in this setting.

2.1 Voting Rules

For completeness, we first define the common voting rules that we study in this paper.
There is a set of n voters electing from a set of m candidates. A single vote is a

strict ordering of the candidates. A voting rule takes all the votes as input, and produces
an outcome—a candidate, called the winner of the election. Although voting rules are
usually defined for a fixed number of candidates, here we naturally extend the defini-
tion to an arbitrary number of candidates. All voting rules we consider in this work
are resolute: we first define their irresolute version and assume that ties are broken up
according to a fixed priority relation over candidates. Since voting rules are applied to
varying sets of candidates, we assume that the tie-breaking rule is defined for the whole
set of potential candidates, and projected to smaller sets of candidates; in other terms,
if x has priority over y when all potential candidates run, this will still be the case for
any set of candidates that contains x and y.

The plurality winner is the candidate that is ranked first by the largest number of
voters. The Borda winner is the candidate who gets the highest Borda score: for each
voter, a candidate c receives q − 1 points (where q is the number of candidates that are
actually running) if it is ranked first by that voter, q−2 if it is ranked second, and so on;
the Borda score B(c) of c is the total number of points he receives from all the voters.

Let N(c, x) be the number of votes that rank c higher than x. The majority graph
associated with a set of votes is the graph whose vertices are the candidates and con-
taining an edge from x to y whenever N(x, y) > n

2 (when this holds we say that x
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“beats” y). A candidate c is a Condorcet winner if x beats y for all y = x. A voting rule
is Condorcet-consistent if it always elects a Condorcet winner when one exists.

The maximin rule chooses the candidate c for whom minx∈X\{c}N(c, x) is max-
imal. The Copeland0 (resp., Copeland1) rule elects the candidate c maximising the
number of candidates x such that N(c, x) > n

2 (resp., N(c, x) ≥ n
2 ). The uncovered

set (UC) rule selects the winner from the “uncovered set of candidates”: a candidate c
belongs to the uncovered set if and only if, for any other candidate x, if x beats c then c
beats some y that beats x.

2.2 Strategic Candidacy

There is a set X = {x1, x2, . . . xm} of m potential candidates, and a set V =
{1, 2, . . . n} of n voters. We assume that these sets of voters and candidates are dis-
joint. As is classical in social choice theory, each voter i ∈ V has a preference relation
Pi, over the different candidates—i.e., a strict order ranking the candidates. The com-
bination P = (P1, P2, . . . , Pn) of all the voters’ preferences defines their preference
profile.

Furthermore, each candidate also has a strict preference ordering over the candidates.
We naturally assume that the candidates’ preferences are self-supported—that is, the
candidates rank themselves at the top of their ordering. Let PX = (PX

c )c∈X denote the
candidates’ preference profile. Following PX , the potential candidates may decide to
enter an election or withdraw their candidacy. Thus, the voters will only express their
preferences over a subset Y ⊆ X of the candidates that will have chosen to participate
in the election, and we denote by P ↓Y the restriction of P to Y . We assume that the
voters are sincere.

Given a profile P of the voters’ preferences, a voting rule r defines a (single) winner
among the actual candidates—i.e., given a subset Y ⊆ X of candidates, it assigns to
a (restricted) profile P ↓Y a member of Y . Each such voting rule r induces a natural
game form, where the set of players is given by the set of potential candidates X , and
the strategy set available to each player is {0, 1} with 1 corresponding to entering the
election and 0 standing for withdrawal of candidacy. A state s of the game is a vec-
tor of strategies (sc)c∈X , where sc ∈ {0, 1}. For convenience, we use s−z to denote
(sc)c∈X\{z}—i.e., s reduced by the single entry of player z. Similarly, for a state s we
use sZ to denote the strategy choices of a coalition Z ⊆ X and s−Z for the comple-
ment, and we write s = (sZ , s−Z).

The outcome of a state s is r
(
P ↓Y

)
where c ∈ Y if and only if sc = 1.3 Coupled

with a profile PX of the candidates’ preferences, this defines a normal form game Γ =
〈X,P, r, PX〉with m players. Here, player c prefers outcomeΓ (s) over outcomeΓ (s′)
if ordering PX

c ranks Γ (s) higher than Γ (s′).

2.3 Game-Theoretic Concepts

Having defined a normal form game, we can now apply standard game-theoretic solu-
tion concepts. Let Γ = 〈X,P, r, PX〉 be a candidacy game, and let s be a state in Γ .

3 When clear from the context, we use vector s to also denote the set of candidates Y that cor-
responds to state s; e.g., if X = {x1, x2, x3}, we write {x1, x3} and (1,0,1) interchangeably.
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We say that a coalition Z ⊆ X has an improving move in s if there is s′Z such that
Γ (s−Z , s′Z) is preferable over Γ (s) by every player z ∈ Z . In particular, the improving
move is unilateral if |Z| = 1. A (pure strategy) Nash equilibrium (NE) [13] is a state
that has no unilateral improving moves. More generally, a state is a k-NE if no coalition
with |Z| ≤ k has an improving move. A strong equilibrium (SE) ([1]) is a state that has
no improving moves.

Example 1. Consider the game 〈{a, b, c, d}, P, r, PX〉, where r is the Borda rule, and
P and PX are as follows4:

P PX

1 1 1 1 1 1 1

b c c a d b a
d d d c a c b
a a b b c d c
c b a d b a d

a b c d

a b c d
d a b a
b d a c
c c d b

The state (1,1,1,1) is not an NE: abcd �→ c, but abc �→ a, and d prefers a to c, so for
d, leaving is an improving move. Now, (1,1,1,0) is an NE, as nobody has an improving
move neither by joining (d prefers a over c), nor by leaving (obviously not a; if b or c
leaves then the winner is still a). It can be checked that this is also an SE.

2.4 Preliminary Results

Regardless of the number of voters and the voting rule, a straightforward observation
is that a candidacy game with three candidates is guaranteed to possess an NE.5 This,
however, is not true for SE.6 For any number of candidates, the following result holds.

Proposition 1. Let Γ = 〈X,P, r, PX〉 be a candidacy game where r is Condorcet-
consistent. If P has a Condorcet winner c then for any Y ⊆ X ,

Y is a SE⇔ Y is an NE⇔ c ∈ Y .

Proof. Assume c is a Condorcet winner for P and let Y ⊆ X such that c ∈ Y . Be-
cause r is Condorcet-consistent, and because c is a Condorcet winner for P ↓Y , we have
r
(
P ↓Y

)
= c. Assume Z = Z+∪Z− is a deviating coalition from Y , with Z+ the can-

didates who join andZ− the candidates who leave the election. Clearly, c /∈ Z , as c ∈ Y

and c has no interest to leave. Therefore, c is still a Condorcet winner in P ↓(Y \Z
−)∪Z+

,

4 In our examples, we assume a lexicographic tie-breaking. We also use the simplified notation
Y �→ x to denote that rule r applied to the subset of candidates Y ⊆ X is x, and we omit
curly brackets. The first row in P indicates the number of voters casting the different ballots.

5 This can be easily seen: Let X = {a, b, c} and suppose w.l.o.g. that abc �→ a. If {a, b, c} is
not an NE, then either (1) ab �→ b and c prefers b to a, or (2) ac �→ c and b prefers c to a.
Since b and c play symmetric roles, w.l.o.g., assume (1). Then {a, b} is an NE.

6 Here is a counterexample (for which we thank an anonymous reviewer of the previous version
of the paper). The selection rule is abc �→ b; ab �→ a; ac �→ c; bc �→ c; it can be easily
implemented by the scoring rule with scoring vector (5, 4, 0〉 with 5 voters. Preferences of
candidates are: a : a � b � c; b : b � c � a; c : c � a � b. The group deviations are: in
{a, b, c}, c leaves; in {a, b}, b leaves and c joins; in {a, c}, b joins; in {b, c}, a joins; in {a},
c joins; in {b}, c joins; in {c}, a and b join.
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which by the Condorcet-consistency of r implies that r
(
P ↓(Y \Z

−)∪Z+
)
= c, which

contradicts the assumption that Z wants to deviate. We thus conclude that Y is an SE,
and a fortiori an NE. Finally, let Y ⊆ X such that c /∈ Y . Then, Y is not an NE (and a
fortiori not an SE), because c has an interest to join the election. �

Now, if P has no Condorcet winner, the analysis becomes more complicated. We
provide results for this more general case in the following sections. Interestingly, as
we demonstrate, some Condorcet-consistent rules (e.g., Copeland and UC) do always
possess a Nash equilibrium in this case, while some other (e.g., maximin) do not.

3 Four Candidates

With only 4 potential candidates, we exhibit a sharp contrast between Condorcet con-
sistent rules, which all possess an NE, and scoring rules.

3.1 Scoring Rules

To study scoring rules, we make use of a very powerful result by Saari [16]. It states that
for almost all scoring rules, any conceivable choice function can result from a voting
profile. This means that our question boils down to checking whether a choice function,
together with some coherent candidates’ preferences, can be found such that no NE
exists with 4 candidates. We solve this question by encoding the problem as an Integer
Linear Program (ILP), the details of which can be found in Appendix. It turns out that
such choice functions do exist: it then follows from Saari’s result that counterexamples
can be obtained for “most” scoring rules. We exhibit a profile for plurality.

Proposition 2. For plurality and m = 4, there may be no NE.

Proof. We exhibit a counterexample with 13 voters, whose preferences are contained
in the left part of the table below. The top line indicates the number of voters with each
particular profile. The right part of the table represents the preferences of the candidates.

3 1 1 1 1 1 1 2 2

d d d a a a b b c
c b a b c d c a b
a c b c b b d c d
b a c d d c a d a

a b c d

a b c d
b a d a
c c a b
d d b c

�
Similar constructions of profiles can thus be obtained for other scoring rules. However,
Borda comes out as a very peculiar case [16] among scoring rules7. This is also verified
for the case of strategic candidacy.

7 For a more detailed statement of this result, we point the reader to the work of Saari, in par-
ticular [17]. For the case of 4 candidates, families of scoring rules such that, when the scoring
vector for 3 candidates is of the form 〈w1, w2, 0〉, the vector for 4 candidates is of the form
〈3w1, w1 + 2w2, 2w2, 0〉 (for instance, 〈〈3, 1, 0, 0〉, 〈1, 0, 0〉〈1, 0〉〉) are an exception in the
sense that not all choice functions are implementable with them.
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Proposition 3. For Borda and m = 4, there is always an NE.

We could check this by relying on the fact that Borda rule is represented by a weighted
majority graph, and by adding the corresponding constraints into the ILP. The infea-
sibility of the resulting set of constraints shows that no instances without NE can be
constructed. However, it takes only coalitions of pairs of agents to ruin this stability.

Proposition 4. For Borda and m = 4, there may be no 2-NE.

Proof. Consider the following game:

1 1 1 1 1
b c d a b
d d a b c
c a c c d
a b b d a

a b c d
a b c d
c a a b
d c d a
b d b c

Here, only s1 = (0, 1, 1, 1) and s2 = (1, 1, 0, 1) are NE, with bcd �→ b, and abd �→ d.
But from s1 the coalition {a, c} has an improving move to s2 as they both prefer d over
b. Now take s2: if b leaves and c joins, they reach (1, 0, 1, 1), with acd �→ c and both
prefer c over d. �

3.2 Condorcet-Consistent Rules

We now turn our attention to Condorcet-consistent rules. It turns out that for all of them,
the existence of an NE can be guaranteed.

Proposition 5. For m = 4, if r is Condorcet-consistent, there always exists an NE.

Proof. We start with a remark: although we do not assume that r is based on the ma-
jority graph, we nevertheless prove our result by considering all possible cases for the
majority graphs (we get back to this point at the end of the proof). There are four graphs
to consider (all others are obtained from these ones by symmetry).

a b

c d

G1

a b

c d

G2

a b

c d

G3

a b

c d

G4

For G1 and G2, any subset of X containing the Condorcet winner is an NE (see Propo-
sition 1). For G3, we note that a is a Condorcet loser. That is, N(a, x) < N(x, a) for
all x ∈ {b, c, d}. Note that in this case, there is no Condorcet winner in the reduced
profile P ↓{b,c,d} as this would imply the existence of a Condorcet winner in P (case G1

or G2). W.l.o.g., assume that b beats c, c beats d, and d beats b. W.l.o.g. again, assume
that bcd �→ b. Then, {b, c} is an NE. Indeed, in any set of just two candidates, none has
an incentive to leave. Now, a or d have no incentive to join as this would not change the
winner: in the former case, observe that b is the (unique) Condorcet winner in P ↓{a,b,c},
and the latter follows by our assumption. There is always an NE for G3.
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The proof for G4 is more complex and proceeds case by case. Since r is Condorcet-
consistent, we have acd �→ a, bcd �→ c, ab �→ b, ac �→ a, ad �→ a, bc �→ c, bd �→ d and
cd �→ c. The sets of candidates for which r is undetermined are abcd, abc and abd.

We observe the following easy facts: (i) if abcd �→ a then acd is an NE, (ii) if
abcd �→ c then bcd is an NE, (iii) if abc �→ a then ac is an NE, (iv) if abd �→ a then ad
is an NE, (v) if abc �→ c then bc is an NE. The only remaining cases are:

1. abcd �→ b, abc �→ b, abd �→ b.
2. abcd �→ b, abc �→ b, abd �→ d.
3. abcd �→ d, abc �→ b, abd �→ b.
4. abcd �→ d, abc �→ b, abd �→ d.

In cases 1 and 3, ab is an NE. In case 2, if a prefers b to c then abc is an NE, and if a
prefers c to b, then bcd is an NE. In case 4, if a prefers c to d, then bcd is an NE; if b
prefers a to d, then ad is an NE; finally, if a prefers d to c and b prefers d to a, then
abcd is an NE. To conclude, observe that the proof never uses the fact that two profiles
having the same majority graph have the same winner.8 �

The picture for 4 candidates shows a sharp contrast. On the one hand, the existence of
choice functions shows that “almost all scoring rules” [16] may fail to have an NE. On
the other hand, Condorcet-consistency alone suffices to guarantee the existence of an
NE. (However, this criterion is not sufficient to guarantee stronger notion of stability:
e.g., for Copeland, we could exhibit examples without any 2-NE.)

4 More Candidates

The first question which comes to mind is whether examples showing the absence of
NE transfer to larger sets of candidates. They indeed do, under an extremely mild as-
sumption. We say that a voting rule is insensitive to bottom-ranked candidates (IBC)
if given any profile P over X = {x1, . . . , xm}, if P ′ is the profile over X ∪ {xm+1}
obtained by adding xm+1 at the bottom of every vote of P , then r(P ′) = r(P ). This
property is extremely weak (much weaker than Pareto) and is satisfied by almost all
voting rules studied in the literature (a noticeable exception being the veto rule).

Lemma 1. For any voting rule r satisfying IBC, if there exists Γ = 〈X,P, r, PX〉 with
no NE, then there exists Γ ′ = 〈X ′, P ′, r, PY 〉 with no NE, where |X ′| = |X |+ 1.

Proof. Take Γ with no NE, with X = {x1, . . . , xm}. Let X ′ = X ∪ {xm+1}, P ′ the
profile obtained from P by adding xm+1 at the bottom of every vote, and PX′

be the
candidate profile obtained by adding xm+1 at the bottom of every ranking of a candidate
xi, i ≤ m, and whatever ranking for xm+1. Let Y ⊆ X . Because Y is not an NE for
Γ , some candidate xi ∈ X has an interest to leave or to join, therefore Y is not an NE
either for Γ ′. Now, consider Y ′ = Y ∪ {xm+1}. If xi ∈ X has an interest to leave
(resp., join) Y , then because r satisfies IBC, the winner in Y ′ \ {xi} (resp., Y ′ ∪ {xi})
is the same as in Y \ {xi} (resp., Y ∪ {xi}), therefore xi ∈ X has an interest to leave
(resp., join) Y ′, therefore Y ′ is not an NE. �

8 For instance, we may have two profiles P , P ′ both corresponding to G4, such that r(P ) = a
and r(P ′) = b; the proof perfectly works in such a case.
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Corollary 1. For plurality and m ≥ 4, there may be no NE.

We now turn our attention to Condorcet-consistent rules, which all admit NE with 4 can-
didates. However, 5 candidates suffice to show that NE are not guaranteed any longer.

Proposition 6. For maximin with m = 5, there may be no NE.

Proof. The counterexample is given by the following pairwise comparison matrix,
where the entry corresponding to row x and column y is equal to N(x, y) − N(y, x).
From Debord’s theorem [4] we know that there exists a profile with such a compar-
ison matrix. The candidates’ preference profile is given on the right hand side. The
tie-breaking priority is lexicographic.

a b c d e

a 0 −3 3 −1 1
b 3 0 −3 3 1
c −3 3 0 −1 −1
d 1 −3 1 0 −5
e −1 −1 1 5 0

a b c d e
a b c d e
c e d a b
b c a c a
e a e b d
d d b e c

The proof goes by exhibiting all cases. For each subset we indicate the deviation (the
winner being shown using bold font): ad→ abd→ abcd→ abcde→ bcde→ cde→
acde → abcde; ab → abc → abce → bce → ce → ace → abce; abde → bce;
ae → abe→ abce; ac → acd→ abcd; bd→ bcd→ abcd; bde→ bcde; bc→ abc;
be→ bce; cd→ cde; ce→ ace; de→ ade. �

Corollary 2. For maximin and m ≥ 5, there may be no NE.

This negative result does not extend to all Condorcet-consistent rules. In particular,
next we show the existence of NE for Copeland and the uncovered set (UC), under
deterministic tie-breaking, for any number of candidates.

Proposition 7. For Copeland0, with any number of candidates, there is always an NE.

Proof. Let P be a profile and →P its associated majority graph. Let C(x, P ) be
the number of candidates y = x such that x →P y. Let COP 0(P ) be the set of
the Copeland0 cowinners for P , i.e., the set of candidates maximising C(·, P ), and
Cop0(P ) = c the Copeland0 winner—the highest-priority candidate in COP 0(P ).
Consider Dom(c) = {c}∪{y|c→P y}. Note that C

(
c, P ↓Dom(c)

)
= |Dom(c)|−1 =

q = C(c, P ). Also, since any y ∈ Dom(c) is beaten by c, we have C(y, P ↓Dom(c)) ≤
q − 1.

We claim that Dom(c) is an NE. Note that c is a Condorcet winner in the restriction
ofP toDom(c), and a fortiori, in the restriction ofP to any subset ofDom(c). Hence, c
is the Copeland0 winner in Dom(c) and any of its subsets, and no candidate in Dom(c)
has an incentive to leave.

Now, assume there is a candidate z ∈ X \ Dom(c) such that
Cop0

(
P ↓Dom(c)∪{z}) = c. Note that c →P z as z does not belong to



22 J. Lang, N. Maudet, and M. Polukarov

Dom(c); so, C(c, P ↓Dom(c)∪{z}) = q. For any y ∈ Dom(c) we have
C(y, P ↓Dom(c)∪{z}) ≤ (q − 1) + 1 = q = C(c, P ↓Dom(c)∪{z}). If
C
(
y, P ↓Dom(c)∪{z}) < C(c, P ↓Dom(c)∪{z}), then y is not the Copeland0

winner in P ↓Dom(c)∪{z}. If C
(
y, P ↓Dom(c)∪{z}) = C

(
c, P ↓Dom(c)∪{z}),

then C(y, P ) ≥ C(c, P ). That is, either c /∈ COP 0(P ), a contradiction, or
both y, c are in COP 0(P ). In that case, the tie-breaking priority ensures that
Cop0

(
P ↓Dom(c)∪{z}) = y.

Hence, Cop0
(
P ↓Dom(c)∪{z}) = z. By Cop0(P ) = c we have C

(
z, P ↓Dom(c)∪{z})

≤ C(z, P ) ≤ C(c, P ) ≤ q; therefore, C
(
z, P ↓Dom(c)∪{z}) = q, and the tie-breaking

priority favours z over c. But then, C(z, P ) = C(c, P ), i.e., both c and z are in
COP 0(P ), and the tie-breaking priority ensures that Cop0

(
P ↓Dom(c)∪{z}) = z, a

contradiction. Therefore, the Copeland0 winner in P ↓Dom(c)∪{z} must be c, which im-
plies that z has no incentive to join Dom(c). �

Note that if the number of voters is odd, we do not have to care about head-to head
ties. In this case, all Copelandα rules, where each agent in a head-to-head election
gets 0 ≥ α ≥ 1 points in the case of a tie (Copeland0 being a special cases), are
equivalent, and the result above holds. However, if the number of voters is even, this
is not necessarily the case. Thus, in particular, for Copeland0.5 (more often referred to
as Copeland), Dom(c) is generally no more an NE, and we do now know whether the
existence of an NE is guaranteed or not.

Proposition 8. For UC, with any number of candidates, and an odd number of voters,
there is always an NE.

Proof. Let c be the UC winner in P , i.e., the highest-priority candidate in UC(P ).
Consider (again) Dom(c) = {c} ∪ {y|c→P y}. We claim that Dom(c) is an NE.

Since c is a Condorcet winner in the restriction of P to Dom(c), and a fortiori, in
the restriction of P to any subset of Dom(c), it is the UC winner in Dom(c) and in any
of its subsets, and no candidate in Dom(c) wants to leave.

Now, let z ∈ X \Dom(c). Since z ∈ Dom(c), we have c →P z and hence, z →P c,
as n is odd. Since x ∈ UC(P ), there must be y ∈ Dom(c) such that y →P z. This
implies that x ∈ UC(P ↓Dom(c)∪{z}), which, due to tie-breaking priority, yields that c
is the UC winner in P ↓Dom(c)∪{z}. Thus, z has no incentive to join Dom(c). �
Note that the proofs of Propositions 7 and 8 also show that for Copeland0 and UC, there
always exists an NE in which the winning candidate is the winner in the full profile (with
all candidates present)9.

5 Conclusions

In this work, we further explored the landscape of strategic candidacy in elections and
obtained several positive results (for Condorcet-consistent rules with 4 candidates; for
two versions of Copeland, as well as for the uncovered set, with any number of can-
didates) and several negative results (for plurality and maximin). Many cases remain
open, especially Borda with more than 4 candidates.

9 We thank Edith Elkind for this remark.
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Another line for further research is the study of the set of states that can be reached
by some improvement path (e.g., best or better response dynamics) starting, say, from
the set or all potential candidates. In some cases, even when the existence of NE is
guaranteed (e.g., for Copeland), we could already come up with examples showing that
no equilibrium point is reachable by a sequence of better responses. But other types of
dynamics can also be considered.

Finally, there is an interesting connection between strategic candidacy and control by
deleting or adding candidates [2,11], as well as multimode control [10] where the chair
is allowed both to delete and to add some candidates. Strategic candidacy relates to a
slightly more demanding notion of control, which we can call consenting control, in
which candidates have to agree to be added or removed. For instance, s is an SE if there
is no consenting destructive control by removing+adding candidates against the current
winner r(Xs). Not only this notion is of independent interest, but also, complexity
results for control may allow to derive complexity results for the problem of deciding
the existence of NE or SE in a strategic candidacy game.

Acknowledgements. We would like to thank Michel Le Breton, Vincent Merlin, Edith
Elkind and the anonymous reviewers for helpful discussions.
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Appendix: ILP Formulation

Let S be the set of (2|X|) states, and A(s) be the set of agents candidating in state s.

Choice functions without NE. We introduce a binary variable wsi, indicating that agent
i wins in state s. We add constraints enforcing that a winner in each state s is unique:

∀i ∈ X, ∀s ∈ S : ws,i ∈ {0, 1} (1)

∀s ∈ S :
∑

i∈X ws,i = 1 (2)

∀s ∈ S, ∀i ∈ X ∈ A(s) : ws,i = 0 (3)

Now we denote by D(s) the set of possible deviations from state s (states where a single
agent’s candidacy differs from s). We denote by a(s, t) an agent potentially deviating
from s to t. Binary variables ds,t indicate a deviation from s to t. In each state, there
must be at least one deviation, otherwise this state is an NE:

∀s ∈ S, ∀t ∈ S : ds,t ∈ {0, 1} (4)

∀s ∈ S :
∑

t∈D(s) ds,t ≥ 1 (5)

Now, we introduce constraints related to the preferences of the candidates. For this
purpose, we introduce a binary variable pi,j,k, indicating that agent i prefers candidate
j over candidate k. If there is indeed a deviation from s to t, the deviating agent must
prefer the winner of the new state over the winner of the previous state:

∀s ∈ S, ∀t ∈ D(s), ∀i ∈ X, ∀j ∈ X : ws,i + wt,j + ds,t − pa(s,t),j,i ≤ 2 (6)

Finally we ensure that the preferences are irreflexive and transitive10, and respect the
constraint of being self-supported:

∀i ∈ X, ∀j ∈ X : pi,j,j = 0 (7)

∀a ∈ X, ∀i ∈ X∀j ∈ X, ∀k ∈ X : pa,i,j + pa,j,k − pa,i,k ≤ 1 (8)

∀i ∈ X, ∀j ∈ X : pi,i,j = 1 (9)

10 Notice that this ILP does not necessarily contain complete preferences: the program only needs
to check those preference relations that correspond to possible deviations. Any linear extension
of these (partial) preferences gives an instance with complete preferences.
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Constraints for Borda. We introduce a new integer variable Ni,j to represent the num-
ber of voters preferring i over j in the weighted tournament. We first make sure that the
values of Ni,j are coherent throughout the weighted tournament:

∀i ∈ X, ∀j ∈ X, ∀k ∈ X, ∀l ∈ X : Ni,j +Nj,i = Nk,l +Nl,k (10)

In each state, when agent i wins, we must make sure that his total amount of points is
the highest among all the agents in this state (note that i can simply tie with those agents
that i is prioritised over by the tie-breaking; we omit this for the sake of readability):

∀s ∈ S, ∀i ∈ A(s), ∀j ∈ A(s) \ {i} :
(1 − ws,i)×M +

∑
j∈A(s)\{i}

Ni,j >
∑

j∈A(s)\{k}
Nk,j (11)

Here M is an arbitrary large value, used to relax the constraint when ws,i is 0.



Plurality Voting with Truth-Biased Agents�

Svetlana Obraztsova1, Evangelos Markakis2, and David R.M. Thompson3

1 National Technical University of Athens, Athens, Greece
2 Athens University of Economics and Business, Athens, Greece

3 University of British Columbia, Vancouver, Canada

Abstract. We study a game-theoretic model for Plurality, one of the most well-
studied and widely-used voting rules. It is well known that the most standard
game-theoretic approaches can be problematic in the sense that they lead to a
multitude of Nash equilibria, many of which are counter-intuitive. Instead, we
focus on a model recently proposed to avoid such issues [2,6,11]. The main idea
of the model is that voters have incentives to be truthful when their vote is not
pivotal, i.e., when they cannot change the outcome by a unilateral deviation. This
modification is quite powerful and recent simulations reveal that equilibria which
survive this refinement tend to have nice properties.

We undertake a theoretical study of pure Nash and strong Nash equilibria of
this model under Plurality. For pure Nash equilibria we provide characterizations
based on understanding some crucial properties about the structure of equilibrium
profiles. These properties demonstrate how the model leads to filtering out unde-
sirable equilibria. We also prove that deciding the existence of an equilibrium
with a certain candidate as a winner is NP-hard. We then move on to strong Nash
equilibria, where we obtain analogous characterizations. Finally, we also observe
some relations between strong Nash equilibria and Condorcet winners, which
demonstrate that this notion forms an even better refinement of stable profiles.

1 Introduction

We study Plurality-based voting systems from a game-theoretic point of view. Voting
mechanisms constitute a popular tool for preference aggregation and decision making
in various contexts involving entities with possibly diverse preferences. Ideally in such
protocols, one would like to ensure that the voters do not have an incentive to mis-
report their preferences in order to get some favorite candidate elected. However, the
famous Gibbard-Satterthwaite theorem [4,9] states that under mild assumptions, this is
impossible. Strategic behavior is therefore inherent in most voting rules.

In the presence of strategic voting, a large volume of research has emerged that
focuses on various aspects of manipulation. This includes manipulation by coalitions,
but also equilibrium analysis, where voters are viewed as rational agents participating
in a game. In this work we follow the latter approach, which was initiated by [3] and
has led to several game-theoretic models for capturing voting behavior. One problem
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however that emerges in some of the models is the fact that they yield a multitude
of Nash equilibria and hence they lack predictive power. A typical example of this well
known fact is that every candidate (even one who is ranked last by all voters) is a winner
in some equilibrium: if everybody votes for him, then no voter can change the outcome
by a unilateral deviation.

As a result, the literature has largely concentrated on proposing more realistic models
that avoid such issues. Among these, one promising idea has been formalized in a series
of recent papers, and in particular in [2,6,11].

The main idea in these works is to model the voters so that they prefer to be truthful
when their vote is not pivotal, i.e., when they cannot change the outcome by a unilateral
deviation. Such voters are referred to as truth-biased voters in [6]. This twist, which is
the focus of our work, turns out to be quite powerful. For the Plurality rule, this was
empirically evaluated in [11]. Their experiments suggest that the model achieves a sig-
nificant refinement of equilibrium profiles, i.e., models with truth-bias may have more
predictive power than models without. However, there has thus far been no theoretical
study on the properties of Nash equilibria with truth-bias. Further, the interaction be-
tween truth-bias and other equilibrium refinements such as the concept of strong Nash
equilibrium has not yet been investigated.

Contribution. We undertake a theoretical analysis of the model with truth-biased agents
under the Plurality rule. We focus on the set of pure Nash and strong Nash equilibria.
In Section 3, we obtain a characterization for the existence of a pure equilibrium with a
given candidate as a winner. Our characterization is based on understanding some cru-
cial properties regarding the performance of ”runner up” candidates. These properties
also demonstrate how this model achieves a refinement of equilibrium profiles. Our re-
sults can be seen as a complement to the corresponding experimental findings of [11].
On the negative side, we derive an NP-hardness result for determining if an equilibrium
exists with a given candidate as a winner, implying that any characterization has to rely
on conditions that are not easily checkable. In Section 4, we move on to strong Nash
equilibria. We obtain characterizations for the same type of questions as for the case of
pure equilibria. Interestingly in this case we can check existence in polynomial time.
We also observe some relations between strong Nash equilibria and Condorcet winners,
which imply that there can be only one possible winner in all strong Nash equilibria of
a game, i.e., this notion forms an even better refinement of stable profiles.

Related Work. Analysis of Nash equilibria in voting is challenging since natural “ba-
sic” models for voting games have the problems mentioned in the Introduction, i.e.,
multiplicity of equilibria and no predictive power over outcomes. Thus, the literature
on equilibrium analysis of voting can be viewed as a search for models that get away
from these limitations. One approach is to introduce uncertainty, e.g., about how many
voters support each candidate (as in [8]). Another approach involves changing the tem-
poral structure of the game. Xia and Conitzer [12], and also [1] consider the case where
agents vote publicly and one-at-a-time. Yet another line of work considers the case
where voters are allowed to change their votes dynamically [6,5].

A more direct approach is to assume that voters have a slight preference for a par-
ticular action, so that in situations where a voter cannot influence the outcome, he will
strictly prefer this favored action. Desmedt and Elkind [1] study a model where voters
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may prefer to abstain if they are not pivotal. Another line of research considers what
happens when every voter slightly prefers to vote honestly (i.e, for his most preferred
candidate in the case of plurality), when he is not pivotal.

This last approach, introducing a small reward for truthfulness, is the one that we
follow. The works of [6] and [2] are two examples of using this approach with plural-
ity. The former studied convergence of iterative best response procedures, whereas the
latter demonstrated that pure equilibria do not always exist. More recently, Thompson
et al. [11] conducted a large-scale computational experiment, testing how frequently
pure Nash equilibria existed under this model and studied properties of equilibrium
outcomes. Since our work strives to answer similar questions analytically rather than
experimentally, some of their findings are particularly relevant, such as the fact that
most games in their simulations had at least one pure Nash equilibrium, and that equi-
librium outcomes tended to be good, e.g., Condorcet winners often won.

Finally, another way of getting more predictive power is to have a stronger solution
concept, e.g., strong equilibrium. Messner and Polborn [7] investigated the possibility
of strong equilibria and were able to characterize when such equilibria exist, for the
special case of three-candidate plurality elections. Sertel and Sanver [10] also studied
strong equilibria under Plurality, and were able to show that strong equilibria outcomes
are characterized by a generalized form of Condorcet winners.

2 Definitions and Notation

We consider a set of m candidates C = {c1, . . . , cm} and a set of n voters V =
{1, ..., n}. Each voter i has a preference order (i.e., a ranking) over C, which we denote
by ai. For notational convenience in comparing candidates, we will sometimes use �i

instead of ai. When ck �i cj for some ck, cj ∈ C, we say that voter i prefers ck to cj .
At an election, each voter submits a preference order bi, which does not necessar-

ily coincide with ai. We refer to bi as the vote or ballot of voter i. If we denote by
L(C) the space of all linear orderings over C, then the vector of submitted ballots
b = (b1, ..., bn) ∈ L(C)n is called a preference profile. An election is then determined
by a pair (C,b). At a profile b, voter i has voted truthfully if bi = ai. Any other vote
from i will be referred to as a non-truthful vote. Similarly the profile a = (a1, ..., an) is
the truthful preference profile, whereas any other profile is a non-truthful one.

A Basic Game-Theoretic Model. The obvious approach is to view the voters as play-
ers whose strategy space is L(C). It is convenient to associate with each voter i and
preference order ai, a utility function ui : C → R. This means that if, e.g., candidate cj
is elected, then voter i derives a utility of ui(cj). The specific numerical values of the
utility functions are not important as long as the functions are consistent with the truth-
ful vote of each voter. That is, we require ui(ck) = ui(cj) for every i ∈ V , cj , ck ∈ C,
and also if ui(ck) > ui(cj), then ck �i cj and vice versa.

Consider now a voting rule f : L(C) → C (we consider single-winner elections).
The most natural way to define a voting game is to consider that each voter i derives a
utility of ui(f(b)), when b is the submitted profile. Thus the payoff function of each
player when his real preference is ai will be:

pi(ai, f(b)) = ui(cj), if cj = f(b)
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We refer to this as the basic model. Given a profile b, we say that a vote b′i ∈ L(C) is
a profitable deviation of voter i from b, if pi(ai, f(b′i,b−i)) > pi(ai, f(b)). A profile
b is then a Nash equilibrium if for every i ∈ V , no profitable deviation exists from b.

There are various problematic issues regarding the equilibria of the basic model, as
identified in the Introduction. As a result, it has not received much attention to date.

The Model We Study. Instead, we focus on a slight but powerful modification that was
introduced recently. The main idea is that since strategizing always incurs some cost
(e.g. cost in time, or effort, for finding how to deviate optimally), voters have a slight
preference for voting truthfully when they cannot unilaterally affect the outcome of the
election. The twist that was used in order to capture this is that there is always a small
extra gain in the payoff function by voting truthfully. This extra gain is small enough so
that voters may still prefer to be non-truthful in cases where they can affect the outcome,
see e.g. [2,6,11]. Formally, let ε < mini∈[n],j,k∈[m] |ui(cj) − ui(ck)|. If a is the real
profile and b is the submitted one, then the payoff function of voter i is given by:

pi(ai, f(b)) =

{
ui(cj), if cj = f(b) ∧ ai = bi,
ui(cj) + ε, if cj = f(b) ∧ ai = bi.

(1)

We denote such a game instance by G(C, a). One can now see that with these new
payoff functions, voters have an incentive to tell the truth if they cannot change the
outcome. As a result, this model eliminates some undesirable Nash equilibria of the
basic model, e.g., the bad equilibrium where all voters would vote for a candidate who
is ranked last by everybody is no longer a Nash equilibrium.

An even further refinement is achieved with the concept of strong Nash equilibrium.
Given a profile b, a deviation by a coalition S ⊆ V is given by a vector b′S ∈ L(C)|S|,
where b′i = bi for at least one member of S. Such a deviation is profitable for S if all
its members are strictly better off. Hence a strong Nash equilibrium is a profile where
there is no coalition with a profitable deviation. This notion is of interest in voting
theory since voters may often choose to form coalitions to manipulate the election.

Plurality Voting. Throughout this work, the rule f is taken to be the Plurality rule,
along with lexicographic tie-breaking. This is one of the most basic and well-studied
voting rules, where the winner is the person with the maximum number of votes that
ranked him as a first choice. In case of ties, we assume without loss of generality that
tie-breaking is resolved by the linear order c1 � c2 � ... � cm.

Given a voter p ∈ V , and his vote bp under a profile b, we denote by top(bp) the top
choice of the vote. We will use repeatedly the following quantities:

Definition 1. Given a preference profile b, we define

1. Ni(b) = {p ∈ V : top(bp) = ci}, the set of voters who voted for ci in b,
2. NS(b) = {p ∈ V : top(bp) ∈ S}
3. sc(ci,b) = |Ni(b)|, the number of supporters of ci in b,
4. ni = sc(ci, a) = |Ni(a)|, the number of supporters of ci at the truthful profile a.

3 Analysis of Pure Nash Equilibria

Due to lack of space, all proofs along with illustrative examples regarding the results of
Section 3 and Section 4 are deferred to the full version of this work.
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Before we embark on the study of pure Nash equilibria under truth-biased agents,
we note that unlike the basic model, the refinement can cause some games to not admit
an equilibrium, as already identified in [11]. Despite this fact however, the extensive
simulations in [11] have shown that most of the games they produced had at least one
equilibrium. In fact they have also observed in their simulations that the estimated prob-
ability of a uniformly at random chosen instance having an equilibrium goes to 1, as the
number of voters increases. Hence we do not consider this issue a major concern.

We introduce below some auxiliary notation that we use in this Section.

Definition 2. Given a preference profile b, we define

– W(b) = {ci ∈ C : sc(ci,b) = maxj∈C sc(cj ,b)}. This is the set of candidates
who attained the maximum score in b. We refer to W(b) as the winning set and if
|W(b)| > 1, the winner is determined from the tie-breaking rule.

– H(b) = {ci ∈ C : sc(ci,b) = maxj∈C sc(cj ,b) − 1}. We refer to this set of
candidates as the chasing set.

3.1 When Is the Truthful Profile a Nash Equilibrium?

We start our analysis by identifying necessary and sufficient conditions that make truth-
ful voting a Nash equilibrium. Clearly the stability of the truthful profile a, can be
threatened either by members of W(a), other than the winner, or by the members of
H(a) if it is non-empty. This leads to the cases described below.

Theorem 1. Consider a game G(C, a), and let ci = f(a) be the winner under a. Then
a is a Nash equilibrium if and only if none of the following conditions hold.

(1) |W(a)| > 1 and there exists a candidate cj ∈ W(a) and a voter p such that
cj �p ci and cj = top(ap);

(2) |H(a)| ≥ 1 and there exists a candidate cj ∈ H(a) and a voter p such that cj �p

ci, cj = top(ap), and cj � ci in the tie-breaking linear order.

Remark 1. Theorem 1 still holds if we use any other deterministic tie-breaking rule
instead of the lexicographic one. Condition (2) would now require that tie-breaking
favors cj in the winning setW(bp, a−p), where top(bp) = cj .

3.2 Properties of Non-truthful Nash Equilibria

As we will see, there can be many instances that have non-truthful profiles as Nash
equilibria. However, the model and in particular the definition of our payoff function
imposes some restrictions on how people can lie at equilibrium profiles. The purpose of
this subsection is to identify some important properties that hold for such equilibrium
profiles. None of the properties we establish here hold for the basic model, hence the
properties demonstrate a clear distinction between the basic model and our model and
help us understand the elimination of undesirable equilibria that takes place.

We describe below a running example that will provide some intuition throughout
this subsection.
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Example 1. In Figure 1, consider the truthful profile a, shown in Subfigure 1(a). This
is not a Nash equilibrium, since voter 5 can vote for c2 and make c2 a winner, a more
preferred outcome for voter 5. However, in Subfigure 1(b), we can see that if voter
5 changes his vote to rank c2 first, the resulting profile is an equilibrium. Finally in
Subfigure 1(c), we see that if candidate c2 collects even more votes, by having voter 6
also support him, then the resulting profile is not an equilibrium any more. The reason
is that voter 5 or 6 would be better off by ε if they stick to their truthful vote, since c2
will get elected anyway (i.e., this suggests that at an equilibrium, candidate c2 should
not need more than just the necessary number of votes to get elected).

1 2 3 4 5 6

c1 c1 c2 c2 c3 c3
c2 c2 c3 c3 c2 c2
c3 c3 c1 c1 c1 c1

(a) Truthful profile
a, with c1 = f(a).

1 2 3 4 5 6

c1 c1 c2 c2 c2 c3
c2 c2 c3 c3 c3 c2
c3 c3 c1 c1 c1 c1

(b) Equilibrium pro-
file b, with c2 =
f(b).

1 2 3 4 5 6

c1 c1 c2 c2 c2 c2
c2 c2 c3 c3 c3 c3
c3 c3 c1 c1 c1 c1

(c) Non-equilibrium
profile b′, with c2 =
f(b′).

Fig. 1. An example with a non-truthful Nash equilibrium

The first property we identify is intuitively very clear and close to what we would
expect in real-life scenarios; at an equilibrium profile, people who lie are among the set
of people who voted the elected candidate as their first choice. There should be no point
in lying otherwise and be in equilibrium (this is unlike the basic model where people
may lie in favor of some candidate who does not get elected and still be in equilibrium).

Lemma 1. Suppose that b = a is a non-truthful profile, which is a Nash equilibrium.
Let cj = f(b). Then all non-truthful votes in b have cj as a top candidate.

The next property, which we will use repeatedly in the sequel, is an important obser-
vation about the structure of non-truthful equilibrium profiles. It further highlights the
differences with the basic model and it is also very useful for the characterizations we
obtain in Subsection 3.3. To state the property, we need first the following definition:

Definition 3. Given a profile b with cj = f(b), a candidate ck = cj is called a thresh-
old candidate with respect to b when the following condition holds:

(1) if ck � cj , then sc(ck,b) = sc(cj ,b)− 1,
(2) otherwise sc(ck,b) = sc(cj ,b);

Hence a threshold candidate is someone who could win the election if he had one
additional vote. As we show below, a feature of all non-truthful equilibria is that there
must exist at least one threshold candidate. The intuition for this is that since in our
model voters who are not pivotal prefer to vote truthfully, then any equilibrium that
arises from manipulation should provide just enough votes to the winner so as to beat
the required threshold (as provided by the threshold candidate) and not any more. Hence
there cannot be a non-truthful equilibrium where the winner wins by a large margin
from the rest of the candidates. This is evident in Example 1, in Subfigures 1(b) and
1(c). Clearly there can be truthful equilibria where the winner wins by a large margin.
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Lemma 2. Consider a game G(C, a), and suppose that b = a is a Nash equilibrium.
Then there always exists at least one threshold candidate ck with respect to b. Addi-
tionally, it holds that Nk(a) = Nk(b), thus sc(ck,b) = nk.

Remark 2. It is not always the case that the winner of a is a threshold candidate in an
equilibrium b.

3.3 Characterization Results

This subsection contains necessary and sufficient conditions for the existence of equi-
libria with a specified candidate as a winner. This yields a full characterization of games
that admit some Nash equilibrium.

We start first with the toy case of elections with two candidates, which turn out to
always have a unique Nash equilibrium.

Theorem 2. In any game G(C, a) with 2 candidates, truthful voting is a dominant
strategy, and a is the unique Nash equilibrium.

We consider now elections with at least 3 candidates. We deal first with equilibria
where the specified winner is the truthful winner.

Theorem 3. Consider a game G(C, a), and let ci = f(a). If there is a Nash equilib-
rium with ci as the winner, then a is the unique such equilibrium and its existence is
determined by the necessary and sufficient conditions of Theorem 1.

From now on, and for the rest of this subsection, fix a preference profile a, with
ci = f(a), and fix also a candidate cj = ci. We want to understand when can there
exist a non-truthful equilibrium b with cj being the winner. This question cannot have
a simple answer since as we show below, it is an NP-complete problem.

Theorem 4. Consider a game G(C, a), with ci = f(a) and let cj = ci. Given a score
s, deciding if there exists an equilibrium b, with cj = f(b) and sc(cj ,b) = s, is
NP-complete.

We note here that in our reduction both the number of candidates and the number of
voters is non-constant. For a constant number of voters, the problem becomes polyno-
mial time solvable (since one can check all possible configurations of votes in favor of
a given candidate cj). The complexity of the problem when the number of candidates is
constant is still unknown.

Despite the NP-hardness, one can still try to obtain characterization results, so as
to gain more insights into the difficulty of the problem. To do this, we will utilize the
lemmas and intuitions from Subsection 3.2. We first have to understand what values for
s can yield an equilibrium b with sc(cj ,b) = s. One thing we can immediately deduce
for example is that s has to belong to the interval [nj , ni + 1] (obviously s ≥ nj , and
the upper bound is by having in worst case ci as a threshold candidate). We also have
to determine which voters decide to non-truthfully support cj at equilibrium, instead of
their top candidate. In light of Lemma 1, we know that there should be exactly s− nj

such voters. Finally, in light of Lemma 2, we need to determine the set of threshold
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candidates in such an equilibrium (note that these are candidates whose supporters vote
truthfully for them at the equilibrium, by Lemma 2).

Given this discussion, we will focus first on determining which candidates could be
eligible for being threshold candidates at an equilibrium. Building on Definition 3, we
define below the notion of an s-eligible threshold set, for a given candidate cj and a
winning score of s.

Definition 4. Given a game G(C, a), fix a score s ∈ [n] and a candidate cj ∈ C.
A non-empty set T ⊂ C is an s-eligible threshold set with respect to cj , if it can be
decomposed into two subsets T = T 1 ∪ T 2, such that the following conditions hold:

(i) For every ck ∈ T 1, it holds that nk = s and cj � ck.
(ii) For every ck ∈ T 2 it holds that nk = s− 1 and ck � cj .

(iii) For every voter p ∈ V , we have cj �p ck, ∀ck ∈ T \ {top(ap)}.
To obtain some intuition about this definition, conditions (i) and (ii) simply corre-

spond to the set of possible threshold candidates at some equilibrium, as in Definition
3. Note that we define these candidates with respect to the real profile a, and look at
their score nk = sc(ck, a). This is not an issue, because in any equilibrium b, where
ck is a threshold candidate, we know by Lemma 2 that sc(ck, a) = sc(ck,b). Finally,
condition (iii) simply ensures stability: in order for T to be a potential set of threshold
candidates, every voter should prefer the winner cj to any candidate from T (except if a
member of T is his top choice). Otherwise, some voter would have an incentive to vote
for such a candidate from T and we would not have an equilibrium.

In the analysis below, we will often need to argue about candidates from the set
M≥s = {ck ∈ C|nk ≥ s}. This set arises naturally in the analysis, since in any
equilibrium where the winning score is s, there must be non-truthful voters whose real
preferences were candidates from M≥s.

To continue, we consider two cases for the realization of threshold candidates.

Equilibria for Threshold Sets with T 1 = ∅. Given cj and the possible score s, let T
be an s-eligible threshold set, with T 1 = ∅, i.e., T := T 2. We will characterize when
can there be an equilibrium, such that T is precisely the set of all threshold candidates.
For this we establish first some properties that have to hold at equilibrium.

Lemma 3. Given cj and s, let T be an s-eligible threshold set w.r.t. cj , with T 1 = ∅.
Suppose that b = a is a Nash equilibrium such that cj = f(b), and T is the set of all
threshold candidates in b. Then

(a) The only candidate who has s points in b is cj;
(b) A candidate that has s−1 points in b, either belongs to T 2 or is beaten by cj under

tie-breaking (and hence beaten also by all candidates in T 2).

We now provide some upper bounds on the scores of the members of M≥s. Define
the set M1 = {c� ∈M≥s : ∃ck ∈ T 2 with ck � c�}. Let also M2 = M≥s \M1.

Lemma 4. Under the same assumptions, as in Lemma 3,
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(a) sc(c�,b) ≤ s− 2, ∀c� ∈M1,
(b) sc(c�,b) ≤ s− 3, ∀c� ∈M2.

In order to complete the characterization, we also have to argue about candidates
who have s − 1 or s − 2 points in the truthful profile, as they may affect stability too.
To this end, in analogy to the sets M1 and M2, we define the sets: U1 = {c� ∈ C :
n� = s− 1, ∃ck ∈ T 2 with ck � c�}, U2 = {c� ∈ C : n� = s− 1, c� � ck ∀ck ∈ T 2}.
Finally we will also need the set U3 = {c� ∈ C : n� = s − 1, cj � c�, or n� =
s− 2, c� � ck ∀ck ∈ T 2}.

The theorem below provides an iff condition for determining existence of an equi-
librium with cj as a winner. The conditions boil down to finding the correct “book-
keeping” for the s − nj non-truthful supporters of cj , i.e., determining a lower bound
on how much other candidates have to lose from their real supporters.

Theorem 5. Given cj and s, let T be an s-eligible threshold set w.r.t. cj , such that
T 1 = ∅. There exists a non-truthful Nash equilibrium b with cj = f(b), sc(cj ,b) = s,
and such that T is the set of all threshold candidates in b, if and only if there exists a
pair of sets (D,R) with D ⊆ V \NT (a), |D| = s− nj , R ⊆ U3, such that:

(i) for every c� ∈M1, |D ∩N�(a)| ≥ n� − s+ 2;
(ii) for every c� ∈M2, |D ∩N�(a)| ≥ n� − s+ 3;
(iii) for every c� ∈ U1, |D ∩N�(a)| ≥ 1;
(iv) for every c� ∈ U2, |D ∩N�(a)| ≥ 2;
(v) for every (p, ck) ∈ D ×R, it holds that cj �p ck;
(vi) for every c� ∈ U3 \R, |D ∩N�(a)| ≥ 1.

Equilibria for Threshold Sets with T 1 �= ∅. We now provide analogous results
for the case that we are given an s-eligible threshold set T , with T 1 = ∅. In analogy
to M1, we define the set K1 = {c� ∈ M≥s : ∃ck ∈ T 1 with ck � c�}. Let also
K2 = M≥s \K1.

Lemma 5. Given cj and s, let T be an s-eligible threshold set w.r.t. cj , with T 1 = ∅.
Suppose that b = a is a Nash equilibrium such that cj = f(b) and T is the set of
all threshold candidates in b. Then the set of candidates who have s points in b is
{cj} ∪ T 1.

Lemma 6. Under the same assumptions as in Lemma 5,

(a) sc(c�,b) ≤ s− 1 ∀c� ∈ K1,
(b) sc(c�,b) ≤ s− 2 ∀c� ∈ K2.

As in the previous case, in analogy to the sets U1, U2, U3, here we need the sets:
W 1 = {c� ∈ C : n� = s, ∀ck ∈ T 1c� � ck and cj � c�}, W 2 = {c� ∈ C : n� =
s, c� � cj}.
Theorem 6. Consider a game G(C, a) with ci = f(a), and a candidate cj = ci. Let
T be an s-eligible threshold set with respect to cj , with T 1 = ∅. There exists a Nash
equilibrium b = a such that cj = f(b), sc(cj ,b) = s, and such that T is the set
of all threshold candidates in b, if and only if there exists a pair of sets (D,R) with
D ⊆ V \NT (a), |D| = s− nj , R ⊆ U3, such that:
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(i) for every c� ∈ K1, |D ∩N�(a)| ≥ n� − s+ 1;
(ii) for every c� ∈ K2, |D ∩N�(a)| ≥ n� − s+ 2;
(iii) for every c� ∈W 2, |D ∩N�(a)| ≥ 1;
(iv) for every (p, ck) ∈ D × R, it holds that cj �p ck;
(v) for every c� ∈W 1 \R, |D ∩N�(a)| ≥ 1.

Implications: Sufficient Conditions for Checking Existence. Eventually, we are in-
terested in deciding whether there exists an equilibrium, where cj is the winner with
score s (independent of who are the threshold candidates). In the full version of this
work1, we show how to use the characterizations of Theorems 5 and 6 to derive a sim-
ple sufficient condition that is also polynomial time checkable. The condition essentially
boils down to checking if the difference s − nj is within ”reasonable” bounds. In fact,
we can also establish non-existence for a large range outside these bounds. As a con-
sequence, despite the NP-hardness result of Theorem 4, it is only for a relatively small
range of s that we cannot have a polynomial time algorithm for checking existence.

4 Strong Nash Equilibria

For the basic game-theoretic model, a restricted version of the concept of strong equi-
librium has been studied in [7], where characterizations were obtained for the case of 3
candidates. In our model, we obtain a complete characterization for an arbitrary number
of candidates and voters. We also identify some connections with Condorcet winners.
Our results demonstrate that strong Nash equilibria have an even more restricted struc-
ture than pure Nash equilibria and manage to further refine the set of stable outcomes
(whenever they exist).

4.1 Truthful Strong Nash Equilibrium

We start by characterizing the profiles where a is a strong Nash equilibrium. In the
following, we denote by Ni�j the set {p ∈ V |ci �p cj} (i.e., the definition is with
respect to the truthful profile a). Even though at first sight, one may think that we
should look at an exponential number of coalitional deviations to check if a is a strong
Nash equilibrium, it turns out that we need to check only a small number of conditions,
and therefore it can be done quite efficiently.

Theorem 7. Consider a game G(C, a) with ci = f(a). Then a is a strong Nash equi-
librium if and only if the following condition holds: for any candidate cj with cj � ci
we have |Nj�i \ Nj(a)| < ni − nj and for any candidate cj with ci � cj we have
|Nj�i \Nj(a)| ≤ ni − nj .

4.2 Characterization Results and Relations to Condorcet Winners

We start this subsection with a characterization of existence of strong Nash equilibria.
To characterize the existence of strong equilibria with a certain candidate cj as a winner,

1 Available at the authors’ websites.
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one needs to distinguish the various special cases that may arise regarding coalitional
deviations. As a result, the characterization comes in two parts. We present in the theo-
rem below the characterization in the first out of the two cases, namely when cj beats the
truthful winner ci = f(a) in tie-breaking. Hence, suppose that cj � ci. We eventually
need to argue about the following set in our analysis:

T = {c�|cj � c� � ci and |N��j | ≥ ni}
Theorem 8. Consider a game G(C, a), with ci = f(a), and suppose cj � ci. There
is no strong Nash equilibrium b = a with cj = f(b) if and only if at least one of the
following conditions holds.

(i) n < 2ni.
(ii) There exists a voter in V \Ni(a) who prefers ci to cj .

(iii) There exists a candidate c� such that |N��j | ≥ ni and c� � cj .
(iv) There exists a candidate c� such that |N��j | ≥ ni + 1 and ci � c�.
(v) There exists a candidate c� such that |N��j | ≥ ni + 1 and cj � c� � ci.

(vi) |Nj�i
⋂

(
⋂

�∈T Nj��)| < ni.

An analogous theorem deals with the other case, which we omit due to lack of space.
Note that despite the large number of conditions to check in this characterization, they
are all verifiable in polynomial time. Hence we have the following corollary.

Corollary 1. Given a game G(C, a), we can decide in polynomial time if a strong Nash
equilibrium exists with a certain candidate as a winner.

We end this section with the following observation, which shows some interesting
connections between strong Nash equilibria and Condorcet winners. This fact can be
derived as a special case of the models studied in [10].

Theorem 9. ([10]) If there exists a strong Nash equilibrium b with cj as the winner,
then cj is a Condorcet winner.

Remark 3. The opposite direction of Theorem 9 is not true.

Finally the next corollary shows that we cannot have too many different strong Nash
equilibria. Hence the notion of strong Nash equilibrium provides a quite powerful re-
finement on the set of stable profiles.

Corollary 2. Given a game G(C, a), the winner in all strong Nash equilibria is the
same. Also, if the truthful profile a is a strong Nash equilibrium then it is the unique
strong Nash equilibrium for this game.

5 Conclusions

We have provided a theoretical analysis for Plurality voting under the truth-biased
game-theoretic model of [2,6,11]. Our results complement the empirical work of
Thompson, et al., in that they both support truth-bias as an effective method of equi-
librium selection. In particular, we have exhibited that certain undesirable equilibria
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are now filtered out. Finally, we also characterized the set of strong Nash equilibria.
Together, truth-bias and strong Nash make for a very strong equilibrium refinement as
illustrated in Section 4. One should also be aware however, that the cost we have to pay
for such a strong refinement is that there are instances where no equilibrium exists.

There are plenty of avenues for future research. A challenging question is to find
other refinements where existence is always guaranteed. Another natural direction is
to further exploit the idea of rewarding truthfulness, extending it to other voting rules.
Finally, one more interesting idea is to further enrich our model of truth-bias, so that
when voters vote non-truthfully, their utility can depend on how far their vote is from
their truthful preference. Any notion of distance could be used here.
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Abstract. We examine agent failures in weighted voting games. In our coopera-
tive game model, R-WVG, each agent has a weight and a survival probability, and
the value of an agent coalition is the probability that its surviving members would
have a total weight exceeding a threshold. We propose algorithms for comput-
ing the value of a coalition, finding stable payoff allocations, and estimating the
power of agents. We provide simulation results showing that on average the sta-
bility level of a game increases as the failure probabilities of the agents increase.
This conforms to several recent results showing that failures increase stability in
cooperative games.

Keywords: Cooperative game theory, Weighted voting game, Reliability exten-
sion, Agent failures, Stability.

1 Introduction

Consider several firms collaborating to complete a joint project. The project requires
a threshold amount of a certain resource to be completed successfully, and each firm
owns a different amount of the resource that it can contribute to the project. If enough
firms commit their resources so that the total contributed amount is at least the thresh-
old amount, the project is completed and generates a certain revenue. One important
question is how this revenue should be distributed among the participating firms. Tradi-
tionally, such domains were modelled as Weighted Voting Games (WVGs), and various
game theoretic solution concepts were used for revenue distribution (see [16]).

However, in the real world, a firm may promise to deliver resources but fail to do so
afterwards, or its delivered resources may fail during the execution of the project, due to
reasons beyond the firm’s control. In this case, the project can only be completed if the
total amount of resources that did not fail exceeds the threshold. One might suggest to
model this as a WVG among the firms which successfully delivered working resources,
and distribute the revenue only among these firms. However, this might deter some
firms from participating in the first place, since due to such failures they may not get
paid even after exerting effort to deliver resources. One way to circumvent this is using
an ex-ante contract to divide the revenue (generated only if the project finishes) that is
independent of which firms eventually failed and which did not.

Another similar domain is the case of lobbying agents in parliamentary settings [26,9],
where the agents exert lobbying efforts to convince parties with different weights (e.g.,
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the number of seats) to vote for a new legislation, but may fail to do so with a certain
probability. Again, the agents might prefer an ex-ante contract for payoff division to
avoid not being paid ex-post for their persuasion efforts in case they fail.

Clearly, such domains require explicit modeling of agent failures. Although failures
were widely studied in non cooperative game theory [7,23,22], such analysis has sur-
prisingly ignored the prominent WVGs model from cooperative game theory.

We study the effect of agent failures on the solutions of WVGs using the recently pro-
posed reliability extension model [3]. The heart of a cooperative game is the character-
istic function which maps every agent subset to the utility the agents achieve together.
Under specified agent survival probabilities, and assuming such failures are indepen-
dent, the reliability extension modifies the characteristic function and maps every agent
subset to its expected value. We examine the reliability extension of WVGs, which we
denote “R-WVGs” (Reliability Weighted Voting Games). We analyze how the relia-
bility extension changes the outcome in WVGs, as captured by solutions such as the
Shapley value [24] and the core [19], providing both theoretical and empirical results.

Our Contribution: The contribution of this paper is threefold. First, we contrast the
computational hardness of various solution concepts in WVGs with that in R-WVGs.
While the problems of computing the value of a coalition, testing emptiness of the core,
and checking if a given imputation is in the core are in P for WVGs, we prove they
are #P-hard and coN P-hard for R-WVGs. For computing the value of a coalition,
we provide an exact dynamic programming algorithm, as well as a polynomial time
additive approximation method. We show that the latter two problems remain hard even
if only one agent may fail. We develop an algorithm to compute a core imputation for R-
WVGs with constantly many unreliable agents and small weights. Second, the hardness
of computing power indices (the Shapley value and the Banzhaf index) in R-WVGs
follows from the hardness in WVGs. We develop dynamic programming algorithms for
computing these indices in restricted R-WVGs. Third, we provide simulation results
for R-WVGs which indicate that, on average, lower reliability levels of agents lead to
higher stability of the game, as measured by the probability of having a non-empty core,
the least-core value, and the Cost of Stability.

1.1 Related Work

Computational aspects of cooperative game theory have recently received much at-
tention. The problems of testing emptiness of the core and finding a core imputation
have been investigated for many cooperative games, ranging from network games [4,1]
through combinatorial games [14,10] to general representation languages [13]. The core
is easy to analyze in simple games (including WVGs), as it is closely related to the ex-
istence of veto players (see [12]). However, R-WVGs are not simple games, and as our
analysis shows, questions regarding the core are computationally harder in R-WVGs.
While emptiness/non-emptiness of the core is a qualitative measure of stability, the
least-core value [25] and the Cost of Stability (CoS) [5] serve as its quantitative gen-
eralizations; we use all three of them as stability measures. As weighted voting games
(WVGs) also model decision making bodies [16,12], computing power indices (the
Shapley value [24] and the Banzhaf index [8]) is a central question. Due to the hardness
of computing them in WVGs [21], approximations have been proposed [17,2].
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Failures were investigated in non-cooperative game theory, in congestion games
[23,22], reliable network formation [7], Nash networks [11] and sensor networks [20],
but received less attention in cooperative games. We used the recent reliability exten-
sion model of [3], and applied it to WVGs to obtain the class of R-WVGs.

Another recent paper [6] examines the core in the reliability extension of totally-
balanced games, showing that in such games agent failures only help stability in terms
of non-emptiness of the core. While the general theme is in accordance with our results,
their analysis is irrelevant for R-WVGs as R-WVGs are not totally-balanced.

2 Preliminaries

A transferable utility cooperative game G = (N, v) is composed of a set of agents
N = {1, 2, . . . , n} and a characteristic function v : 2N → R mapping any coalition
(agent subset) to the utility these agents achieve together. By convention, v(∅) = 0. For
an agent i ∈ N and a coalition S ⊆ N , we denote S ∪ {i} by S + i and S \ {i} by
S − i. A game is called simple if the characteristic function only takes values of 0 or 1,
so v : 2N → {0, 1}. In simple games, a coalition C ⊆ N is called winning if v(C) = 1,
and losing otherwise.
Weighted Voting Games (WVGs): A WVG is a game where each agent i ∈ N has a
weight wi > 0, and a coalition C ⊆ N is winning iff its total weight exceeds a given
threshold t: if

∑
i∈C wi ≥ t then v(C) = 1, else v(C) = 0.

The Core: The characteristic function defines the value that a coalition achieves, but not
how it should be distributed among its members. A payment vector p = (p1, . . . , pn)
is an imputation if

∑n
i=1 pi = v(N) (efficiency) and pi ≥ v({i}) for every i ∈ N

(individual rationality). Here, pi is the payoff to agent i, and the payoff to a coalition
C is p(C) =

∑
i∈C pi. The core requirement is that the payoff to every coalition is at

least as much as it can gain on its own, so no coalition can gain by defecting from the
grand coalition of all the agents. The core [19] is defined as the set of all imputations p
such that p(N) = v(N) and p(S) ≥ v(S) for all S ⊆ N .
The ε-Core: The definition of the core is quite demanding; many games of interest have
empty core. One popular relaxation to circumvent this is the ε-core [25]. For any ε, the
ε-core is the set of all payoff vectors p such that p(N) = v(N) and p(S) ≥ v(S) − ε
for all S ⊆ N . One way to interpret this is that if a coalition incurs a cost of ε for
deviating from the grand coalition, then the imputation is stable. Higher deviation cost
makes it easier to find a stable imputation. For any game, the set {ε | the ε-core is non-
empty} has a minimum element εmin, known as the least core value (LCV). The LCV
is the minimal deviation cost admitting a stable enough payoff allocation. Higher LCV
implies that the game is unstable.
The Cost of Stability: In games with an empty core, it is impossible to distribute the
gains of the grand coalition N in a stable way. An external party can induce agent coop-
eration by offering a supplemental payment if the grand coalition is formed. Bachrach
et. al. [5] formalized this as follows. Given a game G = (N, v) and a supplemental pay-
ment Δ ∈ R, the adjusted game G(Δ) = (N, v′), where the characteristic function is
defined by: v′(N) = v(N) + Δ and v′(S) = v(S) for all S �= N . The Cost of Stability
(CoS) of a game G, denoted CoS(G), is the minimum supplement Δ∗ for which the
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core of the adjusted game G(Δ∗) is non-empty. The CoS quantifies the extent of insta-
bility by measuring the subsidy required to overcome agents’ resistance to cooperation.
A higher CoS therefore indicates that the game is more unstable.
The Shapley Value: Power indices analyze the contributions of the agents to different
coalitions, proposing ways to divide the gains based on fairness criteria. The marginal
contribution of an agent i ∈ N to a coalition S ⊆ N − i is v(S + i) − v(S). The
Shapley value is uniquely characterized by four important fairness axioms [15]. For
any permutation π of agents (i.e., π : {1, 2, . . . , n} → {1, 2, . . . , n} and π is onto),
let Γ π

i = {j|π(j) < π(i)} be the set of agents before i in π. The Shapley value is
the payoff vector (ϕ1, . . . , ϕn), where ϕi is the Shapley value of agent i given by:
ϕ(i) = 1

n!
∑

π∈Sn
(v(Γ π

i + i) − v(Γ π
i )). For any coalition S ⊆ N − i, the number of

permutations π ∈ Sn where Γ π
i = S is exactly (|S|)! · (n − |S| − 1)!. Thus, summing

over coalitions, we get: ϕi = 1
n!

∑
S⊆N−i

[
(|S|)! · (n − |S| − 1)! · (v(S + i) − v(S))

]
.

The Banzhaf index is another prominent power index.
Reliability Games: A model for agent failures in cooperative games was proposed
in [3]. A reliability game G = (N, v, r) consists of the set of agents N = {1, 2, . . . , n},
the base characteristic function v : 2N → R describing values in the absence of fail-
ures, and the reliability vector r, where ri is the probability of agent i surviving (i.e.,
not failing). The characteristic function vr of the reliability game with failures now
considers the expected value of the survivors:

vr(S) =
∑

S′⊆S

Pr(S′|S) · v(S′) =
∑

S′⊆S

⎛

⎝
∏

i∈S′
ri ·

∏

j∈S\S′
(1 − rj)

⎞

⎠ · v(S′). (1)

Here, Pr[S′|S] is the probability that every agent in S′ survives and every agent in S\S′

fails. For the base game G = (N, v), the game Gr = (N, v, r) is called the reliability
extension of G with the reliability vector r. An agent is called fully reliable (or reliable)
if its reliability is 1, and unreliable otherwise.

3 Reliability Weighted Voting Games

In this paper, we examine the reliability extension of weighted voting games (R-WVGs).
Formally, an R-WVG Gr = (N, w, t, r), where N = {1, . . . , n} is the set of agents,
w = (w1, . . . , wn) is the vector of agent weights, t is the threshold (weight quota), and
r is the vector of agent survival probabilities. The characteristic function vr is given by
Equation (1), where the base characteristic function follows v(C) = 1 if

∑
i∈C wi ≥ t

and v(C) = 0 otherwise.
We now discuss the complexity of computing various solutions in R-WVGs. We first

emphasize that R-WVGs are a generalization of WVGs: WVGs are recovered when all
agents are fully reliable, i.e., r = (1, . . . , 1). Thus, solving R-WVGs is more demanding
than solving WVGs — any problem that is computationally hard for WVGs remains
hard in R-WVGs. For example, computing the Shapley value or the Banzhaf index in
WVGs is known to be #P-hard [21,16], and thus remains #P-hard even in R-WVGs.
However, certain prominent problems are easy for WVGs. For example, computing the
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value of a coalition in a WVG is simple, as it only requires summing the weights of
the members and testing whether the sum exceeds the threshold. Testing if the core is
empty and checking if a given imputation is in the core are other examples of problems
that are in P for WVGs. We show that all these problems become hard in R-WVGs.

Theorem 1. Finding value of the grand coalition is #P-hard in R-WVGs.

Proof. We use a reduction from #SUBSET -SUM , the counting version of the subset
sum problem. #SUBSET -SUM , which is known to be #P-hard, requires counting
the number of subsets of a given set S of positive integers that sum to another positive
integer t. Take an instance (S, t) of #SUBSET -SUM . Let |S| = n. Create an R-WVG
G1 with n agents having elements of S as the weights, threshold t, and reliability vector
r = (1/2, 1/2, . . . , 1/2). Create another R-WVG G2, which is identical to G1 except
the threshold in G2 is t + 1. Let v(G1) and v(G2) denote the values of grand coalitions
of G1 and G2 respectively.

Note that with the reliability vector r = (1/2, . . . , 1/2), the value of the grand coali-
tion is the fraction of coalitions having total weight at least as much as the thresh-
old. Formally, let #tS denote the number of subsets of S with total weight at least
t. Then, v(G1) = (#tS)/2n and v(G2) = (#t+1S)/2n. So if we can compute the
value of the grand coalition in R-WVGs, we can compute v(G1) and v(G2), and obtain
#tS − #t+1S = 2n · (v(G1) − v(G2)), which is the number of subsets of S that sum
to exactly t, i.e., the answer to the #SUBSET -SUM instance (S, t). 	

Though it is hard to compute the value of a coalition, we can approximate it additively.
Consider an R-WVG Gr = (N, w, t, r) and any coalition S ⊆ N . To approximate
vr(S), run k iterations such that in each iteration, every agent i ∈ S survives with
probability ri. Let Ct be the surviving sub-coalition in iteration t. Then, vr(S) ≈ V̂ =
1
k · ∑k

t=1 v(Ct). Using Hoeffding’s inequality and Equation (1), it can be shown that
k = 1

2·ε2 · log(2/δ) is sufficient to achieve Pr[|vr(S) − V̂ | > ε] ≤ δ.1 Further, if
the agent weights and the threshold are integers, we can use a dynamic programming
approach to calculate the value exactly. For simplicity, consider the grand coalition.2 Let
T (j, q) denote the value of the coalition {1, . . . , j} in the R-WVG where the threshold
is changed to q. Then, T (j, q) = rj · T (j − 1, q − wj) + (1 − rj) · T (j − 1, q), where
T (0, q) = 0 if q > 0 and for all j, T (j, q) = 1 if q ≤ 0. Now v(N) = T (n, t), which
can be computed in time O(t · n).

4 The Core of R-WVGs

Next, we examine the complexity of finding core-related solutions. Checking if a given
imputation is in the core, testing emptiness of the core, and finding a core imputation are
computationally easy (in P) for WVGs. We show that all of them are computationally
hard for R-WVGs.

1 This method works for the reliability extension of any cooperative game in general.
2 The value of any coalition can be obtained in the same way by examining the restricted game

where the other agents are removed.
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4.1 Checking if a Given Imputation Is in the Core

Theorem 2. Checking if a given imputation is in the core is coN P-hard for R-WVGs,
even with a single unreliable agent.

Proof. We reduce SUBSET -SUM to the complement of our problem, i.e., checking
if an imputation is not in the core. Given an instance (S, t) of SUBSET -SUM where
S = {w1, . . . , wn}, the question is to check if there is a subset of S whose elements
sum to t. Define W =

∑n
i=1 wi. If W ≤ t, the reduction is trivial: reduce the case of

W < t to any NO instance, and the case of W = t to any YES instance.
If W > t, construct an R-WVG G with n + 1 agents, where first n agents have

reliability 1 and weights w1, . . . , wn, agent n + 1 has reliability (t + 1)/W and weight
W − t, and threshold is W . Consider the payments p = {p1, . . . , pn+1} where pi =
wi/W for 1 ≤ i ≤ n and pn+1 = 0. We show that p is not in the core of G iff the
answer to the SUBSET -SUM instance is YES. First, p is an imputation since the value
of every single agent is 0 and the sum of payoffs is 1 (the value of the grand coalition).

Next, p is not in the core iff there is a coalition with total payoff less than its value. It
can be checked that any coalition not containing agent n+1 or containing first n agents
has value either 0 or 1, and receives total payoff no less than its value. Thus, a violating
coalition must contain agent n + 1 and not all of the first n agents. Such a coalition has
value rn+1 = (t + 1)/W if the total weight of agents other than agent n + 1 in the
coalition is at least t, and 0 otherwise. If this total weight is at least t + 1, the coalition
receives at least (t+1)/W , which is its value. Thus, a violating coalition exists iff there
is a subset of the first n agents whose weights sum to exactly t. 	


4.2 Testing Emptiness of the Core

Theorem 3. Testing emptiness of the core in R-WVGs with a single unreliable agent
(SUCORE) and testing emptiness of the ε-core in WVGs (EPSCORE) are polynomial-
time reducible to each other.

Proof. First, take an instance (G, ε) of EPSCORE where WVG G = (N, w, t) has n
agents, weight vector w and threshold t, and ε ≥ 0. The task is to check if the ε-core
of G is empty. Define W =

∑n
i=1 wi. If W ≤ t, the reduction is trivial: If W < t, the

grand coalition has value 0 and a payoff of 0 to every agent is in the ε-core. If W = t,
the grand coalition has value 1 but every other coalition has value 0, so a payoff of 1
to any single agent and 0 to the rest is in the ε-core. In both cases, the ε-core of G is
not empty, so we reduce to any NO instance of SUCORE. If W ≥ t, form an R-WVG
G′ = (N ′, w′, t′, r′) (instance of SUCORE) with n + 1 agents, weight vector w′ =
{w1, . . . , wn, W − t}, threshold t′ = W , and reliability vector r′ = {1, . . . , 1, 1 − ε}.
We show that the ε-core of G is empty iff the core of G′ is empty.

Let v′ be the characteristic function of G′. Since v′({1, . . . , n}) = 1 = v′(N ′),
agent n + 1 must receive zero payoff in any core imputation of G′. Thus, the core of G′

is non-empty iff there exists a payoff vector p = {p1, . . . , pn, 0} such that
∑n

i=1 pi = 1
and the payoff to every coalition is at least its value. Any coalition not containing agent
n + 1 or containing all of first n agents receives at least its value by construction. Any
coalition containing agent n + 1 but not all of first n agents has value rn+1 = 1 − ε
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if the total weight of the reliable agents (among first n agents) in it is at least t, and
0 otherwise. Thus, G′ has non-empty core iff there is a solution to:

∑n
i=1 pi = 1 and

p(S) ≥ 1 − ε whenever w(S) ≥ t. But this is the LP for checking emptiness of ε-core
for G, so the core of G′ is empty iff the ε-core of G is non-empty.

We show a reduction in the other direction. Take any instance H = (N, w, t, r) of
SUCORE with n agents, weight vector w, threshold t, reliability vector r, and charac-
teristic function v. Without loss of generality, let agent n be the unreliable agent with
reliability rn = x. Now, v({1, 2, . . . , n − 1}) ∈ {0, 1}. If v({1, 2, . . . , n − 1}) = 0,
paying v(N) to agent n and 0 to other agents is a core imputation. Hence, the core is not
empty, and we reduce this to any NO instance of EPSCORE. If v({1, 2, . . . , n−1}) = 1,
then agent n has zero payoff in any core imputation of H . Hence, the core of H is non-
empty iff there exists a payoff vector p = {p1, . . . , pn−1, 0} such that the payoff to any
coalition is at least its value. Any coalition containing all of first n − 1 agents or not
containing agent n receives at least as much as its value. Any coalition containing agent
n but not all of first n − 1 agents has value x if the total weight of the reliable agents
(among first n−1 agents) in the coalition is at least t−wn, and 0 otherwise. That is, the
core of H is non-empty iff there is a solution to:

∑n−1
i=1 pi = 1 and p(S) ≥ x whenever

w(S) ≥ t − wn. However, this is exactly the LP for checking emptiness of ε-core for
the WVG H ′ = (N ′, w′, t − wn) with the set of agents N ′ = {1, . . . , n − 1}, weight
vector w′ = {w1, . . . , wn−1} and threshold t − wn, with ε = 1 − x. 	


Elkind et. al. [16] proved that testing emptiness of ε-core of WVGs is coN P-hard.
Further, they gave an algorithm to compute an ε-core imputation of a WVG using a
separation oracle that runs in time pseudo-polynomial in agent weights. Theorem 3 and
its constructive proof allow us to translate these results to the domain of R-WVGs.

Corollary 1. Testing emptiness of the core in R-WVGs is coN P-hard, even with a sin-
gle unreliable agent.

Corollary 2. If all weights are represented in unary, finding a core imputation of an
R-WVG with a single unreliable agent is in P .

4.3 Finding a Core Imputation

Finding a core imputation, if one exists, is computationally easy (in P) for WVGs
(see [12]). Theorem 1 shows that even computing the value of the grand coalition is
#P-hard for R-WVGs. Since total payoff in any core imputation equals the value of
the grand coalition, finding a core imputation in R-WVGs is clearly #P-hard as well.

Corollary 3. Finding a core imputation is #P-hard in R-WVGs.

Corollary 2 gives us a pseudo-polynomial time algorithm to find a core imputation of
an R-WVG with a single unreliable agent. We now extend this result to the case of a few
(more than one) unreliable agents. The algorithm of [16] to find an ε-core imputation
of a WVG works using a separation oracle (that runs in time pseudo-polynomial in
weights) to solve the exponential sized LP of ε-core. It uses an important subroutine
that finds, given any x, the minimum total payoff to any coalition with total weight at
least x. We denote it MINPAY. So, MINPAY(p, x) = minS⊆N,w(S)≥x p(S).
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Consider an R-WVG Gr = (N, w, t, r), where |N | = n. Without loss of generality,
let UR be the set of unreliable agents and R be the set of reliable agents. Let p =
{p1, . . . , pn} denote a payoff vector. For any coalition S, p(S) =

∑
i∈S pi and w(S) =∑

i∈S wi. We aim to find a separation oracle for the LP of the core:
∑n

i=1 pi = vr(N),
and p(S) ≥ vr(S) for all S ⊆ N .

Divide S into reliable and unreliable parts: S = S1 ∪ S2, where S1 ⊆ UR and
S2 ⊆ R. Note that p(S) = p(S1 ∪ S2) = p(S1) + p(S2). We examine cases for
vr(S) = vr(S1 ∪ S2). Consider the power set P(S1) = {T1, . . . , T2|S1| }. Let yi =
w(Ti), qi = Pr[Ti|S1] (the probability that exactly the agents in Ti survive out of agents
in S1), and Qi =

∑
j≥i qj . Without loss of generality, let yi ≤ yi+1 for all i. Note that

y1 = 0 as T1 = ∅, and Q1 = 1 as there must be a unique surviving sub-coalition. Now,

vr(S) = vr(S1 ∪S2) =

⎧
⎪⎨

⎪⎩

Q1 = 1 if w(S2) ≥ t − y1 = t,

Qi if w(S2) ∈ [t − yi, t − yi−1) where i ∈ [2, 2|S1|],
0 if w(S2) < t − y2|S1| .

Using these observations, we can simplify the LP to:

n∑

i=1
pi = vr(N) (2)

p(S2) ≥ Qi − p(S1), ∀(S1 ⊆ UR, i ∈ [1, 2|S1|], S2 ⊆ R) s.t. w(S2) ≥ t − yi.

Note that we have introduced additional constraints, but it is easy to check that they
are redundant, and thus do not change the LP.3 However, they enable us to use the
subroutine MINPAY, for which we have a dynamic programming formulation.
Algorithm CORE-FEW-UNREL: Solve LP (2) using the following separation oracle.

ALGORITHM: SEPARATIONORACLE

Data: R-WVG Gr = (N, w, t, r), payoff vector p
Result: Either returns a violated constraint of LP (2) or returns SATISFIED

1. Compute vr(N) from Equation (1): vr(N) =
∑

C⊆UR
Pr[C|UR] · v(C ∪ R) (since

agents in R always survive).
2. Check if

∑n

i=1 pi = vr(N). If not, then return this violated constraint.
3. For every S1 ⊆ UR, compute yi, qi, and thus Qi, for i ∈ [1, 2|S1|]. For all i, check if

MINPAY(t − yi) ≥ Qi − p(S1). If not, return the violated constraint.
4. If no violated constraints are found above, then return SATISFIED.

Running Time: The time required to compute vr(N) is O(2|UR| · n). For any
S1 ⊆ UR, the time required to compute yi, qi and Qi is O(2|S1| · |S1|). We make
O(2|S1|) calls to MINPAY, each of which takes O(n · W ) time, where W =

∑n
i=1 wi.

Thus, the total time required to check the constraints for any S1 is O(2|S1| · n · W ).

Summing over all S1 ⊆ UR, the total running time is O
(∑

S1⊆UR 2|S1| · n · W
)

=

3 The constraint p(S2) ≥ Qi − p(S1) is required only when w(S2) ∈ [t − yi, t − yi−1], but
we added it for all S2 where w(S2) ≥ t − yi. If w(S2) ∈ [t − yj , t − yj−1] for j < i (or
w(S2) ≥ t − y1), then the constraint p(S2) ≥ Qj − p(S1) (resp. p(S2) ≥ Q1 − p(S1))
strictly dominates the additional constraints added.
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O
(∑|UR|

k=1
(|UR|

k

) · 2k · n · W
)

= O
(
3|UR| · n · W

)
. The last equation follows using

binomial expansion. Thus, we have:

Theorem 4. If all weights are represented in unary, finding a core imputation in an
R-WVG with constantly many unreliable agents is in P .

Despite significant effort, we could not settle the question of existence of a pseudo-
polynomial time algorithm for R-WVGs with arbitrarily many unreliable agents.

5 Power Indices

We now examine fair payoff divisions (power indices) in R-WVGs. Two prominent
indices, the Shapley value and the Banzhaf index, are known to be #P-hard even in
WVGs [21,16], and thus also in R-WVGs. Bachrach et. al. [3] gave an algorithm to
additively approximate the Shapley value, which can easily be adapted for the Banzhaf
index. The algorithm works for reliability extensions of any cooperative game,4 thus
also for R-WVGs. Additionally, dynamic programming algorithms are known for com-
puting both indices in WVGs [18,21] when the weights and the threshold are integers.
We give non-trivial extensions of these algorithms for computing both indices in R-
WVGs with identical agent reliabilities (uniform reliability case), and integer weights
and threshold. We only give a sketch for the Shapley value due to lack of space. The
details appear in the full version of the paper.5

Consider an R-WVG Gr = (N, w, t, r) where rj = p for all j (uniform reliability).
Bachrach et. al. [3] showed that the Shapley value of agent i in the reliability extension
of any cooperative game satisfies

ϕi = ri

|N |! ·
∑

π∈Sn

⎡

⎣
∑

S⊆Γ π
i

mi(S) · Pr[S|Γ π
i ]

⎤

⎦ ,

where mi(S) = v(S + i) − v(S) is the marginal contribution of agent i to coalition S
in the base game. Changing the order of summations, we get:

ϕi = ri

|N |! ·
∑

S⊆N−i

mi(S)

⎡

⎣
∑

Γ ⊆N−i s.t. S⊆Γ

⎛

⎝Pr[S|Γ ] ·
∑

π∈Sn,Γ π
i

=Γ

1

⎞

⎠

⎤

⎦ .

Now, Pr[S|Γ ] = p|S| · (1 − p)|Γ |−|S|, and
∑

π∈Sn,Γ π
i

=Γ 1 = |Γ |! · (n − |Γ | − 1)!.
Thus, all the required quantities except mi(S) depend only on |S| and |Γ |. We break
the summations of S and Γ further over the sizes of the coalitions, and show that the
expression can be computed in pseudo-polynomial time. The overall running time of
our methods6 is O(t · n2), where t is the threshold and n is the number of agents. We
remark that this is identical to the running time of the known dynamic programming
algorithms for these indices in WVGs. This is surprising, given our results of Sections 3
and 4 that moving from WVGs to R-WVGs raises the computational complexity of
many questions significantly.

4 Bachrach et. al. [3] consider network games, but their method works for any cooperative game.
5 See http://www.cs.cmu.edu/~nkshah/papers.html for the full version.
6 The running time is for both the Shapley value and the Banzhaf index.

http://www.cs.cmu.edu/~nkshah/papers.html
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6 The Relation between Reliability And Stability

We examine the relation between agent reliability and stability of the game in our R-
WVG model. We randomly construct many R-WVGs using a generation model depend-
ing on a reliability parameter, quantify the degree of stability in each generated game
according to some stability measures, and examine the expected degree of stability for
each reliability parameter. We use three metrics as measures of stability. On the quali-
tative level, a game is completely stable if its core is non-empty, as there exists a fully
stable payoff division. On the quantitative level, we use the least core value (LCV) and
the Cost of Stability (CoS). The LCV is the minimal deviation cost that admits a sta-
ble imputation, so a low LCV indicates high stability. The CoS is the external subsidy
required to make the grand coalition stable, so a low CoS also indicates high stability.
These three measures are related: by definition, the core is non-empty iff the game has
a non-positive LCV and iff the game has a non-positive CoS.

Bachrach et. al. [3] initiated the study of the relation between agent failures and
stability. They showed that when starting with a simple game with zero failure proba-
bilities, increasing failure probabilities can only increase stability of the game in terms
of non-emptiness of the core, and thus under all our measures.7 Later, it was demon-
strated [6] that in simple games, increasing failure probabilities starting from non-zero
values may not preserve non-emptiness of the core, i.e., might reduce stability under all
our measures. These results apply to WVGs as they are simple games. However, it was
proved [6] that non-emptiness of the core is always preserved when failure probabilities
are increased, starting from possibly non-zero values, if the game is totally balanced
(i.e., if every subgame has non-empty core). This discussion indicates that although
there is evidence that failures help stability in other classes of cooperative games, the
relation is not so clear-cut in WVGs; in some R-WVGs increasing failure probabilities
increases stability, while in others it decreases stability. We empirically show that even
in R-WVGs, on average increasing failure probabilities increases stability.

First, we analyze R-WVGs where reliabilities of all the agents are equal. For 100
values of uniform reliability from 0.01 to 1, we generated 106 R-WVGs with the num-
ber of agents drawn uniformly at random between 5 and 10. We had few agents since
computing the stability measures is computationally hard, and we solve many games to
compute the average stability level. Weights were sampled from various distributions:
Gaussian, Uniform, Poisson and Exponential. Figures 1 (for Gaussian) and 2 (for Uni-
form) show that the average LCV, the average CoS, and the probability of having an
empty core (measures of instability) increase with the uniform reliability. Thus, stabil-
ity increases as the uniform failure probability increases, according to all our measures.
The plots for Poisson and Exponential are omitted as they are very similar.

Next, we analyze games where only a few agents are unreliable. One such a domain
is a decision making body where most decision makers are known to either support
or object a legislation, and lobbying agents may convince the others to vote for it, but
may fail with a certain probability. We built 104 WVGs with 30 agents, and weights
uniformly chosen from 1 to 10.8 We then made up to 5 agents unreliable one by one,

7 Recall the quantitative and qualitative measure are linked.
8 Our algorithms are pseudo-polynomial in the weights, so low weights are required.
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changing their reliability to each of 10 values from 0.1 to 1, and measured the LCV
using Algorithm CORE-FEW-UNREL.9 The results, shown in Figure 3, indicate that
instability (as measured by the average LCV) increases as agents become more reliable,
so again increasing failure probabilities tends to increase stability on average. Further,
we can see that the more agents we have that may fail, the more stable the game is.

All the above results reflect a similar pattern: Although there exist specific examples
where making agents less reliable makes the game less stable, on average increasing
failure probabilities in an R-WVG makes the game more stable. That is, failures help
stabilize the game on average, which conforms to the results of [6].

7 Conclusion

We examined the impact of possible agents failures on the solutions to weighted voting
games using the reliability extension model [3], which resulted in the class of R-WVGs.
We contrasted the computational ease of calculating the value of a coalition and sev-
eral core related questions in WVGs with hardness results for R-WVGs. We developed
tractable tools for computing various solution concepts (core related or power indices)
approximately, or exactly in restricted games. Using these tools, we explored the re-
lation between agent reliability and stability, and empirically showed that on average
higher failure probabilities make the game more stable.

Many questions are left open for future research. Could better computational tools
be developed to solve R-WVGs, allowing us to handle larger games? Are there specific
WVG domains that exhibit a different relation between agent reliabilities and stability?
Does the general trend where introducing more failures causes the game to become
more stable hold in other classes of cooperative games? Finally, how do failures affect
other cooperative game solutions, such as coalition structures or the nucleolus?
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Abstract. A mediator implements a correlated equilibrium when it pro-
poses a strategy to each player confidentially such that the mediator’s
proposal is the best interest for every player to follow. In this paper,
we present a mediator that implements the best correlated equilibrium
for an extended El Farol game with symmetric players. The extended El
Farol game we consider incorporates both negative and positive network
effects.

We study the degree to which this type of mediator can decrease
the overall social cost. In particular, we give an exact characterization
of Mediation Value (MV ) and Enforcement Value (EV ) for this game.
MV is the ratio of the minimum social cost over all Nash equilibria to
the minimum social cost over all mediators of this type, and EV is the
ratio of the minimum social cost over all mediators of this type to the
optimal social cost. This sort of exact characterization is uncommon for
games with both kinds of network effects. An interesting outcome of our
results is that both the MV and EV values can be unbounded for our
game.

Keywords: Nash Equilibria, Correlated Equilibria, Mediators and Net-
work Effects.

1 Introduction

When players act selfishly to minimize their own costs, the outcome with respect
to the total social cost may be poor. The Price of Anarchy [1] measures the
impact of selfishness on the social cost and is defined as the ratio of the worst
social cost over all Nash equilibria to the optimal social cost. In a game, with
a high Price of Anarchy, one way to reduce social cost is to find a mediator of
expected social cost less than the social cost of any Nash equilibrium.

In the literature, there are several types of mediators [2,3,4,5,6,7,8,9,10,11]. In
this paper, we consider only the type of mediator that implements a correlated
equilibrium (CE) [12].

� A full version with all the proofs is available at the authors’ homepages.
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A mediator is a trusted external party that suggests a strategy to every player
separately and privately so that each player has no gain to choose another strat-
egy assuming that the other players conform to the mediator’s suggestion.

The algorithm that the mediator uses is known to all players. However, the
mediator’s random bits are unknown. We assume that the players are symmetric
in the sense that they have the same utility function and the probability the
mediator suggests a strategy to some player is independent of the identity of
that player.

Ashlagi et al. [13] define two metrics to measure the quality of a mediator:
the mediation value (MV ) and the enforcement value (EV ). In our paper, we
compute these values, adapted for games where players seek to minimize the
social cost. The Mediation Value is defined as the ratio of the minimum social
cost over all Nash equilibria to the minimum social cost over all mediators. The
Enforcement Value is the ratio of the minimum social cost over all mediators to
the optimal social cost.

A mediator is optimal when its expected social cost is minimum over all medi-
ators. Thus, the Mediation Value measures the quality of the optimal mediator
with respect to the best Nash equilibrium; and the Enforcement Value measures
the quality of the optimal mediator with respect to the optimal social cost.

1.1 El Farol Game

First we describe the traditional El Farol game [14,15,16,17]. El Farol is a tapas
bar in Santa Fe. Every Friday night, a population of people decide whether or
not to go to the bar. If too many people go, they will all have a worse time
than if they stayed home, since the bar will be too crowded. That is a negative
network effect [18].

Now we provide an extension of the traditional El Farol game, where both
negative and positive network effects [18] are considered. The positive network
effect is that if too few people go, those that go will also have a worse time than
if they stayed home.

Motivation. Our motivation for studying this problem comes from the following
discussion in [18].

“It’s important to keep in mind, of course, that many real situations in fact dis-
play both kinds of [positive and negative] externalities - some level of participation
by others is good, but too much is bad. For example, the El Farol Bar might be
most enjoyable if a reasonable crowd shows up, provided it does not exceed 60.
Similarly, an on-line social media site with limited infrastructure might be most
enjoyable if it has a reasonably large audience, but not so large that connecting
to the Web site becomes very slow due to the congestion.”

We note that our El Farol extension is one of the simplest, non-trivial problems
for which a mediator can improve the social cost. Thus, it is useful for studying
the power of a mediation.
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Fig. 1. The individual cost to go f(x)

Formal Definition of the Extended El Farol Game. We now formally de-
fine our game, which is non-atomic [19,20], in the sense that no individual player
has significant influence on the outcome; moreover, the number of players is very
large tending to infinity. The (c, s1, s2)-El Farol game has three parameters c, s1
and s2, where 0 < c < s1 and s2 > 0. If x is the fraction of players to go, then
the cost f(x) for any player to go is as follows:

f(x) =

{
c− s1x 0 ≤ x ≤ c

s1
,

s2(x− c
s1
) c

s1
≤ x ≤ 1.

(1)

and the cost to stay is 1. The function f(x) is illustrated in the two plots of
Figure 1.

Our Contributions. The main contributions of our paper are threefold:

– We design an optimal mediator, which implements the best correlated equi-
librium for an extension of the El Farol game with symmetric players. No-
tably, this extension incorporates both negative and positive network effects.

– We give an exact characterization of the Mediation Value (MV ) and the
Enforcement Value (EV ) for our game.

– We show that both the MV and EV values can be unbounded for our game.

Paper Organization. In Section 2, we discuss the related work. Section 3 states
the definitions and notations that we use in the El Farol game. Our results are
given in Section 4, where we show our main theorem that characterizes the best
correlated equilibrium, and we compute accordingly the Mediation Value and
the Enforcement Value. Finally, Section 5 concludes the paper and discusses
some open problems.
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2 Related Work

2.1 Mediation Metrics

Christodoulou and Koutsoupias [21] analyze the price of anarchy and the price
of stability for Nash and correlated equilibria in linear congestion games. A
consequence of their results is that the EV for these games is at least 1.577 and
at most 1.6, and the MV is at most 1.015.

Brandt et al. [22] compute the mediation value and the enforcement value in
ranking games. In a ranking game, every outcome is a ranking of the players,
and each player strictly prefers high ranks over lower ones [23]. They show that
for the ranking games with n > 2 players, EV = n − 1. They also show that
MV = n − 1 for n > 3 players, and for n = 3 players where at least one player
has more than two actions.

The authors of [3] design a mediator that implements a correlated equilibrium
for a virus inoculation game [24,25]. In this game, there are n players, each
corresponding to a node in a square grid. Every player has either to inoculate
itself (at a cost of 1) or to do nothing and risk infection, which costs L > 1. After
each node decides to inoculate or not, one node in the grid selected uniformly
at random is infected with a virus. Any node, v, that chooses not to inoculate
becomes infected if there is a path from the randomly selected node to v that
traverses only uninoculated nodes. A consequence of their result is that EV is
Θ(1) and MV is Θ((n/L)1/3) for this game.

Jiang et al. [26] analyze the price of miscoordination (PoM) and the price
of sequential commitment (PoSC) in security games, which are defined to be
a certain subclass of Stackelberg games. A consequence of their results is that
MV is unbounded in general security games and it is at least 4/3 and at most
e

e−1 ≈ 1.582 in a certain subclass of security games.
We note that a poorly designed mediator can make the social cost worse than

what is obtained from the Nash equilibria. Bradonjic et al. [27] describe the Price
of Mediation (PoM) which is the ratio of the social cost of the worst correlated
equilibrium to the social cost of the worst Nash equilibrium. They show that
for a simple game with two players and two possible strategies, PoM can be as
large as 2. Also, they show for games with more players or more strategies per
player that PoM can be unbounded.

2.2 Finding and Simulating a Mediator

Papadimitriou and Roughgarden [28] develop polynomial time algorithms for
finding correlated equilibria in a broad class of succinctly representable multi-
player games. Unfortunately, their results do not extend to non-atomic games;
moreover, they do not allow for direct computation of MV and EV, even when
they can find the best correlated equilibrium.

Abraham et al. [29,30] describe a distributed algorithm that enables a group
of players to simulate a mediator. This algorithm works robustly with up to
linear size coalitions, and up to a constant fraction of adversarial players. The
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result suggests that the concept of mediation can be useful even in the absence
of a trusted external party.

2.3 Other Types of Mediators

In all equilibria above, the mediator does not act on behalf of the players. How-
ever, a more powerful type of mediators is described in [2,4,5,6,7,8,9,10,11], where
a mediator can act on behalf of the players that give that right to it.

For multistage games, the notion of the correlated equilibrium is generalized
to the communication equilibrium in [31,32]. In a communication equilibrium,
the mediator implements a multistage correlated equilibrium; in addition, it
communicates with the players privately to receive their reports at every stage
and selects the recommended strategy to each player accordingly.

3 Definitions and Notations

Now we state the definitions and notations that we use in the El Farol game.

Definition 1. A configuration C(x) characterizes that a fraction of players, x,
is being advised to go; and the remaining fraction of players, (1 − x), is being
advised to stay.

Definition 2. A configuration distribution D{(C(x1), p1), .., (C(xk), pk)} is a
probability distribution over k ≥ 2 configurations, where (C(xi), pi) represents
that configuration C(xi) is selected with probability pi, for 1 ≤ i ≤ k. Note that

0 ≤ xi ≤ 1, 0 < pi < 1,
∑k

i=1 pi = 1 and if xi = xj then i = j for 1 ≤ i, j ≤ k.

For any player i, let E iG be the event that player i is advised to go, and Ci
G be

the cost for player i to go (when all other players conform to the advice). Also
let E iS be the event that player i is advised to stay, and Ci

S be the cost for player
i to stay. Since the players are symmetric, we will omit the index i.

A configuration distribution, D{(C(x1), p1), .., (C(xk), pk)}, is a correlated
equilibrium iff

E [CS |EG] ≥ E [CG|EG],
E [CG|ES ] ≥ E [CS |ES ].

Definition 3. A mediator is a trusted external party that uses a configuration
distribution to advise the players such that this configuration distribution is a
correlated equilibrium. The set of configurations and the probability distribution
are known to all players. The mediator selects a configuration according to the
probability distribution. The advice the mediator sends to a particular player,
based on the selected configuration, is known only to that player.

Throughout the paper, we let n be the number of players.
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4 Our Results

In our results, we assume that the cost to stay is 1; we justify this assumption
at the end of this section. Our first results in Lemmas 1 and 2 are descriptions
of the optimal social cost and the minimum social cost over all Nash equilibria
for our extended El Farol game. We next state our main theorem which charac-
terizes the best correlated equilibrium and determines the Mediation Value and
Enforcement Value.

Lemma 1. For any (c, s1, s2)-El Farol game, the optimal social cost is (y∗f(y∗)+
(1− y∗))n, where

y∗ =

⎧⎨⎩
1
2 (

c
s1

+ 1
s2
) if c

s1
≤ 1

2 (
c
s1

+ 1
s2
) ≤ 1,

c
s1

if 1
s2

< c
s1
,

1 otherwise.

Proof. By Equation (1), f(x) has two cases. Let f1(x) be f(x) for x ∈ [0, c
s1
],

and let f2(x) be f(x) for x ∈ [ c
s1
, 1]. Also let h1(x) be the social cost when

0 ≤ x ≤ c
s1
, and let h2(x) be the social cost when c

s1
≤ x ≤ 1. Thus, h1(x) =

(xf1(x) + (1− x))n and h2(x) = (xf2(x) + (1− x))n.
We know that h1(x) is minimized at x = c

s1
. In addition, we know that h2(x)

is a quadratic function with respect to x, and thus it has one minimum over
x ∈ [ c

s1
, 1] at x = y∗, where:

y∗ =

⎧⎨⎩
1
2 (

c
s1

+ 1
s2
) if c

s1
≤ 1

2 (
c
s1

+ 1
s2
) ≤ 1,

c
s1

if 1
2 (

c
s1

+ 1
s2
) < c

s1
,

1 otherwise.

Let h∗ be the optimal social cost. Then h∗ = min(h1(
c
s1
), h2(y

∗)). Since
f1(

c
s1
) = f2(

c
s1
), we have h1(

c
s1
) = h2(

c
s1
). Hence, h∗ = min(h2(

c
s1
), h2(y

∗)).
This implies that h∗ = h2(y

∗). ��
Lemma 2. For any (c, s1, s2)-El Farol game, if f(1) ≥ 1, then the best Nash
equilibrium is at which the cost to go in expectation is equal to the cost to stay;
otherwise, the best Nash equilibrium is at which all players would rather go. The
social cost of the best Nash equilibrium is min(n, f(1) · n).
Proof. There are two cases for f(1) to determine the best Nash equilibrium.
Case 1: f(1) ≥ 1. Let Ny be a Nash equilibrium with the minimum social cost
over all Nash equilibria and with a y-fraction of players that go in expectation. If
f(y) > 1, then at least one player of the y-fraction of players would rather stay.
Also if f(y) < 1, then at least one player of the (1− y)-fraction of players would
rather go. Thus, we must have f(y) = 1. Assume that each player has a mixed
strategy, where player i goes with probability yi. Recall that Ny has a y-fraction
of players that go in expectation. Thus, y = 1

n

∑n
i=1 yi. Then the social cost is∑n

i=1(yif(y) + (1− yi)), or equivalently, n.
Case 2: f(1) < 1. In this case, the best Nash equilibrium is at which all players
would rather go, with a social cost of f(1) · n.

Therefore, the social cost of the best Nash equilibrium is min(n, f(1) ·n). ��
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Theorem 1. For any (c, s1, s2)-El Farol game , if c ≤ 1, then the best correlated
equilibrium is the best Nash equilibrium; otherwise, the best correlated equilibrium

is D{(C(0), p), (C(x∗), 1− p)}, where λ(c, s1, s2) = c( 1
s1

+ 1
s2
)−
√

c( 1
s1

+ 1
s2

)(c−1)
s2

,

x∗ =

⎧⎨⎩
λ(c, s1, s2) if c

s1
≤ λ(c, s1, s2) < 1,

c
s1

if λ(c, s1, s2) <
c
s1
,

1 otherwise.

and p = (1−x∗)(1−f(x∗))
(1−x∗)(1−f(x∗))+c−1 . Moreover,

1) the expected social cost is (p+ (1− p)(x∗f(x∗) + (1 − x∗)))n,
2) the Mediation Value (MV) is min(f(1),1)

p+(1−p)(x∗f(x∗)+(1−x∗)) and

3) the Enforcement Value (EV) is p+(1−p)(x∗f(x∗)+(1−x∗))
y∗f(y∗)+(1−y∗) , where

y∗ =

⎧⎨⎩
1
2 (

c
s1

+ 1
s2
) if c

s1
≤ 1

2 (
c
s1

+ 1
s2
) ≤ 1,

c
s1

if 1
s2

< c
s1
,

1 otherwise.

.

Due to the space constraints, the proof of this theorem is not given here.
The following corollary shows that for c > 1, if λ(c, s1, s2) ≥ 1, then the best

correlated equilibrium is the best Nash equilibrium, where all players would
rather go.

Corollary 1. For any (c, s1, s2)-El Farol game, if c > 1 and λ(c, s1, s2) ≥ 1
then MV = 1.

Proof. By Theorem 1, when λ(c, s1, s2) ≥ 1, x∗ = 1 and p = 0. Now we
prove that if λ(c, s1, s2) ≥ 1, then the best correlated equilibrium is the best
Nash equilibrium of the case f(1) < 1 in Lemma 2. To do so, we prove that
λ(c, s1, s2) ≥ 1⇒ f(1) < 1.

Now assume by way of contradiction that λ(c, s1, s2) ≥ 1⇒ f(1) ≥ 1. Recall
that f(1) = s2(1 − c

s1
). Then λ(c, s1, s2) ≥ 1 ⇒ c

s1
+ 1

s2
≤ 1, or equivalently,

λ(c, s1, s2) ≥ 1 ⇒ c
s1

+ 1
s2
≤ λ(c, s1, s2). Also recall that λ(c, s1, s2) = c( 1

s1
+

1
s2
)−

√
c( 1

s1
+ 1

s2
)(c−1)

s2
. Thus, we have:

λ(c, s1, s2) ≥ 1 ⇒ c

s1
+

1

s2
≤ c(

1

s1
+

1

s2
)−

√
c( 1

s1
+ 1

s2
)(c− 1)

s2

⇒ s2 · c

s1
≤ −1,

which contradicts since s1, s2 and c are all positive. Therefore, for c > 1 and
λ(c, s1, s2) ≥ 1, MV must be equal to 1. ��

Now we show that MV and EV can be unbounded in the following corollaries.
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Corollary 2. For any (2 + ε, 2+ε
1−ε ,

1
ε )-El Farol game, as ε→ 0, MV→∞.

Proof. For any (2 + ε, 2+ε
1−ε ,

1
ε )-El Farol game, we have f(1) = 1. By Theorem 1,

we obtain x∗ = 1− ε, f(x∗) = 0 and p = ε
1+2ε for ε ≤ 1

2 (
√
3− 1). Thus we have

lim
ε→0

MV = lim
ε→0

min (f(1), 1)
ε

1+2ε + ε( 1+ε
1+2ε )

=∞.

��
Corollary 3. For any (1 + ε, 1+ε

1−ε ,
1
ε )-El Farol game, as ε→ 0, EV→∞.

Proof. For any (1 + ε, 1+ε
1−ε ,

1
ε )-El Farol game, by Theorem 1, we obtain x∗ =

1 + ε2 − ε
√
1 + ε2 and f(x∗) = 1 + ε−√1− ε2. Then we have

p =
(1− (1 + ε2 − ε

√
1 + ε2))(1 − (1 + ε−√1− ε2))

(1− (1 + ε2 − ε
√
1 + ε2))(1 − (1 + ε−√1− ε2)) + ε

.

Also we have y∗ = 1− ε and f(y∗) = 0 for ε ≤ 1
2 . Thus we have

lim
ε→0

EV = lim
ε→0

p+ (1− p)(x∗f(x∗) + (1− x∗))
y∗f(y∗) + (1− y∗)

=∞.

��

Fig. 2. NE, MED, OPT, MV and EV with respect to s1 and s2

Based on these results, we show in Figures 2 and 3 the social cost of the best
Nash equilibrium (NE), the expected social cost of our optimal mediator (MED)
and the optimal social cost (OPT), normalized by n, with respect to s1, s2 and
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Fig. 3. NE, MED, OPT, MV and EV with respect to c/s1

c/s1. Also we show the corresponding Mediation Value (MV ) and Enforcement
Value (EV ).

In Figure 2, the left plot shows that for c = 2 and s2 = 10, the values of NE,
MED, OPT increase, each up to a certain point, when s1 increases; however,
the values of MV and EV decrease when s1 increases. Moreover, MV reaches
its peak at the point where the best Nash equilibrium starts to remain constant
with respect to s1. In the right plot, we set c = 2 and s1 = 2.25; it shows that
the values of NE, MED, OPT, MV and EV increase, each up to a certain point,
when s2 increases.

Figure 3 illustrates Corollaries 2 and 3, and it shows how fast MV and EV go
to infinity with respect to c/s1, where c/s1 = 1− ε. The left plot shows that for
any (2+ ε, 2+ε

1−ε ,
1
ε )-El Farol game, as c/s1 → 1 (ε→ 0), MV →∞ and EV → 2.

In the right plot, for any (1 + ε, 1+ε
1−ε ,

1
ε )-El Farol game, as c/s1 → 1 (ε → 0),

EV →∞ and MV → 2.
Note that for any (c, s1, s2)-El Farol game, if c/s1 = 1, then the best correlated

equilibrium is at which all players would rather go with a social cost of 0, that is
the best Nash equilibrium as well. Therefore, once c/s1 is equal to 1, MV drops
to 1.

The Cost to Stay Assumption

Now we justify our assumption that the cost to stay is unity. Let (c′, s′1, s′2, t′)-El
Farol game be a variant of (c, s1, s2)-El Farol game, where 0 < c′ < s′1, s

′ > 0
and the cost to stay is t′ > 0. If x is the fraction of players to go, then the cost
f ′(x) for any player to go is as follows:

f ′(x) =

{
c′ − s′1x 0 ≤ x ≤ c′

s′1
,

s′2(x− c′
s′1
) c′

s′1
≤ x ≤ 1.
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The following lemma shows that any (c′, s′1, s
′
2, t
′)-El Farol game can be reduced

to a (c, s1, s2)-El Farol game.

Lemma 3. Any (c′, s′1, s
′
2, t
′)-El Farol game can be reduced to a (c, s1, s2)-El

Farol game that has the same Mediation Value and Enforcement Value, where

c = c′
t′ , s1 =

s′1
t′ and s2 =

s′2
t′ .

Proof. In a manner similar to Theorem (1), for any (c′, s′1, s′2, t′)-El Farol game,
if c > t′, then the best correlated equilibrium is D{(C(0), p′), (C(x′), 1 − p′)},
where λ′(c′, s′1, s

′
2, t
′) = c′( 1

s′1
+ 1

s′2
)−

√
c′( 1

s′1
+ 1

s′2
)(c′−t′)

s′2
;

x′ =

⎧⎪⎨⎪⎩
λ′(c′, s′1, s′2, t′) if c′

s′1
≤ λ′(c′, s′1, s′2, t′) < 1,

c′
s′1

if λ′(c′, s′1, s
′
2, t
′) < c′

s′1
,

1 otherwise.

and p′ = (1−x′)(t′−f(x′))
(1−x′)(t′−f(x′))+c′−t′ . Moreover,

1) the Mediation Value (MV ′) is min (f ′(1),t′)
p′t′+(1−p′)(x′f(x′)+(1−x′)t′) and

2) the Enforcement Value (EV ′) is p′t′+(1−p′)(x′f(x′)+(1−x′)t′)
y′f(y′)+(1−y′)t′ , where

y′ =

⎧⎪⎨⎪⎩
1
2 (

c′
s′1

+ t′
s′2
) if c′

s′1
≤ 1

2 (
c′
s′1

+ t′
s′2
) ≤ 1,

c′
s′1

if t′
s′2

< c′
s′1
,

1 otherwise.

.

Similarly, for c ≤ t′, we have MV ′ = 1 and EV ′ = min (f ′(1),t′)
y′f(y′)+(1−y′)t′ .

For both cases, by Theorem 1, if we set c = c′/t′, s1 = s′1/t
′ and s2 =

s′2/t
′, then we have f ′(1) = f(1) · t′; also we get y′ = y∗ and λ′(c′, s′1, s

′
2, t
′) =

λ(c, s1, s2). This implies that f ′(y′) = f(y∗) · t′ and x′ = x∗; which in turn
f ′(x′) = f(x∗) · t′ and p′ = p. Thus, we obtain MV ′ = MV and EV ′ = EV . ��

5 Conclusion

We have extended the traditional El Farol game to have both negative and
positive network effects. We have described an optimal mediator, and we have
measured the Mediation Value and the Enforcement Value to completely char-
acterize the benefit of our mediator with respect to the best Nash equilibrium
and the optimal social cost.

Several open questions remain including the following: can we generalize our
results for our game where the players choose among k > 2 actions? How many
configurations are required to design an optimal mediator when there are k > 2
actions? Another problem is characterizing the MV and EV values for our game
with the more powerful mediators in [2,4,5,6,7,8,9,10,11]. How much would these
more powerful mediators reduce the social cost over our type of weaker mediator?
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Abstract. How and why people form ties is a critical issue for under-
standing the fabric of social networks. In contrast to most existing work,
we are interested in settings where agents are neither so myopic as to
consider only the benefit they derive from their immediate neighbors,
nor do they consider the effects on the entire network when forming con-
nections. Instead, we consider games on networks where a node tries to
maximize its utility taking into account the benefit it gets from the nodes
it is directly connected to (called direct benefit), as well as the benefit it
gets from the nodes it is acquainted with via a two-hop connection (called
two-hop benefit). We call such games Two-Hop Games. The decision to
consider only two hops stems from the observation that human agents
rarely consider “contacts of a contact of a contact” (3-hop contacts) or
further while forming their relationships. We consider several versions
of Two-Hop games which are extensions of well-studied games. While
the addition of two-hop benefit changes the properties of these games
significantly, we prove that in many important cases good equilibrium
solutions still exist, and bound the change in the price of anarchy due to
two-hop benefit both theoretically and in simulation.

1 Introduction

How and why people form ties is a critical issue for understanding the fab-
ric of social networks. In various models, including public good games (see
e.g., [8, 11, 15] and the references therein), stable matching (see e.g., [6, 14]),
and others [5], it is often assumed that people make strategic decisions or form
friendships/partnerships based on the benefit they derive from their immediate
neighbors, independent of the rest of the network. On the opposite end of the
spectrum, many game-theoretic models such as [13] and its many extensions
(see [7] and references therein) consider players that form a network with the
goal of maximizing their influence over nodes that can be far away from them,
i.e., caring not just about their local neighborhood but about their position in
the entire network. In many settings, however, agents are neither so myopic as
to consider only the benefit they get from their immediate connections alone,
nor do they form relations considering the effects on the whole network. For
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example, one of the aspects people consider when forming a relationship is the
two-hop benefit they can get from the friends of such a friend. This is especially
important in the world of business, but also occurs naturally when forming every-
day friendships and collaborations: we judge people by the company they keep,
and become better friends with those whose friends we like as well. Inspired by
such settings, we consider games on networks where a node tries to maximize
its utility taking into account the benefit it gets from the nodes it is directly
connected to (called direct benefit), as well as the benefit it gets from the nodes
it is acquainted with via a two-hop connection (called two-hop benefit). We will
call such games Two-Hop Games.

Before formally defining Two-Hop games, we point out a difference between
two concepts - one being the ability to form a relationship with someone, and an-
other being the ability to extract benefit out of a direct or two-hop acquaintance.
The ability to form a relationship indicates whether two agents can interact
directly with each other (due to geographical proximity, etc). The ability to ex-
tract benefit out of a direct or two-hop acquaintance instead tells us about how
compatible the agents are with each other. We distinguish between these two
concepts by having two graphs:

– Connection Graph(GC): The edges in this graph denote which pairs of agents
are able to form connections/relationships with each other.

– Friendship Graph(GF ): The edges in this graph indicate whether two agents
are compatible with each other. If they are compatible, then they can derive
benefit if they are connected either directly or via a two-hop connection.
Thus GF governs the utility extracted from acquaintances (the formation of
which is governed by GC).

Two-Hop Games. Now we will formally define Two-Hop games and discuss how
some well-known games can be naturally extended to their two-hop versions.
Each game is specified by a triple (GC , GF , k), with GC and GF having the
same node set and k ≥ 0. These nodes are the players of the game. We want to
model the case where different friendships and relationships can be of different
strength. Thus the strategy of a node, say u, consists of choosing to contribute
to each of its adjacent edges (uv) in GC , with an amount 0 ≤ xuv

u ≤ 1. The
contribution xuv

u represents the effort u puts into its relationship with v. Note
that we restrict the contributions of u to edges adjoining u in GC , as those are
the nodes that u can connect to directly. We can represent the strategy of u in
a compact way using a vector xu = (xuv

u ) with number of components equal to
the degree of u in GC . As usual, x−u = (x1, · · · ,xu−1,xu+1, · · · ,xn) denotes
the strategies of all other nodes except u. We restrict

∑
(uv)�u x

uv
u = min(k, du)

where du is the degree of u in GC . The limit of k represents the fact that any
person has only finite time/resources at his disposal to form acquaintances, and
thus can contribute at most k effort in total. The objective of a node u is to
maximize its utility given by

Uu(xu,x−u) =
∑

(uw)∈GF ∩GC

ruw(x
uw
u , xuw

w ) +
∑

(uw)∈GF
(uv),(vw)∈GC

suvw(x
uv
u , xuv

v , xvw
v , xvw

w )(1)
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The function ruw(x
uw
u , xuw

w ) represents the strength of the direct relationship
between u and w: this depends only on the effort that u and w put into the
relationship. The function suvw(x

uv
u , xuv

v , xvw
v , xvw

w ) represents the strength of a
bond between u and w formed due to a mutual friend v. The strength of such a
two-hop acquaintance can potentially depend on all the intermediate efforts on
the 2-link path. Thus the utility of a node u is the total strength of its (direct
and 2-hop) relationships with all of its neighbors in GF , i.e., the nodes who
actually benefit node u. Note that the two-hop benefit over all two-hop paths
between u and w adds up: a larger number of mutual friends increases how much
people can influence each other, a larger number of internal referrals increases
the chances that a job-seeker gets an interview, etc. We are interested in the
following two types of Two-Hop games.

– Sum Two-Hop Games (S2H Games):

ruv(x
uv
u , xuv

v ) = xuv
u + xuv

v (2)

suvw(x
uv
u , xuv

v , xvw
v , xvw

w ) = α · (xuv
u · xuv

v + xvw
v · xuw

w ) (3)

We call 0 ≤ α ≤ 1 the two-hop benefit factor. It represents the intuitive
notion that a two-hop acquaintance between u and w via v should yield less
benefit than a direct acquaintance. Eqn 2 defines the strength of a relation-
ship as the addition of strengths in each direction: strength in the direction
u → v is given by xuv

u , and in the reverse direction given by xuv
v . Similarly

the term xuv
u · xuv

v in Eqn 3 represents the strength of the two-hop acquain-
tance between u and w via v in the direction u → v → w (e.g., how likely
information is to pass from u to w via v). The term xvw

v ·xuw
w is the strength

of this indirect relationship in the other direction.
If not for the 2-hop effect, S2H Games would be a simple variation of network
contribution games [5], in which nodes decide how much to contribute to
adjacent edges, and receive the sum of contributions to these edges as their
utility. It is easy to see that in such a game, a Nash Equilibrium always
exists and its Price of Anarchy is 1. As we show in this paper, however, the
addition of 2-hop benefit changes the properties of this game.

– Min Two-Hop Games (M2H Games):

ruv(x
uv
u , xuv

v ) = min(xuv
u , xuv

v ) (4)

suvw(x
uv
u , xuv

v , xvw
v , xuw

w ) = α ·min(xuv
u , xuv

v ) ·min(xvw
v , xvw

w ) (5)

In M2H games, a relationship is only strong if both participants contribute
a lot of effort. As before, the strength of a 2-hop effect is the product of the
strengths of the two relationships in the 2-link path, attenuated by a factor
α ∈ [0, 1].
Without the 2-hop effect, this game is essentially a fractional version of k-
stable matching (see the full version [4] for details), in which every node u
chooses k nodes among its neighbors to be matched with, and only gets utility
from an edge (u, v) if v chooses u as well. As discussed below, existing work
on stable matching immediately implies various results about the existence
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and quality of equilibrium for such a game. However, just as with S2H games,
the addition of 2-hop benefit greatly changes the properties of this game.

To assess the quality of a solutionM in S2H and M2H games, we will use social
welfare, given by U(M) =

∑
u Uu(xu,x−u). For S2H games, we will focus on the

existence and the quality of Nash Equilibria (NE’s). For M2H games, however,
using the concept of 2-strong Nash Equilibrium, also called pairwise equilibrium
[17], makes more sense to consider than the concept of Nash equilibrium. A
pairwise equilibrium (PE) is a solution stable with respect to deviations by any
pair of players, as well as any single player. This is consistent with previous
work on such games: if we think of integral versions of these games (where xuv

u is
constrained to be in {0, 1}) as network formation games, then S2H corresponds
to a game where a node can unilaterally form a link and reap the benefits of
this link, while M2H corresponds to a game in which both endpoints of a link
are needed to form this link. Traditionally pairwise equilibria have been used
to analyze the latter types of games [5, 12] simply due to the fact that any
single-player deviation would not be able to create a new link. Similarly, in
our fractional version of M2H, it is reasonable to expect for a pair of people
(u, v) to increase the level of their friendship at the same time, thus increasing
min(xuv

u , xuv
v ). Thus for M2H games, we study pairwise equilibria and investigate

their quality compared to the optimal solution. We call the ratio between the
quality of the worst pairwise equilibrium and the optimal solution 2-PoA to
differentiate it from the PoA (price of anarchy) with respect to Nash Equilibria.

Our Contribution. We define Two-Hop games, which are natural generalizations
of well-studied games. As mentioned above, S2H games without any two-hop
benefit reduce to simple network contribution games; thus they are potential
games, an integral NE always exists for them, and they have Price of Anarchy
(PoA) of 1. As we show in Sec 2, despite the introduction of two-hop benefit, a
NE always exists for general S2H games. However, an integral NE may no longer
exist, and S2H games are not potential games (except for some special cases: see
Theorem 4).

The introduction of two-hop benefit also changes the behavior of PoA. For
the important special cases of GF ⊆ GC (I can connect to all of my friends) and
GC ⊆ GF (I can only connect to friends), we show a tight PoA bound of 1+αk,
and in the very nice case when GF and GC are complete graphs, the PoA is

1+αk
1+α(k−1) . As we show in Theorem 5, in general for S2H games PoA decreases as

the overlap between GF and GC increases, i.e., PoA decreases as nodes get more
opportunities to form acquaintances with nodes they are compatible with. For
example, if every node has at least k/2 nodes which are its neighbors in both
GF and GC , then the PoA is at most 1+2αk. Note that for the most reasonable
values of α the PoA bounds above are rather small. For example, we can often
assume that a single direct friendship brings more benefit than connecting to
someone solely because of the 2-hop contacts being made; this is quantified by
assuming that α ≤ 1

k since any node can have at most k friends. For this range of
α, the above PoA bounds become merely 2 and 3. We further consider weighted
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S2H games (See Sec 2.2) in which different acquaintances can potentially yield
different intrinsic benefit, and show that the results obtained for S2H games also
hold for weighted games when GF ⊆ GC .

Because of its connection to many-to-many stable matching, it is not difficult
to show that for M2H games without 2-hop benefit an integral pairwise equilib-
rium (PE) always exists, and 2-PoA is at most 2. For general M2H games with
2-hop benefit, however, we show that a integral PE may not exist (existence of a
fractional PE for this and related games is an important open question). For the
cases when PE does exist, our main result for M2H games proves that 2-PoA for
the important case of GC ⊆ GF is at most 2 + 2αk, which for the “reasonable”
range of α ∈ [0, 1/k] mentioned above evaluates to at most 4.

For weighted versions, we also carried out simulations by scattering nodes
uniformly in a unit square and experimented with different classes of weight
functions which depend on the distance between the nodes. We found that al-
though the worst-case PoA bounds could be quite high, the average quality of
equilibria was very close to the optimum. We also found that although integral
NE may not exist for S2H games, in our simulations for majority of the instances
it did exist, and simple dynamics converged to it extremely quickly in almost
all instances. Our simulations also showed that as two-hop benefit decreases,
nodes transition from forming small interconnected clusters to forming more of
a “backbone” tree-like network.

Related Work. Network formation games, and games on networks more generally,
have been studied extensively. In many network formation games, nodes connect
to each other with the goal of maximizing their utility, which depends on their
position in the network. For example, it may depend on the average distance
to the rest of the nodes, or on various other notions of centrality and node
“importance”, see e.g., [13] and its many extensions (see [7] and the references
therein). On the other hand, in many models the agents are concerned only about
the direct benefit they derive from their immediate neighbors. Stable matching
games (See e.g., [1, 3, 6, 14] etc.) and network contribution games [5] are some
examples, as well as many others [2, 8, 11, 15]. As discussed in Sec 1, however,
we are interested in settings where agents may neither be concerned about the
actions of remote nodes nor be so myopic as to consider only the benefit they
derive from their immediate neighbors. Two-Hop games fall under this category.
The decision to consider only two hops stems from the observation that human
agents rarely consider “contacts of a contact of a contact” (3-hop contacts) or
further while forming their relationships.

As mentioned above, we distinguish between the ability of a pair of agents to
interact directly (represented by the connection graph GC) and their capability
of being able to derive benefit if they are connected directly or via a two-hop
connection (represented by the friendship graph GF ). The friendship graph GF

can be seen as a social context which dictates the benefits obtained by the nodes
by playing a game on the connection graph GC . Some other work which explores
different forms of social context are [9] and [16]. In this work, the cost of a node
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in a resource-sharing game depends on its own cost and the costs of its “friends”,
where friend nodes are its neighbors in an underlying social network.

Finally, as we discuss in detail in the full vesion [4], M2H games without two-
hop benefit reduce to a fractional, many-to-many version of “correlated” stable
matching [1] for which a stable matching is known to exist for arbitrary graphs,
and the 2-PoA (quality of stable matching compared to the optimum one) is
at most 2 [3]. To the best of our knowledge the correlated version of many-to-
many stable matching has not been studied before; however it is easy to see that
existence of integral stable matching and the same bound on 2-PoA still holds.

2 Sum Two-Hop Games

Recall that in S2H games, the utility Uu(xu,x−u) of a node u is obtained by
substituting Eqn (2) and (3) into Eqn (1) which gives us

Uu(xu,x−u) =
∑

(uv)∈GC∩GF

(xuv
u + xuv

v ) + α ·
∑

(uv),(vw)∈GC
s.t. (uw)∈GF

(xuv
u · xuv

v + xvw
v · xuw

w ) (6)

Without any two-hop benefit, there always exists an integral pure NE for S2H
games (i.e., a NE in which all the contributions are either 0 or 1) and they are
exact potential games. Even after introducing two-hop benefit (i.e., α > 0), we
can prove that a NE always exists for S2H games using Proposition 20.3 of [18].
However, all NE may be fractional, and this seizes to be a potential game. All
of the missing proofs appear in the full version [4].

Theorem 1. For S2H games, a pure Nash Equilibrium always exists.

Theorem 2. There are instances of the general S2H game which do not admit
any integral pure Nash equilibrium.

Theorem 3. The general S2H game is not a potential game.

However, we now give a family of instances for which S2H games are exact
potential games and an integral NE exists. Let dC(u, v) denote the distance
between u and v in GC . Then the following theorem holds.

Theorem 4. If du ≥ k for all nodes and if the condition dC(u, v) ≤ 2 implies
(uv) ∈ GF for all the pairs of nodes then the S2H game is an exact potential
game and an integral NE exists.

2.1 Price of Anarchy

We know that without any two-hop benefit, the PoA of S2H games is 1. With two-
hop benefit, PoA can become unbounded for arbitrary GF and GC , if GF ∩GC =
∅. However, as the overlap between GF and GC increases then the PoA for S2H
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games decreases and for the interesting cases of GF ⊆ GC and GC ⊆ GF , PoA
becomes 1+αk. Increasing the overlap between GF and GC can be interpreted as
nodes getting more opportunities to become directly acquainted with the nodes
they are compatible with.

We formally quantify what we mean by overlap between GF and GC . Let Fv

denote the degree of v in GF ∩ GC . We define overlap between GF and GC as
ρ(GF , GC) = minv Fv. We now give PoA bounds for several interesting cases:

Theorem 5. For the S2H game,

1. For arbitrary GF and GC , PoA ≤ 1+αk · k
min(k,ρ(GF ,GC)) . Thus when there

is large overlap between GF and GC , say ρ(GF , GC) ≥ k/2 then we have
PoA ≤ 1 + 2αk.

2. Furthermore, if GC⊆GF or GF⊆GC then PoA ≤ 1 + αk.
3. For the special case of GF = GC = Kn, we have PoA = 1+αk

1+α(k−1) .

[Proof sketch:] For arbitrary GF and GC , the PoA bound follows by simple ob-
servations on the minimum utility obtained by a node in a NE and its maximum
attainable utility. The PoA can be large for a small overlap because even if a
node is capable of getting little direct benefit because of its small degree in
GF ∩GC (which is a lower bound on minimum utility obtained by it in a NE), it
can still get a large two-hop benefit (hence large maximum attainable utility) by
connecting to a lot of its friends via GC \GF . However this changes in GC ⊆ GF

because GC \GF = ∅. This also changes with GF ⊆ GC because here if a node
can get a large two-hop benefit by connecting to a lot of friends in GC then it
must have a lot of frinds, and therefore its degree in GF ∩GC must be high. Thus
these cases result in a much improved bound on PoA regardless of the overlap
size. For details of the proof, see the full version [4].

Theorem 6. The bounds on the price of anarchy in Theorem 5 are asymptoti-
cally tight.

Fig 1 shows the scheme of an instance for proving asymptotic tightness of
PoA bound for arbitrary GF and GC . It contains five sets of nodes, given by

(k nodes)

A

B

C

D1

D2

(q nodes)

(k−q nodes)

(k nodes)

Fig. 1. Tight example for PoA of S2H
games for arbitrary GF and GC

C2

k nodes k nodes

k nodes

k nodes

k nodes

k nodes
A1 B1

C1

A2 B2

Fig. 2. Tight example for PoA for the
S2H game when GF=GC
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A, B, C, D1, D2. No edges exist between the nodes belonging to the same set.
Solid bidirectional arrow between two sets denotes that all the nodes in one set
are connected with all the nodes in the other set in GF ∩ GC . Similarly semi-
solid bidirectional arrow between two sets denotes that all the nodes in one set
are connected with all the nodes in the other set in GF \ GC , whereas dotted
bidirectional arrow means them being connected in GC \GF .

It is sufficient to describe an instance with GF = GC to show the tightness of
the PoA bound for both GF ⊆ GC and GC ⊆ GF . See Fig 2 for the scheme of
such an instance. It consists of six sets A1, B1, C1, A2, B2, C2, each containing
k nodes. No edges exist between the nodes belonging to the same set. Solid
bidirectional arrow between two sets denotes that all the nodes in one set are
connected with all the nodes in the other set.

2.2 Weighted S2H Games

Sometimes a person can have different levels of intrinsic interest in different
acquaintances. We incorporate this scenario into S2H games by having a positive
weight fuv on each edge (uv) ∈ GF . We call this extension as Weighted S2H
Games. The utility of a node Uu(xu,x−u) in Weighted S2H games is given by:

Uu(xu,x−u) =
∑

(uv)∈GC∩GF

(x
uv
u + x

uv
v )f

uv
+ α

∑

(uw)∈GF
(uv),(vw)∈GC

(x
uv
u x

vw
v + x

vw
w x

uv
v )f

uw
(7)

It is not difficult to see that the argument for the existence of NE for Weighted
S2H games is the same as the argument for the existence of NE of S2H games.
Also, despite having arbitrary weights on the edges of GF , whenever we have
GF ⊆ GC the PoA proves to be at most 1 + αk as it was in the absence of
weights. Here by GF ⊆ GC , we mean that the unweighted version of GF is a
subset of GC . Because of having arbitrary positive weights on the edges of GF

we do not treat the case of GF = GC = Kn (i.e., the unweighted GF is equal
to Kn) separately but view it as a special case of GF ⊆ GC . Thus we get the
following results (See the full version [4] for the proofs):

Theorem 7. For Weighted S2H games, a Nash Equilibrium always exists.

Theorem 8. For Weighted S2H games, whenever GF⊆GC we have PoA ≤ 1+
αk.

3 Min Two-Hop (M2H) Games

Recall that M2H games are a natural extension of fractional stable matching
games obtained by introducing two-hop benefit. Denoting min(xuv

u , xuv
v ) by xuv,

the utility Uu(xu,x−u) of a node u in M2H games can be written as:

Uu(xu,x−u) =
∑

(uv)∈GC∩GF

xuv + α ·
∑

(uv),(vw)∈GC
(uw)∈GF

xuv · xvw (8)
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We will call the first summation in Eqn 8 as direct benefit of node u and the
term with the coefficient of α in Eqn (8) as two-hop benefit of node u. Recall
from Sec 1 that we use the concept of pairwise equilibria (PE’s) to assess the
quality of a solution in M2H games, denoting the ratio between the worst PE
and the optimal solution as 2-PoA.

Recall that in an integral PE all the contributions are either 0 or 1. An integral
PE exists for M2H games without two-hop benefit (See RelatedWork). With two-
hop benefit, we can construct an instance of M2H games which does not admit
any integral pure NE by adapting Example 1 from [10] which is an instance of
stable roommates problem such that no stable matchings exist. However, we give
2-PoA bounds in Thm 10 for some important cases to assess the quality of PE’s
whenever they exist.

Theorem 9. There exist instances of M2H games that do not admit any integral
pairwise equilibrium.

Theorem 10. For the M2H game:

1. If GC ⊆ GF then 2-PoA ≤ 2 + 2αk.
2. For the special case of GF=GC= Kn, a PE always exists and 2-PoA tends

to 1+αk
1+α(k−1) as n→∞.

[Proof sketch of Thm 10] Consider case GC ⊆ GF . Let M
∗ denote an optimum

solution and let M denote a PE. Let yuvu ’s (or ruvu ’s) denote the contributions of
u in M∗ (or in M). Let yuv = min(yuvu , yuvv ) and ruv = min(ruvu , ruvv ).

We prove the 2-PoA bound for GC ⊆ GF in two steps. First, we show that the
direct benefit component of U(M∗) is at most two times U(M). Recall that while
proving that a maximum matching μ∗ is at most twice the size of any maximal
matching μ, we use a property that every edge in μ∗ \ μ has at least one of
its endpoints matched in μ. Analogously, we show that for M2H games with
GC ⊆ GF , each edge (uv) in GF ∩GC s.t. yuv > ruv (i.e., an edge contributing
more direct-benefit to M∗ than M) has at least one of the endpoints, say u, such
that in PE M , node u attains the maximum direct benefit that it can attain in
any solution. Using this, we further prove that the direct benefit component
of U(M∗) is at most two times U(M). Next, we bound the two-hop benefit
component of U(M∗) as

∑

(uv)�u,(vw)�v
(uw)∈GF ,w �=u

αyuvyvw ≤ (
∑

(uv)�u

αyuv)
∑

(vw)�v

yvw ≤ (
∑

(uv)�u

yuv) · αk (9)

For GC ⊆ GF , the term
∑

(uv)�u y
uv is at most the direct benefit obtained by u

in M∗, thus the two-hop benefit component of U(M∗) is at most αk times the
direct benefit component of U(M∗). Combining it with the bound derived above
on the direct benefit component of U(M∗), we get the desired 2-PoA bound.

For the case of GF = GC = Kn, it can be verified that every node making
a contribution of k/(n − 1) to every adjacent link is a PE. Now let us give an
outline of how to prove the 2-PoA bound for this case. Let us define a set T as
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the set of nodes which obtain a direct benefit of strictly less than k in a PE M ,
i.e. u ∈ T whenever

∑
(uv)�u x

uv < k in M . Let T̄ denote the complement of T .

In the full version [4], we prove that T contains at most k nodes. Thus for
n � k, almost all the nodes belong to T̄ . Notice that making xuv = δ s.t.
v ∈ T̄ brings node u an utility of at least δ(1 + α(k − 1)). It is not difficult to
see that if we combine the condition that

∑
(uv)�u x

uv = k for u ∈ T̄ with the

observation that almost all the nodes belong to T̄ , then we have that most of the
contributions of nodes in T̄ are made to the edges with another endpoint also in
T̄ . Since almost all the nodes in Kn are in T̄ for n� k, this implies that a lower
bound on U(M) is approximately n(k + αk(k − 1)) as n → ∞. Combining this
with the observation that U(M∗) ≤ n(k + αk2), we obtain the desired result.

4 Empirical Findings

We performed a number of simulations on S2H and M2H games. Specifically,
we investigated Weighted S2H and Weighted M2H games with 100 nodes scat-
tered uniformly randomly inside a unit square, with GF = GC being complete
graphs, and d(u, v) being the distance between nodes u and v. We considered
the following three kinds of weight functions:

– Inverse: For the inverse weight function, we set fuv = 1/d(u, v).

– Exponential: For the exponential weight function, we set fuv = e−d(u,v)−e−
√

2

1−e−
√

2
.

The weight function has been normalized to take value 1 when d(u, v) = 0
and 0 when d(u, v) =

√
2, with

√
2 being the largest distance between any

two nodes located in a unit square.
– Linear: For the linear weight function, we set fuv = 1 − d(u, v)/

√
2. Again,

the weight function has been normalized to take value 1 when d(u, v) = 0
and 0 when d(u, v) =

√
2.

The attenuation with distance becomes steeper as the weight functions change
from linear to exponential to inverse. In our simulations, we consider only integral
strategies, with k = 3 and α = 1/6. We performed natural better-response
dynamics (see the full version [4] for details), with each player able to unilaterally
deviate in S2H games, but with pairwise deviations allowed in M2H games.

Although in Section 2 we gave an instance of S2H games where an integral NE
does not exist, we found that in simulation better-response dynamics converge
to an integral NE almost all of the time. To give specific numbers, we found that
for linear, exponential, and inverse weight functions, we have convergence for
99%, 97% and 73% of the simulation instances for Weighted S2H games. More-
over, the convergence, when it occurs, is extremely fast: most of the instances
either converged within 8 or 9 rounds, or did not converge within 500 rounds,
as demonstrated in the full version [4]. (A round is a series of better-responses
in which every player is given a chance to change their strategy at least once.)
The same is not true for Weighted M2H games: over 65 percent of our instances
did not converge to a PE even after 5000 rounds. Thus, in the settings that we



72 E. Anshelevich, O. Bhardwaj, and M. Usher

examine, we found that we are much more likely to have an (integral) NE in
S2H games (with extremely fast convergence to a stable solution) compared to
Weighted M2H games.

The quality of NE that our simulations converged to was extremely close
to optimal, usually within a few percent of the centralized optimal solution,
indicating that our theoretical bounds are truly only for the worst case, not
average case. Table 1 shows the average values of the equilibria obtained for our
simulations when the weight functions are linear. The values for exponential and
inverse utilities are similar, with the highest numbers of 1.15 obtained for inverse
utilities. We can see that on average, the value of the equilibria obtained is very
close to the value of an optimum solution. The values are also consistent with
worst-case PoA being 1 + αk, which decreases as α decreases. As α decreases,
the NEs and optimum solutions both converge to nodes following the strategy
of contributing to edges leading to their closest neighbors. Thus there is less
tendency to deviate from the strategy in OPT, resulting in better equilibria.
We also saw that as α decreases or as the weight functions go from linear to
exponential to inverse, the nodes stop forming “clusters” and instead form a
“backbone”-type network resulting from their connecting to the closest possible
nodes. As α decreases or the weight functions become steeper, nodes naturally
begin to connect only to their closest neighbors instead of connecting to slightly
farther nodes that give them two-hop benefit. When α is large, it is advantageous
to form small cliques, since this maximizes two-hop benefit. When α is small,
however, nodes simply connect to their closest k neighbors, and little clustering
takes place. This effect is especially pronounced in M2H games due to bilateral

Table 1. Average value of equilibria obtained with α for n = 100, k = 3. PoA here
refers to the ratio between the computed NE and the optimum solution.

α Average PoA (with std dev) Average PoA (with std dev)
Weighted S2H games Weighted M2H games

1/2 1.033 (0.0021) 1.043 (0.0063)
1/4 1.031 (0.0018) 1.037 (0.0049)
1/6 1.029 (0.0016) 1.032 (0.0040)
1/8 1.028 (0.0025) 1.030 (0.0043)

Fig. 3. Typical pairwise equilibria computed for the Weighted M2H games with linear
weight function and (Left) α = 1/2 (Middle) α = 1/8 (Right) α = 1/16
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nature of acquaintance (see Fig 3). It would be interesting to investigate further
if a phase transition occurs as α decreases, where the clustering effect suddenly
disappears, or whether this effect occurs gradually. For more discussion on this
topic, see the full version [4].

Acknowledgements. We thank Martin Hoefer for many useful discussions
about Two-Hop games.
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Load Rebalancing Games in Dynamic Systems

with Migration Costs
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Abstract. We consider the following dynamic load balancing game:
Given an initial assignment of jobs to identical parallel machines, the
system is modified; specifically, some machines are added or removed.
Each job’s cost is the load on the machine it is assigned to; thus, when
machines are added, jobs have an incentive to migrate to the new un-
loaded machines. When machines are removed, the jobs assigned to them
must be reassigned. Consequently, other jobs might also benefit from mi-
grations. In our job-extension penalty model, for a given extension param-
eter δ ≥ 0, if the machine on which a job is assigned to in the modified
schedule is different from its initial machine, then the job’s processing
time is extended by δ.

We provide answers to the basic questions arising in this model.
Namely, the existence and calculation of a Nash Equilibrium and a Strong
Nash Equilibrium, and their inefficiency compared to an optimal sched-
ule. Our results show that the existence of job-migration penalties might
lead to poor stable schedules; however, if the modification is a result of a
sequence of improvement steps or, better, if the sequence of improvement
steps can be supervised in some way (by forcing the jobs to play in a
specific order) then any stable modified schedule approximates well an
optimal one.

Our work adds two realistic considerations to the study of job schedul-
ing games: the analysis of the common situation in which systems are
upgraded or suffer from failures, and the practical fact according to which
job migrations are associated with a cost.

1 Introduction

The well-studied load balancing problem considers a scenario in which a set of
jobs needs to be assigned on a set of identical parallel machines. Each job j, is
associated with a processing time pj and the goal is to balance the load on the
machines. In contrast to the traditional load balancing problem, where a central
designer determines the allocation of jobs to machines and all the participating
entities are assumed to obey the protocol, in the load balancing game, each job
is owned by a selfish agent who wishes to optimize its own objective.

Given an assignment, each job incurs a cost which is equal to the total load on
the machine it is assigned to. This cost function characterizes systems in which
jobs are processed in parallel, or when all jobs on a particular machine have
the same single pick-up time, or need to share some resource simultaneously.

B. Vöcking (Ed.): SAGT 2013, LNCS 8146, pp. 74–85, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This problem has been widely studied in recent years from a game theoretic
perspective, see [14,2,6,9], and a survey in [17].

In this work, we consider a dynamic variant of this game. Specifically, we
are given an assignment, s0, of n jobs on m0 machines. The system is modi-
fied, namely, m′ machines are added or removed. When machines are added,
jobs will naturally have an incentive to migrate to the new unloaded machines.
When machines are removed, the jobs assigned to the removed machine must be
reassigned. As a result of these migrations, other jobs might also benefit from
migrations. The goal is to find a pure Nash Equilibrium (NE) assignment, s, in
the modified system. In such an assignment, no job can reduce its cost by mi-
grating to a different machine. Apparently, this can be viewed as a new instance
of the load balancing game. However, in the model we consider, a deviation from
the initial assignment is associated with a penalty. We introduce and study the
job-extension penalty model. In this model, we are given an extension parameter
δ ≥ 0. If the machine on which job j is scheduled in s is different from its initial
machine in s0, then the processing time of j is extended to be pj+δ. Practically,
this penalty is justified since the reassignment of j causes some extra work on the
system, for example, if some preprocessing or configuration set-up was already
performed according to the initial assignment.

We distinguish between the following scenarios:

1. The initial schedule s0 might be a pure NE, or not.
2. The system’s modification might be addition or removal of machines.
3. The modified schedule is achieved by performing a sequence of improvement

steps, a sequence of best-improvement steps, or arbitrarily.
4. Improvement steps are done unilaterally or by coalitions.

Applications: Traditional analysis of job scheduling assumes a central utility
that determines the allocation of jobs to machines and all the participating en-
tities are assumed to obey the protocol. However, in practice, many systems are
used by heterogeneous, autonomous agents, which often display selfish behavior
and attempt to optimize their own objective rather than the global objective.
Game theoretic analysis provides us with the mathematical tools to study such
situations, and indeed has been extensively used recently to analyze multiagent
systems. This trend is motivated in part by the emergence of the Internet, which
is composed of distributed computer networks managed by multiple administra-
tive authorities and shared by users with competing interests [15].

Our work adds two realistic considerations to the study of job scheduling
using game theoretic analysis. First, we assume that the system is dynamic and
resources might be added or removed - this reflects the common situation in
which systems are upgraded or suffer from failures. Second, we assume that job
migrations are associated with a cost. Indeed, in real systems, migrations do
incur some cost.

The added cost might be due to the transferring overhead or due to set-
up time that should be added to the job’s processing time in its new location.
Consider for example an initial allocation of clients to download servers. Assume
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that some preprocessing is done at the time a client is assigned to a server, before
the download actually begins (e.g., locating the required file, format conversion,
etc.). Clients might choose to switch to a mirror server. Such a change would
require repeating the preprocessing work on the new server.

Another example of a system in which extension penalty occurs is of an RPC
(Remote Procedure Call) service. In this service, a cloud of servers enables service
to simultaneous users. When the system is upgraded, more virtual servers are
added. Users might switch to the new servers and get a better service (with less
congestion), however, some set-up time and configuration tuning is required for
each new user.

Note that in all the above applications, the delay caused due to a migration
is independent of the migrating job. A similar, low-tech, application is freight
transport, in which the whole cargo ship is delayed when items are added. The
registration and handling of a new item takes fixed time, independent of the
item’s size and weight.

1.1 Model and Preliminaries

A job rescheduling setting is defined by the tuple G = 〈M0,M
′, N, pj , δ〉, where

M0 is a set of initial identical machines and M ′ is a set of added or removed
machines. If the modification is machines’ addition, then M ′ is a set of new
machines, all identical to the machines in M0. If the modification is machines’
removal thenM ′ ⊆M0. We denote bym0,m

′ the number of machines inM0,M
′,

respectively. N = {1, . . . , n} is the set of jobs. For each job j ∈ N , pj denotes
the processing time of job j. δ > 0 is the extension parameter, i.e, the time
penalty that is added to the processing time of a migrating job. An assignment
method produces an assignment s = (s(1), . . . , s(n)) of jobs to machines, where
s(j) is the machine to which job j is assigned. The assignment is referred to
as a schedule. We use s0, s to denote the initial and the modified schedules,
respectively. In s, the processing time of a job j ∈ N on machine i ∈ M0

⋃
M ′

is pj if i = s0(j) and pj + δ otherwise. The load on a machine i in a schedule s
is the sum of the processing times (including the extension penalty) of the jobs
assigned to i, that is, Li(s) =

∑
j:s(j)=i pj + δi,j where δi,j = 0 if s0(j) = i and δ

otherwise. For a job j ∈ N , let cj(s) be the cost of job j in the schedule s, then
cj(s) = Ls(j).

An assignment s is a pure Nash equilibrium (NE) if no job j ∈ N can benefit
from unilaterally deviating from its machine to another machine; i.e., for every
j ∈ N and every machined i = s(j), Li + pj + δi,j ≥ Ls(j).

Some of our results refer to outcomes of a sequence of improvement steps.
Better-Response Dynamic (RD) is a local-search method where in each step some
player is chosen and is allowed to change his assignment, given the assignment
of the others. In better-RD, any improvement step can be performed. In best-
RD, players select their best possible response. When best-RD or better-RD
are performed, one job might migrate several times. The extension penalty is
independent of the number of steps and only the final assignment matters. In
particular, if j leaves its machine in s0 and returns to it later, then j is not
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extended. This is justified by the applications motivating our work - in which
the penalty is not due to physical migration cost but due to the adjustment of
the job’s processing to a new machine.

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of society as a whole. We quantify the inefficiency
incurred due to self-interested behavior according to the price of anarchy (PoA)
[14,15] and price of stability (PoS) [1] measures. The PoA is the worst-case
inefficiency of a Nash equilibrium, compared to the social optimum (SO), while
the PoS measures the best-case inefficiency of a Nash equilibrium. The social
objective function we consider is the egalitarian one, i.e., we wish to minimize
the cost of the job with the highest cost. In scheduling terms, this is equivalent
to minimizing the maximal load on some machine (also known as makespan).
For a schedule s, makespan(s) = maxjcj(s) = maxiLi(s) = Lmax(s). Formally,

Definition 1. Let G be a family of games, and let G ∈ G be some game in this
family. Let Φ(G) be the set of Nash equilibria of the game G. If Φ(G) = ∅:
– The price of anarchy of the game G is the ratio between the maximal cost

of a NE and the SO of G. That is PoA(G) = maxs∈Φ(G) Lmax(s)/OPT (G).
The price of anarchy of the family of games G is PoA(G) = SupG∈GPoA(G).

– The price of stability of the game G is the ratio between the minimal cost of a
NE and the SO of G. That is, PoS(G) = mins∈Φ(G) Lmax(s)/OPT (G), and
the price of stability of the family of games G is PoS(G) = SupG∈GPoS(G).

In section 4 we study coordinated deviations. A set of players Γ ⊆ N forms
a coalition if there exists a move where each job j ∈ Γ strictly reduces its cost.
An assignment s is a strong equilibrium (SE) if there is no coalition Γ ⊆ N that
has a beneficial move from s. The strong PoA and the strong PoS are defined
similarly, where Φ(G) refers to the set of strong Nash equilibria.

1.2 Related Work

The minimum makespan problem corresponds to the centralized version of our
game in which all jobs obey the decisions of one utility. This is a well-studied
NP-hard problem, having a simple greedy (43 − 1

3m )-approximation algorithm
(LPT) [12], and a PTAS [13].

In the associated load balancing game, each job is controlled by a selfish agent
who aims to minimize its cost - given by the load on the machine it is assigned to.
Fotakis et al. showed that LPT-schedules are NE schedules [11]. In [7], Even-dar
et al. analyzed the convergence time of BRD on unrelated machines. Note that
our model can be seen as a restricted case of scheduling on unrelated machines.
For every job j and machine Mi, the processing time of j on Mi is pj if i = s0(j)
and pj + δ otherwise. Our analysis provides tighter results than those known for
unrelated machines [6].

The concept of the price of anarchy (PoA) was introduced by Koutsoupias
and Papadimitriou in [14]. They proved that the price of anarchy of job schedul-
ing games is 2 − 1

m . In [10], Finn and Horowitz presented an upper bound of
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2− 2
m+1 for the price of anarchy in load balancing games with identical machines.

Note that in this game, the PoA is equivalent to the makespan approximation.
Other related work deal with cost functions that depend on the internal order

of jobs, (e.g., [5,3]), or a cost function that is based on both the congestion on the
machine and its activation cost [8]. Some of our results bound the inefficiency of a
NE produced by a sequence of improvement steps (best or better-RD). Analysis
of such sequential NE was initiated in [16] for several other games. Coordinated
deviations were studied by Andelman et al. in [2]. A survey of results on selfish
load balancing appears in [17].

1.3 Our Results

We study the problem of equilibrium existence, calculation, and inefficiency in
the load rebalancing game with uniform extension penalty. We show that any job
scheduling game with added or removed machines possesses at least one Nash
equilibrium schedule. Moreover, some optimal solution is also a Nash equilibrium,
and thus, the PoS is 1. We show that in general, the PoA is unbounded when
machines are either added or removed. The PoA can be bounded if the modified
schedule is achieved by performing improvement steps. Specifically, for a NE
that is achieved by performing improvement steps, we show that the PoA is

1. m′−1
m0

+ 2 when machines are added and s0 is a NE.
2. m0 +m′ when machines are added and s0 is not a NE.
3. m0 −m′ when machines are removed (and s0 is either a NE or not a NE).
4. 2 − 1

m0−m′ when machines are removed, s0 is a NE, and jobs are activated
in a specific order, denoted two-phase better-RD.

For all the above cases we prove the upper bound and provide matching lower
bounds. The lower bounds are tight for some values of m0,m

′ and almost tight
for other values.

We also analyze the load rebalancing game assuming coordinated deviations
are allowed. We prove that a strong equilibrium exists for all system modifica-
tions and that the SPoS is 1. We show that the SPoA is 3 for both the adding
and removing machines scenarios and that this bound is tight. Moreover, we
provide a closer analysis of the SPoA, and bound this value as a function of the
ratio between δ and OPT . Specifically, we show that the SPoA is 2 + δ

OPT and
that this bound is tight. Moreover, it is achieved even when the SE is reached
by a sequence of coalitional improvement steps. Finally, we show that for any
value of δ > 0, it is NP-hard to determine whether a given modified schedule is
a SE.

We note that in a dynamic setting in which machines are added or removed
and migrations are free of cost (i.e., when δ = 0), then the results known for
classic load balancing games apply. In particular, the PoA assuming δ = 0 is
2 − 2

m+1 for a game with m machines in the modified systems. The proofs are
identical to the proofs for a fixed number of machines. Thus, the difference
between our results and the results for the classic load balancing game are due
to the migration penalty.

Due to space constraints most of the proofs are given in the full version [4].
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2 Machines’ Addition

In this section we study the scenario in which the system’s modification involves
an addition of machines and uniform extension penalty is applied. Specifically,
for a given parameter δ > 0, if a job is assigned to a machine different than its
original machine then its processing time is extended to be pj + δ. Recall that
m0,m

′ denote the initial and added number of machines, respectively.

2.1 Equilibrium Existence and Computation

Every instance of the load rebalancing game with added machines and uniform
extension penalty admits at least one pure Nash equilibrium. This follows from
the fact that the sorted machines’ load-vector corresponding to the schedule
is decreasing lexicographically with any beneficial move. Thus, any better-RD
process converges to a NE.

The next question we consider is how many moves are required to reach a NE.
The following result shows that, for any given initial assignment, there exists a
short sequence of beneficial moves that leads to a NE. Assume that the jobs are
sorted according to their processing length, that is, p1 ≥ p2 ≥ . . . ≥ pn. Max-
length best-RD activates the jobs one after the other according to the sorted
order. An activated job j plays a best response, i.e., it moves to a machine that
minimizes its cost (or remain on s0(j) if no beneficial move exists).

We show that after a single phase of max-length best-RD, the system reaches
a NE. While this result is valid also for the classic load balancing game [17], its
proof for the load rebalancing game is more involved, since migrating jobs have
stronger incentive to return to their initial machine (and get rid of the penalty).

Theorem 1. Let s0 be any initial schedule of n jobs on m0 machines. Assume
that m′ machines are added. Starting from s0, max-length best-RD reaches a
pure Nash equilibrium after each job is activated once.

2.2 Equilibrium Inefficiency

In this section we bound the price of stability and the price of anarchy of our
game, distinguishing between various initial states and convergence methods.
For the classic load balancing game, with no extension penalty, it is known that
PoS = 1 and PoA = 2 − 2

m+1 . We show that in our model PoS = 1 and the
PoA is not bounded by a constant. It can be arbitrary large if the schedule is
not achieved by a sequence of improvement steps and bounded by m′−1

m0
+ 2 if

the schedule is achieved by a sequence of improvement steps. We also show that
if the initial schedule is not a NE but the schedule is achieved by performing a
sequence of improvement steps, the PoA is bounded by m0 +m′.

It is easy to see that a beneficial move does not increase the makespan. There-
fore, by performing best-RD starting from any optimal assignment, we reach a
NE whose makespan is equal to the optimum. This implies that the PoS equals
1. We turn to analyze the PoA. We first mention (see [4]) that when the NE is not
necessarily achieved by a sequence of beneficial moves, the PoA is unbounded.
The bound is valid even if m′ = 0 and the initial schedule is a NE.
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The more realistic scenario is when the NE is reached by performing beneficial
moves, starting from a NE schedule s0. We provide an upper bound, which is
tight when m′ mod m0 = 1, and almost tight for any other case.

Theorem 2. When the NE is reached by better-RD, PoA ≤ m′−1
m0

+ 2.

Let m′ = km0 + α for integers k and α < m0. By Theorem 2, we have that
the PoA is at most m′−1

m0
+ 2 = m0k+α−1

m0
+ 2 = k + α−1

m0
+ 2. We show that for

α = 1 and any k, the bound is tight. Almost tight analysis for other values of
k, α is given in [4].

Theorem 3. For any number of machines m0, for any integer k > 0, and for
any ρ > 0, there exists an input with m′ = km0 + 1 added machines, for which
PoA > 2 + m′−1

m0
− ρ, and the NE is reached by better-RD.

Proof. Given ρ,m0, k, let m
′ = km0+1. Let B be an integer such that ρ ≥ k+2

B+1 .

In addition, let ε = 1
(k+1)m′B and δ = 1− ε.

The set of jobs includes m′ + m0 = (k + 1)m0 + 1 jobs of length B, and
1/ε = (k+1)m′B jobs of length ε. In the initial assignment, a single machine is
assigned k+2 jobs of length B and each of the other m0−1 machines is assigned
k+1 jobs of length B, as well as some jobs of length ε, such that the ε-jobs are
assigned in a balanced way and the assignment is a NE. Note that the load on
the first machine is (k+2)B and the load on each of the other m0− 1 machines
is between (k + 1)B and (k + 1)B + 1.

We present the construction of the lower bound in Fig. 1, where m0 = 3 and
k = 1 (implying m′ = 4). The initial assignment is given in Fig. 1(a).
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Fig. 1. An instance achieving the maximal possible PoA. (a) the initial assignment,
(b) the worst NE, and (c) the best NE.

Assume that m′ machines are added and improving steps are performed. A
possible NE (see Fig. 1(b)) is a one in which the long jobs remain on M0 and
every new machine is assigned (k + 1)B jobs of length ε. The load on the first
machine remains (k + 2)B. The load on each of the other m0 − 1 machines of
M0 is (k + 1)B. The load on every new machine is (k + 1)B(δ + ε) = (k + 1)B.
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The maximum load is (k+2)B - achieved on the first machine. This assignment
is a NE as the shortest job on the most loaded machine has length B - which is
exactly the gap from the load on all other machines. Also, the other machines
are perfectly balanced, therefore no migrations are beneficial.

On the other hand, the following is an optimal assignment (see Fig. 1(c)):
One job of length B migrates to each of the new machines. The other m0 jobs
of length B as well as all jobs of length ε remain on the original machines M0.
The maximal load on M0 is at most B + 1. The load on every new machine is
B + δ < B + 1.

The ratio between the maximal loads of the two assignments is (k+2)B
B+1 . The

value of B was selected such that this is more than 2+k−ρ = 2+ m′−1
m0

−ρ. ��
Finally, we analyze the PoA for arbitrary initial assignment. The analysis is

tight for any number of machines m0, m
′ and for any δ > 0.

Theorem 4. If the initial assignment is not necessary a NE, and the modified
schedule is reached by better-RD, then the PoA is at most m0 +m′.

3 Machines’ Removal

In this section we study the scenario in which the system’s modification involves
the removal of machines. Every job assigned to a removed machine must be
reassigned. As a result, additional jobs might also be interested in migrating.
Recall that M0,M

′ denote the sets of initial and removed machines, respectively.
Let M1 = M0 \M ′ denote the set of remaining machines. Let m0,m

′,m1 denote
the corresponding numbers of machines, that is m1 = m0−m′. Throughout this
section we assume that the initial schedule, s0, is a NE. The last result in this
section, Theorem 9, considers the case in which s0 is not a NE.

3.1 Equilibrium Existence and Computation

We prove the existence of a NE and analyze the convergence rate of several
policies. When better-RD is applied, all jobs are activated in an arbitrary order.
When activated, each job migrates if it is on M ′ or if it can improve its cost. For
every job j, if s0(j) ∈M ′, j must be activated at least once, move to a machine
in M1, and be extended. Clearly, jobs must not migrate into machines in M ′.

Theorem 5. Better-RD leads to a NE assignment for every instance of the load
rebalancing game with removed machines and uniform extension penalty.

Two-phase max-length best-RD: In the 1st phase all the jobs assigned to
machines in M ′ are activated. In the 2nd phase all the jobs (now assigned to M1)
are activated in a non-increasing order of processing time pj without taking into
account the extension penalty. In both phases, jobs perform their best move.

Unlike the ‘adding machines’ scenario, when machines are removed, a single
phase of max-length best-RD might not end up in a NE. However, linear time
convergence to a NE is guaranteed by the above two-phase max-length best-RD.

Theorem 6. Two-phase max-length best-RD leads to a pure NE schedule.
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3.2 Equilibrium Inefficiency

In this section we analyze the PoS and the PoA with various initial states and
convergence algorithms. We show that the results differ from the classical load
balancing game as well as from the machines’ addition scenario.

We note that by the discussion in Section 2.2, the PoS of the selfish load
rebalancing game with removed machines and any job extension penalty is 1.
Also (see details in [4]), the PoA is unbounded if the NE is not reached by
performing beneficial migrations. On the other hand, by assuming the NE is
reached by better-RD, we can bound the PoA. The following is tight for every
m1 ≤ m′, such that m1|m′.
Theorem 7. The PoA assuming that s0 is a NE and the modified NE is reached
by better-RD is m1.

While the PoA for arbitrary better-RD is m1, a smaller bound can be shown
if the NE is reached by two-phase better-RD. In the first phase, all the jobs that
are assigned to machines in M ′ are activated, each performing its best move to
a machine in M1. In the second phase, all the jobs (now assigned to M1) are
activated, possibly several times, in an arbitrary order.

As this is a specific application of better-RD, convergence to a NE is guaran-
teed. The use of two-phase better-RD can reduce significantly the inefficiency of
a NE. The following analysis is tight even for two-phase best-RD.

Theorem 8. The PoA assuming that s0 is a NE and the modified NE is reached
by two-phase better-RD is 2− 1

m1
.

Finally, we bound the PoA assuming the initial schedule is not a NE. The
upper bound proof is similar to the proof of Theorem 4. The lower bound follows
from Theorem 7.

Theorem 9. If the initial assignment is not necessary a NE, and the modified
schedule is reached by better-RD, then the PoA is at most m1 and this is tight.

4 Analysis of Coordinated Deviations

In this section we assume that agents can coordinate their strategies and perform
a coordinated deviation. Recall that a set of players Γ ⊆ N forms a coalition if
there exists a move where each job j ∈ Γ strictly reduces its cost. A schedule s
is a strong equilibrium (SE) if there is no coalition Γ ⊆ N that has a beneficial
move from s.

It is not difficult to see (using the arguments used for the classic load balancing
game [2]) that for any instance of the dynamic game, a SE exists. In particular,
an assignment in which the vector of loads is lexicographically minimal is a SE.
On the other hand, as we show, finding a SE schedule, or deciding whether a
NE schedule s is a SE is NP-hard. Moreover, given a set of jobs, it is NP-hard
to determine whether this set has a beneficial coordinated deviation.

Theorem 10. Let s be a NE schedule in a system after a modification took
place. For any δ ≥ 0, it is NP-hard to determine whether s is a SE.
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4.1 Equilibrium Inefficiency

We present tight bounds for the strong price of anarchy. By the discussion in
Section 2.2, the strong price of stability is 1.

Theorem 11. The SPoA of load rebalancing games with uniform extension
penalty with added or removed machines is at most 3.

We show that the above analysis is tight even when the initial schedule is a
SE in the cases of adding and removing machines. For simplicity, the instance
below is described for specific values of m0 and m′. It can be generalized by
scaling and/or adding dummy jobs.

Theorem 12. For any ρ > 0, there exist instances with added machines and
with removed machines for which SPoA ≥ 3− ρ.

Proof. We show the construction for added machines, see [4] for removed ma-
chines. Given ρ, let ε < 1 be a small constant and let B be an integer such that
ρ ≥ 4ε

B+ε . Fix δ = B − ε. The initial schedule, on m0 = 3 machines, is given
in Fig. 2(a). Note that each machine accommodates one long job of length B
and one tiny job of length ε (job-lengthes’ indices in the figure denote s0(j) - to
help follow the migrations). Since the load is perfectly balanced, s0 is a strong
equilibrium. Assume that m′ = 2 machines are added. Consider the schedule s
given in Fig. 2(b). We have Lmax(s) = 2B + δ = 3B − ε.

M’

ε
1

ε
2

ε
3

M
0

M
0

ε
3

M’

(a) (b) (c)

M
0

Fig. 2. An instance achieving SPOA = 3. (a) the initial assignment, (b) a possible SE,
and (c) the best SE.

We show that s is a SE by showing that no job can be part of a coalition.
Note that the current cost of each ε-job is ε+ δ = B, therefore, no job will join
an ε-job on its current machine. Moreover, an ε-job will participate in a coalition
only if it returns to its original machine alone. Therefore, after any coalitional
move, three different machines will be dedicated to the ε-jobs. Since there are
three Bi jobs and two machines without ε-jobs, there is a machine with two Bi
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jobs on it. At least one of which is extended. Thus, in any coalitional move, one
machine has load 2B+ δ which is not beneficial for the jobs assigned to it. Thus,
no coalition exists. An optimal schedule for the modified instance is given in
Fig. 2(c). Lmax(OPT ) = B+ε. Therefore, SPoA ≥ 3B−ε

B+ε = 3B+3ε
B+ε − 4ε

B+ε ≥ 3−ρ.
��

It is possible to provide a tighter analysis of the strong price of anarchy, by
bounding this value as a function of the ratio between δ and OPT . The proof of
the following theorem is similar to the proof of Theorem 11. The bound is tight
even if the initial schedule is a SE, and the final SE is reached by a sequence of
coalitional improvement steps (see [4]).

Theorem 13. The SPoA of load rebalancing games with uniform extension
penalty is at most 2 + δ

OPT .

5 Summary and Future Work

We considered a dynamic variant of the classic load balancing game, in which
machines are added or removed and job migrations are associated with job’s
extension.

To the best of our knowledge, these are the first results considering games
with migration costs. We provided answers to the basic questions arising in this
model. Specifically, we explored the existence and calculation of Nash equilibrium
and strong equilibrium and provided tight bounds for NE and SE inefficiency -
in general and under various dynamics. Our results show that the existence of
migration penalty might lead to poor stable schedules, however, if the modifica-
tion is a result of a sequence of improvement steps or, better, if the sequence of
improvement steps can be supervised in some way (by forcing the jobs play in a
specific order, or select their best response) then the modified schedule approx-
imates well an optimal one, with approximation ratio similar to the classic load
balancing game. Thus, while migration costs discourage changes and increase
the stability of any given configuration, it is still guaranteed that any stable
configuration that is reached by natural dynamics has a reasonable social cost.

Possible directions for future work include the study of heterogenous systems,
in particular unrelated machines, or non-uniform extension penalty. That is, for
each i, i′, j we are given an extension parameter δi,i′,j such that job j is extended
by δi,i′,j if it migrates from machine i to machine i′. Another interesting variant
is proportional extension, i.e., a migration of job j extends its processing time
from pj to pj(1 + δ). Studying modifications that include both addition and
removal of machines is another open direction.

Our analysis of coordinated deviation show that the SPoA heavily depends
on the value of δ. Possible future work is to analyze instances in which δ is
bounded by the instance parameters, e.g., when δ ≤ pmin. Analyzing equilibrium
inefficiency with respect to the objective of minimizing the total players’ cost is
another challenge.

Finally, in our model a migration of job j affects all the jobs assigned to j’s
target machine. Another possible game can be defined by assuming individual
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penalties. Specifically, migrations are associated with a cost, but this cost is
covered by the job and does not affect other jobs. The cost of a job j assigned
to machine i is Li if i = s0(j) and Li + δ otherwise, where the load is the total
processing time of jobs assigned to machine i.
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(2012)
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Abstract. Congestion games ignore the stochastic nature of resource delays and
the risk-averse attitude of the players to uncertainty. To take these aspects into ac-
count, we introduce two variants of atomic congestion games, one with stochas-
tic players, where each player assigns load to her strategy independently with a
given probability, and another with stochastic edges, where the latency functions
are random. In both variants, the players are risk-averse, and their individual cost
is a player-specific quantile of their delay distribution. We focus on parallel-link
networks and investigate how the main properties of such games depend on the
risk attitude and on the participation probabilities of the players. In a nutshell,
we prove that stochastic congestion games on parallel-links admit an efficiently
computable pure Nash equilibrium if the players have either the same risk attitude
or the same participation probabilities, and also admit a potential function if the
players have the same risk attitude. On the negative side, we present examples of
stochastic games with players of different risk attitudes that do not admit a poten-
tial function. As for the inefficiency of equilibria, for parallel-link networks with
linear delays, we prove that the Price of Anarchy is Θ(n), where n is the number
of stochastic players, and may be unbounded, in case of stochastic edges.

1 Introduction

Congestion games provide an elegant and useful model of selfish resource allocation
in large-scale networks. In an (atomic) congestion game, a finite set of players, each
with an unsplittable unit of load, compete over a finite set of resources (or edges). All
players using an edge experience a latency given by a non-negative and non-decreasing
function of the edge’s load (or congestion). Each player selects a path between her
origin and destination, trying to minimize her individual cost, that is, the sum of the
latencies on the edges in the chosen path. A natural solution concept is that of a pure
Nash equilibrium (PNE), a configuration where no player can decrease her individual
cost by unilaterally changing her path.

In a seminal work, Rosenthal [18] proved that the PNE of congestion games cor-
respond to the local optima of a natural potential function, and thus every congestion
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B. Vöcking (Ed.): SAGT 2013, LNCS 8146, pp. 86–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Stochastic Congestion Games with Risk-Averse Players 87

game admits a PNE. Following [18], the properties of congestion games and several
variants of them have been extensively studied. The prevailing questions in recent work
have to do with whether congestion games and some natural generalizations of them
admit an (approximate) PNE and/or an (approximate) potential function (see e.g., [13],
[11], [12] and [5]), with bounding the convergence time to a PNE if the players act self-
ishly (see e.g., [1], [7], and [10]), and with quantifying the inefficiency of PNE due to
the players’ selfish behavior (see e.g., [4], [8], [2], and [6]). Notably, a significant part
of recent work concerns the properties of congestion games and their generalizations
on parallel-link networks (see e.g., [13], [6], and [10], and the references therein).

However, most research work on congestion games essentially ignores the stochastic
nature of edge delays and assumes that players have precise knowledge of the (de-
terministic) edge latencies. On the contrary, in real life situations, players cannot ac-
curately predict the actual edge delays, not only because they cannot know the exact
congestion of every edge, but also due to (a priori unknown) external events (e.g., some
construction work, a minor accident, a link failure) that may affect the edge latencies
and introduce uncertainty. It is therefore natural to assume that the players decide on
their strategies based only on estimations of their actual delay and, most importantly,
that they are fully aware of the uncertainty and of the potential inaccuracy of their es-
timations. So, to secure themselves from the event of an increased delay, players select
their paths taking uncertainty into account (e.g., people either take a safe route or plan
for a larger than usual delay when they head to an important meeting).

Such considerations give rise to congestion games with stochastic delays and risk-
averse players, where instead of the path that minimizes her expected delay, each player
selects a path that guarantees her a reasonably low actual delay with reasonably high
confidence. Here, the actual delay of each player can be modeled by a random variable.
Then, a common assumption is that players seek to minimize either a convex combina-
tion of the expectation and the variance of their delay, or a player-specific quantile of
the delay distribution (see also [19], [9] about the cost functions of risk-averse players,
and [17] about possible ways of risk quantification in optimization under uncertainty).

Previous Work. Following the research direction above, Ordóñez and Stier-Moses [15]
considered nonatomic congestion games and suggested that each path should be penal-
ized by an additive term that increases with the risk-aversion of the players and with the
maximum deviation from the expected delay of the path (however, this term does not
depend on the actual load of the edges). For each path, the additive term can be cho-
sen either as a δ-fraction of (resp. a δ-quantile of a random variable depending on) the
maximum deviation from the expected delay of the path, or simply, as the sum of the
δ-fractions of the maximum deviation from the expected delay of each edge in the path,
where δ quantifies the risk-aversion of the players. Under some general assumptions,
[15] proves that an equilibrium exists and is essentially unique in all the cases above.

Subsequently, Nikolova and Stier-Moses [14] suggested a model of stochastic self-
ish routing with risk-averse players, where each player selects a path that minimizes the
expected delay plus δ times the standard deviation of the delay, where δ quantifies the
risk-aversion of the players. They considered nonatomic and atomic congestion games,
mostly with homogeneous players, that share the same risk attitude, and distinguished
between the case where the standard deviation of a path’s delay is exogenous, i.e., it does
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not depend on the load of the edges in the path, and the case where it is endogenous, i.e.,
it is a function of the load. They proved that in the exogenous case, which is similar to
the model of [15], stochastic routing games essentially retain the nice properties of stan-
dard congestion games: they admit a potential function and, in the nonatomic setting,
a unique equilibrium, and the inefficiency of equilibria can be bounded as for standard
congestion games. In the endogenous case, they proved that nonatomic stochastic rout-
ing games admit an equilibrium, which is not necessarily unique, but may not admit
a cardinal potential. Moreover, atomic stochastic routing games may not admit a PNE
even in simple extension-parallel networks with 2 players and linear delays.

Contribution. Following this research agenda, we seek a better understanding of the
properties of congestion games with stochastic delays and risk-averse players. We focus
on atomic congestion games and introduce two variants of stochastic congestion games.
We start from the observation that the variability of edge delays comes either from the
variability of the traffic demand, and the subsequent variability of the edge loads, or
from the variability of the edge performance level. Decoupling them, we introduce two
variants, namely Congestion Games with Stochastic Players and Congestion Games
with Stochastic Edges, each capturing one of the two sources of uncertainty above.

Congestion Games with Stochastic Players aim to model the variability of the traffic
demand. Specifically, each player i participates in the game independently with proba-
bility pi. As a result, the total network load, the edge loads, and the edge and the path
latencies are all random variables. On the other hand, Congestion Games with Stochas-
tic Edges aim to model variability in the network operation. Now, each edge e may
operate either at the “standard” mode, where its latency is given by a function fe(x),
or at the “faulty” mode (e.g., after a minor accident or a link failure), where its latency
is given by ge(x), with ge(x) ≥ fe(x). Each edge e switches to the “faulty” mode in-
dependently with a given probability pe. Hence, the network load and the edge loads
are now deterministic, but the edge and the path latencies are random variables. In both
variants, players are risk-averse to the stochastic delays. Specifically, each player i has
a (possibly different) desired confidence level δi, and her cost on a path q is the δi-
quantile (a.k.a. value-at-risk) of the delay distribution of q. In words, the individual cost
of player i is the minimum delay she can achieve along q with probability at least δi.

At the conceptual level, the model of Congestion Games with Stochastic Players is
similar to the model with endogenous standard deviations of [14]. In fact, using Cher-
noff bounds, one can show that for linear latency functions, if the expected edge loads
are not too small, our δi-quantile individual cost can be approximated by the individual
cost used in [14]. However, we also consider stochastic demands, a direction suggested
in [14, Sec. 7] to enrich the model, and players that are heterogeneous with respect to
risk attitude. As for Congestion Games with Stochastic Edges, the model is conceptu-
ally similar to the model with exogenous standard deviations of [14].

In the technical part of the paper, we restrict ourselves to parallel-link networks with
symmetric player strategies, and investigate how the properties of stochastic congestion
games depend on the players’ participation probabilities and confidence levels. We first
observe that such games admit a potential function and an efficiently computable PNE,
if the players are homogeneous, namely if they have the same confidence level δ and,
in case of stochastic players, the same participation probability p (Theorems 1 and 7).
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We also show that if the players have different confidence levels (and the same participa-
tion probability, if they are stochastic), stochastic congestion games belong to the class
of player-specific congestion games [13], and thus admit a PNE computable in polyno-
mial time (Corollaries 1 and 2). On the negative side, we prove that such games may not
admit a potential function (Theorems 2 and 8). For Congestion Games with Stochastic
Players that have the same confidence level and different participation probabilities, we
show that they admit a lexicographic potential (Theorem 4), and thus a PNE, which
can be computed by a simple greedy best response algorithm (Theorem 3). As for the
inefficiency of PNE, in the case of linear latency functions, we prove that the Price of
Anarchy (PoA) is Θ(n), if we have n stochastic players, and (Theorems 5 and 6), and
may be unbounded, in the case of stochastic edges (Theorem 9).

Other Related Work. There is a significant volume of work on theoretical and practi-
cal aspects of transportation networks with uncertain delays, which however focuses on
nonatomic games and adopts notions of individual cost and viewpoints quite different
from ours (see e.g., the discussion in [14]). Motivated by applications with only partial
knowledge of the number of players participating in the game, Ashlagi, Monderer, and
Tennenholtz [3] considered congestion games on parallel links with stochastic play-
ers. However, the players in [3] are risk-neutral, since their individual cost is the ex-
pected delay of the chosen link. They proved that a generalization of the fully mixed
equilibrium remains a mixed Nash equilibrium in this setting. Very recently, Piliouras,
Nikolova, and Shamma [16] considered atomic congestion games with risk-averse play-
ers and delays determined by a randomized scheduler of the players on each edge. They
obtained tight bounds on the PoA of such games with linear latencies under various
notions of risk-averse individual cost. Interestingly, they proved that the PoA can be
unbounded for the individual cost of [14].

2 Notation and Preliminaries

In this section, we introduce the notation and the basic terminology of standard con-
gestion games. For a random variable X , we let E[X ] denote the expectation and
Var[X ] denote the variance of X . For an event E, we let Pr[E] denote its probabil-
ity. For a vector x = (x1, . . . , xn), we let x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn) and
(x−i, x′i) ≡ (x1, . . . , xi−1, x′i, xi+1, . . . , xn).

Congestion Games. A congestion game is a tuple G(N,E, (Σi)i∈N , (de)e∈E
)
, where

N is the set of players, E is the set of resources, Σi ⊆ 2E \ {∅} is the strategy space of
each player i, and de : N �→ R≥0 is a non-negative and non-decreasing latency function
associated with each resource e. A congestion game is symmetric if all players share
the same strategy space. In what follows, we let n denote the number of players and m
denote the number of resources.

A configuration is a vector σ = (σ1, . . . , σn) consisting of a strategy σi ∈ Σi for
each player i. For every resource e, we let σe = |{i ∈ N : e ∈ σi}| denote the
congestion induced on e by σ. The individual cost of player i in the configuration σ
is ci(σ) =

∑
e∈σi

de(σe). A configuration σ is a pure Nash equilibrium (PNE) if no
player can improve her individual cost by unilaterally changing her strategy. Formally,
σ is a PNE if for every player i and every strategy si ∈ Σi, ci(σ) ≤ ci(σ−i, si).
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Next, we focus on symmetric congestion games on parallel-link networks, where the
strategies are singletons and there is a strategy for every resource. Thus, we use the
terms “resource” and “edge”, and “strategy” and “path” interchangeably.

Social Cost. To quantify the inefficiency of PNE, configurations are usually evaluated
using the total cost of the players. In standard congestion games, the total cost of a
configuration σ, denoted C(σ), is C(σ) =

∑
i∈N ci(σ). The optimal configuration,

usually denoted o, minimizes the total cost among all possible configurations.

Price of Anarchy. The (pure) Price of Anarchy (PoA) of a congestion game G is the
maximum ratio C(σ)/C(o) over all PNE σ of G. The PoA of a class of games is defined
as the maximum PoA among all games in the class.

3 Congestion Games with Stochastic Players

3.1 The Model

In Congestion Games with Stochastic Players, each player i is described by a tuple
(pi, δi), where pi ∈ [0, 1] is the probability that player i participates in the game, by
assigning a unit of load to her strategy, and δi ∈

[
1
2 , 1
]

is the confidence level (or risk-
aversion) of player i. Essentially, each player i is associated with a Bernoulli random
variable Xi that is 1 with probability pi, and 0 with probability 1 − pi. Then, the load
of each edge e in a configuration σ is the random variable Ne(σ) =

∑
i:e∈σi

Xi, and
the cost of a strategy q in σ is the random variable Dq(σ) =

∑
e∈q de(Ne(σ)).

Given that player i participates in the game, the delay of player i in σ is given by the
random variable:

Di(σ) =
∑
e∈σi

de

⎛⎝1 +
∑

j �=i: e∈σj

Xj

⎞⎠ .

We note that conditional on Xi = 1, Di(σ) = Dσi(σ), i.e., the delay of i in σ is equal
to the cost of her strategy in σ, conditional that i participates in the game.

The (risk-averse) individual cost ci(σ) perceived by player i in σ is the δi-quantile
(or value-at-risk) of Di(σ). Formally, ci(σ) = min{t : Pr[Di(σ) ≤ t] ≥ δi}. We
note that for parallel-link networks, the (risk-averse) individual cost of the players can
be computed efficiently. PNE are defined as before, but with respect to the risk-averse
individual cost of the players.

Depending on whether players have the same participation probabilities pi and/or the
same confidence levels δi, we distinguish between four classes of Congestion Games
with Stochastic Players:

– homogeneous, where all players have the same participation probability p and con-
fidence level δ.

– p-homogeneous, where all players have the same participation probability p, but
may have different confidence levels.

– δ-homogeneous, where all players have the same confidence level δ, but may have
different participation probabilities.

– heterogeneous, where both the participation probabilities and the confidence levels
may be different.
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3.2 Stochastic Players on Parallel Links: Existence and Computation of PNE

In the following, we restrict ourselves to parallel-link networks, and investigate the
existence and the efficient computation of PNE for the four cases considered above.

Homogeneous Stochastic Players. If the players are homogeneous, stochastic conges-
tion games on parallel-links are equivalent to standard congestion games on parallel-
links (but with possibly different latencies), because the (risk-averse) individual cost
of each player in a configuration σ depends only on the link e and its congestion σe.
The proof of the following employs Rosenthal’s potential function and a Greedy Best
Response dynamics that guarantee the existence and the efficient computation of a PNE.

Theorem 1. Congestion Games with Homogeneous Stochastic Players on parallel-link
networks admit an exact potential function. Moreover, a PNE can be computed in poly-
nomial time.

p-Homogeneous Stochastic Players. In this case, a stochastic game is equivalent to a
congestion game on parallel links with player-specific costs [13], as the (risk-averse)
individual cost of each player i in a configuration σ depends only on the link e, its
congestion σe, and i’s confidence level δi. Thus, we obtain that:

Corollary 1. Congestion Games with p-Homogeneous Stochastic Players on parallel-
link networks admit a PNE. Moreover, a PNE can be computed in polynomial time.

Milchtaich [13] proved that parallel-link games with general player-specific costs
may not admit a potential function. However, in our case the players’ individual costs
are correlated, as for any edge, there is a common distribution on which they depend.
Nevertheless, we next show that parallel-link games with p-homogeneous stochastic
players and linear latencies may not admit any (even generalized) potential function.

Theorem 2. There are Congestion Games with p-Homogeneous Stochastic Players on
parallel-link networks with linear delays that do not admit any potential function.

Proof. It suffices to show that there is an infinite sequence of deviations in which each
deviating player improves her cost. To this end, we adjust the example in [13, Section 5]
to our setting. We recall that since players have the same participation probability p, the
load on each edge e that player i considers is binomially distributed.

We let p = 0.75, and consider 3 parallel links, e1, e2, and e3, 3 “special” players,
that change their strategies and form a better response cycle, with δ1 = 0.75, δ2 = 0.58
and δ3 = 0.6, and n1 = 25 additional players on e1, n2 = 20 additional players
on e2 and n3 = 9 additional players on e3. The latency functions of the 3 edges are
f1(k) = 3k + 71, f2(k) = 6k + 33 and f3(k) = 15k + 1.

We proceed to describe a better response cycle that consists of 6 different configura-
tions σ1, . . . , σ6. Each configuration is represented by a vector [S1, S2, S3], where Si is
the subset of the “special” players using edge ei.

σ1 =
[
{1, 2}, {3}, ∅

]
→ σ2 =

[
{1, 2}, ∅, {3}

]
→ σ3 =

[
{2}, ∅, {1, 3}

]
→

σ4 =
[
∅, {2}, {1, 3}

]
→ σ5 =

[
∅, {2, 3}, {1}

]
→ σ6 =

[
{1}, {2, 3}, ∅

]
→ σ1
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To verify that this is indeed a better response cycle, we give the vectors of the risk-averse
individual cost of the “special” players in each configuration: c(σ1) = (137, 134, 135),
c(σ2) = (137, 134, 121), c(σ3) = (136, 131, 136), c(σ4) = (136, 129, 136), c(σ5) =
(136, 135, 135), and c(σ6) = (134, 135, 135). ��
δ-Homogeneous Stochastic Players. In this case, players have the same confidence
level δ, but their participation probabilities may be different. We next show how to
efficiently compute a PNE in parallel-link networks by the p-Decreasing Greedy Best
Response algorithm, or p-DGBR, in short, which proceeds as follows:

– Order the players in non-increasing order of their participation probabilities pi .
– Assign the current player, in the previous order, to the edge corresponding to her

best response strategy in the current configuration.
– Repeat until all players are added.

Theorem 3. The p-DGBR algorithm computes, in O(nm + n2) time, a PNE for Con-
gestion Games with δ-Homogeneous Stochastic Players on parallel-link networks with
general latency functions.

Proof. The proof is by induction on the number of players. We assume that we are at
a PNE, and player i is assigned to edge e. Since players on other edges do not deviate,
we only have to show that players on e do not deviate. Let k be any player already on e,
which implies that pk ≥ pi. It suffices to show that in the current configuration σ, with
σi = σk = e, we have that ck(σ) ≤ ci(σ). This holds because pk ≥ pi and players i
and k perceive the same cost on any other edge.

Formally, let us consider ck(σ) and ci(σ). We have that:

ck(σ) = min

{
t : Pr

[
de
(
1 +Xi +

∑
j �=i,k: σj=eXj

) ≤ t
] ≥ δ

}
and

ci(σ) = min

{
t : Pr

[
de
(
1 +Xk +

∑
j �=i,k: σj=eXj

) ≤ t
] ≥ δ

}
.

Since pk ≥ pi, for any r ∈ N, we have that:

Pr

[
Xk +

∑
j �=i,k: σj=e

Xj ≤ r

]
= Pr

[ ∑
j �=i,k: σj=e

Xj ≤ r

]
− Pr

[ ∑
j �=i,k: σj=e

Xj = r

]
pk

≤ Pr

[ ∑
j �=i,k: σj=e

Xj ≤ r

]
− Pr

[ ∑
j �=i,k: σj=e

Xj = r

]
pi

= Pr

[
Xi +

∑
j �=i,k: σj=e

Xj ≤ r

]
.

Thus, since the edge latency functions are non-decreasing, we obtain that:

Pr

[
de

(
1 +Xk +

∑
j �=i,k: σj=e

Xj

)
≤ de(r + 1)

]

≤ Pr

[
de

(
1 +Xi +

∑
j �=i,k: σj=e

Xj

)
≤ de(r + 1)

]
.
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Therefore, ck(σ) ≤ ci(σ), as required. The total computation time is O(nm + n2),
as at each step i, the computations for the newly inserted player take O(m + i2) time,
and we can use memoization to avoid recalculations. ��

We next show that Congestion Games with δ-Homogeneous Stochastic Players admit
a two-dimensional lexicographic potential function.

Theorem 4. Congestion Games with δ-Homogeneous Stochastic Players on parallel-
link networks admit a generalized potential function.

Proof. We define, for each edge e and each configuration σ, a two-dimensional vector
ve,σ and a total order on these vectors. Moreover, for each configuration σ, we define
a vector wσ = (ve,σ)e∈E , where the vectors ve,σ appear in increasing lexicographic
order. The crux of the proof is to show that for any improving deviation that changes
the configuration from σ to σ′, we have that wσ < wσ′ . Thus, any decreasing function
on the vectors wσ can serve as a generalized potential function.

Formally, we let ce(σ) = min{t : Pr[de(1 + Ne(σ)) ≤ t] ≥ δ} be the outside
δ-cost of each edge e under σ, i.e. the cost that any player not in e perceives when she
considers moving to e. By definition, we have that:

ce(σ) = ci(σ−i, e) ∀i : σi = e (1)

ce(σ) ≥ ci(σ) ∀i : σi = e (2)

We let ve,σ =
(
ce(σ), σe

)
, and consider the lexicographic order on these pairs:

– (x1, y1) < (x2, y2), if either x1 < x2 or x1 = x2 and y1 < y2.
– (x1, y1) = (x2, y2), if x1 = x2 and y1 = y2.
– (x1, y1) > (x2, y2), otherwise.

For any configuration σ, we let wσ = (ve,σ)e∈E be the vector consisting of the pairs
ve,σ in increasing lexicographic order. We next show that after any improving deviation,
the new configuration σ′ has wσ′ > wσ .

Let us assume that player i performs an improving deviation from e to e′, and let
σ = (σ−i, e) be the initial configuration and σ′ = (σ−i, e′) be the final configuration.
Since we consider an improving deviation of player i, ci(σ) > ci(σ

′). Furthermore, by
(1), ci(σ′) = ci(σ−i, e′) = ce′(σ), and by (2), ce(σ) ≥ ci(σ). Thus, we obtain that
ce(σ) > ce′(σ), which implies that ve′,σ < ve,σ . Hence, if we consider the coordinates
of wσ , we have that the pair ve′,σ of e′ appears before the pair ve,σ of e.

Since we consider a deviation from e to e′, the only pairs affected are ve,σ and ve′,σ .
Consequently, in order to show that wσ < wσ′ , we need to show (i) that ve′,σ < ve′,σ′ ,
and (ii) that ve′,σ < ve,σ′ . In words, we need to show that the pair of e′ increases by i’s
move from e to e′, and that the pair of e in σ′, although it might decrease, still remains
greater than the pair of e′ in σ.

As for inequality (i), we observe that σe′ < σ′e′ and that ce′(σ) ≤ ce′(σ
′). Combining

these inequalities, we conclude that ve′,σ < ve′,σ′ .
To show inequality (ii), we combine (1) with the hypothesis that player i performs

an improving deviation from e to e′, and obtain that ci(σ) > ci(σ−i, e′) = ce′(σ).
Also, considering the outside δ-cost of e in σ′ and using that σ′i = e, we obtain that
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ce(σ
′) = ci(σ

′
−i, e) = ci(σ), because σ′−i and σ−i are identical. Combining these, we

conclude that ce′(σ) < ce(σ
′), which immediately implies that ve′,σ < ve,σ′ .

We have thus established a correspondence between configurations σ and the vectors
wσ , and that for any improving deviation that changes the configuration from σ to σ′,
wσ < wσ′ . Now, let us consider any strictly decreasing function Φ from the vectors wσ

to R. Then, for any configuration σ, any edges e, e′, and any player i, we have that

ci(σ−i, e) > ci(σ−i, e′)⇒ Φ(σ−i, e) > Φ(σ−i, e′).

Consequently, Φ serves as generalized potential function for Congestion Games with
δ-Homogeneous Stochastic Players. ��

3.3 The Price of Anarchy for Stochastic Games with Affine Latencies

In Congestion Games with Stochastic Players, we let the total cost of a configuration σ

be C(σ) = E
[∑

i∈NXiDi(σ)
]
, which is a natural generalization of the total cost for

standard congestion games. We let o denote an optimal configuration that minimizes
the total cost. Then, as for standard congestion games, the Price of Anarchy (PoA) of a
stochastic congestion game G is the maximum ratio C(σ)/C(o) over all PNE σ of G.

Next, we first convert the total cost C(σ) to a more convenient form, and then present
upper and lower bounds on the PoA of Stochastic Congestion Games with Stochastic
Players and affine latency functions.

As observed in Section 3.1, if we condition on Xi = 1, i.e., that player i participates
in the game, Di(σ) = Dσi(σ), and thus, XiDi(σ) = XiDσi(σ). Therefore,

C(σ) = E
[∑

i∈NXiDσi(σ)
]
=
∑

e E
[
Ne(σ) de(Ne(σ))

]
.

Hence, for affine latency functions de(x) = aex+ be, we have that

C(σ) =
∑
e

E
[
Ne(σ)

(
aeNe(σ) + be

)]
=
∑
e

[
ae
(
E[Ne(σ)]

2 + Var[Ne(σ)]
)
+ be E[Ne(σ)]

]
.

Theorem 5. Congestion Games with n Stochastic Players on parallel-link networks
with affine latency functions have PoA = O(n).

Proof. Let de(x) = aex+ be denote the affine latency of each edge e. We first observe
that (i) since δ ≥ 1/2, the cost that a player i perceives on her edge e is at least as large
as her expected delay on e due to the load caused by the other players on e, formally
ci(σ) ≥ ae E[

∑
j �=i: e=σj

Xj ] + be, and that (ii) at equilibrium, all players perceive a
cost of at most n(a+ b), where a+ b = mine{ae + be}, since otherwise, some player
would have an incentive to deviate to the edge with latency ax+ b.

In what follows, we let f be any PNE, and let o be an optimal configuration. Based
on the observations above, we next show that C(f) ≤ 3nC(o).



Stochastic Congestion Games with Risk-Averse Players 95

For convenience, we let Fe = Ne(f) and Oe = Ne(o). We have that:

C(f) =
∑
e

(
ae
(
E[Fe]

2 + Var[Fe]
)
+ be E[Fe]

)
=
∑
e

E[Fe]

(
ae E[Fe] + be + ae

Var[Fe]

E[Fe]

)
≤
∑
e

E[Fe]

(
cmax + ae + ae

Var[Fe]

E[Fe]

)
≤ 3

∑
e

E[Fe] cmax ,

where cmax denotes the largest cost of a player in f . The inequalities follow from ob-
servation (i) above, from cmax ≥ ae for all used edges e, and from Var[Fe] ≤ E[Fe].

Using observation (ii) above, with a+ b = mine{ae + be}, we obtain that:

C(f) ≤ 3 cmax

∑
e

E[Fe] ≤ 3n(a+ b)
∑
e

E[Fe] = 3n(a+ b)
∑
i∈N

pi

= 3n(a+ b)
∑
e

E[Oe] ≤ 3n
∑
e

E[Oe](ae + be)

≤ 3n
∑
e

E[Oe]

(
ae

E[Oe]
2 + Var[Oe]

E[Oe]
+ be

)
= 3nC(o) ,

where the last inequality follows from E[Oe]
2 + Var[Oe] = E[O2

e ] ≥ E[Oe]. ��
Theorem 6. There are Congestion Games with n Homogeneous Stochastic Players on
parallel-link networks with affine latency functions that have PoA = Ω(n).

Proof sketch. We consider a game with n stochastic players on k + 1 parallel edges.
Edge e1 has latency d1(x) = x, and every other edge ej has latency dj(x) = (n− k)x,
j = 2, . . . , k + 1. The players have participation probability p and confidence level
δ = 1. The configuration where n−k players use e1 and each of the remaining k players
uses a different edge ej , j = 2, . . . , k + 1, is a PNE. In the optimal configuration, all n
players are assigned to e1. Calculating the total cost of these configurations, and using
k = n/2 and p = 1/n, we obtain that the PoA is roughly n/8. ��

4 Congestion Games with Stochastic Edges

The Model. In Congestion Games with Stochastic Edges, players are deterministic,
i.e., they always participate in the game. As before, each player i has a confidence level
δi ∈ [ 12 , 1]. On the other hand, edges have a stochastic behavior, in the sense that the
latency function of each edge e is an independent random variable:

de(x) =

{
fe(x) with probability 1− pe
ge(x) with probability pe.

The delay of edge e under congestion k is given by the random variable Xe(k), which is
equal to fe(k), with probability 1−pe, and to ge(k), with probability pe, and the delay of
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a player i in a configuration σ is given by the random variable Di(σ) =
∑

e∈σi
Xe(σe).

The risk-averse individual cost of player i in σ is ci(σ) = min{t : Pr[Di(σ) ≤ t] ≥ δi},
and the total cost of σ is C(σ) = E

[∑
i∈N Di(σ)

]
.

For congestion Games with Stochastic Edges, we distinguish between the case of
homogeneous players, where all players have the same confidence level δ, and the case
of heterogeneous players, where each player i may have a different confidence level δi.

4.1 Stochastic Edges on Parallel Links: Existence and Computation of PNE

Next, we restrict ourselves to Congestion Games with Stochastic Edges on parallel-link
networks, and investigate the existence and the efficient computation of PNE.

Homogeneous Players. If the players are homogeneous, any Congestion Game on
stochastic parallel links can be transformed into a standard congestion game on parallel
links, but possibly with different latency functions. This holds because the risk-averse
individual cost of each player in a configuration σ depends only on the link e and its
congestion σe. Based on this observation, we can show that:

Theorem 7. Stochastic Congestion Games with Stochastic Edges and Homogeneous
Players on parallel-link networks admit an exact potential function. Moreover, a PNE
can be computed in O(nm) time.

Heterogeneous Players. In this case, a Congestion Game on stochastic parallel links is
a congestion game on parallel links with player-specific costs [13]. This holds because
the risk-averse individual cost of each player i in a configuration σ depends only on the
link e, its congestion σe, and i’s confidence level δi. Thus, we obtain that:

Corollary 2. Congestion Games with Stochastic Edges and Heterogenous Players on
parallel-link networks admit a PNE computable in polynomial time.

Milchtaich [13] proved that parallel-link games with general player-specific costs
may not admit a potential function. But here, as in Section 3.2, the players’ individual
costs on each edge are correlated with each other. Nevertheless, the following shows that
Congestion Games with Stochastic Edges do not admit any (even generalized) potential
function.

Theorem 8. There are Congestion Games with Stochastic Edges and Heterogeneous
Players on parallel-link networks with affine latency functions that do not admit any
potential function.

4.2 Price of Anarchy

The following shows that selfish risk-averse players on stochastic parallel links may
cause an unbounded degradation in the network performance at equilibrium.

Theorem 9. There are Congestion Games with Stochastic Edges and Homogeneous
Players on parallel-link networks with affine latencies that have an unbounded PoA.

Acknowledgements. We wish to thank Christos Tzamos for his help in the lexico-
graphic ordering argument, used in the proof of Theorem 4.
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15. Ordóñez, F., Stier-Moses, N.: Wardrop equilibria with risk-averse users. Transportation Sci-
ence 44(1), 63–86 (2010)

16. Piliouras, G., Nikolova, E., Shamma, J.S.: Risk sensitivity of price of anarchy under un-
certainty. In: Proc. of the 14th ACM Conference on Electronic Commerce (EC 2013), pp.
715–732 (2013)

17. Rockafellar, R.T.: Coherent Approaches to Risk in Optimization Under Uncertainty. In: Tu-
torials in Operations Research, pp. 38–61 (2007)

18. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International
Journal of Game Theory 2, 65–67 (1973)

19. Tversky, A., Kahneman, D.: Prospect Theory: An analysis of decision under risk. Economet-
rica 47(2), 263–291 (1979)



Congestion Games with Player-Specific Costs

Revisited�

Martin Gairing1 and Max Klimm2

1 Department of Computer Science, University of Liverpool, UK
2 Institut für Mathematik, Technische Universität Berlin, Germany

Abstract. We study the existence of pure Nash equilibria in conges-
tion games with player-specific costs. Specifically, we provide a thorough
characterization of the maximal sets of cost functions that guarantee the
existence of a pure Nash equilibrium.

For the case that the players are unweighted, we show that it is nec-
essary and sufficient that for every resource and for every pair of players
the corresponding cost functions are affine transformations of each other.
For weighted players, we show that in addition one needs to require that
all cost functions are affine or all cost functions are exponential.

Finally, we construct a four-player singleton weighted congestion game
where the cost functions are identical among the resources and differ only
by an additive constant among the players and show that it does not have
a pure Nash equilibrium. This answers an open question by Mavronicolas
et al. [15] who showed that such games with at most three players always
have a pure Nash equilibrium.

1 Introduction

The theory of congestion games is an important topic in the operations research
and algorithmic game theory literature that has driven the innovation in that
field for many years. E.g., the central notions of the price of anarchy and the
price of stability were first introduced and studied for special classes of congestion
games; see Koutsoupias and Papadimitriou [13] and Anshelevich et al. [3].

In a congestion game, as introduced by Rosenthal [20], we are given a set of
resources and each player selects a subset of them. The private cost of each player
is the sum of the costs of the chosen resources which depends on the number of
players using them. Congestion games appear in a variety of applications ranging
from traffic and telecommunication networks to real-world and virtual market
places. A fundamental problem in game theory is to characterize conditions that
guaranty the existence of a pure Nash equilibrium, a state in which no player
can improve by unilaterally changing her (pure, i.e., deterministic) strategy.

Rosenthal proved in a seminal paper [20] that every unweighted congestion
game has a pure Nash equilibrium. In contrast to this remarkable positive result,
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it is well known that many natural generalizations of congestion games need not
admit a pure Nash equilibrium. This behavior can be observed, e.g., for conges-
tion games with integer-splittable demands (Rosenthal [21], Tran et al. [22]), for
weighted congestion games (Fotakis et al. [6], Goemans et al. [9], Libman and
Orda [14], Harks and Klimm [10]) and for congestion games with player-specific
cost functions (Gairing et al. [7], Milchtaich [16,17]). For these generalizations
of congestion games it is NP-hard to decide whether a given instance admits a
pure Nash equilibrium, as shown by Dunkel and Schulz [5] for integer-splittable
congestion games and weighted congestion games and Ackermann and Skopa-
lik [2] for games with player-specific costs. Milchtaich [18] showed that every
finite game is isomorphic to both a weighted congestion game and a congestion
game with player-specific costs which makes both classes of games universal.

In light of these results, it is an important problem to find subclasses of these
games that are on the one hand narrow enough to guarantee the existence of a
pure Nash equilibrium and on the other hand rich enough to model many inter-
esting interactions. Ackermann et al. [1] gave a characterization of the existence
of equilibria in terms of the players’ strategy space. They showed that games in
which the strategy space of each player is the basis of a matroid always possess
an equilibrium and that this is basically the maximal property of the strategy
space that guarantees the existence of a pure Nash equilibrium in weighted con-
gestion games. They also show that their characterization carries over to games
with player-specific costs. For weighted congestion games also the impact of the
cost functions on the existence of pure Nash equilibria is now relatively well
understood. It is known that games with affine costs or exponential costs always
possess a pure Nash equilibrium, and that these are basically the only sets of
cost functions that one may allow to guarantee the existence of such an equi-
librium point; see Fotakis et al. [6], Panagopoulou and Spirakis [19], and Harks
and Klimm [10].

For congestion games with player-specific costs and arbitrary strategy spaces,
much less is known. The only known existence result we are aware of is due to
Mavronicolas et al. [15] who showed that every weighted congestion game with
player-specific costs in which the costs are linear and differ by a player-specific
additive constant only, always possess a pure Nash equilibrium.

Voorneveld et al. [23] showed that the class of games considered by Konishi et
al. [12] is equivalent to the class of singleton unweighted congestion games with
player-specific cost functions. Konishi et al. [12] even proved the existence of a
strong equilibrium [4], a strengthening of the pure Nash equilibrium concept that
is even robust against coordinated deviations of coalitions of players. Georgiou
et al. [8] showed that singleton weighted congestion games with linear player-
specific cost functions and three players always admit a pure Nash equilibrium.
Also for the case of three players, Mavronicolas et al. [15] showed the existence
of a pure Nash equilibrium if the cost functions are non-decreasing and differ
only by a player-specific constant.
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1.1 Our Results

As our main results, we give a complete characterization of the existence of pure
Nash equilibria in congestion games with player-specific costs with unweighted
and weighted players, respectively. To formally state our results, let N be a finite
set of players and let R be a finite set of resources. We say that a collection
C = (Cri )i∈N,r∈R of cost functions is consistent if every congestion game with
player-specific costs, in which the cost function cri of player i on resource r is an
element of Cri , possesses a pure Nash equilibrium. Clearly, a player i, with the
property that

⋃
r∈R Cri contains constant functions only, has no impact on the

existence of pure Nash equilibria since we may let such player choose a best reply
and remove her from the game. Such a player will be called trivial henceforth.

We first characterize the consistency of cost functions for games with un-
weighted players. We show that C is consistent if and only if for each two non-
trivial players i, j ∈ N , there is a constant ai,j ∈ R>0 such that for each r ∈ R
and each cri ∈ Cri and crj ∈ Crj , there is a constant b ∈ R with cri (x) = ai,j c

r
j(x)+b

for all x ∈ N.
Based on this result and the characterization of the consistency of cost func-

tions for weighted congestion games obtained in [10], we also give a similar char-
acterization for weighted congestion games with player-specific costs. Specifically,
we show that a collection C of cost functions is consistent if and only if at least
one of the following two cases holds: (i) For every player i and every resource r,
there is a constant ari ∈ R such that the set Cri contains only affine functions of
type cri (x) = arix+b where b ∈ R is arbitrary, while the ratio ari /a

r
j is independet

of r for each two non-trivial players i, j ∈ N ; or (ii) There is a constant φ ∈ R
and, for every player i and every resource r, a constant ari such that the set Cri
contains only exponential functions of type cri (x) = ari exp(φx) + b, where b ∈ R
is arbitrary, while the ratio ari /a

r
j is independent of r for each two non-trivial

players i, j ∈ N .
We complement our results constructing an instance of a singleton weighted

congestion game with costs that differ only by player-specific constants that
does not possess a pure Nash equilibrium. Interestingly, this game involves four
players and thus contrasts a result of Mavronicolas et al. [15] who showed that
weighted singleton games with player-specific constants and three players al-
ways possess a pure Nash equilibrium. To the best of our knowledge, this is the
first time that the threshold between existence and non-existence of pure Nash
equilibria for a class of games is between three players and four players.

2 Preliminaries

Let N = {1, . . . , n} be a non-empty and finite set of n players and let R =
{1, . . . ,m} be a non-empty and finite set ofm resources. Each player is associated
with a demand di ∈ R>0 and a set of strategies Si ⊆ 2R, where each strategy si ∈
Si is a non-empty subset of the resources. A tuple of n strategies s = (s1, . . . , sn),
one for each player, is called a strategy profile. The set of all strategy profiles
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S = S1× · · · × . . . Sn is called the strategy space. The private cost of each player
in a strategy profile is defined in terms of a set of player-specific cost functions
on the resources. Specifically, we are given for each player i and each resource r
a cost function cri : R≥0 → R≥0. The private cost of each player i in strategy
profile s is defined as πi(s) =

∑
r∈si c

r
i (x

r(s)), where xr(s) =
∑

j∈N :r∈sj dj is
the aggregated demand of resource r under strategy profile s. We call the tuple
G = (N,S, (πi)i∈N ) a weighted congestion game with player-specific costs. For
the special case that di = 1 for all i ∈ N , we call the game unweighted, instead.
We call the game simply a weighted (or unweighted) congestion game, if the
players’ cost functions do not differ, i.e., cri = crj for all r ∈ R and all i, j ∈ N .
If all strategies are singletons, i.e., |si| = 1 for all si ∈ Si and all i ∈ N , we call
the game a singleton game.

LetN and R be given and let C = (Cri )i∈N,r∈R be a collection of cost functions.
We say that (Cri )i∈N,r∈R is consistent if there is a pure Nash equilibrium in every
congestion game with player-specific costs G that satisfies the constraint that
cri ∈ Cri for all i ∈ N and r ∈ R. Note that we allow for arbitrarily many copies
of a resource in G. Given C, we call player i a trivial player, if cri is constant for
all r ∈ R.

3 Player-Specific Constants

We start with the positive part of our characterization, i.e., we show that con-
gestion games in which the players’ cost function of each resource differ by an
(additive) player-specific constant only always have a pure Nash equilibrium. In
fact we show the more general result that each such game is isomorphic to a
congestion game (without player-specific constants).

Formally, for two strategic games G = (N,S, π) and G = (N,S′, π′), we say
that G and G′ are isomorphic, if for each i there is a bijection Bi : Si → S′i such
that π(s) = π′(B1(s1), . . . , Bn(sn)).

To prove the following observation, we model the player-specific constants of
each player i by introducing an additional resource that is exclusively used by
player i. The proof is omitted due to space constraints.

Proposition 1. Let G be an unweighted (respectively, weighted) congestion game
with player-specific costs such that cri − crj is constant for each resource r and
each two players i and j. Then, G is isomorphic to an unweighted (respectively,
weighted) congestion game.

4 A Characterization for Unweighted Players

The technically more challenging part of our characterization is to prove that it is
indeed necessary that the cost functions of the players differ by a player-specific
constants only in order to guarantee the existence of a pure Nash equilibrium.
Before we prove this result, we need the following technical lemma.
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Lemma 1. Let N and R be arbitrary and let C = (Cri )i∈N,r∈R be a collection of
cost functions. If C is consistent for unweighted congestion games with player-
specific costs, then for each two non-trivial players i, j ∈ N the following two
conditions are satisfied:

1. {x ∈ N : cri (x + 1) = cri (x)} = {x ∈ N : crj(x + 1) = crj(x)} for all r ∈ R,
cri ∈ Cri and crj ∈ Crj .

2.
cri (x+ 1)− cri (x)

crj(x+ 1)− crj(x)
=

cti(y + 1)− cti(y)

ctj(y + 1)− ctj(y)

for all r, t ∈ R, clk ∈ Clk, k ∈ {i, j}, l ∈ {r, t} and x, y ∈ N with crj(x + 1) =
crj(x) and ctj(y + 1) = ctj(y).

Proof (Sketch). Due to space constraints, we show the claimed results only under
the additional assumption that all cost functions are non-decreasing. The general
case can be proven with similar arguments.

We start proving the first part of the claim. For a contradiction, let us assume
that there are i, j ∈ N , r ∈ R, cri ∈ Cri , crj ∈ Crj and x ∈ N such that cri (x+ 1) =
cri (x) and crj(x+1) = crj(x). As player i is non-trivial, there are t ∈ R, ctj ∈ Ctj and
y ∈ N such that cti(y+1) = cti(y). Using the additional assumption that the cost
functions are non-decreasing, we obtain crj(x+ 1) > crj(x) and cti(y+ 1) > cti(y).

Let k ∈ N be such that k
(
crj(x+1)− crj(x)

)
> ctj(y+1)− ctj(y). We introduce

2k copies r1, . . . , rk, r
′
1, . . . , r

′
k of resource r. On all those resources the players

have cost functions cri and crj , respectively. Moreover there are two resources t
and t′ with cost functions cti = ct

′
i and ctj = ct

′
j , respectively .

Player i has two strategies. She chooses either {r1 . . . , rk, t} or {r′1, . . . , r′k, t′}.
Player j chooses either {r1, . . . , rk, t′} or {r′1, . . . , r′k, t}. Furthermore, we intro-
duce x − 1 additional players with a single strategy only that always choose
{r1, . . . , rk, r′1, . . . , r′k} and y − 1 additional players that always choose {t, t′}.

We claim that the thus defined game does not have a pure Nash equilibrium.
To see this claim, note that in any strategy profile the two players either share
k resources of type r or one resource of type t. Now assume we are in a strategy
profile in which the players share one resource of type t. Then, player i may
deviate to her other strategy since sharing k resources of type r doesn’t increase
her costs as we have cri (x + 1) = cri (x). On the other hand, her cost is strictly
decreased since cti(y + 1) > cti(y). For player j, however, the situation is exactly
converse. She prefers not to share k resources of type r since k

(
crj(x+1)−cj(x)

)
>

ctj(y + 1)− ctj(y). This observation finishes the first part of the proof.
For the second part of the claim, let us assume for a contradiction, that there

are i, j ∈ N , r, t ∈ R, x, y ∈ N, and clk ∈ Clk with k ∈ {i, j}, l ∈ {r, t} such that
crj(x+ 1) = crj(x), c

t
j(y + 1) = ctj(y) and

cri (x + 1)− cri (x)

crj(x + 1)− crj(x)
>

cti(y + 1)− cti(y)

ctj(y + 1)− ctj(y)
. (1)

Using the addditional assumption that all cost functions are non-decreasing, we
obtain that the denominators crj(x+1)− crj(x) and ctj(y+1)− ctj(y) are strictly
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positive and together with the first part of the statement of the lemma, this
implies that the nominators cri (x + 1) − cri (x) and cti(y + 1)− cti(y) are strictly
positive as well. For α = ctj(y + 1)− ctj(y)/(c

r
j(x+ 1)− crj(x)), we obtain

α
(
cri (x+ 1)− cri (x)

)
> cti(y + 1)− cti(y).

As this expression is continuous in α, we may find α′ < α with α′ ∈ Q such that
we still have

α′
(
cri (x + 1)− cri (x)

)
> cti(y + 1)− cti(y).

On the other hand for player j, we derive

α′
(
crj(x+ 1)− crj(x)

)
< α

(
crj(x+ 1)− crj(x)

)
= ctj(y + 1)− ctj(y).

Writing α′ = k/l for some k, l ∈ N, we obtain the following inequalities:

k
(
cri (x + 1)− cri (x)

)
> l
(
cti(y + 1)− cti(y)

)
, (2a)

k
(
crj(x+ 1)− crj(x)

)
< l
(
ctj(y + 1)− ctj(y)

)
. (2b)

Next, we will use these inequalities to construct a congestion game with player-
specific costs that does not have a pure Nash equilibrium.

The game has 2k resources r1, . . . , rk, r
′
1, . . . , r

′
k with cost functions cri re-

spectively crj and 2l resources t1, . . . , tl, t
′
1, . . . , t

′
l with cost function cti respec-

tively ctj . Player i has two strategies, she chooses either {r1, . . . , rk, t1, . . . , tl}
or {r′1, . . . , r′k, t′1, . . . , t′l}. Player j has two strategies as well and chooses ei-
ther {r1, . . . , rk, t′1, . . . , t′l} or {r′1, . . . , r′k, t1, . . . , tl}. Furthermore, there are x−1
players with the single strategy {r1, . . . , rk, r′1, . . . , r′k} and y−1 players with the
single strategy {t1, . . . , tl, t′1, . . . , t′l}.

We claim that the thus constructed game does not have a pure Nash equi-
librium. To see this note that for the strategy profile si = {r1, . . . , rk, t1, . . . , tl}
and sj = {r1, . . . , rk, t′1, . . . , t′l}, the two players i and j share k resources of type
r together. In that case, player i improves switching to her alternative strategy
s′i = {r′1, . . . , r′k, t′1, . . . , t′l} as

πi(s
′
i, sj , . . . )− πi(si, sj , . . . ) = k cri (x) + l cti(y + 1)− k cri (x + 1)− l cti(y)

= −k(cri (x+ 1)− cri (x)
)
+ l
(
cti(y + 1)− cti(y)

)
,

which is negative using (2a). This strategy profile, in turn, is not a pure Nash
equilibrium, since player j may deviate profitably to s′j = {r′1, . . . , r′k, t1, . . . , tl}
as

πj(s
′
i, s
′
j , . . . )− πi(s

′
i, sj, . . . ) = k crj(x + 1) + l ctj(y)− k crj(x) − l ctj(y + 1)

= k
(
crj(x+ 1)− crj(x)

) − l
(
ctj(y + 1)− ctj(y)

)
,

which is negative using (2b). By symmetry of the strategy space of the game,
the other two strategy profiles are also not a pure Nash equilibrium. ��
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We are now ready to prove our main result.

Theorem 1. For a collection C = (Cri )i∈N,r∈R of cost functions the following
are equivalent:

1. C is consistent for unweighted congestion games with player-specific costs.

2. For each two non-trivial players i, j, there is a constant ai,j ∈ R>0 such that
for each r ∈ R and each cri ∈ Cri and crj ∈ Crj , there is a constant b ∈ R with
cri (x) = ai,j c

r
j(x) + b for all x ∈ N.

(Note that b may depend on cri and crj while ai,j is equal for all r ∈ R, cri ∈ Cri
and crj ∈ Crj .)

Proof. 2.⇒ 1.: Let G be a congestion game with player-specific costs as required
in the statement, i.e., for each two non-trivial players i, j there is ai,j ∈ R>0

and bri,j ∈ R such that cri (x) = ai,j c
r
j(x) + bri,j for all x ∈ N. It is a useful

observation that the existence of pure Nash equilibria is invariant under player-
specific scaling of the private cost functions. We consider a normalized congestion
game G̃ with player-specific costs c̃ri , which are defined as

c̃ri (x) =
cri (x)

a1,i
= cr1(x) +

br1,i
a1,i

for all x ∈ N and i ∈ N \{1}. Clearly, G̃ has the same set of pure Nash equilibria
as G. Moreover, the set of pure Nash equilibria of G̃ is non-empty, as every game
with player-specific constants is isomorphic to an unweighted congestion game
(Proposition 1).

1. ⇒ 2.: Lemma 1 implies that for two non-trivial players i, j ∈ N , each
resource r ∈ R, and each cri ∈ Cri and crj ∈ Crj the sets {x ∈ N : cri (x+1) = ci(x)}
and {x ∈ N : crj(x + 1) = cj(x)} coincide and that

cri (x+1)−cri (x)
crj (x+1)−crj (x) is constant for

all resources r ∈ R and all cost functions cri ∈ Cri , crj ∈ Crj and x ∈ N for which
this ratio is defined. Let us call this constant ai,j . This implies that

cri (x+ 1)− cri (x) = ai,j
(
crj(x + 1)− crj(x)

)
.

for all r ∈ R, cri ∈ Cri , crj ∈ Crj and x ∈ N. Using telescoping sums, we obtain

cri (x) − cri (1) = ai,j
(
crj(x) − crj(1)

)
,

or equivalently

cri (x) = ai,jc
r
j(x) +

(
cri (1)− ai,jc

r
j(1)

)
,

for all r ∈ R, cri ∈ Cri , crj ∈ Crj and x ∈ N. Setting b = cri (1) − ai,jc
r
j(1), the

claimed result follows. ��
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5 A Characterization for Weighted Players

Combining the results obtained in the last section and the characterization of
consistency for weighted congestion games obtained in [10], we can also give a
complete characterization of consistency for games with weighted players.

Theorem 2. For a collection C = (Cri )i∈N,r∈R of continuous utility functions
the following are equivalent:

1. C is consistent for weighted congestion games with player-specific costs.
2. One of the following two conditions is satisfied:

(a) For every non-trivial player i and every resource r, there is a constant
ari ∈ R such that the set Cri contains only affine functions of type cri (x) =
arix+ b where b ∈ R is arbitrary, while the ratio ari /a

r
j is independent of

r for each two non-trivial players i, j ∈ N .
(b) There is a constant φ ∈ R and, for every non-trivial player i and every

resource r, a constant ari ∈ R such that the set Cri contains only exponen-
tial functions of type cri (x) = ari exp(φx) + b, where b ∈ R is arbitrary,
while the ratio ari /a

r
j is independent of r for each two non-trivial players

i, j ∈ N .

Proof. 1.⇒ 2.: Since the set of unweighted congestion games is a subset of the set
of weighted congestion games our characterization of consistency for unweighted
games obtained in Theorem 1 implies that for each two non-trivial players i, j,
there is a constant ai,j ∈ R>0, such that for all cri ∈ Cri and crj ∈ Crj we have
cri (x) = ai,j c

r
j(x)+b for all x ∈ N and some b ∈ R. Regarding games in which the

demand of each players is equal to an arbitrary but fixed ε > 0, we obtain along
the same lines that this statement holds for all x ∈ R≥0 which are an integer
multiple of ε. Letting ε go to zero and using the continuity of all cost functions
in C, we conclude that cri (x) = ai,j c

r
j(x) + b for all x ∈ R≥0 and some b ∈ R. As

we already argued in the proof of Theorem 1, it is without loss of generality to
assume that ai,j = 1 for all i, j ∈ N , i.e., cri (x) = crj(x) + b for all x ∈ R≥0 and
some b ∈ R.

Weighted congestion games (without a player-specific additive constant) are
guaranteed to have a pure Nash equilibrium if and only if one of the following
two cases holds: (i) the set of cost functions contains only affine functions c =
a x + b; or the set of cost functions contains only exponential functions c(x) =
a exp(φx) + b, where φ is equal for all cost functions [10]. For the proof of this
result, one considers three-player games in which two players have two strategies
each, and one player has a single strategy only. The two strategies of the first two
players have the property that they contain only resources with cost functions
of at most two types, and each of the types occurs with the same cardinality,
i.e., there are two cost functions c and c′ and two integers a, a′ such that each
strategy of each player consists of exactly a resources of type c and a′ resources
of type c′. Now imagine that the cost functions c and c′, in fact, differ by a
player-specific additive constant. Adding these player-specific additive constants,
however, shifts the private cost of each player for each of her strategies by a
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constant value and, thus, does not affect the existence of a pure Nash equilibrium.
This observation establishes that the characterization for weighted congestion
games obtained in [10] translates to weighted congestion games with player-
specific additive constants, which completes the proof of the claim.

2. ⇒ 1: Let G be a game as required in (a) or (b). We will transform G into
an equivalent game (with the same set of pure Nash equilibria) for which we
then show the existence of a pure Nash equilibrium.

In the first step, we scale the private cost functions of the players such that
ari = arj for each two non-trivial players i, j ∈ N and obtain a weighted conges-
tion game with player-specific costs G′. By Proposition 1, there is a weighted
congestion game G′′ that is isomorphic to G. Furthermore, if we started from
a game G as required in (a) all cost functions in G′′ are affine. Weighted con-
gestion games with affine costs admit a potential function and, hence, a pure
Nash equilibrium; see [6,11]. If, on the other hand, we started from a game G
as required in (b), the game G′′ has the property that the (player-independent)
cost function of each resource is of type cr(x) = a exp(φx)+b, where φ is a com-
mon constant of all cost functions. Under this assumption, a weighted potential
function exists [11], implying the existence of a pure Nash equilibrium. ��

6 Singleton Games

In this section, we consider singleton congestion games with player-specific costs.
Milchtaich [16] proved that a pure Nash equilibrium always exists, if the players
are unweighted and the player-specific cost functions are non-decreasing. He also
provided a counterexample of a three-player game with weighted players that
does not have a pure Nash equilibrium. On the positive side, Mavronicolas et
al. [15] showed that each three-player game in which the cost functions are non-
decreasing and differ by an additive constant only, have a pure Nash equilibrium.
It has been open whether such a positive result holds for an arbitrary number
of players. As the main result of this section, we answer this question to the
negative, i.e., we give a counterexample of a four-player singleton weighted con-
gestion game with non-decreasing and concave costs that differ by player-specific
constants only but does not have a pure Nash equilibrium.

Proposition 2. There is a singleton weighted congestion game, in which the
cost functions are non-decreasing and concave and differ by player-specific addi-
tive constants only, that does not have a pure Nash equilibrium.

Proof. There are four players N = {1, 2, 3, 4} with demands di = i for all i ∈ N .
Further, we are given four resources {t, u, v, w}. The players’ strategy sets are
given as S1 = {{t}, {u}}, S2 = {{u}, {v}}, S3 = {{t}, {v}}, S4 = {{v}, {w}}.
We first define player-independent cost functions ct, cu, cv, cw as

ct(x) = min{6x, 24} cu(x) = min{20x, 40}
cv(x) = min{2x, 14} cw(x) = 0
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for all x ∈ R≥0. For i ∈ N and r ∈ si ∈ Si, we obtain the player-specific cost
functions cri by adding a player-specific constant bri to the cost function cr. The
player-specific constants are given as

bt1 = 15, bu2 = 0, bt3 = 0, bv4 = 0,

bu1 = 0, bv2 = 29, bv3 = 9, bw4 = 13.

We proceed to show that the thus defined congestion game does not have a pure
Nash equilibrium. For the proof, we distinguish between the set of players Nv(s)
that uses the critical resource v.

We first note that the cost functions of player 4 are designed so as to ensure
that she uses resource v if and only if the load on v is smaller or equal to 6. This
rules out the possibilities {2}, {3, 4}, {2, 3, 4} for Nv(s) as in these cases player
4 would always prefer to switch. Next, note that the cost functions of player 2
are such that she uses v if and only if the load on v is smaller or equal 5 which
rules out the possibilities {3}, {2, 4}, {2, 3, 4} for Nv(s) as player 2 would prefer
to switch in these cases. This leaves use with the following two cases that can
occur in equilibrium, which we will consider separately.

First case: Nv(s) = 4. This implies that s2 = u and s3 = t. If s1 = t as well,
the load on t is 4 and thus player 3 would be better of switching to v where the
cost for her is at most 23. If, on the other hand, s1 = u, then she would improve
switching to t where the cost for her is at most 39.

Second case: Nv(s) = {2, 3}. Note that this implies that player 1 is on u, as
she prefers u over t when both resources are not used by other players. From the
strategy profile (u, v, v, w), however, player 3 improves switching to t where the
cost for her equals 18 which is strictly less than the 19 cost units she experiences
on v. ��

We can slightly strengthen the negative result showing that even for identical
cost functions in the presence of player-specific additive constants a pure Nash
equilibrium need not exist.

Corollary 1. There is a singleton weighted congestion game with player-specific
constants and identical cost functions that does not have a pure Nash equilibrium.

Proof. As shown in Proposition 2, there is a weighted singleton congestion game
with player-specific additive constants that does not admit a pure Nash equilib-
rium. We proceed to show how to transform G into an equivalent game G̃ that
has the claimed properties and does not admit a pure Nash equilibrium as well.
To this end, let N denote the set of players and R the set of resources of G.
For ease of exposition, we assume that R = {0, . . . ,m− 1} for some m ∈ N and
that cr(0) = 0 for all r ∈ R. Let D =

∑
i∈N di and M = maxr∈R cr(D). We

introduce m− 1 additional players i1, . . . , im−1 with demand dij = j ·D and a
single strategy Sij = {j}, j ∈ {1, . . . ,m−1}. The cost function c̃ of all resources

in G̃ is defined as



108 M. Gairing and M. Klimm

c̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0(x), if x ∈ [0, D],

c1(x−D) +M, if x ∈ (D, 2D],
...

cr(x− 2D) + r ·M, if x ∈ (r ·D, (r + 1)D
]
,

...

cm−1
(
x− (m− 1)D

)
+ (m− 1)M, if x ∈ ((m− 1)D,m ·D].

Finally, we redefine the player-specific constants as b̃ri = bri − r ·M .
Next, for every strategy profile s of G we associate the strategy profile s̃ =

(s1, . . . , sn, si1 , . . . , sim−1) of G̃ in which the additional players use their unique
strategy. Using the particular definitions of D, M and c̃, it is easy to see, that the
private costs of each player i ∈ N in s and s̃ coincide. Using that the additional
players have a single strategy only, we derive that G̃ does not have a pure Nash
equilibrium. ��
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Abstract. We study the application of reputation as an instigator of
beneficial user behavior in selfish routing and when the network users
rely on the network operator for information on the network traffic. In-
stead of the use of tolls or artificial delays, the network operator takes
advantage of the users’ insufficient information, in order to manipulate
them through the information he himself provides. The issue that arises
then is what can the operator’s gain be, without compromising by too
much the trust users put on the information provided, i.e., by maintaining
a reputation for (at least some) trustworthiness. Our main contribution
is the modeling of such a system as a repeated game of incomplete infor-
mation in the case of single-commodity general networks. This allows us
to apply known folk-like theorems to get bounds on the price of anarchy
that are better in the worst-case (if that is possible at all) than the well-
known price of anarchy bounds in selfish routing without information
manipulation.

1 Introduction

It is well known [18,5] that the price of anarchy (as defined by [11]) of non-
atomic selfish routing may be bounded from above (by, for example, 4/3 in case
of linear latency functions), but, nevertheless, still away from the optimal 1 [16].
A way of ‘forcing’ the infinitesimal users to a traffic equilibrium with optimal
social cost (total latency) is by imposing (monetary) tolls on the edges of the
network; then tolls behave as a coordination mechanism, and the utility function
for every user has the general form uP := lP (f) + τP for every path P , where
f is the flow pattern, lP (f) is the actual path latency, and τP is the tolls paid
on P , possibly weighted by a different factor by each user (heterogeneous users)
or the same (homogeneous users). For homogeneous users it has been known for
many years that marginal tolls achieve this goal. For heterogeneous users the
existence of such optimal tolls (and their computation) were shown relatively
recently [22],[9],[6].

The natural question that arises is whether tolls is the only mechanism em-
ployed by a network designer in order to achieve the same effect. One objection

�Research supported by an NSERC Discovery grant.
��A full version of the material in this extended abstract can be found in [8].
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to tolls, for example, is the form of the utility function: is it always acceptable
to add delay times (latency) to money (tolls)? An obvious answer to such issues
could be that the designer can indeed achieve the same results by implementing
the tolls part as artificial delays, say, by decreasing the available bandwidth on
the network edges. This approach has been taken in the design of Coordination
Mechanisms [3], especially in the work of Christodoulou et al. [4] for networks
of parallel links and linear latency functions. But, apart from the possible ob-
jections raised by the users of such an engineered network, the obvious result of
such a decision is that these delays now become part of the social cost, which
is defined as the total delay experienced in the network. As a result, the price
of anarchy may be reduced (to 5/4 instead of 4/3 for linear latencies [10]) but
it is not optimal anymore. It would be optimal, though, if, somehow, this ar-
tificial delay didn’t count towards the actual delay. For example, suppose that
the network operator is also providing the path delay data to the users; then he
could take advantage of the users’ incomplete information to lie about the edge
delays by an amount equal to the optimal tolls. In this case, a new challenge
arises that didn’t exist in the usual (one-shot) selfish routing game: if the game
is infinitely repeated, how much lying (if any at all) can be tolerated by the users
without their rendering the information they get from the network operator as
completely bogus? Can the network operator manipulate the users in order to
achieve a price of anarchy that may not be optimal but is still better than the
known upper bounds? These are the issues addressed by this work.

We model the repeated interaction between the network operator and the in-
finitesimal users as a repeated game between a long-term player (the network op-
erator) with a long-term objective of improving the average price of anarchy in a
single-commodity network with linear latency functions, and a sequence of short-
term players (the aggregation of the infinitesimal users) with the short-term
objective of minimizing the individual path latencies as dictated by Wardrop’s
principle. This game is an infinite repetition of an one-shot stage game, where the
long-term player knows everything about the game (and the network), includ-
ing the payoff function of the short-term players, while the short-term players
not only aren’t aware of the network operator’s payoff, but they rely crucially
on information about the network provided by that player. The latter can then
take advantage of short-term players’ incomplete information to manipulate the
information he provides. The only problem is that the short-term players keep a
record of what has happened in the previous rounds (all of them or a finite recent
past, depending on whether we assume unbounded or bounded memory for the
infinitesimal users respectively). This means that the network operator acquires
a reputation with the users: (i) he may be a consistent player, i.e., even when he
lies, his lies are the same, as happens, for example, when latency measurements
of a computer network may be off their real values by the same constant, or (ii)
he may be a truly untrustworthy source of information. This reputation is cru-
cial, since it may lead the users to play something different than their usual best
response, and therefore leading the price of anarchy to values that are higher
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than even the worst-case value achieved by a truthful network operator, thus
negating the short-term gains that the latter achieved in the first few rounds.

Our main contribution is the modeling of the repeated game. We use a ver-
sion of the well-known product-choice (P-C) game (see, e.g., [13]) to model the
stage game: just as the P-C game is playing the product quality promised by
a manufacturer against the price a customer is willing to pay, our game plays
the quality of information supplied by the network provider against the trust
the users put on that information. If the users are adamant about not using
any corrupted data, then, obviously, the network provider must always provide
the correct information to avoid further degradation, and the worst-case price
of anarchy achieved is equal to the well-known bounds (e.g., 4/3 for linear la-
tencies). The interesting case appears when the users are willing to somehow
use that information even when they know that it may be corrupted, since, at
the end of the day, this is the only data they get. Then we use known results in
economics to get bounds on the price of anarchy achieved by the network oper-
ator; namely, we use known folk theorem-like results by Fudenberg and Levine
[7] and Liu and Skrzypacz [12] to get bounds for the case of users with unlim-
ited or limited memory respectively. It is very interesting that in the latter case
[12] can also characterize exactly the moves of the players for every round at
equilibrium. Our results work for a single origin-destination pair in a general
topology network with linear latencies, and, under certain assumptions, with
more general functions, both deterministic and stochastic. We believe that such
bounded-rationality users better capture automated (i.e., algorithmic) players,
and are more relevant in a computer science context; we see our work as only a
first step towards applying well-known lessons learned by economists (see, e.g.,
[2] and [13]) to selfish routing problems.

2 Preliminaries

A directed network G = (V,E), with parallel edges allowed, is given on which a
set of identical users want to route each an infinitesimal amount of flow (traffic)
from a specified origin to a destination node in G. Users are divided into k
classes (commodities). The demand of class i = 1, . . . , k, is di > 0 and the
corresponding origin–destination pair is (si, ti). A feasible vector x is a valid
flow vector (defined on the path or edge space as appropriate) that satisfies
the standard multicommodity flow conventions and routes demands di for every
commodity i. Each edge e is assigned a latency function le(fe) ≥ 0 that gives
the delay experienced by any user on e due to congestion caused by the total
flow fe that passes through e. For a path P, lP (f) =

∑
e∈P le(fe). We define

the cost of a flow f that satisfies all demands as the total latency experienced
by all users, i.e., C(f) :=

∑
e∈E fele(fe). In the standard selfish routing setting,

the infinitesimal users try to minimize their travel time, resulting in a traffic
equilibrium that obeys Wordrop’s principle [21]: all used flow paths have the
same latency, which is no greater than the latency of the unused paths. If f∗, fopt

are a traffic equilibrium flow of maximum total cost and the optimal (minimum
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total cost) flow respectively, then the price of anarchy ρ (PoA) for the network

is defined [11] as ρ := C(f∗)
C(fopt) . Assuming that the latency functions are strictly

increasing, then the edge flow pattern for traffic equilibria is unique (see, e.g.,
[1]).

It is well known that by imposing marginal tolls τe := fopt
e

∂le
∂x (f

opt
e ) on the

network edges, i.e., if the latency functions are modified to be lnewe (fe) := le(fe)+
fopt
e

∂le
∂x (f

opt
e ), the traffic equilibrium edge flows f∗e , ∀e ∈ E coincide with the

optimal flow fopt, and therefore C(f∗) = C(fopt). In this work we deviate from
the traditional view of tolls as monetary compensation (possibly returned to the
society); we will try to achieve the same effect by manipulating the information
the infinitesimal users (whose aggregation is Player 2 below) receive from the
network operator (who is Player 1 below) about the flow in the network. Player 2
has some internal estimate about the actual flow, but the success of this deception
cannot lie only on this internal uncertainty, since we are more ambitious than
playing the routing game just once; it is repeated indefinitely with the same
players. Therefore, the players in this repeated game know of the past history
(and past deceptions) every time they play a new round of the routing game (the
stage game). Nevertheless, we will show that, under certain assumptions, Player 1
can build up his reputation in the eyes of Player 2, so that the latter’s (believed)
best response increases the former’s overall payoff. Unfortunately, our results
currently hold only for a single origin-destination pair (commodity) (s, t); this
case already covers some non-trivial applications, such as the scheduling of jobs
arriving at a single queue to different servers, but we leave the multicommodity
case to future work.

3 The Stage Game

In what follows, the players try to minimize their cost, but since payoffs are
understood to be maximized, we will set the payoffs to be the negative of cost
functions.

The stage game played in every round is played by two players, Player 1 and
Player 2, and is a version of the classic product-choice game (cf. [13]). The pure
strategies space is the continuum [0, 1], i.e., the two players pick simultaneously
numbers x, y respectively in that range. Intuitively, Player 1’s x indicates how
much truthful that player is willing to be towards Player 2 (e.g., x = 1 means
no deception whatsoever, and x = 0 means Player 1 is as deceitful as possible);
Player 2’s y indicates how trustful this player is of Player 1 (e.g., y = 1 means
that Player 2 completely trusts Player 1’s transmitted information, and y = 0
means that Player 2 completely mistrusts Player 1). Actions x, y control the
extra flow fextra (beyond the known to both players flow f of total demand d)
that Player 2 perceives as being injected into the selfish routing game. In this
work we study a specific simple tactic of deception for Player 1:

Definition 1. The SCALE tactic by Player 1, is the announcement of extra
flow fextra = (1− x)fopt.
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Note that, for simplicity, we assume that the maximum possible extra flow Player
1 can announce is d.

Let fopt(x, y), f∗(x, y) be the optimal and equilibrium (actual) flows routed
in the network.1 The payoff functions of the two players are as follows:
Player 1’s Payoff: It is the negation of the PoA ρx,y(G, l, d) of the selfish
routing game played on the network by the infinitesimal users after x and y
have been chosen:

Γ1(x, y) := − C(f∗(x, y))
C(fopt(x, y))

(
= −

∑
e∈E f∗e le(f∗e )∑

e∈E fopt
e le(f

opt
e )

)
. (1)

Player 2’s Payoff: Recall that Player 2 is a fictitious player that is the aggre-
gation of homogeneous infinitesimal users of the network. Before defining her
payoff, we define the perceived latency l̂(f) of the users, as follows:

l̂P (f) := lP (f + (1− x)yfopt) + (1 − y)m, ∀P ∈ P . (2)

The perceived latency is different to the actual latency l(f) in two important
aspects: (i) The perceived total flow is comprised of the normal flow f and the
extra flow (1 − x)yfopt, which is the extra flow announced by Player 1, but
weighted by Player 2’s trust y. (ii) There is an additive internal estimate m ≥ 0,
by the infinitesimal users, of how much bigger the latency of every path is due
to extra flow; in essence, Player 2 pits her own extra latency estimate m against
Player 1’s claimed extra flow, weighing the former by (1 − y) and the latter
by y.2 The payoff for Player 2 is the (common) path latency of the used paths
at equilibrium, when the path latency is the perceived latency. I.e., if f∗ is the
traffic equilibrium flow with perceived latencies and extra flow (1−x)yfopt, then

Γ2(x, y) := −L∗(x, y) (3)

where L∗(x, y) = lP (f
∗ + (1 − x)yfopt) + (1 − y)m, ∀P ∈ P s.t. f∗P > 0 is

the common latency on the paths used by f∗. Note that after the extra flow
(1− x)yfopt has been announced, the only variable for the selfish routing game
is normal flow f . Since the infinitesimal users know everything Player 1 knows
about the network (including Player 1’s claim to extra flow for every edge (1−
x)fopt) except the fact that there isn’t really any extra flow at all, Player 2 can
always calculate Γ2.

We emphasize that when the two players play their simultaneous strategies
(x, y), the resulting selfish routing game will be played with edge latencies l̂.
Afterwards the actual latency for each infinitesimal user is revealed (since the
infinitesimal user actually travelled the chosen route), but by then it is too late
for Player 2 to use this information in order to determine y; the stage game has
already been played.

1We will drop the parameters x, y from the notation when their presence is clear
from the context.

2The fact that m is the same for all paths seems too restrictive, but, in view of
Wardrop’s principle used to define Player 2’s payoff below, it is actually as general as
the single commodity setting we study here.
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3.1 Stackelberg Strategy3

If the two players play actions (x, y) = (0, 0), then the stage game becomes the
classic selfish routing game with just an additional path latency m. It is well-
known [16] that, in this case, there are networks for which the PoA is the worst
possible. The question we are trying to answer here is whether Player 1 can
be guaranteed a PoA strictly better than the worst case, independently of the
network topology, and when the selfish routing is done repeatedly. We address
the last issue in the next section. Here we study the Stackelberg strategy of Player
1, i.e., the strategy that ensures the biggest payoff for Player 1, provided Player
2 chooses a best response.

Definition 2 (Stackelberg strategy [20]). Let y∗(x) be the best response4 of
Player 2 to Player 1’s playing x. Player 1’s Stackelberg strategy xs is

xs := arg max
x∈[0,1]

Γ1(x, y
∗(x))

It is important to notice that (xs, y
∗(xs)) does not have to be a Nash equilib-

rium, so it doesn’t need to be the final outcome of the game. E.g., if (0, 0) is
the only equilibrium of the stage game, then the worst-case PoA will be the
only outcome. In fact, in our results we don’t even require the existence of a
Stackelberg strategy; the next section shows that Player 1 can drive the Nash
equilibrium (extended to the definition of repeated games) arbitrarily close to
the Stackelberg payoff (if it exists) or at least come up with a strategy that
guarantees strictly better payoff than the payoff at (0, 0), under certain assump-
tions. Still, it may be possible that Γ s

1 is equal to the worst-case Γ1(0, 0), and in
this case nothing can be done. We show that this is not the case for non-trivial
latency functions (e.g. linear).

3.2 Linear Latencies

For linear latency functions le(fe) = aefe+be, ae, be ≥ 0, ∀e ∈ E, it is well known
[18] that the worst-case Γ1(0, 0) is −4/3. We show the following

Lemma 1. For any m > 0, Γ1(xs, y
∗(xs)) > − 4

3 .

The proof of Lemma 1 is left for the full version. It implies that, as long as the
infinitesimal users have any inclination (m > 0) to believe that there may be
extra flow in the system, the Stackelberg payoff for Player 1 is guaranteed to be
better than the worst-case PoA bound.

3What follows should not be confused with Stackelberg routing (e.g., [17]), where
there is a central coordinator that controls a fraction of the actual flow. Here there is
no such coordinator.

4If the set B(x) of Player 2’s best responses to x is not a singleton, we assume that
Player 2 picks the best response that is the worst possible for Player 1.
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3.3 General Latencies

Before we tackle the general latency functions case, we recall a couple of well-
known definitions.

Definition 3 ([5]). If L is a family of latency functions, we define

β(l) := sup
0<y<x

y[l(x)− l(y)]

xl(x)
, ∀l ∈ L, and β(L) := sup

l∈L
β(l).

For simplicity, we will use β := β(L) below.
We will also use the notion of Jacobian similarity as used in [15]. Namely, if

∇l(f) =
[

∂le
∂fe′

]
(e,e′)∈E2

is the Jacobian matrix of function l(f), then there exists

a constant J satisfying

1

J
wT∇l(f)w ≤ wT∇l(f ′)w ≤ JwT∇l(f)w (4)

for all feasible flows f, f ′, and for all w ∈ R|E|. The smallest J satisfying the
property is referred to as the Jacobian similarity factor.

In the case of general latency functions, the worst-case PoA upper bound is
1

1−β [5]. We are able to guarantee a Stackelberg payoff that is greater than this
bound, in case the following assumptions hold:

Assumption 1. Functions le(x) are convex and non-decreasing continuous func-
tion of x, with the first and second derivative existing everywhere.

Assumption 1 is not very restrictive in practice, since it captures the fact that
the latency deterioration rate increases as the congestion on an edge increases.
But the next two assumptions are quite technical, and are due to our proof
methods; we leave lifting them as an open problem.

Assumption 2. We assume that β(L) < 1
2 (i.e., L is a family of not too “non-

linear” functions).

Assumption 3. The Jacobian similarity property holds for the instance (G, l, d),
and the Jacobian similarity factor J satisfies J < 1

1−β .

Note that linear functions satisfy all three assumptions.

Lemma 2. When m > 0, and under Assumptions 1-3, Γ s
1 > − 1

1−β .

The proof of Lemma 2 is left for the full version.
In what follows we denote by X,Y (both equal to [0, 1]) the sets of pure

strategies for Players 1 and 2 in the stage game, and by Σ1, Σ2 the sets of mixed
strategies for Players 1 and 2 (note that the two sets are the same, i.e., the set
of distributions over [0, 1]).
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4 The Repeated Game

If the stage game is played repeatedly without a memory of the past history
to influence the players’ decision, then there is no reason for them to deviate
from playing a stage game Nash equilibrium; if this equilibrium happens to be
(x, y) = (0, 0) every time, then it is impossible for Player 1 to induce Player 2
into deviating from playing y = 0. It is exactly the fact that the players have
a record of the past history of the game that allows Player 1 to achieve a PoA
strictly better than the worst-case Γ1(0, 0), by exploiting a reputation that he
can built in his interaction with Player 2. We formulate this new setting using
the standard notions of repeated games, as they are used in game theory and
economics.

A repeated game between two players 1 and 2 is an infinite repetition of the
playing of a game (called the stage game) in rounds or times t = 0, 1, 2, . . . ,∞.
In our case the stage game is the one defined in Section 3. Player 1 is a long-run
player, i.e., his total payoff is a summation of his stage payoff over all periods
discounted by a discount factor δ ∈ [0, 1), which is

(1− δ)

∞∑
t=0

δtgt1(x
t, yt)

(the factor (1 − δ) in front is a normalization factor that brings the repeated
game payoff to the same units as the stage payoff). The closer δ is to 1, the more
equivalent (in terms of importance) stage payoffs in the distant future are to the
ones closer to the present. In our case, the network operator Player 1 is almost
equally interested to the payoffs of all periods, i.e., δ → 1. On the other hand,
Player 2 acts as a short-run player in every period, since in each period she acts
to maximize myopically that period’s payoff.

Of central importance in order to escape the stage game Nash equilibrium is
the notion of history ht = {(x0, y0), (x1, y1), . . . , (xt−1, yt−1)}, defined for every
time length t as the sequence of pure strategies played by the two players in
the first t periods or h0 = ∅ at the beginning of the game. Each player always
records all his past actions (has perfect recall), but we will later distinguish
between a Player 2 with unlimited memory who has a perfect record of Player
1’s actions, and a Player 2 that has a limited memory and can only record the
last K actions of Player 1. Let Ht = (X ×Y )t be the set of all possible histories
of length t ≥ 0 (H0 = ∅), and H = ∪∞t=0Ht the set of all possible histories.
Then the behavioral strategy of (long-run) Player 1 is defined as σ1 : H → Σ1.
Things are a little bit more complicated for Player 2, since she acts as a short-run
player in every period. She can be replaced by an infinite sequence of players
i0, i1, i2, . . ., each with a behavioral strategy of σit

2 : Ht → Σ2 and payoff Γ2;
each such player enters the game in only one specific round, but has available
the whole history available to Player 2 in that round. A Nash equilibrium then
is defined in the usual way, as a behavioral strategy profile σ = (σ1, σ

i0
2 , σi1

2 , . . .)
with the property that no deviation by any player will improve his payoff if the
other players’ strategies remain the same.
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In order to exploit reputation phenomena in repeated games, we define two
types for Player 1’s strategy profile:

– committed type ωc: If Player 1 is of this type, he always plays c ∈ (0, 1],
independently of the history of the repeated game. The strategy c will be
chosen to be the Stackelberg strategy s.

– rational type ω0: Player 1 is not restricted in playing any strategy in every
round (he is opportunistic), and the payoff for the moves of this type of
Player 1 is given by Γ1(x, y) defined above.

Player 2’s perception of the type of Player 1 is captured by Player 2 assigning
a probability (initial belief) μ∗ to Player 1 being of commitment type ωc (and,
hence, probability 1− μ∗ of being of rational type ω0).

Let V 1(δ, μ
∗) be the least payoff achievable by Player 1 in the repeated game

with discount factor δ and prior belief μ∗ for the type of Player 1 held by Player
2. If the latency functions l are continuous, and since it is well-known that the
equilibrium flow feq is also continuous on (x, y) as the solution of a parametric
mathematical programwith a closed and bounded feasibility region, the following
holds:

Lemma 3. If latency functions l are continuous, then functions Γ1, Γ2 are con-
tinuous on (x, y).

Then Theorem 4 in [7] (folk theorem) holds in our case:

Theorem 1 ([7]). If 0 < μ∗ < 1, then for all ε > 0 there exists a δ < 1 such
that for all δ ∈ (δ, 1)

V 1(δ, μ
∗) ≥ (1− ε)Γ s

1 − εΓmin
1 .

where Γmin
1 ≥ − 1

1−β is the minimum possible payoff for Player 1.

This version of the folk theorem implies that Player 1 can almost achieve Γ s
1

when δ → 1. We also emphasize that the theorem provides an improvement on
the worst-case behavior of PoA over all possible instances, but it may be the
case that for a particular instance, this worst case never happens. The study
of particular instances, other than worst case ones, (e.g., networks of parallel
links), is not the subject of this work.

4.1 Weak Payoffs

A stronger version of Theorem 1 can be shown, in case Player 1 compromises over
his payoff function in the following way: Although the payoff function Γ1(x, y)
captures exactly the PoA, the fact that we are studying only worst-case instances
allows Player 1 to relax his payoff function to be directly the upper bound (cal-
culated in the full version of the paper) rather, than the actual PoA,

Γ̄1(x, y) = −1 + (J − 1)(1− x)y

1− β + β(1 − x)y
, (5)

(which becomes 4
3+y(1−x) in the case of linear latency functions). We continue

to assume Assumptions 1-3 apply. Then the following holds:
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Fact 1.

1. (myopic incentive of Player 1) Γ̄1(x, y) is strictly decreasing in x if y > 0,
and constant if y = 0.

2. (Player 1 wants to be trusted) Γ̄1(x, y) is strictly increasing in y, unless
x = 1, in which case it is constant.

3. (sub-modularity of Player 1) Γ̄1(x, y) − Γ̄1(x
′, y) is strictly increasing in y,

for any x < x′.

In addition, one can show that

Fact 2. (valuable reputation for Player 1) If m > β
1−β

S(fopt)
d , then Γ̄ s

1 > − 1
1−β .

Facts 1 and 2 will help us to use a more powerful result by Liu and Skrzy-
pacz [12] in case Player 2 is of bounded rationality in the sense that Player 2’s
record keeping is limited (e.g., by memory limitations) to recording only the K
most recent actions of Player 1, for some parameter K (Player 2 has still per-
fect recall of her actions in all past history). Unlike the folk theorem of [7], this
limitation allows [12] to describe exactly the equilibrium strategies for the two
players, and prove a payoff bound for Player 1’s payoff similar to the bound in
Theorem 1 at any point of the game (and not just at the beginning as the bound
in Theorem 1 does). This is important for the study of games that have already
been played for a number of periods which we don’t know (or don’t care about),
and we want to evaluate the quality of Player 1’s payoff at the moment we start
our observation.

Let P (t), μ(ω|h) be Player 2’s prior belief of whether the current round is t
(i.e., she doesn’t keep track of time, so she must have a prior belief on which is
the current round), and her posterior belief over Player 1’s type being ω given a
history h (truncated to the most recent K rounds for Player 1’s actions). Note
that if h contains an action x = c, then μ(ωc|h) = 1− μ(ω0|h) = 0. In this case,
the notion of equilibrium used is that of stationary Perfect Bayesian Equilibrium
(PBE) that is more sophisticated than the simple Nash equilibrium considered
above since it takes into account Player 2’s beliefs, when the latter are updated
using Bayes’ rule5. To simplify their analysis, [12] assume the following

Assumption 4. For any (mixed) action x (ν) by Player 1, Player 2 has a
unique pure best response y∗(x) (y∗(ν)), and y∗(ν) increases if ν increases in
the first-order stochastic dominance sense.

Then Theorem 3 in [12] holds in our case:

Theorem 2 ([12]). Assume that Assumptions 1-4 hold and m > β
1−β

S(fopt)
d .

Then for any ε > 0, μ∗ ∈ (0, 1) , there exists integer K(ε, μ∗) independent of the
equilibrium and δ, such that if record keeping length K > K(ε, μ∗), we have

V 1(δ, μ
∗) ≥ δK Γ̄ s

1 − (1− δK)
1

1− β
− ε

which converges to Γ̄ s
1 − ε as δ goes to 1.

5See [12] for a formal definition.
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In fact, the theorem in [12] gives also a description of the strategies the players
play at every round in order for Player 1 to achieve the payoff bound; these
strategies are pure for Player 2, and mixed with a support of 2 for Player 1.
Note that for this stronger result, it’s not enough for the infinitesimal users to
have any inclination (m > 0) to believe that there may be extra flow in the

system, but they must have significant inclination (m > β
1−β

S(fopt)
d ).

5 Discussion and Conclusions

In the previous, we assumed that the perceived latency of the users is always
deterministic, since even their internal estimate for delay due to extra flow m
is fixed. We can generalize this framework to the stochastic case. i.e., the case
where the users are uncertain for the exact latency of a path, and, therefore, their
perceived latency contains a random component. Hence the perceived latency
becomes l̂P (f) := lP (f + (1 − x)yfopt) + (1 − y)εP , ∀P ∈ P , where εP is a
random variable. The details are left out of this extended abstract.

Our main goal was to make a first step towards modeling incentives for selfish
routing that are based on reputation built by repeated rounds of the basic selfish
routing game.Bounded rationality plays a very important role in proving a uniform
payoff bound in [12] that goes beyond the folk theorem of [7]. As this is mainly
a result of properties (1) and (2) in Fact 1, and Assumption 4 is introduced for
technical reasons, an immediate open problem is to get rid of the latter; this can be
done either for general functionsΓ2(x, y), or by pinpointing further the exact payoff
considerations forPlayer 2.Actually, there are threemainmodeling challenges that
can lead to (i) better bounds and (ii) better characterization of equilibria actions
by the players (the two are, in fact, interconnected):

– Different issues of bounded rationalitywill lead to different repeated games;we
only give an example where bounded rationality means memory limitations.

– Different models of incomplete information arise with different signaling pro-
tocols between the players; the model depends on the particular application
(e.g., signals announcing the waiting-time for different bank tellers).

– Related to the previous item, different specific applications imply different
payoff functions for the players; we specified Player 2’s payoff exactly for a
specific perceived latency model, but such a specification really depends on
the application and the nature of information available to her. We leave the
study of other models and/or the removal of the assumptions made above
as an open problem.

– Unfortunately we don’t currently know how to tackle the multicommodity
case of our model; this extension would generalize nicely our results, since
we already have a general network topology.
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Abstract. Motivated by understanding non-strict and strict pure strat-
egy equilibria in network anti-coordination games, we define notions of
stable and, respectively, strictly stable colorings in graphs. We charac-
terize the cases when such colorings exist and when the decision problem
is NP-hard. These correspond to finding pure strategy equilibria in the
anti-coordination games, whose price of anarchy we also analyze. We
further consider the directed case, a generalization that captures both
coordination and anti-coordination. We prove the decision problem for
non-strict equilibria in directed graphs is NP-hard. Our notions also have
multiple connections to other combinatorial questions, and our results re-
solve some open problems in these areas, most notably the complexity
of the strictly unfriendly partition problem.

1 Introduction

Anti-coordination games form some of the basic payoff structures in game theory.
Such games are ubiquitous; miners deciding which land to drill for resources,
company employees trying to learn diverse skills, and airplanes selecting flight
paths all need to mutually anti-coordinate their strategies in order to maximize
their profits or even avoid catastrophe.

Two-player anti-coordination is simple and well understood. In its barest form,
the players have two actions, and payoffs are symmetric for the players, paying
off 1 if the players choose different actions and 0 otherwise. This game has two
strict pure-strategy equilibria, paying off 1 to each player, as well as a non-strict
mixed-strategy equilibrium paying off an expected 1/2 to each player.

In the real world, however, coordination and anti-coordination games are more
complex than the simple two-player game. People, companies, and even countries
play such multi-party games simultaneously with one another. One straightfor-
ward way to model this is with a graph, whose vertices correspond to agents
and whose edges capture their pairwise interactions. A vertex then chooses one
of k strategies, trying to anti-coordinate with all its neighbors simultaneously.
The payoff of a vertex is the sum of the payoffs of its games with its neighbors –
namely the number of neighbors with which it has successfully anti-coordinated.
It is easy to see that this model naturally captures many applications. For exam-
ple countries may choose commodities to produce, and their value will depend
on how many trading partners do not produce that commodity.
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In this paper we focus on finding pure strategies in equilibrium, as well as
their associated social welfare and price of anarchy, concepts we shall presently
define. We look at both strict and non-strict pure strategy equilibria, as well as
games on directed and undirected graphs. Directed graphs characterize the case
where only one of the vertices is trying to anti-coordinate with another. The
directed case turns out to not only generalize the symmetric undirected case,
but also captures coordination in addition to anti-coordination.

These problems also have nice interpretations as certain natural graph coloring
and partition problems, variants of which have been extensively studied. For
instance, a pure strategy equilibrium in an undirected graph corresponds to
what we call a stable k-coloring of the graph, in which no vertex can have fewer
neighbors of any color different than its own. For k = 2 colors this is equivalent to
the well-studied unfriendly partition or co-satisfactory partition problem. The
strict equilibrium version of this problem (which corresponds to what we call
a strictly stable k-coloring) generalizes the strictly unfriendly partition problem.
We establish both the NP-hardness of the decision problem for strictly unfriendly
partitions and NP-hardness for higher k.

1.1 Previous Work

In an early work on what can be seen as a coloring game, Naor and Stock-
meyer [19] define a weak k-coloring of a graph to be one in which each vertex
has a differently colored neighbor. They give a locally distributed algorithm that,
under certain conditions, weakly 2-colors a graph in constant time.

Then, in an influential experimental study of anti-coordination in networks,
Kearns et al. [15] propose a true graph coloring game, in which each participant
controlled the color of a vertex, with the goal of coloring a graph in a distributed
fashion. The players receive a reward only when a proper coloring of the graph
is found. The theoretical properties of this game are further studied by Chaud-
huri et al. [7] who prove that in a graph of maximum degree d, if players have
d+ 2 colors available they will w.h.p. converge to a proper coloring rapidly us-
ing a greedy local algorithm. Our work is also largely motivated by the work of
Kearns et al., but for a somewhat relaxed version of proper coloring.

Bramoullé et al. [3] also study a general anti-coordination game played on net-
works. In their formulation, vertices can choose to form links, and the payoffs of
two anti-coordinated strategies may not be identical. They go on to characterize
the strict equilibria of such games, as well as the effect of network structure on
the behavior of individual agents. We, on the other hand, consider an arbitrary
number of strategies but with a simpler payoff structure.

The game we study is related to the MAX-k-CUT game, in which each player
(vertex) chooses its place in a partition so as to maximize the number of neigh-
bors in other partitions. Hoefer [14], Monnot & Gourvès [13], research Nash
equlibria and coalitions in this context. Our Propositions 1 and 2 generalize
known facts proved there, and we include them for completeness.

This paper also has a strong relationship to unfriendly partitions in graph the-
ory. An unfriendly partition of a graph is one in which each vertex has at least as
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many neighbors in other partitions as in its own. This topic has been extensively
studied, especially in the combinatorics community [1,4,8,23]. While locally finite
graphs admit 2-unfriendly partitions, uncountable graphs may not [23].

Friendly (the natural counterpart) and unfriendly partitions are also studied
under the names max satisfactory and min co-satisfactory partitions by Baz-
gan et al. [2], who focus on partitions of size greater than 2. They characterize
the complexity of determining whether a graph has a k-friendly partition and
asked about characterizing k-unfriendly partitions for k > 2. Our notion of stable
colorings captures unfriendly partitions, and we also solve the k > 2 case.

A natural strengthening of the notion above yields strictly unfriendly parti-
tions, defined by Shafique and Dutton [22]. A strictly unfriendly partition re-
quires each vertex to have strictly more neighbors outside its partition than
inside it. Shafique and Dutton characterize a weaker notion, called alliance-free
partition, but leave characterizing strictly unfriendly partitions open. Our notion
of strictly stable coloring captures strictly unfriendly partitions, giving some of
the first results on this problem. Cao and Yang [5] also study a related prob-
lem originating from sociology, called the matching pennies game, where some
vertices try to coordinate and others try to anti-coordinate. They prove that
deciding whether such a game has a pure strategy equilibrium is NP-Hard. Our
work on the directed case generalizes their notion (which they suggested for fu-
ture work). Among our results we give a simpler proof of their hardness result
for k = 2 and also tackle k > 2, settling one of their open questions.

There are a few related games on graphs that involve coloring, but they in-
stead focus on finding good proper colorings. In [20] Panagopoulou and Spirakis
define a coloring game in which the payoff for a vertex is either zero if it shares
a color with a neighbor, and otherwise the number of vertices in the graph with
which it shares a color. They prove pure Nash equilibria always exist and can
be efficiently computed, and provide nice bounds on the number of colors used.
Chatzigiannakis, et al. [6] extend this line of work by analyzing distributed al-
gorithms for this game, and Escoffier, et al. [10] improve their bounds.

1.2 Results

We provide proofs of the following, the last two being our main results.

1. For all k ≥ 2, every undirected graph has a stable k-coloring, and such a
coloring can be found in polynomial time.
Our notion of stable k-colorings is a strengthening of the notion of k-unfriendly
partitions of Bazgan et al. [2], solving their open problem number 15.

2. For undirected graphs, the price of anarchy for stable k-colorings is bounded
by k

k−1 , and this bound is tight.
3. In undirected graphs, for all k ≥ 2, determining whether a graph has a strictly

stable k-coloring is NP-hard.
For k = 2, this notion is equivalent to the notion that is defined by Shafique
and Dutton [22], but left unsolved.

4. For all k ≥ 2, determining whether a directed graph has even a non-strictly
stable k-coloring is NP-hard.
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Because directed graphs also capture coordination, this solves two open prob-
lems of Cao and Yang [5], namely generalizing the coin matching game to
more than two strategies and considering the directed case.

2 Preliminaries

For an unweighted undirected graphG = (V,E), let C = {f |f : V → {1, . . . , k}}.
We call a function c ∈ C a coloring.

We study the following anti-coordination game played on a graph G = (V,E).
In the game, all vertices simultaneously choose a color, which induces a coloring
c ∈ C of the graph. In a given coloring c, an agent v’s payoff, μc(v), is the
number of neighbors choosing colors different from v’s, namely

μc(v) :=
∑

{v,w}∈E
1{c(v) �=c(w)}.

Note that in this game higher degree vertices have higher potential payoffs.
We also have a natural generalization to directed graphs. That is, ifG = (V,E)

is a directed graph and c is a coloring of V , we can define the payoff μc(v) of a
vertex v ∈ V analogously as the sum over outgoing edges:

μc(v) :=
∑

(v,w)∈E
1{c(v) �=c(w)}

Here a directed edge from v to w is interpreted as “v cares about w.” We can
then define the social welfare and price of anarchy for directed graphs identically
using this payoff function.

Given a graph G, we define the social welfare of a coloring c to be

W (G, c) :=
∑
v∈V

μc(v).

We say a coloring c is stable, or in equilibrium, if no vertex can improve its
payoff by changing its color from c(v) to another color. We define Q to be the
set of stable colorings.

We call a coloring function c strictly stable, or in strict equilibrium, if every
vertex would decrease its payoff by changing its color from c(v) to another color.
If a coloring function is stable and at least one vertex can change its color without
decreasing its payoff, then the coloring is non-strict.

We define the price of anarchy for a graph G to be

PoA(G) :=
maxc′∈C W (G, c′)
minc∈QW (G, c)

.

This concept was originally introduced by Koutsoupias and Papadimitriou in [16],
where they consider the ratio of social payoffs in the best and worst-case Nash
equilibria. Much work has since focused on the price of anarchy, e.g. [11,21].
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Fig. 1. The strictly stable 2-coloring on the left attains a social welfare of 40 while the
non-strictly stable coloring on the right attains 42, the maximum for this graph

Mixed and Pure Strategies. It is natural to consider both pure and mixed
strategies for the players in our network anti-coordination game. A pure strategy
solution does not in general exist for every 2 player game, while a mixed strategy
solution will. However, in this coloring game not only will a pure strategy solu-
tion always exist, but for any mixed strategy solution there is a pure strategy
equilibrium solution which achieves a social welfare at least as good, and where
each player’s payoff is identical with its expected payoff under the mixed strategy.

Strict and Non-strict Stability It is worthwhile to note that a strictly stable
coloring c need not provide the maximum social welfare. In fact, it is not difficult
to construct a graph for which a strictly stable coloring exists yet the maximum
social welfare is achieved by a non-strictly stable coloring, as shown in Figure 1.

3 Stable Colorings

First we consider the problem of finding stable colorings in graphs. For the case
k = 2, this is equivalent to the solved unfriendly partition problem. For this
case our algorithm is equivalent to the well-studied local algorithm for MAX-
CUT [9,18]. Our argument is a variant of a standard approximation algorithm
for MAX-CUT, generalized to work with partitions of size k ≥ 2.

Proposition 1. For all k ≥ 2, every finite graph G = (V,E) admits a stable
k-coloring. Moreover, a stable k-coloring can be found in polynomial time.

Proof. Given a coloring c of a graph, define Φ(c) to be the number of properly-
colored edges. It is clear that this function is bounded and that social welfare is
2Φ(c). Moreover, the change in a vertex’s utility by switching colors is exactly the
change in Φ, realizing this as an exact potential game [17]. In a given coloring,
we call a vertex v unhappy if v has more neighbors of its color than of some
other color. We now run the following process: while any unhappy vertex exists,
change its color to the color

c′(u) = argmin
m∈{1,...,k}

∑
v∈N(u)

1{c(v)=m}. (1)

As we only modify the colors of unhappy vertices, such an amendment to a col-
oring increases the value of Φ by at least 1. After at most |E| such modifications,
no vertex will be unhappy, which by definition means the coloring is stable. �
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We note that because, in the case of k = 2, maximizing the social welfare of a
stable coloring is equivalent to finding the MAX-CUT of the same graph, which
is known to be NP-hard [12], we cannot hope to find a global optimum for the
potential function. However, we can ask about the price of anarchy, for which
we obtain a tight bound. The following result also appears, using a different
construction, in [14], but we include it herein for completeness.

Proposition 2. The price of anarchy of the k-coloring anti-coordination game
is at most k

k−1 , and this bound is tight.

Proof. By the pigeonhole principle, each vertex can always achieve a k−1
k fraction

of its maximum payoff by choosing its color according to Equation 1. Hence, if
some vertex does not achieve this payoff then the coloring is not stable. This
implies that the price of anarchy is at most k

k−1 .
To see that this bound is tight take two copies ofKk on vertices v1, . . . , vk and

vk+1, . . . , v2k respectively. Add an edge joining vi with vi+k for i ∈ {1, . . . , k}.
If each vertex vi and vi+k is given color i this gives a stable k-coloring of the
graph, as each vertex has one neighbor of each of the k colors attaining the social
welfare lower bound of 2(k−1k )|E|. If, however, the vertices vi+k take color i+ 1
for i ∈ {1, . . . , k − 1} and v2k takes color 1, the graph achieves the maximum
social welfare of 2|E|. This is illustrated for k = 5 in Figure 2. �

Fig. 2. A graph achieving PoA of 5
4
, for k=5

4 Strictly Stable Colorings

In this section we show that the problem of finding a strictly stable equilibrium
with any fixed number k ≥ 2 of colors is NP-complete. We give NP-hardness
reductions first for k ≥ 3 and then for k = 2. The k = 2 case is equivalent to the
strictly unfriendly 2-partition problem [22], whose complexity we settle.

Theorem 1. For all k ≥ 2, determining whether a graph has a strictly stable
k-coloring is NP-complete.

Proof. This problem is clearly in NP. We now analyze the hardness in two cases.
1) k ≥ 3: For this case we reduce from classical k-coloring. Given a graph G, we
produce a graph G′ as follows.
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Fig. 3. The gadget added for each edge in G

Start with G′ = G, and then for each edge e = {u, v} in G add a copy He of
Kk−2 to G′ and enough edges s.t. the induced subgraph of G′ on V (He)∪{u, v}
is the complete graph on k vertices. Figure 3 illustrates this construction.

Now supposing that G is k-colorable, we construct a strictly stable equilibrium
in G′ as follows. Fix any proper k-coloring ϕ of G. Color each vertex in G′ which
came from G (which is not in any He) using ϕ. For each edge e = (u, v) we can
trivially assign the remaining k − 2 colors among the vertices of He to put the
corresponding copy of Kk in a strict equilibrium. Doing this for every such edge
results in a strictly stable coloring. Indeed, this is a proper k-coloring of G′ in
which every vertex is adjacent to vertices of all other k − 1 colors.

Conversely, suppose G′ has a strictly stable equilibrium with k colors. Then
no edge e originally coming from G can be monochromatic. If it were, then there
would be k − 1 remaining colors to assign among the remaining k − 2 vertices
of He. No matter the choice, some color is unused and any vertex of He could
change its color without penalty, contradicting that G′ is in a strict equilibrium.

The only issue is if G originally has an isolated vertex. In this case, G′ would
have an isolated vertex, and hence will not have a strict equilibrium because
the isolated vertex may switch colors arbitrarily without decreasing its payoff.
In this case, augment the reduction to attach a copy of Kk−1 to the isolated
vertex, and the proof remains the same.
2) k = 2: We reduce from 3-SAT. Let ϕ = C1 ∧ · · · ∧Ck be a boolean formula in
3-CNF form. We construct a graph G by piecing together gadgets as follows.

For each clause Ci construct an isomorphic copy of the graph shown in Fig-
ure 4. We call this the clause gadget for Ci. In Figure 4, we label certain vertices
to show how the construction corresponds to a clause. We call the two vertices
labeled by the same literal in a clause gadget a literal gadget. In particular, Fig-
ure 4 would correspond to the clause (x∨ y ∨ z̄), and a literal assumes a value of
true when the literal gadget is monochromatic. Later in the proof we will force
literals to be consistent across all clause gadgets, but presently we focus on the
following key property of a clause gadget.

Lemma 1. Any strictly stable 2-coloring of a clause gadget has a monochro-
matic literal gadget. Moreover, any coloring of the literal gadgets which includes
a monochromatic literal extends to a strictly stable coloring of the clause gadget
(excluding the literal gadgets).

Proof. The parenthetical note will be resolved later by the high-degree of the
vertices in the literal gadgets. Up to symmetries of the clause gadget (as a graph)
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Fig. 4. The clause gadget for (x∨ y ∨ z̄). Each literal corresponds to a pair of vertices,
and a literal being satisfied corresponds to both vertices having the same color.

and up to swapping colors, the proof of Lemma 1 is illustrated in Figure 5. The
first five graphs show the cases where one or more literal gadgets are monochro-
matic, and the sixth shows how no strict equilibrium can exist otherwise. Using
the labels in Figure 5, whatever the choice of color for the vertex v1, its two uncol-
ored neighbors must have the same color (or else v1 is not in strict equilibrium).
Call this color a. For v2, v3, use the same argument and call the corresponding
colors b, c, respectively. Since there are only two colors, one pair of a, b, c must
agree. WLOG suppose a = b. But then the two vertices labeled by a and b which
are adjacent are not in strict equilibrium. �

Fig. 5. The first five figures show that a coloring with a monochromatic literal gadget
can be extended to a strict equilibrium. The sixth (bottom right) shows that no strict
equilibrium can exist if all the literals are not monochromatic.

Using Lemma 1, we complete the proof of the theorem. We must enforce
that any two identical literal gadgets in different clause gadgets agree (they are
both monochromatic or both not monochromatic), and that any negated literals
disagree. We introduce two more simple gadgets for each purpose.

The first is for literals which must agree across two clause gadgets, and we
call this the literal persistence gadget. It is shown in Figure 6. The choice of
colors for the literals on one side determines the choice of colors on the other,
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provided the coloring is strictly stable. In particular, this follows from the central
connecting vertex having degree 2. A nearly identical argument applies to the
second gadget, which forces negated literals to assume opposite truth values. We
call this the literal negation gadget, and it is shown in Figure 6. We do not connect
all matching literals pairwise by such gadgets but rather choose one reference
literal x′ per variable and connect all literals for x, x to x′ by the needed gadget.

Fig. 6. The literal persistence gadget (left) and literal negation gadget (right) connect-
ing two clause gadgets Ci and Cj . The vertices labeled x on the left are part of the
clause gadget for Ci, and the vertices labeled x on the right are in the gadget for Cj .

The reduction is proved in a straightforward way. If ϕ is satisfiable, then
monochromatically color all satisfied literal gadgets in G. We can extend this to a
stable 2-coloring: all connection gadgets and unsatisfied literal gadgets are forced,
and by Lemma 1 each clause gadget can be extended to an equilibrium. By
attaching two additional single-degree vertices to each vertex in a literal gadget,
we can ensure that the literal gadgets themselves are in strict equilibrium and
this does not affect any of the forcing arguments in the rest of the construction.

Conversely, if G has a strictly stable 2-coloring, then each clause gadget has
a monochromatic literal gadget which gives a satisfying assignment of ϕ. All of
the gadgets have a constant number of vertices so the construction is polynomial
in the size of ϕ. This completes the reduction and proves the theorem. �

5 Stable Colorings in Directed Graphs

In this section we turn to directed graphs. The directed case clearly generalizes
the undirected as each undirected edge can be replaced by two directed edges.
Moreover, directed graphs can capture coordination. For two colors, if vertex u
wants to coordinate with vertex v, then instead of adding an edge (u, v) we can
add a proxy vertex u′ and edges (u, u′) and (u′, v). To be in equilibrium, the
proxy has no choice but to disagree with v, and so u will be more inclined to
agree with v. For k colors we can achieve the same effect by adding an undirected
copy of Kk−1, appropriately orienting the edges, and adding edges (u, x), (x, v)
for each x ∈ Kk−1. Hence, this model is quite general.

Unlike in the undirected graph case, a vertex updating its color according to
Equation 1 does not necessarily improve the overall social welfare. In fact, we
cannot guarantee that a pure strategy equilibrium even exists – e.g. a directed
3-cycle has no stable 2-coloring, a fact that we will use in this section.
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We now turn to the problem of determining if a directed graph has an equilib-
rium with k colors and prove it is NP-hard. Indeed, for strictly stable colorings
the answer is immediate by reduction from the undirected case. Interestingly
enough, it is also NP-hard for non-strict k-colorings for any k ≥ 2.

Theorem 2. For all k ≥ 2, determining whether a directed graph has a stable
k-coloring is NP-complete.

Proof. This problem is clearly in NP. We again separate the hardness analysis
into two parts: k = 2 and k ≥ 3.
1) k = 2: We reduce from the balanced unfriendly partition problem. A balanced
2-partition of an undirected graph is called unfriendly if each vertex has at least
as many neighbors outside its part as within. Bazgan et al. proved that the
decision problem for balanced unfriendly partitions is NP-complete [2]. Given an
undirected graph G as an instance of balanced unfriendly partition, we construct
a directed graph G′ as follows.

Start by giving G′ the same vertex set as G, and replace each undirected edge
of G with a pair of directed edges in G′. Add two vertices u, v to G′, each with
edges to the other and to all other vertices in G′. Add an additional vertex w
with an edge (w, v), and connect one vertex of a directed 3-cycle to u and to w,
as shown in Figure 7.

Fig. 7. The construction from balanced unfriendly partition to directed stable 2-
coloring. Here u and v “stabilize” the 3-cycle. A bold arrow denotes a complete in-
cidence from the source to the target.

An unbalanced unfriendly partition of G corresponds to a two-coloring of G
in which the colors occur equally often. Partially coloring G′ in this way, we can
achieve stability by coloring u, v opposite colors, coloring w the same color as u,
and using this to stabilize the 3-cycle, as shown in Figure 7. Conversely, suppose
G does not have a balanced unfriendly partition and fix a stable 2-coloring of G′.
WLOG suppose G has an even number of vertices and suppose color 1 occurs
more often among the vertices coming from G. Then u, v must both have color
2, and hence w has color 1. Since u,w have different colors, the 3-cycle will not
be stable. This completes the reduction.
2) k ≥ 3: We reduce from the case of k = 2. The idea is to augment the
construction G′ above by disallowing all but two colors to be used in the G′

part. We call the larger construction G′′.
We start with G′′ = G′ add two new vertices x, y to G′′ which are adjacent to

each other. In a stable coloring, x and y will necessarily have different colors (in
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our construction they will not be the tail of any other edges). We call these colors
1 and 2, and will force them to be used in coloring G′. Specifically, let n be the
number of vertices of G′, and construct n3 copies of Kk−2. For each vertex v in
any copy of Kk−2, add the edges (v, x), (v, y). Finally, add all edges (a, b) where
a ∈ G′ and b comes from a copy of Kk−2. Figure 8 shows this construction.

Fig. 8. Reducing k colors to two colors. A bold arrow indicates complete incidence
from the source subgraph to the target subgraph.

Now in a stable coloring any vertex from a copy of Kk−2 must use a different
color than both x, y, and the vertex set of a copy of Kk−2 must use all possible
remaining k−2 colors. By being connected to n3 copies ofKk−2, each a ∈ G′ will
have exactly n3 neighbors of each of the k − 2 colors. Even if a were connected
to all other vertices in G′ and they all use color 1, it is still better to use color
1 than to use any of the colors in {3, . . . , k}. The same holds for color 2, and
hence we force the vertices of G′ to use only colors 1 and 2. �

6 Discussion and Open Problems

In this paper we defined new notions of graph coloring. Our results elucidated
anti-coordination behavior, and solved some open problems in related areas.

Many interesting questions remain. For instance, one can consider alternative
payoff functions. For players choosing colors i and j, the payoff |i− j| is related
to the channel assignment problem [24]. In the cases when the coloring problem
is hard, as in our problem and the example above, we can find classes of graphs
in which it is feasible, or study random graphs in which we conjecture colorings
should be possible to find. Another variant is to study weighted graphs, perhaps
with weights, as distances, satisfying a Euclidian metric.

Acknowledgements. We thank György Turán for helpful discussions.
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Abstract. In the Multicommodity Network Design problem (MCND)
we are given a digraph G together with latency functions on its edges
and specified flow requests between certain pairs of vertices. A flow satis-
fying these requests is said to be at Nash equilibrium if every path which
carries a positive amount of flow is a shortest path between its source
and sink. The goal of MCND is to find a subgraph H of G such that
the flow at Nash equilibrium in H is optimal. While this has been shown
to be hard to approximate (with multiplicative error) for a fairly large
class of graphs and latency functions, we present an algorithm which
computes solutions with small additive error in polynomial time, assum-
ing the graph G is of bounded degree and bounded path-width, and the
latency functions are Lipschitz-continuous. Previous hardness results in
particular apply to graphs of bounded degree and graphs of bounded
path-width, so it is not possible to drop one of these assumptions.

1 Introduction

Wemodel road networks by directed graphs whose edges are labelled with latency
functions, i.e., functions which express the expected time it takes to traverse
the edge depending on the amount of traffic taking it. Adding the assumption
that each driver will take a route which, given the current traffic situation, has
shortest travel time, one arrives at the model of selfish routing, which we review
in Section 1.1. Surprisingly, simple examples show that, in this model, removing
edges from the network may improve the perfomance of the network, in the
sense that the travel time of all participants may be reduced. This phenomenon
is called Braess’s paradox after Dietrich Braess, who first described it in [1].

The obvious question of which edges should be removed to yield an optimal
traffic situation is called Multicommodity Network Design Problem (MCND)
and has been shown to be computationally hard to solve even approximately, see
section 1.2 for details. Our main contribution is a polynomial time approximation
algorithm on inputs in which
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– the input graph is of bounded path-width and bounded degree and
– the time it takes to traverse an edges depends in a Lipschitz continuous way

on the amount of traffic traversing that edge.

The algorithm returns a subgraph in which an ε-approximate Nash equilibrium
exists which is at most by an additive term of ε worse than the best γ-Nash
equilibrium in any other subgraph, for some γ depending on ε and which is
smaller than ε, see Definition 6. Here, an ε-Nash equilibrium is a flow in which
all traffic is routed along paths which are at most an additive term of ε worse
than shortest paths. The proof is contained in Theorem 7 and Lemma 10.

s t
u v

s t
u v· · ·

(a) (b)

Fig. 1. (a) The reduction in [2] produces very simple graphs in which all of the input
is encoded in a set of parallel edges between a certain pair of vertices (u, v). (b) By
replacing the parallel edges with binary trees one obtains graphs of bounded degree.

Assuming the input graph to be simultaneously of bounded degree and bounded
path-width is a strong restriction. However, previous hardness results (B2, B3
of Section 1.2) showed that MCND is hard even on very simple graphs (planar,
acyclic) with just one source of complexity: There are pairs of nodes with many
disjoint paths between them. If these paths are short (or even parallel edges), then
there must be vertices of high degree (cf. Fig 1a). If we bound the maximum degree
there may still be pairs of vertices with many paths between them, by replacing
nodes of high degree with binary trees (cf. Fig 1b). We rule this out by bounding
the path-width. Note that our approximation algorithm works with approximate
Nash equilibria, so technically the hardness results mentioned here do not apply
exactly. However, they can be adapted to include approximate Nash equilibria.

Previous attempts at obtaining approximation algorithms for the (single com-
modity) network design problem on restricted instances include Fotakis et al. [3].
Using a probabilistic argument, they show that approximate Nash equilibria can
be found in a restricted search space, which yields a polynomial time algorithm
on instances with only polynomially many paths from the source to the sink
whose length is polylogarithmical in the number of edges of the graph.

1.1 Selfish Routing

We follow the definitions and notation of [4]. Let G = (V,E) be a digraph, and
let (si, ti) be k pairs of designated vertices. Furthermore, for each edge e ∈ E
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there is an associated latency function le : IR≥0 → IR≥0, and for each pair (si, ti)
we are given a flow request ri ∈ IR≥0. We assume all latency functions to be
continuous and non-decreasing. We frequently denote the number of vertices by
n and the number of edges by m. We use the notation [l] := {1, . . . , l} for every
natural number l.

The intuition behind the problem is that we want to route ri units of traffic
from each of the source nodes si to the corresponding target node ti. The traffic
is supposed to consist of infinitesimally small pieces, so that it may be split
arbitrarily among the possible paths connecting si to ti in the graph. Formally,
by a u-v-path P we mean a sequence u = v0, v1, . . . , vn = v of pairwise distinct
nodes vi ∈ V such that (vi−1, vi) ∈ E for all i ∈ [n]. Denoting the set of all
si-ti-paths in G by Pi and the set of all paths between pairs of vertices in the
problem by P = ∪iPi, a flow f feasible for (G, r, l) is any function f : P → IR≥0
such that for each i ∈ [k] the equation

∑
P∈Pi

fP = ri is satisfied. We denote
the set of all paths in the graph by Pall :=

⋃
u,v∈V {P | P is a u-v-path}. The

length |P | of a path P ∈ Pall is the number of edges in P .
The latency function le specifies the amount of time it takes to traverse the

edge e, as a function of the amount of traffic being routed along this edge. More
traffic might cause congestion and therefore increase this time. The flow function
f can be seen as a way of assigning a path P ∈ Pi to each of the infinitesimal
atoms (say, cars) composing the traffic from si to ti.

For an edge e ∈ E and a flow f , denote by fe the total amount of traffic that
is routed along e, i.e., fe =

∑
P∈P,e∈P fP . The latency lP (f) of a path P ∈ Pall

given a specific flow f is the sum of the latencies of all edges along this path,
i.e., lP (f) =

∑
e∈P le(fe).

The assumption that each atom behaves selfishly is captured in the notion of
Nash equilibrium: A feasible flow f is said to be at Nash equilibrium if

lP (f) ≤ lP ′(f) for all i ∈ [k] and all P, P ′ ∈ Pi with fP > 0.

Note that since the atoms are infinitesimally small, a single deviation will not
change the latencies le(fe).

1

1.2 Braess’s Paradox

By the definition of Nash equilibrium, all si-ti-paths P ∈ Pi actually carrying
flow (i.e., fP > 0) must have the same latency, which we denote by Li(f). It can
be shown ([4, Cor. 2.6.2]) that for an instance (G, r, l), all Nash equilibria yield
the same edge latencies, i.e., le(fe) = le(f

′
e) for all edges e ∈ E and flows f, f ′

both at Nash equilibrium. In particular the maximum latency

M(f) := max
i

Li(f)

of a Nash equilibrium of an instance (G, r, l) is well-defined for each instance; we
denote this by M(G, r, l).

1 Alternatively, taking some δ > 0 as atomic amount of traffic and letting δ tend to
zero yields the same notion of Nash equilibrium.
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Braess’s paradox amounts to the fact that there may be a subgraph H ≤ G,
obtained from G by removing edges, such thatM(H, r, l) < M(G, r, l). We define
the Braess ratio of (G, r, l) as

B(G, r, l) := max
H≤G

M(G, r, l)

M(H, r, l)
,

with the convention that 0/0 := 1; if M(H, r, l) = 0 for some H ≤ G then also
M(G, r, l) = 0. Braess’s paradox has been studied intensively recently, and there
are strong bounds on the Braess ratio:

(A1) In single-commodity instances (G, r, l), i.e., when k = 1, then B(G, r, l) ≤
	n2 
, and this bound is optimal [5].2 Moreover [2], if every matching of
V \ {s, t} using only edges in G \H has size at most c, then

L(G, r, l) ≤ (c+ 1)L(H, r, l).

In particular, removing c edges from G may only reduce L(G, r, l) by a
factor of 1/(c+ 1).

(A2) In multi-commodity instances, there are (G, r, l) with B(G, r, l) = 2Ω(n),
and this ratio may be attained by removing a single edge from G (see [2]).
The same paper contains an upper bound of 2O(min{m logn,kn}) on the
Braess ratio in arbitrary networks.

(A3) In single-commodity instances with linear latency functions (i.e., le(x) =
ae+ be ·x for all e ∈ E), the Braess ratio is at most 4/3. Again, this bound
may actually be attained by removing a single edge (see [4]).

(A4) In [5], Roughgarden defines the incline Γ (c) of a continuous monotonely

increasing function c : IR≥0 → IR≥0 as Γ (c) := supx>0
x·c(x)∫
x
0

c(t) dt
, with

0/0 := 1. With this definition, he obtains the bound B(G, r, l) ≤ γ for all
instances (G, r, l) with Γ (le) ≤ γ for all e ∈ E.

Finding a subgraph H ≤ G which minimises M(H, r, l) is a natural algorith-
mic question. This problem, called Multicommodity Network Design (MCND) is
hard to approximate in the following sense: For δ > 1, we say that an algorithm
is a δ-approximation algorithm for MCND if it computes, on input (G, r, l), a
subgraph H ≤ G with

M(H, r, l) ≤ δ · min
H′≤G

M(H ′, r, l).

Assuming P = NP,

(B1) there is no polynomial-time (43 − ε)-approximation algorithm for single-
commodity network design with linear latency functions [5], for any ε > 0,

(B2) there is no polynomial-time (n/2− ε)-approximation algorithm for single-
commodity network design with arbitrary latency functions [5], for any
ε > 0,

2 Note that, in single-commodity instances, M(G, r, l) = L(G, r, l).
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(B3) there is no polynomial-time 2o(n)-approximation algorithm for multi-com-
modity network design [2].

(B4) there is a constant c > 0 such that for all γ ≥ 1, there is no (c · γ)-
approximation algorithm for network design for instances (G, r, l) with
Γ (le) ≤ γ for all e ∈ E [5].

Note that A1 and A3 imply that in the first two cases, the trivial algorithm
(which always returns the whole graph G) is a best-possible approximation al-
gorithm.

These results are proven by reducing NP-complete problems to the appro-
priate network design problems. For B2 and B3, the reductions produce acyclic
planar graphs which contain pairs of vertices with many parallel edges (Fig. 1a).
The latency functions used in these reductions are continuous approximations
of step functions and therefore increase very steeply in very small regions.

Since step functions can not be approximated sufficiently well (for the purpose
of the above reductions) by linear functions or functions with bounded incline,
the proofs for B1 and B4 use an entirely different approach. Here, the reductions
start from the problem 2-Directed Vertex Disjoint Paths (2DDP) of finding, in a
directed graph with two designated pairs (s1, t1) and (s2, t2) of vertices, a pair of
vertex-disjoint paths between them. This problem has been shown to be NP-hard
for general graphs [6], but it is solvable in polynomial time on planar graphs [7].
On the other hand, by inspection we see that the reduction B1 actually uses
only latency functions with slopes 0 and 1.

2 An Approximation Algorithm for MCND

In this section we will describe an approximation algorithm for MCND on a
restricted set of instances. The restriction is two-fold: We impose restrictions on
the graph G (see Definition 1 and section 3), and we bound the slope of the
admissible latency functions.

In contrast to the inapproximability results mentioned in section 1, we obtain
approximations up to an additive, rather than multiplicative, error. Because in all
of the non-approximability results of section 1 there was no si-ti-path of latency
less than 1, these results also hold for additive errors (note that c+ ε < c · (1+ ε)
if c ≥ 1).

We discretise the MCND problem in two ways:

1. We consider only flows which route integer multiples of γ along each edge,
for some γ > 0 and

2. we approximate path latencies up to an additive error of γ.

With these discretisations, we are able to approximately solve MCND on in-
stances for which the latency functions are Lipschitz continuous (see below) and
for which the underlying graph is of bounded total degree and bounded path-
width (ignoring the edge directions). For such graphs it is possible to compute
the following kind of decomposition:
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Definition 1. Let G = (V,E) be a directed graph. A strong directed path-
decomposition (sdpd) is a sequence of subsets ∅ = A0, . . . , Am ⊂ V (called
bags) such that:

(SDPD1) |Aj \Aj−1| ≤ 1 for all j ∈ [m], and if v ∈ Aj \Aj−1, then all incoming
edges to v come from vertices in Aj−1,

(SDPD2) for every v ∈ V there are 1 ≤ a ≤ b ≤ m such that

v ∈ Aj ⇔ a ≤ j ≤ b

for all j = 0, . . . ,m (in particular,
⋃

j Aj = V ).

For a vertex v ∈ V we denote by ι(v) := min{j | v ∈ Aj} the index of the first
bag which contains it. We call m the length and maxi |Ai| − 1 the width of the
decomposition. We define Gj := (Vj , Ej) to be the subgraph of G induced on the
set of vertices in the bags up to Aj , i.e.,

Vj :=
⋃
j′≤j

Aj′ and Ej := E ∩ (Vj × Vj).

We use the term strong to distinguish our definition from the definition of a
directed path-decomposition given, e.g., by Barát in [8], where (SDPD1) is re-
placed by the weaker condition that for all edges uv there be indices i ≤ j with
u ∈ Ai and v ∈ Aj . In particular, any acyclic digraph has directed path-width
0, but the strong directed path-width may be arbitrarily high. Also, to simplify
the presentation we require that |Aj \Aj−1| be at most 1, but it should be clear
how to adjust the update step of Theorem 7 to the case |Aj \Aj−1| ≥ 2. In
Section 3 we show how to find sdpds in polynomial time in graphs of bounded
path-width and bounded degree.

The important feature of sdpds which we use in our algorithm is that

1. every bag Aj separates Gj from Ḡj := G \Gj and
2. all edges between Gj and Ḡj are directed from the former to the latter.

Consequently, any path between vertices u, v ∈ Vj stays entirely in Gj . Directed
path-decompositions in the sense of [8] only have the second property, while
undirected path-decompositions (see Definition 8) have only the first one.

In general, discretising the amount of traffic that may travel along each edge
might drastically change the set of Nash equilibria. In order to prevent this, we
use the following continuity condition:

Definition 2. For α > 0 we call an instance (G, r, l) of MCND α-Lipschitz con-
tinuous if all latency functions are Lipschitz continuous with Lipschitz constant
α, i.e.,

|le(x)− le(y)| ≤ α |x− y|
for all edges e ∈ E and x, y ∈ IR≥0.

Lipschitz continuity ensures that we may slightly change a flow without changing
path latencies by too much:
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Lemma 3. Let ε, α > 0 and let (G, r, l) be an α-Lipschitz continuous instance
of MCND. If f and f ′ are flows for which |fe − f ′e| < ε for all edges e, and
P ∈ Pall is a path, then

|lP (f)− lP (f
′)| < |P |αε

We omit the straightforward proof. Putting these two together we obtain the
following lemma for discretised flows:

Lemma 4. Let α > 0 and let (G, r, l) be an α-Lipschitz continuous instance of
MCND, and A0, . . . , Am is an sdpd of G. Let γ > 0 and assume that all ri are
integer multiples of γ. Then if f : P → IR≥0 is a flow in (G, r, l), there is a flow
f ′ such that

– f ′e is an integer multiple of γ for all edges e ∈ E and
– |fe − f ′e| < ι(v)γ for all e ∈ E directed towards the node v ∈ V .
– |lP (f)− lP (f

′)| < αγ |P | ι(v) for all simple paths P ∈ Pall ending in a vertex
v ∈ V .

Proof. We can obtain the flow f ′ by discretising along the decomposition, main-
taining the conditions that the total flow which f ′ routes into vertices in Aj is
an integer multiple of γ and does not differ from the flow which f routes into
these vertices by more than jγ. The statement about path latencies is an easy
consequence of Lemma 3. ��

We relax the notion of a Nash equilibrium as follows:

Definition 5. Let (G, r, l) be an instance of selfish routing and ε > 0. An ε-Nash
equilibrium is a flow f for (G, r, l) such that for all i and all paths P, P ′ ∈ Pi

we have
lP (f) ≤ lP ′(f) + ε if fP > 0.

Accordingly, we define

Mε-Nash(G, r, l) := min{M(f) | f is ε-Nash equilibrium},
where M(f) is the maximum latency of a path from some si to some ti in the
flow f .

Note that we use an additive error here, as opposed to a factor of (1 + ε) as in
Roughgarden’s definition of ε-approximate Nash equilibria [4, Sec. 4.2]. We can
now make precise what we mean by “approximately solving MCND”:

Definition 6. Let (G, r, l) be an instance of MCND, and ε, γ > 0. An (ε, γ)-
approximate solution to MCND is a subgraph H ⊆ G such that

Mε-Nash(H, r, l) ≤Mγ−Nash(H
′, r, l) + ε

for all subgraphs H ′ ⊆ G.

We will invoke this definition with γ much smaller than ε. With these definitions
we are ready to state our main approximation result:
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Theorem 7. Let α, ε > 0 and k, ρ ∈ IN be fixed. Assume we are given an α-
Lipschitz continuous MCND instance (G, r, l) with k source-sink pairs s1, t1, . . . ,
sk, tk, together with a strong directed path-decomposition A0, . . . , Am ⊂ V of
width ρ. Then it is possible to find an (ε, γ)-approximate solution to MCND in
time polynomial in the size of G and max ri, for γ := ε

1+αm2 .

Proof. Let M be an upper bound on all flow requests ri and on the latency of
an si-ti-path in a Nash equilibrium in the input graph G, and denote by k the
number of source-sink pairs in (G, r, l). For a fixed Lipschitz constant α, this
bound can be taken to be α |V |max ri.

We discretise flows and approximate latencies with the γ stated in the theo-

rem. For each Aj we compute a table Tj which is indexed by all tuples (σ
(1)
j , . . . ,

σ
(k)
j , λ

(1)
j , . . . , λ

(k)
j ) of functions such that

– σ
(i)
j is a function from Aj to IR≥0∪{⊥,$} such that if σ

(i)
j (Aj) ⊂ IR≥0 then∑

v∈Aj

σ
(i)
j (v) = ri

and σ
(i)
j (v) is an integer multiple of γ for all v ∈ Aj . If σ

(i)
j (v) ∈ {⊥,$} for

some v ∈ Aj we demand σ
(i)
j (w) = σ

(i)
j (v) for all w ∈ Aj .

– λ
(i)
j is a function from Aj to [0,M ] such that every λ

(i)
j (v) is an integer

multiple of γ for all v ∈ Aj .

An index (σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j ) is meant to represent a flow routing ap-

proximately σ
(i)
j (v) of traffic from si to v, such that the common latency of all

si-v-paths is roughly λ
(i)
j (v). The special symbol ⊥ signifies that si ∈ Gj , while

$ signifies that ti ∈ Gj . Note that the size of this index set is linear in k and
polynomial of degree ρ in M for fixed values of ρ and ε (note that m < M). An
entry in the table may be ⊥ or a subset of the edges of Gj . We define

Bj := 1 + αj2

The table entries will satisfy the following conditions:

(a) If Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j ) is a subset of E, then after removing these

edges there is a flow f in Gj which routes an amount σ
(i)
j (v) of traffic from

source si to v ∈ Aj , such that for each path P from si to v with fP > 0 the

latency lP (f) is within Bjγ of λ
(i)
j (v), and such that the flow f is a Bjγ-Nash

equilibrium. If si ∈ Vj then we demand σ
(i)
j ≡ ⊥, and if ti ∈ Gj we demand

σ
(i)
j ≡ $.

(b) If Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j ) = ⊥, then no way of removing edges from

G will yield the existence of a flow f routing σ
(i)
j (v) traffic from source si

to v in such a way that f is a γ-Nash equilibrium and such that the latency

from source si to v under this flow is λ
(i)
j (v).
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We successively compute the entries of Tj as follows:

– For T0 we set all entries to ⊥ except for the one corresponding to σ
(i)
0 ≡ ⊥

and λ
(i)
0 ≡ 0 for all i ∈ [k], which we set to ∅.

– Let Aj \ Aj−1 = {v} for some node v ∈ {s1, . . . , sk, t1, . . . , tk}, and let
U = {u1, . . . , uh} ⊆ Aj−1 be the starting points of all incoming edges to v.

Let σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j be an index into the table Tj.

If si ∈ Gj we ignore commodity i in the following discussion and focus on

indices (both into Tj−1 and into Tj) with σ
(i)
j ≡ ⊥ and λ

(i)
j ≡ 0. Similarly,

if ti ∈ Gj−1 we focus on indices with σ
(i)
j ≡ $ and λ

(i)
j ≡ 0.

To determine the entry Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j ), we use the values in

the table Tj−1 to determine possible ways of routing traffic to the nodes in
Aj−1, and try to extend these flows to a flow which is still an approximate

Nash equilibrium and such that the new flow routes σ
(i)
j of commodity i to

the nodes in Aj , and such that the latency of travelling from source si to

v ∈ Aj is λ
(i)
j (v), up to an additive error of jε/m. We need only change

flows to Aj−1 in such a way that we additionally route traffic from the nodes
u1, . . . , uh ∈ Aj−1 to v, as re-routing traffic between the nodes in Aj−1 only
results in flows which have already been considered when computing the
table Tj−1.
We are looking for an index (σ

(1)
j−1, . . . , σ

(k)
j−1, λ

(1)
j−1, . . . , λ

(k)
j−1) into the table

Tj−1, a subset S ⊂ {u1, . . . , uh} of predecessors of v and real numbers φi,w ∈
IR≥0 for w ∈ S and i ∈ [k] such that:
• There is a way of removing edges from Gj−1 to yield the existence of an
approximate Nash equilibrium up to Aj−1, i.e.,

Tj−1(σ
(1)
j−1, . . . , σ

(k)
j−1, λ

(1)
j−1, . . . , λ

(k)
j−1) = ⊥.

• Routing φi,w of commodity i from w to v changes σ
(i)
j−1 into σ

(i)
j :∑

w∈S
φi,w = σ

(i)
j (v) for all i = 1, . . . , k

and for all w ∈ S and i = 1, . . . , k we have

σ
(i)
j−1(w) − φi,w =

{
σ
(i)
j (w) if w ∈ Aj

0 otherwise

In particular, the φi,w are also integer multiples of ε/m.

• If σ
(i)
j (v) = 0 then also λ

(i)
j (v) = 0. Otherwise, the latencies of si-v-paths

are approximately given by λ
(i)
j (v): If φi,w > 0, then∣∣∣∣∣λ(i)

j−1(w) + l(wv)

(
k∑

i=1

φi,w

)
− λ

(i)
j (v)

∣∣∣∣∣ ≤ (Bj −Bj−1)γ
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and the flow is still approximately at Nash equilibirium: For all w ∈ S

and i ∈ [k] with σ
(i)
j−1(w) > 0,

λ
(i)
j−1(w) + l(wv)

(
k∑

i=1

φi,w

)
≥ λ

(i)
j (v)− ε

2
.

• The approximate latencies for vertices in Aj ∩ Aj−1 remain unchanged

unless σ
(i)
j (v) = 0: λ

(i)
j (u) = λ

(i)
j−1(u) for all i ∈ [k] and u ∈ Aj ∪ Aj−1.

If there is such a combination, then we set

Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j ) := Tj−1(σ

(1)
j−1, . . . , σ

(k)
j−1, λ

(1)
j−1, . . . , λ

(k)
j−1)

∪ {uv | u ∈ U \ S}
– If Aj \ Aj−1 = {si} for a source node si we proceed essentially as in the

previous step but demand that σ
(i)
j (v) = ri and λ

(i)
j = 0. The other latencies

and flows of other commodities into si are handled as above. Note that this
can be adjusted to the case where si = si′ for i = i′.

– Finally, if Aj \Aj−1 = {ti} for a source node ti we demand that σ
(i)
j (v) = $

treat this to mean that exactly an amount ri of commodity enters ti. The
other latencies and flows of other commodities into ti are handled as above.

That this way of filling the table will satisfy condition (a) is easily verified.
We now turn to condition (b). Assume that for some bag Aj and some index

(σ, λ) = (σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j ) into Tj we have Tj(σ, λ) = ⊥ but still there

is a subset F ⊂ Ej and a flow f the graph Gj with the edges in F removed such

that f is a γ-Nash equilibrium which routes λ
(i)
j (v) of commodity i into v.

Using Lemma 4, we discretise f to obtain a flow f ′ such that |lP (f)− lP (f
′)| <

αj2γ for all paths P ∈ Pall with endpoints in Aj . Since we assumed f to be a
γ-Nash equilibrium, for two si-u-paths P and P ′ with endpoint u ∈ Aj we have

|lP (f ′)− lP ′(f ′)| ≤ |lP (f ′)− lP (f)|+ |lP (f)− lP ′(f)|+ |lP ′(f)− lP ′(f ′)|
≤ αγj2 + γ + αγj2 ≤ (2Bj − 1)γ

In particular, there is an integer multiple λ of γ such that all latencies lP (f
′) for

si-u paths p are within distance Bj of λ. Following the computation path we see
that the corresponding table entry in Tj can not be ⊥. ��

3 Graphs of Bounded Path-Width

While the strong directed path-decompositions of Definition 1 are convenient
for the purpose of our algorithm, they are non-standard and it is not clear what
kinds of graphs allow for these decompositions and how they can be obtained.
In this section we show that in particular graphs of bounded path-width and
simultaneously bounded degree allow for such decompositions.

Path-width was defined by Robertson and Seymour in the first paper of their
Graph Minors series [9]:
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Definition 8. Let G = (V,E) be an undirected graph. A path-decomposition of
G is a sequence X1, . . . , Xs of subsets of V such that

– for every e ∈ E there is an i ∈ [s] such that both endpoints of e are in Xi

and
– Xi ∩Xk ⊆ Xj for all 1 ≤ i ≤ j ≤ k ≤ s.

The width of the decomposition is maxi |Xi| − 1. The path-width ρ of G is the
minimum ρ ∈ IN such that G has a path-decomposition of width ρ.

We will need the following fact about graphs of bounded path-width:

Fact 9. For every ρ ∈ IN there is an h ∈ IN such that no graph of path-width at
most ρ has a minor isomorphic to the complete binary tree of height h.

This follows easily from theorem (1.2) in [9] and the fact that every tree is a
minor of a sufficiently large complete binary tree. As usual, a minor of a graph
G is a graph obtained from a subgraph of G by contracting edges.

We are now ready to state the main result of this section:

Lemma 10. Let b ∈ IN and let G be a class of acyclic directed graphs such that
for every G ∈ G, the total degree (i.e., in-degree plus out-degree) of every vertex
v ∈ V (G) is at most b and the (undirected) path-width of G is at most b. Then
there is a ρ ∈ IN depending only on b such that, given a graph G ∈ G, an sdpd
of G of width at most ρ can be computed from G in linear time.

Proof (Proof of Lemma 10). Using Fact 9, let d0 ∈ IN be such that none of the
graphs in G contains a complete binary tree of depth d0 as a minor (ignoring all
edge directions).

Pick some G ∈ G. We may assume that G has exactly one sink. Otherwise,
let X1, . . . , Xl be a path-decomposition of G, and let v1, . . . , vs be the sinks of
G in the order in which they first appear in the path-decomposition, breaking
ties arbitrarily. Adding a directed edge from vi to vi+1 for i ∈ [s − 1] increases
the path-width of G by at most 1, because we can obtain a path-decomposition
for the new graph by adding vi to all bags between the first entry of vi and the
first entry of vi+1, increasing each bag-size by at most one. Furthermore, we only
increase the degree of the graph by at most two. Acyclicity is also maintained,
and by a result of Bodlaender and Kloks [10], for fixed path-width b a path-
decomposition of width b can be computed in linear time.

To obtain an sdpd for G, we start from the sink and successively create new
bags by taking all predecessors of all nodes in the current bag. If, at some point,
the resulting bag has size exceeding bd0 , then G has a minor isomorphic to a
complete binary tree of depth d0, a contradiction. ��

4 Conclusion

We complemented Roughgarden’s [5] and Lin et al.’s [2] results on the hardness
of approximation (up to a multiplicative error) of the multi-commodity network
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design problem by giving an approximation algorithm for this problem on a
certain restricted class of inputs, namely graphs allowing for what we call a
bounded path-decomposition with Lipschitz-continuous latency functions. For
technical reasons, we have to work with approximate Nash equilibria, so our
algorithm does not directly compare with previous hardness results.

For general latency functions, restrictions on the class of input graphs sim-
ilar to ours seem to be necessary [2]. If the latency functions are polynomials
of bounded degree, the proof technique used in [5] combined with Schrijver’s
algorithm for 2DDP on planar graphs [7] raises the question of whether efficient
approximation algorithms exist for less severely restricted classes of input graphs
such as planar graphs.
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1991. LNCS, vol. 510, pp. 544–555. Springer, Heidelberg (1991)



Cooperative Equilibria in Iterated Social Dilemmas

Valerio Capraro1, Matteo Venanzi2, Maria Polukarov2, and Nicholas R. Jennings2

1 Mathematics, University of Southampton, United Kingdom
V.Capraro@soton.ac.uk

2 Electronics and Computer Science, University of Southampton, United Kingdom
{mv1g10,mp3,nrj}@ecs.soton.ac.uk

Abstract. The implausibility of the extreme rationality assumptions of Nash
equilibrium has been attested by numerous experimental studies with human
players. In particular, the fundamental social dilemmas such as the Traveler’s
dilemma, the Prisoner’s dilemma, and the Public Goods game demonstrate high
rates of deviation from the unique Nash equilibrium, dependent on the game pa-
rameters or the environment in which the game is played. These results inspired
several attempts to develop suitable solution concepts to more accurately explain
human behaviour. In this line, the recently proposed notion of cooperative equi-
librium [5, 6], based on the idea that players have a natural attitude to coopera-
tion, has shown promising results for single-shot games. In this paper, we extend
this approach to iterated settings. Specifically, we define the Iterated Cooperative
Equilibrium (ICE) and show it makes statistically precise predictions of popula-
tion average behaviour in the aforementioned domains. Importantly, the definition
of ICE does not involve any free parameters, and so it is fully predictive.

1 Introduction

The standard assumption of economic models that players in strategic situations act
perfectly rationally has been constantly rejected by numerous experiments over the
years. These experiments, typically conducted on the fundamental social dilemmas
such as the Prisoner’s dilemma, the Traveler’s dilemma, and the Public Goods game,
have shown that cooperation between players (associated with the deviation from the
unique, but inefficient, Nash equilibrium) is frequent, and appears to depend on both
the game parameters and the environment in which the game is played. In particular,
it has been observed that the rate of cooperation in the Traveler’s dilemma depends on
the bonus/penalty value, whenever the game is single-shot or iterated [7, 12]; the rate of
cooperation in the Prisoner’s dilemma depends on the payoff parameters or the way the
players are matched to play together [11, 32]; and the rate of cooperation in the Public
Goods game depends on the marginal return or on the frequency of interaction between
free-riders and cooperators [13, 14, 17].

Considerable research efforts have been made in attempt to explain deviations from
Nash equilibria. Some methods developed to this end are based on the idea that humans
have bounded rationality and/or can make mistakes in computations1 [4, 9, 20, 25];
others explain cooperation in terms of evolution [1, 3, 10, 19, 21–23, 29]. Finally,

1 See [31] for a recent parallelism among these approaches.
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much of work has been directed towards defining profoundly different solution con-
cepts [24, 26], especially in the recent algorithmic game theory and artificial intelli-
gence communities [2, 8, 15, 16, 18, 27, 30]. This interest is particularly motivated by
the emerging applications of human-agent collectives, where artificial agents interact
with humans. To build such systems effectively, it is highly important to understand
and find accurate methods to predict human behaviour.

To this end, a new solution concept, termed cooperative equilibrium, has been
recently proposed for one-shot games [5, 6]. This approach is inspired by the aforemen-
tioned experimental findings, which suggest that players are conditionally cooperative—
that is, the same player may act more or less cooperatively in the same game scenario,
depending on the actual payoffs. In other words, humans have an attitude to cooper-
ation by nature: they do not act a priori as single players, but rather forecast how the
game would have been played if they formed coalitions and then select actions accord-
ing to their best forecast. It turns out, that direct implementation of this idea can predict
human behaviour with impressively high precision, as demonstrated in [5, 6] on the
aforementioned social dilemmas.

In this paper, we further explore this direction and extend the cooperative equilibrium
approach to iterated settings. Specifically, we define the Iterated Cooperative Equilib-
rium (ICE), that combines this concept with some ideas developed in [7] for iterated
games. Importantly, in contrast to other methods, ICE does not use any free parame-
ters, and thus is fully predictive. We then evaluate our method on the iterated Traveler’s
dilemma, the Prisoner’s dilemma, and the Public Goods game. To this end, we make
use of the experimental data provided in [7], [32] and [14] for these three domains, re-
spectively.2 Our results confirm that the ICE makes accurate predictions of population
average behaviour in social dilemmas. In particular, it clearly outperforms the Logit
Learning Model (LLM) developed in [7] for the Traveler’s dilemma.

The paper unfolds as follows. In Section 2 we define the social dilemmas in con-
sideration. In Section 3 we formalise our approach. We then apply it to the iterative
Traveler’s dilemma in Section 4, to the Prisoner’s dilemma in Section 5, and to the
Public Goods game in Section 6. Section 7 concludes with directions for future work.

2 Preliminaries

We start with the definitions of the social dilemmas in consideration of this paper.
Prisoner’s Dilemma (PD). Two players choose to either cooperate (C) or defect (D).

If both players cooperate, each receives the monetary reward, R, for cooperating. If one
player defects and the other cooperates, then the defector receives the temptation payoff,
T , while the other receives the sucker payoff,S. If both players defect, they both receive
the punishment payoff, P . Payoffs are subjected to the condition T > R > P > S.

Traveler’s Dilemma (TD). Two travelers need to claim for a reimbursement between
L and H monetary units for their (identical) luggage that has been lost by the same
air company. To avoid high claims, the air company employs the following rule: the
traveler who makes a lower claim, say m, gets a reimbursement of m + b monetary
units, and the other one gets a reimbursement of m − b monetary units, for a fixed

2 These were the only sources we could find that reported sufficient data for our purposes.
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value of bonus/penalty, b. If both players claim the same amount, m, then they both get
reimbursed by m monetary units.

Public Goods Game (PG). n players receive an initial endowment of y > 0 mone-
tary units each and simultaneously choose an amount 0 ≤ xi ≤ y to contribute to a pub-
lic pool. The total amount in the pot is multiplied by α0 and then divided equally among
all group members. Thus, player i’s utility is ui(x1, . . . , xn) = y−xi+α(x1+. . .+xn),
where α = α0

n . The number α is termed the constant marginal return and assumed to
belong to the interval

(
1
n , 1
)
.

3 Iterated Cooperative Equilibrium

We now introduce the concept of iterated cooperative equilibrium for the aforemen-
tioned social dilemmas.

Let G = (N, (Si, ui)i∈N ) be a normal-form game with a set N of n players, and
for all i ∈ N , a finite set of strategies Si and a monetary payoff function ui : S → R,
where S = ×j∈NSj . As usual, we use −i to denote the set N \ {i} of all players but i.
We denote by Δ(X) the set of probability distributions on a finite set X . Thus, Δ(Si)
defines the set of mixed strategies for player i ∈ N , and his expected payoff from a
mixed strategy profile σ is given by ui(σ) =

∑
s∈S ui(s)σ1(s1) · . . . · σn(sn).

The idea behind our approach is as follows. Suppose each agent i simply considers
two possible scenarios: the fully selfish play ps, where players take individual actions
pursuing their private interests, and the fully cooperative play pc, where players are
assumed to pursue the collective interest. With each scenario p we associate a value
vi(p), defined as an average vi(p) = ei(p)τi(p)+ ei(p)τi(p), where, roughly speaking,

– τi(p) is the probability that all players follow scenario p, and τi(p) = 1 − τi(p) is
the probability that (at least one of) the players −i will deviate from p for the sake
of their individual interests, knowing that player i follows scenario p. In particular,
this implies that τi(ps) = 0, since a Nash equilibrium cannot be improved by
unilateral deviations;

– ei(p) is the payoff of i when scenario p is realised, and ei(p) is the infimum of
gains player i achieves when other players deviate from p.

Then, the values vi(p) determine each player i’s strategy as follows. Let p∗i ∈ {ps, pc}
be the scenario that maximises the function vi, and define the induced game G(p∗i )
to be the restriction of G where the set of allowed mixed strategy profiles is given by
{σ|uj(σ) ≥ vi(p

∗
i ), ∀j}. Note that vi(p∗i ) only reflects player i’s beliefs, while in the

induced game the strategies of all players are limited. That is, as is typical for human
players, they extrapolate their own experience to others. Now, since this set of strategies
is convex and compact, the induced game has Nash equilibria. The cooperative equilib-
rium is then given by a combination of strategies where each player i plays according
to a Nash equilibrium of his induced game.

Formalising this idea is not completely trivial: while the payoffs ei seem straightfor-
ward to define, the probabilities τi are much more delicate, since the event “players −i
deviate from scenario pc” is not measurable in any universal sense. In iterated settings,
we can approach this problem applying a sort of fictitious play. Specifically, we start
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with initial values τi(pc) = τi(pc) = 1
2 , and then at each step we update these prob-

abilities using observations made in previous rounds. To this end, we use the standard
method for probabilistic modelling of binary random events based on the beta family
of probability density functions [28]. If in the first round player i has observed coop-
eration, then τi(pc) grows from 1

2 to 2
3 , otherwise it drops from 1

2 to 1
3 and so forth:

that is, if k is the number of cooperative plays observed in periods from 1 to t− 1, then
τ
(t)
i (pc) is updated to k+1

t+1 . We now define this procedure in detail.
Let G ∈ {PD,TD, PG}. Then, G has a unique Nash equilibrium, NE(G). Moreover,

there is also a unique Pareto optimal strategy profile, OPT (G). For each period t ≥ 1,

we set v(t)i (ps) = ui (NE(G)) and e
(t)
i (pc) = ui (OPT(G)). For other parameters, we

consider the first and the later rounds separately.
Period 1. We define:

– e
(1)
i (pc) = inf{ui(σ)|σi = OPT(G)i; ∀j = i, uj(σj ,OPT(G)−j) ≥ uj(OPT(G))}

is the infimum payoff that player i obtains when he plays according to the Pareto
optimum, while other players deviate from this profile if the corresponding unilat-
eral deviation weakly improves the payoff to each deviator;

– τ
(1)
i (pc) = τ

(1)
i (pc) =

1
2 ;

– v
(1)
i (pc) = τ

(1)
i (pc)e

(1)
i (pc) + τ

(1)
i (pc)e

(1)
i (pc);

– v
(1)
i = max{v(1)i (ps), v

(1)
i (pc)};

– Ind(G, i, 1) is the restriction of game G where the set of allowed mixed strategy

profiles is limited to
{
σ|uj(σ) ≥ v

(1)
i , ∀j

}
.

Period t. We update payoffs ei and probabilities τi as follows.

– Let σ−i be the average of strategies played by players−i in periods from 1 to t−1.
Then, e(t)i (pc) = ui(OPT(G)i, σ−i);

– Let σ(s)
−i be the strategy played by players −i in period s < t. We say that σ(s)

−i is a

cooperation if there is a strategy σi = (NE(G))i such that (σi, σ
(s)
−i ) is allowed in

Ind(G, i, s). Let k be the number of cooperations in periods from 1 to t− 1. Then,

τ
(t)
i (pc) =

k + 1

t+ 1
and τ

(t)
i (pc) = 1− τ

(t)
i (pc);

– v
(t)
i (pc), v

(t)
i and Ind(G, i, t) are determined analogously to Period 1.

Given this, we can now make the following definition.

Definition 1. The iterated cooperative equilibrium (ICE) of game G in period t is a
strategy profile σ where strategy σi for each player i ∈ N corresponds to the strategy
he plays in the Nash equilibrium of the induced game Ind(G, i, t).
Example 1. Consider the PD with payoffs T = 20, R = 15, P = 5 and S = 0. For
a given player i, the selfish scenario has value v

(t)
i (ps) = 5 for all periods t ≥ 1,

while the value of the cooperative scenario changes depending on what i has observed
in previous iterations. At t = 1 it has value v

(1)
i (pc) = 15 · 12 + 0 · 1

2 = 7.5. Thus, the
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ICE at this step corresponds to the Nash equilibrium of the game where only strategies
giving both players a payoff of at least 7.5 are allowed—i.e., σi = 0.25C+0.75D, ∀i.

At t = 2 we have two cases: (i) If in the first period player i observes coopera-
tion, then τ

(2)
i (pc) = 1

3 and e
(2)
i (pc) = 15. Hence, v(2)i (pc) = 15, and the induced

game allows only one strategy (C) for both players. So, in a cooperative equilibrium
both players cooperate; (ii) Otherwise, if i observes defection, then τ

(2)
i (pc) =

2
3 and

e
(2)
i (pc) = 0. Hence, v(2)i (pc) = 15 · 13 + 0 · 23 = 5 = v

(2)
i (ps), and the induced game

coincides with the original game. The cooperative equilibrium corresponds to the Nash
equilibrium of the original game—both players defect.

4 Traveler’s Dilemma

In this section, we demonstrate the predictive power of cooperative equilibrium on the
iterated Traveler’s dilemma. We make use of the experimental data provided by Capra-
Goeree-Gomez-Holt in [7] for the setting with L = 80 and H = 200, and compare ICE
predictions with the logit learning model (LLM), proposed in [7] to explain these data.

There are two main differences between the LLM and ICE we would like to stress:

– First, as have been previously mentioned, ICE does not use any free parameter,
while the LLM involves two free parameters, a learning parameter and a error
parameter. In other words, ICE is a predictive model, and the LMM is descriptive.

– Second, the models are different conceptually. ICE applies the idea that people
have an attitude to cooperation: they do not act a priori as single players, but rather
forecast how the game would be played if they formed coalitions, and then play
according to their best forecast. In contrast, the LLM assumes selfish, individual
decisions, and explains deviations from Nash equilibrium in terms of mistakes.

We now proceed to compare between the ICE and the LLM predictions, based on the
experimental data collected in [7]. In this experiment, groups of 9, 10 and 12 sub-
jects played a 10 rounds Traveler’s dilemma with low (b ∈ {5, 10}), intermediate
(b ∈ {20, 25}) or high (b ∈ {50, 80}) bonus/penalty values. After each round, the
subjects’ claims were casually matched to determine their payoffs. In this paper, we ex-
clude the case with b = 10 since it involved an odd number of participants (9 players),
and so at each turn one player remained unmatched and his payoff was not determined;
we therefore cannot compute the ICE in this case. Following [7], the LLM predictions
are calculated using the values ρ = 0.75 and μ = 10.9 for the learning/error parameters.

Recall that the TD has a unique Nash equilibrium where each player chooses the
minimal claim of L = 80, whichever is the value of bonus/penalty, b. The results in [7]
show that in practice the players’ behaviour is not independent of the value of b. Indeed,
when the bonus/penalty is low, the players tend to make very high claims, especially in
the last rounds; this to some extent is supported by the logit learning model proposed
in [7]. However, as can be seen from Table 1 and Figure 1, for b = 5 the ICE predicted
values fall much closer to the average observed claims than the LLM predictions.
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Table 1. Observed and predicted claims in TD
with low bonus/penalty of b = 5

t Avg. obs. claim ICE LLM

1 180.08 195.00 167.75
2 180.00 182.06 175.09
3 185.30 185.77 179.53
4 191.34 188.15 181.88
5 194.98 190.03 183.81
6 196.62 191.35 185.14
7 196.86 192.70 186.32
8 196.68 193.34 186.82
9 195.48 194.05 187.02
10 194.34 194.03 186.80

1 2 3 4 5 6 7 8 9 10
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b = 5

 

 

Average observed claim
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LLM

Fig. 1. ICE vs. LLM for b = 5. The solid
line corresponds to the actual data. The ICE
predictions are represented by the dashed
line, and the LLM predicted values are de-
picted by the dotted line.

Table 2 and Figure 2 below present the data and predictions for the two cases with in-
termediate bonus/penalty values of b = 20 and b = 25.

Table 2. Observed and predicted claims in TD with intermediate bonus/penalty

t
b = 20 b = 25

Avg. obs. claim ICE LLM Avg. obs. claim ICE LLM

1 131.20 180.00 152.64 139.96 175.00 146.60
2 127.20 134.53 151.32 137.59 134.68 145.77
3 128.35 135.57 150.63 159.90 137.94 146.73
4 108.70 133.02 148.74 154.27 146.38 150.66
5 103.30 125.69 144.38 146.49 150.19 151.17
6 117.30 120.66 142.55 161.44 148.51 147.84
7 105.80 119.37 145.71 151.88 150.65 150.60
8 117.30 117.60 146.60 139.12 150.99 149.47
9 119.20 117.73 146.82 132.09 147.04 142.74
10 119.20 117.66 149.14 143.04 143.62 135.32

For b = 20, ICE again clearly outperforms the LLM, as shown in Figure 2a. For
b = 25, the two models show similar performance: ICE is closer to the actual average
claim in periods 2, 5, 6, 7 and 10, while the LLM performs better in periods 1, 3, 4, 8,
and 9 (see Figure 2b). Note that the observed data in this case is very noisy, with no
clear tendency towards higher or lower claims across the rounds of the experiment.
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Fig. 2. ICE vs. LLM for b ∈ {20, 25}. Solid lines correspond to the actual data. The ICE predic-
tions are represented by dashed lines, and the LLM predictions are depicted by dotted lines.

As the bonus/penalty values get higher, the players reduce their claims, and actually
converge to the Nash equilibrium solution in the last rounds of the experiment for high
b (see Table 3 and Figure 4). While both ICE and the LLM capture this tendency, yet
again, the ICE predictions appear to be closer to the experimental data.

Table 3. Observed and predicted claims in TD with high bonus/penalty

t
b = 50 b = 80

Avg. obs. claim ICE LLM Avg. obs. claim ICE LLM

1 155.86 150.00 117.17 120.07 120.00 98.04
2 125.37 122.15 130.95 112.18 103.33 103.38
3 125.77 121.66 121.63 106.16 101.66 103.26
4 109.13 119.06 117.15 88.75 93.55 92.43
5 89.47 114.75 106.95 85.00 91.66 92.23
6 102.26 106.46 95.13 84.91 85.71 88.44
7 101.68 100.67 101.74 82.41 83.33 85.79
8 84.38 96.99 108.54 81.58 82.96 83.77
9 82.00 91.43 105.42 80.00 80.00 83.35

10 88.27 88.27 100.63 80.00 80.00 83.34

In conclusion, the ICE model is much more accurate than the LLM in the prediction
of population average behaviour in the TD. Next we show that it can be successfully
applied to other relevant social dilemmas, such as in fact the PD and the PG game.

5 Prisoner’s Dilemma

In this section, we test our method on the iterated Prisoner’s dilemma, using the exper-
imental data provided by Yang-Yue-Yu in [32]. Although it is a dominant strategy for
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each player to defect, irrespective of payoffs or any other factors, human behaviours ob-
served in experimental studies show considerable rates of cooperation, which appear to
depend on game parameters or the environment in which it is played. The study in [32]
is particularly focused on the way the players are matched to play together. This fea-
ture is crucial since different matching rules entail different histories for a player, and
hence, different beliefs regarding his opponents’ play. These, in turn, ultimately reflect
on the player’s strategic decisions. Therefore, it is of great importance to provide pre-
diction methods that would achieve robust performance in different environments. As
we show, ICE can successfully tackle this challenge.

The experiment involved 70 subjects that played a 25 rounds Prisoner’s dilemma
with payoffs parameters T = 12, R = 8, D = 3 and S = 1, under different matching
schemes. Specifically, it included the following treatments: (i) the random matching
(RM) where subjects were randomly paired in each period; (ii) the one-period corre-
lated matching (OP) where subjects who have selected identical strategies in a given
round are randomly paired with one another in the next period; and (iii) weighted-
history correlated matching (WH) where, after every round, subjects are matched with
a player who has been choosing similar strategies in the previous five periods. In more
detail, the history is weighted using Fibonacci numbers as follows. Each subject starts
with a sorting score T (t) = 0, for all t ≤ 1. At each round t, his score is updated to
T (t) = 5a(t − 1) + 3a(t − 2) + 2a(t− 3) + 1a(t − 4) + 1a(t − 5), where a(s) is 0
if he plays defection in period s, and 1 otherwise. In each period, subjects are paired in
the order of their current scores.

Table 4 and Figure 3 summarise the data collected in this experiment, along with
the corresponding values of iterated cooperative equilibrium. As these results demon-
strate, ICE accurately predicts the players’ behaviour in Prisoner’s dilemma, especially
for cases with correlated matching (see Figures 3b and 3c). In the case where the play-
ers were matched randomly (Figure 3a), the ICE predictions in the last rounds of the
experiment appear slightly more pessimistic than the actual data, which is implied by
relatively high rates of defection observed in the intermediate rounds.
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Fig. 3. ICE in Prisoner’s dilemma. Solid lines correspond to the actual data. The ICE predictions
are represented by dashed lines.
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Fig. 4. ICE vs. LLM for b ∈ {50, 80}. Solid lines correspond to the actual data. The ICE predic-
tions are represented by dashed lines, and the LLM predictions are depicted by dotted lines.

t Avg. obs. contribution s.t.d ICE

1 41.00 18.92 0.00
2 29.36 18.11 18.50
3 31.89 17.89 15.86
4 27.80 20.55 17.37
5 16.97 15.24 11.09
6 10.50 9.80 7.24
7 10.33 8.10 5.16
8 7.91 5.45 4.42
9 6.39 9.54 1.56
10 4.39 7.41 1.77

Table 5. Observed and predicted contributions in
Public Goods with marginal return of α = 0.3.

Fig. 5. ICE in Public Goods with α = 0.3.
The actual data are represented by the solid
line. The shaded area shows the standard
deviation. The dashed line corresponds to
the ICE predictions.

6 Public Goods Game

In this section, we use ICE predictions to explain the experimental data on multi-round
Public Goods game presented by Gunnthorsdottir-Houser-McCabe in [14].

The experiment consisted of three treatments with different constant marginal returns
of α = 0.3, α = 0.5, and α = 0.75. The first and the third treatment involved 36
subjects each, and 60 subjects participated in the second treatment. The subjects played
a 10 rounds Public Goods game in groups of 4, to which they were randomly matched in
each round. The average observed contributions and the corresponding ICE predictions
for the first treatment with α = 0.3 are given in Table 5 and Figure 5.

The data are very heterogenous – note the high rates of standard deviation. This is
reflected on the fact that the ICE’s predictions in this setting seem less accurate than in
previously considered domains. Notice, however, that in all game rounds (except of the
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Table 4. Observed and predicted percentages of defection in iterated PD

t
RM OP WH

Obs. % defect ICE % defect Obs. % defect ICE % defect Obs. % defect ICE % defect

1 71.43 77.07 64.29 77.06 61.42 77.06
2 70.00 67.97 70.00 61.18 65.71 58.46
3 72.86 68.59 71.43 64.80 68.57 61.31
4 81.43 69.22 78.57 66.29 70.00 63.11
5 78.57 73.31 80.00 70.16 70.00 65.22
6 77.14 75.66 81.43 73.07 77.14 66.65
7 82.86 77.00 75.71 75.94 70.00 69.47
8 84.29 78.99 85.71 77.06 65.71 70.15
9 70.00 81.21 78.57 79.46 68.57 70.74
10 78.57 80.87 81.43 80.17 77.14 71.22
11 78.57 81.51 75.71 81.28 80.00 72.51
12 84.29 82.18 75.71 81.62 77.14 73.93
13 77.14 83.31 77.14 82.04 68.57 74.97
14 84.29 83.85 71.43 82.62 72.85 74.76
15 80.00 84.82 68.57 82.68 71.42 75.24
16 81.43 85.29 70.00 82.13 74.28 75.50
17 84.29 86.00 77.14 81.49 68.57 75.67
18 81.43 86.58 81.43 81.74 65.71 75.52
19 77.14 86.92 77.14 82.28 74.28 75.05
20 78.57 87.00 81.43 82.36 71.42 75.41
21 74.29 87.22 75.71 82.98 74.28 75.79
22 80.00 86.91 75.71 83.04 77.14 76.18
23 81.43 87.18 74.29 83.14 72.85 76.55
24 78.57 87.41 81.43 83.12 75.71 76.70
25 78.57 87.56 85.71 83.52 84.28 77.08

very first one where the players beliefs are yet completely fictitious), the ICE values fall
within the standard deviation interval and their error decreases as the number of peri-
ods increases. Similar performance is also showed in treatments with higher marginal
returns, presented in Table 6 and Figure 6.

7 Conclusions

In this paper, we introduced the Iterated Cooperative Equilibrium (ICE) which extends
the approach of players’ natural attitude to cooperation to games played in iterated
fashion. In each round, the players forecast how the game would be played if they
formed coalitions, and select their actions accordingly. The beliefs are initially defined
through a sort of fictitious play, and then get updated at each step of the game, based on
previous observations. We applied this concept to three fundamental social dilemmas:
the Prisoner’s dilemma, the Traveler’s dilemma, and the Public Goods game. The novel
and most important features of the ICE is that (1) it does not use any free parameters and
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Table 6. Observed and predicted contributions in Public Goods with constant marginal returns of
α = 0.5, 0.75

t
α = 0.5 α = 0.75

Obs. contribution s.t.d ICE Obs. contribution s.t.c ICE

1 55.48 19.77 25 65.00 17.47 43.75
2 58.88 20.69 74.31 62.08 17.67 84.01
3 55.83 22.09 69.57 71.11 13.53 79.29
4 49.03 22.06 64.62 67.78 14.76 78.97
5 42.16 21.67 59.67 67.02 15.64 78.07
6 44.16 21.29 54.75 63.02 14.88 77.18
7 42.33 19.84 53.10 57.16 19.47 75.48
8 35.38 22.17 50.86 54.02 21.46 73.40
9 31.60 22.72 48.94 54.52 18.26 71.56

10 31.10 17.93 45.53 57.78 24.12 69.81

(a) α = 0.5 (b) α = 0.75

Fig. 6. ICE in Public Goods with α = 0.5, 0.75. The actual data are represented by solid lines.
Shaded areas show the standard deviation. Dashed lines correspond to the ICE predictions.

so it is completely predictive; (2) it makes statistically precise predictions of population
average behaviour in the aforementioned domains.

This work opens a number of research directions, from the extension of the ICE to
include other relevant game models to theoretical questions concerning, for instance,
convergence of the iterative procedure. Regarding the latter point, one can easily see
that the ICE can converge only to one of Rabin’s fairness equilibria [24]: in the Trav-
eler’s dilemma, ICE can converge either to (200, 200) or to (80, 80); in the Prisoner’s
dilemma, ICE can converge either to (C,C) or to (D,D). But can actual human be-
haviour converge to a different strategy? The intuition suggests that the answer to this
question is negative and that, in general, human behaviour may not converge at all.
Indeed, if a player in the Traveler’s dilemma would know that his opponent plays an
intermediate strategy, say s = 175, then he would either reduce his claim to achieve
a larger gain (which would finally lead the players to the Nash equilibrium), or rather
decide to increase it to show his opponent that they both can gain more. This way of
reasoning generates an oscillation, that is perfectly coherent with and reflected by ICE.
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Finally, it would also be interesting to try and combine ICE with evolutionary mod-
els, in order to tackle the “cold start” effect—i.e., inaccurate predictions in early itera-
tions. Indeed, ICE typically starts showing high performance only after a few rounds of
iteration, since players have to form statistically robust beliefs. Now, in [19] the authors
use an evolutionary model to explain the experimental data in the first two periods of
iterated Traveler’s dilemma presented in [7]. So, it is plausible that a clever combination
of ICE with evolutionary models can fit the experimental data even better.
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Abstract. According to Shapley’s game-theoretical result, there exists
a unique game value of finite cooperative games that satisfies axioms
on additivity, efficiency, null-player property and symmetry. The origi-
nal setting requires symmetry with respect to arbitrary permutations of
players. We analyze the consequences of weakening the symmetry axioms
and study quasi-values that are symmetric with respect to permutations
from a group G ≤ Sn. We classify all the permutation groups G that
are large enough to assure a unique G-symmetric quasi-value, as well as
the structure and dimension of the space of all such quasi-values for a
general permutation group G.

We show how to construct G-symmetric quasi-values algorithmically
by averaging certain basic quasi-values (marginal operators).

1 Introduction

A cooperative game is an assignment of a real number to each subset of a given
set of playersΩ. This illustrates an economic situation where a coalition profit de-
pends on the involved players in a generally non-aditive way. Several approaches
deal with the question of redistributing the generated profit to the individual
players in a stable or in a “fair” way. The mathematical theory of cooperative
games was developed in forties by Neumann and Morgenstern [17]. Values of
games provide a tool for evaluating the contributions of the individual players
such that certain natural axioms are satisfied. The most famous value is the
Shapley value introduced in 1953 [22] that exists and is unique for all finite sets
of players.

There exist many axiomatic systems on game values such that the Shapley
value is their only solution: the original Shapley’s axiomatics [22], Neyman’s [18],
Young’s [24], van den Brink’s [3] and Kar’s axiomatics [15]. One of its important
characteristics is the symmetry with respect to any permutation of players. This
means, roughly speaking, that the value of a player is calculated only from his
contributions to various coalitions and not from his identity. One may consider
this to represent the equity of players. However, this is probably not a realistic
assumption in many real-world situations where personal friendships and link-
age play a major role. Some examples of values with restricted symmetry were
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studied, such as the Owen value [20] or the weighted Shapley value in [14], and
the formal concept of quasi-value, where one completely relaxes any symmetry
requirement, was introduced by Gilboa and Monderer in 1991 [10]. It is known
that for a particular player set, there exist infinitely many quasi-values.

In this work, we analyze one particular way of weakening the symmetry ax-
iom. We suppose that a group G of permutations of Ω is given and define a G-
symmetric quasi-value to be any quasi-value symmetric wrt. all permutations in
G. Informally, the equity of players is restricted to a group of permutations of
players, not necessarily to all permutations. The group expresses the measure of
symmetry. If G is the full symmetry group, then the only G-symmetric quasi-
value is the Shapley value; if G is the trivial group, then it carries no symmetry
requirement and each quasi-value is G-symmetric. Our contribution is the classi-
fication of all permutation groups G of finite sets of players for which there exists
a unique G-symmetric quasi-value. It turns out that while in the infinite setting
for non-atomic games one may reduce the group of symmetries in a number of
ways [16,19], in the finite setting, only few subgroups of the full permutation
group assure uniqueness. Even if the group G acts transitively on Ω (i.e. for any
two players a, b, there exists a permutation π ∈ G such that π(a) = b), there
may still exist many G-symmetric quasi-values different from the Shapley value.
We also calculate the dimension of the space of all G-symmetric quasi-values for
a general permutation group G.

In the second section, we give the formal definition of G-symmetric quasi-
value and some necessary definitions from group theory, including our original
definition of a supertransitive group action. In the third section, we show that
the space of all G-symmetric quasi-values is an affine subspace of the vector
space of all values, and derive a formula for its dimension. We further classify all
permutation groupsG such that there exists a uniqueG-symmetric quasivalue. In
the fourth section, we give some examples of G-symmetric quasi-values and show
how more examples can be constructed by averaging the marginal operators. The
last section (Appendix) contains the proof of an auxiliary statement from group
theory that we use in the proof of Theorem 2. We postpone this technical issue
to the end in order to keep the rest of the text fluent.

2 Definitions and Notation

2.1 Cooperative Games

Let Ω be a set of players. In this paper, we always suppose that Ω is finite.

Definition 1. A cooperative game is a function v : 2Ω → R such that v(∅) = 0.
A cooperative game is additive, if for all T,R ∈ 2Ω, R∩T = ∅ implies v(R∪T ) =
v(R) + v(T ). We denote by Γ the set of all cooperative games and Γ1 the set of
all additive cooperative games. A game value is an operator ϕ : Γ → Γ1. For a
game value ϕ and i ∈ Ω, we define ϕi(v) := ϕ(v)({i}).
For each game v, ϕ(v) is uniquelly determined by the numbers ϕi(v). Shapley
theorem [22] proves the existence and uniqueness of a game value ϕ assuming it
satisfies the following four axioms:
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1. Linearity: ϕ(αv + βw) = αϕ(v) + βϕ(w) for all v, w ∈ Γ and α, β ∈ R.
2. Null-player property: if i ∈ Ω is a “null-player” in a game v, i.e. v(R∪{i}) =

v(R) for each R ⊆ Ω, then ϕi(v) = 0.
3. Efficiency:

∑
i ϕi(v) = v(Ω) for all games v.

4. Symmetry (sometimes called anonymity): ϕ(π · v) = π · ϕ(v) for every per-
mutation π of Ω, where the game π · v is defined by (π · v)(R) := v(π−1(R))
for any R ⊆ Ω.

The value defined by these axioms is called Shapley value. Axioms 1-4 are inde-
pendent. Gilles [11] and Schmeidler [5] give examples of values satisfying any 3
of them and not the 4th.

Any game value satisfying axioms 1, 2 and 3 is called a quasi-value. In the
original economic interpretation, the fourth axiom (Symmetry) is an expression
of equity of all the participating players. It can be formulated in a more elegant
way by the commutativity of the following diagram.

Γ
ϕ−−−−→ Γ1⏐⏐&π

⏐⏐&π

Γ
ϕ−−−−→ Γ1

(1)

Axiom 4 requires that it commutes for each permutation of players π.
The following definition introduces the main object of our study.

Definition 2. Let G by a group of permutations of Ω. A G-symmetric quasi-
value is a game value that satisfies axioms 1, 2, 3 and such that ϕ(π ·v) = π ·ϕ(v)
for every permutation π ∈ G. In other words, diagram (1) commutes for all
π ∈ G.

Throughout this work, we will need the following basis of the space of coop-
erative games, introduced in Shapley’s original paper [22].

Definition 3. The unanimity basis is the basis {uR}∅�=R⊆Ω of the vector space
of all cooperative games over the set Ω, defined by uR(S) = 1 if R ⊆ S and 0
otherwise.

2.2 Group Theory

We say that a group G acts on the set X , if G is a subgroup of the group SX

of permutations of X . Any set G · x is called an orbit, or a G-orbit of x. The
set of all G-orbits is denoted by X/G. The action of G on X is transitive, if for
each x, y ∈ X , there exists a g ∈ G such that g ·x = y. The stabilizer of a subset
A ⊆ X is the subgroup GA of all elements g ∈ G such that g · A ⊆ A. For a
subgroup H of G, g ·H denotes a left and H ·g a right coset of H and any group
H ′ = g−1Hg is conjugate to H .

We introduce here a definition that will help us to describe a property of
permutation groups we will need later.
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Definition 4. Let G be a group acting on a set X. We say that the action is
a supertransitive action, if the stabilizer GA of any subset A ⊆ X acts transi-
tively on A. A permutation group G ⊆ Sn is supertransitive, if the stabilizer GA

acts transitively on each A ⊆ {1, . . . , n}.
For any n, Sn−1 may be embedded into Sn as a set of permutations preserving

one element. However, for n = 6, there exists an embedding of S5 into S6 different
from the standard one. This embedding S5 ↪→ S6 may be realized as the action of
the projective linear group PGL(2, 5) on the projective line over Z5. The reader
may find the details in the literature [7, p. 60-61], [4]. We will call this embedding
an exotic embedding. It is well known that such a nonstandard embedding is
only one up to conjugation by an element of S6. In this paper, we only need the
property that the image of the exotic embedding is a supertransitive subgroup
of S6. This is proved in the appendix.

3 Dimension of G-Symmetric Quasi-Values

If a quasi-value is symmetric with respect to a set of permutations, it is also
symmetric with respect to any permutation they generate in SΩ, hence the set
of all symmetries of a quasi-value is always a group. For a finite set Ω and a
group G ⊆ SΩ of permutations, we denote by AG the set of all G-symmetric
quasi-values.

We will represent AG as a space of matrices. Each game value ϕ can be
represented as a map from Γ to RΩ by the natural identification Γ1 % RΩ.
Choosing the unanimity basis on Γ (Def. 3) and the canonical basis (ei)i∈Ω on
RΩ, we may represent linear game values as matrices of the size |Ω|× (2|Ω|− 1).
The null player property applied to the unanimity basis implies ϕ(uR)({i}) = 0
for each i /∈ R, because such player i doesn’t contribute to any coalition in
the game uR. As a consequence, a matrix A with elements (aiR)i∈Ω, ∅�=R⊆Ω
corresponds to a linear game value satisfying the null-player-property iff aiR =
0 for all pairs (i, R) such that i /∈ R. Further, the game value satisfies the
efficiency axiom iff for any nonempty R ⊆ Ω, ϕ(uR)(Ω) = 1, which translates
to a constraint on matrix coefficients

∑
i∈R aiR = 1 for each ∅ = R ⊆ Ω. The

G-symmetry of a game value requires ϕ(g · v) = g · (ϕ(v)) for any game v and
permutation g ∈ G, the action of G on Γ defined by (g · v)(R) = v(g−1R).
An element uR from the unanimity basis satisfies (g · uR)(S) = uR(g

−1(S)) =
ugR(S), so the unanimity basis is invariant with respect to the group action and
g · uR = ugR. The symmetry axiom is equivalent to

((g · ϕ)(uR))({i}) = (ϕ(ugR))({i}),

for all i ∈ Ω and ∅ = R ⊆ Ω. The left-hand side is equal to ϕ(uR)({g−1i}).
So, in the matrix representation of ϕ, the symmetry axiom translates to the
condition a(g−1i)R = ai (gR), or simply aiR = a(gi) (gR) for all i ∈ Ω, ∅ = R ⊆ Ω
and g ∈ G.

Summarizing this, we have the following.
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Lemma 1. Choosing the unanimity basis of Γ and the canonical basis of RΩ %
Γ1, AG may be identified with a set of matrices A = (aiR) with elements satis-
fying the following equations:

– aiR = 0 if i /∈ R,
– The sum of elements in each column is 1,

– Matrix elements aiR are constant on the orbits of the G-action g · (i, R) =
(gi, gR).

All these conditions are linear equations for matrix elements aiR and they are
all satisfied by the Shapley value. So, AG is a nonempty affine space.

Theorem 1. Let X = {(i, R); i ∈ R ⊆ Ω}, χ = {R; ∅ = R ⊆ Ω} and let
G ⊆ SG be a group of permutations acting on sets X and χ, extending naturally
its action on Ω. Then the dimension of AG is |X/G| − |χ/G|. Explicitly it can
also be expressed as

dim AG = (
dZG

dx1
− ZG)|(2,2...2) + 1 (2)

where ZG is the cycle index of the group G

ZG(x1...xn) =
1

|G|
∑
π∈G

x
j1(π)
1 · · ·xjn(π)

n , (3)

jk(π) denotes the number of cycles of length k in the permutation π [8, p. 85].

Proof. We will identify elements of AG with matrices as described in Lemma 1.
Let p : X → χ be the map (i, R) → R. For any x = (i, R) ∈ X and g ∈ G,
p(gx) = g(p(x)). For ∅ = R ⊆ Ω, the stabilizer GR acts on R and R splits into kR
orbits {R1, . . . , RkR} with respect to this action. If R′ = gR, then the stabilizer
of R′ is gGRg

−1 and g maps each GR-orbit Ri ⊆ R bijectively onto a GR′ -orbit
R′i ⊆ R′. So, kR = kR′ and |Ri| = |R′i| for i = 1, . . . , kR. For m ∈ χ/G, we define
km := kR for any R ∈ m and lmi = |Ri| for i = 1, . . . , km. These numbers are
independent on the choice of R.

We will say that m ∈ χ/G contains an orbit Gx ∈ X/G, if p(x) ∈ m. Each
m ∈ χ/G contains km orbits {o1, . . . , okm} ⊆ X/G and we may choose real

numbers cmi such that
∑km

i=1 cmilmi = 1 with km−1 degrees of freedom. Choosing
such numbers cmi for all m ∈ χ/G gives∑

m∈χ/G
(km − 1) =

∑
m∈M

km − |χ/G| = |X/G| − |χ/G|

degrees of freedom. Any such choice of cmi defines a matrix of game value

aiR =

{
cmi if i ∈ Ri ⊆ R ∈ m

0 if i /∈ R
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These are exactly matrices A constant on the orbits of X satisfying
∑

i aiR = 1
for all R and aiR = 0 for all i /∈ R. The number of degrees of freedom for the
choice of cmi is equal to the dimension of AG. This proves the first part.

Burnside lemma [21, p. 58] enables to express the number of orbits of a group
action in an explicit way. If a finite group H acts on a finite set Y , then

|Y/H | = 1

|H |
∑
h∈H

|{y ∈ Y |h(y) = y}|. (4)

A permutation π ∈ G fixes those sets R ⊆ Ω that don’t split any cycle of π.
There exists 2# cycles(π) such sets, 2# cycles(π) − 1 of them nonempty. So,

|χ/G| = ( 1

|G|
∑
π∈G

2# cycles(π)
)− 1.

Elements of X fixed by π are pairs (i, R) such that i ∈ R, π(i) = i and π(R) = R.
There exists # fixedpoints(π)∗2# cycles(π)−1 such pairs. We derived the following
equation:

dimAG =
1

|G|
(∑
π∈G

(#fixedpoints(π) ∗ 2#cycles(π)−1)−
∑
π∈G

2#cycles(π)
)
+ 1.

The statement of the theorem follows from this by a direct computation. �

The cycle index ZG is known in a more explicit form than (3) for many subgroups
of Sn and it has also been generalized and computed for finite classical groups [9].

Further, we will show for which groups G the dimension of AG is zero, i.e.
for which G the only G-symmetric quasi-value is the Shapley value. In Section
2.2, we defined a group G ⊆ SΩ to be supertransitive, if the stabilizer GR acts
transitively on R for each subset R ⊆ Ω. In other words, if for each R and
each i, j ∈ R, there exists a g ∈ G such that g(R) = R and g · i = j. We will
show that this condition is equivalent to the existence of a unique G-symmetric
quasi-value.

Theorem 2. Let Ω be finite and G ≤ SΩ. There exists a unique G-symmetric
quasi-value if and only if G acts supertransitively on Ω. Equivalently, this is if
and only one of the following conditions is satisfied:

– G = SΩ, the full symmetric group
– |Ω| > 3 and G = AΩ, the alternating group
– |Ω| = 6 and G is the image of an exotic embedding S5 ↪→ S6 (see Sec-

tion 2.2).

Proof. We will work with the matrix representation ofAG, described in Lemma 1.
Let (aiR) be a matrix representing a value in AG.

If the action of G on Ω is supertransitive, then for each ∅ = R ⊆ Ω, all
elements {(i, R); i ∈ R} lie on the same G-orbit, so all the corresponding matrix
elements aiR are equal. The null-player property implies that aiR = 0 for i /∈ R
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and together with the efficiency condition we obtain that for each i ∈ R, aiR =
1/|R|. This implies uniqueness.

If the action of G on Ω is not supertransitive, then there exists a nonempty
subset R̃ ⊆ Ω such that the stabilizer GR̃ has not a transitive action on R̃. So,

R̃ contains at least two GR̃-orbits. We may define the matrix aiR as follows.

In the matrix column corresponding to R̃ we choose aiR̃ = 0 if i /∈ R̃ and the
other elements ajR̃ arbitrary, constant on GR̃-orbits and such that

∑
j ajR̃ = 1.

For all R′ on the G-orbit of R, we define the coefficients aiR′ in a unique way
so that they are constant on the G-orbits and the remaining matrix elements
may be equal to elements of the original Shapley matrix. In this way, we may
construct an infinite number of different G-symmetric quasi-values which proves
that dimAG ≥ 1.

For the classification part, it remains to prove that the groups listed in the
theorem are exactly the groups acting supertransitively on {1, . . . , n}. The proof
of this is technical and we postpone it to the Appendix (Chapter 5). �

4 Consequences

4.1 Examples

First we give some examples of groups and G-symmetric quasi-values. In all
these examples, we assume that the player set Ω consists of n players.

Example 1. Let G1 = {id} be the trivial group. In this case, any quasi-value is
G1-symmetric. Consider a selector γ : 2Ω → Ω with γ(R) ∈ R for all ∅ = R ⊆ Ω.
Now we define the value ϕ as

ϕi(v) =
∑

i=γ(R)

Δv(R) (5)

where Δv(R) ∈ R is a Harsanyi dividend of the coalition R ⊆ Ω defined by
Δv(R) =

∑
T⊆R(−1)|R|−|T |v(T ). It was shown in [6] that such values satisfy the

axioms for quasi-values. 1 The cycle index of the trivial group is Z(x1) = xn
1 and

substituting into (2) yields dimAG1 = n2n−1 − 2n + 1. However, the number of
selectors γ : 2Ω → Ω is much larger, so many of the quasi-values defined by (5)
are affine dependent.2

Example 2. (“Caste system”) The setΩ is split into k nonempty disjoint subsets
(“castes”) Ω1, . . . , Ωk and G2 is chosen so that it guarantees equity within each
Ωi. Formally, G2 = {π ∈ SΩ | ∀i π(Ωi) = Ωi}.

Some examples of G2-symmetric quasivalues have been described in the lit-
erature. The Owen value, defined in [20], can be obtained as the expected value

1 In the matrix representation, such values correspond to matrices ai R = δiγ(R).
2 For n ≥ 4, dimAG1 is strictly smaller than n! − 1 which implies that the set of
marginal operators (defined in Section 4.2) is also affine dependent.
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of marginal operators (see Section 4.2), if we first randomely choose an order of
the castes and then the order of the players within each caste. Another related
concept is the weighted Shapley value, studied by Kalai and Samet in [14]. Here
an order of the castes is given and within each caste, the profit is diveded among
players proportional to their weights. In the case of equal weights of all players,
the weighted Shapley value is symmetric with respect to all G2-permutations.

The cycle index is ZG2 =
∏k

r=1 ZSΩr
. We know from the proof of Theorem 2

that |χ/G| = 1
|G|
∑

g 2
#cycles(g) for each set χ with a G-action. In particular, for

G = Sn, |2Ω/G| = n + 1, because Sn-orbits of 2Ω are Os = {R ⊆ Ω | |R| = s}
for s = 0, 1, . . . , n. This enables as to calculate

ZSn |(2,...,2) =
1

n!

∑
π∈Sn

2j1(π)+...+jn(π) =
1

n!

∑
π∈Sn

2#cycles(π) = |2Ω/Sn| = n+ 1.

If G = Sn, then the Shapley value is the only game value, so it follows from
Theorem 2 that (

dZSn

dx1
− ZSn)|(2,...,2) + 1 = 0 and

dZSn

dx1
|(2,...,2) = n. So, for

G2 =
∏k

r=1 SΩr

dZG2

dx1
|(2,2...2) =

( k∑
r=1

dZSΩr

dx1

∏
s�=r

ZSΩs

)|(2,2...2) = k∑
r=1

|Ωr|
∏
s�=r

(1 + |Ωs|)

and

dimAG2 = (

k∑
r=1

|Ωr|
1 + |Ωr| − 1)

k∏
r=1

(1 + |Ωr|) + 1.

For the case of two castes k = 2 this simplifies to |Ω1| × |Ω2|.
Example 3. (Cyclic group) This example illustrates that transitive group action
does not imply a unique G-symmetric quasi-value. If G3 is the cyclic group

Cn ⊆ Sn, the cycle index is ZCn = 1
n

∑
f |n φ(f)x

n/f
f , where φ(f) is the Euler

totient function φ(f) = pk1−1
1 (p1 − 1) . . . pkr−1

r (pr − 1), where f = pk1
1 . . . pkr

r

is the prime number decomposition.[8, p. 86]. Substituting into the formula in
Theorem 2 gives

dimAG3 = 2n−1 − 1

n

∑
f |n

φ(f)2n/f + 1.

In the case of n = 3, the dimension turns out to be 22 − 1
3 (2

3 + 2 × 2) + 1 = 1,
so there exists a one-dimensional space of quasi-values symmetric with respect
to cyclic permutations of players.

4.2 Shapley-Value as an Expected Value of Non-uniformly
Distributed Marginal Vectors

Suppose that Ω = {1, 2, . . . , n}, i.e. an order is given on the set of player. For
a game v ∈ Γ and a permutation π ∈ Sn, we may define a quasi-value mπ by
(mπ)(v)π(1) = v(π(1)) and
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(mπ(v))π(i) = v({π(1), π(2), . . . , π(i)})− v({π(1), π(2), . . . , π(i − 1)})
for i = 2, . . . , n. We call mπ the marginal operator and mπ(v) the marginal
vector [2, p. 19]. It corresponds to a situation where the players arrive in the
order π(1), π(2), . . . , π(n) and each player is assigned the value of his or her
contribution to the coalition of all players that have arrived before. The eval-
uation of mπ on a game uR from the unanimity basis is mπ(uR)({π(i)}) =
uR(π(1), . . . , π(i)) − uR(π(1), . . . , π(i − 1)) which is equal to 1 if and only if
π(i) ∈ R and π(j) /∈ R for j > i and 0 otherwise. After the identification 1, we
can represent mπ is as a matrix

(mπ)iR =

{
1 iff i ∈ R and π−1(i) = maxπ−1(R)

0 otherwise.

A theorem of Weber [23] shows that if π is a random permutation taken from a
uniform distribution on Sn then for any game v, the expected value of a marginal
operator mπ is the Shapley value. This can be generalized to the following state-
ment.

Proposition 1. Let G be a subgroup of Sn and Aπ be a probability distributioin
on Sn constant on the right cosets {G · π}π, i.e. Aπ = Agπ for all g ∈ G and
π ∈ Sn. Then

∑
Aπ mπ is a G-symmetric quasi-value.

Proof. We will show that the identity holds if evaluated on games from the
unanimity basis of Γ . For the game uR (Definition 3), we start with the following
equation:

(g ·mπ)(uR) = mg π(ugR). (6)

To prove this, we evaluate both sides on {i} and rewrite the left-hand side to
the equivalent equation

(mπ(uR))({g−1(i)}) = (mg π(ugR))({i}).
Both sides are equal to 1 if and only if π−1(g−1(i)) = maxπ−1(R) and 0 oth-
erwise, which proves (6) for all R ⊆ Ω, i ∈ Ω and g ∈ G. The G-symmetry of∑

π∈Sn
Aπmπ follows from(

g ·
∑
π∈Sn

Aπmπ

)
(uR) =

∑
π∈Sn

Aπ(g ·mπ)(uR) =
∑
π∈Sn

Aπmgπ(ugR) =

=
∑
π∈Sn

Agπmg π(ugR) =
∑

g π=π′∈Sn

Aπ′
mπ′(g · uR) =

(
(
∑

π′∈Sn

Aπ′
mπ′) · g)(uR)

where we used (6) in the second and Aπ = Agπ in the third equality. �

An immediate consequence of the classification Theorem 2 is that for |Ω| > 3
any quasi-value symmetric with respect to the alternating group An is already
the Shapley value. It follows from the last proposition that

∑
π A

πmπ is the
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Shapley value not only for Aπ = 1
n! but also for A

π = s
n! for π even and Aπ = 2−s

n!
for π odd, s ∈ [0, 2]. In fact, there are many other possibilities how to express the
Shapley value as a convex combination of marginal operators. The space of all
quasi-values on Ω is (n2n−1 − 2n + 1)-dimensional and the set of all probability
distributions on Sn is a (n! − 1)-dimensional convex region in Rn!, so there are
at least n!− n2n + 2n−1 − 2 degrees of freedom for the choice of a distribution
Aπ such that

∑
π A

πmπ = Shapley.
Exponentially many (with respect to n) of these probability distributions Aπ

can be constructed as follows. Choose Ω0 ⊆ Ω, |Ω0| > 3 and define S0 to be a
group of all permutations π acting identically on Ω \Ω0. Choose α ∈ (0, 2) and
define a probability distribution on Sn by

Aπ(Ω0) =

⎧⎪⎨⎪⎩
1
n! if π /∈ S0

α
n! if π ∈ S0 and π is even
2−α
n! if π ∈ S0 and π is odd

One can verify that the corresponding expected value of marginal operators mπ

is the Shapley value. For a set {Ω1, Ω2, . . . , Ωk} s.t. Ωi � Ωj for all i and j,
the vectors (Aπ(Ωi)− 1

n! )i ∈ Rn! are linearly independent and the distributions
(Aπ(Ωi))i are affine independent.

5 Appendix

Here we finish the proof of Theorem 2 by the classification of supertransitive
groups. Our proof is based on a classification of set-transitive permutation groups
given by Beamont and Peterson in 1955 [1]. Another proof of the supertransitive
groups classification was given by Michal Jordan on mathoverflow [13].

Theorem 3. G is a supertransitive subgroup of Sn if and only if one of the
following conditions holds:

– G is the full symmetric group Sn for some n,
– G is the alternating group An for n > 3,
– G is conjugate to the image of an exotic embedding of S5 to S6.

Proof. Let G ⊆ Sn be a group of permutations acting supertransitively on
{1, . . . , n}. This means that the stabilizer of each A ⊆ {1, . . . , n} acts tran-
sitively on A. Let B ⊆ {1, . . . , n} and i, j /∈ B. Then G acts transitively on
B ∪ {i, j} and there exists a permutation π ∈ G taking B ∪ {i} to B ∪ {j} such
that π(i) = j. This implies that for each A and B s.t. |A| = |B| > 1, there exists
a permutation π ∈ G s.t. π(A) = B. If |A| = |B| = 1, the same is true because
supertransitivity implies transitivity. We have shown that if the action of G is
supertransitive, it is also set-transitive.

IfG has a supertransitive action on {1, . . . , n}, then its order has to be divisible
by each k ≤ n, because each k-element set A is isomorphic to G/GA, hence
|G| = |A| × |GA|. So, G has to be divisible by the least common multiple of
{1, . . . , n}.
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Beamont and Petrson classified all set-transitive permutation groups in [1]. It
follows that such subgroups of Sn are exactly the full symmetric group Sn for
any n, the alternating group An for n > 2 and 5 exceptions. The first and second
exceptions are subgroups of S5 of order 10, resp. 20. These groups cannot have
a supertransitive action on {1, . . . , 5}, because the lowest common multiple of
{1, . . . , 5} is 60. Two other exceptions in Beamont’s classification are subgroups
of S9 of orders 504 and 1512. These numbers are not divisible by the lowest com-
mon multiple of {1, . . . , 9} so we can exclude them as well. The last exception is
a subgroup of S6 of order 120. This groups is equivalent to the exotic embedding
of S5 to S6 and we will show that it acts supertransitively on S6.

In [12], the authors realize this group action on {1, . . . , 6} as the conjugate
action of S5 on its six Sylow 5-subgroups. Using this realisation, we may show
that this action is supertransitive by direct calculation. Let as denote the Sylow
5-subgroups by I = 〈(12345)〉, II = 〈(12354)〉, III = 〈(12435)〉, IV = 〈(12453)〉,
V = 〈(12534))〉 and V I = 〈(12543)〉. An elementary calculation shows that the
image of a transposition in S5 is the product of three disjoint transpositions in
S6, e.g. (1, 2) ∈ S5 �→ (I, V I) (II, IV )(III, V ) in the above realisation. Together
with the set-transitivity of this S5-action, this implies 2-supertransitivity. The
image of a 3-cycle in S5 is a product of two disjoint 3-cycles in S6, which implies
3-supertransitivity. Similarly, the image of a 4-, resp. 5-cycle in S5 is a 4-, resp.
5-cycle in S6, which implies 4- and 5-supertransitivity.

It remains to prove that An is supertransitive if and only if n > 3. First note
that A2 = {id}, reps. A3 = 〈(123)〉 are not supertransitive, because no element
of these groups takes 1 to 2 and preserves {1, 2}. Let n > 3 and A ⊆ {1, . . . , n}
be a k-set. If k < n − 1, then any permutation of A can be extended to an
even permutation of {1, . . . , n}. If k = n − 1 > 2, then for each i, j ∈ A, there
exists an even permutation of A taking i to j. This can be extended to an even
permutation of {1, . . . , n}, acting identically on the complement of A. �
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Abstract. In this paper we consider the fair division of chores (tasks
that need to be performed by agents, with negative utility for them),
and study the loss in social welfare due to fairness. Previous work has
been done on this so-called price of fairness, concerning fair division of
cakes and chores with non-connected pieces and of cakes with connected
pieces. We provide tight or nearly tight bounds on the price of fairness
in situations where each player has to receive one connected piece of the
chores. We also give the first proof of the existence of equitable divisions
for chores with connected pieces.

1 Introduction

Motivated by the fact that social interaction often requires dividing goods, re-
searchers in economics, law and computer science dealt with fair division since
the 1940’s, and already the ancient Greeks knew the problem. In fair division,
one tries to divide some desirable or undesirable good between a number of
people that all have individual preferences and dislikes, while satisfying some
fairness condition. We will only focus on the case where the goods are divisible,
i.e. can be cut in arbitrary pieces; dividing indivisible goods is a much harder
problem. The typical analogy for fair division when considering desirable goods
is cake cutting [1], meaning that we want to divide a cake that has various sec-
tions with different toppings, whereas in the chore division problem [2] one tries
to minimize the discontent of the players when dividing work. Many algorithms
found for cake cutting also apply to the division of chores, but interestingly, as
we will see in this work their theoretical properties differ in several cases.

Of course one has to decide how to define fairness, and the three criteria pro-
portionality, envy-freeness and equitability considered in many earlier papers (e.g.
[3],[4],[5]) will also be considered here. Informal definitions for these are given in
the next paragraph. Apart from achieving a division which is fair, another goal is
optimizing the social welfare, and the natural question arises what the trade-off
between those two goals is. Caragiannis et al. [5] and Aumann and Dombb [4]
examined this trade-off for the division of cakes and chores; Caragiannis et al.
found bounds for this trade-off, called the price of fairness, for both cakes and
chores, but without any restriction on the number of pieces each player receives.
This may lead to the undesirable situation that players receive a huge number

B. Vöcking (Ed.): SAGT 2013, LNCS 8146, pp. 171–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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of small pieces, e.g. a bunch of crumbs in the cake analogy. Therefore, Aumann
and Dombb [4] examined the price of fairness for connected pieces, requiring that
every player receives exactly one connected part of the cake; however, they did
not consider division of chores. To close the gap, in this paper we give bounds
on the price of fairness with connected pieces in division of chores. An analogy
for this could be that a group of gardeners needs to maintain a garden and each
of them wants to be responsible for one connected area.

Model. In our model, the chores are represented by the real interval [0,1] and
we consider n players. Each player has a disutility function over this interval
that gives his discontent for a particular piece. These functions are required
to be non-atomic measures, i.e. they are non-negative and additive and if an
interval is valued strictly positive, it must have a subinterval that has a strictly
less but still strictly positive value. Furthermore the functions are normalized, so
the disutility for the whole chores is 1. The disutility of a player in a division is
then the disutility of this player for the piece he receives. The utilitarian welfare
for a division is defined as the sum over the disutilities of all players, while
egalitarian welfare is the greatest disutility among all players (i.e. the disutility
of the worst-off player). A division is called optimal if it minimizes the welfare.
We call a division proportional if every player thinks that he receives his fair
share, we call it envy-free if no player thinks that another player receives less
than him, and equitable if the disutilities of all players are equal.

To quantify the loss in welfare due to fairness we use the notion of price of
fairness. We define the price of fairness as the ratio between the welfare of the
best fair division and the welfare of the optimal division.

1.1 Related Work

Modern mathematicians started working on the topic in the 1940’s with Banach,
Steinhaus and Knaster giving the “Last Diminisher” mechanism for proportional
divisions [1]. In the following years, researchmainly focused on finding algorithms
for achieving fair divisions ([6],[7],[8],[9]), also trying to bound the number of cuts
required. Furthermore, Dubins and Spanier as well as Stromquist gave existence
theorems for certain fair divisions [8],[9].

On the problem of fair division of chores however, much less work has been
done. The problem was first mentioned by Gardner in [2], and Oskui [3, p. 73]
gave the first three person envy-free chore division algorithm. Peterson and Su
gave envy-free protocols for four and later for n players [10],[11]. The existence
proof for proportional cake divisions of Steinhaus [1] can also be applied to
chores. Su [12] has proven that envy-free divisions of chores with connected
pieces also always exist. For the existence of equitable divisions with connected
pieces, as far as we know no proof was given so far.

The problem of the efficiency of fair divisions was first addressed by Caragian-
nis et al. [5]. Their work considered the price of fairness for utilitarian welfare
and the three fairness notions proportionality, envy-freeness and equitability, and
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examined bounds for these for divisible and indivisible cakes as well as chores.
Aumann and Dombb [4] gave bounds for the price of fairness for utilitarian and
egalitarian welfare, restricted to the case that only connected pieces are allowed
to be given to the players so they do not end up with arbitrarily many pieces, but
they only considered cake cutting. In this work we give bounds for the remaining
case of chore division with connected pieces.

Following the work of Caragiannis et al. and Aumann and Dombb, Cohler et
al. [13] provided a polynomial time approximation scheme for computing envy-
free cake divisions that are optimal w.r.t. utilitarian welfare. Based on this work,
Bei et al. [14] give a PTAS for computing optimal proportional cake divisions
with connected pieces.

Brams et al. [15] connected the topic of efficient fair divisions with the sphere
of Pareto-optimal divisions, i.e. divisions in which it is not possible to give one
player a strictly higher utility while giving no player a lower utility. They ex-
amined whether we can always find fair divisions maximizing the (utilitarian)
social welfare that are also Pareto-optimal and showed that for a special class
of evaluation functions, the optimal (w.r.t. utilitarian welfare) equitable division
has never a higher social welfare than the optimal envy-free division.

1.2 Overview of Results

We examine the price of fairness for utilitarian and egalitarian welfare and the
three fairness notions proportionality, envy-freeness and equitability as a function
of the number of players n. We give tight bounds for all cases except for the
utilitarian price of proportionality, where there is still a small gap between the
lower and the upper bound. All results are summarized and compared to the
results by Caragiannis et al. [5] and Aumann and Dombb [4] in Table 1.

For utilitarian welfare, we show that the price of proportionality is linear
(between n/2 and n) in the number of players for n > 2. This matches the Θ(n)
bounds for chore division with non-connected pieces by Caragiannis et al. [5]. For
egalitarian welfare we show that there is no trade-off between proportionality and
egalitarian welfare, which is the same result as shown by Aumann and Dombb
[4] for cake cutting.

When considering the price of envy-freeness and more than two players, we
show how to construct instances that have an arbitrarily high price of fairness.
We hence see that for this fairness notion there is an inherent difference between
cakes and chores (Aumann and Dombb [4] as well as Caragiannis et al. [5] found
bounds for the price of envy-freeness for cake cutting).

Our proof is the first for the existence of equitable divisions of chores with
connected pieces. We prove that the egalitarian price of equitability is 1 by
constructing an equitable division starting with an egalitarian-optimal one. We
also give a tight bound of n for the utilitarian price of equitability. For this,
Aumann and Dombb [4] gave an upper bound of n and a lower bound of n−1+ 1

n ,
and for non-connected chores, Caragiannis et al. [5] gave a tight bound of n.

Essentially the same results, but with a tight bound of n for the utilitarian
price of proportionality, were achieved independently by Hoffmann et al. [16].
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Table 1. Results of this work, compared to [5] and [4]. Some results only hold for
n ≥ 3. See the text for the case n = 2.

Chores: connected (this work) non-connected ([5])

utilitarian egalitarian utilitarian

lower upper lower upper

Proportionality n/2 n 1 (n+1)2

4n
n

Envy-Freeness ∞ (n+1)2

4n
∞

Equitability n 1 n

Cakes: connected ([4]) non-connected ([5])

utilitarian egalitarian utilitarian

lower upper lower upper

Proportionality
√

n
2

√
n
2

+ 1− o(1) 1 Ω(
√
n) O(

√
n)

Envy-Freeness
√

n
2

√
n
2

+ 1− o(1) n/2 Ω(
√
n) n− 1/2

Equitability n− 1 + 1/n n 1 (n+1)2

4n
n

2 Definitions

In this section we formally define the chores division problem itself, the notions
of fairness and social welfare used in this work and finally the price of fairness,
the measure for the trade-off between fairness and social welfare.

The chores are represented by the real interval [0, 1] and our players are de-
noted by 1, . . . , n. Each player i has a certain valuation function vi(·), that maps
any possible subset of the chores to a real valuation between 0 and 1. This val-
uation function needs to be a non-atomic measure (i.e. non-negative, zero for
the empty interval, additive and each interval with positive value must have a
sub-interval with strictly less but strictly positive value) with vi(0, 1) = 1.

Definition 1. A division x of the chores is a vector x = (x1, . . . , xn−1, π) ∈
[0, 1]n−1 × Sn. The point xi denotes the position of the i-th cut, we define
x0 := 0, xn := 1, and the cuts are sorted: x0 ≤ x1 ≤ . . . ≤ xn−1 ≤ xn. π is
a permutation that denotes the assignment of the pieces to the players: Player
i receives the interval (xπ(i)−1, xπ(i)). By X we denote the set of all possible
divisions.

The unhappiness of the players with a certain division is given by the notion
of disutility.

Definition 2. The disutility of a division x for a player i is di(x) = vi(xπ(i)−1,
xπ(i)).

In this work, the following three different notions of fairness are considered.
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Definition 3. A division x is proportional if di(x) ≤ 1
n for every player i.

A division x is envy-free if vi(xπ(i)−1, xπ(i)) ≤ vi(xπ(j)−1, xπ(j)) for every pair
of players i, j.
A division x is equitable if di(x) = dj(x) for every pair of players i, j.

Intuitively, a division is proportional if all players get a portion they consider
their fair share of the chores (or less). A division is envy-free if no player envies
any other player, in the sense that he dislikes the other player’s piece less than his
own piece. Note that every envy-free division is proportional. Finally, a division
is equitable if the disutilities of all players are equal (by their own valuations).

The social welfare of a division can be defined in two ways: In utilitarian
welfare, the total disutility of all players is considered, whereas egalitarian welfare
refers to the disutility of the worst-off player.

Definition 4. A division x has utilitarian social welfare u(x) =
∑

i=1,...,n

di(x)

and egalitarian social welfare eg(x) = max
i=1,...,n

di(x).

To quantify the amount of social welfare one has to sacrifice to achieve fairness,
we define the price of fairness:

Definition 5. The price of fairness (price of proportionality, respectively envy-
freeness, equitability) is the minimal welfare achievable in fair (proportional,
respectively envy-free, equitable) divisions divided by the minimal welfare achiev-
able in arbitrary divisions.

For example the price of envy-freeness with egalitarian welfare is
minx∈XEF

eg(x)

minx∈X eg(x) ,

where XEF denotes the set of all connected envy-free divisions.

3 The Price of Proportionality

We start with bounds for the price of proportionality. For utilitarian welfare,
the results do not differ much from the results for non-connected chores by
Caragiannis et al. [5], although the lower bound is slightly better. Concerning
egalitarian welfare, we can use a proof analogous to the proof by Aumann and
Dombb for the price of proportionality with connected cakes [4].

3.1 Utilitarian Welfare

Theorem 1. The utilitarian price of proportionality for the division of chores
with connected pieces is lower-bounded by n

2 for n > 2.

We give no full proof here; it can be found in the full version. The idea is
to construct an instance where one player, who dislikes the chores uniformly,
receives a piece slightly greater than 1

n in the optimal division, and where it is
very costly to give some part of this piece to any other player. Intuitively one
could say that in this scenario one player “sacrifices” himself to do more work
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than his fair share (in terms of proportionality), as he himself does not dislike
this work as much as the other players.

For two players, we only state the result; the proof is given in the full version.

Theorem 2. The utilitarian price of proportionality for n = 2 players is lower-
bounded by 2.

For an upper bound on the utilitarian price of proportionality, we refer the reader
to the proof by Caragiannis et al. [5], as it also applies to connected chores.

Theorem 3. The utilitarian price of proportionality for the division of chores
with connected pieces is upper-bounded by n.

In the case with two players, envy-free and proportional divisions coincide,
hence these results immediately imply the following:

Corollary 1. The utilitarian price of envy-freeness for n = 2 players is 2.

3.2 Egalitarian Welfare

For the egalitarian price of proportionality, we can again apply the result of
Aumann and Dombb [4].

Theorem 4. Every egalitarian-optimal division of chores with connected pieces
is proportional, and therefore the egalitarian price of proportionality in this case
is 1. For n = 2 players, this again also holds for the price of envy-freeness.

4 The Price of Equitability

The price of equitability is a more interesting case than proportionality, as so
far no proof was given for the existence of equitable divisions of chores with
connected pieces. In Theorem 5, we show that we can transform any egalitarian-
optimal division into an equitable one with the same welfare, and with this, we
give this existence proof and prove that no trade-off between equitability and
egalitarian welfare exists. The construction relies on the fact that optimality with
respect to egalitarian welfare and the non-atomicity of the evaluation measures
imply that we can make pieces that are adjacent to a piece with maximal dislike
(among all pieces) also maximal.

Afterwards we give proofs for a tight bound of n for utilitarian welfare. This
matches the bound for non-connected chores given by Caragiannis et al. [5].

4.1 Egalitarian Welfare

Theorem 5. For every instance of the chores division problem, there exists an
equitable division with connected pieces. Furthermore, the egalitarian price of
equitability for the division of chores with connected pieces is 1.
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Proof. We need some more terminology for this proof:

– The value of a piece is the dislike that is assigned to this piece by the player
who receives it.

– Let m = minx∈X eg(x) be the optimal egalitarian welfare. Pieces that have
a value of m are called maximal pieces.

– A block of maximal pieces is sequence of one or more adjacent maximal pieces
p1, . . . , pk where the left neighbor of p1 and the right neighbor of pk are non-
maximal (i.e. a maximal sequence of maximal pieces). Those non-maximal
neighbors are called neighbors of this block.

Consider an egalitarian-optimal division x that has the minimal number of
maximal pieces among all egalitarian-optimal divisions. We want to make all
pieces in x maximal by moving cuts, and for this we need a lemma, which is
proven in the full version of the paper:

Lemma 1. Consider a block of k maximal pieces. Then we can either make the
right neighbor p′ of this block maximal as well or we can make all pieces in the
block as well as p′ non-maximal by only moving the cuts inside the block and the
cut between the block and p′ to the left.

The lemma can also be shown for the left neighbor symmetrically.
Now consider our optimal division x and look at its left-most block of maximal

pieces. Note that this block must exists, as at least one maximal piece must exist
(by definition of maximal piece and optimality of x). By the lemma we can make
its right neighbor maximal, as otherwise we could make the block non-maximal,
contradicting the assumption that x has the minimal number of maximal pieces.
By applying the lemma again and again, we can make all pieces to the right
of this (steadily growing) left-most block maximal. Note that every time, if we
find that we can make the entire block non-maximal, we find a division with less
maximal pieces than x. If we reach a piece that is already maximal during this
process, we just add it to the block without moving cuts. We can then apply the
lemma symmetrically for the pieces to the left of this block (which is now the
only block of maximal pieces in x) and make all of them maximal too. Finally
we have a division where all pieces are maximal. ��

4.2 Utilitarian Welfare

While achieving equitability does not influence the egalitarian optimality, it has
an impact on the utilitarian welfare, as shown in the next three theorems. The
idea of the lower bound proof is to make sure that one indifferent player has
to receive at least a piece of a certain value in both fair and unfair divisions,
which leads to a price of fairness of n, as in equitable divisions all players have
to receive this certain disutility, while the indifferent player is the only one to
receive any disliked piece in the utilitarian-optimal division.

Theorem 6. The utilitarian price of equitability is lower-bounded by n.
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Proof. We construct an instance of the chores division problem that has a utili-
tarian price of equitability of at least n as follows:

Let ε > 0 be arbitrarily small. We create (n − 1)2 so-called “disliked pieces”
p1, . . . , p(n−1)2 , where pi is located at ( i

(n−1)2+1 − ε, i
(n−1)2+1 + ε).

We divide those pieces into (n− 1) blocks of n− 1 pieces each, and each block
contains one piece for every player {1, . . . , n− 1}. The first piece of the first
block is associated with player 1, the second with player 2 and so on, until the
last piece of the first block is associated with player n − 1. The pieces of the
second block are then associated with players 2, 3, . . . , n − 1, 1 (in this order),
and so on. Generally, the pieces of the i-th block are associated with players
i, i+1, . . . , n−1, 1, . . . , i−1. Each player dislikes each piece associated with him
as 1

n−1 and the rest of the chores as 0, which sums up to a total valuation of 1
for the entire chores for each of the first n− 1 players. Finally player n dislikes
the entire chores uniformly. This construction is shown in figure 1.

Fig. 1. Example construction for n = 4 players. The numbers above the columns
denote the player this piece is associated with. Above the interval the optimal division
is shown.

First, we want to upper bound the welfare in an optimal division of this in-
stance (note that this is enough to give a lower bound on the price of fairness) and
for this, take a look at the following division: we give the piece (0, n−1

(n−1)2+1 − ε) to

player n−1, the piece ( i·(n−1)
(n−1)2+1 − ε, (i+1)·(n−1)

(n−1)2+1 − ε) to player i for i = 1, . . . , n−2
and finally the piece ( (n−1)2

(n−1)2+1 − ε, 1) to player n.

We observe the following: For i = 1, . . . , n− 2 the i-th disliked piece of player

i is at ( (i−1)·(n−1)+1
(n−1)2+1 −ε, (i−1)·(n−1)+1

(n−1)2+1 +ε) and the i+1-st disliked piece of player

i is at ( (i+1)·(n−1)
(n−1)2+1 − ε, (i+1)·(n−1)

(n−1)2+1 + ε). This follows by construction, as these

pieces are the first piece of the i-th block, or the last piece of the i+ 1-st block,
respectively.

We conclude that the piece that is assigned to player i = 1, . . . , n−2 as above
is between the i-th and i+1-st piece of this player. The piece player n−1 receives
is before his first disliked piece. Hence, the disutility of the players 1, . . . , n−1 are
all 0, as they all do not receive any of their disliked pieces. Player n’s disutility
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is exactly the physical size of the piece he receives, so the utilitarian welfare in

this division is u(x) = dn(x) = 1 − ( (n−1)2
(n−1)2+1 − ε) = 1

(n−1)2+1 + ε. This division

for the example with n = 4 players can be seen in figure 1.
Now, we claim that the disutility of player n in any equitable division of the

chores is at least 1
(n−1)2+1 − 2ε. From this it follows that the utilitarian welfare

in equitable divisions is at least n times as high, as all players must have the

same disutility. Thus, the price of equitability is at least
n

(n−1)2+1
−2nε

1
(n−1)2+1

+ε
. The bound

follows as ε approaches 0.
It remains to show that indeed player n has to receive a disutility of at least
1

(n−1)2+1 − 2ε in every equitable division. The idea behind this claim is that

no player 1, . . . , n− 1 can receive a whole block of pieces without getting some
positive disutility (as in every block there is one disliked piece of every player),
and hence player n must get at least the slot between either two disliked pieces
or the first (last) disliked piece and the left (right) end of the chores. The details
of the proof can be found in the full version of the paper. ��

Proving a matching upper bound is simple when re-using Theorem 5, as we
can use it to show that switching from an arbitrary to an equitable division does
not increase the egalitarian welfare and hence the trivial bound eg(x) ≤ u(x) ≤
n · eg(x) can be applied. See the full version for the detailed proof.

Theorem 7. The utilitarian price of equitability is upper-bounded by n.

5 The Price of Envy-Freeness

Finally, we take a look at the price of envy-freeness. For this fairness notion, we
get the most interesting deviation from former results on connected cakes and
non-connected chores, as we can prove unboundedness of the price of fairness
here (for more than two players). In contrast to the previous theorems, the
arbitrary high price of fairness now does not result from giving an indifferent
player more than his fair share in the optimal division, but from the fact that in
the optimal division for the concrete instance given below, it is optimal to give
the indifferent player no piece of the chores. But a situation where one player
does not receive any piece in the optimal division has a negative effect on the
price of envy-freeness, as every other player receiving a positive disutility will
envy this player. By choosing the preferences in a certain way, we can make the
price of envy-freeness arbitrarily high.

Theorem 8. The price of envy-freeness for the division of chores with connected
pieces is unbounded for both utilitarian and egalitarian welfare for n > 2 players.

Proof. We use the same construction we used in the proof of Theorem 6 for the
utilitarian price of equitability with other valuation functions. Again, let 0 < ε <

1
(n−1)2 and consider (n− 1)2 disliked pieces arranged in (n− 1) blocks as before,

where piece pi is located at ( i
(n−1)2+1 − ε, i

(n−1)2+1 + ε) for i = 1, . . . , (n − 1)2.
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Call the first piece of each block “type A” piece, the other pieces “type B” pieces.
The pieces are associated with players as before.

Each player dislikes the only type A piece that is associated with him as
1 − (n − 2)ε, the (n − 2) type B pieces associated with him as ε and the rest
of the chores as 0. Player n assigns a dislike of 1

(n−1)2 to every disliked piece of

either type and 0 to the rest. An example with 4 players can be seen in figure 2.

Fig. 2. Example construction for n = 4. The numbers above the columns denote the
player this piece is associated with. The gray pieces denote the valuation of player 4.
Above the interval the optimal division is shown.

An upper bound for the optimal division is constructed as follows: Similarly to
the division given in the proof for Theorem 6, we give the piece (0, n−1

(n−1)2+1 − ε)

to player n − 1, the piece ( i·(n−1)
(n−1)2+1 − ε, (i+1)·(n−1)

(n−1)2+1 − ε) to player i for i =

1, . . . , n− 3, but we give the whole remaining piece ( (n−2)(n−1)(n−1)2+1 − ε, 1) to player

n− 2. Player n does not receive any piece of the chores (see also figure 2).
We observe the same facts as before:

– For i = 1, . . . , n− 2 the i-th disliked piece of player i is at ( (i−1)·(n−1)+1
(n−1)2+1 −

ε, (i−1)·(n−1)+1
(n−1)2+1 + ε).

– For i = 1, . . . , n− 2 the i+ 1-st disliked piece of player i is at ( (i+1)·(n−1)
(n−1)2+1 −

ε, (i+1)·(n−1)
(n−1)2+1 + ε).

Therefore, the piece player i = 1, . . . , n − 3 receives is between the i-th and
i + 1-st piece of this player. The piece player n − 1 receives is before his first
disliked piece (which starts at n−1

(n−1)2+1 − ε). Hence, all players except player

n− 2 do not receive any of their disliked pieces and therefore have disutility 0.
Only player n−2 receives one type B piece, therefore the maximal disutility, the
egalitarian welfare and the utilitarian welfare of the optimal division is ε. Note
that the division from Theorem 6 yields in this case a higher disutility, namely

1
(n−1)2 (which is strictly greater than ε according to our assumptions).

This division however is not envy-free, as player n − 2 envies player n, for
the empty piece is preferred by every player. Analogous to the argumentation
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in the last step of Theorem 6, we can argue that it is impossible to divide
the chores between the first n − 1 players entirely without giving one player
a piece he dislikes. We are always left with at least one disliked piece p that
has to be assigned to one player among players 1, . . . , n− 1 who dislikes it > 0.
Furthermore, this means we also have to give some piece to player n, as otherwise
all players receiving a disutility > 0 envy n, and assigning n less than one half
of p makes the player who receives the rest of p envy n. Thus, we can show that
we cannot do better than giving n one half of p and another player i who also
dislikes p the other half. Therefore, to achieve an optimal envy-free division we
give players 1, . . . , n− 3, n− 1 the same pieces as in the non-envy-free division,

the piece
(

(n−2)(n−1)
(n−1)2+1 − ε, (n−1)2

(n−1)2+1

)
to player n− 2 and the piece

(
(n−1)2

(n−1)2+1 , 1
)

to player n, i.e. we split the type B piece that player n − 2 received in the
optimal division between players n−2 and n. In this division x, dn−2(x) = ε

2 and
dn(x) =

1
2(n−1)2 . As both get the same amount of player n−2’s last disliked piece,

n−2 does not envy n any more. Furthermore, player n receives half of a disliked
piece, whereas every other player receives more than one such piece, hence n
does also not envy any other player. Players 1, . . . , n− 3, n− 1 have 0 disutility
and therefore also envy no other player. Finally, dn(x) > dn−2(x) for ε < 1

(n−1)2 ,
hence eg(x) = dn(x) =

1
2(n−1)2 , and u(x) = dn−2(x) + dn(x) =

ε
2 + 1

2(n−1)2 .
So finally we have a utilitarian price of envy-freeness of 1

2 + 1
2(n−1)2ε and an

egalitarian price of envy-freeness of 1
2(n−1)2ε , which both becomes arbitrarily

large when ε approaches 0. ��

6 Conclusion

In this work we examined the decrease of social welfare due to fairness when
dividing chores so that every player receives exactly one connected piece of the
chores. We considered three important fairness criteria and two different social
welfare functions and found tight bounds for almost all cases. For utilitarian
welfare and proportionality or equitability the bounds are in Θ(n), for egalitarian
welfare there is no trade-off for these two fairness criteria. For envy-freeness
however, no bound exists for both welfare functions except for 2 players.

Upon finding that the price of envy-freeness for the division of chores is the
only case that is unbounded, one could ask the question why there is such a
fundamental difference between envy-freeness and the other two fairness notions,
and why this difference does not appear when considering cakes (Aumann and
Dombb [4] and Caragiannis et al. [5] gave bounds for this case). The answer
for the first question lies in the inherent difference between envy-freeness and
the other two fairness notions, namely that only the first relies on the valuation
of a player for pieces other than his own. The difference between chores and
cakes seems to arise from the different nature of the two problems: Infinite envy
always results from one player receiving no piece of the cake/chores, which is -
at least in some instances - desirable in chores division (see proof of Theorem
8), but undesirable when dividing cakes. This difference can also be seen in the
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results for indivisible cakes and chores by Caragiannis et al. [5], where the price
of envy-freeness is bounded for cakes and unbounded for chores.

Some questions still remain open. For the setting where non-connected pieces
are allowed, Caragiannis et al. [5] only considered utilitarian welfare. Bounding
the egalitarian price of fairness for non-connected divisions of cakes and chores
could be examined. Furthermore, Caragiannis et al. [5] provided an analysis
of the price of fairness for indivisible cakes and chores, but again they only
considered utilitarian welfare. Further research could investigate the impact of
fairness on egalitarian welfare for this setting.
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Abstract. One of the most fundamental and ubiquitous problems in mi-
croeconomics and operations research is how to assign objects to agents
based on their individual preferences. An assignment is called popular if
there is no other assignment that is preferred by a majority of the agents.
Popular assignments need not exist, but the minimax theorem implies
the existence of a popular random assignment. In this paper, we study
the compatibility of popularity with other properties that have been con-
sidered in the literature on random assignments, namely efficiency, equal
treatment of equals, envy-freeness, and strategyproofness.

1 Introduction

One of the most fundamental and ubiquitous problems in microeconomics and
operations research is how to assign objects to agents based on their individ-
ual preferences (see, e.g., [21, 4, 5]). In its simplest form, the problem is known
as the assignment problem, the house allocation problem, or two-sided match-
ing with one-sided preferences. Formally, the assignment problem concerns a set
of agents A = {a1, . . . , an} and a set of houses H = {h1, . . . hn}. Each agent
has preferences over the elements of H and the goal is to assign or allocate
exactly one house to each agent in an efficient and fair manner. An important
assumption in this setting is that monetary transfers between the agents are not
permitted.1 The assignment problem has numerous applications in a variety of
settings such the assignment of dormitories to students, jobs to applicants, rooms
to housemates, processor time slots to jobs, parking spaces to employees, offices
to workers, kidneys to patients, school seats to student applicants, etc. Clearly,
deterministic assignments may fail to satisfy even extremely mild fairness crite-
ria such as equal treatment of equals. It is therefore an established practice to
restore (ex ante) fairness by introducing randomization. Random assignments

1 Monetary transfers may be impossible or highly undesirable, as is the case if houses
are public facilities provided to low-income people. There are a number of settings
such as voting, kidney-exchange, or school choice in which money cannot be used as
compensation due to practical, ethical, or legal constraints (see, e.g., [20]).
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are strongly related to fractional assignments and random assignment rules can
also be used to fractionally allocate resources to agents.

A deterministic assignment (or matching) is deemed popular if there exists
no other assignment that a majority of agents prefers to the former (see, e.g.,
[1, 3, 17, 12]). Popular assignments were first considered by Gärdenfors [10].
While popular assignments can be computed in polynomial time [1], they unfor-
tunately may not exist. Taking cue from this observation, McCutchen [17] pro-
posed two quantities—the unpopularity margin and the unpopularity factor—to
measure the unpopularity of an assignment and defined the notion of a least
unpopular assignment, which is guaranteed to exist.2 However, computing least
unpopular assignments turned out to be NP-hard. Alternatively, Kavitha et al.
[13] suggested the notion of popular random assignments. A random assignment
p is popular if there is no other assignment q such that the expected number of
agents who prefer the outcome of q to that of p is greater than n/2. Kavitha et al.
[13] showed that popular random assignments not only exist due to the minimax
theorem but can also be computed in polynomial time via linear programming.
To the best of our knowledge, axiomatic properties of popular random assign-
ments have not been studied so far. In this paper, we aim at improving our
understanding of popular random assignments by investigating which common
axiomatic properties are compatible with popularity.

Contributions. We first point out that popular random assignments can be
viewed as a special case of maximal lotteries, which were proposed in the con-
text of social choice by Fishburn [8].3 Assignment can be seen as a restricted
domain of social choice in which each alternative corresponds to an assignment.
Preferences over houses can be easily extended to preferences over assignments
by assuming that each agent only cares about the house assigned to himself and
is indifferent between all assignments in which he is assigned the same house.
We prove the following statements.

– Every popular assignment is efficient.

– There always exists a popular assignment that satisfies equal treatment of
equals. Such an assignment can furthermore be computed in polynomial
time.

– Popularity and envy-freeness are incompatible if n ≥ 3. If a popular and
envy-free assignment exists, it can be computed in polynomial time.

– There are no strategyproof popular random assignment rules if n ≥ 3.

2 The unpopularity margin of a matching is the maximum majority difference by which
it is dominated by any other matching. The unpopularity factor of a matching is the
maximum factor by which it is dominated by any other matching.

3 Maximal lotteries were first considered by Kreweras [14] and independently redis-
covered and studied in detail by Fishburn [8]. Interestingly, maximal lotteries or
variants thereof have been rediscovered again by economists, mathematicians, polit-
ical scientists, and computer scientists [15, 7, 9, 19]. Strategyproofness and efficiency
of maximal lotteries were recently analyzed by Aziz et al. [2].
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Related work. Random assignment rules have received enormous attention in
recent years. Most notable among these rules are random serial dictatorship
(RSD) (see e.g., [4, 16]) and the probabilistic serial rule (PS) [4]. Each of these
rules has its own merits. However, it can be easily shown that the assignment
returned by any of these rules may not be popular.

Perhaps closest to our work are the papers by Kavitha et al. [13], who in-
troduced popular random assignments, and Bogomolnaia and Moulin [4], who
outlined a systematic way of studying the properties of random assignments
and random assignment rules. In particular, Bogomolnaia and Moulin [4] popu-
larized the use of first-order stochastic dominance to formalize various notions
of envy-freeness, efficiency, and strategyproofness that we also consider in this
paper.

2 Preliminaries

An assignment problem is a triple (A,H,�) such that A = {a1, . . . , an} is a set of
agents, H = {h1, . . . , hn} is a set of houses, and �= (�1, . . . ,�n) is a preference
profile in which �i denotes an antisymmetric, complete, and transitive relation
on H representing the preferences of agent i over the houses in H .4

A deterministic assignment (or pure matching) M ⊂ A×H = M is a subset
of non-adjacent arcs in the bipartite graph G = (A

.∪ H,A×H). If (i, h) ∈M , we
write M(i) = h. A matrix p = (pih)(i,h)∈A×H with pih ≥ 0,

∑
i∈A pih = 1 for all

h ∈ H and
∑

h∈H pih = 1 for all ai ∈ A, h ∈ H is called a random assignment (or
mixed matching). Note that the entries pi = (pi1, . . . , pin) corresponding to arcs
incident with some agent i constitute a random allocation for this agent. Further
note that every random assignment may be represented by a (not necessarily
unique) lottery over deterministic assignments and that in turn, every lottery
over deterministic assignments induces a unique random assignment. This is
known as the Birkhoff-Von Neumann theorem (see, e.g., [13]).

A natural way to compare random assignments is by means of stochastic
dominance (SD). Given two random assignments p and q, pi �SD

i qi i.e., agent i
SD-prefers pi to qi iff ∑

h∈H
h�ih

∗

pih ≥
∑
h∈H
h�ih

∗

qih for all h∗ ∈ H.

This preference extension is of particular importance because one random as-
signment is SD-preferred to another iff, for any utility representation consistent
with the ordinal preferences, the former yields at least as much expected utility
as the latter (see, e.g., [11, 6]). Since for all i ∈ A, agent i compares assign-
ment p with assignment q only with respect to his allocations pi and qi, we will
sometimes abuse the notation by writing p �SD

i q instead of pi �SD
i qi.

4 Although we assume strict preferences for the ease of exposition, all our positive
results hold for arbitrary preferences and our negative results even hold for strict
preferences.
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Finally, a random assignment rule f is a function which for each input (A,H,�)
returns a random assignment p. When A and H are clear from the context, we
simply write f(�) for f(A,H,�).

3 Desirable Properties of Random Assignment Rules

In this section, we define a number of desirable properties for random assign-
ments and random assignment rules. Properties of assignments naturally trans-
late to properties of assignment rules: We say that a random assignment rule f
satisfies property P if every assignment p returned by f satisfies P .

Popularity. In order to define popularity, we first associate a function φi with
each preference relation �i on H by letting φi : H ×H → {−1, 0, 1} such that
for all h, h′ ∈ H ,

φi(h, h
′) =

⎧⎪⎨⎪⎩
+1 if h �i h

′,
−1 if h′ �i h, and

0 otherwise.

Now consider the natural extension of φi to random assignments and take the
sum over all agents. To this end, we define

φ(p, q) :=
∑
ai∈A

∑
h,h′∈H

pihqih′ φi(h, h
′)

and say that p is more popular than q if φ(p, q) > 0. A random assignment p is
popular if there is no assignment q more popular than p. It can be easily shown
that both PS and RSD fail to satisfy popularity.

Efficiency. A deterministic assignment M is Pareto efficient if there exists no
other deterministic assignmentM ′ such thatM ′(ai) �i M(ai) for all ai ∈ A, and
there exists an agent ai ∈ A such that M ′(ai) �i M(ai). A random assignment
is ex post efficient if it can be represented as a probability distribution over
Pareto efficient deterministic assignments. Finally, a random assignment p is
SD-efficient if there exists no assignment q such that q stochastically dominates
p, i.e. qi �SD

i pi for all ai ∈ A and qi �SD
i pi for some ai ∈ A. It can be shown

that SD-efficiency implies ex post efficiency. Furthermore, while PS satisfies SD-
efficiency, RSD is only ex post efficient [4].

Fairness. A random assignment p satisfies equal treatment of equals if agents
with identical preferences receive identical random allocations, i.e., �i=�j im-
plies that pi = pj for any pair of agents i and j. Equal treatment of equals is
considered as one of the most fundamental requirements in resource allocation
and a “minimal test for fairness” [18]. A random assignment satisfies SD-envy-
freeness if each agent (weakly) SD-prefers his allocation to that of any other
agent. A random assignment satisfies weak SD-envy-freeness if no agent strictly
SD-prefers someone elses allocation to his. SD-envy-freeness implies equal treat-
ment of equals while weak SD-envy-freeness does not. PS is known to satisfy
SD-envy-freeness whereas RSD only satisfies weak SD-envy-freeness [4].



On Popular Random Assignments 187

Strategyproofness. In contrast to the previous conditions, strategyproofness can
only meaningfully be defined as the property of an assignment rule rather
than that of an assignment. A random assignment rule f is SD-strategyproof
if for every preference profile �, and for all ai ∈ A and �′i, f(�i,�−i) �SD

i

f(�′i,�−i). A random assignment rule f is weakly SD-strategyproof if for ev-
ery preference profile �, there exists no �′i for some agent ai ∈ A such that
f(�′i,�−i) �SD

i f(�i,�−i). RSD is SD-strategyproof whereas PS is only weakly
SD-strategyproof. (When also allowing ties in the preferences, RSD remains SD-
strategyproof whereas PS fails to be even weakly SD-strategyproof.)

In the remainder of this paper, we investigate whether and to which extent
popularity is compatible with efficiency, fairness, and strategyproofness.

4 Efficiency

It is easy to see that popular assignments are ex post efficient. For the sake of
contradiction let us assume that there is a deterministic assignment which is in
the support of a lottery representation of some popular random assignment but
which is not Pareto optimal. This implies that the deterministic assignment is
Pareto dominated by another deterministic assignment and hence cannot be in
the support of the popular random assignment (as replacing it by the assignment
that dominates it would yield a more popular assignment).

We address SD-efficiency by first observing that popular random assignments
are a special case of maximal lotteries in general social choice [8]. A lottery p is a
maximal lottery if there exists no other lottery q for which the expected number
of agents who prefer q over p is more than the expected number of agents who
prefer p over q.

An assignment problem (A,H,�) may also be seen as a social choice prob-
lem where A is the set of agents and the alternatives to choose from are all
the different (deterministic) assignments between agents in A and houses in H .
The preferences of the agents over these alternatives can naturally be defined
according to their preferences over the houses allocated to them (which means
that agents will be indifferent between assignments that assign the same house
to them). As Kavitha et al. [13] note, popularity of a random assignment p
may also be defined in terms of its representation as a lottery over deterministic
assignments. Furthermore, for every possible such representation the “unpop-
ularity margin” is equal to that of the original assignment p. This means that
every maximal lottery induces a popular random assignment, and every lottery
that represents a popular assignment is maximal.

We now show that popular assignments are not only ex post efficient but even
SD-efficient.

Lemma 1. Let Lp = [p1 : M1, . . . , p
k : Mk] and Lq = [q1 : N1, . . . , q

k : Nl] be
lotteries over deterministic assignments that induce the fractional assignments
p and q. Then, p �SD

i q iff Lp �SD
i Lq.
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Proof. For reasons of notational convenience, we write

p(M) =

{
pj M = Mj ∈ supp(Lp)

0 M /∈ supp(Lp).

For every agent i and h∗ ∈ H we can pick some assignment N with N(i) = h to
obtain ∑

h∈H
h�ih

∗

pih =
∑

M∈M
M(i)�ih

∗

p(M) =
∑

M∈M
M�iN

p(M).

Analogously, for every agent i and assignment N , we have∑
M∈M
M�iN

p(M) =
∑

M∈M
M(i)�iN(i)

p(M) =
∑
h∈H

h�iN(i)

pih.

This means that

∀h ∈ H :
∑
h∈H
h�ih

∗

pih ≥
∑
h∈H
h�ih

∗

qih iff ∀N ∈M :
∑

M∈M
M�iN

p(M) ≥
∑

M∈M
M�iN

q(M),

i.e., p �SD
i q iff Lp �SD

i Lq. ��
Theorem 1. Every popular assignment is SD-efficient.

Proof. Let p be a popular assignment. Suppose that p is SD-dominated by some
assignment q. Let Lp be a lottery representation of p and Lq a lottery represen-
tation of q. Then Lemma 1 implies that Lq SD-dominates Lp. But, as argued
above, Lp is a maximal lottery which is a contradiction to the fact that maximal
lotteries satisfy SD-efficiency (see [2]).

��

5 Equal Treatment of Equals

Even though popular assignments satisfy fairness in the sense of respecting ma-
jorities of agents, they can be highly unfair on the individual level. In fact,
popular assignments may not even satisfy equal treatment of equals. This can
be seen by considering the extremely simple case of two agents with identical
preferences in which every random assignment is popular.

We will now show that a popular assignment that satisfies equal treatment of
equals always exists and that it can be computed in polynomial time. To this
end, we introduce the notion of an S-leveling:

Definition 1. Let x be a random assignment for (A,H) and S ⊂ A. The S-
leveling of x is the random assignment y given by

yah =

{
xah a /∈ S
1
|S|
∑

a∈S xah a ∈ S.
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It is easy to see that the S-leveling of a random assignment is again a random
assignment, as the sum over all edges incident to any house or agent remains
unchanged.

Lemma 2. Let x and z be random assignments for (A,H) and S ⊂ A such that
all a ∈ S have identical preferences. Let furthermore y be the S-leveling of x.
Now, the S-leveling z′ of z satisfies

φ(x, z′) = φ(y, z).

Proof. We begin by showing that
∑

a∈S (xahz
′
ah′ − yahzah′) = 0 for all h, h′ ∈ H .

Let h, h′ ∈ H . Then∑
a∈S

(xahz
′
ah′ − yahzah′) =

∑
a∈S

xahz
′
ah′ −

∑
a∈S

yahzah′ (1)

=
∑
a∈S

xah

(
1

|S|
∑
a∈S

zah′

)
−
∑
a∈S

(
1

|S|
∑
a∈S

xah

)
zah′ (2)

=
1

|S|
∑
a∈S

zah′
∑
a∈S

xah − 1

|S|
∑
a∈S

xah

∑
a∈S

zah′ (3)

= 0, (4)

where we use the definition of S-leveling in (2) and the fact that one of the factors
in each sum does not depend on a in (3). We use the definition of function φ as
defined in Section 3.

Now, we define φ∗ := φa for an arbitrary agent a ∈ S and have φ∗ = φa for
all agents in S due to their identical preferences. Using this notation, we show,
that φ(x, z′)− φ(y, z) = 0:

φ(x, z′)− φ(y, z) =
∑
a∈A

∑
h,h′∈H

xahz
′
ah′ φa(h, h

′)−
∑
a∈A

∑
h,h′∈H

yahzah′ φa(h, h
′)

(5)

=
∑
a∈A

∑
h,h′∈H

φa(h, h
′) (xahz

′
ah′ − yahzah′) (6)

=
∑
a∈S

∑
h,h′∈H

φa(h, h
′) (xahz

′
ah′ − yahzah′) (7)

=
∑

h,h′∈H
φ∗(h, h′)

∑
a∈S

(xahz
′
ah′ − yahzah′) (8)

= 0 (9)

using the fact that x and y as well as z and z′ coincide on A \ S in equation
(7), the identical preferences of agents in S in (8) and finally our first claim in
(9). ��
Theorem 2. There always exists a popular random assignment that satisfies
equal treatment of equals. Such an assignment can furthermore be computed in
polynomial time.
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Proof. Let x be a popular random assignment (the existence of which is guar-
anteed due to the minimax theorem) that does not satisfy equal treatment of
equals for a subset A′ of A and S ⊂ A′ a set of agents with identical preferences.
Denote by y the S-leveling of x, which obviously has the property of treating
these agents with identical preferences equally.

Suppose for contradiction that there is a random assignment z more popular
than y, that is φ(z, y) > 0. Using Lemma 2, we obtain a random assignment z′

with φ(z′, x) > 0. Hence, z′ is more popular than x which yields a contradiction
to our assumption that x was popular.

We thus obtain a random assignment (y) that does not satisfy equal treat-
ment of equals for a strictly smaller subset A′ \ S of A. Applying this argument
iteratively, we finally obtain a random assignment that satisfies equal treatment
of equals. ��

To efficiently compute a popular assignment that satisfies equal treatment of
equals, consider LP3 by Kavitha et al. [13] which computes a popular random
assignment. With at most O(n2) extra constraints, it can be ensured that agents
with same preferences get the same allocations. For each ai, aj such that �i=�j,
we can impose the condition that x(ai, hk) = x(aj , hk) for all hk ∈ H . This
ensures the equal treatment to equals condition.

6 Envy-Freeness

In this section, we investigate to which extent popularity is compatible with
envy-freeness. There are popular assignments that fail to satisfy even weak
SD-envy-freeness (again, consider the case with two agents who have identi-
cal preferences). The question that we are interested in is whether, for every
preference profile, there exists at least one popular assignment that satisfies SD-
envy-freeness or weak SD-envy-freeness.

Theorem 3. There exists an instance of a random assignment problem with
n = 3 for which no popular assignment satisfies SD-envy-freeness.

Proof. Consider the following assignment problem with three agents and three
houses.

a1 : h1, h2, h3

a2 : h1, h2, h3

b : h2, h1, h3

As noted in Section 3, any assignment that satisfies SD-envy-freeness must also
satisfy equal treatment of equals. We now show that the unique popular assign-
ment that satisfies equal treatment of equals is as follows:

pa1h1 = 1/2, pa1h2 = 0, pa1h3 = 1/2,

pa2h1 = 1/2, pa2h2 = 0, pa2h3 = 1/2,

pbh1 = 0, pbh2 = 1, pbh3 = 0.
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Consider an assignment p which satisfies equal treatment of equals. Denote by
p1 := pa1h1 = pa2h1 and p2 := pa1h2 = pa2h2 . Note that, in particular, as
p is popular it has to be at least as popular as the pure assignment M1 =
{(b, h2), (a1, h1), (a2, h3)}. Hence, p must fulfil φ(M1, p) = 1 + p2 − 2p1 ≤ 0
which means that p1 ≥ 1/2 + p2/2. Secondly, 1 ≥ pa1h1 + pa2h1 = 2p1 which
means that p1 ≤ 1/2.

The only assignment that satisfies the constraints p1 ≥ 1/2+ p2/2, p1 ≤ 1/2,
p1 ≥ 0, and p2 ≥ 0 is the one for which p1 = 1/2 and p2 = 0. In this assignment
p, the allocations of a1, a2 do not SD-dominate the allocation of b according to
the preference of a1 and a2. Therefore the only popular assignment satisfying
equal treatment of equals does not satisfy SD-envy-freeness. ��

Despite this negative result, an SD-envy-free popular random assignment can
be computed in polynomial time whenever it exists. For each pair of agents a, b,
we need the constraint that pa �SD

a pb. This can be encoded easily by considering
at most as many partial sums as the number of houses n.∑

h∈H
h�ah

∗

pah ≥
∑
h∈H
h�ah

∗

pbh for all h∗ ∈ H.

There are O(n2) such constraints.
Regarding weak SD-envy-freeness, the alternative characterization of the SD

relation in terms of utility functions mentioned in Section 2 might help. This
characterization allows us to ensure weak SD-envy-freeness by adding constraints
to the linear program used to compute popular assignments as follows: An as-
signment p is not strictly preferred to an assignment q by agent i, if there exists
some utility function u for which the expected utility of q is greater than that
of p. This can be expressed by adding variables to represent the utility function
u (for each agent). However, we have shown that the resulting feasible region is
non-convex, which implies that this representation hardly leads to an efficient
algorithm to compute such an assignment. This assessment does of course not
preclude the existence of such an assignment.

7 Strategyproofness

Finally, we examine how popular assignment rules fare in terms of strategyproof-
ness. It turns out that popularity is incompatible with SD-strategyproofness.

Theorem 4. For n ≥ 3, there are no SD-strategyproof popular randomized as-
signment rules.

Proof. Consider an assignment problem with three agents and three houses and
the following preferences.

a1 : h1, h3, h2

a2 : h1, h2, h3

a3 : h1, h2, h3
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We show that there exists some utility function for agent a1, compatible with
his preferences, which allows him to obtain a higher expected utility if he mis-
reports his preferences. In light of the equivalence mentioned in Section 2, this
means that agent a1 does not SD-prefer his original outcome to that which she
may achieve by misreporting.

The set of all deterministic assignments is as follows:

M123 = {{a1, h1}, {a2, h2}, {a3, h3}}, M312 = {{a1, h3}, {a2, h1}, {a3, h2}},
M231 = {{a1, h2}, {a2, h3}, {a3, h1}}, M132 = {{a1, h1}, {a2, h3}, {a3, h2}},
M321 = {{a1, h3}, {a2, h2}, {a3, h1}}, M213 = {{a1, h2}, {a2, h1}, {a3, h3}}.
Then consider the matrix corresponding to the pairwise weighted majority

comparisons. An entry in the matrix denotes the number of agents who prefer
the row assignment to the column assignment minus number of agents who
prefer the column assignment to the row assignment. An assignment is popular
if and only if it is a maximin strategy of the symmetric two-player zero-sum
game represented by the matrix. It can be checked using an LP solver that each
maximin strategy only randomizes over M312 and M321.

Since a1 gets h3 in both M312 and M321, a1 gets h3 with probability one in
every popular assignment.

M123 M312 M231 M132 M321 M213

M123 0 −1 +1 0 0 0

M312 +1 0 +1 0 0 +2

M231 −1 −1 0 +2 −2 0

M132 0 0 −2 0 −1 +1

M321 0 0 +2 +1 0 +1

M213 0 −2 0 −1 −1 0

Now if a1 misreports his preferences as h1, h2, h3, the new preference profile
is as follows.

a1 : h1, h2, h3

a2 : h1, h2, h3

a3 : h1, h2, h3

Then, the pairwise majority margins are shown in the matrix below.

M123 M312 M231 M132 M321 M213

M123 0 −1 +1 0 0 0

M312 +1 0 −1 0 0 0

M231 −1 +1 0 0 0 0

M132 0 0 0 0 −1 +1

M321 0 0 0 +1 0 −1
M213 0 0 0 −1 +1 0
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It can be shown that a maximin strategy is a probability distribution over
the following two strategies [M123 : 1/3;M312 : 1/3;M231 : 1/3] and [M132 :
1/3;M321 : 1/3;M213 : 1/3]. Hence the induced popular assignment for any
lottery corresponding to a maximin strategy is one which specifies a probability
of 1/3 of each agent getting each object. Thus a1 gets h1, h2, and h3 each with
probability 1/3. Now, let us assume that ua1(h1)+ua1(h2) > 2ua1(h3). Then a1
gets utility (ua1(h1) + ua1(h2) + ua1(h3))/3 > 3ua1(h3)/3 = ua1(h3). ��

An important open question is whether there are weakly SD-strategyproof
popular random assignment rules. Related questions have recently also been an-
alyzed in the more general context of social choice where it was shown that pop-
ularity is incompatible with weak SD-strategyproofness, but compatible with
a significantly weaker version of weak SD-strategyproofness called weak ST-
strategyproofness [2].

8 Conclusion

Kavitha et al. [13] have recently shown that every assignment problem admits a
popular random assignment which can furthermore be computed in polynomial
time using linear programming. In this paper, we investigated which common
axiomatic properties are compatible with popularity. Results were mixed. It
turned out that a particularly desirable aspect of popularity is that many con-
ditions can be formalized as linear constraints that can be simply plugged into
the linear program for computing popular random assignments. Furthermore,
all properties considered in this paper (including popularity) do not require the
asymmetry or transitivity of the agents’ preferences. By contrast, two of the
most studied random assignment rules, PS and RSD, are only defined for transi-
tive preferences and many axiomatic results concerning these rules even require
linear preferences.

A number of interesting questions arise from our study. Two of the most
important ones are whether there always exists a weakly SD-envy-free popular
random assignment and whether there exists a popular random assignment rule
that satisfies weak SD-strategyproofness.
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Abstract. Adoption or rejection of ideas, products, and technologies in a soci-
ety is often governed by simultaneous propagation of positive and negative in-
fluences. Consider a planner trying to introduce an idea in different parts of a
society at different times. How should the planner design a schedule considering
this fact that positive reaction to the idea in early areas has a positive impact on
probability of success in later areas, whereas a flopped reaction has exactly the
opposite impact? We generalize a well-known economic model which has been
recently used by Chierichetti, Kleinberg, and Panconesi (ACM EC’12). In this
model the reaction of each area is determined by its initial preference and the
reaction of early areas. We model the society by a graph where each node repre-
sents a group of people with the same preferences. We consider a full propagation
setting where news and influences propagate between every two areas. We gen-
eralize previous works by studying the problem when people in different areas
have various behaviors.

We first prove, independent of the planner’s schedule, influences help (resp.,
hurt) the planner to propagate her idea if it is an appealing (resp., unappealing)
idea. We also study the problem of designing the optimal non-adaptive spreading
strategy. In the non-adaptive spreading strategy, the schedule is fixed at the begin-
ning and is never changed. Whereas, in adaptive spreading strategy the planner
decides about the next move based on the current state of the cascade. We demon-
strate that it is hard to propose a non-adaptive spreading strategy in general. Nev-
ertheless, we propose an algorithm to find the best non-adaptive spreading strat-
egy when probabilities of different behaviors of people in various areas drawn
i.i.d from an unknown distribution. Then, we consider the influence propagation
phenomenon when the underlying influence network can be any arbitrary graph.
We show it is #P -complete to compute the expected number of adopters for a
given spreading strategy. However, we design a polynomial-time algorithm for
the problem of computing the expected number of adopters for a given schedule
in the full propagation setting. Last but not least, we give a polynomial-time algo-
rithm for designing an optimal adaptive spreading strategy in the full propagation
setting.

Keywords: Influence maximization, Scheduling, Spreading strategy, Algorithm.

1 Introduction

People’s opinions are usually formed by their friends’ opinions. Whenever a new con-
cept is introduced into a society, the high correlation between people’s reactions
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initiates an influence propagation. Under this propagation, the problem of promoting
a product or an opinion depends on the problem of directing the flow of influences.
As a result, a planner can develop a new idea by controlling the flow of influences in
a desired way. Although there have been many attempts to understand the behavior of
influence propagation in a social network, the topic is still controversial due to lack of
reliable information and complex behavior of this phenomenon. For example, one com-
pelling approach is “seeding” which was introduced by the seminal work of Kempe,
Kleinberg, and Trados [1] and is well-studied in the literature [1, 2, 3]. The idea is
to influence a group of people in the initial investment period and spread the desired
opinion in the ultimate exploitation phase. Another approach is to use time-varying and
customer-specific prices to propagate the product (see e.g., [4, 5, 6]). All of these pa-
pers investigate the influence propagation problem when only positive influences spread
into the network. However, in many real world applications people are affected by both
positive and negative influences, e.g., when both consenting and dissenting opinions
broadcast simultaneously.

We generalize a well-known economic model introduced by Arthur [7]. This model
has been recently used by Chierichetti, Kleinberg, and Panconesi [8]. Assume an orga-
nization is going to develop a new idea in a society where the people in the society are
grouped into n different areas. Each area consists of people living near each other with
almost the same preferences. The planner schedules to introduce a new idea in different
areas at different times. Each area may accept or reject the original idea. Since areas
are varied and effects of early decisions boost during the diffusion, a schedule-based
strategy affects the spread of influences. This framework closely matches to various
applications from economics to social science to public health where the original idea
could be a new product, a new technology, or a new belief.

Consider the spread of two opposing influences simultaneously. Both positive and
adverse reactions to a single idea originate different flows of influences simultaneously.
In this model, each area has an initial preference of Y or N . The initial preference of
Y (N ) means the area will accept (decline) the original idea when there are no network
externalities. Let ci be a non-negative number indicating how reaction of people in area i
depends on the others’. We call ci the threshold of area i. Assume the planner introduced
the idea in area i at time s. Let mY and mN be the number of areas which accept or
reject the idea before time s. If |mY −mN | ≥ ci the people in area i decide based on
the majority of previous adopters. It means they adopt the idea if mY −mN ≥ ci and
drop it if mN −mY ≥ ci. Otherwise, if |mY −mN | < ci the people in area i accept or
reject the idea if the initial preference of area i is Y orN respectively. The planner does
not know exact initial preferences and has only prior knowledge about them. Formally
speaking, for area i the planner knows the initial preference of area i will be Y with
probability pi and will be N with probability 1 − pi. We call pi the initial acceptance
probability of area i.

We consider the problem when the planner classifies different areas into various
types. The classification is based on the planner’s knowledge about the reaction of peo-
ple living in each area. Hence, the classification is based on different features, e.g.,
preferences, beliefs, education, and age such that people in areas with the same type
react almost the same to the new idea. It means all areas of the same type have the same
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threshold ci and the same initial acceptance probability pi. It is worth mentioning pre-
vious works only consider the problem when all areas have the same type, i.e., all pi’s
and ci’s are the same [7, 8]. The planner wants to manage the flow of influences, and her
spreading strategy is a permutation π over different areas. Her goal is to find a spread-
ing strategy π which maximizes the expected number of adopters. We consider both
adaptive and non-adaptive spreading strategies in this paper. In the adaptive spreading
strategy, the planner can see results of earlier areas for further decisions. On the other
hand, in the non-adaptive spreading strategy the planner decides about the permutation
in advance. We show the effect of a spreading strategy on the number of adopters with
an example in the full version of the paper.

1.1 Related Work

We are motivated by a series of well-known studies in economics and politics literature
in order to model people’s behavior [7, 9, 10, 11]. Arthur first proposed a framework
to analyze people’s behavior in a scenario with two competing products [7]. In this
model people are going to decide about one of two competing products alternatively. He
studied the problem when people are affected by all previous customers, and the planner
has the same prior knowledge about people’s behavior, i.e., people have the same types.
He demonstrated that a cascade of influences is formed when products have positive
network externalities, and early decisions determine the ultimate outcome of the market.
It has been showed the same cascade arises when people look at earlier decisions, not
because of network externalities, but because they have limited information themselves
or even have bounded rationality to process all available data [9, 10].

Chierichetti, Kleinberg, and Panconesi argued when relations between people form
an arbitrary network, the outcome of an influence propagation highly depends on the or-
der in which people make their decisions [8]. In this setting, a potential spreading strat-
egy is an ordering of decision makers. They studied the problem of finding a spreading
strategy which maximizes the expected number of adopters when people have the same
type, i.e., people have the same threshold c and the same initial acceptance probability
p. They proved for any n-node graph there is an adaptive spreading strategy with at least
O(npc) adopters. They also showed for any n-node graph all non-adaptive spreading
strategies result in at least (resp. at most) n

2 if initial acceptance probability is less (resp.
greater) than 1

2 . They considered the problem on an arbitrary graph when nodes have
the same type. While we mainly study the problem on a complete graph when nodes
have various types, we improve their result in our setting and show the expected number
of adopters for all adaptive spreading strategies is at least (resp. at most) np if initial
acceptance probability is p ≥ 1

2 (resp. p ≤ 1
2 ). We also show the problem of designing

the best spreading strategy is hard on an arbitrary graph with several types of customers.
We prove it is #P -complete to compute the expected number of adopters for a given
spreading strategy.

The problem of designing an appropriate marketing strategy based on network ex-
ternalities has been studied extensively in the computer science literature. For example,
Kempe, Kleinberg, and Tardos [1] studied the following question in their seminal work:
How can we influence a group of people in an investment phase in order to propagate an
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idea in the exploitation phase? This question was introduced by Domingos and Richard-
son [12]. The answer to this question leads to a marketing strategy based on seeding.
There are several papers that study the same problem from an algorithmic point of view,
e.g., [2, 3, 13]. Hartline, Mirrokni, and Sundararajan [6] also proposed another market-
ing strategy based on scheduling for selling a product. Their marketing strategy is a
permutation π over customers and price pi for customer i. The seller offers the product
with price pi to customer i at time t where t = π−1(i). The goal is to find a marketing
strategy which maximizes the profit of the seller. This approach is followed by several
works, e.g., [4, 5, 14]. These papers study the behavior of an influence propagation
when there is only one flow on influences in the network. In this paper, we study the
problem of designing a spreading strategy when both negative and positive influences
propagate simultaneously.

The propagation of competitive influences has been studied in the literature (See [15]
and its references). These works studied the influence propagation problem in the pres-
ence of competing influences, i.e., when two or more competing firms try to propagate
their products at the same time. However we study the problem of influence propagation
when there exist both positive and negative reactions to the same idea. There are also
studies which consider the influence propagation problem in the presence of positive
and negative influences [16, 17]. Che et al. [16] use a variant of the independent cas-
cade model introduced in [1]. They model negative influences by allowing each person
to flips her idea with a given probability q. Li et al. [17] model the negative influences
by negative edges in the graph. Although they study the same problem, we use different
models to capture behavior of people.

1.2 Our Results

We analyze an influence propagation phenomenon where two opposing flows of influ-
ences propagate through a social network. As a result, a mistake in the selection of
early areas may result in propagation of negative influences. Therefore a good under-
standing of influence propagation dynamics seems necessary to analyze the properties
of a spreading strategy. Besides the previous papers which have studied the problem
with just one type [7, 8], we consider the scheduling problem with various types. Also,
we mainly study the problem in a full propagation setting as it matches well to our
motivations. In the full propagation setting news and influences propagate between ev-
ery two areas. One can imagine how internet, media, and electronic devices broadcast
news and influences from everywhere to everywhere. In the partial propagation setting
news and influences do not necessarily propagate between every two areas. In the par-
tial propagation setting the society can be modeled with a graph, where there is an edge
from area i to area j if and only if influences propagate from area i to area j.

Our main focus is to analyze the problem when the planner chooses a non-adaptive
spreading strategy. Consider an arbitrary non-adaptive spreading strategy when initial
preferences of all areas are p. The expected number of adopters is exactly np if all areas
decide independently. We demonstrate that in the presence of network influences, the
expected number of adopters is greater/less than np if initial acceptance probability p
is greater/less than 1

2 . These results have a bold message: The influence propagation
is an amplifier for an appealing idea and an attenuator for an unappealing idea.
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Chierichetti, Kleinberg, and Panconesi [8] studied the problem on an arbitrary graph
with only one type. They proved the number of adopters is greater/less than n

2 if initial
acceptance probability p is greater/less than 1

2 . Theorem 1 improves their result from n
2

to np in our setting. All missing proofs are in the full version of the paper.

Theorem 1. Consider an arbitrary non-adaptive spreading strategy π in the full prop-
agation setting. Assume all initial acceptance probabilities are equal to p. If p ≥ 1

2 ,
then the expected number of adopters is at least np. Furthermore, If p ≤ 1

2 , then the
expected number of adopters is at most np.

Chierichetti, Kleinberg, and Panconesi [8] studied the problem of designing an opti-
mum spreading strategy in the partial propagation setting. They design an approxima-
tion algorithm for the problem when the planner has the same prior knowledge about
all areas, i.e., all areas have the same type. We study the same problem with more than
one type. We first consider the problem in the full propagation setting. One approach
is to consider a non-adaptive spreading strategy with a constant number of switches
between different types. The planner has the same prior knowledge about areas with
the same type. It means areas with the same type are identical for the planner. Thus
any spreading strategy can be specified by types of areas rather than areas themselves.
Let τ(i) be the type of area i and τ(π) be the sequence of types for spreading strategy
π. For a given spreading strategy π a switch is a position k in the sequence such that
τ(π(k)) = τ(π(k + 1)). As an example consider a society with 4 areas. Areas 1 and 2
are of type 1. Areas 3 and 4 are of type 2. Then spreading strategy π1 = (1, 2, 3, 4) with
τ(π1) = (1, 1, 2, 2) has a switch at position 2 and spreading strategy π2 = (1, 3, 2, 4)
with τ(π2) = (1, 2, 1, 2) has switches at positions 1, 2, and 3.

Theorem 2. A σ-switch spreading strategy is a spreading strategy with at most σ
switches. For any constant σ, there exists a society with areas of two types such that
no σ-switch spreading strategy is optimal.

We construct a society with n areas with n
2 areas of type 1 and n

2 areas of type 2. We
demonstrate an optimal non-adaptive spreading strategy should switch at least Ω(n)
times. It means no switch-based non-adaptive spreading strategy can be optimal.

On the positive side, we analyze the problem when thresholds are drawn indepen-
dently from an unknown distribution and initial acceptance probabilities are arbitrary
numbers. We characterize the optimal non-adaptive spreading strategy in this case.

Theorem 3. Assume that the planner’s prior knowledge about all values of ci’s is the
same, i.e., all ci’s are drawn independently from the same but unknown distribution.
Let initial acceptance probabilities be arbitrary numbers. Then, the best non-adaptive
spreading strategy is to order all areas in non-increasing order of their initial accep-
tance probabilities.

We also study the problem of designing the optimum spreading strategy in the partial
propagation setting with more than one types. We show it is hard to determine the ex-
pected number of adopters for a given spreading strategy. Formally speaking, we show
it is #P -complete to compute the expected number of adopters for a given spreading
strategy π in the partial propagation setting with more than one type. This is another ev-
idence to show the influence propagation is more complicated with more than one type.
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We prove Theorem 4 based on a reduction from a variation of the network reliability
problem.

Theorem 4. In the partial propagation setting, it is #P -complete to compute the ex-
pected number of adopters for a given non-adaptive spreading strategy π.

We also present a polynomial-time algorithm to compute the expected number of
adopters for a given non-adaptive spreading strategy in a full propagation setting. We
design an algorithm in order to simulate the amount of propagation for a given spreading
strategy.

Theorem 5. Consider a full propagation setting. The expected number of adopter can
be computed in polynomial time for a given non-adaptive spreading strategy π.

At last we study the problem of designing the best adaptive spreading strategy. We
overcome the hardness of the problem and design a polynomial-time algorithm to find
the best adaptive marketing strategy in the following theorem.

Theorem 6. A polynomial-time algorithm finds the best adaptive spreading strategy
for a society with a constant number of types.

2 Notation and Preliminaries

In this section we define basic concepts and notation used throughout this paper. We
first formally define the spread of influence through a network as a stochastic pro-
cess and then give the intuition behind the formal notation. We are given a graph
G = (V,E) with thresholds, cv ∈ Z>0, ∀v ∈ V and initial acceptance probabilities
pv ∈ [0, 1], ∀v ∈ V . Let |V | = n. Let dv be the degree of vertex v. Let N(v) be the
set of neighboring vertices of v. Let c be the vector (c1, . . . , cn) and p be the vector
(p1, . . . , pn). Given a graph G = (V,E) and a permutation π : V �→ V , we define a
discrete stochastic process, IS (Influence Spread) as an ordered set of random variables
(X1, X2, . . . , Xn), where Xt ∈ Ω = {−1, 0, 1}n, ∀t ∈ {1, . . . , n}. The random vari-
able Xt

v denotes decision of area v at time t. If it has not yet been scheduled, Xt
v = 0.

If it accepts the idea then Xt
v = 1, and if it rejects the idea then Xt

v = −1. Note that

Xt
v = 0 iff t < π−1(v). Let D(v) =

∑
u∈N(v) X

π−1(v)
u be the sum of decision’s of v’s

neighbors. For simplicity in notation, we denote Xn
v by Xv.

We now briefly explain the intuition behind the notation. The input graph models
the influence network of areas on which we want to schedule a cascade, with each
vertex representing an area. There is an edge between two vertices if two corresponding
areas influence each others decision. The influence spread process models the spread of
idea acceptance and rejection for a given spreading strategy. The permutation π maps
a position in spreading strategy to an area in V . For example, π(1) = v implies that v
is the first area to be scheduled. Once the area v is given a chance to accept or reject

the idea at time π−1(v), Xπ−1(v)
v is assigned a value based on v’s decision and at all

times t after π−1(v), Xt
v = X

π−1(v)
v . The random variable Xv denotes whether an area

v accepted or rejected the idea. We note that Xt
v = Xv, ∀t ≥ π−1(v). The random
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variable Xt is complete snapshot of the cascade process at time t. The variable D(v) is
the decision variable for v. It denotes the sum of decisions of v’s neighbors at the time
v is scheduled in the cascade and it determines whether v decides to follow the majority
decision or whether v decides based on its initial acceptance probability. The random
variable It is the sum of decisions of all areas at time t. Thus, In is the variable we are
interested in as it denotes the difference between number of people who accept the idea
and people who reject the idea. Let v = π(t). Given Xt−1, Xt is defined as follows:

– Every area decides to accept or reject the idea exactly once when it is scheduled
and its decision remains the same at all later times. Therefore ∀i = π(t):
• Xt

i = Xt−1
i

– Decision of area v is based on decision of previous areas if its threshold is reached.
• Xt

v = 1 if D(v) ≥ cv
• Xt

v = −1 if D(v) ≤ −cv
– If threshold of area v is not reached, then it decides to accept the idea with proba-

bility pv, its initial acceptance probability, and decides to reject it with probability
1− pv.

In partial propagation setting, we represent such a stochastic process by tuple IS =
(G, c,p, π). For full propagation setting, the underlying graph is a complete graph and
hence we can denote the process by (c,p, π). When c and p are clear from context, we
denote the process simply by spreading strategy, π. We define random variable It =∑

v∈V Xt
v. We denote by qv = 1 − pv the probability that v rejects the idea based on

initial preference. We denote by Pr(A; IS), the probability of event A occurring under
stochastic process IS. Similarly, we denote by E(z; IS), the expected value of random
variable z under the stochastic process IS.

3 A Bound on Spread of Appealing and Unappealing Ideas

Lets call an idea unappealing if its initial acceptance probability for all areas is p for
some p ≤ 1

2 . We prove in this section, that for such ideas, no strategy can boost the
acceptance probability for any area above p. We note that exactly the opposite argument
can be made when p ≥ 1

2 is the initial acceptance probability of all areas, i.e., any
spreading strategy guarantees that every area accepts the idea with probability of at
least p.

Theorem 1. Consider an arbitrary non-adaptive spreading strategy π in the full prop-
agation setting. Assume all initial acceptance probabilities are equal to p. If p ≥ 1

2 ,
then the expected number of adopters is at least np. Furthermore, If p ≤ 1

2 , then the
expected number of adopters is at most np.

Proof. We prove this result for the case when p ≤ 1
2 . The other case (p ≤ 1

2 ) follows
from symmetry. To avoid confusion, we let p0 = p and use p0 instead of the real
number p throughout this proof. If we prove that any given area accepts the idea with
probability of at most p0, then from linearity of expectation, we are done. Consider an
area v scheduled at time t + 1. The probability that the area accepts or rejects the idea
is given by
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Pr(Xv = 1) =p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≥ cv),

P r(Xv = −1) =(1− p0)(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≤ −cv).

Since Pr(Xv = 1) + Pr(Xv = −1) = 1, if we prove that Pr(Xv=1)
Pr(Xv=−1) ≤

p0

1−p0
, then

we have Pr(Xv = 1) ≤ p0. We have

Pr(Xv = 1)

Pr(Xv = −1) =
p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≥ cv)

(1− p0)(1 − Pr(It ≥ cv)− Pr(It ≤ −cv)) + Pr(It ≤ −cv) .

We have:

p0(1− Pr(It ≥ cv)− Pr(It ≤ −cv))
(1− p0)(1 − Pr(It ≥ cv)− Pr(It ≤ −cv)) =

p0
1− p0

.

We know that for any a, b, c, d, e ∈ R>0, if a
b ≤ e and c

d ≤ e then

a+ c

b + d
≤ e. (1)

Therefore, if we prove that Pr(It≥cv)
Pr(It≤−cv) ≤

p0

1−p0
, we are done. Thus, we can prove this

theorem by proving that Pr(Ik≥x)
Pr(Ik≤−x) ≤

p0

1−p0
for all x ∈ {1 . . . k}, k ∈ {1 . . . n}. We

prove this by induction on number of areas. If there is just one area, then that area
decides to accept with probability p0 (as all initial acceptance probabilities are equal to
p0). Assume if the number of areas is less than or equal to n, then Pr(Ik≥x)

Pr(Ik≤−x) ≤
p0

1−p0

for all x ∈ {1 . . . k}, k ∈ {1 . . . n}. We prove the statement when there are n+1 areas.
Let par(n, x) : N × N �→ {0, 1} be a function which is 0 if n and x have the same
parity, 1 otherwise. Let v be the area scheduled at time n + 1. Let ν = par(n, x). We
now consider the following three cases.

Case 1: 1 ≤ x ≤ n − 2. The event In+1 ≥ x + 1 is the union of the following two
disjoint events:

1. In ≥ x+ 2, and whatever the nth area decides, In+1 is at least x+ 1.
2. In = x+ ν and n+ 1th area decides to accept.

Similarly, the event In+1 ≤ −x − 1 is the union of the event In ≤ −x − 2 and the
event — In = −x− ν and the n+1th area rejects the idea. We note that we require the
par function because only one of the events In = x and In = x + 1 can occur w.p.p.
depending on parities of n and x. Thus

Pr(In+1 ≥ x+ 1) =Pr(In ≥ x+ 2) + Pr(Xv = 1|In = x+ ν)Pr(In = x+ ν),

P r(In+1 ≤ −x− 1) =Pr(In ≤ −x− 2)

+Pr(Xv = −1|In = −x− ν)Pr(In = −x− ν).

Now, if x+ν ≥ cv , then Pr(Xv = 1|In = x+ν) = Pr(Xv = −1|In = −x−ν) = 1,
otherwise Pr(Xv = 1|In = x + ν) = p0 < 1 − p0 = Pr(Xv = −1|In = −x − ν).
Therefore,Pr(Xv = 1|In = x+ν) ≤ Pr(Xv = −1|In = −x−ν). Let β = Pr(Xv =
−1|In = −x− ν). Using the above, we have
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Pr(In+1 ≥ x+ 1) ≤Pr(In ≥ x+ 2) + βPr(In = x+ ν),

P r(In+1 ≤ −x− 1) =Pr(In ≤ −x− 2) + βPr(In = −x− ν).

From above, we have

f(β) =
Pr(In ≥ x+ 2) + βPr(In = x+ ν)

Pr(In ≤ −x− 2) + βPr(In = −x− ν)
≥ Pr(In+1 ≥ x+ 1)

Pr(In+1 ≥ −x− 1)
. (2)

The function f(β) is either increasing or decreasing and hence has extrema at end
points of its range. The maxima is≤ max{ Pr(In≥x+2)

Pr(In≤−x−2) ,
Pr(In≥x+2)+Pr(In=x+ν)

Pr(In≤−x−2)+Pr(In=−x−ν)}
because β ∈ [0, 1]. Now Pr(In ≥ x + 2) + Pr(In = x + 1) + Pr(In = x) =
Pr(In ≥ x) and Pr(In ≤ −x− 2) + Pr(In = −x− ν) = Pr(In ≤ −x). Thus f ≤
max{ Pr(In≥x+2)

Pr(In≤−x−2) ,
Pr(In≥x)
Pr(In≤−x)} ≤

p0

1−p0
(from induction hypothesis). From above and

(2), Pr(In+1≥x+1)
Pr(In+1≤−x−1) ≤

p0

1−p0
.

Case 2: x = 0. If n is odd then Pr(In+1 ≥ 1) = Pr(In+1 ≥ 2) and Pr(In+1 ≤
−1) = Pr(In+1 ≤ −2) and this case is the same as x = 1 and hence considered
above. Thus, assume that n is even. Thus

Pr(In+1 ≥ 1) = Pr(In ≥ 2) + Pr(Xv = 1|In = 0)Pr(In = 0), (3)

Pr(In+1 ≤ −1) = Pr(In ≤ −2) + Pr(Xv = −1|In = 0)Pr(In = 0). (4)

Since, if In = 0, then areas decide based on the initial acceptance probability. We have
Pr(Xv = 1|In = 0) = p0 and Pr(Xv = −1|In = 0) = 1 − p0. Using this fact ,by
dividing (3) and (4), we have

Pr(In+1 ≥ 1)

Pr(In+1 ≤ −1) ≤
Pr(In ≥ 2) + p0Pr(In = 0)

Pr(In ≤ −2) + (1− p0)Pr(In = 0)
.

From induction hypothesis, Pr(In≥2)
Pr(In≤−2) ≤

p0

1−p0
. Thus, we conclude Pr(In+1≥1)

Pr(In+1≤−1) ≤
p0

1−p0
based on (1).

Case 3: x ∈ {n − 1, n}. In this case Pr(In ≥ x + 2) = 0, since the number of
adopters can never be more than the number of total areas. Also, In+1 cannot be equal
to n because n and n + 1 don’t have the same parity. Therefore, Pr(In+1 ≥ n) =
Pr(In+1 ≥ n+ 1) and Pr(In+1 ≤ −n) = Pr(In+1 ≤ −n− 1). Thus, it is enough to
analyze the case x = n. We have

Pr(In+1 ≥ n+ 1) = Pr(Xv = 1|In = n)Pr(In = n),

P r(In+1 ≤ n+ 1) = Pr(Xv = −1|In = −n)Pr(In = −n).
Since either both decisions are made based on thresholds with probability 1 or both
are made based on initial probabilities and initial acceptance probability is less than
the initial rejection probability, We know that Pr(Xv = 1|In = n) ≤ Pr(Xv =

−1|In = −n). Therefore Pr(In+1≥n+1)
Pr(In+1≤n+1) ≤ Pr(In=n)

Pr(In=−n) . Now, since Pr(In = n) =

Pr(In ≥ n) and Pr(In = −n) = Pr(In ≤ −n), from induction hypothesis, we have
Pr(In+1≥n+1)
Pr(In+1≤n+1) ≤ p0

1−p0
and we are done.
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4 Non-adaptive Marketing Strategy with Random Thresholds

We consider the problem of designing a non-adaptive spreading strategy when the
thresholds are drawn independently from the same but unknown distribution. We show
the best spreading strategy is to schedule areas in a non-increasing order of initial accep-
tance probabilities. We prove the optimality of the algorithm using a coupling argument.
First we state the following lemma which will be useful in proving Theorem 3.

Lemma 1. Let π and π′ be two spreading strategies. If ∃k such that π(i) = π′(i), ∀i ≥
k and Pr(Ik ≥ x;π) ≥ Pr(Ik ≥ x;π′), ∀x ∈ Z, then E(In;π) ≥ E(In;π

′).

Theorem 3. Assume that the planner’s prior knowledge about all values of ci’s is the
same, i.e., all ci’s are drawn independently from the same but unknown distribution.
Let initial acceptance probabilities be arbitrary numbers. Then, the best non-adaptive
spreading strategy is to order all areas in non-increasing order of their initial accep-
tance probabilities.

Proof. Let π′ be a spreading strategy where areas are scheduled in an order that is not
non-increasing. Thus, there exists k such that pπ′(k) < pπ′(k+1). We prove that if a new
spreading strategy π is created by exchanging position of areas π′(k) and π′(k + 1),
then the expected number of people who accept the idea cannot decrease. It means the
best spreading strategy is non-increasing in the initial acceptance probabilites.

To prove the theorem, we will prove that Pr(Ik+1 ≥ x;π) ≥ Pr(Ik+1 ≥ x;π′)
and the result then follows from Lemma 1. Since, the two spreading strategies are
identical till time k − 1 and therefore the random variable Ik−1 has identical distri-
bution under both the strategies, we can prove the above by proving that Pr(Ik+1 ≥
Ik−1 + y|Ik−1;π) ≥ Pr(Ik+1 ≥ Ik−1 + y|Ik−1;π′) for all y ∈ Z. We note that the
only feasible values for y are in {−2, 0, 2}. Hence, if y > 2 then both sides of the above
inequality are equal to 1 and the inequality holds. Similarly, if y <= −2 both sides of
the inequality are equal to 1 and the inequality holds. Thus, we only need to analyze the
values y = 0 and y = 2.

Now we define some notation to help with rest of the proof. Let u = π′(k + 1),
v = π′(k), and qi = 1−pi. It means pv < pu. Let χ(i, j) be the event where i and j are
indicators of decision of areas scheduled at time k and k + 1 respectively, e.g., χ(1, 1)
means that areas scheduled at time k and k + 1 accepted the idea, whereas χ(1,−1)
implies that area scheduled at time k accepted the idea, while the area scheduled at time
k + 1 rejected the idea. Let B(y) be the event Ik+1 ≥ Ik−1 + y|Ik−1 = z for some
arbitrary z ∈ Z. We consider the cases Ik−1 > 0, Ik−1 < 0 and Ik−1 = 0 separately.

Case 1: Ik−1 = z, z > 0. We have, B(0) = χ(1, 1) ∪ χ(1,−1) ∪ χ(−1, 1) which is
equal to the complement of χ(−1,−1). Since we assume z > 0, the thresholds −cu
and −cv cannot be hit. Thus, χ(−1,−1) occurs only when both areas decide to reject
the idea based on their respective initial acceptance probabilities. Thus, from chain rule
of probability, it is the product of following four terms:

1. Pr(z < cu), i.e, the threshold rule does not apply and u decides based on initial
acceptance probabilities.

2. u rejects the idea based on initial probability of rejection, qu.
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3. Pr(z − 1 < cv). Given u rejected the idea, D(v), the decision variable for v
becomes z − 1 and the threshold rule does not apply and v decides based on initial
acceptance probabilities.

4. v rejects the idea based on initial probability of rejection, qv.

Therefore, Pr(χ(−1,−1)) = Pr(z < cu)quPr(z − 1 < cv)qv . Thus, Pr(B(0);π) =
1 − Pr(z < cu)quPr(z − 1 < cv)qv . Since, cu and cv are i.i.d random variables, we
can write any probability of form Pr(z � cu) or Pr(z � cv) as Pr(z � x), where x
is an independent random variable with the same distribution as cu and cv. Thus

Pr(B(0);π) = 1− Pr(z < x)quPr(z − 1 < x)qv. (5)

Now, Pr(χ(1, 1)) = Pr(Xu = 1|Ik−1 = z)Pr(Xv = 1|Ik = z + 1). Event Xu = 1
is the union of following two non-overlapping events:

1. z ≥ cu; u accepts the idea because of the threshold rule.
2. z < cu and u accepts the idea based on initial acceptance probability, pu.

Thus, Pr(Xu = 1|Ik−1 = z) = Pr(z ≥ cu) + Pr(z < cu)pu. Similarly, Pr(Xv =
1|Ik = z + 1) = Pr(z + 1 ≥ cv) + Pr(z + 1 < cv)pv. Therefore

Pr(B(2);π) =(Pr(z ≥ x) + Pr(z < x)pu)

× (Pr(z + 1 ≥ x) + Pr(z + 1 < x)pv). (6)

where we have replaced cu and cv by x because they are i.i.d. random variables. We
can obtain corresponding probabilities for process π′ by exchanging pu and pv. Thus,
Pr(B(0);π) = Pr(B(0);π′) = 1 − Pr(z < x)quPr(z − 1 < x)qv . We can write
Pr(B(2);π′) as follows.

Pr(B(2);π′) =(Pr(z ≥ x) + Pr(z < x)pv)

× (Pr(z + 1 ≥ x) + Pr(z + 1 < x)pu). (7)

On the other hand Pr(z < x) ≥ Pr(z + 1 < x) and Pr(z + 1 ≥ x) ≥ Pr(z ≥ x).
Comparing (6) and (7) along with these facts that pv < pu and Pr(z < x)Pr(z + 1 ≥
x) ≥ Pr(z ≥ x)Pr(z + 1 < x), we get Pr(B(2);π) ≥ Pr(B(2);π′).

Case 2: Ik−1 = −z, z > 0. A similar analysis can be applied to get the result.

Case 3: Ik−1 = 0. We have

Pr(B(2);π) =pu(Pr(x > 1)pv + Pr(x = 1)), (8)

Pr(B(0);π) =pu + quPr(x > 1)pv, (9)

Pr(B(2);π′) =pv(Pr(x > 1)pu + Pr(x = 1)), (10)

Pr(B(0);π′) =pv + qvPr(x > 1)pu. (11)

By comparing (8) with (10) and (9) with (11), we see that Pr(B(2);π) ≥ Pr(B(2);π′)
and Pr(B(0);π) ≥ Pr(B(0);π′) respectively. Thus, Pr(Ik+1 ≥ Ik−1+x|Ik−1;π) ≥
Pr(Ik+1 ≥ Ik−1 + x|Ik−1;π′), ∀x ∈ Z.
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Abstract. Network coordination games (NCGs) have recently received
a lot of attention since they model several kinds of interaction problems in
social networks. However, the performance of these games at equilibrium
may be very bad. This motivates the adoption of mechanisms for inducing
a socially optimal state. Many settings are naturally dynamical and thus
we believe it is worth to consider the design of incentive compatible best-
response mechanisms (Nisan, Schapira, Valiant, Zohar, 2011) for NCGs.
Specifically, we would like to assign to players special fees in order to
induce the optimum profile of an NCG. Moreover, we would like the
mechanism to be budget-balanced, i.e., implementable with no cost.

We show that a budget-balanced and incentive compatible best-
response mechanism for inducing the optimal profile of a two-strategy
NCG always exists. Moreover, for such a mechanism, we investigate other
properties inspired by envy-freeness, collusion-resistance and fairness.

1 Introduction

A Motivating Example: French Academics Pools. Let us introduce the following
example, drawn from a (simplified version of a) real case occurring in France.
The Paris academic system is constituted by a myriad of institutions, includ-
ing 15 universities and dozens of engineering and business schools. For several
(strategic, scientific, maybe political) reasons, former administration proposed
to group some of these institutions into large and geographically coherent pools.
Rather quickly, several proposals came out, and let us focus on two important
projects of pools in Paris region: PSL (Paris-Sciences-Lettres), located inside
Paris, and UPSa (University Paris-Saclay), located in the suburbs.

This setting can be easily modeled as follows. There is a set N = {1, 2, . . . , n}
of institutions and each institution may decide to join PSL or UPSa. For an
institute i, there is a personal cost to join one particular pool that does not
depend on the institutions already in the pool (in particular, they arise from the
necessity of changing location, since the pools shall be geographically coherent).
Also, for some pairs of institutions i and j, there is an interest of being in the same
pool (for instance, more scientific cooperation or common teaching programs).

B. Vöcking (Ed.): SAGT 2013, LNCS 8146, pp. 207–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The introduction of these pools is motivated by the necessity to improve the
welfare of the Paris university system through an improved classification in in-
ternational ranking systems and a more accurate distribution of public funds.
Nevertheless, the composition of the two pools was not fixed, neither the uni-
versities have been forced to join in a specific pool (for example, by setting a
penalty whenever an university join in the undesired pool). As a matter of fact
some institutes decided over time to join in one of the pools. Often, this decision
is made after a long bargaining with the administration and between institutions.

Then, it is natural to ask if and how the administration can implement the
desired outcome in such an inherently sequential environment.
Network Coordination Games. In order to address the above question, we con-
sider the class of network games. These games are used to represent systems
consisting of a network of interconnected components. These components, or
agents, interact only with their neighbors and the relationship between them
can be modeled as simple two-player games. Examples of network games can be
found in Economics [1], in Biology [2], in Physics [3], and in Computer Science [4].

Among network games, particular interest has been given to Network Coor-
dination Games (NCGs) (see Section 3 for a formal definition). In these games,
the agents prefer to coordinate with their neighbors rather than conflicting with
them. NCGs have been adopted, for example, in the study of the ferromagnetic
Ising model [3], for modeling the diffusion of innovations [5] or the formation of
opinions [6]. The academic pools’ example also can be modeled by an NCG.

A specific feature of many network games is given by the twofold nature of
cost functions: in addition to costs arising from the relationship with neighbors
on the network, adopting a strategy may also have a cost that does not depend
on what other players are doing. For example, in the Ising model this cost is given
by external magnetic fields; in the formation of academic pools, by the change
of location; in opinion games, it instead embeds the personal belief of players.
Thus, these costs model the personal “feeling” of agents or their interaction with
the environment. They are then fixed costs attached to specific strategies.

Unluckily, the analysis of NCGs shows that the self-interested behavior of
agents may worsen the performance of the system. Indeed, the Price of Anar-
chy (PoA) [7] for NCGs can be unbounded [6]. Moreover, the optimum is not
necessarily a Nash equilibrium as shown in the following example. Consider two
players, both with strategy set {0, 1}, involved in the (network) coordination
game specified by the following cost matrix:

0 1
0 0, ε 1− ε, 1− ε
1 1− ε, 1− ε ε, 0

Assume moreover that the row player incurs a preference cost of b ∈ {0, 1} for
playing strategy b while the column player’s preference cost for playing strategy
b is 1− b. Thus, for 0 < ε < 1

3 , the two configurations of minimal total cost are
(0, 0) and (1, 1) but the unique Nash equilibrium of the game is (0, 1).

However, we will show (see Theorem 2) that if each player has exactly two
strategies, then there is a polynomial centralized algorithm to find the profile that
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optimizes the performance of these systems. Nevertheless, it is often impossible
to force agents to play according to such optimal solution because the optimum
may not be an equilibrium. And even if the optimum is an equilibrium, the
intrinsic dynamics of these settings (see, for example, the case of Paris academic
pools) can push the system into a sub-optimal outcome. The occurrence of these
events, large PoA, efficient centralized optimization and inability to force central
solutions, suggests to design mechanisms able to influence the players’ behavior
towards the desired direction. Several and different mechanisms of this kind have
been proposed, including taxes [8,9], Stackelberg strategies [10], mechanisms via
creditability [11] and coordination mechanisms [12].
Best-Response Mechanisms. In this work we focus on incentive compatible best-
response mechanisms. This is a class of indirect mechanisms introduced in [13]
in which agents repeatedly play a base game and at each time step they are pre-
scribed to choose the best-response to the strategies currently selected by other
agents. This class of mechanisms takes advantage of the dynamical nature of
many systems (as, for example, the intrinsic dynamics underlying the formation
of Paris academic pools) to induce the desired outcome.

In [13] it is shown that for a specific class of games, namely NBR-solvable
games with clear outcomes (roughly speaking, these are games for which a Nash
equilibrium can be computed by iterated elimination of “useless” strategies; see
below for a detailed definition), players have no incentive to deviate from this
prescribed behavior and the mechanism converges to an equilibrium. Thus, for
inducing the optimum of an NCG, it is sufficient to modify the players’ cost
functions so that the NCG becomes an NBR-solvable game with clear outcomes.

However, several constraints should be satisfied. First, the new cost functions
should not worsen the performance of the desired profile. Indeed, it does not
make sense to induce the profile that minimizes the social cost and then ask to
players more than this cost. Second, any cost function should include the players’
preference costs. Indeed, as suggested above, these often are fixed costs depend-
ing only on personal or environmental features and they cannot be influenced
by neither other players nor any external authority (for example, in the case
of academic pools, there is no way of avoiding the change of location). Finally
we would like to model an authority that does not assign penalties or taxes for
undesired strategies, but influences only the costs faced by the agents when they
adopt the desired strategy. This is motivated by the example of Paris academic
pools, where the “penalty” approach has been largely avoided.

Thus, we assume that the mechanism may assign to players playing the desired
strategy special fees (possibly negative) in place of the costs arising from their
relationships. Note we will assume these fees depend only on the strategy of the
agent with which we are bargaining, and not on the entire strategy profile. For
example, if in the setting of the example above, we would like to induce the
optimal profile (0, 0), then the mechanism may offer to the column player a fee
−δ, with δ > ε, whenever she plays strategy 0. That is, the players face this new
game (the payoffs below do not include preference costs):
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0 1
0 0,−δ 1− ε, 1− ε
1 1− ε,−δ ε, 0

It is easy to see that, by considering the preference costs described in the ex-
ample above, (0, 0) is the unique Nash equilibrium, its cost is lower than in the
original game and, moreover, the new game is solvable by iterated elimination
of dominated strategies (a subclass of NBR-solvable games): playing 0 is a dom-
inant strategy for the row player, and then (given that the row player plays 0)
playing 0 is a dominant strategy for the column player.

Implementing this mechanism has a cost δ+ ε. Indeed, it should be necessary
not only to pay δ to the column player, but also to pay the communication costs
of ε in her place. In this work we focus on budget-balanced mechanisms, i.e. on
mechanisms that can be implemented with no cost. This means that whenever
inducing a player to play the target strategy has a cost, it should be possible
to recover this cost from other players (see below for a detailed definition). For
example, in the above setting, the mechanism may offer to the row player a fee
of δ+ ε, with ε < δ < 1, for playing 0; then, after she payed this fee, it may offer
to the column player a fee of −δ for playing 0. The resulting game is

0 1
0 δ + ε,−δ δ + ε, 1− ε
1 1− ε,−δ ε, 0

As above the payoffs in the matrix do not include preference costs, and by con-
sidering the ones described in the example above, (0, 0) is the unique Nash equi-
librium and the game is solvable by iterated elimination of dominated strategies.
However, now the mechanism can be implemented with no cost.1

Our Contribution. The focus of this work is on designing budget-balanced incen-
tive compatible best-response mechanisms for NCGs through the assignment of
special fees to players in case they play the desired strategy. We consider NCGs
in which each player has two strategies. As stated above, the optimal profile can
be efficiently computed for these games. Then, we show that it is always possible
to design a budget-balanced best-response mechanism for inducing this optimal
profile (Theorem 3). Thus, an authority can always find policies that allow to
exploit the dynamical nature of a system to induce the desired outcome.

Given this positive result, we investigate other desired properties that the
mechanism may satisfy. The first property we consider, named order-freeness,
deals with the possibility that several budget-balanced best-response mecha-
nisms can be adopted for inducing the optimal profile. If these mechanisms treat
one player in different ways, then this player will care about which mechanism
is actually implemented. A best-response mechanism is order-free if no player
prefers that another mechanism is adopted. We will show that an order-free
1 The definition of budget-balanced mechanisms reminds the 0-implementation def-

inition in [11]. However, they are different: indeed, we can enforce payments from
agents, but our new cost functions should satisfy several other requirements.
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best-response mechanism always exists (Theorem 4). However, we also show
that verifying if a mechanism satisfies this property is hard (Theorem 5).

The second property on which we focus is the collusion-resistance. We would
like that no coalition has any incentive to leave the induced profile even if side-
payments are allowed. We show that a budget-balanced best-response mecha-
nism that is collusion-resistant always exists (Theorem 6). We also characterize
collusion-resistance in terms of solutions of a suitable cooperative game.

Finally, we look for fair mechanisms. We give different definitions of fairness,
that focus on different aspects of the problem. The first definition is based on the
cooperative game characterization previously discussed. In this area, the Shapley
value is uniformly recognized as a standard for fairness and, for this reason, we
look at the extent to which we can adopt this concept in our setting. It turns
out that the Shapley value corresponds to a best-response mechanism only for
special NCGs (Theorem 7). For the other fairness definitions, we specify an ideal
fair mechanism which we would like to be as close to as possible. Unfortunately,
it will turn out that for each of the ideal mechanisms we considered, it is hard
to compute the closest budget-balanced best-response mechanism (Theorem 8).
Notation. Throughout this paper we use bold symbols for vectors, i.e. x =
(x1, x2, . . . , xn). Given a vector x of size n and a set A ⊆ [n], we will write
xA for the vector (xi)i∈A and x−A for the vector (xi)i/∈A. We also use x−i as a
shorthand for x−{i}. Finally, for any b ∈ {0, 1} we write b for 1− b.

Due to space limits, proofs are omitted (see the full version of the paper [14]).

2 The Model

Network Games. In an n-player network game G, each player i ∈ [n] has strategy
set Si and is represented by a vertex of a graph G = (V,E). For each player i
and each strategy si ∈ Si, we denote by pi(si) ≥ 0 the preference cost for i
for the strategy si. To each edge e = (i, j) ∈ E is linked a two player game
Ge in which the set of strategies of the endpoints are exactly Si and Sj . We
denote by cei (si, sj) ≥ 0 the communication cost for player i in the game Ge,
with e = (i, j) ∈ E, when i chooses strategy si ∈ Si and j selects strategy
sj ∈ Sj . Given a strategy profile x ∈ S1 × · · · × Sn, the total cost of player i in
the network game G is given by ci(x) = pi(xi) +

∑
e=(i,j) c

e
i (xi, xj).

Best-Response Mechanisms. Nisan et al. [13] studied a class of indirect mech-
anisms, termed repeated-response mechanisms: starting from a given profile, at
each time step t, some player i is selected and she announces a strategy sti ∈ Si.
A best-response mechanism is a repeated-response mechanism in which the pre-
scribed behavior for each player is to always choose a best-response to the strate-
gies currently played by other players. A repeated-response mechanism converges
to the target profile x if the players eventually play according to this strategy
profile, i.e. there is t� > 0 such that xt = x for any t ≥ t�, where xt is the
strategy profile after that the players selected at time step t announced their
strategies. For a player i enrolled in a repeated-response mechanism, let us de-
note by zi(x

t) the cost of i in the profile xt. If the mechanism converges to x,
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we say that the total cost of i is Zi = zi(x), otherwise we say the total cost of
i is Zi = lim supt→∞ zi(x

t). A repeated-response mechanism is incentive com-
patible if any player behaving as prescribed by the mechanism achieves a total
cost that is at most as high as the total cost achieved by deviating from the
prescribed behavior, given that the other players play as prescribed. Specifi-
cally, a best-response mechanism is incentive compatible if always choosing the
best-response is a pure Nash equilibrium of the n-player game whose player’s
strategies are all possible behaviors and player’s costs are their total costs. It is
useful to remark that in [13] (and in this work), players are only interested in
minimizing the cost in the profile at which the mechanism converges and they do
not care about the cost in the intermediate profiles generated by the dynamics.
NBR-solvable Games. A strategy si ∈ Si is a never-best-response (NBR) strategy
if for every x−i there exists s′i = si such that zi(si,x−i) > zi(s

′
i,x−i). A game is

NBR-solvable if there exists a sequence of eliminations of NBR strategies that
results in a single strategy profile2. Let us denote by y� the unique profile to
which the sequence of eliminations of an NBR-solvable game converges. For an
NBR-solvable game G with a sequence of eliminations of length k, we denote
by Gj , with j = 0, 1, . . . , k, the sub-game resulting from the first j eliminations
in the sequence (observe that G0 = G and Gk allows only the profile y�). Then
an NBR-solvable game is said to have clear outcomes if for each player i, there
exists a (player-specific) sequence of elimination of NBR strategies such that at
the first step τi in which a strategy of Si is eliminated, player i “likes” y� at least
as much as any other profile in Gτi , i.e. zi(y�) ≤ zi(y) for every y ∈ Gτi . Next
theorem shows how this class of games relates to best-response mechanisms.

Theorem 1 ([13]). A best-response mechanism for an NBR-solvable game with
clear outcomes is incentive compatible and converges to y�, regardless of the
starting state and the order in which players are selected.

We highlight that the above theorem holds for any possible schedule of players
such that each player appear in the schedule infinitely many times.
Our Mechanism. We aim to design an incentive compatible best-response mech-
anism for inducing a profile y. It is then sufficient to compute a new cost function
c′i for any player i so that the new game G′ is NBR-solvable with clear outcomes
and y is the Nash equilibrium.

In our setting we force the new cost functions to satisfy several constraints.
First, the social cost of the induced profile should not increase, i.e.

∑
i c
′
i(y) ≤∑

i ci(y), where y is the target profile. Moreover, we defined preference costs
as being fixed, independent of the network and attached to strategies. That is,
whenever a player adopts a strategy, he must pay the corresponding preference
cost. Hence, the functions c′i must include these costs. Finally, we would like
that the new cost function affects only profiles in which players play the desired
strategy, i.e. c′i(x) = ci(x) if xi = yi and y is the target profile. This constraint is
motivated by the impossibility in many setting (for practical or ethical reasons)
2 In case of ties, we assume that an opportune tie-breaking rule is adopted.
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to force the actions of autonomous agents by introducing large penalties or taxes
on the undesired strategies. Thus, we have the following mechanism:

Definition 1 (The mechanism). Let ji be the i-th player appearing in the
elimination sequence defining G′ and let ij be the first time the player j appears
in this elimination sequence. Consider an arbitrary schedule of players. For i =
1, . . . , �, where � is the length of the elimination sequence of G′, let ti be such
that ji is scheduled at ti, and before ti, players j1, . . . , ji−1 are scheduled at least
once in this order. Then, at each time step t the mechanism assigns to player j
selected at time t a cost cj(xt−1) if t < tij and a cost c′j(xt−1) otherwise.

Then, since G′ is NBR-solvable with clear outcomes, by Theorem 1 at each time
step players prefer to play according to the best-response and this dynamics
converges to the target profile y. Note that the time necessary for convergence
depends on how players are scheduled for announcing their strategies. However,
if we only consider schedules in which no player is “adversarially” delayed for
arbitrarily long time, then the mechanism converges to the target profile quickly.

In this work we focus on a special way of building the new cost functions.
Formally, we consider a vector of fees γ = (γ(i))i∈[n] and say that γ, a network
game G and a strategy profile y define a game Gy,γ in which the cost function c′i
of player i is as follows: if xi = yi, then c′i(x) = c′i(yi) = γ(i) + pi(yi), otherwise
c′i(x) = ci(x). Then, our aim becomes to compute a vector of fees γ such that
the game Gy,γ defined by G,y and γ is NBR-solvable with clear outcomes.
Budget-Balancedness. Fix a network game G, a profile y, and a vector of fees γ.
The cost of γ is defined as

∑
i (ci(y) − c′i(y)) = C(y) −∑i γ(i), where C(y) =∑

i

∑
e=(i,j) c

e
i (yi, yj). Note that the cost of γ is always non-negative. We are

interested in designing incentive compatible best-response mechanisms that are
budget-balanced, i.e. mechanisms for which γ has null cost.

However, a mechanism can run out of money by paying a fee to some players
before that an equivalent amount of money has been collected from other players.
We would like to avoid the occurrence even of this “temporary deficit”. That is,
we would like that the mechanism can schedule the players so that it is able to
pay a player i with money collected from players scheduled before i. Specifically,
let an order of players be a permutation π on the set of players. Then, we say
that a vector of fees γ is deficit-free according to π if γ(i) +

∑
j∈Nπ(i)

γ(j) ≥ 0

for each player i, where Nπ(i) is the set of players that are scheduled before i in
π, i.e. Nπ(i) = {j : π(j) < π(i)}. A vector of fees γ is deficit-free if there exists
at least one order π of players such that γ is deficit-free according to π.

Deficit-freeness implies that the mechanism has a non-negative cost even in
case of non-convergence. That is, the cost of the fees will always be non-negative
no matter what the players will play and not only in the target profile.

3 Two-Strategy Network Coordination Games

Here, we consider the following subclass of network games, named two-strategy
NCGs, where each player has only two strategies, 0 and 1, and for every edge
e = (i, j) the game Ge is given by the following cost matrix:
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0 1
0 αe

i (0), α
e
j(0) βe

i (0), β
e
j (1)

1 βe
i (1), β

e
j (0) αe

i (1), α
e
j(1)

where the costs for agreements are smaller or equal to the costs for disagreements
(even if these costs may vary depending on which strategy a player adopts), i.e.
βe
k(b) ≥ αe

k(b
′) ≥ 0 for all b, b′ ∈ {0, 1} and k = i, j.

We say that a strategy profile x� is optimal (or the optimum) for a network
game if it minimizes

∑
i ci(x) over all profiles x. Next theorem shows that the

optimal profile can be easily computed in two-strategy NCGs. Indeed, it turns
out to be equivalent to compute the minimum cut of a suitably built graph.

Theorem 2. The optimum of a two-strategy NCG is polynomially computable.

A Best-Response Mechanism. Note that, given a two-strategy network game G
and a profile x, the game Gx,γ defined by G,x and a vector of fees γ is NBR-
solvable with clear outcomes if and only if, in Gx,γ it is possible to schedule
players so that, for each player i, choosing xi is the unique best-response (un-
der opportune tie-breaking) given that players scheduled before i are playing
according to x. Formally, given an order π, we say that a vector of fees γ is
inducing a profile x according to π if γ(i) ≤ Γπ(i) :=

∑
e=(i,j)
j∈Nπ(i)

cei (xi, xj) +∑
e=(i,j)
j /∈Nπ(i)

minb∈{0,1} cei (xi, b) + pi(xi)− pi(xi) for each i. Indeed if i plays xi, in

addition to her preference cost pi(xi), for an edge e = (i, j) she will pay for sure
cei (xi, xj) if j ∈ Nπ(i) and at least minb∈{0,1} cei (xi, b) if j /∈ Nπ(i). We say that a
vector of fees γ is inducing the profile x if there exists at least one order π such
that γ is inducing x according to π. Then, the game Gx,γ is NBR-solvable with
clear outcomes if and only if γ is inducing x. We also say an order π is feasible
for x if there exists a vector of fees of null cost that is both inducing x and
deficit-free according to π. Similarly, a vector of fees γ is valid for x according
to π if it makes π feasible for x. Finally, a vector of fees γ is valid for x if there
is an order π such that γ is valid for π according to x.

Given these preliminary definitions, we show that a budget-balanced incentive
compatible best-response mechanism for the optimal profile of a two-strategy
NCG can be easily designed. Given such a game and its optimal profile x�, we
define the base value B(i) of a player i as B(i) = pi(x

�
i )−pi(x�

i )+
∑

e=(i,j) α
e
i (x

�
i ).

That is, B(i) is the maximum fee that may be assigned to i by a vector of fees
inducing x� according to π, where π schedules i as first. Note that the maximum
fee assignable to i does not decrease if i is scheduled later, and thus Γπ(i) ≥ B(i)
for any order π. Then, since βe

j (x
�
j )−αe

j(x
�
j ) ≥ 0 for any j, we obtain this lemma.

Lemma 1. For a two-strategy NCG with optimal profile x�,
∑

i B(i) ≥ C(x�).

Consider now the following vector of fees γ: for each i such that B(i) ≥ 0,
we set γ(i) ≤ B(i) such that

∑
i : B(i)≥0 γ(i) = C(x�) −∑i : B(i)<0 B(i) (this is

possible by Lemma 1). For each remaining player i, we set γ(i) = B(i). It follows
that γ defines a budget-balanced incentive compatible best-response mechanism.
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Theorem 3. For a two-strategy NCG, a vector of fees valid for x� always exists
and can be computed in polynomial time.

Order-Freeness. Suppose two different orders, π and π′, are both feasible for
x� and let γ and γ′ be the corresponding valid vectors of fees. Then, γ and γ′

can charge very different costs to the same player. It may be then questionable
that a player accepts the proposed fee if there exists another feasible order for
which she improves her utility for sure. Thus, we would like to have a vector of
fees γ for which no player “envies” another schedule or feels disadvantaged by
the mechanism. Formally, let Π denote the set of all orders feasible for x�. Since
player i can be charged up to Γπ(i) in the ordering π (for having γ inducing x�

according to π), choosing a fee γ(i) which is at most Γπ(i) for any π ∈ Π would
ensure “envy-freeness” for player i. Then by defining Γ � = (Γ �(i))i the vector
that sets Γ �(i) = minπ∈Π Γπ(i), we say that a vector of fees γ is order-free valid
for x� if it is valid for x� and γ(i) ≤ Γ �(i) for each player i.

Order-free validity can always be achieved, as stated in the following theorem.

Theorem 4. For a two-strategy NCG G, a vector of fees that is order-free valid
for x� always exists and it can be computed in polynomial time.

Beyond the existence of one order-free valid vector of fees, we might be inter-
ested in determining whether a given vector of fees is order-free valid or not (for
instance if we are focused on fair vectors of fees). Unfortunately, computing the
values (Γ �(i))i is NP-hard, as stated by the following theorem. The hardness
follows from a reduction of the feedback arc set problem.

Theorem 5. Given a two-strategy NCG and a player i, establishing whether
Γ �(i) = B(i) is (strongly) NP-complete, even if αe

j(0) = αe
j(1) = αe

j and βe
j (0) =

βe
j (1) = βe

j for each player j and each edge e.

Collusion-Resistance. A best-response mechanism does not prevent some players
to collude and jointly move away from x�. We wonder about the possibility of
inducing a profile x� such that no coalition of players deviates from x�, even if
side payments are allowed. Specifically, we say that a vector of fees γ is collusion-
resistant if for every subset L ⊂ [n] of players and any joint strategy yL = x�

L,
we have

∑
i∈L (pi(x

�
i ) + γ(i)) ≤ ∑

i∈L (pi(yi) + hi(yi)), where hi(yi) = γ(i) if
yi = x�

i , and hi(yi) =
∑

e=(i,j)
j∈L

cei (yi, yj)+
∑

e=(i,j)
j /∈L

cei (yi, x
�
j ), otherwise. Roughly

speaking, we would like to choose a vector of fees γ such that the cumulative
cost of a coalition L is minimized by playing according to x� (and thus each of
the members gets the corresponding fee from γ), given that the other players are
playing according to this optimal profile. We then have the following theorem.

Theorem 6. For a two-strategy NCG a collusion-resistant vector of fees order-
free valid for x� always exists and can be computed in polynomial time.

We note that for any two-strategy game (not necessarily NCGs) we can give
an alternative definition of collusion-resistance based on cooperative cost games.
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We consider the cost game v that sets v([n]) = C(x�) and for each L ⊂ [n],

v(L) =
∑
i∈L

⎛⎜⎜⎝pi(x
�
i )− pi(x

�
i ) +

∑
e=(i,j)
j∈L

cei (x
�
i , x

�
j ) +

∑
e=(i,j)
j /∈L

cei (x
�
i , x

�
j )

⎞⎟⎟⎠ . (1)

Then, we have the following characterization.

Lemma 2. Given a two-strategy game and its optimal profile x�, a vector of
fees γ is collusion-resistant and has null cost if and only if γ is in the core of
the cooperative cost game v defined by (1).

Shapley-Fairness. In cooperative game theory the Shapley value [15] is acknowl-
edged as a standard for fairness in settings where transfer of utility is allowed.

Thus, above characterization motivates us to adopt such a fairness standard
also in our setting. Specifically, given a two-strategy NCG and its optimal profile
x�, we say a vector of fees γ is Shapley-fair if γ is the Shapley value for the
cooperative game defined by (1). Next lemma shows that a Shapley-fair vector of
fees can be easily computed by suitably decomposing the characteristic function.

Lemma 3. The Shapley value of (1) is computable in polynomial time.

Using the same decomposition, we can show that the Shapley value corresponds
to a collusion-resistant vector of fees of null cost.

Lemma 4. For a two-strategy NCG, the Shapley value of (1) is in the core.

Unfortunately, it is easy to show that the Shapley value may not be a valid
vector of fees for the optimum of an NCG, even if for each edge e = (i, j) we have
αe
i (0) = αe

i (1) = αe
j(0) = αe

j(1) = αe and βe
i (0) = βe

i (1) = βe
j (0) = βe

j (1) = βe.
However, for a subclass of NCGs, we can achieve also Shapley-fairness.

Theorem 7. Consider a two-strategy NCG such that for each edge e = (i, j) we
have αe

i (0) = αe
i (1) = αe

j(0) = αe
j(1) = αe and βe

i (0) = βe
i (1) = βe

j (0) = βe
j (1) =

βe. Suppose, moreover, that in the optimal profile x�, all players adopt the same
strategy. Then, a collusion-resistant and Shapley-fair vector of fees order-free
valid for x� always exists and can be easily computed.

Equal-Fairness, Cost-Fairness and Profile-Fairness. In this section we suggest
other fairness measures that may be adopted. Let us start by describing some
ideal vectors of fees. A first example of fair vector of fees γf

� is the one in which
each player receives the same fee, i.e. γf

� (i) =
1
nC(x�) for each player i. As an

alternative example, we would like to have that fees are such that each player
has the same total cost in the game defined by these fees. That is, we would like
to consider the fair vector of fees γc

� such that γc
�(i) =

1
n

(
C(x�) +

∑
j pj(x

�
j )
)
−

pi(x
�
i ) for each player i. Yet another example is given by the vector of fees

γp
� in which each player pays exactly her contribution to C(x�), i.e. γp

�(i) =∑
e=(i,j) c

e
i (x

�
i , x

�
j ). Obviously, there are instances in which these ideal vectors
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of fees are not valid for x�. Then, it is a good trade-off to ask for a vector of
fees valid for x� closest to the ideal one. Formally, we say that the vector of fees
γ is equal-fair if it minimizes over all vectors of fees valid for x� the distance
d(γ,γf

�) =
∑

i

∣∣∣γ(i)− γf
� (i)

∣∣∣. Similarly, γ is cost-fair if it minimizes d(γ,γc
�) =∑

i |γ(i)− γc
�(i)| and profile-fair if it minimizes d(γ,γp

�) =
∑

i |γ(i)− γp
�(i)|.

Finding these fair vectors of fees is hard, as stated by the next theorem. The
hardness follows from reducing the perfectly balanced ordering problem [16].

Theorem 8. Given a two-strategy NCG and a constant K > 0, it is (strongly)
NP-complete to decide whether there exists a vector of fees γ of null cost inducing
the optimal profile x� whose distance d(γ,γf

�) ≤ K, even if αe
i (0) = αe

i (1) = αe
i

and βe
i (0) = βe

i (1) = βe
i for each player i and each edge e. The claim holds also

with γc
� or γp

� in place of γf
� .

Given this hardness result, it makes sense to ask for a fair vector of fees in a
subset of the valid ones. For example, it would be interesting to compute the
fairest vector of fees among the ones such that γ(i) ≤ B(i) for each player i.
Indeed, Theorem 6 shows that these vectors of fees γ can be at the same time
collusion-resistant and order-free valid for the optimal profile of an NCG. The
next theorem shows that the fairest vector of fees is easy to compute in this case.

Theorem 9. The equal-fairest, the cost-fairest and the profile-fairest vectors of
fees, among any vector γ such that γ(i) ≤ B(i) for each player i, can be computed
in polynomial time.

4 Conclusions and Open Problems

The focus of this work is the design of mechanisms through which an authority
may induce optimal states by influencing the bargaining among components of
a network. Our mechanisms adopt a “dynamical approach”, that is, tends to
modify the game so that natural dynamics can converge to the target state. We
believe this approach may help in designing mechanisms also for other settings.

The main results of this work refer to the special case of inducing the optimal
profile of two-strategy NCGs. In light of our motivating example, it turns out
that on-going bargaining with universities can be exploited for inducing optimal
pools. Moreover, the administration can avoid envy among academic institutions,
coalitions’ deviations and, in some cases, the assignment of unfair fees.

As a future direction, we are interested to extend the approach introduced in
this paper for NCGs to other classes of games. However, it is easy to see that the
optimal profile may be difficult to compute if we allow anti-coordination between
players or if we allow more than two strategies for players. These observations
motivates to investigate the possibility of inducing non-optimal profiles (for ex-
ample, approximatively optimal profiles): again, it is not hard to see that this
possibility is computationally ruled out (we refer the reader to the full version
of this paper [14]). However, it would be still interesting to characterize when a
mechanism can be designed for non-coordination games or non-optimal profiles.
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In this work we assumed that mechanism knows both preference and commu-
nication costs of agents. Even if the amount of data available nowadays, make
this assumption less restrictive, it would be, in our opinion, interesting to extend
our approach to settings in which the mechanism has only limited informations
about agents’ costs.
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Abstract. The study of other-regarding player behavior such as altru-
ism and spite in games has recently received quite some attention in
the algorithmic game theory literature. Already for very simple models,
it has been shown that altruistic behavior can actually be harmful for
society in the sense that the price of anarchy may increase as the play-
ers become more altruistic. In this paper, we study the severity of this
phenomenon for more realistic settings in which there is a complex un-
derlying social structure, causing the players to direct their altruistic and
spiteful behavior in a refined player-specific sense (depending, for exam-
ple, on friendships that exist among the players). Our findings show that
the increase in the price of anarchy is modest for congestion games and
minsum scheduling games, whereas it is drastic for generalized second
price auctions.

1 Introduction

Many practical situations involve a group of strategic decision makers who at-
tempt to achieve their own self-interested goals. It is well known that strategic
decision making may result in outcomes that are suboptimal for the society as a
whole. The need to gain an accurate understanding of the extent of suboptimal-
ity caused by selfish behavior has led to the study of the inefficiency of equilibria
in algorithmic game theory. In this context, a common inefficiency measure is
the price of anarchy [21], which relates the worst-case cost of a Nash equilibrium
to the one of an optimal outcome.

More recently, quite some attention has been given to more general settings in
which the players do not necessarily behave entirely selfishly, but may alterna-
tively exhibit spiteful or altruistic behavior; see, for instance, [2,4,5,7–9,14,17–
19]. Studying such alternative behaviors in games is motivated by the observa-
tion that altruism and spite are phenomena that frequently occur in real life (see,
for example, [15]). Consequently, it is desirable to incorporate such alternative
behavior in game-theoretical analyses.

Previous work on the price of anarchy for spiteful and altruistic games has
focused on simple models of spite and altruism, where a spite/altruism level αi

is associated to each player i denoting the extent to which his perceived cost is
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influenced by any nonspecific other player. Already for these simple models it has
been observed in a series of papers [5, 7, 8] that altruistic behavior can actually
be harmful in the sense that the price of anarchy may increase as players become
more altruistic. This observation served as a starting point for the investigations
conducted in this paper. The main question that we address here is: How severe
can this effect be if one considers more refined models of altruism that capture
complex social relationships between the players?

Our Contributions. In the present paper, we study a more general player-
specific model of spite and altruism. Our model can be viewed as extending
a given strategic game by imposing a social-network structure on top of the
players, which specifies for each pair of players (i, j) an altruism/spite level αij

signifying how much player i cares about player j; these relations are not nec-
essarily symmetric. This allows us to model more realistically settings in which
the behavior of the players depends on a complex underlying social structure,
expressing friendships and animosities among the players. Our altruistic games
fall into the framework of social context games proposed in [1].

For this general model of games with altruism and spite, we are interested in
studying the price of anarchy. The smoothness framework, originally introduced
by Roughgarden [22], has become a standard method for proving upper bounds
on the price of anarchy. Basically, this framework shows that such bounds can be
derived by establishing a certain smoothness condition. An additional strength
of this approach is that the smoothness condition allows to derive upper bounds
on the price of anarchy for various solution concepts, ranging from pure Nash
equilibria to coarse correlated equilibria; the latter being naturally related to out-
comes resulting from natural learning algorithms (see, for example, Young [26]).
Here, we extend the smoothness framework such that it can be used conveniently
it our setting.

Using this extension, we prove upper bounds on the price of anarchy for altru-
istic versions of three classes of well-studied games: congestion games, minsum
scheduling games, and generalized second price auctions. We show that for un-
restricted altruism levels the price of anarchy is unbounded. In particular, this
happens if there is a player i who does not care about himself or he cares more
about some friend than about himself, that is, αij > αii. We therefore derive
our upper bounds under the mild assumption that each player cares at least a
little about himself and he cares about any other player at most as much as he
cares about himself; we refer to this as restricted altruistic social context. Under
this assumption, we derive the following upper bounds on the coarse price of
anarchy:

– A bound of 7 for altruistic linear congestion games, and a bound of ϕ3 ≈
4.236 for the special case of singleton linear congestion games, where ϕ =
(1 +

√
5)/2 denotes the golden ratio.

– A bound of 4+ 2
√
3 ≈ 7.4641 and 12+ 8

√
2 ≈ 23.3137 for altruistic minsum

machine scheduling games for related and unrelated machines, respectively.
– A bound of 2(n + 1) for altruistic generalized second price auctions, where

n is the number of players.
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Our results therefore show that for congestion games and minsum scheduling
games the price of anarchy cannot drastically increase. Specifically, it remains
constant, independently of how complex the underlying altruistic social structure
is. On the other hand, for generalized second price auctions the price of anarchy
may degrade quite drastically: we prove an upper bound of O(n), as opposed to
a small constant which is known for the purely selfish setting [6].

We derive most upper bounds using a simple proof template: we decompose
the altruistic game into a selfish part and an altruistic part and prove smoothness
for each part separately. We can import known smoothness results for the selfish
part and only need to focus on the altruistic part.

Our upper bound proof for singleton congestion games uses a novel proof
approach: We use a refined amortized argument by distributing some additional
“budget” unevenly among the facilities. We believe that this approach might be
of independent interest.

Related Work. There are several papers that propose models of altruism and
spite [4, 5, 7–9, 14, 17–19]. All these models are special cases of the one studied
here. Among these articles, the inefficiency of equilibria in the presence of al-
truistic/spiteful behavior was studied for various games in [5, 7–9, 14]. After its
introduction in [22], the smoothness framework has been adapted in various di-
rections [23–25], including an extension to a particular model of altruism in [8],
which constitutes a special case of the altruistic games considered here.

Biló et al. [2] also studied social context congestion games, in the case where
the perceived cost of a player is the minimum, maximum, or sum of the imme-
diate cost of his neighbors. [2] establishes, among other results, an upper bound
of 17/3 on the pure price of anarchy of linear congestion games for a special case
of the setting we study here.

Related but different from our setting, is the concept of graphical congestion
games [3, 16]. Here the cost and the strategy set of a player depends only on a
subset of the players.

2 Preliminaries

Altruistic Extensions of Games. We study the effect of altruistic behavior
in strategic games. To model the complex altruistic relationships between the
players, we equip the underlying game with an altruistic social context. More
precisely, let Γ = (N, {Σi}i∈N , {ci}i∈N ) be a strategic game (termed base game),
where N = {1, . . . , n} is the set of players, Σi is the strategy set of player i, and
ci : Σ → R is the direct cost function of player i that maps every strategy profile
s ∈ Σ = Σ1 × · · · ×Σn to a real value. Unless stated otherwise, we assume that
Γ is a cost minimization game, that is, every player i wants to minimize his
individual cost function ci. Further, we assume that an altruistic social context
is given by an n× n matrix α ∈ Rn×n.

Given a base game Γ and an altruistic social context α, the α-altruistic exten-
sion of Γ is defined as the strategic game Γα = (N, {Σi}i∈N , {cαi }i∈N ), where
for all i ∈ N and s ∈ Σ, the perceived cost cαi (s) of player i is given by
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cαi (s) =

n∑
j=1

αijcj(s). (1)

Thus, the perceived cost of player i in the α-altruistic extension is the αij-
weighted sum of the individual direct costs of all players in the base game. A
positive (negative) αij value signifies that player i cares positively (negatively)
about the direct cost of player j, which can be interpreted as an altruistic (spite-
ful) attitude of i towards j. Note that αii specifies how player i cares about him-
self; we also call αii the self-perception level. For simplicity, we will often refer to
the resulting game Γα as the α-altruistic game, without explicitly mentioning
the base game Γ and the altruistic social context α.

The above viewpoint has a natural interpretation in terms of social networks :
Suppose the players in N are identified with the nodes of a complete directed
graph G = (N,A). The weight of an edge (i, j) ∈ A is equal to αij , specifying
the extent to which player i cares about the cost of player j.

The main focus of this paper is on altruistic behavior. We distinguish between
unrestricted and restricted altruistic social contexts α. In the unrestricted case
we assume that αij ≥ 0 for every i, j ∈ N ; in particular, the self-perception level
of a player can be zero. In this case, one can prove trivial lower bounds for the
price of anarchy, just by setting αij = 0, for all i, j. For this reason we consider
also the more interesting restricted case. In the restricted case, every player has
a positive self-perception level and cares about himself at least as much as about
any other player, namely, αii > 0 and αii ≥ αij ≥ 0 for every i, j ∈ N , i = j. In
the latter case, we can normalize α without loss of generality such that αii = 1
for every player i.1

Coarse Equilibria and the Price of Anarchy. We are interested in the
efficiency loss caused by altruistic behavior. Let C : Σ → R be a social cost
function that maps strategy profiles to real numbers. Most of the time in this
paper, the social cost will refer to the sum of the direct costs of all players,
namely, C(s) =

∑n
i=1 ci(s). The motivation therefore is that we are interested in

the efficiency of the outcome resulting from altruistic behavior, which is modeled
through the altered perceived cost functions.

We focus on the inefficiency of coarse equilibria, which are defined as follows:
Let σ be a probability distribution over Σ. Let σ−i denote the projection of σ
onto Σ−i = Σ1× · · ·×Σi−1×Σi+1× · · ·×Σn. Then σ is a coarse equilibrium of
the altruistic game Γα if, for every player i and every strategy s∗i ∈ Σi, it holds
that Es∼σ[cαi (s)] ≤ Es−i∼σ−i [c

α
i (s
∗
i , s−i)]. We use CE(Γα) to denote the set of

coarse equilibria of Γα. Coarse equilibria include several other solution concepts,
such as correlated equilibria, mixed Nash equilibria, and pure Nash equilibria.

We study the price of anarchy [21] of coarse equilibria of altruistic games. For
an altruistic game Γα, define POA(Γα) = sups∈CE(Γα) C(s)/C(s∗), where s∗ is
a strategy profile that minimizes C. The coarse price of anarchy of a class of
altruistic games G is defined as POA(G) = supΓα∈G POA(Γα).

1 To see this, note that, by dividing all αij by αii > 0, the set of equilibria and the
social cost of any outcome remain the same.
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Because of space restrictions, some material has been omitted from this ex-
tended abstract and will appear in a full version of this work.

3 Smoothness and a Proof Template

Smoothness. Roughgarden [22] introduced a general smoothness framework to
derive bounds on the coarse price of anarchy. Next we extend this framework to
α-altruistic games with arbitrary social cost functions.

Definition 1. Let Γα be an α-altruistic extension of a cost minimization game
with α ∈ Rn×n and social cost function C. Further, let s∗ be a strategy profile
that minimizes C. Γα is (λ, μ)-smooth if there exists a strategy profile s̄ ∈ Σ
such that for every strategy profile s ∈ Σ it holds that

n∑
i=1

n∑
j=1

αij(cj(s̄i, s−i)− cj(s)) ≤ λC(s∗) + (μ− 1)C(s). (2)

The following theorem shows that (λ, μ)-smoothness implies a bound on the
coarse price of anarchy of α-altruistic games.

Theorem 1. Let Γα be an α-altruistic extension of a cost minimization game
with α ∈ Rn×n and social cost function C. If Γα is (λ, μ)-smooth with μ < 1,
then the coarse price of anarchy of Γα is at most λ/(1− μ).

The above smoothness definition allows us to import some additional results
from [22] (e.g., on the efficiency of natural learning algorithms). The proof of
Theorem 1 and further discussion wll appear in a full version of this work.2

Proof Template. Most of our smoothness results are based on the following
decomposition idea. Recall that for restricted altruistic social contexts we have
αii = 1. Suppose that the underlying base game is known to be (λ1, μ1)-smooth
(in the purely selfish setting), that is, there is some s̄ ∈ Σ such that

n∑
i=1

ci(s̄i, s−i) ≤ λ1C(s∗) + μ1C(s), (3)

and that C(s) ≤ ∑
i ci(s). Then, to establish (λ, μ) = (λ1 + λ2, μ1 + μ2)-

smoothness for the altruistic game Γα, it suffices to prove that for s̄ it holds

n∑
i=1

∑
j �=i

αij(cj(s̄i, s−i)− cj(s)) ≤ λ2C(s∗) + μ2C(s). (4)

2 In the purely selfish setting (i.e., when αii = 1 and αij = 0 for every i, j ∈ N ,
i �= j) our smoothness definition is slightly more general than the one in [22] where
(2) is required to hold for any arbitrary strategy profile s∗ and with s̄ = s∗. Also,
in [22] the analogue of Theorem 1 is shown under the additional assumption that C
is sum-bounded, that is, C(s) ≤ ∑

i ci(s). Here, we get rid of this assumption.
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4 Congestion Games

In a congestion game Γ = (N,E, {de}e∈E , {Σi}i∈N ) we are given a set of players
N = {1, . . . , n}, a set of facilities E with a delay function de : N→ R for every
facility e ∈ E, and a strategy set Σi ⊆ 2E for every player i ∈ N . For a strategy
profile s ∈ Σ = Σ1 × · · · × Σn, define xe(s) as the number of players using
facility e ∈ E, that is, xe(s) = |{i ∈ N : e ∈ si}|. The direct cost of player i
is defined as ci(s) =

∑
e∈si de(xe(s)) and the social cost function is given by

C(s) =
∑n

i=1 ci(s). In a linear congestion game, the delay function of every
facility e ∈ E is of the form de(x) = aex+be, where ae, be ∈ Q≥0 are nonnegative
rational numbers.

4.1 General Linear Congestion Games

Theorem 2. Every α-altruistic extension of a linear congestion game with re-
stricted altruistic social context α is (73 ,

2
3 )-smooth. Therefore, the coarse price

of anarchy is at most 7 for these games.

We need the following simple lemma for the proof of Theorem 2. Its proof will
appear in a full version of this paper.

Lemma 1. For every two integers x, y ∈ N, xy ≤ 2
3y

2 + 1
3x

2.

Proof (Theorem 2). Let s be an arbitrary strategy profile and let s∗ be a strategy
profile that minimizes C. We can assume without loss of generality that de(x) =
x for all e ∈ E.

The base game is known to be (λ1, μ1) = (53 ,
1
3 )-smooth for s̄ = s∗ [10,11,22].

Using our proof template, it is sufficient to show that (4) holds with (λ2, μ2) =
(23 ,

1
3 ).
Let xe and x∗e refer to xe(s) and xe(s

∗), respectively. Fix some player i ∈ N
and let x′e = xe(s

∗
i , s−i). Note that x′e = xe + 1 for e ∈ s∗i \ si, x′e = xe − 1 for

e ∈ si \ s∗i and x′e = xe otherwise. Using these relations, we obtain

∑
j �=i

αij(cj(s
∗
i , s−i)− cj(s)) =

∑
j �=i

⎛⎝ ∑
e∈sj∩(s∗i \si)

αij −
∑

e∈sj∩(si\s∗i )
αij

⎞⎠
=

∑
e∈s∗i \si

∑
j �=i:e∈sj

αij −
∑

e∈si\s∗i

∑
j �=i:e∈sj

αij .

Summing over all players and exploiting that in the restricted case 0 ≤ αij ≤ 1
for every i, j ∈ N , i = j, we can bound

n∑
i=1

⎛⎝ ∑
e∈s∗i \si

∑
j �=i:e∈sj

αij −
∑

e∈si\s∗i

∑
j �=i:e∈sj

αij

⎞⎠ ≤ n∑
i=1

∑
e∈s∗i

∑
j:e∈sj

1 =
∑
e∈E

xex
∗
e.

Using Lemma 1, we conclude that
∑

e∈E xex
∗
e ≤ 2

3C(s∗) + 1
3C(s) as desired. ��
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4.2 Singleton Congestion Games

We derive a better smoothness result for singleton congestion games with iden-
tical delay functions, that is, when Σi ⊆ E for every i ∈ N , so that for each
strategy s ∈ Σi we have that |s| = 1.

Theorem 3. Every α-altruistic extension of a singleton linear congestion game
with identical delay functions on all facilities under restricted altruistic social
context α is (1 + ϕ, 1/ϕ2-smooth, where ϕ = (1 +

√
5)/2 is the golden ratio.

Therefore, the coarse price of anarchy is at most ϕ3 ≈ 4.236 for these games.

To prove this theorem, we use a novel proof approach. In most existing proofs
one first massages the smoothness condition to derive an equivalent condition
summing over all facilities (instead of players), and then establishes smoothness
by reasoning for each facility separately. If we follow this approach here, we
again obtain an upper bound of 7. Instead, we use an amortized argument here
to derive our improved bound.

A careful analysis (details omitted because of paucity of space) can show that
the smoothness definition (2) for singleton linear congestion games with s̄ = s∗

is equivalent to

n∑
i=1

∑
j �=i

(
λ
∣∣s∗i ∩ s∗j

∣∣+ (μ+ αij) |si ∩ sj | − (1 + αij) |s∗i ∩ sj |
)
+ (λ+ μ− 1)n ≥ 0.

(5)
We translate the proof of this inequality to a coloring problem on a suitably

defined graph. We construct an extended social network as follows: For every
player i ∈ N we introduce two nodes i and i∗ representing player i under s and
s∗, respectively. We call the former type of nodes s-nodes and the latter type
of nodes s∗-nodes. For every two players i, j ∈ N with i = j we introduce four
edges: (i, j) with weight 2μ+αij+αji, (i

∗, j∗) with weight 2λ, (i∗, j) with weight
−(1 + αij), and (i, j∗) with weight −(1 + αji). We identify the set of facilities
E with a set of m colors, such that E = [m]. The colors assigned to i and i∗

are si and s∗i , respectively. Call an edge e = (u, v) in the extended network c-
monochromatic if both u and v have color c. In addition, we distribute a total
budget of (λ+ μ− 1)n among the 2n nodes of the extended network.

With the viewpoint of the previous paragraph, the left-hand side of (5) is
equal to the total weight of all c-monochromatic edges (summed over all colors
c) plus the total budget of all nodes. The idea now is to argue that we can fix λ
and μ such that for each color c ∈ [m] the total weight of all c-monochromatic
edges plus the respective node budget is at least 0. The crucial insight to derive
our improved bound is that the budget is split unevenly among the nodes: we
assign a budget of (λ+ μ− 1) to every s-node and 0 to every s∗-node.

Fix some color c ∈ [m] and consider the subgraph of the extended network
induced by the nodes having color c. Partition the nodes into the set Sc of s-
nodes and the set S∗c of s∗-nodes. Imagine we draw this subgraph with all nodes
in Sc put on the left-hand side and all nodes in S∗c put on the right-hand side.
The edges from Sc to S∗c are called crossing edges. The edges that stay within
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Sc or S∗c are called internal edges. Let x = xc = |Sc| and y = yc = |S∗c |. Note
that the internal edges in Sc constitute a complete graph on x nodes. Similarly,
the internal edges in S∗c constitute a complete graph on y nodes. Note that the
crossing edges constitute a Kx,y with a few edges missing, namely the pairs
(i, i∗) representing the same player i (which are nonexistent by construction).
Let z = zc be the number of such pairs.

In the worst case, αij = 0 for all internal edges and αij = 1 for all crossing
edges. The total contribution to the left-hand side of (5) that we can account
for color c is then

2μ · 12x(x− 1) + 2λ · 12y(y − 1)− 2 · (xy − z) + (λ + μ− 1) · x
= μx2 + λy2 − 2xy + (λ− 1)x− λy + 2z. (6)

We need the following lemma, whose proof will appear in a full version of this
work. It is actually tight, implying that under the smoothness framework we
cannot show a better bound. It is a small variation of Lemma 1 in [12].

Lemma 2. Let ϕ = 1+
√
5

2 be the golden ratio. For every two integers x, y ∈ N,
2xy − ϕx+ ϕ2y ≤ 1

ϕ2x
2 + ϕ2y2.

Fix λ = 1+ϕ and μ = 1/ϕ2. Then (6) is nonnegative by Lemma 2. Summing
over all colors c ∈ [m] proves (5). Given our choices of λ = 1 + ϕ and μ = 1/ϕ2

we obtain a bound on the coarse price of anarchy of ϕ3 ≈ 4.236. ��

5 Minsum Machine Scheduling

In a scheduling game, we deal with a set of machines [m], and a set of jobs [n]
that are to be scheduled on the machines. For each job i ∈ [n] and machine
k ∈ [m], we are given a processing time pi,k ∈ R≥0, which is the time it takes to
run job i on machine k.

There are many ways in which a machine may execute the set of jobs it gets
assigned. We restrict ourselves here to a popular policy where the jobs on a
machine are executed one-by-one, in order of increasing processing time. Ties
are broken deterministically, and we write i ≺k j if pi,k < pj,k or pi,k = pj,k and
the tie breaking rule schedules job i before job j on machine k. A schedule is a
vector s = (s1, . . . , sn), where for i ∈ [n], si is the machine on which job i is to
be ran. We define the value N(i, k, s) to be the number of jobs j on machine k
under strategy profile s for which it holds that i ≺k j. Given s, the completion
time of a job i under s is pi,si +

∑
j:j≺si

i,sj=si
pj,sj . The jobs take the role of the

players: the strategy set of a player is [m], so the strategy profiles are schedules.
The cost cj(s) of a job j ∈ [n] under strategy profile s is the completion time of
j under s.

We define the social cost function for this game to be the sum of the completion
times of the jobs. The social cost can be written as
C(s) =

∑m
k=1

∑
i:si=k(N(i, k, s) + 1)pi,k.
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If the processing times are not restricted, we speak of unrelated machine
scheduling games. We speak of related machine scheduling games if the pro-
cessing times are defined as follows: For each machine k ∈ [m], there is a speed
tk ∈ R>0 and for each job j ∈ [n] there is a length pj ∈ R≥0 such that pi,k = pj/tk
for all i ∈ [n], k ∈ [m].

Next, we prove constant upper bounds on the price of anarchy for restricted
altruistic social contexts.

Theorem 4. Every α-altruistic extension of a machine scheduling game with re-
stricted altruistic social context α is (2+x, 1/x)-smooth for related machines and
(2 + x, 1/2 + 1/x)-smooth for unrelated machines for every x ∈ R>0. Therefore,
the coarse price of anarchy is at most 4 + 2

√
3 ≈ 7.4641 (choosing x = 1 +

√
3)

and 12 + 8
√
2 ≈ 23.3137 (choosing x = 2 + 2

√
2) for these games, respectively.

Proof. We only give the main steps of the proof here. All missing details will
appear in a full version of this extended abstract. In [20] it is proved that the
base game for the case of related machines is (2, 0)-smooth, and from [13], it
follows that the base game for the case of unrelated machines is (2, 1/2)-smooth.
Let s∗ be an optimal schedule and let s be any schedule. We show that for all
x > 0

n∑
i=1

∑
j �=i

αij(cj(s
∗
i , s−i)− cj(s)) ≤ xC(s∗) +

C(s)

x
.

Let P1 = {(i, j) : s∗i = sj , s
∗
i = si, i ≺s∗i j}. Informally, P1 is the set of pairs of

jobs (i, j) such that i’s strategy change from si to s∗i makes j become scheduled
later. After some derivations, we obtain

n∑
i=1

∑
j �=i

αij(cj(s
∗
i , s−i)− cj(s)) ≤

∑
(i,j)∈P1

pi,s∗i .

Turning the last expression into a summation over the machines, and again after
a series of calculations, we obtain

∑
(i,j)∈P1

pi,s∗i ≤
m∑

k=1

∑
i:s∗i =k

(x(N(i, k, s∗) + 1)− 1)pi,k

+

m∑
k=1

∑
i:s∗i =k,si �=k,

N(i,k,s)>xN(i,k,s∗)+x−1

�N(i, k, s)− xN(i, k, s∗)− x+ 1�pi,k.

Consider a job i and machine k such that it holds that s∗i = k, si = k, and
N(i, k, s) > xN(i, k, s∗)+x−1. Let S(i, k) be the set of �N(i, k, s)−xN(i, k, s∗)−
x� smallest jobs j �k i such that sj = k. Note that S(i, k) is well defined in the
sense that this number of jobs exists because N(i, k, s) > xN(i, k, s∗) + x − 1
implies �N(i, k, s)− xN(i, k, s∗) − x� ≥ 0, and because there exist N(i, k, s) ≥
|S(i, k)| jobs j �k i with sj = k. Note that for every job j ∈ S(i, k) it holds that
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N(j, k, s) ≥ N(i, k, s) − |S(i, k)| > xN(i, k, s∗) + x − 1. We use this to upper
bound the above and eventually obtain:∑

(i,j)∈P1

pi,s∗i ≤ xC(s∗) +
m∑

k=1

∑
j:sj=k

∑
i:s∗i =k,si �=k,i≺kj,

N(j,k,s)>xN(i,k,s∗)+x−1

pj,k. (7)

The next step in the derivation is made by observing that for each job j and
each machine k such that sj = k, there are at most �(N(j, k, s)− x+1)/x� jobs
i ≺k j such that s∗i = k, si = k and N(j, k, s) > xN(i, k, s∗)+ x− 1. To see this,
assume for contradiction that there are more than �(N(j, k, s)− x+ 1)/x� jobs
i ≺k j such that s∗i = k, si = k and N(j, k, s) > xN(i, k, s∗)+x− 1. Let i be the
(�(N(j, k, s)−x+1)/x�+1)-th largest job for which these three properties hold.
Then, there are at least (�(N(j, k, s)−x+1)/x�+1) jobs scheduled on machine
k that have these properties and that are scheduled after i on machine k under
strategy s∗. Therefore, we have that xN(i, k, s∗) + x − 1 ≥ x�(N(j, k, s) − x +
1)/x�+ x− 1 ≥ N(j, k, s), which is a contradiction. Exploiting this observation,

we derive that the right-hand side of (7) is at most xC(s∗)+C(s)
x , which concludes

the proof. ��

6 Generalized Second Price Auctions

We study auctions where a set N = [n] of n bidders compete for k slots. Each
bidder i ∈ N has a valuation vi ∈ R≥0 and specifies a bid bi ∈ R≥0. Each
slot j ∈ [k] has a click-through rate γj ∈ R≥0. Without loss of generality, we
assume that the slots are sorted according to their click-through rates such that
γ1 ≥ · · · ≥ γk and that k = n.3

We consider the generalized second price auction (GSP) as the underlying
mechanism. Given a bidding profile b = (b1, . . . , bn), GSP orders the bidders by
nonincreasing bids and assigns them in this order to the slots. Each bidder pays
the next highest bid for his slot. More precisely, let b1 ≥ · · · ≥ bn be the ordered
list of bids. We assume without loss of generality that if bi = bj for two bidders
i > j then i precedes j in the order. Then bidder i is assigned to slot i and has
to pay bi+1, where we define bn+1 = 0. The utility of player i for bidding profile
b is defined as ui(b) = γi(vi − bi+1). The social welfare for a bidding profile b is
defined as Π(b) =

∑n
i=1 γivi.

A standard assumption we make in this setting is that bidders do not overbid
their valuations, that is, Σi = [0, vi]. This assumption is made for reasons related
to individual rationality.

We prove that the coarse price of anarchy of α-altruistic GSP auctions is
O(n) if the altruistic social context is restricted. Note that we consider a profit
maximization game here. Definition 1, Theorem 1, and our proof template extend
naturally to profit maximization games. The details will appear in a full version
of this paper. We are able to prove the following theorem.

3 If k < n we can add n− k dummy slots with click-through rate 0; if k > n we can
remove the k − n last slots.
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Theorem 5. Every α-altruistic extension of a generalized second price auction
with restricted altruistic social context α is (12 , n)-smooth. Therefore, the coarse
price of anarchy is at most 2n+ 1 for these games.

Proof. Let b∗ and b be two bidding profiles. By renaming, we assume that for
all j, bidder j gets assigned to slot j under bidding profile b.

The base game is known to be (λ1, μ1) = (12 , 1)-smooth [23]. That is, for every
two bidding profiles b, b∗, it holds that

∑
i∈N ui(b

∗
i , b−i) ≥ 1

2Π(b∗)−Π(b).
It remains to bound

n∑
i=1

∑
j �=i

αij(uj(b
∗
i , b−i)− uj(b)) ≥

n∑
i=1

∑
j �=i

αij(−uj(b)) ≥
n∑

i=1

∑
j �=i

αij(−γjvj)

≥
n∑

i=1

∑
j �=i

−γjvj ≥ −(n− 1)Π(b).

Combining these inequalities proves (λ, μ) = (12 , n)-smoothness. ��
As in the case of congestion games, the analysis is essentially tight. Details

will appear in an extended version of this work.

Concluding Remarks. The main focus of this paper was put on deriving upper
bounds on the price of anarchy that are independent of the underlying social
network structure. An interesting open question is whether one can derive refined
bounds by exploiting structural properties of the underlying social network.

Our model of altruistic games and the smoothness definition introduced in
Section 2 allows us to incorporate spiteful player behavior. We leave it as an
interesting open direction for future research to pursue such analyses for spiteful
behavior.
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Abstract. We design a Copula-based generic randomized truthful mech-
anism for scheduling on two unrelated machines with approximation ratio
within [1.5852, 1.58606], offering an improved upper bound for the two-
machine case. Moreover, we provide an upper bound 1.5067711 for the
two-machine two-task case, which is almost tight in view of the lower
bound of 1.506 for the scale-free truthful mechanisms [6]. Of indepen-
dent interest is the explicit incorporation of the concept of Copula in
the design and analysis of the proposed approximation algorithm. We
hope that techniques like this one will also prove useful in solving other
problems in the future.

Keywords: Algorithmic mechanism design, Random mechanism, Cop-
ula, Truthful scheduling.

1 Introduction

The main focus of this work is to offer randomized truthful mechanisms with
improved approximation for minimizing makespan on unrelated parallel ma-
chines: R2||Cmax, a central problem extensively investigated in both the classical
scheduling theory and the more recent algorithmic mechanism design initiated
by the seminal work of Nisan and Roenn [11].

Formally, we are interested in the following scheduling problem: there are n
tasks to be processed by m machines. Machine i ∈ {1, 2, . . . ,m} takes tij time
to process task j ∈ {1, 2, . . . , n}. The objective is to schedule these tasks non-
preemptively on these machines to minimize the makespan – the latest com-
pletion time among all the tasks. An allocation for the scheduling problem is
specified by a set of binary variables xij such that xij = 1 if and only if task j
is allocated to machine i.
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Different from traditional approximation algorithms for the scheduling prob-
lem, we focus on the class of weakly monotonic algorithms [5] defined as follows:
an allocation or a scheduling algorithm is weakly monotonic if for any two in-
stances of the scheduling problem tij and t̃ij (i = 1, 2, . . . ,m and j = 1, 2, . . . , n)
differing only on a single machine, the allocation xij and x̃ij returned by the
algorithm satisfies

∑n
j=1 (xij − x̃ij)

(
tij − t̃ij

) ≤ 0 for all i = 1, 2, . . . ,m.
The interest in monotonic algorithms stems from its connection to truthful

mechanism design, where selfish agents maximize their profit by revealing their
true private information. In this particular scheduling problem, a mechanism
consists of two algorithms, an allocation algorithm which allocates tasks to ma-
chines and a payment algorithm which specifies the payment every machine
receives. Each machine is a selfish agent who knows its own processing time for
every task and wants to maximize its own payoff – the payment received minus
the total execution time for the tasks allocated to it. A mechanism is truth-
ful if it is a dominant strategy for each machine to reveal its true processing
time. It is well-known that the weak monotonicity property above characterizes
the allocation algorithm in any truthful mechanism for the scheduling problem
on-hand (see e.g., [4]). In this paper, we are concerned with the approximation
ratio of weakly monotonic allocation algorithms. When the allocation algorithm
is randomized, i.e., the binary variables xij (i = 1, 2, . . . ,m, j = 1, 2, . . . , n)
output by the algorithm are random variables, we call the allocation algorithm
weakly monotonic if it is a probability distribution over a family of deterministic
weakly monotonic allocation algorithms. Every weakly monotonic randomized
allocation algorithm gives rise to a (universally) truthful mechanism [11].

As usual, the approximation ratio of an allocation algorithm is the worst-case
ratio between the makespan of the allocation output by the algorithm and the
optimal makespan. One fundamental open problem on the mechanism design for
scheduling is to find the exact approximation ratios Rdet and Rran among all
weakly monotonic deterministic and randomized allocation algorithms respec-
tively [11]. The current best bounds are 2.618 ≈ 1 + φ ≤ Rdet ≤ m with the
upper and lower bounds established by Nisan and Ronen [11] and Koutsoupias
and Vidali [4], respectively, and 2 − 1/m ≤ Rran ≤ 0.83685m with the upper
and lower bounds proved by Mu’alem and Schapira [10] and Lu and Yu [7],
respectively.

In view of the unbounded gap between the lower and upper bounds for the
general m machines, a lot of research efforts have been devoted to the special
case of m = 2 machines (see e.g., [2,6,11]), which is highly nontrivial and sug-
gests more insights for resolving the general problem. In this paper, we will focus
on the two-machine case. The deterministic approximation is exactly 2 as shown
by Nisan and Ronen [11]. The currently best randomized approximation ratio
is shown to lie between 1.5 and 1.6737. The upper bound due to Lu and Yu
was proved by introducing a unified framework for designing truthful mecha-
nisms [7]. This improved the ratio 1.75 of Nisan and Ronen’s mechanism [11] by
0.0763. Later, Lu and Yu [8] provided an improved ratio of 1.5963, whose proof
unfortunately is incorrect as shown in this paper later in Section 3.1. Dobzinski
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and Sundararajan [3] and Christodoulou et al. [2] independently showed that
any weakly monotonic allocation algorithm for two machines with a finite ap-
proximation ratio is weakly task-independent, meaning that, for any task, its
allocation does not change as long as none of its own processing time on ma-
chines changes. The weak task-independence is strengthened to be a strong one
if the random variables xij output by the allocation algorithm are independent
between different tasks [6].

In this paper, we use the concept of Copula to address the correlations among
random outputs of the allocation algorithm under Lu and Yu’s framework [7].
Our main contribution is to offer a Copula-based generic randomized mechanism
for two-machine scheduling with approximation ratio within [1.5852, 1.58606],
reducing the existing best upper bound [7] by more than 0.0876. Moreover, we
provide an upper bound of 1.5067711 for the two-machine two-task case, which
improves upon the previous 1.5089 bound given in [6] and is almost tight in
view of the lower bound of 1.506 for the so called scale-free weakly monotonic
allocation algorithm [6].

To our best knowledge, we are unaware of any extant work on the explicit
usage of the concept of Copula in the design and analysis of approximation
algorithms. We hope that techniques like this one will also prove useful in solving
other problems in the future.

The rest of the paper is organized as follows: We present the Copula-based
generic randomized mechanism in Section 2. We then analyze the mechanism
for strongly independent tasks and weakly independent tasks in Section 3 and
Section 4 respectively. Finally, we conclude the paper with some remarks on our
choice of Copula in Section 5. The omitted details in the extended abstract can
be found in the full version [1].

2 A Generic Randomized Mechanism Based on Copula

Given any real α, we use α+ to denote the nonnegative number max{0, α}.
Let F : R+ → [0, 1] be a non-decreasing function satisfying F (0) = 0 and
limx→∞ F (x) = 1. Write F̄ (x) for 1−F (x). Let X1, X2, . . . , Xn be n dependent
random variables with joint distribution function Pr(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤
xn) given by the Clayton Copula

G(x1, x2, . . . , xn) =

⎡⎣(( n∑
i=1

n−1
√
F (xi)

)
− n+ 1

)+
⎤⎦n−1

. (2.1)

It is easy to see that for any 1 ≤ i < j ≤ n, the joint distribution of Xi and Xj

is given by

H(xi, xj) = G(∞, . . . ,∞, xi,∞, . . . ,∞, xj ,∞, . . . ,∞)

=

[(
n−1
√
F (xi) +

n−1

√
F (xj)− 1

)+
]n−1

. (2.2)
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We also study identically independent distributions for which

G(x1, x2, . . . , xn) =

n∏
i=1

F (xi) and H(xi, xj) = F (xi)F (xj). (2.3)

Using a joint distribution satisfying Clayton’s Copula in (2.1) or the inde-
pendence condition in (2.3) gives the following specification of the randomized
allocation algorithm introduced by Lu and Yu [8].

Algorithm 1. Input: A processing time matrix t ∈ R2×n
+ .

Output: A randomized allocation x ∈ {0, 1}2×n.

1. Choose random variablesX1, X2, . . . , Xn according to distribution function G

2. For each task j = 1, 2, . . . , n do

3. if t1j/t2j < Xj then x1j ← 1 else x1j ← 0

4. x2j ← 1− x1j

5. End-for

6. Output x

Let real function ϕ : R+ × R+ → R be defined by

ϕ(x, y)=1+y−min
{
1, 1− 1

x+y
}
F (x)−yF (y)+min

{
1+ 1

x , 1+y
}
H(x, y) (2.4)

Theorem 1. The approximation ratio of Algorithm 1 is at most max{ϕ(x, y) :
x, y ∈ R+}.

Proof. For every j ∈ [n], let rj = t1j/t2j . It has been shown by Lu and Yu [8]
that the approximation ratio of Algorithm 1 is bounded above by max{ρjk :
j, k ∈ [n]}, where for every pair of distinct indices i, j ∈ [n],

ρjk = Pr(x1j = 1) + rk · Pr(x1k = 1) + ( 1
rj
− rk)

+ · Pr(x2j = 1, x1k = 1)

+(1 + 1
rj
) · Pr(x2j = 1, x2k = 1) .

Notice that Xj ≤ rj ⇔ x1j = 0⇔ x2j = 1. Hence

ρjk = Pr(Xj > rj) + rk ·Pr(Xk > rk) + ( 1
rj
− rk)

+ ·Pr(Xj ≤ rj , Xk > rk)

+(1 + 1
rj
)·Pr(Xj ≤ rj , Xk ≤ rk)

= F̄ (rj) + rk ·F̄ (rk) + ( 1
rj
− rk)

+ ·(F (rj)−H(rj , rk)) + (1 + 1
rj
)·H(rj , rk)

= 1+rk−
(
1−( 1

rj
−rk)

+
)
F (rj)− rkF (rk) +

(
1+ 1

rj
−( 1

rj
−rk)

+
)
H(rj , rk)

= 1+rk −min{1, 1− 1
rj
+rk}F (rj)− rkF (rk)+min{1+ 1

rj
, 1+rk}H(rj , rk),

showing that ρjk = ϕ(xj , xk). ��
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3 Strongly Independent Tasks

In this section, we consider tasks being allocated strongly independently. There-
fore, the joint distribution takes the form H(x, y) = F (x)F (y), giving

ϕ(x, y)=1+y−min
{
1, 1− 1

x+y
}
F (x)−yF (y)+min

{
1+ 1

x , 1+y
}
F (x)F (y), (3.1)

from which the following symmetry can be proved by elementary mathematics.

Lemma 1. Let G satisfy (2.3). If F (x) = 1 − F (1/x) for any x ≥ 0, then
ϕ(x, y) = ϕ(1/y, 1/x) for any x, y ∈ R+. ��

In Section 3.1, we point out a mistake of [8] in estimating over a transcendental
function, which invalidates the ratio 1.5963 claimed. In Section 3.2, we introduce
an algebraic piecewise function to construct a class of joint distributions of inde-
pendent random variables. Then, we prove that using this class of independent
distributions in Algorithm 1 gives an improved ratio 1.58606. In Section 3.3, we
show the limitation of Algorithm 1 for strongly independent tasks, from which
no ratio better than 1.5852 can be expected.

3.1 Lu and Yu’s Transcendental Function

Lu and Yu [8] considered function F (x) = 1 − 1

2x2.3 . For any α1, α2 ∈ R+, let

β1 = F (α1) and β2 = F (1/α2). By Theorem 4 and in particular the instance on
page 410 of [8], Lu and Yu’s mechanism has approximation ratio at least

θ(α1, α2)

= (1 + α2)β1β2 + β1(1−β2) + (1 + α1)(1−β1)(1−β2) + max{α1, α2}β2(1−β1)

=

{
(1+α2)β1β2+β1(1−β2)+(1+α1)(1−β1)(1−β2)+α2β2(1−β1), if α2≥α1;

(1+α2)β1β2+β1(1−β2)+(1+α1)(1−β1)(1−β2)+α1β2(1−β1), if α1≥α2.

They claimed in Theorem 5 of [8] that under this F (x), θ(α1, α2) ≤ 1.5963. How-
ever, a contradiction is given by θ(0.87793459260323, 2.09409917605545)> 1.64.
In view of this, the previously best known approximation ratio for truthful
scheduling on two unrelated machines was 1.6737 in Lu and Yu’s earlier con-
ference paper [7]. In this paper we reduce the ratio to 1.58606.

3.2 An Algebraic Piecewise Function

Suppose that a ∈ [1.7, 3] and b ∈ [0.7, 1] are constants. We study the following
continuous piecewise algebraic function

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, x ∈ I1 = [a,+∞),

1− 2(1−b)(a−x)
a−1 , x ∈ I2 = [a+1

2 , a),

1
2 + (2b−1)(x−1)

a−1 , x ∈ I3 = [1, a+1
2 ),

1
2 − (2b−1)(1/x−1)

a−1 , x ∈ I4 = [ 2
a+1 , 1),

2(1−b)(a−1/x)
a−1 , x ∈ I5 = [ 1a ,

2
a+1 ),

0, x ∈ I6 = [0, 1
a ),

(3.2)
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where the five demarcation points 1
a ,

2
a+1 , 1,

a+1
2 , a divide the domain [0,+∞)

into six intervals I1, I2, . . . , I6. The function F (·), when plugged into (2.3), gives
an improvement 0.08764 over the previous best ratio of 1.6737 [7]. Notice that
F (·) enjoys the property that

F (x) + F (1/x) = 1 for any x ≥ 0. (3.3)

An immediate corollary is F (1) = 0.5.

Theorem 2. Let a = 1.715 and b = 0.76. Using F (x) in (3.2) and G(x1, . . . , xn)
in (2.3), Algorithm 1 achieves approximation ratio 1.58606.

Proof. By Theorem 1, it suffices to show that the maximum of ϕ(x, y) in (3.1)
is no more than ρ∗ = 1.58606. By (3.3) and Lemma 1, we may assume xy ≥ 1,
for which the function ϕ(x, y) to be maximized takes the form of

ϕ(x, y) = 1 + y − F (x)− yF (y) +
(
1 + 1

x

)
F (x)F (y) . (3.4)

Note that ϕ(x, y) is continuous in R+×R+. Suppose x
∗, y∗ ∈ R+ with x∗y∗ ≥ 1

attains the maximum, i.e., (x∗, y∗) ∈ argmaxxy≥1 ϕ(x, y).
We will show that ϕ(x∗, y∗) < ρ∗ by considering the different possible domains

of the variables x and, y in a case by case basis. When x∗ or y∗ does not belong
to the domain associated with a given case, we say that (x∗, y∗) does not belong
to the case. We will show that, for any case x ∈ Ii, y ∈ Ij (1 ≤ i, j ≤ 6) to
which (x∗, y∗) may belong, the function’s value ϕ(x, y) is smaller than ρ∗ by
upper bounding its value at critical points (i.e., when the derivatives of ϕ(x, y)
are equal to zero) and that at demarcation points.

Case 1. x ≥ a. It follows from (3.2) that F (x) = 1 and from (3.4) that ϕ(x, y) =
y + (1 + 1

x − y)F (y). If y ≤ 1 + 1
x or y ≥ a, then ϕ(x, y) ≤ y + (1 + 1

x − y) =
1 + 1

x ≤ 1 + 1
a < 1.584. If y > 1 + 1

x and y < a, then y ∈ (1, a).

In case of y ∈ [a+1
2 , a), since ∂ϕ

∂x (x, y) = − 2400y−541
3575x2 < 0, from KKT condition,

we deduce that (x∗, y∗) does not belong to this case unless x∗ = a. When x = a,
note that ϕ

(
a, a+1

2

)
< 1.53, and that ϕ(a, y) has a unique critical point y =

a2+a+1
2a in (a+1

2 , a) with corresponding critical value less than 1.58602.
In case of y ∈ (1, a+1

2 ), it suffices to consider the case where x = a as
∂ϕ
∂x (x, y) = − 16y−5

22x2 < 0. Note that ∂ϕ
∂y (a, y) =

17949
7546 − 16

11y > 2.3− 16
11 (

a+1
2 ) > 0,

which excludes the possibility of (x∗, y∗) belonging to this case.

Case 2. y ≥ a > x ≥ 0. Note that ϕ(x, y) = 1 + y − F (x)− y + (1 + 1
x )F (x) =

1 + F (x)
x is a function of single variable x. It is easy to check that the derivative

of 1 + F (x)
x is positive for all x ∈ ( 1a , a) − { 2

a+1 , 1,
a+1
2 }. The continuity of ϕ

implies ϕ(x, y) ≤ ϕ(a, y) = 1 + 1
a < 1.584 for all x ∈ ( 1a , a). When x ∈ (0, 1

a ], it
is clear that ϕ(x, y) = 1.

Cases 1 and 2 above show that ϕ(x, y) < ρ∗ when x or y belongs to I1. For the
remaining cases, we have x, y < a. As xy ≥ 1, we have x, y > 1

a both contained
in (∪4

i=2Ii) ∪ (I5 − { 1
a}). We distinguish among Cases 3 – 6, where Case i + 1

deals with for x ∈ Ii, i = 2, 3, 4 and Case 6 deals with x ∈ I5 − { 1
a}.
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Case 3. x ∈ I2 = [a+1
2 , a). We distinguish among four subcases for y ∈ [a+1

2 , a),
y ∈ [1, a+1

2 ), y ∈ [ 2
a+1 , 1), and y ∈ ( 1a ,

2
a+1 ), respectively.

Case 3.1. y ∈ [a+1
2 , a). In case of x, y ∈ (a+1

2 , a), solving ∂ϕ
∂x (x, y) = 0 = ∂ϕ

∂y (x, y)

gives 987.84x2+29.2681
576x2−129.84 = y = 2400x2+7990.125x−541

7150x , which implies 2764800x4 −
4921488x3 + 1656341.83x− 140486.88 = 0. Among the four real roots of the bi-
quadratic equation, only one root x0

.
= 1.5419 belongs I2 = [a+1

2 , a). So function

ϕ(x, y) has a unique critical point (x0, y0), where y0 =
987.84x2

0+29.2681

576x2
0−129.84

.
= 1.586,

giving critical value ϕ(x0, y0) < 1.585.
In case of x = a+2

2 , function ϕ(a+1
2 , y) has a unique critical point y0 =

a2+a+ab+3b
2a+2

.
= 1.5174 in (a+1

2 , a), giving critical value smaller than 1.586059.

Note that ϕ(a+1
2 , a+1

2 ) < 1.57.
In case of y = a+1

2 and x ∈ (a+1
2 , a), the derivative of ϕ(x, a+1

2 ) is 10279
89375x2 −

576
3575 < 10279

89375 − 576
3575 < 0, saying that (x∗, y∗) does not belong to this case.

Case 3.2. y ∈ [1, a+1
2 ). Similar arguments to that in Case 3.1 show the fol-

lowing: In case of x ∈ (a+1
2 , a) and y ∈ (1, a+1

2 ), function ϕ attains its criti-

cal value ϕ(x0, y0) < 1.583 at x0
.
= 1.5249, y0 =

1053x2
0+43.95625

624x2
0+140.66

.
= 1.566. In

case of x = a+1
2 , function ϕ attains its critical value ϕ(a+1

2 , y0) < 1.585 at

y0 = a2−3+2ab−2b−2a+4ab2+12b2

4(a+1)(2b−1)
.
= 1.5037; at the boundary, ϕ(a+1

2 , 1) < 1.4. In

case of y = 1 and x ∈ (a+1
2 , a), (x∗, y∗) does not belong to this case.

Case 3.3. y ∈ [ 2
a+1 , 1). If ∂ϕ

∂x (x, y) = 0, then x2 = 5.41
24

(
70.4

16−5y − 5.4
)

<

5.41
24

(
70.4
16−5 − 5.4

)
< 0.3, contradicting the hypothesis x ∈ [a+1

2 , a) of Case 3.

Thus ∂ϕ
∂x (x, y) = 0, and it suffices to consider the case where x = a+1

2 . Note that
the derivative of ϕ(a+1

2 , y) is 143336
149325y2 − 5

22 > 143336
149325 − 5

22 > 0. We deduce that

(x∗, y∗) does not belong to Case 3.3.

Case 3.4. y ∈ ( 1a ,
2

a+1 ). It can be shown that (x∗, y∗) does not belong to this
case by arguments similar to that in Case 3.3.

Case 4. x ∈ I3 = [1, a+1
2 ). It follows from xy ≥ 1 that y > 2

a+1 for which we

distinguish among three subcases for y ∈ [a+1
2 , a), y ∈ [1, a+1

2 ) and y ∈ [ 2
a+1 , 1),

respectively.
In case of y ∈ [a+1

2 , a), for x ∈ (1, a+1
2 ) and y ∈ (a+1

2 , a), function ϕ attains
critical value ϕ(x0, y0) < 1.5854 at the unique critical point (x0, y0), where

x0
.
= 1.2027 and y0 =

26754x2
0+35165/32

15600x2
0+4875

.
= 1.4504. Note that ϕ(1, a+1

2 ) = 1.5858.

For x = 1 and y ∈ (a+1
2 , a), the derivative of ϕ(1, y) is negative. For y = a+1

2
and x ∈ (1, a+1

2 ), the derivative of ϕ(x, a+1
2 ) is negative. It follows that (x∗, y∗)

belongs to neither of the two cases.
In case of y ∈ [1, a+1

2 ), if ∂ϕ
∂x (x, y) = 0, then x2 = 6.875

27−16y − 5
16 < 6.875

27−8(a+1) −
5
16 < 1, contradicting the hypothesis x ≥ 1 of Case 4. So it suffices to consider
x = 1. Within y ∈ (1, a+1

2 ), function ϕ(1, y) attains its unique critical value
ϕ(1, 43

32 ) < 1.586 at y = 43
32 . At the boundary, we have ϕ(1, 1) = 1.5.
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In case of y ∈ ( 2
a+1 , 1), if

∂ϕ
∂x (x, y) = 0, then x2 = 80−135y

80y−256 , which along with

x ≥ 1 enforces y ≥ 336
215 , a contradiction to y < 1. Therefore we may assume

x = 1. Since the derivative of ϕ(1, y) is 16−5y2

22y2 > 0, we deduce that (x∗, y∗) does
not belong to this case.

Case 5. x ∈ I4 = [ 2
a+1 , 1). It follows from xy ≥ 1 that y > 1. We distinguish

between two subcases depending on whether y is at least a+1
2 or not.

In case of y ∈ [a+1
2 , a), if ∂ϕ

∂y (x, y) = 0, then y = 2524.47x2+429x−624
1716x2 , which

along with y ≥ a+1
2 enforces 5x2 + 11x− 16 ≥ 0 implying x ≤ −3.2 or x ≥ 1, a

contradiction to the hypothesis x ∈ I4 of Case 5. So we may assume y = a+1
2 .

Within x ∈ ( 2
a+1 , 1), the unique critical point of ϕ(x, a+1

2 ) is x = 608
609 , giving

critical value less than 1.586. At the boundary, we have ϕ( 2
a+1 ,

a+1
2 ) < 1.52.

In case of y ∈ (1, a+1
2 ), when x ∈ ( 2

a+1 , 1), function ϕ attains its unique critical

value ϕ(x0, y0) < 1.58603 at x0
.
= 0.985, y0 = 50193x0/16+1690

5408−1859x0

.
= 1.3364. When

x = 2
a+1 , function ϕ( 2

a+1 , y) has a unique critical value ϕ( 2
a+1 , 1.12665) < 1.56.

Case 6. x ∈ I5 − { 1
a} = ( 1a ,

2
a+1 ). It follows from xy ≥ 1 that y ∈ (a+1

2 , a),

If ∂ϕ
∂x (x, y) = 0, then x = 2400y−541

637637/400+858y , which along with x ≤ 2
a+1 enforces

y ≤ 4657
4800 < 1, a contradiction. Since ∂ϕ

∂x (x, y) is a continuous function, we deduce

that ∂ϕ
∂x (x, y) is always positive or always negative, implying that (x∗, y∗) does

not belong to Case 6.

Among all cases analyzed above, the bottleneck 1.586058... (< ρ∗) is attained
by Case 3.1 with ϕ

(
a+1
2 , a

2+a+ab+3b
2a+2

)
. ��

3.3 The Limitation of Algorithm 1

It was announced in [8] and proved in its full paper that, for strongly independent
tasks, the performance ratio of Algorithm 1 cannot be better than 1.5788. We
improve the lower bound by 0.0074, which nearly closes the gap between the
lower and upper bounds for Algorithm 1.

Theorem 3. Let G in (2.3) be defined by any non-decreasing function F :
R+ → [0, 1] with F (0) = 0 and limx→∞ F (x) = 1. The approximation ratio of
Algorithm 1 is at least 1.5852.

Proof. Suppose that there exists function F such that Algorithm 1 achieves an
approximation ratio less than 1.5852. It follows from (3.1) that for any x, y ∈ R+,

1.5852 > ϕ(x, y)

=

{
1+y−F (x)−yF (y)+

(
1+ 1

x

)
F (x)F (y), xy ≥ 1;

1+y−(1− 1
x+y

)
F (x)−yF (y)+(1+y)F (x)F (y), xy ≤ 1.

(3.5)

Let α = 1.352 and β = 1.532. We examine ϕ(x, y) for some values of x, y in
{α, β, 1, 1/α, 1/β}, and derive a contradiction from ϕ(x, y) < 1.5852. ��
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4 Weakly Independent Tasks

We assume function F (·) takes the form of (3.2). The weak independence is
specified by the joint distributionH(xi, xj) = [( n−1

√
F (xi)+

n−1
√
F (xj)−1)+]n−1

as in (2.2).
Using the Copula based distribution, Algorithm 1 can guarantee approxima-

tion 1.5067711 for n = 2 tasks, as proved in Section 4.1. We study the case of
n ≥ 3 tasks in Section 4.2, where MATLAB’s global solver is used to solve the
optimization problems involved in the computer conducted search/proof of the
approximation ratio. Our results show that the Clayton Copula based algorithm
outperforms the strong independent-task allocation, and the former converges
to the later as n approaches to infinity.

4.1 The Case of n = 2

In this subsection, we reduce Lu’s upper bound 1
6 (
√
25− 12

√
3+7)

.
= 1.5089 [6]

for two tasks, and narrow the gap from the lower bound 1.506 [6] to be 0.0007711.
For the case of n = 2, we have H(x1, x2) = (F (x1) + F (x2)− 1)

+
and ϕ(x, y) =

1+y−min
{
1, 1− 1

x + y
}
F (x)−yF (y)+min

{
1 + 1

x , 1 + y
}
(F (x)+F (y)−1)+.

Lemma 2. Let G satisfy (2.1). When n = 2, ϕ(x, y) = ϕ(1/y, 1/x) for any
x, y ∈ R+.

Proof. Without loss of generality we may assume xy ≥ 1. Since F (·) is non-
decreasing and satisfies (3.3), we have F (x) ≥ F (1/y) = 1−F (y), and ϕ(x, y) =
1 + y − F (x)− yF (y) + (1 + 1/x)(F (x) + F (y)− 1)

On the other hand, F (1/y)+F (1/x) ≤ F (1/y)+F (y)=1 implies ϕ(1/y, 1/x) =
1+1/x− (1− y+1/x)F (1/y)−F (1/x)/x = 1+1/x− (1− y+1/x)(1−F (y))−
(1− F (x))/x. Now it is easy to check that ϕ(x, y) = ϕ(1/y, 1/x). ��

Using Lemma 2 and a similar proof to that of Theorem 2 (see [1]), we establish
a 1.5068 performance ratio for Algorithm 1.

Theorem 4. Let F (·) be defined as in (3.2) with a = 2.2468 and b = 0.7607.
For n = 2, using G(x1, x2) in (2.1), Algorithm 1 achieves an approximation
ratio of 1.5067711. ��

4.2 The Case of General n

In this subsection, we mainly discuss the multiple task case n ≥ 3. We look for
a distribution function F (·) of form (3.2) which minimizes the maximum of the
binary function

ϕ(x, y) = 1 + y −min
{
1, 1− 1

x+y
}
F (x) − yF (y)

+min
{
1+ 1

x , 1+y
}[

( n−1
√
F (x)+n−1

√
F (y)−1)+

]n−1
.

(4.1)

To accomplish the task, we need determine the maximum of ϕ for any given
constants a and b. Theoretically, this can be done in a way similar to the proofs
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of Theorems 2 and 4. In practice, computer-assisted arguments turn out more
suitable, as explained below.

– The previous case by case analyses are simplified by the property ϕ(x, y) =
ϕ(1/y, 1/x) (see Lemmas 1 and 2), which allows us to only focus on the case
of xy ≥ 1. For n ≥ 3, this property is generally lost due to the complicated
term [( n−1

√
F (x)+ n−1

√
F (y)−1)+]n−1 in (4.1). As a result, it might be much

more tedious to discuss all possible combinations for x, y from six intervals
[0, 1

a ), [
1
a ,

2
a+1 ), . . . , [a,+∞) where F (·) is described by different algebraic

expressions.
– Finding the critical points of ϕ(x, y) becomes more and more challenging

as n increases. One has to resort to software for solving equations of high
degrees resulting from the complicated term.

We conduct a case analyses using MATLAB’s global optimization tool Glob-
alSearch (cf., [12]) to help us to solve the nonlinear program maxx,y ϕ(x, y)

subject to four constrains xy ≤ (or ≥) 1, n−1
√
F (x) + n−1

√
F (y) ≤ (or ≥) 1,

l1 ≤ x ≤ u1, l2 ≤ y ≤ u2 for different choices of n, a, and b, where l1, u1, l2, u2

specify the intervals containing x and y. The computational results are summa-
rized in Table 1. For each input triplet of n, a, b, Table 1 provides the values of
(x∗, y∗) which attain the largest value of ϕ(x, y) after GlobalSearch is em-
ployed to solve the nonlinear program 10 times. The difference δ between the
largest value of ϕ(x, y) and the smallest one among the 10 computations is also
recorded. From the last column of Table 1 we observe that δ does not exceed
1.4066× 10−7, showing the stability of the computational results.

As the second line (when n = 2) in Table 1 illustrates, GlobalSearch finds
the optimal solution established in Theorem 4 within numerical tolerance. The
second to last column of Table 1 shows that ϕ(x∗, y∗) increases as n grows,
interpreting the common sense that achieving truthfulness with respect to more
tasks costs more. The increasing property of approximation ratios with respect
to n can be visualized when we connect points (n, ϕ(x∗, y∗)) with a curve (see
[1]), where we have the following observations.

– The curve makes a “large” jump at n = 3, from 1.5068 to 1.5413;
– The increasing speed is tiny after n = 30, which attains ϕ(x∗, y∗) .

= 1.5828;
– The curve looks flat after n = 100; in particular the average slope is less

than 5× 10−6 for n ∈ [100, 200].

More interesting phenomena are observed from the first three columns of
Table 1: the optimal value of a decreases with n, and approaches a limit ap-
proximately equal to 1.7149; while starting from n = 3 the optimal value of b
increases with n, and approaches a limit approximately equal to 0.7599. Note
the limit values of a and b in Table 1 “coincide” with the values of a = 1.715
and b = 0.76 used in Theorem 2 for strongly independent tasks. The reason is
that for any distribution function F (·), function ϕ(x, y) in (4.1) is always upper
bounded by function ϕ(x, y) in (3.1), and the former approaches the latter as n
tends to infinity. This fact is proved in [1].
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Table 1. Computational results on minimizing the maximum of ϕ (choosing a and b
to minimize the maximum ϕ(x∗, y∗)), where the data in the last row for n = ∞ are
taken from the proof of Theorem 2.

n a b x∗ y∗ ϕ(x∗, y∗) δ

2 2.2468 0.7607 a+1
2

= 1.6234 1.9313955486 1.5067710964 1.5499 × 10−13

3 1.9328 0.7418 1.9105670668 1.7231009560 1.5412707361 5.4073 × 10−9

4 1.8442 0.7453 a = 1.8442 1.6932202823 1.5559952305 8.8818 × 10−16

5 1.8070 0.7487 1.1418758036 1.5193285944 1.5634859375 1.8911 × 10−9

6 1.7863 0.7510 1.1468400067 1.4989121029 1.5679473463 3.4101 × 10−9

7 1.7734 0.7526 1.1447309125 1.4845715829 1.5709131851 2.7397 × 10−8

8 1.7646 0.7536 1.1192295299 1.4661575387 1.5730320737 4.9022 × 10−9

9 1.7581 0.7543 a+1
2

= 1.37905 1.5499380481 1.5746303803 2.1302 × 10−9

10 1.7530 0.7548 1.0673757071 1.4334673997 1.5758769995 4.5725 × 10−8

15 1.7410 0.7570 1.0190835924 1.3975512392 1.5795353027 3.2335 × 10−8

20 1.7326 0.7573 0.9997077878 1.3798783532 1.5811826690 8.8565 × 10−10

30 1.7267 0.7582 a+1
2

= 1.36335 1.5259350403 1.5828322598 2.3226 × 10−13

45 1.7225 0.7587 0.9879452462 1.3491108561 1.5839252561 1.4493 × 10−9

70 1.7199 0.7592 0.9868820343 1.3445069231 1.5846893837 3.2863 × 10−9

100 1.7183 0.7594 a+1
2

= 1.35915 1.5197905945 1.5850948285 3.1020 × 10−13

200 1.7167 0.7597 a+1
2

= 1.35835 1.5186228330 1.5855735653 7.5118 × 10−13

500 1.7156 0.7598 0.9851752572 1.3375636313 1.5858603200 1.8349 × 10−9

1000 1.7153 0.7599 a+1
2

= 1.35765 1.5176140596 1.5859488980 3.2567 × 10−12

5000 1.7150 0.7599 0.9849521898 1.3365770913 1.5860275919 2.9110 × 10−9

104 1.7149 0.7599 a = 1.7149 1.6490128248 1.5860403769 1.4479 × 10−11

105 1.7149 0.7599 0.9849621198 1.3364590898 1.5860442151 5.2509 × 10−9

106 1.7149 0.7599 0.9849513401 1.3364514130 1.5860456086 1.0466 × 10−7

...
...

...
...

...
...

...

∞ 1.715 0.76 a+1
2

= 1.3575 a2+a+ab+3b
2a+2

.
= 1.5174 1.5860582220 0

5 Concluding Remark

We note that the choice of the Clayton Copula in (2.1) is not accidental. We
wish to choose the Copula that leads to the best approximation ratio for our
mechanism. However, the Clayton Copula is the best lower bound among all
Archimedean copulas [9]. Therefore, any hope to improve the bounds presented
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in this work will have to resort to non-Archimedean copulas, which usually lack
the nice closed-form property of Archimedean copulas.
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9. McNeil, A.J., Nešlehová, J.: Multivariate archimedean copulas, d-monotone func-
tions and l1-norm symmetric distributions. The Annals of Statistics 37(5),
3059–3097 (2009)

10. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness: extended ab-
stract. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2007, pp. 1143–1152 (2007)

11. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic
Behavior 35, 166–196 (2001)

12. Ugray, Z., Lasdon, L., Plummer, J.C., Glover, F., Kelly, J., Mart́ı, R.: Scatter search
and local nlp solvers: A multistart framework for global optimization. INFORMS
Journal on Computing 19(3), 328–340 (2007)



Imperfect Best-Response Mechanisms

Diodato Ferraioli1 and Paolo Penna2
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Abstract. Best-response mechanisms (Nisan, Schapira, Valiant, Zohar,
2011) provide a unifying framework for studying various distributed pro-
tocols in which the participants are instructed to repeatedly best respond
to each others’ strategies. Two fundamental features of these mechanisms
are convergence and incentive compatibility.

This work investigates convergence and incentive compatibility condi-
tions of such mechanisms when players are not guaranteed to always best
respond but they rather play an imperfect best-response strategy. That
is, at every time step every player deviates from the prescribed best-
response strategy according to some probability parameter. The results
explain to what extent convergence and incentive compatibility depend
on the assumption that players never make mistakes, and how robust
such protocols are to “noise” or “mistakes”.

1 Introduction

One of the key issues in designing a distributed protocol (algorithm) is its con-
vergence to a stable state, also known as self-stabilization. Intuitively, starting
from any initial (arbitrarily corrupted) state, the protocol should eventually con-
verge to the “correct state” as intended by the designer. Incentive compatibility
considerations have been also become important in the study of distributed pro-
tocols since the participants cannot be assumed to altruistically implement the
protocol if that is not beneficial for themselves.

A unifying game-theoretic approach for proving both convergence and incen-
tive compatibility has been recently proposed by Nisan et al. [14]. They consider
so-called best-response mechanisms or dynamics in which the protocol prescribes
that each participant (or player) should simply best-respond to the strategy cur-
rently played by the other players. Essentially the same base game is played
over and over (or until some equilibrium is reached), with players updating their
strategies in some (unspecified) order. Nisan et al. [14] proved that for a suitable
class of games the following happens:

– Convergence. The dynamics eventually reaches a unique equilibrium point
(a unique pure Nash equilibrium) of the base game regardless of the order
in which players respond (including concurrent responses).

B. Vöcking (Ed.): SAGT 2013, LNCS 8146, pp. 243–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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– Incentive compatibility. A player who deviates from the prescribed best-
response strategy can only worsen his/her final utility, that is, the dynamics
will reach a different state that yields weakly smaller payoff.

These two conditions say that the protocol will eventually “stabilize” if im-
plemented correctly, and that the participants are actually willing to do so.
Convergence itself is a rather strong condition because no assumption is made
on how players are scheduled for updating their strategies, a typical situation
in asynchronous settings. Incentive compatibility is also non-trivial because a
best-response is a myopic strategy which does not take into account the future
updates of the other players. In fact, neither of these conditions can be guaran-
teed on general games.

Nisan et al. [14] showed that several protocols and mechanisms arising in com-
puterized and economics settings are in fact best-response mechanisms over the
restricted class of games for which convergence and incentive compatibility are
always guaranteed. Their applications include: (1) the Border Gateway Protocol
(BGP) currently used in the Internet, (2) a game-theoretic version of the TCP
protocol, and (3) mechanisms for the classical cost-sharing and stable roommates
problems studied in micro-economics.

In this work we address the following question:

What happens to these protocols/mechanisms if players do not always
best respond?

Is it possible that when players sometimes deviate from the prescribed protocol
(e.g., by making mistakes in computing their best-response or by scarce knowl-
edge about other players’ actions) then the protocol does not converge anymore?
Can such mistakes induce some other player to adopt a non-best-response strat-
egy that results in a better payoff? Such questions arise naturally from fault
tolerant considerations in protocol design, and have several connections to equi-
libria computation and bounded rationality issues in game theory.

Our Contribution.We investigate convergence and incentive compatibility condi-
tions of mechanisms (dynamics) in [14] when players are not guaranteed to always
best respond but they rather play an imperfect best-response strategy. That is,
at every time step every player deviates from the prescribed best-response strat-
egy according to some probability parameter p ≥ 0. The parameter p can be
regarded as the probability of making a mistake every time the player updates
his/her strategy.

Our results indicate to what extent convergence and incentive compatibility
depend on the assumption that players never make mistakes, and provide neces-
sary and sufficient conditions for the robustness of these mechanisms/dynamics:

– Convergence. Because of mistakes convergence can be achieved only in a
probabilistic sense. We give bounds on the parameter p in order to guarantee
convergence with sufficiently good probability.
One might think that for small values of p our dynamics behaves (approxi-
mately) as the dynamics without mistakes, i.e. it converges to an equilibrium
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point regardless of the order in which players respond. However, it turns out
this is not the case. Indeed, our first negative result (Theorem 2) shows that
even when p is exponentially small in the number n of players the dynamics
does not converge, i.e., the probability of being in the equilibrium is always
small (interestingly, such negative result applies also to certain instances of
BGP in the realistic model of Gao and Rexford [6]).
The proof of this result shows the existence of a particularly “bad” schedule
that amplifies the probability that the imperfect dynamics deviates from the
perfect one. This highlights that imperfect dynamics differ from their per-
fect counterpart in which convergence results must consider how players are
scheduled. Indeed, we complement the negative result above with a general
positive result (Theorem 3) saying that convergence can be guarantee when-
ever p is polynomially small in some parameters defining both the game and
the schedule of the players. For such values of p, the upper bound on the
convergence time of dynamics without mistakes is (nearly) an upper bound
for the imperfect best-response dynamics.

– Incentive compatibility. We first observe that games that are incentive com-
patible for dynamics without mistakes, may no longer be incentive compat-
ible for imperfect best-response dynamics (Theorem 4). In other words, a
player who deviates incidentally from the mechanism induces another player
to deliberately deviate. A sufficient condition for incentive compatibility of
imperfect best-response mechanisms (Theorem 5) turns out to be a quanti-
tative version of the one given in [14]. Roughly speaking, if the payoffs of the
Nash equilibrium are sufficiently larger than the other possible payoffs, then
incentive compatibility holds. As the probability p of making mistakes van-
ishes, the class of games for which convergence and incentive compatibility
holds tends to the class of games in [14].

Our focus is on the same class of (base) games of [14] since this is the only
known general class for which best-response dynamics converge (regardless of
the schedule of the players) and are incentive compatible. In our view this class
is important as it describes accurately certain protocols that are implemented
in practice and it unifies several results in game theory. In particular, the math-
ematical model of how the commercial relationships between Autonomous Sys-
tems (the Gao-Rexford model [6]) leads to games in this class and, ultimately,
to the fact that BGP converges and is incentive compatible [12,14]. Considering
more general games for the analysis of BGP would in fact produce “wrong” re-
sults (constructing unrealistic examples for which the protocol does not converge
or is not incentive compatible).

We nevertheless take one step further and apply the tools from [14] (and this
work) to a natural generalization of their games. Intuitively speaking, these games
guarantee only that best-response converge to a sub-game. In this case, the dynam-
ics of the original game can be approximated by the dynamics of the sub-game
(Theorem 6). Unfortunately, this “reduction” cannot be pushed further simply
because the sub-game can be an arbitrary game and different p-imperfect best-
response dynamics lead to different equilibria (even for the same p). However,
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when the dynamics on the sub-game are well-understood, then we can infer their
behavior also on the original game. One applications of this approach is on PageR-
ank games [9] which turn out to be reducible to a sub-game for which the well-
studied logit equilibrium [2] has a closed formula.

Due to space limitations, we only give proof sketches. We refer the reader to
the full version of the paper [5] for complete proofs and more detailed descriptions
of the results.

Related Work. Convergence of best-response dynamics is a main topic in game
theory. It relates to the so-called problem of equilibrium selection (how can the
players converge to an equilibrium?). Noisy versions of such dynamics have been
studied in order to consider the effects of bounded rationality and limited knowl-
edge of the players (which limits their ability to compute their best responses).

Our imperfect best response dynamics are similar to the mutation model by
Kandori et al. [10], and to the mistakes model by Young [15], and Kandori
and Rob [11]. A related model is the logit dynamics of Blume [4] in which the
probability of a mistake depends on the payoffs of the game. All of these works
assume a particular schedule of the players (the order in which they play in
the dynamics). Whether such an assumption effects the selected equilibrium is
the main focus of a recent work by Alos-Ferrer and Netzer [1]. They studied
convergence of these dynamics on general games when the parameter p vanishes,
and provide a characterization of the resulting equilibria in terms of a kind of
potential function of the game. Convergence results that take into account non-
vanishing p are only known for fixed dynamics on specific class of games.

Incentive compatibility of best-response dynamics provide a theoretical jus-
tification for several protocols and auctions widely adopted in practice. Levin
et al. [12] proved convergence and incentive compatibility of the intricate BGP
protocol in the current Internet (based on the mathematical model by Gao and
Rexford [6] that captures the commercial structure that underlies the Internet
and explains convergence of BGP). The theoretical analysis of TCP-inspired
games by Godfrey et al. [7] shows that certain variants of the current TCP
protocol converge (the flow rate stabilizes) and are incentive compatible on ar-
bitrary networks (this property assumes routers adopt specific queuing policy).
The so-called Generalized Second-Price auctions used in most of ad-auctions is
another example of incentive compatible best-response mechanism as proved by
Nisan et al. [13]. All of these problems (and others) and results have been unified
by Nisan et al. [14] in their framework.

2 Definitions

We consider an n-player base game G in which each player i has a finite set of
strategies Si, and a utility function ui. Each player can select a strategy si ∈ Si

and the vector s = (s1, . . . , sn) is the corresponding strategy profile, with ui(s)
being the payoff of player i. To stress the dependency of the utility ui on the
strategy zi of player i we adopt the standard notation (zi, s−i) to denote the
vector (s1, . . . , si−1, zi, si+1, . . . , sn).
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(Imperfect) Best-Response Dynamics. A game dynamics consists of a (possibly
infinite) sequence of strategy profiles s0, s1, . . ., where s0 is an arbitrarily chosen
profile and the profile st is obtained from st−1 by letting some of the players
updating their strategies. Therefore a game dynamics is determined by a schedule
of the players specifying, for each time step, the subset of players that are selected
for updating their strategies and a response rule, which specifies how a player
updates her strategy (possibly depending on the past history and on the current
strategy profile). In this work we focus on dynamics based on the following kind
of schedules and response rules.

As for the response rule, we consider a scenario in which a selected player can
deviates from the (prescribed) best-response.

Definition 1 (p-imperfect response rule). A response rule is p-imperfect if
a player update her strategy to the best-response with probability at least 1− p.

Examples of these rules are given in the mutation [10] or mistakes models [15,11].
The best-response rule is obviously 0-imperfect, which we also denote as perfect.
The response rule in logit dynamics [4] is p-imperfect with

p ≤ m− 1

m− 1 + eβ

for all games in which the payoff between a non-best and a best-response differs
by at least one1 and each player has at most m strategies.

In order to avoid trivial impossibility results on convergence we need to con-
sider a non-adaptive adversarial schedule that satisfies some reasonable fairness
condition. We allow both deterministic and randomized schedules satisfying the
following definition.

Definition 2 ((R, ε)-fair schedule). A schedule is (R, ε)-fair if there exists a
nonnegative integer R such that, for any interval of R time steps, all players are
selected at least once in this interval with probability at least 1− ε, i.e. for every
player i and any time step a we have

Pr(SELi,a,R) ≥ 1− ε,

where SELi,a,R is the event that player i is selected at least once in the interval
[a+ 1, a+R].

Scheduling players in round-robin fashion or concurrently corresponds to (n, 0)-
fair and (1, 0)-fair schedules, respectively. Selecting a player at random at each
time step is (R, ε)-fair with R = O(n log n). Observe that if a schedule is (R, ε)-
fair, then, for every 0 < δ < ε, all players are selected at least once with proba-

bility at least 1− δ in an interval of R ·
⌈
log(1/δ)
log(1/ε)

⌉
time steps (this holds because

the probability 1 − ε is guaranteed for any interval of R time steps). We also
denote with η the maximum number of players selected for update in one step
by the schedule. Note that η ≤ n.

1 When the minimum difference is δ this extends by taking βδ = β · δ in place of β.
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Henceforth, we always refer as imperfect best-response dynamics to any dy-
namics whose schedule is (R, ε)-fair and whose response rule is p-imperfect, and
as imperfect best-response mechanisms to the class of all imperfect best-response
dynamics. We highlight that we do not put any other constraint on the way the
dynamics run. In particular we allow both the schedule and the response rule to
depend on the status of the game, that is on a set of information other than the
current strategy profile.

Convergence and Incentive Compatibility. We say that a game dynamics for a
game G converges if it eventually converges to a Nash equilibrium of the game,
i.e. there exists t > 0 such that the strategy profile of players at time step t
coincides with a Nash equilibrium of G.

Let us denote with Xt the random variable that represent the strategy profile
induced by a dynamics on a game G after t time steps. If there is a finite time
step T after which the dynamics is terminated, then the total utility of a player i
is defined as Γi = E

[
ui

(
XT
)]
; otherwise, that is if the dynamics does not termi-

nate after finite time, the total utility is defined as Γi = lim supt→∞ E [ui (X
t)].

Then, a dynamics for a game G is incentive compatible if playing this dynamics
is a pure Nash equilibrium in a new game G� in which players’ strategies are all
possible response rule that may be used in G and players’ utilities are given by
their total utilities. That is, a dynamics for a game G is incentive compatible if
every player does not improves her total utilities by playing according to a re-
sponse rule different from the one prescribed, given that each other player does
not deviate from the prescribed response rule.

Never Best-Response and the Main Result in [14]. Nisan et al. [14] analyzed the
convergence and incentive compatibility of the (perfect) best-response dynamics.
Before stating their result, let us now recall some definitions.

Definition 3 (never best-response). A strategy si is a never best-response
(NBR) for player i if, for every s−i, there exists s′i such that ui(si, s−i) <
ui(s

′
i, s−i).

2

Note that according to a p-imperfect response rule, a player updates her strategy
to a NBR with probability at most p.

Definition 4 (elimination sequence). An elimination sequence for a game
G consists of a sequence of sub-games

G = G0 ⊃ G1 ⊃ · · · ⊃ Gr = Ĝ,

where any game Gk+1 is obtained from the previous one by letting a player i(k)

eliminate strategies which are NBR in Gk.

2 Nisan et al. [14] assume that each player has also a tie breaking rule ≺i, i.e., a total
order on Si, that depends solely on the player’s private information. In the case
that a tie breaking rule ≺i has been defined for player i, then si is a NBR for i
also if ui(si, s−i) = ui(s

′
i, s−i) and si ≺i s

′
i. However, such tie-breaking rule can be

implemented in a game by means of suitable perturbations of the utility function:
with such an implementation our definition is equivalent to the one given in [14].
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The length of the shortest elimination sequence for a game G is denoted with �G
(we omit the subscript when it is clear from the context). It is easy to see that
for each game �G ≤ n(m− 1), where m is the maximum number of strategies of
a player.

Our results will focus on the following classes of games.

Definition 5 (NBR-reducible and NBR-solvable games). The game G
is NBR-reducible to Ĝ if there exists an elimination sequence for G that ends in
Ĝ. The game G is NBR-solvable if it is NBR-reducible to Ĝ and Ĝ consists of a
unique profile.

For example, consider a 2-player game with strategies {0, 1, 2} and the follow-
ing utilities:

0 1 2
0 0,0 0,0 0,-2
1 0,0 -1,-1 -1,-2
2 -2,0 -2,-1 -2,-2

(1)

Notice that strategy 2 is a NBR for both players. Hence, there exists an elimina-
tion sequence of length 2 that reduces above game in its upper-left 2×2 sub-game
with strategy set {0, 1} for each player. Therefore, this game is NBR-reducible.
If we modify the utilities in this upper-left 2× 2 sub-game as follows

0 1
0 0,0 0,−δ
1 −δ,0 -1,-1

then the game reduces further to the profile (0, 0) and hence it is NBR-solvable.
Observe that the unique profile at which the game G is reduced in an NBR-
solvable game is also the unique Nash equilibrium of the original game.

While the convergence result of [14] holds for the class of NBR-solvable games,
in order to guarantee incentive compatibility they introduce the following con-
dition on the payoffs:

Definition 6 (NBR-solvable with clear outcome). A NBR-solvable game
is said to have a clear outcome if, for every player i, there is a player-specific
elimination sequence such that the following holds. If i appears the first time in
this sequence at position k, then in the sub-game Gk the profile that maximizes
the utility of player i = i(k) is the Nash equilibrium.

Theorem 1 (main result of [14]). Best-response dynamics of every NBR-
solvable game G converge to a pure Nash equilibrium of the game and, if G has
clear outcome, are incentive compatible. Moreover, convergence is guaranteed in
�G rounds for any schedule, where a round is a sequence of consecutive time
steps in which each player is selected for update at least once.

Note that convergence and incentive compatibility holds regardless of the
schedule of players. Moreover, the theorem implies that for a specific (R, ε)-
fair schedule the dynamics converges in O(R · �G) time steps. Note also that
convergence does not require a clear outcome and this condition is only needed
for incentive compatibility.
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3 Convergence Properties

In this section we will show that the result about convergence of the best-
response dynamics in NBR-solvable games given in [14] is not resistant to the
introduction of “noise”, i.e., there is a NBR-solvable games and an imperfect
best-response dynamics that never converges to the Nash equilibrium even for
values of p very small. Specifically we will prove the following theorem.

Theorem 2. For every 0 < δ < 1, there exists a n-player NBR-solvable game
G and an imperfect best-response dynamics with parameter p exponentially small
in n such that for every integer t > 0 the dynamics converges after t steps with
probability at most δ.

Proof (Sketch). Consider a game with n players with strategies 0 and 1. Each
player i has better payoff for strategy 1 if all previous players, 1, 2, . . . , i−1, also
play strategy 1; in all other cases, player i has better payoff for strategy 0. It
is easy to check that the shortest elimination sequence has length � = n and it
leads to all players playing strategy 1.

It is possible to define a deterministic non-adaptive schedule which consists
of a suitable sequence of length R = 2n−1 in which all players are selected at
least once. The schedule repeats this sequence over and over. For a particular
p-imperfect best-response rule, if a player i does a “mistake”, that is, chooses
strategy 0 within this sequence, then this mistake will “propagate” to all sub-
sequent players, i + 1, . . . , n, and at the end of the sequence player n will play
strategy 0. Therefore, convergence requires p to be smaller than 1/R and thus
exponentially small in n. ��
We remark that the above impossibility result can be easily instantiated with
certain instances of BGP games or with specific dynamics such as the logit
dynamics (see [5] for detailes).

We next complement above negative result with an upper bound on the value
of p necessary for having the game being in the equilibrium with high probability
within finite time T . This in particular means that, by terminating the dynamics
after T steps, it is very likely that the system ends in the Nash equilibrium.

Theorem 3. For any NBR-solvable game G and any small δ > 0, there is a
time T = O(R · � log �) such that every p-imperfect best-response dynamics is in
the Nash equilibrium of G with probability at least 1− δ, whenever p ≤ c

ηR·� log � ,

for a suitably chosen constant c = c(δ).

Proof (Sketch). It is possible to show that, if the dynamics is in a profile in Gk at
time t, then the probability that it is in the next sub-game, Gk+1, after further R
steps is at least 1− ηpR− ε. This implies that for any starting configuration the
dynamics is in Gk after k ·R time steps with probability at least 1−k ·(ηpR+ε).
For k = � this probability can be made larger than 1− δ by observing that every

(R, ε)-fair adversary is also (T, δ/2�)-fair with T =
⌈
log(2�/δ)
log(1/ε)

⌉
, and by setting

p ≤ δ
2 · 1

ηT� . ��
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4 Incentive Compatibility Property

In this section we ask if the incentive compatibility property holds also in pres-
ence of noise, that is, if deviating from a p-imperfect best-response rule is not
beneficial for the player. Note that adopting a p′-imperfect response rule, with
p′ < p, should be not considered a deviation, since this rule is also a p-imperfect
response rule.

The following theorem shows that the incentive compatibility property is not
resistant to the introduction of noise.

Theorem 4. There is a NBR-solvable game with clear outcome and an imper-
fect best-response dynamics whose response rule is not incentive compatible.

Proof (Sketch). Consider the following game G:

left right
top c+ 2, 1 1, 0

bottom 0, 0 0, c

Consider the logit dynamics for G (we already noted that the logit dynamics is
an example of imperfect best-response dynamics). Since this game is a potential
game, a closed formula for the stationary distribution reveals that the column
player has a better expected payoff by playing always strategy right. ��

As done for convergence, we now investigate for sufficient conditions for in-
centive compatibility. We will assume that utilities are non-negative: note that
there are a lot of response rules that are invariant with respect to the actual
value of the utility function and thus, in these cases, this assumption is without
loss of generality. Recall that we denote as i(k) and Gk the first occurrence of
the player and the corresponding sub-game in the elimination sequence given by
the definition of game with clear outcome (Definition 6).

It turns out that we need a “quantitative” version of the definition of clear
outcome, i.e., that whenever the player i has to eliminate a NBR her utility in
the Nash equilibrium is sufficiently larger than the utility of any other profile in
the sub-game she is actually playing. Specifically, we have the following theorem.

Theorem 5. For any NBR-solvable game G with clear outcome and any small
δ > 0, playing according to a p-imperfect rule is incentive compatible for player
i = i(k) as long as p ≤ c

ηR·� log � , for a suitable constant c = c(δ), the dynamics

terminates after Θ (R · � log �) steps and

ui(NE) ≥ 1

1− 2δ

(
2δ · u�

i + uk
i

)
,

where ui(NE) is the utility of i in the Nash equilibrium, uk
i = maxx∈G(k) ui(x)

and u�
i = maxx∈G ui(x).
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We can summarize the intuition behind the proof of Theorem 5 as follows:

– If player i always updates according to the p-imperfect response rule, then
when the dynamics terminates the game will be in the Nash equilibrium
with high probability and hence her expected utility almost coincides with
the Nash equilibrium utility;

– Suppose, instead, player i does not update according to a p-imperfect re-
sponse rule. Notice that elimination of strategies up to Gk is not affected by
what player i does. Therefore profiles of G\Gk will be played only with small
probability (but i can gain the highest possible utility from these profiles),
whereas the game will be in a profile of Gk with the remaining probability.

5 NBR-Reducible Games

For general games it is not possible to prove convergence to a pure Nash equilib-
rium without making additional assumptions on the schedule and on the response
rule. Such negative result applies also to NBR-reducible games, the natural ex-
tension of NBR-solvable ones.

We shall see below that, for NBR-reducible games, several questions on the
dynamics of a game G can be answered by studying the dynamics of the reduced
game Ĝ. Before formally stating this fact, let us introduce some useful concepts.

The Dynamics as a Markov Chain. We say that the game is in a status–profile
pair (h,x) if h is the set of information currently available and x is the profile
currently played. We denote with H the set of all status–profile pairs (h,x)
and with Ĥ only the ones with x ∈ Ĝ. Let Xt be the random variable that
represents the status–profile pair (h,x) of the game after t steps of the imperfect
best-response dynamics. Then, for every (h,x), (z,y) ∈ H we set

P
(
(h,x), (z,y)

)
= Pr

(
X1 = (z,y) | X0 = (h,x)

)
.

That is, P is the transition matrix of a Markov chain on state space H and
it describes exactly the evolution of the dynamics. Note that we are not re-
stricting the dynamics to be memoryless, since in the status we can save the
history of all previous iterations. For a set A ⊆ H we also denote P

(
(h,x), A

)
=∑

(z,y)∈A P
(
(h,x), (z,y)

)
.

The Restricted Dynamics. As mentioned above, we will compare the original
dynamics with a specific restriction on the subset Ĥ of status–profile pairs. Now
we describe how this restriction is obtained. Henceforth, whenever we refer to the
restricted dynamics, we use X̂t and P̂ in place of Xt and P . Then, the restricted
dynamics is described by a Markov chain on state spaceH with transition matrix
P̂ such that for every (h,x), (z,y) ∈ H

P̂
(
(h,x), (z,y)

)
=

{
P ((h,x),(z,y))

P ((h,x),Ĥ)
, if (h,x), (z,y) ∈ Ĥ ;

0, otherwise.



Imperfect Best-Response Mechanisms 253

Thus, the restricted dynamics is exactly the same as the original one except that
the first never leaves the sub-game Ĝ, whereas in the latter, at each time step,
there is probability at most p to leave this sub-game.

Status–Profile Events. We now describe the kind of questions about imperfect
best-response mechanisms and NBR-reducible games for which a reduction can
be beneficial. Roughly speaking, these are all questions about the occurrence
(and the time needed for it) of events that can be described only by looking at
status–profile pairs.

Specifically, a status–profile set event for an imperfect best-response dynamics
is a set of status–profile pairs. A status–profile distro event for an imperfect best-
response dynamics is a distribution on the status–profile pairs. More generally,
we refer to status–profile event if we do not care whether it is a set or a distro
event. Note that many equilibrium concepts can be described as status–profile
events, like Nash equilibria, sink equilibria [8], correlated equilibria [3] or logit
equilibria [2]: in any case we should simply list the set of states or the distribution
over states at which we are interested in. Properties like “a profile that is visited
for k times” or “a cycle of length k visited” are other examples of status–profile
events. We remark that in these examples it is crucial that the equilibrium is
defined on the status–profile pairs and not just on the profiles: indeed, the status
can remember the history of the game and identify such events, whereas they
are impossible to recognize if we only know the current profile.

For an NBR-reducible game G, a status–profile set event is reducible if the
set of status–profile pairs that represent the event contains some profile from
Ĝ. A status–profile distro event is reducible if status–profile pairs on which is
defined the distribution that represent the event contains only profiles of Ĝ. It
turns out that each one of the equilibria concepts described above is a reducible
status-profile event: indeed, since all profiles not in Ĝ contain NBR strategies,
they are not in the support of any Nash, any sink and any correlated equilibrium;
as for the logit equilibrium (that assigns non-zero probability to profiles not in
Ĝ) it is not difficult to show that the logit equilibrium of G is close to the logit
equilibrium of Ĝ.

A status–profile set event occurs if the imperfect best-response dynamics
reaches a status–profile pair in the set of pairs that represent the event. Simi-
larly, a status–profile distro event occurs if the distribution on the set of profiles
generated by the dynamics is close to the one that represent the event. The
occurrence time of a status–profile event is the first time step in which it occurs.

We are now in a position to state the main result on NBR-reducible games:

Theorem 6. For any NBR-reducible game G and any small δ > 0, if a redu-
cible status–profile event for an imperfect best-response dynamics occurs in the
restricted dynamics, then it occurs with probability at least 1 − δ. Moreover, let
us denote with τ the occurrence time of the event E in the restricted dynamics.
Then, E occurs in the original dynamics in O(R·� log �+τ) steps with probability

at least 1−δ, whenever p ≤ min
{

c1
ηR·� log � ,

c2
ητ

}
, for suitable constants c1 = c1(δ)

and c2 = c2(δ).
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The above theorem can be applied to analyze the logit dynamics for a slightly
variation of the PageRank game by Hopcroft and Sheldon [9] in which the players
are the web pages (nodes) and their strategies is to create links to other pages
(nodes). The payoffs are determined by the link structure (according to a random
walk of the graph) and the resulting game is NBR-reducible. The sub-game turns
out to be a potential game, and thus we obtain an accurate description of the
dynamics for the reduced game. This and the theorem above gives an accurate
description of the original game.
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1 Introduction

Ever since the pioneering studies on pricing protocols for sponsored search adver-
tisement, especially with the generalized second price auction (GSP), by Edel-
man, Ostrovsky, and Schwarz [9], as well as Varian [16], market making mech-
anisms have attracted much attention from the research community in under-
standing their effectiveness for the revenue maximization task facing platforms
providing Internet advertisement services. In the traditional advertisement set-
ting, advertisers negotiate ad presentations and prices with website publishers
directly. An automated pricing mechanism simplifies this process by creating
a bidding game for the buyers of advertisement space over an IT platform. It
creates a complete competition environment for the price discovery process. Ac-
companying the explosion of the online advertisement business, there is a need
to have a complete picture on what pricing methods to use in practical terms
for both advertisers and Ad space providers.

In addition to search advertisements, display advertisements have been widely
used in webpage advertisements. They have a rich format of displays such as text
ads and rich media ads. Unlike sponsored search, there is a lack of systematic
studies on its working mechanisms for decision makings. The market maker
faces a combinatorial problem of whether to assign a large space to one large
rich media ad or multiple small text ads, as well as how to decide on the prices
charged to them. We present a study of the allocation and pricing mechanisms
for displaying slots in this environment where some buyers would like to have
one slot and others may want several consecutive slots in a display panel. In
addition to webpage ads, another motivation of our study is TV advertising
where inventories of a commercial break are usually divided into slots of a few
seconds each, and slots have various qualities measuring their expected number
of viewers and the corresponding attractiveness.

We discuss three types of mechanisms and consider the revenue maximization
problem under these mechanisms, and compare their effectiveness in revenue
maximization under a dynamic setting where buyers may change their bids to
improve their utilities. Our results make an important step toward the under-
standing of the advantages and disadvantages of their uses in practice. Assume
the ad supplier divides the ad space into small enough slots (pieces) such that
each advertiser is interested in a position with a fixed number of consecutive
pieces. In modelling values to the advertisers, we modify the position auction
model from the sponsored search market [9,16] where each ad slot is measured
by the Click Through Rates (CTR), with users’ interest expressed by a click on
an ad. Since display advertising is usually sold on a per impression (CPM) basis
instead of a per click basis (CTR), the quality factor of an ad slot stands for
the expected impression it will brings in unit of time. Unlike in the traditional
position auctions, people may have varying demands (need different spaces to
display their ads) in a rich media ad auction for the market maker to decide on
slot allocations and their prices.

We will lay out the the specific system parameters and present our results in
the following subsections.
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1.1 Our Modeling Approach

We have a set of buyers (advertisers) and a set of items to be sold (the ad slots on
a web page). We address the challenge of computing prices that satisfy certain
desirable properties. Next we describe the elements of the model in more detail.

• Items. Our model considers the geometric organization of ad slots, which
commonly has the slots arranged in some sequence (typically, from top to
bottom in the right-hand side of a web page). The slots are of variable qual-
ity. In the study of sponsored search auctions, a standard assumption is that
the quality (corresponding to click-through rate) is highest at the beginning
of the sequence and then monotonically decreases. Here we consider a gen-
eralization where the quality may go down and up, subject to a limit on the
total number of local maxima (which we call peaks), corresponding to focal
points on the web page. As we will show later, without this limit the revenue
maximization problem is NP-hard.

• Buyers. A buyer (advertiser) may want to purchase multiple slots, so as
to display a larger ad. Note that such slots should be consecutive in the
sequence. Thus, each buyer i has a fixed demand di, which is the number of
slots she needs for her ad. Two important aspects of this are
+ sharp multi-unit demand, referring to the fact that buyer i should be
allocated di items, or none at all; there is no point in allocating any
fewer

+ consecutiveness of the allocated items, in the pre-existing sequence of
items.

These constraints give rise to a new and interesting combinatorial pricing
problem.

• Valuations. We assume that each buyer i has a parameter vi representing
the value she assigns to a slot of unit quality. Valuations for multiple slots
are additive, so that a buyer with demand di would value a block of di slots
to be their total quality, multiplied by vi. This valuation model has been
considered by Edelman et al. [9] and Varian [16] in their seminal work for
keywords advertising.

Pricing Mechanisms. Given the valuations and demands from the buyers,
the market maker decides on a price vector for all slots and an allocation of
slots to buyers, as an output of the market. The question is one of which output
the market maker should choose to achieve certain objectives. We consider two
approaches:

• Truthful Mechanism whereby the buyers report their demands (publicly
known) and values (private) to the market maker; then prices are set in such
a way as to ensure that the buyers have the incentive to report their true
valuations. We give a revenue-maximizing approach (i.e., maximizing the
total price paid), within this framework.

• Competitive Equilibrium whereby we prescribe certain constraints on the
prices so as to guarantee certain well-known notions of fairness and envy-
freeness.
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• Envy-Free Solution whereby we prescribe certain constraints on the prices
and allocations so as to achieve envy-freeness, as explained below.

The mechanisms we exhibit are computationally efficient. We also performed
experiments to compare the revenues obtained from these three mechanisms.

1.2 Related Works

The theoretical study of position auctions (of a single slot) under the generalized
second price auction was initiated in [9,16]. There has been a series of studies
of position auctions in deterministic settings [12]. Our consideration of position
auctions in the Bayesian setting fits in the general one dimensional auction design
framework. Our study considers continuous distributions on buyers’ values. For
discrete distributions, [4] presents an optimal mechanism for budget constrained
buyers without demand constraints in multi-parameter settings and very recently
they also give a general reduction from revenue to welfare maximization in [5];
for buyers with both budget constraints and demand constraints, 2-approximate
mechanisms [1] and 4-approximate mechanisms [3] exist in the literature.

There are extensive studies on multi-unit demand in economics, see for ex-
ample [2,6,10]. In an earlier paper [7] we considered sharp multi-unit demand,
where a buyer with demand d should be allocated d items or none at all, but
with no further combinatorial constraint, such as the consecutiveness constraint
that we consider here. The sharp demand setting is in contrast with a “re-
laxed” multi-unit demand (i.e., one can buy a subset of at most d items), where
it is well known that the set of competitive equilibrium prices is non-empty
and forms a distributive lattice [11,15]. This immediately implies the existence
of an equilibrium with maximum possible prices; hence, revenue is maximized.
Demange, Gale, and Sotomayor [8] proposed a combinatorial dynamics which
always converges to a revenue maximizing (or minimizing) equilibrium for unit
demand; their algorithm can be easily generalized to relaxed multi-unit demand.
A strongly related work to our consecutive settings is the work of Rothkopf et
al. [14], where the authors presented a dynamic programming approach to com-
pute the maximum social welfare of consecutive settings when all the qualities
are the same. Hence, our dynamic programming approach for general qualities
in Bayesian settings is a non-trivial generalization of their settings.

1.3 Organization

This paper is organized as follows. In Section 2 we describe the details of our rich
media ads model and the related solution concepts. In Section 3, we study the
problem under the Bayesian model and provide a Bayesian Incentive Compatible
auction with optimal expected revenue for the special case of the single peak
in quality values of advertisement positions. Then in Section 4, we extend the
optimal auction to the case with limited peaks/valleys and show that it is NP-
hard to maximize revenue without this limit. Next, in Section 5, we turn to the
full information setting and propose an algorithm to compute the competitive
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equilibrium with maximum revenue. In Section 6, NP-hardness of envy-freeness
for consecutive multi-unit demand buyers is shown. We also design a polynomial
time solution for the special case where all advertisers demand the same number
of ad slots. For simulations, we refer readers to read the full version of the paper.

2 Preliminaries

In our model, a rich media advertisement instance consists of n advertisers and
m advertising slots. Each slot j ∈ {1, . . . ,m} is associated with a number qj
which can be viewed as the quality or the desirability of the slot. Each advertiser
(or buyer) i wants to display her own ad that occupies di consecutive slots on
the webpage. In addition, each buyer has a private number vi representing her
valuation and thus, the i-th buyer’s value for item j is vij = viqj .

Throughout this thesis, we will often say that slot j is assigned to a buyer set
B to denote that j is assigned to some buyer in B. We will call the set of all slots
assigned to B the allocation to B. In addition, a buyer will be called a winner
if he succeeds in displaying his ad and a loser otherwise. We use the standard
notation [s] to denote the set of integers from 1 to s, i.e. [s] = {1, 2, . . . , s}. We
sometimes use

∑
i instead of

∑
i∈[n] to denote the summation over all buyers

and
∑

j instead of
∑

j∈[m] for items, and the terms Ev and Ev−i are short for
Ev∈V and Ev−i∈V−i .

The vector of all the buyers’ values is denoted by v or sometimes (vi; v−i)
where v−i is the joint bids of all bidders other than i. We represent a feasible
assignment by a vector x = (xij)i,j , where xij ∈ {0, 1} and xij = 1 denotes item
j is assigned to buyer i. Thus we have

∑
i xij ≤ 1 for every item j. Given a fixed

assignment x, we use ti to denote the quality of items that buyer i is assigned,
precisely, ti =

∑
j qjxij . In general, when x is a function of buyers’ bids v, we

define ti to be a function of v such that ti(v) =
∑

j qjxij(v).
When we say that slot qualities have a single peak, we mean that there exists

a peak slot k such that for any slot j < k on the left side of k, qj ≥ qj−1 and for
any slot j > k on the right side of k, qj ≥ qj+1.

2.1 Bayesian Mechanism Design

Following the work of [13], we assume that all buyers’ values are distributed
independently according to publicly known bounded distributions. The distri-
bution of each buyer i is represented by a Cumulative Distribution Function
(CDF) Fi and a Probability Density Function (PDF) fi. In addition, we assume
that the concave closure or convex closure or integration of those functions can
be computed efficiently.

An auction M = (x,p) consists of an allocation function x and a payment
function p. x specifies the allocation of items to buyers and p = (pi)i specifies
the buyers’ payments, where both x and p are functions of the reported valua-
tions v. Our objective is to maximize the expected revenue of the mechanism is
Rev(M) = Ev [

∑
i pi(v)] under Bayesian incentive compatible mechanisms.
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Definition 1. A mechanism M is called Bayesian Incentive Compatible (BIC)
iff the following inequalities hold for all i, vi, v

′
i.

Ev−i [viti(v)− pi(v)] ≥ Ev−i [viti(v
′
i; v−i)− pi(v

′
i; v−i)] (1)

Besides, we say M is Incentive Compatible if M satisfies a stronger condition
that viti(v)− pi(v) ≥ viti(v

′
i; v−i)− pi(v

′
i; v−i), for all v, i, v′i,

To put it in words, in a BIC mechanism, no player can improve her expected
utility (expectation taken over other players’ bids) by misreporting her value.
An IC mechanism satisfies the stronger requirement that no matter what the
other players declare, no player has incentives to deviate.

2.2 Competitive Equilibrium and Envy-free Solution

In Section 5, we study the revenue maximizing competitive equilibrium and envy-
free solution in the full information setting instead of the Bayesian setting. An
outcome of the market is a pair (X ,p), where X specifies an allocation of items
to buyers and p specifies prices paid. Given an outcome (X,p), recall vij = viqj ,
let ui(X,p) denote the utility of i.

Definition 2. A tuple (X,p) is a consecutive envy-free pricing solution if every
buyer is consecutive envy-free, where a buyer i is consecutive envy-free if the
following conditions are satisfied:

• if Xi = ∅, then (i) Xi is di consecutive items. ui(X,p) =
∑

j∈Xi

(vij −pj) ≥ 0,

and (ii) for any other subset of consecutive items T with |T | = di, ui(X,p) =∑
j∈Xi

(vij − pj) ≥
∑
j∈T

(vij − pj);

• if Xi = ∅ (i.e., i wins nothing), then, for any subset of consecutive items T
with |T | = di,

∑
j∈T

(vij − pj) ≤ 0.

Definition 3. (Competitive Equilibrium) We say an outcome of the market
(X,p) is a competitive equilibrium if it satisfies two conditions.

• (X,p) must be consecutive envy-free.
• The unsold items must be priced at zero.

We are interested in the revenue maximizing competitive equilibrium and
envy-free solutions.

3 Optimal Auction for the Single Peak Case

The goal of this section is to present our optimal auction for the single peak
case that serves as an elementary component in the general case later. En route,
several principal techniques are examined exhaustively to the extent that they
can be applied directly in the next section. By employing these techniques,
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we show that the optimal Bayesian Incentive Compatible auction can be repre-
sented by a simple Incentive Compatible one. Furthermore, this optimal auction
can be implemented efficiently. Let Ti(vi) = Ev−i [ti(v)], Pi(vi) = Ev−i [pi(v)]

and φi(vi) = vi − 1−Fi(vi)
fi(vi)

. From Myerson’ work [13], we obtain the following

three lemmas.

Lemma 1 (From [13]). A mechanism M = (x, p) is Bayesian Incentive Com-
patible if and only if:
a) Ti(x) is monotone non-decreasing for any agent i.
b) Pi(vi) = viTi(vi)−

∫ vi
vi

Ti(z)dz

Lemma 2 (From [13]). For any BIC mechanism M = (x, p), the expected
revenue Ev[

∑
i Pi(vi)] is equal to the virtual surplus Ev[

∑
i φi(vi)ti(v)].

We assume φi(t) is monotone increasing, i.e. the distribution is regular. Oth-
erwise, Myerson’s ironing technique can be utilized to make φi(t) monotone —
it is here that we invoke our assumption that we can efficiently compute the
convex closure of a continuous function and integration. The following lemma is
the direct result of Lemma 1 and 2.

Lemma 3. Suppose that x is the allocation function that maximizes
Ev[φi(vi)ti(v)] subject to the constraints that Ti(vi) is monotone non-decreasing
for any bidders’ profile v, any agent i is assigned either di consecutive slots or
nothing. Suppose also that

pi(v) = viti(v)−
∫ vi

vi

ti(v−i, si)dsi (2)

Then (x, p) represents an optimal mechanism for the rich media advertisement
problem in single-peak case.

We will use dynamic programming to maximize the virtual surplus in Lemma
2. Suppose all the buyers are sorted in a no-increasing order according to their
virtual values. We will need the following two useful lemmas. Lemma 4 states
that all the allocated slots are consecutive.

Lemma 4. There exists an optimal allocation x that maximizes
∑

i φi(vi)ti(v)
in the single peak case, and satisfies the following condition. For any unassigned
slot j, it must be that either ∀j′ > j, slot j′ is unassigned or ∀j′ < j, slot j′ is
unassigned.

Next, we prove that this consecutiveness even holds for all set [s] ⊆ [n].
That is, there exists an optimal allocation that always assigns the first s buyers
consecutively for all s ∈ [n]. For convenience, we say that a slot is “out of”
a set of buyers if the slot is not assigned to any buyers in that set. Then the
consecutiveness can be formalized in the following lemma.

Lemma 5. There exists an optimal allocation x in the single peak case, that
satisfies the following condition. For any slot j out of [s], it must be either
∀j′ > j, slot j′ is out of [s] or ∀j′ < j, slot j′ is out of [s].
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Since the optimal solution always assigns to [s] consecutively (Lemma 5), we
can boil the allocations to [s] down to an interval denoted by [l, r]. Let g[s, l, r]
denote the maximized value of our objective function

∑
i φi(vi)ti(v) when we

only consider first s buyers and the allocation of s is exactly the interval [l, r].
Then we have the following transition function.

g[s, l, r] = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g[s− 1, l, r]

g[s− 1, l, r − ds] + φs(vs)
∑r

j=r−ds+1 qj

g[s− 1, l+ ds, r] + φs(vs)
∑l+ds−1

j=l qj

(3)

Our summary statement is as follows.

Theorem 1. The mechanism that applies the allocation rule according to Dy-
namic Programming (3) and payment rule according to Equation (2) is an opti-
mal mechanism for the banner advertisement problem with single peak qualities.

4 Multiple Peaks Case

Suppose now that there are only h peaks (local maxima) in the qualities. Thus,
there are at most h − 1 valleys (local minima). Since h is a constant, we can
enumerate all the buyers occupying the valleys. After this enumeration, we can
divide the qualities into at most h consecutive pieces and each of them forms a
single-peak. Then using similar properties as those in Lemma 4 and 5, we can
obtain a larger size dynamic programming (still runs in polynomial time) similar
to dynamic programming (3) to solve the problem.

Theorem 2. There is a polynomial algorithm to compute revenue maximization
problem in Bayesian settings where the qualities of slots have a constant number
of peaks.

Now we consider the case without the constant peak assumption and prove
the following hardness result.

Theorem 3. (NP-Hardness) The revenue maximization problem for rich media
ads with arbitrary qualities is NP-hard.

5 Competitive Equilibrium

In this section, we study the revenue maximizing competitive equilibrium in the
full information setting. To simplify the following discussions, we sort all buyers
and items in non-increasing order of their values, i.e., v1 ≥ v2 ≥ · · · ≥ vn.

We say an allocation Y = (Y1, Y2, · · · , Yn) is efficient if Y maximizes the total
social welfare e.g.

∑
i

∑
j∈Yi

vij is maximized over all the possible allocations.
We call p = (p1, p2, · · · , pm) an equilibrium price if there exists an allocation X
such that (X ,p) is a competitive equilibrium. The following lemma is implicitly
stated in [11], for completeness, we give a proof below.
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Lemma 6. Let allocation Y be efficient, then for any equilibrium price p, (Y ,p)
is a competitive equilibrium.

By Lemma 6, to find a revenue maximizing competitive equilibrium, we can
first find an efficient allocation and then use linear programming to settle the
prices. We develop the following dynamic programming to find an efficient al-
location. We first only consider there is one peak in the quality order of items.
The case with constant peaks is similar to the above approaches, for general
peak case, as shown in above Theorem 3, finding one competitive equilibrium
is NP-hard if the competitive equilibrium exists, and determining existence of
competitive equilibrium is also NP-hard. This is because that considering the
instance in the proof of Theorem 3, it is not difficult to see the constructed
instance has an equilibrium if and only if 3 partition has a solution.

Recall that all the values are sorted in non-increasing order e.g. v1 ≥ v2 ≥
· · · ≥ vn. g[s, l, r] denotes the maximized value of social welfare when we only
consider first s buyers and the allocation of s is exactly the interval [l, r]. Then
we have the following transition function.

g[s, l, r] = max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g[s− 1, l, r]

g[s− 1, l, r − ds] + vs
∑r

j=r−ds+1 qj

g[s− 1, l+ ds, r] + vs
∑l+ds−1

j=l qj

(4)

By tracking procedure 4, an efficient allocationdenotedbyX∗=(X∗1 , X
∗
2 , · · · , X∗n)

can be found. The price p∗ such that (X∗,p∗) is a revenue maximization competi-
tive equilibrium can be determined from the following linear programming. Let Ti

be any consecutive number of di slots, for all i ∈ [n].

max
∑
i∈[n]

∑
j∈X∗

i

pj

s.t. pj ≥ 0 ∀ j ∈ [m]

pj = 0 ∀ j /∈ ∪i∈[n]X∗i∑
j∈X∗

i

(viqj − pj) ≥
∑
j′∈Ti

(viqj′ − pj′ ) ∀ i ∈ [n]

∑
j∈X∗

i

(viqj − pj) ≥ 0 ∀i ∈ [n]

Clearly there is only a polynomial number of constraints. The constraints in
the first line represent that all the prices are non negative (no positive transfers).
The constraint in the second line means unallocated items must be priced at zero
(market clearance condition). And the constraint in the third line contains two
aspects of information. First for all the losers e.g. loser k with Xk = ∅, the utility
that k gets from any consecutive number of dk is no more than zero, which makes
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all the losers envy-free. The second aspect is that the winners e.g. winner i with
Xi = ∅ must receive a bundle with di consecutive slots maximizing its utility
over all di consecutive slots, which together with the constraint in the fourth line
(winner’s utilities are non negative) guarantees that all winners are envy-free.

Theorem 4. Under the condition of a constant number of peaks in the qualities
of slots, there is a polynomial time algorithm to decide whether there exists a
competitive equilibrium or not and to compute a revenue maximizing revenue
market equilibrium if one does exist. If the number of peaks in the qualities of
the slots is unbounded, both the problems are NP-complete.

Proof. Clearly the above linear programming and procedure (4) run in polyno-
mial time. If the linear programming output a price p∗, then by its constraint
conditions, (X∗,p∗) must be a competitive equilibrium. On the other hand, if
there exist a competitive equilibrium (X,p) then by Lemma 6, (X∗,p) is a
competitive equilibrium, providing a feasible solution of above linear program-
ming. By the objective of the linear programming, we know it must be a revenue
maximizing one.

6 Consecutive Envy-freeness

We first prove a negative result on computing the revenue maximization problem
in general demand case. We show it is NP-hard even if all the qualities are the
same.

Theorem 5. The revenue maximization problem of consecutive envy-free buyers
is NP-hard even if all the qualities are the same.

Although the hardness in Theorem 5 indicates that finding the optimal rev-
enue for general demand in polynomial time is impossible , however, it doesn’t
rule out the very important case where the demand is uniform, e.g. di = d. We
assume slots are in a decreasing order from top to bottom, that is, q1 ≥ q2 ≥
· · · ≥ qm . The result is summarized as follows.

Theorem 6. There is a polynomial time algorithm to compute the consecutive
envy-free solution when all the buyers have the same demand and slots are or-
dered from top to bottom.

The proof of Theorem 6 is based on bundle envy-free solutions, in fact we will
prove the bundle envy-free solution is also a consecutive envy-free solution by
defining price of items properly. Thus, we need first give the result on bundle
envy-free solutions. Suppose d is the uniform demand for all the buyers. Let Ti

be the slot set allocated to buyer i, i = 1, 2, · · · , n. Let Pi be the total payment
of buyer i and pj be the price of slot j. Let ti denote the total qualities obtained
by buyer i, e.g. ti =

∑
j∈Ti

qj and αi = ivi − (i− 1)vi−1, ∀i ∈ [n].
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Theorem 7. The revenuemaximization problem of bundle envy-freeness is equiv-
alent to solving the following LP.

Maximize:
n∑

i=1

αiti

s.t. t1 ≥ t2 ≥ · · · ≥ tn

Ti ⊂ [m], Ti ∩ Tk = ∅ ∀i, k ∈ [n]

(5)

Through optimal bundle envy-free solution, we will modify such a solution to
consecutive envy-free solution and then prove the Theorem 6.

7 Conclusion and Discussion

The rich media pricing models for consecutive demand buyers in the context of
Bayesian truthfulness, competitive equilibrium and envy-free solution paradigm
are investigated in this paper. As a result, an optimal Bayesian incentive compat-
ible mechanism is proposed for various settings such as single peak and multiple
peaks. In addition, to incorporate fairness e.g. envy-freeness, we also present a
polynomial-time algorithm to decide whether or not there exists a competitive
equilibrium or and to compute a revenue maximized market equilibrium if one
does exist. For envy-free settings, though the revenue maximization of general
demand case is shown to be NP-hard, we still provide optimal solution of com-
mon demand case. Besides, our simulation shows a reasonable relationship of
revenues among these schemes plus a generalized GSP for rich media ads.

Even though our main motivation arises from the rich media advert pricing
problem, our models have other potential applications. For example TV ads can
also be modeled under our consecutive demand adverts where inventories of a
commercial break are usually divided into slots of fixed sizes, and slots have
various qualities measuring their expected number of viewers and corresponding
attractiveness. With an extra effort to explore the periodicity of TV ads, we can
extend our multiple peak model to one involved with cyclic multiple peaks. Be-
sides single consecutive demand where each buyer only have one demand choice,
the buyer may have more options to display his ads, for example select a large
picture or a small one to display them. Our dynamic programming algorithm
(3) can also be applied to this case (the transition function in each step selects
maximum value from 2k+1 possible values, where k is the number of choices of
the buyer).

Another reasonable extension of our model would be to add budget constraints
for buyers, i.e., each buyer cannot afford the payment more than his budget.
By relaxing the requirement of Bayesian incentive compatible (BIC) to one of
approximate BIC, this extension can be obtained by the recent milestone work
of Cai et al. [5]. It remains an open problem how to do it under the exact
BIC requirement. It would also be interesting to handle it under the market
equilibrium paradigm for our model.
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Abstract. We study network formation with the bilateral link forma-
tion rule (Jackson and Wolinsky 1996) with n players and link cost α > 0.
After the network is built, an adversary randomly destroys one link ac-
cording to a certain probability distribution. Cost for player v incorpo-
rates the expected number of players to which v will become discon-
nected. This model was previously studied for unilateral link formation
(K. 2011).

We prove existence of pairwise Nash equilibria under moderate as-
sumptions on the adversary and n ≥ 9. As the main result, we prove
bounds on the price of anarchy for two special adversaries: one destroys
a link chosen uniformly at random, while the other destroys a link that
causes a maximum number of player pairs to be separated. We prove
bounds tight up to constants, namely O(1) for one adversary (if α > 1

2
),

and Θ(n) for the other (if α > 2 considered constant and n ≥ 9). The
latter is the worst that can happen for any adversary in this model (if
α = Ω(1)).
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Abstract. We consider the complexity of finding a Correlated Equilib-
rium in an n-player game in a model that allows the algorithm to make
queries for players’ utilities at pure strategy profiles. Many randomized
regret-matching dynamics are known to yield an approximate correlated
equilibrium quickly: in time that is polynomial in the number of players,
n, the number of strategies of each player, m, and the approximation
error, ε−1. Here we show that both randomization and approximation
are necessary: no efficient deterministic algorithm can reach even an ap-
proximate equilibrium and no efficient randomized algorithm can reach
an exact equilibrium.
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A commonly cited problem of standard revealed preference tests is that for a
given consumer, these tests are bound to give a binary result. Either the data
satisfies the revealed preference axioms and he is said to be rational, or they are
violated an he is said to be irrational. However, this answer gives no information
on the severity of violations, which may in some cases be small or negligible. It
is therefore of interest to have information on the severity of observed violations.
In a recent and insightful contribution, Echenique et al. [1] proposed a new mea-
sure, the money pump index (MPI). This measure is based on the vulnerability
of irrational consumer behaviour to arbitrage.
Our paper is concerned with the practical computation of the MPI. In principle,
an MPI can be computed for every violation of the axioms of revealed prefer-
ence. This calls for an aggregate MPI that summarizes these MPIs into a single
metric. Echenique et al. propose the mean and median MPI as such aggregates.
These Mean and Median MPI have an intuitive interpretation in terms of the
money lost by the consumer due to irrational behaviour. A first contribution of
this note is that we show that no polynomial time algorithm exists for comput-
ing the Mean and Median MPI, unless P = NP. Our second contribution is that
we propose the Maximum and Minimum MPI as easy-to-apply alternatives. The
Maximum MPI gives the percentage of money lost in the most severe violation
of rationality, while the Minimum MPI does the same for the least severe vi-
olation. Importantly, our newly proposed Maximum and Minimum MPI have
clear practical usefulness. We show that the Maximum and Minimum MPI can
be computed efficiently. Next, we use the dataset of Echenique et al. to demon-
strate the application of the Maximum and Minimum MPI. Here, our particular
focus is on assessing the performance of these measures relative to the Mean and
Median MPI. In addition, we show that comparing the values of the Maximum
and Minimum MPI can reveal interesting information to the empirical analyst.
Our working paper can be found at: http://www.econ.kuleuven.be/public/
N11086/MP-Working.pdf
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