How to Factor N_1 and N_2 When $p_1 = p_2 \mod 2^t$

Kaoru Kurosawa and Takuma Ueda

Ibaraki University, Japan kurosawa@mx.ibaraki.ac.jp

Abstract. Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli. Suppose that

$$
p_1 = p_2 \bmod 2^t
$$

for some t, and q_1 and q_2 are α bit primes. Then May and Ritzenhofen showed that N_1 and N_2 can be factored in quadratic time if

 $t > 2\alpha + 3$.

In this paper, we improve this lower bound on t . Namely we prove that N_1 and N_2 can be factored in quadratic time if

 $t > 2\alpha + 1$.

Further our simulation result shows that our bound is tight as far as the factoring method of May and Ritzenhofen is used.

K[eyw](#page-8-0)ords: factoring, Gaussi[an](#page-8-1) reduction algorithm, lattice.

1 Introducti[on](#page-8-2)

Factori[ng](#page-8-3) $N = pq$ is a fundamental problem in modern cryptography, where p and q are large [p](#page-8-4)rimes. Since RSA was invented, some factoring algorithms which run in subexponential time have been developed, namely the quadratic sieve [10], the elliptic curve [4] and number field sieve [5]. However, no polynomial time algorithm is known.

On the other hand, the so called oracle complexity of the factorization problem were studied by Rivest and Shamir [11], Maurer [6] and Coppersmith [1]. In particular, Coppersmith [1] showed that one can factor N if a half of the most significant bits of p are given.

Recently, May and Ritzenhofen [7] considered another approach (which received the "Best Paper Award" of PKC 2009). Suppose that we are given $N_1 = p_1q_1$ and $N_2 = p_2q_2$. If

 $p_1 = p_2,$

then it is easy to factor N_1, N_2 by using Euclidean algorithm. May and Ritzenhofen showed that it is easy to factor N_1, N_2 even if

$$
p_1 = p_2 \bmod 2^t
$$

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 217–225, 2013.

⁻c Springer-Verlag Berlin Heidelberg 2013

for sufficiently large t. More precisely suppose that q_1 and q_2 are α bit primes. Then they showed that N_1 and N_2 can be factored in quadratic time if

 $t > 2\alpha + 3.$

In this paper, we improve the above lower bound on t . We prove that N_1 and N_2 can be factored in quadratic time if

 $t \geq 2\alpha + 1$.

Further our simulation result shows that our bound is tight as far as the factoring method of May and Ritzenhofen [7] is used.

Also our proof is conceptually simpler than that of May and Ritzenhofen [7]. In particular, we do not use the Minkowski bound whereas it is required in their proof.

As written in [7], one application of our result is malicious key generation of RSA moduli, i.e. the construction of backdoored RSA moduli [2,13]. In [7], the authors also [sugg](#page-8-5)est the following constructive cryptographic applications. Consider the one more RSA modulus probl[em](#page-8-5) such that on input $N_1 = p_1q_1$, one has to produce $N_2 = p_1 q_2$ with $p_1 = p_2 \mod 2^t$ $p_1 = p_2 \mod 2^t$ $p_1 = p_2 \mod 2^t$. Our result shows that this problem is equivalent to the factorization problem as long as $t \geq 2\alpha + 1$. So the one more RSA modulus problem might serve as a basis for various cryptographic primitives, whose security is then in turn directly based on factoring (imbalanced) integers.

(Related work) Sarkar and Maitra [12] extended the result of May and Ritzenhofen [7] under a *heuristic* assumption (see Assumption 1 of [12, page 4003]). However, this assumption is *heuristic* only as they wrote in [12].

2 Preliminaries

2.1 Lattice

An integer lattice L is a discrete additive subgroup of $Zⁿ$. An alternative equivalent definition of an integer lattice can be given via a basis. Let d, n be integers such that $0 < d \leq n$. Let $\mathbf{b}_1, \dots, \mathbf{b}_d \in \mathbb{Z}^n$ be linearly independent vectors. Then the set of all integer linear combinations of the \mathbf{b}_i spans an integer lattice L , i.e.

$$
L = \left\{ \sum_{i=1}^d a_i \mathbf{b}_i \mid a_i \in Z \right\}.
$$

We call $B =$ $\sqrt{2}$ $\left| \right|$ **b**1 . . . \mathbf{b}_d \setminus \Box a basis of the lattice, the value d denotes the dimension

or rank of the basis. The lattice is said to have full rank if $d = n$. The determinant $det(L)$ of a lattice is the volume of the parallelepiped spanned by the basis

How to Factor N_1 and N_2 When $p_1 = p_2 \mod 2^t$ 219

Fig. 1. Lattice

vectors. The determinant $\det(L)$ is invariant under unimodular basis transformations of B. In case of a full rank lattice $\det(L)$ is equal to the absolute value of the Gramian determinant of the basis B. Let us denote by ||**v**|| the Euclidean ℓ_2 -norm of a vector **v**. Hadamardfs inequality [8] relates the length of the basis vectors to the determinant.

Propositio[n](#page-8-6) 1. *Let* $B =$ $\sqrt{2}$ $\left\lceil \right\rceil$ **b**1 *. . .* \mathbf{b}_d \setminus $\Big\} \in Z^{n \times n}$ *be an arbitrary non-singular matrix.*

Then

$$
\det(B) \le \prod_{i=1}^n ||\mathbf{b}_i||.
$$

The successive minima λ_i of the lattice L are defined as the minimal radius of a ball containing i linearly independent lattice vectors of L (see Fig.2).

Proposition 2. *(Minkowski [9]).* Let $L \subseteq Z^n$ be an integer lattice. Then L *contains a non-zero vector* **v** *with*

$$
||\mathbf{v}|| = \lambda_1 \le \sqrt{n} \det(L)^{1/n}
$$

2.2 Gaussian Reduction Algorithm

In a two-dimensional lattice L, basis vectors **v**₁, **v**₂ with lengths $||\mathbf{v}_1|| = \lambda_1$ and $||\mathbf{v}_2|| = \lambda_2$ are efficiently computable by using Gaussian reduction algorithm.

Fig. 2. Successive minima λ_1 and λ_2

Let $\lfloor x \rfloor$ denote the nearest integer to x. Then Gaussian reduction algorithm is described as follows.

(Gaussian reduction algorithm) Input: Basis **b**₁, **b**₂ $\in Z^2$ for a lattice L. Output: Basis $(\mathbf{v}_1, \mathbf{v}_2)$ for L such that $||\mathbf{v}_1|| = \lambda_1$ and $||\mathbf{v}_2|| = \lambda_2$.

1. Let $v_1 := b_1$ and $v_2 := b_2$. 2. Compute $\mu := (\mathbf{v}_1, \mathbf{v}_2)/||\mathbf{v}_1||^2$, $\mathbf{v}_2 := \mathbf{v}_2 - \lfloor \mu \rfloor \cdot \mathbf{v}_1.$ 3. while $||{\bf v}_2|| < ||{\bf v}_1||$ do: 4. Swap **v**¹ and **v**2. 5. Compute $\mu := (\mathbf{v}_1, \mathbf{v}_2)/||\mathbf{v}_1||^2$, $\mathbf{v}_2 := \mathbf{v}_2 - |\mu| \cdot \mathbf{v}_1.$ 6. end while 7. return $(\mathbf{v}_1, \mathbf{v}_2)$.

Proposition 3. *The above algorithm outputs a basis* $(\mathbf{v}_1, \mathbf{v}_2)$ *for* L *such that* $||\mathbf{v}_1|| = \lambda_1$ *and* $||\mathbf{v}_2|| = \lambda_2$ *. Further they can be determined in time* $O(\log^2(\max\{||\mathbf{b}_1||, ||\mathbf{b}_2||\}).$

Information on Gaussian reduction algorithm and its running time can be found in [8,3].

3 Previous Implicit Factoring of Two RSA Moduli

Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli. Suppose that

$$
p_1 = p_2(=p) \bmod 2^t
$$
\n⁽¹⁾

for some t, and q_1 and q_2 are α bit primes. This means that p_1, p_2 coincide on the t least significant bits. I.e.,

$$
p_1 = p + 2^t \tilde{p}_1
$$
 and $p_2 = p + 2^t \tilde{p}_2$

for some common p that is unknown to us. Then May and Ritzenhofen $[7]$ showed that N_1 and N_2 can be factored in quadratic time if $t \geq 2\alpha + 3$. In this section, we present their idea.

From eq. (1) , we have

$$
N_1 = pq_1 \mod 2^t
$$

$$
N_2 = pq_2 \mod 2^t
$$

Since q_1, q_2 are odd, we can solve both equations for p. This leaves us with

$$
N_1/q_1 = N_2/q_2 \bmod 2^t
$$

which we write in form of the linear equation

$$
(N_2/N_1)q_1 - q_2 = 0 \mod 2^t
$$
 (2)

The set of solutions

$$
L = \{(x_1, x_2) \in Z^2 \mid (N_2/N_1)x_1 - x_2 = 0 \mod 2^t\}
$$

forms an additive, discrete subgroup of Z^2 . Thus, L is a 2-dimensional integer lattice. L is spanned by the row vectors of the basis matrix

$$
B_L = \begin{pmatrix} 1, (N_2/N_1 \bmod 2^t) \\ 0, & 2^t \end{pmatrix}
$$
 (3)

The integer span of B_L , denoted by $span(B_L)$, is equal to L. To see why, let

$$
\mathbf{b}_1 = (1, (N_2/N_1 \mod 2^t))
$$

$$
\mathbf{b}_2 = (0, 2^t)
$$

Then they are solutions of

$$
(N_2/N_1)x_1 - x_2 = 0 \bmod 2^t
$$

Thus, every integer linear combination of \mathbf{b}_1 and \mathbf{b}_2 is a solution which implies that $span(B_L) \subseteq L$.

C[on](#page-4-0)versely, let $(x_1, x_2) \in L$, i.e.

$$
(N_2/N_1)x_1 - x_2 = k \cdot 2^t
$$

for some $k \in \mathbb{Z}$. Then

$$
(x_1, -k)B_L = (x_1, x_2) \in span(B_L)
$$

and thus $L \subseteq span(B_L)$.

Notice that by Eq. (2) , we have

$$
\mathbf{q} = (q_1, q_2) \in L. \tag{4}
$$

If we were able to find this vector in L, then we could factor N_1, N_2 easily. We know that the length of the shortest vector is upper bounded by the Minkowski bound √

$$
\sqrt{2} \cdot \det(L)^{1/2} = \sqrt{2} \cdot 2^{t/2}.
$$

Since we assume that q_1, q_2 are α -bit primes, we have $q_1, q_2 \leq 2^{\alpha}$. If α is sufficiently small, then ||**q**|| is smaller than the Minkowski bound and, therefore, we can expect that q is among the shortest vec[to](#page-8-4)rs in L . This happens if

$$
||\mathbf{q}|| \leq \sqrt{2} \cdot 2^{\alpha} \leq \sqrt{2} \cdot 2^{t/2}
$$

So if $t \geq 2\alpha$, we expect that **q** is a short vector in L. We can find a shortest vector in L using Gaussian reduction algorithm on the lattice basis B in time

$$
O(\log^2(2^t)) = O(\log^2(\min\{N_1, N_2\})).
$$

By elaborating the above argument, May and Ritzenhofen [7] proved the following.

Proposition 4. Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli *such that* $p_1 = p_2 \mod 2^t$ *for some t, a[nd](#page-5-0)* q_1 *and* q_2 *are* α *bit primes. If*

$$
t \ge 2\alpha + 3,\tag{5}
$$

then N_1, N_2 *can be factored in time* $O(\log^2(\min\{N_1, N_2\}))$ *.*

4 Improvement

In this section, we improve the lower bound on t of Proposition 4.

Lemma 1. *If* $||\mathbf{q}|| < \lambda_2$, then $\mathbf{q} = c \cdot \mathbf{v}_1$ for some integer c, where \mathbf{v}_1 *is the shortest vector in* L*.*

(Proof) Suppose that $\mathbf{q} \neq c \cdot \mathbf{v}_1$ for any integer c. This means that \mathbf{v}_1 and **q** are linearly independent vectors. Therefore it must be that $||\mathbf{q}|| \geq \lambda_2$ from the definition of λ_2 . However, this is against our assumption that $||\mathbf{q}|| < \lambda_2$. Therefore we have $\mathbf{q} = c \cdot \mathbf{v}_1$ for some integer c.

Q.E.D.

Lemma 2. *If* q_1 *and* q_2 *are* α *bits long, then*

$$
||\mathbf{q}|| < 2^{\alpha+0.5}
$$

(Proof) Since q_1 and q_2 are α -bits long, we have

$$
q_i \le 2^{\alpha} - 1
$$

for $i = 1, 2$. Therefore

$$
||\mathbf{q}|| \le \sqrt{2}(2^{\alpha} - 1) < \sqrt{2} \cdot 2^{\alpha} = 2^{\alpha + 0.5}
$$

Q.E.D.

Theorem 1. Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli such *that*

$$
p_1 = p_2 \bmod 2^t
$$

for some t, and q_1 *and* q_2 *are* α *-bit primes. If*

$$
t \ge 2\alpha + 1,\tag{6}
$$

then N_1 , N_2 *can be factored in time* $O(\log^2(\min\{N_1, N_2\}))$ *.*

(Proof) If $q_1 = q_2$, the we can factor N_1, N_2 by using Euclidean algorithm easily. Therefore we assume that $q_1 \neq q_2$.

Apply Gaussian reduction algorithm to B_L . Then we obtain

$$
B_0 = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}
$$

such t[ha](#page-4-1)t

$$
||\mathbf{v}_1|| = \lambda_1 \text{ and } ||\mathbf{v}_2|| = \lambda_2.
$$

We will show that $\mathbf{q} = \mathbf{v}_1$ or $\mathbf{q} = -\mathbf{v}_1$, where $\mathbf{q} = (q_1, q_2)$.

From Hadamard's inequality, we have

$$
||\mathbf{v}_2||^2 \ge ||\mathbf{v}_1|| |||\mathbf{v}_2|| \ge \det(B_0) = \det(B_L) = 2^t,
$$

where $\det(B_0) = \det(B_L)$ because B_0 and B_L span the same lattice L. The last equality comes from eq.(3). Therefore we obtain that

$$
\lambda_2 = ||\mathbf{v}_2|| \ge 2^{t/2}.
$$

Now suppose that

$$
t \geq 2\alpha + 1
$$

Then

$$
t/2 \ge \alpha + 0.5.
$$

Therefore

$$
\lambda_2 = ||\mathbf{v}_2|| \ge 2^{t/2} \ge 2^{\alpha + 0.5} > ||\mathbf{q}||
$$

from Lemma 2. This means that

$$
(q_1, q_2) = \mathbf{q} = c \cdot \mathbf{v}_1
$$

for some integer c from Lemma 1. Further since $gcd(q_1, q_2) = 1$ $gcd(q_1, q_2) = 1$ $gcd(q_1, q_2) = 1$, it must be that $c = 1$ or -1 . Therefore $\mathbf{q} = \mathbf{v}_1$ or $\mathbf{q} = -\mathbf{v}_1$ (see Fig.3).

Finally from Proposition 3, Gaussian reduction algorithm runs in time

$$
O(\log^2(2^t)) = O(\log^2(\min\{N_1, N_2\})).
$$

Q.E.D.

Compare $eq.(6)$ and $eq.(5)$, and notice that we have improved the previous lower bound on t .

Also our proof is conceptually simpler than that of May and Ritzenhofen [7]. In particular, we do not use the Minkowski bound whereas it is required in their proof.

Fig. 3. Proof of Theorem 1

5 Generalization

Theorem 1 can be generalized as follows.

Corollary 1. Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli such *that*

$$
p_1 = p_2 \bmod T
$$

for some T *. Let* q_1 *and* q_2 *be* α *-bits long primes. Then if*

$$
T \ge 2^{2\alpha + 1} \tag{7}
$$

then N_1, N_2 *can be factored in time* $O(\log^2(\min\{N_1, N_2\}))$ *.*

Corollary [2](#page-5-1). Let $N_1 = p_1q_1$ and $N_2 = p_2q_2$ be two different RSA moduli such *that*

$$
p_1 = p_2 \bmod T
$$

for some T. If

$$
T > q_1^2 + q_2^2 \tag{8}
$$

the[n](#page-5-1) N_1, N_2 *can be factored in time* $O(\log^2(\min\{N_1, N_2\}))$ *.*

The proofs are almost the same as that of Theorem 1.

6 Simulation

We verified Theorem 1 by computer simulation. We considered the case such that q_1 and q_2 are $\alpha = 250$ bits long. Theorem 1 states that if

$$
t \ge 2\alpha + 1 = 501,
$$

then we can factor N_1 and N_2 by using Gaussian reduction algorithm. The simulation results are shown in Table 6, where p_1 and p_2 are 750 bits long. For each value of t, the success rate is computed over 100 samples.

From this table, we can see that we can indeed factor N_1 and N_2 if $t > 501$. We can also see that we fail to factor N_1 and N_2 if $t \leq 500$. This shows that our bound is tight as far as the factoring method of May and Ritzenhofen [7] is used.

Table 1. Computer Simulation

number of shared bits t success rate	
503	100%
502	100%
501	100%
500	40%
499	0%
498	n%

References

- 1. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 178–189. Springer, Heidelberg (1996)
- 2. Crépeau, C., Slakmon, A.: Simple backdoors for RSA key generation. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 403–416. Springer, Heidelberg (2003)
- 3. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University Press (2012)
- 4. Lenstra Jr., H.W.: Factoring Integers with Elliptic Curves. Ann. Math. 126, 649–673 (1987)
- 5. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve. Springer, Heidelberg (1993)
- 6. Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 429–436. Springer, Heidelberg (1993)
- 7. May, A., Ritzenhofen, M.: Implicit factoring: On polynomial time factoring given only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 1–14. Springer, Heidelberg (2009)
- 8. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Cambridge University Press, Cambridge (2000)
- 9. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag (1896)
- 10. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169–182. Springer, Heidelberg (1985)
- 11. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg (1986)
- 12. Sarkar, S., Maitra, S.: Approximate Integer Common Divisor Problem Relates to Implicit Factorization. IEEE Transactions on Information Theory 57(6), 4002–4013 (2011)
- 13. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–276. Springer, Heidelberg (1997)