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Abstract. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli.
Suppose that

p1 = p2 mod 2t

for some t, and q1 and q2 are α bit primes. Then May and Ritzenhofen
showed that N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 3.

In this paper, we improve this lower bound on t. Namely we prove that
N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 1.

Further our simulation result shows that our bound is tight as far as the
factoring method of May and Ritzenhofen is used.

Keywords: factoring, Gaussian reduction algorithm, lattice.

1 Introduction

Factoring N = pq is a fundamental problem in modern cryptography, where
p and q are large primes. Since RSA was invented, some factoring algorithms
which run in subexponential time have been developed, namely the quadratic
sieve [10], the elliptic curve [4] and number field sieve [5]. However, no polynomial
time algorithm is known.

On the other hand, the so called oracle complexity of the factorization problem
were studied by Rivest and Shamir [11], Maurer [6] and Coppersmith [1]. In
particular, Coppersmith [1] showed that one can factor N if a half of the most
significant bits of p are given.

Recently, May and Ritzenhofen [7] considered another approach (which re-
ceived the ”Best Paper Award” of PKC 2009). Suppose that we are given
N1 = p1q1 and N2 = p2q2. If

p1 = p2,

then it is easy to factor N1, N2 by using Euclidean algorithm. May and Ritzen-
hofen showed that it is easy to factor N1, N2 even if

p1 = p2 mod 2t
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for sufficiently large t. More precisely suppose that q1 and q2 are α bit primes.
Then they showed that N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 3.

In this paper, we improve the above lower bound on t. We prove that N1 and
N2 can be factored in quadratic time if

t ≥ 2α+ 1.

Further our simulation result shows that our bound is tight as far as the factoring
method of May and Ritzenhofen [7] is used.

Also our proof is conceptually simpler than that of May and Ritzenhofen [7].
In particular, we do not use the Minkowski bound whereas it is required in their
proof.

As written in [7], one application of our result is malicious key generation
of RSA moduli, i.e. the construction of backdoored RSA moduli [2,13]. In [7],
the authors also suggest the following constructive cryptographic applications.
Consider the one more RSA modulus problem such that on input N1 = p1q1,
one has to produce N2 = p1q2 with p1 = p2 mod 2t. Our result shows that this
problem is equivalent to the factorization problem as long as t ≥ 2α + 1. So
the one more RSA modulus problem might serve as a basis for various cryp-
tographic primitives, whose security is then in turn directly based on factoring
(imbalanced) integers.

(Related work) Sarkar and Maitra [12] extended the result of May and Ritzen-
hofen [7] under a heuristic assumption (see Assumption 1 of [12, page 4003]).
However, this assumption is heuristic only as they wrote in [12].

2 Preliminaries

2.1 Lattice

An integer lattice L is a discrete additive subgroup of Zn. An alternative equiv-
alent definition of an integer lattice can be given via a basis. Let d, n be integers
such that 0 < d ≤ n. Let b1, · · · ,bd ∈ Zn be linearly independent vectors. Then
the set of all integer linear combinations of the bi spans an integer lattice L, i.e.

L =

{
d∑

i=1

aibi | ai ∈ Z

}
.

We call B =

⎛
⎜⎝

b1

...
bd

⎞
⎟⎠ a basis of the lattice, the value d denotes the dimension

or rank of the basis. The lattice is said to have full rank if d = n. The determi-
nant det(L) of a lattice is the volume of the parallelepiped spanned by the basis
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Fig. 1. Lattice

vectors. The determinant det(L) is invariant under unimodular basis transfor-
mations of B. In case of a full rank lattice det(L) is equal to the absolute value
of the Gramian determinant of the basis B. Let us denote by ||v|| the Euclidean
�2-norm of a vector v. Hadamardfs inequality [8] relates the length of the basis
vectors to the determinant.

Proposition 1. Let B =

⎛
⎜⎝

b1

...
bd

⎞
⎟⎠ ∈ Zn×n be an arbitrary non-singular matrix.

Then

det(B) ≤
n∏

i=1

||bi||.

The successive minima λi of the lattice L are defined as the minimal radius
of a ball containing i linearly independent lattice vectors of L (see Fig.2).

Proposition 2. (Minkowski [9]). Let L ⊆ Zn be an integer lattice. Then L
contains a non-zero vector v with

||v|| = λ1 ≤ √
ndet(L)1/n

2.2 Gaussian Reduction Algorithm

In a two-dimensional lattice L, basis vectors v1,v2 with lengths ||v1|| = λ1

and||v2|| = λ2 are efficiently computable by using Gaussian reduction algorithm.
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Fig. 2. Successive minima λ1 and λ2

Let �x� denote the nearest integer to x. Then Gaussian reduction algorithm is
described as follows.

(Gaussian reduction algorithm)
Input: Basis b1,b2 ∈ Z2 for a lattice L.
Output: Basis (v1,v2) for L such that ||v1|| = λ1 and ||v2|| = λ2.

1. Let v1 := b1 and v2 := b2.
2. Compute μ := (v1,v2)/||v1||2,

v2 := v2 − �μ� · v1.
3. while ||v2|| < ||v1|| do:
4. Swap v1 and v2.
5. Compute μ := (v1,v2)/||v1||2,

v2 := v2 − �μ� · v1.
6. end while
7. return (v1,v2).

Proposition 3. The above algorithm outputs a basis (v1,v2) for L such that
||v1|| = λ1 and ||v2|| = λ2. Further they can be determined in time
O(log2(max{||b1||, ||b2||}).

Information on Gaussian reduction algorithm and its running time can be
found in [8,3].

3 Previous Implicit Factoring of Two RSA Moduli

Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli. Suppose that

p1 = p2(= p) mod 2t (1)

for some t, and q1 and q2 are α bit primes. This means that p1, p2 coincide on
the t least significant bits. I.e.,

p1 = p+ 2tp̃1 and p2 = p+ 2tp̃2
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for some common p that is unknown to us. Then May and Ritzenhofen [7] showed
that N1 and N2 can be factored in quadratic time if t ≥ 2α+ 3. In this section,
we present their idea.

From eq.(1), we have

N1 = pq1 mod 2t

N2 = pq2 mod 2t

Since q1, q2 are odd, we can solve both equations for p. This leaves us with

N1/q1 = N2/q2 mod 2t

which we write in form of the linear equation

(N2/N1)q1 − q2 = 0 mod 2t (2)

The set of solutions

L = {(x1, x2) ∈ Z2 | (N2/N1)x1 − x2 = 0 mod 2t}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional integer
lattice. L is spanned by the row vectors of the basis matrix

BL =

(
1, (N2/N1 mod 2t)
0, 2t

)
(3)

The integer span of BL, denoted by span(BL), is equal to L. To see why, let

b1 = (1, (N2/N1 mod 2t))

b2 = (0, 2t)

Then they are solutions of

(N2/N1)x1 − x2 = 0 mod 2t

Thus, every integer linear combination of b1 and b2 is a solution which implies
that span(BL) ⊆ L.

Conversely, let (x1, x2) ∈ L, i.e.

(N2/N1)x1 − x2 = k · 2t

for some k ∈ Z. Then

(x1,−k)BL = (x1, x2) ∈ span(BL)

and thus L ⊆ span(BL).
Notice that by Eq. (2), we have

q = (q1, q2) ∈ L. (4)
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If we were able to find this vector in L, then we could factor N1, N2 easily. We
know that the length of the shortest vector is upper bounded by the Minkowski
bound √

2 · det(L)1/2 =
√
2 · 2t/2.

Since we assume that q1, q2 are α-bit primes, we have q1, q2 ≤ 2α. If α is
sufficiently small, then ||q|| is smaller than the Minkowski bound and, therefore,
we can expect that q is among the shortest vectors in L. This happens if

||q|| ≤
√
2 · 2α ≤

√
2 · 2t/2

So if t ≥ 2α, we expect that q is a short vector in L. We can find a shortest
vector in L using Gaussian reduction algorithm on the lattice basis B in time

O(log2(2t)) = O(log2(min{N1, N2})).
By elaborating the above argument, May and Ritzenhofen [7] proved the

following.

Proposition 4. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli
such that p1 = p2 mod 2t for some t, and q1 and q2 are α bit primes. If

t ≥ 2α+ 3, (5)

then N1, N2 can be factored in time O(log2(min{N1, N2})).

4 Improvement

In this section, we improve the lower bound on t of Proposition 4.

Lemma 1. If ||q|| < λ2, then q = c · v1 for some integer c, where v1 is the
shortest vector in L.

(Proof) Suppose that q 	= c · v1 for any integer c. This means that v1 and
q are linearly independent vectors. Therefore it must be that ||q|| ≥ λ2 from
the definition of λ2. However, this is against our assumption that ||q|| < λ2.
Therefore we have q = c · v1 for some integer c.

Q.E.D.

Lemma 2. If q1 and q2 are α bits long, then

||q|| < 2α+0.5

(Proof) Since q1 and q2 are α-bits long, we have

qi ≤ 2α − 1

for i = 1, 2. Therefore

||q|| ≤
√
2(2α − 1) <

√
2 · 2α = 2α+0.5

Q.E.D.
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Theorem 1. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli such
that

p1 = p2 mod 2t

for some t, and q1 and q2 are α-bit primes. If

t ≥ 2α+ 1, (6)

then N1, N2 can be factored in time O(log2(min{N1, N2})).
(Proof) If q1 = q2, the we can factor N1, N2 by using Euclidean algorithm easily.
Therefore we assume that q1 	= q2.

Apply Gaussian reduction algorithm to BL. Then we obtain

B0 =

(
v1

v2

)

such that
||v1|| = λ1 and ||v2|| = λ2.

We will show that q = v1 or q = −v1, where q = (q1, q2).

From Hadamard’s inequality, we have

||v2||2 ≥ ||v1||||v2|| ≥ det(B0) = det(BL) = 2t,

where det(B0) = det(BL) because B0 and BL span the same lattice L. The last
equality comes from eq.(3). Therefore we obtain that

λ2 = ||v2|| ≥ 2t/2.

Now suppose that
t ≥ 2α+ 1

Then
t/2 ≥ α+ 0.5.

Therefore
λ2 = ||v2|| ≥ 2t/2 ≥ 2α+0.5 > ||q||

from Lemma 2. This means that

(q1, q2) = q = c · v1

for some integer c from Lemma 1. Further since gcd(q1, q2) = 1, it must be that
c = 1 or −1. Therefore q = v1 or q = −v1 (see Fig.3).

Finally from Proposition 3, Gaussian reduction algorithm runs in time

O(log2(2t)) = O(log2(min{N1, N2})).
Q.E.D.

Compare eq.(6) and eq.(5), and notice that we have improved the previous
lower bound on t.

Also our proof is conceptually simpler than that of May and Ritzenhofen [7].
In particular, we do not use the Minkowski bound whereas it is required in their
proof.
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Fig. 3. Proof of Theorem 1

5 Generalization

Theorem 1 can be generalized as follows.

Corollary 1. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli such
that

p1 = p2 mod T

for some T . Let q1 and q2 be α-bits long primes. Then if

T ≥ 22α+1 (7)

then N1, N2 can be factored in time O(log2(min{N1, N2})).
Corollary 2. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli such
that

p1 = p2 mod T

for some T . If

T > q21 + q22 (8)

then N1, N2 can be factored in time O(log2(min{N1, N2})).
The proofs are almost the same as that of Theorem 1.

6 Simulation

We verified Theorem 1 by computer simulation. We considered the case such
that q1 and q2 are α = 250 bits long. Theorem 1 states that if

t ≥ 2α+ 1 = 501,
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then we can factor N1 and N2 by using Gaussian reduction algorithm. The
simulation results are shown in Table 6, where p1 and p2 are 750 bits long. For
each value of t, the success rate is computed over 100 samples.

From this table, we can see that we can indeed factor N1 and N2 if t ≥ 501.
We can also see that we fail to factor N1 and N2 if t ≤ 500. This shows that our
bound is tight as far as the factoring method of May and Ritzenhofen [7] is used.

Table 1. Computer Simulation

number of shared bits t success rate

503 100%

502 100%

501 100%

500 40%

499 0%

498 0%
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