
Toward Practical Searchable Symmetric

Encryption

Wakaha Ogata1, Keita Koiwa2, Akira Kanaoka3, and Shin’ichiro Matsuo4

1 Tokyo Institute of Technology, Japan
ogata.w.aa@m.titech.ac.jp

2 University of Tsukuba, Japan
koiwa@cipher.risk.tsukuba.ac.jp

3 Toho University, Japan
akira.kanaoka@is.sci.toho-u.ac.jp

4 National Institute of Information and Communications Technology, Japan
smatsuo@nict.go.jp

Abstract. Searchable symmetric encryption is a good building block to-
ward ensuring privacy preserving keyword searches in a cloud computing
environment. This area has recently attracted a great deal of attention
and a large quantity of research has been conducted. A security pro-
tocol generally faces a trade-off between security/privacy requirements
and efficiency. Existing works aim to achieve the highest levels of secu-
rity requirements, so they also come with high overhead. In this paper,
we reconsider the security/privacy requirements for searchable symmet-
ric encryption and relax the requirements for practical use. Then, we
propose schemes suitable for the new requirements. We also show exper-
imental results of our schemes and comparison to existing schemes. The
results show that the index sizes of our proposals are only a few times
of that of a Lucene (without encryption). In document update, our pro-
posal requests additional index which depends only on the size of new
document.

1 Introduction

1.1 Background

In the last several years, the progress of network technology and computers, in-
cluding broadband network and virtualization techniques, has made information
technology (IT) environments more usable. The proliferation of cloud comput-
ing is a good example of this. Though cloud computing provides such a usable
environment, its characteristics pose security issues since valuable information
is stored and processed in uncontrollable locations for users, and this could be
lead to information leakage by cloud operators.

Encrypting data stored in the cloud is considered to be a countermeasure
for such threats, and a large number of studies have been conducted on this
subject. In this research, data is encrypted in a manner that it can proceed in its
encrypted form. Examples of such research are counting by using a homomorphic

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 151–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

152 W. Ogata et al.

encryption scheme, processing any calculation using a homomorphic encryption
scheme, and searchable encryption schemes, and these fall within the scope of
this paper.

In each scheme, security requirements are defined and a scheme with provable
security is proposed. These security requirements include privacy of user requests
for the cloud server as well as confidentiality of information. Since privacy re-
quirements vary among entities, we have not provided effective and general secu-
rity requirements for the scheme. However, security researchers generally tend to
aim at stronger security requirements. Yet security requirements and efficiency
have trade-off relationship in our hopes for strong security, and processing per-
formance and communication efficiency decrease. We therefore have to find a
good balance among usability in terms of cloud computing, security, privacy,
and efficiency.

1.2 Related Works

In this research, we focus on security requirements for a searchable encryption
scheme, which is a demanded service for cloud computing and has been ex-
tensively researched to date. In searchable encryption schemes, the data and
keyword for the search are first encrypted. Ciphertext is stored in the server.
Only a party possessing access right can produce valid information (trapdoor)
for a keyword search. The server cannot know the keyword from the trapdoor.
This characteristic protects the privacy of the keyword.

Searchable encryption based on a symmetric cipher was firstly proposed in [17],
and then schemes with improved security definitions were proposed in [8,7]. In, [7]
Curtmola et al. proposes two searchable symmetric encryption schemes. Then,
Kamara and Roeder showed that the scheme can convert to secure against adap-
tive adversary in CCS 2012 [14]. To enhance efficiency for keyword search, re-
searches on reducing cost for document update are conducted recently. In [10,11],
new indexes are reconstructed based on a single private key. On the other hand,
the scheme proposed in [14] does not construct additional indexes.

Boneh et al. first proposed searchable encryption based on a symmetric ci-
pher [5] as an application of an identity-based encryption scheme. Following that,
many schemes [1,4] have been proposed including those based on anonymous hi-
erarchical identity-based encryption. There is also research on operation when a
searchable encryption scheme is applied to cloud computing [12].

1.3 Our Contributions

In this paper, we focus on searchable symmetric encryption. We refine the secu-
rity definitions that offer a good balance between privacy and efficiency.

We first show efficiency requirements for a practical searchable symmetric
encryption scheme, and show that the existing scheme is not practical. After
that, we reconsider the security requirement for searchable encryption. Next we
propose new schemes that have smaller encrypted indexes and lower processing
costs for adding documents. These schemes allow leakage of a part of privacy

Toward Practical Searchable Symmetric Encryption 153

from search history, but this would not be a problem in most of practical usages.
We also show experimental results of our schemes and existing schemes. The
experimental results show that the original searchable symmetric encryption by
Curtmola et al. has huge amount of index size against Lucene, and our proposal
can reduce the index size to a few times of that of Lucene.

2 Definitions of Symmetric Searchable Encryption and
Existing Schemes

2.1 System Model

We assume the following setting as in [7]: There is one user U and one server S. U
has a collection of documents D = {D1, . . . , Dn}, each document Dj is stored on
server S in an encrypted style. Dj is assigned a unique identifier id(Dj) that does
not reveal any confidential information, e.g., a sequential number (id(Dj) = j)
or a ciphertext of the document name. We assume that the set of searchable
keywords, Δ = {w1, . . . , wd}, is predetermined and is called a dictionary. An
outcome of a search for w ∈ Δ is denoted by D(w) = {id(Dj) | w ∈ Dj}.

In an ordinary file system (with no security or privacy), a database called
an index is generated in advance for quick keyword searching. For example,
{(wi,D(wi))}i=1,...,d is stored. When a user issues a search query to the file
system, the file system searches D(wi) in the database and returns it to the
user. A symmetric searchable encryption system (SSE) is a system in which an
encrypted index is built to prevent information leakage.

An SSE consists of four algorithms as follows.

Keygen(1k): User U uses this algorithm to generate private key K based on
security parameter k.

BuildIndex(K,D, Δ): U uses this algorithm to build (encrypted) index I from
document set D. I is sent to server S along with encrypted documents
ζ = (Enc(D1), . . . , Enc(Dn)).

Trapdoor(K,w): U runs this algorithm when it searches in D for keyword w.
The output Tw = Trapdoor(K,w), called a trapdoor, is sent to S.

Search(I, T): S uses this algorithm to search in encrypted documents. If
T = Trapdoor(K,w), then it is necessary that Search(I, T) = D(w). S re-
turns the result D(w) to U .

Although the search process in this model is a one-round protocol, it can
generally be a multi-round protocol.

2.2 Security Requirement

Let (w1, . . . , wq) be a sequence of q keywords. A history is defined as

Hq = (D, w1, . . . , wq),

154 W. Ogata et al.

which determines an instantiation of an interaction between U and S. A partial
history of Hq is Ht

q(D, w1, . . . , wt), where t ≤ q. An adversary’s view of Hq under
secret key K is defined as

VK(Hq) = (id(D1), . . . , id(Dn), ζ, I, T1, . . . , Tq),

where I = BuildIndex(K,D, Δ) and Ti = Trapdoor(K,wi). A partial view is

V t
K(Hq) = (id(D1), . . . , id(Dn), ζ, I, T1, . . . , Tt),

where t ≤ q.
Oblivious RAMs introduced in [9] realize secure searching in which VK(Hq)

does not leak any information of Hq. However, this scheme is highly inefficient.
It is not practical to require perfect secrecy such as with oblivious RAMs. Thus,
some weak security definitions that allow leakage of partial information of the
history to the server were defined in the literature.

Chang and Mitzenmacher [6] defined the security of SSEs. In [7], a vulnerabil-
ity of the definition was pointed out, and the authors gave four new security defi-
nitions: semantic security against non-adaptive attack, semantic security against
adaptive attack, indistinguishability against non-adaptive attack, and indistin-
guishability against adaptive attack. Since equivalence of semantic security and
indistinguishability was shown [7], here we give only the definition of semantic
security.

Definition 1 (Trace). For a given history Hq = (D, w1, . . . , wq), let Πq be a
q × q binary matrix where Πq[i, j] = 1 if wi = wj , Πq[i, j] = 0 otherwise. The
trace of Hq is the sequence

Tr(Hq) = (id(D1), . . . , id(Dn), |D1|, . . . , |Dn|,D(w1), . . . ,D(wq), Πq).

Trace indicates information that we allow to leak to the server.

Definition 2 (Semantic security against non-adaptive attack). We say
that an SSE is non-adaptively semantically secure if all q ∈ N and for any ppt
adversary A, there exists a ppt simulator Sim such that for all traces Trq, all

polynomial samplable distributions Hq over {Hq ∈ 22
Δ ×Δq : Tr(Hq) = Trq},

all functions f ,

|Pr[A(VK(Hq)) = f(Hq)]− Pr[Sim(Tr(Hq)) = f(Hq)]|

is negligibly small, where Hq ← Hq,K ← Keygen(1k), and the probabilities are
taken over Hq and the internal coins of Keygen, A, Sim and the underlying
BuildIndex algorithm.

Definition 3 (Semantic security against adaptive attack). We say that
SSE is adaptively semantically secure if all q ∈ N and for all ppt adversaries
A, there exists a ppt simulator Sim such that for all traces Trq, all polynomial

Toward Practical Searchable Symmetric Encryption 155

samplable distributions Hq over {Hq ∈ 22
Δ ×Δq : Tr(Hq) = Trq}, all functions

f , all 0 ≤ t ≤ q:

|Pr[A(V t
K(Hq)) = f(Ht

q)]− Pr[Sim(Tr(Ht
q)) = f(Ht

q)]|

is negligibly small, where Hq ← Hq,K ← Keygen(1k), and the probabilities are
taken over Hq and the internal coins of Keygen, A, Sim and the underlying
BuildIndex algorithm.

2.3 Curtmola et al. Scheme (SSE-1)

Existing SSE schemes can be classified into two types. The first type uses a
Boolean n× d matrix as an index (such as [6]), and the second type uses a list
of (wi,D(wi)) (such as [7]). We focus on the second type of scheme in this paper
because computational complexity of searching in such schemes is O(log n), while
it is O(n) in the first type of scheme.

Curtmola et al. proposed two SSE schemes [7]. The first, called SSE-1, is
secure against non-adaptive attacks, and is more efficient. The second, called
SSE-2, is secure against adaptive attacks, but less efficient. On the other hand,
in [14] it is shown that simple modification of SSE-1 can make it adaptively
secure in the random oracle model. We review the SSE-1 scheme here.

Let k be a security parameter, p be the bit length of the longest keyword in
Δ, unit be the bit length of the shortest keyword, and m be the total size of
the plaintext documents D expressed in unit. Let E be a symmetric encryption
function with key length �. SSE-1 uses the following pseudo-random function f
and pseudo-random permutations π, ψ.

– f : {0, 1}k × {0, 1}p→ {0, 1}�+logm

– π : {0, 1}k × {0, 1}p→ {0, 1}p
– ψ : {0, 1}k × {0, 1}logm → {0, 1}logm

We give a list of parameters in Table 1 for convenience.

Keygen(1k): Generate random keys s, y, z
R←− {0, 1}k and outputK = (s, y, z, 1�).

BuildIndex(K,D, Δ):

Table 1. Parameters used in SSE-1

k security parameter, key length of pseudo-random function/permutations

� key length of symmetric encryption

n the number of documents in document collection D
d the number of keywords in dictionary Δ

p bit length of the longest keyword

unit bit length of the shortest keyword

m total length of D expressed by unit

156 W. Ogata et al.

1. Scan D and build Δ′(⊆ Δ), which is the set of all keywords in D. Build
D(w) for each word w ∈ Δ′.

2. Set up array A with m entries as follows. First, global counter ctr is set
to 1. For each wi ∈ Δ′ choose a random �-bit string κi,0, and for each
idi,j ∈ D(wi) (1 ≤ j ≤ |D(wi)|), set node Ni,j = 〈idi,j ||κi,j ||ψs(ctr+1)〉,
where κi,j is a random �-bit string.
Compute Eκi,j−1(Ni,j) and store it in A[ψs(ctr)] = Eκi,j−1(Ni,j).
Store a random string in all entries that are not used to store an en-
crypted node.

3. Build lookup table T with d entries as follows.
For each wi ∈ Δ′, set T[πz(wi)] = 〈addr(A(Ni,1))||κi,0〉 ⊕ fy(wi), where
addr(A(Ni,1)) is the address add where A[add] = Eκi,0(Ni,1).
Store a random string in all T[πz(wi)] s.t. wi ∈ Δ \Δ′.

Output I = (A,T).
Trapdoor(K,w): Output Tw = (πz(w), fy(w)).
Search(I, T): Let T = (γ, η). Retrieve θ = T[γ]. Let 〈α||κ〉 = θ ⊕ η. Decrypt

A[α] with κ to obtain Ni,1, which includes identifier idi,1, the next random
key κi,1, and the next address addr(A(Ni,2)). Then decrypt A[addr(A(Ni,2))]
with κi,1 to obtain Ni,2, which includes idi,2. Iterating the same process to
recover all idi,j . Output all identifiers {idi,j}.

It is shown that SSE-1 is semantically secure against non-adaptive attacks,
if E is a secure symmetric encryption function, f is a pseudo-random function,
and π, ψ are pseudo-random permutations.

2.4 Other Schemes Supporting Document Update

Consider the case that the user U keeps a set of documents D1 on a server S with
an index I = BuildIndex(K,D1, Δ), and now U is going to store an additional
set of documents D2. A simple way to add documents is that U builds a new
index I ′ = BuildIndex(K,D2, Δ) and S replaces an old index I with (I, I ′). In
this case, however, S learns D2(w) if U already made a search query for w in D1

(but not in D2) since S knows T = Trapdoor(K,w).
Accordingly, the following process is adopted in [6] and [7]. To add D2,

U runs Keygen to generate a new key K ′, and builds a new index I ′ =
BuildIndex(K ′,D2, Δ), which is sent to S with (encrypted) D2. When U wants
to search for a keyword w, it sends two trapdoors T = Trapdoor(K,w) and
T ′ = Trapdoor(K ′, w) to S. S runs Search(I, T) and Search(I ′, T ′).

This process does not leak unnecessary information. However, if a few docu-
ments are added frequently, U has to keep many private keys and a set of many
trapdoors has to be sent to search for a keyword.

Recently, some researchers have proposed SSE schemes in which the user can
add document sets freely without increasing the size of the private key. SSE
schemes proposed in [10] and [11] construct new index I ′ based on a single
private key. On the other hand, the scheme proposed in [14] does not construct
additional indexes but utilizes unused memory space of the original index.

Toward Practical Searchable Symmetric Encryption 157

3 What Is Practical SSE?

SSE schemes with high security are needed in special purposes. In most cases,
however, we require practicality – reasonable index size and small communica-
tion/computational cost – rather than security, since we use storage services as
a tool for improving convenience.

In this section, we first introduce requirements for practical SSE schemes. We
then claim that existing schemes such as SSE-1 do not satisfy the requirements.

3.1 Requirements for Practicality

Here we introduce three requirements for practicality.

1. Efficient search. We perform keyword search repeatedly, so real-time re-
sponse is required. We require that a much longer time than in an ordinary
(unencrypted) system is not needed to search for a keyword.

2. Reasonable index size. In general, the size of an index depends on the
total size of D. We require that the size of index for D is not much larger
than D itself.

3. Scalability. In most cases, new documents are added in storage one after
another. On such occasions, the user must renew the index by performing
an update protocol with the server. For scalability, it is desirable for an SSE
scheme to have the following two properties.

(R1) The size of secret key K and computation/communication cost for
searching do not depend on the number of updates of the index.

(R2) The computational cost to update the index depends on the additional
document size, but not on the total document size.

3.2 Inefficiency of SSE-1

In SSE-1, index I consists of an array A and a lookup table T. A has m entries,
where m is the total size of the plaintext documents D expressed in the shortest
keyword length. Each entry consists of three parts: a document identifier, a
random key, and the next address of A. Since the lengths of these parts are

logn�, �,
logm�, respectively, the total size of A is m(
logn� + � +
logm�)
bits. T has d entries, each consisting of an address and a value, which are p bits
and (� +
logm�) bits, respectively. Therefore, the size of T is d(� +
logm� +
p). In total, the bit length of the index is |I| = m(
logn� + � +
logm�) +
d(�+
logm�+ p).

Next, we estimate the sizes of I for concrete parameters. We assume that

– D consists of n = 103 documents, the size of each document is on average
10KB. The total size of D is 10MB.

– The dictionary includes 100,000 keywords, that is, d = 105. The length of
the shortest keyword is 2 B (two letters) and that of the longest keyword is
20 B (20 letters, 10 units). Therefore, p = 160.

158 W. Ogata et al.

Table 2. Index size in SSE-1 and Lucene in a case(∗)

size of document set: |D| index size: |I| Ratio: |I|/|D|
SSE-1 10MB 836MB 83.6

Lucene 67MB 83MB 1.28

(∗) D consists of n = 103 documents, the size of each document is on average 10KB.
The dictionary includes 100,000 keywords,
The shortest keyword is two letters, the longest keyword is 20 letters (10units).
The private key length is � = 128.

– The key length is � = 128 as in AES.

Under these parameters, m = 5 × 106. We show the index size under these
parameters in Table 2. For comparison, we also give the case of Lucene [2] as an
example of systems that do not consider privacy at all.

From the table, we can see that the index is huge in SSE-1. Now consider
the case in which we store documents using a free storage service. If the free
space is 5 GB, we can store 2 GB (non-confidential) documents in total, along
with a 2.6 BG index of Lucene. On the other hand, if we want to store them
by using SSE-1, we cannot store 60 MB of documents in total since their index
exceeds 5 GB.

3.3 Scalability of Existing SSE

As we mentioned before, SSE-1 does not have scalability.
In contrast, SSE schemes that support document updates have scalability.

However, they require huge indexes as well as SSE-1.

4 Relaxation of Security

As we show in section 3.2, a serious disadvantage of SSE-1 (and its variations)
is index size, especially the size of array A. A has m entries, but only m′(=∑

w∈Δ′ |D(w)|) entries are used to store meaningful values. The remaining entries
are prepared to hide the number m′. This means that if the user does not mind
the server knowing the number m′, the number of entries of A can be reduced to
m′(<< m). Similarly, there is a possibility that a rather efficient SSE scheme can
be constructed if the user does not mind leakage of some additional information.

In this section, we discuss the need for adaptive indistinguishability and define
several levels of security.

4.1 Adaptive Attack

An adversary that mounts a chosen-keyword attack (cka) has the ability to obtain
trapdoors corresponding to the keywords. We discuss the feasibility of cka.

The general attack scenario of active attacks such as chosen-keyword attacks
and chosen-ciphertext attacks is a lunchtime attack. That is, an adversary ille-
gitimately accesses a computer that is used to make trapdoors. Do we possess

Toward Practical Searchable Symmetric Encryption 159

other means against the attack other than cryptographical control? Yes, we will
be able to avoid such illegitimate use by adequately managing a private key K.

Another attack scenario of a chosen-keyword attack is a social attack, as
follows.

– An adversary popularizes a target keyword w. Accordingly, the user would
search for w in his documents by sending a trapdoor T = Trapdoor(K,w).

– A malicious administrator of the server tells the user a forged notification
that word w is not allowed to be stored in storage (e.g., for certain political
reasons). Accordingly, the user searches for w in his documents.

Although it is difficult to avoid such social attacks, we think that an adversary
cannot frequently succeed in obtaining desirable trapdoors. It seems particularly
hard to adaptively obtain desirable trapdoors.

From the above discussion, if adaptively indistinguishable SSE schemes are
much more inefficient than non-adaptively indistinguishable ones, one practical
choice is to use an efficient non-adaptively indistinguishable one together with
appropriate key management and other controls against social attacks.

4.2 Relaxed Security Definitions

In [7], a trace of history Hq is defined as

Tr(Hq) = (id(D1), . . . , id(Dn), |D1|, . . . , |Dn|,D(w1), . . . ,D(wq), Πq).

As mentioned before, Tr(Hq) indicates partial information of Hq that we allow
to leak to the server. Below, we define some variations of trace.

For given dictionary Δ = {w1, . . . , wd} with d words and document set D =
{D1, . . . , Dn}, we define index matrix P which is expressed by a binary matrix:

P =

⎡

⎢
⎢
⎢
⎣

p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

... · · · ...
pd,1 pd,2 · · · pd,n

⎤

⎥
⎥
⎥
⎦
,

pi,j =

{
1 if wi ∈ Dj ,
0 otherwise.

Let

WH(wi) =
n∑

j=1

pi,j ,

WH(Dj) =

d∑

i=1

pi,j ,

WH(P) =
d∑

i=1

n∑

j=1

pi,j .

160 W. Ogata et al.

WH(wi) is the number of documents in D that include keyword wi(∈ Δ), that
is, WH(wi) = |D(wi)|. WH(Dj) is the number of keywords in document Dj . For

randomly chosen permutations πd (over {1, . . . , d}), let P̂ be a binary matrix
such that rows of P are permuted by πd. We call P̂ a randomized index matrix.1

Our new security definitions are as follows.

Definition 4. For a given history Hq = (D, w1, . . . , wq), define

Tr(0)(Hq) = Tr(Hq),

T r(1)(Hq) = (Tr(Hq),WH(P)),

T r(2)(Hq) = (Tr(Hq),WH(D1), . . . ,WH(Dn)),

T r(3)(Hq) = (Tr(Hq),WH(w1), . . . ,WH(wd)),

T r(4)(Hq) = (Tr(Hq), P̂).

(In this definition, we only consider non-adaptive semantic security.) For k ∈
{0, 1, 2, 3, 4}, Tr(k)-security is defined the same way as in Def. 2 except that
Tr(Hq) is replaced with Tr(k)(Hq).

From the definition, Tr(0)-security is equivalent to the original semantic security.
Clearly,

Tr(0)-secure ⇒ Tr(1)-secure ⇒ Tr(2)-secure and Tr(3)-secure,

T r(2)-secure or Tr(3)-secure ⇒ Tr(4)-secure

hold.
When a user searches for a keyword, the server learns a vector in the random-

ized index matrix P̂ even if the scheme has Tr(0)-semantic security. Therefore,
after the user searches for all keywords in the dictionary, the server learns the
entire P̂ . This means that Tr(0)-semantic security gets closer to Tr(4)-security
the more keywords are searched.

In the next subsection, we further discuss the relation among the security
notions focusing on document update.

4.3 Relations among the Security Notions

We assume that an SSE scheme has Tr(3)-semantic security, that is, I leaks
WH(wi) =

∑n
j=1 pi,j for all wi ∈ Δ. Consider the case that the user add a new

document Dn+1 and the index is replaced with I ′ that has information about
Dn+1. At this moment, the server learns (p1,n+1, . . . , pd,n+1) since

n+1∑

j=1

pi,j −
n∑

j=1

pi,j = pi,n+1

1 Note that the order of documents is not randomized, since it does not have any
confidential information.

Toward Practical Searchable Symmetric Encryption 161

holds. If documents are added one by one, the server learns the entire P̂ (even if
no keyword is queried). This situation happens independently of the scheme and
the way of index update. Therefore, in the case documents are added one by one
(or only a few at a time), Tr(3)-semantic security is very close to Tr(4)-semantic
security. With the same argument, Tr(1)-semantic security and Tr(2)-semantic
security is also very close in such a situation.

5 Practical SSE Schemes

In this section, we show how we can improve the efficiency of SSE schemes by
relaxing the security requirement. For this purpose, two efficient SSE schemes
are given.

5.1 Simplest Scheme (Simple-SSE)

Before showing SSE schemes, we describe a search scheme with no security
measure— SEARCH. In SEARCH, an index is built as I0 = {(wi,D(wi))}i=1,...,d

from document set D beforehand. (We assume that the entries in I0 are sorted
in alphabetical order.) When a user requests a search for w ∈ Δ, the server finds
an entry (wi = w,D(wi)) in I0 (with O(log d) computational cost), and answers
D(wi) to the user.

Needless to say, SEARCH is absolutely insecure since the server knows which
keywords are included with which documents, and also learns which keywords
the user searched for. By replacing all keywords with random strings we can
obtain an SSE scheme which we call Simple-SSE. The description is as follows.
In this scheme, H : {0, 1}∗ → {0, 1}�H is a collision resistance hash function.

Keygen(1k): Choose K
R←− {0, 1}k and output K.

BuildIndex(K,D, Δ): Build I0 = {(wi,D(wi))}i=1,...,d. For each wi ∈ Δ compute
ŵi = H(K‖wi). Replace each entry (wi,D(wi)) of I0 with (ŵi,D(wi)), and
then sort the entries in alphabetical order of ŵi. The result is I.

Trapdoor(K,w): Output ŵ = H(K‖w).
Search(I, T): Search (ŵ = T,D(w)) in I and output D(w).
Theorem 1. If a pseudo-random encryption function Enc is used to encrypt
each document, Simple-SSE has Tr(4)-semantic security in the random oracle
model. More precisely,

|Pr(A(VK(Hq)) = f(Hq))− Pr(Sim(Tr(4)(Hq)) = f(Hq))| ≤ qH/2k +AdvEnc

holds, where qH is the number of oracle queries, k is the private key length, and
AdvEnc is an advantage of pseudo-randomness of Enc.

Proof. We consider Sim as follows. The input of Sim is

Tr(4)(Hq) = (id(D1), ..., id(Dn), |D1|, ..., |Dn|,D(w1), ...,D(wq), Πq, P̂),

where P̂ = {pij}. Sim computes I as follows.

162 W. Ogata et al.

1) For all i(1 ≤ i ≤ d),
1a) choose a random string ŵ with length �H bits and set List← {};
1b) for all j(1 ≤ j ≤ n), if pij = 1, add id(Dj) to List;
1c) set Entryi = (ŵ, List);

2) Sort d entries in alphabetical order of ŵ to obtain I.
Next, Sim computes the list of trapdoors as follows.

For all i(1 ≤ i ≤ q),
1) search in I and find an entry (ŵj , Listj) such that Listj = D(wi) ;
2) set Ti ← ŵj .

Then, Sim runs adversary A as a subroutine with input

view = (id(D1), . . . , id(Dn), ζ, I, T1, . . . , Tq),

where ζ is a set of random strings and each length is determined by |Di|.
The adversary A may issue random oracle queries. To answer them, Sim

chooses random key K∗ at first, and initializes a list LH = ∅. When A makes
query (K||w), Sim first checks if K = K∗. If so, Sim aborts. Otherwise, Sim
searches K||w in LH . If there exists 〈K||w, ŵ〉, then Sim returns ŵ to A. Oth-
erwise, chooses �H-bit random string ŵ, adds 〈K||w, ŵ〉 in LH , and returns
ŵ to A.

When A outputs f(Hq), Sim outputs it as own result.
If Sim does not abort, A’s view is the same as the real attack scenario except

the distribution of ζ; it consists of random strings in the above simulation, while
real ciphertexts in the real attack scenario. Therefore,

|Pr(A(VK(Hq)) = f(Hq))−Pr(Sim(Tr(4)(Hq)) = f(Hq))| ≤ Pr(Sim aborts)+AdvEnc.

Sim aborts only if A queries K∗. So, Pr(Sim aborts) ≤ qH/2
k, where qH

is the number of oracle queries. That is, Simple-SSE holds Tr(4)-semantic
security. ��

The computational costs for searching in Simple-SSE are almost the same
as those in SEARCH. The computational costs of BuildIndex are d hashes and
sorting, which are very lightweight.

We can therefore say that the extra computational cost needed to guarantee
Tr(4)-semantic security is very small.

5.2 Lightened SSE-1 (SSE-1′)

We consider a lightened version of SSE-1, called SSE-1′, in which A has only
m′(=WH(P)) entries, that is, we eliminate all entries that store random strings.

Theorem 2. SSE-1′ has Tr(1)-semantic security, if E is a secure symmetric
encryption function, f is a pseudo-random function, and π, ψ are pseudo-random
permutations.

Toward Practical Searchable Symmetric Encryption 163

Proof. SSE-1′ is the same as SSE-1 except the size of array A. In the security
proof of SSE-1, Sim simulates adversary’s view, which includes encrypted data,
index (T,A), and trapdoors. (A has m entries, and m is determined by the sizes
of documents.)

We consider a simulator Sim′ that operates in the same way to Sim except
that A has only m′ entries. Note that Sim′ knows m′ = WH(P) because it is
included in Tr(1)(Hq) (but not in Tr(Hq)). Then, the simulated view by Sim′

and the real view are indistinguishable from the same reason in the proof of
original SSE-1. ��

5.3 Index Size of Proposed Schemes

To show the efficiency of our schemes, we first compare the size of index in
SEARCH, Simple-SSE, and SSE-1′. We denote them with I0 and ISimple and
ISSE1′ . In the following discussion, we use ρ =WH(P)/dn, which is the average
hit rate.

Since I0 = {(wi,D(wi))}i=1,...,d,

|I0| =
d∑

i=1

|wi|+WH(P)
log n� = d(ave(|wi|) + nρ
logn�)

where d and n are the number of keywords in Δ and the number of documents
in D, respectively.
|ISimple| is estimated as

|ISimple| = d�H +WH(P)
logn� = d(�H + nρ
logn�).
|ISSE1′ | is estimated as

|ISSE1′ | =WH(P)(
log n�+ �+
logWH(P)�) + d(�+
logWH(P)�+ p)

= d

(

(� + p) + nρ(
logn�+ �+
nρ+ 1

nρ

log dnρ�)

)

If �H = 160 (as in SHA-1) and it is longer than the average length of keywords,
I in Simple-SSE is larger than I0. However, the difference between them is not
so large.

Next, we compare |ISSE1′ | and |ISimple|. Assuming that �h = 160, � = 128, p =
160, the first term of |ISSE1′ | is not as large as twice the first term of |ISimple|.
The ratio of the second terms is 1 + (logn)−1(� + nρ+1

nρ log dnρ), which is 1 +

(logn)−1(� + 2 log d) when nρ ≈ 1 and 2 + (logn)−1(� + log dρ) when nρ >> 1.
When n = 210 ∼ 220, ρ = 2−4 ∼ 2−10, d = 210 ∼ 220, and � = 128, it is estimated
between 8 and 18.

5.4 Scalability of Simple-SSE and SSE-1′

In Simple-SSE, we can update the index as follows.

164 W. Ogata et al.

– LetD′ be the additional documents. U first builds I ′0 = {(wi,D′(wi))}i=1,...,d.
For each wi ∈ Δ, computes ŵi = H(K‖wi) as in BuildIndex, replaces wi in
I ′0 which ŵi, and then sorts (ŵi,D′(wi)) to obtain I ′. U sends I ′ to S along
with ciphertext of D′.

– Upon receiving I ′, S updates I as follows. For all (ŵi,D′(wi)) ∈ I ′, replaces
(ŵi,D(wi)) in I with (ŵi,D(wi) ∪ D′(wi)).

After an update of the index, an original private key K can be used and the
user can search as in the same process as before. Therefore, the update satisfies
(R1). Computation and communication costs for an update of the index are also
proportional to the size of I ′. The size of I ′ depends on the bit length of new
documents D′, but not on the existing document set. So, the update satisfies
(R2). That is, we can say that Simple-SSE has scalability.

On the other hand, updating of index in SSE-1′ can be done similar way to
[11] to satisfy scalability.2 (Unfortunately, Hirano et al.’s technique [10] does not
satisfy (R1); the technique introduced in [14] leaks additional information and
degrades security.)

6 Implementation and Evaluation of SSE

To confirm that the new schemes are practical, we implement SSE-1, Simple-
SSE, and SSE-1′, and evaluate the index size and execution time of the search
for each scheme. We use Java for implementation of each program.

6.1 Preparation of Implementation

Document set D: We use the following presented papers (total of 974) as
documents of the targeted search.

– USENIX Security Symposium (2002–2011)
– IEEE Symposium on Security and Privacy (2003–2012)
– ACM Conference on Computer and Communications Security (2002–2011)

Since these papers are published on the Web by the PDF file, we convert
them into text files.3 The sum total of the size of converted documents is
65,011,003 B.

Dictionary Δ: The dictionary in our implementation is Δ = Δ1 ∪Δ2, where
Δ1 is SINGLE.TXT on Moby Word Lists[16], and Δ2 was produced by Lucene

2 In [11], the following techniques are used: (a) To keep the key size to be constant,
a secret key used to make each index is generated from a unique master secret key.
(b) To keep the trapdoor size to be constant, all indexes are linked by putting a
trapdoor in the next index.

3 We use the pdftotext command of Xpdf 3.03 for conversion to text files.

Toward Practical Searchable Symmetric Encryption 165

from D.4 This dictionary has 514,045 words, that is, d = 514, 045. The longest
words in Δ is 248 letters5, i.e., the bit length is 1,984 bit.

Other Parameters: For implementing a pseudo-random function f , we use
HMAC which is in the javax.crypto package and javax.crypto.spec package. More
precisely, fk(w) is computed by

fk(w) = HMAC(w‖0)‖HMAC(w‖1)‖ · · · ‖HMAC(w‖(s− 1)),

where s =
n/160� and n is the output length of f .
We implement pseudo-random permutations ψ and π by using AES[3]. The

input length of ψ is logm in SSE-1 and logm′ in SSE-1′, which are less than
the block length of AES, 128. However, the input length of π, 1,984 bit, is much
longer than 128. Therefore, we adopt the ECB-mode6, considering a word as a
16-block plaintext.

We also adopt AES as the symmetric encryption E .
In π, ψ and E , the shortest key length, � = 128, is used.

6.2 Execution Environment

We measure execution time via a machine with the following specifications.

– OS: Linux 2.6.35 x86 64, Ubuntu server 10.10

– CPU: Intel Core i7 2600

– Memory: DDR3-1333 SDRAM 4GB × 2

– Software: JRE 1.6.0 29

6.3 Numerical Results

Index Size: Table 3 shows the index sizes of SSE-1, SSE-1′, and Simple-SSE.
As a comparison with the case in which privacy protection is not taken into
consideration, we also measured the size of the index using StandardAnalyzer in
Lucene[2].This table also shows the size comparison.

Table 3 shows that the index becomes large as compared with original docu-
ments or the index of Lucene. However, Simple-SSE and SSE-1′ have succeeded
in drastic reduction of the size of the index as compared with SSE-1.

4 Here we use Lucene only to create a set of words from a targeted file set.
5 Such a long word is because the documents include numerical data and binary data.
If we exclude such long (pseudo)words, the index sizes in SSE-1 and SSE-1′ would
become 100MB smaller than our results.

6 AES-ECB is a permutation but not pseudo-random. Therefore, we have to adopt
other implementation to satisfy the security definition. Though evaluation time of π
increases by this change, it is thought that the increment does not affect searching
time so much since π is evaluated only once in a search.

166 W. Ogata et al.

Table 3. Comparison of index size

Index size: |I| |I|/|D| Ratio to SSE-1 Ratio to Lucene

SSE-1 1,836MB 28.24 (1.00) 22.12

SSE-1′ 397MB 6.10 0.22 4.78

Simple-SSE 275MB 4.23 0.15 3.32

Lucene 83MB 1.28 – (1.00)

Table 4. Execution time of Search

Execution time of Search (msec)
words in Δ−Δ′ words in Δ′ random character string

SSE-1 0.0941 0.8383 0.0817

Simple-SSE 0.0603 0.6406 0.0602

SSE-1′ 0.0603 0.7534 0.0609

Search Time: We measured each execution time of Search in order to evaluate
the performance of SSE. Since the execution time of Search may depend on
the number of search results, we measured it by classifying keywords into the
following three cases.

– Words in Δ − Δ′: Words that can be searched although not contained in
documents of a targeted search. The number of search results is zero.

– Words in Δ′: Words contained in documents of the targeted search. The
number of search results changes in accordance with words.

– Random character string: Words that cannot be searched. The number of
search results is zero. Here, we make 1,000 random character strings of 16
characters.

Table 4 shows the results in execution time very small in all schemes. This means
that the measures for privacy protection do not have a bad influence on efficiency.

From the evaluation results concerning SSE-1, Simple-SSE, and SSE-1′, we
can say that both Simple-SSE and SSE-1′ satisfy the objectives of “efficient
search” and “reasonable index size” mentioned in section 3.

7 Conclusion

In this paper, we reconsidered the balance between efficiency and security/
privacy of a searchable symmetric encryption scheme.

By excluding consideration of active attacks, we proposed light searchable
symmetric encryption schemes. We showed that they have some leakage, but
this would pose no problems in most of practical cases.

We also showed experimental results of our scheme and comparison with ex-
isting schemes. The result showed that the index sizes in our schemes are only
a few times of that of a general search engine (without encryption). Thus, our
schemes are sufficiently secure and efficient enough for practical use.

Toward Practical Searchable Symmetric Encryption 167

References

1. Abdalla, M., et al.: Searchable Encryption Revisited: Consistency Properties, Re-
lation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Apache Lucene - Welcome to Apache Lucene, http://lucene.apache.org/
3. Announcing the ADVANCED ENCRYPTION STANDARD (AES). Federal Infor-

mation Processing Standards Publication 197 (November 2001)
4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable

Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric En-
cryption: Improved Definitions and Efficient constructions. In: ACM Conference
on Computer and Communications Security (CCS 2006), pp. 79–88. ACM, New
York (2006)

8. Goh, E.-J.: Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography
Archive (2003)

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. of the ACM 43(3), 431–473 (1996)

10. Hirano, T., Mori, T., Hattori, M., Ito, T., Matsuda, N., Kawai, Y., Sakai, Y., Ohta,
K.: Security Notions for Searchable Symmetric Encryption with Extra Multiple
Documents. In: The 29th Symposium on Cryptography and Information Security,
SCIS 2012, 2B3-1 (2012) (in Japanese)

11. Iwanami, J., Ogata, W.: Secure and Efficient Searchable Symmetric Encryption
with Document Addition. In: The 30th Symposium on Cryptography and Infor-
mation Security, SCIS 2013, 3A3-1 (2013) (in Japanese)

12. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

13. Kamara, S., Papamanthou, C., Roeder, T.: CS2: A searchable cryptographic cloud
storage system. MSR Tech Report no. MSR-TR-2011-58. Microsoft, Redmond
(2011)

14. Kamara, S., Roeder, T.: Dynamic Searchable Symmetric Encryption. In: Proc.
of the 2012 ACM Conference on Computer and Communications Security,
pp. 965–976. ACM, New York (2012)

15. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010)

16. Moby Word Lists, The Institute for Language, Speech and Hearing,
http://icon.shef.ac.uk/Moby/

17. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: Proc. of 2000 IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

http://lucene.apache.org/
http://icon.shef.ac.uk/Moby/

	Toward Practical Searchable SymmetricEncryption
	1 Introduction
	1.1 Background
	1.2 Related Works
	1.3 Our Contributions

	2 Definitions of Symmetric Searchable Encryption and Existing Schemes
	2.1 System Model
	2.2 Security Requirement
	2.3 Curtmola et al. Scheme (SSE-1)
	2.4 Other Schemes Supporting Document Update

	3 What Is Practical SSE?
	3.1 Requirements for Practicality
	3.2 Inefficiency of SSE-1
	3.3 Scalability of Existing SSE

	4 Relaxation of Security
	4.1 Adaptive Attack
	4.2 Relaxed Security Definitions
	4.3 Relations among the Security Notions

	5 Practical SSE Schemes
	5.1 Simplest Scheme (Simple-SSE)
	5.2 Lightened SSE-1 (SSE-1
	5.3 Index Size of Proposed Schemes
	5.4 Scalability of Simple-SSE and SSE-1

	6 Implementation and Evaluation of SSE
	6.1 Preparation of Implementation
	6.2 Execution Environment
	6.3 Numerical Results

	7 Conclusion
	References

