
Kazuo Sakiyama
Masayuki Terada (Eds.)

 123

LN
CS

 8
23

1

8th International Workshop on Security, IWSEC 2013
Okinawa, Japan, November 2013
Proceedings

Advances in Information
and Computer Security

Lecture Notes in Computer Science 8231
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Kazuo Sakiyama Masayuki Terada (Eds.)

Advances in Information
and Computer Security

8th International Workshop on Security, IWSEC 2013
Okinawa, Japan, November 18-20, 2013
Proceedings

13

Volume Editors

Kazuo Sakiyama
The University of Electro-Communications
Department of Informatics
1-5-1 Chofugaoka, Chofu
Tokyo 182-8585, Japan
E-mail: sakiyama@uec.ac.jp

Masayuki Terada
NTT DOCOMO, Inc.
Research Laboratories
3-6 Hikari-no-oka, Yokosuka
Kanagawa 239-8536, Japan
E-mail: teradam@nttdocomo.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41382-7 e-ISBN 978-3-642-41383-4
DOI 10.1007/978-3-642-41383-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013949481

CR Subject Classification (1998): E.3, G.2, D.4.6, F.2, C.2, K.6.5, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

IWSEC 2013, the 8th International Workshop on Security, was held at
Okinawaken Shichouson Jichikaikan in Okinawa, Japan, during November
18–20, 2013. The workshop was co-organized by ISEC in ESS of IEICE (Tech-
nical Committee on Information Security in Engineering Sciences Society of the
Institute of Electronics, Information and Communication Engineers) and CSEC
of IPSJ (Special interest group on Computer Security of the Information Pro-
cessing Society of Japan).

We received 63 submissions, of which 20 were accepted for publication. Each
submission was anonymously reviewed by at least three reviewers, and these
proceedings contain the revised versions of the accepted papers. There were also
two keynote talks that were selected at the discretion of the general co-chairs
and program co-chairs. The talks were given by Sebastian Faust and Nobuaki
Hoshino. In addition to the presentations of the papers and the keynote talks,
the workshop also featured a poster session.

The Best Paper Award was given to “Solving Google’s Continuous Au-
dio CAPTCHA with HMM-Based Automatic Speech Recognition,” by Shotaro
Sano, Takuma Otsuka, and Hiroshi G. Okuno, and the Best Student Paper
Award was given to “Improvement of Faugère et al.’s Method to Solve ECDLP,”
by Huang Yun-Ju, Christophe Petit, Naoyuki Shinohara, and Tsuyoshi Takagi.

Our deepest appreciation goes to the Program Committee. The selection of
the papers was a challenging and delicate task, and we are deeply grateful to
the members of the Program Committee and the external reviewers for their
in-depth reviews and detailed discussions.

A number of people contributed to the success of IWSEC 2013. We would like
to thank all of the authors of submissions. Their great work made IWSEC 2013
a worthwhile conference. We are also grateful to Andrei Voronkov for developing
EasyChair, which was used for the paper submission, reviews, discussions, and
preparation of these proceedings.

Last but not least, we would like to thank the general co-chairs, Toshiaki
Tanaka and Masakatsu Nishigaki, for leading the local Organizing Committee,
and we also would like to thank the members of the local Organizing Committee
for their dedicated efforts to ensure the smooth running of the workshop.

August 2013 Kazuo Sakiyama
Masayuki Terada

IWSEC 2013

8th International Workshop on Security

Okinawa, Japan, November 18–20, 2013

Co-organized by

ISEC in ESS of IEICE
(Technical Committee on Information Security in Engineering Sciences Society
of the Institute of Electronics, Information and Communication Engineers)

and

CSEC of IPSJ
(Special interest group on Computer Security of the Information Processing

Society of Japan)

General Co-chairs

Toshiaki Tanaka KDDI R&D Laboratories Inc., Japan
Masakatsu Nishigaki Shizuoka University, Japan

Advisory Committee

Hideki Imai Chuo University, Japan
Kwangjo Kim Korea Advanced Institute of Science and

Technology, Korea
Günter Müller University of Freiburg, Germany
Yuko Murayama Iwate Prefectural University, Japan
Koji Nakao National Institute of Information and

Communications Technology, Japan
Eiji Okamoto University of Tsukuba, Japan
C. Pandu Rangan Indian Institute of Technology, Madras, India
Ryoichi Sasaki Tokyo Denki University, Japan

Program Co-chairs

Kazuo Sakiyama University of Electro-Communications, Japan
Masayuki Terada NTT DOCOMO, Inc., Japan

VIII IWSEC 2013

Local Organizing Committee

Yuki Ashino NEC, Japan
Takuro Hosoi The University of Tokyo, Japan
Takehisa Kato IPA, Japan
Akinori Kawachi Tokyo Institute of Technology, Japan
Yuichi Komano Toshiba, Japan
Koji Nuida AIST, Japan
Anand Prasad NEC, Japan
Kouichi Sakurai Kyushu University, Japan
Yuji Suga Internet Initiative Japan Inc., Japan
Mio Suzuki National Institute of Information and

Communications Technology, Japan
Alf Zugenmaier Munich Universities of Applied Sciences,

Germany

Program Committee

Rafael Accorsi University of Freiburg, Germany
Toru Akishita The University of Tokyo, Japan
Claudio Ardagna Università degli Studi di Milano, Italy
Nuttapong Attrapadung AIST, Japan
Andrey Bogdanov Technical University of Denmark, Denmark
Sanjit Chatterjee Indian Institute of Science, India
Koji Chida NTT, Japan
Sabrina De Capitani

di Vimercati Università degli Studi di Milano, Italy
Bart De Decker Katholieke Universiteit Leuven, Belgium
Isao Echizen National Institute of Informatics, Japan
Sebastian Faust EPFL, Switzerland
Dario Fiore Max Planck Institute for Software Systems,

Germany
Eiichiro Fujisaki NTT, Japan
David Galindo CNRS/LORIA, France
Dieter Gollmann Hamburg University of Technology, Germany
Goichiro Hanaoka AIST, Japan
Swee-Huay Heng Multimedia University, Malaysia
Naofumi Homma Tohoku University, Japan
Mitsugu Iwamoto University of Electro-Communications, Japan
Tetsu Iwata Nagoya University, Japan
Angelos Keromytis Columbia University, USA
Hiroaki Kikuchi Meiji University, Japan
Hyung Chan Kim ETRI, Korea
Takeshi Koshiba Saitama University, Japan
Noboru Kunihiro The University of Tokyo, Japan
Kwok-Yan Lam National University of Singapore, Singapore

IWSEC 2013 IX

Kanta Matsuura The University of Tokyo, Japan
Koichi Mouri Ritsumeikan University, Japan
Takashi Nishide University of Tsukuba, Japan
Wakaha Ogata Tokyo Institute of Technology, Japan
Takeshi Okamoto Tsukuba University of Technology, Japan
Thomas Peyrin Nanyang Technological University, Singapore
Raphael Phan Multimedia University, Malaysia
Axel Poschmann Nanyang Technological University, Singapore
Anand Prasad NEC, Japan
Bart Preneel Katholieke Universiteit Leuven, Belgium
Kai Rannenberg Goethe University Frankfurt, Germany
Yu Sasaki NTT, Japan
Patrick Schaumont Virginia Tech., USA
Joshua Schiffman AMD, USA
Jae Hong Seo Myongji University, Korea
Francesco Sica Nazarbayev University, Kazakhstan
Yuji Suga Internet Initiative Japan Inc., Japan
Takeshi Sugawara Mitsubishi Electric Corporation, Japan
Tsuyoshi Takagi Kyushu University, Japan
Keisuke Tanaka Tokyo Institute of Technology, Japan
Satoru Tezuka Tokyo University of Technology, Japan
Ryuya Uda Tokyo University of Technology, Japan
Damien Vergnaud ENS, France
Guilin Wang University of Wollongong, Australia
Jian Weng Jinan University, China
Sven Wohlgemuth Technische Universität Darmstadt, Germany
Keita Xagawa NTT, Japan
Dai Yamamoto Fujitsu Laboratories, Japan
Toshihiro Yamauchi Okayama University, Japan
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Kazuki Yoneyama NTT, Japan
Maki Yoshida Osaka University, Japan
Katsunari Yoshioka Yokohama National University, Japan
Hiroshi Yoshiura University of Electro-Communications, Japan
Rui Zhang CAS, China
Yunlei Zhao Fudan University, China
Alf Zugenmaier Munich Universities of Applied Sciences,

Germany

External Reviewers

Elias Athanasopoulos
Aydin Aysu
Rouzbeh Behnia
Begul Bilgin

Olivier Blazy
Christina Boura
Chien-Ning Chen
Shan Chen

Ji-Jian Chin
Keita Emura
Sho Endo
Aurore Guillevic

X IWSEC 2013

Jian Guo
Koki Hamada
Yoshikazu Hanatani
Ryotaro Hayashi
Matthias Hiller
Takato Hirano
Masatsugu Ichino
Dai Ikarashi
Motohiko Isaka
Kenta Ishii
Takanori Isobe
Tadahiko Ito
Kangkook Jee
Mahavir Jhanwar
Christian Kahl
Satoshi Kai
Akira Kanaoka
Akinori Kawachi
Yutaka Kawai
Vasileios P. Kemerlis
Ryo Kikuchi
Minkyu Kim
Naoto Kiribuchi
Nobuaki Kitajima
Hiroki Koga
Masanobu Koike
Georgios Kontaxis

Sascha Koschinat
Sebastian Kutzner
Martin M. Lauridsen
Hyung Tae Lee
Zhenhua Liu
Atul Luykx
Changshe Ma
Takahiro Matsuda
Shin’ichiro Matsuo
Qixiang Mei
Kunihiko Miyazaki
Kirill Morozov
Pratyay Mukherjee
Sayantan Mukherjee
Debdeep Mukhopadhyay
Ivica Nikolic
Ryo Nishimaki
Ryo Nojima
Toshihiro Ohigashi
Akira Otsuka
Nguyen Phuong Ha
Michalis Polychronakis
Ahmad Sabouri
Minoru Saeki
Yusuke Sakai
Koichi Sakumoto
Masahito Shiba

Kyoji Shibutani
Koichi Shimizu
Seonghan Shin
Koutarou Suzuki
Mostafa Taha
Syh-Yuan Tan
Mehdi Tibouchi
Markus Tschersich
Shigenori Uchiyama
Berkant Ustaoglu
Daniele Venturi
Srinivas Vivek
Dai Watanabe
Lars Wolos
Jing Xu
Jun Yajima
Shota Yamada
Takashi Yamakawa
Naoto Yanai
Masaya Yasuda
Kenji Yasunaga
Wei-Chuen Yau
Shun’ichi Yokoyama
Hui Zhang
Zongyang Zhang

Table of Contents

Software and System Security

Secure Log Transfer by Replacing a Library in a Virtual Machine 1
Masaya Sato and Toshihiro Yamauchi

Static Integer Overflow Vulnerability Detection in Windows Binary 19
Yi Deng, Yang Zhang, Liang Cheng, and Xiaoshan Sun

Solving Google’s Continuous Audio CAPTCHA with HMM-Based
Automatic Speech Recognition . 36

Shotaro Sano, Takuma Otsuka, and Hiroshi G. Okuno

Constructions of Almost Secure Frameproof Codes Based on Small-Bias
Probability Spaces . 53

José Moreira, Marcel Fernández, and Grigory Kabatiansky

Cryptanalysis

Differential Power Analysis of MAC-Keccak at Any Key-Length 68
Mostafa Taha and Patrick Schaumont

Generic State-Recovery and Forgery Attacks on ChopMD-MAC and on
NMAC/HMAC . 83

Yusuke Naito, Yu Sasaki, Lei Wang, and Kan Yasuda

New Property of Diffusion Switching Mechanism on CLEFIA and Its
Application to DFA . 99

Yosuke Todo and Yu Sasaki

Improvement of Faugère et al.’s Method to Solve ECDLP 115
Yun-Ju Huang, Christophe Petit, Naoyuki Shinohara, and
Tsuyoshi Takagi

Privacy and Cloud Computing

Statistics on Encrypted Cloud Data . 133
Fu-Kuo Tseng, Yung-Hsiang Liu, Rong-Jaye Chen, and
Bao-Shuh Paul Lin

Toward Practical Searchable Symmetric Encryption 151
Wakaha Ogata, Keita Koiwa, Akira Kanaoka, and Shin’ichiro Matsuo

XII Table of Contents

Unconditionally Secure Oblivious Transfer from Real Network
Behavior . 168

Paolo Palmieri and Olivier Pereira

Cryptographically-Secure and Efficient Remote Cancelable Biometrics
Based on Public-Key Homomorphic Encryption . 183

Takato Hirano, Mitsuhiro Hattori, Takashi Ito, and Nori Matsuda

Public Key Cryptosystems

Efficient Algorithm for Tate Pairing of Composite Order 201
Yutaro Kiyomura and Tsuyoshi Takagi

How to Factor N1 and N2 When p1 = p2 mod 2t . 217
Kaoru Kurosawa and Takuma Ueda

Achieving Chosen Ciphertext Security from Detectable Public Key
Encryption Efficiently via Hybrid Encryption . 226

Takahiro Matsuda and Goichiro Hanaoka

Cryptanalysis of the Quaternion Rainbow . 244
Yasufumi Hashimoto

Security Protocols

On Cheater Identifiable Secret Sharing Schemes Secure against Rushing
Adversary . 258

Rui Xu, Kirill Morozov, and Tsuyoshi Takagi

One-Round Authenticated Key Exchange without Implementation
Trick . 272

Kazuki Yoneyama

Attacks to the Proxy Re-Encryption Schemes from IWSEC2011 290
Toshiyuki Isshiki, Manh Ha Nguyen, and Keisuke Tanaka

Game-Theoretic Security for Bit Commitment . 303
Haruna Higo, Keisuke Tanaka, and Kenji Yasunaga

Author Index . 319

Secure Log Transfer by Replacing a Library

in a Virtual Machine

Masaya Sato and Toshihiro Yamauchi

Graduate School of Natural Science and Technology, Okayama University,
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530 Japan

m-sato@swlab.cs.okayama-u.ac.jp, yamauchi@cs.okayama-u.ac.jp

Abstract. Ensuring the integrity of logs is essential to reliably detect
and counteract attacks, because adversaries tamper with logs to hide
their activities on a computer. Even though some research studies pro-
posed different ways to protect log files, adversaries can tamper with
logs in kernel space with kernel-level malicious software (malware). In
an environment where Virtual Machines (VM) are utilized, VM Intro-
spection (VMI) is capable of collecting logs from VMs. However, VMI is
not optimized for log protection and unnecessary overhead is incurred,
because VMI does not specialize in log collection. To transfer logs out
of a VM securely, we propose a secure log transfer method of replacing
a library. In our proposed method, a process on a VM requests a log
transfer by using the modified library, which contains a trigger for a log
transfer. When a VM Monitor (VMM) detects the trigger, it collects logs
from the VM and sends them to another VM. The proposed method pro-
vides VM-level log isolation and security for the mechanism itself. This
paper describes design, implementation, and evaluation of the proposed
method.

Keywords: Log transfer, log protection, virtual machine, digital
forensics.

1 Introduction

Logging information about activities and events in a computer is essential for
troubleshooting and for computer security. Logs are important not only for de-
tecting attacks, but also for understanding the state of the computer when it was
attacked. The importance of logs for computer security is described in Special
Publication [1]. Adversaries tamper with logs to hide their malicious activities
and the installation of malwares on the target computer [2–4]. If logs related
to those activities are tampered with, detection of problems might be delayed,
and the delay could cause further damage to services. In addition, log tam-
pering impedes the detection, prevention, and avoidance of attacks. With the
growth of cloud computing in recent years, security in VMs has become more
important [5, 6]. Especially, log forensics in cloud application has great impor-
tance [7]. However, existing logging methods are not designed for VMs or cloud
applications.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M. Sato and T. Yamauchi

As described in a paper [8], secure logging using VMs provides integrity and
completeness for logging. Boeck et al. proposed a method to securely transfer
logs utilizing a trusted boot and a late launch [9]. While this method can prevent
attacks to logging daemons, adversaries can still tamper with logs in kernel space.
Logs must go through an Operating System (OS) kernel when transferred out
of the computer. If malware is installed on, logs could be tampered with in
kernel space. SecVisor [10] is a method that prevents the execution of illegal
codes in kernel space. However, these methods depend on the structure of the
OS kernel, making it difficult to adapt to various OSes. In a situation where
a single machine provides many VMs, different OSes could be running on each
VM. VMI [11] can be considered as a logging method for VM. However, VMI
has problems including performance degradation and granularity of information.

These researches are considered as a method of log protection. However, even
though the importance of logging for cloud application is increased [7], there is
no method specialized for logging in VM environment. VM is commonly used
for providing cloud computing environment. Providing services like logging hurts
performance of APs on VMs [8]. Thus, reducing performance overhead incurred
by additional services is an important challenge.

To collect logs from outside the VM securely, we propose a secure log transfer
method using library replacement. To trigger a log transfer to a VMM, we embed
an instruction in a library function to cause a VM exit. On Linux and FreeBSD,
we modified the standard C library, libc, which contains standard logging func-
tion. When the VMM detects a VM exit, the VMM collects the logs generated
by APs in the source VM and transfers them to the logging VM, which stores
the logs to a file. We assumed that the modified library is secured in the memory
by the method [12] that protects a specific memory area from being modified by
kernel-level malware.

With the proposed method, adversaries cannot tamper with logs in kernel
space because the VMM collects logs before they reach in kernel space. Because
the modification to a library is kept minimal, adapting different OSes requires
less effort. Performance degradation is minimal because the overhead incurs only
when an AP calls a logging function. The proposed method replaces only a
library, which includes a function to send logs to a syslog daemon. Therefore,
we can make the possibility of bug inclusion low. Additionally, bugs in a library
give less effect than that in a kernel.

This paper also describes evaluations of the proposed system. We evaluate the
system with the standpoint of security of logs, adaptability to various OSes, and
performance overhead. To evaluate the system with the standpoint of security
of logs, we analyze the security of a logging path. Experiments to tamper with
logs in the logging path are also described. Adaptability of the proposed system
is provided with case studies to adapt to various OSes. Performance evaluations
with APs commonly used in servers are described. As described in a paper [13],
VMI causes large overhead. For practical use, performance degradation should
be kept as small. With these evaluations, this paper presents how the proposed
system is practical for generally-used APs and multi-VM environment.

Secure Log Transfer by Replacing a Library in a VM 3

The contributions made in this paper are as follows:

– We propose a secure log transfer method by replacing a library in a VM.
With the proposed system, a kernel-level malware cannot delete or tamper
with logs. Moreover, by comparing collected logs and tampered logs, we can
identify the area that is tampered with.

– We design a tamper-resistant system using VMM. We implemented all of
our system inside the VMM because of its attack-resistance.

– The proposed system is implemented with minimal modification to libc.
Although no modification is preferable, modifying the library gives two ad-
vantages: slight overhead and ease of adaptation to varied OSes. This also
reduces the possibility of bug inclusion, and makes the system more secure.

2 Method of Log Transfer

2.1 Existing Log Transfer Methods

In Linux and FreeBSD, syslog is a protocol for system management and security
monitoring. Syslog consists of a syslog library and a syslog daemon. New syslog
daemons and protocols [14–17] have been developed to achieve greater security.
New syslog daemons can transfer logs to out of a computer and can encrypt
syslog traffic using transport layer security (TLS). However, during log transfer,
adversaries can delete or tamper with the log with a kernel-level attack [3].
Other methods using inter-process communications can be attacked in the same
manner. Other malware tamper with logs by replacing syslog daemons [2].

VMI [11] inspects VMs by retrieving hardware information about the target
VM and constructing a semantic view from outside the VM. ReVirt [18] collects
instructions-level information for VM logging and replay. CloudSec [19] performs
a fine-grained inspection of the physical memory used by VMs and detects at-
tacks that modify kernel-level objects. While these methods enable us to collect
information inside VMs, they increase complexity of semantic view reconstruc-
tion and performance overhead. In addition, the reconstruction of a semantic
view strongly depends on the structure of the OS.

To overcome this problem, in-VM monitoring method [13], which inserts an
agent into a VM, is proposed. It protects the agent from attacks from inside the
VM. Inserting an agent is a practical and efficient way to collect information,
however, it is difficult to adapt to various OSes because the implementation of
an agent depends on the structure of the OS. The VMM-based scheme [20] can
collect logs inside VMs without modifying a kernel or inserting agents. However,
it has a large overhead and strong dependency to architecture of OS.

2.2 Problems of Existing Methods

Existing methods have the following four problems:

(1) Transferring log via inter-process communications can be preempted by
kernel-level attacks.

4 M. Sato and T. Yamauchi

(2) Collecting logging information inside a VM by monitoring the behavior of
APs or OSes cause unnecessary performance overhead.

(3) Collecting logging information from various OSes requires efforts to adapt
the method to a variety of OSes.

(4) Additional code increases the likelihood of bugs in the system.

No suitable method is currently available to transfer logs out of the VM. For
security management, a secure logging method is required. Monitoring from out-
side the VM is a new approach, because the monitor itself is secured by VM-level
separation. On the other hand, the information obtained by the method is dif-
ficult to translate into a semantic view or is too fine-grained. While VMI and
other introspection methods securely collect information inside a VM, construct-
ing the semantic view of the VM is strongly depends on structure of the target
OSes. Adapting those methods to various OSes is nontrivial work. Inserting an
agent into a VM can cause undesirable effects and make the VM unstable.

3 Secure Log Transfer by Replacing a Library in a VM

3.1 Scope and Assumptions

This paper covers the prevention of log tampering via attacks to the kernel,
to the logging daemon, and to files that contain logs. Attacking specific APs
requires nontrivial work and it cannot tamper with logs completely; therefore,
adversaries attack the point where all logs go through. If we focus our attention
on attacks to APs, preventing log tampering in kernel space and in a logging
daemon is a reasonable challenge.

We assume attacks for a VMM is difficult because the conditions that allow
attacks are limited. Therefore, we assume that a VMM can prevent those attacks.

3.2 Objectives and Requirements

The objectives of this paper are as follows:

Objective 1. To propose a fast and tamper-resistant log transfer method.
Objective 2. To propose a log transfer method that is easy to adapt to various

OSes.

The objective of our research is to address problems detailed in Section 2.2. To
address those problems, providing a tamper-resistant log transfer method is nec-
essary. Specifically, we aim to prevent log tampering from kernel-level malware
like adore-ng [3]. Moreover, low overhead is desired to implement the method to
APs in the real world. Further, an OS-independent method is preferable, because
it is assumed that various OSes are running on each VM.

To achieve the objectives, the followings are required.

Requirement 1. Transfer logs as soon as possible.
Requirement 2. Isolate logs from a VM.

Secure Log Transfer by Replacing a Library in a VM 5

Logging Module Log Storing Module

Logging AP

User Space

Kernel Space

Logging VM

Buffer

Copy logs

Notify/Request for Log Copy
Copy Logs

VMM

Modified Library

AP: Request Log Transfer

Unmodified Library

AP

User Space

Kernel Space

syslog

Function

Target VM

Syslog

Daemon

AP

User Space

Kernel Space

Non-target VM

syslog

Function

Syslog

Daemon

VMM: Copy Logs

Fig. 1. Overview of the proposed system

Requirement 3. Secure the log transfer mechanism itself.
Requirement 4. Make the log transfer method OS-independent and small.
Requirement 5. Reduce unnecessary overhead related to log transfer.

In a logging path, logs generated by a process are passed to a kernel because
the kernel provides the ability to send messages to other processes. Therefore,
to prevent log tampering in kernel space, it is necessary to collect logs from
outside the VM before the logs reach kernel space. To prevent tampering of
log files, they must be isolated from the VM. To ensure the security of the log
transfer method itself, install the method outside the VM. With low dependency
on the OS, migration to other OSes becomes easy. Moreover, a smaller program
size helps to reduce the possibility of bugs. A VM exit, which is a CPU-mode
transfer between a VM and a VMM, can cause additional overhead. To adapt
the method to APs in the real world, unnecessary VM exits must be removed.

3.3 Overview of the Proposed Method

The overall design of the proposed system is shown in Figure 1. In the proposed
system, the target VM works on a VMM and the VMM collects logs from the
VM. We assume that all of the VMs fully virtualized by Intel VT-x. An AP on
the target VM can transfer logs with the proposed system as follows:

(1) An AP requests a log transfer to a VMM.
(2) The logging module inside the VMM receives the request and copies logs

from the AP to the buffer inside the VMM.

6 M. Sato and T. Yamauchi

(3) The VMM sends a notification to a logging AP inside the logging VM. Then,
the VMM sends the logs to the logging AP.

(4) The logging AP receives the logs and stores them to a file. The logging VM
accepts logs only from the VMM.

We modified the VMM to transfer logs from the target VM to the logging VM.
The logging module, the log storing module and the buffer VMM are additional
part to the original VMM. We modified libc in the target VM to send a log
transfer request to the VMM in each call of syslog function. The modified library
executes an instruction that causes a VM exit, which triggers a log transfer to
the logging VM before sending logs to the logging daemon in the current VM.
Only a VM that contains the modified library can send the request. In Figure 1,
the target VM requests a log transfer in every syslog function call; on the other
hand, the non-target VM never makes the request.

Collecting logging information immediately after the invocation of the syslog
function fulfills the requirement 1. With this feature, tampering logs in kernel
space is impossible. Using the logging VM to store logs fulfills the requirement 2.
Resources allocated to a VM, such as memory, network, disk space, and others
are separated from resources allocated to another VM, therefore, it is difficult to
tamper with logs outside the VM being attacked. It is also difficult to attack a
VMM from inside a VM; therefore, using a VMM and modifying a library fulfill
the requirement 3. Library modification also makes OS-adaptation easier and
fulfills the requirement 4. Finally, VM exits occur only when a syslog library
function is called; therefore, the requirement 5 is fulfilled.

3.4 Comparison between the Proposed Method and VMI

The proposed method and VMI are similar from the standpoint of collecting
information inside VM. However, there are following differences between them:

– Security of logs.
– Dependency to a data structure in a VM.
– Overhead.

The proposed system can achieve greater security of logs than VMI. VMI
collects information of VMs by monitoring hardware states and some events.
However, it is difficult to detect log generation by monitoring hardware states
or events. Even if VMI can detect log generation, when VMI detects it after a
mode transition to kernel space, logs are tampered by kernel-level malware. By
contrast, kernel-level malware cannot tamper with logs because the trigger of
log transfer is given by a library in the user space of each VM.

To inspect a state of a VM, VMI collects some information strongly related
to a data structure in a VM. Thus, VMI must have enough knowledge of layout
of data structure in the VM. Additionally, to inspect a state of a VM, VMI must
collect a lot of information (e.g. process list, process descriptor). This creates
strong dependency to version of OSes in VMs.

Secure Log Transfer by Replacing a Library in a VM 7

As just described above, VMI can inspect a state of a VM with fine-grained
information; however, it creates strong dependency of data structure in a VM
and some overheads. On the other hand, however the proposed system cannot
collect much information of a VM; it achieves weak dependency of data structure
in a VM and low overheads. VMI has large overhead because it monitors a state
of a VM with various and fine-grained information. A research [13] shows that
VMI causes 690% overhead in monitoring of process creation. On the other
hand, in-VM monitoring causes only 13.7% overhead in that monitoring. Thus,
the approach of the proposed system is efficient because the system can be
considered as one of an in-VM monitoring. Additionally, our proposed system
only monitors invocation of syslog function. Therefore, overhead related to the
proposed system arises only when an AP invokes syslog function.

4 Implementation

4.1 Flow of Log Transfer

Transferring logs from a VM to a VMM takes place in two phases: requesting
the log transfer and copying the log. This section describes the implementation
of each phase in Section 4.2 and Section 4.3. The modified code to libc library
is shown as Figure 4 and explained at Section 5.5. The overall flow is as follows:

(1) An AP in the target VM requests a log transfer.
(2) A VM exit occurs and the VMM receives the request.
(3) The VMM copies logs from the AP to the VMM buffer.
(4) The VMM sends a log storing request to the logging VM.
(5) The logging VM receives the request and notifies the VMM that it is ready

to receive the logs.
(6) The VMM copies the logs to the logging VM.
(7) The logging VM stores the logs to a file.

4.2 Request of Log Transfer

We embed a cpuid instruction in a library to request a log transfer to the VMM
from an AP. The instruction does not affect the CPU state; however, if executed
in a virtualized environment, the instruction causes a VM exit. Therefore, we
embedded the instruction into a library to request the copying of logs to the
external VMM before sending the logs to a logging daemon. The interface of log
transfer request is shown in Table 1. The embedded codes set the appropriate
values to the registers and execute the cpuid instruction. Additional codes are
shown in Section 5.5. We utilize cpuid instruction to counteract detection of
our approach that scans memory or a library file. One of a typical instruction to
call a VMM is vmcall. If we use vmcall instruction as a trigger of log transfer,
adversaries easily detect our approach by scanning a memory because the in-
struction is not used in regular APs. To make detection of our approach harder,
we utilize cpuid instruction.

8 M. Sato and T. Yamauchi

(2) Store the beginning address of

the buffer that contains the log in

the rbx register.

(3) Store the length of the log in

the rcx register.

(1) Store 0xffff in the rax register.

(4) Execute cpuid instruction.

Fig. 2. Flow of a log transfer request

Table 1. Interface of log transfer

Register Explanations

rax 0xffff: the value represents a log transfer request.

rbx Address of the buffer that contains logs to transfer.

rcx Length of logs to transfer.

Figure 2 depicts the flow of a log transfer request. At first, the AP on the
target VM stores 0xffff in the rax register, the beginning address of the buffer in
the rbx register, and the length of the buffer in the rcx register. Then, the AP
executes cpuid instruction to request a log transfer.

4.3 Log Copying from a VM to a VMM

Figure 3 depicts the flow of log copying by a VMM. A cpuid instruction is a
trigger for log transfer. After detected the instruction, the VMM copies logs
from the AP and notifies to the logging VM if the value contained in the guest’s
rax register is 0xffff. If not, the VMM do not copy logs and only emulates the
instruction. The buffer inside the VMM is implemented as a ring buffer to reduce
the loss of logs in a high-load situation. Step (4) only sends notification. Log
copying to the logging VM is made asynchronously. Thus, the time of log copying
is kept as short as possible.

Secure Log Transfer by Replacing a Library in a VM 9

(3) The VMM copies logs from the

VM to a buffer inside the VMM.

(4) The VMM notifies the logging

VM about the log copying.

(1) A VM exit occurs by cpuid

instruction in a VM.

(7) Processing returns to the VM.

(2) The value in

rax is 0xffff?

(5) Emulate cpuid instruction.

(6) Store the result of the cpuid

instruction to the registers.

No

Yes

Additional part to the original VMM.

Fig. 3. Flow of log copying from the AP to the VMM

5 Evaluation

5.1 Purpose and Environment

We evaluated the proposed system at following standpoints:

– Security of logs in a logging path
To evaluate the ability of prevention of log tampering, we inserted a malware
into the kernel running on a VM.

– Prevention of log tampering and loss
To check whether the proposed method can prevent log tampering and loss,
we tried to prohibit log storing procedure with malware and some attacks.

– Completeness of log collection
By sending a massive number of log transfer requests from an AP in the
target VM, we tested the system in a high-load environment.

– Efforts for adapting various OSes
Ease of adaptation to various OSes was also evaluated.

– Performance evaluation
Performance overhead in Database Management System (DBMS) is also
evaluated.

– Performance in multi-VM environment
We measured performance of a web server with many VMs to clarify perfor-
mance overhead incurred by the proposed system in multi-VM environment.

10 M. Sato and T. Yamauchi

Table 2. Software used for evaluation

VMM Xen 4.2.0

OS (The logging VM) Debian (Linux 3.5.0 64-bit)
OS (The target VM) FreeBSD 9.0.0 64-bit, Debian (Linux 2.6.32 64-bit)

Web server thttpd 2.25b
Database management system PostgreSQL 9.2.4
Syslog daemon rsyslogd 4.6.4

Benchmark ApacheBench 2.3
pgbench 9.2.4 (included with PostgreSQL 9.2.4)
LMbench version 3

Software used for evaluation is described in Table 2. We implemented a pro-
totype of the proposed system with Xen [21] hypervisor.

5.2 Security of Logs in a Logging Path

Logs can be tampered with at the following point: (1) The time when a process
generates a log, (2) The time between the sending of a log and its receipt by a
syslog daemon, (3) The time between the receipt of a log and storing it to a file,
and (4) The time after the output of a log.

Kernel-level malware like adore-ng [3] can tamper with logs in time (2) and
(3). Attacks for syslog daemon like tuxkit [2] can tamper with logs in time (3).
Adversaries who have privileges to write to the log file can tamper with logs in
time (4). Our proposed method can prevent attacks in time (2), (3), and (4)
because logs are transferred to outside of the VM before it reaches in a kernel.

Without hypervisor-based software runtime memory protection mechanism
[12], we cannot prevent log tampering in time (1). A kernel-level malware can
manipulate memory of user processes; therefore, it tampers with logs before they
are transferred to out of a VM. With the memory protection mechanism [12], a
kernel-level malware cannot tamper with logs of user processes. Thus, to prevent
log tampering in time (1), the memory protection mechanism [12] is necessary.

5.3 Prevention of Log Tampering and Loss

To check whether the proposed method can prevent log tampering or not, we
tried to tamper with logs. First, we used adore-ng [3], which is a kernel-level mal-
ware that tamper with logs sent to the syslog daemon, to check if the proposed
system can prevent log tampering in kernel space. The adore-ng patches runtime
memory of kernel code to tamper with logs. The adore-ng monitors inter-process
communication using socket function and deletes a message if it contains disad-
vantageous words for the adversary. This experiment proves that the proposed
method can prevent log tampering by the kernel-level malware. Logs sent to the
VMM with the proposed method were not tampered with while logs stored in
the target VM is tampered with. Moreover, we can find log tampering by com-
paring logs between the target VM and the logging VM. With this comparison,
we can estimate a purpose of the adversary.

Secure Log Transfer by Replacing a Library in a VM 11

Third, we tampered with a policy file of syslog daemon as no logs are written
to files. The policy file is loaded by the syslog daemon at a start-up. By this
attack, no logs are written even if a syslog daemon is running. In this situation,
we confirmed that the proposed system collects logs with no modification or
loss. This result shows that the proposed system is resistant to attack for policy
file of syslog daemon. The result also shows that log tampering by replacing a
syslog daemon has no effect in a log collected by the proposed system. Thus, the
proposed system is resistant to attacks like tuxkit [2].

Fourth, we stopped a syslog daemon on a target VM to prevent logging.
Obviously, no logs are transferred to the syslog daemon. We also confirmed
that the proposed system can collect logs completely. However, its completeness
depends on a flow of the log transfer. In GNU libc, a syslog function aborts log
transfer when the establishment of a connection is failed. Our prototype used
for evaluation requests log transfer before establishing a connection to the syslog
daemon; therefore we can collect logs completely. This implies that logs might
be lost if the library requests log transfer after establishing connection.

Finally, we tampered with a log file. This type of attack is used in LastDoor
backdoor [4]. It wipes specific entries in log files. Because the logs written to the
file are already transferred to the logging VM, while logs in the target VM are
tampered with, there is no effect to the log file in the logging VM.

These results show that the proposed system can collect almost all logs and
collected logs are not affected by attacks on the target VM. Additionally, adver-
saries tend to install log tampering malware to a place where all logs go through.
For example, adore-ng [3] is installed to a kernel function and tuxkit [2] is in-
stalled to a syslog daemon. All logs sent by syslog library function go through
that kernel function and syslog daemon. From the reason, we can estimate that
log tampering attacks to an AP, which is a source of logs, is rare.

5.4 Completeness of Log Collection

To ensure that the proposed system can collect all logs in the target VM with
no loss, we tested the proposed system in a high-load environment. In an ex-
periment, we sent a log transfer request 10,000 times within approximately 0.26
seconds. The length of the log in each request was approximately 30 bytes. All
logs were successfully transferred to the logging VM. No logs were incomplete or
lost. This result shows that our proposal is sufficient in terms of completeness
of log collection in a high-load environment.

5.5 Efforts for Adapting Various OSes

In the prototype, we implemented the proposed method with FreeBSD and Linux
as a target VM and Xen as a VMM. To adapt to various OSes, modification to
the target VM must be minimal. We added 20 additional lines of codes to libc

on FreeBSD and Linux. Figure 4 shows the result of diff command. As shown
is Figure 4, we can adapt the proposed system to the libc library by inserting
cpuid_logxfer() function before invocation of a send system call. The rest of

12 M. Sato and T. Yamauchi

void
__vsyslog_chk(int pri, int flag, const char *fmt, va_list ap)
{

int saved_errno = errno;
char failbuf[3 * sizeof (pid_t) + sizeof "out of memory []"];

+ reg_t regs;
+ regs.rax = 0xffff;
+
#define INTERNALLOG LOG_ERR|LOG_CONS|LOG_PERROR|LOG_PID

/* Check for invalid bits. */
if (pri & ~(LOG_PRIMASK|LOG_FACMASK)) {

*** 278,283 ****
--- 297,308 ----

if (LogType == SOCK_STREAM)
++bufsize;

+ regs.rbx = (unsigned long)buf;
+ regs.rcx = bufsize;
+
+ cpuid_logxfer(regs.rax, ®s);
+ regs.rax = regs.rbx = regs.rcx = 0;
+

if (!connected || __send(LogFile, buf, bufsize, send_flags) < 0)
{
if (connected)

Fig. 4. The result of diff command between source codes of the unmodified library and
the modified library

the additional codes are definition of the regs structure and the cpuid_logxfer
function. These additional lines consist of (1) setting the registers with the ap-
propriate values and (2) executing the cpuid instruction. Based on the size of
the additional code, adapting the proposed system to various OSes would be a
small effort.

5.6 Performance Evaluation

Measured Items and Environment. We measured the performance of the
syslog function, some system calls, and an AP. We also measured performance
overhead in multi-VM environment. The performance measurements of both
the syslog function and an AP show the additional overhead incurred by the
proposed system. On the other hand, the performance measurement of some
system calls shows that the proposed system causes additional overhead only
when the syslog function is called.

We measured the performance with a computer, which has Core i7-2600 (3.40
GHz, 4-cores) and 16 GB memory. In each measurement, one virtual CPU
(VCPU) is provided and 1 GB memory is allocated to each VM. Hyper-threading
is disabled. Each VCPU is pinned to physical CPU core to avoid the instability
of measurement. If many VMs work on one physical CPU, performance of APs
on those VMs would be instable. Each VM has one VCPU and 1 GB memory.

Secure Log Transfer by Replacing a Library in a VM 13

Table 3. Performance comparison of the syslog function

Time (μs) Overhead (μs (%))

Xen 31.47 −
Proposed system 33.38 1.91 (6.08%)

Table 4. Frequency of library function calls when providing a web page with thttpd
web server

Function name Count Rate (%) Function name Count Rate (%)

strncasecmp 1600 17.77 strftime 200 2.22
strlen 1400 15.55 accept 200 2.22
strcpy 800 8.89 gmtime 200 2.22

vsnprintf 600 6.67 errno location 200 2.22
memmove 400 4.44 time 100 1.11

strchr 400 4.44 close 100 1.11
select 301 3.34 read 100 1.11

gettimeofday 301 3.34 getnameinfo 100 1.11
strstr 300 3.33 strcat 100 1.11
fcntl 300 3.33 readlink 100 1.11

strpbrk 300 3.33 strrchr 100 1.11
strcasecmp 200 2.22 syslog 100 1.11

xstat 200 2.22 writev 100 1.11
strspn 200 2.22

Syslog Function and System Call. In the proposed system, the modified li-
brary requests log transfer when an AP called syslog function. To clarify the
overhead incurred by the proposed system, we measured and compared the
performance of syslog function with unmodified Xen and the proposed system.
Table 3 compares the performance of the syslog function between Xen and the
proposed system. In the proposed system, the additional overhead of the syslog
function is 1.91 μs (6.08%), which is small enough, because the function is not
called frequently.

Table 4 shows counts of function call in thttpd accessed by ApacheBench
for 100 times. We measured the number of counts of library function call by
ltrace. Table 4 shows the ratio of syslog function call in thttpd is about 1%.
Additionally, we measured a performance impact of library functions in thttpd
with the same workload. Table 5 shows the result of measurement. These results
are measured in Ubuntu 13.04. The function named __syslog_chk is same as
syslog. As shown in Table 5, performance impact of syslog function is only
0.18%, thereby it can be considered as 6.08% of overhead in syslog function has
limited impact of the performance of APs.

Additionally, we measured the performance of some system calls by LMbench,
which measures the performance of file creation and deletion, process creation,
system call overhead, and other processes. In this measurement, the additional
overhead is not significant.

14 M. Sato and T. Yamauchi

Table 5. Performance impact of library functions in thttpd

Function name Rate (%) Function name Rate (%)

writev 76.90 memmove 0.13
poll 17.71 gmtime 0.10

strncasecmp 0.82 strcasecmp 0.10
strlen 0.81 strftime 0.10
strcpy 0.51 strspn 0.09
close 0.30 strcat 0.09

vsnprintf chk 0.30 read 0.08
xstat 0.23 getnameinfo 0.05
strchr 0.22 memcpy 0.05
fcntl 0.22 time 0.05

syslog chk 0.18 strrchr 0.05
accept 0.17 strcpy chk 0.04

readlink 0.15 malloc 0.02
strpbrk 0.14 mmap 0.00
strstr 0.14 open 0.00

errno location 0.14 realloc 0.00
gettimeofday 0.14

Table 6. Performance comparison of a PostgreSQL

tmpfs VMM TPS Relative performance

disabled
Xen 400.37 –
Proposed system 395.76 0.99

enabled
Xen 1,448.80 –
Proposed system 1,372.60 0.95

Performance of AP. We measured performance overhead by the proposed sys-
tem on a DBMS. To measure the performance overhead caused by the proposed
system in DBMS, we used PostgreSQL as a DBMS. We configured PostgreSQL
to call syslog function in each transaction. We used pgbench to measure per-
formance of PostgreSQL. The workload with pgbench includes five commands
per transaction. The benchmark measures transactions per second (TPS) of a
DBMS. The concurrency of transactions is set to one.

Table 6 shows the comparison of a performance of the PostgreSQL DBMS.
Higher TPS is better. Performance degradation with the proposed method is less
than 1%. The proposed method degrades performance of a CPU intensive pro-
cess. Because PostgreSQL accesses to disk heavily, the overhead incurred with
the proposed method becomes small. To clarify that the proposed system is CPU
intensive, we measure the performance with tmpfs, which provides a memory
file system. Transactions do not require access to disk; therefore, performance
overhead with the proposed method would be higher. Table 6 shows that the
relative performance to unmodified Xen with tmpfs is about 5%. The perfor-
mance degradation is higher than that in the case without tmpfs. If a processing
is I/O intensive, performance degradation with the proposed method becomes

Secure Log Transfer by Replacing a Library in a VM 15

Table 7. Throughputs of a web server (request/s) in multi-VM environment

File size VMM
Number of VM

0 2 4 6 8 10 12

1 KB
Xen 1396.9 1329.27 1295.61 1225.22 1171.51 1231.72 1172.15

Proposed system 1231.06 1150.54 1057.95 1017.53 987.24 1015.69 946.61
Relative performance 0.88 0.87 0.81 0.83 0.84 0.82 0.8

10 KB
Xen 680.61 658.15 639.76 627.9 628.56 609.45 615.64

Proposed system 664.48 626.12 612.93 559.02 582.24 578.89 589.58
Relative performance 0.98 0.95 0.89 0.92 0.93 1.00 0.96

1,000 KB
Xen 11.41 11.41 11.4 11.39 11.38 11.39 11.39

Proposed system 11.41 11.41 11.4 11.39 11.37 11.39 11.06
Relative performance 1.00 1.00 1.00 1.00 1.00 1.00 0.98

less. Thus, the proposed method is suitable for I/O intensive APs. In this mea-
surement, we configured PostgreSQL to call syslog in each transaction, however,
logging frequency in general use of DBMS becomes less. Thus, the performance
degradation can be assumed as almost negligible in normal use.

Performance in Multi-VM Environment. To examine the ability of our
proposal to scale to its target of many domains, we measured a performance of
a web server in a VM with many other VMs. These VMs have a process that
sends logs using syslog function every second. This evaluation is experimented
with the machine that has four CPU cores; the logging VM is placed on the core
0, a VM that has a web server is placed on core 1, and other VMs are placed on
core 2 and core 3 to measure the pure performance changes of the web server.
We placed 2, 4, 6, 8, 10 and 12 VMs on core 2 and core 3. The number of VMs
on core 2 and core 3 is same. Scheduling priority of each VM is configured as
same. The performance is measured by ApacheBench on a remote machine with
1 Gbps network.

Table 7 shows performance in each environment. Figure 5 shows changes of
performance in each environment. If the number of VM increases, the perfor-
mance of the web server degrades. Performance degradation with the proposed
system is less than about 10% when the file size is larger than 10 KB. Espe-
cially, when the file size is 1,000 KB, performance degradation is nearly 0. From
the result, we can estimate that change of relative performance related to the
number of VM is small enough. Despite the number of VM changes, change
of relative performance is approximately same. For this reason, the proposed
system is efficient in multi-VM environment.

6 Related Works

6.1 Secure Logging

Accorsi classified and analyzed secure logging protocols [22]. In that paper, ex-
tensions of syslog, including syslog-ng [15], syslog-sign [16], and reliable syslog

16 M. Sato and T. Yamauchi

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12

Requests/second

of VM

Xen (1 KB)

Proposed system (1 KB)

Xen (10 KB)

Proposed system (10 KB)

Xen (1,000 KB)

Proposed system (1,000 KB)

Fig. 5. Performance comparison in multi-VM environment. Horizontal axis shows the
number of other VM. Vertical axis shows throughput of a web server in request/s;
higher measurements are better.

[17] are distinguished as a protocol that provides security in transmission of log
messages, not for storage phase. We focus on transmission phase because our
proposal is highly related to that phase. Accorsi described that only reliable sys-
log fulfills security requirements that guarantee the authenticity of audit trails.
Even if those protocols can detect and verify log message as not tampered, they
cannot prevent deletion or tampering of logs. At this point, those protocols are
different from our proposal. Therefore, this paper proposes a protection of log
messages from a viewpoint of system security. By combining our proposal and
existing secure logging protocol, we can increase security of logged data.

6.2 Logging with Virtual Machine

ReVirt [18] logs non-deterministic events on a VM for replay. Because it logs
events for analysis of attacks, types of data are different from our proposal. While
ReVirt logs instruction-level information, our proposal collects log messages for
syslog. With our proposal, we can easily monitor the target VM without deep
analysis of logged information because those logs are already formatted.

Virtual machine is also used to separate logged information [23]. While refer-
ence [23] separates information about file system logs, our proposal separates logs
for syslog. They utilized split device driver model of Xen and it is provided for
para-virtualization, thus, their proposal can be applied only for para-virtualized
environment. Our prototype is implemented with fully virtualized environment;
however, implementing in para-virtualized environment is easy.

VMI [11] and other introspection method [13] can be considered as a logging
method with a VM. In that regard, these methods are similar to our proposal.
However, information gathered by those methods are not formatted like sys-
log, therefore, to analyze these data, existing tools are unavailable. In contrast,

Secure Log Transfer by Replacing a Library in a VM 17

with our proposal, existing tools work well without modification because the for-
mat of information gathered by our proposal is same as messages produced by
syslog. Our previous work [20] can gather information from a VM without mod-
ification to a library in that VM. However, to adapt to various OSes, it requires
modification to a VMM. Modification to a VMM requires restart of all VMs
on that VMM. Besides, it causes measurable overheads. By contrast, although
modification to a library on a VM is required, our proposal in this paper requires
no modification to a VMM to adapt to various OSes and has less overhead.

7 Conclusions

The secure log transfer method by replacing a library in a VM provides processes
on a VM with an ability to transfer logs without involving the VM kernel. Thus,
even though kernel-level malware tamper with logs on that VM, logs gathered by
our proposal have no effect. In addition, we implemented the proposed system
with VMM, therefore, attacking the proposed system from a target VM is diffi-
cult enough because of the property of a VMM. Further, adapting the method
to various OSes is easy because of its implementation with library modifications.
Evaluation of resistance for log tampering shows that tampering of logs from the
target VM is difficult enough. From the experiment of adapting different OSes
showed that an effort of adaptation is only 20 lines of additional code to libc

library. Performance evaluation shows that performance degradation of syslog
function is only about 6%. Performance degradation is negligible if a processing
of an AP is I/O intensive. Performance evaluation in multi-VM environment
shows that the proposed system has enough performance with many VMs.

References

1. Kent, K., Souppaya, M.: Guide to computer security log management, special
publication 800-92 (September 2006)

2. spoonfork: Analysis of a rootkit: Tuxkit,
http://www.ossec.net/doc/rootcheck/analysis-tuxkit.html

3. stealth: Announcing full functional adore-ng rootkit for 2.6 kernel,
http://lwn.net/Articles/75991/

4. Symantec: Backdoor.lastdoor, http://www.symantec.com/security response/

writeup.jsp?docid=2002-090517-3251-99

5. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. Journal of Network and Computer Applications 34(1), 1–11
(2011)

6. Grobauer, B., Walloschek, T., Stocker, E.: Understanding cloud computing vulner-
abilities. IEEE Security & Privacy 9(2), 50–57 (2011)

7. Marty, R.: Cloud application logging for forensics. In: Proceedings of the 2011
ACM Symposium on Applied Computing, SAC 2011, pp. 178–184 (2011)

8. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems, HOTOS 2001, pp. 133–138.
IEEE Computer Society (2001)

http://www.ossec.net/doc/rootcheck/analysis-tuxkit.html
http://lwn.net/Articles/75991/
http://www.symantec.com/security_response/writeup.jsp?docid=2002-090517-3251-99
http://www.symantec.com/security_response/writeup.jsp?docid=2002-090517-3251-99

18 M. Sato and T. Yamauchi

9. Boeck, B., Huemer, D., Tjoa, A.M.: Towards more trustable log files for digital
forensics by means of “trusted computing”. In: International Conference on Ad-
vanced Information Networking and Applications, pp. 1020–1027 (2010)

10. Seshadri, A., Luk, M., Qu, N., Perrig, A.: Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity oses. SIGOPS Oper. Syst. Rev. 41(6),
335–350 (2007)

11. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of the Network and Distributed Systems
Security Symposium, pp. 191–206 (2003)

12. Dewan, P., Durham, D., Khosravi, H., Long, M., Nagabhushan, G.: A hypervisor-
based system for protecting software runtime memory and persistent storage.
In: Proceedings of the 2008 Spring Simulation Multiconference, SpringSim 2008,
pp. 828–835 (2008)

13. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-vm monitoring using hardware
virtualization. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS 2009, pp. 477–487 (2009)

14. Adiscon: rsyslogm, http://www.rsyslog.com/
15. Security, B.I.: Syslog server | syslog-ng logging system,

http://www.balabit.com/network-security/syslog-ng

16. Kelsey, J., Callas, J., Clemm, A.: Signed syslog messages (May 2010),
http://tools.ietf.org/html/rfc5848

17. New, D., Rose, M.: Reliable delivery for syslog (November 2001),
http://www.ietf.org/rfc/rfc3195.txt

18. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling
intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst.
Rev. 36(SI), 211–224 (2002)

19. Ibrahim, A., Hamlyn-Harris, J., Grundy, J., Almorsy, M.: Cloudsec: A security
monitoring appliance for virtual machines in the iaas cloud model. In: 5th Inter-
national Conference on Network and System Security, pp. 113–120 (September
2011)

20. Sato, M., Yamauchi, T.: Vmm-based log-tampering and loss detection scheme.
Journal of Internet Technology 13(4), 655–666 (2012)

21. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. SIGOPS Oper. Syst.
Rev. 37(5), 164–177 (2003)

22. Accorsi, R.: Log data as digital evidence: What secure logging protocols have to
offer? In: Proceedings of the 33rd Annual IEEE International Computer Software
and Applications Conference, vol. 02, pp. 398–403 (2009)

23. Zhao, S., Chen, K., Zheng, W.: Secure logging for auditable file system using
separate virtual machines. In: 2009 IEEE International Symposium on Parallel
and Distributed Processing with Applications, pp. 153–160 (2009)

http://www.rsyslog.com/
http://www.balabit.com/network-security/syslog-ng
http://tools.ietf.org/html/rfc5848
http://www.ietf.org/rfc/rfc3195.txt

Static Integer Overflow Vulnerability Detection

in Windows Binary

Yi Deng, Yang Zhang, Liang Cheng, and Xiaoshan Sun

Institute of Software, Chinese Academy of Sciences, Beijing, China
{dengyi,zhangyang,chengliang,sunxs}@tca.iscas.ac.cn

Abstract. In this paper, we present a static binary analysis based ap-
proach to detect integer overflow vulnerabilities in windows binary. We
first translate the binary to our intermediate representation and perform
Sign type analysis to reconstruct sufficient type information, and then
use dataflow analysis to collect suspicious integer overflow vulnerabili-
ties. To alleviate the problem that static vulnerability detection has high
false positive rate, we use the information how variables which may be
affected by integer overflow are used in security sensitive operations to
compute priority and rank the suspicious integer overflow vulnerabilities.
Finally the weakest preconditions technique is used to validate the sus-
picious integer overflow vulnerabilities. Our approach is static so that it
does not run the software directly in real environment. We implement a
prototype called EIOD and use it to analyze real-world windows bina-
ries. Experiments show that EIOD can effectively and efficiently detect
integer overflow vulnerabilities.

Keywords: Binary analysis, Integer overflow, Priority ranking, Weakest
Precondition.

1 Introduction

Integer overflows are dangerous: while the integer overflow itself is usually not
exploitable, it may trigger other classes of vulnerabilities, including stack over-
flows and heap overflows. The number of integer overflow vulnerabilities has been
increasing rapidly in recent years. Common Vulnerability and Exploit (CVE)
shows that more and more integer overflows have been recorded[1].

In the past few years, some tools have been presented to detect or prevent in-
teger overflows in source code, such as CCured[2], Cyclone[3], BLIP[4], RICH[5],
LCLint[6], IntPatch[7], they either translates the program into type safe lan-
guage, or checks the code for certain operations during compiling. However,
as for many programs like common off-the-shelf(COTS) programs, source code
is not available to users, the state-of-the-art techniques have to detect inte-
ger overflow vulnerabilities at binary level, several approaches are proposed.
IntScope[8] leverages symbolic execution and taint analysis to identify the vul-
nerable points of integer overflow, and reports suspicious integer overflow vul-
nerabilities. IntFinder[10] decompiles x86 binary code and use type analysis and

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 19–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 Y. Deng et al.

taint analysis to create the suspect instruction set, then dynamically inspects the
instructions in the suspect set. They both use static analysis to find suspicious
integer overflow vulnerabilities, then dynamically check each suspicious vulner-
ability. This mechanism has low efficiency because of high false positive rate of
static analysis, detectors have to spend a large amount of time on checking each
suspicious vulnerability to find real vulnerabilities.

Integer overflow is caused by arithmetic instruction, but not all arithmetic in-
structions could cause integer overflow vulnerabilities. By observing most known
integer overflow vulnerabilities, we find some characteristics of integer over-
flow vulnerabilities, incomplete or improper input validation, overflow values
using in security sensitive operations, no integer overflow checking, etc. Only the
arithmetic instruction with these characteristics may cause integer overflow vul-
nerability, and the possibility is related to these characteristics. Based on the
observation, we present EIOD, a static binary analysis based approach for de-
tecting integer overflow vulnerabilities with a suspicious vulnerabilities ranking
algorithm. In EIOD, we first find all the arithmetic instructions in the program,
in order to check whether each arithmetic instruction could overflow, we col-
lect the information related to these arithmetic instructions, such as how the
overflowed value are used and whether there is existing checking for inputs and
arithmetic results. If the values came from integer overflow points are used in
security sensitive operations, we treated them as suspicious vulnerabilities, and
use the information collected in first step to calculate the vulnerability priority
of each suspicious integer overflow vulnerability which represented their vulner-
ability possibility and rank the suspicious integer overflow vulnerability by their
priorities. This ranking strategy can help users to check those potential vulner-
abilities that are most likely to be real vulnerabilities at first. Moreover, users
can ignore suspicious vulnerabilities with low vulnerability priorities. Finally,
unlike existing tools, we use weakest precondition(WP) computation to check
suspicious vulnerabilities. The advantage of WP is that it is static so that we do
not have to run the binary in real environment.

We have implemented our system EIOD on Microsoft Windows platform.
EIOD first use IDA Pro[11] to disassemble binary executables, then translate
to intermediate code, our analysis and detection are perform on the interme-
diate code. We use it to detect integer overflow vulnerabilities in some real
world programs from Microsoft platform, and we have got encouraging ex-
perimental results: EIOD can effectively and efficiently detect integer overflow
vulnerabilities.

Our paper makes three major contributions:

1. We propose a static systematic approach based on dataflow analysis and
weakest precondition to detect integer overflow vulnerabilities in windows
executables.

2. An effective suspicious vulnerability ranking scheme based on vulnerability
likelihood has been used to alleviate the problem of high false positive rate
of static analysis.

Static Integer Overflow Vulnerability Detection in Windows Binary 21

3. We implement a prototype EIOD and use it to analyze real world binaries.
Experiments show that our approach can effectively and efficiently detect
integer overflow vulnerabilities.

The rest of this paper is organized as follows: The background of integer
overflow detection is described in section 2. In section 3, we present the overview
of our approach. The design details are described in section 4. Section 5 gives
the evaluation of our tool. Section 6 discusses related work on detecting integer
overflow vulnerabilities. Section 7 concludes this paper.

2 Background

In this section, we will describe the characteristics of integer overflow vulnera-
bilities, and then discuss the challenges of integer overflow detection at binary
level.

2.1 Characteristics of Integer Overflow

By studying more than 200 integer overflow case on CVE, we concluded the
following characteristics of integer overflow vulnerabilities:

1. Incomplete or improper input validation. Almost all the integer overflow vul-
nerabilities are related to incomplete or improper input validation, because
if input values have been completely checked, they could be safely used in
program and will not cause integer overflow.

2. Integer overflowed values are used in sinks. Not all the integer overflow is
harmful, but depends on where and how the program uses the overflowed
value. If an overflowed value is used in some security sensitive points, it will
be dangerous, because it may lead to other vulnerabilities, such as buffer
overflow vulnerability. We call these security sensitive points as sinks. From
our case studies, we summarize the sinks as following:
– Memory allocation function: Memory allocation functions directly ma-

nipulate the memory space, if overflowed value is used as the size argu-
ment, the allocated memory will be insufficient, which may be used by
attackers to make buffer overflow attacking.

– Memory copy function: Memory copy functions copy memory from
source to destination, if overflowed value is used as the size argument, it
will lead to buffer overflow.

– Memory offset: Memory offset is often used with base address to access
the memory. if overflowed value is used as memory offset, such as array
index, it may cause arbitrary bytes memory read or overwritten.

– Branch statement: if the overflowed value is used in a branch statement,
and the branch statement is not designed to catch the integer overflow, it
could lead to bypass security checks or result in an undesirable execution.

3. Absence of integer overflows checking. Integer overflow checking is usually
used after integer overflow points to detect integer overflows and prevent
dangerous operation on overflow values. Almost all the integer overflow vul-
nerabilities have no integer overflow checking.

22 Y. Deng et al.

2.2 Challenges

As we use static approach to detect integer overflow vulnerabilities in binaries,
it may encounter some challenges:

1. Lack of high level semantics. Binary is different from source code, there is no
high level semantics in binary, such as function information, type of variables
which is important to integer overflow detection.

2. High false positive rate of static analysis. It is not simple to rule out false
positive report, especially in binary code.

3. Distinguish harmless integer overflow. There are some benign integer over-
flow existing in programs[8], for example, GCC compiler use integer overflow
to reduce a comparison instruction, we cannot treat them as vulnerabilities.
Another harmless integer overflow with integer overflow checking, such as:

add eax, ebx

cmp eax, ebx

ja target

In this case, programmer has checked whether the sum is overflow, so we
should treat it as harmless integer overflow.

3 System Overview

In this section, we will describe the architecture and working process of EIOD.
The main disadvantage of static analysis based vulnerability detection ap-

proaches is the high false positive rate, too many false alarm reported by static
vulnerability detection restrict static vulnerability detection to be used in large
program, users have to spend much time on identifying real integer overflow
vulnerabilities. We found not every suspicious vulnerabilities reported by static
vulnerability detection have same possibility to be real vulnerability, but existing
methods treat them as same. To solve this problem, we presented a suspicious in-
teger overflow vulnerabilities ranking algorithm which use the information about
how the suspicious integer overflow vulnerabilities are used in program to evalu-
ate their possibilities, then rank the suspicious vulnerabilities by their possibili-
ties. This algorithm can help identifying real vulnerabilities from false alarm.

EIOD consists of four components: (1) Binary lifting component. (2) Integer
overflow vulnerability finder. (3)Integer overflow vulnerability validation compo-
nent. The workflow of EIOD is as following:

First, to obtain high level semantics in binary, the Binary lifting component
decompiles binary, and translates it into our designed intermediate representa-
tion which includes enough information to detect integer overflow vulnerabilities
mean while remove information which no need for integer overflow detection.

Second, Integer overflow vulnerability detection component finds all the arith-
metic and treat them as potential integer overflow points. and collects informa-
tion related to these points, including variables which store the arithmetic result
and variables which store arithmetic operands, security sensitive instructions

Static Integer Overflow Vulnerability Detection in Windows Binary 23

where the variables are used, the potential integer overflow points which value
used in security sensitive instruction are recognized as suspicious integer over-
flow vulnerabilities, then use our priority algorithm to calculate the priority of
each integer overflow point, the integer overflow points with high priority are
considered be more possible to be real vulnerability than others.

Finally, we validate the potential integer overflow vulnerabilities by weakest
precondition computation in the order of their priorities.

Binary lifting

Decompiler

Binary
Executable

Type Reconstruction

Vulnerability finder

Dataflow analysis

Vulnerability validater

Weatest precondition

Fig. 1. Architecture of EIOD

4 Design Details

We first present the design of our intermediate representation in Section 4.1
and describe type analysis in Section 4.2. We discuss how to find potential in-
teger overflow points and collect relating information in Section 4.3 and how to
get suspicious integer overflow vulnerabilities in Section 4.4. In Section 4.5, we
present integer overflow vulnerabilities ranking algorithm. Finally in Section 4.6,
we give the validation method of suspicious vulnerabilities.

4.1 Intermediate Representation

It is complicated to directly analyze x86 binary instructions as the x86 instruc-
tion set is very complex. It has hundreds of different instructions and each in-
struction can have complex semantics. Moreover, instructions lack higher-level
semantics, such as functions’ information and variables’ type. So it is necessary
to design an intermediate language to simplify the representation of x86 instruc-
tions. By studying existing intermediate language such as Vine[13] IL, BIL[14],
we found they not only have some grammar which is useless for detection of inte-
ger overflow vulnerability, and also lack necessary sign type information. Based
on Vine IL, we defined our IR in SSA-like form, whose grammar is shown in
Figure 2.

There are 6 different kinds of statement in our IR: (1) Assign(var, exp)

assigns variable with expression exp. (2) Jmp(label) jumps to the statement
label. (3) Cjmp(exp, label1, label2) is conditional jump, when exp is true,
it jumps to label1, else it jumps to label2. (4) Call(exp) call function at address
exp. (5) Label(label). The variables in our IR are divided into two classes:
memory and register, and memory variables include stack variables and heap

24 Y. Deng et al.

statement ::= Assign(var,exp) | Jmp(label) | Cjmp(exp,label1,label2)

| Label(label) | Call(exp)

label ::= string

exp ::= Binop(exp,exp) | Unop(exp) | var | integer

Binop ::= Add | Sub | Mul | Div ...

Unop ::= Minux

var ::= Mem(string,id,exp,l,s) | Reg(string,id,l,s)

l ::= 64| 32 |16 |8 |1
s ::= Signed | Unsigned

Fig. 2. Our IR grammar

variables. Stack variables are frequently used in program to store local variables
and pass function arguments, so it is important to identify stack variables. We
use the function name with stack variables’ offset on stack bottom to indicate
them, the offset is computed by data flow analysis. Memory and register variables
both have two types: length type and sign type, length types are 64, 32, 16, 8,
1, denote the variable’s length, and sign types are signed and unsigned, denote
variable’s sign information. Vine IL has provided variable’s length type, we need
to perform extended type analysis to get variables’ sign type.

4.2 Sign Type Analysis

Variables’ type information, include length and sign is necessary for generation of
integer overflow condition. Existing variable type analysis in Vine only provides
variables’ length information, so we extend the type analysis. We use both control
flow analysis and data flow analysis to reconstruct sign type.

Our sign type system include:

– �, which corresponds to a variable being ”any” sign, and ⊥, which corre-
sponds to a variable being used in a sign-inconsistent manner.

– Signed, Unsigned, which corresponds to a variable being signed or unsigned.
– Intersection types (S1 ∩ S2) and union types (S1 ∪ S2).

sign information reconstruction consists of two phases: sign type initialization
and sign type propagation.

Sign Type Initialization. At first, we initialize the sign of every variable with
�, then traverse program, assign variables with sign type based on how the
variables are used, there are some hints to initialize variables’ sign type:

– For most memory allocation functions, the argument used as size is unsigned.
– Array index should be unsigned type.
– X86 conditional jump instructions give some sign information, e.g., variables

compared by JG, JNLE, JGE, JNL, JNGE, JLE, JNG, JE and JNE has
signed type, and variables compared by JA, JNBE, JAE, JNB, JB, JNAE,
JBE, JNA, JE and JNE has unsigned type.

Static Integer Overflow Vulnerability Detection in Windows Binary 25

This step is performed by traversing program, when variable used in above
manner is found, it assigned to corresponding sign type.

Fig. 3. Sign type lattice

Sign Information Propagation. We first propagate the sign information
within a basic block, then traverse the control flow graph, and propagate the
sign information to other basic blocks. Sign type propagation rule specify how
sign information is propagate in IR. We use the following rule: sign type propa-
gates by statement Assign(var,exp), there are two situation:

– If exp is a arithmetic, i.e. Binop(e1,e2), then the sign of var is (S1 ∪ S2).
– If exp is variable var, then the sign type of var is equal to exp.

The traversal is stopped when there is no new updated sign information.

4.3 Potential Integer Overflow Points

Definition. A vulnerability is a type of bug that can be used by attackers to
alter the behaves of the software in a malicious way, such as overwrite critical
data. Integer overflow is a category of vulnerability which caused by arithmetic’s
result being overflowed. Given P is a program, integer overflow point i is a
program statement where integer overflow occurred, c is the condition which is
necessary for integer overflow occurred at i, the vulnerability is defined as a tuple
(P, i, c). Since we analyze at binary level, P is binary program and i is assembly
instruction.

Potential Integer Overflow Points Searching. We consider arithmetics as
potential integer overflow points. A potential integer overflow point p is denoted
by a tuple (i, r, o), where i is program point which contain arithmetic, r is the
arithmetic result which could overflow and o is the operand of the arithmetic.
Potential integer overflow variable is the variable which could influenced by the
arithmetic results, it is represented by a map from variable to the set of poten-
tial integer overflow points, denoted as v → (pj , pcj), j = 1, 2, ..., where pc is
the potential integer overflow point pj’s propagation count before reaching the
variable. We use function F (v) represents v’s potential integer overflow points.

26 Y. Deng et al.

Table 1. Type of sinks

type description

Memcopy used for memory copy
MemAlloc used for memory alloc
BranchCond used for branch select
MemAccess used for memory access
OvCheck integer overflow check

First, we traverse over program to find potential integer overflow points and
store them in a set P . The detailed process is when encounter a statement
Assign(var,exp) and exp is arithmetic, i.e. Binop(e1,e2), where Binop is
Add, Sub or Mul, we consider it as a potential integer overflow point, given the
instruction address corresponding to this statement is a, the integer overflow
point is denoted as (a, var, {e1, e2}, 1).

Then forward data flow analysis is leveraged to collect potential integer
overflow variables which are stored in a hash table H. The process detail is
as following:

– For statement Assign(var,exp), there are some situation:

1. If exp is Binop(v1,v2), we add F (v1) ∪ F (v2) with pc add 1 to var ’s
potential integer overflow set.

2. If exp is variable rvar, then add F (rvar) to var ’s potential integer over-
flow set.

4.4 Suspicious Integer Overflow Vulnerability

Not every integer overflow points are dangerous, but only the ones which used in
sinks could possibly cause vulnerability, we call them suspicious integer overflow
vulnerability. Furthermore, the suspicious integer overflow vulnerabilities do not
have the same possibility to be real vulnerability. Therefore, to estimate the like-
lihood that an integer overflow point be real vulnerability, we collect information
that how the overflowed value at the integer overflow point is used, especially
used in the sinks. We use pair (s, type) to record a overflowed value produced at
instruction i used in sink s, and type represents the sink type. Table 2 lists types
of sinks. Since overflowed value produced in a integer overflow point could used
in many sinks, so we use a set of the pair (s, type) to describe the information of
how the integer overflow value is used, the set is called sinks set. For example,
a overflowed value is used as a memory allocation function’s size argument at
program point s1, and also used in branch condition statement at program point
s2, thus its sinks set is ((s1, MemAlloc), (s2, BranchCond)).

We traverse over the program again to get the information about how the
variables collected in above step are used. The detail is as following:

– For statement Cjmp(var,label1,label2), we search var in hash table H,
assume F (var) is (p, pc), weadd(s, BranchCond) to p’s sinks set, where s is

Static Integer Overflow Vulnerability Detection in Windows Binary 27

address of the statement. In addition, we find the variables which the Cjmp

related to, If they contain operand of an arithmetic, and the Cjmp statement
is before the arithmetic in cfg, then we add (s, BranchCheck) to p’s sinks
set. If the variables are a operand of an arithmetic and the arithmetic’s
result, and the statement Cjmp is after the arithmetic in cfg, then we add
(s, OvCheck) to p’s sinks set.

– For statement Call(exp), if the function is memory allocation function or
memory copy function, we find its size argument, denoted as sv, and search
sv in hash table H , assume F (sv) is (p, pc), then we add (s, MemAlloc) or
(s, MemCopy) to p’s sinks set, where s is address of the statement.

– For any statement using Mem(string,id,var,l,s), we search var in the hash
table H , assume F (var) is (p, pc), then we add (s, MemAccess) to p’s sinks
set, where s is address of the statement.

After this step, we got the suspicious integer overflow points and their infor-
mation about how they used in sinks.

4.5 Suspicious Integer Overflow Vulnerability Ranking

EIOD use the information collected from above step to estimate the suspicious
integer overflow vulnerabilities’ possibility being real vulnerability. We have ob-
tained suspicious integer overflow vulnerabilities and their corresponding sinks
set, they are used to compute priority of each integer overflow vulnerability which
is representation of the vulnerable possibility of the integer overflow vulnerabil-
ity. By studying existing integer overflow vulnerabilities, we proposed priority
computing algorithm: each sink type is given a weight depending on how much
the sink type using in existing integer overflow vulnerabilities. The specific rules
are as follows:

– Memory alloc functions are main cause of integer overflow vulnerabilities, if
memory alloc function use overflowed value as its size argument, it causes
less memory to alloc than expected and leads to buffer overflow, i.e. integer
overflow to buffer overflow vulnerability(IO2BO). According to NVD, more
than a half of integer overflow vulnerabilities belong to this type. Therefore,
we give the MemoryAlloc type high weight.

– Overflowed value using as memory index will cause arbitrary memory access,
but it is few in existing integer overflow vulnerabilities, so it has low weight.

– When overflowed value used as condition statement, the security checking
may be bypassed, there are some existing integer overflow vulnerabilities
belongs to this type, so we give it middle weight.

– If programmers have checked whether arithmetic is overflowed, then the
arithmetic is very likely not to cause integer overflow vulnerability, so it has
a large negative weight.

– Checking for arithmetic operand reduces the possibility of integer overflow,
but can’t avoid the integer overflow, so we give it negative weight.

28 Y. Deng et al.

– Propagation count pc represent how many times a overflowed value has been
transformed(like Add, Sub), each transform will reduce its threat, so for a
sink, its weight equal to initial weight subtract pc × q, where q is weaken
factor.

In addition, we consider the situation when a overflowed value used in many
sinks with same sink type, its vulnerable possibility will increase, but not in
linear. Therefore, for a suspicious integer overflow vulnerability, assume its sinks
set contains ni of sinks with sink type si, i = 1, 2, ..., n, the priority is equal to:

p =

n∑
i=1

(1 + 1/2 + ...+ 1/2ni)(wsi − pc× q) (1)

The suspicious vulnerability ranking algorithm is configurable that users can
customize the weight for each sink type for different application. We have tested
our ranking algorithm in experiments to detect some windows executables and
the results show the effectiveness of the ranking algorithm. It should be pointed
out that users can also configure detection threshold for different scenarios, if
they need high detection effectiveness and don’t care some false negative rate,
they can set a high threshold, otherwise, if they need balance on false positive
rate and false negative rate, they can choose a middle threshold.

4.6 Suspicious Integer Overflow Vulnerability Validation

In this section, we describe our method for validating the suspicious integer
overflow vulnerabilities.

In EIOD, we have got suspicious integer overflow vulnerability position, in this
situation, the weakest precondition is a suitable technique to validate vulnerability
which can compute weakest precondition from suspicious vulnerability position to
entry along backward direction and thus avoid path explosion problem.

The validation takes suspicious integer overflow vulnerability as input, find
the arithmetic cause this vulnerability and generates its vulnerable condition
c according to table 2, then convert our IR to GCL to compute the weakest
precondition s = wp(G, c) over the GCL, where c is overflow condition and s
is the weakest precondition at program beginning. Finally, STP[16] is used to
solve s and get input stratifying s, if such input doesn’t exist, we can treat the
suspicious vulnerability as false alarm.

It should be noted that other technique such as fuzzing test can also be used
to validate the suspicious integer overflow vulnerabilities.

5 Implementation

We have implemented our tool EIOD in Microsoft Windows, which includes the
following components:

Static Integer Overflow Vulnerability Detection in Windows Binary 29

– Binary lifting component: We makes use of IDA Pro[11] as our decompiler.
IDA Pro provides a lot of useful information: function boundaries and library
functions’ name. hence we can identify memory allocation functions and
memory copy functions by their names. We translate assemble codes to our
IR on top of Valgrind[12] and Vine, the Sign type analysis is implemented
in 1k of OCaml codes.

– Integer overflow vulnerability detection component: we reuse some module
of Vine, and add about 2.3k of OCaml codes to implement it.

– Vulnerability validation component: we implement our weakest precondition
computation by using existing Vine’s module with adding 1.2k OCaml codes.
The condition checker is built on top of STP[16], a decision procedure for
bit-vectors and arrays.

6 Evaluation

To verify the effectiveness and efficiency of EIOD, we have conducted a number
of experiments. All the experiments are performed on an Intel i7 cpu (2.6 GHz)
with 4GB memory running the Microsoft Windows XP. We first evaluate the
effectiveness in Section 4.1, then measure the efficiency in Section 4.2.

6.1 Effectiveness

We use EIOD to detect comctl32.dll and gdi32.dll, they both exist known integer
overflow vulnerability. EIOD successfully detected both known integer overflow
vulnerabilities. We presented the result in the following.

DSA SetItem Integer Overflow Vulnerability[15]. DSA SetItem is a func-
tion in comctl32.dll used to set the contents of an item in a dynamic structure
array. DSA SetItem has three parameters: hdsa is a pointer to a dynamic struc-
ture array, index is an index for the item in hdsa to be set, and pItem is a
pointer to a new item data which will replace the item specified by index. If
index is greater than (hdsa→nMaxCount), DSA SetItem calls ReAlloc to allo-
cate a new buffer. A large index can trigger a integer overflow in nNewItems
hdsa→nItemSize, where hdsa→nItemSize is the size of an item, resulting return
a smaller size than expected.

Table 2 is the detection result of DSA SetItem. There are 272 potential integer
overflow points, Table 2 only list 19 points which has highest priority. The CVE-
2007-3034 vulnerability is at integer overflow point 0x5d1aca26, from the table,
we can see that it has priority 55, its ranking position is 2, higher than other
270 potential overflow points.

Figure 4 is the validation result of DSA SetItem integer overflow vulnerability,
when the condition in figure 4 is satisfied, integer overflow will be triggered, it
means integer overflow vulnerability at 0x5d1aca26 is real vulnerability.

30 Y. Deng et al.

Table 2. Detection result of comctl32.dll

address of suspicious integer overflow point sign prority

0x5d190146 Signed 41
0x5d187fe0 Signed 41
0x5d174bef Unsigned 42
0x5d19f1a0 Signed 42
0x5d1b08a9 Unsigned 43
0x5d180c80 Signed 43
0x5d1b088f Unsigned 43
0x5d1acd54 Unsigned 44
0x5d180c82 Signed 45
0x5d19f1ca Signed 53
0x5d1aca23 Signed 53
0x5d190d36 Signed 53
0x5d19f1cc Signed 55
0x5d1aca26 Signed 55
0x5d1a32f4 Unsigned 65

Fig. 4. Validation Result of DSA SetItem Integer Overflow Vulnerability

Fig. 5. Validation Result of GDI AttemptWrite Integer Overflow Vulnerability

Static Integer Overflow Vulnerability Detection in Windows Binary 31

Table 3. Detection result of gdi32.dll

address of suspicious integer overflow point sign priority

0x77ef5b4a Unsigned 30
0x77f0427d Unsigned 30
0x77f04288 Unsigned 30
0x77f0c929 Unknown 31
0x77efdb18 Unknown 31
0x77ef5eee Unknown 31
0x77ef6c19 Unknown 31
0x77f06c03 Unsigned 32
0x77f1d0ae Unsigned 33
0x77ef6216 Unsigned 36
0x77f1ba0a Unsigned 38
0x77f1d11b Unsigned 46
0x77efd5c8 Uncertain 47
0x77f03220 Uncertain 51
0x77f0dacf Unsigned 51
0x77f075da Unsigned 53
0x77f03c34 Unsigned 53
0x77f0d7da Unsigned 59
0x77f1b63c Unsigned 61

GDI AttemptWrite Integer Overflow Vulnerability. AttemptWrite is a
function in gdi32.dll used to copy some data to a buffer which named Buffer,
whose capacity is Buffer Capacity. AttemptWrite performs memory management
in following way:

if(NumberOfBytesWritten + NumberOfBytesToWrite < Buffer_Capacity)

memcpy(Buffer, file_data, NumberOfBytesToWrite)

where NumberOfBytesWritten denotes the number of bytes that has been writ-
ten to Buffer, and NumberOfBytesToWrite denotes the number of bytes still to
be written to Buffer. To avoid copying too much data, AttemptWrite checks
the bound of NumberOfBytesToWrite. But a large NumberOfBytesToWrite will
cause an addition overflow and bypass the bounds check, resulting in a heap
overflow in the subsequent call to memcpy.

Table 3 is the detection result of GDI AttemptWrite Integer Overflow Vul-
nerability. There are 341 potential integer overflow points, Table 3 only list 19
points which has highest priority. The CVE-2007-3034 vulnerability is at inte-
ger overflow point 0x77f0427d, from the table, we can see that it has priority
30, its ranking position is 19, higher than other 322 potential overflow points.
The result shows our priority ranking scheme can save much time on validate
vulnerability.

Figure 5 is the validation result of DSA SetItem integer overflow vulnerability,
when the condition in figure 5 is satisfied, integer overflow will be triggered, it
means integer overflow vulnerability at 0x77f0427d is real vulnerability.

32 Y. Deng et al.

6.2 Efficiency

In this section, we measure the performance of our system. Table 3 shows the re-
sult of efficiency evaluation. We measured the time that EIOD spent translating
x86 assembly into our IR, the time EIOD spent detecting and ranking suspicious
integer overflow vulnerabilities and the time EIOD spent validating the vulnera-
bilities. We can see that detecing and ranking potential overflow vulnerabilities
and validating the vulnerabilities is time-consuming part.

Table 4. Result of efficiency evaluation

File File Size Translating time(sec) Finding time(sec) Validating time(sec)

Comctl32.dll 597KB 150 634 1322
Gdi32.dll 271KB 94 455 943

7 Related Work

Integer Vulnerability Prevention and Detection. To prevent integer vul-
nerabilities, many techniques have been proposed. Given program source code,
there are three methods:

1. Language based method, this method either translates the C program into
type safe language such as CCured[2], Cyclone[3] or uses safe class such as
SafeInt[30], IntSafe[31].

2. compiler based method, this method inserts checking code for certain oper-
ations when compile the source code such as BLIP[4] RICH[5].

3. Static source code analysis, this method inspects the whole program to find
the suspect instruction such as LCLint[6], integer bug detection algorithm
proposed by Sarkar et al.

Given program at binary level, there are some tools to detect integer vulner-
abilities. UQBTng[17] is a tool to automatically find integer overflow vulnera-
bilities in Windows binaries. UQBTng first translates binaries into C code by
UQBT [18], then inserts assert statements before the calls to memory allocation
functions, finally, UQBTng uses a Bounded Model Checker CBMC[19] to verify
the program. UQBTng is limited by the binary translator, because the automatic
decompilation of binary executables to C code is very challenging task.

IntScope[8] is proposed by Wang to detect integer overflow vulnerabilities
in x86 binaries, it leverages symbolic execution and taint analysis to identify
the vulnerable point of integer overflow, and reports suspicious integer overflow
vulnerabilities. Finally, to confirm the suspicious vulnerability, they use dynamic
vulnerability test case generation tool[9].

IntFinder[10] can automatically detect integer bugs in x86 binary programs. It
first decompiles x86 binary code and creates the suspect instruction set, Second,

Static Integer Overflow Vulnerability Detection in Windows Binary 33

IntFinder dynamically inspects the instructions in the suspect set and confirms
which instructions are actual Integer bugs with the error-prone input.

These tools all use static analysis to find suspicious integer overflow vulner-
abilities, then dynamically check each suspicious vulnerability. However, static
analysis face the problem of high false positive rate of suspicious vulnerability
reports, researchers have to spend a large amount of time on carefully checking
each suspicious vulnerability. Unlike them, Our approach focus on how to rank
the suspicious vulnerabilities and try to present a priority ranking scheme.

Binary Analysis. Vine[13] is a static analysis component of the BitBlaze[20]
project. Vine is divided into a platform-specific front-end and a platform-
independent back-end. The front-end can accurately translate each x86 instruc-
tion into a RISC-like IR and the back-end supports a variety of core program
analysis utilities. CodeSurfer/x86[21] is a static binary analysis platform which
make use of IDA Pro and the CodeSurfer system. CodeSurfer/x86 uses the value-
set analysis and aggregate-structures identification to recover binary information
and translates x86 binary code into IR, then analyze on IR by CodeSurfer.
Chevarista[23] is a tool to perform vulnerability analysis on binary program of
SPARC. Chevarista translates binary code into SSA form IR and can detect
buffer overflows or integer overflows vulnerability.

Error Ranking. Several research work focused on error ranking of static check-
ers for C and Java programs. Kremenek and Engler proposed z-ranking
algorithm[24] to rank errors, based on the observation that true error reports
tend to issue few failed checks while false positives always generate lots of failed
checks. Shen et al presented EFindBugs[25] to employ an effective two-stage er-
ror ranking strategy that suppresses the false positives and ranks the true error
reports on top.

8 Conclusion

In this paper, we proposed a static binary analysis based approach for detecting
integer overflow vulnerabilities with an potential vulnerabilities ranking strategy.
We have implemented our system EIOD on the Microsoft Windows platform
and evaluated it with some real world programs from Microsoft platform, the
experimental results shows EIOD can effectively and efficiently detect integer
overflow vulnerabilities. The limitation of EIOD is that it can reduce the false
positive rate of detection, but it also has some false positive reports. In the future,
we plan to combine some dynamic analysis methods with EIOD to detect integer
overflow vulnerabilities and remove false positive report at all.

Acknowledgement. We are grateful to the anonymous reviewers for their in-
sightful comments and suggestions. This research was supported in part by Na-
tional Natural Science Foundations of China (Grant No. 60970028 and 61100227),

34 Y. Deng et al.

and the National High Technology Research and Development Program
(863Program) of China under Grant No. 2011AA01A203.

References

1. Vulnerability type distributions in cev. CVE (2007),
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf

2. Necula, G.C., McPeak, S., Weimer, W.: Ccured: Type-safe retrofitting of legacy
code. In: Proceedings of the Principles of Programming Languages, pp. 128–139
(2002)

3. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone:
A safe dialect of c. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference (2002)

4. Horovitz, O.: Big loop integer protection. Phrack Inc. (2002),
http://www.phrack.org/issues.html?issue=60&id=9#article

5. Brumley, D., Chiueh, T., Johnson, R., Lin, H., Song, D.: Rich: Automatically
protecting against integer-based vulnerabilities. In: Proceedings of the 14th Annual
Network and Distributed System Security, NDSS (2007)

6. Evans, D., Guttag, J., Horning, J., Tan, Y.M.: Lclint:a tool for using specification
to check code. In: Proceedings of the ACM SIGSOFT 1994 Symposium on the
Foundations of Software Engineering, pp. 87–96 (1994)

7. Zhang, C., Wang, T., Wei, T., Chen, Y., Zou, W.: IntPatch: Automatically fix
integer-overflow-to-buffer-overflow vulnerability at compile-time. In: Gritzalis, D.,
Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 71–86.
Springer, Heidelberg (2010)

8. Wang, T., Wei, T., Lin, Z., Zou, W.: Intscope: Automatically detecting integer
overflow vulnerability in x86 binary using symbolic execution. In: Proceedings of
the 16th Annual Network and Distributed System Security Symposium, NDSS
2009 (2009)

9. Lin, Z., Zhang, X., Xu, D.: Convicting exploitable software vulnerabilities: An
efficient input provenance based approach. In: Proceedings of the 38th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2008), Anchorage, Alaska, USA (June 2008)

10. Chen, P., Han, H., Wang, Y., Shen, S., Yin, X., Mao, B., Xie, L.: INTFINDER:
automatically detecting integer bugs in x86 binary program. In: Proceedings of the
International Conference on Information and Communications Security, Beijing,
China, pp. 336–345 (December 2009)

11. Ida pro, http://www.hex-rays.com/idapro/
12. Nethercote, N., Seward, J.: Valgrind: A Program Supervision Framework. In: Third

Workshop on Runtime Verification, RV 2003 (2003)
13. Vine: BitBlaze Static Analysis Component,

http://bitblaze.cs.berkeley.edu/vine.html

14. BAP: The Next-Generation Binary Analysis Platform, http://bap.ece.cmu.edu/
15. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit

generation is possible: Techniques and implications. In: Proceedings of the 2008
IEEE Symposium on Security and Privacy (May 2008)

16. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007)

http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://www.phrack.org/issues.html?issue=60&id=9#article
http://www.hex-rays.com/idapro/
http://bitblaze.cs.berkeley.edu/vine.html
http://bap.ece.cmu.edu/

Static Integer Overflow Vulnerability Detection in Windows Binary 35

17. Wojtczuk, R.: Uqbtng: a tool capable of automatically finding integer overflows in
win32 binaries. In: 22nd Chaos Communication Congress (2005)

18. UQBT: A Resourceable and Retargetable Binary Translator,
http://www.itee.uq.edu.au/cristina/uqbt.html

19. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

20. BitBlaze: The BitBlaze Binary Analysis Platform Project,
http://bitblaze.cs.berkeley.edu/index.html

21. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: CodeSurfer/x86—A plat-
form for analyzing x86 executables. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443,
pp. 250–254. Springer, Heidelberg (2005)

22. Microsoft. Phoenix framework, http://research.microsoft.com/phoenix/
23. Automated vulnerability auditing in machine code,

http://www.phrack.com/issues.html?issue=64id=8

24. Kremenek, T., Engler, D.R.: Z-ranking: Using statistical analysis to counter the
impact of static analysis approximations. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 295–315. Springer, Heidelberg (2003)

25. Zhang, C., Xu, H., Zhang, S., Zhao, J., Chen, Y.: Frequency Estimation of Virtual
Call Targets for Object-Oriented Programs. In: Mezini, M. (ed.) ECOOP 2011.
LNCS, vol. 6813, pp. 510–532. Springer, Heidelberg (2011)

26. Godefroid, P., Levin, M., Molnar, D.: Automated whitebox fuzz testing. In: Pro-
ceedings of the 15th Annual Network and Distributed System Security Symposium
(NDSS 2008), San Diego, CA (February 2008)

27. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Princiles, Techniques,
and Tools, 2nd edn. Addison- Wesley (2006)

28. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

29. Balakrishnan, G., Reps, T.: DIVINE: DIscovering Variables IN Executables. In:
Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 1–28. Springer,
Heidelberg (2007)

30. LeBlanc, D.: Integer handling with the c++ safeint class (2004),
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dncode/html/secure01142004.asp

31. Howard, M.: Safe integer arithmetic in c (2006),
http://blogs.msdn.com/michaelhoward/archive/2006/02/02/523392.aspx

32. Dipanwita, S., Muthu, J., Jay, T., Ramanathan, V.: Flow-insensitive static analysis
for detecting integer anomalies in programs. In: Proc. SE, pp. 334–340. ACTA
Press, Anaheim (2007)

http://www.itee.uq.edu.au/cristina/uqbt.html
http://bitblaze.cs.berkeley.edu/index.html
http://research.microsoft.com/phoenix/
http://www.phrack.com/issues.html?issue=64id=8
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure01142004.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure01142004.asp
http://blogs.msdn.com/michaelhoward/archive/2006/02/02/523392.aspx

Solving Google’s Continuous Audio CAPTCHA
with HMM-Based Automatic Speech Recognition

Shotaro Sano, Takuma Otsuka, and Hiroshi G. Okuno

Graduate School of Informatics, Kyoto University, Kyoto, Japan
{sano,ohtsuka,okuno}@kuis.kyoto-u.ac.jp

Abstract. CAPTCHAs play critical roles in maintaining the security of various
Web services by distinguishing humans from automated programs and prevent-
ing Web services from being abused. CAPTCHAs are designed to block auto-
mated programs by presenting questions that are easy for humans but difficult
for computers, e.g., recognition of visual digits or audio utterances. Recent audio
CAPTCHAs, such as Google’s audio reCAPTCHA, have presented overlapping
and distorted target voices with stationary background noise. We investigate the
security of overlapping audio CAPTCHAs by developing an audio reCAPTCHA
solver. Our solver is constructed based on speech recognition techniques using
hidden Markov models (HMMs). It is implemented by using an off-the-shelf li-
brary HMM Toolkit. Our experiments revealed vulnerabilities in the current ver-
sion of audio reCAPTCHA with the solver cracking 52% of the questions. We
further explain that background stationary noise did not contribute to enhance
security against our solver.

Keywords: audio CAPTCHA, human interaction proof, reCAPTCHA,
automatic speech recognition, hidden Marcov model.

1 Introduction

CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Hu-
mans Apart) are programs that distinguish humans from automated programs by pre-
senting task that humans can easily solve but computers cannot [1]. Many websites
use CAPTCHAs to prevent their services from being abused such as when services
are flooded with spam accounts. While they have been widely used in recent Web ser-
vices, even well known commercial CAPTCHAs (such as Google’s, Microsoft’s, and
Yahoo’s) are sometimes easily compromised by simple machine learning algorithms
[2] [3], which immediately adversely affect the quality of services by providing mali-
cious programs with unauthorized access. Thus, there has been huge demand to assess
vulnerabilities in the design of current CAPTCHAs.

Our research has especially focused on the security of audio CAPTCHAs. While
most CAPTCHAs display images of characters and numerals and users have to input
the same texts as those in images, some of them provide audio versions for accessibility
reasons. Because a user that solves either a visual or audio question is authorized by
the CAPTCHA, sometimes audio CAPTCHA systems provide another loophole for
malicious programs.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 36–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 37

Audio CAPTCHAs are mainly divided into two classes of non-continuous and con-
tinuous. There are several target voices (e.g., digits, letters of the alphabet, and words),
mixed with irrelevant background noise in non-continuous audio CAPTCHAs, and the
target voices do not overlap. Previous researchers on attacks [4] [5] have mainly aimed
at solving non-continuous audio CAPTCHAs where a solver decodes CAPTCHAs
through two stages of segmenting the target voices separately and labeling each of them
with a certain method of supervised classification. These studies have revealed that the
security of non-continuous audio CAPTCHAs depends on the difficulty of the segmen-
tation stage, since given a perfect segmentation, a machine’s accuracy of classification
is often superior to that of a human’s [6] [7].

On the other hand, continuous CAPTCHAs present overlapping target voices to
make automated segmentation even more difficult, which has been demonstrated in
Google’s audio reCAPTCHA [8]. They cannot be solved with conventional methods
of segmentation and classification, since these methods have been designed on the as-
sumption that the target voices do not overlap. Due to their assumed effectiveness in
security, continuous audio CAPTCHAs have been used even though no formal security
assessments of these types of audio CAPTCHAs have been undertaken.

Here, we discuss a system that automatically solves continuous audio CAPTCHAs
and assesses their vulnerability. The solver was able to crack the current version of audio
reCAPTCHA (as of April 2013) with 52% accuracy, which means this type of audio
CAPTCHA is no longer safe. Since the labeling process of our solver is formulated
with a well-known method of automatic speech recognition (ASR) that is based on
the hidden Markov model (HMM) [9], the solver can easily be implemented with an
off-the-shelf library called the HMM Toolkit (HTK) [10]; therefore, our method may
further threaten the security of CAPTCHAs.

Section 2 presents the current version of the audio reCAPTCHA scheme.
Section 3 outlines how an HMM-based method of ASR works. Section 4 describes the
implementation of our solver system. Section 5 discusses several experiments we con-
ducted to evaluate our solver’s accuracy and presents our assessment of how efficient
reCAPTCHA’s security techniques are. Section 6 discusses better audio CAPTCHAs
and stronger solvers based on the experimental results, and finally we conclude the
paper in Section 7.

2 Audio reCAPTCHA

Figure 1 shows the waveform of an audio clip, which we refer to as a challenge, from
the current version of audio reCAPTCHA. A challenge consists of three clusters with
distinct intervals, and a cluster contains three or four digit utterances spoken in English.
Digit utterances in a cluster overlap at random intervals. When all digits in a challenge
are correctly estimated, the CAPTCHA is solved (or equivalently broken using a certain
algorithm), i.e., the audio reCAPTCHA confirms that the listener is a human.

Audio reCAPTCHA also prevents automated programs with two types of distor-
tions: challenge-distortion and digit-distortion. Challenge-distortion is additive station-
ary noise that covers the entire audio signal of the challenge, which prevents
both clusters from being detected and recognized. On the other hand, digit-distortion

38 S. Sano, T. Otsuka, and H.G. Okuno

Fig. 1. Waveform of audio reCAPTCHA
challenge. Challenge consists of three clus-
ters, and each cluster contains three or four
overlapping digits. If all digits in challenge
are correctly identified, audio reCAPTCHA is
solved.

Fig. 2. Waveform of former version of audio
reCAPTCHA challenge. Intervals between
clusters are completely silent.

F
r
e
q
u
e
n
c
y
 (
H
z
)

5000

0

Time Time

Fig. 3. Comparison of spectrograms for distorted digital voice of reCAPTCHA (left) and clear
digital voice (right). Both of them are pronounced “zero.”

is convolutive non-additive noise and applied for each digit. Figure 3 shows an exam-
ple spectrogram of a distorted digit voice of a reCAPTCHA that is pronounced “zero”
(left), comparing it to that of a clear digit voice (right). Some of the distorted digit’s
features collapse especially in its high frequency range. Although digit-distortion ef-
fectively seems to prevent clusters or digits from being recognized, distortion degrades
usability since it is often too strong even for humans to hear, in the author’s opinion.

An audio reCAPTCHA regards a response as correct even when one of the digits in
a challenge is deleted or replaced to increase usability. For example, a challenge whose
correct answer is “012 345 6789” may be labeled as “012 345 678” or labeled as “112
345 6789.” Current audio reCAPTCHA allows deletion or substitution errors but not
insertion errors, and the challenge should not be mislabeled as “0012 345 6789.”

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 39

In summary, audio reCAPTCHA adopt four defensive techniques. These are:

– Overlap of target voices,
– Random number of target voices in a cluster,
– A stationary noise signal that entirely covers the challenge, and
– Filtering that collapses high frequency features of digits.

They also adopt an additional idea to ensure usability by:

– Allowing off-by-one error to label a challenge.

Former Version of Audio reCAPTCHA
Figure 2 shows an audio clip from the former version of reCAPTCHA, which had
been used until February 2013. As this version did not adopt challenge-distortion,
the intervals between clusters were completely silent. In Section 5, we evaluate the
solver’s accuracy both for the former and current versions to assess the efficiency
of challenge-distortion.

3 Preliminaries

Our reCAPTCHA solver decodes a challenge in three steps by segmenting it into clus-
ters, extracting feature vectors from each cluster, and labeling each cluster. The label-
ing stage is carried out with a method of ASR based on HMM. This section overviews
how an ASR system recognizes an audio signal, after it describes an effective acous-
tic feature called Mel-frequency cepstral coefficient (MFCC) [11] and the mechanism
for HMM. The methods described in this section have been black-boxed and are easily
available in the HTK or related documents.

3.1 MFCC

Before the source audio signal is recognized by ASR, it is transformed into a sequence
of feature vectors. MFCC is one of the best transformation techniques successfully used
in recent ASR systems that is based on the mechanism for human auditory perception.

An MFCC vector is extracted in the four steps for each short time window of the
source audio signal. These are:

1. Calculate the fast Fourier transform of the short time signal.
2. Reduce the dimensionality of the power spectrum obtained in Step 1 using a Mel-

scale filter bank [12].
3. Map the Mel powers obtained in Step 2 onto the logarithmic scale.
4. Calculate the discrete cosine transform of Mel log powers obtained in Step 3.

See [11] for details.
The first and second derivative of MFCC are called a delta MFCC and a delta-delta

MFCC, both of which are also effective temporal representations [13]. Thus, a feature
vector is composed of a combination of MFCC, Delta MFCC, and Delta-Delta MFCC
in most ASR methods.

40 S. Sano, T. Otsuka, and H.G. Okuno

Fig. 4. N-state left-to-right HMM. Observed sequence O is generated by sequence of hidden
states Z. Z has form of Markov chain in states S.

3.2 HMM

HMM is a probabilistic model for a sequential observation. Given an observed se-
quence, O = o1, . . . ,oT , an HMM, λ = {π ,A,B} calculates the likelihood, P(O|λ). O
is assumed to be generated by a sequence of hidden states Z = z1, . . . ,zT , which has the
form of a Markov chain in states S = {s1, . . . ,sN}, i.e., zt ∈ S. An observation value, ot ,
is generated by a state, sn, with probability bsn(ot). Thus, an HMM λ is defined with
three parameters:

– An initial probability vector of hidden states: π = [πn|1≤ n≤ N].
– A transition matrix of hidden states: A= {ai, j|1≤ i, j≤N}where each element ai, j

corresponds to P(s j|si), which means the transition probability from state
si to s j.

– Observation likelihood functions: B = {bs(o)|s ∈ S} where o may be a continuous
value by defining bs(o) as a continuous density function.

When the elements of transition matrix A satisfy the conditions in Equation (1), HMM
is called left-to-right HMM (strict left-to-right HMM) where a hidden state, sn, is sup-
posed to transit to sn itself or the next state sn+1.

ai j = 0 if i 	= j and i+ 1 	= j (1)

The probability that hidden states Z generates observation O can be calculated with
the parameter of HMM λ :

P(O,Z|λ) = P(O|Z,λ)P(Z|λ) (2)

= {
T

∏
t=1

bzt (ot)}{πz1

T−1

∏
t=1

azt ,zt+1} (3)

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 41

Fig. 5. Overview of ASR system based on HMM. Given sequence of sentence’s feature vectors
O, ASR outputs sentence’s word sequence W .

Thus, P(O|λ) is obtained as:

P(O|λ) = ∑
Z

P(O,Z|λ) (4)

= ∑
Z
{

T

∏
t=1

bzt (ot)}{πz1

T−1

∏
t=1

azt ,zt+1} (5)

We can efficiently calculate the summation over Z in Equation (5) by using the forward
algorithm [9].

The parameters of an HMM are usually trained through an unsupervised training
called the Baum-Welch algorithm [14] where we provide only a set of observed se-
quences. While this algorithm is effective for the training of a single HMM, multiple
HMMs should be trained in the ASR method. This is because the ASR method inte-
grates multiple HMMs into the network of words and phones. In order to train multiple
HMMs simultaneously, we use a semi-supervised training called concatenated training
[15]. In this setup, the training data is provided as pairs of not only a sequence of audio
features, but also the corresponding text transcription. Note that the pairwise data do
not necessarily require a strict alignment. Indeed, the training of our model is carried
out with a sequence of audio features of a cluster and annotated three or four digits in
the cluster.

3.3 HMM-Based ASR

As shown in Figure 5, the input of an ASR is a sequence of feature vectors O =
o1, . . . ,oT that is obtained by pre-processing the source audio signal. ASR finds the

42 S. Sano, T. Otsuka, and H.G. Okuno

�

�

�

�

< cluster >::=< cluster3 > |< cluster4 >;
< cluster3 >::=< digit >< digit >< digit >;
< cluster4 >::=< digit >< digit >< digit >< digit >;
< digit >::= ‘0‘|‘1‘|‘2‘|‘3‘|‘4‘|‘5‘|‘6‘|‘7‘|‘8‘|‘9‘;

Fig. 6. BNF to generate language L. Start symbol is cluster and terminal symbols are digit labels.
This grammar meets schema of cluster that consists of three or four digits.

most likely sentence, Ŵ = w1, . . . ,wN , for O out of all sentences in a language, a set of
possible word sequences, denoted by L. This problem is formulated as Equations (6) to
(8), which means the problem can be broken down into the computations of P(W) and
P(O|W):

Ŵ = arg max
W∈L

P(W |O) (6)

= arg max
W∈L

P(W)P(O|W)

P(O)
(7)

= arg max
W∈L

P(W)P(O|W), (8)

where Equation (7) is obtained with Bayes’ rule. The denominator, P(O), may be left
out because it is always the same for given feature vectors O. Thus, we can obtain
Equation (8). The computation of P(W) and P(O|W) is called language model and
acoustic model respectively.

Language L describes the sequences that can be recognized. Language L in most
cases is determined in either of two ways: (1) defining it with a specific grammar or
(2) constructing a statistical language model from a corpus. The former grammatical
model suits tasks that involve structured sentences whereas the latter statistical model
suits tasks of handling arbitrary utterances of various topics.

We can assume that L is represented by a Backus-Naur form (BNF) in our problem
that is listed in Figure 6, and P(W) is determined as:

P(W) =

⎧⎪⎨⎪⎩
1

2·|cluster3| if d = 3,
1

2·|cluster4| if d = 4,
0 otherwise,

(9)

where d is the number of digits in a cluster, and |symbol| is the number of sentence
patterns generated from non-terminal symbol < symbol > in Figure 6’s BNF.

The computation of P(O|W) is enabled by a phone-based HMM network [15] where
each phone is represented by an HMM; each word is represented by several consecutive
phones; and the phone HMMs are integrated into a network of HMMs to recognize the
sentences. A certain sentence W corresponds to a path in the HMM network. Equation
(5) is evaluated for each HMM along the path so as to determine the best path that
maximizes the likelihood in Equation (8).

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 43

4 reCAPTCHA Solver

Our reCAPTCHA solver is depicted in Figure 7. The input to our solver is a challenge’s
audio signal of reCAPTCHA, and the solver outputs the challenge’s answer. The system
solves a challenge in three steps:

1. The input challenge is segmented into three clusters with a voice activity detection
algorithm (cluster segmentation).

2. Each cluster’s audio signal is converted to feature vectors (spectral feature
extraction).

3. The feature vectors of each cluster are labeled with the HMM-based ASR (cluster
labeling).

The spectral feature extraction component and cluster labeling component are imple-
mented with HTK.

The cluster labeling component is trained with the actual audio signals of audio
reCAPTCHA. As outlined in Figure 8, the training set of challenges is downloaded
and stored into the challenge database (DB). The data in the challenge DB is manually
labeled for each cluster by the solver’s user.

4.1 Cluster Segmentation

This component segments a challenge audio signal into three clusters. Clusters are ex-
tracted with a volume-based algorithm for voice activity detection. The challenge audio
signal, s1, . . . ,sN , is split into segments of length l and is subsampled as Volume(t):

Volume(t) =
1
l

t+l−1

∑
n=t

{s̄− sn}2, (10)

where s̄ is the mean of st , . . . ,st+l−1.
Figure 9 plots the volume analysis of a challenge. There are three cluster segments

between four noise segments in which every volume value is less than a threshold, θ .
First, this component removes the four longest segments in which every window has a
lower volume than the threshold, θ , and it then returns the remaining three segments as
clusters. We set l = 512 and θ = 0.01 where the sampling rate of the challenge audio
signal is 16 kHz and the amplitude of the input waveform is normalized to 1.0.

4.2 Spectral Feature Extraction

A feature vector consists of a 13-dimensional MFCC, a 13-dimensional Delta MFCC,
and a 13-dimensional Delta-Delta MFCC, and is in total a 39-dimensional vector. It is
extracted from each short-time window. We set the window size to 25 ms and the frame
shift to 10 ms for short-time Fourier transform.

44 S. Sano, T. Otsuka, and H.G. Okuno

Cluster

segmentation

Cluster

labeling
Cluster

Cluster

Cluster

Challenge

574

1021

368

Answer

HMM-based

automatic

speech

recognition

Spectral

feature

extraction Feature vectors

Feature vectors

Feature vectors

HMM Toolkit (HTK)

Fig. 7. Audio reCAPTCHA solver. Input challenges are decoded through three stages of (1) seg-
menting challenge into three clusters, (2) extracting feature vectors from clusters, and (3) labeling
each sequence of feature vectors with HMM-based ASR.

Challenge

DB

ReCAPTCHA
Cluster

labeling

Solver user

Downloading

CAPTCHA

Training

Labeling for

each cluster

Cluster

segmentation

Spectral

feature

extraction

Solver

Fig. 8. Training process for audio reCAPTCHA solver

4.3 Cluster Labeling

The input of the cluster labeling component is a spectral feature sequence of a cluster,
and this component outputs the cluster’s label. This component labels a cluster with
the HMM-based ASR method that is described in Section 3.3. A sentence for the ASR
corresponds to a cluster in our problem, and a word corresponds to a digit.

The grammar in Figure 6 is applied to the language model. This grammar satisfies a
cluster’s schema for audio reCAPTCHA: a cluster consists of three or four digits.

We assume that each digit consists of seven consecutive phones. A phone HMM is
a left-to-right HMM and has three states whose observation likelihood function is a
39-dimensional Gaussian distribution. We adopted the triphone model [16]; thus, one
HMM denotes each triplex pattern of phones.

All HMMs are simultaneously trained with concatenated training where the training
data are given as pairs of a cluster’s feature vectors and the cluster’s label. As outlined
in Figure 8, the HMMs are trained in four steps using data from the challenge DB as
follows:

1. Segment data from the challenge DB into clusters with the cluster segmentation
component.

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 45

Fig. 9. Volume analysis of challenge. Volume does not reach threshold θ in non-utterance
sections.

2. Input each cluster obtained in Step 1 into the spectral feature extraction component.
3. Label each feature sequence obtained in Step 2 as the source cluster’s label.
4. With the training set obtained in Step 3, obtain the HMMs’ parameters by using

concatenated training.

5 Experiments

We carried out four experiments to evaluate our solver’s performance as well as assess
the security of audio reCAPTCHA. We evaluated the performance of our solver in the
former version of audio reCAPTCHA in the first experiment, and that of the current
version in the second experiment. In the third experiment, we investigated how uncer-
tainty in the number of digits in each cluster contributed to the security of reCAPTCHA
where we evaluated accuracy by giving the ground truth number of digits in a cluster.
In the fourth experiment, we examined the robustness of the ASR method in terms of
challenge-distortion. There, we evaluated the performance of the cluster labeling com-
ponent with several simulation CAPTCHAs that were generated by adding several types
of noise to the former version of audio reCAPTCHA and varying the strength of noise.

5.1 Data

As listed in Table 1, the experiments were performed with three data sets. Data set A
was a set of challenges downloaded from the former version of audio reCAPTCHA,
and data set B was that from the current version. We downloaded 400 challenges both
from the former and the current versions. (As described in Section 2, the main dif-
ference between the former and current versions of reCAPTCHA was that the current
version adopted stationary noise that entirely covered a challenge, which we refer to as
challenge-distortion.) Data set C was obtained by segmenting data set A into clusters.

46 S. Sano, T. Otsuka, and H.G. Okuno

Table 1. Data set description for our experiments

Data set Version Amount Collected date Description

A Former 400 challenges Dec. 2012 Challenge-distortion was not adopted.
B Current 400 challenges Apr. 2013 Challenge-distortion was adopted.
C Former 1200 clusters Dec. 2012 Clusters of data set A.

The first experiment was carried out with data set A. The second experiment was con-
ducted with data set B. The third experiment was performed with both data sets A and
B. The fourth experiment was undertaken with data set C.

5.2 Metrics

Accuracies. We used five metrics to evaluate our system:

– Off-by-one accuracy evaluates the actual vulnerability of the reCAPTCHA. It is
defined as “the number of challenges correctly answered” divided by “the num-
ber of challenges” where an output of the system is regarded as correct when the
Levenshtein distance between the output and the correct answer is less than two
excluding the case of inserted error.

– Strict accuracy is the ratio of strictly correct challenges. It is defined as “the number
of challenges correctly answered” divided by “the number of challenges” where an
output of the system is regarded as correct only when it is exactly the same as the
correct answer.

– Per-cluster accuracy is defined as “the number of clusters correctly answered” di-
vided by “the number of clusters”.

– Per-digit accuracy is defined as “the number of digits correctly answered” divided
by “the number of digits”. If the number of digits in the cluster is misestimated, all
the digits in the cluster are regarded as incorrect.

– N-segment accuracy evaluates the success rate of segmentation. It is defined as
“the number of clusters estimated with the correct number of digits” divided by
“the number of clusters”.

For example, if there are two CAPTCHA challenges whose correct answers are “000
000 0000” and “111 111 1111” while the solver outputs “000 000 0001” and “111 112
111”, the solver’s off-by-one accuracy is 1

2 = 0.50, strict accuracy is 0
2 = 0.00, per-

cluster accuracy is 3
6 = 0.50, per-digit accuracy is 14

20 = 0.70, and N-segment accuracy
is 5

6 = 0.83.
Note that the actual vulnerability of audio reCAPTCHA is represented by off-by-one

accuracy, because audio reCAPTCHA regards an output of the system as correct even
when it has off-by-one error in terms of the Levenshtein distance.

Closed Test and Open Test. The solver is trained with four-fifth of the entire data set.
Open test uses the rest one-fifth data for the evaluation. This test measures the practical

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 47

Table 2. Results from performance evaluations of former and current versions of reCAPTCHA

Former reCAPTCHA Current reCAPTCHA
Closed test Open test Closed test Open test

Off-by-one 0.54 0.51 0.54 0.52
Strict 0.21 0.19 0.20 0.17

Per-cluster 0.59 0.57 0.61 0.59
Per-digit 0.75 0.74 0.77 0.76

N-segment 0.84 0.84 0.85 0.85

Data Size

A
c
c
u
ra
c
y
(%

)

off by one

strict

per cluster

digit

n segment

Fig. 10. Relationship between accuracy and data size (former version of reCAPTCHA)

performance of the system because it uses unknown data excluded from the training.
Closed test uses the same data as used in the training phase. We perform this five times
to obtain the average performance, which is called five-fold cross validation.

5.3 Experiment 1: Solver’s Performance on Former version of Audio
reCAPTCHA

We evaluated our solver’s performance with 400 challenges downloaded from the for-
mer version of audio reCAPTCHA (data set A in Table 1). Five times, we trained the
cluster labeling component with four-fifths of data set A, and evaluated Section 5.2’s
metrics with the rest of the data. We also evaluated the transition in performance by
changing the numbers of training data in increments of 20.

The left side of Table 2 lists the results when all of data set A was used. Our sys-
tem solved audio reCAPTCHA with 51% accuracy for the former version of audio
reCAPTCHA. Figure 10 plots the transition in performance. We can see the solver’s
performance saturates when the data size reaches around 200.

48 S. Sano, T. Otsuka, and H.G. Okuno

Data Size

A
c
c
u
ra
c
y
(%

)

off by one

strict

per cluster

digit

n segment

Fig. 11. Relationship between accuracy and data size (current version of reCAPTCHA)

5.4 Experiment 2: Solver’s Performance for Current version of Audio
reCAPTCHA

We evaluated our solver’s performance for the current version of audio reCAPTCHA
with 400 challenges (data set B in Table 1). We evaluated Section 5.2’s metrics as we
did in Experiment 1 by five-fold cross validation and also evaluated the transition in
performance by changing the numbers of training data in increments of 20.

The right side of Table 2 lists the results when all of data set B was used. Our
solver attained 52% accuracy for the current version of audio reCAPTCHA. Its perfor-
mance was almost the same as that in Experiment 1, which means challenge-distortion
was hardly effective against our solver. Figure 11 plots the transition in performance.
Performance saturates when the data size reaches around 200 similarly to that in
Experiment 1.

5.5 Experiment 3: Giving Number of Target Voices

This experiment assessed the efficiency of security when there was uncertainty in the
number of target voices. We evaluated our solver’s performance, assuming that the num-
ber of target voices in each cluster was known, and compared its performance with what
we obtained in Experiments 1 and 2. We could conduct this experiment by properly
changing Figure 6’s BNF according to the number of digits in the cluster because we
annotated the correct answer for each cluster. We evaluated Section 5.2’s metrics both
for data sets A and B by five-fold cross validation.

Table 3 lists the results for performance in this experiment. Compared to the results
for Experiments 1 and 2, these results suggest that uncertainty in the number of digits
greatly decreases the solver’s performance both for the former and current versions of
audio reCAPTCHA; hence, it contributes to the security of reCAPTCHA.

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 49

Table 3. Results for performance with ground truth number of digits in cluster

Former reCAPTCHA Current reCAPTCHA
Closed test Open test Closed test Open test

Off-by-one 0.62 0.60 0.60 0.58
Strict 0.27 0.26 0.30 0.27

Per-cluster 0.66 0.64 0.68 0.67
Per-digit 0.87 0.87 0.87 0.86

N-segment - - - -

5.6 Experiment 4: Robustness of Recognition for Various Additive Noise

The results obtained from Experiments 1 and 2 proved that our solver’s recognition did
not suffer from stationary noise adopted in the current version of audio reCAPTCHA.
We evaluated the robustness of the ASR method against various kinds of other additive
noise in Experiment 4 where the cluster labeling component decoded several simulated
CAPTCHA clusters.

Simulation clusters were generated by adding one of the noise signals listed in
Table 4 to each cluster signal of data set C in Table 1. We tested five kinds of noise
that could be divided into two classes: stationary noise, such as white noise, and seman-
tic noise. Semantic noise has more similar characteristics to CAPTCHA’s target voices
like those in spoken audio. This is known to be an effective technique that defends
against the classification of non-continuous audio CAPTCHAs [5]. We tested white
noise, brown noise, and pink noise [17] as stationary noise, and spoken sentences and
music as semantic noise.

We also examined how the solver’s performance was affected with various noise
levels. The noise level was controlled by changing signal-to-noise ratio (SNR)
calculated as:

SNR = 10log10

√
∑T

t=1 st

∑T
t=1 nt

, (11)

where s1, . . . ,sT is the source audio signal and n1, . . . ,nT is the noise signal. Note that
the lower SNR is, the stronger noise becomes. The SNR ranged from -25 to 25 at 5
interval.

We conducted five-fold cross validation for each type of noise and for each value of
SNR where the cluster labeling component was trained with four-fifths of data set C
and evaluated per-cluster accuracy with the rest of the data.

Figure 12 plots the relationship between SNR and the performance of the cluster
labeling component for each noise. Semantic noise results in lower accuracy for each
value of SNR, which means semantic noise enables more secure distortion without
increasing the strength of noise.

6 Discussion

Our solver cracks the current version of audio reCAPTCHA with 52% accuracy. Chel-
lapilla et al. stated that “depending on the cost of the attack and value of the service,

50 S. Sano, T. Otsuka, and H.G. Okuno

Table 4. Description of noise signals used in Experiment 4. The noise can be classified into two
classes: stationary and semantic.

Class Name Description

Stationary
White White noise.
Brown Brown noise.
Pink Pink Noise.

Semantic
Speech

Spoken audio signal. Noise audio is selected for each cluster from
corpus of spontaneous Japanese [18].

Music
Music audio signal. Noise audio is randomly clipped from “I Saw
Her Standing There” by the Beatles for each cluster.

automatic scripts should not be more successful than 1 in 10,000” [19]; therefore, we
conclude on this basis that our solver discloses the vulnerability of the current audio
reCAPTCHA system. The security of reCAPTCHA is also threatened by the fact that
the solver can easily be implemented by using an off-the-shelf library, HTK, and its
performance saturates only with 200 annotated challenges for training.

6.1 Toward Better CAPTCHAs

Our experimental results suggest that the CAPTCHA’s security may be improved in the
following ways:

Forcing strict evaluation. We can conclude that applying strict evaluations to user re-
sponses drastically enhances the security of CAPTCHAs by comparing off-by-one
accuracy and strict accuracy in the experimental results in Tables 2 and 3. However,
this somewhat decreases usability because the strict evaluation is also difficult for
human users. The trade-off should be carefully considered.

Increasing uncertainty in number of digits. The results from Experiment 3 demon-
strates that uncertainty about the number of digits in a cluster efficiently prevents
our solver from solving CAPTCHAs. We speculate that the more this uncertainty
increases, the more secure CAPTCHAs becomes. We also speculate that randomly
providing the number of clusters also enhances the security of CAPTCHAs.

Adopting semantic noise. The experimental results in Figure 12 indicate that seman-
tic noise is better at decreasing the performance of ASR than stationary noise. In
addition, humans can easily handle such noise even at low SNRs when there are
semantic differences between the target audio and noise, which is known as the
cocktail party effect [20]. Thus, we can expect that adopting proper semantic noise
will enhance the security of CAPTCHAs as well as retain excellent usability.

6.2 Toward Stronger Solver

This paper did not refer to the workaround for digit-distortion (described in Section
2), since the specific filtering process of digit-distortion is unknown other than that it

Solving Google’s Continuous Audio CAPTCHA with HMM-Based ASR 51

SNR

C
lu
s
te
r
A
c
c
u
ra
c
y
(%

)

white

music

pink

speech

brown

Fig. 12. Relationship between SNR and performance of cluster labeling component for several
kinds of additive noise

collapses the high frequency range of the original signal’s power spectrum. Identifying
the filtering process and designing more appropriate features for distortion are problems
that remain to be solved.

7 Conclusion

We developed and evaluated an audio CAPTCHA solver that could solve one of the
most modern defensive techniques — overlapping target voices. Our solver demon-
strated 52% accuracy for the current version of audio reCAPTCHA, which threatens
the security of the CAPTCHA system. We also assessed several defensive techniques
used in audio reCAPTCHA and demonstrated that increasing uncertainty in the num-
ber of target voices and adopting proper semantic noise can enhance the security of
CAPTCHAs.

Future work will involve analysis of digit-distortion for a stronger solver as well as
the design of more secure and user friendly algorithms to generate CAPTCHAs.

References

1. Von Ahn, L., Blum, M., Langford, J.: Telling humans and computers apart automatically.
Communications of the ACM 47(2), 56–60 (2004)

2. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual CAPTCHA.
In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, p. I–134. IEEE (2003)

3. Yan, J., El Ahmad, A.S.: A low-cost attack on a microsoft captcha. In: Proceedings of the
15th ACM Conference on Computer and Communications Security, pp. 543–554. ACM
(2008)

52 S. Sano, T. Otsuka, and H.G. Okuno

4. Tam, J., Simsa, J., Hyde, S., Von Ahn, L.: Breaking audio CAPTCHAs. Advances in Neural
Information Processing Systems 1(4) (2008)

5. Bursztein, E., Beauxis, R., Paskov, H., Perito, D., Fabry, C., Mitchell, J.: The failure of noise-
based non-continuous audio CAPTCHAs. In: IEEE Symposium on Security and Privacy,
pp. 19–31. IEEE (2011)

6. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are humans at
solving CAPTCHAs? A large scale evaluation. In: IEEE Symposium on Security and Privacy,
pp. 399–413. IEEE (2010)

7. Chellapilla, K., Larson, K., Simard, P., Czerwinski, M.: Computers beat humans at single
character recognition in reading based human interaction proofs (HIPs). In: Proceedings of
the Second Conference on Email and Anti-Spam, pp. 21–22 (2005)

8. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-
based character recognition via web security measures. Science 321(5895), 1465–1468
(2008)

9. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of IEEE 77(2), 257–286 (1989)

10. Young, S.J., Young, S.: The HTK hidden Markov model toolkit: Design and philosophy.
Citeseer (1993)

11. Tiwari, V.: MFCC and its applications in speaker recognition. International Journal on
Emerging Technologies 1(1), 19–22 (2010)

12. Umesh, S., Cohen, L., Nelson, D.: Frequency warping and the mel scale. IEEE Signal Pro-
cessing Letters 9(3), 104–107 (2002)

13. Furui, S.: Speaker-independent isolated word recognition using dynamic features of speech
spectrum. IEEE Transactions on Acoustics, Speech and Signal Processing 34(1), 52–59
(1986)

14. Welch, L.R.: Hidden Markov Models and the Baum-Welch Algorithm. IEEE Information
Theory Society Newsletter 53(4) (2003)

15. Lee, K.F., Hon, H.W.: Large-vocabulary speaker-independent continuous speech recognition
using hmm. In: Proceedings of International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 123–126. IEEE (1988)

16. Nakagawa, S., Hanai, K., Yamamoto, K., Minematsu, N.: Comparison of syllable-based
hmms and triphone-based hmms in japanese speech recognition. In: Proceedings of Interna-
tional Workshop on Automatic Speech Recognition and Understanding, pp. 393–396 (1999)

17. Halley, J.M., Kunin, W.E.: Extinction risk and the 1/f family of noise models. Theoretical
Population Biology 56(3), 215–230 (1999)

18. Maekawa, K.: Corpus of spontaneous japanese: Its design and evaluation. In: ISCA & IEEE
Workshop on Spontaneous Speech Processing and Recognition (2003)

19. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building segmentation based
human-friendly human interaction proofs (HIPs). In: Baird, H.S., Lopresti, D.P. (eds.) HIP
2005. LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005)

20. Bronkhorst, A.W.: The cocktail party phenomenon: A review of research on speech intel-
ligibility in multiple-talker conditions. Acta Acustica United with Acustica 86(1), 117–128
(2000)

Constructions of Almost Secure Frameproof

Codes Based on Small-Bias Probability Spaces

José Moreira1, Marcel Fernández1, and Grigory Kabatiansky2

1 Department of Telematics Engineering
Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

{jose.moreira,marcel}@entel.upc.edu
2 Institute for Information Transmission Problems

Russian Academy of Sciences, 127994 Moscow, Russia
kaba@iitp.ru

Abstract. Secure frameproof code is the name given to a separating
code when studied in relation to fingerprinting schemes. Separating codes
are combinatorial objects that have found to be useful in many areas
such as technical diagnosis and the protection of distribution rights. A
relaxed definition of the properties of separation and frameproofness, in
the sense of only requiring the properties to hold with high probability,
shows that for the relaxed definitions these notions are different. In this
paper we address the construction of almost secure frameproof codes
based on small-bias probability spaces.

Keywords: Secure frameproof code, separating code, traitor tracing,
fingerprinting.

1 Introduction

Fingerprinting codes are used to deter the illegitimate redistribution of pro-
tected contents. A distributor that wishes to protect some content delivers
marked copies to the users. Each marked copy identifies a particular user. This
fact discourages naive redistribution of individual copies. However, several users
(traitors) can participate in a collusion attack generating a pirated copy that is
a combination of their copies. Therefore, the goal of the distributor is to obtain
a set of marks (fingerprinting code) such that it is possible to identify a traitor
in the presence of a collusion attack.

This paper discusses de construction of almost secure frameproof codes and
their application to explicitly construct fingerprinting codes. The term “secure
frameproof code” [1–4] was the name given to a separating code [5–11] when
they were rediscovered for its application in traitor-tracing and fingerprinting
schemes. A relaxed version of these families of codes, coined as almost secure
frameproof codes, was introduced in [12]. There, they were proved to be useful in
fingerprinting schemes. For instance, almost secure frameproof codes are useful
to construct a family of fingerprinting codes, in the style of [13], improving the
lower bound on the asymptotical rate of the previous constructions. In practi-
cal terms, this means that replacing ordinary separating codes (that is, secure

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 53–67, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

54 J. Moreira, M. Fernández, and G. Kabatiansky

frameproof codes) by almost secure frameproof codes in these constructions al-
lows the distributor to use shorter fingerprints, reducing the cost of embedding
the fingerprints into the content and the cost of traitor identification [12, 18].

Let C be a code. Informally, we can say that two disjoint subsets U, V ⊆ C are
separated if there is a position in which the set of entries of the codewords in U is
disjoint with the set of entries of the codewords in V in this same position. The
code C is called a (c, c)-separating code [5–11] if every pair of disjoint subsets
U, V ⊆ C of c codewords each are separated.

Suppose now that, given a subset U ⊆ C of at most c codewords, we generate a
new word in which the entry in each position is one of the entries of the codewords
in the subset U . A word generated in this way is called a descendant of the
subset U . Since the codewords correspond to the marks that identify the users,
the descendant models the word embedded in the pirated copy. A descendant
of U is called uniquely decodable if it is not a descendant of any other subset
of at most c codewords of C that is disjoint with U . A code C in which every
descendant of a subset of at most c codewords is uniquely decodable is called
a c-secure frameproof code [1–4]. Note that this is equivalent to the condition
that for every pair of disjoint subsets of at most c elements their respective
sets of descendants are also disjoint. It is easy to see that this is the same as a
(c, c)-separating code.

Now we relax both definitions in the sense of not requiring neither strict
separation nor strict frameproofness. This brings two different notions, as shown
in [12]. An almost (c, c)-separating code is a code in which a subset of at most
c codewords is separated from all other disjoint subsets of at most c codewords
with high probability. On the other hand an almost c-secure frameproof code is
a code in which every descendant is uniquely decodable with high probability.

In this paper we will connect the concepts defined above with the concept of
small-bias probability spaces [14, 15]. A small-bias probability space defined on
M binary random variables is a probability space in which the parity of every
subset of variables is either zero or one with “almost” equal probability.

A small-bias probability space is readily seen to also be almost independent.
Let S be a subset of size at most t, of the binary random variables of a probability
space. An ε-biased from t-wise independence space is a probability space in which
the distribution of every subset S is “close” to the uniform distribution.

Since, an ε-biased from t-wise independence is close to the uniform distribution
then the resulting space has the following property: for a small enough value of
ε every possible configuration {0, 1}t appears in every subset of binary random
variables of size at most t. A space with this property is called a (M, t)-universal
set. This observation will prove very useful for our purposes, since a (M, t)-
universal set is a c-secure frameproof code for t = 2c.

From the definitions it is easy to see that a code is a (c, c)-separating code
if and only if it is a c-secure frameproof code. However, when the definitions of
separation and frameproofness are relaxed then both notions are different. Intu-
itively it seems clear that almost separation is a more strict requirement than
almost secure frameproofness. More precisely, it has been proved that there exist

Constructions of Almost SFP Codes Based on Small-Bias Probability Spaces 55

almost secure frameproof codes with a much higher rate than almost separating
codes [12]. The strategy used to establish the existing lower bounds in the code
rates of almost separating and almost secure frameproof codes is to use a stan-
dard probabilistic argument. It can be shown that there exist codes that achieve
such rates, within an ensemble of codes in which every codeword (u1, . . . , un) has
been chosen at random with Pr{ui = 0} = Pr{ui = 1} = 1/2 for each position
i = 1, . . . , n.

We are now in the position to underline the structure of the paper. In Section 2
we provide the necessary definitions and a brief overview of previous results.
Our contributions are discussed in Section 3. We begin by proving that the
above choice of probabilities Pr{ui = 0} = Pr{ui = 1} = 1/2 is in fact the
appropriate one to use. With this in mind we move into spaces where this choice
of probabilities is slightly biased. By adjusting the bias of the probability space
we provide explicit constructions for “almost” universal sets. Finally we show
that these constructions can be used to explicitly construct almost secure c-
frameproof codes, yielding explicit constructions of fingerprinting codes.

2 Definitions and Previous Results

We start by introducing some definitions. Given an alphabet Q of size |Q| = q,
we denote by Qn the set of all q-ary n-tuples (vectors) over Q. We denote the
vectors in boldface, e.g. u = (u1, . . . , un) ∈ Qn. A subset C ⊆ Qn of M elements
is called a q-ary (n,M)-code. The elements of a code C are called codewords. If
the code alphabet Q is the finite field of q elements, denoted Fq, then a code
C ⊆ Fn

q is called a (linear) [n, k]-code if it forms a vector subspace of dimension k.
The minimum distance of a code C, denoted d(C), is the smallest Hamming
distance between any two of its codewords. The rate of a q-ary (n,M)-code C is
defined as

R(C)
def
= n−1 logq M.

2.1 Almost Separating and Almost Secure Frameproof Codes

For an (n,M)-code C, a subset U = {u1, . . . ,uc} ⊆ C of size c is called a c-
coalition. Let Pi(U) denote the projection of U on the ith position, i.e., the set
of elements of the code alphabet in the ith position,

Pi(U)
def
= {u1

i , . . . , u
c
i}.

Given two c-coalitions U, V ⊆ C, we say that U and V are separated if there
is a position i that “separates” them, that is Pi(U) ∩ Pi(V) = ∅. We call such a
position i a separating position. Also, we say that the c-coalition U is a separated
c-coalition if it is separated from any other disjoint c-coalition V ⊆ C.

Definition 1. A code C is (c, c)-separating if every pair of disjoint c-coalitions
U, V ⊆ C have a separating position. Equivalently, all c-coalitions U ⊆ C are
separated c-coalitions.

56 J. Moreira, M. Fernández, and G. Kabatiansky

Separating codes were introduced in [5] by Graham et al. more than 40 years
ago. A separating code is a natural combinatorial object that have countless
applications. We mention for example the application to hash function, testing
of combinatorial circuits and automata synthesis. Separating codes have sub-
sequently been investigated by many authors, e.g. in [6–11]. Nontrivial lower
and upper bounds have been derived and relationships with similar notions have
been established. See for instance the overviews [6] and [10].

Recently, separating codes have draw more attention in connection with fin-
gerprinting settings. Let U = {u1, . . . ,uc} ⊆ C be a c-coalition from an (n,M)-
code C over Q. In a collusion attack, the marking assumption [16,17] states that
the positions i such that all codewords from U have the same symbol must re-
main unchanged in the pirated word z that they generate. Moreover, under the
narrow-sense envelope model [13], for every position i we have that zi ∈ Pi(U).
Hence, the set of all pirated words that coalition U can generate under the
narrow-sense envelope model, denoted desc(U), is defined as

desc(U)
def
= {z = (z1, . . . , zn) ∈ Qn : zi ∈ Pi(U), 1 ≤ i ≤ n}.

Often, the codewords in U are called parents and the words in desc(U) are called
descendants. Also, the c-descendant code of C, denoted descc(C), is defined as

descc(C)
def
=

⋃
U⊆C,|U|≤c

desc(U).

A descendant z ∈ descc(C) is called c-uniquely decodable if z ∈ desc(U) for
some c-coalition U ⊆ C and z /∈ desc(V) for any c-coalition V ⊆ C such that
U ∩ V = ∅.
Definition 2. A code C is c-secure frameproof if for any U, V ⊆ C such that
|U | ≤ c, |V | ≤ c and U ∩ V = ∅, then desc(U) ∩ desc(V) = ∅. Equivalently, all
z ∈ descc(C) are c-uniquely decodable.

The concepts of frameproof and secure frameproof codes were introduced in
[1, 2, 16, 17]. It is not difficult to see that the definition of a c-secure frameproof
code coincides with the definition of a (c, c)-separating code. Moreover, in the
fingerprinting literature, (c, 1)-separating codes are also known as c-frameproof
codes.

Let Rq(n, c) denote the rate of an optimal (i.e., maximal) (c, c)-separating
code of length n over a q-ary alphabet Q, i.e.,

Rq(n, c)
def
= max

C ⊆ Qn s.t. C is
(c, c)-separating

R(C).

Also, consider the corresponding asymptotical rates

Rq(c)
def
= lim inf

n→∞ Rq(n, c), Rq(c)
def
= lim sup

n→∞
Rq(n, c).

Constructions of Almost SFP Codes Based on Small-Bias Probability Spaces 57

Lower bounds on (2, 2)-separating codes were studied in [5, 7]. Some impor-
tant, well-known results for binary separating codes are, for example, R2(2, 2) ≥
1− log2(7/8) = 0.0642, from [6,7], which also holds for linear codes [7]. Also, for
general codes, it was shown in [13] that

R2(c) ≥ −
log2(1− 2−2c+1)

2c− 1
.

Regarding the upper bounds, in [6, 9] it was shown that R2(2) < 0.2835 for
arbitrary codes, and in [6] that R2(2) < 0.108 for linear codes.

Note that the existence bounds for separating codes shown above give codes of
low rate. In order to obtain codes with better rates, in [12] two relaxed versions
of separating codes were presented.

Definition 3. A code C ⊆ Qn is ε-almost c-separating if the ratio of separated
c-coalitions (among all c-coalitions) is at least 1− ε.

A sequence of codes {Ci}i≥1 of growing length ni is an asymptotically al-
most (c, c)-separating family if every code Ci is εi-almost (c, c)-separating and
limi→∞ εi = 0.

Definition 4. A code C ⊆ Qn is an ε-almost c-secure frameproof code if the
ratio of c-uniquely decodable vectors (among all vectors in descc(C)) is at least
1− ε.

A sequence of codes {Ci}i≥1 of growing length ni is an asymptotically almost
c-secure frameproof family if every code Ci is an εi-almost c-secure frameproof
code and limi→∞ εi = 0.

It is worth noting that the previous definitions allow to separate the concepts
of separation and frameproofness, which coincide when we consider ordinary
separation. Moreover, the new notions introduced allow to obtain codes with
better rates when the separating or frameproof properties are only required with
high probability.

For a family of codes {Ci}i≥1, we define its asymptotical rate as

R({Ci}) = lim inf
i→∞

R(Ci).

Hence, we are interested in estimating the maximal possible asymptotical rate
among all asymptotically almost c-separating families, denoted R∗

q(c), and

among all c-secure frameproof families, denoted R
(f)∗
q (c).

For instance, for binary codes and coalitions of size c = 2 the best existence

bounds are R∗
2(2) ≥ 0.1142, from [18], and R

(f)∗
2 (2) ≥ 0.2075, from [12].

2.2 Small-Bias Probability Spaces

In this section we present the concepts about small-bias probability spaces that
will be used in our constructions below. We will concentrate on the binary case,

58 J. Moreira, M. Fernández, and G. Kabatiansky

since our goal is to construct almost secure frameproof binary codes. For a more
detailed exposition, we refer the reader to [14, 15, 19].

Consider the binary alphabet Q = F2 = {0, 1}. That is, Q is the set {0, 1}
with all operations reduced modulo 2. A binary (n,M)-array A is an n ×M
matrix, where the entries of A are elements from F2.

For a binary (n,M)-array A and a subset of indices S ⊆ {1, . . . ,M} of size s,
let us denote NS(a;A) the frequency of rows of A, whose projection onto S equals
the s-tuple a ∈ Fs

2. We will omit the subindex S whenever s = M , i.e., when we
are considering the whole rows of array A. In particular, for a binary n-tuple u,
viewed as a binary (n, 1)-array, N(0;u) and N(1;u) denote the frequency, in u,
of symbols 0 and 1 respectively.

Definition 5. Let u = (u1, . . . , un) ∈ Fn
2 . The bias of vector u is defined as

n−1|N(0;u)−N(1;u)|.

That is, a vector u which has approximately the same number of 0’s and 1’s
will have small bias.

Definition 6. Let 0 ≤ ε < 1. A binary (n,M)-array is ε-biased if every non-
trivial linear combination of its columns has bias ≤ ε.

In other words, the bias of array A is the bias of the binary linear code C
generated by its columns. By definition, the bias of A is low if the bias of every
nonzero codeword from C is low. Explicit constructions of ε-biased (n,M)-arrays

exist, with n = 2O(logM+log ε−1) [14].
The previous definition can be restricted by allowing a maximum number of

columns in the linear combination.

Definition 7. Let 0 ≤ ε < 1. A binary (n,M)-array is t-wise ε-biased if every
nontrivial linear combination of at most t columns has bias ≤ ε.

We will also need the concepts of ε-dependent and ε-away from t-wise inde-
pendence arrays.

Definition 8. Let 0 ≤ ε < 1. A binary (n,M)-array A is t-wise ε-dependent if
for every subset S ⊆ {1, . . . ,M} of s ≤ t columns and every vector a ∈ Fs

2, the
frequency NS(a;A) satisfies

|n−1NS(a;A) − 2−s| ≤ ε.

Definition 9. Let 0 ≤ ε < 1. A binary (n,M)-array A is ε-away from t-wise
independence if for every subset S ⊆ {1, . . . ,M} of s ≤ t columns we have∑

a∈Fs
2

|n−1NS(a;A)− 2−s| ≤ ε.

Constructions of Almost SFP Codes Based on Small-Bias Probability Spaces 59

Observe that if an array A is t-wise ε-dependent, then it is 2Mε-away from
t-wise independence, and if A is ε-away from t-wise independence, then it is
t-wise ε-dependent.

The definitions above have an interpretation as a small-bias probability space.
Consider a set of M binary random variables X1, . . . XM that take the corre-
sponding values of a row, chosen uniformly at random, from an (n,M)-array A.
If the array A is ε-away from t-wise independence, then any t of the random
variables are “almost independent,” provided that ε is small. Hence, one would
like to obtain such arrays A with n (the size of the probability space) as small
as possible.

For our purposes, the most important concept will be that of (M, t)-universal
set. We have the following definition.

Definition 10. An (M, t)-universal set B is a subset of FM
2 such that for every

subset S ⊆ {1, . . . ,M} of t positions the set of projections of the elements of B
on the indices of S contains every configuration a ∈ Ft

2.

Let A be a binary (n,M)-array. Note that if for every subset S ⊆ {1, . . . ,M}
of t columns and every vector a ∈ Ft

2 we have NS(a;A) > 0, then the rows of A
form an (M, t)-universal set. We are interested in universal sets of as small size
as possible.

In [14] the relationship between this concept and ε-away from t-wise indepen-
dence arrays was shown.

Proposition 1. Let A be a binary (n,M)-array A. For ε ≤ 2−t, if A is ε-away
from t-wise independence, then the rows of A yield an (M, t)-universal set of
size n.

Moreover, the following result [14, 20, 21] also relates these concepts with the
concept of ε-biased arrays.

Corollary 1. Let A be a binary (n,M)-array A. If A is ε-biased, then A is
2t/2ε-away from t-wise independence.

Hence, the construction of universal sets is reduced to the construction of
ε-away from t-wise independence arrays by Proposition 1, which is reduced to
the construction of ε-biased arrays by Corollary 1.

We will have occasion to use Corollary 1 in the next section, where an even
more convenient method to construct ε-away from t-wise independence arrays
will be discussed.

3 Constructions

In this section we present our constructions for almost secure frameproof
codes. Before dwelling into explicit details we give an intuitive reasoning of our
discussion.

60 J. Moreira, M. Fernández, and G. Kabatiansky

First, we will show that the expected value of the ratio of separated c-coalitions
in a random binary (n,M)-code is maximized when the codewords are generated
according to a probability vector p = (p1, . . . , pn) with p1 = · · · = pn = 1/2.
That is, we generate M random codewords (u1, . . . , un) such that Pr{ui = 1} =
pi = 1/2. But since we are interested in almost secure frameproof codes, we
will be able to allow a small bias on these probabilities and therefore consider
small-bias probability spaces.

By using the definitions and results from the previous section it can be seen
that from ε-away from t-wise independence arrays we can obtain (M, t)-universal
sets of size O(2t logM). If we arrange the vectors of this universal set as the rows
of a matrix, the columns of that matrix form a c-secure frameproof code for t =
2c. This code has size M , length O(22c logM) and rate O(2−2c). The main idea
is to impose a value of 0 to the probability of a given number of configurations in
the universal set, yielding “almost” universal sets. We finally prove that “almost”
universal sets can be used to generate ε-almost c-secure frameproof code with ε
a function of the number of configurations with probability 0.

3.1 Separation in Random Codes

We start by making some observations about random codes. Let us assume
that C is an (n,M)-random code generated according to a probability vector
p = (p1, . . . , pn), where p is chosen according to pmf fp. That is, we first generate
a probability vector p of length n, distributed according to fp, and then we
randomly generateM binary vectors u = (u1, . . . , un) such that Pr{ui = 1} = pi.
We would like to know which probability distribution fp maximizes the ratio
(probability) of separated c-coalitions in a code generated in that way.

Lemma 1. Let C be an (n,M)-random code, whose codewords are generated
according to the probability vector p = (p1, . . . , pn). If the entries of p are iid
r.v.’s, then the expected value of the ratio (probability) of separated c-coalitions
is maximized by taking p1 = · · · = pn = 1/2.

Proof. Note that for a given p the probability that two c-coalitions U, V are not
separated is

∏n
i=1(1− 2pci(1− pi)

c).
Let us denote ε the probability that a c-coalition U is not a separated c-

coalition, which in general is a random variable. Hence, the expectation of the
probability that U is a separated c-coalition, averaged over all the possible choices
of p, can be expressed as

Efp [1− ε] = Efp

[(
1−

n∏
i=1

(1− 2pci(1− pi)
c)
)(M−c

c)]
.

Observe that this expectation is maximized simply by considering a pmf that
takes 1 on the maximum of the argument of the expectation and 0 otherwise.
Therefore, this can be translated into finding the pmf that maximizes the fol-
lowing expectation

Constructions of Almost SFP Codes Based on Small-Bias Probability Spaces 61

Efp

[
1−

n∏
i=1

(1− 2pci(1 − pi)
c)
]
= 1− (1 − 2Efp [p

c(1 − p)c])n,

which follows after assuming that the components of p are i.i.d. random vari-
ables distributed according to fp. It is easy to see that pc(1 − p)c is symmetric
around 1/2, and the expected value is maximized simply by taking p = 1/2 with
probability 1.

The previous lemma suggests that codes with approximately the same number
of 0’s and 1’s in each row of the codebook are good candidates to be (c, c)-
separating and c-secure frameproof codes. Equivalently, for each set of 2c rows
of the codebook, one would expect that all the 22c possible 2c-tuples exhibit a
uniform distribution approximately. In fact, there exist constructions of (c, c)-
separating codes which are based on this observation [22].

3.2 Universal and Almost Universal Sets

Universal sets have been described in Definition 10. Moreover, it has been shown
that the construction of universal sets can be reduced to the construction of ε-
biased arrays.

It is easy to see that an (M, 2c)-universal set of size n also yields a (c, c)-
separating (n,M)-code [22]. To see this, let A be an (n,M)-array whose rows
form an (M, 2c)-universal set. Now, regard the columns of A as the codewords
of a code C. Consider two disjoint c-subsets U, V ⊆ C, i.e., 2c columns of A.
Since the rows of A are a (M, 2c)-universal set, this means that for the selected
2c columns all F2c

2 possible configurations appear. In particular, there is a row i
where all the columns corresponding to U contain symbol 0 and all the columns
corresponding to V contain symbol 1 in that particular row. Hence i is a sep-
arating position for coalitions U, V , i.e., Pi(U) ∩ Pi(V) = ∅, as desired. Recall
again that this is the same as a c-secure frameproof code when we are talking
about absolute separation.

Efficient constructions of (M, 2c)-universal sets using ε-biased from 2c-wise
independence arrays are presented in [14], by virtue of Proposition 1 and Corol-
lary 1. These constructions yield a (c, c)-separating code of length 2O(c) logM .
Using this idea, we aim to relax the constraint that the (M, 2c)-universality im-
poses to obtain a shorter array, i.e., a code with a better rate. In fact, we do
not need that every possible F2c

2 -tuple appears in the code. Hence, we propose
to relax Definition 10 by allowing a given number of vectors a ∈ F2c

2 , say z, not
to appear in the projection of a subset S ⊆ {1, . . . ,M} of 2c positions. This is
formalized in the following definition.

Definition 11. An (M, t, z)-universal set B is a subset of FM
2 such that for

every subset S ⊆ {1, . . . ,M} of t positions the set of projections of the elements
of B on the indices of S contains every configuration a ∈ Ft

2 except, at most z.

62 J. Moreira, M. Fernández, and G. Kabatiansky

Again, if A is a binary (n,M)-array, the rows of A generate an (M, t, z)-
universal set provided that there are at least 2t − z vectors a ∈ Ft

2 such that
NS(a;A) > 0, for every subset S ⊆ {1, . . . ,M} of t columns.

Similarly as Proposition 1, the following result shows the connection between
(M, t, z)-universal sets and ε-away from t-wise independence arrays.

Proposition 2. Let A be a binary (n,M)-array A. For ε ≤ (z + 1)2−t, if A is
ε-away from t-wise independence, then the rows of A yield an (M, t, z)-universal
set of size n.

Proof. Assume by contradiction that the rows of A do not yield an (M, t, z)-
universal set. In other words, there is a subset S ⊆ {1, . . . ,M} of t columns such
that there are strictly more than z vectors a ∈ Ft

2 such that NS(a;A) = 0. For
this particular subset S we have that∑

a∈Ft
2

|n−1NS(a;A)− 2−t|

≥ (z + 1)2−t +
∑

a∈F
t
2 s.t.

NS(a;A)>0

|n−1NS(a;A)− 2−t| > (z + 1)2−t+1 > ε,

which contradicts the fact that array A is ε-away from t-wise independence.

3.3 Construction of (M, t, z)-Universal Sets

As Proposition 2 states, the construction of (M, t, z)-universal sets reduces to
constructing an (z + 1)2−t-away from t-wise independence array, and by Corol-
lary 1, it reduces to the construction of an ε-biased array. Moreover, it is easy
that the array A from Corollary 1 can be regarded as a t-wise ε-biased array,
which is a less restrictive condition than a ε-biased array.

A standard construction of t-wise ε-biased binary arrays is also presented
in [14].

Theorem 1. Let A be an ε-biased binary (n,M ′)-array, and let H be the parity-
check matrix of a binary [M,M −M ′]-code of minimum distance t + 1. Then,
the matrix product A×H is a t-wise ε-biased (n,M)-array.

Usually, the matrix H used in Theorem 1 above is the parity-check matrix
of a binary [M,M − M ′]-BCH code of minimum distance t + 1. In this case,
the matrix H has M columns and M ′ = t logM rows. It is shown in [14] that,
by using Theorem 1 in Corollary 1, the number of rows of an (n,M)-array ε-

away from t-wise independence can be reduced from n = 2O(t+logM+log ε−1) to
n = 2O(t+log logM+log ε−1).

The problem now reduces to obtain binary ε-biased (n,M ′)-arrays with n as
small as possible. From [19], one can see that explicit constructions exist for such
arrays with

n ≤ 22(log2 M ′+log2 ε−1).

Constructions of Almost SFP Codes Based on Small-Bias Probability Spaces 63

However in [15], better explicit construction of ε-biased arrays are given, when
the parameters satisfy some required conditions. The best construction shown
there is based in Suzuki codes. Below we rewrite [15, Theorem 10] in our notation.

Theorem 2. If logM ′ > 3 log ε−1, then there exists an explicit construction of
a binary (n,M ′)-array A that is ε-biased, with n = 23/2 (log2 M ′+log2 ε−1)+2.

Hence, to construct an (M, t, z)-universal set we can proceed as follows.

1. Take ε = (z + 1)2−3t/2.
2. Construct an (n,M ′)-array A′ that is ε-biased, where M ′ = t logM .
3. Construct the parity-check matrix H of a BCH code of length M , codimen-

sion M ′ = t logM and minimum distance t+ 1.
4. The matrix product A = A′ ×H generates a t-wise ε-biased (n,M)-array.
5. The array A is also ε′-away from t-wise independence, with ε′ = 2t/2ε =

(z + 1)2−t. Hence, the rows of A generate an (M, t, z)-universal set.

Observe that the conditions of Theorem 2 apply, when log2 M
′ > 3 log2 ε

−1,
that is

log2 t+ log2 log2 M > 9 t/2− 3 log2(z + 1),

The resulting (M, t, z)-universal set from the construction above has size

n = 23/2(3 t/2+log2 t+log2 log2 M−log2(z+1))+2.

We remark that the condition above, even though analitically meaningful, it is
satisfied for impractically large values of M . That is, it will lead to codes with
an excessively large number of codewords. For practical scenarios, using the
constructions for ε-biased (n,M ′)-arrays given in [19], the resulting (M, t, z)-
universal sets have size

n = 22(3 t/2+log2 t+log2 log2 M−log2(z+1)).

3.4 ε-Almost c-Secure Frameproof Codes

Recall that an (M, 2c)-universal set of size n generates a c-secure frameproof
(n,M)-code. Now, take an (n,M)-array A whose rows generate an (M, 2c, z)-
universal set B, and regard its columns as the codewords of an ε-almost c-secure
frameproof code C. Observe that for z < 2c the (M, 2c, z)-universal set B is in
fact an (M, c)-universal set. To see this, note that if a configuration from Fc

2 does
not appear in B, it would mean that there are, at least, 2c missing configurations
from F2c

2 , which contradicts the definition of an (M, 2c, z)-universal set with
z < 2c.

Given a code C constructed using an (M, 2c, z)-universal set as above, in
order to ease the analysis, we will assume that for each c-coalition U ⊆ C, each
possible configuration from Fc

2 appears approximately with uniform probability.
Note that we are regarding the columns of an (n,M)-arrayA as the codewords

of an almost secure frameproof code, which means that the resulting code has
rate R = logM/n. The following corollary formalizes the relationship between
almost secure frameproof codes and (M, t, z)-universal sets.

64 J. Moreira, M. Fernández, and G. Kabatiansky

Corollary 2. Let M > 0, c ≥ 2, z < 2c, and ε ≥ p(M, c, z), where

p(M, c, z)
def
= M c(1 − 2−c)n.

Then, an (M, 2c, z)-universal set of size n yields an ε-almost c-secure frameproof
code of rate R = logM/n.

Proof. Consider a code C generated from an (M, 2c, z)-universal set, as stated
above. Let z be a descendant generated by some c-coalition of the code, z ⊆
descc(C). By the assumptions stated above, the probability that z belongs to
another c-coalition V is (1−2−c)n. Hence, using the union bound, we can bound
the probability that z is generated by some other coalition of the code as

p(M, c, z) = M c(1− 2−c)n.

The ratio (probability) of not uniquely decodable descendants in descc(C) is
therefore ≤ p(M, c, z), which means that C is an ε-almost c-secure frameproof
code.

3.5 Results for Some Coalition Sizes

In the Table 1 we show the derived rates for the case of coalitions of size c = 2
and 3. The maximum number of missing {0, 1}2c configurations is denoted by z,
and the probability that a descendant is not uniquely decodable is denoted by ε.
Observe that when z = 0 the code is (c, c)-separating, that is ε = 0. The value of
ε provided corresponds to the worst-case for the given row. The code rates have
been computed for code sizes of M = 103, 104, 105, 106 and 107 users, using the
constructions of (M, 2c, z)-universal sets derived from constructions of ε-biased
(n,M ′)-arrays given in [19].

Table 1. Some attainable code rates for explicit constructions of ε-almost c-secure
frameproof codes of size between 103 and 107

Code rates
c z log2 ε M = 103 M = 104 M = 105 M = 106 M = 107

2 0 n/a 1.531 × 10−6 1.148 × 10−6 9.187 × 10−7 7.656 × 10−7 6.562 × 10−7

2 1 −1.201 × 106 6.124 × 10−6 4.593 × 10−6 3.675 × 10−6 3.062 × 10−6 2.625 × 10−6

2 2 −5.336 × 105 1.378 × 10−5 1.034 × 10−5 8.268 × 10−6 6.890 × 10−6 5.906 × 10−6

2 3 −3.001 × 105 2.450 × 10−5 1.837 × 10−5 1.470 × 10−5 1.225 × 10−5 1.050 × 10−5

3 0 n/a 1.063 × 10−8 7.975 × 10−9 6.380 × 10−9 5.316 × 10−9 4.557 × 10−9

3 1 −8.025 × 107 4.253 × 10−8 3.190 × 10−8 2.552 × 10−8 2.127 × 10−8 1.823 × 10−8

3 3 −2.006 × 107 1.701 × 10−7 1.276 × 10−7 1.021 × 10−7 8.506 × 10−8 7.291 × 10−8

3 5 −8.917 × 106 3.828 × 10−7 2.871 × 10−7 2.297 × 10−7 1.914 × 10−7 1.640 × 10−7

3 7 −5.016 × 106 6.805 × 10−7 5.104 × 10−7 4.083 × 10−7 3.402 × 10−7 2.916 × 10−7

Constructions of Almost SFP Codes Based on Small-Bias Probability Spaces 65

4 Constructions of Fingerprinting Codes

In this section we show how binary ε-almost c-secure frameproof codes can be
used to construct a family of binary fingerprinting codes with an efficient decod-
ing algorithm.

For a fingerprinting scheme to achieve a small error probability a single code
is not sufficient, but a family of codes {Cj}j∈T is needed, where T is some finite
set. The family {Cj}j∈T is publicly known. The distributor chooses secretly a
code Cj with probability π(j). This choice is kept secret. Then, codewords are
assigned correspondingly.

In [18] existence conditions for a family of concatenated fingerprinting codes
is proposed, using an almost separating code as inner code. We remark that the
almost separating code can be replaced by an almost secure frameproof code,
yielding an explicit construction of a fingerprinting code. Hence, combining [18,
Corollary 1] with our results we have the following result.

Corollary 3. Let Cout be an extended Reed-Solomon [n, k]-code over Fq of rate

Ro = R(Cout) <
1− σ

c(c+ 1)
,

and let Cin be an ε-almost c-secure frameproof (l, q)-code of rate Ri = R(Cin),
with ε < σ. Then, there exists an explicit construction of a binary c-secure
family of fingerprinting codes {Cj}j∈T with outer code Cout and inner code Cin,
with polynomial-time tracing algorithm, rate R = RiRo and probability of error
decreasing exponentially as

pe ≤ 2−n l(
1−σ
c Ri−(c+1)R+o(1)) + 2−nD(σ‖ε).

Finally, it is worth noting here that, as shown in [12, 18], the use of almost
secure frameproof codes instead of ordinary secure frameproof codes introduces
an additional error term in the identification process, as stated in Corollary 3.
Note, however, that this error term decreases exponentially with the outer code
length.

5 Conclusion

Almost separating and almost secure frameproof codes are two relaxed versions of
separating codes. In this paper, we have presented the first explicit constructions
of almost secure frameproof codes.

Our work has departed from the study of the connection between small-bias
probability spaces and universal sets, and the subsequent connection between
universal sets and separating codes.

Starting with this idea, we have introduced a relaxation in the definition of a
universal set. We show that an almost universal set can be used to construct an
almost secure frameproof code. This observation has lead us to the explicit con-
structions of almost secure frameproof codes. We have proposed a construction

66 J. Moreira, M. Fernández, and G. Kabatiansky

based on Suzuki codes, which provide one of the best constructions known for
small-bias probability spaces. For practical uses, however, we have to switch to
the constructions of small-bias probability spaces proposed by Alon et al.

We remark that, as expected, the explicit constructions presented are some-
what far from the theoretical existence bounds shown in earlier works. For ex-
ample, probabilistic arguments show the existence of asymptotically almost 2-
secure frameproof families of codes of rate R = 0.2075, whereas the explicit
constructions that we have presented above provide codes of rate below this fig-
ure. Nevertheless, the main point of our work is to present the first explicit and
practical-use constructions for such families of codes.

We have also shown how the proposed constructions can be used to explic-
itly construct a family of concatenated fingerprinting codes. The construction
presented is based on the theoretical existence results of a previous work, which
assumed the existence of almost secure frameproof codes. Hence, one of the main
contributions of the present work has been to provide a “real” implementation
of such a theoretical existence result for a fingerprinting scheme. As discussed
also in earlier works, replacing ordinary secure frameproof codes by almost se-
cure frameproof codes introduces an additional error term in the identification
of guilty users that, fortunately, decreases exponentially with the outer code
length.

Finally, we would like to note that even though a universal set is a separating
code, the relationship between an almost universal set and an almost separating
code is by no means evident and will we the subject of future research.

Acknowledgement. We would like to thank the IWSEC2013 anonymous Ref-
erees for their useful comments. J. Moreira and M. Fernández have been sup-
ported by the Spanish Government through projects Consolider Ingenio 2010
CSD2007-00004 “ARES” and TEC2011-26491 “COPPI”, and by the Catalan
Government through grant 2009 SGR-1362. G. Kabatiansky has been supported
by the Russian Foundation for Basic Research through grants RFBR 13-07-00978
and RFBR 12-01-00905.

References

1. Stinson, D.R., van Trung, T., Wei, R.: Secure frameproof codes, key distribution
patterns, group testing algorithms and related structures. J. Stat. Plan. Infer. 86(2),
595–617 (2000)

2. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and
traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001)

3. Tonien, D., Safavi-Naini, R.: Explicit construction of secure frameproof codes. Int.
J. Pure Appl. Math. 6(3), 343–360 (2003)

4. Stinson, D.R., Zaverucha, G.M.: Some improved bounds for secure frameproof
codes and related separating hash families. IEEE Trans. Inf. Theory 54(6),
2508–2514 (2008)

5. Friedman, A.D., Graham, R.L., Ullman, J.D.: Universal single transition time asyn-
chronous state assignments. IEEE Trans. Comput. C-18(6), 541–547 (1969)

Constructions of Almost SFP Codes Based on Small-Bias Probability Spaces 67

6. Sagalovich, Y.L.: Separating systems. Probl. Inform. Transm. 30(2), 105–123 (1994)
7. Pinsker, M.S., Sagalovich, Y.L.: Lower bound on the cardinality of code of au-

tomata’s states. Probl. Inform. Transm. 8(3), 59–66 (1972)
8. Sagalovich, Y.L.: Completely separating systems. Probl. Inform. Transm. 18(2),

140–146 (1982)
9. Körner, J., Simonyi, G.: Separating partition systems and locally different se-

quences. SIAM J. Discr. Math. (SIDMA) 1(3), 355–359 (1988)
10. Cohen, G.D., Schaathun, H.G.: Asymptotic overview on separating codes. Depart-

ment of Informatics, University of Bergen, Norway, Tech. Rep. 248 (August 2003)
11. Cohen, G.D., Schaathun, H.G.: Upper bounds on separating codes. IEEE Trans.

Inf. Theory 50(6), 1291–1294 (2004)
12. Fernández, M., Kabatiansky, G., Moreira, J.: Almost separating and almost se-

cure frameproof codes. In: Proc. IEEE Int. Symp. Inform. Theory (ISIT), Saint
Petersburg, Russia, pp. 2696–2700 (August 2011)

13. Barg, A., Blakley, G.R., Kabatiansky, G.: Digital fingerprinting codes: Problem
statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4),
852–865 (2003)

14. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM J. Comput (SICOMP) 22(4), 838–856 (1993)

15. Bierbrauer, J., Schellwat, H.: Almost independent and weakly biased arrays: Ef-
ficient constructions and cryptologic applications. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 533–544. Springer, Heidelberg (2000)

16. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. In: Copper-
smith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465. Springer, Heidelberg
(1995)

17. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans.
Inf. Theory 44(5), 1897–1905 (1998)

18. Moreira, J., Kabatiansky, G., Fernández, M.: Lower bounds on almost-separating
binary codes. In: Proc. IEEE Int. Workshop Inform. Forensics, Security (WIFS),
Foz do Iguaçu, Brazil, pp. 1–6 (November 2011)

19. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of almost
k-wise independent random variables. Random Struct. Alg. 3(3), 289–304 (1992)

20. Vazirani, U.V.: Randomness, adversaries and computation. Ph.D. dissertation,
Dept. Elect. Eng. Comp. Sci., Univ. California, Berkeley (1986)

21. Diaconis, P.: Group Representations in Probability and Statistics. Inst. Math. Stat.,
Beachwood (1988)

22. Alon, N., Guruswami, V., Kaufman, T., Sudan, M.: Guessing secrets efficiently via
list decoding. ACM Trans. Alg. 3(4), 1–16 (2007)

Differential Power Analysis

of MAC-Keccak at Any Key-Length

Mostafa Taha and Patrick Schaumont�

Secure Embedded Systems
Center for Embedded Systems for Critical Applications

Bradley Department of ECE
Virginia Tech, Blacksburg, VA 24061, USA

Abstract. Keccak is a new hash function selected by NIST as the next
SHA-3 standard. Keccak supports the generation of Message Authenti-
cation Codes (MACs) by hashing the direct concatenation of a variable-
length key and the input message. As a result, changing the key-length
directly changes the set of internal operations that need to be targeted
with Differential Power Analysis. The proper selection of these target op-
erations becomes a new challenge for MAC-Keccak, in particular when
some key bytes are hidden under a hierarchical dependency structure.
In this paper, we propose a complete Differential Power Analysis of
MAC-Keccak under any key-length using a systematic approach to iden-
tify the required target operations. The attack is validated by success-
fully breaking several, practically difficult, case studies of MAC-Keccak,
implemented with the reference software code on a 32-bit Microblaze
processor.

1 Introduction

The recent SHA-3 hashing competition, organized by the National Institute of
Standards and Technology (NIST), has recently concluded with Keccak as the
winner [6]. Keccak was particularly selected for being built with a new algorith-
mic construction, the Sponge construction [5], which is entirely different from
the previous hashing standards. This new construction opens new questions,
challenges and opportunities in Side-Channel Analysis (SCA).

The idea of the Sponge construction is to have an internal state that is big-
ger than the input and output block sizes. This feature prevents the input block
from directly affecting the entire state and protects the internal state from being
fully exposed at the output. This construction allowed Keccak to securely cre-
ate Message Authentication Codes (MACs) by hashing the direct concatenation
between the key and the message in a cryptographic mode called MAC-Keccak
[5]. Although previous MACs required that the key is hashed in a separate input
block, MAC-Keccak allowed the secret key and the message to share one input

� This research was supported in part by the VT-MENA program of Egypt, and by
the National Science Foundation Grant no. 1115839.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 68–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Differential Power Analysis of MAC-Keccak at Any Key-Length 69

Fig. 1. The difference between the DPA of AES, HMAC, and MAC-Keccak

block. Furthermore, the designers allowed the use of a variable-length key, which
opens a new dimension in the analysis. In this paper, we will study how to mount
a Differential Power Analysis (DPA) on MAC-Keccak under any key-length.

Differential Power Analysis (DPA) is an implementation attack that aims at
recovering the secret key of a cryptographic module by monitoring the instan-
taneous power consumption [12]. With DPA, the attacker searches for the key
that maps the change in the power consumption from trace to trace, to the cor-
responding change in the input message. Only the correct secret key will make
this mapping meaningful. Typically, only one point in the power trace is enough
to mount an attack, the point where the key and the message get mixed in an
internal operation. We call this internal operation ‘the target operation’ and we
assume that the input message can be monitored.

The difference between the DPA of MAC-Keccak and that of the typical
cryptographic algorithms (e.g. AES and HMAC) is highlighted in Fig. 1. The
length of the secret key in typical cryptographic algorithms is fixed. Hence, the
algorithm can be analyzed easily to select the set of target operations. The AES
encryption algorithm, for example, uses a fixed length key of 128, 192 or 256 bits
and the target operation is the AddRoundKey [11]. Similarly, DPA on HMAC
aims at recovering the internal state after hashing the key (XORed with the ipad)
[4]. In this case, the size of the required unknown is also fixed and equals to the
size of the internal state, where the target operation is the input to the next
hashing cycle. On the contrary, the secret key in MAC-Keccak has a variable
length, and it shares the message in one input block. As a result, changing
the key-length (and consequently the message-length) within the input block,
changes the set of target operations that need to be monitored for a successful
DPA. Also, the target operations are located deep inside the algorithm itself
instead of being only at the input. For instance, the key-length can be selected
near the input block size to shrink the proportion of the input message. Here, a
single target operation will not be sufficient due to the difference in size between
the key and the known message. In such case, several consecutively dependent
operations will be targeted to reach the point in the algorithm where every
key-byte is affected by at least one message-byte. Hence, the DPA of MAC-
Keccak requires new methodologies, which were not needed in the analysis of

70 M. Taha and P. Schaumont

other cryptographic algorithms. These new features of MAC-Keccak along with
the complexity of the Keccak algorithm itself formed the challenge addressed by
this paper.

Previous work on DPA, including those dedicated to MAC-Keccak, haven’t
studied DPA under a variable key-length. McEvoy et al. resolved the dependency
between target operations of HMAC with SHA-2, where the size of the secret
key was fixed to the size of the secret intermediate hash value [13]. Zohner et
al. presented an analysis step based on Correlation Power Analysis (CPA) to
identify the key-length in use [15,9] . They acknowledged the effect of changing
the key-length on DPA, but they did not study the problem in detail. Relying
on their method of identify the key-length, we will assume that the key-length of
MAC-Keccak is known upfront. Taha et al. studied the effect of changing the key-
length on the difficulty of DPA, but still with an ad-hoc selection of the target
operations [14]. The Keccak developers proposed a side-channel countermeasure
for MAC-Keccak based on secret sharing (masking) [10]. They presented results
for attacking both protected and unprotected implementations of MAC-Keccak
using simulated traces [7]. In their analysis, they studied the effect of changing
the state-size assuming that the key-length is fixed and equals to the input block
size (i.e. similar to previous MAC constructions). If the key-length changes, they
will have to apply high-order DPA following the same attack methodology of this
paper.

In this paper, we will show that the complete recovery of the secret key requires
mounting DPA against several consecutively dependent operations. We will use
a systematic approach to analyze MAC-Keccak under any key-length, to extract
the required target operations, in the proper order of dependency. We will present
complete case studies of MAC-Keccak under several practically difficult key-
lengths, with all the necessary details. Finally, the analysis will be validated by
successfully breaking these case studies implemented with the reference software
code on a 32-bit Microblaze processor [2].

The paper is organized as follows: Section 2 introduces the required back-
ground on the Sponge construction, the Keccak-function and MAC-Keccak. Sec-
tion 3 presents a detailed analysis of some examples of MAC-Keccak. This analy-
sis is intended to show the consecutive dependency of target operations, and the
systematic approach used to resolve that dependency under any key-length. The
complete case studies are presented in Section 4. Section 5 validates the analysis
by presenting the results of a practical attack mounted against the considered
cases. Section 6 presents the conclusion and future work.

2 Background

Keccak uses a new Sponge construction chaining mode with a fixed permutation
function called the Keccak-function [5]. The size of the internal state of the
Sponge is b = 25 ∗ 2l bits and l = [0 : 6] arranged in a 5 ∗ 5 ∗ 2l array. The size of
the input block is called the Rate r, which is strictly less than the state size. The
difference between the Rate and the state-size is called the Capacity c, which is

Differential Power Analysis of MAC-Keccak at Any Key-Length 71

Fig. 2. Terminology used in Keccak

the number of state bits that are not directly affected by the current input. The
Rate and Capacity are used as design parameters to trade security strength for
throughput. Their sum equals to the state-size (b = r + c). To match the NIST
output length requirements, Keccak designers proposed b = 1600 bits (l = 6),
and r = 1152, 1088, 832 and 576 bits for output length of 224, 256, 384 and 512
bits respectively [8].

The internal state of Keccak is arranged in a 3-D array as shown in Fig. 2.
Each state-bit is addressed with three coordinates, written as S(X,Y, Z). The
Keccak state also defines a plane, lane, sheet and column. These are defined as
follows: a plane P(y) contains all state-bits S(X,Y, Z) for which Y=y; a lane
L(x, y) contains all state-bits for which X=x and Y=y; a sheet S(x) contains
all state-bits for which X=x; a column C(x, z) contains all state-bits for which
X=x and Z=z. The state is filled with r new message bits starting from S(0, 0, 0)
and filling in the Z direction, followed by the X direction, followed by the Y
direction. The remaining part of the state (the Capacity) is kept unchanged; it
is filled with zeros in the first hashing operation. This filling sequence puts the
new input bits in the lower planes (from Y = 0) leaving the zero bits at the
upper planes.

The Keccak-function consists of 24 rounds of five sequential steps. The steps
are briefly discussed here. Further details can be found in the Keccak reference
[6]. The output of each round is:

Output = ι ◦ χ ◦ π ◦ ρ ◦ θ(Input) (1)

Throughout the following; operations on X and Y are done modulo 5, and
operations on Z are done modulo 64.

– θ is responsible for diffusion. It is a binary XOR operation with 11 inputs
and a single output, as shown in Fig. 3. Every bit of the output state is the
result of XOR between itself, and the bits of two neighbor columns:

S(X,Y, Z) = S(X,Y, Z)⊕ (⊕4
i=0S(X − 1, i, Z)

)⊕ (⊕4
i=0S(X + 1, i, Z − 1)

)
(2)

72 M. Taha and P. Schaumont

Fig. 3. θ step, θ1 and θ2

The θ operation is done over two successive steps. The first step θ1 calculates
the parity of each column, which is called θplane:

θplane(X,Z) = ⊕4
i=0S(X, i, Z) (3)

In software implementations, θ1 is implemented in incremental steps starting
from Y = 0. We name each XOR operation by the first input, e.g. θ1(X,Y, Z)
is an XOR operation with inputs: S(X,Y, Z) and S(X,Y + 1, Z).
The second step θ2 computes the XOR between every bit of the state and
two parity bits of θplane.

S(X,Y, Z) = S(X,Y, Z)⊕ θplane(X − 1, Z)⊕ θplane(X + 1, Z − 1) (4)

We name these operations by the name of the output bit, e.g. θ2(X,Y, Z) is
an XOR operation with three inputs: the state-bit S(X,Y, Z), the parity bit
θplane(X − 1, Z) and the parity bit θplane(X + 1, Z − 1).

– ρ is a binary rotation over each lane of the state.
– π is a binary permutation over lanes of the state as shown in Fig. 4. Every

lane is replaced with another lane. In other words, π shuffles every row of
lanes to a corresponding column.

– χ is responsible for the non-linearity. It flips a state-bit if its two adjacent
bits along X are 0 and 1:

S(X,Y, Z) = S(X,Y, Z)⊕
(
S(X + 1, Y, Z) · S(X + 2, Y, Z)

)
(5)

We name the χ operation by its output bit, e.g. χ(X,Y, Z) takes three state-
bits: S(X,Y, Z), S(X + 1, Y, Z) and S(X + 2, Y, Z).

– ι is a binary XOR with a round constant.

It is clear that θ and χ are the only operations that can be targeted with
DPA, as they involve mixing between different bits of the state. However, ρ and

Differential Power Analysis of MAC-Keccak at Any Key-Length 73

Fig. 4. Lane indices before and after the π step

Fig. 5. DPA applied to some examples of MAC-Keccak

π operations cannot be ignored; they are needed to track the location of different
bits in the χ operation.

As mentioned earlier, Keccak recommends the direct MAC construction,
which is secured depending on the characteristics of the Sponge [5].

MAC(M,K) = H(K||M) (6)

This construction features an arbitrary-length key, which raised the new chal-
lenge addressed by this paper. The presented analysis can be applied directly to
other MAC constructions (e.g. HMAC) by setting the key-length to the Rate.

3 Analysis of MAC-Keccak Examples

This section is mandatory to understand how the key-length affects DPA. We
will present detailed analysis of some examples of MAC-Keccak and how the
consecutive dependency shows up. We will also show the DPA steps required to
resolve that dependency in different cases.

The studied examples of MAC-Keccak are shown in Fig. 5. We focus on one
column of the state and study the propagation through θ1, θ2 and χ. The effect
of ρ and π is neglected in the figure for clarity.

We define a ‘data-dependent variable’ as any intermediate variable that de-
pends on the input message, and ‘unknown variable’ as any intermediate variable

74 M. Taha and P. Schaumont

that depends only on the key. The unknown variable should be constant from
trace to trace. Also, we define ‘D’ as the set of all the known inputs and data-
dependent variables that can be calculated using the information known to the
adversary.

In the following analysis, we used a systematic approach to identify the re-
quired target operations, in the proper order of dependency. The approach de-
pends on increasing the number of known intermediate variables (the size of D)
by mounting DPA against the unknown variables in a sequential way. First, we
initialize the D set to include all the message bits, and the intermediate variables
that directly depend on them. Then, we select all the internal operations that
process one unknown variable with one element of D. We mount DPA against
these operations, to recover the required unknown variables. If there are still any
unknown variables, we use the just recovered unknowns to update the D set with
more intermediate variables and repeat the same steps of selecting and mounting
DPA attacks. We call the process of updating (or initializing) the D set, selecting
target operations and mounting DPA against them as a ‘DPA iteration’. These
DPA iterations continue until all the unknown variables are recovered. The for-
mal definition of the systematic approach, as an algorithm and a pseudo-code,
is included in the Appendix.

The first example assumes that there is one key-bit and four message-bits
in every column (see Fig. 5, left). The D set will be initialized with all the
input message-bits. In this case, we will select and mount DPA against the first
θ1 operation, which involves one unknown variable (the secret key), and one
element of D (the message-bits). The complete secret key should be recovered
after this DPA iteration.

The second example assumes that there are two key-bits in every column (see
Fig. 5, middle). Similarly, the D will be initialized with all the input message-
bits. However, the second θ1 operation will be selected in this case, as the first
operation has two unknown inputs. By mounting DPA against the selected oper-
ation, the involved unknown variable should be recovered, which is the output of
XORing the two key-bits. Unfortunately, this recovered unknown is not enough
to uncover the original secret key, nor it can be used to forge a MAC digest
because each key-bit will have its individual effect in later operations. In this
case, we will have to go for another DPA iteration. We will use the information
available from the just recovered unknown to calculate the θplane, and add it
to D. In this iteration, we will select the first two operations of θ2, for having
unknown variables (secret key-bits) and elements of D (θplane-bits) at their in-
puts. By mounting DPA against the selected operations, the complete secret key
should be recovered. Note that, we cannot skip the θ1 operation and directly
attack θ2, as every θ2 operation involves two columns of the state, which greatly
increases the search space.

The third example is yet more complicated (see Fig. 5, right). Similar to
the previous example, we assume that there are two key-bits in every column.
However, we assume that the θplane-bits required in the second DPA iteration
are also unknown. Although this scenario is only possible if the key and message

Differential Power Analysis of MAC-Keccak at Any Key-Length 75

bits are interleaved in the input block, it shows that certain key-configurations
may require targeting operations that are deep in the algorithm. In this case,
the first DPA iteration will be similar to the previous example, and the θplane
should be partially recovered. The partially recovered θplane will be added to D.
We will trace the Keccak-function passing through ρ and π, where the location
of bits within the state will be mixed. Finally, the χ operation will be selected,
targeted and the unknown should be recovered. The recovered unknown can be
used to trace-back the Keccak-function to calculate the original key.

The analysis of these MAC-Keccak examples shows several interesting
findings:

– A cryptographic algorithm can be designed in such a way that builds a
hierarchical dependency structure between different key-bytes. Attacking one
key-byte depends on the successful recovery of another key-byte.

– The order of attacking the internal operations should respect the consecutive
dependency between different key-bytes.

– The probability of achieving a successful attack is affected by the number of
dependant DPA iterations.

– The order of attacking internal operations and the number of DPA iterations
in the attack depends on the key-length and the location of the key-bytes
(key configurations) within the input block.

– Key configurations can be selected to maximize the effort required to mount
a successful attack, which will be the focus of our future work.

4 Case Studies

The selected target operations depend heavily on the location of key-bits within
the state. Hence, it becomes important to visualize the relative locations of key-
bits and message-bits within the state. We assume a state-size of b = 1600 bit,
arranged in a 5∗5∗64 array, and an input block size of r = 1088 bit. As the state
fills bottom-up, the new input block will first fill the lower three planes (P([0 : 2])
in Fig. 2), followed by the first two lanes of the fourth plane (L([0 : 1], 3)). We
assume a key-length less than the Rate; i.e. the first input block will contain
key-bits prepended on the message-bits. The key-bits will be in the lower planes
of the state while the message-bits will be in the middle planes. Since this is the
first hash block of the chain, the upper planes will contain zeros.

While there is no current standard for the key-length of MAC-Keccak, we
present detailed analysis of three cases with different key-lengths; starting from
768 bits and adding 128 bits (or two Keccak lanes) in each case. The results
of attacking these cases are highlighted in the following section. The results of
two other cases, namely (Key-length = 832 and 960), are also presented without
detailed analysis as they follow the same attack methodology.

The reasoning behind our choice of long key-lengths is that it gives the MAC-
Keccak implementation higher resistance against DPA. Typically, the attack
complexity increases linearly with the key-length where a separate attack is re-
quired for every key-byte. However, the complexity of attacking MAC-Keccak

76 M. Taha and P. Schaumont

Fig. 6. The DPA of Key-length = 768 bits

increases faster than linear with the key-length due to the consecutive depen-
dency between different key-bytes. This behavior is validated by the results pre-
sented in the following section. Also, long key-lengths are not uncommon in the
cryptographic community. They have been practically used in the applications
of RSA [3].

The analysis of shorter key-lengths (128, 256 and up to 320 bits) is trivial
and can be solved by only one DPA iteration (the easiest case in Section 3). The
studied key-lengths are chosen to highlight the dependency of attack complexity
on key-length, where every case requires a new DPA iteration. The proportional
reduction of the amount of message-bits in each case will make the DPA increas-
ingly harder. We considered cases where the key fills complete lanes, hence the
Z index is always Z = [0 : 63] however, the analysis can be applied to any other
key-length.

4.1 Key-Length = 768 Bits

The key-length is chosen so that the input message-length = 320 bits, the size
of one plane of the state. There will be a single message bit in every column.
Fig. 6 shows the position of the key-bits, message-bits and zeros using shaded,
dotted and white squares respectively.

This case study is similar to the second example discussed in the previous
section (Fig. 5, middle). The attack involves the following steps:

– Add all the input message-bits to the set D.
– Select and target the output of θ1 XOR operations between the key-bits and

message-bits: θ1([0 : 1], 2, Z) and θ1([2 : 4], 1, Z).
– Recover the parity of the key-bits in every column.
– Calculate the θplane, and add it to D.
– Select and target the output of θ2 XOR operations between every key-bit and

the corresponding θplane-bits: θ2([0 : 1], [0 : 2], Z) and θ2([2 : 4], [0 : 1], Z).
– This should recover the required key-bits.

This attack required two DPA iterations.

Differential Power Analysis of MAC-Keccak at Any Key-Length 77

Fig. 7. Data-dependent bits of key-length=1024 bits, before and after π step

4.2 Key-Length = 896 Bits

The key-length is chosen such that the input message-length = 192 bits. Here,
both sheets S(2) and S(3) have no message-bits. This case study is more difficult
than the previous one. The all-unknown sheets will lead to all unknown lanes in
the θplane. These unknown lanes of θplane will require more effort in the attack.

Our attack will follow the following steps:

– Add all the input message-bits to the set D.
– Select and target the output of θ1 XOR operations between key-bits and

message-bits in sheets S([0, 1, 4]): θ1([0 : 1], 2, Z) and θ1(4, 1, Z).
– Recover the parity of the key-bits in each column of those sheets.
– Calculate the partially recovered θplane, and add it to D.
– Select and target the output of θ2 XOR operations of the message-bits of

the neighboring sheets S([1, 4]): θ2(1, 3, Z) and θ2(4, 2, Z).
– Recover the two missing lanes of θplane (L([2, 3], 0)).
– Add the recovered lanes to D.
– Select and target the output of θ2 XOR operations between every key-bit

and the corresponding θplane-bits: θ2([0 : 3], [0 : 2], Z) and θ2(4, [0 : 1], Z).
– This should recover the required key-bits.

The attack in this case required three DPA iterations.

4.3 Key-Length = 1024 Bits

The length of the input message is 64 bits, only one lane (L(1, 3)) with 4 all-
unknown sheets S([0, 2, 3, 4]). The attack in this case will logically be in these
steps: recover the Keccak state after θ step, apply the mapping of ρ and π steps
as shown in Fig. 7, and recover the key using the χ step.

The exact attack will be as follows:

– Add the input message-bits to the set D.

78 M. Taha and P. Schaumont

– Select and target the output of θ1 XOR operations between key-bits and
message-bits in sheet S(1): θ1(1, 2, Z).

– Recover the parity of the key-bits in each column of that sheet.
– Calculate the partially recovered lane of θplane, and add it to D.
– Select and target the output of θ2 XOR operations of the message-bits of

that sheet S(1): θ2(1, 3, Z).
– Recover the data-dependent variables of lane L(1, 3)of the state after θ.
– Also in the same DPA iteration, select and target the output of θ2 XOR

operations of all the key-bits of sheets S([0, 2]): θ2([0, 2], [0 : 4], Z).
– Recover the data-dependent variables of sheets S([0, 2])of the state after θ.
– Add the recovered data-dependent variables to D.
– Select and target the output of χ operations between an unknown variable

and two elements of D: χ(0, 0, Z), χ(1, 1, Z), χ(3, 1, Z), χ(4, 2, Z), χ(1, 3, Z),
χ(3, 4, Z).

– Recover the targeted unknown variables, and add them to D.
– Select and target the output of χ operations between an unknown variable,

one elements of D, and one just recovered unknown: χ(1, 0, Z), χ(4, 0, Z),
χ(0, 2, Z), χ(3, 2, Z), χ(0, 3, Z), χ(2, 3, Z), χ(2, 4, Z), χ(4, 4, Z)

– This should recover all the rest of unknown variables.

The recovered state can be used to trace-back the Keccak-function to retrieve
the original key, or it can be used directly to forge a MAC digest by inserting
the recovered state directly in the χ step. The attack in this case required four
DPA iterations.

5 Practical Results

The experimental evaluation of our analysis was conducted on the reference
software code of Keccak [1] running on 32-bit Microblaze processor [2] built on
top of a Xilinx Spartan-3e FPGA. We used a Tektronix MIDO4104-3 oscilloscope
with a CT-2 current probe to capture the instantaneous current of the FPGA
core as an indication of the power consumption. To reduce the measurement
noise, the processor was programmed to execute the same hashing operation 16
times, while the oscilloscope calculates the average of them. Figure 8 shows one
recorded trace indicating all the steps of the Keccak-function.

The attack was conducted using the Correlation Power Analysis [9] with Ham-
ming Weight power model. The power model was built using an 8-bit key guess
at a time. This choice was motivated to reduce the algorithmic noise (because
it is a 32-bit processor, where the processing of the remaining 24 bits will be
considered noise) at a practical search space (256 different key guesses).

The results of attacking MAC-Keccak with key-lengths = (768, 896 and 1024),
as discussed in the previous section, are shown in Fig. 9. The figure also shows
the results of attacking two other cases; key-lengths = (832 and 960), that were
analyzed using the same approach. The figure shows the success rate of each
case study as a function of the number of traces used in the analysis, where the
success rate is the percentage of key-bytes that have been recovered successfully.

Differential Power Analysis of MAC-Keccak at Any Key-Length 79

Fig. 8. A power trace of MAC-Keccak

Fig. 9. Success rate of different case studies

The consecutive dependency between different key-bytes in MAC-Keccak af-
fects the success rate of the attack as follows. Assuming that a single DPA is
successful with probability p. The key-bytes recovered in the first DPA iteration
will have probability of success p. Key-bytes of the second DPA iteration will be
successful only if all the involved key-bytes of the previous iteration were recov-
ered successfully and the second iterations itself was successful. Assuming that
the number of previously recovered and involved key-bytes is n, the probability
of success in the second DPA iteration will be p(n+1). Similarly, the probability
of success of the third and forth DPA iterations will drop very quickly depending
on the number of previous, involved key-bytes. As a result, the complexity of a
complete DPA attack on MAC-Keccak increases faster than linear by increasing

80 M. Taha and P. Schaumont

the levels of consecutive dependency, which is reflected by the number of DPA
iterations required. This behavior can be seen in the results by comparing the
success rate of the studied cases at a fixed number of traces, as shown by the
vertical line in the figure.

There is another remark in the figure, where the success rate of each case
builds up very quickly in the first 10,000 traces, then in a slower way through the
remaining traces. The reason of this behavior is that key-bytes are recovered with
different probability of success within the same case. The key-bytes recovered in
the first DPA iteration will build the success rate quickly, while those recovered
in later iterations will build the success rate in a slower and flatter way.

6 Conclusion and Future Work

In this paper, we demonstrated the challenge of selecting the proper target opera-
tion in MAC-Keccak with variable key-length. We used a systematic approach to
increase the number of known intermediate variables by attacking the unknown
variables in a hierarchical way. We studied in full details several, practically-
difficult, case studies of MAC-Keccak. The attack was validated by a practi-
cal attack against the reference software code running on a 32-bit Microblaze
processor.

Our work has interesting implications. We plan to search for the best possible
location of key-bits in an input block, in order to maximize the effort for the
attacker. We believe the concept of hierarchical dependency of unknowns also
has value for the design and implementation of other cryptographic algorithms
that offer this flexibility.

References

1. Keccak reference code submission to NIST (round 3), http://csrc.nist.gov/

groups/ST/hash/sha-3/Round3/documents/Keccak FinalRnd.zip

2. Xilinx microblaze soft processor core,
http://www.xilinx.com/tools/microblaze.htm

3. RSA cryptography standard PKCS# 1 v2.2. RSA Laboratories, p. 63 (2012)
4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-

tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions 0.1 (2011), http://sponge.noekeon.org/CSF-0.1.pdf

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak reference. Sub-
mission to NIST (Round 3) 3.0 (2011),
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

7. Bertoni, G., Daemen, J., Debande, N., Le, T.H., Peeters, M., Assche, G.V.: Power
Analysis of Hardware Implementations Protected with Secret Sharing (2013), pub-
lished: Cryptology ePrint Archive, Report 2013/067, http://eprint.iacr.org/

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak SHA-3 submis-
sion. Submission to NIST (Round 3) (2011)

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Keccak_FinalRnd.zip
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Keccak_FinalRnd.zip
http://www.xilinx.com/tools/microblaze.htm
http://sponge.noekeon.org/CSF-0.1.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://eprint.iacr.org/

Differential Power Analysis of MAC-Keccak at Any Key-Length 81

9. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

10. Daemen, J., Bertoni, G., Peeters, M., Van Assche, G., Van Keer, R.: Keccak im-
plementation overview. Technical report, NIST (2012)

11. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York, Inc.,
Secaucus (2002)

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–789. Springer, Heidelberg (1999)

13. McEvoy, R., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power anal-
ysis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg
(2008)

14. Taha, M., Schaumont, P.: Side-channel analysis of MAC-Keccak. In: 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST) (June
2013)

15. Zohner, M., Kasper, M., Stöttinger, M., Huss, S.: Side channel analysis of the SHA-
3 finalists. In: Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 1012–1017 (March 2012)

A Systematic Analysis for DPA of MAC-Keccak

The systematic approach used in the paper to identify the required target oper-
ations is composed of the following steps:

1. Add all the message bytes to the set D.
2. Calculate all the data-dependent variables that depend on the available

information.
3. Add these new calculated variables to the set D.
4. Select the operations that process an element of D and a constant unknown.
5. Target the output of these operations with DPA to recover the unknown.
6. If the recovered unknown is enough to recover the required key, finish.

Else,
- Repeat from Step 2 using the information that became available from the
just recovered unknown.

MAC-Keccak can be viewed as a Directed Acyclic Graph, where vertices (V)
represent the internal operations and edges (E) represent inputs and intermedi-
ate variables. The vertices are numbered similar to the order of executing the
operations within the algorithm. The pseudo-code of the systematic approach is
shown as follows, where the output is the correct value of all the edges, including
the required secret key.

We used the following data objects:

– Flag[e]: C for constant edges, D for unknown data-dependent edges, SetD
for known data-dependent edges.

– Init[e]: The initial values of Flag[e]; C for key-bytes, SetD for message
bytes, D for all the rest.

82 M. Taha and P. Schaumont

– Required[v]: The set of operations that need to be targeted to recover the
full key.

– e.Eval(): A function to evaluate the value of edge e.
– v.DPA(): A function to apply DPA on the output of vertex v.

The code consists of three phases. The initialization phase flags the initial
values of the edges. The exploration phase flags the constant edges with C and
marks the set of target internal operations. The attack phase performs a greedy
search for new target operations and mounts DPA attacks against them.

Algorithm 1. Systematic Analysis for DPA of MAC-Keccak

Require: Graph G(V,E)
Require: Init[E]

� Initialization Phase: step 1
Flag[E] = Init[E];

� Exploration Phase
for each vertex v in V do

if all Flag[v.input] == C then
Flag[v.output] = C;

end if
if any Flag[v.input] == C & (any Flag[v.input] == D or SetD) then

Required[v] = 1;
else

Required[v] = 0;
end if

end for
� Attack Phase:

while any Required == 1 do
for each vertex v in V do

if all Flag[v.input] == SetD then
v.output.Eval(); � step 2
Flag[v.output] = SetD; � step 3

end if
end for
for each vertex v in V do

if any Flag[v.input] == C & any Flag[v.input] == SetD) then � step 4
v.DPA(); � step 5
Flag[v.input] == SetD;
Required[v] = 0; � step 6

end if
end for

end while
return Value of all E

Generic State-Recovery and Forgery Attacks

on ChopMD-MAC and on NMAC/HMAC

Yusuke Naito1, Yu Sasaki2, Lei Wang3, and Kan Yasuda2

1 Mitsubishi Electric Corporation, Japan
2 NTT Secure Platform Laboratories, Japan

3 Nanyang Technological University, Singapore
Naito.Yusuke@ce.MitsubishiElectric.co.jp,

{sasaki.yu,yasuda.kan}@lab.ntt.co.jp, Wang.Lei@ntu.edu.sg

Abstract. This paper presents new attacks on message authentication
codes (MACs). Our attacks are generic and applicable to (secret-prefix)
ChopMD-MAC and to NMAC/HMAC, all of which are based on a
Merkle-Damg̊ard hash function. We show that an internal state value
of these MACs can be recovered with time/queries less than O(2n)—
roughly, with an O(2n/n) complexity, where ChopMD has 2n-bit state
and NMAC/HMAC n-bit. We also show that state-recovery can be ex-
tended to MAC-security compromise, such as almost universal forgeries
and distinguishing-H attacks. While our results remain to be of theoret-
ical interest due to the high attack complexity, they lead to profound
consequences. Namely, our analyses provide us with proper understand-
ing of these MAC constructions, for in the literature the complexity has
been implicitly and explicitly assumed to be O(2n). Since the complexity
is very close to 2n, we make a precise calculation of attack complexities
and of success probabilities in order to show that the total complexity is
indeed less than 2n. Moreover, we perform an experiment by computer
simulation to demonstrate that our calculation is correct.

Keywords: Generic attack, internal state recovery, multi-collision,
2n security, almost universal forgery, distinguishing-H.

1 Introduction

A message authentication code (MAC) is a secret-key primitive that ensures
integrity of data. A MAC is a function which takes as input a secret-key K and
a variable-length message M , and outputs a fixed-length tag σ. The secret-key
K must be confidentially shared between two parties prior to communication.
The sender produces a tag σ of a message M by using the secret-key K, and
sends the pair (M,σ) to the receiver. The receiver re-produces a tag σ∗ of the
message M by using its own secret-key K, and checks if σ = σ∗. If they are
equal, then it means that the received message M is indeed sent correctly from
the other party. Otherwise, it means that the message M or the tag σ or both
must have been modified or forged during transmission.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 83–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 Y. Naito et al.

An effective way to construct an efficient MAC scheme is to key a hash
function, where the key is kept secret. Many of the existing hash functions
(e.g. [1,10,14,25]) are based on an iterative structure called the Merkle-Damg̊ard
construction [8, 19]. As a result, there exist a number of MAC schemes that are
realized by keying the Merkle-Damg̊ard construction, examples being secret-
prefix LPMAC [30] and ChopMD-MAC [7], as well as the widely standardized
NMAC/HMAC [3].

State-Recovery, Forgery and Distinguishing Attacks. Most devastating
to MACs is the recovery of secret keys, as in [6,13,16,31]. However, to iterative
MACs, almost equally destructive is the recovery of an internal state value.
The internal state values are produced as a result of iteration, and usually all
of them need to be kept secret in order for the MAC scheme to be secure.1

An internal state recovery would allow an adversary to manipulate succeeding
values. Such a state recovery can lead to serious compromise of MAC security,
such as almost universal forgeries (the notion introduced by Dunkelman et al.
in [12]) and distinguishing-H attacks (the notion introduced by Kim et al. in [15];
a distinguishing-H attack is to differentiate a MAC scheme calling a specific
compression function from the one calling a random compression function).

The security of hash-based MAC schemes against state recovery is not as
well-understood as the pseudo-randomness of these MACs. LPMAC is known to
be pseudo-random up to O

(
2n/2

)
queries [4],2 NMAC/HMAC also O

(
2n/2

)
[2],

and ChopMD-MAC O(2n/n) [5, 23] (when the state size is 2n bits and the tag
size n bits, using Th. 3.1 of [23]). These results only tell us that the security
against state recovery should lie somewhere between these figures and O(2n).
Moreover, exactly what an adversary can do after a recovery to extend it to
forgery/distinguishing attacks heavily depends on which particular MAC con-
struction is in question.

Previous Work. Sasaki [26] has shown that, for narrow-pipe (meaning the
internal state size equal to the tag length, both n bits) LPMAC, by using colli-
sions, one can recover an internal state with just O

(
2n/2

)
work. Sasaki’s method

is generic, treating the underlying compression function as a black-box. In the
same work, Sasaki has utilized the recovered state value for mounting O

(
2n/2

)
almost universal forgery and distinguishing-H attacks on narrow-pipe LPMAC,
where the forgery is created without prior knowledge about the length of the
target message.

Peyrin et al. [20] have presented a generic state recovery attack on HMAC
with a complexity O(2n/2). Their attack exploits a related key. Also, in the
same work, Peyrin et al. have presented a distinguishing-H attack, where the
complexity is O(2n/2). Their attacks are not applicable to NMAC.

1 Only a limited number of MAC constructions (e.g. [11]) are resistant to the leakage
of internal state values.

2 The notation O(· · ·) means that we are omitting the exact constants.

Generic State-Recovery and Forgery Attacks on ChopMD-MAC 85

Table 1. Generic state-recovery attacks: comparison of our results with previous work

type setting scheme complexity optimal? source

Secret-prefix narrow LPMAC O
(
2n/2

)
� [26]

wide ChopMD-MAC O(2n/n) � this work

Envelope related-key HMAC O
(
2n/2

)
� [20]

single-key NMAC/HMAC O(2n/n) this work

Problem Statement. Sasaki’s method of internal state recovery on LPMAC is
not effective in attacking ChopMD-MAC. In the case of ChopMD-MAC, its wide
size of internal state (which we assume is 2n bits) makes it intangible to cause
internal state collisions. Also, Peyrin et al.’s generic state recovery crucially relies
on the adversary’s access to a related key, which makes it infeasible to use the
same idea and mount a similar attack without a related key. Therefore, we pose
the following questions:

1. Is it possible to recover an internal state of ChopMD-MAC with a complexity
less than O(2n)?

2. Without using a related key, can we recover an internal state of HMAC with
less than O(2n) complexity?

Our Contributions. We answer the two questions affirmative. Table 1 sum-
marizes our generic state-recovery attacks. Moreover, we make the following
contributions:

– We show that our state-recovery attack on secret-prefix ChopMD-MAC can
be extended to almost universal forgery and distinguishing-H attacks.

– Similarly, our state-recovery attack on HMAC can be extended to a distin-
guishing-H attack. Our attack on HMAC is also applicable to NMAC.

– Our techniques exploit a multi-collision of internal state values, and the
complexities of the recovery become roughly O(2n/n).

– Since the attack complexities are very close to 2n, we shall perform a precise
calculation of complexities and of success probabilities, verifying that the
total complexity is actually less than 2n.

– Moreover, we shall conduct an experiment by computer simulation to demon-
strate that our calculation is correct.

Implications. While our attacks remain largely theoretical due to their high
complexities, our results make significant contributions to the proper understand-
ing about MAC security; by our results, we are now forced to abandon part of
the popular belief in the O(2n) security of these MAC schemes.

Specifically, for the ChopMD construction, there exists previous work [9] that
has claimed O(2n) security with respect to the notion called indifferentiability [7,
18]. Our generic (state-recovery, forgery and distinguishing-H) attacks on secret-
prefix ChopMD-MAC indicate that, together with Th. 3.1 of [23], such an O(2n)

86 Y. Naito et al.

claim cannot be made and the security proof in [9] is not entirely correct.3

Also, by [5] and Th. 3.1 of [23], we know that our attack on ChopMD-MAC is
essentially optimal, making the bound O(2n/n) basically tight.

For NMAC/HMAC, several pieces of previous work [15, 21, 22, 27, 32] have
implicitly or explicitly assumed O(2n) security against distinguishing-H attacks.
The previous work [21] contains a dedicated attack that has a complexity higher
than “O(2n/n)” (when the constants are evaluated exactly), and such an attack
now becomes of little consequence due to our generic attack.

At the same time with this paper, Leurent et al. also published generic state-
recovery and distinguishing-H attacks on NMAC/HMAC [17]. Differently from
our attacks based on the multicollision technique, their attacks are based on
cycle-detection technique. On one hand, their attacks must query extremely
long messages, e.g. up to 2n/2 blocks, which is impractical, while our attacks use
short messages. On the other hand, their attacks achieved a lower complexity
O(2n/2).

2 Background and Related Work

2.1 Hash Function

Merkle-Damg̊ard Hash Function. Given an input message M ∈ {0, 1}∗, a
Merkle-Damg̊ard hash function [8, 19] first pads it with a value pad so that the
length of M‖pad is multiple block long, then divides the padded message to
blocks M [0]‖M [1]‖ · · · ‖M [t], and processes these blocks sequentially from M [0]
to M [t]:

v[i + 1]← h(v[i],M [i]), 0 ≤ i ≤ t,

where h is compression function with fixed-length inputs, and v[0] is a public
constant denoted as initial vector (IV). Finally Merkle-Damg̊ard hash function
applies a finalization function g to v[t + 1], and outputs v = g(v[t + 1]) as the
hash digest. If the bit length of v is equal to that of v[i] (0 ≤ i ≤ t+1), the hash
function is called narrow-pipe. And if the bit length of v is less than that of v[i]
(0 ≤ i ≤ t+ 1), the hash function is called wide-pipe.

ChopMD [7] is a wide-pipe Merkle-Damg̊ard hash function. The finalization
g is chopping several bits of v[t+ 1], and outputting the other bits as the hash
digest.

r-Multi-collision on g(h(·, ·)). Our attacks on ChopMD MAC in Section 3
use an r-multi-collision on the last compression function call and the finalization
function g(h(v[t],M [t])). More precisely, we fix the value of v[t] as a constant,
and find a set of r distinct values of M [t], denoted as M [t]i (0 ≤ i ≤ r − 1),
satisfying the following relation

g(h(v[t],M [t]0)) = g(h(v[t],M [t]1)) = · · · = g(h(v[t],M [t]r−1)).

3 Our result does not necessarily invalidate the whole framework of [9]; it seems that
the proof in [9] misses the case of our attack, which should be treated as a bad event.

Generic State-Recovery and Forgery Attacks on ChopMD-MAC 87

Note that such an r-multi-collision is generated by online interaction with
ChopMDMAC. Recall that v[t] is confidential in ChopMDMAC and the outputs
of g(h(·, ·)) are public as tags. We keep the message blocksM [0]‖M [1]‖ · · · ‖M [t−
1] as constants, which makes v[t] a constant, then vary the value of the last mes-
sage block M [t], and finally derive an r-multi-collision by observing the tag
values.

r-Multi-collision on h(·, ·). Our attacks on NMAC/HMAC in Section 4 use
an r-multi-collision on a compression function call v[i+ 1] = h(v[i],M [i]). More
precisely, we fix the value of M [i] as a constant, and find a set of r distinct values
of v[i], denoted as v[i]j (0 ≤ j ≤ r − 1), satisfying the following relation

h(v[i]0,M [i]) = h(v[i]1,M [i]) = · · · = h(v[i]r−1,M [i]).

Note that such an r-multi-collision is generated by offline computations. We set
M [i] to a constant value, choose random values as v[i] and compute h(v[i],M [i])
to search an r-multi-collision.

2.2 Definitions of Hash-Based MACs

Secret-Prefix ChopMD MAC. There are two common methods to build a
secret-prefix MAC based on a ChopMD hash function H(IV, ·). The first one re-
places IV by a secret key K, and computes the tag of a messageM by H(K,M).
The second one prepends a secret key K of a single block size to a message M ,
and computes the tag by H(IV,K‖M).

NMAC and HMAC. These two schemes [3] are MACs based on a Merkle-
Damg̊ard hash function H(IV, ·). NMAC keys a Merkle-Damg̊ard hash function
by replacing IV with a secret key K. For a message M , the tag of NMAC is
derived with two secret keys, an inner key K1 and an outer key K2, as below:

NMAC(K1,K2,M) = H(K2, H(K1,M)).

HMAC is a variant of NMAC and uses a secret key K. For a message M , the
tag of HMAC is derived as below:

HMAC(K,M) = H(IV, (K ⊕ opad)‖H(IV, (K ⊕ ipad)‖M)),

where ipad and opad are two distinct constants.

2.3 Security of Hash-Based MAC

As a cryptographic primitive, a hash-based MAC should receive continuous secu-
rity evaluation. We briefly describe several attacks on hash-based MACs, which
are related to this paper.

88 Y. Naito et al.

Distinguishing-H Attack. It was introduced by [15] for hash-based MAC
constructions. Let C[h] be a hash-based MAC. A distinguishing-H adversary A
then tries to distinguish the real oracle C[h](·) from an oracle C[f](·), where f
denotes a random compression function. That is, the oracle C[f](·) is just like the
real oracle C[h](·) except that its component h is now replaced with a random
compression function f . The advantage measure of an adversary A is defined as

Adv := Pr
[
AC[h](·) = 1

]− Pr
[
AC[f](·) = 1

]
.

State-Recovery Attack. As briefly stated in Section 1, the internal states v[i]s
of hash-based MACs should also be kept confidential. A state-recovery adversary
then tries to recover the value of some internal state of a (chosen) message. Let
H(K, ·) be the target hash-based MAC. The adversary is allowed to interact with
H(K, ·) by sending chosen messages to receive the corresponding tags. In the end,
the adversary produces a pair (M, v), where M can be one of previous queried
messages. If v is equal to some internal state v[i] of H(K,M), the adversary
wins, namely succeeding in state-recovery.

2.4 Previous Work on MACs with a Specific Hash Function

Several pieces of previous work have presented distinguishing-H attacks on MACs
using specific hash functions such as MD4, MD5, SHA-0, and reduced SHA-1.
Kim et al. [15] showed distinguishing-H attacks on HMACs based on MD4,
33-step MD5, SHA-0 and 43-step SHA-1, where the complexities are 2121.5,
2126.1, 2109 and 2154.9, respectively. Also, Rechberger and Rijmen [21] proposed
distinguishing-H attacks on HMAC based on 50-step SHA-1, where the com-
plexity is 2153.5. Wang et al. [32] presented distinguishing-H attacks on HMAC
based on MD5, where the complexity is 297. Very recently, Sasaki and Wang [27]
reduced the complexity of their attacks to 289.

3 New Generic Attacks on ChopMD-MAC

In this section, we describe several attacks on ChopMD-MAC having a 2n-bit
state size and an n-bit tag size. All of the attacks are based on an observation
that, for any secret-key, we can succeed in an internal state recovery attack by
utilizing an n-bit multi-collision generated with a complexity roughly O(2n/n).
The attack can be converted to a distinguishing-H attack and an almost universal
forgery.

3.1 Internal State Recovery Attack

Overview. Fig. 1 illustrates the sketch of the internal state recovery attack.
This case deals with g which chops the first half bits of an input and outputs
remaining bits. To simply the explanation, this sketch omits the padding value.
First of all, the adversary performs on-line queries. She chooses O(2n/n) distinct

Generic State-Recovery and Forgery Attacks on ChopMD-MAC 89

Fig. 1. Attack on ChopMD-MAC

first blocks, M [1] to obtain an r-multi-collision of ChopMD-MAC, where T1 is
the r-multi-collision tag. Now, it knows that the half bits of the internal state
after processing the first block is T1. However, it cannot directly observe the
r-chopped values T ′

1. To solve this problem, it fixes the second block M [2] and
chooses 2n/r distinct internal states v[2] such that the last n-bit value is T1 to
specify one of the r-values T ′

1. For each v[2], it computes v[3] ← h(v[2],M [2]).
For each M [1], it makes a query M [1]‖M [2] to obtain the tag T2. Then one
can expect that one of r-internal state values T ′

1‖T1 connects with one of 2n/r
values v[2]. This connection can be observed by the collision of g(v[3]) and T2

and by a collision of third block. If T2 = g(v[3]), it chooses third block messages
M [3], makes queries M [1]‖M [2]‖M [3] to obtains the tag T3, and checks whether
T3 = g(h(v[3],M [3])). If the collision occurs, it finds the internal state v[2] after
processing the first block.

Attack Procedure. In this attack, we shall construct an r-multi-collision of
ChopMD-MAC. We postpone determining the exact value of r till we finish
describing our attack. We set N :=

⌈
(r!)1/r · 2(r−1)n/r

⌉
.

1. Choose first message block M [1] so that the message with the padding value
pad1, denoted by M [1]‖pad1, fits in the first block, and make queries M [1]
to obtain the corresponding tag. Iterate this until an r-multi-collision of the
tag is generated (about N times). Let M [1]i, where i ∈ {1, 2, . . . , r}, be the
r values forming an r-multi-collision, and let T1 be the corresponding tag. If
no r-multi-collision is found, abort.

2. Fix a value of the second message block M [2] so that the message with the
padding value pad2, denoted by M [2]‖pad2, fits in the second block.

3. Choose 2n/r distinct internal state values v[2]j so that g(v[2]j) = T1, and
compute its next state values v[3]j ← h

(
v[2]j ,M [2]‖pad2

)
, where we have j ∈

{1, 2, . . . , 2n/r}. Store the pairs (v[2]j , g(v[3]j)), where j = {1, 2, . . . , 2n/r}.
4. For each first message block M [1]i‖pad1, where i ∈ {1, 2, . . . , r}, make

queries M [1]i‖pad1‖M [2] to obtain the corresponding tags T2,i. Check the
match of T2,i and g(v[3]j) for j = 1, 2, . . . , N . If the match is found, choose

90 Y. Naito et al.

Table 2. Complexity of Our Generic Attacks on ChopMD-MAC and HMAC with
Several Parameters. An example of the wide-pipe hash with n = 128 is SHA-256 with
a truncation of half bits with n = 256 is SHA-512 with a truncation of half bits.
An example of the narrow-pipe hash with n = 256 is SHA-256 and with n = 512 is
SHA-512.

Type n r∗(n) Attack Complexity Success Probability

ChopMD 128 22 2125.36 0.316
256 35 2252.48 0.316

HMAC 256 38 2253.34 0.316
512 63 2508.61 0.316

a value of the third message block M [3] so that the message with the
padding value pad3, denoted by M [3]‖pad3, fits in the third block, and
make a query M [1]i‖pad1‖M [2]‖pad2‖M [3] to obtain the tag T3. If we have
T3 = g(h(v[3]j ,M [3]‖pad3)), then v[2]j becomes the internal state after pro-
cessing M [1]i‖pad1.

Complexity and Success Probability. Step 1 requires to make N queries
to obtain the r-multi-collision with a probability ≈ 1/2 [28, 29]. The memory
requirement is N for the internal state values on finding the r-multi-collision,
and r for storing the pairs (v[2], v[3]). Step 2 is negligible. Step 3 requires �2n/r�
offline computations of h. Step 4 requires to make r 2-block queries, which is 2r
queries, and if Ti = g(v[3]j), requires an offline computation of h and requires
to make a 3-block query. Finally, we can conclude that the query complexity is
N + 5r for Steps 1 and 4, the time complexity is �2n/r� + r for Steps 3 and 4,
and the memory complexity is N + �2n/r� for Steps 1 and 3.

The success probability of Step 1 is roughly 1/2 [28,29] and the success prob-
ability of Step 4 is roughly 1− 1/e. Finally, the success probability of the entire
attack is 1/2 · (1− 1/e) ≈ 0.316.

Determining r for Typical Parameters. The attack complexity, being the
maximum of query, time, and memory complexities, lies somewhere between
2n/n and 2n. It can be minimized by appropriately choosing a value of r. The
total query complexity is N + 5r and the time complexity is �2n/r� + r. Now
let r∗ = r∗(n) be the integral value of r that minimizes the difference between
N + 5r and �2n/r� + r. Table 2 gives us values of r∗ for typical choices of n
where we choose r∗ = 22 and 35 for 128- and 256-bit functions, respectively.

Machine Experiment. We carried out a small experiment to verify the evalu-
ation of the multi-collision. We modifed the compression function of SHA-256 so
that the output is truncated to 16 bits. For n = 16, according to the evaluation,
the value of r∗ is r∗ = 7, which achieves the time and memory complexities of

Generic State-Recovery and Forgery Attacks on ChopMD-MAC 91

215.47 and the query complexity of 215.78. We then checked the probability that
a 7-multi-collision is generated with 215.78 queries.

We chose 1000 groups of 215.78 randomly chosen queries, and counted how
many groups generated a 7-multi-collision. As a result, 507 out of 1000 groups
generated a 7-multi-collision. This matches the evaluation of [28, 29], where a
7-multi-collision is generated with probability about 1/2.

3.2 Distinguishing-H Attack

The internal state recovery attack in Section 3.1 is immediately converted to
a distinguishing-H attack with the same complexity. Since the internal state
recovery attack is based on the simulation of h, the above attack fails with a
non-negligible probability if ChopMD-MAC uses a random function f , while the
above attack is succeeded with a non-negligible probability if ChopMD-MAC
uses a compression function h. A distinguishing-H attack can be obtained by
modifying Step 4 and by adding Step 5.

4. For each first message block M [1]i‖pad1, where i ∈ {1, 2, . . . , r}, make
queries M [1]i‖pad1‖M [2] to obtain the corresponding tags T2,i. Check the
match of T2,i and g(v[3]j) for j = 1, 2, . . . , N . If the match is found, choose
a value of the third message block M [3] so that the message with the
padding value pad3, denoted by M [3]‖pad3, fits in the third block, and
make a query M [1]i‖pad1‖M [2]‖pad2‖M [3] to obtain the tag T3. If T3 =
g(h(v[3]j ,M [3]‖pad3)), output 1.

5. Output 0.

Evaluation of the Advantage. Here, we evaluate the advantage of the attack.
Let Prh be the probability that the adversary outputs 1 when he interacts with
the oracle instantiating h. Also let Prf be the probability that the adversary
outputs 1 when it interacts with the oracle instantiating a randomly chosen
compression function f with the same range and domain as h. We calculate the
advantage Adv := |Prh−Prf |.

First, we evaluate the probability Prh. The success probability of Step 1 is
roughly 1/2 [28, 29] and the success probability of Step 4 is roughly 1 − 1/e.
Finally, Prh ≈ 1/2 · (1− 1/e).

On the other hand, suppose that the compression function is f . The adversary
outputs 1 only if an event (i) occurs and then an event (ii) occurs.

(i) An r-multi-collision is generated at Step 1.

(ii) T2,i = g(v[3]j) at Step 4 and T3 = g(h(v[3]i,M [3]||pad3)).
The probability of the event (i) is about 1/2. The probability of the event (ii) is

about
∑�2n/r

j=1 ((1/2n) · (r/2n)) = 1/2n. Hence, Prf = (1/2n) · (1/2).
Finally, we can compute the advantage Adv = |Prh−Prf | = (1/2)·(1−1/e−

1/2n) ≈ 0.316, which is big enough to be a valid distinguisher.

92 Y. Naito et al.

3.3 Existential and Almost Universal Forgery Attacks

If the value of the internal state v[1] after processing the first message block
M [1] can be recovered, one can generate the valid tag of a message M [1]‖M for
any M . Therefore, an almost universal forgery attack (and also an existential
forgery attack) can be performed with the same complexity as the internal state
recovery attack.

3.4 Observations

Optimality of Our Attack. Our generic forgeries (and attacks) immediately
convert to the differentiable attack on ChopMD. This is ensured by Theorem 3.1
of [24]: there is the following relation between the advantages of a (existential
or almost universal) forgery and of indifferentiability from a random oracle (

[24]): AdvforgechopMD ≤ AdvforgeRO + AdvindiffchopMD. AdvforgeH is the advantage of the

forgery on a secret prefix MAC based on a hash function H , and AdvindiffH is the
indifferentiable advantage on H .

The complexity for ChopMD to be differentiable from a random oracle is at
least O(2n/n) [5]. Therefore the above relation offers the lower bounds of the
complexities of the forgeries on ChopMD-MAC which is at least O(2n/n), while
our forgeries guarantee that the complexities are at most O(2n/n). Therefore,
the complexity of our forgery is optimal.

Though Daubignard et al. [9] claimed that the complexity to be differentiable
from a random oracle is at least O(2n), our result proved that their result is
incorrect.

Generalized Finalization Function g. In the above discussions, we focused
on g being a chop function, while the attacks can also be performed on other g
when it has the following properties.

1. For any y ∈ {0, 1}n, there are exactly 2n values which are mapped onto the
value y.

2. The 2n values are efficiently computable.

The properties 1 and 2 are required to recover the values v[3]i in Step 1. The
finalization function g which has these property is for example g(x1‖x2) = x1⊕x2

where x1, x2 ∈ {0, 1}n.

4 Generic Attacks on NMAC/HMAC

In this section, we describe our state-recovery and distinguishing-H attacks on
NMAC/HMAC that instantiates a generic narrow-pipe Merkle-Damg̊ard hash
function. We focus on HMAC, as HMAC is much more widely used in practice.
Essentially the same attack can be applied to NMAC. All of our attacks are
based on an observation that, for any key, we can recover an internal state value
by utilizing a multi-collision generated with a complexity of roughly O(2n/n).

Generic State-Recovery and Forgery Attacks on ChopMD-MAC 93

Fig. 2. Attack on HMAC

4.1 State-Recovery Attack

We start with the state-recovery attack. Fig. 2 illustrates the attack on HMAC,
where the padding value is omitted.

Overview. The adversary first performs offline computations; it fixes the second
blockM [2] of a messageM and simulates the output of the compression-function
computation h

(
v[2],M [2]

)
for O(2n/n) distinct values of chaining variable v[2]

to obtain an r-multi-collision of the output. The value of r is chosen between 2
and n, depending on the size of the chaining variable. Let v[3]∗ be the value of
the r-multi-collision obtained. Now, the adversary knows that v[3]∗ should occur
more frequently than other values of v[3] (roughly r times) as long as the second
message block is fixed to M [2]. The adversary would not be able to observe
directly the output value of the second block. However, the adversary can detect
that the value is equal to v[3]∗ as follows: it searches for a pair of third message
blocks (M [3],M [3]′) that produce a collision when the chaining variable is v[3]∗,
so that

h
(
v[3]∗,M [3]

)
= h

(
v[3]∗,M [3]′

)
.

Hence, at the end of this precomputation phase, the adversary has found r
choices of v[2], together with the blocks M [2], M [3] and M [3]′.

After the offline computation, the adversary chooses 2n/r distinct first message
blocksM [1] and makes queriesM [1]

∥∥M [2]
∥∥M [3] andM [1]

∥∥M [2]
∥∥M [3]′. If a

collision occurs between two messages, then the adversary knows that the internal
state v[2] takes only r possibilities and v[3] is uniquely determined as v[3]∗. Then,
the real value of v[2] can be easily identified from r possibilities with a few more
queries. The attack complexity, which is max{query, time, memory}, is between

94 Y. Naito et al.

6·2n/n and 2n. In other words, the lower bound of the attack complexity is 6·2n/n.
The success probability is 1− 1/e.

Detailed Procedure. We shall construct an r-multi-collision of internal state
values. We postpone determining the exact value of r till we finish describing
our attack. We set N :=

⌈
(r!)1/r · 2(r−1)n/r

⌉
.

1. Fix a value of the second message block M [2].

2. Choose an internal state value v[2] and compute v[3]← h
(
v[2],M [2]

)
. Iterate

this until an r-multi-collision of v[3] is generated (about N times). Let v[2]i,
i ∈ {1, 2, . . . , r}, be the r values forming the r-multi-collision. Also, let v[3]∗

be the colliding value of v[3]. Store the r values of v[2]i and v[3]∗.
3. Choose 2(n/2)+1 distinct values of M [3] so that M [3]‖pad3 fits in the third

block. Compute v[4]← h(v[3]∗,M [3]‖pad3) and obtain a pair of M [3] which
makes a collision of v[4]. Let (M [3],M [3]′) be two messages satisfying the
relation h(v[3]∗,M [3]‖pad3) = h(v[3]∗,M [3]′‖pad3).

4. Choose �2n/r� distinct M [1]j for 1 ≤ j ≤ �2n/r�, and for each j, make
queries M [1]j‖M [2]‖M [3] and M [1]j‖M [2]‖M [3]′ to obtain the correspond-
ing tags Tj and T ′

j. Check the match of Tj and T ′
j . If the match is found, let

M [1]∗ be the corresponding M [1]j.

5. For each value of v[2]i where i ∈ {1, 2, . . . , r}, choose 2(n/2)+1 distinct values
of M [2] so that M [2]‖pad2 fits in the second block. Then, compute the
corresponding v[3] ← h(v[2]i,M [2]‖pad2) and find a pair of message M [2]i
and M [2]′i that make a collision of v[3].

6. For each i ∈ {1, 2, . . . , r}, make queries M [1]∗‖M [2]i and M [1]∗‖M [2]′i and
check the match of two tags. If they match, the corresponding v[2]i is the
internal state after processing M [1]∗.

Evaluation of the Attack Complexity. Step 1 is negligible. After N compu-
tations at Step 2, we expect to find an r-multi-collision of v[3] with a probability
≈ 1/2 [28, 29]. Therefore, Step 2 requires N offline computations of h to obtain
the r-multi-collision. The memory requirement is N for storing tag values on
finding the r-multi-collision, r for storing Mj[1]. Step 3 requires 2(n/2)+1 offline
computations. Step 4 requires to make �2n/r� 3-block paired queries, which is
6 · �2n/r� queries. Step 5 requires r · 2(n/2)+1 offline computations. Step 6 re-
quires r 2-block paired queries, which is 4r queries. Because r is much smaller
than N , the complexities for Steps 3, 5, and 6 are negligible. Finally, we can
conclude that the query complexity is 6 · �2n/r� for Step 4 and both of the time
and memory complexities are N for Step 2, where N =

⌈
(r!)1/r · 2(r−1)n/r

⌉
.

The success probability of Step 2 is roughly 1/2 [28,29] and the success prob-
ability of Step 4 is roughly 1− 1/e. Note that the success probabilities of other
steps can increase to almost 1 with trying more message values because the com-
plexities of those steps are much smaller than the dominant parts. Finally, the
success probability of the entire attack is evaluated as 1/2 · (1− 1/e) ≈ 0.316.

Generic State-Recovery and Forgery Attacks on ChopMD-MAC 95

Determining r for Typical Parameters. The attack complexity, being the
maximum of query, time, and memory complexities, lies somewhere between
2n/n and 2n. It can be minimized by appropriately choosing a value of r. The
total query complexity is 6 · �2n/r� blocks arising from Step 4. We see that
Step 2 needs the most running time;

⌈
(r!)1/r · 2(r−1)n/r

⌉
computations of h. The

memory requirement is dominated by Step 2, which is
⌈
(r!)1/r · 2(r−1)n/r

⌉
+ r.

Now let r∗ = r∗(n) be the integral value of r that minimizes the difference
between 6 · �2n/r� and

⌈
(r!)1/r · 2(r−1)n/r

⌉
. Table 2 gives us values of r∗ for

typical choices of n. By setting r = r∗ our attack complexity becomes optimal,
which is given by max

{⌈
(r∗!)1/r

∗ · 2(r∗−1)n/r∗
⌉
+ r∗, 6 · �2n/r∗�}. Table 2 gives

us values of r∗ for typical choices of n where we choose r∗ = 38 and 63 for 256-
and 512-bit functions, respectively.

4.2 Distinguishing-H Attack

The internal state recovery attack in Sect. 4.1 is immediately converted to a
distinguishing-H attack with the same complexity. At Step 4, only if the com-
pression function is a target algorithm h, a collision can be observed about r
times faster than other cases, thus at Step 4, a collision between Tj and T ′

j is
obtained with �2n/r� choices of M [1]j. If the compression function is not h,
reaching one of v[2]i does not help to generate a collision of the tag. This is be-
cause M [3] and M [3]′ are generated under the assumption that the compression
function is h. Therefore a collision cannot be observed at Step 4. Finally, we can
distinguish whether the compression function is h or not.

We modify Steps 2 and 4 of the attack procedure for the internal state recovery
attack as shown below. Moreover, Steps 5 and 6 are removed.

2. Abort the procedure and output 0 if no r-multi-collision is found with N
different values of v[2].

4. Check the match of Tj and T ′
j. If the match is found, output 1. Otherwise,

output 0.

Evaluation of the Advantage. We evaluate the advantage of the attack. Let
Prh and Prf be the probabilities that the adversary outputs 1 when she interacts
with the oracle instantiating h and with the oracle instantiating a randomly
chosen compression function f , respectively. We calculate the advantage Adv :=
|Prh−Prf |.

Consider the case where the adversary interacts with the oracle instantiating
h. The adversary outputs 1 only if an event (i) occurs and then either of events
(ii) or (iii) occurs.

(i): an r-multi-collision is generated at Step 2.
(ii): M [1]j reaches one of v[2]i, then the match of Tj and T ′

j occurs with prob-
ability 1.

(iii): event (ii) does not occur, but collision occurs at v[4] or tag.

96 Y. Naito et al.

The probability of the event (i) is about 1/2. The probability of the event (ii) is
1− 1/e. For the event (iii), the probability that one pair messages do not reach
one of v[2]i but causes a collision at v[4] is 1 − (1/e)1/r. The same is applied
for obtaining a collision at the tag. Hence, the probability of the event (iii) is
2 · 1/e · (1− (1/e)1/r). Therefore,

Pr
h
≈ 1

2
·
{(

1− 1

e

)
+

2

e
·
(
1−

(
1

e

) 1
r
)}

=
1

2
·
(
1 +

1

e

)
−
(
1

e

) 1
r+1

.

On the other hand, suppose that the oracle is instantiating f . The adversary
outputs 1 only if

(I) an r-multi-collision is generated at Step 2, and then
(II) a collision occurs at v[4] or tag.

The probability of the event (I) is about 1/2. The probability of the event (II)
is 2 · (1− (1/e)1/r). Hence,

Pr
f

=
1

2
· 2 ·

(
1−

(
1

e

) 1
r
)

= 1−
(
1

e

) 1
r

.

Finally, the advantage is computed as follows:

1

2
·
(
−1 + 1

e

)
+

(
1

e

) 1
r

·
(
1− 1

e

)
=

(
−1

2
+

(
1

e

) 1
r
)
·
(
1− 1

e

)
.

The advantage is big enough to be a valid distinguisher. For example when
choosing r = 38 and 63 for 256- and 512-bit functions, respectively, the advantage
becomes 0.300 for r = 38 and 0.306 for r = 63.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful comments.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function. NESSIE (2003)
2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance.

In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer,
Heidelberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: FOCS 1996, pp. 514–523. IEEE
Computer Society (1996)

5. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD
hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008)

Generic State-Recovery and Forgery Attacks on ChopMD-MAC 97

6. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

7. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

8. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. Daubignard, M., Fouque, P.-A., Lakhnech, Y.: Generic indifferentiability proofs of
hash designs. In: Chong, S. (ed.) CSF 2012, pp. 340–353. IEEE (2012)

10. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

11. Dodis, Y., Steinberger, J.: Message authentication codes from unpredictable block
ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer,
Heidelberg (2009)

12. Dunkelman, O., Keller, N., Shamir, A.: ALRED blues: New attacks on AES-based
MAC’s. Cryptology ePrint Archive, Report 2011/095 (2011)

13. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

14. Gallagher, P.: Secure hash standard (SHS). FIPS PUB 180-3, NIST (2008)
15. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the security of HMAC and NMAC

based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (extended abstract). In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

16. Lee, E., Chang, D., Kim, J., Sung, J., Hong, S.: Second preimage attack on 3-Pass
HAVAL and partial key-recovery attacks on HMAC/NMAC-3-Pass HAVAL. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 189–206. Springer, Heidelberg
(2008)

17. Leurent, G., Peyrin, T., Wang, L.: New Generic Attacks Against Hash-based
MACs. In: ASIACRYPT 2013 (2013)

18. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

19. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

20. Peyrin, T., Sasaki, Y., Wang, L.: Generic related-key attacks for HMAC. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer,
Heidelberg (2012)

21. Rechberger, C., Rijmen, V.: New results on NMAC/HMAC when instantiated with
popular hash functions. J. UCS 14(3), 347–376 (2008)

22. Rechberger, C., Rijmen, V.: On authentication with HMAC and non-random
properties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS,
vol. 4886, pp. 119–133. Springer, Heidelberg (2007)

23. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limita-
tions of indifferentiability and universal composability. Cryptology ePrint Archive,
Report 2011/339 (2011)

24. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

98 Y. Naito et al.

25. Rivest, R.L.: The MD5 message-digest algorithm. RFC 1321, IETF (1992)
26. Sasaki, Y.: Cryptanalyses on a Merkle-Damg̊ard based MAC—almost universal

forgery and distinguishing-H attacks. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 411–427. Springer, Heidelberg (2012)

27. Sasaki, Y., Wang, L.: Improved Single-Key Distinguisher on HMAC-MD5 and Key
Recovery Attacks on Sandwich-MAC-MD5. In: Selected Areas in Cryptography
(2013)

28. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

29. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. IEICE Transactions 91-A(1), 39–45 (2008)

30. Tsudik, G.: Message authentication with one-way hash functions. In: INFOCOM
1992, vol. 3, pp. 2055–2059. IEEE (1992)

31. Wang, L., Ohta, K., Kunihiro, N.: New key-recovery attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 237–253. Springer, Heidelberg (2008)

32. Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 121–133. Springer, Heidelberg (2009)

New Property of Diffusion Switching Mechanism

on CLEFIA and Its Application to DFA

Yosuke Todo and Yu Sasaki

NTT Secure Platform Laboratories
{todo.yosuke,sasaki.yu}@lab.ntt.co.jp

Abstract. In this paper, we show a new property for the diffusion
switching mechanism (DSM) which was proposed by Shirai and Shibu-
tani in 2006, and propose new differential fault attacks (DFAs) on CLE-
FIA. The DSM is an effective mechanism to design Feistel ciphers, and
Feistel ciphers using the DSM are more secure against the differential and
the linear cryptanalysis. By applying the DSM to the generalized Feistel
network, Shirai et al. proposed a 128-bit block cipher CLEFIA which was
adopted as an ISO standard. Shirai and Shibutani proposed two types
DSMs; one is using two matrices and the other is using three matrices. It
was considered that the security difference between two types DSMs was
quite small. In this paper, we propose a new property for the DSM. Our
property can be applied to two types DSMs, in particular, it can be ap-
plied to the one using two matrices efficiently. We show a small security
advantage of the DSM using three matrices, and our results contribute
to the comprehension of the DSM. Moreover we can improve DFAs on
CLEFIA by using our property. Existing DFAs can not execute without
exploiting several faults induced after the 14-th round, but our new DFAs
can execute by exploiting several faults induced after the 12-th round.
The position where several faults are induced of new DFAs is improved,
and it is two rounds earlier than that of existing works.

Keywords: Block cipher, Feistel cipher, CLEFIA, Diffusion switching
mechanism, Cryptanalysis, Differential fault attack.

1 Introduction

There are two powerful cryptanalyses on the block cipher: one is the differential
cryptanalysis [4] and the other is the linear cryptanalysis [11,10]. The block
ciphers must guarantee the security against these cryptanalyses. In 2006, Shirai
and Shibutani proposed an effective design method for KSP-type Feistel ciphers,
and they called this method the diffusion switching mechanism (DSM) [15,14,16].
KSP-type Feistel ciphers are practical Feistel ciphers whose round function is
calculated as follows: First an input is XORed with a round key. Next each byte
value is substituted by using one or several S-boxes. Finally several substituted
values are mixed by multiplying a diffusion matrix. By using the DSM, we can
design KSP-type Feistel ciphers which are more secure against the differential
and the linear cryptanalysis. KSP-type Feistel ciphers adopting the DSM use

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 99–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

{todo.yosuke, sasaki.yu}@lab.ntt.co.jp

100 Y. Todo and Y. Sasaki

Table 1. Fault models of related DFAs and our DFAs

Reference Fault models

Common 1. Attackers can induce random byte faults to target branches.
2. The fault values are unknown.

[5] 3. The byte position where attackers induce faults is unknown.
4. The fault values does not collide when several faults are induced to

the same byte position.

[18] 3. The byte position where attackers induce faults is unknown.

[2,3] 3. The byte position where attackers induce faults is known.

Our 3. The byte position where attackers induce faults is known (Attackers
can induce random byte fault to the target byte position.).

4. The fault values does not collide when several faults are induced to
the same byte position.

several diffusion matrices for different rounds. In [16], Shirai et al. proposed two
types DSMs; one is using two matrices and the other is using three matrices.
However the security difference between two types DSMs is regarded as small.
Shirai et al showed that the DSM with three matrices provides stronger security
than with two matrices only when the number of rounds is nine. There does not
exist any security difference for other number of rounds.

By applying the DSM using two matrices to the 4 branch generalized Feistel
network, Shirai et al. proposed a 128-bit block cipher CLEFIA [17] which was
adopted as an ISO standard. CLEFIA has 18, 22 and 26 rounds for 128-bit,
192-bit and 256-bit key lengths, respectively. It has two 32-bit round functions
F0 and F1. In [1], the security of CLEFIA against several well-known attacks is
reported. Several cryptanalyses of CLEFIA are reported in [20,9,8].

In this paper, we pay attention to differential fault attacks (DFAs) on Feistel
ciphers using the DSM. In DFAs, attackers induce several faults at positions
which they choose, and get the correct ciphertext and several faulty ciphertexts.
Attackers recover the secret key by comparing these ciphertexts. Next we ex-
plain the countermeasure against DFAs. Major countermeasures against fault
attacks involve error checking and recalculation. However they are costly espe-
cially in software-based implementation. Thus implementers are motivated to
reduce the number of error checking and recalculation while maintaining the
security. Therefore, it is important to investigate the exploitable rounds. Several
DFAs exploiting faults induced at an earlier round have been discussed, and
several results are given for AES [12,7,6,13].

For CLEFIA with 128-bit key length, several DFAs have been proposed
[5,18,19,21]. We show fault models of existing DFAs in Table 1, and we show the
complexity in Table 2. In [5], they proposed the DFA which exploits random byte
faults induced at the 15-th round. They can recover the secret key by using 18
faults. This indicated that the last four rounds should be protected against the
fault injection. In [18], they improved the number of necessary faults, and they
showed the DFA which uses only 2 faults. The complexity is 219.02. In [2,3], they
improved the condition of the fault injection position, and proposed the DFA

New Property of DSM on CLEFIA and Its Application to DFA 101

Table 2. The complexity of related DFAs and our DFAs

Reference Fault Location #Faults Complexity

[5] 15 round 18 1

[18] 15 round 2 219.02

[2,3] 14 round 2 225.507

Our 13 round 4 † 6× 216

Our 12 round 8 † 10× 240

†:It shows the complexity which is necessary after the fault induction. Note that the
complexity before the fault induction is 224 which is feasible to implement.

which exploits random byte faults induced at the 14-th round. The complexity
is about 225.507. They argued that protecting the last four rounds of CLEFIA is
not enough against DFAs and protecting the last five rounds is necessary.

Our Contribution. Shirai et al. evaluated the security of two types DSMs
against the classical differential/linear cryptanalyses. They concluded that the
security difference between two types DSMs was small. In this paper, we propose
a new property for the DSM and evaluate the security against other cryptanal-
yses. Our property can be applied to two types DSMs, in particular, it can be
applied to the one using two matrices efficiently. It shows that there exists an-
other small security advantage of the DSM using three matrices. Our results
contribute to the comprehension of the DSM.

By applying our new property to CLEFIA, we propose new practical DFAs
on CLEFIA. Table 1 shows fault models of existing DFAs and our DFAs. In
our DFAs, attackers can induce random byte faults to the target byte position,
because they must induce several random byte faults to the same byte position.
Moreover the fault values must be different. If attackers can not induce different
faults, attackers must prepare a new plaintext-ciphertext pair and induce faults
again. We show the complexity of our DFAs in Table 2. Our attack can exploit
faults induced at an earlier round, which is the 13-th round and is one round
earlier than that of existing DFAs. The complexity for recovering the secret key
is 6×216. Moreover our attack can exploit faults induced at the 12-th round and
it is two rounds earlier than that of existing DFAs. The complexity for recovering
the secret key is 10× 240.

This paper is organized as follows. Section 2 gives several preliminaries. Sec-
tion 3 gives new properties for the DSM using two matrices, and Sect. 4 gives
new DFAs on CLEFIA. We conclude this paper in Sect. 5.

2 Preliminaries

2.1 KSP-Type Feistel Ciphers

Definition 1 ((n,)-KSP-type round functions)
Let n be the number of S-boxes in a round function, and 	 be the size of the S-

boxes. Let k ∈ {0, 1}n� be a round key, and k is divided into k = k[0]‖ · · · ‖k[n−1]

102 Y. Todo and Y. Sasaki

Fig. 1. The left is KSP-type Feistel ciphers. The right is the structure which is picked
out the bold lines from KSP-type Feistel ciphers.

where ki ∈ {0, 1}� (i = 0, . . . , n− 1). Let si (i = 0, . . . , n− 1) : {0, 1}� → {0, 1}�
be the i-th S-box. Let M be (GF (2�))n×n diffusion matrices. Let x ∈ {0, 1}n� be
an input of a round function and y ∈ {0, 1}n� be an output of a round function,
and x and y are divided into x = x[0]‖ · · · ‖x[n − 1] and y = y[0]‖ · · · ‖y[n − 1]
where x[i] ∈ {0, 1}� (i = 0, . . . , n − 1) and y[i] ∈ {0, 1}� (i = 0, . . . , n − 1),
respectively. In this time, output y is calculated as follows:

y = M · (s0(x[0]⊕ k[0]), . . . , sn−1(x[n− 1]⊕ k[n− 1]))T,

and we express it as y = M · S(x⊕ k) for simplicity.

In this paper, we define KSP-type Feistel ciphers as Feistel ciphers which have
KSP-type round functions.

2.2 Diffusion Switching Mechanism

Shirai and Shibutani proposed an effective design method called Diffusion
Switching Mechanism (DSM) for KSP-type Feistel ciphers in 2006. By using
the DSM, we can guarantee a high minimal number of active S-boxes, and it
means that we can design Feistel ciphers which are more secure against the dif-
ferential and the linear cryptanalyses1. We show KSP-type Feistel ciphers in the
left of Fig. 1, and the right of Fig. 1 is the structure which is picked out the bold
lines from KSP-type Feistel ciphers in the left of Fig. 1. In this picked structure,
the DSM uses different diffusions matrices alternately. For example, we show
two types DSMs proposed in [16]; one is using two matrices, and the other is
using three matrices. For the former case, two different diffusion matrices A and

1 The proof based on the number of active S-boxes only gives the security against the
classical differential/linear cryptanalysis.

New Property of DSM on CLEFIA and Its Application to DFA 103

Fig. 2. The network of CLEFIA

B are used, and A = M0,M3,M4,M7, . . . and B = M1,M2,M5,M6, . . . are sat-
isfied. Namely Mi = Mi+4 and Mi 	= Mi+2 are always satisfied for any i. For
the latter case, three different diffusion matrices A, B and C are used, and A =
M0,M5,M6,M11, . . ., B = M1,M4,M7,M10, . . . and C = M2,M3,M8,M9, . . .
are satisfied. Namely Mi = Mi+6 and Mi 	= Mi+2 	= Mi+4 are always satisfied
for any i. However, the difference between the former and the latter is only the
number of lower bounds of active S-boxes on the 9-th round and the 18-th round
differential cryptanalyses. Accordingly, they argued that the DSM using three
matrices should be taken into consideration only if the 9-th round immunity
against the differential cryptanalysis is important.

2.3 CLEFIA

CLEFIA developed by Shirai et al. in 2007 is a 128-bit block cipher. CLEFIA has
the 4-branch generalized Feistel network and has 18, 22 and 26 rounds for 128-
bit, 192-bit and 256-bit key lengths, respectively. See Fig. 2 in which symbols
are defined as follows. Let P,C ∈ {0, 1}128 be a plaintext and a ciphertext,
and we divide P and C into P = P0‖P1‖P2‖P3 and C = C0‖C1‖C2‖C3, where
Pi, Ci ∈ {0, 1}32 for i = 0, . . . , 3. Let Pi[j] and Ci[j] be the j-th byte of Pi and
Ci, respectively. Let X

(i) be the i-th round input data, and we divide X(i) into

X(i) = X
(i)
0 ‖X(i)

1 ‖X(i)
2 ‖X(i)

3 , where X
(i)
j ∈ {0, 1}32 for j = 0, . . . , 3. Let X

(i)
j [h]

be the h-th byte of X
(i)
j . Let WK0, . . . ,WK3 ∈ {0, 1}32 be whitening keys and

RK0, . . . , RK2r−1 ∈ {0, 1}32 be round keys, where r is the number of rounds. Let
WKi[j] and RKi[j] be the j-th byte of WKi and RKi, respectively. These keys
are generated by the key scheduling algorithm. The key scheduling algorithm of
CLEFIA generates an intermediate key L by applying a 12-round generalized
Feistel network which takes twenty-four 32-bit constant values as round keys and
K as an input. Next it generates WKi and RKi as follows:

WK0‖WK1‖WK2‖WK3 = K,

RK4i+0‖RK4i+1‖RK4i+2‖RK4i+3 = Σi(L)⊕ CONi (i = 0, 2, 4, 6),

RK4i+0‖RK4i+1‖RK4i+2‖RK4i+3 = Σi(L)⊕K ⊕ CONi (i = 1, 3, 5, 7),

104 Y. Todo and Y. Sasaki

Fig. 3. The (4,8)-KSP-type round functions F0 and F1 of CLEFIA

Fig. 4. The new property for the DSM

where CONi is a 128-bit constant values and Σ is defined as Y = Σ(X) =
X [7− 63]‖X [121− 127]‖X [0− 6]‖X [64− 120].

In this paper, we only use the property that attackers can derive the secret
key from RK30, RK31, RK ′

32, RK ′
33, RK34 and RK35, where RK ′

32 and RK ′
33

denote RK32 ⊕WK3 and RK33 ⊕WK2, respectively.
CLEFIA uses the DSM using two matrices. CLEFIA has two different (4,8)-

KSP-type round functions F0 and F1 (see Fig. 3), where M0 and M1 denote the
diffusion matrices. In this paper, M−1

0 and M−1
1 denote the inverse matrices of

M0 and M1, respectively, and M−1
0 = M0 and M1 = M−1

1 hold for CLEFIA.

3 New Property of the DSM on CLEFIA

3.1 Our Property of the DSM Using Two Matrices

We show a new property of the DSM, and we can improve the DFA on CLEFIA
by applying this property.

As mentioned in Sect. 2.2, the right half of ciphertexts cR is calculated by
XORing the right half of plaintexts pR with three values passed KSP-type
round functions for 5 rounds KSP-type Feistel ciphers. The left of Fig. 4 shows
the structure which is picked out from 5-round KSP-type Feistel ciphers with
the DSM using two matrices, where x(0), x(2) and x(4) are n	-bit values which

New Property of DSM on CLEFIA and Its Application to DFA 105

depend on the plaintext (pL, pR) and round keys (k(0), . . . , k(4)). In this case,
the ciphertext cR ∈ {0, 1}n� is calculated from the plaintext pR ∈ {0, 1}n� as
follows:

cR = pR ⊕M0S(x
(0) ⊕ k(0))⊕M1S(x

(2) ⊕ k(2))⊕M0S(x
(4) ⊕ k(4)), (1)

Let us discuss the difference when two different plaintexts (p, p̄) are processed.
They derive two values (x(0), x̄(0)), (x(2), x̄(2)) and (x(4), x̄(4)) and two ciphertexts
(cR, c̄R), respectively. For simplicity, let Δx and Δs(x ⊕ k) be x ⊕ x̄ and s(x ⊕
k)⊕ s(x̄⊕ k), respectively. In the following, we denote any byte position by ap,
where 0 ≤ ap ≤ n− 1. Note that δ denotes Δsap(x

(2)[ap]⊕ k(2)[ap]) and it is an
unknown value.

Property 1 (New property of the DSM using two matrices)
δ can be calculated by guessing at most two bytes, if the following three condi-
tions is satisfied.

1. Attackers know the difference ΔpR ⊕ΔcR.
2. Attackers know (x(0)[i], x̄(0)[i]) or Δsi(x

(0)[i] ⊕ k(0)[i]), and (x(4)[i], x̄(4)[i])
or Δsi(x

(4)[i]⊕ k(4)[i]) for any i, where 0 ≤ i ≤ n− 1.
3. Attackers know that ap-th value of x(2) is active and the others of x(2) are

passive.

Proof. From Eq. 1, we can get the following equation

M−1
0 M1S(x

(2) ⊕ k(2)) = M−1
0 (pR ⊕ cR)⊕ S(x(0) ⊕ k(0))⊕ S(x(4) ⊕ k(4)).

By calculating the difference between two values, we get the following equation

M−1
0 M1ΔS(x(2) ⊕ k(2)) = M−1

0 (ΔpR ⊕ΔcR)⊕ΔS(x(0) ⊕ k(0))⊕ΔS(x(4) ⊕ k(4)).

Now, the ap-th value of ΔS(x(2) ⊕ k(2)) is δ and the others are 0. Then,
we can describe M−1

0 M1ΔS(x(2) ⊕ k(2)) as (m0δ,m1δ, . . . ,mn−1δ), where
(m0,m1, . . . ,mn−1) are public because M0 and M1 are public and the condi-
tions 3 is satisfied. Then we calculate δ by the following equation

δ = m−1
i (M−1

0 (Δp⊕Δc)[i]⊕Δsi(x
(0)[i]⊕ k(0)[i])⊕Δsi(x

(4)[i]⊕ k(4)[i])). (2)

We can calculate this equation by guessing at most two bytes (k(0)[i] and k′(4)[i]),
if the conditions 1 and 2 are satisfied. �

By using our property, we construct differential attacks. For any i and any j
satisfying the condition 2, we calculate each δ by guessing (k(0)[i], k(4)[i]) and
(k(0)[j], k(4)[j]) in parallel. When each δ has the different value, we can know
that the key (k(0)[i], k(0)[j], k(4)[i], k(4)[j]) is a wrong key. By using one pair,
the remaining key space is reduced from 24� to 23�. Moreover the complexity to
calculate δ is order of 22�. By using 4 pairs, the remaining key space becomes
small enough, and we can recover the correct key by exhaustive search.

3.2 Our Property of the DSM Using Three Matrices

For the DSM using three matrices, Eq. 2 are replaced with

δ = m−1
i · (M−1

0 (Δp⊕Δc)[i]⊕Δsi(x
(0)[i]⊕ k(0)[i])⊕M−1

0 M2(ΔS(x(4) ⊕ k(4)))[i]).

106 Y. Todo and Y. Sasaki

In this time, a byte-wise guess of k(4) does not provide any useful information,
and we need to guess (k(0)[i], k(4)) and (k[j], k(4)) in parallel for any i and j in
order to calculate δ. When each δ has the different value, we can know that the
key (k(0)[i], k(0)[j], k(4)) is a wrong key. The complexity to calculate δ is order of
2�+n�, and it is 2n�−� times as much as that of the DSM using two matrices. We
argue that the complexity difference is a security advantage of the DSM using
three matrices.

4 Applications to Differential Fault Attack

Until today, CLEFIA is the only Feistel cipher applying the DSM. Consequently,
we show applications of our property by using a cryptanalysis on CLEFIA in-
stead of a cryptanalysis on general Feistel ciphers with the DSM. For simplicity,
we first show a new DFA which exploits faults induced at the 13-th round and
simulation results. Next we show security of modified CLEFIA which has the
DSM using three matrices. Finally we show how to extend our attack to a new
DFA which exploits faults induced at the 12-th round.

4.1 DFA Exploiting Faults at the 13-th Round

Outline. Our attack consists of five steps. In the 1-st step, attackers induce
several faults at the 13-th round. In the 2-nd step, attackers reduce each key space
of RK34 and RK35 to about 28 by using our property, where each complexity is
6×28. In the 3-rd step, attackers recover (RK ′

32, RK35) and (RK ′
33, RK34), where

each complexity is 6×216. In the 4-th step, attackers recover (RK30, . . . , RK35).
Finally attackers recover the secret key in the final step. Each complexity of the
4-th step and the final step is negligible.

Precomputation. In each step, we use two precomputation tables; s0-table
and s1-table. We prepare the s0-table that the input is x, x̄ and y and the
output is k satisfying y = s0(x ⊕ k) ⊕ s0(x̄ ⊕ k). Similarly, we prepare the s1-
table. The complexity to prepare these table is at most 2×223 which is feasible to
implement. Moreover we can prepare two precomputation tables before inducing
faults.

1-st Step: Induction of Faults. In our DFA, attackers induce several byte-
oriented faults as follows. Attackers first get a correct ciphertext corresponding

to a plaintext. Next attackers induce two random byte faults to X
(13)
1 which is

calculated from the same plaintext and secret key, and get two faulty ciphertexts.
The position where several faults are induced can be any byte position, but
attackers can know the position and two faults must be induced at the same
byte position. We denote these faulty ciphertexts by left faulty texts. Similarly,

attackers induce two faults at the data X
(13)
3 and get two faulty ciphertexts. We

denote these faulty ciphertexts by right faulty texts. In this paper, for simplicity,

we assume that the faults are induced to X
(13)
1 [0] and X

(13)
3 [0].

New Property of DSM on CLEFIA and Its Application to DFA 107

Fig. 5. The 2-nd step of the DFA exploiting faults induced at the 13 round

2-nd Step: Recovering RK34 and RK35. In this step, we reduce each key
space of RK34 and RK35 to about 28 from 232. We know that C1 and C3 of
ciphertext are calculated as follows:

C1 = X
(13)
2 ⊕M0S(X

(14)
0 ⊕RK26)⊕M1S

′(X(16)
2 ⊕RK31)

⊕M0S(X
(18)
0 ⊕RK34)⊕WK2,

C3 = X
(13)
0 ⊕M1S

′(X(14)
2 ⊕RK27)⊕M0S(X

(16)
0 ⊕RK30)

⊕M1S
′(X(18)

2 ⊕RK35)⊕WK3.

We define the Ci-paths as these paths. For example, we show the C1-path in
Fig. 5.

We show how to reduce the key space of RK34 by using left faulty texts and
the correct ciphertext. We pay attention to the C1-path and apply our property.
Now we consider whether the C1-path satisfies three conditions of our property

when faults are induced at the X
(13)
1 [0] (see Fig. 5). The condition 1 of our

property is expressed that attackers can calculate ΔX
(13)
2 ⊕ΔC1. The condition

is satisfied because ΔX
(13)
2 = 0 holds and attackers can know C1 and C̄1. Here

the whitening key WK2 does not affect the condition 1 because the difference
is 0. Next we consider whether the condition 2 of our property is satisfied. The

condition 2 of our property is expressed that attackers know (X
(14)
0 [i], X̄

(14)
0 [i])

or ΔS(X
(14)
0 ⊕RK26)[i], and (C0[i], C̄0[i]) or ΔS(C0 ⊕RK34)[i] for any i. Now

attackers know C0 and C̄0. Moreover it satisfies ΔS(X
(14)
0 ⊕RK26) = (δ′, 0, 0, 0)

because each byte of X
(14)
0 is passive except the first byte. Thus the condition 2

is satisfied in the second, third and fourth bytes. Finally the condition 3 of our

property is expressed that attackers know the only one byte of X
(16)
2 is active

108 Y. Todo and Y. Sasaki

Fig. 6. The 3-rd step of the DFA exploiting faults induced at the 13-th round

and know the active location of X
(16)
2 . The condition is satisfied because first

byte of X
(16)
2 is active and the others are passive.

Now δ denotes δ = Δs1(X
(16)
2 [0] ⊕ RK31[0]). By using our property, δ is

calculated from the second, third and fourth bytes as follows:

δ = m−1
1 · ((M−1

0 ΔC1)[1]⊕Δs1(C0[1]⊕RK34[1]),

δ = m−1
2 · ((M−1

0 ΔC1)[2]⊕Δs0(C0[2]⊕RK34[2]),

δ = m−1
3 · ((M−1

0 ΔC1)[3]⊕Δs1(C0[3]⊕RK34[3]),

where m−1
1 , m−1

2 and m−1
3 is given 0x33, 0x39 and 0x70, respectively. If we use

the correct (RK34[1], RK34[2], RK34[3]), all δ have the same value. For wrong
(RK34[1], RK34[2], RK34[3]), the probability that all δ have the same value is
2−16. When we use two faults, the probability that wrong keys remain in round
key candidates is 224 × (2−16)2 = 2−8. Then 28 round key RK34 remain in the
candidates, where (RK34[1], RK34[2], RK34[3]) are correct values and RK34[0] is
any value from 0 to 255. We recover RK34[0] in the 3-rd step.

We show the attack procedure. Attackers first guess RK34[1] and calculate
two differences δ by using two left faulty texts and the correct ciphertext. The
complexity is 3× 28 and the complexity is dominant complexity. Next, attackers
get RK34[2] by using the s0-table. Here the input of the s0-table is x = C0[2],
x̄ = C̄0[2] and y = m2δ⊕(M−1

0 ΔC1)[2]. Similarly, attackers get RK34[3] by using
the s1-table. Finally, keys (∗, RK34[1], RK34[2], RK34[3]) remain as candidates
of the round key RK34, where ∗ is any value from 0 to 255.

Similarly, we reduce key space of RK35 by using right faulty texts and the
correct ciphertext. In this time, we pay attention to the C3-path and apply our
property. The complexity is about 3× 28, thus the total complexity in the 2-nd
step is 6× 28.

3-rd Step: Recovering RK′
32 and RK′

33. We show the method to recover
RK ′

32 by using left faulty texts and the correct ciphertext. In this time, we
recover RK35 at the same time by searching remaining candidates of RK35 after

the 2-nd step. We pay attention to that it satisfies ΔX
(17)
1 = (δ, 0, 0, 0) where

δ is an unknown value for attackers (see Fig. 6). By using ΔX
(17)
1 and ΔC0,

each byte of ΔSout is expressed as a linear function of δ. On the other hand,
By using each byte of RK ′

32 and using 28 remaining candidates of RK35, each
byte of ΔSout can be calculated. Thus we can calculate δ independently from

New Property of DSM on CLEFIA and Its Application to DFA 109

RK ′
32[i] and RK35 for any i. If we use the correct RK35 and RK ′

32, all δ have
the same value. For wrong RK ′

32 and RK35, the probability that all δ have the
same value is 2−24. When we use two faults, the probability that wrong RK ′

32

and RK35 remain in round key candidates is 28× 232× (2−24)2 = 2−8. Then we
can recover RK35 and RK ′

32.
We show the attack procedure. Attackers first guess RK35 whose key space is

reduced to 28 in the 2-nd step, and calculate three X
(17)
0 by using two left faulty

texts and the correct ciphertext. Next attackers guess RK ′
32[0] and calculate

two differences δ. The complexity is 3 × 216 and this complexity is dominant
complexity to recover RK35 and RK ′

32. Next, attackers get RK ′
32[1], RK ′

32[2]
and RK ′

32[3] by using the s0-table and the s1-table.
Similarly, we recover RK34 and RK ′

33 by using right faulty texts and the

correct ciphertext. In this time, we pay attention to that it satisfies X
(17)
3 =

(δ, 0, 0, 0). The complexity to recover RK34 and RK ′
33 is 3 × 216, and the total

complexity in the 3-rd step is 6× 216.

4-th Step: Recovering RK30 and RK31. We show the method to recover
RK30 by using left faulty texts and the correct ciphertext. Now, we know that

X
(16)
1 are the same value for left faulty texts and the correct ciphertext. Then

we calculate differences of X
(16)
1 and check whether the differences have 0. Since

ΔX
(16)
1 = 0, it satisfies the following equations

0 = M0 ·ΔS(X
(16)
0 ⊕RK30)⊕ΔX

(17)
0 , (3)

where X
(16)
0 and ΔX

(17)
0 are calculated as follows:

X
(16)
0 = M1S

′(M0S(C0 ⊕RK34)⊕ C1 ⊕RK ′
33)⊕ C2,

ΔX
(17)
0 = M1ΔS′(C2 ⊕RK35)⊕ΔC3.

By using RK35, RK34 and RK ′
33 which remain in key candidates after the 2-nd

and the 3-rd step, we can calculate X
(16)
0 and ΔX

(17)
0 , respectively. Since we can

evaluate whether Eq. 3 is satisfied by using the s0-table and the s1-table, we can
recover each byte of RK30[i] independently. For wrong RK30[i], the probability
satisfying Eq. 3 is 2−8. When we use two faults, the probability that wrong
RK30[i] remain in round key candidates is 1 × 28 × (2−8)2 = 2−8. Then we can
recover RK30[i] for any i. Similarly, by using right faulty texts and the correct
ciphertext, we can recover RK31. The complexity of the 4-th step is negligible
compared with that of the entire attack.

Final Step: Recovering the Secret Key. After the 4-th step, a few wrong
keys sometimes remain in the candidates. In this time, we first calculate round
keys RK24, . . . RK29 and whitening keys WK2 and WK3 from the candidates
of RK30, . . . , RK35. Next we calculate three X

(13) from the left faulty texts, the
right faulty texts and the correct ciphertext, and evaluate the validity. If we use

the correct round and whitening keys, three X
(13)
0 (and X

(13)
2) must correspond

for all texts. Since the probability satisfying this condition is negligible for wrong

110 Y. Todo and Y. Sasaki

Table 3. Simulation results of our attack

Target RK35 RK34 RK′
33 RK′

32 RK31 RK30 Complexity Simulation time

Precomputation step - - - - - - 2× 223 4.91 sec

2-nd step 294.349 273.587 - - - - 6× 28 0.1 ms

3-rd step 1.043 1.070 1.209 1.151 - - 6× 216 17.8 ms

4-th step 1.000 1.000 1.000 1.000 1.106 1.113 negligible 0.02 ms

Final step 1.000 1.000 1.000 1.000 1.000 1.000 negligible 0.01 ms

We omit the result of 1-st step because we can not evaluate this step by simulation.

keys, we can recover the secret key. The complexity of the final step is negligible
compared with that of the entire attack.

4.2 Simulation Results and Discussions

To confirm the feasibility, we implemented the simulation of our attack. This sim-
ulation was written in C++ programming and executed on a single core in an
Intel Core-i7 3770 3.4GHz desktop machine. In each experiment, we used random
128-bit keys and induced four random byte faults at the 13-th round. The average
number of the result is shown in Table 3 for 10,000 samples. In Table 3, each num-
ber of RK30, . . . , RK35 denotes the average number which remains as candidates
of each round key after execution of each step. Complexity denotes the complexity
in each step. Simulation time denotes the execution time in each step.

The complexity to prepare two precomputation tables is about 2 × 223, and
it is dominant complexity in our attacks. However we can calculate it before
the fault injection. After the fault injection, the dominant complexity is about
6× 216.

4.3 Security on Modified CLEFIA

We define modified CLEFIA as CLEFIA which uses the DSM using three ma-
trices. The left of Fig. 7 shows the last 6 rounds of modified CLEFIA.

The attack procedure in the 1-st step is the same as that against original
CLEFIA. In the 2-nd step, we recover RK34 and RK35. We first show how
to recover RK34 by using left faulty texts and the correct ciphertext. We pay
attention to the C1-path and apply our property (see Fig. 7). We pay attention to

Y
(14)
0 which is defined as Y

(14)
0 in right of Fig. 7. For original CLEFIA, it satisfies

ΔY
(14)
0 = ΔS(X

(14)
0 ⊕ RK26) = (δ′, 0, 0, 0). However, for modified CLEFIA, it

satisfies ΔY
(14)
0 = M0M2ΔS(X

(14)
0 ⊕ RK26) = M0M2(δ

′, 0, 0, 0). Attackers first
guess δ′ and calculate δ = Δs1(X

(16)
2 [0]⊕RK31[0]) by using our property, because

ΔY
(14)
0 does not have constant byte. In this time, δ is calculated as follows:

δ = m−1
0 · ((M−1

0 ΔC1)[0]⊕m′
0δ

′ ⊕Δs0(C0[0]⊕RK34[0]),

δ = m−1
1 · ((M−1

0 ΔC1)[1]⊕m′
1δ

′ ⊕Δs1(C0[1]⊕RK34[1]),

δ = m−1
2 · ((M−1

0 ΔC1)[2]⊕m′
2δ

′ ⊕Δs0(C0[2]⊕RK34[2]),

δ = m−1
3 · ((M−1

0 ΔC1)[3]⊕m′
3δ

′ ⊕Δs1(C0[3]⊕RK34[3]),

New Property of DSM on CLEFIA and Its Application to DFA 111

Fig. 7. The 2-nd step of the DFA exploiting faults induced at the 13 round against
modified CLEFIA

where m−1
0 , m−1

1 , m−1
2 and m−1

3 is constant which is calculated from M1M0,
and m′

0, m
′
1, m

′
2 and m′

3 is constant which is calculated from M2M0. If we use
the correct (RK34, δ

′), four δ have the same value. For wrong (RK34, δ
′), the

probability that four δ have the same value is 2−24. Then remaining key space
of RK34 becomes 240 × 2−24 = 216 by using one pair, because key space of
RK34 is 232 and the number of candidates of δ′ is 28. Next we use another pair,
and guess δ′ again because δ′ is a value depending on each pair. Similarly, we
calculate δ and check that four δ have the same value. Then remaining key space
of RK34 becomes small enough, because remaining key space of RK34 is 216 and
the number of candidates of δ′ is 28, In this time, several wrong keys of RK34

remain in the candidates, but we can recover the correct key in the 3-rd step.
We show the attack procedure. Attackers first guess δ′ and RK34[0] and cal-

culate two differences δ by using two left faulty texts and the correct ciphertext.
The complexity is 3 × 216 and the complexity is dominant complexity. Next,
attackers get RK34[1] by using the s1-table. Here the input of the s1-table is
x = C0[1], x̄ = C̄0[1] and y = m1δ ⊕ (M−1

0 ΔC1)[1]⊕m′
1δ

′. Similarly, attackers
get RK34[2] and RK34[3] by using the s0 and s1 tables, respectively. Finally,
attackers recover RK34.

Similarly, we recover RK35 by using right faulty texts and the correct cipher-
text. In this time, we pay attention to the C3-path and apply our property. The
complexity is about 3×216, thus the total complexity in the 2-nd step is 6×216.
The attack procedure after this step is the same method as that in Sect. 4.1, but
attackers can reduce the key space of RK34 to enough small candidates in the
2-nd step. Consequently, the time complexity of 3-rd step becomes only 6 × 28.
The total complexity of the DFA against modified CLEFIA is about 216, hence

112 Y. Todo and Y. Sasaki

Fig. 8. The DFA exploiting faults induced at the 12-th round

modified CLEFIA has no advantage about the security for the DFA exploiting
faults at the 13-th round.

4.4 DFA Exploiting Faults at the 12-th Round

In this section, we show a new DFA exploiting faults induced at the 12-th round.
Our attack consists of four steps. In the 1-st step, attackers get a correct cipher-
text corresponding to a plaintext. Next attackers induce four random byte faults

to X
(12)
1 which is calculated from the same plaintext and secret key, and get four

faulty ciphertexts. The position where several faults are induced can be any
byte position, but four faults must be induced at the same byte position. We
denote these faulty ciphertexts by left faulty texts. Similarly, attackers induce

four faults at the data X
(12)
3 and get four faulty ciphertexts. We denote these

faulty ciphertexts by right faulty texts. In this paper, for simplicity, we assume

that the faults are induced to X
(12)
1 [0] and X

(12)
3 [0]. In the 2-nd step, attackers

recover RK35 and reduce the key space of RK ′
32 at the same time by using left

faulty texts and the correct ciphertext. In this time, we apply our property to
the C0-path. Similarly, attackers recover RK34 and reduce the key space of RK ′

33

at the same time by using right faulty texts and the correct ciphertext. In this
time we apply our property to the C2-path. The complexity is 10× 240 and this
complexity is dominant complexity to recover the secret key. In the 3-rd step,
we recover RK30 and RK31, and the complexity is 10× 216. Finally we recover
the secret key in the final step, where the complexity is negligible.

We show the 2-nd step, namely, how to recover RK35 and reduce the key
space of RK ′

32 by using left faulty texts and the correct ciphertext. We pay

New Property of DSM on CLEFIA and Its Application to DFA 113

attention to the C0-path and apply our property (see Fig. 8). First we guess

RK35 and calculate X
(17)
0 [0]⊕WK3. When correct RK35 is used, we can reduce

the key space of RK ′
32 by using the same method as the 2-nd step in the attack

shown in Sect. 4.1. For wrong RK35 and RK ′
32, the probability that all δ have

the same value is 2−16 which is the same probability as the 2-nd step in the
attack shown in Sect. 4.1. When attackers use four faults, the probability that
wrong keys remain in round key candidates is 232+24 × (2−16)4 = 2−8. Then
about 28 round key RK ′

32 and a few RK35 remain in the candidates, where
(RK ′

32[1], RK ′
32[2], RK ′

32[3]) are correct values and RK ′
32[0] is any value from

0 to 255. The complexity is 5 × 240 because the complexity to guess RK35 is
5×232 and that to guess each byte of RK ′

32 is 5×28. Similarly, we recover RK34

and reduce the key space of RK ′
33 by using right faulty texts and the correct

ciphertext. Since the complexity is 5× 240, the total complexity in the 2-nd step
is 10× 240. We omit the explanation due to the space limitation, but the attack
after this step is the same method as the attack in Sect. 4.1.

To confirm the feasibility, we implemented the simulation of our attack. We
confirmed that the time to recover the RK35 and reduce the key space of RK ′

32

is about 1 day on 8 threads in an Intel Core-i7 3770 3.4GHz desktop machine.
Then the secret key is recovered in a few days with that machine. We argue
that this attack is still realistic and protecting last six rounds of CLEFIA is not
enough against DFAs.

Finally, we describe the security of modified CLEFIA which uses the DSM us-
ing three matrices. Similar to the DFA exploiting faults at the 13-th round against

modified CLEFIA, attackers first guess δ′ = Δs0(X
(13)
0 [0]⊕RK24[0]) and recover

RK34. Since the number of candidates of δ is 28, the complexity in 2-nd step is
about 248. Since the total complexity for the DFA against original CLEFIA is
about 240, modified CLEFIA have small advantage than original CLEFIA.

5 Conclusion

In this paper, we proposed a new property of the DSM. By applying our new
property to CLEFIA, we can improve DFAs on CLEFIA. Our attack can exploit
faults induced at an earlier round, which is the 13-th round and is one rounds
earlier than that of existing DFAs. The complexity is 224. Moreover our attack
can exploit faults induced at the 12-th round and it is two rounds earlier than
that of existing DFAs. The complexity is 10×240 and it is still practical. Then we
argue that protecting last six rounds of CLEFIA is not enough against DFAs. On
the other hand, implementers can implement ciphers whose all round functions
have protection against DFAs. In this case, we can not execute our DFAs.

References

1. The 128-Bit Blockcipher CLEFIA Security and Performance Evaluations Revision
1.0. Sony Corporation (2007)

114 Y. Todo and Y. Sasaki

2. Ali, S.S., Mukhopadhyay, D.: Protecting Last Four Rounds of CLEFIA is Not
Enough Against Differential Fault Analysis. Cryptology ePrint Archive, Report
2012/286 (2012)

3. Ali, S.S., Mukhopadhyay, D.: Improved Differential Fault Analysis of CLEFIA. In:
FDTC (2013)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

5. Chen, H., Wu, W., Feng, D.: Differential Fault Analysis on CLEFIA. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer,
Heidelberg (2007)

6. Derbez, P., Fouque, P.-A., Leresteux, D.: Meet-in-the-Middle and Impossible Dif-
ferential Fault Analysis on AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 274–291. Springer, Heidelberg (2011)

7. Kim, C.H.: Efficient Methods for Exploiting Faults Induced at AESMiddle Rounds.
Cryptology ePrint Archive, Report 2011/349 (2011)

8. Li, Y., Wu, W., Zhang, L.: Improved Integral Attacks on Reduced-Round CLEFIA
Block Cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp.
28–39. Springer, Heidelberg (2012)

9. Mala, H., Dakhilalian, M., Shakiba, M.: Impossible Differential Attacks on 13-
Round CLEFIA-128. J. Comput. Sci. Technol. 26(4), 744–750 (2011)

10. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

11. Matsui, M., Yamagishi, A.: A New Method for Known Plaintext Attack of FEAL
Cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91.
Springer, Heidelberg (1993)

12. Phan, R.C.-W., Yen, S.-M.: Amplifying Side-Channel Attacks with Techniques
from Block Cipher Cryptanalysis. In: Domingo-Ferrer, J., Posegga, J., Schreckling,
D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 135–150. Springer, Heidelberg (2006)

13. Sasaki, Y., Li, Y., Sakamoto, H., Sakiyama,K.: CouponCollector’s Problem for Fault
Analysis Against AES— High Tolerance for Noisy Fault Injections. In: Sadeghi, A.-
R. (ed.) FC 2013. LNCS, vol. 7859, pp. 213–220. Springer, Heidelberg (2013)

14. Shirai, T., Preneel, B.: On Feistel Ciphers Using Optimal Diffusion Mappings
Across Multiple Rounds. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 1–15. Springer, Heidelberg (2004)

15. Shirai, T., Shibutani, K.: Improving Immunity of Feistel Ciphers against Differen-
tial Cryptanalysis by Using Multiple MDS Matrices. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 260–278. Springer, Heidelberg (2004)

16. Shirai, T., Shibutani, K.: On Feistel Structures Using a Diffusion Switching Mech-
anism. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 41–56. Springer,
Heidelberg (2006)

17. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-
cipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

18. Takahashi, J., Fukunaga, T.: Improved Differential Fault Analysis on CLEFIA. In:
FDTC, pp. 25–34. IEEE Computer Society (2008)

19. Takahashi, J., Fukunaga, T.: Differential Fault Analysis on CLEFIA with 128, 192,
and 256-Bit Keys. IEICE Transactions 93-A(1), 136–143 (2010)

20. Tezcan, C.: The Improbable Differential Attack: Cryptanalysis of Reduced Round
CLEFIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010)

21. Jie Zhao, X., Wang, T., Zhe Gao, J.: Multiple Bytes Differential Fault Analysis on
CLEFIA. Cryptology ePrint Archive, Report 2010/078 (2010)

Improvement of Faugère et al.’s Method

to Solve ECDLP

Yun-Ju Huang1, Christophe Petit2,�,
Naoyuki Shinohara3, and Tsuyoshi Takagi4

1 Graduate School of Mathematics, Kyushu University
y-huang@math.kyushu-u.ac.jp

2 UCL Crypto Group
3 NICT

4 Institute of Mathematics for Industry, Kyushu University

Abstract. Solving the elliptic curve discrete logarithm problem
(ECDLP) by using Gröbner basis has recently appeared as a new threat
to the security of elliptic curve cryptography and pairing-based cryp-
tosystems. At Eurocrypt 2012, Faugère, Perret, Petit and Renault pro-
posed a new method using a multivariable polynomial system to solve
ECDLP over finite fields of characteristic 2. At Asiacrypt 2012, Petit
and Quisquater showed that this method may beat generic algorithms
for extension degrees larger than about 2000.

In this paper, we propose a variant of Faugère et al.’s attack that prac-
tically reduces the computation time and memory required. Our variant
is based on the idea of symmetrization. This idea already provided prac-
tical improvements in several previous works for composite-degree ex-
tension fields, but its application to prime-degree extension fields has
been more challenging. To exploit symmetries in an efficient way in that
case, we specialize the definition of factor basis used in Faugère et al.’s
attack to replace the original polynomial system by a new and simpler
one. We provide theoretical and experimental evidence that our method
is faster and requires less memory than Faugère et al.’s method when
the extension degree is large enough.

Keywords: Elliptic curve, Discrete logarithm problem, Index calculus,
Multivariable polynomial system, Gröbner basis.

1 Introduction

In the last two decades, elliptic curves have become increasingly impor-
tant in cryptography. Elliptic curve cryptography requires shorter keys than
factorization-based cryptography. Additionally, elliptic curve implementations
have become increasingly efficient, and many cryptographic schemes have been
proposed based on the hardness of the elliptic curve discrete logarithm problem
(ECDLP) or another elliptic curve problem. These reasons led the American

� F.R.S.-FNRS posdoctoral fellow at Université catholique de Louvain.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 115–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 Y.-J. Huang et al.

National Security Agency (NSA) to advocate the use of elliptic curves for public
key cryptography in 2009 [1].

Given an elliptic curve E defined over a finite field K, some rational point
P of E and a second point Q ∈ 〈P 〉 ⊂ E, ECDLP requires finding an inte-
ger k such that Q = [k]P . Elliptic curves used in practice are defined either
over a prime field Fp or over a binary field F2n . Like any other discrete loga-
rithm problem, ECDLP can be solved with generic algorithms such as Baby-step
Giant-step algorithm, Pollard’s ρ method and their variants [2,3,4,5]. These al-
gorithms can be parallelized very efficiently, but the parallel versions still have
an exponential complexity in the size of the parameters. Better algorithms based
on the index calculus framework have long been known for discrete logarithm
problems over multiplicative groups of finite fields or hyperelliptic curves, but
generic algorithms have remained the best algorithms for solving ECDLP until
recently.

A key step of an index calculus algorithm for solving ECDLP is to solve
the point decomposition problem. Given a predefined factor basis F ⊂ E and a
random point R ∈ E, this problem asks the existence of points Pi ∈ F such that
R =

∑
i Pi. In 2004, Semaev introduced the summation polynomials (also known

as Semaev’s polynomials) to solve this problem. The Semaev’s polynomial sr is
a polynomial in r variables such that sr(x1, . . . , xr) = 0 if and only if there
exist r points Pi := (xi, yi) ∈ E such that

∑r
i=1 Pi = O. For a factor basis

FV := {(x, y)|x ∈ V } where V ⊂ K, the point decomposition problem now
amounts to computing all xi satisfying sr+1(x1, · · · , xr, x(R)) = 0 for the x-
coordinate x(R) of the given point R. Semaev’s polynomials therefore reduce
the decomposition problem on the elliptic curve E to algebraic problem over the
base field K.

Solving Semaev’s polynomials is not a trivial task in general, in particular if
K is a prime field. For extension fields K = Fqn , Gaudry and Diem [6,7] inde-
pendently proposed to define V as the subfield Fq and to apply a Weil descent
to further reduce the resolution of Semaev’s polynomials to the resolution of a
polynomial system of equations over Fq. Diem generalized these ideas by defining
V as a vector subspace of Fqn [8]. Using generic complexity bounds on the resolu-
tion of polynomial systems, these authors provided attacks that can beat generic
algorithms and can even have subexponential complexity for specific families of
curves [6]. At Eurocrypt 2012, Faugère, Perret, Petit and Renault re-analized
Diem’s attack [8] in the case F2n , and showed that the systems arising from
the Weil descent on Semaev’s polynomials are much easier to solve than generic
systems [9]. Later at Asiacrypt 2012, Petit and Quisquater provided heuristic ev-
idence that ECDLP is subexponential for that very important family of curves,
and would beat generic algorithms when n is larger than about 2000 [10].

Even though these recent results suggest that ECDLP is weaker than previ-
ously expected for binary curves, the attacks are still far from being practical.
This is mainly due to the large memory and time required to solve the polynomial
systems arising from the Weil descent in practice. In particular, the experimental
results presented in [10] for primes n were limited to n = 17. In order to validate

Improvement of Faugère et al.’s Method to Solve ECDLP 117

the heuristic assumptions taken in Petit and Quisquater’s analysis and to esti-
mate the exact security level of binary elliptic curves in practice, experiments
on larger parameters are definitely required.

Hybrid methods (involving a trade-off between exhaustive search and polyno-
mial system solving) have been proposed to practically improve the resolution
of the polynomial systems [11]. More importantly, the special structure of these
systems can be exploited. When n is composite and the Weil descent is performed
on an intermediary subfield, Gaudry already showed in [7] how the symmetry of
Semaev’s polynomials can be exploited to accelerate the resolution of the poly-
nomial system in practice. In that case, the whole system can be re-written with
new variables corresponding to the fundamental symmetric polynomials, there-
fore reducing the degrees of the equations and improving their resolution. In the
particular cases of twisted Edward curves and twisted Jacobi curves, Faugère et
al. also exploited additional symmetry coming from the existence of a rational
2-torsion point to further reduce the degrees of the equations [12].

In this paper, we focus on Diem’s version of index calculus for ECDLP over a
binary field of prime extension degree n [8,9,10]. In that case, the Weil descent is
performed on a vector space that is not a subfield of F2n , and the resulting poly-
nomial system cannot be re-written in terms of symmetric variables only. We
therefore introduce a different method to take advantage of symmetries even in
the prime degree extension case. Our re-writing of the system involves both sym-
metric and non-symmetric variables. The total number of variables is increased
compared to [9,10], but we limit this increase as much as possible thanks to an
appropriate choice of the vector space V . On the other hand, the use of symmetric
variables in our system allows reducing the degrees of the equations significantly.
Our experimental results show that our systems can be solved faster than the
original systems of [12, 21] as long as n is large enough.

Notations. In this work, we are interested in solving the elliptic curve discrete
logarithm problem on a curve E defined over a finite field F2n , where n is a
prime number. We denote by Eα,β the elliptic curve over F2n defined by the
equation y2 + xy = x3 + αx2 + β. For a given point P ∈ E, we use x(P) and
y(P) to indicate the x-coordinate and y-coordinate of P respectively. From now
on, we use the specific symbols P , Q and k for the parameters and solution
of the ECDLP: P ∈ E, Q ∈ 〈P 〉, and k is the smallest non-negative integer
such that Q = [k]P . We identify the field F2n as F2[ω]/h(ω), where h is an
irreducible polynomial of degree n. Any element e ∈ F2n can then be represented
as poly(e) := c0 + c1ω + ...+ cn−1ω

n−1 where ci ∈ F2. For any set S, we use the
symbol #S to mean the order of S.

Outline. The remaining of this paper is organized as follows. In Section 2, we
recall previous index calculus algorithms for ECDLP, in particular Faugère et
al.’s attack on binary elliptic curves and previous work exploiting the symmetry
of Semaev’s polynomials when the extension degree is composite. In Section 3, we
describe our variant of Faugère et al.’s attack taking advantage of the symmetries
even when the extension degree is prime. In Section 4, we provide experimental

118 Y.-J. Huang et al.

results supporting our method with respect to Faugère et al.’s original attack.
Finally in Section 5, we conclude the paper and we introduce further work.

2 Index Calculus for Elliptic Curves

2.1 The Index Calculus Method

For a given point P ∈ Eα,β , let Q be a point in 〈P 〉. The index calculus method
can be adapted to elliptic curves to compute the discrete logarithm of Q with
respect to P .

Algorithm 1. Index Calculus for ECDLP [13]

Input: elliptic curve Eα,β, point P ∈ Eα,β, point Q ∈ 〈P 〉
1 F ←− a subset of Eα,β

2 M ←− matrix with #F + 2 columns
3 while Rank(M) < #F + 1 do
4 R ←− [a]P + [b]Q where a and b are random integers in (0,#〈P 〉)
5 solm ←− Decompose(R,F)

6 M ←− AddRelationToMatrix(solm)

7 end
8 M ←− ReducedRowEchelonForm(M)

9 a′, b′ ←− last two column entries of last row
10 k ←− −a′/b′

Output: k, where Q = [k]P

As shown in Algorithm 1, we first select a factor base F ⊂ Eα,β and we
perform a relation search expressed as the loop between the line 3 and 7 of Al-
gorithm 1. This part is currently the efficiency bottleneck of the algorithm. For
each step in the loop, we compute R := [a]P + [b]Q for random integers a and
b and we apply the Decompose function on R to find all tuples (solm) of m
elements Pj� ∈ F such that Pj1 + Pj2 + · · · + Pjm + R = O. Note that we may
obtain several decompositions for each point R. In the line 6, the AddRela-
tionToMatrix function encodes every decomposition of a point R into a row
vector of the matrix M . More precisely, the first #F columns of M correspond
to the elements of F , the last two columns correspond to P and Q, and the co-
efficients corresponding to these points are encoded in the matrix. In the line 7,
the ReducedRowEchelonForm function reduces M into a row echelon form.
When the rank of M reaches #F + 1, the last row of the reduced M is of the
form (0, · · · , 0, a′, b′), which implies that [a′]P + [b′]Q = O. From this relation,
we obtain k = −a′/b′ mod #〈P 〉.

A straightforward method to implement the Decompose function would be
to exhaustively compute the sums of all m-tuples of points in F and to compare
these sums to R. However, this method would not be efficient enough.

Improvement of Faugère et al.’s Method to Solve ECDLP 119

2.2 Semaev’s Polynomials

Semaev’s polynomials [13] allow replacing the complicated addition law involved
in the point decomposition problem by a somewhat simpler polynomial equation
over F2n .

Definition 1. The m-th Semaev’s polynomial sm for Eα,β is defined as fol-
lows: s2 := x1 + x2, s3 := (x1x2 + x1x3 + x2x3)

2 + x1x2x3 + β, and sm :=
ResX(sj+1(x1, ..., xj , X), sm−j+1(xj+1, ..., xm, X)) for m ≥ 4, 2 ≤ j ≤ m− 2.

The polynomial sm is symmetric and it has degree 2m−2 with respect to
each variable. Definition 1 provides a straightforward method to compute it. In
practice, computing large Semaev’s polynomials may not be a trivial task, even
if the symmetry of the polynomials can be used to accelerate it [11]. Semaev’s
polynomials have the following property:

Proposition 1. We have sm(x1, x2, ..., xm) = 0 if and only if there exist
yi ∈ F2n such that Pi = (xi, yi) ∈ Eα,β and P1 + P2 + ...+ Pm = O.

In Semaev’s seminal paper [13], he proposed to choose the factor base F in
Algorithm 1 as

FV := {(x, y) ∈ Eα,β |x ∈ V }
where V is some subset of the base field of the curve. According to Proposition 1,
finding a decomposition of a given point R = [a]P + [b]Q is then reduced to first
finding xi ∈ V such that

sm+1(x1, x2, ..., xm, x(R)) = 0,

and then finding the corresponding points Pj = (xj , yj) ∈ FV .
A straightforward Decompose function using Semaev’s polynomials is de-

scribed in Algorithm 2. In this algorithm, Semaev’s polynomials are solved by a

Algorithm 2. Decompose function with sm+1

Input: R = [a]P + [b]Q, factor base FV

1 Setm ←− {e ∈ Fm
V }

2 solm ←− {}
3 for e = {P1, P2, .., Pm} ∈ Setm do
4 if sm+1(x(P1), x(P2), ..., x(Pm), x(R)) = 0 then
5 if P1 + P2 + ...+ Pm +R = O then
6 solm ←− solm ∪ {e}
7 end

8 end

9 end
Output: solm contains the decomposition elements of R w.r.t. FV

120 Y.-J. Huang et al.

naive exhaustive search method. Since every x-coordinate corresponds to at most
two points on the elliptic curveEα,β , each solution of sm+1(x1, x2, ..., xm, x(R))=
0 may correspond to up to 2m possible solutions in Eα,β . These potential solu-
tions are tested in the line 5 of Algorithm 2. As such, Algorithm 2 still involves
some exhaustive search and can clearly not solve ECDLP faster than generic
algorithms.

2.3 Method of Faugère et al.

At Eurocrypt 2012, following similar approaches by Gaudry [7] and Diem [6,8],
Faugère et al. provided V with the structure of a vector space, to reduce the reso-
lution of Semaev’s polynomial to a system of multivariate polynomial equations.
They then solved this system using Gröbner basis algorithms [9].

More precisely, Faugère et al. suggested to fix V as a random vector subspace
of F2n/F2 with dimension n′. If {v1, . . . , vn′} is a basis of this vector space, the
resolution of Semaev’s polynomial is then reduced to a polynomial system as
follows. For any fixed P ′ ∈ FV , we can write x(P ′) as

x(P ′) = c̄1v1 + c̄2v2 + ...+ c̄n′vn′

where c̄� ∈ F2 are known elements. Similarly, we can write all the variables
xj ∈ V in sm+1 |xm+1=x(R) as{

xj = cj,1v1 + cj,2v2 + . . .+ cj,n′vn′ , 1 ≤ j ≤ m,

xm+1 = r0 + r1ω + . . .+ rn−1ω
n−1,

where cj,� are binary variables and r� ∈ F2 are known. Using these equations to
substitute the variables xj in sm+1, we obtain an equation

sm+1 = f0 + f1ω + . . .+ fn−1ω
n−1,

where f0, f1, ..., fn−1 are polynomials in the binary variables cj,l, 1 ≤ j ≤ m,
1 ≤ l ≤ n′ .

We have sm+1 |xm+1=x(R)= 0 if and only if each binary coefficient polynomial
fl is equal to 0. Solving Semaev’s polynomial sm+1 is now equivalent to solving
the binary multivariable polynomial system⎧⎪⎪⎪⎨⎪⎪⎪⎩

f0(c1,1, . . . , c0,l, . . . , cm,n′) = 0,
f1(c1,1, . . . , c1,l, . . . , cm,n′) = 0,

...
fm(c1,1, . . . , cm,l, . . . , cm,n′) = 0,

(1)

in the variables cj,�, 1 ≤ j ≤ m, 1 ≤ 	 ≤ n′.
The Decompose function using this system is described in Algorithm 3.

It is denoted as ImpFPPR in this work. We first substitute xm+1 with x(R) in

Improvement of Faugère et al.’s Method to Solve ECDLP 121

Algorithm 3. Decompose function with binary multivariable polynomial
system (ImpFPPR) [9]

Input: R = [a]P + [b]Q, factor base FV

1 F ←− TransFromSemaevToBinary(sm+1 |xm+1=x(R))

2 GB(F) ←− GroebnerBasis(F,≺lex)

3 sol(F) ←− GetSolutionFromGroebnerBasis(GB(F))
4 solm ←− {}
5 for e = {P1, P2, .., Pm} ∈ sol(F) do
6 if P1 + P2 + ...+ Pm +R = O then
7 solm ←− solm ∪ {e}
8 end

9 end
Output: solm contains the decomposition elements of R w.r.t. FV

sm+1. The TransFromSemaevToBinaryWithSym function transforms the
equation sm+1 |xm+1=x(R)= 0 into System (1) as described above. To solve this
system, we compute its Gröbner basis with respect to a lexicographic ordering
using an algorithm such as F4 or F5 algorithm [14,15]. A Gröbner basis for a lex-
icographic ordering always contains some univariate polynomial (the polynomial
1 when there is no solution), and the solutions of F can be obtained from the
roots of this polynomial. However, since it is much more efficient to compute a
Gröbner basis for a graded-reversed lexicographic order than for a lexicographic
ordering, a Gröbner basis of F is first computed for a graded-reverse lexico-
graphic ordering and then transformed into a Gröbner basis for a lexicographic
ordering using FGLM algorithm [16].

After getting the solutions of F , we find the corresponding solutions overEα,β .
As before, this requires to check whether P1 + P2 + ...+Pm +R = O for all the
potential solutions in the line 6 of Algorithm 3.

Although Faugère et al.’s approach provides a systematic way to solve Se-
maev’s polynomials, their algorithm is still not practical. Petit and Quisquater
estimated that the method could beat generic algorithms for extension degrees
n larger than about 2000 [10]. This number is much larger than the parame-
ter n = 160 that is currently used in applications. In fact, the degrees of the
equations in F grow quadratically with m, and the number of monomial terms
in the equations is exponential in this degree. In practice, the sole computation
of the Semaev’s polynomial sm+1 seems to be a challenging task for m larger
than 7. Because of the large computation costs (both in time and memory), no
experimental result has been provided yet when n is larger than 20.

In this work, we provide a variant of Faugère et al.’s method that practically
improves its complexity. Our method exploits the symmetry of Semaev’s poly-
nomials to reduce both the degree of the equations and the number of monomial
terms appearing during the computation of a Gröbner basis of the system F .

122 Y.-J. Huang et al.

2.4 Use of Symmetries in Previous Works

The symmetry of Semaev’s polynomials has been exploited in previous works,
but always for finite fields Fpn with composite extension degrees n. The approach
was already described by Gaudry [7] as a mean to accelerate the Gröbner basis
computations. The symmetry of Semaev’s polynomials has also been used by
Joux and Vitse’s to establish new ECDLP records for composite extension degree
fields [11,17]. Extra symmetries resulting from the existence of a rational 2-
torsion point have also been exploited by Faugère et al. for twisted Edward curves
and twisted Jacobi curves [12]. In all these approaches, exploiting the symmetries
of the system allows reducing the degrees of the equations and the number of
monomials involved in the Gröbner basis computation, hence it reduces both the
time and the memory costs.

To exploit the symmetry in ECDLP index calculus algorithms, we first rewrite
Semaev’s polynomial sm+1 with the elementary symmetric polynomials.

Definition 2. Let x1, x2, ..., xm be m variables, then the elementary symmet-
ric polynomials are defined as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ1 :=
∑

1≤j1≤m xj1

σ2 :=
∑

1≤j1<j2≤m xj1xj2

σ3 :=
∑

1≤j1<j2<j3≤m xj1xj2xj3

...
σm :=

∏
1≤j≤m xj

(2)

Any symmetric polynomial can be written as an algebraic combination of
these elementary symmetric polynomials. We denote the symmetrized version of
Semaev’s polynomial sm by s′m. For example for the curve Eα,β in characteristic
2, we have

s3 = (x1x2 + x1x3 + x2x3)
2 + x1x2x3 + β,

where x3 is supposed to be fixed to some x(R). The elementary symmetric
polynomials are

σ1 = x1 + x2,
σ2 = x1x2.

The symmetrized version of s3 is therefore

s′3 = (σ2 + σ1x3)
2 + σ2x3 + β.

Since x3 is fixed and the squaring is a linear operation over F2, we see that
symmetrization leads to a much simpler polynomial.

Let us now assume that n is a composite number with a non-trivial factor n′.
In this case, we can fix the vector space V as the subfield Fpn′ of Fpn . We note
that all arithmetic operations are closed on the elements of V for this special
choice. In particular, we have

if xi ∈ V then σi ∈ V . (3)

Improvement of Faugère et al.’s Method to Solve ECDLP 123

Let now {1, ω2, . . . , ωn/n′} be a basis of Fpn/Fpn′ . We can write

σj = dj,0 for 1 ≤ j ≤ m,
xm+1 = r1 + r2ω2 + . . .+ rn/n′ωn/n′ ,

where r� ∈ Fpn are known and the variables dj,0 are defined over Fpn′ . These
relations can be substituted in the equation s′m+1 |xm+1=x(R)= 0 to obtain a
system of n/n′ equations in the m variables dj,0 only. Since the total degree
and the degree of s′m with respect to each symmetric variable σi are lower than
those of sm with respect to all non-symmetric variables xi, the degrees of the
equations in the resulting system are also lower and the system is easier to solve.
As long as n/n′ ≈ m, the system has a reasonable chance to have a solution.

Given a solution (σ1, . . . , σm) for this system, we can recover all possible
corresponding values for the variables x1, . . . , xm (if there is any) by solving the
system given in Definition 2, or equivalently by solving the symmetric polynomial
equation

xm +

m∑
i=1

σix
m−i = xm + σ1x

m−1 + σ2x
m−2 + . . .+ σm.

Note that the existence of a non-trivial factor of n and the special choice for
V are crucial here. Indeed, they allow building a new system that only involves
symmetric variables and that is significantly simpler to solve than the previous
one.

3 Using Symmetries with Prime Extension Degrees

When n is prime, the only subfield of F2n is F2, but choosing V = F2 would imply
to choose m = n, hence to work with Semaev’s polynomial sn+1 which would
not be practical when n is large. In Diem’s and Faugère et al.’s attacks [9,8],
the set V is therefore a generic vector subspace of F2n/F2 with dimension n′. In
that case, Implication (3) does not hold, but we now show how to nevertheless
take advantage of symmetries in Semaev’s polynomials.

3.1 A New System with Both Symmetric and Non-symmetric
Variables

Let n be an arbitrary integer (possibly prime) and let V be a vector subspace
of F2n/F2 with dimension n′. Let {v1, . . . , vn′} be a basis of V . We can write{

xj = cj,1v1 + cj,2v2 + ...+ cj,n′vn′ , for 1 ≤ j ≤ m

xm+1 = r0 + r1ω + ...+ rn−1w
n−1,

where cj,� with 1 ≤ j ≤ m and 1 ≤ 	 ≤ n′ are variables but r�, 1 ≤ 	 ≤ n are
known elements in F2.

124 Y.-J. Huang et al.

Like in the composite extension degree case, we can use the elementary sym-
metric polynomials to write Semaev’s polynomial sm+1 as a polynomial s′m+1 in
the variables σj only. However since V is not a field anymore, constraining xj in
V does not constrain σj in V anymore. Since σj ∈ F2n , we can however write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ1 = d1,0 + d1,1ω + . . .+ d1,n−1ω
n−1,

σ2 = d2,0 + d2,1ω + . . .+ d2,n−1ω
n−1,

...

σm = dm,0 + dm,1ω + . . .+ dm,n−1ω
n−1.

where dj,� with 1 ≤ j ≤ m and 1 ≤ 	 ≤ n are binary variables. Using these
equations, we can substitute σj in s′m+1 to obtain

s′m+1 = f ′
0 + f ′

1ω + . . .+ f ′
n−1ω

n−1

where f ′
0, f

′
1, ..., f

′
n−1 are polynomials in the binary variables dj,�. Applying a

Weil descent on the symmetrized Semaev’s polynomial equation s′m = 0, we
therefore obtain a polynomial system

f ′
0 = f ′

1 = . . . = f ′
n−1 = 0

in the mn binary variables dj,�.
The variables dj,� must also satisfy certain constraints provided by System (2).

More precisely, substituting both the xj and the σj variables for binary variables
in the equation

σj =
∑

I⊂{1,...,m}
#I=j

∏
k∈I

xk ,

we obtain

dj,0 + dj,1ω + ...+ dj,n−1ω
n−1 = σj =

∑
I⊂{1,...,m}

#I=j

∏
k∈I

n′∑
�=1

ck,�v�

= gj,0 + gj,1ω + ...+ gj,n−1ω
n−1

where gj,� are polynomials in the mn′ binary variables ci,� only. In other words,
applying a Weil descent on each equation of System (2), we obtain mn new
equations

dj,� = gj,�

in the mn+mn′ binary variables cj,� and dj,�. The resulting system{
f ′
j = 0, 1 ≤ j ≤ n,

dj,� = gj,�, 1 ≤ j ≤ m, 1 ≤ 	 ≤ n,

has mn + n equations in mn + mn′ binary variables. As before, the system is
expected to have solutions if mn′ ≈ n, and it can then be solved using a Gröbner
basis algorithm.

Improvement of Faugère et al.’s Method to Solve ECDLP 125

In comparisonwith the simpler method of Faugère et al. (denoted as FPPR) [9],
the number of variables is multiplied by a factor roughly (m + 1). However, the
degrees of our equations are also decreased thanks to the symmetrization, and this
may decrease the degree of regularity of the system. In order to compare the time
and memory complexities of both approaches, let DFPPR and DOurs be the de-
grees of regularity of the corresponding systems. The time and memory costs are
respectively roughly N2D and N3D, where N is the number of variables and D is
the degree of regularity . Assuming that neither DFPPR norDOurs depends on n
(as suggested by Petit and Quisquater’s experiments [10]), that DOurs < DFPPR

(thanks to the use of symmetric variables) and that m is small enough, then the
extra (m + 1) factors in the number of variables will be a small price to pay for
large enough parameters. In practice, experiments are limited to very small n and
m values. For these small parameters, we could not observe any significant advan-
tage of this variant with respect to Faugère et al.’s original method. However, the
complexity can be improved even further in practice with a clever choice of vector
space.

3.2 A Special Vector Space

In the prime degree extension case, V cannot be a subfield, hence the symmetric
variables σj are not restricted to V . This led us to introduce mn variables dj,�
instead of mn′ variables only in the composite extension degree case. However,
we point out that some vector spaces may be “closer to a subfield” than other
ones. In particular if V is generated by the basis {1, ω, ω2, . . . , ωn′−1}, then we
have

if xj ∈ V then σ2 ∈ V ′

where V ′ ⊃ V is generated by the basis {1, ω, ω2, . . . , ω2n′−2}.
More generally, we can write⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ1 = d1,0 + d1,1ω + ...+ d1,n′−1ω
n′−1,

σ2 = d2,0 + d2,1ω + ...+ d2,2n′−2ω
2n′−2,

...
σm = dm,0 + dm,1ω + ...+ dm,n−mωn−m.

Applying a Weil descent on s′m+1 |xm+1=x(R) and each equation of System (2)
as before, we obtain a new polynomial system{

f ′
j = 0, 1 ≤ j ≤ n,

dj,� = gj,�, 1 ≤ j ≤ m, 0 ≤ 	 ≤ j(n′ − 1),

in n+ (n′ − 1)m(m+1)
2 +m equations and n′m+ (n′ − 1)m(m+1)

2 +m variables.
When m is large and mn′ ≈ n, the number of variables is decreased by a

factor 2 if we use our special choice of vector space instead of a random one. For
m = 4 and n ≈ 4n′, the number of variables is reduced from about 5n to about
7n/2. For m = 3 and n ≈ 3n′, the number of variables is reduced from about 4n
to about 3n thanks to our special choice for V . In practice, this improvement
turns out to be significant.

126 Y.-J. Huang et al.

Table 1. Comparison for different multivariate polynomial system

sm+1 s′m+1 s′m+1 with specific V

variables number mn′ mn′ +mn mn′ + (n′ − 1)m(m+1)
2

+m

polynomials number n n+mn n+ (n′ − 1)m(m+1)
2

+m

degree of regularity 7 or 6 4 or 3 4 or 3

3.3 New Decomposition Algorithm

Our new algorithm for the decomposition problem is described in Algorithm 4.
It is denoted as ImpOurs in this work. The only difference between ImpFPPR

Algorithm 4. Decompose function with binary multivariable polynomial
system and symmetric elementary functions (ImpOurs)

Input: R = [a]P + [b]Q, factor base FV

1 F ←− TransFromSemaevToBinaryWithSym(sm+1 |xm+1=x(R))

2 F ←− GroebnerBasis(F)

3 sol(F) ←− GetSolutionFromGroebnerBasis(F)

4 solm ←− {}
5 for e = {P1, P2, .., Pm} ∈ sol(F) do
6 if P1 + P2 + ...+ Pm +R = O then
7 solm ←− solm ∪ {e}
8 end

9 end
Output: solm contains the decomposition elements of R w.r.t. FV

and ImpOurs comes from a different transformation function in the line 1 of
Algorithm 4. Although the system solved in ImpOurs contains more variables and
equations than the system solved in ImpFPPR, the degrees of the equations are
smaller and they involve less monomial terms. We now describe our experimental
results.

4 Experimental Results

To validate our analysis and experimentally compare our method with Faugère et
al.’s previous work, we implemented both algorithms in Magma. All our exper-
iments were conducted on a CPU with four AMD Opteron Processor 6276 with
16 cores, running at 2.3GHz with a L3 cache of 16MB. The Operating System
was CentOS 6.3 with Linux kernel version 2.6.32-279.14.1.el6.x86 64 and 512GB
memory. The programming platform was Magma V2.18-9 in its 64-bit version.
Gröbner basis were computed with the GroebnerBasis function of Magma. Our
implementations of ImpFPPR and ImpOurs share the same program, except that

Improvement of Faugère et al.’s Method to Solve ECDLP 127

the former uses Algorithm 3 and the latter uses Algorithm 4 to set up the bi-
nary multivariate system. We first focus on the relation search, then we describe
experimental results for a whole ECDLP computation.

4.1 Relation Search

The relation search is the core of both Faugère et al.’s algorithm and our variant.
In our experiments, we considered a fixed randomly chosen curve Eα,β , a fixed
ECDLP with respect to P , and a fixed m = 3 for all values of the parameters n
and n′. For random integers a and b, we used both Faugère et al.’s method and
our approach to find factor basis elements Pj ∈ FV such that P1 + · · · + Pm =
[a]P + [b]Q.

We focused on m = 3 (fourth Semaev’s polynomial) in our experiments. In-
deed, there is no hope to solve ECDLP faster than with generic algorithms using
m = 2 because of the linear algebra stage at the end of the index calculus algo-
rithm1. On the other hand, the method appears unpractical for m = 4 even for
very small values of n because of the exponential increase with m of the degrees
in Semaev’s polynomials.

The experimental results are given in Table 2 and 3. For most values of the
parameters n and n′, the experiment was repeated 200 times and average values
are presented in the table. For large values n′ = 6, the experiment was only
repeated 3 times due to the long execution time.

We noticed that the time required to solve one system varied significantly
depending on whether it had solutions or not. Table 2 and 3 therefore present
results for each case in separate columns. The table contains the following infor-
mation: Dreg is the maximum degree appearing when solving the binary system
with Magma’s Gröbner basis routine; var is the number of F2 variables of the
system; poly and mono are the number of polynomials and monomials in the
system; rel is the average number of solutions obtained (modulo equivalent solu-
tions through symmetries); ttrans and tgroe are respectively the time (in seconds)
needed to transform the polynomial sm+1 into a binary system and to compute
a Gröbner basis of this system; mem is the memory required by the experiment
(in MB).

The experiments show that the degrees of regularity of the systems occurring
during the relation search are decreased from values between 6 and 7 in Faugère
et al.’s method to values between 3 and 4 in our method. This is particularly
important since the complexity of Gröebner basis algorithms is exponential in
this degree. However, this huge advantage of our method comes at the cost of a
significant increase in the number of variables, which itself tends to increase the
complexity of Gröbner basis algorithms. Our experimental results confirm the
analysis of Section 3: while our method may require more memory and time for
small parameters (n, n′), it becomes more efficient than Faugère et al.’s method
when the parameters increase. We remark that although the time required to

1 In fact, even m = 3 would require a double large prime variant of the index calculus
algorithm described above in order to beat generic discrete logarithm algorithms [7].

128 Y.-J. Huang et al.

Table 2. Comparison of the relation search (m = 3, n′ = 3, 4) with two strategies,
ImpFPPR and ImpOurs. Dreg, var, poly and mono are the degree of regularity, the
number of variables, the number of polynomials and the number of monomials in the
system. ttrans and tgroe are the transformation time and solving Gröbner basis time
(seconds). men is the memory consumptions for solving the system (MB).

n n’
sol: yes sol: no

Dreg var poly mono ttrans tgroe mem Dreg var poly mono ttrans tgroe mem

ImpFPPR 17 3 6 9 17 2070.59 3.95 1.08 21.51 6 9 17 2149.37 4.50 0.09 23.40

ImpOurs 17 3 3 24 32 826.12 0.67 1.14 14.86 3 24 32 867.87 0.72 0.24 16.26

ImpFPPR 19 3 6 9 19 2305.76 4.44 1.08 27.55 6 9 19 2401.07 4.97 0.11 29.59

ImpOurs 19 3 3 24 34 912.57 0.75 1.13 19.75 3 24 34 962.67 0.79 0.31 20.90

ImpFPPR 23 3 6 9 23 2792.97 5.47 1.06 29.10 6 9 23 2908.92 6.18 0.12 32.25

ImpOurs 23 3 3 24 38 1079.60 0.91 1.04 15.59 3 24 38 1147.65 0.97 0.14 16.68

ImpFPPR 29 3 6 9 29 3509.17 6.94 1.02 38.85 6 9 29 3669.15 7.75 0.07 43.14

ImpOurs 29 3 3 24 44 1329.85 1.15 0.95 17.16 3 24 44 1427.97 1.22 0.17 18.43

ImpFPPR 31 3 6 9 31 3739.76 7.38 1.03 41.12 5 9 31 3922.40 8.38 0.06 46.33

ImpOurs 31 3 3 24 46 1428.49 1.24 0.90 17.59 3 24 46 1515.79 1.30 0.04 18.87

ImpFPPR 37 3 6 9 37 4450.86 8.90 1.00 48.88 6 9 37 4677.23 9.99 0.06 54.81

ImpOurs 37 3 3 24 52 1673.42 1.48 0.88 19.23 3 24 52 1800.79 1.58 0.05 20.85

ImpFPPR 41 3 6 9 41 4921.38 9.81 0.98 54.35 6 9 41 5182.97 11.17 0.06 61.70

ImpOurs 41 3 3 24 56 1847.03 1.64 0.87 20.58 3 24 56 1983.08 1.75 0.05 22.60

ImpFPPR 43 3 6 9 43 5175.86 10.47 0.99 57.69 6 9 43 5436.94 11.73 0.06 64.74

ImpOurs 43 3 3 24 58 1931.96 1.76 0.87 21.28 3 24 58 2076.11 1.86 0.05 23.24

ImpFPPR 47 3 6 9 47 5631.62 11.29 1.00 63.77 5 9 47 5947.98 12.85 0.06 72.47

ImpOurs 47 3 3 24 62 2116.38 1.92 0.83 23.17 3 24 62 2263.80 2.02 0.06 25.32

ImpFPPR 53 3 6 9 53 6358.94 12.86 1.03 72.06 5 9 53 6706.36 14.57 0.07 81.22

ImpOurs 53 3 3 24 68 2348.50 2.12 0.79 24.89 2 24 68 2541.59 2.28 0.04 27.52

ImpFPPR 17 4 7 12 17 8997.76 15.47 6.81 58.16 7 12 17 9028.92 16.53 1.20 55.37

ImpOurs 17 4 3 33 38 1622.88 1.31 3.91 31.52 3 33 38 1641.84 1.33 2.23 24.88

ImpFPPR 19 4 7 12 19 9915.47 17.04 6.88 67.24 7 12 19 10072.64 17.85 1.54 64.78

ImpOurs 19 4 3 33 40 1823.58 1.51 3.26 32.97 3 33 40 1823.69 1.46 1.57 27.11

ImpFPPR 23 4 6 12 23 12059.19 21.06 6.83 95.66 6 12 23 12201.94 22.31 4.67 91.23

ImpOurs 23 4 3 33 44 2173.29 1.83 3.19 29.63 3 33 44 2173.69 1.81 1.72 22.75

ImpFPPR 29 4 6 12 29 15048.54 26.63 6.56 125.32 6 12 29 15361.50 27.80 1.37 129.78

ImpOurs 29 4 3 33 50 2652.74 2.30 3.11 32.95 3 33 50 2716.43 2.29 1.06 27.88

ImpFPPR 31 4 6 12 31 16130.71 28.94 3.37 136.23 6 12 31 16443.60 30.19 1.56 142.69

ImpOurs 31 4 3 33 52 2839.32 2.49 3.20 35.30 3 33 52 2907.78 2.48 1.24 29.22

ImpFPPR 37 4 6 12 37 19466.94 35.03 2.43 172.56 6 12 37 19611.72 35.68 0.88 176.13

ImpOurs 37 4 3 33 58 3314.88 2.93 2.45 31.32 3 33 58 3437.06 2.96 0.49 32.45

ImpFPPR 41 4 6 12 41 21095.65 37.58 2.79 189.16 6 12 41 21756.74 39.80 0.84 201.77

ImpOurs 41 4 3 33 62 3668.86 3.24 2.23 33.84 3 33 62 3783.47 3.33 0.56 35.49

ImpFPPR 43 4 6 12 43 22472.30 40.59 2.24 207.05 6 12 43 22868.33 41.39 0.85 210.59

ImpOurs 43 4 3 33 64 3857.07 3.41 2.23 35.02 3 33 64 3965.76 3.48 0.60 36.51

ImpFPPR 47 4 6 12 47 24264.24 43.37 2.10 225.73 6 12 47 24955.58 46.01 0.66 239.89

ImpOurs 47 4 3 33 68 4197.12 3.73 2.12 37.93 3 33 68 4336.85 3.84 0.67 39.78

ImpFPPR 53 4 6 12 53 27655.34 50.63 1.86 272.55 6 12 53 28043.51 52.26 0.37 279.83

ImpOurs 53 4 3 33 74 4701.09 4.19 1.75 40.46 3 33 74 4824.09 4.36 0.46 42.63

Improvement of Faugère et al.’s Method to Solve ECDLP 129

Table 3. Comparison of the relation search (m = 3, n′ = 5, 6) with two strategies,
ImpFPPR and ImpOurs

n n’
sol: yes sol: no

Dreg var poly mono ttrans tgroe mem Dreg var poly mono ttrans tgroe mem

ImpFPPR 17 5 7 15 17 29408.19 46.53 218.87 723.08 7 15 17 29562.07 48.06 59.82 725.07

ImpOurs 17 5 4 42 44 2680.14 2.21 485.10 596.46 4 42 44 2687.94 2.16 136.93 492.88

ImpFPPR 19 5 7 15 19 32812.55 50.50 91.61 401.17 7 15 19 32300.00 54.03 41.80 348.01

ImpOurs 19 5 4 42 46 3264.00 1.97 516.67 619.63 4 42 46 2922.50 2.67 182.92 492.82

ImpFPPR 23 5 7 15 23 40168.90 64.67 70.46 475.55 7 15 23 39659.80 65.07 55.75 381.39

ImpOurs 23 5 4 42 50 3572.00 3.01 157.86 323.60 4 42 50 3619.30 3.07 17.83 253.16

ImpFPPR 29 5 7 15 29 50156.00 81.75 109.40 587.39 7 15 29 50403.80 80.99 50.75 530.53

ImpOurs 29 5 4 42 56 4414.90 3.67 140.47 372.59 4 42 56 4356.70 3.82 20.03 278.07

ImpFPPR 31 5 7 15 31 53222.10 84.08 70.64 547.86 7 15 31 53415.30 85.50 53.56 410.47

ImpOurs 31 5 4 42 58 4781.80 3.99 130.07 362.76 4 42 58 4800.60 4.13 20.98 279.23

ImpFPPR 37 5 7 15 37 63941.80 101.06 158.23 828.44 7 15 37 64215.10 103.29 88.29 690.51

ImpOurs 37 5 3 42 64 5586.20 4.85 11.68 118.00 3 42 64 5496.80 4.87 6.85 57.52

ImpFPPR 41 5 6 15 41 70895.30 113.85 230.40 889.70 7 15 41 71215.80 114.09 69.12 930.24

ImpOurs 41 5 3 42 68 6042.50 5.33 13.26 126.19 3 42 68 5986.60 5.34 8.53 58.99

ImpFPPR 43 5 6 15 43 75145.70 118.87 75.46 600.95 6 15 43 74671.20 118.31 39.69 615.72

ImpOurs 43 5 3 42 70 6223.40 5.41 11.35 89.33 3 42 70 6470.90 5.74 8.21 56.86

ImpFPPR 47 5 6 15 47 81488.60 128.63 65.03 674.87 6 15 47 81215.20 131.95 45.34 693.31

ImpOurs 47 5 3 42 74 7043.30 6.07 9.57 109.38 3 42 74 7183.40 6.26 4.71 60.15

ImpFPPR 53 5 6 15 53 91642.50 147.66 80.76 810.08 6 15 53 92314.60 150.41 23.31 814.76

ImpOurs 53 5 3 42 80 8034.10 6.83 6.68 59.58 3 42 80 7849.50 6.96 1.36 59.91

ImpFPPR 23 6 7 18 23 107008.67 163.45 3888.70 6656.13 7 18 23 105744.33 156.11 3309.43 5025.06

ImpOurs 23 6 4 51 56 5270.00 4.36 5150.12 4791.31 4 51 56 5510.33 4.42 3082.15 4428.07

ImpFPPR 29 6 7 18 29 136465.67 198.99 4511.74 6685.01 7 18 29 137194.33 204.07 1681.27 6528.03

ImpOurs 29 6 4 51 62 6093.33 5.67 2848.46 3368.01 4 51 62 6263.33 5.76 932.65 2681.20

ImpFPPR 31 6 7 18 31 145504.00 209.98 4664.25 7336.11 7 18 31 145700.33 206.29 1205.29 7276.85

ImpOurs 31 6 4 51 64 6538.33 5.82 2811.99 3257.82 4 51 64 6916.67 6.09 1049.14 2616.21

ImpFPPR 37 6 7 18 37 171914.33 248.24 4733.79 9777.27 7 18 37 175419.00 256.90 1126.29 9812.93

ImpOurs 37 6 4 51 70 8223.00 6.77 1101.04 1327.00 4 51 70 8459.33 7.10 146.14 927.36

ImpFPPR 41 6 7 18 41 189028.67 279.05 1045.53 4416.99 7 18 41 192778.33 266.44 653.92 3062.68

ImpOurs 41 6 4 51 74 9297.67 7.87 953.60 1361.59 4 51 74 9246.00 8.31 87.61 896.38

ImpFPPR 43 6 7 18 43 203094.33 298.13 1444.41 4288.28 7 18 43 199325.67 280.46 787.02 3796.57

ImpOurs 43 6 4 51 76 9899.33 8.02 920.13 1340.39 4 51 76 8958.33 8.33 82.37 918.05

ImpFPPR 47 6 7 18 47 222208.67 326.22 1278.79 4524.33 7 18 47 221999.67 326.08 463.62 3287.07

ImpOurs 47 6 4 51 80 10789.00 9.06 858.66 1296.09 4 51 80 10438.33 9.24 80.54 919.39

ImpFPPR 53 6 7 18 53 245891.33 366.92 2967.03 7311.44 7 18 53 248212.33 359.03 1857.65 6677.92

ImpOurs 53 6 3 51 86 11748.00 10.48 34.82 151.04 3 51 86 11744.00 10.70 31.21 151.02

solve the system may be larger with our method than with Faugère et al.’s
method for small parameters, the time required to build this system is always
smaller. This is due to the much simpler structure of s′m+1 compared to sm+1

(lower degrees and less monomial terms).

4.2 Whole ECDLP Computation

In a next step, we also implemented the whole ECDLP algorithm with the two
strategies ImpFPPR and ImpOurs. For n in {7, 11, 13, 17, 19}, we ran the whole
attack using m = 3 and several values for n′. The orders of the curves we picked
in our experiments are shown in Table 4 together with the experimental results
for the best value of n′, which turned out to be 3 in all cases. Timings provided

130 Y.-J. Huang et al.

Table 4. Comparison of two ECDLP strategies, ImpFPPR and ImpOurs. The last two
columns are computing time in seconds.

n #Eα,β ImpFPPR ImpOurs

7 4*37 1.574 0.864
11 4*523 8.625 6.702
13 4*2089 49.698 31.058
17 4*32941 2454.470 1364.742
19 4*131431 22474.450 9962.861

Table 5. Trade-off for choosing m and n′. N : total number of variables. D: degree of
regularity.

probability to get an answer 2mn′

m!2n
complexity NωD

m increases probability increases D increases, N increases.

n′ increases probability increases N increases.

in the table are in seconds and averaged over 20 experiments. Table 4 clearly
shows that our method (ImpOurs) is more efficient than Faugère et al.’s method
(ImpFPPR).

It may look strange that n′ = 3 leads to optimal timings at first sight. Indeed,
the ECDLP attacks described above use mn′ ≈ n and a constant value for n′

leads to a method close to exhaustive search. However, this is consistent with the
observation already made in [9,10] that exhaustive search is more efficient than
index calculus for small parameters. Table 5 also shows that while increasing n′

increases the probability to have solutions, it also increases the complexity of
the Gröebner basis algorithm. This increase turns out to be significant for small
parameters.

5 Conclusion and Future Work

In this paper, we proposed a variant of Faugère et al.’s attack on the binary
elliptic curve discrete logarithm problem (ECDLP). Our variant takes advantage
of the symmetry of Semaev’s polynomials to compute relations more efficiently.
While symmetries had also been exploited in similar ECDLP algorithms for
curves defined over finite fields with composite extension degrees, our method is
the first one in the case of extension fields with prime extension degrees, which
is the most interesting case for applications.

At Asiacrypt 2012, Petit and Quisquater estimated that Faugère et al.’s
method would beat generic discrete logarithm algorithms for any extension de-
gree larger than roughly 2000. We provided heuristic arguments and experi-
mental data showing that our method reduces both the time and the memory
required to compute a relation in Faugère et al.’s method, unless the parameters
are very small. Our results therefore imply that Petit and Quisquater’s bound
can be lowered a little.

Improvement of Faugère et al.’s Method to Solve ECDLP 131

Our work raises several interesting questions. On a theoretical side, it would
be interesting to prove that the degrees of regularity of the systems appearing
in the relation search will not rise when n increases (in all our experiments
for various parameter sizes, they were equal to either 3 or 4). It would also be
interesting to provide a more precise analysis of our method and to precisely
estimate for which values of the parameters it will become better than Faugère
et al.’s method.

On a practical side, it would be interesting to improve the resolution of the
systems even further. One idea in that direction is pre-computation. The relation
search involves solving a large number of closely related systems, where only
the value x(R) changes from one system to the other. The transformation of
Semaev’s polynomial into a binary multivariate system could therefore be done
in advance, and its cost be neglected. In fact, even the resolution of the system
could potentially be improved using special Gröebner basis algorithms such as
F4 trace [18,14]. A second direction on the practical side is parallelization. A
powerful feature of Pollard’s ρmethod and its variants is their highly-parallelized
structure. Since our method saves memory compared to Faugère et al.’s method,
it is also more suited to parallelization.

Using Gröbner basis algorithms to solve ECDLP is a very recent idea. We
expect that the index calculus algorithms that have recently appeared in the
literature will be subject to further theoretical improvements and practical op-
timizations in a close future.

References

1. National Security Agency: The case for elliptic curve cryptography (January 2009),
http://www.nsa.gov/business/programs/elliptic_curve.shtml

2. Shanks, D.: Class number, A theory of factorization, and genera. In: 1969 Number
Theory Institute (Proc. Sympos. Pure Math., vol. XX, State Univ. New York,
Stony Brook, N.Y., 1969), Providence, R.I., pp. 415–440 (1971)

3. Pollard, J.M.: A Monte Carlo method for factorization. BIT Numerical Mathemat-
ics 15(3), 331–334 (1975)

4. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT Numerical
Mathematics 20, 176–184 (1980)

5. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. Journal of Cryptol-
ogy 13, 437–447 (2000)

6. Diem, C.: An index calculus algorithm for plane curves of small degree. In: Hess,
F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 543–557. Springer,
Heidelberg (2006)

7. Gaudry, P.: Index calculus for abelian varieties of small dimension and the ellip-
tic curve discrete logarithm problem. Journal of Symbolic Computation 44(12),
1690–1702 (2009)

8. Diem, C.: On the discrete logarithm problem in elliptic curves. Compositio Math-
ematica 147, 75–104 (2011)

9. Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the complexity of
index calculus algorithms in elliptic curves over binary fields. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 27–44. Springer,
Heidelberg (2012)

http://www.nsa.gov/business/programs/elliptic_curve.shtml

132 Y.-J. Huang et al.

10. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a Weil descent.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466.
Springer, Heidelberg (2012)

11. Joux, A., Vitse, V.: Elliptic curve discrete logarithm problem over small degree
extension fields. Journal of Cryptology, 1–25 (2011)

12. Faugère, J.C., Gaudry, P., Huot, L., Renault, G.: Using symmetries in the index
calculus for elliptic curves discrete logarithm. IACR Cryptology ePrint Archive
2012, 199 (2012)

13. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic
curves. IACR Cryptology ePrint Archive 2004, 31 (2004)

14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1-3), 61–88 (1999)

15. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83. ACM, New York
(2002)

16. Faugère, J., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. Journal of Symbolic Compu-
tation 16(4), 329–344 (1993)

17. Joux, A., Vitse, V.: Cover and decomposition index calculus on elliptic curves made
practical - application to a previously unreachable curve over Fp6 . In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 9–26. Springer,
Heidelberg (2012)

18. Joux, A., Vitse, V.: A variant of the F4 algorithm. In: Kiayias, A. (ed.) CT-RSA
2011. LNCS, vol. 6558, pp. 356–375. Springer, Heidelberg (2011)

Statistics on Encrypted Cloud Data

Fu-Kuo Tseng, Yung-Hsiang Liu, Rong-Jaye Chen,
and Bao-Shuh Paul Lin

National Chiao-Tung University,
No.1001, Daxue Road, Hsinchu City 300, Taiwan
{fktseng,liuyh,rjchen}@cs.nctu.edu.tw,

bplin@mail.nctu.edu.tw

Abstract. As an increasing number of data is to be processed, out-
sourcing data to the cloud environment becomes an appealing proposal
to heighten the computation/storage efficiency, while avoiding costly and
complicated system construction. However, it is necessary to encrypt the
outsourced data to prevent the breaches of both data confidentiality and
privacy. Most of the statistical procedures deal with the data in the
cleartext form, making it hard to directly apply them to the data in
the encrypted form. In this paper, we present a statistical framework
to securely and efficiently obtain the statistics on encrypted cloud data
through real-time processing. We build our framework on top of the
searchable public-key encryption and provide detailed transformation of
the statistical procedures for the plain data to those for the encrypted
data. We provide detailed descriptions and examples of these transformed
statistical procedures. Finally, we provide security analysis and perfor-
mance evaluation of these transformed procedures and demonstrate the
effectiveness and efficiency of the proposed framework.

Keywords: statistics, encrypted cloud data, efficient transformation of
statistical procedures, statistical framework, online storage services.

1 Introduction

Statistics pertains to the collection, analysis, interpretation and presentation of
data population. The purpose of statistics is to summarize the data population
by sampling and to draw inferences about the population from the observed
samples. The application areas of statistics cover a wide variety of disciplines
such as economics, physics, computer science, and business. As an increasingly
great amount of data need to be processed, outsourcing data to the cloud envi-
ronment becomes an appealing proposal to increase the computation and storage
efficiency as well as avoiding costly system construction and maintenance [1, 2].

While cloud computing brings in a promising future for big data statistics, it
also brings along security and privacy risks, which should be considered seriously
before adopting this paradigm shift [3, 4]. There are encryption techniques avail-
able [5, 6] to protect cloud data and services by transforming the plain data into
an unintelligible form. However, most of the statistical methods deal with the

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 133–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 F.-K. Tseng et al.

data in the plain-text form, making it hard to directly apply these methods to
the data in the ciphertext form. The primitive approach requires users to down-
load all the encrypted cloud data files, decrypts them, and manipulates them to
obtain the demanded statistical results. This approach is time-consuming and
does not scale well. Therefore, there is a high demand for a secure yet efficient
scheme to draw intended statistical results from the encrypted data collection.

On the one hand, homomorphic encryption schemes allow service providers
to perform certain algebraic operations on the encrypted data without learn-
ing the underlying data content. Partially homomorphic encryption allows only
one operation (either addition or multiplication) on encrypted data, while fully
homomorphic encryption supports both addition and multiplication operations.
These two operations in fully homomorphic encryption schemes can be employed
to design the converting statistical procedures for the encrypted data to obtain
the intended statistics. However, fully homomorphic encryption is still away from
practical uses in terms of ciphertext size and computation efficiency [7, 8].

On the other hand, searchable public-key encryption schemes empower data
senders to produce the searchable keywords of an encrypted data for a receiver
by encryption. Later, the receiver can generate appropriate encrypted trapdoors
of demanded search predicates to enable the service provider to efficiently col-
lect and return the encrypted data by these searchable keywords. The service
providers can only tell whether the searchable keywords of a data satisfy the
encrypted trapdoors. They know neither the content of the searchable keywords
nor the encrypted trapdoors. A number of efficient searchable public-key encryp-
tion schemes have been proposed to enable a rich set of search predicates such as
equality, range, subset predicates and the conjunction of these predicates [9, 10].

Contribution. In this paper, we present a statistical framework to obtain
the statistics on encrypted cloud data securely and efficiently. We build our
framework on top of the searchable public-key encryption named hidden vector
encryption (HVE) and provide detailed transformation of common statistical
procedures for the plain data to the equivalent ones for the encrypted data. Fi-
nally, we not only provide security and performance analysis of the proposed
framework but also make comparison with the primitive approach to demon-
strate the effectiveness and efficiency of the proposed framework.

The rest of the paper is structured as follows. Related works are described
in Section 2, while problem formulation is presented in Section 3. Next, our
novel design is detailed in Section 4. Then the security analysis and performance
evaluation are presented in Section 5. Finally, Section 6 concludes this paper by
reiterating our contributions and addressing possible future work.

2 Related Works

In this section, we briefly review the descriptive and inferential statistics. Fol-
lowing that, we discuss homomorphic encryption schemes. Then we introduce
the privacy-preserving retrieval of unencrypted and encrypted dataset. Finally,
we elaborate on the building block of the proposed statistical framework.

Statistics on Encrypted Cloud Data 135

2.1 Descriptive and Inferential Statistics

Descriptive statistics focuses on describing the summaries of a data collection.
These summaries can be either the graphical presentations or the calculation of
the summary statistics. The graphical presentations involve the use of the visual
arts like tables or graphs to exhibit the data collection, while the calculation of
the summary statistics usually associates with the counting techniques to obtain
the measures of the data collection. The visual arts include the frequency table,
histogram, scatter diagram, bar chart and pie chart. The statistical measures
include the measures of central tendency, dispersion, skewness and kurtosis.

Inferential statistics employs sampling to estimate the characteristics of the
whole population. Good sampling can use relatively small sampled data to mea-
sure the entire population. In addition, inferential statistics utilizes the sampled
data to draw inferences about the population. These inferences include the pa-
rameters of the population by estimation techniques, the true/false assertion of
the population by hypothesis tests, the relationships within data by regression
analysis, and the dependency of two sets of data by correlation analysis. These
inferences can be further extended to estimate the unobserved events or forecast
the other population using extrapolation/interpolation techniques [11, 12, 13].

2.2 Homomorphic Encryption

Homomorphic encryption schemes allow service providers to perform certain al-
gebraic operations on the encrypted data without learning the corresponding
data content. The content of the encrypted operational result matches the result
of the operation performed on the corresponding plain data. Partially homomor-
phic encryption allows only one operation (either addition or multiplication) on
encrypted data, while fully homomorphic encryption supports both addition and
multiplication operations. Homomorphic encryption schemes have been utilized
to ensure the confidentiality of the processed data. The addition and multipli-
cation in fully homomorphic encryption schemes can be employed to design the
converting statistical procedures for the encrypted data to obtain the related
statistics. However, fully homomorphic encryption is still away from practical
uses in terms of ciphertext size and computation efficiency [7, 8].

2.3 Privacy-Preserving Retrieval of Unencrypted Dataset

In cryptography, Private Information Retrieval (PIR) protocols enable users to
retrieve data from a server storing unencrypted dataset without revealing which
data is retrieved [14, 15]. A trivial but less efficient PIR is to download the entire
dataset and issue queries locally. Oblivious Transfer (OT), a stronger notion of
PIR, further requires that the user should not obtain unnecessary data from the
server [16]. If given an implementation of OT, secure multiparty computation
(MPC) is possible to compute a function whose inputs are from different parties
without revealing one’s input to the others [17]. To obtain statistics on the
encrypted data, one should ask servers to search on the encrypted data based on

136 F.-K. Tseng et al.

the specified predicate. PIR and OT protocols are not applicable for this purpose
because the intended (encrypted) data should be pointed out to the server,
which is not possible because the data is encrypted and no search procedures
are provided. On the other hand, secure MPC protocols require interactions
among involved servers. Because we would like to obtain statistics in an efficient
and non-interaction manner, MPC protocols are not suitable to our application.

On the other hand, in database systems, there are methods such as ran-
domization and k-anonymization for privacy-preserving data mining [18]. Typ-
ically, these methods make use of the transformation on the dataset to pre-
serve data and search privacy, which reduces the granularity of this dataset.
The randomization methods transform dataset by adding noise to mask the at-
tribute values. However, only the aggregate distributions can be preserved and
individual attribute values of the dataset cannot be recovered. In addition, the
k-anonymization usually reduces the granularity/accuracy of data by general-
ization and suppression mechanisms. These mechanisms require preprocessing
in order to preserve data anonymity. Because our design goals aim at real-time
retrieval of both descriptive (usually connected with counting techniques) and
inferential (usually associated with sampling techniques) statistics, the data pre-
processing and lower data granularity/utility do not fit well for our application.

2.4 Privacy-Preserving Retrieval of Encrypted Dataset

Searchable encryption enables users to encrypt keywords in such a way that
(1) with appropriate trapdoor for a keyword, one can retrieve all the files with
this keyword, and (2) without appropriate trapdoor, the retrieval will fail. In
addition, the trapdoors can only be generated with the knowledge of a secret
and searching reveals nothing about the content of the keyword (which is known
as the search pattern) except for the set of encrypted files containing specific
encrypted searchable keyword (which is referred to as the access pattern).

There are two types of non-interactive searchable encryption schemes: search-
able private-key encryption and searchable public-key encryption. In searchable
private-key encryption schemes, the user possesses the data and can organize
the data in any convenient way, including customized data structures before en-
cryption. Later, the user encrypts the data (and corresponding data structures)
using his/her private key and stores them to the server. Only someone with
this private key can efficiently access the encrypted data in the server [19, 20].
In searchable public-key encryption, each user can securely generate searchable
keywords of a file and delegate encrypted trapdoor of a search query to retrieve
the intended data. The sender, who uses the public-key of the receiver to pro-
duce searchable keywords of a file, can be different from the receiver who has
the corresponding private key. The receiver can generate the trapdoor of the
demanded search predicate by his/her own private key to retrieve the interested
data. The service providers can employ the received trapdoor and the stored
searchable keywords to determine whether the searchable keywords satisfy the
predicates in the trapdoor. The contents of the searchable keywords and the
encrypted trapdoor remain secret to the service providers [9, 10].

Statistics on Encrypted Cloud Data 137

A number of searchable public-key encryption schemes have been proposed
to enable a rich set of search predicates including equality, range, subset and
the conjunction of these predicates. Boneh et al. first proposed the public-key
encryption with keyword search (PEKS) scheme [9] to support equality search
predicates. Later, Park et al. proposed public-key encryption with conjunctive
keyword search scheme to enable the conjunctions of equality predicates. To pro-
vide richer predicates, Boneh and Waters [10] devised a hidden vector encryption
(HVE) scheme to manage subset, range search predicates, and the conjunction
of these predicates. For efficient interactive searchable public-key encryption,
iPEKS was proposed to increase storage and search efficiency [21].

In this paper, we adopt the HVE scheme constructed more efficiently by Iovino
and Persiano [22] as our building block. In their scheme, each searchable keyword
vector Sx is associated with a hidden vector x = (x1, x2, . . . , xn) ∈ {0, 1}n. Each
trapdoor Ty is associated with a predicate vector y = (y1, y2, . . . , yn) ∈ {0, 1, ∗}n,
where the symbol ”∗” denotes the wildcard. Define the predicate function as
Py(x) is 1 if xi = yi for all yi 	= ∗ and 0, otherwise. A encrypted trapdoor Ty

matches an searchable vector Sx if Py(x) = 1, namely, if all the non-wildcard
symbols of the predicate vector y are the same as those of the keyword vec-
tor x. HVE schemes consist of four algorithms: (1) Setup(1k, n) takes as input
a security parameter 1k and the length of the hidden vector n=poly(k) and
outputs the private key SK. (2) SE(PK, x,‘True’) uses PK to generate the
searchable keywords Sx associated with x with the signaling message ‘True’. (3)
Trapdoor(SK, y) produces encrypted trapdoor Ty using SK. (4) Test(Ty, Sx)
returns ‘True’ if Py(x)=1; otherwise, return a random message.

3 Problem Formulation

This section begins by defining the targeted system model including the system
entities and related operations. Following that, the notations used throughout
the paper are explained. Finally, we address the security/privacy threats to the
search and define our design goals of th eproposed statistical framework.

3.1 System Model

We consider a general enterprise cloud storage architecture containing two sys-
tem entities. (See Fig. 1)

1. Cloud Storage Client (CSC) stores a large number of data in the cloud.
These data are either generated on his/her own or sent from other CSCs.
CSCs would like to protect the security/privacy of their data and their search
queries, while utilizing these protected data efficiently.

2. Cloud Storage Provider (CSP) provides search-based store/retrieval services
for CSCs. CSPs are assumed to be honest-but-curious. They follow the speci-
fied protocols, but may attempt to learn extra information from the informa-
tion flow for their own purposes. To tackle malicious CSPs, verifiable store
and retrieval services can be integrated. [23, 24]

138 F.-K. Tseng et al.

Fig. 1. Cloud Storage Access Model

The CSC is further divided into two roles, the sender and the receiver, based
on their operations. The sender (say the branch store) creates and sends en-
crypted searchable transactions to the CSP. The CSP receives/stores the en-
crypted searchable transactions. The receiver (say the head office) generates
encrypted trapdoors of the search predicates for the intended data and corre-
sponding statistical procedures and sends them to the CSP. The CSP performs
search on receiving the encrypted trapdoors and return the requested data or the
corresponding statistics. The head office would like to know some facts about the
transactions at any time such as the sales of individual items, the performance
of the branch stores, the relationship between the two items bought together,
and the correlation between the market expenses and the sale revenues.

We assume this enterprise maintains its own universal keyword set W shared
among head office and branch stores. The enterprise keeps a collection F of the
encrypted transaction records from the branch stores in the cloud. The keywords
set W of a transaction record is composed of m keyword fields, each of which
has ni possible values. Thus, we have n=

∑m
i=1 ni possible keyword values, de-

noted as {wi,j}1≤i≤m,1≤j≤ni , to choose for a transaction record. We will use the
keyword and keyword values interchangeably throughout the paper. In Table
1, W contains three keyword fields: ‘w1:amount of money’, ‘w2:method of pay-
ment’ and ‘w3:item bought’, thus m is 3. For the ‘amount of money’ field, there
are five possible values: ‘w1,1:amount of money:10’, ‘w1,2:amount of money:15’
and ‘w1,3:amount of money:20’, ‘w1,4:amount of money:25’ and ‘w1,5:amount of
money:30’, thus n1 is 5. Similarly, n2 is 4, while n3 is 4. Therefore, the size of
W is n=

∑3
i=1 ni=13. The transaction record also includes supplement data like

the signature of the customer and the soft copy of the receipt. Thus, the branch
store and the head office can make use of the searchable part of the transaction
record to obtain statistics and fetch the corresponding supplement data. The
supplement data is protected by symmetric encryptions.

Each transaction record f in F is given a unique transaction identifier
id, denoted as fid, to support the management through these identifiers.
For the collection of transaction records, Wid is a set containing the keywords

Statistics on Encrypted Cloud Data 139

Table 1. Transaction Record Format

keyword type
quantitative uni-value qualitative uni-value qualitative multi-value

ex:amount of money($) ex:method of payment ex:bought items

keyword set w1,1 w1,2 w1,3 w1,4 w1,5 w2,1 w2,2 w2,3 w2,4 w3,1 w3,2 w3,3 w3,4

keyword value 10 15 20 25 30 cash credit debit check beer apple diaper egg

supplement [image] the signature of the customer

image data [image] the soft copy of the corresponding receipt

specified for fid, while Fwi,j denotes the set of the transaction identifiers where
the keyword value wi,j is specified for the corresponding transaction records.
In addition, a transaction records can be specified one single value (uni-value)
or multiple values (multi-value) for the keyword field. In Table 1, the keywords
in ‘w1:amount of money’ and and ‘w2:method of payment’ are mutually exclu-
sive, only one value/method can be specified for a transaction. Multiple keyword
values in ‘w3:item bought’ are selected to express multiple items are involved.
For the search queries, the universal set of all possible queries is denoted as Q.
One search query contains one or more predicates specified conjunctively. Search
predicates include the conjunction of disjunction of predicates of the keyword
fields. Qid denotes the set of the transaction identifiers whose keywords satisfy
the rtrvl ruleid, while |Qid| denotes the size of the set Qid.

3.2 Threat Model

There are mainly four security aspects which our statistical framework cares
about in the face of honest-but-curious adversaries: (1) the content of the stored
data (the semantic security); (2) the content of the searchable keywords (the
attribute hiding); (3) the content of the encrypted trapdoors (the search pat-
tern); (4) the search result on encrypted cloud data including the corresponding
statistics (the access pattern). In addition, the adversary may the search results
to imply what keywords may have been specified for the file or what predicates
have been appointed in the trapdoors. The proposed framework should take of
these aspects to provide secure and efficient retrieval of encrypted cloud data.

3.3 Goal Model

The design goals are (1) Search Privacy : The searchable keywords of a trans-
action record reveal nothing about the content of the underlying keywords. Sim-
ilarly, the encrypted trapdoors leak no information about the underlying pred-
icates; (2) Non-interactive Search : The retrieval should be processed in a
request-and-response manner. No further interaction between the CSP and the
CSC is required; (3) Data utility : The search should be processed without
decrypting the transaction records first. The retrieval includes descriptive and
inferential statistics; (4) Real-time: The data can be counted in the correspond-
ing statistics once it is stored in the CSPs. No off-line preprocessing is required;

140 F.-K. Tseng et al.

(5) Efficiency : The transformed procedures should be carried out efficiently by
the CSP to help users retrieve their records and related statistics.

4 Proposed Statistical Framework

Overview. We provide basic statistical procedures to show how our proposed
framework enables statistical procedures on encrypted searchable keywords of en-
crypted transactional data. These procedures include the storing transformation,
the retrieval transformation such as the counting and sampling transformation,
the transformation of descriptive statistical procedures and inferential statisti-
cal procedures. The storing transformation indicates how transaction records
are processed to enable the following procedures. The counting and sampling
transformation involve basic probability calculation. Following that, the descrip-
tive statistical procedures contain the measures of central tendency, dispersion,
skewness and kurtosis. Finally, the inferential statistical procedures deal with the
estimate, correlation analysis, regression analysis and hypothesis testing. We de-
tail the transformation from the procedures for the plain records to the ones
for the encrypted records. In addition, we provide concrete examples for each of
the procedures to explain their effectiveness. The explanation of the transformed
procedures applies the dataset as shown in Table 2.

Table 2. Example of Transaction Records (The Searchable Part)

keyword set w1,1 w1,2 w1,3 w1,4 w1,5 w2,1 w2,2 w2,3 w2,4 w3,1 w3,2 w3,3 w3,4

keyword value 10 15 20 25 30 cash credit debit check beer apple diaper egg

str rule1 0 0 0 0 1 0 1 0 0 1 1 1 1

str rule2 0 0 1 0 0 1 0 0 0 1 1 0 1

str rule3 0 1 0 0 0 0 0 0 1 0 1 1 0

str rule4 0 0 0 1 0 0 0 1 0 1 0 1 0

str rule5 1 0 0 0 0 0 1 0 0 0 1 0 1

str rule6 0 0 0 0 1 0 1 0 0 0 1 0 1

str rule7 0 0 0 1 0 0 1 0 0 0 1 1 1

str rule8 0 0 0 0 1 0 0 0 1 1 1 1 0

str rule9 0 1 0 0 0 0 1 0 0 1 1 0 0

str rule10 0 1 0 0 0 0 0 1 0 0 0 1 1

4.1 Storing Transformation

To store a transaction fid with str ruleid, the branch store executes Storing

(See Table 3) to produce transaction vector x. The branch store applies SE(SK,
x, ‘True’) to generate encrypted searchable keywords Sx. str ruleid is an array
of length n. If wi,j is specified in Wid, set str rule[i][j] as 1 and leave the rest as
0. xid is the transaction vector of length n from str ruleid. (See Table 4)

Statistics on Encrypted Cloud Data 141

Table 3. Algorithm - Storing

Algorithm Storing(SK, str rule)

01: x ← Rule2BinVec(‘storing’, str rule,‘DC’)
02: return Sx ← SE(SK, x, ‘True’)

4.2 Retrieval: Counting and Sampling Transformation

There are two parts for search trapdoors: rule and rule type. rule specifies which
keywords are involved, while rule type denotes the operator of this rule. The op-
erator for one keyword field can be ‘Q1’, ‘Q0’, ‘RG’, ‘DC’, which denotes ‘equal-
ity(at least)’, ‘equality(exactly)’, ‘range’ and ‘don’t care’ respectively. xi,j is
initially set as ‘∗’. If wi,j is specified in Qid, rtrvl rule[i][j] and xi,j are set as 1,
and the rest elements (all rtrl rule[i][j′] and xi,j′) are set as 0 for all rule type. In
addition, if the operator specified in rule type[i] is ‘Q0’ or ‘RG’, fill the remaining
xi,j′ as 0; otherwise, leave all the xi,j′ unchanged as ‘∗’ (See Table 4).

Table 4. Algorithm - Rule2BinVec

Algorithm Rule2BinVec(action, rule, rule type)

01: l ← 0, k ← 0, p ← 0, {xi} ← 0, {yi} ← ∗
02: if (action == ‘storing’)
03: while (k < m)
04: l ← 0;
05: while (l < nk) if(rule[k][l] 	= NULL) xk,l ← 1
06: end of while
07: return x
08: else if (action == ‘retrieval’)
09: while (k < m)
10: l ← 0, p ← 0
11: if(rule type[k] == ‘Q1’)
12: while (l < nk)
13: if(rule[k][l] 	= NULL){ yk,l ← 1, l++ }
14: else if(rule type[k] == ‘Q0’)
15: while (l < nk)
16: if(rule[k][l] 	= NULL){ yk,l ← 1, l++ }
17: else {yk,l ← 0, l++ }
18: end of while
19: else if(rule type[k] == ‘RG’)
20: set ← 0, {yi} ← 0
21: while (p < n)
22: if(set == 0 ∧ rule[k][p] == 1)
23: yk,p ← 1, set ← 1, p++

24: else if(set == 1 ∧ rule[k][p] == 1)
25: yk,p ← 1, set ← 0, p++

26: if(set == 1) yk,p ← 1, p++

27: end of while
28: end of while
29: return y

142 F.-K. Tseng et al.

Table 5. Algorithm: Counting

Algorithm Counting(SK, cnt rule, rule type)

01: y ← Rule2BinVec(‘retrieval’, cnt rule, rule type)
02: Let t be the number of 1s in y, i ← 0
03: if (rule type== ‘Q1’ || rule type== ‘RG’)
04: while (i < t)

05: yi is the y preserving the ith 1 and set the other 1s as *.
06: Tyi ← Trapdoor(SK, yi)
07: For each Sx of fid, if (Test(Tyi , Sx) == ‘True’), QF ⇐ id , i ++

08: end of while
09: else
10: Ty ← Trapdoor(SK, y)
11: For each Sx of fid, if (Test(Ty , Sx) == ‘True’), QF ⇐ id , i ++

12: return |QF|

Table 6. Frequency Table of Encrypted Transaction Records

rule rule type frequency (ci,j)
cumulative

frequency (Ci,j)

|Fw1,1 | {Q0,DC,DC} Counting(SK, 10000********)= 1 1

|Fw1,2 | {Q0,DC,DC} Counting(SK, 01000********)= 3 4

|Fw1,3 | {Q0,DC,DC} Counting(SK, 00100********)= 1 5

|Fw1,4 | {Q0,DC,DC} Counting(SK, 00010********)= 2 7

|Fw1,5 | {Q0,DC,DC} Counting(SK, 00001********)= 3 10

Counting Transformation. For quantitative uni-value keyword field (See Ta-
ble 1), there are five possible values. We can build the corresponding frequency
table by issuing Ty for each of these five keyword values. (See Table 5,6). In
addition, the retrieval of all records, the retrieval of the records with exactly
w3,1 and w3,3, the retrieval of the records with either w3,1 or w3,3, the retrieval
of the records within the range from w3,1 to w3,3, the retrieval of the records
without w3,1, and the conditional probability of w3,3 given w3,1 (See Table 7).

Sampling Transformation. There are two common ways of sampling: random
sampling and systematic sampling. Random sampling uses a random number
generator to collect samples from the population until the required number is
achieved (See Table 8). The first part decides the targeted population like all the
transaction records paid by the credit card or all the records whose total amount
is smaller than 25. Given random number generator outputs {20, 31, 3, 18, 9},
thus sQF={str rule1, str rule2, str rule4, str rule9, str rule10}. Systematic
sampling first decides the population and chooses one random record as the
first sample. Skip the next j−1 records and pick the jth records as the sec-
ond sample. Keep on including the jth records from the previous sample as one
sample until the sample size is achieve. Given the random number generator

Statistics on Encrypted Cloud Data 143

Table 7. Frequency Table of Encrypted Transaction Records - Multiple Keywords

rule rule type frequency

|F | {DC,DC,DC} Counting(SK, y =*************)= 10

|Fw3,1∧w3,3 | {DC,DC,Q0} Counting(SK, y =*********1010)= 3

|Fw3,1∨w3,3 | {DC,DC,Q1} Counting(SK, y =*********1*1*)= 8

|Fw3,1 :w3,3 | {DC,DC,RG} Counting(SK, y =*********111*)= 8

|F¬w3,1 | {DC,DC,Q1} Counting(SK, y =*************)−
Counting(SK, y =*********1***)= 5

|Fw3,1|w3,3
| {DC,DC,Q1} Counting(SK, y =*********1*1*)/

Counting(SK, y =***********1*)= 3/6

outputs 14 for the first time, so we have str rule5 as the first sample. Because
we would like to have 5 samples from the population, the skip j is 10/5 = 2,
thus sQF={str rule5, str rule7, str rule9, str rule1, str rule3}.

Table 8. Algorithm - Sampling

Algorithm Sampling(smpl rule, smpl method, smpl size)

� Obtain the sample frame under the smpl rule
01: y ← Rule2BinVec(‘retrieval’, smpl rule, rule type)

02: Ty ← Trapdoor(SK, y)
03: For each Sx, if (Test(Ty , Sx) == ‘True’), QF ⇐ x
� Obtain the sample of size smpl size by smpl method
04: sQF ← ∅, i ← 0, j ← 0, k ← 1
05: y ← Rule2BinVec(‘retrieval’, smpl rule, rule type)
06: if(smpl method == ‘random’)
07: while(|sQF| <smpl size)

08: sQF ⇐ QF [Rand()%|QF|]
09: else if(smpl method == ‘systematic’)
10: i=Rand()%|QF|, j = |QF|/smpl size
11: while(|sQF| < smpl size)
12: if (sQF == ∅) sQF ⇐ QF [Rand()%|QF|]
13: else sQF ⇐ QF [(i+ j ∗ k++)%|QF|]
14: end of while
15: return sQF

4.3 Retrieval: Descriptive Statistics

Descriptive statistics focuses on describing the basic summaries of a data col-
lection. These summaries can be either the graphical presentations or the cal-
culation of the summary statistics. We focus on the calculation of the summary
statistics usually associated with the counting techniques to obtain the measures
of the data collection. The graphical presentation can be easily plotted once the
summary statistics is obtained. The statistics measures include the measure of
central tendency, dispersion, skewness and kurtosis.

144 F.-K. Tseng et al.

Measure of Central Tendency. The mean, taken as the sum of the num-
bers divided by the size of the data collection, represents the central tendency
of a collection of numbers. From Table 6, population mean μ is calculated as
μ =

∑n1

j=1(|Fw1,j |∗w1,j)/|F | = (1×10+3×15+1×20+2×25+3×30)/10 = 21.5.
We can also compute the geometric mean or harmonic mean based on the char-
acteristic of the keyword field. To find the median Me of a data population, find
the half of the number of transaction records |F |/2 = 5 and find the interval
[w1,j , w1,j′] where the median occurs. If there is odd number of records, the me-
dian is the one sits right in the middle. If there is an even number of records,
then there is no single middle value; the median is then defined as the average
of the two middle values. In this example, the median is (w1,3 +w1,4)/2 = 22.5.
Finally, to find the mod of a data collection, look up the frequency table and
the row(s) with the maximum number of frequency is the mod. If the values are
uniformly distributed, the mod does not exist. There can be multiply values for
mode like the mode in the example is w1,2=15 and w1,5=30.

Measure of Dispersion. The range R denotes the difference between the
maximum and minimum specified values for one keyword field. In Table 6, R
is 30−10=20 for the keyword field w1. The interquartile-range (IQR) works
in the similar way. The IQR takes the difference between the values situated
at the 3/4 and 1/4 position from the sorted values. In the example, the IQR
can also be computed as 30−15=15. The variance represents how far the num-
bers are spread out with respect to the mean. The population variance of w1 is
σ2 =

∑k
i=1 ci(mi − μ)2/N =

∑ni

j=1 |F1,j |(w1,j − μ)2/|F | = 55.83 The standard

derivation is the square root of the variance computed as
√
σ2 = 7.472.

Measure of Skewness and Kurtosis. The measure of skewness defines the
degree to which a frequency distribution is symmetric or not. It is measured by
β1=

∑n
i=1(xi − μ)3/(nσ3)=

∑ni

j=1 |F1,j |(w1,j − μ)3/(|F |σ3). If β1=0, the distri-
bution is symmetric. Otherwise, the distribution is positively skewed for β1>0 or
negatively skewed for β1<0. The measure of kurtosis defines the degree to which
a frequency distribution is flat (low kurtosis) or peaked (high kurtosis) is mea-
sured by β2=

∑n
i=1(xi − μ4)/(nσ4)=

∑ni

j=1 |F1,j |(w1,j − μ)4/(|F |σ4). If β2 > 3,
the distribution is leptokurtosis and if β2=3, the distribution is mesokurtosis.
Finally, if 0 ≤ β2 < 3, the distribution is platykurtosis.

4.4 Retrieval: Inferential Statistical Procedures

Inferential statistics employs sampling to estimate/assert the characteristics of
the whole data population. Inferential statistics includes the parameters of the
population by estimation techniques, the true/false assertion of the population
by hypothesis tests, the relationships within data by regression analysis, and
the dependency of two sets of data by correlation analysis. These inferences
can be further extended to estimate the unobserved events or forecast the other
population using extrapolation and interpolation techniques.

Estimate. The sample statistics can be obtained in the similar way except for
the targeted data population. Use the sampling algorithm to decide the targeted

Statistics on Encrypted Cloud Data 145

population to be estimated. Build the frequency table of the sampled data and
perform the counting algorithm to obtain the sample mean and sample variance.
Use x to estimate μ, while use s to estimate σ. Find the sample set sQF as

the one in Table 9. Then calculate x=

∑n1
j=1(|F ′

w1,j
|w1,j)

|sQF| =2×15+20+25+30
10 =21 and

s2 =

∑k
i=1 F ′

w1,j
(w1,j−x)2

|sQF|−1 =415, where |F ′
w1,j

| denotes the frequency of the sampled

records having w1,j . The sample standard derivation is
√
s2 = 20.372.

Table 9. Example of Sampled Transaction Records by Random Sampling

keyword set w1,1 w1,2 w1,3 w1,4 w1,5 w2,1 w2,2 w2,3 w2,4 w3,1 w3,2 w3,3 w3,4

keyword value 10 15 20 25 30 cash credit debit check beer apple diaper egg

str rule1 0 0 0 0 1 0 1 0 0 1 1 1 1

str rule2 0 0 1 0 0 1 0 0 0 1 1 0 1

str rule4 0 0 0 1 0 0 0 1 0 1 0 1 0

str rule9 0 1 0 0 0 0 1 0 0 1 1 0 0

str rule10 0 1 0 0 0 0 0 1 0 0 0 1 1

Statistical Hypothesis Testing. Different from the estimation of the mean
and variance. At times, it is required to decide whether a measure meets a cer-
tain standard. We provide an example of a hypothesis test about a single mean.
The method can further extend to the hypothesis test about a one or more
means/variances. Assume we have 50 random samples. We can calculate the sam-
ple mean as 875 by estimation while the sample standard derivation is 21. Assume
the level of significance is 5% (α=5%), we would like to test whether the popu-
lation mean is 885. The hypothesis is H0 : μ=885 and H1 : μ<885. Assume the
population is a normal distribution. We have z∗=x−μ0√

σ2

n

=880+1.96∗ 21√
50
=−1.684.

Because we have |z∗|<z0.025, we do not reject H0.

Correlation Analysis. Let x denote the advertisement expense for one prod-
uct, and y denotes the number of this products sold. Ten data tuples are shown
in Table 10. We would like to know how advertisement expense and sales are
related. Values of the correlation coefficient are always between −1 and +1,
and the larger the absolute value of the correlation coefficient is, the stronger
the two variables are correlated. For Pearson product moment correlation coef-
ficient, ρwx,wy =

σx∧y

σwxρy
, where ρx,y=

∑N
i=1(xi − x)(yi − y)/N . We have x = 183,

y = 197.2, σx,y = 1092.4, σx = 30.676 and σy = 36.589. Therefore, ρx,y =
1092.4

30.676×36.589 = 0.9733.

Table 10. Example of Advertisement Expenses and Sales

Month 1 2 3 4 5 6 7 8 9 10

Expenses (x) 150 160 180 160 190 210 180 160 180 260

Sales (y) 156 180 190 170 198 250 189 168 191 280

146 F.-K. Tseng et al.

Regression Analysis. Regression analysis is a statistical technique to estimate
the relationships among variables. Linear regression uses linear prediction func-
tions for the data modeling, in which finite unknown parameters are estimated
from the data. We consider the linear regression by ordinary least squares method
(OLS) involving two variables. For a data set of n points {(xi, yi)}ni=1, the re-
gression function is a straight line y = α + βx such that

∑n
i=1(yi − α − βxi)

2

is minimized. The estimation β̂ of β can be written as β̂ =
∑n

i=1(xi−x)(yi−y)∑n
i=1(xi−x)2 ,

and α̂ = y − β̂x. The estimated regression function y = α̂ + β̂x can be calcu-

lated by β̂ =
∑n

i=1(xi−x)(yi−y)∑
n
i=1(xi−x)2 = 1092.4

941 = 1.1609. α̂ = y − β̂x=197.2−1.1609×
183=−15.2433. The head office can estimate the sales when the budge is ap-
proved. Similarly, The head office can assess the budget of the advertisement
expense in order to achieve the pre-set sales performance.

5 Security Analysis and Performance Evaluation

In this section, we present the security analysis of the proposed statistical frame-
work by giving formal arguments. Moreover, we evaluate the storage, computa-
tion and communication costs for procedures and make comparison with the
primitive approach to show its efficiency and practicality.

5.1 Security Analysis

On the one hand, the security of the content of the supplement data relies on the
AES encryption scheme. The recovery of AES-128 key requires a computational
complexity of 2126.1 which is computation-infeasible [25]. On the other hand,
the security of the searchable keywords of a data is based on the security of the
underlying HVE scheme. The HVE scheme in our framework achieves semantic
security and attribute hiding property in the selective and honest-but-curious
models [22]. For semantic security, the adversary cannot distinguish the cipher-
text of a random string from the ciphertext of a user-defined string. For attribute
hiding property, the adversary cannot distinguish the searchable keyword string
x or an random string from the corresponding ciphertexts even when the ad-
versary has access to the key generation procedure. Therefore, the CSP could
not tell the content of the supplement data, the content of the ciphertext and
the content of the searchable keyword. For the trapdoor privacy, the CSP only
knows the set of files whose values of the non-’*’ positions agree with the ones
of the specified positions in the trapdoor. It is computation infeasible for the
CSPs to obtain the content of the non-’*’ positions in the trapdoor by guessing
the meaning of each non-’*’ position. Similarly, the search results (together the
corresponding statistics) is meaningless for the CSP. Finally, to protect non-’*’
positions in the trapdoor, inner product encryption (IPE) was proposed with
doubled size of searchable keywords and much more processing time [26].

Statistics on Encrypted Cloud Data 147

5.2 Performance Analysis

The cloud environment is simulated on the OpenStack platform at National
Chiao-Tung University [27]. We solicit five virtual machines each of which has 2
QEMU Virtual CPU version 1.0 (2000.08-MHz K8-class CPU) running Freebsd
8.3-RELEASE-p3 to play the CSP role. On the other hand, we use local server
with Intel Xeon processor E5620 at 2.40 GHz running Ubuntu 11.10 to play the
CSC role. Both CSCs and CSPs use GMP [28] and PBC [29] libraries. We use a
supersingular curve over one base field of size 512 bits and the embedding degree
is 2. The size of an searchable keyword is equals to 2 elements in the field, which
is 1026 bits in length. The AES-CTR ciphertext is as long as the plaintext.

For storing, the computation time is proportional to the length of the keyword
vector x. In our example, the length is 13 (See Table 1), thus the time require to
store each of the str rule is in average 67.42 ms. For counting and sampling, the
time is proportional to the number of non-asterisk values (which is 0 or 1) in the
predicate vector. Computing each row of the frequency table in Table 6 takes
39.02+10.65N ms for 5 non-’*’ keyword values, where N is the total number of
stored transactions in the CSP. The time required for each trapdoor in Table
7 composes two parts: one is executed by the user to generate an encrypted
trapdoor, while the latter is carried out by the CSP to search through the store
transaction records. On the other hand, the first part of sampling algorithm
works the same as the counting algorithm, while the second part involves the
random sampling or systematic sampling. For obtaining statistics, descriptive
and inferential statistics involves constructing the frequency table first and use
the values from the table rows to obtain further statistics. The computation time
is related to the respective counting and sampling time.

To make clear comparison between the primitive approach (including down-
loading, decrypting and searching all by the CSC) and our approach (generating
the trapdoor, searching on encrypted data and downloading qualified data),
we provide simulations of these two approaches. The computation time is pro-
portional to the number of the transaction records. We assume the primitive
approach uses Advanced Encryption Scheme (AES) (128-bit key) to protect the
transaction records. Assume each record size is 1 KB, thus to download all the
encrypted transaction records costs 1 MB to 1, 000 MB for the number of records
ranging from 1, 000 to 1, 000, 000. Given the download bandwidth 10 MB/sec, it
takes 0.1 to 100 seconds. Assume the CSP returns qualified data files which is 1%
of the whole dataset, the time for download and decrypt qualified data files can
be reduces accordingly. Our framework only submits the encrypted trapdoor to
the CSP which is 2∗13∗1KB= 26 KB. For the storing in the primitive approach,
encryption/decryption one 1 KB records takes 0.036 ms, while storing one en-
crypted records in our framework takes 67.421 ms. For the counting/statistical
procedures, the time for the primitive approach is 100.024 s, while that for our
statistical framework requires 403.171 s for 1 million transaction records in our
Openstack platform with 10 processors conducting parallel processing. In addi-
tion, our statistical framework can recruit enough computing units to achieve
quality of user experience (QoE). Given our framework can be further extended

148 F.-K. Tseng et al.

Table 11. Performance of Obtaining Statistics (time is in seconds.)

framework primitive (aes-ctr128) proposed (10 cores) proposed (1, 000 cores)

number of
time=(CSC download+ time=(CSC keygen + time=(CSC keygen +

transactions
CSC decrypt+ CSP search + CSP search +
CSC search) CSC download) CSC download)

1, 000 0.100 0.408 0.010
5, 000 0.500 2.020 0.030

10, 000 1.000 4.036 0.055
50, 000 5.002 20.163 0.256

100, 000 10.004 40.321 0.507
500, 000 50.018 201.588 2.516

1, 000, 000 100.036 403.171 5.027

to run with 1, 000 cores, we can greatly reduce the time required to retrieve the
demanded records or statistics to 5.027 s. Our time is around 20 times faster
than that for the primitive approach which takes 100.024 s (See Table 11).

6 Conclusion

In this paper, we present a statistical framework to securely and efficiently obtain
the statistics on encrypted data collection in the cloud. We build our framework
on top of the searchable public-key encryption called hidden vector encryption
(HVE) and provide detailed transformation of the statistical procedures for the
plain data to those for the encrypted data. We further give concrete examples
of these secure statistical tools. Finally, we provide security analysis and per-
formance evaluation of these procedures and demonstrate the effectiveness and
efficiency of the proposed framework. For future work, we would like to consider
more advanced statistical procedures and apply these transformations to various
disciplines such as data mining and artificial intelligence.

Acknowledgments. This research is supported by National Science Council,
Taiwan under contract No. 101-2221-E-009-138-, and Delta Electronics, Inc. un-
der contract No. 102C003.

References

[1] Mell, P., Grance, T.: The nist definition of cloud computing (draft). NIST special
publication 800-145 (2011)

[2] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

[3] Subashini, S., Kavitha, V.: Review: A survey on security issues in service delivery
models of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

Statistics on Encrypted Cloud Data 149

[4] Virvilis, N., Dritsas, S., Gritzalis, D.: Secure cloud storage: Available infrastruc-
tures and architectures review and evaluation. In: Furnell, S., Lambrinoudakis, C.,
Pernul, G. (eds.) TrustBus 2011. LNCS, vol. 6863, pp. 74–85. Springer, Heidelberg
(2011)

[5] NIST: Fips pub 197: Announcing the advanced encryption standard (aes). NIST
(2001)

[6] Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. (3) (February 2003)

[7] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

[8] Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129–148. Springer, Heidelberg (2011)

[9] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

[10] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

[11] Lapin, L.L.: Probability and statistics for modern engineering (1990)

[12] Barnes, J.: Statistical analysis for engineers and scientists: a computer-based ap-
proach. McGraw-Hill, Inc. (1994)

[13] Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K.: Probability and statistics for
engineers and scientists, vol. 8. Prentice Hall, Upper Saddle River (1993)

[14] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings of the 38th An-
nual Symposium on Foundations of Computer Science, FOCS 1997, pp. 364–373.
IEEE Computer Society, Washington, DC (1997)

[15] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

[16] Rabin, M.O.: How to exchange secrets with oblivious transfer

[17] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

[18] Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, SIGMOD
2000, pp. 439–450. ACM, New York (2000)

[19] Goh, E.J.: Secure indexes. IACR Cryptology ePrint Archive (2003)

[20] Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006,
pp. 79–88. ACM, New York (2006)

[21] Tseng, F.K., Chen, R.J., Lin, B.S.P.: Toward authenticated and complete query
results from cloud storages. In: 2013 IEEE 12th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 452–458 (July 2013)

[22] Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88.
Springer, Heidelberg (2008)

150 F.-K. Tseng et al.

[23] Tseng, F.K., Liu, Y.H., Chen, R.J.: Toward authenticated and complete query
results from cloud storages. In: 2012 IEEE 11th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 1204–1209 (June 2012)

[24] Tseng, F.K., Liu, Y.H., Chen, R.J.: Ensuring correctness of range searches on en-
crypted cloud data. In: 2012 IEEE 4th International Conference on Cloud Com-
puting Technology and Science (CloudCom), pp. 570–573 (2012)

[25] Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the
full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 344–371. Springer, Heidelberg (2011)

[26] Blundo, C., Iovino, V., Persiano, G.: Private-key hidden vector encryption with
key confidentiality. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 259–277. Springer, Heidelberg (2009)

[27] National Chiao-Tung University: NCTU Openstack Dashboard (2013),
https://openstack.nctu.edu.tw/

[28] Free Software Foundation, Inc.: GMP: The GNU Multiple Precision Arithmetic
Library (2006) http://gmplib.org/

[29] Lynn, B.: PBC: Pairing-Based Cryptography Library (2008),
http://crypto.stanford.edu/pbc/

https://openstack.nctu.edu.tw/
http://gmplib.org/
http://crypto.stanford.edu/pbc/

Toward Practical Searchable Symmetric

Encryption

Wakaha Ogata1, Keita Koiwa2, Akira Kanaoka3, and Shin’ichiro Matsuo4

1 Tokyo Institute of Technology, Japan
ogata.w.aa@m.titech.ac.jp

2 University of Tsukuba, Japan
koiwa@cipher.risk.tsukuba.ac.jp

3 Toho University, Japan
akira.kanaoka@is.sci.toho-u.ac.jp

4 National Institute of Information and Communications Technology, Japan
smatsuo@nict.go.jp

Abstract. Searchable symmetric encryption is a good building block to-
ward ensuring privacy preserving keyword searches in a cloud computing
environment. This area has recently attracted a great deal of attention
and a large quantity of research has been conducted. A security pro-
tocol generally faces a trade-off between security/privacy requirements
and efficiency. Existing works aim to achieve the highest levels of secu-
rity requirements, so they also come with high overhead. In this paper,
we reconsider the security/privacy requirements for searchable symmet-
ric encryption and relax the requirements for practical use. Then, we
propose schemes suitable for the new requirements. We also show exper-
imental results of our schemes and comparison to existing schemes. The
results show that the index sizes of our proposals are only a few times
of that of a Lucene (without encryption). In document update, our pro-
posal requests additional index which depends only on the size of new
document.

1 Introduction

1.1 Background

In the last several years, the progress of network technology and computers, in-
cluding broadband network and virtualization techniques, has made information
technology (IT) environments more usable. The proliferation of cloud comput-
ing is a good example of this. Though cloud computing provides such a usable
environment, its characteristics pose security issues since valuable information
is stored and processed in uncontrollable locations for users, and this could be
lead to information leakage by cloud operators.

Encrypting data stored in the cloud is considered to be a countermeasure
for such threats, and a large number of studies have been conducted on this
subject. In this research, data is encrypted in a manner that it can proceed in its
encrypted form. Examples of such research are counting by using a homomorphic

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 151–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

152 W. Ogata et al.

encryption scheme, processing any calculation using a homomorphic encryption
scheme, and searchable encryption schemes, and these fall within the scope of
this paper.

In each scheme, security requirements are defined and a scheme with provable
security is proposed. These security requirements include privacy of user requests
for the cloud server as well as confidentiality of information. Since privacy re-
quirements vary among entities, we have not provided effective and general secu-
rity requirements for the scheme. However, security researchers generally tend to
aim at stronger security requirements. Yet security requirements and efficiency
have trade-off relationship in our hopes for strong security, and processing per-
formance and communication efficiency decrease. We therefore have to find a
good balance among usability in terms of cloud computing, security, privacy,
and efficiency.

1.2 Related Works

In this research, we focus on security requirements for a searchable encryption
scheme, which is a demanded service for cloud computing and has been ex-
tensively researched to date. In searchable encryption schemes, the data and
keyword for the search are first encrypted. Ciphertext is stored in the server.
Only a party possessing access right can produce valid information (trapdoor)
for a keyword search. The server cannot know the keyword from the trapdoor.
This characteristic protects the privacy of the keyword.

Searchable encryption based on a symmetric cipher was firstly proposed in [17],
and then schemes with improved security definitions were proposed in [8,7]. In, [7]
Curtmola et al. proposes two searchable symmetric encryption schemes. Then,
Kamara and Roeder showed that the scheme can convert to secure against adap-
tive adversary in CCS 2012 [14]. To enhance efficiency for keyword search, re-
searches on reducing cost for document update are conducted recently. In [10,11],
new indexes are reconstructed based on a single private key. On the other hand,
the scheme proposed in [14] does not construct additional indexes.

Boneh et al. first proposed searchable encryption based on a symmetric ci-
pher [5] as an application of an identity-based encryption scheme. Following that,
many schemes [1,4] have been proposed including those based on anonymous hi-
erarchical identity-based encryption. There is also research on operation when a
searchable encryption scheme is applied to cloud computing [12].

1.3 Our Contributions

In this paper, we focus on searchable symmetric encryption. We refine the secu-
rity definitions that offer a good balance between privacy and efficiency.

We first show efficiency requirements for a practical searchable symmetric
encryption scheme, and show that the existing scheme is not practical. After
that, we reconsider the security requirement for searchable encryption. Next we
propose new schemes that have smaller encrypted indexes and lower processing
costs for adding documents. These schemes allow leakage of a part of privacy

Toward Practical Searchable Symmetric Encryption 153

from search history, but this would not be a problem in most of practical usages.
We also show experimental results of our schemes and existing schemes. The
experimental results show that the original searchable symmetric encryption by
Curtmola et al. has huge amount of index size against Lucene, and our proposal
can reduce the index size to a few times of that of Lucene.

2 Definitions of Symmetric Searchable Encryption and
Existing Schemes

2.1 System Model

We assume the following setting as in [7]: There is one user U and one server S. U
has a collection of documents D = {D1, . . . , Dn}, each document Dj is stored on
server S in an encrypted style. Dj is assigned a unique identifier id(Dj) that does
not reveal any confidential information, e.g., a sequential number (id(Dj) = j)
or a ciphertext of the document name. We assume that the set of searchable
keywords, Δ = {w1, . . . , wd}, is predetermined and is called a dictionary. An
outcome of a search for w ∈ Δ is denoted by D(w) = {id(Dj) | w ∈ Dj}.

In an ordinary file system (with no security or privacy), a database called
an index is generated in advance for quick keyword searching. For example,
{(wi,D(wi))}i=1,...,d is stored. When a user issues a search query to the file
system, the file system searches D(wi) in the database and returns it to the
user. A symmetric searchable encryption system (SSE) is a system in which an
encrypted index is built to prevent information leakage.

An SSE consists of four algorithms as follows.

Keygen(1k): User U uses this algorithm to generate private key K based on
security parameter k.

BuildIndex(K,D, Δ): U uses this algorithm to build (encrypted) index I from
document set D. I is sent to server S along with encrypted documents
ζ = (Enc(D1), . . . , Enc(Dn)).

Trapdoor(K,w): U runs this algorithm when it searches in D for keyword w.
The output Tw = Trapdoor(K,w), called a trapdoor, is sent to S.

Search(I, T): S uses this algorithm to search in encrypted documents. If
T = Trapdoor(K,w), then it is necessary that Search(I, T) = D(w). S re-
turns the result D(w) to U .

Although the search process in this model is a one-round protocol, it can
generally be a multi-round protocol.

2.2 Security Requirement

Let (w1, . . . , wq) be a sequence of q keywords. A history is defined as

Hq = (D, w1, . . . , wq),

154 W. Ogata et al.

which determines an instantiation of an interaction between U and S. A partial
history of Hq is Ht

q(D, w1, . . . , wt), where t ≤ q. An adversary’s view of Hq under
secret key K is defined as

VK(Hq) = (id(D1), . . . , id(Dn), ζ, I, T1, . . . , Tq),

where I = BuildIndex(K,D, Δ) and Ti = Trapdoor(K,wi). A partial view is

V t
K(Hq) = (id(D1), . . . , id(Dn), ζ, I, T1, . . . , Tt),

where t ≤ q.
Oblivious RAMs introduced in [9] realize secure searching in which VK(Hq)

does not leak any information of Hq. However, this scheme is highly inefficient.
It is not practical to require perfect secrecy such as with oblivious RAMs. Thus,
some weak security definitions that allow leakage of partial information of the
history to the server were defined in the literature.

Chang and Mitzenmacher [6] defined the security of SSEs. In [7], a vulnerabil-
ity of the definition was pointed out, and the authors gave four new security defi-
nitions: semantic security against non-adaptive attack, semantic security against
adaptive attack, indistinguishability against non-adaptive attack, and indistin-
guishability against adaptive attack. Since equivalence of semantic security and
indistinguishability was shown [7], here we give only the definition of semantic
security.

Definition 1 (Trace). For a given history Hq = (D, w1, . . . , wq), let Πq be a
q × q binary matrix where Πq[i, j] = 1 if wi = wj , Πq[i, j] = 0 otherwise. The
trace of Hq is the sequence

Tr(Hq) = (id(D1), . . . , id(Dn), |D1|, . . . , |Dn|,D(w1), . . . ,D(wq), Πq).

Trace indicates information that we allow to leak to the server.

Definition 2 (Semantic security against non-adaptive attack). We say
that an SSE is non-adaptively semantically secure if all q ∈ N and for any ppt
adversary A, there exists a ppt simulator Sim such that for all traces Trq, all

polynomial samplable distributions Hq over {Hq ∈ 22
Δ ×Δq : Tr(Hq) = Trq},

all functions f ,

|Pr[A(VK(Hq)) = f(Hq)]− Pr[Sim(Tr(Hq)) = f(Hq)]|

is negligibly small, where Hq ← Hq,K ← Keygen(1k), and the probabilities are
taken over Hq and the internal coins of Keygen, A, Sim and the underlying
BuildIndex algorithm.

Definition 3 (Semantic security against adaptive attack). We say that
SSE is adaptively semantically secure if all q ∈ N and for all ppt adversaries
A, there exists a ppt simulator Sim such that for all traces Trq, all polynomial

Toward Practical Searchable Symmetric Encryption 155

samplable distributions Hq over {Hq ∈ 22
Δ ×Δq : Tr(Hq) = Trq}, all functions

f , all 0 ≤ t ≤ q:

|Pr[A(V t
K(Hq)) = f(Ht

q)]− Pr[Sim(Tr(Ht
q)) = f(Ht

q)]|

is negligibly small, where Hq ← Hq,K ← Keygen(1k), and the probabilities are
taken over Hq and the internal coins of Keygen, A, Sim and the underlying
BuildIndex algorithm.

2.3 Curtmola et al. Scheme (SSE-1)

Existing SSE schemes can be classified into two types. The first type uses a
Boolean n× d matrix as an index (such as [6]), and the second type uses a list
of (wi,D(wi)) (such as [7]). We focus on the second type of scheme in this paper
because computational complexity of searching in such schemes is O(log n), while
it is O(n) in the first type of scheme.

Curtmola et al. proposed two SSE schemes [7]. The first, called SSE-1, is
secure against non-adaptive attacks, and is more efficient. The second, called
SSE-2, is secure against adaptive attacks, but less efficient. On the other hand,
in [14] it is shown that simple modification of SSE-1 can make it adaptively
secure in the random oracle model. We review the SSE-1 scheme here.

Let k be a security parameter, p be the bit length of the longest keyword in
Δ, unit be the bit length of the shortest keyword, and m be the total size of
the plaintext documents D expressed in unit. Let E be a symmetric encryption
function with key length 	. SSE-1 uses the following pseudo-random function f
and pseudo-random permutations π, ψ.

– f : {0, 1}k × {0, 1}p → {0, 1}�+logm

– π : {0, 1}k × {0, 1}p → {0, 1}p
– ψ : {0, 1}k × {0, 1}logm → {0, 1}logm

We give a list of parameters in Table 1 for convenience.

Keygen(1k): Generate random keys s, y, z
R←− {0, 1}k and outputK = (s, y, z, 1�).

BuildIndex(K,D, Δ):

Table 1. Parameters used in SSE-1

k security parameter, key length of pseudo-random function/permutations

� key length of symmetric encryption

n the number of documents in document collection D
d the number of keywords in dictionary Δ

p bit length of the longest keyword

unit bit length of the shortest keyword

m total length of D expressed by unit

156 W. Ogata et al.

1. Scan D and build Δ′(⊆ Δ), which is the set of all keywords in D. Build
D(w) for each word w ∈ Δ′.

2. Set up array A with m entries as follows. First, global counter ctr is set
to 1. For each wi ∈ Δ′ choose a random 	-bit string κi,0, and for each
idi,j ∈ D(wi) (1 ≤ j ≤ |D(wi)|), set node Ni,j = 〈idi,j ||κi,j ||ψs(ctr+1)〉,
where κi,j is a random 	-bit string.
Compute Eκi,j−1(Ni,j) and store it in A[ψs(ctr)] = Eκi,j−1(Ni,j).
Store a random string in all entries that are not used to store an en-
crypted node.

3. Build lookup table T with d entries as follows.
For each wi ∈ Δ′, set T[πz(wi)] = 〈addr(A(Ni,1))||κi,0〉 ⊕ fy(wi), where
addr(A(Ni,1)) is the address add where A[add] = Eκi,0(Ni,1).
Store a random string in all T[πz(wi)] s.t. wi ∈ Δ \Δ′.

Output I = (A,T).
Trapdoor(K,w): Output Tw = (πz(w), fy(w)).
Search(I, T): Let T = (γ, η). Retrieve θ = T[γ]. Let 〈α||κ〉 = θ ⊕ η. Decrypt

A[α] with κ to obtain Ni,1, which includes identifier idi,1, the next random
key κi,1, and the next address addr(A(Ni,2)). Then decrypt A[addr(A(Ni,2))]
with κi,1 to obtain Ni,2, which includes idi,2. Iterating the same process to
recover all idi,j . Output all identifiers {idi,j}.

It is shown that SSE-1 is semantically secure against non-adaptive attacks,
if E is a secure symmetric encryption function, f is a pseudo-random function,
and π, ψ are pseudo-random permutations.

2.4 Other Schemes Supporting Document Update

Consider the case that the user U keeps a set of documents D1 on a server S with
an index I = BuildIndex(K,D1, Δ), and now U is going to store an additional
set of documents D2. A simple way to add documents is that U builds a new
index I ′ = BuildIndex(K,D2, Δ) and S replaces an old index I with (I, I ′). In
this case, however, S learns D2(w) if U already made a search query for w in D1

(but not in D2) since S knows T = Trapdoor(K,w).
Accordingly, the following process is adopted in [6] and [7]. To add D2,

U runs Keygen to generate a new key K ′, and builds a new index I ′ =
BuildIndex(K ′,D2, Δ), which is sent to S with (encrypted) D2. When U wants
to search for a keyword w, it sends two trapdoors T = Trapdoor(K,w) and
T ′ = Trapdoor(K ′, w) to S. S runs Search(I, T) and Search(I ′, T ′).

This process does not leak unnecessary information. However, if a few docu-
ments are added frequently, U has to keep many private keys and a set of many
trapdoors has to be sent to search for a keyword.

Recently, some researchers have proposed SSE schemes in which the user can
add document sets freely without increasing the size of the private key. SSE
schemes proposed in [10] and [11] construct new index I ′ based on a single
private key. On the other hand, the scheme proposed in [14] does not construct
additional indexes but utilizes unused memory space of the original index.

Toward Practical Searchable Symmetric Encryption 157

3 What Is Practical SSE?

SSE schemes with high security are needed in special purposes. In most cases,
however, we require practicality – reasonable index size and small communica-
tion/computational cost – rather than security, since we use storage services as
a tool for improving convenience.

In this section, we first introduce requirements for practical SSE schemes. We
then claim that existing schemes such as SSE-1 do not satisfy the requirements.

3.1 Requirements for Practicality

Here we introduce three requirements for practicality.

1. Efficient search. We perform keyword search repeatedly, so real-time re-
sponse is required. We require that a much longer time than in an ordinary
(unencrypted) system is not needed to search for a keyword.

2. Reasonable index size. In general, the size of an index depends on the
total size of D. We require that the size of index for D is not much larger
than D itself.

3. Scalability. In most cases, new documents are added in storage one after
another. On such occasions, the user must renew the index by performing
an update protocol with the server. For scalability, it is desirable for an SSE
scheme to have the following two properties.

(R1) The size of secret key K and computation/communication cost for
searching do not depend on the number of updates of the index.

(R2) The computational cost to update the index depends on the additional
document size, but not on the total document size.

3.2 Inefficiency of SSE-1

In SSE-1, index I consists of an array A and a lookup table T. A has m entries,
where m is the total size of the plaintext documents D expressed in the shortest
keyword length. Each entry consists of three parts: a document identifier, a
random key, and the next address of A. Since the lengths of these parts are
�logn�, 	, �logm�, respectively, the total size of A is m(�logn� + 	 + �logm�)
bits. T has d entries, each consisting of an address and a value, which are p bits
and (+ �logm�) bits, respectively. Therefore, the size of T is d(+ �logm� +
p). In total, the bit length of the index is |I| = m(�logn� + 	 + �logm�) +
d(+ �logm�+ p).

Next, we estimate the sizes of I for concrete parameters. We assume that

– D consists of n = 103 documents, the size of each document is on average
10KB. The total size of D is 10MB.

– The dictionary includes 100,000 keywords, that is, d = 105. The length of
the shortest keyword is 2 B (two letters) and that of the longest keyword is
20 B (20 letters, 10 units). Therefore, p = 160.

158 W. Ogata et al.

Table 2. Index size in SSE-1 and Lucene in a case(∗)

size of document set: |D| index size: |I| Ratio: |I|/|D|
SSE-1 10MB 836MB 83.6

Lucene 67MB 83MB 1.28

(∗) D consists of n = 103 documents, the size of each document is on average 10KB.
The dictionary includes 100,000 keywords,
The shortest keyword is two letters, the longest keyword is 20 letters (10units).
The private key length is � = 128.

– The key length is 	 = 128 as in AES.

Under these parameters, m = 5 × 106. We show the index size under these
parameters in Table 2. For comparison, we also give the case of Lucene [2] as an
example of systems that do not consider privacy at all.

From the table, we can see that the index is huge in SSE-1. Now consider
the case in which we store documents using a free storage service. If the free
space is 5 GB, we can store 2 GB (non-confidential) documents in total, along
with a 2.6 BG index of Lucene. On the other hand, if we want to store them
by using SSE-1, we cannot store 60 MB of documents in total since their index
exceeds 5 GB.

3.3 Scalability of Existing SSE

As we mentioned before, SSE-1 does not have scalability.
In contrast, SSE schemes that support document updates have scalability.

However, they require huge indexes as well as SSE-1.

4 Relaxation of Security

As we show in section 3.2, a serious disadvantage of SSE-1 (and its variations)
is index size, especially the size of array A. A has m entries, but only m′(=∑

w∈Δ′ |D(w)|) entries are used to store meaningful values. The remaining entries
are prepared to hide the number m′. This means that if the user does not mind
the server knowing the number m′, the number of entries of A can be reduced to
m′(<< m). Similarly, there is a possibility that a rather efficient SSE scheme can
be constructed if the user does not mind leakage of some additional information.

In this section, we discuss the need for adaptive indistinguishability and define
several levels of security.

4.1 Adaptive Attack

An adversary that mounts a chosen-keyword attack (cka) has the ability to obtain
trapdoors corresponding to the keywords. We discuss the feasibility of cka.

The general attack scenario of active attacks such as chosen-keyword attacks
and chosen-ciphertext attacks is a lunchtime attack. That is, an adversary ille-
gitimately accesses a computer that is used to make trapdoors. Do we possess

Toward Practical Searchable Symmetric Encryption 159

other means against the attack other than cryptographical control? Yes, we will
be able to avoid such illegitimate use by adequately managing a private key K.

Another attack scenario of a chosen-keyword attack is a social attack, as
follows.

– An adversary popularizes a target keyword w. Accordingly, the user would
search for w in his documents by sending a trapdoor T = Trapdoor(K,w).

– A malicious administrator of the server tells the user a forged notification
that word w is not allowed to be stored in storage (e.g., for certain political
reasons). Accordingly, the user searches for w in his documents.

Although it is difficult to avoid such social attacks, we think that an adversary
cannot frequently succeed in obtaining desirable trapdoors. It seems particularly
hard to adaptively obtain desirable trapdoors.

From the above discussion, if adaptively indistinguishable SSE schemes are
much more inefficient than non-adaptively indistinguishable ones, one practical
choice is to use an efficient non-adaptively indistinguishable one together with
appropriate key management and other controls against social attacks.

4.2 Relaxed Security Definitions

In [7], a trace of history Hq is defined as

Tr(Hq) = (id(D1), . . . , id(Dn), |D1|, . . . , |Dn|,D(w1), . . . ,D(wq), Πq).

As mentioned before, Tr(Hq) indicates partial information of Hq that we allow
to leak to the server. Below, we define some variations of trace.

For given dictionary Δ = {w1, . . . , wd} with d words and document set D =
{D1, . . . , Dn}, we define index matrix P which is expressed by a binary matrix:

P =

⎡⎢⎢⎢⎣
p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n
...

... · · · ...
pd,1 pd,2 · · · pd,n

⎤⎥⎥⎥⎦ ,

pi,j =

{
1 if wi ∈ Dj ,
0 otherwise.

Let

WH(wi) =
n∑

j=1

pi,j ,

WH(Dj) =

d∑
i=1

pi,j ,

WH(P) =
d∑

i=1

n∑
j=1

pi,j .

160 W. Ogata et al.

WH(wi) is the number of documents in D that include keyword wi(∈ Δ), that
is, WH(wi) = |D(wi)|. WH(Dj) is the number of keywords in document Dj . For

randomly chosen permutations πd (over {1, . . . , d}), let P̂ be a binary matrix
such that rows of P are permuted by πd. We call P̂ a randomized index matrix.1

Our new security definitions are as follows.

Definition 4. For a given history Hq = (D, w1, . . . , wq), define

Tr(0)(Hq) = Tr(Hq),

T r(1)(Hq) = (Tr(Hq),WH(P)),

T r(2)(Hq) = (Tr(Hq),WH(D1), . . . ,WH(Dn)),

T r(3)(Hq) = (Tr(Hq),WH(w1), . . . ,WH(wd)),

T r(4)(Hq) = (Tr(Hq), P̂).

(In this definition, we only consider non-adaptive semantic security.) For k ∈
{0, 1, 2, 3, 4}, Tr(k)-security is defined the same way as in Def. 2 except that
Tr(Hq) is replaced with Tr(k)(Hq).

From the definition, Tr(0)-security is equivalent to the original semantic security.
Clearly,

Tr(0)-secure ⇒ Tr(1)-secure ⇒ Tr(2)-secure and Tr(3)-secure,

T r(2)-secure or Tr(3)-secure ⇒ Tr(4)-secure

hold.
When a user searches for a keyword, the server learns a vector in the random-

ized index matrix P̂ even if the scheme has Tr(0)-semantic security. Therefore,
after the user searches for all keywords in the dictionary, the server learns the
entire P̂ . This means that Tr(0)-semantic security gets closer to Tr(4)-security
the more keywords are searched.

In the next subsection, we further discuss the relation among the security
notions focusing on document update.

4.3 Relations among the Security Notions

We assume that an SSE scheme has Tr(3)-semantic security, that is, I leaks
WH(wi) =

∑n
j=1 pi,j for all wi ∈ Δ. Consider the case that the user add a new

document Dn+1 and the index is replaced with I ′ that has information about
Dn+1. At this moment, the server learns (p1,n+1, . . . , pd,n+1) since

n+1∑
j=1

pi,j −
n∑

j=1

pi,j = pi,n+1

1 Note that the order of documents is not randomized, since it does not have any
confidential information.

Toward Practical Searchable Symmetric Encryption 161

holds. If documents are added one by one, the server learns the entire P̂ (even if
no keyword is queried). This situation happens independently of the scheme and
the way of index update. Therefore, in the case documents are added one by one
(or only a few at a time), Tr(3)-semantic security is very close to Tr(4)-semantic
security. With the same argument, Tr(1)-semantic security and Tr(2)-semantic
security is also very close in such a situation.

5 Practical SSE Schemes

In this section, we show how we can improve the efficiency of SSE schemes by
relaxing the security requirement. For this purpose, two efficient SSE schemes
are given.

5.1 Simplest Scheme (Simple-SSE)

Before showing SSE schemes, we describe a search scheme with no security
measure— SEARCH. In SEARCH, an index is built as I0 = {(wi,D(wi))}i=1,...,d

from document set D beforehand. (We assume that the entries in I0 are sorted
in alphabetical order.) When a user requests a search for w ∈ Δ, the server finds
an entry (wi = w,D(wi)) in I0 (with O(log d) computational cost), and answers
D(wi) to the user.

Needless to say, SEARCH is absolutely insecure since the server knows which
keywords are included with which documents, and also learns which keywords
the user searched for. By replacing all keywords with random strings we can
obtain an SSE scheme which we call Simple-SSE. The description is as follows.
In this scheme, H : {0, 1}∗ → {0, 1}�H is a collision resistance hash function.

Keygen(1k): Choose K
R←− {0, 1}k and output K.

BuildIndex(K,D, Δ): Build I0 = {(wi,D(wi))}i=1,...,d. For each wi ∈ Δ compute
ŵi = H(K‖wi). Replace each entry (wi,D(wi)) of I0 with (ŵi,D(wi)), and
then sort the entries in alphabetical order of ŵi. The result is I.

Trapdoor(K,w): Output ŵ = H(K‖w).
Search(I, T): Search (ŵ = T,D(w)) in I and output D(w).
Theorem 1. If a pseudo-random encryption function Enc is used to encrypt
each document, Simple-SSE has Tr(4)-semantic security in the random oracle
model. More precisely,

|Pr(A(VK(Hq)) = f(Hq))− Pr(Sim(Tr(4)(Hq)) = f(Hq))| ≤ qH/2k +AdvEnc

holds, where qH is the number of oracle queries, k is the private key length, and
AdvEnc is an advantage of pseudo-randomness of Enc.

Proof. We consider Sim as follows. The input of Sim is

Tr(4)(Hq) = (id(D1), ..., id(Dn), |D1|, ..., |Dn|,D(w1), ...,D(wq), Πq, P̂),

where P̂ = {pij}. Sim computes I as follows.

162 W. Ogata et al.

1) For all i(1 ≤ i ≤ d),
1a) choose a random string ŵ with length 	H bits and set List← {};
1b) for all j(1 ≤ j ≤ n), if pij = 1, add id(Dj) to List;
1c) set Entryi = (ŵ, List);

2) Sort d entries in alphabetical order of ŵ to obtain I.
Next, Sim computes the list of trapdoors as follows.

For all i(1 ≤ i ≤ q),

1) search in I and find an entry (ŵj , Listj) such that Listj = D(wi) ;
2) set Ti ← ŵj .

Then, Sim runs adversary A as a subroutine with input

view = (id(D1), . . . , id(Dn), ζ, I, T1, . . . , Tq),

where ζ is a set of random strings and each length is determined by |Di|.
The adversary A may issue random oracle queries. To answer them, Sim

chooses random key K∗ at first, and initializes a list LH = ∅. When A makes
query (K||w), Sim first checks if K = K∗. If so, Sim aborts. Otherwise, Sim
searches K||w in LH . If there exists 〈K||w, ŵ〉, then Sim returns ŵ to A. Oth-
erwise, chooses 	H-bit random string ŵ, adds 〈K||w, ŵ〉 in LH , and returns
ŵ to A.

When A outputs f(Hq), Sim outputs it as own result.
If Sim does not abort, A’s view is the same as the real attack scenario except

the distribution of ζ; it consists of random strings in the above simulation, while
real ciphertexts in the real attack scenario. Therefore,

|Pr(A(VK(Hq)) = f(Hq))−Pr(Sim(Tr(4)(Hq)) = f(Hq))| ≤ Pr(Sim aborts)+AdvEnc.

Sim aborts only if A queries K∗. So, Pr(Sim aborts) ≤ qH/2k, where qH
is the number of oracle queries. That is, Simple-SSE holds Tr(4)-semantic
security. ��

The computational costs for searching in Simple-SSE are almost the same
as those in SEARCH. The computational costs of BuildIndex are d hashes and
sorting, which are very lightweight.

We can therefore say that the extra computational cost needed to guarantee
Tr(4)-semantic security is very small.

5.2 Lightened SSE-1 (SSE-1′)

We consider a lightened version of SSE-1, called SSE-1′, in which A has only
m′(= WH(P)) entries, that is, we eliminate all entries that store random strings.

Theorem 2. SSE-1′ has Tr(1)-semantic security, if E is a secure symmetric
encryption function, f is a pseudo-random function, and π, ψ are pseudo-random
permutations.

Toward Practical Searchable Symmetric Encryption 163

Proof. SSE-1′ is the same as SSE-1 except the size of array A. In the security
proof of SSE-1, Sim simulates adversary’s view, which includes encrypted data,
index (T,A), and trapdoors. (A has m entries, and m is determined by the sizes
of documents.)

We consider a simulator Sim′ that operates in the same way to Sim except
that A has only m′ entries. Note that Sim′ knows m′ = WH(P) because it is
included in Tr(1)(Hq) (but not in Tr(Hq)). Then, the simulated view by Sim′

and the real view are indistinguishable from the same reason in the proof of
original SSE-1. ��

5.3 Index Size of Proposed Schemes

To show the efficiency of our schemes, we first compare the size of index in
SEARCH, Simple-SSE, and SSE-1′. We denote them with I0 and ISimple and
ISSE1′ . In the following discussion, we use ρ = WH(P)/dn, which is the average
hit rate.

Since I0 = {(wi,D(wi))}i=1,...,d,

|I0| =
d∑

i=1

|wi|+WH(P)�log n� = d(ave(|wi|) + nρ�logn�)

where d and n are the number of keywords in Δ and the number of documents
in D, respectively.
|ISimple| is estimated as

|ISimple| = d	H +WH(P)�logn� = d(H + nρ�logn�).
|ISSE1′ | is estimated as

|ISSE1′ | = WH(P)(�log n�+ 	+ �logWH(P)�) + d(+ �logWH(P)�+ p)

= d

(
(+ p) + nρ(�logn�+ 	+

nρ+ 1

nρ
�log dnρ�)

)
If 	H = 160 (as in SHA-1) and it is longer than the average length of keywords,

I in Simple-SSE is larger than I0. However, the difference between them is not
so large.

Next, we compare |ISSE1′ | and |ISimple|. Assuming that 	h = 160, 	 = 128, p =
160, the first term of |ISSE1′ | is not as large as twice the first term of |ISimple|.
The ratio of the second terms is 1 + (logn)−1(+ nρ+1

nρ log dnρ), which is 1 +

(logn)−1(+ 2 log d) when nρ ≈ 1 and 2 + (logn)−1(+ log dρ) when nρ >> 1.
When n = 210 ∼ 220, ρ = 2−4 ∼ 2−10, d = 210 ∼ 220, and 	 = 128, it is estimated
between 8 and 18.

5.4 Scalability of Simple-SSE and SSE-1′

In Simple-SSE, we can update the index as follows.

164 W. Ogata et al.

– LetD′ be the additional documents. U first builds I ′0 = {(wi,D′(wi))}i=1,...,d.
For each wi ∈ Δ, computes ŵi = H(K‖wi) as in BuildIndex, replaces wi in
I ′0 which ŵi, and then sorts (ŵi,D′(wi)) to obtain I ′. U sends I ′ to S along
with ciphertext of D′.

– Upon receiving I ′, S updates I as follows. For all (ŵi,D′(wi)) ∈ I ′, replaces
(ŵi,D(wi)) in I with (ŵi,D(wi) ∪ D′(wi)).

After an update of the index, an original private key K can be used and the
user can search as in the same process as before. Therefore, the update satisfies
(R1). Computation and communication costs for an update of the index are also
proportional to the size of I ′. The size of I ′ depends on the bit length of new
documents D′, but not on the existing document set. So, the update satisfies
(R2). That is, we can say that Simple-SSE has scalability.

On the other hand, updating of index in SSE-1′ can be done similar way to
[11] to satisfy scalability.2 (Unfortunately, Hirano et al.’s technique [10] does not
satisfy (R1); the technique introduced in [14] leaks additional information and
degrades security.)

6 Implementation and Evaluation of SSE

To confirm that the new schemes are practical, we implement SSE-1, Simple-
SSE, and SSE-1′, and evaluate the index size and execution time of the search
for each scheme. We use Java for implementation of each program.

6.1 Preparation of Implementation

Document set D: We use the following presented papers (total of 974) as
documents of the targeted search.

– USENIX Security Symposium (2002–2011)
– IEEE Symposium on Security and Privacy (2003–2012)
– ACM Conference on Computer and Communications Security (2002–2011)

Since these papers are published on the Web by the PDF file, we convert
them into text files.3 The sum total of the size of converted documents is
65,011,003 B.

Dictionary Δ: The dictionary in our implementation is Δ = Δ1 ∪Δ2, where
Δ1 is SINGLE.TXT on Moby Word Lists[16], and Δ2 was produced by Lucene

2 In [11], the following techniques are used: (a) To keep the key size to be constant,
a secret key used to make each index is generated from a unique master secret key.
(b) To keep the trapdoor size to be constant, all indexes are linked by putting a
trapdoor in the next index.

3 We use the pdftotext command of Xpdf 3.03 for conversion to text files.

Toward Practical Searchable Symmetric Encryption 165

from D.4 This dictionary has 514,045 words, that is, d = 514, 045. The longest
words in Δ is 248 letters5, i.e., the bit length is 1,984 bit.

Other Parameters: For implementing a pseudo-random function f , we use
HMAC which is in the javax.crypto package and javax.crypto.spec package. More
precisely, fk(w) is computed by

fk(w) = HMAC(w‖0)‖HMAC(w‖1)‖ · · · ‖HMAC(w‖(s− 1)),

where s = �n/160� and n is the output length of f .
We implement pseudo-random permutations ψ and π by using AES[3]. The

input length of ψ is logm in SSE-1 and logm′ in SSE-1′, which are less than
the block length of AES, 128. However, the input length of π, 1,984 bit, is much
longer than 128. Therefore, we adopt the ECB-mode6, considering a word as a
16-block plaintext.

We also adopt AES as the symmetric encryption E .
In π, ψ and E , the shortest key length, 	 = 128, is used.

6.2 Execution Environment

We measure execution time via a machine with the following specifications.

– OS: Linux 2.6.35 x86 64, Ubuntu server 10.10

– CPU: Intel Core i7 2600

– Memory: DDR3-1333 SDRAM 4GB × 2

– Software: JRE 1.6.0 29

6.3 Numerical Results

Index Size: Table 3 shows the index sizes of SSE-1, SSE-1′, and Simple-SSE.
As a comparison with the case in which privacy protection is not taken into
consideration, we also measured the size of the index using StandardAnalyzer in
Lucene[2].This table also shows the size comparison.

Table 3 shows that the index becomes large as compared with original docu-
ments or the index of Lucene. However, Simple-SSE and SSE-1′ have succeeded
in drastic reduction of the size of the index as compared with SSE-1.

4 Here we use Lucene only to create a set of words from a targeted file set.
5 Such a long word is because the documents include numerical data and binary data.
If we exclude such long (pseudo)words, the index sizes in SSE-1 and SSE-1′ would
become 100MB smaller than our results.

6 AES-ECB is a permutation but not pseudo-random. Therefore, we have to adopt
other implementation to satisfy the security definition. Though evaluation time of π
increases by this change, it is thought that the increment does not affect searching
time so much since π is evaluated only once in a search.

166 W. Ogata et al.

Table 3. Comparison of index size

Index size: |I| |I|/|D| Ratio to SSE-1 Ratio to Lucene

SSE-1 1,836MB 28.24 (1.00) 22.12

SSE-1′ 397MB 6.10 0.22 4.78

Simple-SSE 275MB 4.23 0.15 3.32

Lucene 83MB 1.28 – (1.00)

Table 4. Execution time of Search

Execution time of Search (msec)
words in Δ−Δ′ words in Δ′ random character string

SSE-1 0.0941 0.8383 0.0817

Simple-SSE 0.0603 0.6406 0.0602

SSE-1′ 0.0603 0.7534 0.0609

Search Time: We measured each execution time of Search in order to evaluate
the performance of SSE. Since the execution time of Search may depend on
the number of search results, we measured it by classifying keywords into the
following three cases.

– Words in Δ − Δ′: Words that can be searched although not contained in
documents of a targeted search. The number of search results is zero.

– Words in Δ′: Words contained in documents of the targeted search. The
number of search results changes in accordance with words.

– Random character string: Words that cannot be searched. The number of
search results is zero. Here, we make 1,000 random character strings of 16
characters.

Table 4 shows the results in execution time very small in all schemes. This means
that the measures for privacy protection do not have a bad influence on efficiency.

From the evaluation results concerning SSE-1, Simple-SSE, and SSE-1′, we
can say that both Simple-SSE and SSE-1′ satisfy the objectives of “efficient
search” and “reasonable index size” mentioned in section 3.

7 Conclusion

In this paper, we reconsidered the balance between efficiency and security/
privacy of a searchable symmetric encryption scheme.

By excluding consideration of active attacks, we proposed light searchable
symmetric encryption schemes. We showed that they have some leakage, but
this would pose no problems in most of practical cases.

We also showed experimental results of our scheme and comparison with ex-
isting schemes. The result showed that the index sizes in our schemes are only
a few times of that of a general search engine (without encryption). Thus, our
schemes are sufficiently secure and efficient enough for practical use.

Toward Practical Searchable Symmetric Encryption 167

References

1. Abdalla, M., et al.: Searchable Encryption Revisited: Consistency Properties, Re-
lation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Apache Lucene - Welcome to Apache Lucene, http://lucene.apache.org/
3. Announcing the ADVANCED ENCRYPTION STANDARD (AES). Federal Infor-

mation Processing Standards Publication 197 (November 2001)
4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable

Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable Symmetric En-
cryption: Improved Definitions and Efficient constructions. In: ACM Conference
on Computer and Communications Security (CCS 2006), pp. 79–88. ACM, New
York (2006)

8. Goh, E.-J.: Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography
Archive (2003)

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. of the ACM 43(3), 431–473 (1996)

10. Hirano, T., Mori, T., Hattori, M., Ito, T., Matsuda, N., Kawai, Y., Sakai, Y., Ohta,
K.: Security Notions for Searchable Symmetric Encryption with Extra Multiple
Documents. In: The 29th Symposium on Cryptography and Information Security,
SCIS 2012, 2B3-1 (2012) (in Japanese)

11. Iwanami, J., Ogata, W.: Secure and Efficient Searchable Symmetric Encryption
with Document Addition. In: The 30th Symposium on Cryptography and Infor-
mation Security, SCIS 2013, 3A3-1 (2013) (in Japanese)

12. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

13. Kamara, S., Papamanthou, C., Roeder, T.: CS2: A searchable cryptographic cloud
storage system. MSR Tech Report no. MSR-TR-2011-58. Microsoft, Redmond
(2011)

14. Kamara, S., Roeder, T.: Dynamic Searchable Symmetric Encryption. In: Proc.
of the 2012 ACM Conference on Computer and Communications Security,
pp. 965–976. ACM, New York (2012)

15. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010)

16. Moby Word Lists, The Institute for Language, Speech and Hearing,
http://icon.shef.ac.uk/Moby/

17. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: Proc. of 2000 IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

http://lucene.apache.org/
http://icon.shef.ac.uk/Moby/

Unconditionally Secure Oblivious Transfer

from Real Network Behavior

Paolo Palmieri1,� and Olivier Pereira2

1 Delft University of Technology, Parallel and Distributed Systems Group
Mekelweg 4, 2628 CD Delft, The Netherlands

p.palmieri@tudelft.nl
2 Université catholique de Louvain, UCL Crypto Group
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

olivier.pereira@uclouvain.be

Abstract. Secure multi-party computation (MPC) deals with the prob-
lem of shared computation between parties that do not trust each other:
they are interested in performing a joint task, but they also want to
keep their respective inputs private. In a world where an ever-increasing
amount of computation is outsourced, for example to the cloud, MPC is
a subject of crucial importance. However, unconditionally secure MPC
protocols have never found practical application: the lack of realistic
noisy channel models, that are required to achieve security against com-
putationally unbounded adversaries, prevents implementation over real-
world, standard communication protocols.

In this paper we show for the first time that the inherent noise of wire-
less communication can be used to build multi-party protocols that are
secure in the information-theoretic setting. In order to do so, we propose
a new noisy channel, the Delaying-Erasing Channel (DEC), that mod-
els network communication in both wired and wireless contexts. This
channel integrates erasures and delays as sources of noise, and models
reordered, lost and corrupt packets. We provide a protocol that uses the
properties of the DEC to achieve Oblivious Transfer (OT), a fundamental
primitive in cryptography that implies any secure computation. In order
to show that the DEC reflects the behavior of wireless communication,
we run an experiment over a 802.11n wireless link, and gather extensive
experimental evidence supporting our claim. We also analyze the col-
lected data in order to estimate the level of security that such a network
can provide in our model. We show the flexibility of our construction by
choosing for our implementation of OT a standard communication pro-
tocol, the Real-time Transport Protocol (RTP). Since the RTP is used in
a number of multimedia streaming and teleconference applications, we
can imagine a wide variety of practical uses and application settings for
our construction.

� This work was accomplished while the author was at the Crypto Group of the Uni-
versité catholique de Louvain.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 168–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Unconditionally Secure Oblivious Transfer from Real Network Behavior 169

1 Introduction

Multi-party computation protocols that are secure against computationally un-
bounded adversaries have seen, up until now, little or no practical use. This is
mainly due to the strong assumptions that need to be satisfied for them to work.
In particular, they require the availability of a noisy channel, the theoretical ab-
straction of an error-prone communication medium, since security can not be
achieved over a clear channel. The aim of this paper is to show that, through
the use of realistic channel models and efficient constructions, we can achieve se-
cure multi-party computation over standard, commonly used network protocols
today.

In a 1-out-of-2 oblivious transfer protocol, Rachel (the receiver) wants to
learn one of the two secret bits b0, b1 that Sam (the sender) knows, but without
revealing to him her selection s. Sam, on the other hand, wants to make sure
that Rachel will not get any information about the other bit in the process.
The first protocol to achieve this over a noisy channel was designed by Crépeau
and Kilian, and used the Binary Symmetric Channel (BSC) [4]. The BSC is
a simple channel model where each binary input has a probability p of being
“flipped” when output: a 0 flipped becomes a 1 and vice versa. Since the BSC
does not provide a realistic model of communication, new channel models have
been subsequently proposed. Most of these models are modifications of the BSC
itself, that introduce more freedom for the attacker in order to increase the
generality of the construction. In particular, the Unfair Noisy Channel (UNC),
proposed by Damgard et al. in 1999 [6] and later improved in 2004 [5], lets
the adversary choose the error probability within a specific (narrow) range. The
Weak Binary Symmetric Channel (WBSC), designed by Wullschleger in [22], lets
a dishonest player know with a certain probability if a bit was received correctly.

While these constructions ease the assumptions needed to build OT from a
theoretical point of view, they hardly make the channel models closer to any
real communication channel. To address this problem, recent constructions use
noisy channels that try to model common transmission errors occurring in actual
networks. In particular, the use of transmission delays as source of noise has been
proposed in [12], where Palmieri and Pereira provide a protocol for achieving
oblivious transfer over the Binary Discrete-time Delaying Channel (BDDC). A
modified version of the protocol, secure against malicious players, has later been
introduced by Cheong and Miyaji [1].

The suitability of the BDDC to model packet reordering over IP networks has
been shown in [13]. However, the BDDC does not take into account the possibil-
ity of packets being lost, which is a common occurrence in real communication
settings. Moreover, it does not limit the number of times a packet can be de-
layed: however unlikely, it is possible for a packet to be delayed indefinitely. The
behavior of a real packet-switching network would be instead to drop a packet
after a certain time, usually called time to live (TTL).

170 P. Palmieri and O. Pereira

1.1 Contribution

In this paper we propose a new noisy channel, the Delaying-Erasing Channel
(DEC). The DEC integrates delays and erasures (lost packets) and introduces a
limit to the number of possible delays. This channel, while being based on dis-
crete times like its predecessors, addresses the lacks of the BDDC, and provides a
realistic model for network communication, in both wireless and wired settings.
We propose a protocol for achieving oblivious transfer over the DEC, and we
study the security of the construction against both semi-honest and malicious
adversaries.

The main goal of the DEC is to finally provide a realistic noisy channel model
for network communication. In order to show that the DEC achieves this goal,
we conduct an experiment simulating our OT protocol over a wireless network,
and we collect extensive statistical evidence that supports our claims of security
and flexibility for the construction. We analyze the collected data using several
standard tools for entropy estimation, whose results confirm the suitability of
the wireless medium to be used as a noisy channel. Our implementation of OT is
based on the Real-time Transport Protocol (RTP), an application layer protocol
frequently used for the streaming of multimedia content.

1.2 Outline of the Paper

In section 2 we give a security definition of oblivious transfer In section 3 we
introduce the Delaying-Erasing Channel (DEC), and we provide a protocol im-
plementing oblivious transfer over it. In section 3.2 we prove the security of the
construction in the semi-honest setting, while in 3.3 we discuss the case of mali-
cious adversaries. In section 4 we show that packets transmitted over a 802.11n
wireless link show a behavior consistent with the channel definition. We ana-
lyze the experimental results and measure the entropy of the network errors in
section 4.4.

2 Preliminaries

For a protocol to successfully implement oblivious transfer, three conditions must
be satisfied after an execution: the receiver, Rachel, learns the value of the cho-
sen bit bs (correctness); the sender, Sam, learns nothing about the value of the
selection bit s (security for Rachel); the receiver learns no further information
about the value of the other bit b1−s (security for Sam) [4]. When proving the
security of our construction, we use the security definition of oblivious transfer
provided in [12]. The definition uses the concept of prediction advantage, a mea-
sure of the advantage that an adversary has in guessing a secret bit by using all
the information available to him. We use the notation found in [21].

Definition 1. ([21]) Let PXY be a distribution over {0, 1} × Y. The maximal
bit prediction advantage of X from Y is

PredAdv (X | Y) = 2 ·max
f

Pr [f (Y) = X]− 1 . (1)

Unconditionally Secure Oblivious Transfer from Real Network Behavior 171

The view of a player consists of all the information that the player learns dur-
ing the protocol execution. The sender, the receiver and the potential adversary
all have different views. The security definition for OT follows.

Definition 2. [12] A protocol Π between a sender and a receiver, where the
sender inputs (b0, b1) ∈ {0, 1} and outputs nothing, and the receiver inputs s ∈
{0, 1} and outputs S, securely computes 1-2 oblivious transfer with an error
of at most ε, assuming that U and V represent the sender and receiver views
respectively, if the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr [S = bs] ≥ 1− ε . (2)

– (Security for Sam) For an honest sender and an honest (but curious) receiver
we have

PredAdv (b1−s | V, s) ≤ ε . (3)

– (Security for Rachel) For an honest receiver and an honest (but curious)
sender we have

PredAdv (s | U, b0, b1) ≤ ε . (4)

3 Delaying-Erasing Channel

The channel model we propose combines the erasure and delaying channels. It
takes into account the possibility for an input string to be delayed or to be lost
(that is, erased). The channel also sets a limit to the number of delays that an
input can suffer, and considers lost (erased) any string delayed a number of times
equal or higher than that. We call p the delaying probability, r the maximum
number of delays and q the erasing probability. Consequently, the probability
that a string will be considered lost by a receiver is (q + pr), consisting of the
erasing probability plus the probability for the string to be delayed r times.

Definition 3. A Delaying-Erasing Channel (DEC) with delaying probability p,
erasing probability q and maximum number of delays per single input r accepts
as input a sequence T = 〈t1, t2, . . .〉 of sets of strings ti ∈ ({0, 1}n)∗, called input
times, and outputs a sequence U = 〈u1, u2, . . .〉 of sets of strings ui ∈ ({0, 1}n)∗
called output times. Each string X admitted into the channel at input time ti ∈ T
is output at most once by the channel, with probability of being output at time
uj ∈ U

Pr [X ∈ uj|X ∈ ti] =

⎧⎪⎨⎪⎩
(1− q) · pj−i · (1− p)

with 0 ≤ j − i < r,

0 otherwise.

(5)

In practice, the channel works as follows. An input string X that enters the
channel at time ti is due to be output by the channel at time ui with probability
(1− p− q). The channel has probability q of erasing the string (we call this event

172 P. Palmieri and O. Pereira

impromptu loss), in which case the string is not output by the channel. If an
impromptu loss does not occur, the string has a probability p of being delayed
until the next output time. The delay event can happen multiple times: once a
string is delayed, it can be delayed again. Therefore, the string has probability
pd of being delayed d times and being output at ui+d, as long as d < r. Finally,
the string is not output by the channel if it is delayed r times or more, which
happens with probability pr.

3.1 OT Protocol

Our oblivious transfer protocol follows the general scheme proposed by Crépeau
and Kilian in [4], which has been at the base of every following OT construc-
tion. The idea behind the scheme is to generate, through a specific transmission
strategy, a simple erasure channel over the available noisy channel (in our case
the DEC), and then use it a number of times in order to realize OT and achieve
security by privacy amplification. The protocol we propose is also similar to the
one proposed in [12] for the Binary Discrete-time Delaying Channel, in the sense
that it uses a precomputation phase during which two sets of packets are cre-
ated. Contrary to the case of the BDDC, our protocol streams the two sets of
packets by interleaving them: we send the first packet of the first set at t1, then
the second packet of the first set and the first of the second set at t2 and so on.
This allows us to exploit the uncertainty caused by the lost and delayed packets.

The protocol works as follows. First the sender, Sam, precomputes a sequence
of packets. For simplicity, we can assume that the packets only contain their
sequence number i. Then, he starts sending the packets over the DEC to the
receiver, Rachel. Each packet is sent twice: the first packet at times t1 and t2,
the second one at t2 and t3 and so on. Each of the two times the same packet
is sent, Sam also attaches to it a unique identifier (ei for the first transmission
and e′i for the second one), so that he will be able to tell them apart. However,
he will not reveal to Rachel which identifier is used for which transmission of
the packet. Rachel keeps track of the packets lost on the way and of the arrival
times of those she receives. However, the channel does not give her any feedback
on the delays that occur during transmission. Therefore, in the case of a packet
received for the first time later than the expected time ui, she is not able to
tell which of the two copies of the packet was sent with the first transmission,
and which with the second. The same is true in case only one copy arrives and
it is received after the expected time ui, or in case both copies are lost. At the
same time, Sam does not know the arrival time and order of the packets. We use
this uncertainty to build oblivious transfer. Rachel assigns to her selection bit s
the packets for which she knows with certainty the identifier e, and to the other
bit (1− s) the other packets. Then, she sends her two selections of packets to
Sam. Sam encodes the secret bits b0 and b1 using the identifiers e attached to
the packets during the first transmission, according to the selection operated by
Rachel. Using the same identifiers, Rachel is able to decode bs, but not b1−s.

Unconditionally Secure Oblivious Transfer from Real Network Behavior 173

Protocol 1. The parties have a clear channel and a p-q-r-DEC with 0 <
(p+ q) < 1

2 , r > 1 available for communication. Sam selects two disjoint sets E
and E′, each composed of n distinct binary strings of length l: e1, . . . , en ∈ E
and e′1, . . . , e

′
n ∈ E′. From E and E′ Sam builds the sets C = {c1, . . . , cn} and

C′ = {c′1, . . . , c′n}, according to the following rules: ci := ei‖i and c′i := e′i‖i.
Then the parties communicate as follows:

1. Sam sends the set C to Rachel over the DEC, one string at each input time,
starting at t1. At t2 he starts sending C′ as well. This way, at each ti, ci and
c′i−1 are sent.

2. Rachel receives over the DEC the strings in {C ∪ C′} that have not been
erased, in the order produced by the channel.

3. Rachel selects the set Is, where s ∈ {0, 1} is her selection bit, such that
|Is| = n

2 and so that i ∈ Is only if she is able to distinguish ci ∈ C from
c′i ∈ C′. This happens in two cases: ci has been received at ui; or ci, c

′
i have

not been erased and c′i has been received at ui+r. If less than
n
2 strings can be

placed in Is, Rachel instructs Sam to abort the communication. Otherwise
she selects I1−s = {1, . . . , n} \ Is and sends I0 and I1 to Sam over the clear
channel. 1

4. Sam receives the sets I0 and I1. Then, he chooses two universal hash func-
tions f0, f1, whose output is 1-bit long for any input. Let Ej ⊂ E be the
set containing every ei ∈ E corresponding to an i ∈ Ij , such that

ei ∈ Ej ⇔ i ∈ Ij . (6)

For each set Ij , Sam computes the string gj by concatenating each ejk ∈ Ej ,
ordering them for increasing binary value, so that

gj =
(
ej1 ‖ . . . ‖ ejn

2

)
with ej1, . . . , e

j
n
2
∈ Ej . (7)

Sam computes h0 = f0 (g0), h1 = f1 (g1) and sends to Rachel over the clear
channel the functions f0, f1 and the two values

k0 = (h0 ⊕ b0) , k1 = (h1 ⊕ b1) . (8)

5. Rachel computes her guess for bs

bs = f s (gs)⊕ ks . (9)

3.2 Security: Honest-But-Curious Adversaries

In the semi-honest setting, the players follow the protocol, but try to use any
information available to them in order to guess the other player’s secret. We
prove the security of our construction by proving each of the three conditions of
the security definition of oblivious transfer (Definition 2).

1 In order to improve the efficiency of the protocol in a real setting, the receiver can
send just one of these two sets, for example always I0, as the sender can easily
reconstruct the other.

174 P. Palmieri and O. Pereira

Correctness. The first condition of Definition 2 states that, if both players behave
in an honest way, the secret bit must be correctly received and decoded by the
receiver party. In practice, the protocol succeeds when Rachel is able to identify
with certainty at least n

2 strings from C among all the strings she receives. As
stated in step 3 of the protocol, a string ci is known by Rachel to be ∈ C
with certainty either when it is received at ui; or when ci is not erased and
the corresponding string c′i ∈ C′ is received at ui+r. Therefore, the probability
that a string ci will not be identifiable as being part of C is upper-bounded by
the probability (p+ q) that ci is erased, or delayed at least once. Let us denote
by X the random variable counting the number of strings not affected by the
noise (that is, erased or delayed) out of the n total strings in C. We have that
Pr
[
X ≤ n

2

]
, the probability that not enough strings in C are received correctly

and on time for the protocol to succeed, follows the cumulative distribution
function of the binomial distribution. For Hoeffding’s inequality we have that

Pr
[
X ≤ n

2

]
≤ exp

(
−2n

(
p+ q − 1

2

)2
)

. (10)

Therefore, the correctness condition is satisfied with overwhelming probability
in n as soon as p+ q < 1

2 , as per the protocol definition.

Security for Sam. A curious Rachel is interested in learning b1−s. She has two
ways of obtaining the value: either by decoding k1−s on the correct g1−s, or by
trying to guess it on a (partially) incorrect g1−s. In the latter case, the probability
of a correct guess is upper-bounded by 1

2 , for the properties of a universal hash
function. In the following we evaluate the probability of the former.

For each pair of strings (ci ∈ C, c′i ∈ C′), Rachel receives two or less strings, in
the order produced by the channel. She is interested in determining ci, in order
to learn ei. We analyze in the following her ability of doing so, based on the
different events that can happen after the transmission of the strings through
the delaying-erasing channel. We suppose that, in case only one string is received,
Rachel assumes to have received ci.

2 For each (ci, c
′
i) we can have that:

– ci is neither erased nor delayed. Independently of what happens to c′i, Rachel
learns ei. This happens with probability (1− p− q).

– ci is erased. Independently of what happens to c′i, Rachel is not able to
recover the identifier ei. This happens with probability q.

– ci is delayed. This happens with probability p. In this case, Rachel’s proba-
bility to learn ei depends on c′i. We can have that:

• c′i is erased. Following the strategy of using the identifier she possesses,
Rachel succeeds in guessing the right identifier. This happens with prob-
ability p · q.

2 This is always the best strategy, since a wrong assumption does not lower her proba-
bility of learning ei: we assume that guessing ei with no information has a negligible
probability of succeeding.

Unconditionally Secure Oblivious Transfer from Real Network Behavior 175

• c′i is not erased. This happens with probability p(1−q). If c′i is delayed r−
1 times, Rachel learns the right identifier. This happens with probability
pr (1− q). Otherwise, Rachel guesses the right identifier with probability
1
2 . In fact, the probability for the strings to arrive in the same order in
which they are sent is equal to the probability for them to arrive in the

reverse order (p2

1+p). Therefore she does not have any strategy better
than tossing a coin in both cases, as well as when the strings arrive at
the same time.

Therefore, for each pair of strings (ci, c
′
i), Rachel does not learn ei with

probability

Pr [¬ei] = q +
p (1− q)− pr (1− q)

2
, (11)

which is > 0 as soon as 0 < (p+ q) < 1
2 and r > 1 as per the protocol defini-

tion. Therefore, Rachel’s probability of building the correct g1−s by learning the
correct ei for every i ∈ I1−s is

Pr [g1−s] = (1− Pr [¬ei])n , (12)

which is negligible in n.

Security for Rachel. Since the delaying-erasing channel does not give any feed-
back to the sender on the state of transmitted strings, Sam ignores whether a
string has been correctly received or not, and if it has been delayed during trans-
mission. Therefore, from the point of view of a curious sender the distribution
of (I0, I1) is independent of s.

3.3 Security: Malicious Adversaries

We observe that the semi-honest assumption of our construction is only required
for the sender, but not for the receiver. This is also the case for the oblivious
transfer protocol proposed for the BDDC [12]. In fact, a malicious Rachel can
either send to Sam a malformed set I1−s, where she puts only indices of strings
not affected by the noise (for instance, by sending less i’s than required or by
including i’s already in Is), or swap strings affected by the noise with non-affected
ones between the sets Is and I1−s. If Rachel chooses the former strategy, Sam
can detect her malicious behavior by implementing a simple additional check on
I1−s, and abort the protocol in case the behavior of the receiver deviates from
the protocol. The latter strategy, instead, increases Rachel’s probability to learn
the other bit b1−s, by moving delayed or erased strings from I1−s to Is, but only
at the cost of lowering her probability to learn the selected bit bs. In fact, the
number of strings that have been delayed or erased by the channel, which is also
the number of guesses that Rachel needs to make, remains the same. Therefore
the probability for Rachel to decode both bs and b1−s is the same whether she
acts honestly or in a malicious way.

As already noted in [10], we can use an oblivious transfer protocol secure
against a malicious receiver and a semi-honest sender to obtain a protocol secure

176 P. Palmieri and O. Pereira

against a semi-honest receiver and a malicious sender. This is possible thanks to
the symmetry property of oblivious transfer, proved for the first time in [20]. A
black-box combiner for this reversal operation has been proposed in [8], where a
compiler that combines the two protocols into one that is secure against generic
malicious adversaries, originally designed for the case of OT based on trapdoor
functions, is also presented.

4 From Noisy Channel to Real Network Behavior

The aim of this section is to show that the DEC realistically models actual
network behavior. In order to do so, we simulate the OT protocol over a wireless
point-to-point connection between two hosts, and we study the amount of errors
that occur during the transmission and the predictability of such errors. We
show the flexibility of our construction by implementing our OT protocol over a
standard Internet protocol, the Real-time Transport Protocol.

4.1 Real-Time Transport Protocol (RTP)

The Real-time Transport Protocol (RTP) [7,15] is an application layer protocol
designed for the delivery of real-time information. Its typical use is the delivery
of real-time audio and video, as in the case of multimedia streaming or telecon-
ferencing. It is often used in conjunction with the Real Time Streaming Protocol
(RTSP) [16], that provides a framework for controlling the data flow. RTP typ-
ically runs on top of the User Datagram Protocol (UDP). Both protocols are
particularly suited to be used in our construction: they do not guarantee reliable
transmission or quality-of-service and they do not support error correction and
lost packet resending. The protocol specification for RTP expressly states that it
“does not guarantee delivery or prevent out-of-order delivery, nor does it assume
that the underlying network is reliable and delivers packets in sequence” [15].

4.2 OT over RTP

Taking advantage of the fact that RTP does not prevent packet loss or reo-
redering, we can use it as the base for our oblivious transfer construction. In
particular, the parties use RTP at step 1 of the protocol, while communicat-
ing over a wireless (or wired) link, that acts as the noisy channel. The sender
sends two distinct RTP streams composed of the same number of packets. The
content of each packet can be arbitrarily selected by the sender, as long as it is
unique with respect to both streams, since it is to be used as the packet identi-
fier. Some of the fields of a standard RTP packet header (see RFC 3550 [15] for
reference) require special care in our application. The Sequence Number value
will be used, with the same meaning, also in the OT protocol. Packets shar-
ing the same position in the two streams will be forged by the sender in order

Unconditionally Secure Oblivious Transfer from Real Network Behavior 177

to have identical headers. In particular, this has to be enforced for the Timestamp
field. Similarly, the identifier of the synchronization source (that is, the sender)
has to be replicated in both streams. The Payload Type field, which indicates
the encoded format of the data sent with RTP, can be chosen arbitrarily. The
underlying protocols (UDP or IP) do not add information that could make the
streams distinguishable, so no specific intervention is needed at levels lower than
the application layer, other than selecting the desired time-to-live at the IP level.

The contemporary transmission of multiple RTP streams from the same source
does not reveal the specific use we make of the protocol. In fact, it is a common
occurrence: for instance, in the transmission of multimedia content, audio and
video streams usually have separate RTP sessions, enabling a receiver to deselect
a particular stream.

The following steps of the protocol remain unchanged, as they are performed
over a clear channel.

4.3 Experiment

The aim of this experiment is double: to show that the DEC realistically models
the noise introduced during network communication, and to analyze the unpre-
dictability, and therefore the suitability for secure computation of that noise. We
conduct the experiment as follows.

The party acting as sender is simulated by a wireless router running the open
source and Linux-based custom firmware OpenWRT. This particular configura-
tion let us use the RTP/RTSP streaming server Live 555 directly on the device.
The receiver party, a notebook computer, connects to the router before starting
the OT protocol using the IEEE 802.11n-2009 wireless transmission method [9],
and receives an IP address through a DHCP request. This way, the receiver and
sender parties are directly connected by a wireless link.

The notebook computer simulating the receiver party is placed at about 12
meters of distance from the router. No physical obstacles block the line of sight
between the two devices. Both parties are not engaged in any network commu-
nication other than the RTP streaming. The streaming session, initiated by the
sender, runs for 158.28 seconds, with a total of 5629 packets sent. The packets
reaching the receiver party are collected in the order they are received using the
open source sniffing tool WireShark. 3 Steps 3 to 5 of the protocol (encoding
and decoding of the secret bits and communication over a clear channel) are not
simulated during the experiment.

The results of the experiment are shown in Table 1, and appear to be consis-
tent with relevant literature (see, for instance, [14]). The number of lost packets
(erasures) and sequence errors (delays) has been obtained using the RTP Stream
Analysis tool provided with WireShark. In the following we analyze the results
from the security point of view.

3 The sample data transmitted, and the dump of the packets received is available at
the URL: http://www.uclouvain.be/crypto/ot-wireless-tests.tar.gz

http://www.uclouvain.be/crypto/ot-wireless-tests.tar.gz

178 P. Palmieri and O. Pereira

Table 1. Average lost (erased) and displaced (delayed) packets during video streaming
using the RTP protocol over a wireless link

Total RTP packets: 5629

Erasures: 65 1.15%
Delays: 109 1.94%

Total errors: 174 3.09%

4.4 Analysis

The amount of noise that we observed during the experiment indicates that both
lost packets and sequence errors are relatively common occurrences, as shown in
Table 1.

The security of our construction, however, also depends on the (im)possibility,
for an attacker, of being able to predict errors. In other words, we want the
distribution of the displaced and lost packets into the sequence to be as uniform
as possible. In order to evaluate how much this assumption reflects the reality
of wireless communication, we convert the sequence of packets generated during
the experiment into a binary string, using the following strategy: the packets
affected by the noise are represented by a bit of value 1, those not affected by
a bit of value 0. Then, we estimate the entropy of the generated binary string
using a set of standard test suites, in particular: ent [17], Maurer’s test including
Coron’s modification [11,3,2] and the Context-Tree Weighting (CTW) method
[19,18]. The main idea behind these tools for entropy estimation is to compare
the length of an input sequence with its output after compression. Since the
probability of errors (and therefore of 1’s) is lower than 0.5, we compare it to
the Shannon entropy normalized to the actual probability, calculated using the
standard definition

Hb (p) = −p log2 p− (1− p) log2(1− p) (13)

and the amount of noise observed during our experiment. Since we fix the prob-
ability p to the observed value, Hb (p) is the maximum possible entropy, and
not an upper-bound. This does not affect the reliability of the results, since our
goal is to detect the presence of any pattern in the error distribution that might
lead to predictability, and not to evaluate the error probability itself. In the case
of packet delays, we have p = 0.0194, and therefore Hb (p) = 0.1392. Entropy
estimations calculated by the three tests mentioned above are shown in Table
2: the closer to the maximum entropy Hb (p) the estimated values are, the less
likely we are to find any pattern in the sequence.

While in the case of the ent test the entropy estimation is virtually identical
to the maximum value, the context-tree weighting method is able to compress
to a higher ratio. In fact, the CTW algorithm produces an output whose size is
82% of the one that would be obtained compressing an input where errors are
uniformly distributed. The Maurer-Coron test is the most effective, reaching a
compression ratio of 71%. However, this is partly due to a requirement in the

Unconditionally Secure Oblivious Transfer from Real Network Behavior 179

Table 2. Entropy estimation for one bit, given p = 0.0196, as observed during the
experiment

Max. normalized entropy Hb (p): 0.1392

Ent 0.1392
Maurer* 0.0994
CTW 0.1144

algorithm that imposes a minimum input length higher than the size of our test
string. Therefore, during the test execution, about 800 bits of the input string
are read twice, since the test loops the input in case of an insufficient amount
of data to elaborate. Overall, these results confirm that, even in a setting where
a low amount of noise can be expected, errors are both enough frequent and
randomly distributed to allow for a significant security margin to be achieved.

5 Conclusion

In this paper we propose a noisy channel model that reflects, for the first time,
the behavior of real networks. We present experimental evidence collected during
an experiment over wireless communication supporting this claim, and we show
the flexibility of the model by running the experiment using a commonly used
Internet streaming protocol, the Real-time Transport Protocol.

Analysis of the noise introduced by the wireless medium during the experiment
supports the assumptions that the channel makes in terms of unpredictability
of that noise. In fact, using standard entropy estimation tools, we estimate the
normalized entropy to be between 71% and 100% of the theoretical maximum,
depending on the test, even for a relatively clean channel where the amount of
noise observed is, on average, 3.09%. This allows us to construct, for the first
time, an oblivious transfer protocol secure against computationally unbounded
adversaries over a real network. We believe that the flexibility of our model and
construction will help open the way to widespread implementation of secure
multi-party computation.

Acknowledgments. This research work was supported by the SCOOP
Action de Recherche Concertées. Olivier Pereira is a Research Associate of the
F.R.S.-FNRS.

References

1. Cheong, K.-Y., Miyaji, A.: Unconditionally secure oblivious transfer based on chan-
nel delays. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS,
vol. 7043, pp. 112–120. Springer, Heidelberg (2011)

2. Coron, J.-S.: On the security of random sources. In: Imai, H., Zheng, Y. (eds.)
PKC 1999. LNCS, vol. 1560, pp. 29–42. Springer, Heidelberg (1999)

180 P. Palmieri and O. Pereira

3. Coron, J.-S., Naccache, D.: An accurate evaluation of maurer’s universal test. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 57–71. Springer,
Heidelberg (1999)

4. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: FOCS, pp. 42–52. IEEE (1988)

5. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 355–373. Springer,
Heidelberg (2004)

6. Damg̊ard, I., Kilian, J., Salvail, L.: On the (Im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

7. Group, A.V.T.W., Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP:
A Transport Protocol for Real-Time Applications. RFC 1889 (Proposed Standard)
(January 1996), http://www.ietf.org/rfc/rfc1889.txt , obsoleted by RFC 3550

8. Haitner, I.: Semi-honest to malicious oblivious transfer—The black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

9. IEEE-SA: Ieee 802.11n-2009 amendment 5: Enhancements for higher throughput
(October 2009)

10. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Kleinberg, J.M. (ed.) STOC, pp. 99–108. ACM (2006)

11. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press, Inc., Boca Raton (1996)

12. Palmieri, P., Pereira, O.: Building oblivious transfer on channel delays. In: Lai, X.,
Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 125–138. Springer,
Heidelberg (2011)

13. Palmieri, P., Pereira, O.: Implementing information-theoretically secure oblivious
transfer from packet reordering. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259,
pp. 332–345. Springer, Heidelberg (2012)

14. Salyers, D., Striegel, A., Poellabauer, C.: Wireless reliability: Rethinking 802.11
packet loss. In: WOWMOM, pp. 1–4. IEEE (2008)

15. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol
for Real-Time Applications. RFC 3550 (Standard) (July 2003),
http://www.ietf.org/rfc/rfc3550.txt

16. Schulzrinne, H., Rao, A., Lanphier, R.: Real Time Streaming Protocol (RTSP).
RFC 2326 (Proposed Standard) (April 1998),
http://www.ietf.org/rfc/rfc2326.txt

17. Walker, J.: Ent: A pseudorandom number sequence test program,
http://www.fourmilab.ch/random/

18. Willems, F.M.J.: The context-tree weighting method: Extensions. IEEE Transac-
tions on Information Theory 44(2), 792–798 (1998)

19. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting
method: basic properties. IEEE Transactions on Information Theory 41(3),
653–664 (1995)

20. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)

21. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)

22. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 332–349. Springer, Heidelberg (2009)

http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.fourmilab.ch/random/

Unconditionally Secure Oblivious Transfer from Real Network Behavior 181

A Equipment and Configuration

The wireless router used for the purpose of the experiment is a Netgear N600
(WNDR3800). It is a dual band (2.4 or 5.0 GHz), 802.11a/b/g/n capable device.
It is powered by an Atheros AR7161 rev. 2 680 MHz CPU, and has 128MiB of
RAM and 16MiB of flash memory. 4

The OpenWRT version installed on the router is 10.03.1, the latest at the
time of writing. The open source LIVE555

TM

Media Server (updated to version
2012.05.17) was installed, and used for streaming packets with the RTP/RTSP
protocol.

The USB Wireless LAN adapter used during the experiment is a Linksys
AE2500 (branded Cisco). This adapter is capable of working according to the
latest WIEEE 802.11n standard (but can also work in 802.11b or 802.11g com-
patible modes). It supports dual band communication (2.4 GHz or 5 GHz).5

On the client side, the stream was displayed using the open source media
player VLC (version 2.0.2 “Twoflower”), and packets were dumped using the
WireShark open source sniffing tool.

The wireless configuration used for the router/access point (AP) during the
experiment is shown in table 3.

Table 3. Configuration of the Wireless router-AP for the experiment

W-LAN: IEEE 802.11n
(2.4 GHz band)

AP Channel: 6 (2437 MHz)
AP Security: WPA-CCMP(AES)

Pre-Shared Key (PSK)
Active STA’s: 1

B RTP Packet Header

The header of an RTP packet is shown in Figure 1, as described in [15]. The first
field specifies the protocol revision used (the current version is 2). The padding
(P) field indicates if there are extra padding bytes at the end of the packet.
X, extension, indicates the presence of application or profile specific headers
between the standard header and the payload data. Extensions of the proto-
col can also use the marker (M) field, to indicate that the current packet has
some special relevance for the application. The Real-time Transport Protocol
allows the transmitted information to be generated by multiple sources. In this

4 Full specifications are available at the manufacturer’s website:
http://www.netgear.com/home/products/wirelessrouters/high-performance/

WNDR3700.aspx
5 Full specifications are available at the manufacturer’s website:
http://home.cisco.com/en-eu/products/adapters/AE2500

http://www.netgear.com/home/products/wirelessrouters/high-performance/WNDR3700.aspx
http://www.netgear.com/home/products/wirelessrouters/high-performance/WNDR3700.aspx
http://home.cisco.com/en-eu/products/adapters/AE2500

182 P. Palmieri and O. Pereira

B
i
t

o
f
f
s
e
t

0 1 2 3 4 5 6 7

0 Ver. P X CSRC Count

8 M Payload Type

16
Sequence Number

24

32
Timestamp

.
.
.

64
SSRC Identifier

.
.
.

96
CSRC Identifiers (0-15)

.
.
.

Fig. 1. RTP Packet Header

case, the packet flow will be synchronized by a unique synchronization source
(SSRC), while any additional source will act as contributing source (CSRC).
Both SSRC and CSRC’s have unique identifiers, whose value is contained in
the SSRC Identifier and CSRC Identifiers fields respectively. The maximum
number of CSRC’s is 16, and the actual number for a specific stream is defined
in the CSRC Count field. For the purpose of our oblivious transfer protocol, only
the synchronization source is used. The RTP header also contains information
about the format used for the payload data (Payload Type) and specifies for
each packet a Sequence Number and a Timestamp.

Cryptographically-Secure and Efficient Remote

Cancelable Biometrics Based on Public-Key
Homomorphic Encryption

Takato Hirano, Mitsuhiro Hattori, Takashi Ito, and Nori Matsuda

Information Technology R&D Center, Mitsubishi Electric Corporation, Japan
{Hirano.Takato@ay, Hattori.Mitsuhiro@eb, Ito.Takashi@aj,

Matsuda.Nori@ea}.MitsubishiElectric.co.jp

Abstract. Cancelable biometrics is known as a template protection
approach, and concrete protocols with high accuracy and efficiency
have been proposed. Nevertheless, most known protocols, including the
Hattori et al. protocol (Journal of Information Processing, 2012), pay
little attention to security against the replay attack, which leads to
severe authenticity violation in the remote authentication setting. In
this paper, we revisit the Hattori et al. protocol based on the Boneh-
Goh-Nissim encryption scheme, and propose a secure variant while
keeping user-friendliness of the original protocol. Our protocol uses the
revocation method of the original protocol in a proactive manner, i.e., in
our protocol, the public key assigned to a user is randomly re-generated
in every authentication process. We define a general and formal security
game that covers the replay attack and considers fuzziness of biometric
feature extraction, and show that our protocol is secure in that model.
The computation and communication costs of our protocol are more
efficient than those of similar protocols.

Keywords: Cancelable biometrics, remote authentication, replay,
security game for biometrics, homomorphic encryption.

1 Introduction

Biometric authentication is based on physical characteristics of claimants such as
fingerprints, facial features, iris, retina, DNA, vein, and their combinations. Since
these characteristics have adequate amount of information for user authentica-
tion and are easily captured from the human body when needed, claimants do not
require to remember long and complex information nor tokens. In other words,
biometric authentication has advantage in user-friendliness and applicability over
traditional methods such as knowledge-based authentication or possession-based
authentication. However, (ordinary) biometric authentication has crucial issues,
privacy and revocability.

As for privacy, biometric information such as face, fingerprints, DNA, etc. can
be regarded as sensitive information because it represents physical characteristics
of individuals. For example, it is known that retinal patterns might provide

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 183–200, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

184 T. Hirano et al.

medical information on diabetes. Therefore, biometric information should not
be disclosed to others, even to verifier (e.g. authentication servers).

As for revocability, it is infeasible to revoke biometric information because
only a limited number of biometric information can be used for substitution.
Furthermore, once templates of biometric information stored in the authentica-
tion server are leaked out, they might be used in another authentication system
for disguise. This situation would allow illegitimate users to gain illegal access
to services.

Therefore, template protection techniques have been studied, in order to ad-
dress these issues.

1.1 Related Works

Roughly speaking, the template protection techniques can be classified into three
approaches: Cancelable Biometrics [15,4,6,19,17,1,7,18,8], Biometric Cryptosys-
tem [11,10], and ZeroBio [16,12,13].

Cancelable Biometrics: The first approach, Cancelable Biometrics, is that by
using a randomization key, user’s biometric feature is transformed to random
data [15]. Up to now, concrete protocols with high accuracy and efficiency have
been proposed. Since cancelable biometrics uses encryption-like techniques, there
are several protocols which can be proved secure template protection under some
cryptographic assumptions. For example, as symmetric-key encryption approach,
informationally secure protocols based on the correlation invariant random fil-
tering have been proposed (e.g. [17,18]), and as public-key encryption approach,
computationally secure protocols based on (additively or somewhat) homomor-
phic encryption have been proposed (e.g. [4,7]).

Especially, Hattori, Ito, Matsuda, Shibata, Takashima, and Yoneda proposed
two cancelable biometric protocols which are cryptographically-secure template
protection against passive adversaries in a semi-honest model, by using public-
key homomorphic encryption which can evaluate 2-DNF (disjunctive normal
form) on ciphertexts [7]. Concretely, one is based on the Boneh-Goh-Nissim
(BGN) encryption scheme [2] and the other is based on the Okamoto-Takashima
encryption scheme [14]. In addition to template protection, their protocols are
efficient and “user-friendly”. Here, “user-friendly” means that each user has only
to access or possess public information such as his public key and ID, and thus
no direct access to (the corresponding) secret key is needed.

However, most known cancelable biometric protocols, including the Hattori
et al. one, have a crucial security issue that the replay attack is applicable in the
remote authentication setting (i.e. authentication is proceeded through public
networks). That is, cancelable biometrics focuses on security for template pro-
tection and pays little attention to security in the remote authentication setting,
although biometrics is one of the authentication protocols.

There are a small number of cancelable biometric protocols which also consider
the cryptographic security for (remote) authentication [6,19,1,8].

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 185

The protocols proposed in [6,19,1] are based on public-key homomorphic en-
cryption and have resistance against the replay attack and other imperson-
ation attacks by interacting between the users and the authentication server
in challenge-response manners. However, security arguments for the protocols
are intuitive (i.e. detailed cryptographic security proofs are not given), and the
user-friendliness is lacked because the user must have the secret key in addition
to his biometric information (i.e. their protocols can be regarded as token-based
authentication).

Recently, Hirano, Hattori, Ito, Matsuda, and Mori proposed a variant of the
Hattori et al. protocols [7], by combining a challenge-response approach with
additive homomorphicity [8]. Although their protocol has the user-friendliness
and the cryptographic security for both template protection and authentication
against passive adversaries in a semi-honest model, the computational and com-
munication costs are huge because a large number of random numbers are used
in the authentication phase.

Biometric Cryptosystem: The second approach, Biometric Cryptosystem, is
based on error-correcting codes, and its main focus is on generating a secret key
which can be applied to various cryptosystems such as authentication protocols.
Biometric Cryptosystem includes fuzzy commitment [11], fuzzy vault [10], etc.
Since concrete schemes of Biometric Cryptosystem and authentication protocols
can be chosen independently, this approach has high flexibility and can guarantee
the security for authentication by using “secure” authentication protocols with
the generated secret key. However, it is known that this approach has some
practical issues such as a trade-off between the security and the accuracy.

ZeroBio: The third approach, ZeroBio, is to apply zero-knowledge interactive
proof to biometrics. Therefore, this approach can consider the security for both
template protection and authentication. The protocol proposed by Nishigaki,
Watanabe, Oda, Yoneyama, Yamamoto, Takahashi, Ogata, and Kikuchi has the
user-friendliness and the cryptographic security against passive adversaries in a
semi-honest model [13]. However, their protocol and other protocols (e.g. [16,12])
have huge computational and communication costs because a zero-knowledge
protocol runs multiple times in the authentication phase.

1.2 Our Contribution

In this paper, we study remote cancelable biometrics secure against imperson-
ation attacks. Especially, we focus on the Hattori et al. cancelable biometric
protocols [7] which are user-friendly and cryptographically-secure template pro-
tection. Note that their protocols are vulnerable to the replay attack, similarly
to known ones [15,4,17,7,18].

As a simple way, we observe that cancelable biometric protocols using secure
communication techniques (e.g. SSL/TLS [5]) would resist against the replay
attack and several impersonation attacks. However, the approach cannot address
the situation that the templates stored in the authentication server are stolen.

186 T. Hirano et al.

That is, it is impossible to prevent the attacker who uses the stolen templates
and impersonates a legitimate user even if we use such secure communication
techniques. Additionally, the revocation method of cancelable biometrics might
be impractical and insufficient, although it is a solution for the attack. This is
because, when the templates are stolen from the authentication server, can we
notice the fact and run the revocation method immediately? Furthermore, there
would be some impersonation attacks which cannot be avoided even if we use
the revocation method.

In this paper, we construct a variant of the Hattori et al. protocol based on
the BGN encryption scheme without losing its user-friendliness. Roughly speak-
ing, our idea is to use their revocation method in a proactive manner, i.e., in
our protocol, the public key assigned to the user is randomly re-generated in
every authentication process. Fortunately, it is easy to introduce their revoca-
tion method into the authentication process in a straightforward way, since the
revocation method is simple and constructed by using additive homomorphicity
of the BGN encryption scheme. Note that this approach is not always succeed
in general because of depending the structure of the revocation method. In our
protocol, it is not required to re-generate users’ secret keys although their pub-
lic keys are changed in every authentication process. Moreover, in our protocol,
there exists a unique secret key which is common among all users.

We also define a general and formal security game for biometric authentication
against passive adversaries with a semi-honest manner. Our security definition
covers the replay attack and considers fuzziness of biometric feature extraction.
Then, we can show that our variant is secure in that definition, by assuming the
hardness of a decisional bilinear Diffie-Hellman type problem on composite order
group and high entropy of user’s biometric features. This entropic approach was
also used in [13,8], in order to prove the cryptographic security for authentica-
tion. In addition to the authentication security, we show that our variant has
the cryptographic security for template protection in the same security model
formalized by Hattori et al. under the subgroup decision assumption, without
the high entropic assumption on user’s biometric features.

In contrast to [15,4,6,19,17,1,7,18], our variant can show the cryptographic se-
curity for authentication. Furthermore, the computational and communication
costs of our protocol is more efficient than those of the protocols [13,8] which
have the user-friendliness and the cryptographically security for authentication.
Additionally, it is fair to say that our protocol is more secure than the pro-
tocols [13,8], since our security definition for biometric authentication is more
general and formal than those of them.

Note that we can also construct a variant based on the Okamoto-Takashima
encryption scheme [14], by combining our construction idea with the Hattori et
al. protocol based on the Okamoto-Takashima one.

1.3 Organization

The rest of the paper is as follows. In Section 2, we give some definitions and
notions used throughout the paper. In Section 3, we review the Hattori et al.

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 187

protocol based on the BGN encryption scheme. In Section 4, we propose a can-
celable biometric protocol based on the Hattori et al. one, and show that our
protocol is cryptographically secure in the sense of template protection and au-
thentication. In Section 5, we conclude.

2 Preliminaries

In this section, we give some notations and definitions, recall the BGN encryp-
tion scheme [2] and its related assumptions, and review desirable properties for
cancelable biometrics formalized by Jain, Nandakumar, and Nagar [9].

2.1 Notations and Definitions

Let N be a positive integer. We denote {0, 1, . . . , N − 1} by Z/NZ, and its
reduced residue class group by (Z/NZ)×, namely, (Z/NZ)× = {x ∈ Z/NZ |
gcd(x,N) = 1}.

We denote the set of positive real numbers by R+. We say that a function
ε : N→ R+ is negligible if for any (positive) polynomial poly, there exists n0 ∈ N
such that for all n ≥ n0, it holds ε(n) < 1/poly(n).

If A is a randomized algorithm, y ← A(x) denotes running A on input x with
a uniformly-chosen random tape and assigning the output to y. If S is a finite
set, s

u←− S denotes that s is uniformly chosen from S.

2.2 The BGN Encryption Scheme and Its Related Assumptions

Let G and GT be multiplicative cyclic groups of order N , and e be a non-
degenerate (symmetric) bilinear map from G×G to GT . That is, for a generator
g ofG, it holds (1) e(ga, gb) = e(g, g)ab for any a, b ∈ Z/NZ, and (2) e(g, g) 	= 1GT

and e(g, g) is a generator of GT , where 1GT is the identity element of GT . In this
paper, we assume that e is polynomial-time computable.

Let p and q be prime, and N = pq. Let Gp and Gq be subgroups of order
p and q of G, respectively. Then, for all gp ∈ Gp and for all gq ∈ Gq, it holds
e(gp, gq) = 1GT .

The BGN encryption scheme consists of the following algorithms (GenBGN,
EncBGN, DecBGN):

GenBGN: Take as an input a security parameter 1λ ∈ N, output a pair of a
public key PK = (g, h,N, e) and a secret key SK = (p, q), where g and h
are randomly chosen generators of G and Gq, respectively.

EncBGN: Take as inputs the public key PK, a message m ∈ {0, 1}M , and a
randomness r ∈ Z/NZ, output a ciphertext c = gmhr, where M is much
smaller than λ.1

1 Hereafter, we denote EncBGN(PK,m, r) by EPK(m), shortly, where E is regarded
as a probabilistic algorithm.

188 T. Hirano et al.

DecBGN: Take as inputs the public key PK, the secret key SK, and a ciphertext
c, output a message m = DLoggqcq (we note that m is the discrete logarithm
of cq to the base gq over G).

From a security point of view, the BGN encryption scheme is secure in the
sense of IND-CPA under the following subgroup decision (SD) assumption [2].

Definition 1 (SD Assumption). Let g, x
u←− G, h, y

u←− Gp, S =
(N, g, h, e). We say that the SD assumption holds if for any PPT algorithm
A, |Pr[A(S, x) = 1]− Pr[A(S, y) = 1]| is negligible in the security parameter λ.

Additionally, encryption schemes with bilinear maps on composite order
groups rely its indistinguishability on the following decisional bilinear Diffie-
Hellman on composite order group (DBDH on COG) assumption which can be
regarded as a decisional assumption of the computational assumption defined
in [3, Section 4.2].

Definition 2 (DBDH on COG Assumption). Let gp
u←− Gp, gq

u←− Gq,

a, b, c, z
u←− Z/NZ, and S = (N,G,GT , e, gp, gq, g

a
p , g

b
p, g

c
p). We say that the

DBDH assumption holds if for any PPT algorithm A, |Pr[A(S, e(gp, gp)abc) =
1]− Pr[A(S, e(gp, gp)z) = 1]| is negligible in the security parameter λ.

2.3 Desirable Properties for Cancelable Biometrics

Jain et al. stated that cancelable biometrics should satisfy the following
properties [9].

Accuracy: In general, an error might occur in evaluating the similarity of the
biometric features in the cancelable biometric system, and the accuracy (i.e.
false acceptance rate and false rejection rate) may be degraded from that of
the original biometric system. It is important that the degree of accuracy
degradation is small enough.

Diversity: It should be possible to produce a very large number of cancelable
templates (to be used in different applications) from the same biometric
feature. Furthermore, it should be impossible to match cancelable templates
from different applications.

Revocability: It should be straightforward to revoke a compromised template
and reissue a new one based on the same biometric feature.

Security: It should be infeasible to obtain any partial information on users’
feature vectors from the data that appears in the protocol.

3 The Hattori et al. Protocol

In this section, we describe the Hattori et al. protocol [7]. Concretely, we give the
system model, the construction based on the BGN encryption scheme, and the
security definition. Further, we point out that the protocol is not secure against
the replay attack.

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 189

3.1 System Model

Let us denote the system model, biometric features, and metrics used in the
Hattori et al. protocol.

Entities: In their system model, there are three kinds of entities: users
U1, . . . ,Un, an authentication server S, and a decryptor D. It is assumed
that S and D do not collude.

Biometric Features and Metrics: Their protocol employs generic feature
vectors of fixed length as a biometric feature and the squared Euclidean
distance of two vectors as a similarity metrics. Concretely, each feature
vector consists of D elements of integers; e.g. x = (x1, . . . , xD) ∈ ZD,
and the squared Euclidean distance of two vectors x and y is defined by
dE2(x,y) =

∑D
i=1(xi − yi)

2. The distance will be compared with θ ∈ Z
which is the pre-defined threshold in their system.

3.2 Construction Based on the BGN Encryption Scheme

Let us describe the construction of the Hattori et al. protocol based on the BGN
encryption scheme, as follows.

– The setup process is as follows.

1. D invokes (p, q,G,GT , e)← GenBGN(1
λ).

2. D picks gk, uk
u←− G for k = 1, . . . , n where n is the number of users, and

sets {hk = up
k, gT,k = e(gk, gk)}nk=1.

3. D sets PK = (N,G,GT , e), SK = q, and {PKk = (gk, hk, gT,k)}nk=1,
and makes PK and {PKk}nk=1 publicly available, where PK is the public
parameter of the system, PKk is the public key for the user Uk, and SK
is the secret key of the system and stored secretly in D.

– The enrollment process of Uk is as follows.

1. Uk picks r1, . . . , rD
u←− Z/NZ and encrypts his biometric feature vec-

tor x = (x1, . . . , xD) ∈ (Z/NZ)D under PKk as ckE ,i = gxi

k hri
k for

i = 1, . . . , D.
2. Uk sends EPKk

(x) = (ckE ,1, . . . , ckE ,D) to S.
3. S stores a tuple (k, PKk, EPKk

(x)) as a template.

– The authentication process of Uk is as follows.

1. Uk picks s1, . . . , sD
u←− Z/NZ and encrypts his biometric feature vec-

tor y = (y1, . . . , yD) ∈ (Z/NZ)D under PKk as ckA,i = gyi

k hsi
k for

i = 1, . . . , D.
2. Uk sends EPKk

(y) = (ckA,1, . . . , ckA,D) to S.
3. S picks t1, t2

u←− Z/NZ, takes (k, PKk, EPKk
(x)), and computes

the encrypted distance ΔPKk
= ΔPKk

(EPKk
(x), EPKk

(y)) by

ΔPKk
= e(gk, hk)

t1 · e(hk, hk)
t2 · ∏D

i=1

(
e(ckE ,i, ckE ,i) · e(ckA,i, ckA,i) ·

e(ckE ,i, ckA,i)
−2
)
.

4. S sends the encrypted distance ΔPKk
to D.

190 T. Hirano et al.

5. D computes the discrete logarithm of Δq
PKk

to the base gqT,k, that is,

dE2(x,y) = DLoggq
T,k

Δq
PKk

, where dE2(·, ·) is the squared Euclidean

distance.
6. D compares dE2(x,y) to the pre-defined threshold θ. If dE2(x,y) ≤ θ,
D returns accept to S; otherwise, D returns reject to S.

– The revocation process of Uk is as follows.

1. S picks δ
u←− Z/NZ and computes g′k = gδk, h

′
k = hδ

k, g
′
T,k = gδ

2

T,k, c
′
kE ,i =

cδkE ,i for i = 1, . . . , D.
2. S stores a new tuple (k, PK ′

k = (g′k, h
′
k, g

′
T,k), EPK′

k
(x) =

(c′kE ,1, . . . , c
′
kE ,D)).

3. S makes PK ′
k publicly available.

We note that, at Step 5 of the authentication process, we must solve discrete
logarithms in GT , which is known as an expensive computation. It is known that,
by using the Pollard lambda method, discrete logarithms laid in an interval [0, τ]
can be solved in O(

√
τ)-time.

In the protocol, D decides reject if the distance is over θ. Also, from the fact
above, D can conclude that the distance exceeds θ (i.e. reject), if D could not
obtain the discrete logarithms within O(

√
θ)-time. Therefore, θ and D should

be much smaller than N (for example, θ = c or lnc N , where c is constant).
On the other hand, xi and yi in the protocol can be chosen from Z/NZ rather

than {0, 1}M , although the message space of the BGN encryption scheme (i.e.
{0, 1}M) is much smaller than Z/NZ. This is because, in the protocol, it is solely
checked whether the distance between two feature vectors is small.

3.3 Security

Hattori et al. stated that the general security requirement in their system can
further be classified into the following three requirements:

Security against the Authentication Server S: It is required that S can-
not obtain extra information other than the binary result (accept or reject)
of authentication.

Security against the Decryptor D: It is required that D cannot obtain ex-
tra information other than the squared Euclidean distance of two feature
vectors.

Security against Eavesdroppers E: It is required that eavesdroppers E can-
not obtain extra information other than the binary result (accept or reject)
of authentication.

Security against S: Hattori et al. considered the security in the semi-honest
model and only passive eavesdroppers. Then, they defined the security game
between S and the challenger C and its advantage of S as follows.

Setup: C runs the setup process and gives PK, {PKk}nk=1 to S. Then, C picks

β
u←− {0, 1} and uses the same value throughout the game.

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 191

Query: S adaptively makes two types of queries in an arbitrary order:
– Enrollment query. S sends (i,x

(i)
0 ,x

(i)
1) to C, where 1 ≤ i ≤ n. C returns

EPKi(x
(i)
β).

– Authentication query. This query consists of two consecutive procedures:
1. S sends (j,y

(j)
0 ,y

(j)
1) to C, where 1 ≤ j ≤ n. C returns EPKj (y

(j)
β).

2. After receiving EPKj (y
(j)
β), S computes ΔPKj (EPKj (x

(j)
β),

EPKj (y
(j)
β)) by using EPKj (x

(j)
β) which must have been queried in

the enrollment query, and sends ΔPKj (EPKj (x
(j)
β), EPKj (y

(j)
β)) to

C. C returns the authentication result (accept or reject).
Here, we allow S to make a polynomial number of authentication queries.

The restriction of the authentication query is that if x
(j)
0 and y

(j)
0 are

accepted vectors, then x
(j)
1 and y

(j)
1 must also be accepted ones, and vice

versa.
Guess: S outputs a guess β′ of β.

The advantage of S in the above game is defined asAdvS(λ) =
∣∣Pr[β′ = β]− 1

2

∣∣.
Definition 3. We say that a biometric protocol is secure in the sense of template
protection against S if for all PPT servers S, AdvS(λ) is negligible in λ.

Their protocol satisfies the above security under the SD assumption.

Security against D: In addition to the security against the authentication
server S, they defined the security against the decryptor D, as follows.
Definition 4. We say that a biometric protocol is secure against D if for all
unconditionally computable adversarial decryptors D, it is impossible to obtain
any partial information on x and y, except for dE2(x,y).

Their protocol satisfies the above security with no assumption.

Security against E: We need to further consider the security against eaves-
droppers E . Fortunately, it can be reduced to that of the authentication server
S, since all the transmissions E can observe are equally observed by S. That is,
if it is secure against S, it holds that it is also secure against E . We note that
this claim is only valid for passive adversaries.

3.4 Security Issues

As described in Section 3.3, Hattori et al. solely focused on privacy aspects of
biometrics; that is, authenticity aspects were outside of their scope, similarly to
most cancelable biometric protocols (e.g. [15,4,17,7,18]). Therefore, they did not
consider attacks on authenticity, such as impersonation attacks. Unfortunately,
the Hattori et al. protocol (similarly to [15,4,17,7,18]) is not secure against the
replay attack. Indeed, if E can capture an encrypted feature vector EPKk

(y) sent
through a public network, E can impersonate as Uk by directly sending EPKk

(y)
to S, without knowing his plain biometric information or feature vectors.

192 T. Hirano et al.

4 Our Variant

In this section, we firstly propose a cancelable biometric protocol which is a
variant of the Hattori et al. protocol. Secondly, we compare efficiency among our
protocol and other biometric protocols [7,13,8]. Thirdly, we consider the security
for template protection, replay, and authentication of our protocol.

4.1 Construction

As pointed out in Section 3.4, the attacker for the Hattori et al. protocol can im-
personate a legitimate user by directly sending eavesdropped encrypted feature
vectors of legitimate users to S. On the other hand, we see that, after run-
ning their revocation process, it would be infeasible to use a former templates
(k, PKk, EPKk

(x)) for impersonation, since user’s public key is changed.
From the fact, we observe an idea that their revocation method would be ef-

fective for preventing several impersonation attacks, including the replay attack.
Concretely, we randomly re-generate user’s public key (equivalently, generate a
one-time public key) via the revocation process in the authentication phase. For-
tunately, it is easy to introduce their revocation method into the authentication
process in a straightforward way because the revocation method is simple. Then,
we construct a cancelable biometric protocol with the above idea, as follow:

– The setup process is as follows.

1. D invokes (p, q,G,GT , e)← GenBGN(1
λ).

2. D picks gk, uk
u←− G for k = 1, . . . , n where n is the number of users, and

sets {hk = up
k, gT,k = e(gk, gk)}nk=1.

3. D sets PK = (N,G,GT , e), SK = q, and {PKk = (gk, hk, gT,k)}nk=1,
and makes PK and {PKk}nk=1 publicly available, where PK is the public
parameter of the system, PKk is the public key for the user Uk, and SK
is the secret key of the system and stored secretly in D.

– The enrollment process of Uk is as follows.

1. Uk picks r1, . . . , rD
u←− Z/NZ and encrypts his biometric feature vec-

tor x = (x1, . . . , xD) ∈ (Z/NZ)D under PKk as ckE ,i = gxi

k hri
k for

i = 1, . . . , D.
2. Uk sends EPKk

(x) = (ckE ,1, . . . , ckE ,D) to S.
3. S stores a tuple (k, PKk, EPKk

(x)) as a template.

– The authentication process of Uk is as follows.

1. S picks γ
u←− Z/NZ and computes gOTk

= gγk , hOTk
= hγ

k , gT,OTk
= gγ

2

T,k

from PKk.
2. S sends PKOTk

= (gOTk
, hOTk

, gT,OTk
) to Uk.

3. Uk picks s1, . . . , sD
u←− Z/NZ and encrypts his biometric feature vector

y = (y1, . . . , yD) ∈ (Z/NZ)D under PKOTk
as ckA,i = gyi

OTk
hsi
OTk

for
i = 1, . . . , D.

4. Uk sends EPKOTk
(y) = (ckA,1, . . . , ckA,D) to S.

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 193

5. S picks t1, t2
u←− Z/NZ, takes (k, PKk, EPKk

(x)), and computes
the encrypted distance ΔPKOTk

= ΔPKOTk
(EPKk

(x), EPKOTk
(y), γ)

by ΔPKOTk
= e(gOTk

, hOTk
)t1 · e(hOTk

, hOTk
)t2 · ∏D

i=1

(
e(cγkE ,i, c

γ
kE ,i) ·

e(ckA,i, ckA,i) · e(cγkE ,i, ckA,i)
−2
)
.

6. S sends the encrypted distance ΔPKOTk
and gT,OTk

to D.
7. D computes the discrete logarithm ofΔq

PKOTk
to the base gqT,OTk

, that is,

dE2(x,y) = DLoggq
T,OTk

Δq
PKOTk

, where dE2(·, ·) is the squared Euclidean

distance.

8. D compares dE2(x,y) to the pre-defined threshold θ. If dE2(x,y) ≤ θ,
D returns accept to S; otherwise, D returns reject to S.

– The revocation process of Uk is identical to the Hattori et al. one.

We note that D can also conclude reject if D could not compute the discrete
logarithm within O(

√
θ) at Step 7 of the authentication phase.

4.2 Correctness

We show that DLoggq
T,OTk

Δq
PKOTk

is exactly the squared Euclidean distance of

two vectors x and y.
For i = 1, . . . , D, it holds cγkE ,i = gxiγ

k hriγ
k = gxi

OTk
hri
OTk

. This means

that (cγkE ,1, . . . , c
γ
kE ,D) can be regarded as EPKOTk

(x). Since e(gOTk
, hOTk

)q =

e(gOTk
, uγ

k)
pq = 1GT and e(hOTk

, hOTk
)q = e(hOTk

, uγ
k)

pq = 1GT , we have

Δq
PKOTk

=
D∏
i=1

(
e(cγkE ,i, c

γ
kE ,i) · e(ckA,i, ckA,i) · e(cγkE ,i, ckA,i)

−2
)q

.

From bilinearity of e, we have

e(cγkE ,i, c
γ
kE ,i)

q = e(gxi

OTk
hri
OTk

, gxi

OTk
hri
OTk

)q

=
(
e(gxi

OTk
, gxi

OTk
) · e(hri

OTk
, gxi

OTk
) · e(gxi

OTk
, hri

OTk
) · e(hri

OTk
, hri

OTk
)
)q

= g
x2
i q

T,OTk

for i = 1, . . . , D. Similarly, we have e(ckA,i, ckA,i)
q = g

y2
i q

T,OTk
and

e(cγkE ,i, ckA,i)
−2q = g−2xiyiq

T,OTk
for i = 1, . . . , D. Then, we obtain

Δq
PKOTk

=

D∏
i=1

g
x2
i q

T,OTk
· gy2

i q
T,OTk

· g−2xiyiq
T,OTk

= g
q
∑D

i=1(xi−yi)
2

T,OTk
= (gqT,OTk

)dE2 (x,y).

Therefore, it holds DLoggq
T,OTk

Δq
PKOTk

= dE2(x,y).

194 T. Hirano et al.

Table 1. Comparison of efficiency among our protocol and other biometric protocols

Protocol Entity Setup & Enrollment Phases Authentication Phase

Computation Communication Computation Communication

[13] Uk (2θD + 2)ep (4θD + 4)�p (4θD + 4)ep (4θD + 4)�p

A - - (10θD + 8)ep (6θD + 6)�p

[7] Uk 2DeG D�G 2DeG D�G

A - - (D + 2)eGT + (3D + 2)p �GT

D neG + np 2n�G + n�GT + lgN 2eGT + O(
√
θ) 1

[8] Uk 2DeG D�G 2DeG D�G

A - - 3DeG + (D + 2)eGT + (3D + 2)p D�G + �GT

D neG + np 2n�G + n�GT + lgN 2eGT + O(
√
θ) 1

Ours Uk 2DeG D�G 2DeG D�G

A - - DeG + (D + 2)eGT + (3D + 2)p 2�GT

D neG + np 2n�G + n�GT + lgN 2eGT + O(
√
θ) 1

4.3 Comparison of Efficiency

Here we compare efficiency among our protocol and other protocols [7,13,8].
Table 1 summarizes a result of the comparison of efficiency among our protocol

and other biometric protocols [7,13,8]. Concretely, Table 1 gives the computation
and communication costs of their protocols, where the computation costs are
focused on exponentiation and pairing operation. Note that the Hattori et al.
protocol [7] is not secure against the replay attack in contrast to [13,8], and that
there is no decryptor D in the system model of [13].

The notations used in the table are defined as follows. 	p, 	G, and 	GT mean
the data size of an element of Z/pZ, G, and GT , respectively. ep, eG, and eGT

mean an exponentiation cost in Z/pZ, G, and GT , respectively. pmeans a pairing
operation cost in G.

From Table 1, we see that the authentication process of our protocol is more
efficient than that of the Hirano et al. protocol [8] which is also a variant of
the Hattori et al. protocol [7]. Further, it is fair to say that our protocol can be
considered as more efficient than the Nishigaki et al. ZeroBio protocol [13] (at
least, the communication cost), although the groups used in our protocol (i.e.
GN and GT) are different from that in [13] (i.e. Z/pZ).

4.4 Security

Now, let us show the cryptographic security of our protocol. Firstly, we show the
cryptographic security for template protection under our security model which
is slightly modified the original one formalized in [7]. Secondly, we check that
our protocol is secure against the replay attack. After that, in order to show that
our protocol is secure against other impersonate attacks, we define a general and
formal security model for biometric authentication, and show that our protocol
is secure in that model.

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 195

The Cryptographic Security for Template Protection: In order to show
that our protocol has the cryptographic security for template protection, we
slightly modify the security game against S, described in Section 3.3:

The security game between S and the challenger C, and the advantage of S,
in our protocol is defined as follows.

Setup: C runs the setup process and gives PK, {PKk}nk=1 to S. Then, C picks

β
u←− {0, 1} and uses the same value throughout the game.

Query: S adaptively makes two types of queries in an arbitrary order:

– Enrollment query. S sends (i,x
(i)
0 ,x

(i)
1) to C, where 1 ≤ i ≤ n. C returns

EPKi(x
(i)
β).

– Authentication query. This query consists of two consecutive procedures:
1. S picks γj

u←− RPK , computes PKOTj from PKj and γj , and sends

(j, PKOTj ,y
(j)
0 ,y

(j)
1) to C, where 1 ≤ j ≤ n and RPK is a set of

random numbers depending on PK. C returns EPKOTj
(y

(j)
β).

2. After receiving EPKOTj
(y

(j)
β), S computes ΔPKOTj

(EPKj (x
(j)
β),

EPKOTj
(y

(j)
β)) from γj , where EPKj (x

(j)
β) must have been queried in

the enrollment query, and sends ΔPKOTj
(EPKj (x

(j)
β), EPKOTj

(y
(j)
β))

to C. C returns the authentication result (accept or reject).
Here, we allow S to make a polynomial number of authentication queries.

The restriction of the authentication query is that if x
(j)
0 and y

(j)
0 are

accepted vectors, then x
(j)
1 and y

(j)
1 must also be accepted ones, and vice

versa.
Guess: S outputs a guess β′ of β.

The advantage of S in the above game is defined asAdv′
S(λ) =

∣∣Pr[β′ = β]− 1
2

∣∣.
Definition 5. We say that a biometric protocol is secure in the sense of template
protection against S if for all PPT servers S, Adv′

S(λ) is negligible in λ.

Our protocol is slightly modified from the Hattori et al. one, and any adversary
in the security game above would have no information on β since one-time public
keys are generated correctly and uniformly in the authentication query. That is,
we can easily construct a PPT algorithm which breaks the template security
of the Hattori et al. protocol with non-negligible probability, if there exists a
PPT adversary which breaks that of our protocol with non-negligible probability.
Therefore, in a similar fashion to the security proof of the Hattori et al. protocol,
we can directly show that our protocol is secure in our model under the SD
assumption defined in Definition 1.

Theorem 1. Our protocol is secure in the sense of template protection under
the SD assumption.

Further, we can show that our protocol is secure against D with no assump-
tion, in a similar fashion to the security proof of the Hattori et al. protocol.

196 T. Hirano et al.

The Cryptographic Security for Authentication: Firstly, let us consider
the replay attack by the eavesdropper E .

Let (k, PKk, EPKk
(x)) be a template of the user Uk and (PKOTk

, EPKOTk
(y))

be eavesdropped authentication data of Uk, where PKOTk
= (gγk , h

γ
k , g

γ
T,k),

γ
u←− Z/NZ, and dE2(x,y) ≤ θ. For a one-time public key PKOT ′

k
=

(gOT ′
k
, hOT ′

k
, gT,OT ′

k
) = (gγ

′
k , hγ′

k , gγ
′2

T,k) generated from γ′ u←− Z/NZ in the au-
thentication phase, we have

Δq
PKOT ′

k

=

D∏
i=1

(
e(cγ

′
kE ,i, c

γ′
kE ,i) · e(ckA,i, ckA,i) · e(cγ

′
kE ,i, ckA,i)

−2
)q

=

D∏
i=1

e(gγ
′

k , gγ
′

k)x
2
i q · e(gγ′

k , gγ
′

k)y
2
i α

2q · e(gγ′
k , gγ

′
k)−2xiyiαq

= (gqT,OT ′
k
)dE2(x,αy),

where α ≡ γ/γ′ (mod N). Obviously, the discrete logarithm of Δq
PKOT ′

k

to the

base gqT,OT ′
k
, that is, dE2(x, αy) is not constant with overwhelming probability

in λ. Therefore, we see that the replay attack is not applicable to our protocol.

Theorem 2. Our protocol is secure against the replay attack.

Secondly, in addition to the security against the replay attack, let us consider
the security for (remote) biometric authentication against general impersonation
attacks. Here, we define the security game against passive eavesdroppers E in a
semi-honest manner. Our security model covers the replay attack and considers
fuzziness of biometric feature extraction. Therefore, it is more general and formal
than those of the protocols [13,8].

The security game between E and the challenger C, and the advantage of E in
our protocol are defined as follows.

Setup: C runs the setup process and gives PK, {PKk}nk=1 to E .
Query: E adaptively makes two types of queries in an arbitrary order:

– Enrollment query. E sends i to C, where 1 ≤ i ≤ n. C picks xi ∈ Bi, and
returns EPKi(xi), where Bi is a set of feature vectors of Ui.

– Authentication query. E sends j to C, where 1 ≤ j ≤ n and j must have
been queried in the enrollment query. C picks γj

u←− RPK and yj ∈ Bj ,
and computes PKOTj and EPKOTj

(yj) from PKj, where RPK is a set

of random numbers depending on PK. C checks dE2(xj ,yj) ≤ θ, decides
result = accept or reject, and returns (PKOTj , EPKOTj

(yj), result) to E .
Here, we allow E to make a polynomial number of authentication queries.

Challenge: E picks 	, and sends to C, where 1 ≤ 	 ≤ n and 	 must have been
queried in the enrollment query. C picks γ�

u←− RPK , computes PKOT�
, and

returns PKOT�
.

Compute: E outputs EPKOT�
(x′

�).

The advantage of E in the above is defined as Adv′
E(λ) = Pr[dE2(x�,x

′
�) ≤ θ].

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 197

Definition 6. We say that a biometric protocol is secure in the sense of au-
thentication against E if for all PPT eavesdroppers E, Adv′

E(λ) is negligible
in λ.

In order to show that our protocol is secure under the above definition, we
use the following three heuristic assumptions, in addition to the DBDH on COG
assumption formalized in Definition 2.

The first one is an assumption that entropy of user’s biometric feature is
very high. In other words, we assume that each ai of Uk’s biometric feature
a = (a1, . . . , aD) ∈ Bk is uniformly distributed over Z/NZ. Moreover, for feature
vectors vk1 and vk2 extracted from Uk1 and Uk2 , respectively, dE2(vk1 ,vk2) is
exponentially large with overwhelming probability in λ. This assumption were
also used in [13,8] in order to show the authentication security of their protocols.

The second one is that for any enrollment vector x and any authentication
vector y extracted from Uk, it will hold |xi− yi| ≤ dE2(x,y) ≤ μ for 1 ≤ j ≤ D,
where μ is positive constant. That is, x − y ∈ Err(μ,D) := {(e1, . . . , eD) ∈
ZD |∑D

i=1 e
2
i ≤ μ}. Note that e u←− Err(μ,D) is efficiently samplable if μ and D

are very small. Although this assumption gives a restriction for user’s biometric
feature, it is a plausible model in practical biometrics.

The third one is that for the plain feature vector x′
� = (x′

1, . . . , x
′
D) of

EPKOT�
(x′

�) outputted by E , it will hold |xj − x′
j | ≤ ν for 1 ≤ j ≤ D, in addi-

tion to dE2(x�,x
′
�) ≤ θ, where ν is positive constant. This assumption is closely

related to the second one and might be considered as a practical condition.
Then, we can show the security of our protocol under the DBDH on COG

assumption and the heuristic assumptions.

Theorem 3. Our protocol is secure in the sense of authentication against E
under the DBDH on COG assumption and the heuristic assumptions.

Proof. We will construct a PPT algorithm A that breaks the DBDH on COG
assumption with non-negligible probability by using a PPT adversary E that
breaks our authentication security with non-negligible probability ε(λ).

Let (N,G,GT , e, gp, gq, g
a
p , g

b
p, g

c
p, e(gp, gp)

z) be a DBDH on COG instance. For

the instance, A picks X,Y, Z
u←− Z/NZ and sets g = gXp gYq and h = gZq . Here,

we observe that g and h are random generators of G and Gq, respectively, since

Z/NZ Z/pZ×Z/qZ by the Chinese remainder theorem. A takes Xk, Yk, Zk
u←−

Z/NZ and sets gk = gXk
p gYk

q and hk = gZk
q for 1 ≤ k ≤ n where n is the number

of users. Then, A sets

PK = (N, 〈g〉, 〈e(g, g)〉, e) and {PKk = (gk, hk, e(gk, gk)}nk=1,

and gives them to E as the setup phase. Note that for any α, β ∈ Z/NZ, we

have gαk h
β
k = gαXk

p gαYk+βZk
q . Intuitively, the information on α appears only on

the exponent of gp but not gq when β
u←− Z/NZ.

In the enrollment query phase, A picks ri,1, . . . , ri,D, ξi,1, . . . , ξi,D
u←− Z/NZ,

gives

c
(i)
kE

= ((gapg
ξi,1
p)Xigri,1q , . . . , (gapg

ξi,D
p)Xigri,Dq)

198 T. Hirano et al.

to E , and keeps {ξi,m}Dm=1, when E queries on i. Note that (gapg
ξi,m
p)Xig

ri,m
q for

1 ≤ m ≤ D can be regarded as a valid ciphertext EPKi(a+ ξi,m) since it holds

gqi = gXiq
p and ((gapg

ξi,m
p)Xig

ri,m
q)q = (gXiq

p)(a+ξi,m).

In the authentication query phase, A picks e = (e1, . . . , eD)
u←− Err(μ,D) and

γj , sj,1, . . . , sj,D
u←− Z/NZ, and computes PKOTj = (g

γj

j , h
γj

j , e(gj , gj)
γ2
j) and

c
(j)
kA

= ((gapg
ξj,1+e1
p)Xjγjgsj,1q , . . . , (gapg

ξj,D+eD
p)Xjγjgsj,Dq)

from {ξj,m}Dm=1, when E queries on j, where μ is constant. If
∑D

m=1 e
2
m ≤

θ, then A sets result = accept, otherwise, result = reject. Then, A gives

(PKOTj , c
(j)
kA

, result) to E . Note that (gapg
ξj,m+em
p)Xmγjg

sj,m
q for 1 ≤ m ≤ D

can be regarded as a valid ciphertext EPKOTj
(a + ξj,m + em) since it holds

g
γjq
j = g

Xjγjq
p and ((gapg

ξj,m+em
p)Xjγjg

sj,m
q)q = (g

Xjγjq
p)a+ξj,m+em . Additionally,

EPKOTj
(a+ ξj,m + em) can also be regarded as EPKj ((a+ ξj,m + em)γj).

In the challenge phase, A picks Y ′
� , Z

′
�

u←− Z/NZ, compute

PKOT�
= (gOT�

, hOT�
, gT,OT�

) = (gbpg
Y ′
�

q , g
Z′

�
q , e(gbpg

Y ′
�

q , gbpg
Y ′
�

q)),

and returns PKOT�
as a one-time public key to E when E sends 	 ∈ {1, . . . , n}.

Then, E outputs (EPKOT�
(a + ξ�,1 + e′1), . . . , EPKOT�

(a + ξ�,D + e′D)) with
non-negligible probability ε, where |e′m| ≤ ν for 1 ≤ m ≤ D and ν is constant.
Here, we observe

EPKOT�
(a+ ξ�,m + e′m) = (gbpg

Y ′
�

q)a+ξ�,m+e′m(g
Z′

�
q)Rm

= g
b(a+ξ�,m+e′m)
p g

Y ′
� (a+ξ�,m+e′m)+Z′

�Rm
q ,

for 1 ≤ m ≤ D, where Rm ∈ Z/NZ. Therefore, we see that for 1 ≤ m ≤ D, it
holds

e(EPKOT�
(a+ ξ�,m + e′m), gcp) = e(gp, gp)

bc(a+ξ�,m+e′m)

= e(gp, gp)
abc · e(gp, gp)bc(ξ�,m+e′m)

since e(gp, gq) = 1GT .
From the above fact, A fixes m ∈ {1, . . . , D}, computes a set W as

W = {e(gbp, gcp)ξ�,m , e(gbp, g
c
p)

ξ�,m±1, . . . , e(gbp, g
c
p)

ξ�,m±ν},
by using ξ�,m and the DBDH on COG instance, and checks whether there exists
an element w ∈W such that

e(EPKOT�
(a+ ξ�,m + e′m), gcp)/w = e(gp, gp)

z .

If there exists such w, then A decides e(gp, gp)
z = e(gp, gp)

abc, otherwise,
e(gp, gp)

z 	= e(gp, gp)
abc. In the both cases, A can break the DBDH on COG

assumption with non-negligible probability ε(λ). Thus, we conclude that our
protocol is secure in the sense of authentication against E . ��

Cryptographically-Secure and Efficient Remote Cancelable Biometrics 199

4.5 Desirable Four Properties

We briefly mention that our protocol satisfies the desired four properties.

Accuracy: Our protocol does not affect the accuracy, because in the authenti-
cation process, the decryptor D can recover the squared Euclidean distance
which is also used in the ordinary (non-cryptographic) biometrics.

Diversity: A very large number of cancelable templates can be produced in our
protocol by changing random numbers such as r1, . . . , rD

u←− Z/NZ. Also, it
is impossible to cross-match templates even within a single database. In our
protocol, templates for users i and j are EPKi(x) = (gx1

i hr1
i , . . . , gxD

i hrD
i)

and EPKj (x) = (gx1

j h
r′1
j , . . . , gxD

j h
r′D
j), respectively, where gi, gj

u←− G and

hi, hj
u←− Gq. Therefore, two templates are totally independent. Moreover,

since there exists ζ ∈ Z/NZ such that gi = gζj , EPKi(x) can be regarded as
EPKj (ζx). Then, dE2(ζx,x) is not constant with overwhelming probability
in λ. Thus the cross-matching is impossible.

Revocability: An attacker who obtained the former template EPKk
(x) and

the new public key PK ′
k cannot update his template into EPK′

k
(x). This is

because computing EPK′
k
(x) = (gδx1

k hδr1
k , . . . , gδxD

k hδrD
k) from EPKk

(x) =

(gx1

k hr1
k , . . . , gxD

k hrD
k) and PK ′

k = (gδk, h
δ
k, g

δ2

T,k) is exactly the computational
Diffie-Hellman problem.

Security: Security properties have been proved in Section 4.4.

5 Conclusion

We have proposed an efficient and secure variant of the Hattori et al. cancelable
biometric protocols [7], and have shown that our protocol is cryptographically
secure for both template protection and authentication under the DBDH on
COG assumption and the heuristic assumptions. Our security definition for
authentication is more general and formal than those formalized in [13,8].
Note that we can also construct a variant based on the Okamoto-Takashima
encryption scheme [14], by combining the construction idea of our BGN-based
protocol with the Hattori et al. protocol based on the Okamoto-Takashima one.

Acknowledgments. The authors would like to thank Kazuo Ohta, Yusuke
Sakai, and Takumi Yamamoto for helpful discussions, and the anonymous
reviewers of IWSEC’13 for valuable comments.

References

1. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint
identification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879,
pp. 190–209. Springer, Heidelberg (2011)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

200 T. Hirano et al.

3. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

4. Bringer, J., Chabanne, H.: An authentication protocol with encrypted biometric
data. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 109–124.
Springer, Heidelberg (2008)

5. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246 (2008)

6. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)

7. Hattori, M., Shibata, Y., Ito, T., Matsuda, N., Takashima, K., Yoneda, T.:
Provably-secure cancelable biometrics using 2-DNF evaluation. Journal of Infor-
mation Processing 20(2), 496–507 (2012)

8. Hirano, T., Hattori, M., Ito, T., Matsuda, N., Mori, T.: Homomorphic encryption
based cancelable biometrics secure against replay and its related attack. In: ISITA
2012, pp. 421–425 (2012)

9. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP
Journal on Advances in Signal Processing 2008 (2008)

10. Juels, A., Sudan, M.: A fuzzy vault scheme. Designs, Codes and Cryptogra-
phy 38(2), 237–257 (2006)

11. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS 1999,
pp. 28–36 (1999)

12. Kikuchi, H., Nagai, K., Ogata, W., Nishigaki, M.: Privacy-preserving similarity
evaluation and application to remote biometrics authentication. Soft Comput-
ing 14(5), 529–536 (2010)

13. Nishigaki, M., Watanabe, Y., Oda, M., Yoneyama, Y., Yamamoto, T., Takahashi,
K., Ogata, W., Kikuchi, H.: Template-protecting biometrics authentication using
oblivious evaluation of feature value function with fuzzy polynomial. IPSJ Jour-
nal 53(9), 2254–2266 (2012) (in Japanese)

14. Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector
decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

15. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in
biometrics-based authentication systems. IBM Systems Journal 40(3), 614–634
(2001)

16. Sakashita, T., Shibata, Y., Yamamoto, T., Takahashi, K., Ogata, W., Kikuchi, H.,
Nishigaki, M.: A proposal of efficient remote biometric authentication protocol.
In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 212–227.
Springer, Heidelberg (2009)

17. Takahashi, K., Hirata, S.: Cancelable biometrics with provable security and its ap-
plication to fingerprint verification. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences E94-A(1), 233–244 (2011)

18. Takahashi, K., Naganuma, K.: Unconditionally provably secure cancellable biomet-
rics based on a quotient polynomial ring. IET Biometrics 1(1), 63–71 (2012)

19. Upmanyu, M., Namboodiri, A.M., Srinathan, K., Jawahar, C.V.: Blind authen-
tication: A secure crypto-biometric verification protocol. IEEE Transactions on
Information Forensics and Security 5(2), 255–268 (2010)

Efficient Algorithm for Tate Pairing

of Composite Order

Yutaro Kiyomura1 and Tsuyoshi Takagi2

1 Graduate School of Mathematics, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan

2 Institute of Mathematics for Industry, Kyushu University,
744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Abstract. A lot of important cryptographic schemes such as fully secure
leakage-resilient encryption and keyword searchable encryption are based
on pairings of composite order. Miller’s algorithm is used to compute
pairings, and the time taken to compute the pairings depends on the cost
of calculating the Miller loop. As a way of speeding up calculations of the
parings of prime order, the number of iterations of the Miller loop can
be reduced by choosing a prime order of low hamming weight. However,
it is difficult to choose a particular composite order that can speed up
the pairings of composite order. Kobayashi et al. proposed an efficient
algorithm for computing Miller’s algorithm by using a window method,
called Window Miller’s algorithm. We can compute scalar multiplication
of points on elliptic curves by using a window hybrid binary-ternary
form (w-HBTF). In this paper, we propose a Miller’s algorithm that
uses w-HBTF to compute Tate pairing efficiently. This algorithm needs
a precomputation of the points on an elliptic curve and rational functions.
The proposed algorithm was implemented in Java on a PC and compared
with WindowMiller’s Algorithm in terms of the time and memory needed
to make their precomputed tables. We used the supersingular elliptic
curve y2 = x3 + x of embedding degree 2 and a composite order of size
of 2048 bits. The proposed algorithm with w = 6 = 2 · 3 was about
12% faster than Window Miller’s Algorithm with w = 2 given smallest
precomputed tables of the same memory size. Moreover, the proposed
algorithm with w = 162 = 2 · 34 was about 8.5% faster than Window
Miller’s algorithm with w = 7 on each fastest algorithm.

Keywords: Composite order pairing, Miller’s Algorithm, NAF,
w-HBTF.

1 Introduction

A lot of cryptographic schemes, such as ID based encryption [5] and keyword
searchable encryption [6], are constructed on pairings over elliptic curves. New
cryptographic schemes that have high functionality such as fully secure leakage-
resilient encryption and keyword searchable encryption use pairings of composite
order [4][23][24]. Recently, Guillevic reported the timing of pairings of composite

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 201–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

202 Y. Kiyomura and T. Takagi

order which has some prime factors (2, 3, . . .) [13]. Miller’s Algorithm [22] is used
to compute the pairings, and the time taken to compute the pairings depends on
the cost of calculating the Miller loop. To speed up the parings of prime order,
the number of iterations of the Miller loop can be reduced by choosing a prime
order of low hamming weight. There are efficient algorithms of pairings such as
ηT pairing [3], Ate pairing [15], R-ate pairing [20], and Optimal ate pairing [26] to
compute pairings of prime order. Recently, Le et al. analyzed techniques to speed
up Ate pairing computation in affine coordinates using 4-ary Miller algorithm
for elliptic curve of embedding degrees k = 9, 15 [19]. In the case of the pairings
of composite order, the number of iterations of the Miller loop can be reduced
by constructing a composite order of low hamming weight. However, we should
consider the security of lattice attack when we construct such composite order
[16]. In this paper, we choose a random composite order which has 2 prime factors
for our algorithm. On the other hand, there are some conversion techniques
that translate cryptographic schemes constructed over composite order groups
to similar ones in the prime order setting, but Meiklejohn et al. showed some
limitations on such transformations [21]. If we know the factors of composite
orderN , we can calculate pairings of composite order efficiently by using Chinese
reminder theorem[21]. However, we assume that we don’t know the factors of N
in this paper.

Kobayashi et al. proposed an efficient algorithm for computing Miller’s algo-
rithm using a window method, called Window Miller’s algorithm [17]. By using
the width-w non-adjacent form (wNAF)[14] or double-base chains [9][10][11] or
window hybrid binary-ternary form (w-HBTF) [1], we are able to compute scalar
multiplications on points of elliptic curves efficiently. Note that w-HBTF is a
special case of double-base chains [1].

Let p be a prime number satisfying N < p. Let k be a embedding degree.
The security of pairings of composite order is based on the difficulty of solving
several problems such as the factorization problem of N , the discrete logarithm
problem on a finite field Fpk , and the elliptic curve discrete logarithm problem.
The difficulty of solving the discrete logarithm problem on a finite field Fpk and
the elliptic curve discrete logarithm problem is satisfied if the difficulty of solving
the factorization problem of N is satisfied. Let us define ρ = !log2 p"/!log2 N".
To compute pairings efficiently, we need to choose an elliptic curve whose ρ is
small. The elliptic curves y2 = x3 − x and y2 = x3 − 4x are elliptic curves of
embedding degree 1 when p ≡ 1 mod 4. In this case, we can choose p and N
satisfying ρ = 2 [18]. On the other hand, y2 = x3 + x is a supersingular elliptic
curve of embedding degree 2 when p ≡ 3 mod 4. In this case, we can choose p
and N satisfying ρ = 1. The supersingular elliptic curve is suitable for efficiently
calculating pairings of composite order, because k = 2 is the smallest embedding
degree among pairings satisfying ρ = 1.

In this paper, we propose an efficient Miller’s Algorithm using w-HBTF that
computes the Tate pairing. The proposed algorithm needs a precomputation
of points on an elliptic curve and rational functions to speed up the pairings
computation. We also propose a computation of f3 for f ∈ Fp2 of the TTRL

Efficient Algorithm for Tate Pairing of Composite Order 203

algorithm. We implemented the proposed algorithm and the Window Miller’s
Algorithm in Java on a PC and compared them in terms of the time and the
memory size of the precomputed table. In this implementation, we used the
supersingular elliptic curve y2 = x3 + x of k = 2 and a composite order of size
of 2048 bits. We will explain how to construct composite integer N and prime p
in the Section 4.2. The proposed algorithm with w = 6 = 2 · 3 turned out to be
about 12% faster than Window Miller’s Algorithm with w = 2 on the smallest
precomputed tables of the same memory size. Moreover, the proposed algorithm
with w = 162 = 2 · 34 was about 8.5% faster than Window Miller’s algorithm
with w = 7 on each fastest algorithm.

2 Mathematical Preparations

Here, we explain the necessary mathematical concepts, i.e., elliptic curves and
the extension field for Tate pairing, Miller’s algorithm, the width-w non-adjacent
form (wNAF), and the window hybrid binary-ternary form (w-HBTF).

2.1 Elliptic Curve

Let p be a prime number such that p ≡ 3 mod 4. A supersingular elliptic curve
of k = 2 is defined over Fp as follows:

E(Fp) = {(x, y) ∈ Fp × Fp | y2 = x3 + x} ∪ {O} (1)

where O is a point at infinity of E(Fp).
We can explain the elliptic curve operations using affine coordinates. Given

points P1 = (x1, y1), P2 = (x2, y2) ∈ E(Fp), we define P1 + P2 = (x3, y3) as
follows if P1 	= ±P2

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2, y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

and define P1 + P2 = O if P1 = −P2. Given a point P1 = (x1, y1) ∈ E(Fp), we
define the double 2P1 = (x4, y4) as follows if P1 	= −P1,

x4 =

(
3x2

1 + 1

2y1

)2

− 2x1, y4 =

(
3x2

1 + 1

2y1

)
(x1 − x4)− y1

and define 2P1 = O if P1 = −P1.
The elliptic curve E(Fp) forms an abelian group: (1) O is the zero element.

(2) Define the negative −P1 = (x1,−y1) for P1 = (x1, y1) ∈ E(Fp). (3) The sums
P1+P2 and 2P1 are defined according to the above operations. The group order
of E(Fp) is p + 1. Let N be a composite number such that N | p + 1. Define
E(Fp)[N] to be a subgroup of E(Fp) that has group order N .

204 Y. Kiyomura and T. Takagi

2.2 Extension Field Fp2

The quadratic extension field is represented as follows:

Fp2 = Fp[i]/(i
2 + 1)

where i2 = −1. If p ≡ 3 mod 4, −1 is a quadratic non-residue over Fp and i2+1
is irreducible over Fp[i]. Now we will explain the extension field Fp2 operations.
Let A = a0+a1i, B = b0+ b1i ∈ Fp2 (a0, a1, b0, b1 ∈ Fp). The Karatsuba method
[8] computes the product A ·B in Fp2 as

A · B = (a0b0 − a1b1) + {(a0 + a1)(b0 + b1)− a0b0 − a1b1}i
which needs three multiplications and five additions of Fp. The Complex method
[8] computes the square A2 in Fp2 as

A2 = {(a0 + a1)(a0 − a1)}+ 2a0a1i

which needs two multiplications and two additions of Fp.

2.3 Tate Pairing

Here, we define the Tate pairing. The embedding degree of the elliptic curve
E(Fp) is 2. So there exists a distortion map φ : E(Fp) → E(Fp2) defined by
(x, y) #→ (−x, yi). Define Q = φ(Q′) ∈ E(Fp2) for Q′ ∈ E(Fp)[N]. Let fi be a
rational function with the following divisor :

div(fi) = i(P)− (iP)− (i− 1)(O) (2)

where i ∈ Z, P ∈ E(Fp)[N]. Let lR,S be the equation of a line through R,S ∈
E(Fp), and vT be the vertical line through T ∈ E(Fp). For a given Q ∈ E(Fp2),
we have

fi+j(Q) = fi(Q) · fj(Q) · liP,jP (Q)

v(i+j)P (Q)
(3)

where i, j ∈ Z. In the case of embedding degree 2, we can redefine equation (3)
as follows [2]:

fi+j(Q) = fi(Q) · fj(Q) · liP,jP (Q) (4)

Finally, the Tate pairing e(P,Q) ∈ F×
p2/(F

×
p2)N is defined by

e(P,Q) = fN (Q)(p
2−1)/N

where the rational function fN has div(fN) = N(P) − N(O). The pairing has
the bilinear property,

e(aP, bQ) = e(P,Q)ab

for all P ∈ E(Fp)[N], Q ∈ E(Fp2) and a, b ∈ Z.

Efficient Algorithm for Tate Pairing of Composite Order 205

2.4 Miller’s Algorithm

Here, we describe the Miller Algorithm (Algorithm 1). First, let us define
n = !log2 N"+ 1 as the bit length of N .

Algorithm 1. Miller’s Algorithm

Input: prime : p, composite order : N , P ∈ E(Fp)[N], Q ∈ E(Fp2)
Output: e(P,Q) ∈ F×

p2
/(F×

p2
)N

1: f ← 1, V ← P and N =
∑n−1

i=0 Ni2
i (Nn−1 = 1, Ni ∈ {0, 1} (i = 0, 1, . . . , n− 2))

2: for j ← n− 2 to 0 do
3: (f, V) ←[TDBL(f, V, Q)]
4: if Nj = 1 then
5: (f, V) ←[TADD(f,P, V,Q)]
6: end if
7: end for
8: e(P,Q) ← f (p2−1)/N

Steps 2 to 7 are called the Miller loop, and step 8 is the final modular exponen-
tiation step. TDBL of step 3 is Algorithm 2, TADD of step 5 is Algorithm 3, and
step 8 is Algorithm 4.

Algorithm 2. TDBL

Input: f ∈ F×
p2
, V ∈ E(Fp)[N], Q ∈ E(Fp2)

Output: f ∈ F×
p2
, 2V ∈ E(Fp)[N]

1: V ← 2V
2: f ← f2 · lV,V (Q)

Algorithm 3. TADD

Input: f ∈ F×
p2
, P, V ∈ E(Fp)[N], Q ∈ E(Fp2)

Output: f ∈ F×
p2
, V + P ∈ E(Fp)[N]

1: V ← V + P
2: f ← f · lV,P (Q)

Algorithm 4. Final modular exponentiation

Input: prime: p, composite order: N , f ∈ F×
p2

Output: f (p2−1)/N ∈ F×
p2
/(F×

p2
)N

1: g ← f , r ← (p2 − 1)/N and r =
∑n−1

i=0 ri2
i

(rn−1 = 1, ri ∈ {0, 1} (i = 0, 1, . . . , n− 2))
2: for j ← n− 2 to 0 do
3: g ← g2

4: if rj = 1 then
5: g ← g · f
6: end if
7: end for

206 Y. Kiyomura and T. Takagi

2.5 Width-w Radix-r Non-adjacent Form

Now let us explain wrNAF [25]. For a positive integer d, the wrNAF represen-
tation of d is

d =

n∑
i=0

dw[i]r
i (dw [i] ∈ Dw,r)

where Dw,r = {0,±1,±2, . . . ,±! rw−1
2 "}\{±1r,±2r, . . . ,±! rw−1−1

2 "r} and dw[n]
> 0. The wrNAF representation has at most 1 non-zero digit among any of the
w adjacent digits. In particular, if r = 2, wrNAF is called wNAF. wrNAF has
the following properties [25]: (1) Every positive integer d has a unique wrNAF.
(2) The wrNAF representation of d has the smallest Hamming weight among all
signed representations for d with the digit set Dw,r. (3) The non-zero density of
the wrNAF is asymptotically (r − 1)/{w(r − 1) + 1} for n → ∞. We describe
the algorithm that generates the wrNAF representation from a positive integer
d (Algorithm 5) [25].

Algorithm 5. wrNAF [25]

Input: d ∈ Z>0, width w, radix r
Output: d =

∑n
i=0 dw[i]r

i (wrNAF)
1: i ← 0
2: while d > 0 do
3: if d mod r = 0 then
4: dw[i] ← 0
5: else
6: dw[i] ← d mods rw and d ← d− dw[i]
7: end if
8: d ← d/r and i ← i+ 1
9: end while

2.6 Window Hybrid Binary-Ternary Form

Here, we explain the window hybrid binary-ternary form (w-HBTF)[9], which
is a representation mixing bases 2 and 3 and using the window method of a
positive integer. It is special case of double-base chains. The w-HBTF is also a
representation of the extension of wNAF. The w in w-HBTF is the value of an
expression of the form 2b3t with b, t ∈ N. For example, if b = 1 and t = 1, we get
a window of size 2 · 3 = 6. For a positive integer d, the w-HBTF representation
of d is

d =
m∑
i=1

si2
bi3ti

Efficient Algorithm for Tate Pairing of Composite Order 207

where si ∈ Dw = {a ∈ Z | 0 < |a| � 2b−13t and gcd(a, 2, 3) = 1}, b1 � b2 �
, . . . ,� bm � 0, t1 � t2 �, . . . ,� tm � 0. |Dw| is defined as the number of sets
Dw, andD+

w is defined as the positive integers inDw. Note that if t = 0, w-HBTF
is equivalent to b-NAF. Algorithm 6 generates a unique w-HBTF representation
of a positive integer d for a width w [1].

Algorithm 6. w-HBTF [1]

Input: d ∈ Z>0, width w such that w = 2b3t(b, t ∈ Z>0)
Output: d =

∑m
i=1 si2

bi3ti (w-HBTF)
1: i ← 0 and m ← 0
2: while d > 0 do
3: if d mod 2 = 0 then
4: whbt[i] ← 0 and base[i] ← 2
5: else if d mod 3 = 0 then
6: whbt[i] ← 0 and base[i] ← 3
7: else
8: whbt[i] ← d mods w, base[i] ← 2 and d ← d−whbt[i] and m ← m+ 1
9: end if
10: d ← d/base[i] and i ← i+ 1
11: end while
12: sm ← whbt[0]
13: if sm 	= 0 then
14: bm ← 0, tm ← 0 and m ← m− 1
15: end if
16: for j ← 1 to i− 1 do
17: if whbt[j] = 0 and base[j − 1] = 2 then
18: bm ← bm + 1
19: else if whbt[j] = 0 and base[j − 1] = 3 then
20: tm ← tm + 1
21: else if whbt[j] 	= 0 and base[j − 1] = 2 then
22: bm ← bm + 1, sm ← whbt[j], bm−1 ← bm, tm−1 ← tm and m ← m− 1
23: else if whbt[j] 	= 0 and base[j − 1] = 3 then
24: tm ← tm + 1, sm ← whbt[j], bm−1 ← bm, tm−1 ← tm and m ← m− 1
25: end if
26: end for

Example 1. Let w = 6 = 2 · 3 and d = 12539. By using Algorithm 6, we can
represent d as follows.

d = 26 · 35 − 25 · 34 − 24 · 33 + 22 · 31 − 1

3 Miller’s Algorithm Using the Window Method

Here, we explain the algorithms for computing pairings using the window
method. In order to reduce the computational costs of the Miller loop, Miller’s
Algorithm using the window method needs a precomputation of points on an
elliptic curve and rational functions for the width w.

208 Y. Kiyomura and T. Takagi

3.1 Window Miller’s Algorithm

Kobayashi et al. proposed an efficient algorithm for computing Miller’s algorithm
using the window method, called Window Miller’s algorithm [17]. Algorithm 7
is Window Miller’s Algorithm with wNAF.

Algorithm 7. Window Miller’s Algorithm with wNAF [17]

Input: prime: p, order: N , P = (xP , yP) ∈ E(Fp)[N], Q = (xQ, yQ) ∈ E(Fp2)
Output: e(P,Q) ∈ F×

p2
/(F×

p2
)N

1: Represent N =
∑n

i=0 Ni2
i using wNAF (Nn > 0)

2: P1 ← P and f1 ← 1 and g ← (yQ + yP)/(xQ − xP)
3: P2 ← 2P and f2 ← lP,P (Q)
4: for k ← 3 to 2w−1 − 1 step 2 do
5: Pk ← Pk−2 + 2P and fk ← fk−2 · f2 · l(k−2)P,2P (Q)
6: end for
7: for k ← 3 to 2w−1 − 1 step 2 do
8: f−k ← (ak − bki) /*fk = (ak + bki)*/
9: end for
10: f ← fNn and V ← PNn

11: for j ← n− 1 to 0 do
12: (f, V) ←[TDBL(f, V, Q)]
13: if Nj = 1 then
14: (f, V) ←[TADD(f,P, V,Q)]
15: else if Nj = −1 then
16: (f, V) ←[TSUB(f, g, P, V,Q)]
17: else if Nj ∈ (Dw,2 − {0,±1}) then
18: (f, V) ←[TADD with PNj (f, fNj , PNj , V,Q)]
19: end if
20: end for
21: e(P,Q) ← f (p2−1)/N

Steps 2 to 9 are called the precomputed part, and steps 11 to 20 are called the
Miller loop. The wNAF representation for a width w has a digit set Dw,2. Hence,
we need to precompute the points on an elliptic curve 3P, 5P, . . . , (2w−1 − 1)P
and rational functions f±3, f±5, . . . , f±(2w−1−1). We also need TSUB and TADD
with Pj of Algorithm 7. Note that in the case of w = 2, we can skip steps 3 to
9 and 17 to 19. Now let us show how to compute of steps 8 of Algorithm 7 [17].
In fact, we will compute f−k = 1/(fk · vkP (Q)) of step 8 of Algorithm 7. For
fk = ak + bki (ak, bk ∈ Fp), we have

f−k =
1

fk · vkP (Q)
=

ak − bki

(ak + bki)(ak − bki) · vkP (Q)
=

ak − bki

(a2k + b2k) · vkP (Q)

The denominator (a2k + b2k) · vkP (Q) belongs to Fp, and these product is equal to
1 in the final modular exponentiation because of Fermat small theorem. Thus,

Efficient Algorithm for Tate Pairing of Composite Order 209

ignoring (a2k + b2k) · vkP (Q) will not change the results of the pairings. Therefore,
for fk = ak + bki (ak, bk ∈ Fp), we can regard f−k as f−k = ak − bki.

TSUB is Algorithm 8, and TADD with Pk is Algorithm 9.

Algorithm 8. TSUB [17]

Input: f, g ∈ F×
p2
, P, V ∈ E(Fp)[N], Q ∈ E(Fp2)

Output: f ∈ F×
p2
, V − P ∈ E(Fp)[N]

1: V ← V − P
2: f ← f · (g − α) (α is the slope of the line through point V and −P .)

Note that f−1(Q) = 1/vP (Q), because of equation (2) in Section 2.3. Thus,
we can compute f−1 · lV,−P (Q) (equation (4) of Section 2.3) as

f−1 · lV,−P (Q) =
(yQ + yP)− α(xQ − xP)

xQ − xP

=
yQ + yP
xQ − xP

− α

where α is the slope of the line through the points V and −P . We precompute
(yQ+yP)/(xQ−xP) as g in step 2 of Algorithm 7. After that, we compute g−α
in step 2 of Algorithm 8. In this way, we can omit the computation of lV,−P and
eliminate one multiplication from Fp in the TSUB algorithm.

Algorithm 9. TADD with Pk [17]

Input: f, f±k ∈ F×
p2
, Pk, V ∈ E(Fp)[N], Q ∈ E(Fp2)

Output: f ∈ F×
p2
, V ± Pk ∈ E(Fp)[N]

1: V ← V ± Pk

2: f ← f · f±k · lV,±kP (Q)

In order to evaluate the computational costs of TADD, TSUB and TADD
with Pk (see Section 4.1), we use Algorithm 9 in the case k > 1.

3.2 Proposed Algorithm

We devised an efficient version of Miller’s Algorithm (Algorithm 10) using w-
HBTF for the pairings.

Steps 2 to 11 are the precomputed part, and steps 13 to 28 are the Miller
loop. The w-HBTF representation for a width w has a digit set Dw. Hence, we
need to precompute the points on an elliptic curve kP and rational functions
f±k for k ∈ Dw. Algorithm 10 also needs TTRL, TSUB, and TADD with Pj .
Note that in the case of w = 6, we can skip steps 3 to 11 and 25 to 27.

TTRL is Algorithm 11. Step 1 of Algorithm 11 computes the triple 3P1 =
(x3, y3) for all P1 = (x1, y1) (P1 	= −P1, −2P1), as follows. First, it precomputes

210 Y. Kiyomura and T. Takagi

Algorithm 10. Proposed Algorithm using w-HBTF

Input: prime : p, order : N , width : w, P ∈ E(Fp)[N], Q ∈ E(Fp2)
Output: e(P,Q) ∈ F×

p2
/(F×

p2
)N

1: Represent N =
∑m

i=1 si2
bi3ti using w-HBTF

2: P1 ← P, f1 ← 1 and g ← (yQ + yP)/(xQ − xP)
3: P2 ← 2P and f2 ← lP,P (Q)
4: for k ← 3 to max{D+

w} step 2 do
5: Pk ← Pk−2 + 2P and fk ← fk−2 · f2 · l(k−2)P,2P (Q)
6: end for
7: for k ← 5 to max{D+

w} step 2 do
8: if k ∈ Dw then
9: f−k ← (ak − bki) /*fk = (ak + bki)*/
10: end if
11: end for
12: f ← fs1 and V ← Ps1

13: for i ← 1 to m− 1 do
14: u ← bi − bi+1 and v ← ti − ti+1

15: for j ← 1 to u do
16: (f, V) ←[TDBL(f, V, Q)]
17: end for
18: for j ← 1 to v do
19: (f, V) ←[TTRL(f, V,Q)]
20: end for
21: if si+1 = 1 then
22: (f, V) ←[TADD(f,P, V,Q)]
23: else if si+1 = −1 then
24: (f, V) ←[TSUB(f, g, P, V,Q)]
25: else if si+1 ∈ Dw − {±1} then
26: (f, V) ←[TADD with Psi+1(f, fsi+1 , Psi+1 , V, Q)]
27: end if
28: end for
29: e(P,Q) ← f (p2−1)/N

X = (2y1)
2, Z = 3x2

1 + 1, Y = Z2, d = X(3x1)− Y, D = d(2y1), I = D−1,

α1 = dIZ, α2 = X2I − α1.

Next, it computes

x3 = (α2 − α1)(α1 + α2) + x1, y3 = (x1 − x3)α2 − y1

where α1 is the slope of the tangent line through P1 and α2 is the slope of the line
through P1 and 2P1. Step 2 of Algorithm 11 computes l1 by using the method
in [12]. For V = (xV , yV) ∈ E(Fp)[N], Q = (xQ, yQ) ∈ E(Fp2), we have

lV,V (Q) · lV,2V (Q)

v2V (Q)
= (xQ − xV)(xQ − xV + α1(α1 + α2))− (α1 + α2)(yQ − yV)

Efficient Algorithm for Tate Pairing of Composite Order 211

Algorithm 11. TTRL

Input: f ∈ F×
p2
, V ∈ E(Fp)[N], Q ∈ E(Fp2)

Output: f ∈ F×
p2
, 3V ∈ E(Fp)[N]

1: V ← 3V
2: l1 ← (lV,V (Q) · lV,2V (Q))/v2V (Q)
3: f ← f3 · l1

The computation of f3 for f = a0 + a1i ∈ Fp2 (a0, a1 ∈ Fp) is as follows:

f3 = a0(X − 3Y) + a1(3X − Y)i

where X = a20, Y = a21, which needs two multiplications, two squares, and two
additions of Fp.

4 Comparison

Let us start by explaining the theoretical computational costs and memory size
of the precomputed table of each algorithm. Next, we compare the proposed
algorithm and the Window Miller’s Algorithm using the supersingular elliptic
curve y2 = x3 + x and a composite order of size of 2048 bits. The supersingular
elliptic curve is suitable for efficiently calculating pairings of composite order,
because k = 2 is the smallest embedding degree among pairings satisfying ρ = 1.

4.1 Computational Costs

We denote the computational cost of multiplication, squaring, addition, and
taking the inverse of Fp as M, S, A and I. Moreover, we denote the computational
costs of multiplication, squaring, and cubing Fp2 as M2, S2, and C2. Table 1 shows
the computational costs of TDBL, TTRL, TADD, TSUB, and TADD with Pj .
Here, [l]=1M+2A represents the computational cost of l in step 2 of Algorithms
TDBL, TADD, and TADD with Pj .

Table 2 shows the computational costs of the Miller loop. The values of TDBL,
TTRL and so on refer to Table 1 of [1] for w = 6, 12, 18, 24, 36. Bw,n, Tw,n and
mw,n are b1, t1 and m in Section 2.6 for w and n, and they correspond to “#base
2 digits”, “#base 3 digits”, and “#non-zero digits” of Table 1 in [1]. Table 3
lists the number of precomputations.

Table 4 shows the precomputational costs of each algorithm. Note that we
don’t need to precompute −kP (k � 3) because −kP = (x,−y) for all kP =
(x, y). In the precomputed part of Algorithm 7 and 10, the computational costs
of g, f−k(k � 3) are [g]=2M+1A+1I, [f−k]=2M respectively.

The computational cost of the final modular exponentiation of Algorithm 4 is

!log2
(
(p2 − 1)/N

)"S2 + !log2((p2 − 1)/N
)
/2"M2. (5)

212 Y. Kiyomura and T. Takagi

Table 1. Computational costs of TDBL, TTRL, TADD, TSUB, and TADD with Pk

TDBL
STEP 1 2M+2S+4A+1I
STEP 2 1M2+1S2+[l]
SUM 8M+2S+13A+1I

TTRL

STEP 1 7M+4S+8A+1I
STEP 2 4M+4A
STEP 3 1C2+1M2

SUM 16M+6S+19A+1I

TADD
STEP 1 2M+1S+6A+1I
STEP 2 1M2+[l]
SUM 6M+1S+13A+1I

TSUB
STEP 1 2M+1S+6A+1I
STEP 2 1M2+1A
SUM 5M+1S+12A+1I

TADD with Pk

STEP 1 2M+1S+6A+1I
STEP 2 2M2+[l]
SUM 9M+1S+18A+1I

Table 2. Computational costs of the Miller loop

Algorithm
Computational cost of Miller loop

TDBL TTRL TADD TSUB TADD with Pk

1 [22] n − n/2 − −
7 [17] n+ 1 − n/(w + 1) · 1/2w−1 n/(w + 1) · 1/2w−1 n/(w + 1) · (2w−1 − 2)/2w−1

10 Bw,n Tw,n mw,n/|Dw | mw,n/|Dw | mw,n · (|Dw | − 2)/|Dw |

4.2 Parameter and Implementation Environment

The composite order N is the product of two random prime numbers whose bit
lengths are the same. In this study, we used a composite order of size of 2048 bits.
Let p = 4N − 1 be a prime satisfying p ≡ 3 mod 4 and N | p+ 1. Accordingly,
the size of p is 2050 bits on average.

In our implementation, we used a PC with the following specifications: OS:
Mac OS X Lion 10.7.5, CPU: Intel Core i7 2.7GHz, RAM: 4GB, Language:
Java, compiler: JDK (Java Development Kit) 6, and virtual machine: JRE (Java
Runtime Environment) 6.

We used BigInteger class in our implementation for each operation of Fp.
Table 5 shows the time for each operation of Fp.

The proportion of M, S and I was 1 : 1 : 21.

4.3 Evaluation

We compared the proposed algorithm with Window Miller’s Algorithm. For the
parameter described in section 4.2, Table 6 shows the theoretical computational

Efficient Algorithm for Tate Pairing of Composite Order 213

Table 3. Number of precomputations

Algorithm kP (k � 3) g f±k (k � 3)

1 [22] − − −
7 [17] 2w−2 − 1 1 2w−1 − 2

10 |D+
w − {1}| 1 |Dw − {±1}|

Table 4. Precomputational costs

Algorithm [TDBL] [TADD] [TADD with Pk] [g] [f−k]

1 [22] − − − − −
7 [17] 1* 1* 2w−2 − 2* 1 2w−2 − 1*

10 1* 1* (max{D+
w} − 3)/2* 1 |D+

w − {1}|*
* In Algorithm 7, the * part is 0 when w = 2, and in Algorithm
10, the * part is 0 when w = 6.

cost, implementation time, and memory size of the precomputed table for each
algorithm.

We explain the computational cost and memory size of the precomputed table
in Table 6. A, M, S and I of Fp for each algorithm were computed using Tables 1,
2, 3, 4, equation (5) of Section 4.1, and the parameter described in Section 4.2.
We ignored A and estimated the theoretical computational cost of multiplication
M by using S=M and I=21M. Note that if w = 48, 54, 72, 96, 108 and 162, we
estimated the theoretical computational cost of M by using S=M and I=21M.
The memory size of the precomputed table was computed using the parameter
of Section 4.2 and the following expression:

([The number of precomputation of elliptic curve points]× 2 + [The number of

precomputation of rational functions]× 2 + [The number of precomputation of

g]× 2)× !log2 p" (6)

Here, 2 means two coordinates (x and y of an elliptic curve point (x, y) ∈
E(Fp)), and 2 means the embedding degree.

In Miller’s Algorithm using the window method, as the width w increases, the
computational cost of the Miller loop decreases but the computational cost of
the precomputed part increases.

Therefore, the proposed algorithm with w = 6 = 2 · 3 was about 12% faster
than Window Miller’s Algorithm with w = 2 for the smallest precomputed tables
having the same memory size, and the proposed algorithm with w = 162 = 2 ·34
was about 8.5% faster than Window Miller’s Algorithm with w = 7.

In the case of N =1024 bits and p =1026 bits, the proposed algorithm with
w = 54 = 2 · 33 (257ms) was about 7.9% faster than Window Miller’s Algorithm
with w = 6 (279ms) and the proportion of M, S and I was 1 : 1 : 23. Moreover,
in the case of N =3072 bits and p =3074 bits, the proposed algorithm with

214 Y. Kiyomura and T. Takagi

Table 5. Time for each operation on Fp (μs)

Addition Multiplication Square Inverse

0.2 20.8 20.8 437

Table 6. Theoretical computational cost, implementation time, and memory size of
the precomputed tables

Algorithm w Computational cost (M) time (s) memory (bits)

1 [22] − 99342 2.125 0

7 [17]

2 89497 1.920 4104

3 85761 1.835 16416

4 83190 1.787 41040

5 81415 1.751 90288

6 80252 1.719 188784

7 79683 1.715 385776

8 79872 1.717 779000

10

6 (2 · 3) 79304 1.699 4104

12 (22 · 3) 78889 1.692 16416

18 (2 · 32) 76289 1.634 28728

24 (23 · 3) 78398 1.664 41040

36 (22 · 32) 75214 1.618 65664

48 (24 · 3) 76960 1.650 90288

54 (2 · 33) 73586 1.577 102600

72 (23 · 32) 75215 1.617 139536

96 (25 · 3) 76664 1.649 188784

108 (22 · 33) 73829 1.590 213408

162 (2 · 34) 72727 1.569 324218

w = 162 = 2 · 34 (4.69s) was about 8.2% faster than Window Miller’s Algorithm
with w = 7 (5.11s) and the proportion of M, S and I was 1 : 1 : 20.

5 Conclusion

We proposed an efficient version of Miller’s Algorithm that uses the window
hybrid binary-ternary form (w-HBTF) which is a representation mixing base 2
and base 3 in order to speed up the computation of the Tate pairing. We im-
plemented this algorithm and Window Miller’s Algorithm in Java on a PC and
compared the proposed algorithm with Window Miller’s Algorithm. In this im-
plementation, we used the supersingular elliptic curve y2 = x3+x of embedding
degree 2 and a composite order of size of 2048 bits. The proposed algorithm
with w = 6 = 2 · 3 turned out to be about 12% faster than Window Miller’s

Efficient Algorithm for Tate Pairing of Composite Order 215

Algorithm with w = 2 given smallest precomputed tables of the same memory
size. Moreover, the proposed algorithm with w = 162 = 2 · 34 was about 8.5%
faster than Window Miller’s Algorithm with w = 7 on each fastest algorithm.

References

1. Adikari, J., Dimitrov, V.S., Imbert, L.: Hybrid Binary-Ternary Number Sys-
tem for Elliptic Curve Cryptosystems. IEEE Transactions on Computers 60(2),
254–265 (2011)

2. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for
Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 354–369. Springer, Heidelberg (2002)

3. Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient Pairing
Computation on Supersingular Abelian Varieties. Designs, Codes and Cryptogra-
phy 42(3), 239–271 (2007)

4. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

5. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

7. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multipli-
cations in Elliptic Curve Cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

8. Devegili, A., Eigeartaigh, C., Scott, M., Dahab, R.: Multiplication and Squaring
on Pairing-Friendly Fields. Cryptography ePrint Archive, Report 2006/471 (2006)

9. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication Using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

10. Dimitrov, V.S., Imbert, L., Mishra, P.K.: The Double-Base Number System and Its
Application to Elliptic Curve Cryptography. Mathmatics of Computation 77(262),
1075–1104 (2008)

11. Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)

12. Eisenträger, K., Lauter, K., Montgomery, P.L.: Fast Elliptic Curve Arithmetic
and Improved Weil Pairing Evaluation. In: Joye, M. (ed.) CT-RSA 2003. LNCS,
vol. 2612, pp. 343–354. Springer, Heidelberg (2003)

13. Guillevic, A.: Comparing the Pairing Efficiency over Composite-Order and Prime-
Order Elliptic Curves. Cryptography ePrint Archive, Report 2013/218 (2013)

14. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer (2004)

15. Hess, F., Smart, N., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transactions
on Information Theory 52(10), 4595–4602 (2006)

16. Joye, M.: RSAModuli with a Predetermined Portion: Techniques and Applications.
In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 116–130.
Springer, Heidelberg (2008)

216 Y. Kiyomura and T. Takagi

17. Kobayashi, T., Aoki, K., Imai, H.: Efficient Algorithm for Tate Pairing. IEICE
Transaction on Fundamentals of Electronics, Communications and Computer Sci-
ences E89-A(1), 134–143 (2006)

18. Koblitz, N., Menezes, A.: Pairing-Based Cryptography at High Security Levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

19. Le, D., Tan, C.: Speeding Up Ate Pairing Computation in Affine Coordinates.
Cryptography and Coding, Cryptography ePrint Archive, Report 2013/119 (2013)

20. Lee, E., Lee, H.S., Park, C.M.: Efficient and Generalized Pairing Computation
on Abelian Varieties. IEEE Transactions on Information Theory 55(4), 1793–1803
(2009)

21. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on Transformations from
Composite-Order to Prime-Order Groups: The Case of Round-Optimal Blind Sig-
natures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538.
Springer, Heidelberg (2010)

22. Miller, V.: Short Programs for Functions on Curves (1986) (unpublished
manuscript)

23. Ostrovsky, R., Skeith III, W.E.: Private Searching on Streaming Data. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005)

24. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

25. Takagi, T., Yen, S.-M., Wu, B.-C.: Radix-r non-adjacent form. In: Zhang, K.,
Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 99–110. Springer, Heidelberg
(2004)

26. Vercauteren, F.: Optimal Pairings. IEEE Transactions on Information The-
ory 56(1), 455–461 (2010)

How to Factor N1 and N2 When p1 = p2 mod 2t

Kaoru Kurosawa and Takuma Ueda

Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp

Abstract. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli.
Suppose that

p1 = p2 mod 2t

for some t, and q1 and q2 are α bit primes. Then May and Ritzenhofen
showed that N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 3.

In this paper, we improve this lower bound on t. Namely we prove that
N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 1.

Further our simulation result shows that our bound is tight as far as the
factoring method of May and Ritzenhofen is used.

Keywords: factoring, Gaussian reduction algorithm, lattice.

1 Introduction

Factoring N = pq is a fundamental problem in modern cryptography, where
p and q are large primes. Since RSA was invented, some factoring algorithms
which run in subexponential time have been developed, namely the quadratic
sieve [10], the elliptic curve [4] and number field sieve [5]. However, no polynomial
time algorithm is known.

On the other hand, the so called oracle complexity of the factorization problem
were studied by Rivest and Shamir [11], Maurer [6] and Coppersmith [1]. In
particular, Coppersmith [1] showed that one can factor N if a half of the most
significant bits of p are given.

Recently, May and Ritzenhofen [7] considered another approach (which re-
ceived the ”Best Paper Award” of PKC 2009). Suppose that we are given
N1 = p1q1 and N2 = p2q2. If

p1 = p2,

then it is easy to factor N1, N2 by using Euclidean algorithm. May and Ritzen-
hofen showed that it is easy to factor N1, N2 even if

p1 = p2 mod 2t

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 217–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 K. Kurosawa and T. Ueda

for sufficiently large t. More precisely suppose that q1 and q2 are α bit primes.
Then they showed that N1 and N2 can be factored in quadratic time if

t ≥ 2α+ 3.

In this paper, we improve the above lower bound on t. We prove that N1 and
N2 can be factored in quadratic time if

t ≥ 2α+ 1.

Further our simulation result shows that our bound is tight as far as the factoring
method of May and Ritzenhofen [7] is used.

Also our proof is conceptually simpler than that of May and Ritzenhofen [7].
In particular, we do not use the Minkowski bound whereas it is required in their
proof.

As written in [7], one application of our result is malicious key generation
of RSA moduli, i.e. the construction of backdoored RSA moduli [2,13]. In [7],
the authors also suggest the following constructive cryptographic applications.
Consider the one more RSA modulus problem such that on input N1 = p1q1,
one has to produce N2 = p1q2 with p1 = p2 mod 2t. Our result shows that this
problem is equivalent to the factorization problem as long as t ≥ 2α + 1. So
the one more RSA modulus problem might serve as a basis for various cryp-
tographic primitives, whose security is then in turn directly based on factoring
(imbalanced) integers.

(Related work) Sarkar and Maitra [12] extended the result of May and Ritzen-
hofen [7] under a heuristic assumption (see Assumption 1 of [12, page 4003]).
However, this assumption is heuristic only as they wrote in [12].

2 Preliminaries

2.1 Lattice

An integer lattice L is a discrete additive subgroup of Zn. An alternative equiv-
alent definition of an integer lattice can be given via a basis. Let d, n be integers
such that 0 < d ≤ n. Let b1, · · · ,bd ∈ Zn be linearly independent vectors. Then
the set of all integer linear combinations of the bi spans an integer lattice L, i.e.

L =

{
d∑

i=1

aibi | ai ∈ Z

}
.

We call B =

⎛⎜⎝b1

...
bd

⎞⎟⎠ a basis of the lattice, the value d denotes the dimension

or rank of the basis. The lattice is said to have full rank if d = n. The determi-
nant det(L) of a lattice is the volume of the parallelepiped spanned by the basis

How to Factor N1 and N2 When p1 = p2 mod 2t 219

Fig. 1. Lattice

vectors. The determinant det(L) is invariant under unimodular basis transfor-
mations of B. In case of a full rank lattice det(L) is equal to the absolute value
of the Gramian determinant of the basis B. Let us denote by ||v|| the Euclidean
	2-norm of a vector v. Hadamardfs inequality [8] relates the length of the basis
vectors to the determinant.

Proposition 1. Let B =

⎛⎜⎝b1

...
bd

⎞⎟⎠ ∈ Zn×n be an arbitrary non-singular matrix.

Then

det(B) ≤
n∏

i=1

||bi||.

The successive minima λi of the lattice L are defined as the minimal radius
of a ball containing i linearly independent lattice vectors of L (see Fig.2).

Proposition 2. (Minkowski [9]). Let L ⊆ Zn be an integer lattice. Then L
contains a non-zero vector v with

||v|| = λ1 ≤
√
ndet(L)1/n

2.2 Gaussian Reduction Algorithm

In a two-dimensional lattice L, basis vectors v1,v2 with lengths ||v1|| = λ1

and||v2|| = λ2 are efficiently computable by using Gaussian reduction algorithm.

220 K. Kurosawa and T. Ueda

Fig. 2. Successive minima λ1 and λ2

Let !x� denote the nearest integer to x. Then Gaussian reduction algorithm is
described as follows.

(Gaussian reduction algorithm)
Input: Basis b1,b2 ∈ Z2 for a lattice L.
Output: Basis (v1,v2) for L such that ||v1|| = λ1 and ||v2|| = λ2.

1. Let v1 := b1 and v2 := b2.
2. Compute μ := (v1,v2)/||v1||2,

v2 := v2 − !μ� · v1.
3. while ||v2|| < ||v1|| do:
4. Swap v1 and v2.
5. Compute μ := (v1,v2)/||v1||2,

v2 := v2 − !μ� · v1.
6. end while
7. return (v1,v2).

Proposition 3. The above algorithm outputs a basis (v1,v2) for L such that
||v1|| = λ1 and ||v2|| = λ2. Further they can be determined in time
O(log2(max{||b1||, ||b2||}).

Information on Gaussian reduction algorithm and its running time can be
found in [8,3].

3 Previous Implicit Factoring of Two RSA Moduli

Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli. Suppose that

p1 = p2(= p) mod 2t (1)

for some t, and q1 and q2 are α bit primes. This means that p1, p2 coincide on
the t least significant bits. I.e.,

p1 = p+ 2tp̃1 and p2 = p+ 2tp̃2

How to Factor N1 and N2 When p1 = p2 mod 2t 221

for some common p that is unknown to us. Then May and Ritzenhofen [7] showed
that N1 and N2 can be factored in quadratic time if t ≥ 2α+ 3. In this section,
we present their idea.

From eq.(1), we have

N1 = pq1 mod 2t

N2 = pq2 mod 2t

Since q1, q2 are odd, we can solve both equations for p. This leaves us with

N1/q1 = N2/q2 mod 2t

which we write in form of the linear equation

(N2/N1)q1 − q2 = 0 mod 2t (2)

The set of solutions

L = {(x1, x2) ∈ Z2 | (N2/N1)x1 − x2 = 0 mod 2t}

forms an additive, discrete subgroup of Z2. Thus, L is a 2-dimensional integer
lattice. L is spanned by the row vectors of the basis matrix

BL =

(
1, (N2/N1 mod 2t)
0, 2t

)
(3)

The integer span of BL, denoted by span(BL), is equal to L. To see why, let

b1 = (1, (N2/N1 mod 2t))

b2 = (0, 2t)

Then they are solutions of

(N2/N1)x1 − x2 = 0 mod 2t

Thus, every integer linear combination of b1 and b2 is a solution which implies
that span(BL) ⊆ L.

Conversely, let (x1, x2) ∈ L, i.e.

(N2/N1)x1 − x2 = k · 2t

for some k ∈ Z. Then

(x1,−k)BL = (x1, x2) ∈ span(BL)

and thus L ⊆ span(BL).
Notice that by Eq. (2), we have

q = (q1, q2) ∈ L. (4)

222 K. Kurosawa and T. Ueda

If we were able to find this vector in L, then we could factor N1, N2 easily. We
know that the length of the shortest vector is upper bounded by the Minkowski
bound √

2 · det(L)1/2 =
√
2 · 2t/2.

Since we assume that q1, q2 are α-bit primes, we have q1, q2 ≤ 2α. If α is
sufficiently small, then ||q|| is smaller than the Minkowski bound and, therefore,
we can expect that q is among the shortest vectors in L. This happens if

||q|| ≤
√
2 · 2α ≤

√
2 · 2t/2

So if t ≥ 2α, we expect that q is a short vector in L. We can find a shortest
vector in L using Gaussian reduction algorithm on the lattice basis B in time

O(log2(2t)) = O(log2(min{N1, N2})).
By elaborating the above argument, May and Ritzenhofen [7] proved the

following.

Proposition 4. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli
such that p1 = p2 mod 2t for some t, and q1 and q2 are α bit primes. If

t ≥ 2α+ 3, (5)

then N1, N2 can be factored in time O(log2(min{N1, N2})).

4 Improvement

In this section, we improve the lower bound on t of Proposition 4.

Lemma 1. If ||q|| < λ2, then q = c · v1 for some integer c, where v1 is the
shortest vector in L.

(Proof) Suppose that q 	= c · v1 for any integer c. This means that v1 and
q are linearly independent vectors. Therefore it must be that ||q|| ≥ λ2 from
the definition of λ2. However, this is against our assumption that ||q|| < λ2.
Therefore we have q = c · v1 for some integer c.

Q.E.D.

Lemma 2. If q1 and q2 are α bits long, then

||q|| < 2α+0.5

(Proof) Since q1 and q2 are α-bits long, we have

qi ≤ 2α − 1

for i = 1, 2. Therefore

||q|| ≤
√
2(2α − 1) <

√
2 · 2α = 2α+0.5

Q.E.D.

How to Factor N1 and N2 When p1 = p2 mod 2t 223

Theorem 1. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli such
that

p1 = p2 mod 2t

for some t, and q1 and q2 are α-bit primes. If

t ≥ 2α+ 1, (6)

then N1, N2 can be factored in time O(log2(min{N1, N2})).
(Proof) If q1 = q2, the we can factor N1, N2 by using Euclidean algorithm easily.
Therefore we assume that q1 	= q2.

Apply Gaussian reduction algorithm to BL. Then we obtain

B0 =

(
v1

v2

)
such that

||v1|| = λ1 and ||v2|| = λ2.

We will show that q = v1 or q = −v1, where q = (q1, q2).

From Hadamard’s inequality, we have

||v2||2 ≥ ||v1||||v2|| ≥ det(B0) = det(BL) = 2t,

where det(B0) = det(BL) because B0 and BL span the same lattice L. The last
equality comes from eq.(3). Therefore we obtain that

λ2 = ||v2|| ≥ 2t/2.

Now suppose that
t ≥ 2α+ 1

Then
t/2 ≥ α+ 0.5.

Therefore
λ2 = ||v2|| ≥ 2t/2 ≥ 2α+0.5 > ||q||

from Lemma 2. This means that

(q1, q2) = q = c · v1

for some integer c from Lemma 1. Further since gcd(q1, q2) = 1, it must be that
c = 1 or −1. Therefore q = v1 or q = −v1 (see Fig.3).

Finally from Proposition 3, Gaussian reduction algorithm runs in time

O(log2(2t)) = O(log2(min{N1, N2})).
Q.E.D.

Compare eq.(6) and eq.(5), and notice that we have improved the previous
lower bound on t.

Also our proof is conceptually simpler than that of May and Ritzenhofen [7].
In particular, we do not use the Minkowski bound whereas it is required in their
proof.

224 K. Kurosawa and T. Ueda

Fig. 3. Proof of Theorem 1

5 Generalization

Theorem 1 can be generalized as follows.

Corollary 1. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli such
that

p1 = p2 mod T

for some T . Let q1 and q2 be α-bits long primes. Then if

T ≥ 22α+1 (7)

then N1, N2 can be factored in time O(log2(min{N1, N2})).
Corollary 2. Let N1 = p1q1 and N2 = p2q2 be two different RSA moduli such
that

p1 = p2 mod T

for some T . If

T > q21 + q22 (8)

then N1, N2 can be factored in time O(log2(min{N1, N2})).
The proofs are almost the same as that of Theorem 1.

6 Simulation

We verified Theorem 1 by computer simulation. We considered the case such
that q1 and q2 are α = 250 bits long. Theorem 1 states that if

t ≥ 2α+ 1 = 501,

How to Factor N1 and N2 When p1 = p2 mod 2t 225

then we can factor N1 and N2 by using Gaussian reduction algorithm. The
simulation results are shown in Table 6, where p1 and p2 are 750 bits long. For
each value of t, the success rate is computed over 100 samples.

From this table, we can see that we can indeed factor N1 and N2 if t ≥ 501.
We can also see that we fail to factor N1 and N2 if t ≤ 500. This shows that our
bound is tight as far as the factoring method of May and Ritzenhofen [7] is used.

Table 1. Computer Simulation

number of shared bits t success rate

503 100%

502 100%

501 100%

500 40%

499 0%

498 0%

References

1. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996)

2. Crépeau, C., Slakmon, A.: Simple backdoors for RSA key generation. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 403–416. Springer, Heidelberg (2003)

3. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press (2012)

4. Lenstra Jr., H.W.: Factoring Integers with Elliptic Curves. Ann. Math. 126,
649–673 (1987)

5. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
Springer, Heidelberg (1993)

6. Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT
1992. LNCS, vol. 658, pp. 429–436. Springer, Heidelberg (1993)

7. May, A., Ritzenhofen, M.: Implicit factoring: On polynomial time factoring given
only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009)

8. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Cambridge University
Press, Cambridge (2000)

9. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag (1896)
10. Pomerance, C.: The quadratic sieve factoring algorithm. In: Beth, T., Cot, N.,

Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 169–182. Springer,
Heidelberg (1985)

11. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In: Pichler,
F. (ed.) EUROCRYPT1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg (1986)

12. Sarkar, S., Maitra, S.: Approximate Integer Common Divisor Problem Relates to
Implicit Factorization. IEEE Transactions on Information Theory 57(6), 4002–4013
(2011)

13. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log
based cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 264–276. Springer, Heidelberg (1997)

Achieving Chosen Ciphertext Security

from Detectable Public Key Encryption
Efficiently via Hybrid Encryption

Takahiro Matsuda and Goichiro Hanaoka

Research Institute for Secure Systems,
National Institute of Advanced Industrial Science and Technology (AIST), Japan

{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. In EUROCRYPT’12, Hohenberger, Lewko, and Waters pro-
posed a new paradigm for constructing chosen ciphertext secure public
key encryption (PKE) schemes from a new concept of detectable PKE.
In this paper, we propose an efficient variant of the Hohenberger-Lewko-
Waters (HLW) construction, based on the techniques and results from
hybrid encryption. On the technical side, our security proof avoids using
the notion of nested-indistinguishability that was used in the original
proof by Hohenberger et al., and we believe that what role each build-
ing block plays is clearer, leading to better understanding of the HLW
paradigm.

Keywords: public key encryption, key encapsulation mechanism,
chosen ciphertext security, detectable public key encryption.

1 Introduction

Background and Motivation. For public key encryption (PKE), security (indis-
tinguishability) against chosen ciphertext attacks (CCA) [14,17,6] is nowadays
considered as a de-facto standard security notion required in most practical situ-
ations/applications in which PKE schemes are used, due to its resilience against
practical attacks (e.g. Bleichenbacher’s attack [1]) and its implication to strong
security notions (e.g. non-malleability [6] and universal composability [2]). Thus,
constructing and understanding CCA secure PKE schemes is one of the central
research themes in the area of cryptography.

In EUROCRYPT’12, Hohenberger, Lewko, and Waters [7] proposed a new
paradigm for constructing CCA secure PKE schemes from a new concept of
detectable PKE (its formal definition is given in Section 2.1). Their construction
(which we call “HLW” construction) is based on a mixture of the double-layered
encryption of Myers and Shelat [13] and the double (parallel) encryption of
Naor and Yung [14], and it uses three PKE schemes as building blocks; one for
“inner” encryption that encrypts a plaintext together with a randomness for
“outer” encryption, and the remaining two for “outer” encryption that encrypt
the “inner” ciphertext. (We review the HLW construction in Section 3.)

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 226–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 227

The HLW construction is elegant, and clarifies that detectable PKE serves
as a new target for constructing a CCA secure PKE scheme from general cryp-
tographic assumptions. Like other generic constructions of CCA secure PKE,
however, a PKE scheme obtained from the HLW construction will not be so
practical. In particular, the ciphertext size of the resulting scheme will be large,
even if we use building block schemes with small ciphertext size. Therefore, it is
rather a feasibility result, than a method for obtaining practical schemes.

The main purpose of this paper is to show that the HLW construction can be
made more (space-)efficient, so that it is also useful for obtaining (space-)efficient
CCA secure schemes.

Our Contribution. In this paper, we propose a variant of the HLW construction,
based on the techniques and results from hybrid encryption [5]. Specifically, we
show that we can make the HLW construction more efficient by implementing two
building blocks with an appropriate combination of a key encapsulation mecha-
nism (KEM) and a symmetric key encryption (SKE) scheme. Our construction is
based on a simple observation that the double (parallel) encryption mechanism
for proving the CCA security of the HLW construction can be efficiently real-
ized by employing the hybrid encryption methodology. On the technical side, we
believe that our security proof is more direct and modular than that of the origi-
nal HLW construction. Specifically, our security proof avoids using the notion of
“nested-indistinguishability” which is a construction-specific security notion (i.e.
a security notion that can be considered only for the HLW construction) used
by Hohenberger et al. in their original security proof, and thus we believe that
what role each building block plays is clearer, leading to better understanding
of the HLW paradigm.

Our proposed construction is given in Section 4 where we also explain the ideas
towards our proposed construction in more details. In Section 5, we compare the
ciphertext size between our scheme and the original HLW construction.

Related Work. Our construction and the HLW construction construct a CCA
secure PKE scheme generically from other cryptographic primitives. Here, we
briefly review other generic constructions of CCA secure PKE.

Dolev, Dwork, and Naor [6] showed the first construction of a CCA secure
PKE scheme, from a chosen plaintext secure (CPA secure) PKE scheme and a
non-interactive zero-knowledge (NIZK) proof system, based on the construction
by Naor and Yung [14] that achieves weaker non-adaptive CCA security. These
NIZK-based constructions were further improved in [19,11].

Canetti, Halevi, and Katz [3] showed how to transform an identity-based
encryption [20] scheme into a CCA secure PKE scheme. Kiltz [8] showed that the
transform of [3] is applicable to a weaker primitive called tag-based encryption.

Peikert and Waters [15] showed how to construct a CCA secure PKE scheme
from a lossy trapdoor function (TDF). Subsequent works showed that TDFs
with weaker security/functionality properties are sufficient for obtaining CCA
secure PKE schemes [18,12,9,21].

228 T. Matsuda and G. Hanaoka

Myers and Shelat [13] showed that a CCA secure PKE scheme for 1-bit mes-
sage can be turned into one with an arbitrarily large plaintext space. Recently,
Lin and Tessaro [10] showed how to amplify weak CCA security into strong
(ordinary) CCA secure one.

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N denotes the set of all natural numbers, and for n ∈ N we let
[n] := {1, . . . , n}. “x ← y” denotes that x is chosen uniformly at random from
y if y is a finite set, or y is assigned to x otherwise. If x and y are bit-strings,
then “|x|” denotes the bit-length of x, “(x‖y)” denotes the concatenation of x

and y, and the operation “(x
?
= y)” returns 1 if x = y or returns 0 otherwise.

“PPTA” denotes a probabilistic polynomial time algorithm. If A is a probabilistic
algorithm, then “y ← A(x; r)” denotes that A computes y as output by taking x
as input and using r as randomness, and “AO” denotes an algorithm A with or-
acle access to O. The character “k” denotes the security parameter. The symbol
“⊥” (which will be output by a decryption algorithm) denotes that a ciphertext
is invalid. A function f : N → [0, 1] is said to be negligible if for all positive
polynomials p(·) and all sufficiently large k, we have f(k) < 1/p(k).

2.1 (Detectable) Public Key Encryption

A public key encryption (PKE) scheme Π consists of the three PPTAs (PKG,
PEnc,PDec) with the following interface:

Key Generation: Encryption: Decryption:

(pk, sk)← PKG(1k) c← PEnc(pk,m) m (or ⊥)← PDec(sk, c)

where PDec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and
c is a ciphertext of a plaintext m under pk.

A PKE scheme is required to satisfy correctness : for all k ∈ N, all keys
(pk, sk) output from PKG(1k) and all plaintexts m, it holds that PDec(sk,
PEnc(pk,m)) = m.

A tuple of PPTAs Π = (PKG,PEnc,PDec,F) is said to be a detectable PKE
scheme if (PKG,PEnc,PDec) constitutes PKE, and F is a predicate that takes a
public key pk and two ciphertexts c, c′ as input and outputs either 0 or 1. This
predicate is used to define the security notions (detectable CCA security and
unpredictability) for detectable PKE that we explain below.

Security Notions. For the security notions of a PKE scheme, we recall chosen
plaintext security (CPA), chosen ciphertext security (CCA), and its 1-bounded
CCA-analogue [4] (1-CCA). We also recall detectable CCA (DCCA) security and
unpredictability for detectable PKE [7].

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 229

ExptATKΠ,A(k) :
b ← {0, 1}
(pk, sk) ← PKG(1k)
(m0,m1, st) ← AO

1 (pk)
c∗ ← PEnc(pk,mb)
b′ ← AO

2 (c∗, st)

Return (b′ ?
= b).

ExptATKΓ,A(k) :
b ← {0, 1}
(pk, sk) ← KKG(1k)
st ← AO

1 (pk)
K∗

0 ← K
(c∗, K∗

1) ← KEnc(pk)
b′ ← AO

2 (c∗,K∗
b , st)

Return (b′ ?
= b).

ExptATKE,A(k) :
b ← {0, 1}
K ← {0, 1}k
(m0, m1, st) ← A1(1

k)
c∗ ← SEnc(K,mb)

b′ ← AO
2 (c∗, st)

Return (b′ ?
= b).

ExptUNPΠ,A(k) :

(pk, sk) ← PKG(1k)

(m, c) ← APDec(sk,·)(pk)
c∗ ← PEnc(pk,m)
Return F(pk, c∗, c).

ExptUNPΓ,A(k) :

(pk, sk) ← KKG(1k)

c ← AKDec(sk,·)(pk)
(c∗, K∗) ← KEnc(pk)
Return F(pk, c∗, c).

AdvATKP,A(k) :=
2 · |Pr[ExptATKP,A(k) = 1]− 1/2|

AdvUNPP,A(k) :=
Pr[ExptUNPP,A(k) = 1]

Fig. 1. Security experiments for a (detectable) PKE scheme Π (left), those for a
(detectable) KEM Γ (center), and those for a SKE scheme E (top-right), and the
definitions of the advantage of an adversary A against the security of primitive P ∈
{Π,Γ,E} (bottom-right)

Let ATK ∈ {CPA, 1-CCA, CCA, DCCA}. For a (detectable) PKE scheme Π and an
adversary A = (A1,A2), consider the ATK experiment ExptATKΠ,A(k) as described
in Fig. 1 (top-left). In the experiment, it is required that |m0| = |m1| holds,
and the oracle O is defined depending on ATK as follows: If ATK = CPA, then O
is unavailable (it returns ⊥ for any input); If ATK ∈ {1-CCA, CCA, DCCA}, then
O is the decryption oracle O(·) = PDec(sk, ·), but A2 is not allowed to submit
“prohibited” queries (see below) to O, and in addition, in the 1-CCA case A2 can
use O only once. The prohibited query for ATK ∈ {1-CCA, CCA} is c∗, while that
for DCCA is c satisfying F(pk, c∗, c) = 1. We say that a (detectable) PKE scheme
Π is ATK secure if AdvATKΠ,A(k) is negligible for any PPTA A.

For a detectable PKE scheme Π (with predicate F) and an adversary A, con-
sider the unpredictability experiment ExptUNPΠ,A(k) as described in Fig. 1 (bottom-

left). We say that a detectable PKE scheme Π is unpredictable if AdvUNPΠ,A(k) is
negligible for any PPTA A.

2.2 (Detectable) Key Encapsulation Mechanisim

A key encapsulation mechanism (KEM) Γ consists of the three PPTAs (KKG,
KEnc,KDec) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk)← KKG(1k) (c,K)← KEnc(pk) K (or ⊥)← KDec(sk, c)

where KDec is a deterministic algorithm, (pk, sk) is a public/secret key pair
that defines a session-key space K, and c is a ciphertext of a session-key K ∈ K
under pk.

230 T. Matsuda and G. Hanaoka

A KEM is required to satisfy correctness : for all k ∈ N, all keys (pk, sk) output
from KKG(1k) and all ciphertext/session-key pairs (c,K) output from KEnc(pk),
it holds that KDec(sk, c) = K.

We also define a KEM-analogue of detectable PKE, which we call detectable
KEM, as a KEM that has an efficiently computable predicate F whose interface
is the same as that of detectable PKE.

Security Notions. As in the PKE case, we consider CCA, 1-CCA, and CPA security
for a KEM, and DCCA security and unpredictability for a detectable KEM.

Let ATK ∈ {CPA, 1-CCA, CCA, DCCA}. For a (detectable) KEM Γ and an ad-
versary A = (A1,A2), consider the ATK experiment ExptATKΓ,A(k) as described in
Fig. 1 (top-center). In the experiment, the oracle O is defined depending on ATK

as follows: If ATK = CPA, then O is unavailable (it returns ⊥ for any input); If
ATK ∈ {1-CCA, CCA, DCCA}, then O is the decapsulation oracle O(·) = KDec(sk, ·),
and how it is available (e.g. prohibited queries and how many times it can be
used) is defined in exactly the same way as the corresponding ATK experiments for
(detectable) PKE. We say that a (detectable) KEM Γ is ATK secure if AdvATKΓ,A(k)
is negligible for any PPTA A.

For a detectable KEM Γ (with predicate F) and an adversary A, consider the
unpredictability experiment ExptUNPΓ,A(k) as described in Fig. 1 (bottom-center).

We say that a detectable KEM Γ is unpredictable if AdvUNPΓ,A(k) is negligible for
any PPTA A.

2.3 Symmetric Key Encryption

A symmetric key encryption (SKE) scheme1 E consists of the two PPTAs (SEnc,
SDec) with the following interface:

Encryption: Decryption:
c← SEnc(K,m) m (or ⊥)← SDec(K, c)

where SDec is a deterministic algorithm, c is a ciphertext of a plaintext m under
a key K ∈ {0, 1}k, and k ∈ N is a security parameter.

A SKE scheme is required to satisfy correctness : for all k ∈ N, all K ∈ {0, 1}k,
and all plaintexts m, it holds that SDec(K, SEnc(K,m)) = m.

Security Notions. For a SKE scheme, we consider indistinguishability under
one-time encryption (OT security), that under chosen ciphertext attacks (CCA
security) and its 1-bounded CCA analogue (1-CCA security).

Let ATK ∈ {OT, 1-CCA, CCA}. For a SKE scheme E and an adversary
A = (A1,A2), consider the ATK experiment ExptATKE,A(k) as described in Fig. 1
(top-right). In the experiment, it is required that |m0| = |m1| holds. Further-
more, the oracle O is defined as follows: If ATK = OT then the oracle O is unavail-
able (it returns ⊥ for any input); If ATK ∈ {1-CCA, CCA}, then O is the decryption

1 A SKE scheme is also called a “data encapsulation mechanism” (DEM) in the context
of hybrid encryption [5].

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 231

oracle O(·) = SDec(K, ·), and the restriction is similar to the corresponding ATK

experiment for the PKE case. We say that a SKE scheme E is ATK secure if
AdvATKE,A(k) is negligible for any PPTA A.

2.4 Hybrid Encryption and Its Security

We will use the result regarding hybrid encryption, and thus we recall it here.
Let Γ = (KKG,KEnc,KDec) and E = (SEnc, SDec) be a KEM and a

SKE scheme, respectively, and let Π [Γ,E] = (PKG,PEnc,PDec) denote the
PKE scheme obtained by combining Γ and E in a straightforward manner.
Namely, PKG(1k) generates keys by (pk, sk) ← KKG(1k); PEnc(pk,m) runs
(c,K) ← KEnc(pk) and c̃ ← SEnc(K,m), and outputs a ciphertext C = (c, c̃);
PDec(sk, (c, c̃)) runs K ← KDec(sk, c), and outputs m ← SDec(K, c̃) if K 	= ⊥
or ⊥ otherwise. Furthermore, if Γ is a detectable KEM with predicate F, then
we view the resulting hybrid scheme Π [Γ,E] as a detectable PKE scheme that
has the predicate F′(pk, C = (c, c̃), C′ = (c′, c̃′)) := F(pk, c, c′). (That is, the
predicate F′ for Π [Γ,E] tests the predicate F of the KEM-ciphertexts.)

The following composition results can be shown. The first bullet is a well-
known result shown by Cramer and Shoup [5], and we will use the result for
the 1-CCA case in the security proof of our proposed scheme. The second and
third bullets are not directly used in our proposed scheme, but may be useful
for future studies of detectable PKE/KEM. (The proof is straightforward and
thus omitted.)

Lemma 1. Let Γ be a (detectable) KEM and E be a SKE scheme, and let
Π [Γ,E] be the (detectable) PKE scheme obtained by combining Γ and E straight-
forwardly as above. Then:

– ([5]) For ATK ∈ {1-CCA, CCA}, if Γ and E are both ATK secure, then so is
Π [Γ,E].

– If Γ is DCCA secure and E is OT secure, then Π [Γ,E] is DCCA secure.
– If Γ is unpredictable, then so is Π [Γ,E] (regardless of the security of E).

3 The Hohenberger-Lewko-Waters Construction

In this section, we recall the Hohenberger-Lewko-Waters (HLW) construction.
Let Πin = (PKGin,PEncin,PDecin), ΠA = (PKGA,PEncA,PDecA), and ΠB =

(PKGB,PEncB,PDecB) be PKE schemes, where it is assumed that the randomness
space of PEncA and that of PEncB are {0, 1}k when they are used with security
parameter k. Then the HLW PKE scheme ΠHLW = (PKGHLW,PEncHLW,PDecHLW) is
constructed as in Fig. 2.

For convenience, we call Πin the “inner” scheme, and ΠA and ΠB the “outer”
schemes.

It was shown in [7] that if Πin is DCCA secure and unpredictable (with respect
to some predicate F), ΠA is 1-CCA secure, and ΠB is CPA secure, then ΠHLW is CCA
secure.

232 T. Matsuda and G. Hanaoka

PKGHLW(1
k) :

(pkin, skin) ← PKGin(1
k)

(pkA, skA) ← PKGA(1
k)

(pkB, skB) ← PKGB(1
k)

PK ← (pkin, pkA, pkB)
SK ← (skin, skA, skB)
Return (PK,SK).

PEncHLW(PK,m) :
(pkin, pkA, pkB) ← PK

rA, rB ← {0, 1}k
β ← (rA‖rB‖m)
cin ← PEncin(pkin, β)
cA ← PEncA(pkA, cin; rA)
cB ← PEncB(pkB, cin; rB)
Return C ← (cA, cB).

PDecHLW(SK,C) :
(skin, skA, skB) ← SK
(cA, cB) ← C
cin ← PDecA(skA, cA)
If cin = ⊥ then return ⊥.
β ← PDecin(skin, cin)
If β = ⊥ then return ⊥.
Parse β as (rA, rB,m).
If PEncA(pkA, cin; rA) = cA
and PEncB(pkB, cin; rB) = cB
then return m.

Return ⊥.

Fig. 2. The Hohenberger-Lewko-Waters Construction ΠHLW

4 An Efficient Variant of the HLW Construction

In this section, we show our main result: a more efficient variant of the HLW
construction. The ideas towards our scheme are fairly simple:

– We implement the “inner” scheme Πin and one of the “outer” schemes, ΠA,
by hybrid encryption, i.e. they consist of a KEM and a SKE scheme.

– What is essential in the decryption algorithm of the original HLW construc-
tion is that we can decrypt (and check the validity of) a ciphertext in two
different ways. Thus, instead of encrypting the entire “inner” ciphertext cin
doubly (parallelly) by the “outer” schemes, we realize the property by en-
crypting only the “session-key” (the value “α” in our construction) used to
symmetric-key-encrypt cin.

– Instead of encrypting the randomness rA and rB for the “outer” schemes
(together with a plaintext m) by the “inner” scheme, we derive rA and rB
from a session-key for “inner” hybrid encryption. As a consequence, the inner
SKE scheme now only needs to encrypt m.

Our proposed construction is as follows. Let Γin = (KKGin,KEncin,KDecin,F)
be a detectable KEM with the session-key space2 {0, 1}3k. Furthermore, let
ΓA = (KKGA,KEncA,KDecA) be a KEM with the session-key space {0, 1}k, ΠB =
(PKGB,PEncB,PDecB) be a PKE scheme with the plaintext space {0, 1}k, and
Ein = (SEncin, SDecin) and EA = (SEncA, SDecA) be SKE schemes. We require
the randomness space of KEncA and that of PEncB be {0, 1}k when they are used
with security parameter k.3 Furthermore, we also require that the size of the ci-
phertext of PKE and SKE (resp. KEM) can be computed only from the security

2 In our construction, this is without loss of generality because the session-key space of
a detectable KEM (with DCCA security and unpredictability) can be freely adjusted
by using a pseudorandom generator.

3 This is again without loss of generality because we can use a pseudorandom generator
to obtain longer randomness if necessary.

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 233

PKG(1k) :
(pkin, skin) ← KKGin(1

k)

(pkA, skA) ← KKGA(1
k)

(pkB, skB) ← PKGB(1
k)

PK ← (pkin, pkA, pkB)
SK ← (skin, skA, skB)
Return (PK,SK).

PEnc(PK,m) :
(pkin, pkA, pkB) ← PK
(cin, β) ← KEncin(pkin)
Parse β as (rA, rB, K) ∈ {0, 1}3k.
c̃in ← SEncin(K,m)
(cA, α) ← KEncA(pkA; rA)
c̃A ← SEncA(α, (cin‖c̃in))
cB ← PEncB(pkB, α; rB)
Return C ← (cA, c̃A, cB).

PDec(SK,C) :
(skin, skA, skB) ← SK
(cA, c̃A, cB) ← C
α ← KDecA(skA, cA)
If α = ⊥ then return ⊥.
(cin‖c̃in) ← SDecA(α, c̃A)
If SDecA has returned ⊥ then return ⊥.
β ← KDecin(skin, cin)
If β = ⊥ then return ⊥.

Parse β as (rA, rB,K) ∈ {0, 1}3k.
If KEncA(pkA; rA) = (cA, α)

and PEncB(pkB, α; rB) = cB
then return m ← SDecin(K, c̃in).

Return ⊥.

Fig. 3. The proposed PKE scheme Π

parameter k and the length of plaintext being encrypted (resp. from k). Then
our proposed PKE scheme Π = (PKG,PEnc,PDec) is constructed as in Fig. 3.

Alternative Decryption Algorithm. Before going into the security proof of Π ,
let us consider the following “alternative” decryption algorithm AltPDec that is
useful in our security proof:

AltPDec: This algorithm takes SK = (skin, skA, skB) (output from PKG(1k))
and a ciphertext C = (cA, c̃A, cB) as input, and runs in exactly the same way
as PDec(SK,C), except that it executes “α ← PDecB(skB, cB)” in the third
step, instead of “α← KDecA(skA, cA).”

Due to the symmetric roles of ΓA and ΠB and the validity check of cA and cB at
the last step, the following is easy to see.

Lemma 2. Let SK be a secret key output from PKG(1k). Then, for any cipher-
text C (which could be outside the range of PEnc), it holds that PDec(SK,C) =
AltPDec(SK,C).

Proof of Lemma 2. Let SK = (skin, skA, skB) be a secret key generated from
PKG(1k), and let C = (cA, c̃A, cB) be an arbitrary ciphertext. For notational
convenience, let αA = KDecA(skA, cA) and αB = PDecB(skB, cB). We consider
the following two cases, and show that the result of PDec(SK,C) and that of
AltPDec(SK,C) always agree in both cases:

Case αA = αB: PDec and AltPDec proceed identically after their third step, and
thus the outputs of these algorithms agree, regardless of the validity of C.

Case αA 	= αB: The correctness of ΠB implies that there exists no r such that
PEncB(pkB, αA; r) = cB, and thus PDec returns ⊥ in its last step at the latest

234 T. Matsuda and G. Hanaoka

(it returns ⊥ earlier if SDecA or KDecin outputs ⊥). Similarly, the correctness
of ΓA implies that there exists no r such that KEncA(pkA; r) = (cA, αB), and
thus AltPDec also returns ⊥ in its last step at the latest (it may return ⊥
earlier as above).

This completes the proof of Lemma 2. ��

Security of the proposed PKE scheme. The security of Π is shown as follows.

Theorem 1. Assume that the detectable KEM Γin is DCCA secure and unpre-
dictable, the KEM ΓA and the SKE scheme EA are 1-CCA secure, the PKE scheme
ΠB is CPA secure, and the SKE scheme Ein is OT secure. Then the proposed PKE
scheme Π constructed as in Fig. 3 is CCA secure.

Proof of Theorem 1. Let A = (A1,A2) be any PPTA adversary against the CCA
security of Π . Let Q > 0 be the number of decryption queries that A2 submits
in the CCA experiment. (Since A is a PPTA, Q is a polynomial.)

Consider the following sequence of games, where the values with asterisk (*)
are those related to the challenge ciphertext C∗ = (c∗A , c̃

∗
A , c

∗
B).

Game 1: This is the ordinary CCA experiment in which A runs, i.e. ExptCCA
Π,A(k).

Game 2: Same as Game 1, except that if A2 submits a decryption query C =
(cA, c̃A, cB) satisfying (cA, c̃A) = (c∗A , c̃

∗
A), then it is answered with ⊥.

Game 3: Same as Game 2, except that we pick r∗A , r
∗
B ,K

∗ ∈ {0, 1}k uniformly
at random, instead of using those produced from KEncin(pkin). That is,
the step “(c∗in, β

∗) ← KEncin(pkin)” in Game 2 is replaced with the steps
“(c∗in, β

′)← KEncin(pkin); r∗A , r
∗
B ,K

∗ ← {0, 1}k.”
Since the randomness r∗A and r∗B used for generating c∗A and c∗B are now (and
in all subsequent games) chosen uniformly at random and made independent
of c∗in, from here on we do not write them explicitly. (Instead, they are always
chosen randomly when c∗A and c∗B are generated.)

Game 4: Same as Game 3, except that the information on α∗ is erased from
c∗B . That is, the step “c∗B ← PEncB(pkB, α

∗)” in Game 3 is replaced with the
step “c∗B ← PEncB(pkB, 0

k).”
Game 5: Same as Game 4, except that we use the alternative decryption al-

gorithm AltPDec for answering to A’s decryption queries. More precisely, in
Game 5, A1’s queries C are answered with AltPDec(SK,C).; A2’s queries
C = (cA, c̃A, cB) are also answered with AltPDec(SK,C), except that if
(cA, c̃A) = (c∗A , c̃∗A), then the query is answered with ⊥.

Game 6: Same as Game 5, except that the information on (c∗in‖c̃∗in) is erased
from c̃∗A . That is, the step “c̃∗A ← SEncA(α

∗, (c∗in‖c̃∗in))” in Game 5 is replaced
with the step “c̃∗A ← SEncA(α

∗, 0|c
∗
in|+|c̃∗in|).”

We call a decryption query C = (cA, c̃A, cB) submitted by A2 in the above
games dangerous if the following four conditions are satisfied:

1. (cA, c̃A) 	= (c∗A , c̃
∗
A)

2. KDecA(pkA, cA) = α 	= ⊥

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 235

3. SDecA(α, c̃A) = (cin‖c̃in) 	= ⊥
4. F(pkin, c

∗
in, cin) = 1

For i ∈ [6], we define the following events in Game i:

Si: A succeeds in guessing the challenge bit (i.e. b′ = b occurs).

Di: A2 submits at least one dangerous decryption query.

D
(j)
i : (where j ∈ [Q]) A2’s j-th decryption query is dangerous.

By the definitions of the games and events, a simple manipulation of proba-
bilities gives us the following. (The proof is given in Appendix A.)

Claim 1. A’s CCA advantage AdvCCA
Π,A(k) can be upperbounded as follows:

AdvCCA
Π,A(k) ≤

2 · |Pr[S1]− Pr[S2]|+ 2 · |Pr[S2 ∧D2]− Pr[S3 ∧ D3] +
1

2
(Pr[D2]− Pr[D3])|

+ 2 · |Pr[S3 ∧ D3] +
1

2
Pr[D3]− 1

2
|+

∑
i∈{2,3,4}

|Pr[Di]− Pr[Di+1]|

+ |
∑
j∈[Q]

(Pr[D
(j)
5]− Pr[D

(j)
6])|+

∑
j∈[Q]

Pr[D
(j)
6]. (1)

In the following, we will upperbound each term in the inequality (1).

Claim 2. Pr[S1] = Pr[S2].

Proof of Claim 2. Note that the difference between Game 1 and Game 2 is
in how A2’s decryption query C = (cA, c̃A, cB) satisfying (cA, c̃A) = (c∗A , c̃

∗
A) is

answered. By definition, it is answered with ⊥ in Game 2. We show that such
query is answered with ⊥ in Game 1 as well and thus the decryption oracles
behave identically in both games, which in particular implies Pr[S1] = Pr[S2].

Firstly, A2’s query must satisfy C 	= C∗, and thus (cA, c̃A) = (c∗A , c̃∗A) implies
cB 	= c∗B . Secondly, (cA, c̃A) = (c∗A , c̃

∗
A) implies that α∗ and β∗ = (r∗A , r

∗
B ,K

∗)
are recovered in the third and the seventh steps of PDec(SK,C), respectively.
Therefore, in order for the query to pass the validity check and be answered with
non-⊥, we must have PEncB(pkB, α

∗; r∗B) = cB. However, this is impossible because
cB 	= c∗B = PEncB(pkB, α

∗; r∗B). Therefore, the query C with (cA, c̃A) = (c∗A , c̃∗A) is
answered with ⊥ in Game 1 as well. This completes the proof of Claim 2. ��

Claim 3. For any constants p, q ∈ [0, 1], there exists a PPTA B such that
AdvDCCAΓin,B(k) = |p · (Pr[S2 ∧ D2]− Pr[S3 ∧ D3]) + q · (Pr[D2]− Pr[D3])|.

Proof of Claim 3. Fix arbitrarily p, q ∈ [0, 1]. Using A as a building block, we
show how to construct a PPTA adversary B that attacks the DCCA security of the
detectable KEM Γin with the claimed advantage. The description of B = (B1,B2)
is as follows:

236 T. Matsuda and G. Hanaoka

BO
1 (pkin): B1 first runs (pkA, skA) ← KKGA(1

k) and (pkB, skB) ← PKGB(1
k).

Then B1 sets PK ← (pkin, pkA, pkB) and SK ← (⊥, skA, skB), and runs

(m0,m1, st)← APDec(SK,·)
1 (PK), where B1 uses its own decapsulation oracle

O as a substitute for KDecin(skin, ·). Next, B1 sets state information stB as
all the values known to B1, and terminates with output stB.

BO
2 (c∗in, β

∗
b , stB): (where b is B’s challenge bit) B2 first picks two coins bp, bq ∈

{0, 1} such that bp = 1 (resp. bq = 1) with probability p (resp. q). Then B2

parses β∗
b as (r∗A , r

∗
B ,K

∗) ∈ {0, 1}3k, flips a fair coin γ ∈ {0, 1}, and then runs
c̃∗in ← SEncin(K

∗,mγ), (c
∗
A , α

∗)← KEncA(pkA; r
∗
A), c̃

∗
A ← SEncA(α

∗, (c∗in‖c̃∗in)),
and c∗B ← PEncB(pkB, α

∗; r∗B). Then B2 sets C∗ ← (c∗A , c̃∗A , c∗B), and runs
A2(C

∗, st). B2 answers to A2’s decryption queries as specified in Game 2
where again B2 uses its own oracle O as a substitute for KDecin(skin, ·),
except that if the query is dangerous (which can be detected by using SK
and F), then B2 terminates with output b′ ← bq. When A2 terminates with
output its guess bit γ′, B2 sets b′ ← 1 if γ′ = γ and bp = 1, otherwise (i.e.
γ′ 	= γ or bp = 0) B2 sets b′ ← 0, and terminates with output b′.

The above completes the description of B. Note that B2 never submits a prohib-
ited decapsulation query cin satisfying F(pkin, c

∗
in, cin) = 1.

Let DB be the event that A submits a dangerous decryption query in the
experiment simulated by B. Consider the case when b = 1. It is easy to see that in
this case, B simulates Game 2 perfectly for A in which A’s challenge bit is γ, until
the point A2 submits a dangerous query. In particular, the value β∗

1 associated
with c∗in is used as (r∗A , r

∗
B ,K

∗) as is done in Game 2. All other values (pk, C∗,
and the answers to decryption queries) are distributed identically to those of
Game 2. Furthermore, B2 can detect whether A2’s query is dangerous by using F.
These imply that Pr[γ′ = γ∧DB|b = 1] = Pr[S2∧D2] and Pr[DB|b = 1] = Pr[D2].
Recall that B2 outputs b

′ = 1 only if either (1) A2 succeeds in guessing γ without
making any dangerous queries (i.e. γ′ = γ ∧ DB occurs) and bp = 1, or (2) A2

makes a dangerous query (DB occurs) and bq = 1. Furthermore, the choice of bp
and bq is independent of the behavior of A and B’s challenge bit. These imply

Pr[b′ = 1|b = 1] = Pr[bp = 1 ∧ γ′ = γ ∧ DB|b = 1] + Pr[bq = 1 ∧ DB|b = 1]

= p · Pr[γ′ = γ ∧DB|b = 1] + q · Pr[DB|b = 1] = p · Pr[S2 ∧ D2] + q · Pr[D2].

On the other hand, when b = 0, B simulates Game 3 perfectly for A in
which A’s challenge bit is γ, until the point A2 submits a dangerous query. In
particular, the uniformly chosen random value β∗

0 (independent of c∗in) is used
as (r∗A , r∗B ,K∗), which is exactly how they are distributed in Game 3. The rest is
unchanged from the case of b = 1, and thus, with a similar argument, we have
Pr[b′ = 1|b = 0] = p · Pr[S3 ∧ D3] + q · Pr[D3].

In summary, we can calculate B’s DCCA advantage as follows:

AdvDCCAΓin,B(k) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|
= |p · (Pr[S2 ∧ D2]− Pr[S3 ∧ D3]) + q · (Pr[D2]− Pr[D3])|.

This completes the proof of Claim 3. ��

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 237

Claim 4. There exists a PPTA B such that AdvOTEin,B(k) = 2 · |Pr[S3 ∧ D3] +
1
2 Pr[D3]− 1

2 |.
Proof of Claim 4. Using A as a building block, we construct a PPTA adversary
B = (B1,B2) that attacks the OT security of the SKE scheme Ein as follows:

B1(1
k): B1 runs (PK, SK) ← PKG(1k) and (m0,m1, st) ← APDec(SK,·)

1 (PK).
Then B1 sets state information stB as all the values known to B1, and ter-
minates with output (m0,m1, stB).

B2(c̃
∗
in, stB): B2 runs (c∗in, β

′) ← KEncin(pkin), (c̃
∗
A , α

∗) ← KEncA(pkA), c̃
∗
A ←

SEncA(α
∗, (c∗in‖c̃∗in)), and c∗B ← PEncB(pkB, α

∗). ThenB2 setsC
∗ ← (c∗A , c̃∗A , c∗B),

and runs A2(C
∗, st). B2 answers to A2’s decryption queries C as specified in

Game 3 (using SK), except that if the query is dangerous (which can be de-
tected by using SK and F), then B2 terminates with output a random bit
b′ ∈ {0, 1}. When A2 terminates with output b′, B2 terminates with output
this bit b′.

The above completes the description of B.
Let b be B’s challenge bit, and DB be the event that A2 submits a dangerous

query in the experiment simulated by B. It is easy to see that unless A2 submits
a dangerous query, B perfectly simulates Game 3 for A in which the challenge
bit of A is that of B’s, and K∗ in Game 3 is the key chosen in B’s OT experiment.
Furthermore, if no dangerous query is made, B succeeds whenever A succeeds.
Therefore, we have Pr[b′ = b∧DB] = Pr[S3 ∧D3] and Pr[DB] = Pr[D3]. Further-
more, if A2 submits a dangerous query, B2 can detect it by using F and outputs
a random bit, which implies Pr[b′ = b|DB] = 1/2.

Using these, B’s OT advantage can be calculated as follows:

AdvOTEin,B(k) = 2 · |Pr[b′ = b]− 1

2
|

= 2 · |Pr[b′ = b ∧ DB] + Pr[b′ = b|DB] · Pr[DB]− 1

2
|

= 2 · |Pr[S3 ∧ D3] +
1

2
Pr[D3]− 1

2
|.

This completes the proof of Claim 4. ��
Claim 5. There exists a PPTA B such that AdvCPAΠB,B(k) = |Pr[D3]− Pr[D4]|.
Proof of Claim 5. Using A as a building block, we construct a PPTA adversary
B = (B1,B2) that attacks the CPA security of the PKE scheme ΠB as follows:

B1(pkB): B1 first runs (pkin, skin) ← KKGin(1
k) and (pkA, skA) ← KKGA(1

k).
Then B1 sets PK ← (pkin, pkA, pkB) and SK ← (skin, skA,⊥), and runs

(m0,m1, st)← APDec(SK,·)
1 (PK) (note that skB is unnecessary to run PDec).

Next B1 runs (c∗A , α
∗)← KEncA(pkA), and sets M1 ← α∗ and M0 ← 0k. Then

B1 sets state information stB as all the values known to B1, and terminates
with output (M0,M1, stB).

238 T. Matsuda and G. Hanaoka

B2(c
∗
B , stB): B2 first picks γ ∈ {0, 1} and K∗ ∈ {0, 1}k uniformly, and
then runs (c∗in, β

′) ← KEncin(pkin), c̃∗in ← SEncin(K
∗,mγ), and c̃∗A ←

SEncA(α
∗, (c∗in‖c̃∗in)). Then B2 sets C∗ ← (c∗A , c̃∗A , c∗B), and runs A2(C

∗, st).
B2 answers to A2’s decryption queries C as specified in Game 3 (again, skB
is unnecessary for this). When A2 terminates, B2 checks whether A2 has
submitted a dangerous query (by using SK and F). If this is the case, then
B2 sets b′ ← 1, otherwise B2 sets b′ ← 0, and terminates with output b′.

The above completes the description of B. Let b be B’s challenge bit.
It is easy to see that if b = 1 (resp. b = 0), then B simulates Game 3 (resp.

Game 4) perfectly for A (with its challenge bit γ). In particular, c∗B is an encryp-
tion of α∗ if b = 1 and is an encryption of 0k if b = 0, which is how c∗B in Game 3
and that in Game 4 are generated, respectively, and all other values (pk, the
remaining parts of C∗, and the answers to decryption queries) are distributed
identically to those of Game 3 or Game 4, depending on b. Furthermore, B2 can
detect whether A2’s queries contain a dangerous one by using F, in which case
(and only then) B2 outputs b′ = 1. These imply Pr[b′ = 1|b = 1] = Pr[D3] and
Pr[b′ = 1|b = 0] = Pr[D4]. Using them, B’s CPA advantage is shown as follows:

AdvCPAΠB,B(k) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| = |Pr[D3]− Pr[D4]|.
This completes the proof of Claim 5. ��
Claim 6. Pr[D4] = Pr[D5].

Proof of Claim 6. Recall that the difference between Game 4 and Game 5 is
in how A’s decryption queries C = (cA, c̃A, cB) satisfying (cA, c̃A) 	= (c∗A , c̃

∗
A) are

answered. In Game 4, they are answered using PDec, while they are answered
using AltPDec in Game 5. However, by Lemma 2, these algorithms behave iden-
tically for all queries made in both Game 4 and Game 5, and thus A’s view is
distributed identically in both games. This in particular implies Pr[D4] = Pr[D5].
This completes the proof of Claim 6. ��
Claim 7. Let Π [ΓA, EA] be the hybrid encryption scheme obtained from the KEM
ΓA and the SKE scheme EA (see Section 2.4). Then, there exists a PPTA B such

that Adv1-CCAΠ[ΓA,EA],B(k) =
1
Q |
∑

j∈[Q](Pr[D
(j)
5]− Pr[D

(j)
6])|.

Proof of Claim 7. Using A as a building block, we construct a PPTA adversary
B = (B1,B2) that attacks the 1-CCA security of the hybrid encryption scheme
Π [ΓA, EA] as follows:

BO
1 (pkA): B1 first runs (pkin, skin) ← KKGin(1

k) and (pkB, skB) ← PKGB(1
k).

Then B1 sets PK ← (pkin, pkA, pkB) and SK ← (skin,⊥, skB), and runs

(m0,m1, st) ← AAltPDec(SK,·)
1 (PK) (note that skA is unnecessary to run

AltPDec). Next, B1 picks γ ∈ {0, 1} and K∗ ∈ {0, 1}k uniformly, and then
runs (c∗in, β

′) ← KEncin(pkin) and c̃∗in ← SEncin(K
∗,mγ). Then, B1 sets

M1 ← (c∗in‖c̃∗in) and M0 ← 0|M1|, sets state information stB as all the values
known to B1, and terminates with output (M0,M1, stB).

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 239

BO
2 ((c∗A , c̃

∗
A), stB): B2 runs c∗B ← PEnc(pkB, 0

k), sets C∗ ← (c∗A , c̃
∗
A , c

∗
B), and then

runs A2(C
∗, st). B2 answers to A2’s decryption queries C as specified in

Game 5 (again, skA is unnecessary for this). When A2 terminates, B2 picks

	 ∈ [Q] uniformly, and checks whether A2’s 	-th query C� = (c
(�)
A , c̃

(�)
A , c

(�)
B) is

dangerous, by using B2’s decryption oracleO (if necessary). More specifically,

if (c
(�)
A , c̃

(�)
A) = (c∗A , c̃∗A), then C� is not dangerous. Otherwise, B2 submits

(c
(�)
A , c̃

(�)
A) to O, and uses the returned value to further check whether C� is

dangerous. If C� is dangerous, then B2 sets b′ ← 1, otherwise B2 sets b′ ← 0,
and terminates with output b′.

The above completes the description of B. Note that B uses the decryption oracle
O at most once, and it never submits the prohibited query (c∗A , c̃∗A) to O.

Let b be B’s challenge bit. Furthermore, for j ∈ [Q], let D
(j)
B be the event that

A2’s j-th query Cj is dangerous in the experiment simulated by B. It is easy to
see that if b = 1 (resp. b = 0), then B simulates Game 5 (resp. Game 6) perfectly
for A (with its challenge bit γ). In particular, (c∗A , c̃

∗
A) is an encryption of (c∗in‖c̃∗in)

if b = 1, and is an encryption of the zero-string if b = 0, which is how (c∗A , c̃∗A) in
Game 5 and that in Game 6 are generated, respectively. Note that B2 can detect

whether D
(�)
B has occurred (for a randomly chosen index 	 ∈ [Q]) by using its own

decryption oracle and using F, in which case (and only then) B2 outputs 1. Note
also that 	 ∈ [Q] is chosen uniformly and independently of b and A’s behavior.

These imply that for all j ∈ [Q], we have Pr[D
(j)
B |	 = j ∧ b = 1] = Pr[D

(j)
5],

Pr[D
(j)
B |	 = j ∧ b = 0] = Pr[D

(j)
6], and Pr[= j|b = 1] = Pr[= j|b = 0] = 1/Q.

Using these, B’s 1-CCA advantage can be calculated as follows:

Adv1-CCAΠ[ΓA ,EA],B(k) = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|
= |Pr[D(�)

B |b = 1]− Pr[D
(�)
B |b = 0]|

= |
∑
j∈[Q]

(
Pr[D

(j)
B |	 = j ∧ b = 1] · Pr[= j|b = 1]

− Pr[D
(j)
B |	 = j ∧ b = 0] · Pr[= j|b = 0]

)
|

=
1

Q
|
∑
j∈[Q]

(
Pr[D

(j)
5]− Pr[D

(j)
6]
)
|.

This completes the proof of Claim 7. ��
Claim 8. There exists a PPTA B such that AdvUNPΓin,B(k) =

1
Q

∑
j∈[Q] Pr[D

(j)
6].

Proof of Claim 8. Using A as a building block, we construct a PPTA adversary
B that attacks the unpredictability of the detectable KEM Γin as follows:

BO(pkin): B first runs (pkA, skA) ← KKGA(1
k) and (pkB, skB) ← PKGB(1

k).
Then B sets PK ← (pkin, pkA, pkB) and SK ← (⊥, skA, skB), and runs

(m0,m1, st)← AAltPDec(SK,·)
1 (PK), where B uses its own decapsulation ora-

cle O as a substitute for KDecin(skin, ·). Next, B runs (c∗A , α
∗)← KEncA(pkA),

240 T. Matsuda and G. Hanaoka

c̃∗A ← SEncA(α
∗, 0t) (where t = |c∗in| + |c̃∗in| which we assume can be com-

puted efficiently from k and |m0|) and c∗B ← PEncB(pkB, 0
k). Then B sets

C∗ ← (c∗A , c̃∗A , c∗B), and runs A2(C
∗, st). B answers to A2’s queries as specified

in Game 6, again using B’s oracle O as a substitute for KDecin(skin, ·). When
A terminates, B picks 	 ∈ [Q] uniformly, and proceeds as follows: Let C� =

(c
(�)
A , c̃

(�)
A , c

(�)
B) be the 	-th query submitted by A2. If (c

(�)
A , c̃

(�)
A) 	= (c∗A , c̃∗A),

KDecA(skA, c
(�)
A) = α� 	= ⊥, and SDecA(α�, c̃

(�)
A) = (c

(�)
in ‖c̃(�)in) 	= ⊥ hold, then

B terminates with output c
(�)
in . Otherwise, B gives up and aborts.

The above completes the description of B.
It is easy to see that B perfectly simulates Game 6 for A. In particular, the

decryption queries from A are answered using AltPDec where KDecin(skin, ·) is
performed perfectly using B’s decapsulation oracle O.

Let c∗in be the ciphertext generated by B’s unpredictability experiment, and

for each j ∈ [Q], let D
(j)
B be the event that A2’s j-th query is dangerous in the

experiment simulated by B, where the notion “dangerous” is with respect to c∗in
generated by B’s unpredictability experiment. Recall that in Game 6, A’s view
is independent of c∗in. Note also that the distribution of c∗in in Game 6 and that
of c∗in generated in B’s unpredictability experiment are identical. Therefore, for

all j ∈ [Q], the probability that D
(j)
B occurs in B’s unpredictability experiment is

exactly the same as the probability that the event D
(j)
6 occurs in Game 6. Note

also that the index 	 ∈ [Q] is chosen uniformly, independently of A’s behavior.

Hence, for all j ∈ [Q], we have Pr[D
(j)
B |	 = j] = Pr[D

(j)
6] and Pr[= j] = 1/Q.

Using these, A’s unpredictability advantage can be calculated as follows:

AdvUNPΓin,B(k) = Pr[D
(�)
B] =

∑
j∈[Q]

Pr[D
(j)
B |	 = j] · Pr[= j] =

1

Q

∑
j∈[Q]

Pr[D
(j)
6].

This completes the proof of Claim 8. ��
According to Claims 1 to 8, there exist PPTAs Bin, B′

in, B̃in, B̂in, BA, and BB,
such that

AdvCCA
Π,A(k) ≤ 2 · AdvDCCAΓin,Bin

(k) + AdvDCCAΓin,B′
in
(k) + AdvOT

Ein,B̃in
(k)

+ AdvCPAΠB,BB
(k) +Q ·

(
Adv1-CCAΠ[ΓA,EA],BA

(k) + AdvUNP
Γin,B̂in

(k)
)
,

where the first and the second terms are from Claim 3 with (p, q) = (1, 1/2)
and (p, q) = (0, 1), respectively. By the assumptions on the building blocks and
Lemma 1, we conclude that AdvCCA

Π,A(k) is negligible. Recall that the choice of A
was arbitrarily, and thus for any PPTA A, we can show a negligible upperbound
on AdvCCA

Π,A(k). This completes the proof of Theorem 1. ��

Direct Construction of a CCA Secure KEM. If one’s purpose is to construct a
CCA secure KEM (rather than a PKE scheme), then we can omit all operations
regarding the building block SKE scheme Ein and directly use K as a session-
key. (That is, in the encapsulation algorithm, SEncA only encrypts cin, and the

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 241

Table 1. Comparison of the ciphertext overhead of the proposed scheme with the HLW
construction. (Notations in the right column are explained in Section 5.)

Scheme Ciphertext Size

HLW [7] (see also Fig. 2) OH1-CCA + OHCPA + 2OHDCCA + 4k + 2|m|
HLW (used as a KEM) & DEM OH1-CCA + OHCPA + 2OHDCCA + 6k + |m|
Proposed Scheme (§ 4) OH1-CCA + OHCPA +OHDCCA + k + |m|

decapsulation algorithm outputs K rather than SDecin(K, c̃in).) The security
proof is essentially the same as that of our proposed PKE scheme (only slightly
simpler).

5 Comparison

Table 1 shows a comparison of the ciphertext size between our proposed PKE
scheme and the original HLW construction [7]. For a fair comparison, we con-
sider two versions for the HLW construction: the original scheme (as described
in Fig. 2), and the version in which the original scheme is used as a KEM by
encrypting a k-bit randomness K and combined with a CCA secure SKE scheme
(DEM). We assume that all building block PKE schemes (both in our scheme
and in the HLW construction) are implemented by hybrid encryption so that the
ciphertext overhead from these components become small. Since we can imple-
ment a CCA secure SKE scheme with zero ciphertext overhead [16], we assume
that a ciphertext overhead of a PKE scheme equals the size of its KEM cipher-
text. In the right column of the table, let OHX (which stands for “overhead”)
represent the size of the “KEM-part” of the X secure PKE scheme or that of the
X secure KEM used in the constructions. For example, if we encrypt a message
m and obtain c with a CPA secure PKE scheme, then |c| = OHCPA + |m|.

As is obvious from Table 1, our proposed scheme is more space-efficient. Due
to its design of doubly-encrypting cin by the “outer” schemes ΠA and ΠB, the
ciphertext size of the HLW constructions counts OHDCCA twice (in the original
construction case it further counts |m| and two k-bit strings twice). On the other
hand, in our proposed scheme OHDCCA is counted only once, since cin is encrypted
only once by the “outer” SKE scheme EA.

Acknowledgement. The authors would like to thank the anonymous review-
ers and the members of Shin-Akarui-Angou-Benkyou-Kai for their constructive
comments and suggestions.

References

1. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

242 T. Matsuda and G. Hanaoka

2. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145 (2001)

3. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

4. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

5. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput-
ing 33(1), 167–226 (2003)

6. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991,
pp. 542–552 (1991)

7. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: A new ap-
proach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)

8. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

9. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010)

10. Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer,
Heidelberg (2013)

11. Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under
general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

12. Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor functions.
In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311.
Springer, Heidelberg (2010)

13. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS 2009, pp. 607–616
(2009)

14. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC 1990, pp. 427–437 (1990)

15. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
2008, pp. 187–196 (2008)

16. Phan, D.H., Pointcheval, D.: About the security of ciphers (Semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

17. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

18. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)

19. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553 (1999)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

Achieving Chosen Ciphertext Security from Detectable PKE Efficiently 243

21. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

A Proof of Claim 1

By definition of the games and events, A’s CCA advantage is calculated as follows:

AdvCCA
Π,A(k) = 2 · |Pr[S1]− 1

2
| ≤ 2 · |Pr[S1]− Pr[S2]|+ 2 · |Pr[S2]− 1

2
|

The second term in the right hand side can be further calculated as follows:

|Pr[S2]− 1

2
| = |Pr[S2 ∧D2] + Pr[S2|D2] · Pr[D2]− 1

2
|

≤ |Pr[S2 ∧ D2] +
1

2
Pr[D2]− 1

2
|+ |Pr[S2|D2]− 1

2
| · Pr[D2]

(∗)
≤ |Pr[S2 ∧D2] +

1

2
Pr[D2]− 1

2
|+ 1

2
Pr[D2]

≤ |Pr[S2 ∧ D2]− Pr[S3 ∧D3] +
1

2
(Pr[D2]− Pr[D3])|

+ |Pr[S3 ∧ D3] +
1

2
Pr[D3]− 1

2
|+ 1

2
Pr[D2]

≤ |Pr[S2 ∧ D2]− Pr[S3 ∧D3] +
1

2
(Pr[D2]− Pr[D3])|

+ |Pr[S3 ∧ D3] +
1

2
Pr[D3]− 1

2
|+ 1

2

(∑
i∈{2,3,4}

|Pr[Di]− Pr[Di+1]|+ Pr[D5]
)

where in the inequality (*) we used |Pr[S2|D2]−1/2| ≤ 1/2, and other inequalities
are due to the triangle inequality.

Finally, we estimate the upperbound of Pr[D5] by

Pr[D5] = Pr[
∨

j∈[Q]

D
(j)
5] ≤

∑
j∈[Q]

Pr[D
(j)
5]

≤ |
∑
j∈[Q]

(Pr[D
(j)
5]− Pr[D

(j)
6])|+

∑
j∈[Q]

Pr[D
(j)
6]

Combining all the inequalities yields the claim. ��

Cryptanalysis of the Quaternion Rainbow

Yasufumi Hashimoto

Department of Mathematical Sciences, University of the Ryukyus

Abstract. Rainbow is one of the signature schemes based on multivari-
ate problems. While its signature generation and verification are fast
and the security is presently sufficient under suitable parameter selec-
tions, the key size is relatively large. Recently, Quaternion Rainbow –
Rainbow over quaternion ring – was proposed by Yasuda, Sakurai and
Takagi (CT-RSA’12) to reduce the key size of Rainbow without impairing
the security. However, a new vulnerability emerges from the structure of
quaternion ring; in fact, Thomae (SCN’12) found that Quaternion Rain-
bow is less secure than the same-size original Rainbow. In the present pa-
per, we further study the security of Quaternion Rainbow and get better
security results than Thomae’s ones. Especially, we find that Quaternion
Rainbow over even characteristic field, whose security level is estimated
as about the original Rainbow of at most 3/4 by Thomae’s analysis, is
almost as secure as the original Rainbow of at most 1/4-size.

Keywords: post-quantum cryptography, multivariate public-key cryp-
tosystems, Rainbow, quaternion ring.

1 Introduction

The multivariate public key cryptosystem (MPKC) is a family of cryptosystems
based on the problem of solving a set of multivariate quadratic equations, and is
expected to be a post-quantum cryptology. Rainbow [4] is one of the signature
schemes consisting in MPKC. This is known as a nice scheme in the sense that
the signature generations and verifications are faster than RSA and ECC [2] and
the security is presently sufficient under suitable parameter selections. However,
the key size of Rainbow is relatively large and then reducing it is required for
implementations in practice.

TTS [12] and Cyclic Rainbow [9] are famous variations of Rainbow whose key
sizes are smaller than those in the original Rainbow; the secret keys are smaller
in the former scheme and the public keys are smaller in the latter scheme.

Recently, a new Rainbow variant was proposed by Yasuda, Sakurai and Takagi
[13]. Their idea is to construct Rainbow on the quaternion ring; thus we call it
Quaternion Rainbow. They claimed that the size of secret keys is about 75% of
the same-size original Rainbow under the same security level. However, a new
vulnerability emerges from the structure of the quaternion ring; in fact, Thomae
[11] showed that the security of Quaternion Rainbow against rank attacks [12]
is less than that expected by the authors of [13].

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 244–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cryptanalysis of the Quaternion Rainbow 245

In the present paper, we further study vulnerabilities of Quaternion Rainbow
emerging from the structure of the quaternion ring. It is well known that there
are nontrivial zero divisors in the quaternion ring over a finite field. Taking
such zero divisors with several conditions as a basis of the quaternion ring, we
find a sparseness of the quadratic forms in Quaternion Rainbow. Its sparseness
causes a vulnerability of Quaternion Rainbow. Especially, when the field is of
even characteristic, the quadratic forms in Quaternion Rainbow are described
by balanced Oil and Vinegar type quadratic forms [8,7,3]. Thus the problem
of recovering the secret keys of Quaternion Rainbow can be reduced to that
of recovering them of the original Rainbow of at most 1/4-size by the Kipnis-
Shamir attack [8,7,3] in polynomial time. This means that the security level
of the Quaternion Rainbow over even characteristic field is almost 1/4 of that
expected in [13] and about 1/3 of that estimated by Thomae [11].

2 Rainbow

The Rainbow [4] is a signature scheme consisting in MPKC. Throughout this
paper, we study the double-layer version of Rainbow for simplicity.

2.1 Scheme

Let q be a power of prime and k a finite field of order q. For integers o1, o2, v ≥ 1,
m := o1 + o2 and n := m + v, the quadratic map G : kn → km for Rainbow is
given as follows.

G(x) = (g1(x), · · · , gm(x)), x = (x1, · · · , xn)
t ∈ kn,

where

gl(x) :=
∑

(i,j)∈Ll,1

α
(l)
i,jxixj +

∑
i∈Ll,2

β
(l)
i xi + γ(l)

with α
(l)
i,j , β

(l)
i , γ(l) ∈ k and

Ll,1 :=

{
{o1 + 1 ≤ i, j ≤ n}\{o1 + 1 ≤ i, j ≤ m}, (1 ≤ l ≤ o2),

{1 ≤ i, j ≤ n}\{1 ≤ i, j ≤ o1}, (o2 + 1 ≤ l ≤ m),

Ll,2 :=

{
{o1 + 1 ≤ i ≤ n}, (1 ≤ l ≤ o2),

{1 ≤ i ≤ n}, (o2 + 1 ≤ l ≤ m).

Note that gl’s are described by

gl(x)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
xt

⎛⎜⎝0o1 0 0

0 0o2 ∗
0 ∗ ∗v

⎞⎟⎠x+ (linear form of xo1+1, . . . , xn), (1 ≤ l ≤ o2),

xt

(
0o1 ∗
∗ ∗o2+v

)
x+ (linear form of x1, . . . , xn), (o2 + 1 ≤ l ≤ m).

246 Y. Hashimoto

The (o1, o2, v)-Rainbow is constructed as follows.

Secret Key: The secret keys consists of two invertible affine maps S : kn → kn,
T : km → km and the quadratic map G : kn → km given above.

Public Key: The public key is the convolution F := T ◦ G ◦ S : kn → km of
three maps S,G, T , namely

F : kn
S−→ kn

G−→ km
T−→ km.

Signature Generation: For a message y ∈ km, the signature is given as follows.
Step 1. Compute z := T−1(y) = (z1, · · · , zm)t ∈ km.
Step 2. Choose r1, . . . , rv ∈ k randomly.
Step 3. Find xo1+1, . . . , xm ∈ k such that

g1(x1, · · · , xm, r1, · · · , rv) = z1,

...

go2(x1, · · · , xm, r1, · · · , rv) = zo2 .

By the definition of G, the equations above are linear equations of xo1+1, . . . , xm.
Therefore xo1+1, . . . , xm are found by the Gaussian elimination and are indepen-
dent on the choice of x1, · · · , xo1 .
Step 4. For xo1+1, · · · , xm given in Step 3, find x1, · · · , xo1 ∈ k such that

go2+1(x1, · · · , xm, r1, · · · , rv) = zo2+1,

...

gm(x1, · · · , xm, r1, · · · , rv) = zm.

Similar to Step 3, they can be found by the Gaussian eliminations.
Step 5. The signature for y ∈ km is w := S−1((x1, · · · , xm, r1, · · · , rv)t) ∈ kn.

Signature Verification: Check whether F (w) = y.

2.2 Major Attacks

The following attacks are applicable to Rainbow.

1. Kipnis-Shamir’s Attack on UOV. It was proposed by Kipnis and Shamir
[8,7,3] against the (unbalanced) Oil and Vinegar signature scheme. If the coef-
ficient matrices of gl’s are in the form

(
0N ∗∗ ∗M

)
, this attack recovers S partially

with the complexity O(qmax(0,M−N) · (polyn.)). On the (o1, o2, v)-Rainbow, the
complexity of Kipnis-Shamir’s attack is O(qv+o2−o1 · (polyn.)) [8,7,3].
2. The High-Rank Attack. If there are gaps among the ranks of the coefficient
matrices of gl’s, the high-rank attack recovers T partially. On the (o1, o2, v)-
Rainbow, the complexity of the high-rank attack is O(qo1 · (polyn.)) [12,10].
3. The Min-Rank Attack. If there are gl’s whose coefficient matrices are of
small ranks, the min-rank attack recovers T partially. On the (o1, o2, v)-Rainbow,
the complexity of the min-rank attack is O(qv+o2 · (polyn.)) [12,10].

Cryptanalysis of the Quaternion Rainbow 247

Other than the attacks above, the security against the Gröbner basis attacks
[6,1], the UOV-Reconciliation attacks and the Rainbow Band Separation attacks
[5] have been studied. See [10] for experiments of these attacks on Rainbow with
smaller n and m.

3 Quaternion Rainbow

In this section, we survey Quaternion Rainbow [13].

3.1 Scheme

Let q be a power of prime and k a finite field of order q. The quaternion ring
Q(k) over k is defined by

Q(k) :=k + ki+ kj + kij

={a1 + a2i+ a3j + a4ij | a1, a2, a3, a4 ∈ k},
where i, j satisfy i2 = j2 = −1 and ij = −ji. Notice that Q(k) is non-
commutative when q is odd.

For integers õ1, õ2, ṽ ≥ 1, put m̃ := õ1 + õ2 and ñ := m̃ + ṽ. The se-
cret quadratic map G̃ : Q(k)ñ → Q(k)m̃ of Quaternion Rainbow is defined as
follows [13].

g̃l(x) :=
∑

(i,j)∈L̃l,1

x̃iα̃
(l)
i,j x̃j +

∑
i∈L̃l,2

(β̃
(l)
i,1x̃i + x̃iβ̃

(l)
i,2) + γ̃(l)

where α̃
(l)
i,j , β̃

(l,1)
i , β̃

(l)
i,2, γ̃

(l) ∈ k and

L̃l,1 :=

{
{õ1 + 1 ≤ i, j ≤ ñ}\{õ1 + 1 ≤ i, j ≤ m̃}, (1 ≤ l ≤ õ2),

{1 ≤ i, j ≤ ñ}\{1 ≤ i, j ≤ õ1}, (õ2 + 1 ≤ l ≤ m̃),

L̃l,2 :=

{
{õ1 + 1 ≤ i ≤ ñ}, (1 ≤ l ≤ õ2),

{1 ≤ i ≤ ñ}, (õ2 + 1 ≤ l ≤ m̃).

Denoting x̃ = x1 + x2i + x3j + x4ij and x̃′ = xt
1 + xt

2i + xt
3j + xt

4ij with
x1, x2, x3, x4 ∈ kñ, we can rewrite g̃l in the form

g̃l(x̃) = x̃′G̃lx̃+ (linear), (1)

where G̃l is an ñ× ñ matrix with Q(k)-entries given as follows.

G̃l =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝0õ1 0 0

0 0õ2 ∗
0 ∗ ∗ṽ

⎞⎟⎠ , (1 ≤ l ≤ õ2)(
0õ1 ∗
∗ ∗õ2+ṽ

)
, (õ2 + 1 ≤ l ≤ m̃).

(2)

248 Y. Hashimoto

Let ψ : k4ñ → Q(k)ñ and ϕ : Q(k)m̃ → k4m̃ be one-to-one maps given by

ψ(a1, a2, a3, a4) =a1 + a2i+ a3j + a4ij,

ϕ(b1 + b2i+ b3j + b4ij) =(b1, b2, b3, b4)

for a1, a2, a3, a4 ∈ kñ and b1, b2, b3, b4 ∈ km̃, and put G := ϕ ◦ G̃ ◦ ψ.

G : k4ñ
ψ−→ Q(k)ñ

G̃−→ Q(k)m̃
ϕ−→ k4m̃.

We now study the quadratic map G. Let G̃l,1, G̃l,2, G̃l,3, G̃l,4 (1 ≤ l ≤ m̃) be
the ñ× ñ matrices with k entries such that

G̃l = G̃l,1 + G̃l,2i+ G̃l,3j + G̃l,4ij

and x :=

(
x1
x2
x3
x4

)
for x̃ = x1 + x2i+ x3j + x4ij. Then we have

x̃′G̃lx =(xt
1 + xt

2i+ xt
3j + xt

4ij)(G̃l,1 + G̃l,2i+ G̃l,3j + G̃l,4ij)

· (x1 + x2i+ x3j + x4ij)

=xt

⎛⎜⎜⎝
G̃l,1 −G̃l,2 −G̃l,3 −G̃l,4

−G̃l,2 −G̃l,1 −G̃l,4 G̃l,3

−G̃l,3 G̃l,4 −G̃l,1 −G̃l,2

−G̃l,4 −G̃l,3 G̃l,2 −G̃l,1

⎞⎟⎟⎠x · 1 + xt

⎛⎜⎜⎝
G̃l,2 G̃l,1 G̃l,4 −G̃l,3

G̃l,1 −G̃l,2 −G̃l,3 −G̃l,4

G̃l,4 −G̃l,3 G̃l,2 −G̃l,1

G̃l,3 G̃l,4 G̃l,1 −G̃l,2

⎞⎟⎟⎠x · i

+xt

⎛⎜⎜⎝
G̃l,3 −G̃l,4 G̃l,1 G̃l,2

G̃l,4 G̃l,3 −G̃l,2 G̃l,1

G̃l,1 −G̃l,2 −G̃l,3 −G̃l,4

−G̃l,2 −G̃l,1 −G̃l,4 −G̃l,3

⎞⎟⎟⎠x ·j+xt

⎛⎜⎜⎝
G̃l,4 G̃l,3 −G̃l,2 G̃l,1

−G̃l,3 G̃l,4 −G̃l,1 −G̃l,2

G̃l,2 G̃l,1 −G̃l,4 −G̃l,3

G̃l,1 −G̃l,2 −G̃l,3 −G̃l,4

⎞⎟⎟⎠x ·ij.

Since G̃l,1, G̃l,2, G̃l,3, G̃l,4 are in the forms (2), it is easy to see that the quadratic
map G : k4ñ → k4m̃ in the (õ1, õ2, ṽ)-Quaternion Rainbow is written as G in the
(4õ1, 4õ2, 4ṽ)-Rainbow. Thus, setting two invertible affine maps S : k4ñ → k4ñ,
T : k4m̃ → k4m̃ as the secret keys and F := T ◦ G ◦ S : k4ñ → k4m̃ as the
public key in the (õ1, õ24ṽ)-Quaternion Rainbow, we can interpret (õ1, õ2, ṽ)-
Quaternion Rainbow as a special version of the (4õ1, 4õ2, 4ṽ)-Rainbow.

3.2 Previous Security Analysis

The authors in [13] claimed that the security levels of the (õ1, õ2, ṽ)-Quaternion
Rainbow and the (4õ1, 4õ2, 4ṽ)-Rainbow are same. However, Thomae [11] found
that, taking linear sums of the coefficient matrices in G, one gets matrices of
smaller ranks, and then the security of Quaternion Rainbow against the rank
attacks is weaker than the same size original Rainbow. Table 1 summarizes the
security levels estimated in [13] and [11].

Cryptanalysis of the Quaternion Rainbow 249

Table 1. Previous security analysis on Quaternion Rainbow

Kipnis-Shamir Min-Rank High-Rank

Original Rainbow q4ṽ+4õ2−4õ1 q4ṽ+4õ2 q4õ1

Yasuda-Sakurai-Takagi [13] q4ṽ+4õ2−4õ1 q4ṽ+4õ2 q4õ1

Thomae [11] (2 � q) q4ṽ+4õ2−4õ1 q4ṽ+3õ2 q3õ1

Thomae [11] (2 | q) q4ṽ+4õ2−4õ1 q4ṽ+õ2 q3õ1

4 Proposed Security Analysis

In this section, we analyze the security of Quaternion Rainbow.

4.1 The Case of Odd Characteristic

Study the case that q is odd. Suppose that a, b ∈ k satisfy

a2 + b2 = −4−1 (3)

and put

α := 2−1 + ai+ bij, ᾱ := 2−1 − ai− bij. (4)

There always exist a, b ∈ k with (3) due to Lemma 2 in [11], . The following
properties of α, ᾱ ∈ Q(k) are given by the equation (3):

α2 = α, ᾱ2 = ᾱ, αᾱ = ᾱα = 0, αj = jᾱ, ᾱj = jα. (5)

We now state the following lemma.

Lemma 1. Let k be a finite field of odd characteristic. Then, for any (a1, a2,
a3, a4) ∈ k4, there exists a unique (b1, b2, b3, b4) ∈ k4 such that

a1 + a2i+ a3j + a4ij = b1α+ b2ᾱ+ b3αj + b4ᾱj, (6)

namely {α, ᾱ, αj, ᾱj} is a basis of Q(k) over k.

Proof. Equation (6) holds if⎛⎜⎜⎝
a1
a2
a3
a4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2−1 2−1 0 0
a −a −b b
0 0 2−1 2−1

b −b a −a

⎞⎟⎟⎠
⎛⎜⎜⎝
b1
b2
b3
b4

⎞⎟⎟⎠ . (7)

Due to (3), we see that the square matrix in the right hand side of the equation
above is invertible. Thus the claim in this lemma holds. ��

250 Y. Hashimoto

According to the properties (5) of α, ᾱ, we can find the following multiplicative
properties among the elements in the basis:

α · α = α, α · ᾱ = 0, α · αj =αj, α · ᾱj =0,

ᾱ · α = 0, ᾱ · ᾱ = ᾱ, ᾱ · αj =0, ᾱ · ᾱj =ᾱj,

αj · α = 0, αj · ᾱ = αj, αj · αj =0, αj · ᾱj =− α,

ᾱj · α = ᾱj, ᾱj · ᾱ = 0, ᾱj · αj =− ᾱ, ᾱj · ᾱj =0.

By using the basis {α, ᾱ, αj, ᾱj}, we can rewrite the quadratic map G̃ in Quater-
nion Rainbow as follows:

x̃ = y1α+ y2ᾱ+ y3αj + y4ᾱj, x̃′ = yt1α+ yt2ᾱ+ yt3αj + yt4ᾱj,

g̃l(x̃) = x̃′G̃lx̃+ (linear form),

where y1, y2, y3, y4 are unknowns in kñ and G̃l is an ñ × ñ-matrix with Q(k)-
entries given in (2). Note that, since the entries in G̃l are linear sums of {α, ᾱ, αj,
ᾱj} over k, G̃l is given by

G̃l = Hl,1α+Hl,2ᾱ+Hl,3αj +Hl,4ᾱj,

where Hl,1, Hl,2, Hl,3, Hl,4 are ñ× ñ-matrices with k-entries in the forms

Hl,1, Hl,2, Hl,3, Hl,4 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝0õ1 0 0

0 0õ2 ∗
0 ∗ ∗ṽ

⎞⎟⎠ , (1 ≤ l ≤ õ2)(
0õ1 ∗
∗ ∗õ2+ṽ

)
, (õ2 + 1 ≤ l ≤ m̃).

(8)

Thus g̃l(x̃) is written by

x̃′G̃lx̃ =(yt1α+ yt2ᾱ+ yt3αj + yt4ᾱj)(Hl,1α+Hl,2ᾱ+Hl,3αj +Hl,4ᾱj)

· (y1α+ y2ᾱ+ y3αj + y4ᾱj)

=(yt1Hl,1y1 − yt4Hl,2y3 − yt1Hl,3y4 − yt3Hl,4y1)α

+ (−yt4Hl,1y3 + yt2Hl,2y2 − yt2Hl,3y4 − yt3Hl,4y2)ᾱ

+ (yt2Hl,1y3 + yt3Hl,2y1 + yt1Hl,3y2 − yt3Hl,4y3)αj

+ (yt1Hl,1y4 + yt4Hl,2y2 − yt4Hl,3y4 + yt2Hl,4y1)ᾱj. (9)

Cryptanalysis of the Quaternion Rainbow 251

Putting y :=

(y1
y2
y3
y4

)
, we have

x̃′G̃lx̃=yt

⎛⎜⎜⎝
Hl,1 0ñ − 1

2Hl,4 − 1
2Hl,3

0ñ 0ñ 0ñ 0ñ
− 1

2Hl,4 0ñ 0ñ − 1
2Hl,2

− 1
2Hl,3 0ñ − 1

2Hl,2 0ñ

⎞⎟⎟⎠y ·α+yt

⎛⎜⎜⎝
0ñ 0ñ 0ñ 0ñ
0ñ Hl,2 − 1

2Hl,4 − 1
2Hl,3

0ñ − 1
2Hl,4 0ñ − 1

2Hl,1

0ñ − 1
2Hl,3 − 1

2Hl,1 0ñ

⎞⎟⎟⎠y ·ᾱ

+yt

⎛⎜⎜⎝
0ñ

1
2Hl,3

1
2Hl,1 0ñ

1
2Hl,3 0ñ

1
2Hl,2 0ñ

1
2Hl,1

1
2Hl,2 −Hl,4 0ñ

0ñ 0ñ 0ñ 0ñ

⎞⎟⎟⎠ y · αj + yt

⎛⎜⎜⎝
0ñ

1
2Hl,4 0ñ

1
2Hl,1

1
2Hl,4 0ñ 0ñ

1
2Hl,2

0ñ 0ñ 0ñ 0ñ
1
2Hl,1

1
2Hl,2 0ñ −Hl,3

⎞⎟⎟⎠ y · ᾱj

=:ytH̃l,1y · α+ ytH̃l,2y · ᾱ+ ytH̃l,3y · αj + ytH̃l,4y · ᾱj. (10)

For a1, a2, a3, a4 ∈ kñ and b1, b2, b3, b4 ∈ km̃, let ψ, ψ1 : k4ñ → Q(k)ñ and
ϕ, ϕ1 : Q(k)m̃ → k4m̃ be the one-to-one maps as follows:

ψ(a1, a2, a3, a4) =a1 + a2i+ a3j + a4ij,

ψ1(a1, a2, a3, a4) =a1α+ a2ᾱ+ a3αj + a4ᾱj,

ϕ(b1 + b2i+ b3j + b4ij) =(b1, b2, b3, b4),

ϕ1(b1α+ b2ᾱ+ b3αj + b4ᾱj) =(b1, b2, b3, b4).

Due to Lemma 1 and its proof, we see that there exist invertible linear transfor-
mations U : k4ñ → k4ñ and V : k4m̃ → k4m̃ such that

ψ = ψ1 ◦ U, ϕ = V ◦ ϕ1, (11)

and U, V are explicitly described by the matrix in (7). According to (10) and
(11), we have

T ◦ ϕ ◦ G̃ ◦ ψ ◦ S = T̃ ◦ H̃ ◦ S̃,

where

S̃ := U ◦ S : k4ñ → k4ñ,

T̃ := T ◦ V : k4m̃ → k4m̃

are invertible affine maps and

H̃ := ϕ1 ◦ G̃ ◦ ψ1 : k4ñ → k4m̃

is a quadratic map whose coefficient matrices in the quadratic forms are given
by H̃l,1, H̃l,2, H̃l,3, H̃l,4 (1 ≤ l ≤ m̃). This means that the (õ1, õ2, ṽ)-Quaternion

Rainbow proposed in §3.1 is interpreted by an MPKC scheme such that S̃, T̃
and H̃ are the secret keys and F = T̃ ◦ H̃ ◦ S̃ is the public key.

Based on this fact, we now explain how (partial information of) the secret
keys S̃, T̃ are recovered by the rank attacks.

252 Y. Hashimoto

The Min-Rank Attack. Let F1, . . . , F4ñ be the coefficient matrices of the
quadratic forms in the public key F . Recall that any Fl (1 ≤ l ≤ 4m̃) is a
linear sum of S̃tH̃l,1S̃, S̃

tH̃l,2S̃, S̃
tH̃l,3S̃, S̃

tH̃l,4S̃ (1 ≤ l ≤ m̃). Due to (8) and

(10), we see that the minimum of the ranks of H̃l,1, H̃l,2, H̃l,3, H̃l,4 is 3ṽ + 3õ2.

Then the min-rank attack [12] finds c1, . . . , c4m̃ ∈ k such that the rank of F̂ :=
c1F1+ · · ·+ c4m̃F4m̃ is 3ṽ+3õ2 with the complexity q3ṽ+3õ2 · (polyn.). Note that
c1, . . . , c4m̃ are partial information of T̃ . Once such c1, . . . , c4m̃ are given, partial
information of S̃ and further information of T̃ are recovered from F̂ .

The High-Rank Attack. Recall again that any Fl (1 ≤ l ≤ 4m̃) is
a linear sum of S̃tH̃l,1S̃, S̃

tH̃l,2S̃, S̃tH̃l,3S̃, S̃
tH̃l,4S̃ (1 ≤ l ≤ m̃). Due

to (8) and (10), we see that, removing the contributions of 3õ1 matrices
{S̃tH̃l,1S̃, S̃

tH̃l,2S̃, S̃
tH̃l,3S̃}õ2+1≤l≤m̃, {S̃tH̃l,1S̃, S̃tH̃l,2S̃, S̃

tH̃l,4S̃}õ2+1≤l≤m̃,

{S̃tH̃l,1S̃, S̃
tH̃l,3S̃, S̃

tH̃l,4S̃}õ2+1≤l≤m̃ or {S̃tH̃l,2S̃, S̃
tH̃l,3S̃, S̃

tH̃l,4S̃}õ2+1≤l≤m̃,
we get a matrix of rank 4ñ−õ1. Then the high-rank attack [12] finds c1, . . . , c4m̃ ∈
k such that the rank of F̂ := c1F1+ · · ·+ c4m̃F4m̃ is 4ñ− õ1 with the complexity
q3õ1 · (polyn.). Note that c1, . . . , c4m̃ are partial information of T̃ . Once such
c1, . . . , c4m̃ are given, partial information of S̃ and further information of T̃ are
recovered from F̂ .

4.2 The Case of Even Characteristic

Study the case of even characteristic. Note that Q(k) is commutative since −1 =
1 in even characteristic k. Let

α := 1 + i, β := 1 + j.

Similar to the case of odd characteristic, the following lemma holds.

Lemma 2. Let k be a finite field of even characteristic. Then, for any (a1, a2,
a3, a4) ∈ k4, there exists a unique (b1, b2, b3, b4) ∈ k4 such that

a1 + a2i+ a3j + a4ij = b1 + b2α+ b3β + b4αβ, (12)

namely {1, α, β, αβ} is a basis of Q(k) over k. ��
The multiplicative relations among 1, α, β, αβ are as follows:

1 · 1 =1, 1 · α =α, 1 · β =β, 1 · αβ =αβ,

α · 1 =α, α · α =0, α · β =αβ, α · αβ =0,

β · 1 =β, β · α =αβ, β · β =0, β · αβ =0,

αβ · 1 =αβ, αβ · α =0, αβ · β =0, αβ · αβ =0.

By using the basis {1, α, β, αβ}, we can rewrite the quadratic form G̃ as follows:

x̃ =y1 + y2α+ y3β + y4αβ, g̃l(x̃) = x̃tG̃lx̃+ (linear form),

Cryptanalysis of the Quaternion Rainbow 253

where y1, y1, y3, y4 are unknowns in kñ and G̃l is an ñ × ñ-matrix with Q(k)-
entries given in (2). Note that, since the entries in G̃l are linear sums of
{1, α, β, αβ} over k, G̃l is given by

G̃l = Hl,1 +Hl,2α+Hl,3β +Hl,4αβ,

where Hl,1, Hl,2, Hl,3, Hl,4 are ñ × ñ-matrices with k-entries in the same forms
of (8). Thus g̃l(x̃) is written by

x̃tG̃lx̃ =(yt1 + yt2α+ yt3β + yt4αβ)(Hl,1 +Hl,2α+Hl,3β +Hl,4αβ)

· (y1 + y2α+ y3β + y4αβ)

=yt1Hl,1y1 · 1 + (yt1Hl,1y2 + yt2Hl,1y1 + yt1Hl,2y1) · α
+ (yt1Hl,1y3 + yt3Hl,1y1 + yt1Hl,3y1) · β
+ (yt1Hl,1y4 + yt2Hl,1y3 + yt3Hl,1y2 + yt4Hl,1y1

+ yt1Hl,2y3 + yt3Hl,2y1 + yt2Hl,3y1 + yt1Hl,3y2 + yt1Hl,4y1) · αβ (13)

Putting y :=

(y1
y2
y3
y4

)
, we have

x̃tG̃lx̃ =yt

⎛⎜⎜⎝
Hl,1 0ñ 0ñ 0ñ
0ñ 0ñ 0ñ 0ñ
0ñ 0ñ 0ñ 0ñ
0ñ 0ñ 0ñ 0ñ

⎞⎟⎟⎠ y · 1 + yt

⎛⎜⎜⎝
Hl,2 Hl,1 0ñ 0ñ
Hl,1 0ñ 0ñ 0ñ
0ñ 0ñ 0ñ 0ñ
0ñ 0ñ 0ñ 0ñ

⎞⎟⎟⎠ y · α

+ yt

⎛⎜⎜⎝
Hl,3 0ñ Hl,1 0ñ
0ñ 0ñ 0ñ 0ñ
Hl,1 0ñ 0ñ 0ñ
0ñ 0ñ 0ñ 0ñ

⎞⎟⎟⎠ y · β + yt

⎛⎜⎜⎝
Hl,4 Hl,3 Hl,2 Hl,1

Hl,3 0ñ Hl,1 0ñ
Hl,2 Hl,1 0ñ 0ñ
Hl,1 0ñ 0ñ 0ñ

⎞⎟⎟⎠ y · αβ

=:ytH̃l,1y · 1 + ytH̃l,2y · α+ ytH̃l,3y · β + ytH̃l,4y · αβ. (14)

For a1, a2, a3, a4 ∈ kñ and b1, b2, b3, b4 ∈ km̃, let ψ, ψ1 : k4ñ → Q(k)ñ and
ϕ, ϕ1 : Q(k)m̃ → k4m̃ be the one-to-one maps as follows:

ψ(a1, a2, a3, a4) =a1 + a2i+ a3j + a4ij,

ψ1(a1, a2, a3, a4) =a1 + a2α+ a3β + a4αβ,

ϕ(b1 + b2i+ b3j + b4ij) =(b1, b2, b3, b4),

ϕ1(b1 + b2α+ b3β + b4αβ) =(b1, b2, b3, b4).

Due to Lemma 2, we see that there exist invertible linear transformations U :
k4ñ → k4ñ and V : k4m̃ → k4m̃ such that

ψ = ψ1 ◦ U, ϕ = V ◦ ϕ1, (15)

and U, V are explicitly given. According to (14) and (15), we have

T ◦ ϕ ◦ G̃ ◦ ψ ◦ S = T̃ ◦ H̃ ◦ S̃,

254 Y. Hashimoto

where

S̃ := U ◦ S : k4ñ → k4ñ,

T̃ := T ◦ V : k4m̃ → k4m̃

are invertible affine maps and

H̃ := ϕ1 ◦ G̃ ◦ ψ1 : k4ñ → k4m̃

is a quadratic map whose coefficient matrices in the quadratic forms are given
by H̃l,1, H̃l,2, H̃l,3, H̃l,4 (1 ≤ l ≤ m̃). This means that the (õ1, õ2, ṽ)-Quaternion

Rainbow proposed in §3.1 is interpreted by an MPKC scheme such that S̃, T̃
and H̃ are the secret keys and F = T̃ ◦ H̃ ◦ S̃ is the public key.

Based on this fact, we now explain how (partial information of) the secret
keys S̃, T̃ are recovered by the rank attacks and the Kipnis-Shamir attack.

The Min-Rank Attack. Let F1, . . . , F4ñ be the coefficient matrices of the
quadratic forms in the public key F . Due to (8) and (14), we see that the
minimum of the ranks of H̃l,1, H̃l,2, H̃l,3, H̃l,4 is ṽ+ õ2. Then the min-rank attack

[12] finds c1, . . . , c4m̃ ∈ k such that the rank of F̂ := c1F1 + · · · + c4m̃F4m̃ is
ṽ + õ2 with the complexity qṽ+õ2 · (polyn.). Note that c1, . . . , c4m̃ are partial
information of T̃ . Once such c1, . . . , c4m̃ are given, partial information of S̃ and
further information of T̃ are recovered from F̂ .

The High-Rank Attack. Due to (8) and (14), we see that, removing the
contributions of õ1 matrices {S̃tH̃l,4S̃}õ2+1≤l≤m̃, we get a matrix of rank 4ñ− õ1.

Then the high-rank attack [12] finds c1, . . . , c4m̃ ∈ k such that the rank of F̂ :=
c1F1 + · · · + c4m̃F4m̃ is 4ñ − õ1 with the complexity qõ1 · (polyn.). Note that
c1, . . . , c4m̃ are partial information of T̃ . Once such c1, . . . , c4m̃ are given, partial
information of S̃ and further information of T̃ are recovered from F̂ .

Kipnis-Shamir’s Attack. We now use the following lemma.

Lemma 3. ([8,7,3]) Let m,n ≥ 1 be integers and P1, . . . , Pm be 2n×2n-matrices
with k-entries. If P1, . . . , Pm are public and are given in the forms

Pl = At

(∗n ∗
∗ 0n

)
A (1 ≤ l ≤ m)

where A is an invertible 2n × 2n-matrix, then Kipnis-Shamir’s attack [8,7,3]
recovers an n× n-matrix A1 such that

A

(
In A1

0 In

)
=

(∗n 0
∗ ∗n

)
in polynomial time of n,m and log q.

Equation (14) tells that any linear sum of H̃l,1, H̃l,2, H̃l,3, H̃l,4 (1 ≤ l ≤ m̃) is
in the form

(∗2ñ ∗
∗ 02ñ

)
. Then, due to Lemma 3, Kipnis-Shamir’s attack [8,7,3]

recovers a 2ñ× 2ñ matrix M1 such that

Cryptanalysis of the Quaternion Rainbow 255

S̃

(
I2ñ M1

0 I2ñ

)
=

(∗2ñ 0
∗ ∗2ñ

)
in polynomial time. Put F

(1)
l :=

(
I2ñ 0
Mt

1 I2ñ

)
Fl

(
I2ñ M1

0 I2ñ

)
. Since(∗ ∗

0 ∗
)(∗ ∗

∗ 0
)(∗ 0

∗ ∗
)

=

(∗ ∗
∗ 0
)
,

(∗ ∗
0 ∗
)(∗ 0

0 0

)(∗ 0
∗ ∗
)

=

(∗ 0
0 0

)
, (16)

any F
(1)
l is in the form

(∗2ñ ∗
∗ 02ñ

)
and we can find 2m̃ linear sums F

(2)
1 , . . . , F

(2)
2ñ

of F
(1)
1 , . . . , F

(1)
4ñ in the forms

(∗2ñ 0
0 02ñ

)
by the Gaussian eliminations. Note

that F
(2)
l (1 ≤ l ≤ 2m̃) is a linear sum of

(
I2ñ 0
Mt

1 I2ñ

)
S̃tH̃l,1S̃

(
I2ñ M1

0 I2ñ

)
and(

I2ñ 0
Mt

1 I2ñ

)
S̃tH̃l,2S̃

(
I2ñ M1

0 I2ñ

)
(1 ≤ l ≤ m̃).

Equation (14) tells that the upper left block of any linear sum of H̃l,1, H̃l,2

(1 ≤ l ≤ m̃) is in the form
(∗ñ ∗

∗ 0ñ

)
. Then, due to Lemma 3, Kipnis-Shamir’s

attack recovers an ñ× ñ matrix M2 such that

S̃

(
I2ñ M1

0 I2ñ

)⎛⎝Iñ M2 0
0 Iñ 0
0 0 I2ñ

⎞⎠ =

⎛⎝∗ñ 0 0
∗ ∗ñ 0
∗ ∗ ∗2ñ

⎞⎠ (17)

in polynomial time. Put F
(3)
l :=

(
Iñ 0 0
Mt

2 Iñ 0
0 0 I2ñ

)(
I2ñ 0
Mt

1 I2ñ

)
F

(2)
l

(
I2ñ M1

0 I2ñ

)(Iñ M2 0
0 Iñ 0
0 0 I2ñ

)
(1 ≤ l ≤ 2m̃). We see that any F

(3)
l is in the form

(∗ñ ∗ 0
∗ 0ñ 0
0 0 02ñ

)
and we can find m̃

linear sums F
(4)
1 , . . . , F

(4)
m̃ of F

(3)
1 , . . . , F

(3)
2m̃ in the forms

(∗ñ 0
0 03ñ

)
by the Gaus-

sian eliminations. Since the upper left blocks of F
(4)
l (1 ≤ l ≤ m̃) is a linear sums

of S̃t
1Hl,1S̃1 (1 ≤ l ≤ m̃) with an ñ× ñ invertible matrix S̃1, the quadratic forms

derived from F
(4)
1 , . . . , F

(4)
ñ correspond to those in the (õ1, õ2, ṽ)-Rainbow.

Now let F̃ (x) = (f̃1(x̃), . . . , f̃4ñ(x̃)) be the quadratic map given by

f̃l(x) :=

⎧⎪⎨⎪⎩
xtF

(4)
l x+ (linear), (1 ≤ l ≤ m̃),

xtF
(3)
l x+ (linear), (m̃+ 1 ≤ l ≤ 2m̃),

xtF
(1)
l x+ (linear), (2m̃+ 1 ≤ l ≤ 4m̃)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt

(
∗ñ 0

0 03ñ

)
x+ (linear), (1 ≤ l ≤ m̃),

xt

⎛⎜⎝∗ñ ∗ 0

∗ 0ñ 0

0 0 02ñ

⎞⎟⎠ x+ (linear), (m̃+ 1 ≤ l ≤ 2m̃),

xt

(
∗2ñ ∗
∗ 02ñ

)
x+ (linear), (2m̃+ 1 ≤ l ≤ 4m̃).

256 Y. Hashimoto

Table 2. Comparisons of the security analysis on Quaternion Rainbow

Kipnis-Shamir Min-Rank High-Rank

Original Rainbow q4ṽ+4õ2−4õ1 q4ṽ+4õ2 q4õ1

Yasuda-Sakurai-Takagi [13] q4ṽ+4õ2−4õ1 q4ṽ+4õ2 q4õ1

Thomae [11] (2 � q) q4ṽ+4õ2−4õ1 q4ṽ+3õ2 q3õ1

Proposed (2 � q) q4ṽ+4õ2−4õ1 q3ṽ+3õ2 q3õ1

Thomae [11] (2 | q) q4ṽ+4õ2−4õ1 q4ṽ+õ2 q3õ1

Proposed (2 | q) qṽ+õ2−õ1 qṽ+õ2 qõ1

Since F̃ = T̂−1 ◦ F ◦ Ŝ−1 with two invertible affine maps Ŝ : k4ñ → k4ñ de-

rived from M1,M2 and T̂ : k4m̃ → k4m̃ derived from the maps {F (1)
l } #→

{F (2)
l }, {F (3)

l } #→ {F (4)
l }, inverting F̃ is equivalent to doing F . In order to find

x = (x1, . . . , x4ñ) with F̃ (x) = z for given z = (z1, . . . , z4m̃), we compute as
follows.

Step 1. Find x1, . . . , xñ such that f̃1(x) = z1, . . . , f̃m̃(x) = zm̃.
Step 2. For x1, . . . , xñ given in Step 1, find xñ+1, . . . , x2ñ such that f̃m̃+1(x) =
zm̃+1, . . . , f̃2m̃(x) = z2m̃.
Step 3. For x1, . . . , x2ñ given in Step 1 and 2, find x2ñ+1, . . . , x4ñ such that
f̃2m̃+1(x) = z2m̃+1, . . . , f̃4m̃(x) = z4m̃.

Once x1, . . . , xñ are fixed, f̃m̃+1(x) = zm̃+1, . . . , f̃2m̃(x) = z2m̃ are linear equa-
tions of ñ variables xñ+1, . . . , x2ñ. Furthermore, once x1, . . . , x2ñ are fixed,
f̃2m̃+1(x) = z2m̃+1, . . . , f̃4m̃(x) = z4m̃ are linear equations of 2ñ variables x2ñ+1,
. . . , x4ñ. Then Step 2 and 3 are computed by the Gaussian eliminations in poly-
nomial time. Recall that finding a solution of f̃1(x) = z1, . . . , f̃m̃(x) = zm̃ is
equivalent to generating a dummy signature of the (õ1, õ2, ṽ)-Rainbow. Thus we
conclude that the (õ1, õ2, ṽ)-Quaternion Rainbow over even characteristic field
is as secure as the (õ1, õ2, ṽ) original Rainbow, whose complexity against Kipnis-
Shamir’s attacks is qṽ+õ2−õ1 · (polyn.).

5 Conclusion

In the present paper, we estimate the security of Quaternion Rainbow against
Kipnis-Shamir’s attack [8,7,3] and the rank attacks [12]. Table 2 summarizes the
complexities of the (õ1, õ2, ṽ) Quaternion Rainbow.

For both even and odd characteristic cases, the security of Quaternion Rain-
bow is weaker than expected by the authors of [13]. Especially, the Quaternion
Rainbow over even characteristic field is almost as secure as the original Rainbow
of 1/4 size. Thus, Quaternion Rainbow is less practical than the original Rain-
bow. We consider that, since such vulnerabilities emerge from less randomness
of the distribution of coefficients in quadratic forms, preserving its randomness
will be required to build secure and efficient schemes.

Cryptanalysis of the Quaternion Rainbow 257

References

1. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic Expansion of the De-
gree of Regularity for Semi-Regular Systems of Equations. In: MEGA 2005 (2005)

2. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE Implementation of Multivariate PKCs on Modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009)

3. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate public key cryptosystems.
Springer, Heidelberg (2006)

4. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 164–175. Springer, Heidelberg (2005)

5. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-
Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008)

6. Faugère, J.C.: A new efficient algorithm for computing Grobner bases (F4). J. Pure
and Applied Algebra 139, 61–88 (1999)

7. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–2006. Springer,
Heidelberg (1999)

8. Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–267. Springer,
Heidelberg (1998)

9. Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – A multivariate signa-
ture scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010)

10. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting Parameters for the Rain-
bow Signature Scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061,
pp. 218–240. Springer, Heidelberg (2010)

11. Thomae, E.: Quo Vadis Quaternion? Cryptanalysis of Rainbow over Non-
commutative Rings. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 361–373. Springer, Heidelberg (2012)

12. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryp-
tosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

13. Yasuda, T., Sakurai, K., Takagi, T.: Reducing the Key Size of Rainbow Using
Non-commutative Rings. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178,
pp. 68–83. Springer, Heidelberg (2012)

On Cheater Identifiable Secret Sharing Schemes

Secure against Rushing Adversary

Rui Xu1, Kirill Morozov2, and Tsuyoshi Takagi2

1 Graduate School of Mathematics, Kyushu University
r-xu@math.kyushu-u.ac.jp

2 Institute of Mathematics for Industry, Kyushu University

Abstract. At EUROCRYPT 2011, Obana proposed a k-out-of-n secret
sharing scheme capable of identifying up to t cheaters with probability
1 − ε under the condition t < k/3. In that scheme, the share size |Vi|
satisfies |Vi| = |S|/ε, which is almost optimal. However, Obana’s scheme
is known to be vulnerable to attacks by rushing adversary who can ob-
serve the messages sent by the honest participants prior to deciding her
own messages. In this paper, we present a new scheme, which is secure
against rushing adversary, with |Vi| = |S|/εn−t+1, assuming t < k/3.
We note that the share size of our proposal is substantially smaller com-
pared to |Vi| = |S|(t + 1)3n/ε3n in the scheme by Choudhury at PODC
2012 when the secret is a single field element. A modification of the later
scheme is secure against rushing adversary under a weaker t < k/2 con-
dition. Therefore, our scheme demonstrates an improvement in share size
achieved for the price of strengthening the assumption on t.

Keywords: cheater identifiable secret sharing, Shamir secret sharing,
rushing adversary.

1 Introduction

Secret sharing, independently introduced by Shamir [1] and Blakley [2], is an im-
portant primitive enjoying numerous cryptographic applications such as thresh-
old cryptography [3], secure multiparty computation [4,5], and (perfectly) secure
message transmission [6], to mention a few. A typical example is the threshold
(or k-out-of-n) secret sharing scheme that allows a dealer D to distribute a secret
s among a set of n participants (or players) {P1, P2, . . . , Pn} in such a way that
the following two properties hold: (1) perfect secrecy: k − 1 or less participants
can get no information about s from their shares; (2) correctness : k or more
participants can pool their shares together to reconstruct the secret. In the orig-
inal setting of secret sharing schemes, it is assumed that all players will provide
correct shares when reconstructing the secret. Since this assumption does not
model the real life scenario, in which some participants may submit incorrect
shares in order to cause the reconstruction of an incorrect secret, a body of work
has been done on identifying the cheaters in secret sharing schemes. Next, we
will discuss some of the prominent results in this area. If there are more than one

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 258–271, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Cheater Identifiable Secret Sharing Schemes Secure 259

cheating participant, we will assume a single malicious adversary who controls
their behavior. The adversary is called rushing, if she is allowed to observe all the
messages sent by honest players (in every round) prior to deciding on cheaters’
messages.

1.1 Secret Sharing with Cheaters

In this work, we focus on secret sharing with cheater identification (SSCI). In
this setting, the dealer is assumed to be honest. At the reconstruction stage,
when a qualified subset of participants pool their shares, they will be able to
identify cheater(s) among them, who submitted a forged share, as long as the
number of cheaters is smaller than a certain bound.

The idea of secret sharing with protection against cheating was pioneered
by Tompa and Woll [7]. They modified the (k-out-of-n) Shamir secret sharing
scheme [1] to enable the cheater detection (not identification). The first secret
sharing scheme capable of identifying cheaters is due to Rabin and Ben-Or [4].
Later, McEliece and Sarwate [8] showed that Shamir scheme is cheater identifi-
able by exhibiting its connection to Reed-Solomon codes. Note that this scheme
requires the presence of more than k participants in order to carry out cheater
identification. In contrast, Kurosawa, Obana and Ogata [9] considered the prob-
lem of identifying cheaters when only k players take part in the reconstruction.
In particular, they gave a lower bound on the share size in this model:

|Vi| ≥ |S| − 1

ε
+ 1, (1)

where ε is the cheaters’ success probability.
In this work, we mainly focus on SSCI in the model of Kurosawa et al. [9].

They proposed an SSCI scheme identifying t < k/3 cheaters in k-out-of-n Shamir
secret sharing. Obana [10] improved Kurosawa et al.’s scheme by reducing the
share size to |Vi| = |S|/ε, which is almost optimal, and in addition proposed two
(inefficient) SSCI schemes identifying up to t < k/2 cheaters.

While the above mentioned schemes can only identify non-rushing cheaters,
Choudhury [11] implemented an efficient SSCI scheme which can identify up to
t < k/2 rushing cheaters, achieving the share size |Vi| = |S|/ε when the secret
consists of l = Ω(n) field elements.

Cevallos et al. [12] proposed a robust secret sharing scheme (RSS) against up

to t < n/2 rushing cheaters with share size |Vi| = |S|
[
log |S| · (t+ 1)(eε)

2
t+1

]3n
which is close-to-optimal. In their scheme, all the n players are required to take
part in the reconstruction phase.

We note that in this work, we focus on public cheater identification [10, 11],
where reconstruction is performed such that all the shares are treated equally
in terms of their trustworthiness by the reconstruction algorithm. It means that
this algorithm can be performed even by an external reconstructor. Such type
of schemes are only possible for the case of honest majority.

On the contrary, in the schemes with private identification [4, 13], the share
received by a user from the honest dealer is assumed to be trusted. Such types

260 R. Xu, K. Morozov, and T. Takagi

of schemes do not need honest majority for cheater identification, as explained
in [10]. The concept of identifying cheaters without an honest majority is further
developed by Ishai et al. in [14].

1.2 Related Works

To the best of our knowledge, up to date, the constructions of [11] and [12] are
the most efficient secret sharing schemes secure against rushing adversary, in
terms of their share size. Both of them are based on the paradigm by Rabin and
Ben-Or [4]. In these schemes, a pairwise authentication is applied to identify
cheaters in the reconstruction phase. More precisely, every player receives n− 1
tags computed according to some unconditional Message Authentication Code
(MAC) for every share, and the corresponding keys are distributed to the other
n−1 players, respectively. Therefore, every player can check the validity of shares
belonging to other players. Hereby, cheaters’ success probability is bounded by
the successful substitution attack probability of the used MAC. The schemes [11]
and [12] also employ some additional (novel) techniques on top of this generic
procedure.

In Choudhury’s scheme [11], the shared secret is a vector s = (s1, s2, . . . , sl)
from Fl

p, where Fp is some finite field and l ≥ 1. Every player Pi obtains Shamir
sharing shi of s element-wise. Then the sharing algorithm uses a MAC to au-
thenticate shi as ti,j = MAC(shi, kj,i) where kj,i held by player Pj is the au-
thentication key chosen uniformly and randomly from some finite field. At the
reconstruction phase, a majority voting is taken based on the result of verifying
each player’s tags. Each player whose share is not recognized by the majority
is identified as cheater (thus this scheme is public cheater identifiable). Choud-
hury’s scheme is asymptotically optimal when l = Ω(n).

The sharing phase of Cevallos et al. [12] is identical to that of Ben-Or [4]
except for the MAC used. Here, it is assumed that n = 2t + 1. The sharing
algorithm first chooses the secret s ∈ F then calculates tags of Pi’s Shamir share
as ti,j = MAC(shi, kj,i). At the reconstruction phase player Pi’s share shi will
be accepted as valid only if it is recognized by t + 1 players who hold accepted
shares. After that Reed-Solomon error correction is applied to rule out potential
cheaters who are not identified by the majority voting. Due to such an advanced
reconstruction phase, shorter keys and tags for the MAC can be used in their
scheme, as compared to the straightforward approach. Hereby, a reduction in
the share size is achieved.

We point out that in fact, Cevallos et al. scheme [12] can identify cheaters.
Moreover, it can be modified in a straightforward manner, in order to satisfy the
property of SSCI such that only k players can identify up to t < k/2 cheaters,
since it uses the same message authentication and majority voting strategy as [4]
and [11]. However, if there are only k players in the reconstruction phase, then
Reed-Solomon error correction will not rule out the potential cheaters who are
not identified by the majority voting. Let us explain this point in details: For
Reed-Solomon error correction to work, the number of correct symbols must be
greater than the degree of the polynomial f(x). In other words, Reed-Solomon

On Cheater Identifiable Secret Sharing Schemes Secure 261

error correction can only be used to rule out potential cheaters, if there are at
least k honest players in the reconstruction phase. On the other hand, when the
number of players taking part in reconstruction is m < k + t, Cevallos et al.’s
scheme [12] will lose the ability to identify potential cheaters using Reed-Solomon
error correction. This will imply that short keys and tags for the MAC will be no
longer secure (the security will then come exclusively from the employed MAC).
Therefore, if we modify Cevallos et al. [12] to work as a standard SSCI scheme,
it will become equivalent to Choudhury’s scheme for a single secret.

Let t be the number of cheaters, |Vi| – the size of a share for every player Pi,
m – the number of players involved in the reconstruction phase. We summarize
the SSCI schemes of [10, 11] and the RSS scheme of [12], and compare them to
our proposal in Table 1, unifying the parameters of all these schemes, for the
convenience sake.

Table 1. Comparison of Our Proposal to Existing SSCI schemes

Scheme # Cheaters Share Size Adversary
Players

at Reconstruction

Obana [10] t < k/3 |Vi| = |S|/ε Non-rushing m ≥ k

Choudhury [11] t < k/2 |Vi| = |S|(t+ 1)3n/ε3n Rushing m ≥ k

Cevallos et al. [12] t < n/2 |Vi| = |S|[log |S| · (t+ 1)(e
ε
)

2
t+1]3n Rushing m = n

Our Proposal t < k/3 |Vi| = |S|/εn−t+1 Rushing m ≥ k

From Table 1, we observe that Obana’s scheme [10] achieved the nearly op-

timal share size, since the lower bound on the share size is |Vi| ≥ |S|−1
ε + 1

according to [9]. However, recall that [10] can only deal with non-rushing ad-
versary. Choudhury’s scheme [11] is (almost) asymptotically optimal for large
secrets, and it has a desirable property of identifying rushing cheaters from the
minimal number of shares k. However for a single secret, the share size of this

scheme (that is |S|(t+1)3n

ε3n) is far from optimal. Cevallos et al. [12] scheme working
with a single secret achieves nearly optimal share size. However, their scheme
requires more than k + t players to identify t rushing cheaters.

Now, an interesting open question is to introduce a secret sharing scheme
(with share size smaller than those of the above schemes) for a single secret with
the property that only k players can identify rushing cheaters. Our proposal fills
this gap for t < k/3.

1.3 Our Result

We present an SSCI scheme with public cheater identification which is a k-out-
of-n secret sharing identifying up to t < k/3 rushing cheaters. The share size of
our SSCI scheme is |Vi| = |S|/εn−t+1, its parameters are summarized in Table 1.

262 R. Xu, K. Morozov, and T. Takagi

Note that in Table 1, we provide the share size of Choudhury’s scheme [11]
for the case of a single secret (l = 1). As we mentioned before, if the scheme by
Cevallos et al. [12] is modified to be an SSCI with the property of identifying
cheaters from the minimum number of shares, it will turn into Choudhury’s [11]
scheme with l = 1.

We emphasize that all the schemes mentioned in Table 1 are not directly com-
parable, however we list them together since they provide the same functionality.
Hereby, it will help the reader to place our contribution in the context of SSCI
and related schemes.

Our contribution is to achieve a tradeoff among the existing secret sharing
schemes with cheaters, in terms of tolerable cheaters (t), required players at
reconstruction (m), and the share size (|Vi|). Hereby we fill the following gap:
When the number of rushing cheaters is less than k/3 and only k players take
part in the reconstruction, our SSCI scheme is superior to the existing schemes
in terms of share size.

The closest related work is the one by Choudhury [11] so that we will now
provide a detailed comparison with this scheme. The share size of our scheme

is (t+1)3n

ε2n+t−1 times smaller than that of [11] (in the case of a single secret). This
advantage comes for the price of strengthening requirements on the number of
cheaters, that our scheme can tolerate, to t < k/3.

Let us elaborate more on the savings in the share size that we obtain by
providing a specific example. Let us consider the bit length to be added for the
sake of cheater identification (we will call it redundancy) – it will be computed
by taking a logarithm of |Vi| and subtracting log |S|. Then the bit length of
redundancy in Choudhury’s scheme and ours are respectively:

RedCho = 3n log(t+ 1) + 3n log(
1

ε
), (2)

RedOur = (n− t+ 1) log(
1

ε
). (3)

From the above equations we can see that asymptotically, our scheme adds at
least 3 times less redundancy as compared with Choudhary’s scheme if 1

ε >> n.
In Table 2, we compare the redundancy of our scheme to that of [11], fixing the
cheater success probability ε to be 2−80. For simplicity, we take t = !(n− 1)/3",
although the maximal tolerable number of cheaters t is !(k−1)/3" and !(k−1)/2"
in our scheme and in [11], respectively. We can see from Table 2 that as n
grows larger, our scheme needs less and less redundancy as compared with [11].
In particular, even for n = 4, our scheme will need 26.7 bytes of redundancy,
which is still 4.5 times less than 120.6 bytes needed for Choudhary’s scheme. We
emphasize again that the reduction of share size comes for the price of sacrifice
on the number of tolerable cheaters.

Our scheme (as well as [11] and [12]) has two rounds. In fact, it is round-
optimal since Cramer et al. [15] showed that two rounds of communication is
necessary in the rushing adversary model, if the secret sharing scheme requires

On Cheater Identifiable Secret Sharing Schemes Secure 263

Table 2. Redundancy Needed for Cheater Identification when t = �(n−1)/3�, ε = 2−80

n RedCho RedOur RedCho/RedOur

4 120.6 B 26.7 B 4.5
1024 33.2 KB 6.7 KB 5.0
218 9.0 MB 1.7 MB 5.4

an agreement among all honest players. Since our scheme is public cheater iden-
tifiable, an agreement among all honest players must indeed be achieved.

2 Preliminaries

Let us first fix some notation. Set [n] = {1, 2, . . . , n}. The cardinality of the set
X is denoted by |X |. Let Fp be a Galois field of a prime order p satisfying p > n.
All computation is done in the specified Galois fields.

2.1 Security Model and Communication Model

Throughout the paper, we consider an active rushing adversary with unbounded
computational power. By being rushing we mean that the adversary can observe
the information sent by all the honest players at each communication round,
prior to deciding on her own messages. The adversary can adaptively corrupt
up to t players (which then will be called cheaters) during the whole protocol
execution provided that t < k/3, where k is the threshold of the secret sharing
scheme. As usual in SSCI schemes, we assume that adversary cannot corrupt
the dealer D.

We assume that the entities are connected pairwise by private and authenti-
cated channels, and also that broadcast channel is available.

2.2 Secret Sharing

The n players are denoted by {P1, P2, . . . , Pn}. Let s be the secret chosen by D
from some distribution S, and let σi be the share distributed to player Pi. The
set of Pi’s possible shares is denoted by Vi. By a slight abuse of notation, we
also use S to denote the random variable induced by s and Vi as the random
variable induced by σi.

First, we describe k-out-of-n secret sharing scheme by Shamir [1]. A k-out-
of-n secret sharing scheme involves a dealer D and n participants {P1, . . . , Pn},
and consists of two algorithms: ShareGen and Reconst. The ShareGen al-
gorithm takes a secret s ∈ Fp as input and outputs a list (σ1, . . . , σn). Each σi

is distributed to participant Pi and called her share. The algorithm Reconst
takes a list (σ1, . . . , σm) as input and outputs the secret s if m ≥ k. Otherwise,

264 R. Xu, K. Morozov, and T. Takagi

the Reconst outputs ⊥. Formally, the properties of correctness and perfect se-
crecy hold:

1. Correctness: If m ≥ k, then Pr[Reconst(σ1, . . . , σm) = s] = 1;
2. Perfect secrecy: Ifm < k, then Pr[S = s|(V1 = σ1, . . . , Vm = σm)] = Pr[S =

s] for any s ∈ S.
In Shamir scheme, the above mentioned algorithms proceed as follows:

ShareGen:
1. For a given secret s ∈ Fp, the dealer D chooses a random polynomial

f(x) ∈ Fp[X] with degree at most k − 1 and f(0) = s.
2. For i ∈ [n], compute σi = f(xi) for a fixed xi ∈ Fp (where xi can be seen

as a unique identifier for Pi) and send σi privately to participant Pi.

Reconst:
If m ≥ k then output the secret s using Lagrange interpolation formula,

otherwise output ⊥.

Remark 1. For simplicity of our presentation, we will henceforth write the iden-
tifier of Pi as i, rather than xi.

Next, we formalize k-out-of-n SSCI schemes. As compared to ordinary secret
sharing schemes, we require that the reconstruction algorithm Reconst both
computes the secret and identifies incorrect shares that point at cheaters among
the involved participants. The output of Reconst algorithm is a tuple (s′, L),
where s′ is the reconstructed secret and L is the set of cheaters, moreover s′ = s
except with negligible probability. If a secret can not be reconstructed from the
given shares, then s′ is set to ⊥, while L = ∅ denotes the fact that no cheater is
identified.

Definition 1. A k-out-of-n SSCI scheme Σ is a tuple
(n, k, S, V,ShareGen,Reconst) consisting of :

– A positive integer n called the number of players;
– A positive integer k denoting the number of honest shares from which the

original secret can be reconstructed;
– A finite set S with |S| ≥ 2, whose elements are called secrets;
– A finite set V = {V1, V2, . . . , Vn}, where Vi is the set of player Pi’s shares.
– An algorithm ShareGen, that takes as input a secret s ∈ S, and outputs a

vector of n shares (σ1, σ2, . . . , σn) ∈ V1 × V2 × · · · × Vn; and
– An algorithm Reconst, that takes as input a vector (σ′

i1
, σ′

i2
, . . . , σ′

im
) ∈

Vi1×Vi2×· · ·×Vim , and outputs a tuple (s′, L), where s′ is the reconstructed
secret and L is the set of identified cheaters.

Remember that t denotes the maximum number of cheaters that a rushing
adversary can corrupt. We assume that the players in A(t) = {Pi1 , Pi2 , . . . , Pit}
are corrupted by the rushing adversary. In the SSCI scheme, a cheater Pij (1 ≤
j ≤ t) succeeds if Reconst fails to identify Pij as a cheater when Pij pro-
vides a forged share. Note that if Pij succeeded in cheating, then the recon-
structed secret s′ is different from the original secret s. Without loss of generality,

On Cheater Identifiable Secret Sharing Schemes Secure 265

we assume that at the reconstruction, the corrupted players Pi’s are those with
the smallest i’s in [n].

Definition 2. The successful cheating probability of player Pij ∈ A(t) against
the SSCI scheme Σ = (n, k, S, V,ShareGen,Reconst) is defined as

ε(Σ,A(t), Pij)

= Pr[(s′, L)← Reconst(σ′
i1 , σ

′
i2 , . . . , σ

′
it , σit+1 , . . . , σik) ∧ Pij /∈ L : σ′

ij 	= σij].

(4)

Remark 2. In Definition 2, we set ε(Σ,A(t), Pij) to be the successful cheating
probability of an individual cheater Pij . Since at most t players can be corrupted,
the overall failure probability for the SSCI scheme (i.e., the probability that at
least one cheater in A(t) succeeds) can be upper-bounded using the union bound.
We choose the individual successful cheating probability instead of the overall
failure probability to be in accordance with the definition of Obana [10].

Definition 3. A k-out-of-n SSCI scheme Σ = (n, k, S, V,ShareGen,Reconst)
is called (t, ε) SSCI scheme if the following properties hold:

1. Perfect secrecy: At the end of the algorithm ShareGen, any set of players
of size at most k − 1 have no information about the secret s.

2. ε-Correctness: ε(Σ,A(t), Pi) ≤ ε for any A(t) denoting the set of t or less
rushing cheaters, for any cheater Pi ∈ A(t). If at least k honest players join
the reconstruction protocol, the secret will be correctly recovered unless the
cheaters remain undetected.

Remark 3. Note that if at least k honest players take part in the reconstruc-
tion protocol, successful identification of cheaters is equivalent to recovering the
original secret. The secret is not correctly recovered if and only if one or more
cheaters are undetected. However, if less than k honest players are available,
our scheme can only identify the cheaters without recovering the original secret.
This is an intrinsic limitation of SSCI schemes since we only require k players
to identify the cheaters.

Remark 4. Our protocol, as well as the works of [4,10–12], prevents false positive
error, i.e., honest participants will never be identified as cheaters.

2.3 Reed-Solomon Error Correction

Let f(x) ∈ Fp[X] be a polynomial of degree at most k. Let x1, x2, . . . , xn ∈
Fp, for n > k, be pairwise distinct interpolation points. Then C =
(f(x1), f(x2), . . . , f(xn)) is a codeword of Reed-Solomon error correction
code [16]. Reed-Solomon code can correct up to n−k

2 erroneous symbols, i.e.
when t out of n evaluation points f(xi) (1 ≤ i ≤ n) are corrupted, the polyno-
mial can be uniquely determined if and only if n− k > 2t. Note that there exist
efficient algorithms implementing Reed-Solomon decoding, such as Berlekamp-
Welch algorithm [17]. We refer the reader to [18] for details on Reed-Solomon
codes.

266 R. Xu, K. Morozov, and T. Takagi

3 Our Proposal

In this section, we describe our k-out-of-n SSCI scheme secure against t < k/3
rushing adversary. We suppose that m ≥ k participants take part in the recon-
struction phase.

3.1 Overview

Our proposal departs from Obana’s scheme [10] and improves it in the following
manner. Consider k-out-of-n Shamir secret sharing. Since the maximum number
of cheaters is !(k−1)/3" and at least k players will take part in the reconstruction
phase, Obana [10] uses a polynomial of degree t to compute authentication tags
for each player’s share. The degree-t polynomial can be recovered given at least
k ≥ 3t+1 players’ tags, t of which might be corrupted, using Reed-Solomon de-
coding (with probability 1). In this scheme, protection against rushing adversary
is not provided, since the latter can see all the tags of the k players and recover
the polynomial (since k ≥ t+ 1). In other words, the adversary can recover the
authentication key, so that she will be able to forge authentication tag for an
arbitrary value submitted as her share.

In order to deal with this problem, we split the reconstruction phase into two
rounds. In the first round, only the Shamir shares and masked authentication
tags are revealed. Then in the second round, the masking key will be submitted
by each player. We share the masking key between all the n players using a
(t + 1)-out-of-n Shamir secret sharing, such that any t corrupted players can
neither get any information about the key nor alter it in the reconstruction
phase.

Unfortunately, the necessity to share the masking keys takes the share size
of our scheme away from the optimal bound. However, we observe that there is
no need to mask all of the authentication tags: since the knowledge of any t of
them gives no advantage to the adversary, it suffices to mask only n− t of them.

3.2 Our Scheme

Let q be a prime power such that q ≥ n · p and let φ : Fp × [n] → Fq be an
injective function.

Our proposed scheme is described below.

Protocol 1 (ShareGen).

Input: Secret s ∈ Fp.
Output: A list of n shares σ1, σ2, . . . , σn.

A dealer D performs the following:

1. Generate a random degree-(k − 1) polynomial fs(x) over Fp, such that
fs(0) = s. Compute vs,i = fs(i), for i = 1, 2, . . . , n.

2. Select a random degree-t polynomial g(x) over Fq. Compute vc,i=g(φ(vs,i, i)).

On Cheater Identifiable Secret Sharing Schemes Secure 267

3. (a) For i = 1, 2, . . . , t: Set vc,i = vc,i;
(b) For i = t+1, t+2, . . . , n: Randomly and uniformly generate a key ki ∈ Fq,
and compute vc,i = vc,i + ki.

4. For i = t+1, t+2, . . . , n: Generate a random degree-t polynomial hi(x) over
Fq, such that hi(0) = ki. Compute ki,j = hi(j), for j = 1, 2, . . . , n.

5. For i ∈ [n], set σi = {vs,i, vc,i, kt+1,i, . . . , kn,i} and distribute it privately to
player Pi.

Remark 5. Note that in Step 2, we must combine player’s share vs,i with her
identifier i before authentication, since otherwise a cheater can “steal” a share
and its authentication tag from some other player pretending that she has re-
ceived the same share without being detected. However, when we authenticate
the combination of the share and the identifier of a player, which is φ(vs,i, i), the
entities to be authenticated will be distinct for every player even if they received
the same share, since φ(·, ·) is an injective function.

Let CORE = {i1, i2, . . . , im} be the set of identifiers of the m participants
who want to recover the secret. Moreover, let σ′

ij
= {v′s,ij , v′c,ij , k′t+1,ij

, . . . , k′n,ij}
for each ij ∈ CORE. Furthermore, at most t out of m shares can be corrupted
in a rushing fashion.

Protocol 2 (Reconst).

Input: A list of m shares (σ′
i1
, σ′

i2
, . . . , σ′

im
), where m ≥ k.

Output: Either (⊥, L) or (s′, L), where L is the list of cheaters.

Communication rounds performed by each player ij ∈ CORE:

1. Announce {v′s,ij , v′c,ij}.
2. Announce {k′t+1,ij , k

′
t+2,ij , . . . , k

′
n,ij}.

Computation by players in CORE:

1. For each ij ∈ CORE
⋂{t + 1, t + 2, . . . , n}, reconstruct k′ij from

{k′ij ,i1 , . . . , k′ij ,im} using Reed-Solomon decoding.

2. For ij ∈ CORE
⋂{1, 2, . . . , t}, set v′c,ij = v′c,ij ;

For ij ∈ CORE
⋂{t+ 1, t+ 2, . . . , n}, compute v′c,ij = v′c,ij − k′ij .

3. Reconstruct g′(x) from v′c,i1 , v
′
c,i2

, . . . , v′c,im using Reed-Solomon decoding.
4. Check if v′c,ij = g′(φ(v′s,ij , ij)) holds for 1 ≤ j ≤ m.

If v′c,ij 	= g′(φ(v′s,ij , ij)) then ij is added to the list of cheaters L.

5. If |L| > m− k then output (⊥, L), otherwise:
Reconstruct f ′

s(x) from (k or more) shares v′s,ij such that ij ∈ CORE \ L
using Lagrange interpolation.
If deg(f ′

s) ≤ k − 1, output (f ′
s(0), L), otherwise output (⊥, L).

Note that the condition |L| > m − k in Step 5 means that the number of
honest players is less than k.

268 R. Xu, K. Morozov, and T. Takagi

Remark 6. For simplicity of our presentation, in the above protocol, we omitted
the check similar to that in Step 4, which must be performed in Step 1. In details:
When reconstructing in Step 1 the polynomial hij (x) (the one used to share the
key kij) with Reed-Solomon decoding, we must check whether Pi provided a
forged share k′ij ,i 	= kij ,i and put her into the list L, if this is the case. However,

we note that in this step, under assumption that t < k/3, the cheaters who
submitted a forged share will be identified with probability 1.

4 Security Proof

The security of our SSCI scheme is argued in the following theorem.

Theorem 1. If t < k/3 then the scheme described above is a (t,ε) SSCI against
rushing adversary such that

|S| = p, ε = 1/q, q ≥ n · p, |Vi| = p · qn−t+1 = |S|/εn−t+1. (5)

Proof. First, we show that the scheme satisfy perfect secrecy. Suppose that k−1
players {Pi1 , Pi1 , . . . , Pik−1

} want to get the secret from their shares. Denote by
σij = {vs,ij , vc,ij , kt+1,ij , . . . , kn,ij} the share of player Pij . Due to the secrecy of
Shamir scheme, the values (vs,i1 , vs,i2 , . . . , vs,ik−1

) do not reveal any information
about the secret. Moreover, it is easy to see that the knowledge about vc,ij
and (kt+1,ij , kt+2,ij , . . . , kn,ij) does not leak any information about the secret
since the polynomial g(x) and the masking keys (kt+1, kt+2, . . . , kn) are chosen
independently of the secret s.

Next we show that our scheme is ε-correct. Our proof follows the lines of [10].
Let us observe the following two facts:

1. For x1, . . . , xk ∈ Fq, (g(x1), g(x2), . . . , g(xk)) is a codeword of the Reed-
Solomon code with minimum distance k − t (since deg(g(x)) ≤ t). According
to the Reed-Solomon error correction, if k − t > 2t (i.e., t < k/3) the degree-t
polynomial g(x) can be correctly reconstructed from the k points even if t of
them are forged. For the same reason, the masking keys (kt+1, kt+2, . . . , kn) can
be correctly recovered by k players.

2. The set of functions {g(x)|g(x) ∈ Fq[X], deg(g(x)) ≤ t} is a class of strongly
universalt+1 hash functions Fq → Fq [19]; that is, the following equality holds
for any distinct x1, . . . , xt, xt+1 ∈ Fq and the following y1, y2, . . . , yt, yt+1 ∈ Fq:

Pr[g(xt+1) = yt+1|g(x1) = y1, g(x1) = y2, . . . , g(xt) = yt] = 1/q. (6)

Let us suppose without loss of generality that the rushing adversary corrupts
Pi1 , . . . , Pit and CORE

⋂{1, 2, . . . , t} = {i1, i2, . . . , il} (l ≤ t). Remember that
since the adversary is rushing, she can see all the communication of honest
players during each round, prior to deciding her own messages. We summarize
the view of the adversary in Table 3.

On Cheater Identifiable Secret Sharing Schemes Secure 269

Table 3. Adversary’s View in Reconst

First Round: Second Round:

(vs,i1 , vc,i1 , kit+1,i1 , . . . , kin,i1) (vs,i1 , vc,i1 , kit+1,i1 , . . . , kin,i1)
· · · · · ·
(vs,it , vc,it , kit+1,it , . . . , kin,it) (vs,it , vc,it , kit+1,it , . . . , kin,it)
(vs,it+1 , vc,it+1) (vs,it+1 , vc,it+1 , kil+1,it+1 , . . . , kim,it+1)
· · · · · ·
(vs,im , vc,im) (vs,im , vc,im , kil+1,im , . . . , kim,im)

Suppose Pi∗ ∈ {Pi1 , Pi2 , . . . , Pit}, who knows the values σi1 , σi2 , . . . , σit , sub-
mits a forged share σ′

i∗ = (v′s,i∗, v
′
c,i∗, k

′
il+1,i∗, . . . , k

′
im,i∗). Pi∗ is not identified

as a cheater only if he submits v′c,i∗ such that v′c,i∗ = g(φ(v′s,i∗, i∗)) + ki∗.
At the end of the first round, Pi∗ has to hand in the values (v′s,i∗, v′c,i∗). At
that time, she can see (vc,i1 , vc,i2 , . . . , vc,im), (kit+1,i1 , kit+1,i2 , . . . , kit+1,it), . . .,
(kin,i1 , kin,i2 , . . . , kin,it). From (kj,i1 , kj,i2 , . . . , kj,it), (t+ 1 ≤ j ≤ n) the cheater
Pi∗ can have no information about the masking key kj since it is shared by
the (t+ 1)-out-of-n Shamir scheme. For any ij ∈ CORE

⋂{t+ 1, t+ 2, . . . , n},
vc,ij = g(φ(vs,ij , ij)) + kij looks like a random value to Pi∗, since kij will not
be revealed until the second round, and before it serves as a one-time pad.
For ij ∈ {i1, i2, . . . , il}, Pi∗ will see the values of the function g(x), namely
g(φ(vs,ij , ij)) = vc,ij for 1 ≤ j ≤ l, and l ≤ t. After the second round, all the
keys kil+1

, kil+2
, . . . , kim can be correctly reconstructed – since the polynomial

hj(x) hiding kij is of degree t and t < k/3, we can use Reed-Solomon error
correction algorithm to recover the key kij despite possibly t corrupted shares of
kij . By the similar reason, the polynomial g(x) can be correctly reconstructed

as well. Since Pi∗ submits the forged share σ′
i∗ = (v′s,i∗, v′c,i∗, k

′
il+1,i∗, . . . , k

′
im,i∗)

before he knows the corresponding masking keys, the following holds:

Pr[g(φ(v′s,i∗, i∗)) = v′c,i∗ − ki∗ | g(φ(vs,ij , ij)) = vc,ij : 1 ≤ j ≤ l (l ≤ t)] ≤ 1/q,
(7)

where the probability is taken over the random choice of g(x), and kt+1, kt+2, . . . ,
kn, and ht+1(x), ht+2(x), . . . , hn(x). From the above discussion we can see that
any cheater will be identified except with probability at most 1/q. Therefore,
our SSCI scheme satisfies the ε-correctness property with ε = 1/q.

It is easy to compute the share size as |Vi| = p · qn−t+1 = |S|/εn−t+1.

5 Conclusion

We proposed an SSCI scheme capable of identifying t < k/3 rushing cheaters.
Our scheme is superior to that of Choudhury [11] (for the single secret) and
Cevallos et al. [12] (if no more than k players can take part in the reconstruction
phase), when the number of cheaters is less than k/3.

270 R. Xu, K. Morozov, and T. Takagi

According to the lower bound (1) from Kurosawa et al. [9], our scheme is
not optimal in the sense of share size |Vi|. It is an interesting open problem to
design an SSCI scheme against t < k/2 (or at least t < k/3) rushing cheaters
with optimal (or at least constant in n, k and t) size of |Vi|, even for sharing of
a single field element.

Acknowledgments. R.X. is supported by The China Scholarship Council, No.
201206340057. K.M. is supported by a kakenhi Grant-in-Aid for Young Scientists
(B) 24700013 from Japan Society for the Promotion of Science.

K.M. and T.T. would like to thank Satoshi Obana for introducing them to
this research topic and for some motivating discussions.

The authors would also like to thank Rui Zhang and anonymous reviewers
of IWSEC 2013 for some valuable comments that helped to improve this
presentation.

References

1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

2. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS:79 National Computer
Conference, pp. 313–317. IEEE Computer Society (1979)

3. Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunica-
tions 5(4), 449–458 (1994)

4. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, vol. 1989, pp. 73–85 (1989)

5. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

6. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993)

7. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(2),
133–138 (1988)

8. McEliece, R., Sarwate, D.: On sharing secrets and reed-solomon codes. Commun.
ACM 24(9), 583–584 (1981)

9. Kurosawa, K., Obana, S., Ogata, W.: t-cheater identifiable (k, n) threshold se-
cret sharing schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963,
pp. 410–423. Springer, Heidelberg (1995)

10. Obana, S.: Almost optimum t-cheater identifiable secret sharing schemes. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 284–302. Springer,
Heidelberg (2011)

11. Choudhury, A.: Brief announcement: optimal amortized secret sharing with cheater
identification. In: PODC 2012, pp. 101–102 (2012)

12. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust
secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)

13. Carpentieri, M.: A perfect threshold secret sharing scheme to identify cheaters.
Des. Codes Cryptography 5(3), 183–187 (1995)

On Cheater Identifiable Secret Sharing Schemes Secure 271

14. Ishai, Y., Ostrovsky, R., Seyalioglu, H.: Identifying cheaters without an honest
majority. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 21–38. Springer,
Heidelberg (2012)

15. Cramer, R., Damg̊ard, I., Fehr, S.: On the cost of reconstructing a secret, or VSS
with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 503–523. Springer, Heidelberg (2001)

16. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial & Applied Mathematics 8(2), 300–304 (1960)

17. Welch, L., Berlekamp, E.: Error correction for algebraic block codes US Patent
4,633,470 (December 30, 1986)

18. Roth, R.: Introduction to coding theory. Cambridge University Press (2006)
19. Wegman, M., Carter, L.: New hash functions and their use in authentication and

set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

One-Round Authenticated Key Exchange
without Implementation Trick

Kazuki Yoneyama

NTT Secure Platform Laboratories
3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan

yoneyama.kazuki@lab.ntt.co.jp

Abstract. Fujioka et al. proposed the first generic construction (FSXY construc-
tion) of exposure-resilient authenticated key exchange (AKE) from key
encapsulation mechanism (KEM) without random oracles. However, the FSXY
construction implicitly assumes some intermediate computation result is never
exposed though other secret information can be exposed. This is a kind of phys-
ical assumption, and an implementation trick (i.e., some on-line computation is
executed in a special tamper-proof module) is necessary to achieve the assump-
tion. Unfortunately, such an implementation trick is very costly and should be
avoided. In this paper, we introduce a new generic construction without the imple-
mentation trick. Our construction satisfies the same security model as the FSXY
construction without increasing communication complexity. Moreover, it has an-
other advantage that the protocol can be executed in one-round while the FSXY
construction is a sequential two-move protocol. Our key idea is to use KEM with
public-key-independent-ciphertext, which allows parties to be able to generate a
ciphertext without depending on encryption keys.

Keywords: authenticated key exchange, NAXOS trick, key encapsulation
mechanism, exposure-resilience.

1 Introduction

1.1 Background

Authenticated Key Exchange (AKE) is a cryptographic primitive to share a common
session key among multiple parties through unauthenticated networks such as the In-
ternet. In the ordinary PKI-based setting, each party locally keeps his own static secret
key (SSK) and publishes a static public key (SPK) corresponding to the SSK. Validity
of SPKs is guaranteed by a certificate authority. In a key exchange session, each party
generates an ephemeral secret key (ESK) and sends an ephemeral public key (EPK) cor-
responding to the ESK. A session key is derived from these keys with a key derivation
procedure. Parties can establish a secure channel with the session key.

An important goal of this area is to achieve exposure-resilience. That means, even
if an adversary learns some of secret keys of parties, generated session keys must be
protected. For example, SSKs may expose if a party is corrupted, or a device itself (e.g.,
a smart phone) that records a SSK is physically stolen. On another scenario, ESKs may
expose if computations inputting an ESK are executed in a memory area of the smart

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 272–289, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

One-Round Authenticated Key Exchange without Implementation Trick 273

phone, and a malicious developer steals it via a hidden malware that is embedded in
some apps. Therefore, it is desirable to guarantee exposure-resilience in a provably
secure way.

There are several studies about modeling exposure-resilience in the AKE setting.
Canetti and Krawczyk [1] defined the first security model of AKE capturing exposure
of SSKs and session state (i.e., some intermediate computation result), that is called
Canetti-Krawczyk (CK) model. However, the CK model does not allow an adversary
to learn any of SSKs and session state of the target session (called the test session).
LaMacchia et al. [2] also proposed very strong security models capturing exposure of
both SSKs and ESKs, that is called extended CK (eCK) model. While the eCK model
allows an adversary to directly learn SSKs and ESKs of the test session, exposure of
session state is not captured. The CK+ model [3,4] combines these two models; that
is, an adversary can obtain SSKs and ESKs of the test session, and can learn session
state of other sessions. Note that the eCK model and the CK+ model are rigorously
incomparable [5,6].

Concrete AKE schemes satisfying these models have been studied. HMQV [3] is
one of the most efficient protocols and satisfies the CK+ model. However, the security
proof is given in the random oracle model (ROM) under the knowledge-of-exponent
assumption [7] that is a widely criticized assumption [8]. Boyd et al. [9,10] propose
a generic construction (BCGNP construction) of AKE from key encapsulation mech-
anism (KEM), that is secure in the CK model in the standard model (StdM). Because
the CK model does not capture exposure of ESKs in the test session, unfortunately, it
is unclear whether the BCGNP construction is secure when the ESK of the test session
is exposed. Fujioka et al, [4] show that the BCGNP construction is insecure in the CK+

model, and propose another generic construction (FSXY construction) of AKE from
KEM, that is secure in the CK+ model in the StdM.

1.2 Motivation

The FSXY construction uses a technique to resist exposure of ESKs, which is called
the twisted pseudo-random function (PRF) trick [11]. This trick is essentially the same
as the NAXOS trick [2] except with/without random oracles (ROs). Roughly, a party
uses H(S S K, ES K) to compute an EPK instead of using the ESK directly, where H
is some intractable function like ROs. Unless both the SSK and the ESK are exposed,
H(S S K, ES K) cannot be computed by an adversary even if the ESK is exposed. Thus,
the FSXY construction guarantees the security against exposure of ESKs.

However, such a trick has several problems. First, it needs some implementation
trick, because it is assumed that exposure of H(S S K, ES K) never occurs while ESKs
may be exposed. A typical implementation is that all computations inputting H(S S K,
ES K) are executed in a tamper-proof module (TPM) such as a smart card. Without the
implementation trick (i.e., H(S S K, ES K) is handled by the same manner as ESKs), the
twisted PRF trick is not meaningful, and it may lead to a ‘full’ ESK exposure attack
(i.e., H(S S K, ES K) and ESKs are exposed simultaneously) to the FSXY construction
though it is proved in the CK+ model. The other is an efficiency problem. As discussed

274 K. Yoneyama

above, computations inputting H(S S K, ES K) must be executed in a TPM. In the FSXY
construction, H(S S K, ES K) is used as randomness in generating a ciphertext of chosen
ciphertext secure (IND-CCA secure) KEM, that is sent to the peer. This computation
must be done on-line (i.e., any pre-computation is not possible) because the ciphertext
is generated after the peer of the session is fixed. Therefore, the TPM must process
a very heavy on-line computation (i.e., an encryption algorithm of IND-CCA secure
KEM) for each session. It is clearly not desirable in practice.

1.3 Our Contribution

First, we clarify that the FSXY construction is insecure in the CK+ model if the im-
plementation trick is missed (i.e., the outputs of the twisted PRF are handled by the
same manner as ESKs) in Section 3. Specifically, we give a simple attack using ‘full’
ESK exposure. This fact shows that the FSXY construction essentially needs very heavy
on-line computations in a TPM or similar implementation tricks.

Next, we introduce a new generic construction of AKE from KEM, that is secure
in the CK+ model without relying on the twisted PRF trick in Section 4. Our key idea
is to use KEM with public-key-independent-ciphertext (PKIC-KEM) [12]. PKIC-KEM
allows that a ciphertext can be generated independently from an encryption key, and
a KEM key can be generated with the ciphertext, the encryption key and randomness
in generating the ciphertext. While the previous work [12] uses a semantically secure
(IND-CPA secure) PKIC-KEM to obtain a one-round AKE scheme, we use IND-CPA
secure PKIC-KEM both to resist full ESK exposure and to obtain one-round proto-
col.1 A typical example of IND-CPA secure PKIC-KEM is the ElGamal KEM (i.e., an
encryption key is ga, a ciphertext is gr, and the KEM key is gar).

Furthermore, though the FSXY construction adapts a strong randomness extractor as
a part of the session key derivation procedure, we can replace it with a weaker building
block, a key derivation function (KDF). The KDF is weaker and more efficient primitive
than the strong randomness extractor; the output of the KDF is just guaranteed com-
putationally indistinguishable from random value but the strong randomness extractor
guarantees statistical indistinguishability. We can prove the security of our construction
only with the computational property; thus, we can improve efficiency of the session
key derivation procedure. This technique is proposed in [13,14]

There are some related works [15,16] that achieve exposure-resilient AKE schemes
in the StdM without the implementation trick. However, these schemes are specific
constructions (i.e., not generic construction), and rely on a strong building block, PRFs
with pairwise-independent random sources (πPRF). It is not known how to construct
πPRF concretely. Table 1 shows a comparison of exposure-resilient AKE schemes with-
out implementation tricks. HMQV is the most efficient but relies on RO. The schemes
in [15,16] is secure in the StdM but relies on πPRF. In addition, the scheme in [16]
needs pairing operations. Therefore, our scheme needs less communication cost than
the schemes in the StdM, and does not rely on πPRF.

1 One-round means that parties can send their EPKs independently and simultaneously in two-
move protocols.

One-Round Authenticated Key Exchange without Implementation Trick 275

Table 1. Comparison of exposure-resilient AKE without implementation tricks

Model Resource Assumption Computation Communication
(#parings + #[multi,regular]-exp.) complexity

[3] CK+ ROM gap DH & KEA1 0 + [2, 2] 2|p| 512
[15] eCK StdM DDH & πPRF 0 + [2, 6] 9|p| 2304
[16] eCK StdM DBDH & DLIN & πPRF 2 + [2, 8] 12|p| 3072

Ours CK+ StdM DDH 0 + [4, 12] 8|p| 2048

For concreteness the expected ciphertext overhead for a 128-bit implementation is also given.
Note that computational costs are estimated without any pre-computation technique. Our protocol
is instantiated by the Cramer-Shoup KEM [17] as IND-CCA secure KEM and the ElGamal KEM
as IND-CPA secure PKIC-KEM.

2 CK+ Security Model

In this section, we recall the CK+ model [3,4]. We slightly modify the model to specify
one-round protocols. It can be trivially extended to any round protocol.

Notations. Throughout this paper we use the following notations. If M is a set, then
by m ∈R M we denote that m is sampled uniformly from M. If R is an algorithm, then
by y ← R(x; r) we denote that y is output by R on input x and randomness r (if R is
deterministic, r is empty).

We denote a party by UP, and party UP and other parties are modeled as probabilistic
polynomial-time (PPT) Turing machines w.r.t. security parameter κ. For party UP, we
denote static secret (public) key by S S KP (S PKP) and ephemeral secret (public) key
by ES KP (EPKP). Party UP generates its own keys, ES KP and EPKP, and the static
public key S PKP is linked with UP’s identity in some systems like PKI.2

Session. An invocation of a protocol is called a session. Session activation of party
UP is done by an incoming message of the forms (Π,UP,UP̄), where we equate Π
with a protocol identifier, and UP̄ is the party identify of the peer. Party UP outputs
(Π,UP,UP̄, EPKP), receives an incoming message of the forms (Π,UP̄,UP, EPKP̄)
from the peer UP̄, and then computes the session key S K.

A session of UP is identified by sid = (Π,UP,UP̄, EPKP) or sid = (Π,UP,UP̄,
EPKP, EPKP̄). We say that UP is the owner of session sid, if the second coordinate
of session sid is UP. We say that UP is the peer of session sid, if the third coor-
dinate of session sid is UP. We say that a session is completed if its owner com-
putes the session key. The matching session of (Π,UP,UP̄, EPKP, EPKP̄) is session
(Π,UP̄,UP, EPKP, EPKP̄) and vice versa.

Adversary. The adversaryA, which is modeled as a PPT machine, controls all com-
munications between parties including session activation by performing the following
adversary query.

2 Static public keys must be known to both parties in advance. They can be obtained by exchang-
ing them before starting the protocol or by receiving them from a certification authority. This
situation is common for all PKI-based AKE schemes.

276 K. Yoneyama

– Send(message): The message has one of the following forms: (Π,UP,UP̄), or
(Π,UP̄, UP, EPKP̄). The adversaryA obtains the response from the party.

To capture exposure of secret information, the adversary A is allowed to issue the
following queries.

– SessionKeyReveal(sid): The adversaryA obtains the session key S K for the ses-
sion sid if the session is completed.

– SessionStateReveal(sid): The adversary A obtains session state of the owner of
session sid if the session is not completed (the session key is not established yet).
Session state includes all ESKs and intermediate computation results except for
immediately erased information but does not include the SSK.

– Corrupt(UP): This query allows the adversary A to obtain all information of the
party UP. If a party is corrupted by a Corrupt(UP, S PKP) query issued by the ad-
versaryA, then we call the party UP dishonest. If not, we call the party honest.

Freshness. For the security definition, we need the notion of freshness.

Definition 1 (Freshness). Let sid∗ = (Π,UP,UP̄, EPKP, EPKP̄) be a completed ses-
sion between honest users UP and UP̄. If the matching session exists, then let sid∗ be
the matching session of sid∗. We say session sid∗ is fresh if none of the following condi-
tions hold:

1. The adversary A issues SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗) if
sid∗ exists,

2. sid∗ exists and the adversaryA makes either of the following queries
– SessionStateReveal(sid∗) or SessionStateReveal(sid∗),

3. sid∗ does not exist and the adversaryA makes the following query
– SessionStateReveal(sid∗).

Security Experiment. For the security definition, we consider the following security
experiment. Initially, the adversary A is given a set of honest users and makes any
sequence of the queries described above. During the experiment, the adversaryAmakes
the following query at once.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈R {0, 1}, and
return the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until the adversaryA makes a guess b′. The adversaryA
wins the game if the test session sid∗ is still fresh and if the guess of the adversaryA is
correct, i.e., b′ = b. The advantage of the adversaryA in the AKE experiment with the
PKI-based AKE protocol Π is defined as

AdvAKE
Π (A) = Pr[A wins] − 1

2
.

We define the security as follows.

One-Round Authenticated Key Exchange without Implementation Trick 277

Definition 2 (Security). We say that a PKI-based AKE protocolΠ is secure in the CK+

model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible prob-
ability, they both compute the same session key.

2. For any PPT bounded adversaryA, AdvAKE
Π (A) is negligible in security parameter

κ for the test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given to
A.

(b) if sid∗ does not exist, and the ephemeral secret key of sid∗ is given toA.
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the ephemeral

secret key of sid∗ are given toA.
(d) if sid∗ exists, and the ephemeral secret key of sid∗ and the ephemeral secret key

of sid∗ are given toA.
(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret

key of the peer of sid∗ are given toA.
(f) if sid∗ exists, and the ephemeral secret key of sid∗ and the static secret key of

the peer of sid∗ are given toA.

3 ‘Full’ Ephemeral Key Exposure Attack to FSXY Construction

In this section, we show an attack to the FSXY construction if an adversary can fully
expose ESKs of parties. Therefore, it is a realistic attack when the FSXY construction
is implemented without a special TPM.

3.1 Protocol of FSXY Construction

First, we recall the protocol of the FSXY construction.
It is a general construction from IND-CCA secure KEM (KeyGen, EnCap, DeCap)

and IND-CPA secure KEM (wKeyGen, wEnCap, wDeCap), where the randomness
space of encapsulation algorithms is RSE , the randomness space of key generation
algorithms is RSG and the KEM key space is KS. Other building blocks are pseudo-
random functions (PRFs) and a strong randomness extractor. For a security parameter
κ, let F : {0, 1}∗×FS → RSE , F′ : {0, 1}∗×FS → RSE , and G : {0, 1}∗×FS → {0, 1}κ
be PRFs, where FS is the key space of PRFs (|F S| = κ). Let Ext : SS × KS → FS
be a strong randomness extractor with randomly chosen seed s ∈ SS, where SS is the
seed space.

Party UP randomly selects σP ∈R FS and r ∈R RSG, and runs (ekP, dkP) ←
KeyGen(1κ, r). Party UP’s SSK and SPK are ((dkP, σP), ekP). Fig. 1 shows the protocol.

3.2 Implementation Trick of FSXY Construction

The FSXY construction uses the twisted PRF trick to compute randomness in generat-
ing ciphertext CTA and CTB. For instance, randomness is computed as FσA (rA)⊕F′r′A(σA)

278 K. Yoneyama

Common public parameter : F, F′,G, Ext, s
SSK and SPK for party UA : S S KA := (dkA, σA), S PKA := ekA

SSK and SPK for party UB : S S KB := (dkB, σB), S PKB := ekB

Party UA Party UB

rA, r′A ∈R FS; rT A ∈R RSG

(CTA, KA)←
EnCapekB

(FσA (rA) ⊕ F′r′A
(σA))

(ekT , dkT)← wKeyGen(1κ, rT A)
UA,UB,CTA, ekT−−−−−−−−−−−−−−−−→

rB, r′B ∈R FS; rT B ∈R RSE

(CTB, KB)←
EnCapekA

(FσB (rB) ⊕ F′r′B
(σB))

UA,UB,CTB,CTT←−−−−−−−−−−−−−−−−− (CTT , KT)← wEnCapekT
(rT B)

KB ← DeCapdkA
(CTB)

KT ← wDeCapdkT
(CTT) KA ← DeCapdkB

(CTA)
K′1 ← Ext(s,KA); K′2 ← Ext(s,KB) K′1 ← Ext(s,KA); K′2 ← Ext(s,KB)

K′3 ← Ext(s,KT) K′3 ← Ext(s,KT)
ST := (UA,UB, ekA, ekB, ST := (UA,UB, ekA, ekB,

CTA, ekT , CTB, CTT) CTA, ekT , CTB, CTT)
SK = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) SK = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST)

Fig. 1. FSXY construction

for party UA. This trick allows that randomness is indistinguishable from a uniformly
random value if either of SSK σA and ESK rA is not exposed.

The FSXY construction assumes that the output of the twisted PRF is never exposed.
Indeed, though the CK+ model allows an adversary to learn ESKs, the output of the
twisted PRF is not contained in the ESK (i.e., The ESK of UA is only (rA, r′A, rT A).)
in the security analysis. In order to implement this assumption in the real world, all
computations related to the twisted PRF must be executed in a protected area such as
a TPM. Specifically, party UA (resp. UB) must execute the computation of (CTA, KA)
← EnCapekB

(FσA (rA)⊕ F′r′A(σA)) (resp. (CTB, KB)← EnCapekA
(FσB (rB) ⊕ F′r′B (σB))) in

his TPM on-line. The underlined part of Fig. 1 is computed in TPM. Note that to run
a complex operation like encryption algorithms in a TPM is generally very costly and
should be avoided. For example, if the Cramer-Shoup KEM [17] is used as IND-CCA
secure KEM, the TPM must process 4 exponentiations on-line for each session.

Remark 1. As the case of the twisted PRF, all computations related to SSKs must not
be exposed from the session state because SSKs are also assumed to not be learned with
ESKs simultaneously. In the FSXY construction, such computations correspond to KB

← DeCapdkA
(CTB) and KA ← DeCapdkB

(CTA). However, it is not necessary to execute
these computations in TPM. After receiving the message from the peer all computations
are executed without stopping, and the session state is immediately erased on finishing

One-Round Authenticated Key Exchange without Implementation Trick 279

the session. Thus, the computations which must be executed in TPM on-line are only
the part related to the twisted PRF and the derivation of S K.

3.3 Our Attack

If an implementer misses this assumption, computations related to the twisted PRF
may be executed not in a TPM. Then, FσA (rA) ⊕ F′r′A(σA) and FσB (rB) ⊕ F′r′B(σB) can be
exposed as same as ESKs (rA, r′A, rT A) and (rB, r′B, rT B). We show an attack to the FSXY
construction without the implementation trick.

An adversary plays the experiment of the CK+ model in the event corresponding to
2.d in Definition 2 (i.e., Both parties’ ESKs are exposed.). In this attack, FσA (rA) ⊕
F′r′A(σA) and FσB (rB) ⊕ F′r′B (σB) is regarded as a part of ESKs. The procedure of the
adversary is as follows.

1. specify a session between UA and UB as the test session, and learn ES KA =

(rA, r′A, rT A, FσA (rA) ⊕ F′r′A(σA)) and ES KB = (rB, r′B, rT B, FσB (rB) ⊕ F′r′B(σB)).

2. compute KA, KB and KT as (CTA, KA)← EnCapekB
(FσA(rA)⊕ F′r′A(σA)), (CTB, KB)

← EnCapekA
(FσB (rB) ⊕ F′r′B(σB)) and (CTT , KT)← wEnCapekT

(rT B).

3. execute the same key derivation procedure as a party with KA, KB and KT , and
derive the session key S K.

Therefore, unless the output of the twisted PRF is strictly protected with an imple-
mentation trick, the FSXY construction is insecure against such a ‘full’ ESK exposure
attack.

4 One-Round AKE against Full Ephemeral Key Exposure

In this section, we propose a new generic construction of CK+-secure AKE from KEM.
Our scheme is secure against exposure of all randomness in generating ciphertexts for
KEM by avoiding using the twisted PRF trick beside the FSXY construction. More-
over, while the FSXY construction is not one-round protocol, our scheme is one-round
protocol by using PKIC-KEM [12].

4.1 Preliminaries

Security Notions of KEM Schemes. Here, we recall the definition of IND-CCA
security for KEM, and min-entropy of KEM keys as follows.

Definition 3 (Syntax of KEM). A KEM scheme consists of the following 3-tuple
(KeyGen, EnCap, DeCap):

(ek, dk) ← KeyGen(1κ, rg) : a key generation algorithm which on inputs 1κ and rg ∈
RSG, where κ is the security parameter and RSG is a randomness space, outputs a
pair of keys (ek, dk).

280 K. Yoneyama

(K,CT) ← EnCapek(re) : an encryption algorithm which takes as inputs encapsula-
tion key ek and re ∈ RSE, outputs session key K ∈ KS and ciphertext CT ∈ CS,
where RSE is a randomness space, KS is a session key space, and CS is a cipher-
text space.

K ← DeCapdk(CT) : a decryption algorithm which takes as inputs decapsulation key
dk and ciphertext CT ∈ CS, and outputs session key K ∈ KS.

Definition 4 (IND-CCA Security for KEM). A KEM scheme is IND-CCA secure for
KEM if the following property holds for security parameter κ; For any PPT adversary
A = (A1,A2), Advind−cca = | Pr[rg ← RSG; (ek, dk) ← KeyGen(1κ, rg); (state) ←
ADO(dk,·)

1 (ek); b ← {0, 1}; re ← RSE ; (K∗0 ,CT ∗0) ← EnCapek(re); K∗1 ← K ; b′ ←
ADO(dk,·)

2 (ek, (K∗b ,CT ∗0), state); b′ = b] − 1/2| ≤ negl, where DO is the decryption
oracle, K is the space of session key and state is state information that A wants to
preserve fromA1 toA2.A cannot submit the ciphertext CT = CT ∗0 to DO.

Definition 5 (Min-Entropy of KEM Key). A KEM scheme is k-min-entropy KEM if
for any ek, distribution DKS of variable K defined by (K,CT) ← EnCapek(re), distri-
bution Dother of public information and random re ∈ RSE, H∞(DKS|Dother) ≥ k holds,
where H∞ denotes min-entropy.

Security Notions of KEM with public-key-independent-ciphertext [12]. Here, we
recall the syntax for PKIC-KEM, and definitions of IND-CPA security for PKIC-KEM
and min-entropy of KEM keys as follows.

Definition 6 (Syntax of PKIC-KEM). A PKIC-KEM scheme consists of the following
4-tuple (wKeyGen, wEnCapC,wEnCapK, wDeCap):

(ek, dk) ← wKeyGen(1κ; rg) : a key generation algorithm which on inputs 1κ, where
κ is the security parameter and rg is randomness in space RSG, outputs a pair of
keys (ek, dk).

CT ← wEnCapC(re) : a ciphertext generation algorithm which outputs ciphertext
CT ∈ CS on inputs public parameters, where re is randomness in space RSE, and
CS is a ciphertext space.

K ← wEnCapKek(CT ; re) : an encryption algorithm which takes as inputs encapsu-
lation key ek, ciphertext CT , and randomness re, outputs KEM key K ∈ KS, where
re is randomness used in wEnCapC, andKS is a KEM key space.

K ← wDeCapdk(CT) : a decryption algorithm which takes as inputs decapsulation
key dk and ciphertext CT ∈ CS, and outputs KEM key K ∈ KS.

Definition 7 (IND-CPA Security for PKIC-KEM). A PKIC-KEM scheme is IND-
CPA secure if the following property holds for security parameter κ; For any PPT adver-
saryA = (A1,A2), Advind−cpa = | Pr[rg ∈R RSG; (ek, dk)← wKeyGen(1κ; rg); state ←
A1(ek); b ∈R {0, 1}; re ∈R RSE ; CT ∗0 ← wEnCapC(re); K∗0 ← wEnCapKek(CT ∗0 ; re);
K∗1 ∈R KS; b′ ← A2(ek, (K∗b ,CT ∗0), state); b′ = b] − 1/2| ≤ negl, where state is the
state information thatA wants to preserve fromA1 toA2.

One-Round Authenticated Key Exchange without Implementation Trick 281

Definition 8 (Min-Entropy of KEM Key). We say a PKIC-KEM scheme is k-min-
entropy PKIC-KEM if for any ek, distribution DKS of variable K defined by CT ←
wEnCapC(re) and K ← wEnCapKek(CT ; re), distribution Dother of public information
and random re ∈ RSE, H∞(DKS|Dother) ≥ k holds, where H∞ denotes min-entropy.

Security Notion of Key Derivation Function. Let KDF : S alt × Dom → Rng be a
function with finite domain Dom, finite range Rng, and a space of non-secret random
salt S alt.

Definition 9 (Key Derivation Function [18]). We say a function KDF is a key deriva-
tion function (KDF) if the following condition holds for a security parameter κ: For
any PPT adversaryA and any distribution DRng over Rng with H∞(DRng) ≥ κ, | Pr[y ∈R

Rng; 1← A(y)] − Pr[x ∈R Dom; s ∈R S alt; y← KDF(s, x); 1←A(y)]| ≤ negl.

A concrete construction of such a computationally secure KDF is given in [19,20]
from a computational extractor and a PRF.

Security Notion of Pseudo-Random Function. Let κ be a security parameter and
F = {Fκ : Domκ × FSκ → Rngκ}κ be a function family with a family of domains
{Domκ}κ, a family of key spaces {F Sκ}κ and a family of ranges {Rngκ}κ.
Definition 10 (Pseudo-Random Function). We say that function family F = {Fκ}κ is
the PRF family, if for any PPT distinguisher D, Advprf = | Pr[1 ← DFκ (·)] − Pr[1 ←
DRFκ(·)]| ≤ negl, where RFκ : Domκ → Rngκ is a truly random function.

4.2 Our Construction

Design Principle. The goal is to avoid the twisted PRF trick. In the FSXY construc-
tion, parties share KA, KB and KT . KA is protected even if S S KA and ES KB are exposed,
KB is protected even if S S KB and ES KA are exposed, and KT is protected even if both
S S KA and S S KB are exposed. The case that both ES KA and ES KB are exposed is
solved thanks to the power of the twisted PRF trick; that is, FσA (rA) ⊕ F′r′A (σA) and
FσB (rB) ⊕ F′r′B (σB) look random for an adversary even in this case. To handle this case
without the twisted PRF trick, parties must share an additional value that is protected
even if both ES KA and ES KB are exposed.

Our solution is to change the way to generate SSKs and SPKs. In the FSXY con-
struction, a SSK contains decryption key dkP of IND-CCA secure KEM and σP, and
a SPK contains encryption key ekP. In our construction, party UP runs (ekS P, dkS P) ←
wKeyGen(1κ, r′) and CTS P ← wEnCapC(rS P) of IND-CPA secure PKIC-KEM, where
r′ and rS P are randomly chosen. dkS P and rS P are added to the SSK (σP is not necessary
and is removed), and ekS P and CTS P are added to the SPK. Because wEnCapC can be
executed without knowing an encryption key, this key generation phase correctly works.

In each session, parties share KS in addition to KA, KB and KT . Party UA generates
KS ← wDeCapdkS A

(CTS B), and party UB generates KS ← wEnCapKekS A
(CTS B; rS B).

The lexicographic order of party identities determines which party to run wDeCap.

282 K. Yoneyama

Common public parameter : G, KDF, s
SSK and SPK for party UA : S S KA := (dkA , dkS A, rS A), S PKA := (ekA , ekS A,CTS A)
SSK and SPK for party UB : S S KB := (dkB, dkS B, rS B), S PKB := (ekB, ekS B,CTS B)

Party UA Party UB

rA ∈R RSE ; rT A ∈R RSG rB ∈R RSE ; rT B ∈R RSE

(CTA, KA)← EnCapekB
(rA) (CTB, KB)← EnCapekA

(rB)
(ekT , dkT)← wKeyGen(1κ, rT A) CTT ← wEnCapC(rT B)

UA,UB,CTA, ekT−−−−−−−−−−−−−−−−−→
UA,UB,CTB,CTT←−−−−−−−−−−−−−−−−−−

KB ← DeCapdkA
(CTB) KA ← DeCapdkB

(CTA)
KT ← wDeCapdkT

(CTT) KT ← wEnCapKekT
(CTT ; rT B)

KS ← wDeCapdkS A
(CTS B) KS ← wEnCapKekS A

(CTS B; rS B)
K′1 ← KDF(s, KA); K′2 ← KDF(s, KB) K′1 ← KDF(s, KA); K′2 ← KDF(s, KB)
K′3 ← KDF(s, KT); K′4 ← KDF(s, KS) K′3 ← KDF(s, KT); K′4 ← KDF(s, KS)

ST := (UA,UB, S PKA, S PKB, ST := (UA,UB, S PKA, S PKB,
CTA, ekT , CTB, CTT) CTA, ekT , CTB, CTT)

SK = GK′1 (ST) ⊕GK′2 (ST) SK = GK′1 (ST) ⊕GK′2 (ST)
⊕GK′3 (ST) ⊕ GK′4 (ST) ⊕GK′3 (ST) ⊕GK′4 (ST)

Fig. 2. Our construction

From the syntax of PKIC-KEM, KS is shared non-interactively, and is protected even if
both ES KA and ES KB are exposed.

Our construction has another advantage that it is one-round protocol. The FSXY
construction is not one-round because the responder’s EPK depends on the initiator’s
EPK. We use the technique in [12] using PKIC-KEM to generate KT .

Also, the session key derivation procedure is more efficient than the FSXY construc-
tion because a KDF is used instead of a strong randomness extractor. On input a value
having sufficient min-entropy, a strong randomness extractor outputs a value which
is statistically indistinguishable from a uniformly chosen random value. Indeed, such
statistical indistinguishability is not necessary to prove security of our construction.
Computational indistinguishability is sufficient, and the KDF is suitable.

Protocol. The protocol of our generic construction is shown in Fig. 2.

Public Parameters. Let (KeyGen, EnCap, DeCap) be an IND-CCA secure KEM
and (wKeyGen, wEnCapC,wEnCapK, wDeCap) be an IND-CPA secure PKIC-KEM,
where the randomness space of encapsulation algorithms is RSE , the randomness space
of key generation algorithms is RSG and the KEM key space is KS. Let G : {0, 1}∗ ×
FS → {0, 1}κ be a PRF, where FS is the key space of PRFs (|F S| = κ). Let KDF :
S alt × KS → FS be a KDF with a non-secret random salt s ∈ S alt, where S alt is the
salt space.

Static Secret and Static Public Keys. Party UP selects r, r′ ∈R RSG and rS P ∈R RSE , and
generates (ekP, dkP) ← KeyGen(1κ, r), (ekS P, dkS P) ← wKeyGen(1κ, r′) and CTS P ←

One-Round Authenticated Key Exchange without Implementation Trick 283

wEnCapC(rS P). Party UP’s SSK is (dkP, dkS P, rS P) and SPK is (ekP, ekS P,CTS P). Note
that a party does not use all contents of the SSK to generate KS in a session.

Session State. The session state of a session owned by UA contains ephemeral secret
keys (rA, rT A), encapsulated KEM key KA and ad-hoc decryption key dkT . Other infor-
mation that is computed after receiving the message from the peer is immediately erased
when the session key is established. Similarly, the session state of a session owned by
UB contains ephemeral secret keys (rB, rT B) and encapsulated KEM key KB.

Other intermediate values (e.g., decapsulated KEM keys, and outputs of KDF) are
not contained in session state because these values are simultaneously computed with
the session key and immediately erased after completing the session.

4.3 Security

We show the following theorem.

Theorem 1. If (KeyGen,EnCap,DeCap) is IND-CCA secure and κ-min-entropy
KEM, (wKeyGen,wEnCapC,wEnCapK wDeCap) is IND-CPA secure and κ-min-
entropy PKIC-KEM, G is a PRF, and KDF is a KDF, then our generic construction
is CK+-secure.

Here, we give an overview of the security proof.
We have to consider the following four exposure patterns in the CK+ security model

(matching cases):

2-(c): S S KA and ES KB, 2-(d): ES KA and ES KB,

2-(e): S S KA and S S KB, 2-(f): ES KA and S S KB.

In case 2-(c), KA is protected by the security of CTA because rA and dkB are not
exposed. In case 2-(d), KS is protected by the security of CTS because dkS A and rS B are
not exposed. In case 2-(e), KT is protected by the security of CTT because dkT and rT B

are not exposed. In case 2-(f), KB is protected by the security of CTB because rB and
dkA are not exposed.

Then, we transform the CK+ security game, and the session key in the test session
is randomly distributed in the final game. First, we change the protected KEM key into
a random key for each pattern; therefore, the input of KDF is randomly distributed
and has sufficient min-entropy. Next, we change the output of KDF into randomly
chosen values. Finally, we change one of the PRFs (corresponding to the protected
KEM) into a random function. Therefore, the session key in the test session is randomly
distributed; thus, there is no advantage to the adversary. We can show a similar proof in
non-matching cases.

Proof. In the experiment of CK+ security, we suppose that sid∗ is the session identity
for the test session, and that there are N users and at most � sessions are activated. Let κ
be the security parameter, and letA be a PPT (in κ) bounded adversary. S uc denotes the
event thatA wins. We consider the following events that cover all cases of the behavior
ofA.

284 K. Yoneyama

– Let E1 be the event that the test session sid∗ has no matching session sid
∗
, the owner

of sid∗ is the initiator and the static secret key of the initiator is given toA.

– Let E2 be the event that the test session sid∗ has no matching session sid
∗
, the owner

of sid∗ is the initiator and the ephemeral secret key of sid∗ is given toA.

– Let E3 be the event that the test session sid∗ has no matching session sid
∗
, the owner

of sid∗ is the responder and the static secret key of the responder is given toA.

– Let E4 be the event that the test session sid∗ has no matching session sid
∗
, the owner

of sid∗ is the responder and the ephemeral secret key of sid∗ is given toA.

– Let E5 be the event that the test session sid∗ has matching session sid
∗
, and both

static secret keys of the initiator and the responder are given toA.

– Let E6 be the event that the test session sid∗ has matching session sid
∗
, and both

ephemeral secret keys of sid∗ and sid∗ are given toA.

– Let E7 be the event that the test session sid∗ has matching session sid
∗
, and the

static secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are given
toA.

– Let E8 be the event that the test session sid∗ has matching session sid
∗
, and the

ephemeral secret key of sid∗ and the static secret key of the owner of sid∗ are given
toA.

To finish the proof, we investigate events Ei ∧ S uc (i = 1, . . . , 8) that cover all cases of
event S uc. In this paper, we show the proof of event E6 because it is most different from
that of the FSXY construction. The proof of other events are given in the full paper.

Event E6 ∧ Suc. We change the interface of oracle queries and the computation of
the session key. These instances are gradually changed over six hybrid experiments,
depending on specific sub-cases. In the last hybrid experiment, the session key in the
test session does not contain information of the bit b. Thus, the adversary clearly only
output a random guess. We denote these hybrid experiments by H0, . . . ,H5 and the ad-
vantage of the adversaryA when participating in experiment Hi by Adv(A,Hi).

Hybrid Experiment H0: This experiment denotes the real experiment for CK+ se-
curity and in this experiment the environment forA is as defined in the protocol. Thus,
Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid Experiment H1: In this experiment, if session identities in two sessions are
identical, the experiment halts.

When two ciphertexts from different randomness are identical and two public keys
from different randomness are identical, session identities in two sessions are also iden-
tical. In any IND-CCA secure KEM and IND-CPA secure PKIC-KEM, such an event
occurs with negligible probability. Thus, |Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2: In this experiment, the experiment selects a party UA and
integer i ∈ [1, �] randomly in advance. If A poses Test query to a session except i-th
session of UA, the experiment halts.

One-Round Authenticated Key Exchange without Implementation Trick 285

Since guess of the test session matches with A’s choice with probability 1/N�,
Adv(A,H2) ≥ 1/N� · Adv(A,H1). Without loss of generality, we can suppose that the
intended peer of the i-th session of UA is UB.

Hybrid Experiment H3: In this experiment, the computation of KS in the test
session is changed. Instead of computing KS ← wDeCapdkS A

(CTS B) or KS ←
wEnCapKekS A

(CTS B; rS B), it is changed as choosing KS ← KS randomly.
We construct an IND-CPA adversary S fromA in H2 or H3. S performs the follow-

ing steps.

Init. S receives (ek∗,K∗b ,CT ∗0) as the challenge of IND-CPA game for PKIC-KEM.

Setup. S chooses PRF G : {0, 1}∗ ×FS → {0, 1}k, where FS is the key space of PRFs,
and KDF KDF : S alt × KS → FS with random salt s ∈ S alt, where S alt is the salt
space. These are provided as a part of the public parameters. Also, S sets all N users’
static secret and public keys except UA and UB.

For UP (except UA and UB), S selects r, r′ ∈R RSG and rS P ∈R RSE , and gen-
erates (ekP, dkP) ← KeyGen(1κ, r), (ekS P, dkS P) ← wKeyGen(1κ, r′) and CTS P ←
wEnCapC(rS P). Party UP’s SSK is (dkP, dkS P, rS P) and SPK is (ekP, ekS P,CTS P).

For UA,S selects r ∈R RSG and rAP ∈R RSE , and generates (ekA, dkA)← KeyGen(1κ,
r) and CTAP ← wEnCapC(rAP). Party UA’s SSK is (dkA, ∗, rAP) and SPK is (ekA,
ek∗,CTAP), where ∗ is unknown part for S.

For UB, S selects r, r′ ∈R RSG, and generates (ekB, dkB) ← KeyGen(1κ, r) and
(ekBP, dkBP) ← wKeyGen(1κ, r′). Party UB’s SSK is (dkB, dkBP, ∗) and SPK is (ekB,
ekBP,CT ∗0), where ∗ is unknown part for S.

Simulation. S maintains the list LS K that contains queries and answers of
SessionKeyReveal. S simulates oracle queries by A as follows. We suppose that P
sorts before P̄ lexicographically.

1. Send(Π,UP,UP̄): S computes the ephemeral public key (UP,UP̄,CTP, ekT) obey-
ing the protocol, returns it and records (Π,UP,UP̄, (UP,UP̄,CTP, ekT)).

2. Send(Π,UP̄,UP): S computes the ephemeral public key (UP̄,UP,CTP̄,CTT) obey-
ing the protocol, returns it and records (Π,UP,UP̄, (UP̄,UP,CTP̄,CTT)).

3. Send(Π,UP̄,UP, (UP̄,UP,CTP̄, CTT)): If P = A, P̄ = B, the session is i-th session
of A, then S sets KT := K∗b , computes the session key S K∗ obeying the proto-
col, and records (Π,UA,UB, (UA,UB,CTA, ekT), (UB,UA,CTB, CTT)) as the com-
pleted session and S K∗ in the list LS K . Else if (Π,UP,UP̄, (UP,UP̄,CTP, ekT)) is
not recorded, S records the session (Π,UP,UP̄, ∗, (UP̄,UP,CTP̄, CTT)) and waits
Send(Π,UP,UP̄). Otherwise,S computes the session key S K obeying the protocol,
and records (Π,UP,UP̄, (UP,UP̄,CTP, ekT), (UP̄,UP,CTP̄, CTT)) as the completed
session and S K in the list LS K .

4. Send(Π,UP,UP̄, (UP,UP̄,CTP, ekT)): If P = A, P̄ = B, the session is the matching
session of i-th session of A, then S sets KT := K∗b , computes the session key S K∗
obeying the protocol, and records (Π,UB,UA, (UA,UB,CTA, ekT), (UB,UA,CTB,
CTT)) as the completed session and S K∗ in the list LS K . Else if (Π, UP̄, UP,

286 K. Yoneyama

(UP̄, UP,CTP̄, CTT)) is not recorded, S records the session (Π,UP̄,UP, (UP,UP̄,
CTP, ekT), ∗) and waits Send(Π,UP̄,UP). Otherwise, S computes the session key
S K obeying the protocol, and records (Π,UP̄,UP, (UP,UP̄,CTP, ekT), (UP̄,UP,
CTP̄, CTT)) as the completed session and S K in the list LS K .

5. SessionKeyReveal(sid):
(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value S K.

6. SessionStateReveal(sid): S responds the ephemeral secret key and intermediate
computation results of sid as the definition. Note that the SessionStateReveal
query is not posed to the test session from the freshness definition.

7. Corrupt(UP): S responds the static secret key and all unerased session states of UP

as the definition.
8. Test(sid): S responds to the query as the definition.
9. IfA outputs a guess b′, S outputs b′.

Analysis. For A, the simulation by S is same as the experiment H2 if the challenge
is (K∗0 ,CT ∗0). Otherwise, the simulation by S is same as the experiment H3. Also, both
KT in two experiments have κ-min-entropy because (wKeyGen,wEnCapC,wEnCapK,
wDeCap) is κ-min-entropy PKIC-KEM. Thus, if the advantage of S is negligible, then
|Adv(A,H3) − Adv(A,H2)| ≤ negl.

Hybrid Experiment H4: In this experiment, the computation of K′4 in the test ses-
sion is changed. Instead of computing K′4 ← KDF(s,KS), it is changed as choosing
K′4 ∈ FS randomly.

Since KS is randomly chosen in H3, it has sufficient min-entropy. Thus, by the defi-
nition of the KDF, |Adv(A,H4) − Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: In this experiment, the computation of S K in the test session
is changed. Instead of computing S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) ⊕ GK′4 (ST), it
is changed as S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) ⊕ x where x ∈ {0, 1}κ is chosen
randomly.

We construct a distinguisher D′ between PRF F∗ : {0, 1}∗ × FS → {0, 1}k and a
random function RF fromA in H4 or H5.D′ performs the following steps.

Setup. D′ sets G = F∗, and chooses KDF KDF : KS → FS. These are provided as
a part of the public parameters. Also,D′ sets all N users’ static secret and public keys.
S selects r, r′ ∈R RSG and rS P ∈R RSE , and generates (ekP, dkP) ← KeyGen(1κ, r),
(ekS P, dkS P) ← wKeyGen(1κ, r′) and CTS P ← wEnCapC(rS P). Party UP’s SSK is
(dkP, dkS P, rS P) and SPK is (ekP, ekS P,CTS P).

Simulation. D′ maintains the list LS K that contains queries and answers of
SessionKeyReveal.D′ simulates oracle queries byA as follows.

1. Send(Π,UP,UP̄):D′ computes the ephemeral public key (UP,UP̄,CTP, ekT) obey-
ing the protocol, returns it and records (Π,UP,UP̄, (UP,UP̄,CTP, ekT)).

2. Send(Π,UP̄,UP): D′ computes the ephemeral public key (UP̄,UP,CTP̄, CTT)
obeying the protocol, returns it and records (Π,UP,UP̄, (UP̄,UP,CTP̄,CTT)).

One-Round Authenticated Key Exchange without Implementation Trick 287

3. Send(Π,UP̄,UP, (UP̄,UP,CTP̄, CTT)): If P = A, P̄ = B, the session is i-th session
of A, then D′ poses ST to his oracle (i.e., F∗ or a random function RF), obtains
x ∈ {0, 1}κ, computes the session key S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) ⊕
x, and records (Π,UA,UB, (UA,UB,CTA, ekT), (UB,UA,CTB, CTT)) as the com-
pleted session and S K∗ in the list LS K . Else if (Π,UP,UP̄, (UP,UP̄,CTP, ekT)) is
not recorded,D′ records the session (Π,UP,UP̄, ∗, (UP̄,UP,CTP̄, CTT)) and waits
Send(Π,UP,UP̄). Otherwise,D′ computes the session key S K obeying the proto-
col, and records (Π,UP,UP̄, (UP,UP̄,CTP, ekT), (UP̄,UP,CTP̄, CTT)) as the com-
pleted session and S K in the list LS K .

4. Send(Π,UP,UP̄, (UP,UP̄,CTP, ekT)): If P = A, P̄ = B, the session is the match-
ing session of i-th session of A, then D′ poses ST to his oracle (i.e., F∗ or a ran-
dom function RF), obtains x ∈ {0, 1}κ, computes the session key S K = GK′1 (ST) ⊕
GK′2 (ST)⊕GK′3 (ST) ⊕ x, and records (Π,UB,UA, (UA,UB,CTA, ekT), (UB,UA,CTB,
CTT)) as the completed session and S K∗ in the list LS K . Else if (Π, UP̄, UP, (UP̄,
UP,CTP̄, CTT)) is not recorded,D′ records the session (Π,UP̄,UP, (UP,UP̄,CTP,
ekT), ∗) and waits Send(Π,UP̄,UP). Otherwise, D′ computes the session key S K
obeying the protocol, and records (Π,UP̄,UP, (UP,UP̄,CTP, ekT), (UP̄,UP,CTP̄,
CTT)) as the completed session and S K in the list LS K .

5. SessionKeyReveal(sid):
(a) If the session sid is not completed,D′ returns an error message.
(b) Otherwise,D′ returns the recorded value S K.

6. SessionStateReveal(sid): D′ responds the ephemeral secret key and intermedi-
ate computation results of sid as the definition. Note that the SessionStateReveal
query is not posed to the test session from the freshness definition.

7. Corrupt(UP): D′ responds the static secret key and all unerased session states of
UP as the definition.

8. Test(sid):D′ responds to the query as the definition.
9. If A outputs a guess b′ = 0, D′ outputs that the oracle is the PRF F∗. Otherwise,
D′ outputs that the oracle is a random function RF.

Analysis. For A, the simulation by D′ is same as the experiment H4 if the oracle is
the PRF F∗. Otherwise, the simulation byD′ is same as the experiment H5. Thus, if the
advantage ofD′ is negligible, then |Adv(A,H5) − Adv(A,H4)| ≤ negl.

In H5, the session key in the test session is perfectly randomized. Thus, A cannot
obtain any advantage from Test query.

Therefore, Adv(A,H5) = 0 and Pr[E5 ∧ S uc] is negligible.
�

Event E1 ∧ Suc. The proof in this case is similar to the event E6 ∧ S uc. There
is a difference in the experiment H3. In the event E6 ∧ S uc, instead of computing
KS ← wDeCapdkS A

(CTS B) or KS ← wEnCapKekS A
(CTS B; rS B), it is changed as choos-

ing KS ← KS, where we suppose that UB is the intended partner of UA in the test
session. In the event E1 ∧ S uc, instead of computing (CTA,KA) ← EnCapekB

(rA), it is
changed as KA ← KS. SinceA cannot obtain rA and dkB by the freshness definition in
this event, we can construct an adversary S fromA in the similar manner in the proof

288 K. Yoneyama

of the event E6∧S uc. Note that ifA poses Send query to UB other than the test session,
S simulates KA by posing the decryption oracle.

Event E2 ∧ Suc. The proof in this case is almost same as the event E6 ∧ S uc.

Event E3 ∧ Suc. The proof in this case is similar to the event E6 ∧ S uc. There
is a difference in the experiment H3. In the event E6 ∧ S uc, instead of computing
KS ← wDeCapdkS A

(CTS B) or KS ← wEnCapKekS A
(CTS B; rS B), it is changed as choos-

ing KS ← KS, where we suppose that UB is the intended partner of UA in the test
session. In the event E3 ∧ S uc, instead of computing (CTB,KB) ← EnCapekA

(rB), it is
changed as KB ← KS. SinceA cannot obtain rB and dkA by the freshness definition in
this event, we can construct an adversary S fromA in the similar manner in the proof
of the event E6∧S uc. Note that ifA poses Send query to UA other than the test session,
S simulates KB by posing the decryption oracle.

Event E4 ∧ Suc. The proof in this case is almost same as the event E6 ∧ S uc.

Event E5 ∧ Suc. The proof in this case is similar to the event E6 ∧ S uc. There
is a difference in the experiment H3. In the event E6 ∧ S uc, instead of computing
KS ← wDeCapdkS A

(CTS B) or KS ← wEnCapKekS A
(CTS B; rS B), it is changed as choos-

ing KS ← KS, where we suppose that UB is the intended partner of UA in the test
session. In the event E5 ∧ S uc, instead of computing KT ← wDeCapdkT

(CTT) or
KT ← wEnCapKekT

(CTT ; rT B), it is changed as KT ← KS. Since A cannot obtain
rT A and rT B by the freshness definition in this event, we can construct an adversary S
fromA in the similar manner in the proof of the event E6 ∧ S uc.

Event E7 ∧ Suc. The proof in this case is almost same as the event E1 ∧ S uc.

Event E8 ∧ Suc. The proof in this case is almost same as the event E2 ∧ S uc.

References

1. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474.
Springer, Heidelberg (2001)

2. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange.
In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer,
Heidelberg (2007)

3. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)

4. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly Secure Authenticated Key
Exchange from Factoring, Codes, and Lattices. In: Fischlin, M., Buchmann, J., Manulis, M.
(eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg (2012)

One-Round Authenticated Key Exchange without Implementation Trick 289

5. Cremers, C.J.F.: Session-state Reveal Is Stronger Than Ephemeral Key Reveal: Attacking the
NAXOS Authenticated Key Exchange Protocol. In: Abdalla, M., Pointcheval, D., Fouque,
P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33. Springer, Heidelberg
(2009)

6. Cremers, C.J.F.: Examining Indistinguishability-Based Security Models for Key Exchange
Protocols: The case of CK, CK-HMQV, and eCK. In: ASIACCS 2011, pp. 80–91 (2011)

7. Damgård, I.: Towards Practical Public Key Systems Secure Against Chosen Ciphertext At-
tacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer,
Heidelberg (1992)

8. Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

9. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: Efficient One-Round Key Ex-
change in the Standard Model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 69–83. Springer, Heidelberg (2008)

10. Boyd, C., Cliff, Y., González Nieto, J.M., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3), 181–199 (2009)

11. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation in the Standard Model. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484. Springer, Heidelberg
(2007)

12. Yoneyama, K.: One-Round Authenticated Key Exchange with Strong Forward Secrecy in
the Standard Model against Constrained Adversary. In: Hanaoka, G., Yamauchi, T. (eds.)
IWSEC 2012. LNCS, vol. 7631, pp. 69–86. Springer, Heidelberg (2012)

13. Yoneyama, K.: One-Round Authenticated Key Exchange with Strong Forward Secrecy in
the Standard Model against Constrained Adversary. IEICE Transactions 96-A(6), 1124–1138
(2013)

14. Yoneyama, K.: Generic Construction of Two-Party Round-Optimal Attribute-Based Authen-
ticated Key Exchange without Random Oracles. IEICE Transactions 96-A(6), 1112–1123
(2013)

15. Moriyama, D., Okamoto, T.: An eCK-Secure Authenticated Key Exchange Protocol with-
out Random Oracles. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848,
pp. 154–167. Springer, Heidelberg (2009)

16. Yang, Z., Schwenk, J.: Strongly Authenticated Key Exchange Protocol from Bilinear Groups
without Random Oracles. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec
2012. LNCS, vol. 7496, pp. 264–275. Springer, Heidelberg (2012)

17. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adap-
tive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 13–25. Springer, Heidelberg (1998)

18. Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa and Desmedt. In:
Cryptology ePrint Archive: 2004/194 (2004)

19. Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg (2010)

20. Dachman-Soled, D., Gennaro, R., Krawczyk, H., Malkin, T.: Computational Extractors and
Pseudorandomness. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 383–403. Springer,
Heidelberg (2012)

Attacks to the Proxy Re-Encryption Schemes
from IWSEC2011

Toshiyuki Isshiki1, Manh Ha Nguyen2,�, and Keisuke Tanaka2,�

1 NEC Corporation, Japan
t-issiki@bx.jp.nec.com

2 Tokyo Institute of Technology, Japan
{nguyen9,keisuke}@is.titech.ac.jp

Abstract. Proxy re-encryption (PRE) allows a proxy to convert a ciphertext en-
crypted for Alice (delegator) into a ciphertext for Bob (delegatee) by using a re-
encryption key generated by Alice. In PRE, non-transferability is a property that
colluding proxies and delegatees cannot re-delegate decryption rights to a ma-
licious user. In IWSEC 2011, Hayashi, Matsushita, Yoshida, Fujii, and Okada
introduced the unforgeability of re-encryption keys against collusion attack
(UFReKey-CA), which is a relaxed notion of the non-transferability. They also
proposed a stronger security notion, the strong unforgeability of re-encryption
keys against collusion attack (sUFReKey-CA). Since sUFReKey-CA implies
UFReKey-CA and sUFReKey-CA is simpler (i.e. easier to treat) definition than
UFReKey-CA, sUFReKey-CA is useful to prove UFReKey-CA. They then pro-
posed two concrete constructions of PRE and claimed that they meet both
replayable-CCA security and sUFReKey-CA under two new variants of the Diffi-
Hellman inversion assumption. In this paper, we present two concrete attacks to
their PRE schemes. The first attack is to the sUFReKey-CA property on their two
schemes. The second attack is to the assumptions employed in the security proofs
for sUFReKey-CA of their two schemes.

Keywords: Proxy re-encryption, non-transferability, unforgeability of
re-encryption keys.

1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer, and Strauss [2] in EURO-
CRYPT’98, allows a semi-trust proxy to translate a ciphertext intended for Alice into
another ciphertext intended for Bob. The proxy, however, cannot learn anything about
the underlying messages. According to the direction of transformation, PRE can be cat-
egorized into bidirectional PRE, in which the proxy can transform from Alice to Bob
and vice versa, and unidirectional PRE, in which the proxy cannot transform cipher-
texts in the opposite direction. PRE can also be categorized to multi-hop PRE, in which
the ciphertexts can be transformed from Alice to Bob and then to Charlie and so on,
and single-hop PRE, in which the ciphertexts can only be transformed once.

� Supported by Ministry of Education, Culture, Sports, Science and Technology.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 290–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Attacks to the Proxy Re-Encryption Schemes from IWSEC2011 291

Recently, as cloud computing emerges, PRE gains much more attention as one of
the key security components to provide secure cloud services. The security against cor-
rupted proxies is especially important in such applications since the proxies may be out
of control of honest users and the proxies are more likely to be attacked than those in
on-premise systems. In [1], Ateniese, Fu, Green, and Hohenberger mentioned the secu-
rity notion, non-transferability, with respect to the security against malicious proxies,
which is described as “The (malicious) proxy and a set of colluding delegatees cannot
re-delegate decryption rights.” They also note that “achieving a proxy scheme that is
non-transferable, in the sense that the only way for Bob to transfer offline decryption
capabilities to Carol is to expose his own secret key, seems to be the main open problem
left for proxy re-encryption.”

Until now, some attempts for non-transferable PRE have been taken. For example,
in the scheme proposed by Libert and Vergnaud [5], a delegator can identify the mali-
cious proxies by analyzing a re-encryption key to convert ciphertexts of the delegator
into some malicious user’s generated (forged) by the colluding proxies and delegatees.
Although it is one possible approach to the non-transferable PRE, it still cannot prevent
colluding proxies and delegatees from re-delegating the decryption rights. Further, the
scheme is less efficient in the sense that the ciphertext size depends on the number of
delegations and it is only proved to be secure against chosen plaintext attack (CPA). In
the scheme by Wang et al. [8] which is an ID-based PRE scheme, a trusted third party
(privatekey generator, PKG) takes part in generating re-encryption keys. This approach,
however, is not a complete solution to non-transferable PRE because, as pointed out by
He, Chim, Hui, and Yiu [4], it is just a transformation of “delegatee-proxy-collusion
transferable problem” to “PKG alone transferable problem.” In the ID-based scheme
by He, Chim, Hui, and Yiu [4], the delegator and the delegatee communicate and send
some information to each other to generate the re-encryption key (The delegator also
communicates with PKG). Therefore, colluding proxies and delegatees cannot generate
a new re-encryption key without delegator’s help.

In IWSEC 2011, Hayashi, Matsushita, Yoshida, Fujii, and Okada [3] made an im-
portant step toward the non-transferability by introducing a security notion called the
unforgeability of re-encryption keys against collusion attack (UFReKey-CA), which is
a relaxed notion (necessary condition) of the non-transferability, and its formal defini-
tion. Roughly speaking, UFReKey-CA means that even colluding proxies and delega-
tees cannot generate a re-encryption key for some user. They also proposed a stronger
security notion, the strong unforgeability of re-encryption keys against collusion at-
tack (sUFReKey-CA). Since sUFReKey-CA implies UFReKey-CA and sUFReKey-
CA is simpler (i.e. easier to treat) definition than UFReKey-CA, sUFReKey-CA is
useful to prove UFReKey-CA. We note that sUFReKey-CA does not imply the non-
transferability and vice-versa. They then proposed a concrete PRE scheme and its vari-
ant supporting temporary delegation, which can limit the lifetime of re-encryption keys
within a certain time interval. They claimed that their schemes meet both the replayable
CCA (RCCA) security and sUFReKey-CA in the standard model. To prove the above
schemes meet sUFReKey-CA, they proposed two new variants of Diffie-Hellman in-
version problem and assumed their hardness.

In this paper, we present two concrete attacks to their PRE schemes.

292 T. Isshiki, M.H. Nguyen, and K. Tanaka

The first attack is to the sUFReKey-CA property on their two schemes (in Section 4).
In particular, we identify the weakness in their schemes by using the linearity of the
exponents of the re-encryption key.

The second attack is to the assumptions employed in the security proofs for
sUFReKey-CA of their two schemes (in Section 5). In particular, we show that the
two computational problems called the 2-DHIwRA and the m-2-DHIwRA problems
can be solved efficiently.

2 Preliminaries

We use x
R←− S to denote that an element x is chosen uniformly at random from S.

2.1 Bilinear Maps

Groups (G,GT) of prime order p are called bilinear map groups if there is a mapping
e : G×G→ GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Zp;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) 	= 1GT whenever g, h 	= 1G.

2.2 Unidirectional Proxy Re-Encryption

Definition 1 (Unidirectional, Single-Hop PRE [6]). A unidirectional, single-hop PRE
scheme is a tuple of algorithms Π = (Setup,KGen,ReKey,Enc,ReEnc,Dec)
for message spaceM:

– Setup(1λ) → PP . On input security parameter 1λ, the setup algorithm outputs
the public parameters PP .

– KGen(λ, PP) → (pk, sk). On input parameters, the key generation algorithm
outputs a public key pk and a secret key sk.

– ReKey(PP, ski, pkj) → rki→j . Given a secret key ski and a public key pkj ,
where i 	= j, the re-encryption key generation algorithm outputs a unidirectional
re-encryption key rki→j . The restriction that i 	= j is provided as re-encrypting a
message to the original recipient is impractical.

– Enc1(PP, pki,m) → CTi. On input a public key pki and a message m ∈ M,
the encryption algorithm outputs a first level ciphertext CTi that cannot be re-
encrypted for another party.

– Enc2(PP, pki,m) → CTi. On input a public key pki and a message m ∈ M,
the encryption algorithm outputs a second level ciphertext CTi that can be re-
encrypted into a first level one (intended for a possibly different receiver) using the
suitable re-encryption key.

– ReEnc(PP, rki→j , CTi)→ CTj . Given a re-encryption key rki→j and an origi-
nal ciphertext CTi for i, the re-encryption algorithm outputs a first level ciphertext
CTj for j or a distinguished message ‘invalid’.

Attacks to the Proxy Re-Encryption Schemes from IWSEC2011 293

– Dec1(PP, ski, CTi)→ m. Given a secret key ski and a first level ciphertext CTi,
the decryption algorithm outputs a message m ∈ M or a distinguished message
‘invalid’.

– Dec2(PP, ski, CTi) → m. Given a secret key ski and a second level ciphertext
CTi, the decryption algorithm outputs a message m ∈ M or a distinguished mes-
sage ‘invalid’.

To lighten notations, from now, we will omit the public parameters PP as the input of
the algorithms.

For all m ∈ M and all pair (pki, ski), (pkj , skj) these algorithms should satisfy the
following conditions of correctness:

Dec1(ski,Enc1(pki,m)) = m;

Dec2(ski,Enc2(pki,m)) = m;

Dec1(skj ,ReEnc(ReKey(ski, pkj),Enc2(pki,m))) = m.

2.3 Unidirectional Proxy Re-Encryption with Temporary Delegation

In this section, we review the syntactic definition of unidirectional proxy re-encryption
with temporary delegation [6]. In the PRE with temporary delegation, it only allows the
proxy to re-encrypt messages from Alice to Bob during a limited time period.

The model of unidirectional PRE supporting temporary delegation is almost the
same as that in Definition 1 except that re-encryption key generation, encryption, and
re-encryption algorithms take a period 	 ∈ {1, . . . , L} as input. Intuitively, the re-
encryption key generated by ReKey with a period 	, can be used to re-encrypt the
ciphertext generaed by Enc2 with the same period 	. Note that the public and the secret
keys are common to all time periods.

2.4 Unforgeability of Re-Encryption Keys against Collusion Attack

In this section, we recall the security definitions proposed by Hayashi et al. [3] called
the (strong) unforgeability of re-encryption keys against collusion attack. More detailed
explanation can be found in [3].

In the following definitions, keys subscripted by ∗, h, j, and ci are those for a target
honest delegator, a honest user, a malicious user, and a corrupted delegatee, respectively,
and i ∈ {1, . . . L} where L is polynomially bounded.

Definition 2 (Unforgeability of Re-Encryption Keys against Collusion Attack,
UFReKey-CA [3]). A unidirectional single-hop proxy re-encryption scheme meets the
unforgeability of re-encryption keys against collusion attack if there exists a polynomial
time algorithm P such that

294 T. Isshiki, M.H. Nguyen, and K. Tanaka

Pr[(pk∗, sk∗) ← KGen(λ); (pkh, skh) ← KGen(λ); {(pkci , skci) ← KGen(λ)};
(pkj , skj) ← KGen(λ); {rk∗→ci ← ReKey(sk∗, pkci)};

{rkh→ci ← ReKey(skh, pkci)};m R←− M;C∗ ← Enc2(pk∗,m);

{mi
R←− M}; {Ci ← Enc2(pkci ,mi)}; {m′

i
R←− M}; {C′

i ← Enc1(pkci ,m
′
i)};

{m′′
i

R←− M}; {C′′
i ← ReEnc(rkh→ci ,Enc2(pkh, m

′′
i))};

X ← C(pk∗, {(pkci , skci)}, {rk∗→ci}); rk†
∗→j ← J (X, (pkj , skj));

mP ← P(X, (pkj, skj), {Ci}, {C′
i}, {C′′

i })
: m 	= Dec1(skj ,ReEnc(rk†

∗→j , C
∗)) ∨mP ∈ {mi} ∪ {m′

i} ∪ {m′′
i }]

is overwhelming for any polynomial time algorithm C,J , and polynomial L.

Intuitively, this definition states that it is impossible for C (the colluding proxies and
delegatees) to re-delegate the decryption rights of the target honest delegator ∗ to J (a
malicious user) by giving the information to forge the re-encryption key for J without
delegating any right related to secret keys of any member in C to P (the malicious user).
As compared with the non-transferability, the way to re-delegate the decryption rights
is limited to the forgery of the re-encryption key in the definition of UFReKey-CA.

In the above definition, the adversary tries to return a forged re-encryption key rk†∗→j

such that

m = Dec1(skj ,ReEnc(rk†∗→j ,Enc2(pk∗,m))) (1)

wherem
R←−M. The adversary always wins if she returns the well-formed re-encryption

key, which is one of the outputs of ReKey(sk∗, pkj). On the other hand, the adversary
does not have to output the well-formed re-encryption key to win the game. That is, the
adversary also wins if she forges a re-encryption key which satisfies the equation (1) and
it is an ill-formed re-encryption key, which is never returned from ReKey(sk∗, pkj).

In the definition of UFReKey-CA, there exists the adversary P which extracts the
plaintext from the information X . Generally speaking, it is difficult (complicated) to
prove the (non-)existence of the plaintext extractor P . For convenience, [3] proposed a
simple and useful security notion to prove UFReKey-CA as the following.

Definition 3 (Strong Unforgeability of Re-Encryption Keys against Collusion At-
tack, sUFReKey-CA [3]) A unidirectional single-hop proxy re-encryption scheme
meets the strong unforgeability of re-encryption keys against collusion attack if

Pr[(pk∗, sk∗) ← KGen(λ); {(pkci , skci) ← KGen(λ)}; (pkj , skj) ← KGen(λ);

{rk∗→ci ← ReKey(sk∗, pkci)};m R←− M;C∗ ← Enc2(pk∗,m);

rk†
∗→j ← A(pk∗, {(pkci , skci)}, (pkj .skj), {rk∗→ci})

: m = Dec1(skj ,ReEnc(rk†
∗→j, C

∗))]

is negligible for any polynomial time algorithmA, and polynomial L.

Attacks to the Proxy Re-Encryption Schemes from IWSEC2011 295

Intuitively, this definition states that it is impossible for C (colluding proxies and delega-
tees) to re-delegate the decryption rights of the target honest delegator ∗ to a malicious
user A by giving the forged re-encryption keys for the malicious user, where the secret
key(s) of the colluding proxies and delegatees may be revealed to the malicious user,
and the secret key of the malicious user may be revealed to to the colluding proxies and
delegatees. It is easy to see that the scheme which satisfies sUFReKey-CA also meets
UFReKey-CA. Since there exists no plaintext extractor in the definition of sUFReKey-
CA, the proof of sUFReKey-CA is simpler than that of UFReKey-CA.

Note that we can consider several variations of UFReKey-CA by changing goals of
C. For example, it may be defined that C tries to generate a secret key skci itself, or
generate a forged secret key sk† such that Dec1(sk

†, C) = Dec1(skci , C). We also
note that even when such kinds of C are defined in UFReKey-CA, sUFReKey-CA still
implies UFReKey-CA and sUFReKey-CA is still useful to prove UFReKey-CA.

3 Review of the PRE Schemes by Hayashi et al.

In this section, we review the PRE schemes proposed by Hayashi et al. in [3]. There are
two schemes. The first one is the main scheme which is based on the scheme in [6]. The
other is its variant which supports temporary delegation.

Before describing them, we review the strong one-time signature which is employed
to construct the schemes. One-time signature Sig = (G,S,V) consists if a triple of
algorithms. The algorithm G takes a security parameter λ and returns a pair of sign-
ing/verification keys (ssk, svk). Then, for any message M , V(σ, svk,M) returns 1
whenever σ = S(ssk,M) and 0 otherwise. We say that Sig is a strong one-time signa-
ture if no polynomial time adversary can create a new signature for a previously signed
message (See [6] for the formal security definition).

3.1 The Main Scheme

The main scheme proposed by Hayashi et al. [3] is as follows.

Setup(λ): given a security parameterλ, choose bilinear map groups (G,GT) of prime

order p > 2λ, generators g, g1(= gα), g2(= gβ), u, v
R←− G, and a one-time signa-

ture scheme Sig = (G,S,V). The public parameters are PP := {p,G,GT , g, g1,
g2, u, v,Sig}. The message spaceM is equal to GT .

KGen(λ, PP): user i chooses xi, yi, zi
R←− Z∗

p. The secret key is ski = (xi, yi, zi).
The public key is pki = (Xi, Y1i, Y2i, Zi, Z1i), whereXi ← gxi , Y1i ← gyi

1 , Y2i ←
gyi

2 , Zi ← gzi , Z1i ← gzi1 .
Enc1(PP, pkj ,m): to encrypt a message m ∈ GT under the public key pkj at the first

level, the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r, s, t, k, γ
R←− Z∗

p and compute,
C′

2X = Y s
2j , C

′′
2X = Y rs

2j , C
′
2Y = Xt

j , C
′′
2Y = Xrt

j , C′
2Z = Y k

2j ,

C′′
2Z = Y rk

2j , C
′
2Z1 = Xk

j , C
′′
2Z1 = Xrk

j , C3 = e(g1g2, g)
r ·m,

C4 = (usvk · v)r, C5X = (g1 · gγ) 1
s , C5Y = g

γ+1
t , C5Z = (g1 · gγ+1)

1
k .

296 T. Isshiki, M.H. Nguyen, and K. Tanaka

3. Generate a one-time signature σ ← S(ssk, (C3, C4)) on (C3, C4).
The (first level) ciphertext is Cj = (C1, C

′
2X , C′′

2X , C′
2Y , C

′′
2Y , C

′
2Z , C

′′
2Z , C

′
2Z1,

C′′
2Z1, C3, C4, C5X , C5Y , C5Z , σ).

Enc2(PP, pki,m): to encrypt a message m ∈ GT under the public key pki at the
second level, the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r
R←− Z∗

p and compute,
C2X = Xr

i , C2Y = Y r
1i, C2Z = Zr

i , C2Z1 = Zr
1i,

C3 = e(g1g2, g)
r ·m,C4 = (usvk · v)r.

3. Generate a one-time signature σ ← S(ssk, (C3, C4)) on (C3, C4).
The (first level) ciphertext is Ci = (C1, C2X , C2Y , C2Z , C2Z1, C3, C4, σ).

ReKey(PP, ski, pkj): given user i’s secret key ski and user j’s public key pkj , gen-
erate the re-encryption key rki→j = (rkij1 , rkij2, rkij3), where γ ← Z∗

p and

rkij1 = (Xj · gγ)1/xi = g
xj+γ

xi , rkij2 = (Y2j · gγ)1/yi = g
βyj+γ

yi ,

rkij3 = (Xj · Y2j · gγ)1/zi = g
xj+βyj+γ

zi .
ReEnc(PP, rki→j , Ci): on input of the re-encryption key rki→j and a second level

ciphertext Ci, check the validity of the ciphertext by testing:

e(C2X , uC1 · v) = e(Xi, C4), e(C2Y , u
C1 · v) = e(Y1i, C4),

e(C2Z , u
C1 · v) = e(Zi, C4), e(C2Z1, u

C1 · v) = e(Z1i, C4), (2)

V(C1, σ, (C3, C4)) = 1.

If the relations (2) hold (well-formed),Ci is re-encrypted by choosing s, t, k
R←− Z∗

p

and computing
C′

2X = Xs
i , C

′′
2X = Xrs

i , C′
2Y = Y t

1i, C
′′
2Y = Ct

2Y = Y rt
1i , C

′
2Z = Zk

i ,

C′′
2Z =Zrk

i , C′
2Z1= Zk

1i, C
′′
2Z1= Ck

2Z1 = Zrk
1i , C5X = rk

1
s

ij1, C5Y = rk
1
t

ij2, C5Z =

rk
1
k
ij3 , and a re-encrypted ciphertext Cj = (C1, C

′
2X , C′′

2X , C′
2Y , C

′′
2Y , C

′
2Z , C

′′
2Z ,

C′
2Z1,C

′′
2Z1,C3,C4,C5X , C5Y , C5Z , σ) is returned. Otherwise, ‘invalid’ is returned.

Dec1(skj , Cj): the validity of the first level ciphertext Cj is checked by testing:

e(C′′
2X , uC1 · v) = e(C′

2X , C4), e(C
′′
2Y , u

C1 · v) = e(C′
2Y , C4),

e(C′′
2Z , u

C1 · v) = e(C′
2Z , C4), e(C

′′
2Z1, u

C1 · v) = e(C′
2Z1, C4),

e(C5Z , C
′
2Z) = e(C5X , C′

2X) · e(Y2j , g), (3)

e(C5Z , C
′
2Z1) = e(C5Y , C

′
2Y) · e(Xj, g1),

V(C1, σ, (C3, C4)) = 1.

If the relations (3) hold (well-formed), the plaintext

m = C3

/{(
e(C5Z , C

′′
2Z)

e(C5X , C′′
2X)

) 1
yj ·

(
e(C5Z , C

′′
2Z1)

e(C5Y , C′′
2Y)

) 1
xj

}
,

is returned. Otherwise (ill-formed), the algorithm outputs ‘invalid’.
Dec2(ski, Ci): if the second level ciphertextCi satisfies the relations (2) (well-formed),

the plaintext m = C3/e(g1g2, C2X)
1
xi is returned. Otherwise, ‘invalid’ is returned.

Attacks to the Proxy Re-Encryption Schemes from IWSEC2011 297

3.2 The Scheme with Temporary Delegation

The PRE scheme supporting temporary delegation in [3] is as follows.

Setup(λ): the same as that in Section 3.1.

KGen(λ, PP): user i chooses xi, yi, zi, wi
R←− Z∗

p. The secret key is ski =
(xi, yi, zi, wi). The public key is pki = (Xi, Y1i, Y2i, Zi, Z1i,Wi), where Xi ←
gxi , Y1i ← gyi

1 , Y2i ← gyi

2 , Zi ← gzi, Z1i ← gzi1 ,Wi ← gwi . A function Fi :
{1, . . . , L} → G is implicitly defined as Fi() = g� ·Wi = g�+wi .

Enc1(PP, pkj ,m,): to encrypt a message m ∈ GT under the public key pkj at the
first level during period 	 , the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r, s, t, k, γ, δx, δy
R←− Z∗

p and compute,
C′

2X = Y s
2j , C

′′
2X = Y rs

2j , C
′
2Y = Xt

j , C
′′
2Y = Xrt

j , C′
2Z = Y k

2j ,

C′′
2Z = Y rk

2j , C
′
2Z1 = Xk

j , C
′′
2Z1 = Xrk

j , C3 = e(g1g2, g)
r ·m,

C4 = (usvk · v)r, C5X = (g1 · gγ · Fj()
δy)

1
s = g

α+γ+(�+wj)δy

s ,

C5Y = (gγ+1 · Fj()
δx)

1
t = g

1+γ+(�+wj)δy

t ,

C5Z = (g1 · gγ+1)
1
k = g

α+1+γ
k , C5FX = (Y2j)

δy
h , C5FY = (Xj)

δx
h

3. Generate a one-time signature σ ← S(ssk, (, C3, C4)) on (, C3, C4). The
(first level) ciphertext Cj =(C1,C

′
2X , C′′

2Y , C
′
2Y , C

′′
2T , C

′
2Z , C

′′
2Z , C

′
2Z1, C

′′
2Z1,

C3, C4, C5X , C5Y , C5Z , C5FX , C5FY , σ).
Enc2(PP, pki,m,): to encrypt a message m ∈ GT under the public key pki at the

second level, the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk)← G(λ) and set C1 = svk.

2. Pick r
R←− Z∗

p and compute,
C2X = Xr

i , C2Y = Y r
1i, C2Z = Zr

i , C2Z1 = Zr
1i, C2F = Fi()

r,
C3 = e(g1g2, g)

r ·m,C4 = (usvk · v)r.
3. Generate a one-time signature σ ← S(ssk, (, C3, C4)) on (, C3, C4).

The (first level) ciphertext is Ci = (, C1, C2X , C2Y , C2Z , C2Z1, C2F , C3, C4, σ).
ReKey(PP, ski, pkj ,): given a period number 	, user i’s secret key ski and user j’s

public key pkj , generate the re-encryption key rki→j|� = (rkij�1, rkij�2, rkij�3 ,
rkij�4, rkij�5), where γ, δx, δy ← Z∗

p and

rkij�1 = (Xj · gγ)1/xi · Fi()
δx = g

xj+γ

xi
+(�+wi)δx ,

rkij�2 = (Y2j · gγ)1/yi · Fi()
δy = g

βyj+γ

yi
+(�+wi)δy ,

rkij�3 = (Xj · Y2j · gγ)1/zi = g
xj+βyj+γ

zi , rkij�4 = Xδx
i , rkij�5 = Y

δy
1i .

ReEnc(PP, rkijl , Ci,): on input of the re-encryption key rki→j for period 	 and a
second level ciphertext Ci, check the validity of the ciphertext by testing:

e(C2X , uC1 · v) = e(Xi, C4), e(C2Y , u
C1 · v) = e(Y1i, C4),

e(C2Z , u
C1 · v) = e(Zi, C4), e(C2Z1, u

C1 · v) = e(Z1i, C4), (4)

e(C2F , u
C1 · v) = e(Fi(), C4),V(C1, σ, (C3, C4)) = 1.

If the relations (4) hold (well-formed), Ci is re-encrypted by computing

298 T. Isshiki, M.H. Nguyen, and K. Tanaka

C′
2X = Xs

i , C
′′
2X = Xrs

i , C′
2Y = Y t

1i, C
′′
2Y = Ct

2Y = Y rt
1i , C

′
2Z = Zk

i ,
C′′

2Z = Zrk
i , C′

2Z1 = Zk
1i, C

′′
2Z1 = Ck

2Z1 = Zrk
1i ,

C′
2F = Fi()

h, C′′
2F = Ch

2F = Fi()
rh,

C5X = rk
1
s

ij�1, C5Y = rk
1
t

ij�2, C5Z = rk
1
k

ij�3 , CFX = rk
1
h

ij�4, CFY = rk
1
h

ij�5 ,

where s, t, k, h
R←− Z∗

p, and re-encrypted ciphertext Cj = (C1, C
′
2X , C′′

2Y , C
′
2Y ,

C′′
2T ,C

′
2Z ,C

′′
2Z , C

′
2Z1, C

′′
2Z1, C3, C4, C5X , C5Y , C5Z , C5FX , C5FY , σ) is returned.

Otherwise (ill-formed), the algorithm outputs ‘invalid’.
Dec1(skj , Cj): the validity of the first level ciphertext Cj is checked by testing:

e(C′′
2X , uC1 · v) = e(C′

2X , C4), e(C
′′
2Y , u

C1 · v) = e(C′
2Y , C4),

e(C′′
2Z , u

C1 · v) = e(C′
2Z , C4), e(C

′′
2Z1, u

C1 · v) = e(C′
2Z1, C4),

e(C′′
2F , u

C1 · v) = e(C′
2F , C4),V(C1, σ, (C3, C4)) = 1, (5)

e(C5Z , C
′
2Z) = e(C5FX , C′

2X) · e(Y2j , g),

e(C5Z , C
′
2Z1) = e(C5FY , C

′
2Y) · e(Xj, g1).

If the relations (5) hold (well-formed), the plaintext

m = C3

/{(
e(C5Z , C

′′
2Z) · e(C5FX , C′′

2F)

e(C5X , C′′
2X)

) 1
yj ·

(
e(C5Z , C

′′
2Z1 · e(C5FY , C′′

2F)

e(C5Y , C′′
2Y)

) 1
xj

}
,

is returned. Otherwise (ill-formed), the algorithm outputs ‘invalid’.
Dec2(ski, Ci): if the second level ciphertextCi satisfies the relations (4) (well-formed),

the plaintext m = C3/e(g1g2, C2X)
1
xi is returned. Otherwise, ‘invalid’ is returned.

4 Security Analysis of the PRE Schemes by Hayashi et al.

In this section, we present concrete attacks to sUFReKey-CA of both schemes. Before
presenting their details, we first identify the potential weakness in their schemes; that
is, the linearity of the exponents of the re-encryption key, i.e. the linearity of xj , yj, γ

in xj+γ
xi

,
βyj+γ

yi
,
xj+βyj+γ

zi
.

For example, given two re-encryption keys rk∗→ci = (rki1, rki2, rki3), and rk∗→cj

= (rkj1 , rkj2, rkj3) one can compute a re-encryption key rk∗→ct = (rkt1, rkt2, rkt3),
where the secret key skt of the user t is a linear combination of ski and skj (i.e. xt =
axi + bxj , yt = ayi + byj , for some a, b ∈ Q) as follows:

– rkt1 = rkai1 · rkbj1 = g
axi+aγ1

x∗ · g
bxj+bγ2

x∗ = g
(axi+bxj)+(aγ1+bγ2)

x∗ = g
xt+γ
x∗ , where

γ := aγ1 + bγ2,

– rkt2 = rkai2 · rkbj2 = g
β(ayi+byj)+(aγ1+bγ2)

y∗ = g
βyt+γ

y∗ ,

– rkt3 = rkai3 · rkbj3 = g
(axi+bxj)+β(ayi+byj)+(aγ1+bγ2)

z∗ = g
xt+βyt+γ

z∗ .

Then, there exists an adversary who can break sUFReKey-CA of the main scheme
(it is the same in the case of the PRE scheme with temporary delegation) as follows:
given skc1 = (x1, y1, z1), skc2 = (x2, y2, z2), skj = (xj , yj , zj), rk∗→c1 , rk∗→c2 , the

Attacks to the Proxy Re-Encryption Schemes from IWSEC2011 299

adversary can first compute a, b ∈ Q such that xj = ax1 + bx2, yj = ay1 + by2, then
uses it to compute a forged re-encryption key rk∗→j as the above example.

In the next sections, we give the details of attacks to sUFReKey-CA of the main
scheme and the scheme supporting temporary delegation, respectively.

4.1 Attack to sUFReKey-CA of the Main Scheme

Given pk∗, {(pkci , skci)}, (pkj , skj), {rk∗→ci} and the public parameters PP =
{p,G,GT , g, g1, g2, u, v,Sig}, the adversary A breaks sUFReKey-CA of the scheme
as follows:

1. A chooses from {skci} two secret keys skci1 =(x1, y1, z1) and skci2 =(x2, y2, z2)
such that x1

y1
	= x2

y2
. It is easy to see that this is possible since xi, yi are inde-

pendently chosen from Z∗
p. Let rk∗→ci1

= (rki11, rki12, rki13) and rk∗→ci2
=

(rki21, rki22, rki23).
2. A solves the following system of linear equations (with variables u and v){

u · x1 + v · x2 = xj

u · y1 + v · y2 = yj

Since x1

y1
	= x2

y2
, the above system has a pair of root (a, b) ∈ Q2. It means that A

easily computes (a, b) ∈ Q2 such that{
a · x1 + b · x2 = xj

a · y1 + b · y2 = yj

3. A outputs a re-encryption key rk†∗→j = (R1, R2, R3), where R1, R2, and R3 are
computed as follows:

– R1 = rkai11 ·rkbi21 =
(
g

x1+γ1
x∗

)a
·
(
g

x2+γ2
x∗

)b
= g

(ax1+bx2)+(aγ1+bγ2)

x∗ = g
xj+γ

x∗ ,

where γ := aγ1 + bγ2.

– R2 = rkai12 · rkbi22 =
(
g

βy1+γ1
y∗

)a
·
(
g

βy2+γ2
y∗

)b
= g

β(ay1+by2)+(aγ1+bγ2)
y∗ =

g
βyj+γ

y∗ ,

– R3 = rkai13 · rkbi23 =
(
g

x1+βy1+γ1
z∗

)a
·
(
g

x2+βy2+γ2
z∗

)b
= g

(ax1+bx2)+β(ay1+by2)+(aγ1+bγ2)
z∗ = g

xj+βyj+γ

z∗ .

It is easy to see that the above re-encryption key rk†∗→j is a well-formed re-encryption
key if γ = aγ1+bγ2 ∈ Z∗

p; otherwise, it is an ill-formed re-encryption key satisfying the
equation (1) since outputs of the algorithms Dec1,ReEnc, and Enc2 are not depend
on whether γ ∈ Z∗

p. Therefore, the above re-encryption key rk†∗→j is really a forged
re-encryption key.

4.2 Attack to sUFReKey-CA of the Scheme with Temporary Delegation

Before describing the attack, we recall the definition of sUFReKey-CA for the scheme
with temporary delegation proposed by Hayashi et al. [3]. It is defined as follows:

300 T. Isshiki, M.H. Nguyen, and K. Tanaka

The adversary is given the same public/secret keys as those in Definition 3, the target

time period 	∗ R←− {1, . . . , L} where L is polynomially bounded, re-encryption keys
rk∗→c|� for any corrupted delegatee c(= j) at any period 1 ≤ 	 ≤ L, and re-encryption
keys rk∗→c|� for the malicious user j at period 	 	= 	∗. Then the adversary tries to

compute rk†∗→c|�∗ such that

m = Dec1(skj ,ReEnc(rk†∗→j ,Enc2(pk∗,m, 	∗), 	∗)). (6)

THE ATTACK DETAILS. Given pk∗, {(pkci , skci)}, (pkj , skj), 	∗, {rk∗→ci|�},
{rk∗→j|� �=�∗}, and the public parameters PP = {p,G,GT , g, g1, g2, u, v,Sig}, the
adversaryA breaks sUFReKey-CA of the scheme as follows:

1. A chooses from {skci} two secret keys skci1 = (x1, y1, z1, w1) and skci2 =
(x2, y2, z2, w2) such that x1

y1
	= x2

y2
. It is easy to see that this is possible since xi, yi

are independently chosen from Z∗
p. Let rk∗→ci1 |�∗ = (rki11, rki12, rki13, rki14,

rki15) and rk∗→ci2 |�∗ = (rki21, rki22, rki23, rki24, rki25).
2. A solves the following system of linear equations (with variables u and v){

u · x1 + v · x2 = xj

u · y1 + v · y2 = yj

Since x1

y1
	= x2

y2
, the above system has a pair of root (a, b) ∈ Q2. It means that A

easily computes (a, b) ∈ Q2 such that{
a · x1 + b · x2 = xj

a · y1 + b · y2 = yj

3. A outputs a re-encryption key rk†∗→j|�∗ = (R1, R2, R3, R4, R5), where R1, R2,
R3, R4, and R5 are computed as follows:

– R1 = rkai11 · rkbi21 =
(
g

x1+γ1
x∗ +(�∗+w∗)δx1

)a
·
(
g

x2+γ2
x∗ +(�∗+w∗)δx2

)b
=

g
(ax1+bx2)+(aγ1+bγ2)

x∗ +(�∗+w∗)(aδx1+bδx2) = g
xj+γ

x∗ +(�∗+w∗)δx , where γ :=
aγ1 + bγ2 and δx := aδx1 + bδx2,

– R2 = rkai12 · rkbi22 =
(
g

βy1+γ1
y∗ +(�∗+w∗)δy1

)a
·
(
g

βy2+γ2
y∗ +(�∗+w∗)δy2

)b
=

g
β(ay1+by2)+(aγ1+bγ2)

y∗ +(�∗+w∗)(aδy1+bδy2) = g
βyj+γ

y∗ +(�∗+w∗)δy , where δy :=
aδy1 + bδy2.

– R3 = rkai13 · rkbi23 =
(
g

x1+βy1+γ1
z∗

)a
·
(
g

x2+βy2+γ2
z∗

)b
= g

(ax1+bx2)+β(ay1+by2)+(aγ1+bγ2)
z∗ = g

xj+βyj+γ

z∗ ,
– R4 = rkai14 · rkbi24 =

(
Xδx1∗

)a · (Xδx2∗
)b

= Xδx∗ ,

– R5 = rkai15 · rkbi25 =
(
Y

δy1
1∗

)a
·
(
Y

δy2
1∗

)b
= Y

δy
1∗ .

It is easy to see that the above re-encryption key rk†∗→j is a well-formed re-encryption
key if γ, δx, δy ∈ Z∗

p; otherwise, it is an ill-formed re-encryption key satisfying the
equation (6) since outputs of the algorithms Dec1,ReEnc, and Enc2 are not depend
on whether γ, δx, δy ∈ Z∗

p. Therefore, the above re-encryption key rk†∗→j is really a
forged re-encryption key.

Attacks to the Proxy Re-Encryption Schemes from IWSEC2011 301

5 Attack to the Assumptions by Hayashi et al.

In this section, we review the problems proposed by Hayashi et al. [3] and show that
they are not really hard to compute.

5.1 Review of the Problems

To prove the PRE schemes meet sUFReKey-CA, Hayashi et al. proposed two new vari-
ants of the Diffie-Hellman inversion problem and assumed their hardness. These new
problems are as follows:

Definition 4 (2-DHIwRA problem [3]). The 2-Diffie-Hellman inversion with random-
ized answers problem is computing g1/(a+c) given the following:

– input 1: g, ga, ga
2

, c, where a, c
R←− Z∗

p;

– input 2: (xi, yi, Di, Ei, Fi) = (xi, yi, g
xi+γi
a(a+c) , g

ayi+γi
a+c , g

xi+γi
a), where xi, yi, γi

R←−
Z∗
p for i ∈ {1, . . . , L} and L is polynomially bounded.

The 2-DHIwRA problem without the input 2 is a variant of the 2-DHI problem [7],
where c = 0.

Definition 5 (m-2-DHIwRA problem [3]). The modified 2-Diffie-Hellman inversion
with randomized answers problem is computing g1/(a+c) given the inputs 1 and 2 of
2-DHIwRA problem and

– input 3: (y′, μ,D′, E′, F ′, G′, H ′) = (y′, μ, g
cy′+γ′
a(a+c)

+δ′x , g
aμy′+γ′

a+c +δ′y , g
cy′+γ′

a ,

ga(a+c)δ′x , ga(a+c)δ′y), where y′, μ, γ′, δ′x, δ
′
y

R←− Z∗
p.

Remark. The m-2-DHIwRA problem is the same as the 2-DHIwRA problem except for
the additional input 3, so a solving method for the 2-DHIwRA problem implies that for
the m-2-DHIwRA problem.

5.2 Solving the Problems

By combining Di, Ei, Fi from the input 2 and c from the input 1, we can remove the
element γi and obtain g

1
a+c (see the following theorem).

Theorem 1 The 2-DHIwRA and the m-2-DHIwRA problems are not hard.

Proof. Using xi, yi, Di, Ei, Fi from input 2, and c from input 1 of the 2-DHIwRA
problem, we compute Ni as follows.

Ni =
Fi · gyi

Dc
i · Ei

=
g

xi+γi
a · gyi

g
xi+γi
a(a+c) c · g ayi+γi

a+c

=
g

xi+ayi+γi
a

g
(xi+γi)c+(ayi+γi)a

a(a+c)

=
g

(a+c)xi+a(a+c)yi+(a+c)γi
a(a+c)

g
cxi+a2yi+(a+c)γi

a(a+c)

= g
axi+acyi
a(a+c) = g

xi+cyi
a+c .

302 T. Isshiki, M.H. Nguyen, and K. Tanaka

⇒ (Ni)
1

xi+cyi =

(
Fi · gyi

Dc
i ·Ei

) 1
xi+cyi

= g
1

a+c .

Note that in the above computation we do not use input 3 of the m-2-DHIwRA problem.
Therefore, since the m-2-DHIwRA problem is the same as the 2-DHIwRA problem,
except for the additional input 3, we can solve the m-2-DHIwRA problem in the same
way.

��

6 Concluding Remarks

We have presented two concrete attacks to the PRE schemes proposed by Hayashi et
al. [3]. The first attack is to the sUFReKey-CA property on their two schemes. The
second attack is to the assumptions employed in the security proofs for sUFReKey-CA
of their two schemes. We stress that the work of Hayashi et al. [3] is still considered
as an important step in this research area. Namely, the formal definition of UFReKey-
CA and its stronger variant sUFReKey-CA are really significant steps toward the non-
transferability. Moreover, due to their schemes, we can figure out of main difficulties
for constructing PRE which meets UFReKey-CA. It is an open problem of constructing
UFReKey-CA secure PRE schemes.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with
applications to secure distributed storage. In: NDSS (2005)

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg
(1998)

3. Hayashi, R., Matsushita, T., Yoshida, T., Fujii, Y., Okada, K.: Unforgeability of re-encryption
keys against collusion attack in proxy re-encryption. In: Iwata, T., Nishigaki, M. (eds.) IWSEC
2011. LNCS, vol. 7038, pp. 210–229. Springer, Heidelberg (2011)

4. He, Y., Chim, T., Hui, L., Yiu, S.: Non-transferable proxy re-encryption. In: Cryptology ePrint
Archive (2010), http://eprint.iacr.org/2010/192

5. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–353. Springer, Heidelberg
(2008)

6. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008)

7. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences E85-A(2), 481–484 (2002)

8. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-encryption
schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010.
LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010)

http://eprint.iacr.org/2010/192

Game-Theoretic Security for Bit Commitment�

Haruna Higo1, Keisuke Tanaka1, and Kenji Yasunaga2

1 Tokyo Institute of Technology, Japan
{higo9,keisuke}@is.titech.ac.jp

2 Kanazawa University, Japan
yasunaga@se.kanazawa-u.ac.jp

Abstract. Higo, Tanaka, Yamada, and Yasunaga (ACISP 2012) studied
oblivious transfer (OT) from a game-theoretic viewpoint in the malicious
model. Their work can be considered as an extension of the study on
two-party computation in the fail-stop model by Asharov, Canetti, and
Hazay (EUROCRYPT 2011).

This paper focuses on bit commitment, and continues to study it from
a perspective of game theory. In a similar manner to the work on OT, we
consider bit commitment in the malicious model. In order to naturally
capture the security properties of bit commitment, we characterize them
with a single game where both parties are rational. In particular, we
define a security notion from a game theoretic viewpoint, and prove the
equivalence between it and the standard security notion.

Keywords: Cryptography, game theory, bit commitment.

1 Introduction

1.1 Motivations

Cryptographic protocols are designed for some parties to accomplish some pur-
poses. When defining their security, we consider situations among honest parties
and adversaries. Honest parties always follow the protocol description, while ad-
versaries may deviate from it to attack others, e.g., dig out secrets of others. We
usually say a protocol is secure if no adversary can damage the honest parties.
The adversaries are assumed to be interested in attacking, however, not inter-
ested in protecting their own secret. Also, we assume there is at least one honest
party. That is, we do not consider situations where all parties conduct some sort
of attack.

Game theory mathematically analyzes decision making of multiple parties.
In particular, non-cooperative game theory deals with the situations where the
parties act independently. The parties are called rational, since they only care
about their own preferences and act to achieve their best satisfactions. If a party

� This research was supported in part by a grant of I-System Co. Ltd., and JSPS
Grant-in-Aid for Scientific Research Numbers 23500010, 24240001, 25106509, and
23700010.

K. Sakiyama and M. Terada (Eds.): IWSEC 2013, LNCS 8231, pp. 303–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

304 H. Higo, K. Tanaka, and K. Yasunaga

has two or more preferences, he considers the trade-offs among them and aims
to obtain the most reasonable result.

As described, both non-cooperative game theory and cryptography study the
situations where parties act. However, they capture situations from different per-
spectives. In reality, even adversaries may be reluctant to reveal their secrets.
Also, for example, if a party is sure that there is no danger, he may try to
obtain more information than expected. That is, all parties may not be com-
pletely honest. In a game-theoretic framework, we can formalize such realistic
perspectives.

There is a line of work using game-theoretic concepts to study cryptographic
protocols. For a survey on the joint work of cryptography and game theory, we
refer to [15,13]. Halpern and Teague [9] introduced such approach of study on
secret sharing. Their work has been followed in many subsequent work called
rational secret sharing (see [3] and the references therein for the subsequent
work). They study it in the presence of rational parties, seeking for secure pro-
tocols in a game-theoretic framework. Besides secret sharing, there are several
studies using game-theoretic frameworks for cryptographic protocols, e.g., two-
party computation [1,7], leader election [6], byzantine agreement [8], oblivious
transfer (OT) [11], and public-key encryption [17]. As an extension of the work by
Asharov, Canetti, and Hazay [1] and Higo, Tanaka, Yamada, and Yasunaga [11],
we are interested in whether the standard security notions of cryptographic pro-
tocols are reasonable in such a realistic model. In order to investigate it, we
employ a game-theoretic framework.

In this work, we focus on bit commitment. Two parties, called the sender and
the receiver, interact to implement it. They conduct two phases in series. In the
first phase, called the commit phase, the sender who has a bit b interacts with the
receiver. After that, the receiver obtains a commitment string c, and the sender
obtains c and a decommitment string d. In the latter phase, called the open
phase, the sender persuade the receiver that the committed bit is b through
an interaction using c and d . Finally, the receiver outputs a bit representing
whether she accepts that b is the committed bit.

In cryptography, we usually require three properties, hiding property, binding
property, and correctness, as the security properties for bit commitment. Hiding
property guarantees that no receiver can learn the committed bit before start-
ing the open phase. Binding property guarantees that no sender can generate a
pair of decommitment strings to open the commitment to both 0 and 1. These
two properties are required to protect the sender and the receiver respectively.
Correctness guarantees that if two parties honestly follow the protocol descrip-
tion, they can open the bit that was committed in the commit phase. Note that,
in cryptography, each of the three properties is defined individually. Thus, for
example, we do not consider parties who want to break hiding property and to
protect binding property at the same time.

Game-Theoretic Security for Bit Commitment 305

1.2 Previous Studies on Game-Theoretic Security

Asharov et al. [1] studied two-party protocols in the fail-stop model from a
game-theoretic viewpoint. Fail-stop adversaries are allowed to abort the pro-
tocol rather than continuing at each round, but they cannot conduct other
deviation, such as sending illegal messages to the others. They focus on the
properties of privacy, correctness, and fairness. They characterized them indi-
vidually in a game-theoretic manner using a concept called computational Nash
equilibrium. For privacy and correctness, they showed the equivalence between
the corresponding cryptographic and the game-theoretic notions. For fairness,
they showed that their game-theoretic notion is strictly weaker than existing
cryptographic ones, and proposed a new cryptographic notion that is equivalent
to the game-theoretic one. Groce and Katz [7] continued their consideration on
fairness, and showed a way to circumvent impossibility results in cryptography
in a game-theoretic framework.

Higo et al. [11] studied two-message oblivious transfer (OT) from a game-
theoretic viewpoint, characterizing its security using computational Nash equi-
librium. They restrict the target protocol from general two-party computation
to OT. However, the characterization of Higo et al. [11] has several advantages.
First, they investigated the security in the malicious model, where the adversaries
can arbitrarily deviate from the protocol description. Second, both parties are
rational in their game while a game defined in [1] is essentially played between a
rational party and an honest party. Finally, they characterized all security prop-
erties by a single game, whereas each security property is defined in an individual
game in [1]. Specifically, Higo et al. [11] listed three preferences for each party.
Since parties may have different strength of preferences, they formalize them as
a weighted sum of the probabilities where each preference is satisfied. This way
of formalization was introduced in order to make the model closer to the real-
ity. With this model, they showed the equivalence between their game-theoretic
security and the standard cryptographic security.

1.3 This Work

In this paper, we study bit commitment in a game-theoretic framework. In par-
ticular, we define a security notion from a game theoretic viewpoint, and exam-
ine the relation between it and the standard security notion. As summarized in
Table 1., our work has various advantages compared to the previous studies.

We consider bit commitment in the malicious model. In order to naturally
capture its security properties, we define a single game where both parties are
rational. In other words, we take over the advantages of [11] over [1].

Since both bit commitment and OT are types of two-party computation, one
might think that we can simply extend the result of [11] to the case of bit
commitment. However, this is not the case. Bit commitment and OT have an
essential difference in the functions they compute. The function of OT is a single
function, that is, it has a single pair of inputs and a single pair of outputs. On
the other hands, what bit commitment computes is a type of reactive functional-
ities [10,12], which have multiple phases in their computations. Bit commitment

306 H. Higo, K. Tanaka, and K. Yasunaga

Table 1. Results of [1], [11], and this work

Asharov et al. [1] Higo et al. [11] This work

Target protocol Two-party computation Two-message OT Bit commitment

of phases 1 1 2

of messages Not restricted 2 Not restricted

Adversary model Fail-stop model Malicious model Malicious model

of rational parties 1 out of 2 parties Both of 2 parties Both of 2 parties

Properties 1 3 3

Utility functions Fixed Weighted General

has two phases, with a pair of inputs and outputs for each phase, where the
second input may depend on the result of the first phase. Moreover, Higo et
al. [11] focused on two-message OT, whose interaction has only one round. For
bit commitment, we do not only consider multiple phases, but also get rid of the
limitation on the number of rounds. When we consider from a game-theoretic
perspective, this difference makes the characterization and the analysis more
complicated than those in the case of OT.

Generalized utility functions and a simpler solution concept. In the field of game
theory, utility function mathematically represents the preferences of each party.
We formalize the preferences of each party in bit commitment into a form of
utility function.

We do not employ a fixed form such as a fixed value in [1] or a weighted sum
in [11]. Our utility functions are said to be more general than the ones in the
previous work.

Moreover, we reform the way of perceiving the preferences. Since protocols
may be used repeatedly, the users are not just interested in a good outcome of
a game but prefer to use a good protocol. We characterize the preferences of
the parties not over the outcomes of single executions of a protocol, but over
the algorithms used by the parties. Although it is not an essential difference, it
contributes to employ Nash equilibrium rather than computational Nash equi-
librium. As a result, we obtain a simple description of the theorem and its proof.

Non-triviality of our theorem. We prove that our security is equivalent to the
standard cryptographic one. The implications between the two security notions
are not trivial. Actually, they are, in general, not comparable. In the crypto-
graphic security, we define the three properties individually, whereas rational
parties pay attention to the trade-offs among them. That is, if there is a way of
attacking some property of a protocol, it is not secure in cryptography. However
since rational parties may not perform the attack to the protocol in case this
attack together derives a negative result, it may satisfy the game-theoretic se-
curity. In this sense, the cryptographic security seems stronger. However, when
we focus on the number of non-honest parties, the other seems stronger. Con-
sidering security in cryptography, we generally assume that there is at least one

Game-Theoretic Security for Bit Commitment 307

SC RC

SO RO

b

b, c, d c

c, d c

{
1: accept
0: reject

Commit phase

Open phase

Fig. 1. Bit commitment protocol

honest party, but all parties are rational in game theory. That is, everyone is
allowed to take arbitrary action.

2 Preliminaries

In this section, we review some cryptographic definitions and game-theoretic
concepts.

First, we review some basic definitions. We say a function μ : N → R is
negligible if for any polynomial p, there exists N ∈ N such that for any n > N
it holds that μ(n) < 1/p(n). We describe a negligible function as negl(·). An
algorithm is PPT if it runs in probabilistic polynomial time. In this paper, all
the parties are assumed to use PPT algorithms in the security parameter n.
Formally, each party has an input 1n, but we omit this part. For two algorithms
A and B, denote the view of A during the interaction with B by viewA(B), and
the output of A after the interaction with B by outA(B).

2.1 Bit Commitment in Cryptography

In this section, we review security of bit commitment in a cryptographic frame-
work as defined in [5,2]. Bit commitment (Fig. 1.) has two phases, the commit
phase and the open phase, which are executed in series. Note that this definition
allows interactions in both phases.

Definition 1 (Bit commitment protocol). A bit commitment protocol
Com is a tuple of four PPT interactive algorithms, denoted by Com =
((SC , SO), (RC , RO)).

308 H. Higo, K. Tanaka, and K. Yasunaga

– The commit phase is an interaction between SC and RC , where SC receives
a bit b ∈ {0, 1} as an input. The output of the commit phase consists of
the commitment string c and a private output d for the sender, called the
decommitment string. Without loss of generality, let c be the transcript of
the interaction between SC(b) and RC, and d the view of SC , including the
private random coin of SC .

– The open phase is an interaction between SO and RO, where SO receives
(b, c, d), and RO receives c as inputs. We assume that the first message by
the sender explicitly contains a bit b, which indicates that the sender is to
persuade the receiver that the committed bit is b. After the interaction, RO

outputs 1 if the receiver accepts, and 0 otherwise.

Next, we review a security notion of commitment in the malicious model. In
this model, adversaries are allowed to act arbitrarily. That is, they may follow
the description of the protocol, stop the protocol execution, or deviate from it. A
protocol is called secure if it satisfies three properties, hiding property, binding
property, and correctness. Since we derive a new security notion in terms of game
theory in the next section, this one is called the cryptographic security.

Definition 2 (Cryptographic security). Let Com = ((SC , SO), (RC , RO)) be
a bit commitment protocol. We say Com is cryptographically secure if it satisfies
the following three properties.

Hiding Property: For any b ∈ {0, 1}, PPT cheating receiver R∗
C , and PPT

distinguisher D, it holds that

Pr[D(viewR∗
C
(SC(b))) = b] ≤ 1/2 + negl(n).

Binding Property: For any b ∈ {0, 1}, PPT cheating sender (S∗
C , S

∗
O), and

PPT decommitment finder F , it holds that

Pr[outRO(c∗)(S
∗
O(0, c

∗, d0)) = outRO(c∗)(S
∗
O(1, c

∗, d1)) = 1] ≤ negl(n),

where c∗ is the transcript between S∗
C(b) and RC , (d0, d1) is the output of

F (viewS∗
C(b)(RC)).

Correctness: For any b ∈ {0, 1}, it holds that

Pr[outRO(c)(SO(b, c, d)) = 1] ≥ 1− negl(n),

where c is the transcript between SC(b) and RC , and d = viewSC(b)(RC).

2.2 Game Theory

Game theory [4,16] studies actions of some parties aiming at their own goals. We
characterize the situations as a game in terms of game theory. The parties of the
game have their own preferences. In games, parties choose the best actions from
their alternatives to obtain the most preferable outcome. The series of actions
of each party is collectively called strategies. When we analyze cryptographic

Game-Theoretic Security for Bit Commitment 309

protocols from a game-theoretic viewpoint, the tuple of algorithms of each party
accounts for his strategy.

Utility functions stands for the preferences of the parties. A utility function
maps from a tuple of strategies of parties to a real number. When all parties
choose their strategies, the outcome of the game is (probabilistically) determined.
The values of utility functions usually represent the degree of its preference over
the outcome. Higher rate represents stronger preference. Each party guesses the
actions of the others, and estimate his own utility to choose his best strategy.
Every party chooses the algorithm that delivers him the highest utility.

We are interested in how the parties act in the game. Solution concepts charac-
terize which tuples of strategies are likely to be chosen by the parties. While there
are many solution concepts introduced, we employ Nash equilibrium, which is
one of the most commonly used. When all parties choose the Nash equilibrium
strategies, no party can gain his utility by changing his strategy unilaterally.
Namely, if parties are assumed to choose the Nash equilibrium strategies, no
party have any motivation to change his strategy.

3 Bit Commitment in Game Theory

In this section, we introduce game-theoretic definitions with respect to bit com-
mitment. First, we define a game to execute a protocol. Then, we consider the
natural preferences of the sender and the receiver. The solution concept we em-
ploy is Nash equilibrium [15,13]. Finally, we characterize the required properties
for bit commitment using these notions in the game-theoretic framework.

Game. Given a bit commitment protocol Com = ((SC , SO), (RC , RO)), we define
a game between a sender and a receiver. A sender has three PPT algorithms
(S′

C , S
′
O, F), and a receiver has two PPT algorithms (R′

C , D) in our game. Here
is an informal description of the game. (See also Fig. 2.)

First, the sender and the receiver execute a commit phase by using S′
C and R′

C

together with a random bit b as the input for the sender. Then, a distinguisher
D of the receiver tries to guess the committed bit b using her view in the commit
phase. After that, a decommitment finder F of the sender tries to generate two
decommitment strings d0 and d1, where db is used for opening b as the committed
bit. Using S′

O and RO, two open phases are executed, whether d0 and d1 are
correctly used to open the commitment generated in the commit phase. Note
that the receiver has to use RO as the open phase algorithm. Since otherwise, the
receiver can even accept/reject all the commitment, and such strategies should
be excluded from her choice.

Now we formally define a bit commitment game.

Definition 3 (Game). For a bit commitment protocol Com =
((SC , SO), (RC , RO)), and PPT algorithms S′

C, S′
O, F , R′

C , and D, the
game ΓCom((S′

C , S
′
O, F), (R′

C , D)) is executed as follows.

1. Choose a bit b uniformly at random and set guess = amb = suc = abort = 0.

310 H. Higo, K. Tanaka, and K. Yasunaga

S ′
C R′

C

F D

S ′
O RO S ′

O RO

b

viewSC(b)(RC) viewRC (SC(b))

0, c, d0 c 1, c, d1 c

c, d c

d0, d1 0/1

0/1 0/1

Fig. 2. Bit commitment game

2. Observe an interaction between S′
C(b) and R′

C , and c denotes the transcript
during the interaction. Set abort = 1 if some party aborts the protocol.

3. Set guess = 1 if b = D(viewR′
C
(S′

C(b))).
4. Run F (viewS′

C(b)(R
′
C)) and get (d0, d1) as output.

5. Observe an interaction between S′
O(0, c, d0) and RO(c), and between

S′
O(1, c, d1) and RO(c). Set abort = 1 if some party aborts.

6. Set amb = 1 if outRO(c)(S
′
O(0, c, d0)) = outRO(c)(S

′
O(1, c, d1)) = 1, and suc =

1 if either outRO(c)(S
′
O(b, c, db)) = 1 or abort = 1.

The tuple (guess, amb, suc) is the outcome of this game, and is explained as
follows.

After the commit phase, the receiver tries to learn the committed bit b before-
hand. If she succeeded in guessing, then guess = 1. Otherwise, guess = 0. The
sender tries to find two decommitment strings d0 and d1 in order that db′ can be
opened to b′. Acceptance of both bits implies that he can choose the bit to be
opened. If the sender succeed in finding such values, then amb = 1. Otherwise,
amb = 0. If the receiver can accept the commitment for the committed bit b, or
one of the parties aborts the protocol, then suc = 1. Otherwise, suc = 0.

Utility functions. We consider that each party of bit commitment has multiple
goals listed as the following preferences.

We consider that the sender has the following two preferences:

– He does not prefer the receiver to know the committed bit b before executing
the open phase.

Game-Theoretic Security for Bit Commitment 311

– On executing the open phase, he prefers to be able to choose a bit to be
opened.

Next, the receiver is considered to have the following three preferences:

– She prefers to learn the committed bit b before executing the open phase.
– She does not prefer the sender to change the bit to be opened in the open

phase.
– She prefers to open the committed bit b in the open phase unless the protocol

was aborted.

We formalize these preferences as utility functions. Similar to the work of
Higo et al. [11], each party has a single utility function that represents all the
preferences in a lump. However, our utility functions are not in a fixed form such
as weighted sum used in [11]. Moreover, to describe the preferences over the al-
gorithms used in the game, the arguments of utility functions are the algorithms.
They are evaluated using the prescribed three random variables guess, amb and
suc that represents the outcome of the game.

For simplicity, we use the following notations. We denote by a ≺ b or b ' a
for a(n), b(n) ∈ R, if it holds that a(n) < b(n) − ε(n) for some non-negligible
function ε. Also, a ≈ b denotes that |a(n)− b(n)| ≤ negl(n).

Definition 4 (Utility functions). For a bit commitment protocol Com, and
PPT algorithms SC , SO, RC , S′

C , S′
O, R′

C , D, and F , let (guess, amb, suc)
and (guess′, amb′, suc′) be the random variables representing the outcome of
ΓCom((SC , SO, F), (RC , D)) and ΓCom((S′

C , S
′
O, F), (R′

C , D)), respectively. The
utility function UCom

S for the sender satisfies UCom
S ((SC , SO, F), (RC , D)) >

UCom
S ((S′

C , S
′
O, F), (R′

C , D)) if one of the following conditions holds.

S-1. |Pr[guess = 1]− 1/2| ≺ |Pr[guess′ = 1]− 1/2| and Pr[amb = 1] ≈
Pr[amb′ = 1].

S-2. Pr[guess = 1] ≈ Pr[guess′ = 1] and Pr[amb = 1] ' Pr[amb′ = 1].

The utility function UCom
R for the receiver satisfies UCom

R ((SC , SO, F), (RC , D)) >
UCom
R ((S′

C , S
′
O, F), (R′

C , D)) if one of the following conditions holds.

R-1. |Pr[guess = 1]− 1/2| ' |Pr[guess′ = 1]− 1/2|, Pr[amb = 1] ≈ Pr[amb′ =
1], and Pr[suc = 1] ≈ Pr[suc′ = 1].

R-2. Pr[guess = 1] ≈ Pr[guess′ = 1], Pr[amb = 1] ≺ Pr[amb′ = 1], and Pr[suc =
1] ≈ Pr[suc′ = 1].

R-3. Pr[guess = 1] ≈ Pr[guess′ = 1], Pr[amb = 1] ≈ Pr[amb′ = 1], and Pr[suc =
1] ' Pr[suc′ = 1].

Note that we use the value |Pr[guess = 1]− 1/2| rather than Pr[guess = 1].
After a single execution of the game, the sender prefers guess to be 0, and the
receiver 1. However, focusing on what the parties hope the algorithm to be, we
consider that the sender prefers guess to be close to 1/2, and the receiver prefers
it to be far from 1/2.

312 H. Higo, K. Tanaka, and K. Yasunaga

Nash equilibrium. As mentioned in Section 2.2., we use Nash equilibrium as the
solution concept in this paper. When a pair of strategies in a Nash equilibrium
is chosen by the parties, neither party can gain more no matter how he changes
his strategy unilaterally. Although all strategies we consider are polynomially
bounded, we do not need to use the extended notion named computational Nash
equilibrium as is used in the previous work [1,11]. This conversion is attributed
to the reformation of the utility. Since our utility functions describe the prefer-
ences over the strategies not over the outcomes of the games, the discussion of
computability is done with evaluating utility functions.

Definition 5 (Nash equilibrium). Let Com be a bit commitment protocol. A
tuple of PPT strategies ((SC , SO), RC) is in a Nash equilibrium, if for any PPT
algorithms S∗

C , S
∗
O, R

∗
C, D, and F , neither of the followings hold.

– UCom
S ((SC , SO, F), (RC , D)) < UCom

S ((S∗
C , S

∗
O, F), (RC , D))

– UCom
R ((SC , SO, F), (RC , D)) < UCom

R ((SC , SO, F), (R∗
C , D))

Note that the strategies of the parties are (SC , SO) and RC . D and F are
excluded from strategies. That is because, informally, the parties always choose
the best D and F to improve their utilities.

Game-theoretic security. We characterize the required properties for bit com-
mitment using the prescribed notions. If a protocol is in a Nash equilibrium, it
means that the parties will prefer to take the strategies according to the pro-
tocol. In other words, the parties do not have a motivation to deviate from the
protocol. We call such protocols game-theoretically secure.

Definition 6 (Game-theoretic security). Let Com = ((SC , SO), (RC , RO))
be a bit commitment protocol. We say Com is game-theoretically secure if the
tuple of the strategies ((SC , SO), RC) is in a Nash equilibrium.

4 Equivalence between the Two Security Notions

In this section, we prove the equivalence between the cryptographic security
(Definition 2) and the game-theoretic security (Definition 6). In other words, we
show that a protocol is cryptographically secure if and only if the protocol itself
is in a Nash equilibrium.

Theorem 1. Let Com be a bit commitment protocol. Com is cryptographically
secure if and only if Com is game-theoretically secure.

As mentioned in Section 1.3., this relationship is not trivial. We provide both
directions of implication one by one.

First, we show that the cryptographic security implies the game-theoretic
security.

Lemma 1. If a bit commitment protocol Com is cryptographically secure, then
Com is game-theoretically secure.

Game-Theoretic Security for Bit Commitment 313

We prove the contrapositive of this statement. If a protocol is not game-
theoretically secure, that is, it is not in a Nash equilibrium, at least one party
can gain with using some alternative strategies rather than the protocol de-
scription. From the definitions of the utility functions, it is natural that the
alternative strategies break some of the cryptographic property, which implies
that the protocol is not cryptographically secure. Actually, the definition of Nash
equilibrium makes the proof a little complicated. The formal proof is as follows.

Proof. To prove this lemma, we assume that Com = ((SC , SO), (RC , RO)) is not
game-theoretically secure, and show that Com is not cryptographically secure.
Namely, Com does not satisfy at least one of the three properties, hiding property,
binding property, and correctness.

Suppose Com is not game-theoretically secure. Then, there exist a tuple
((S∗

C , S
∗
O), R

∗
C) of PPT strategies, a PPT distinguisher D and a PPT decom-

mitment finder F such that at least one of the following two inequalities holds:

UCom
S ((SC , SO, F), (RC , D)) < UCom

S ((S∗
C , S

∗
O, F), (RC , D)), (1)

UCom
R ((SC , SO, F), (RC , D)) < UCom

R ((SC , SO, F), (R∗
C , D)). (2)

First, assume that Equality (1) holds. It implies that the sender can get a
higher utility by changing his strategy from (SC , SO) to (S∗

C , S
∗
O). There are two

possibilities for the cause of this increase:

Case S-1: |Pr[guess = 1]− 1/2| decreases with the change of the strategy.
Case S-2: Pr[amb = 1] increases with the change of the strategy.

Case S-1 implies that |Pr[guess = 1]−1/2| ' 0 holds when both parties choose
its honest strategy. This means that Com does not satisfy hiding property for
RC .

Case S-2 implies that Pr[amb = 1] ' 0 holds for the strategy tuple
((S∗

C , S
∗
O), RC). Hence, Com does not satisfy binding property for (S∗

C , S
∗
O).

Next, assume that Equality (2) holds. It implies that the receiver can get a
higher utility by changing her strategy from RC to R∗

C . There are three possi-
bilities for the cause of this increase:

Case R-1: |Pr[guess = 1]− 1/2| increases with the change of the strategy.
Case R-2: Pr[amb = 1] decreases with the change of the strategy.
Case R-3: Pr[suc = 1] increases with the change of the strategy.

Case R-1 implies that |Pr[guess = 1]− 1/2| ' 0 holds for the strategy tuple
((SC , SO), R

∗
C). This means that Com does not satisfy hiding property for R∗

C .
Case R-2 implies that Pr[amb = 1] ' 0 holds when both parties choose their

honest strategies. Hence, Com does not satisfy binding property for (SC , SO).
Case R-3 implies that Pr[suc = 1] ≺ 1 holds when both parties choose their

honest strategy. This means that Com does not satisfy correctness.
In every case, we have shown that Com is not cryptographically secure. There-

fore, the statement follows. ��

314 H. Higo, K. Tanaka, and K. Yasunaga

Next, we show that the game-theoretic security implies the cryptographic
security.

Lemma 2. If a bit commitment protocol Com is game-theoretically secure, then
Com is cryptographically secure.

The proof of this direction is more technical than that of Lemma 1. We prove
it by showing that the contrapositive is true. Assume that a protocol is not
cryptographically secure, at least one of the security properties, hiding property,
binding property and correctness, does not hold. Provided that an algorithm
breaks one of the properties, we cannot simply say that the protocol is not in a
Nash equilibrium. That is because, the parties consider the tradeoffs among the
preferences. If the algorithms together leads to some negative result, the party
cannot gain his utility by using this algorithm. This cannot be the reason of the
protocol being not game-theoretically secure. This lemma seems not trivial at
this point.

Despite this point, the lemma holds because the definition of Nash equilibrium
requires the inequality to hold for any D and F . If an algorithm breaks some
property, then some D and F makes a situation where only the probability
related to the broken property (Pr[guess = 1], Pr[amb = 1] or Pr[suc = 1])
changes by using the algorithm rather than following the protocol. That is, when
at least one of the security properties does not hold, some tuple of algorithm
makes the protocol not in Nash equilibrium.

Here, we provide a formal proof.

Proof. Suppose that Com = ((SC , SO), (RC , RO)) is not cryptographically se-
cure. We consider the following five cases, and show that Com is not game-
theoretically secure in each case.

Case 1: Com does not satisfy correctness.

Case 2: Com satisfies correctness and does not satisfy binding property for
(SC , SO).

Case 3: Com satisfies correctness and binding property for (SC , SO), and does
not satisfy binding property for some (S∗

C , S
∗
O) 	= (SC , SO).

Case 4: Com satisfies correctness and binding property, and does not satisfy
hiding property for RC .

Case 5: Com satisfies correctness, binding property, and hiding property for
RC , and does not satisfy hiding property for some R∗

C 	= RC .

In Case 1, even if both parties follow the protocol description, the probability
that they cannot open the committed bit is non-negligible. That is, for some
b ∈ {0, 1}, it holds that

Pr[outRO(c)(SO(b, c, d)) = 1] ≺ 1,

Game-Theoretic Security for Bit Commitment 315

where c is the transcript between SC(b) and RC , and d = viewSC(b)(RC).

Let Drand be an algorithm that outputs 0 or 1 uniformly at random,
F honest an algorithm that outputs (d0, d1) where db = outSC(b)(R

′
C) and

d1−b = ⊥, where R′
C is an algorithm of the receiver in the com-

mit phase, and Rabort
C a strategy of sending the abort message right af-

ter starting the protocol. Note that the three algorithms, Drand, F honest,
and Rabort

C , are PPT algorithms. We denote the outcome of the games
ΓCom((SC , SO, F

honest), (RC , D
rand)) and ΓCom((SC , SO, F

honest), (Rabort
C , Drand))

by (guess, amb, suc) and (guess′, amb′, suc′), respectively. Now we obtain the fol-
lowing equalities:

– |Pr[guess = 1]− 1/2| ≈ |Pr[guess′ = 1]− 1/2| ≈ 0,

– Pr[amb = 1] = Pr[amb′ = 1] = 0,

– Pr[suc = 1] ≺ Pr[suc′ = 1] = 1.

Hence, it holds that UCom
R ((SC , SO, F

honest), (RC , D
rand)) <

UCom
R ((SC , SO, F

honest), (Rabort
C , Drand)), which implies that the tuple

((SC , SO), RC) is not in a Nash equilibrium.
In Case 2, the sender can break binding property with the honest strategy

(SC , SO). That is, for some PPT decommitment finder F and b ∈ {0, 1}, it holds
that

Pr[outRO(c)(SO(0, c, d0)) = outRO(c)(SO(1, c, d1)) = 1] ' 0,

where (d0, d1) is the output of F (viewSC(b)(RC)). We denote the outcome of the

games ΓCom((SC , SO, F), (RC , D
rand)) and ΓCom((SC , SO, F), (Rabort

C , Drand)) by
(guess, amb, suc) and (guess′, amb′, suc′), respectively. Now we obtain the follow-
ing equalities:

– |Pr[guess = 1]− 1/2| ≈ |Pr[guess′ = 1]− 1/2| ≈ 0,

– Pr[amb = 1] ' Pr[amb′ = 1] = 0,

– Pr[suc = 1] = Pr[suc′ = 1] = 1.

Hence, it holds that UCom
R ((SC , SO, F), (RC , D

rand)) <
UCom
R ((SC , SO, F), (Rabort

C , Drand)), which implies that the tuple ((SC , SO), RC)
is not in a Nash equilibrium.

In Case 3, the sender cannot break binding property with honest strategy
(SC , SO) but with some strategy (S∗

C , S
∗
O) 	= (SC , SO). That is, for some PPT

decommitment finder F and b ∈ {0, 1}, it holds that

Pr[outRO(c)(S
∗
O(0, c

∗, d0)) = outRO(c)(S
∗
O(1, c

∗, d1)) = 1] ' 0,

where c∗ is the transcript between S∗
C(b) and RC , and (d0, d1) is the output of

F (viewS∗
C(b)(RC)). For the same F and b, it holds that

Pr[outRO(c)(SO(0, c, d0)) = outRO(c)(SO(1, c, d1)) = 1] ≈ 0.

316 H. Higo, K. Tanaka, and K. Yasunaga

We denote the outcome of the games ΓCom((SC , SO, F), (RC , D
rand)) and

ΓCom((S∗
C , S

∗
O, F), (RC , D

rand)) by (guess, amb, suc) and (guess′, amb′, suc′), re-
spectively. Now we obtain the following equalities:

– |Pr[guess = 1]− 1/2| ≈ |Pr[guess′ = 1]− 1/2| ≈ 0,
– 0 = Pr[amb = 1] ≺ Pr[amb′ = 1].

Hence, it holds that UCom
S ((SC , SO, F), (RC , D

rand)) <
UCom
S ((S∗

C , S
∗
O, F), (RC , D

rand)), which implies that the tuple ((SC , SO), RC) is
not in a Nash equilibrium.

In Case 4, the receiver can break hiding property with the honest strategy
RC . That is, for some PPT distinguisher D, it holds that

Pr[D(viewRC (SC(b))) = b] ' 1/2.

Let Sabort
C be a strategy of sending the abort message right after starting the pro-

tocol. We denote the outcome of the games ΓCom((SC , SO, F
honest), (RC , D)) and

ΓCom((Sabort
C , SO, F

honest), (RC , D)) by (guess, amb, suc) and (guess′, amb′, suc′),
respectively. Now we obtain the following equalities:

– |Pr[guess = 1]− 1/2| ' |Pr[guess′ = 1]− 1/2| ≈ 0,
– Pr[amb = 1] = Pr[amb′ = 1] = 0.

Hence, it holds that UCom
S ((SC , SO, F

honest), (RC , D)) <
UCom
S ((Sabort

C , SO, F
honest), (RC , D)), which implies that the tuple ((SC , SO), RC)

is not in a Nash equilibrium.
In Case 5, the receiver can not break hiding property with honest strategy

RC but with some strategy R∗
C 	= RC . That is, for some PPT distinguisher D,

it holds that

Pr[D(viewR∗
C
(SC(b))) = b] ' 1/2, and Pr[D(viewRC (SC(b))) = b] ≈ 1/2.

Let R̃∗
C be a strategy of following R∗

C in the commit phase and not par-
ticipating in the open phase. Then, it holds that Pr[D(viewR̃∗

C
(SC(b)) = b] '

1/2. We denote the outcome of the games ΓCom((SC , SO, F
honest), (RC , D)) and

ΓCom((SC , SO, F
honest), (R̃∗

C , D)) by (guess, amb, suc) and (guess′, amb′, suc′), re-
spectively. Now we obtain the following equalities:

– 0 ≈ |Pr[guess = 1]− 1/2| ≺ |Pr[guess′ = 1]− 1/2|,
– Pr[amb = 1] = Pr[amb′ = 1] = 0,
– Pr[suc = 1] = Pr[suc′ = 1] = 1.

Hence, it holds that UCom
R ((SC , SO, F

honest), (RC , D)) <
UCom
R ((SC , SO, F

honest), (R̃∗
C , D)), which implies that the tuple ((SC , SO), RC) is

not in a Nash equilibrium.
In every case, we show that the tuple ((SC , SO), RC) is not in a Nash equi-

librium. Therefore, the statement follows. ��

Game-Theoretic Security for Bit Commitment 317

5 Concluding Remarks

This paper has focused on bit commitment and characterized its security in a
game-theoretic manner. Our work is based on the work of OT by Higo et al. [11].
Since bit commitment and OT computes different numbers of functions in their
protocols, the characterization of bit commitment is more complicated. In this
paper, we have defined a game in which parties execute a bit commitment proto-
col, and picked up the natural preferences of the sender and the receiver. Using
Nash equilibrium as a solution concept, we have defined the notion of game-
theoretic security. We have shown the equivalence between the game-theoretic
security and the cryptographic security.

Although we have introduced game-theoretic concepts as a formalization of
realistic perspectives, no practical application has been known. Further work is
expected in this area to describe some practical implication or limitations.

References

1. Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure
computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
426–445. Springer, Heidelberg (2011)

2. Chung, K.-M., Liu, F.-H., Lu, C.-J., Yang, B.-Y.: Efficient string-commitment from
weak bit-commitment. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
268–282. Springer, Heidelberg (2010)

3. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio (ed.) [14], pp. 419–436

4. Fudenberg, D., Tirole, J.: Game theory (3. pr.). MIT Press (1991)

5. Goldreich, O.: The foundations of cryptography, vol. 2. Basic applications. Cam-
bridge University Press (2004)

6. Gradwohl, R.: Rationality in the full-information model. In: Micciancio (ed.) [14],
pp. 401–418

7. Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer,
Heidelberg (2012)

8. Groce, A., Katz, J., Thiruvengadam, A., Zikas, V.: Byzantine agreement with a
rational adversary. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 561–572. Springer, Heidelberg (2012)

9. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Babai, L. (ed.) STOC, pp. 623–632. ACM (2004)

10. Hazay, C., Lindell, Y.: Efficient secure two-party protocols: techniques and con-
structions, 1st edn. Springer-Verlag New York, Inc., New York (2010)

11. Higo, H., Tanaka, K., Yamada, A., Yasunaga, K.: A game-theoretic perspective on
oblivious transfer. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS,
vol. 7372, pp. 29–42. Springer, Heidelberg (2012)

12. Jeffs, R.A., Rosulek, M.: Characterizing the cryptographic properties of reactive
2-party functionalities. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
263–280. Springer, Heidelberg (2013)

318 H. Higo, K. Tanaka, and K. Yasunaga

13. Katz, J.: Bridging game theory and cryptography: Recent results and future di-
rections. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008)

14. Micciancio, D. (ed.): TCC 2010. LNCS, vol. 5978. Springer, Heidelberg (2010)
15. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic game theory.

Cambridge University Press, New York (2007)
16. Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press (1994)
17. Yasunaga, K.: Public-key encryption with lazy parties. In: Visconti, I., De Prisco,

R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 411–425. Springer, Heidelberg (2012)

Author Index

Chen, Rong-Jaye 133
Cheng, Liang 19

Deng, Yi 19

Fernández, Marcel 53

Hanaoka, Goichiro 226
Hashimoto, Yasufumi 244
Hattori, Mitsuhiro 183
Higo, Haruna 303
Hirano, Takato 183
Huang, Yun-Ju 115

Isshiki, Toshiyuki 290
Ito, Takashi 183

Kabatiansky, Grigory 53
Kanaoka, Akira 151
Kiyomura, Yutaro 201
Koiwa, Keita 151
Kurosawa, Kaoru 217

Lin, Bao-Shuh Paul 133
Liu, Yung-Hsiang 133

Matsuda, Nori 183
Matsuda, Takahiro 226
Matsuo, Shin’ichiro 151
Moreira, José 53
Morozov, Kirill 258

Naito, Yusuke 83
Nguyen, Manh Ha 290

Ogata, Wakaha 151
Okuno, Hiroshi G. 36
Otsuka, Takuma 36

Palmieri, Paolo 168
Pereira, Olivier 168
Petit, Christophe 115

Sano, Shotaro 36
Sasaki, Yu 83, 99
Sato, Masaya 1
Schaumont, Patrick 68
Shinohara, Naoyuki 115
Sun, Xiaoshan 19

Taha, Mostafa 68
Takagi, Tsuyoshi 115, 201, 258
Tanaka, Keisuke 290, 303
Todo, Yosuke 99
Tseng, Fu-Kuo 133

Ueda, Takuma 217

Wang, Lei 83

Xu, Rui 258

Yamauchi, Toshihiro 1
Yasuda, Kan 83
Yasunaga, Kenji 303
Yoneyama, Kazuki 272

Zhang, Yang 19

	Preface
	IWSEC 2013
	Table of Contents
	Software and System Security
	Secure Log Transfer by Replacing a Libraryin a Virtual Machine
	1 Introduction
	2 Method of Log Transfer
	2.1 Existing Log Transfer Methods
	2.2 Problems of Existing Methods

	3 Secure Log Transfer by Replacing a Library in a VM
	3.1 Scope and Assumptions
	3.2 Objectives and Requirements
	3.3 Overview of the Proposed Method
	3.4 Comparison between the Proposed Method and VMI

	4 Implementation
	4.1 Flow of Log Transfer
	4.2 Request of Log Transfer
	4.3 Log Copying from a VM to a VMM

	5 Evaluation
	5.1 Purpose and Environment
	5.2 Security of Logs in a Logging Path
	5.3 Prevention of Log Tampering and Loss
	5.4 Completeness of Log Collection
	5.5 Efforts for Adapting Various OSes
	5.6 Performance Evaluation

	6 Related Works
	6.1 Secure Logging
	6.2 Logging with Virtual Machine

	7 Conclusions
	References

	Static Integer Overflow Vulnerability Detectionin Windows Binary
	1 Introduction
	2 Background
	2.1 Characteristics of Integer Overflow
	2.2 Challenges

	3 System Overview
	4 Design Details
	4.1 Intermediate Representation
	4.2 Sign Type Analysis
	4.3 Potential Integer Overflow Points
	4.4 Suspicious Integer Overflow Vulnerability
	4.5 Suspicious Integer Overflow Vulnerability Ranking
	4.6 Suspicious Integer Overflow Vulnerability Validation

	5 Implementation
	6 Evaluation
	6.1 Effectiveness
	6.2 Efficiency

	7 Related Work
	8 Conclusion
	References

	Solving Google’s Continuous Audio CAPTCHAwith HMM-Based Automatic Speech Recognition
	1 Introduction
	2 Audio reCAPTCHA
	3 Preliminaries
	3.1 MFCC
	3.2 HMM
	3.3 HMM-Based ASR

	4 reCAPTCHA Solver
	4.1 Cluster Segmentation
	4.2 Spectral Feature Extraction
	4.3 Cluster Labeling

	5 Experiments
	5.1 Data
	5.2 Metrics
	5.3 Experiment 1: Solver’s Performance on Former version of Audio reCAPTCHA
	5.4 Experiment 2: Solver’s Performance for Current version of Audio reCAPTCHA
	5.5 Experiment 3: Giving Number of Target Voices
	5.6 Experiment 4: Robustness of Recognition for Various Additive Noise

	6 Discussion
	6.1 Toward Better CAPTCHAs
	6.2 Toward Stronger Solver

	7 Conclusion
	References

	Constructions of Almost Secure FrameproofCodes Based on Small-Bias Probability Spaces
	1 Introduction
	2 Definitions and Previous Results
	2.1 Almost Separating and Almost Secure Frameproof Codes
	2.2 Small-Bias Probability Spaces

	3 Constructions
	3.1 Separation in Random Codes
	3.2 Universal and Almost Universal Sets
	3.3 Construction of (M,t, z)-Universal Sets
	3.4 ε-Almost c-Secure Frameproof Codes
	3.5 Results for Some Coalition Sizes

	4 Constructions of Fingerprinting Codes
	5 Conclusion
	References

	Cryptanalysis
	Differential Power Analysisof MAC-Keccak at Any Key-Length
	1 Introduction
	2 Background
	3 Analysis of MAC-Keccak Examples
	4 Case Studies
	4.1 Key-Length = 768 Bits
	4.2 Key-Length = 896 Bits
	4.3 Key-Length = 1024 Bits

	5 Practical Results
	6 Conclusion and Future Work
	References

	Generic State-Recovery and Forgery Attackson ChopMD-MAC and on NMAC/HMAC
	1 Introduction
	2 Background and Related Work
	2.1 Hash Function
	2.2 Definitions of Hash-Based MACs
	2.3 Security of Hash-Based MAC
	2.4 Previous Work on MACs with a Specific Hash Function

	3 New Generic Attacks on ChopMD-MAC
	3.1 Internal State Recovery Attack
	3.2 Distinguishing-H Attack
	3.3 Existential and Almost Universal Forgery Attacks
	3.4 Observations

	4 Generic Attacks on NMAC/HMAC
	4.1 State-Recovery Attack
	4.2 Distinguishing-H Attack

	References

	New Property of Diffusion Switching Mechanismon CLEFIA and Its Application to DFA
	1 Introduction
	2 Preliminaries
	2.1 KSP-Type Feistel Ciphers
	2.2 Diffusion Switching Mechanism
	2.3 CLEFIA

	3 New Property of the DSM on CLEFIA
	3.1 Our Property of the DSM Using Two Matrices
	3.2 Our Property of the DSM Using Three Matrices

	4 Applications to Differential Fault Attack
	4.1 DFA Exploiting Faults at the 13-th Round
	4.2 Simulation Results and Discussions
	4.3 Security on Modified CLEFIA
	4.4 DFA Exploiting Faults at the 12-th Round

	5 Conclusion
	References

	Improvement of Faug`ere et al.’s Methodto Solve ECDLP
	1 Introduction
	2 Index Calculus for Elliptic Curves
	2.1 The Index Calculus Method
	2.2 Semaev’s Polynomials
	2.3 Method of Faug`ere
	2.4 Use of Symmetries in Previous Works

	3 Using Symmetries with Prime Extension Degrees
	3.1 A New System with Both Symmetric and Non-symmetric
	3.2 A Special Vector Space
	3.3 New Decomposition Algorithm

	4 Experimental Results
	4.1 Relation Search
	4.2 Whole ECDLP Computation

	5 Conclusion and Future Work
	References

	Privacy and Cloud Computing
	Statistics on Encrypted Cloud Data
	1 Introduction
	2 Related Works
	2.1 Descriptive and Inferential Statistics
	2.2 Homomorphic Encryption
	2.3 Privacy-Preserving Retrieval of Unencrypted Dataset
	2.4 Privacy-Preserving Retrieval of Encrypted Dataset

	3 Problem Formulation
	3.1 System Model
	3.2 Threat Model
	3.3 Goal Model

	4 Proposed Statistical Framework
	4.1 Storing Transformation
	4.2 Retrieval: Counting and Sampling Transformation
	4.3 Retrieval: Descriptive Statistics
	4.4 Retrieval: Inferential Statistical Procedures

	5 Security Analysis and Performance Evaluation
	5.1 Security Analysis
	5.2 Performance Analysis

	6 Conclusion
	References

	Toward Practical Searchable SymmetricEncryption
	1 Introduction
	1.1 Background
	1.2 Related Works
	1.3 Our Contributions

	2 Definitions of Symmetric Searchable Encryption and Existing Schemes
	2.1 System Model
	2.2 Security Requirement
	2.3 Curtmola et al. Scheme (SSE-1)
	2.4 Other Schemes Supporting Document Update

	3 What Is Practical SSE?
	3.1 Requirements for Practicality
	3.2 Inefficiency of SSE-1
	3.3 Scalability of Existing SSE

	4 Relaxation of Security
	4.1 Adaptive Attack
	4.2 Relaxed Security Definitions
	4.3 Relations among the Security Notions

	5 Practical SSE Schemes
	5.1 Simplest Scheme (Simple-SSE)
	5.2 Lightened SSE-1 (SSE-1
	5.3 Index Size of Proposed Schemes
	5.4 Scalability of Simple-SSE and SSE-1

	6 Implementation and Evaluation of SSE
	6.1 Preparation of Implementation
	6.2 Execution Environment
	6.3 Numerical Results

	7 Conclusion
	References

	Unconditionally Secure Oblivious Transferfrom Real Network Behavior
	1 Introduction
	1.1 Contribution
	1.2 Outline of the Paper

	2 Preliminaries
	3 Delaying-Erasing Channel
	3.1 OT Protocol
	3.2 Security: Honest-But-Curious Adversaries
	3.3 Security: Malicious Adversaries

	4 From Noisy Channel to Real Network Behavior
	4.1 Real-Time Transport Protocol (RTP)
	4.2 OT over RTP
	4.3 Experiment
	4.4 Analysis

	5 Conclusion
	References

	Cryptographically-Secure and Efficient Remote Cancelable Biometrics Based on Public-KeyHomomorphic Encryption
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution
	1.3 Organization

	2 Preliminaries
	2.1 Notations and Definitions
	2.2 The BGN Encryption Scheme and Its Related Assumptions
	2.3 Desirable Properties for Cancelable Biometrics

	3 The Hattori et al. Protocol
	3.1 System Model
	3.2 Construction Based on the BGN Encryption Scheme
	3.3 Security
	3.4 Security Issues

	4 OurVariant
	4.1 Construction
	4.2 Correctness
	4.3 Comparison of Efficiency
	4.4 Security
	4.5 Desirable Four Properties

	5 Conclusion
	References

	Public Key Cryptosystems
	Efficient Algorithm for Tate Pairingof Composite Order
	1 Introduction
	2 Mathematical Preparations
	2.1 Elliptic Curve
	2.2 Extension Field
	2.3 Tate Pairing
	2.4 Miller’s Algorithm
	2.5 Width-w Radix-r Non-adjacent Form
	2.6 Window Hybrid Binary-Ternary Form

	3 Miller’s Algorithm Using the Window Method
	3.1 Window Miller’s Algorithm
	3.2 Proposed Algorithm

	4 Comparison
	4.1 Computational Costs
	4.2 Parameter and Implementation Environment
	4.3 Evaluation

	5 Conclusion
	References

	How to Factor N1 and N2 When p1 = p2 mod 2t
	1 Introduction
	2 Preliminaries
	2.1 Lattice
	2.2 Gaussian Reduction Algorithm

	3 Previous Implicit Factoring of Two RSA Moduli
	4 Improvement
	5 Generalization
	6 Simulation
	References

	Achieving Chosen Ciphertext Security from Detectable Public Key EncryptionEfficiently via Hybrid Encryption
	1 Introduction
	2 Preliminaries
	2.1 (Detectable) Public Key Encryption
	2.2 (Detectable) Key Encapsulation Mechanisim
	2.3 Symmetric Key Encryption
	2.4 Hybrid Encryption and Its Security

	3 The Hohenberger-Lewko-Waters Construction
	4 An Efficient Variant of the HLW Construction
	5 Comparison
	References

	Cryptanalysis of the Quaternion Rainbow
	1 Introduction
	2 Rainbow
	2.1 Scheme
	2.2 Major Attacks

	3 QuaternionRainbow
	3.1 Scheme
	3.2 Previous Security Analysis

	4 Proposed Security Analysis
	4.1 The Case of Odd Characteristic
	4.2 The Case of Even Characteristic

	5 Conclusion
	References

	Security Protocols
	On Cheater Identifiable Secret Sharing SchemesSecure against Rushing Adversary
	1 Introduction
	1.1 Secret Sharing with Cheaters
	1.2 Related Works
	1.3 Our Result

	2 Preliminaries
	2.1 Security Model and Communication Model
	2.2 Secret Sharing
	2.3 Reed-Solomon Error Correction

	3 Our Proposal
	3.1 Overview
	3.2 Our Scheme

	4 SecurityProof
	5 Conclusion
	References

	One-Round Authenticated Key Exchangewithout Implementation Trick
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Our Contribution

	2 CK+ Security Model
	3 ‘Full’ Ephemeral Key Exposure Attack to FSXY Construction
	3.1 Protocol of FSXY Construction
	3.2 Implementation Trick of FSXY Construction
	3.3 Our Attack

	4 One-Round AKE against Full Ephemeral Key Exposure
	4.1 Preliminaries
	4.2 Our Construction
	4.3 Security

	References

	Attacks to the Proxy Re-Encryption Schemesfrom IWSEC2011
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Maps
	2.2 Unidirectional Proxy Re-Encryption
	2.3 Unidirectional Proxy Re-Encryption with Temporary Delegation
	2.4 Unforgeability of Re-Encryption Keys against Collusion Attack

	3 Review of the PRE Schemes by Hayashi et al.
	3.1 The Main Scheme
	3.2 The Scheme with Temporary Delegation

	4 Security Analysis of the PRE Schemes by Hayashi et al.
	4.1 Attack to sUFReKey-CA of the Main Scheme
	4.2 Attack to sUFReKey-CA of the Scheme with Temporary Delegation

	5 Attack to the Assumptions by Hayashi et al.
	5.1 Review of the Problems
	5.2 Solving the Problems

	6 Concluding Remarks
	References

	Game-Theoretic Security for Bit Commitment
	1 Introduction
	1.1 Motivations
	1.2 Previous Studies on Game-Theoretic Security
	1.3 This Work

	2 Preliminaries
	2.1 Bit Commitment in Cryptography
	2.2 Game Theory

	3 Bit Commitment in Game Theory
	4 Equivalence between the Two Security Notions
	5 Concluding Remarks
	References

	Author Index

