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Abstract. Specification plays a vital role in software engineering to facilitate 
the development of highly dependable software. Various techniques may be 
used for specification work. Z is a formal specification language that is based 
on a strongly-typed fragment of Zermelo-Fraenkel set theory and first-order 
logic to provide for precise and unambiguous specifications. While diagram-
matic specification languages may lack precision, they may, owing to their  
visual characteristics be a lucrative option for advocates of semi-formal specifi-
cation techniques. In this paper we investigate to what extent formal constructs, 
e.g. Z may be transformed into diagrammatic notations. Several diagrammatic 
notations are considered and combined for this purpose. 
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1 Introduction  

The correctness of software has a significant impact in controlling and delivering the 
essential, and often safety critical services that we depend on, such as health care; 
transport (airlines and railways); and telecommunication [1]. Specification is a vital 
activity aimed at producing a system that will meet the user requirements stated dur-
ing the initial stages of software development. The resultant specification is used in 
software development to provide a clear communication of requirements documenta-
tion and system objects among stakeholders involved in the software project. Hence, 
it is desirable that a specification be accessible to intended users in order to facilitate 
the development of quality software. 

Various specification techniques have been developed to specify software systems. 
The Z notation is a formal text-based language that has a successful history of being 
able to provide for precise specifications in the development of critical systems [2]. 
The IBM CICS system is one of the large projects in which Z was used successfully 
[17]. The use of Z increased the quality and reliability of the system [21]. Z is based 
on first-order logic and a strongly typed fragment of Zermelo-Fraenkel set theory 
[19]. Its basic construct is the schema which is used to structure the specification. 
System operations are collected into schemas to describe the state of the system and 
how it changes [6], [20], [21]. 
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Diagrams, as a semi-formal notation are widely applicable in conveying important 
ideas, and in Computer Science they can be used to specify software. For example, 
‘spider diagrams’ have been used in the specification of failures of safety critical sys-
tems, ontology representations, database search queries and file system management 
[5], [7], [10], [12].The familiar Venn diagram has often been used as a heuristic tool 
in mathematics and logic, facilitating the formalization of the relevant idea. However, 
Shin challenged the view that diagrams could not yield formal specifications by de-
veloping two sound and complete reasoning systems of Venn diagrams [4], [7]. 

Although diagrams (as a semi-formal notation) lack the precision of a formal nota-
tion, e.g. spider diagrams, their value has been recognized recently, in aspects of 
software specification, reasoning and information visualization. Consequently, this 
paper is aimed at investigating the extent to which diagrams can capture the structures 
and operations of discrete structures omnipresent in Z specifications. Translating 
semi-formal notations (e.g.) UML to variants of Z have been done before [18], but 
since UML may be viewed as being at a 'higher' level than the core set-theoretic struc-
tures and operations on which a Z specification is based, our translations are based on 
closed-curve constructs, namely, Euler-, Venn-, Spider- and Pierce diagrams. 

The layout of the paper follows: Different types of diagrams are discussed briefly 
in Section 2 and a small Z example is given in Section 3. Section 4 identifies a num-
ber of set-theoretic structures and operations in Z and we show how these may be 
specified using diagrams. Section 5 presents an analysis and directions for future 
work in this area. 

2 Diagrammatic Notations 

Different types of diagrammatic languages can be used for specifying software and in 
this paper we focus on diagrams based on closed curves. 

2.1 Euler Diagrams 

Euler diagrams were introduced in the 17th century by Leonard Euler. This notation 
uses ‘contours’ to represent the relationship between sets [7], [15]. A contour is a 
closed circle used in a diagram to represent a set. Most diagrammatic languages 
emerged from Euler diagrams [12]. Fig.1 denotes that sets A and B are disjoint and C 
is a subset of A. The non-existence of elements is used to indicate an empty set. For 
example, no elements are indicated for set C, hence it's empty. 

 

 

Fig. 1. An Euler diagram 
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2.2 Venn Diagrams 

In 1880, John Venn developed Venn diagrams that are similar to Euler diagrams. 
Instead of missing elements, Venn diagrams use shading to denote an empty set. Venn 
diagrams use overlapping circles for representing relationships among sets [3]. Fig.2 
shows an example of Venn diagrams drawn with three overlapping contours. For 
example, the region C – (A ∪ B) could be shaded, indicating it is empty. Venn dia-
grams may become hard to interpret or draw once the diagram contains more than 
three contours.  

 

 

Fig. 2. A 3-contoured Venn diagram 

2.3 Pierce Diagrams 

Pierce introduced existential graphs by adding X-sequences on Venn diagrams to 
represent disjunctive information [7], [9]. Pierce diagrams, also known as ‘Venn-
Pierce diagrams’, extend Venn diagrams by adding syntax that represents existential 
statements in diagrams. Pierce used ‘x’ instead of the existence of elements, and ‘o’ 
instead of shading, to represent an empty set [13]. The Pierce diagram in Fig.3 shows 
that A – B = ∅ and A ∩ B ≠ ∅. 

 

 

Fig. 3. A Pierce diagram 

2.4 Spider Diagrams 

Spider diagrams were inspired by Pierce-, Venn- and Euler diagrams. A ‘spider’ de-
notes the presence of one or more elements in a set. Spiders are nodes connected with 
straight lines [7]. Spider diagrams use non-overlapping contours of Euler diagrams, 
spiders, which generalize Pierce’s X-sequences and shading from Venn diagrams [5], 
[9], [11].  The spider diagram in Fig.4 has three contours labeled A, B and C. The 
contours are represented as A ∪ C and B ⊂ A. 
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Fig. 4. A Spider diagram 

3 The Z Notation 

Z was developed by the Programming Research Group (PRG) at the University of 
Oxford. Its basic construct is the schema, containing mathematical text and being 
surrounded by natural language prose. Basic types to be used are specified early on in 
the specification document. 

Below is an example specification showing two basic types, a state space (File) 
and one partial operation (FileRead) on the state. The example is modeled on specifi-
cations in [19] and [8]. 

The basic types are: 
 
[KEY, RECORD] 
 

The abstract state of the file system is shown below: 

 File  

file: KEY ⇸ RECORD 
 

The relationship between KEY and RECORD is defined by a partial function (⇸). 
State variables (file above) in Z are known as components. 

The below schema specifies an operation on the state. ΞFile specifies that the Read 
operation will not change the state of the system (in contrast, a ‘Δ’ before a state 
name is used to indicate a possible state change). The operation receives the input k? 
and produces output r! The symbols ‘?’ and ‘!’ are used to decorate input and output 
variables respectively. Predicates are specified below the short dividing line in a 
schema and further constrain the state components and any additional variables. The 
key? should be known to the system and a record (r!) is returned for a correct key. 

 FileRead  

ΞFile 

k? : KEY 

r! : RECORD 
 

k? ∈ dom file ∧ r! = file k? 
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4 Specification Structures and Operators 

In this section we present a number of Z specifications from the literature and trans-
form each such construct into a diagram. The specifications shown stem mainly from 
[8]. The first operation considered is domain restriction, indicated by ◁. 

4.1 Domain Restriction 

Consider the above file system. Fig.5 below gives a diagrammatic representation of 
the state, File. The ‘rectangles’ in the diagram are used to indicate the basic types in 
the specification. Closed circles called contours, represent sets in the specification. 
The curved arrow connecting two contours denotes a relation. The name of the rela-
tion (file) appears above the curve, and its type is labeled below the curve. It is a par-
tial function (pf). 

file

RECORDKEY

KEY RECORD

pf

File

dom(file)

 

Fig. 5. The abstract state: File system 

Next we consider an operation, SelectRecord to restrict the file system to just one 
record for which a key (k?) is provided: 

 SelectRecord  

ΔFile 

k? : KEY 
 

k? ∈ dom file 

file′ = {k?} ◁ file 
 

The file system is changed to just the record matching k? Note, in practice one 
would define a variable for this purpose instead of removing all other records from 
the state. 

Fig.6. shows how the above operation may be translated into a contoured diagram. 
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Fig. 6. Operation SelectRecord 

The top part of the diagram (called a before diagram) represents the precondition to 
the operation. It indicates that the key k? should exist in the file domain. The after 
(bottom) diagram specifies that k? is the only key left in the file. The dot • indicates 
that there is at least one element in the set (a syntax taken from spider diagrams). 
Having restricted the domain of file to just {k?}, leaves but one record in the file. The 
key of any such record equals k? In the absence of further information one assumes 
file′ (k?) = file (k?), being a traditional proof obligation arising from the specification. 

Note that our diagrammatic notation allows us to abstract away from the set conno-
tation {k?} specified in the schema, simply because we are working with a singleton, 
and the only element of the singleton is explicitly instantiated.  

 

4.2 Overriding Operator 

Consider a symbol table containing symbols with associated values. SYM and VAL are 
basic types used to represent, respectively, the set of symbols and associated values. 
The state, ST, consists of one component, st, a partial function.  
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 ST  
st : SYM ⇸ VAL 
 

Fig.7 below gives a diagrammatic representation of the above state. Note that we 
may omit the denotation 'dom(st)', since it may be inferred from the diagram.  

 

Fig. 7. The abstract state of symbol table 

The following operation associates a value v? with symbol s? The operation gives 
feedback to the user. 

 Replace  
Δst 
s? : SYM 
v? : VAL 
rep! : REPORT 
 

s? ∈ dom st 

s′ =  st ⊕{s? ↦ v?} 

rep! = OK 
 

 

The overriding operator ‘⊕’ is used to replace the value (if any) of a variable in the 

symbol table with a new value. Its definition for any two relations R : X ↔Y and S : 

X ↔Y (say) is given by: R ⊕ S = ((dom S) y R) ∪ S. 
Fig.8 denotes the operation to update a symbol in the table in line with the above 

schema. The before diagram indicates that s? is to exist in the symbol table, while v?, 
the input to the system, may either be in the range of st, or not. The after diagram 
indicates that s? maps to v? and variable rep! has the value 'Ok' after the operation. 
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Fig. 8. The Replace operation 

4.3 Domain Subtraction  

Consider the next higher level of the above file system to model file identifiers 
mapped to files. Each file has a unique identifier. The schema below depicts the state 
of such a file storage system (SS). The abstract state denotes a partial function from 
FID to FILE [8].  

 SS  

fstore: FID ⇸ FILE 
 

Fig.9 shows the abstract state of SS. It specifies fstore as a partial function. 
The schema below specifies the operation of deleting a file [8]. Only files that exist 

in the system can be deleted. 

 destroySS  

Δ SS 

fid? : FID 
 

fid? ∈ dom fstore 

fstore′ = {fid?} y fstore 
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Fig. 9. The abstract state of SS 

The domain subtraction operator ‘y’ is used to remove fid?; the state of the system is 
changed as indicated. After the operation, fid? no longer exists as a valid file identifi-
er in the system. 
 

FILE
destroySS

fid?

Δ

fid?

FID FILE

fstore

FID FILE

fstore′

FID

pf

pf

dom fstore

dom fstore

SS

 

Fig. 10. The destroySS operation of the file storage system 
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Fig. 10 captures operation destroySS. The before diagram specifies that the file to 
be deleted should exist in the system and the after diagram states that the file identifi-
er has been removed from the set of valid file identifiers. A dashed line indicating the 
movement is used for this purpose. 

4.4 Range Subtraction 

A simplified banking system stores the details of customers with the corresponding 
branches they belong to. A customer can be registered with only one branch. The state 
of the system is given by bankSystem. 

 bankSystem  

bank : CUSTOMER ⇸ BRANCH 
 

The contour diagram for the above state is similar to that of the other operations 
shown above. 

An operation to delete an entire branch from the system is similar to the domain 
subtraction operation shown earlier, and is given by: 

 deleteBranch  

Δ bankSystem 

branch? : BRANCH 
 

branch? ∈ ran bank 

bank′ = bank y {branch?} 
 

 

Fig. 11. The deleteBranch operation 
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The above schema is a simplified version of a real life situation. In practice customers 
would be moved to another branch before their branch is closed. The corresponding 
diagram follows. 

4.5 Specifying Non-Singleton Sets 

So far we have removed from a set, or restricted the domains or ranges of relations to 
a set containing one element only. We were able to abstract away from the complexi-
ties of sets and showed in such cases a single item only, instead of a singleton con-
taining only that item. 

The following operation removes a set containing an unspecified number of items 
from a domain and also overrides the relation with one of the same type. The state of 
the system is given in Section 3 and the operation is specified by FileUpdate below. 

 
 

 

Fig. 12. FileUpdate operation 
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 FileUpdate  

Δ File 

d? : ℙKEY 

u? : KEY ⇸ RECORD 
 

d? ⊆ dom file 

d? ∩dom u? = {} 

file′  = (d? y file)⊕ u? 
 

 
The set of keys to be deleted is specified by d? Only valid keys may be deleted. The 
predicate d? ∩ dom u? = {} indicates that a record cannot be deleted and updated at 
the same time. The file is updated as indicated. 

 
FileUpdate is modeled by Fig. 12.   

5 Conclusions and Future Work 

This paper considered the feasibility of translating Z constructs to the language of 
contour diagrams. The formality of Z lends itself to precise specifications and it has 
been applied successfully to specify systems where the quality and reliability are crit-
ical. Z may also be used as a documentation tool to increase a specifier's understand-
ing of system operations. A possible disadvantage of a formal notation is that special-
ist knowledge of the underlying mathematics is required before the real benefits of 
formal specification can be realized [2]. This steep learning curve is often the reason 
cited why formal notations are not used more widely in the software industry.  

Diagrams model a system by using contours to represent the relationships between 
mathematical structures. The use of diagrammatic languages is perceived as a way 
whereby software specifications are made more accessible to stakeholders and poten-
tial users of the system [7]. In the past diagrams were often excluded as contenders of 
formality; however the research done by Shin challenged the view that diagrams 
could not be used in the arena of formal specification work [4].  

As part of future work, our notation will be applied to more complex operations 
and structures, e.g. distributed unions, bags, etc. The feasibility of reasoning about the 
properties of our diagrams has to be considered and the scalability of the notations has 
to be investigated. To this end, tools for industrial applications have to be further 
developed. We also plan to combine Z constructs with our diagrams to generate a 
comprehensive specification language to cater for clear specifications that may also 
be accessible to a wide range of users. 
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