

A. Cuzzocrea and S. Maabout (Eds.): MEDI 2013, LNCS 8216, pp. 212–224, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Transforming Formal Specification Constructs
into Diagrammatic Notations

Kobamelo Moremedi1 and John Andrew van der Poll2

1 School of Computing, University of South Africa, Pretoria, South Africa
kobamelomoremedi@yahoo.com

2 Graduate School of Business Leadership, University of South Africa, Midrand, South Africa
vdpolja@unisa.ac.za

Abstract. Specification plays a vital role in software engineering to facilitate
the development of highly dependable software. Various techniques may be
used for specification work. Z is a formal specification language that is based
on a strongly-typed fragment of Zermelo-Fraenkel set theory and first-order
logic to provide for precise and unambiguous specifications. While diagram-
matic specification languages may lack precision, they may, owing to their
visual characteristics be a lucrative option for advocates of semi-formal specifi-
cation techniques. In this paper we investigate to what extent formal constructs,
e.g. Z may be transformed into diagrammatic notations. Several diagrammatic
notations are considered and combined for this purpose.

Keywords: Diagrammatic notation, Formal specification, Euler diagrams,
Spider diagrams, Venn-Pierce diagrams, Z.

1 Introduction

The correctness of software has a significant impact in controlling and delivering the
essential, and often safety critical services that we depend on, such as health care;
transport (airlines and railways); and telecommunication [1]. Specification is a vital
activity aimed at producing a system that will meet the user requirements stated dur-
ing the initial stages of software development. The resultant specification is used in
software development to provide a clear communication of requirements documenta-
tion and system objects among stakeholders involved in the software project. Hence,
it is desirable that a specification be accessible to intended users in order to facilitate
the development of quality software.

Various specification techniques have been developed to specify software systems.
The Z notation is a formal text-based language that has a successful history of being
able to provide for precise specifications in the development of critical systems [2].
The IBM CICS system is one of the large projects in which Z was used successfully
[17]. The use of Z increased the quality and reliability of the system [21]. Z is based
on first-order logic and a strongly typed fragment of Zermelo-Fraenkel set theory
[19]. Its basic construct is the schema which is used to structure the specification.
System operations are collected into schemas to describe the state of the system and
how it changes [6], [20], [21].

 Transforming Formal Specification Constructs into Diagrammatic Notations 213

Diagrams, as a semi-formal notation are widely applicable in conveying important
ideas, and in Computer Science they can be used to specify software. For example,
‘spider diagrams’ have been used in the specification of failures of safety critical sys-
tems, ontology representations, database search queries and file system management
[5], [7], [10], [12].The familiar Venn diagram has often been used as a heuristic tool
in mathematics and logic, facilitating the formalization of the relevant idea. However,
Shin challenged the view that diagrams could not yield formal specifications by de-
veloping two sound and complete reasoning systems of Venn diagrams [4], [7].

Although diagrams (as a semi-formal notation) lack the precision of a formal nota-
tion, e.g. spider diagrams, their value has been recognized recently, in aspects of
software specification, reasoning and information visualization. Consequently, this
paper is aimed at investigating the extent to which diagrams can capture the structures
and operations of discrete structures omnipresent in Z specifications. Translating
semi-formal notations (e.g.) UML to variants of Z have been done before [18], but
since UML may be viewed as being at a 'higher' level than the core set-theoretic struc-
tures and operations on which a Z specification is based, our translations are based on
closed-curve constructs, namely, Euler-, Venn-, Spider- and Pierce diagrams.

The layout of the paper follows: Different types of diagrams are discussed briefly
in Section 2 and a small Z example is given in Section 3. Section 4 identifies a num-
ber of set-theoretic structures and operations in Z and we show how these may be
specified using diagrams. Section 5 presents an analysis and directions for future
work in this area.

2 Diagrammatic Notations

Different types of diagrammatic languages can be used for specifying software and in
this paper we focus on diagrams based on closed curves.

2.1 Euler Diagrams

Euler diagrams were introduced in the 17th century by Leonard Euler. This notation
uses ‘contours’ to represent the relationship between sets [7], [15]. A contour is a
closed circle used in a diagram to represent a set. Most diagrammatic languages
emerged from Euler diagrams [12]. Fig.1 denotes that sets A and B are disjoint and C
is a subset of A. The non-existence of elements is used to indicate an empty set. For
example, no elements are indicated for set C, hence it's empty.

Fig. 1. An Euler diagram

214 K. Moremedi and J.A. van der Poll

2.2 Venn Diagrams

In 1880, John Venn developed Venn diagrams that are similar to Euler diagrams.
Instead of missing elements, Venn diagrams use shading to denote an empty set. Venn
diagrams use overlapping circles for representing relationships among sets [3]. Fig.2
shows an example of Venn diagrams drawn with three overlapping contours. For
example, the region C – (A ∪ B) could be shaded, indicating it is empty. Venn dia-
grams may become hard to interpret or draw once the diagram contains more than
three contours.

Fig. 2. A 3-contoured Venn diagram

2.3 Pierce Diagrams

Pierce introduced existential graphs by adding X-sequences on Venn diagrams to
represent disjunctive information [7], [9]. Pierce diagrams, also known as ‘Venn-
Pierce diagrams’, extend Venn diagrams by adding syntax that represents existential
statements in diagrams. Pierce used ‘x’ instead of the existence of elements, and ‘o’
instead of shading, to represent an empty set [13]. The Pierce diagram in Fig.3 shows
that A – B = ∅ and A ∩ B ≠ ∅.

Fig. 3. A Pierce diagram

2.4 Spider Diagrams

Spider diagrams were inspired by Pierce-, Venn- and Euler diagrams. A ‘spider’ de-
notes the presence of one or more elements in a set. Spiders are nodes connected with
straight lines [7]. Spider diagrams use non-overlapping contours of Euler diagrams,
spiders, which generalize Pierce’s X-sequences and shading from Venn diagrams [5],
[9], [11]. The spider diagram in Fig.4 has three contours labeled A, B and C. The
contours are represented as A ∪ C and B ⊂ A.

 Transforming Formal Specification Constructs into Diagrammatic Notations 215

Fig. 4. A Spider diagram

3 The Z Notation

Z was developed by the Programming Research Group (PRG) at the University of
Oxford. Its basic construct is the schema, containing mathematical text and being
surrounded by natural language prose. Basic types to be used are specified early on in
the specification document.

Below is an example specification showing two basic types, a state space (File)
and one partial operation (FileRead) on the state. The example is modeled on specifi-
cations in [19] and [8].

The basic types are:

[KEY, RECORD]

The abstract state of the file system is shown below:

 File

file: KEY ⇸ RECORD

The relationship between KEY and RECORD is defined by a partial function (⇸).
State variables (file above) in Z are known as components.

The below schema specifies an operation on the state. ΞFile specifies that the Read
operation will not change the state of the system (in contrast, a ‘Δ’ before a state
name is used to indicate a possible state change). The operation receives the input k?
and produces output r! The symbols ‘?’ and ‘!’ are used to decorate input and output
variables respectively. Predicates are specified below the short dividing line in a
schema and further constrain the state components and any additional variables. The
key? should be known to the system and a record (r!) is returned for a correct key.

 FileRead

ΞFile

k? : KEY

r! : RECORD

k? ∈ dom file ∧ r! = file k?

216 K. Moremedi and J.A. van der Poll

4 Specification Structures and Operators

In this section we present a number of Z specifications from the literature and trans-
form each such construct into a diagram. The specifications shown stem mainly from
[8]. The first operation considered is domain restriction, indicated by ◁.

4.1 Domain Restriction

Consider the above file system. Fig.5 below gives a diagrammatic representation of
the state, File. The ‘rectangles’ in the diagram are used to indicate the basic types in
the specification. Closed circles called contours, represent sets in the specification.
The curved arrow connecting two contours denotes a relation. The name of the rela-
tion (file) appears above the curve, and its type is labeled below the curve. It is a par-
tial function (pf).

file

RECORDKEY

KEY RECORD

pf

File

dom(file)

Fig. 5. The abstract state: File system

Next we consider an operation, SelectRecord to restrict the file system to just one
record for which a key (k?) is provided:

 SelectRecord

ΔFile

k? : KEY

k? ∈ dom file

file′ = {k?} ◁ file

The file system is changed to just the record matching k? Note, in practice one
would define a variable for this purpose instead of removing all other records from
the state.

Fig.6. shows how the above operation may be translated into a contoured diagram.

 Transforming Formal Specification Constructs into Diagrammatic Notations 217

Fig. 6. Operation SelectRecord

The top part of the diagram (called a before diagram) represents the precondition to
the operation. It indicates that the key k? should exist in the file domain. The after
(bottom) diagram specifies that k? is the only key left in the file. The dot • indicates
that there is at least one element in the set (a syntax taken from spider diagrams).
Having restricted the domain of file to just {k?}, leaves but one record in the file. The
key of any such record equals k? In the absence of further information one assumes
file′ (k?) = file (k?), being a traditional proof obligation arising from the specification.

Note that our diagrammatic notation allows us to abstract away from the set conno-
tation {k?} specified in the schema, simply because we are working with a singleton,
and the only element of the singleton is explicitly instantiated.

4.2 Overriding Operator

Consider a symbol table containing symbols with associated values. SYM and VAL are
basic types used to represent, respectively, the set of symbols and associated values.
The state, ST, consists of one component, st, a partial function.

218 K. Moremedi and J.A. van der Poll

 ST
st : SYM ⇸ VAL

Fig.7 below gives a diagrammatic representation of the above state. Note that we
may omit the denotation 'dom(st)', since it may be inferred from the diagram.

Fig. 7. The abstract state of symbol table

The following operation associates a value v? with symbol s? The operation gives
feedback to the user.

 Replace
Δst
s? : SYM
v? : VAL
rep! : REPORT

s? ∈ dom st

s′ = st ⊕{s? ↦ v?}

rep! = OK

The overriding operator ‘⊕’ is used to replace the value (if any) of a variable in the

symbol table with a new value. Its definition for any two relations R : X ↔Y and S :

X ↔Y (say) is given by: R ⊕ S = ((dom S) y R) ∪ S.
Fig.8 denotes the operation to update a symbol in the table in line with the above

schema. The before diagram indicates that s? is to exist in the symbol table, while v?,
the input to the system, may either be in the range of st, or not. The after diagram
indicates that s? maps to v? and variable rep! has the value 'Ok' after the operation.

 Transforming Formal Specification Constructs into Diagrammatic Notations 219

Fig. 8. The Replace operation

4.3 Domain Subtraction

Consider the next higher level of the above file system to model file identifiers
mapped to files. Each file has a unique identifier. The schema below depicts the state
of such a file storage system (SS). The abstract state denotes a partial function from
FID to FILE [8].

 SS

fstore: FID ⇸ FILE

Fig.9 shows the abstract state of SS. It specifies fstore as a partial function.
The schema below specifies the operation of deleting a file [8]. Only files that exist

in the system can be deleted.

 destroySS

Δ SS

fid? : FID

fid? ∈ dom fstore

fstore′ = {fid?} y fstore

220 K. Moremedi and J.A. van der Poll

Fig. 9. The abstract state of SS

The domain subtraction operator ‘y’ is used to remove fid?; the state of the system is
changed as indicated. After the operation, fid? no longer exists as a valid file identifi-
er in the system.

FILE
destroySS

fid?

Δ

fid?

FID FILE

fstore

FID FILE

fstore′

FID

pf

pf

dom fstore

dom fstore

SS

Fig. 10. The destroySS operation of the file storage system

 Transforming Formal Specification Constructs into Diagrammatic Notations 221

Fig. 10 captures operation destroySS. The before diagram specifies that the file to
be deleted should exist in the system and the after diagram states that the file identifi-
er has been removed from the set of valid file identifiers. A dashed line indicating the
movement is used for this purpose.

4.4 Range Subtraction

A simplified banking system stores the details of customers with the corresponding
branches they belong to. A customer can be registered with only one branch. The state
of the system is given by bankSystem.

 bankSystem

bank : CUSTOMER ⇸ BRANCH

The contour diagram for the above state is similar to that of the other operations
shown above.

An operation to delete an entire branch from the system is similar to the domain
subtraction operation shown earlier, and is given by:

 deleteBranch

Δ bankSystem

branch? : BRANCH

branch? ∈ ran bank

bank′ = bank y {branch?}

Fig. 11. The deleteBranch operation

222 K. Moremedi and J.A. van der Poll

The above schema is a simplified version of a real life situation. In practice customers
would be moved to another branch before their branch is closed. The corresponding
diagram follows.

4.5 Specifying Non-Singleton Sets

So far we have removed from a set, or restricted the domains or ranges of relations to
a set containing one element only. We were able to abstract away from the complexi-
ties of sets and showed in such cases a single item only, instead of a singleton con-
taining only that item.

The following operation removes a set containing an unspecified number of items
from a domain and also overrides the relation with one of the same type. The state of
the system is given in Section 3 and the operation is specified by FileUpdate below.

Fig. 12. FileUpdate operation

 Transforming Formal Specification Constructs into Diagrammatic Notations 223

 FileUpdate

Δ File

d? : ℙKEY

u? : KEY ⇸ RECORD

d? ⊆ dom file

d? ∩dom u? = {}

file′ = (d? y file)⊕ u?

The set of keys to be deleted is specified by d? Only valid keys may be deleted. The
predicate d? ∩ dom u? = {} indicates that a record cannot be deleted and updated at
the same time. The file is updated as indicated.

FileUpdate is modeled by Fig. 12.

5 Conclusions and Future Work

This paper considered the feasibility of translating Z constructs to the language of
contour diagrams. The formality of Z lends itself to precise specifications and it has
been applied successfully to specify systems where the quality and reliability are crit-
ical. Z may also be used as a documentation tool to increase a specifier's understand-
ing of system operations. A possible disadvantage of a formal notation is that special-
ist knowledge of the underlying mathematics is required before the real benefits of
formal specification can be realized [2]. This steep learning curve is often the reason
cited why formal notations are not used more widely in the software industry.

Diagrams model a system by using contours to represent the relationships between
mathematical structures. The use of diagrammatic languages is perceived as a way
whereby software specifications are made more accessible to stakeholders and poten-
tial users of the system [7]. In the past diagrams were often excluded as contenders of
formality; however the research done by Shin challenged the view that diagrams
could not be used in the arena of formal specification work [4].

As part of future work, our notation will be applied to more complex operations
and structures, e.g. distributed unions, bags, etc. The feasibility of reasoning about the
properties of our diagrams has to be considered and the scalability of the notations has
to be investigated. To this end, tools for industrial applications have to be further
developed. We also plan to combine Z constructs with our diagrams to generate a
comprehensive specification language to cater for clear specifications that may also
be accessible to a wide range of users.

224 K. Moremedi and J.A. van der Poll

References

1. Alagar, V.S., Periyasamy, K.: Specification of Software Systems, pp. 3–14. Springer, New
York (1998)

2. Bowen, J.: Formal Specification and Documentation using Z – A Case Study Approach,
pp. 3–11 (2003); C.A.R. Hoare Series Editor

3. Chow, S., Ruskey, F.: Drawing Area-Proportional Venn and Euler Diagrams. In: Liotta, G.
(ed.) GD 2003. LNCS, vol. 2912, pp. 466–477. Springer, Heidelberg (2004)

4. Dau, F.: Types and Tokens for Logic with Diagrams. In: Wolff, K.E., Pfeiffer, H.D.,
Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 62–93. Springer,
Heidelberg (2004)

5. Delaney, A., Stapleton, G.: On the Descriptional Complexity of a Diagrammatic Notation.
In: Proceedings of the 13th International Conference on Distributed Multimedia Systems,
September 6-8 (2007)

6. Diller, A.: Z: An Introduction to Formal Methods, 2nd edn. Wiley, Chichester (1994)
7. Gil, J., Howse, J.: Formalizing Spider Diagrams. In: IEEE Symposium on Visual Lan-

guages, pp. 130–137 (1999)
8. Hayes, I.: Specification Case Studies. Prentice Hall International, UK (1992)
9. Howse, J., Molina, F., Taylor, J.: Reasoning with Spider Diagrams. In: IEEE Symposium

on Visual Languages, September 13-16, pp. 138–145 (1999)
10. Howse, J., Taylor, J., Stapleton, G., Simpson, T.: The Expressiveness of Spider Diagrams

Augmented with Constants. Journal of Visual Languages and Computing 20, 30–49 (2009)
11. Howse, J., Taylor, J., Stapleton, G., Simpson, T.: What Can Spider Diagrams Say? In:

Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI),
vol. 2980, pp. 112–127. Springer, Heidelberg (2004)

12. Howse, J., Taylor, J., Stapleton, G.: Spider Diagrams. LMS Journal of Computation and
Mathematics 2980, 154–194 (2005)

13. Molina, F.: Reasoning with Extended Venn-Pierce Diagrammatic Systems. PhD Thesis,
University of Brighton (2001)

14. Potter, B., Sinclair, J., Till, D.: An Introduction to Formal Specification and Z, 2nd edn.
Prentice Hall, Upper Saddle River (1996)

15. Stapleton, G., Rodgers, P., Howse, J., Taylor, J.: Properties of Euler diagrams. Layout of
(Software) Engineering Diagrams 7, 1–15 (2007)

16. Stapleton, G.: A Survey of Reasoning Systems Based on Euler Diagrams. In: Proceedings
of the First International Workshop on Euler Diagrams, Brighton, UK, June 1, vol. 134,
pp. 127–151 (2005)

17. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall (1992)
18. Kim, S.-K., Carrington, D.A.: A Formal Mapping between UML Models and Object-Z

Specifications. In: ZB Conference, pp. 2–21 (2000)
19. Van der Poll, J.A.: Formal Methods in Software Development: A Road Less Travelled.

South African Computer Journal (SACJ) (45), 40–52 (2010)
20. Wordsworth, J.B.: Software Development with Z. Addison-Wesley, IBM United Kingdom

(1992)
21. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice-Hall

(1996)

	Transforming Formal Specification Constructs into Diagrammatic Notations
	1 Introduction
	2 Diagrammatic Notations
	2.1 Euler Diagrams
	2.2 Venn Diagrams
	2.3 Pierce Diagrams
	2.4 Spider Diagrams

	3 The Z Notation
	4 Specification Structures and Operators
	4.1 Domain Restriction
	4.2 Overriding Operator
	4.3 Domain Subtraction
	4.4 Range Subtraction
	4.5 Specifying Non-Singleton Sets

	5 Conclusions and Future Work
	References

