
 

A. Cuzzocrea and S. Maabout (Eds.): MEDI 2013, LNCS 8216, pp. 176–187, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Schema Extraction and Integration of Heterogeneous 
XML Document Collections 

Prudhvi Janga and Karen C. Davis 

University of Cincinnati, Cincinnati, Ohio, USA 
jangapi@mail.uc.edu, karen.davis@uc.edu 

Abstract. The availability of vast amounts of heterogeneous XML web data 
motivates finding efficient methods to search, integrate, query, and present this 
data. The structure of XML documents is useful for achieving these tasks; how-
ever, not every XML document on the web includes a schema. We discuss chal-
lenges and accomplishments in the area of generation and integration of XML 
schemas. We propose and implement a framework for efficient schema extrac-
tion and integration from heterogeneous XML document collections collected 
from the web. Our approach introduces the  Schema Extended Context Free 
Grammar (SECFG) to model XML schemas, including detection of attributes, 
data types, and element occurrences. Unlike other implementations, our ap-
proach supports the generation of XML schemas in any XML schema language, 
e.g., DTDs or XSD.  We compare our approach with other proposed approaches 
and conclude that we offer the same or better functionality more efficiently and 
with greater flexibility. 

Keywords: XML schema, schema integration, schema extraction, schema dis-
covery. 

1 Introduction 

XML supports a wide range of web applications from intelligent web searching to 
web-based e-commerce. The availability of large amounts of heterogeneous and dis-
tributed web data from multiple XML data sources adds new challenges for the inte-
gration of XML data. In typical clustering or integration approaches, the structure or 
schema of the XML document should be known. However, most of the XML docu-
ments over the web have no accompanying schema.  XML schema extraction helps 
not only in integration but also in efficient storage and querying of XML data 
[GGR+00, PLM+02, XP11]. Automatic schema extraction from XML documents also 
assists schema designers by letting them analyze schema patterns and find new ones 
[C02]. Extraction and integration of XML schemas facilitates XML data transforma-
tions to different formats such as relational data [MAC03]. Hence, there are several 
reasons to develop algorithms and methods for efficient automated generation and 
integration of XML schemas from a heterogeneous collection of XML documents. 

Merged schemas should be concise but should also be able to completely represent 
the XML documents under consideration. As these two requirements are sometimes 
contradictory, finding an optimal tradeoff is a challenging task [C02, GGR+00]. XML 



 Schema Extraction and Integration of Heterogeneous XML Document Collections 177 

 

schema extraction also involves using XML schema languages such as DTD or XSD 
which incorporate the full expressive power of regular expressions, contributing to the 
complexities of efficient and accurate schema extraction.  

In addition to the complexity, many of the research efforts that have proposed 
XML schema extraction techniques yield incomplete results. In our work we have 
proposed techniques for efficient extraction of XML schemas which not only generate 
schemas that are complete but are also capable of producing XML schemas in both 
popular schema languages, XSD or DTD, and could be extended easily to support 
other schema languages. Unlike other research efforts that only support schema gen-
eration on homogeneous collections, our techniques also support heterogeneous col-
lections where the XML documents can have widely varying structures and content. 

We develop the Schema Extended Context-Free Grammar (SECFG) that uses ex-
tended regular expressions to model an XML schema, thereby making the schema 
extraction process schema-language independent. We propose an algorithm that inte-
grates individual schemas by merging SECFG grammars. The algorithms we propose 
for XML schema generation and integration address challenges such as data type, 
attribute, and property detection,  as well as schema completeness and support for 
multiple schema languages. We propose a framework for our algorithms that outlines 
the process of extraction, clustering, integration, storage, and querying of XML web 
data. 

The reminder of this paper is organized as follows. Section 2 describes related re-
search. Section 3 discusses our approach for XML schema extraction from individual 
XML documents. Section 4 describes the schema unification/merge algorithm pro-
posed for merging individual schemas. In Section 5 we present experimental results 
and conclude with a discussion of future work in Section 6. 

2 Related Research 

XML schema generation for a given XML document normally involves three main 
steps: extraction of XML elements, simplification/generalization to obtain the struc-
ture of the document, and transformation of the structure into an XML schema defini-
tion. Simplification or generalization of elements to generate good DTDs using  
regular expressions [GGR+00, AR05] only works with DTDs and does not address 
complete schema generation. Simplification or generalization of elements using tree 
construction has been proposed [JOK+02, MLN00], but there are no individual XML 
document schemas available except for the merged final schema after the process is 
complete.  Several research efforts [C02, PV00, W95] use extended context-free 
grammars for modeling XML document structure. However, this approach does not 
produce a complete XML schema that represents the XML document collection and 
the extraction and integration of XML schemas are combined into a single stage.   
Min et al. [MAC03] propose a schema extraction system that supports the generation 
of a DTD and XSD from XML documents, but it does not guarantee the completeness 
of the generated schema. Xing et al. [XP11] focus on schema extraction from a large 
collection of XML documents, but it does not support complete XML schema genera-
tion, heterogeneous collections, and multiple schema languages.  



178 P. Janga and K.C. Davis 

 

XML schema integration merges the XML schemas into a single XML schema. If 
a single XML schema cannot be achieved, this step returns the merged schema along 
with other independent schemas that could not be merged. The XML schema integra-
tion step aims at generating a schema that is adequate to describe the collection of 
XML documents but not so generic that it could describe many other XML docu-
ments not under consideration [GGR+00]. There are many research efforts that have 
proposed techniques that work well with homogenous collections. Integration of 
XML schemas over a heterogeneous collection of XML documents is much more 
complicated than schema integration on a homogenous collection of XML documents.  

The Xtract system proposed by Garofalakis et al. [GGR+00] uses factorization and 
the MDL principle to integrate candidate DTDs. The MDL principle [R78] states that 
the best theory or language (in this case, a DTD) that can be inferred from data (in 
this case, collection of XML documents) that follows some patterns is the one that 
minimizes the sum of the number of bits needed to describe the theory itself and the 
number of bits needed to encode data using that theory. Moh et al. [MLN00] use 
spanning graph construction to merge individual XML schemas that are represented 
by document trees; they do not detect attribute types and entity references or handle 
processing hyperlinks and multimedia data.  Jung et al. [JOK+02] integrate XML 
schemas from homogenous XML document collections. Chidloviskii [C02] proposes 
schema induction from a set of range extended context free grammars. The author 
uses content and context similarity measures to merge non-terminal symbols present 
in the context-free grammars. Min et al. [MAC03] generate either a DTD or XSD 
schema which is the integrated schema of the XML documents collection. 

Most of the previous techniques, summarized in Table 1, combine XML schema 
generation with schema integration. However, we perform XML schema generation 
as a separate step in our framework to avoid repeating it during both XML schema 
integration and clustering. Some of the research efforts discussed above do not yield a 
complete XML schema that represents the XML documents under consideration. The 
technique that we propose is capable of extracting XML schemas that are complete. 
Most of the research efforts are only capable of representing the extracted schema in 
either one of the schema languages (XSD or DTD). Since our approach for XML 
schema extraction is modular, the extracted schema information can be represented in 
any of the XML schema languages.  All of the proposed integration techniques 
[JOK+02, C02, MAC03] suffer from the same problem. These techniques incur 
processing overhead in real time and cannot be used for large collections of XML 
documents. Many techniques work well with homogenous collections and do not 
address heterogeneous collections. The framework that we have proposed works well 
with large collections of both homogenous and heterogeneous data and produces an 
integrated view of the XML data by clustering similar XML document data together. 
The integration technique that we propose can produce one or more merged schemas 
from a given collection of XML documents based on the structure of documents 
present in a given collection. This helps to avoid over-fitting the given collection or 
failing to represent all the documents. Our framework also separates the extraction 
and integration of XML schemas into two different stages to achieve better real-time 
performance and guarantee reusability.  



 Schema Extraction and Integration of Heterogeneous XML Document Collections 179 

 

Table 1. Analysis of Research Efforts for Extraction and Integration of XML Schemas 

 

3 XML Schema Generation 

There are three main steps in our XML schema generation process. XML schema 
generation starts by ordering XML documents by search rank so that the most rele-
vant schemas are extracted first. However, this is an optional step if XML schema 
generation is being carried out offline independently of a user search. Once that step 
is complete, for each XML document, the XML schema is obtained. The three main 
steps for XML schema generation are (1) structured example creation, (2) generation 
of an SECFG grammar, and (3) generalizing the grammar.  Each of these steps is 
explained below. 

3.1 Generation of Structured Examples 

We represent XML documents as structured examples of an unknown SECFG to aid 
in the process of XML schema inference. Structured examples are derivation trees 
where all non-terminal labels are removed [C02]. We define a recursive algorithm 
that generates a structured example for a given element (E) present in an XML docu-
ment. This algorithm initializes a temporary set of nodes TN to store the generated 
nodes of the derivation tree. The element E that has been supplied to the algorithm is 
parsed and all the sub-elements of E are extracted into S. If there are no sub-elements, 
the element is considered to be a simple element and the node for the element is gen-
erated using start and end tags of the element. However, if E is a complex element 
with sub-elements then the nodes for each of the sub-elements are generated recur-
sively until the deepest level is reached. Once all the nodes for sub-elements inside 
the complex element have been generated, the algorithm then generates the node for 
the complex element itself and links it to the nodes of the sub-elements present in the 



180 P. Janga and K.C. Davis 

 

temporary set, TN. Thus, for a given XML document, GenerateStructuredExample(E) 
creates a derivation tree that is a combination of unknown nodes (that become non-
terminal symbols in the grammar) as well as element nodes called the structured ex-
ample of the document. 

3.2 Schema Extended Context-Free Grammars 

We model an XML schema by creating a new grammar called the Schema Extended 
Context-Free Grammar (SECFG), an extension of ECFG [C02]. We associate features 
of an XML schema with components of an SECFG as shown in Table 2. The SECFG 
grammar addresses features such as attribute detection, order of child elements, num-
ber of child elements and detection of default, fixed, and substitution group values for 
elements and attributes, along with all other features already addressed using ECFG 
modeling. 

Regular expressions used to represent SECFG are called extended regular expres-
sions because they support both the minimum and maximum number of occurrences 
as well as several other attributes of a given element with a properties tag.  The prop-
erties inside a properties tag are defined as a semicolon-delimited list of strings where 
each string is denoted by P=a, where P represents the name of the property (attribute 
name) and a represents the value of the property.  A properties tag that accompanies a 
terminal symbol summarizes features such as order, number of child elements, data 
type, default value, and fixed values. 

Formally, a Schema Extended Context Free Grammar is defined by a 5-tuple G = 
(T, N, P, δ, start) where T, N, and P are disjoint sets of terminals, non-terminals, and 
properties, respectively. Each property in P is defined over an empty set or an enume-
ration or a range of values it can accept. When a property is defined over an empty set 
it can accept any values. The symbol start is an initial non-terminal and δ is a finite 
set of production rules of the form A → α for A ϵ N, where α is an extended regular 
expression over terms, where each term is a terminal-properties-nonterminal-terminal 
sequence such as tpBt’ where t, t’ are a pair of opening and closing tags respectively, 
t, t’ ϵ T, B ϵ N and p ϵ P. The expression tpBt’ can be abbreviated as tp:B without loss 
of information. 

Table 2. Correspondence between XML Schema Language Features and SECFG Components 

 



 Schema Extraction and Integration of Heterogeneous XML Document Collections 181 

 

We induce an SECFG from a structured example by traversing the tree in a depth-
first approach. Every time we encounter an unknown node in the structured example 
tree, we add a production to the SECFG being generated and traverse the unknown 
node under consideration to complete the right side of the production.  Since the 
grammar represents the complete document structure, there are numerous productions 
that are structurally identical.  To achieve conciseness, generalization removes dupli-
cate productions and merges productions with similar content and context [C02]. 

3.3 Generalization of SECFG 

 

Fig. 1. Generalization of an SECFG 

This algorithm takes an SECFG Gi that has not been generalized. A generalized 
grammar is one in which data types, order, and other properties are defined and the 
nonterminal symbols with the same name are merged to yield a concise grammar that 
describes the structure of the XML document. When translated into a grammar, all the 
non-terminal and terminal tags are unique at this stage. Hence, there is no need for 
using tag similarity in generalizing a given SECFG. However, in the integration stage 
where multiple schemas are merged, we cannot guarantee uniqueness of elements and 
sub-elements among different schemas, so we measure tag similarity. The algorithm 
shown in Fig. 1 performs the generalization of an SECFG.  Once the generalization is 
complete, we use an SECFG-to-schema mapping algorithm that associates the fea-
tures of an XML schema with an SECFG as shown in Table 2 to derive an XML 
schema definition in any XML schema language such as DTD or XSD. 

4 XML Schema Integration 

XML schema integration involves merging multiple individual schemas into a final 
schema. We propose the algorithm shown in Fig. 2 for XML schema integration. We 
merge the grammars to produce an integrated SECFG. Any grammars that could not 
be merged in this stage are marked as independent grammars. Once the merging 
process is complete, we transform the integrated SECFG into an XML schema.  
 
 



182 P. Janga and K.C. Davis 

 

 

Fig. 2. XML Schema Integration 

 

Fig. 3. Merge Grammar Gi into G 

The algorithm shown in Fig. 3 merges a given grammar Gi into a base grammar G 
(the grammar that holds the integrated structure) and also generalizes the merged 
grammar. It starts by initializing a grammar Gtemp that stores all the productions of Gi 
and base grammar, G. The grammar Gtemp is generalized to give a compact structure 
stored as G. Since we consider a set of heterogeneous XML documents, the grammar 
Gi produced by the XML document Xi might be structurally different from the base 
grammar, G. We calculate the edit distance between the base grammar G and the 
grammar to be merged, Gi. If the edit distance is less than or equal to the maximum 
edit distance parameter, we merge the two grammars. We define edit distance as the 
minimum cost of the edit scripts such as insert a non-terminal, delete a non-terminal, 
or replace a non-terminal that transform the individual SECFG grammar to conform 
to the base grammar. As the edit distance might differ based on the size of the docu-
ment, we use a normalized edit distance measure to compare to the maximum  
edit distance. Once the similarity between the base grammar and the grammar Gi is  
 



 Schema Extraction and Integration of Heterogeneous XML Document Collections 183 

 

calculated, we check whether it is above the threshold defined by the end user. If it is, 
then we merge the two grammars.  

5 Experimental Results 

In this section we discuss results of experiments carried out to test the validity and 
efficiency of our approach.  

5.1 Comparison of an Actual versus Generated XML Schema 

We generate XML schemas from a number of different XML datasets that have been 
automatically created using Altova XMLspy. We use synthetic as well as real world 
schemas in our experiments. Fig. 4 shows an example of an actual XML schema that 
represents a collection of XML documents and the one that is generated from our 
system by extracting and integrating schemas from the collection of XML documents. 
We can observe that both the schemas are very close to each other, differing mainly in 
the number of maximum occurrences of the element <Title> (10 in the original and 6 
in ours.) The exact number of minimum and maximum occurrences cannot be guaran-
teed by any approach if the collection of XML documents does not fully represent the 
schema under consideration.  Results from the experiments are discussed in the next 
section. 

   

Fig. 4(a). Example of an Actual XSD 



184 P. Janga and K.C. Davis 

 

 

 

Fig.4(b). Our Generated XSD 

5.2 Datasets and Quality of Inferred Schemas 

To validate our approach and also show the advantages of it, we compare the schemas 
generated using our approach with XTRACT [GGR+00], DDbE [LA01], DTDXtract 
[AR05], and the restricted element content model [MAC03]. Although there are some 
other systems that also discuss XML schema generation, we do not consider them for 
comparison because they either do not discuss their algorithms in detail or they do not 
present experimental details. We have implemented our approach using Microsoft 
Visual Basic and the .Net framework. We use the same real-life DTDs in the experi-
ments with XTRACT [GGR+00]. For each DTD for a single element, we generate an 
XML file containing 1000 instantiations of the element using Altova XMLspy. The 
regular expressions that represent the original DTDs used to generate the datasets are 
shown in the first column of Table 3. We refer to the regular expression representing 
a DTD as the DTD itself from here on. The DTDs from other approaches such as 
XTRACT, DDbE, and DTDXtract were obtained from Min et al. [MAC03]. The re-
sults from our approach are shown in the rightmost column in Table 3. Our approach 
generates all the schemas that match the original DTDs, demonstrating that our ap-
proach is accurate and valid.  One noteworthy difference is that our approach produc-
es schemas (can be represented in XSD or DTD or any other schema language) that 
match the original DTDs while other approaches just produce DTDs. 
 
 



 Schema Extraction and Integration of Heterogeneous XML Document Collections 185 

 

Table 3. Comparison of Actual Versus Generated DTDs 

 

5.3 Normalized Time Comparison of XML Schema Extraction Techniques 

We compare the time taken to extract XML schemas from datasets among different 
systems such as XTRACT, DDbE, and our system. We exclude DTDXtract from the 
normalized time comparisons because this system uses the same algorithm used by 
XTRACT apart from an extension to support Kleene plus (+) expressions. Fig. 5 
shows a normalized time comparison of different systems with respect to the different 
DTDs. We consider a normalized time comparison because the time taken to extract 
various DTDs by different systems such as XTRACT have been implemented using a 
computer configuration which is different from the configuration that we have used to  
 

 

Fig. 5. Normalized Time Trends for DTD Generation 



186 P. Janga and K.C. Davis 

 

develop our system [MAC03]. Fig. 5 shows the standard scores (how many standard 
deviations an observation is above or below the mean). The time taken for XSD as 
well as DTD generation for different DTD/XSD data sets in our system is significant-
ly less when compared to other systems such as XTRACT and DDbe ver2. Our sys-
tem is not only comparable to the XTRACT system but also handles one additional 
case. Our system performs as well as or better than the element content model. It 
should also be noted that the time taken by our system is comparable or better than 
other systems even though it produces both DTD and XSD schemas. This result vali-
dates the efficiency of the approach we have taken as well as the system we have 
implemented. 

6 Conclusions and Future Work 

We introduce the problem of extraction and integration of XML schemas from hete-
rogeneous collections of XML documents. We propose a grammar to represent the 
structure of the XML document (SECFG) and implement algorithms to extract and 
integrate XML schemas. We describe experimental studies that evaluate the effec-
tiveness of our schema extraction and integration algorithms. We perform experi-
ments using synthetic as well as real-life datasets and compare results from our  
approach against other systems that have already been proposed.  

We discuss challenges involved in the extraction and integration of XML schemas 
and techniques to overcome those challenges. However, we have not addressed chal-
lenges involved in the location or clustering of XML web data. We use normalized 
edit distance to calculate the similarity between an individual schema and the base 
schema (to be the final schema) during schema integration. Future work could be 
done on enhancing our schema integration algorithm by incorporating some hybrid 
similarity measures (schema mapping techniques) that have been proposed for XML 
document clustering purposes. We are also working on using SECFG model for XML 
to relational schema mapping.  

We expect to obtain additional experimental results as evidence of the validity and 
scalability of our approach; we plan to release our datasets to support reproducibility 
of our results as well as further research when this is complete. 

References 

[AR05] Leonov, A.V., Khusnutdinov, R.R.: Study and Development of the DTD Generation 
System for XML Documents. Programming and Computer Software (PCS) 31(4), 197–210 
(2005) 
[C02] Chidlovskii, B.: Schema extraction from XML collections. In: Proceedings of the 2nd 
ACM/IEEE-CS Joint Conference on Digital Libraries, Portland, Oregon, USA, June 14-18, pp. 
291–292 (2002) 
[GGR+00] Garofalakis, M.N., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: XTRACT: A 
system for extracting document type descriptors from XML documents. In: Proceedings of the 
2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 
May 16-18, pp. 165–176 (2000) 



 Schema Extraction and Integration of Heterogeneous XML Document Collections 187 

 

[JOK+02] Jung, J.-S., Oh, D.-I., Kong, Y.-H., Ahn, J.-K.: Extracting Information from XML 
Documents by Reverse Generating a DTD. In: Proceedings of the 1st EurAsian Conference on 
Information and Communication Technology (EurAsia ICT), Shiraz, Iran, October 29-31, pp. 
314–321 (2002) 
[LA01] Berman, L., Diaz, A.: Data Descriptors by Example (DDbE), IBM alphaworks (2001), 
http://www.alphaworks.ibm.com/tech/DDbE 
[MAC03] Min, J.-K., Ahn, J.-Y., Chung, C.-W.: Efficient Extraction of Schemas for XML 
Documents. Information Processing Letters 85(1), 7–12 (2003) 
[MLN00] Moh, C.-H., Lim, E.-P., Ng, W.K.: DTD-Miner: a tool for mining DTD from XML 
documents. In: Proceedings of the Second International Workshop on Advance Issues of E-
Commerce and Web-Based Information Systems (WECWIS 2000), Milpitas, California, USA, 
June 8-9, pp. 144–151 (2000) 
[PLM+02] Passi, K., Lane, L., Madria, S.K., Sakamuri, B.C., Mohania, M., Bhowmick, S.S.: A 
model for XML Schema Integration. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-
Web 2002. LNCS, vol. 2455, pp. 193–202. Springer, Heidelberg (2002) 
[PV00] Papakonstantinou, Y., Vianu, V.: DTD Inference for Views of XML Data. In: Proceed-
ings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database 
Systems (PODS), Dallas, Texas, USA, May 15-17, pp. 35–46 (2000) 
[R78] Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978) 
[W95] Wood, D.: Standard Generalized Markup Language: Mathematical and Philosophical 
Issues. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 344–365. 
Springer, Heidelberg (1995) 
[XP11] Xing, G., Parthepan, V.: Efficient Schema Extraction from a Large Collection of XML 
Documents. In: Proceedings of the 49th Annual Southeast Regional Conference, Kennesaw, 
GA, USA, March 24-26, pp. 92–96 (2011) 


	Schema Extraction and Integration of Heterogeneous XML Document Collections
	1 Introduction
	2 Related Research
	3 XML Schema Generation
	3.1 Generation of Structured Examples
	3.2 Schema Extended Context-Free Grammars
	3.3 Generalization of SECFG

	4 XML Schema Integration
	5 Experimental Results
	5.1 Comparison of an Actual versus Generated XML Schema
	5.2 Datasets and Quality of Inferred Schemas
	5.3 Normalized Time Comparison of XML Schema Extraction Techniques

	6 Conclusions and Future Work
	References




