
A Comparison of Federation

over SPARQL Endpoints Frameworks

Nur Aini Rakhmawati, Jürgen Umbrich, Marcel Karnstedt,
Ali Hasnain, and Michael Hausenblas

Digital Enterprise Research Institute
National University of Ireland, Galway

{firstname.lastname}@deri.org

Abstract. The increasing amount of Linked Data and its inherent dis-
tributed nature have attracted significant attention throughout the re-
search community and amongst practitioners to search data, in the past
years. Inspired by research results from traditional distributed databases,
different approaches for managing federation over SPARQL Endpoints
have been introduced. SPARQL is the standardised query language for
RDF, the default data model used in Linked Data deployments and
SPARQL Endpoints are a popular access mechanism provided by many
Linked Open Data (LOD) repositories. In this paper, we initially give an
overview of the federation framework infrastructure and then proceed
with a comparison of existing SPARQL federation frameworks. Finally,
we highlight shortcomings in existing frameworks, which we hope helps
spawning new research directions.

1 Introduction

The Resource Description Framework (RDF) was introduced since 1998 and now
has become a standard for exchanging data in the Web. At present, huge amount
of data has been converted to RDF. The SPARQL Protocol and RDF Query
Language (SPARQL)1 was officially introduced in 2008 to retrieve RDF data as
easily as SQL does for relational databases. As Web of data grows and more ap-
plications rely on it, the number of SPARQL Endpoints constructing SPARQL
queries over Web of Data using HTTP also grows fast. SPARQL Endpoint be-
comes main preferences to access data because it is a flexible way to interact
with Web of Data by formulating query like SQL in traditional database. Ad-
ditionally, it returns query answer in several formats, such as XML and JSON
which are widely used as a data exchange standards in various applications. This
situation has attracted people to aggregate data from multiple SPARQL End-
points akin to conventional distributed databases. For instance, NeuroWiki2 col-
lects data from multiple life science RDF stores by utilizing LDIF framework [32]
and RKBexplorer(http://www.rkbexplorer.com/explorer/) gathers research

1 http://www.w3.org/TR/rdf-sparql-query/
2 http://neurowiki.alleninstitute.org/

P. Klinov and D. Mouromtsev (Eds.): KESW 2013, CCIS 394, pp. 132–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.rkbexplorer.com/explorer/)
http://www.w3.org/TR/rdf-sparql-query/
http://neurowiki.alleninstitute.org/


A Comparison of Federation over SPARQL Endpoints Frameworks 133

publication information from more than 20 datasets under rkbexplorer.com do-
main [20].

Contributions. In this study, we will focus primarily on the federation over
SPARQL Endpoint infrastructure, as the LOD cloud statistics3 reports that
68.14% of the RDF repositories are equipped with SPARQL Endpoints. Aside
from giving an overview of querying over SPARQL Endpoints, we will compare
the existing federation frameworks based on their platform, infrastructure prop-
erties, query processing strategies, etc.—to chose any framework for small and
large-scale systems. Further, we highlight shortcomings in the current federation
frameworks that could open an avenue in the research of federated queries.

Related Works. More general investigations w.r.t. querying Linked Data have
been performed elsewhere [6, 9, 18]. [6] mentioned nine myths and five chal-
lenges arising in the Federation over Linked Data. Based on their observation,
they suggested to consider Linked Data as a service not as distributed data. [9]
explained the Federated SPARQL query infrastructure, whereas [18] focused on
the basics of federated query processing strategy.

A number of studies [23, 34] compares federation frameworks by evaluating
their performance. [23] tests federation frameworks by using FedBench [29] in
various networking environment and data distribution. Similar to [23], [34] con-
ducts an experiment in the FedBench to evaluate federation frameworks on large
scale Life Science datasets. In this survey, we investigate and compare more ex-
isting Federation over SPARQL Endpoint frameworks based on their strategy
such as source selection and execution plan.

Structure of the Paper. An overview of federation architectures of querying
over SPARQL Endpoints are presented in Section 2. Section 3 introduces the
existing federation frameworks, supporting either SPARQL 1.0 or 1.14. We also
categorize them based on their architecture and querying process and investigate
features that should be added in the existing frameworks. Finally, we discover
challenges that should be considered in the future development of federation
query in Section 5. We conclude our findings in Section 6. For full version of this
paper we refer to [27].

2 Architecture of Federation over SPARQL Endpoints

SPARQL 1.1 is designed to tackle limitations of the SPARQL 1.0, including
updates operations, aggregates, or federation query support. As of this writing,
not all query engines support SPARQL 1.1. Therefore, we discuss the federation
frameworks that support either SPARQL 1.0 or SPARQL 1.1. There are three
kinds of architecture of federation over SPARQL Endpoints (Figure 1) namely
a) the framework has capability to execute SPARQL 1.1 query, b) the framework
accepts SPARQL query without specifying SPARQL Endpoint address, then it
rewrites query to SPARQL 1.1 syntax before passing it to the SPARQL 1.1 engine

3 http://lod-cloud.net/state/
4 http://www.w3.org/TR/sparql11-query/

rkbexplorer.com
http://lod-cloud.net/state/
http://www.w3.org/TR/sparql11-query/


134 N.A. Rakhmawati et al.

Query 1.1. Example of Federated SPARQL Query in the SPARQL 1.0

SELECT ?drugname ? i n d i c a t i o n {
FROM <http :// l o c a l h o s t / dbpedia . rdf> { ?drug a dbpedia−owl :

Drug .
?drug r d f s : l a b e l ?drugname .
?drug owl : sameAs ?drugbank . }

FROM <http :// l o c a l h o s t /drugbank . rdf> { ?drugbank drugbank :
i n d i c a t i o n ? i n d i c a t i o n . }

}

Query 1.2. Example of Federated SPARQL Query in the SPARQL 1.1

SELECT ?drugname ? i n d i c a t i o n {
SERVICE <http :// dbpedia . org / sparq l> { ?drug a dbpedia−owl :

Drug .
?drug r d f s : l a b e l ?drugname .
?drug owl : sameAs ?drugbank . }

SERVICE <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ sparq l> { ?
drugbank drugbank : i n d i c a t i o n ? i n d i c a t i o n . } }

and c) the framework handles SPARQL query without SERVICE keyword and
processes the query in several phases by interacting with the SPARQL 1.0/1.1
engine of each SPARQL Endpoints. Those systems that have already supported
SPARQL 1.1 allow user to execute query federation over SPARQL Endpoints
by using SERVICE keyword (Figure 1.a). The query processor distributes each
sub query to defined SPARQL Endpoints and join the result from SPARQL
Endpoint. Basically, SPARQL 1.0 allows us to query data from remote data
sources, however it does not retrieve specified remote SPARQL Endpoints. As
described in the Query 1.1., it only fetches remote graphs or graphs with the
name in a local store.

At present, the SPARQL 1.1 is the simplest solution to yield data from mul-
tiple sources. The W3C recommendation of the SPARQL 1.1 formalizes rules to
query in multiple SPARQL Endpoints by using SERVICE operator. However,
users must have prior knowledge regarding the data location before writing a
query because the data location must be mentioned explicitly. As seen in the
Query 1.2, the Drugbank and DBPedia SPARQL Endpoints are mentioned after
SERVICE operator to obtain the list of drugs and their associated diseases. In
order to assist users in term of data source address, it allows us to define a list
of SPARQL Endpoints as data beforehand and attach the list of SPARQL End-
point address as variable in the SPARQL query. Besides SERVICE, SPARQL
1.1 also introduces VALUES as one of the SPARQL Federation extension which
can reduce the intermediate results during query execution by giving constrains
from the previous query to the next query.



A Comparison of Federation over SPARQL Endpoints Frameworks 135

Query 1.3. Example of Federation SPARQL Query in the SPARQL 1.0 without
SPARQL Endpoint specified

SELECT ?drugname ? i n d i c a t i o n {
?drug a dbpedia−owl : Drug . ? drug r d f s : l a b e l ?drugname .
? drug owl : sameAs ?drugbank . ?drugbank drugbank : i n d i c a t i o n ?

i n d i c a t i o n . }

The lack of knowledge of data information is a main problem to execute
federated query throughout multiple single RDF stores. Thus, several efforts
have been introduced to address that issue (Figure 1.b). The user can write
a query blindly without knowing the data location. These federation models
can execute Query 1.2 or Query 1.1 without a SPARQL Endpoint declared. By
removing SERVICE or FROM keywords, those two queries can be replaced by
Query 1.3. These framework architectures provide an interface to translate query
from SPARQL 1.0 to SPARQL 1.1 format. The core part of this interface is query
rewriting component. After parsing and decomposing the query, this component
adds destination address of this query by inserting SERVICE operators in each
sub query. Further on, the result of query rewriter will be executed by internal
SPARQL 1.1 processor system.

Since not all of the existing SPARQL Endpoints can handle SPARQL 1.1
query, several systems (Figure 1.c) developed query execution processor to exe-
cute the federated SPARQL query without SPARQL Endpoint address declared.
The processor has responsibility to manage query processing such as maintain
data catalogue, determine relevant sources, plan the query execution and join
all results after retrieving data from SPARQL Endpoints. The details of phase

Fig. 1. Architecture of Federation over SPARQL Endpoint

of querying process in the Federated Over SPARQL Endpoint for architecture
b and c can be found at [27].



136 N.A. Rakhmawati et al.

3 The Existing Federation over SPARQL Endpoints
Frameworks

This section presents the insight on existing federation over SPARQL Endpoint
based on their architectures. To give better explanation, they will be classified
based on their features. Ultimately, we propose several features that should be
considered for next development.

3.1 The Existing Federation over SPARQL Endpoints Frameworks
Based on Their Architecture

As described in the section 2, three federation architectures categories have been
developed recently. We explain the existing federation based on those categories
in this section.

Frameworks Support SPARQL 1.1 Federation Extension
As of this writing, several RDF store systems have been able to process federation
query, but not all of them support VALUES keyword. Instead of handling VAL-
UES, a number of frameworks has supported BINDING which is also addressed
to reduce the size of intermediate results. The existing frameworks supporting
SPARQL 1.1 are as follows:

ARQ5, a query engine processor for Jena, has supported federated query
by providing SERVICE and VALUES operator. ARQ implements nested loop
join to gather retrieved result from multiple SPARQL Endpoints. In term of
security, the credential value to connect ARQ service must be initialized in the
pre-configuration6.

Sesame. Previously, Sesame already supported federation SPARQL query by
using SAIL AliBaba extension 7 at 2009, but Sesame can not execute SPARQL
1.1. Instead, SAIL Alibaba integrates multiple datasets into a virtual single
repository to execute federated query in SPARQL 1.0. It can execute federation
SPARQL query either RDF dump or SPARQL Endpoint by using its API. The
data source must be registered in advance during setup phase. The simple config-
uration file only containing the list of SPARQL Endpoint address can cause poor
performance since it sends query to all data sources without source selection. In
order to optimize the query execution, Sesame offers additional features in the
configuration file namely predicate and subject prefixes owned by one dataset.
According to its configuration, Sesame can do prefix matching to predict the
relevant source for a sub query. The join ordering is based on calculation of the
size of basic graph pattern. The new version of Sesame (2.7)8 is able to handle

5 http://jena.apache.org/documentation/query/index.html
6 http://jena.hpl.hp.com/Service#
7 http://www.openrdf.org/doc/alibaba/2.0-alpha2/alibaba-sail-federation/

index.html
8 http://www.openrdf.org/index.jsp

http://jena.apache.org/documentation/query/index.html
http://jena.hpl.hp.com/Service#
http://www.openrdf.org/doc/alibaba/2.0-alpha2/alibaba-sail-federation/index.html
http://www.openrdf.org/doc/alibaba/2.0-alpha2/alibaba-sail-federation/index.html
http://www.openrdf.org/index.jsp


A Comparison of Federation over SPARQL Endpoints Frameworks 137

SPARQL 1.1 which provides Federation extension features including SERVICE
and VALUES operator.

SPARQL-FED Virtuoso. 6.1.6 allows to execute SPARQL queries to remote
SPARQL Endpoint through SPARQL-FED9. The remote SPARQL Endpoint
must be declared after SERVICE operator.

SPARQL-DQP. SPARQL-DQP is built on top of the OGSA-DAI [3] and
OGSA-DQP [19] infrastructures. SPARQL-DQP transforms the incoming query
from SPARQL to SQL, as it implements SQL optimization techniques to gener-
ate and optimize query plans. The optimization strategy is based on OGSA-DQP
algorithm which does not need any statistic information from data sources. No
SPARQL Endpoint registration is required because the SPARQL Endpoint must
be written in the query. The OGSA-DAI manages a parallel hash join algorithm
to reorder query execution plan.

Frameworks Supporting Federation Without Re-writing Queries to
SPARQL 1.1
In order to overcome the lack of knowledge of data location, several federation
frameworks have been developed recently without specifying SPARQL Endpoint
address in the query. The federation framework acts as mediator [16] transferring
SPARQL query from user to multiple data sources either RDF repository or
SPARQL Endpoints. Before delivering a query to related source, it breaks down
a query into sub queries and selects the destination of each sub query. In the
end, the mediator must join the retrieved results from the SPARQL Endpoints.
Following are overview of the current of federation frameworks and summarized
in the Table 1.

DARQ(Distributed ARQ) [25] is an extension of ARQ which provides trans-
parent query to access multiple distributed endpoints by adopting query medi-
ator approach. The service description which consists of data description and
statistical information has to declare in advance before query processing since it
assists to predict where a sub query should go. According to the list of predicates
in the service description, DARQ re-writes the query, creates sub query and de-
signs the query planning execution. The query planning is based on estimated
cardinality cost. DARQ implements two join strategies : Nested Loop Join and
Bind Join.

Splendid [10] extends Sesame which employs VoID as data catalogue. The
VoID of the dataset is loaded when the system started then the ASK SPARQL
query is submitted to each dataset for verification. Once the query is arrived, the
system builds sub queries and join order for optimization. Based on the statis-
tical information, the bushy tree execution plan is generated by using dynamic
programming [35]. Similar to DARQ, Splendid computes join cost based on car-
dinality estimation. It provides two join types: hash join and bind join to merge
the results locally.

FedX [33] is also developed on top of the Sesame framework. It is able
to run queries over either Sesame repositories or SPARQL Endpoints. During

9 http://www.openlinksw.com/dataspace/dav/wiki/Main/VirtSparqlCxml

http://www.openlinksw.com/dataspace/dav/wiki/Main/VirtSparqlCxml


138 N.A. Rakhmawati et al.

initial phase, it loads the list of data sources without its statistical information.
The source selection is done by sending SPARQL ASK queries. The result of
a SPARQL ASK query is stored in a cache to reduce communication for the
successive query. The intermediate result size can be minimized by a rule based
join optimizer. FedX implements Exclusive Groups to cluster related patterns
for one relevant data source. Besides grouping patterns, it also groups related
mapping by using single SPARQL UNION query. Those strategies can decrease
the number of query transmission and eventually, it reduces the size of inter-
mediate results. As complementary, it came with Information Workbench for
demonstrating the federated approach to query processing with FedX.

ADERIS (Adaptive Distributed Endpoint RDF Integration System) [17]
fetches the list of predicates provided by data source during setup stage. The
predicate list can be used to decide destination source for each sub query pat-
tern. During query execution, ADERIS constructs predicate tables to be added
in query plan. One predicate table belongs to one sub query pattern. The pred-
icate table consists of two columns: subject and object which is filled from the
intermediate results. Once two predicate tables have been completed, the local
joining will be started by using nested loop join algorithm. The predicate table
will be deleted after query is processed. ADERIS is suitable for data source who
does not expose data catalogue, but it only handles limited query patterns such
as UNION and OPTIONAL. ADERIS provides a simple GUI for configuration
and query execution.

Avalanche [4] does not maintain the data source registrations as its data
source participants depends on third-parties such as search engines and web di-
rectories. Apart from that, it also stores sets of prefixes and schemas to special
endpoints. The statistics of a data source is always up to date since Avalanche al-
ways requests the related data sources statistic to the search engine after query
parsing. To detect the data sources that contributes to answer a sub query,
Avalanche calculates the cardinality of each unbound variables. The combina-
tions of sub queries are constructed by utilizing the best first search approach.
All sub queries are executed in parallel processes. To reduce the query response
time, Avalanche only retrieves the first K results from SPARQL Endpoints.

Graph Distributed SPARQL (GDS) [37] overcomes the limitation of their
previous work [38] which can not handle multiple graphs. GDS is developed on
top of Jena platform by implementing Minimum Spanning Tree (MST) algorithm
and enhancing BGP representation. Based on Service Description, MST graph
is generated by exploiting Kruskal algorithm. The MST graph estimates the
minimum set of triple patterns evaluation and the lowest cost of execution order.
The query planning execution can be done by either semi join or bind join which
is assisted by a cache system.

Distributed SPARQL. In contrast to aforementioned frameworks, users
must declare the SPARQL Endpoint explicitly in the SPARQL query at Dis-
tributed SPARQL [39]. Since it is developed for SPARQL 1.0 user, the SPARQL
Endpoint address is mentioned after FROM NAMED clause. Consequently, this
framework does not require any data catalogue to execute a query. As part of



A Comparison of Federation over SPARQL Endpoints Frameworks 139

Table 1. The existing frameworks support federation over SPARQL Endpoint without
reformulating queries to SPARQL 1.1.
Framework Catalogue Platform Source Selec-

tion
Cache Query Execu-

tion
Source
Tracking

GUI

DARQ Service De-
scription

Jena Statistic of
Predicate

� Bind Join or
Nested Loop
Join

Static ✗

ADERIS Predicate List
during setup
phase

✗ Predicate List ✗ Nested Loop
Join

Static �

FedX ✗ Sesame ASK � Bind Join
paralleliza-
tion

Dynamic �

Splendid VoID Sesame Statistic +
ASK

✗ Bind Join or
Hash Join

Static ✗

GDS Service De-
scription

Jena Statistic of
Predicate

� Bind Join or
Semi Join

Dynamic ✗

Avalanche Search Engine Avalanche Statistic of
predicates
and ontolo-
gies

� Bind join Dynamic ✗

Distributed
SPARQL

✗ Sesame ✗ ✗ Bind join ✗ ✗

Networked Graphs [28], it is also built on the top of Sesame. To minimize the
number of transmission query during execution, Distributed SPARQL applies
distributed semi join in the query planning.

Frameworks Re-writing Queries to SPARQL 1.1
A number of frameworks were developed to accepts SPARQL query federation
in SPARQL 1.0 format, but they are built on top of SPARQL query engine that
support SPARQL 1.1 (Table 2.)

ANAPSID. ANAPSID [1] is a framework to manage query execution with
respect to data availability and runtime condition for SPARQL 1.1 federation.
ANAPSID enhances XJoin [36] operator and combines it with Symmetric Hash
Join [8]. Both of them are non blocking operator that save the retrieved re-
sults to the hash table. Similar to others frameworks, ANAPSID also has data
catalogue containing the list of predicates. Additionally, the execution time-out
information of SPARQL Endpoint is added in the data catalogue. Therefore,
the data catalogue is updated on the fly. Apart from updating data catalogue,
ANAPSID also updates the execution plan at runtime. The Defender [21, 22]
in ANAPSID has purpose to split up the query from SPARQL 1.0 format to
SPARQL 1.1 format. Not only splitting up the query, Defender also composes
related sub query in the same group by exploiting the bushy tree strategy.

SemWIQ. SemWIQ is another system building on top of ARQ and part
of the Grid-enabled Semantic Data Access Middleware (G-SDAM). It provides



140 N.A. Rakhmawati et al.

Table 2. The Existing Frameworks Supports Federation over SPARQL Endpoints,
Reformulate query to SPARQL 1.1.
FrameworkCatalogue Platform Source Selec-

tion
Cache Query Execu-

tion
Source
Tracking

GUI

SemWIQ RdfStats+VoIDJena Statistic + Ser-
vice

� Bind Join Dynamic �

Anapsid Predicate List
and Endpoint
status

Anapsid Predicate List ✗ Symmetric
Hash Join
and XJoin

Dynamic �

WoDQA VoID Stores Jena List of predi-
cates and on-
tologies

✗ ✗ Dynamic �

Query 1.4. Example of Link Predicate Problem

SELECT ?drug ?compoundname {
?drug drugbank : keggCompoundID ?compound .
?compound r d f s : l a b e l ?compoundname . }

a specific wrapper to allows data source without equipped SPARQL Endpoint
connected. The query federation relies on data summaries in RDFStats and
SDV10. RDFStats is always up-to-date statistic information since the monitor-
ing component periodically collects information at runtime and stores it into
a cache. As the RDFstats also covers histogram String, Blank Node etc, it is
more beneficial for SemWIQ to be able to execute any kind of query pattern.
SDV is based on VoID which is useful for data source registration. The query is
parsed by Jena SPARQL processor ARQ before optimization process. SemWIQ
applies several query optimisation methods based on a number of statistic cost
estimations such as push-down of filter expressions, push down of optional group
patterns, push-down of joins and join and union reordering. During optimization,
the federator component inserts SERVICE keyword and SPARQL Endpoint for
each sub query.

WoDQA. WoDQA (Web of Data Query Analyzer) [2] also uses ARQ as a
query processor. The source selection is done by analysing metadata in the VoID
stores such as CKAN11 and VoIDStore12. The source observation is based on In-
ternationalized Resource Identifier (IRI), linking predicate and shared variables.
WoDQA does not exploit any statistic information in the VoID of each dataset,
but it only compares IRI or linking predicate to subject, predicate and object.
The same variables in the same position are grouped in one sub query. After de-
tecting relevant sources for each sub query, the SERVICE keyword is appended
following with SPARQL Endpoint address.
10 http://purl.org/semwiq/mediator/sdv#
11 http://ckan.net/
12 http://void.rkbexplorer.com/

http://purl.org/semwiq/mediator/sdv#
http://ckan.net/
http://void.rkbexplorer.com/


A Comparison of Federation over SPARQL Endpoints Frameworks 141

4 Desired Features

We have seen existing federation SPARQL frameworks along with their be-
haviours and properties. Based on our summary and experience, we suggest
several features that could be added into their framework.

Hybrid Data Catalogue. As described in the section 3, the data source
registration could be done by the mediator as well as third party such as search
engine. In term of querying in the Linked Open Data, the data source registered
should be not limited. The framework could combine static and dynamic data
sources registration where the data source in the static registration is given
higher priority than data source in the dynamic registration before delivering a
query.

Link Predicate Awareness. Link predicate has ability to connect one en-
tity to another entity in the different sources. The details of Link predicate
definition can be found at [27]. For instance, the drugbank:keggCompoundID

links the entity drugbank:drugs in the Drugbank dataset with the class
kegg_resource:Compound in the Kegg dataset and owl:sameAS connects the en-
tity dbpedia-owl:Drug in the DBpedia dataset with the entity drugbank:drugs

in Drugbank. Assuming the link predicate connects two datasets, we should avoid
to deliver the same destination of query patten containing the link predicate. In
the case of Query 1.4, pattern ?compound rdfs:label ?compoundname should not
be sent to the Drugbank dataset as drugbank:keggCompoundID is a link predi-
cate, even predicate rdfs:label occurs in all datasets.

5 Challenges

According to our investigation in Section 3, we note several challenges to be
addressed in the future of federation framework development. Federation over
SPARQL Endpoint has become actively developed over the last four years, es-
pecially in the source selection part. This field area is still infancy which faces
several challenges that need to be tackled:

Data Access and Security. The data source and mediator are usually lo-
cated in different locations, therefore the secure communication process among
mediator and data sources should be concerned. Several SPARQL Endpoints
provide authentication feature to restrict query access for limited user. How-
ever, the unauthorized interception between mediator and data sources have not
been undertaken by any federation frameworks yet. The public key cryptogra-
phy could be implemented in the federation frameworks where mediator and
data source share public and private key for data encryption in the interaction
process.

Data Allocation. Since several RDF stores crawl data from other data
source, the data redundancy could not be avoided in the Linked Open Data
Cloud. Consequently, the federation over SPARQL Endpoints framework detects

drugbank:keggCompoundID
drugbank:drugs
kegg_resource:Compound
owl:sameAS
dbpedia-owl:Drug
drugbank:drugs
drugbank:keggCompoundID


142 N.A. Rakhmawati et al.

relevant sources from multiple locations. This such condition could increase com-
munication cost during selection source and query execution stage particularly
for federation system employing data statistic from third-party. Furthermore,
the redundancy data could increase the intermediate results as more data dupli-
cation from multiple source. On the one hand, using popular vocabulary allows
user to query easily, but on the other hand, the source prediction for a query will
be a hard task. As pointed out by [26] when popular entities and vocabularies
are distributed over multiple data sources, the performance of federated query
is getting worse.

Data Freshness. The freshness is one of important measurement in the
querying data because each data source might have different freshness value.
Having up-to-date data catalogue is a must in the federation framework to
achieve high freshness value. The inaccurate results could arise from inaccu-
rate data catalogue. Nevertheless, updating data catalogue is a costly operation
in term of query execution and traffic between data source and mediator. Apart
from data catalogue being static, the freshness could not be obtained when the
high network latency occurs during communication process.

Benchmark. To date, benchmarks are generally proposed for single RDF
stores such as LUBM [13], BSBM [7], and SP2Bench [31]. Hence, they are not
suitable for distributed infrastructure. FedBench [30] is the only benchmark
proposed for federated query which evaluated the federated query infrastruc-
ture performance including loading time and querying time. Those performance
metrics are lack to evaluate federation framework. The federation framework
benchmark should take into account several performance measurements from
traditional distributed database such as query throughput. In addition, several
metrics particularly occurring in the federation framework should be considered.
For instance, the size of intermediate result, number of request, amount of data
sent, etc. Apart from performance metric, due to heterogeneous data in the
federated query, the evaluation of data quality become important measurement
namely freshness, consistency, completeness and accuracy. [21] added two more
FedBench measurements, namely Endpoint Selection time and completeness.
Furthermore, it evaluated performance federation framework in various environ-
ment. Since the FedBench has static dataset and query set, it is difficult task to
evaluate framework for other dataset. To address this problem, SPARQL Linked
Open Data Query Generator (SPLODGE) [11] generates random query set for
specified dataset. The query set generation is based on predicates statistic. Be-
side predicate statistic, it also considers the query structure and complexity such
as number of join, the query shape, etc to produce the query set.

Overlapping Terminologies. The data is generated, presented and pub-
lished using numerous expressions, namespaces, vocabularies and terminologies,
that significantly contain duplicate or complementary data [24, 5]. As an exam-
ple, there are multiple datasets in the LSLOD describing the concept Molecule-
in Bio2RDFs kegg dataset, it is represented using kegg:Compound whereas in
chebi, these are identified as chebi:Compound and in BioPax they are denoted



A Comparison of Federation over SPARQL Endpoints Frameworks 143

as biopax-level3.owl#SmallMolecule, i.e, using different vocabularies and ter-
minologies to explain the similar or related concepts [15]. Moreover, different
datasets contains different fractions of data or predicates about the same en-
tities e.g: Chebi dataset contains data regarding the mass or the charge of a
Molecule whereas Kegg dataset explains Molecules interaction with biological
entities such as Proteins. Conceptual overlap and different datasets share data
about the same entities in LD4LS can be seen in the Figure 2 . Therefore, the
mapping rules among heterogeneous schemas is highly required in the federated
query. This task could be done by having global schema catalogue that maps
related concepts or properties and generating more links among related entities.

Provenance. Apart from the number of sources, data redundancy often oc-
curs in the Federation SPARQL query, particularly in Federation over Linked
Open Data. It is because several publisher expose the same dataset. For exam-
ple, Sindice contains DBpedia data: while a user is requesting DBpedia data, the
DBpedia and Sindice SPARQL Endpoints are able to answer that query. The
redundant result can not be avoided by Federation Framework using third party
catalogue. Hence, the data provenance is the important factor in the Federation
over SPARQL Endpointa. [14] explains a notable provenance implementation in
the Federation System called OPENPHACTS (http://www.openphacts.org/).
In order to tackle provenance issue, OPENPHACTS utilizes a Nanopublica-
tion [12] which supports provenance, annotation, attribution and citation.

Fig. 2. Different Life Science Datasets talks about same concepts

6 Conclusion

Federation query over SPARQL Endpoints made a significant progress in the
recent years. Although a number of federation frameworks have already been
developed, the field is still relatively far from maturity. Based on our experience
with the existing federation frameworks, the frameworks mostly focus on source
selection and join optimization during query execution.

http://www.openphacts.org/


144 N.A. Rakhmawati et al.

In this work, we have presented a list of federation frameworks over SPARQL
Endpoints along with their features. According to this list, the user can have con-
siderations to choose the suitable federation framework for their case.
We have classified those frameworks into three categories: i) framework interprets
SPARQL 1.1 query to execute federation SPARQL query covering VALUES and
SERVICE operator; ii) framework handles SPARQL query without specifying
SPARQL Endpoint address and has responsibility to find relevant source for a
query and join the incoming results from SPARQL Endpoints; and iii) frame-
work accepts SPARQL query without specifying SPARQL Endpoint address and
translate the incoming query to SPARQL 1.1 format. Based on the current gen-
eration of federation frameworks surveyed in this paper, it still requires further
improvements to make frameworks more effective in a broader range of applica-
tions. Finally, we point out challenges for future research directions.

Acknowledgement. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI) under Grant
Number SFI/12/RC/2289.

References

[1] Acosta, M., Vidal, M.E.: Evaluating adaptive query processing techniques for
federations of sparql endpoints. In: 10th International Semantic Web Conference
(ISWC) Demo Session (November 2011)

[2] Akar, Z., Hala, T.G., Ekinci, E.E., Dikenelli, O.: Querying the web of interlinked
datasets using void descriptions. In: Linked Data on the Web, LDOW 2012 (2012)

[3] Antonioletti, M., Hong, N.P.C., Hume, A.C., Jackson, M., Karasavvas, K., Krause,
A., Schopf, J.M., Atkinson, M.P., Dobrzelecki, B., Illingworth, M., McDonnell, N.,
Parsons, M., Theocharopoulous, E.: Ogsa-dai 3.0 - the whats and whys. In: UK
e-Science All Hands Meeting (2007)

[4] Basca, C., Bernstein, A.: Avalanche: Putting the spirit of the web back into se-
mantic web querying. In: The 6th International Workshop on Scalable Semantic
Web Knowledge Base Systems, SSWS 2010 (2010)

[5] Bechhofer, S., Buchan, I., De Roure, D., Missier, P., Ainsworth, J., Bhagat, J.,
Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., et al.: Why linked data
is not enough for scientists. Future Generation Computer Systems (2011)

[6] Betz, H., Gropengies̈er, F., Hose, K., Sattler, K.U.: Learning from the history
of distributed query processing - a heretic view on linked data management. In:
Proceedings of the 3rd Consuming Linked Data Workshop, COLD 2012 (2012)

[7] Bizer, C., Schultz, A.: The berlin sparql benchmark. International Journal On
Semantic Web and Information Systems (2009)

[8] Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Found. Trends
Databases 1(1), 1–140 (2007)

[9] Görlitz, O., Staab, S.: Federated Data Management and Query Optimization for
Linked Open Data. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data
Management 1. SCI, vol. 331, pp. 109–137. Springer, Heidelberg (2011)

[10] Görlitz, O., Staab, S.: SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions. In: Proceedings of the 2nd International Workshop on Con-
suming Linked Data, Bonn, Germany (2011)



A Comparison of Federation over SPARQL Endpoints Frameworks 145

[11] Görlitz, O., Thimm, M., Staab, S.: SPLODGE: Systematic generation of SPARQL
benchmark queries for linked open data. In: Cudré-Mauroux, P., Heflin, J.,
Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler,
J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS,
vol. 7649, pp. 116–132. Springer, Heidelberg (2012)

[12] Groth, P., Gibson, A., Velterop, J.: The anatomy of a nanopublication. Inf. Serv.
Use 30(1-2), 51–56 (2010)

[13] Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3),
158–182 (2005); selcted Papers from the International Semantic Web Conference,
ISWC 2004

[14] Harland, L.: Open phacts: A semantic knowledge infrastructure for public and
commercial drug discovery research. In: ten Teije, A., Völker, J., Handschuh, S.,
Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez,
N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 1–7. Springer, Heidelberg (2012)

[15] Hasnain, A., Fox, R., Decker, S., Deus, H.F.: Cataloguing and Linking Life Sci-
ences LOD Cloud. In: 18th International Conference on Knowledge Engineering
and Knowledge Management (EKAW 2012), OEDW 2012 (2012)

[16] Hose, K., Schenkel, R., Theobald, M., Weikum, G.: Database foundations for
scalable rdf processing. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S.,
Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS,
vol. 6848, pp. 202–249. Springer, Heidelberg (2011)

[17] Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: Adaptive integration of dis-
tributed semantic web data. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.) DNIS
2010. LNCS, vol. 5999, pp. 174–193. Springer, Heidelberg (2010)

[18] Ladwig, G., Tran, T.: Linked data query processing strategies. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B.
(eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer, Heidelberg
(2010)

[19] Lynden, S., Mukherjee, A., Hume, A.C., Fernandes, A.A.A., Paton, N.W., Sakel-
lariou, R., Watson, P.: The design and implementation of ogsa-dqp: A service-
based distributed query processor. Future Gener. Comput. Syst. 25(3), 224–236
(2009)

[20] Millard, I., Glaser, H., Salvadores, M., Shadbolt, N.: Consuming multiple linked
data sources: Challenges and experiences. In: COLD (2010)

[21] Montoya, G., Vidal, M.E., Acosta, M.: Defender: a decomposer for queries against
federations of endpoints. In: 9th Extended Semantic Web Conference (ESWC)
Demo Session (Mai 2012)

[22] Montoya, G., Vidal, M.E., Acosta, M.: A heuristic-based approach for planning
federated sparql queries. In: Proceedings of the 3rd Consuming Linked Data Work-
shop, COLD 2012 (2012)

[23] Montoya, G., Vidal, M.-E., Corcho, O., Ruckhaus, E., Buil-Aranda, C.: Bench-
marking federated SPARQL query engines: Are existing testbeds enough? In:
Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth,
M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.)
ISWC 2012, Part II. LNCS, vol. 7650, pp. 313–324. Springer, Heidelberg (2012)

[24] Quackenbush, J.: Standardizing the standards. Molecular Systems Biology 2(1)
(2006)

[25] Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: Bech-
hofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS,
vol. 5021, pp. 524–538. Springer, Heidelberg (2008)



146 N.A. Rakhmawati et al.

[26] Rakhmawati, N.A., Hausenblas, M.: On the impact of data distribution in feder-
ated sparql queries. In: 2012 IEEE Sixth International Conference on Semantic
Computing (ICSC), pp. 255–260 (September 2012)

[27] Rakhmawati, N.A., Umbrich, J., Karnstedt, M., Hasnain, A., Hausenblas, M.:
Querying over federated sparql endpoints - a state of the art survey. CoRR
abs/1306.1723 (2013)

[28] Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for sparql rules,
sparql views and rdf data integration on the web. In: Proceedings of the 17th
International Conference on World Wide Web, WWW 2008, pp. 585–594. ACM,
New York (2008)

[29] Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: Fedbench:
A benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg
(2011)

[30] Schmidt, M., Görlitz, O., Haase, P., Ladwig, G., Schwarte, A., Tran, T.: FedBench:
A benchmark suite for federated semantic data query processing. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 585–600. Springer, Heidelberg
(2011)

[31] Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp2bench: A sparql perfor-
mance benchmark. CoRR abs/0806.4627 (2008)

[32] Schultz, A., Matteini, A., Isele, R., Mendes, P.N., Bizer, C., Becker, C.: LDIF - A
Framework for Large-Scale Linked Data Integration. In: 21st International World
Wide Web Conference (WWW2012), Developers Track (April 2012)

[33] Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: A federation
layer for distributed query processing on linked open data. In: Antoniou, G.,
Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J.
(eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 481–486. Springer, Heidelberg
(2011)

[34] Schwarte, A., Haase, P., Schmidt, M., Hose, K., Schenkel, R.: An experience report
of large scale federations. CoRR abs/1210.5403 (2012)

[35] Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Ac-
cess path selection in a relational database management system. In: Proceedings
of the 1979 ACM SIGMOD International Conference on Management of Data,
SIGMOD 1979, pp. 23–34. ACM, New York (1979)

[36] Urhan, T., Franklin, M.J.: XJoin: A reactively-scheduled pipelined join operator.
IEEE Data Engineering Bulletin 23(2), 27–33 (2000)

[37] Wang, X., Tiropanis, T., Davis, H.: Querying the web of data with graph theory-
based techniques. In: Web and Internet Science (2011)

[38] Wang, X., Tiropanis, T., Davis, H.C.: Evaluating graph traversal algorithms for
distributed SPARQL query optimization. In: Pan, J.Z., Chen, H., Kim, H.-G., Li,
J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS, vol. 7185,
pp. 210–225. Springer, Heidelberg (2012)

[39] Zemánek, J., Schenk, S.: Optimizing sparql queries over disparate rdf data
sources through distributed semi-joins. In: International Semantic Web Confer-
ence (Posters & Demos) (2008)


	A Comparison of Federation 
over SPARQL Endpoints Frameworks
	1 Introduction
	2 Architecture of Federation over SPARQL Endpoints
	3 The Existing Federation over SPARQL Endpoints Frameworks
	3.1 The Existing Federation over SPARQL Endpoints Frameworks Based on Their Architecture

	4 Desired Features
	5 Challenges
	6 Conclusion
	References




