
Completeness Statements about RDF Data

Sources and Their Use for Query Answering

Fariz Darari, Werner Nutt, Giuseppe Pirrò, and Simon Razniewski

Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
fariz.darari@stud-inf.unibz.it, {nutt,pirro,razniewski}@inf.unibz.it

Abstract. With thousands of RDF data sources available on the Web
covering disparate and possibly overlapping knowledge domains, the prob-
lem of providing high-level descriptions (in the form of metadata) of their
content becomes crucial. In this paper we introduce a theoretical frame-
work for describing data sources in terms of their completeness. We show
how existing data sources can be described with completeness statements
expressed in RDF. We then focus on the problem of the completeness
of query answering over plain and RDFS data sources augmented with
completeness statements. Finally, we present an extension of the com-
pleteness framework for federated data sources.

1 Introduction

The Resource Description Framework (RDF) [9] is the standard data model for
the publishing and interlinking of data on the Web. It enables the making of
statements about resources in the form of triples including a subject, a predicate
and an object. Ontology languages such as RDF Schema (RDFS) and OWL
provide the necessary underpinning for the creation of vocabularies to structure
knowledge domains. RDF is now a reality; efforts like the Linked Open Data
project [8] give a glimpse of the magnitude of RDF data today available online.
The common path to access such huge amount of structured data is via SPARQL
endpoints, that is, network locations that can be queried upon by using the
SPARQL query language [5].

With thousands of RDF data sources covering possibly overlapping knowl-
edge domains, the problem of providing high-level descriptions (in the form of
metadata) of their content becomes crucial. Such descriptions will connect data
publishers and consumers; publishers will advertise “what” is there inside a data
source so that specialized applications can be created for data source discovering,
cataloging, selection and so forth. Proposals like the VoID [1] vocabulary touched
this aspect. With VoID it is possible to provide statistics about how many in-
stances a particular class has, information about its SPARQL endpoint and links
with other data sources, among the other things. However, VoID mainly focuses
on providing quantitative information. We claim that toward comprehensive
descriptions of data sources, qualitative information is crucial.

Related Work. Data quality is about the “fitness for use” of data and en-
compasses several dimensions such as accuracy, correctness and completeness.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 66–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Completeness Statements about RDF Data Sources 67

Fürber and Hepp [4] investigated data quality problems for RDF data originat-
ing from relational databases, while Wang et al. [19] focused on data cleansing.
The problem of assessing completeness of Linked Data sources was discussed by
Harth and Speiser [6]; here, completeness is defined in terms of authoritative-
ness of data sources, which is a purely syntactic property. Polleres et al. [16]
defined a rule language where the need for completeness information emerges.
Hartig et al. [7] discussed an approach to get more complete results of SPARQL
queries over the Web of Linked Data. Their approach is based on traversing RDF
links to discover relevant data during query execution. Still, the completeness
of query answers cannot be guaranteed. In the relational databases world, com-
pleteness was first investigated by Motro [12] who provided a formalization of
completeness of databases and queries. Halevy [11] studied the problem of how
statements of completeness about a database related to query completeness. Re-
cently, Razniewski and Nutt [17] provided a general solution to this problem,
including a comprehensive study of the complexity of reasoning.

Indeed, the semantics of completeness is crucial also for RDF data sources
distributed on the Web, where each data source is generally considered incom-
plete. To the best of our knowledge, the problem of formalizing the semantics
of RDF data sources in terms of their completeness is open. Also from the more
pragmatic point of view, there exist no comprehensive solutions enabling the
characterization of data source in terms of completeness. As an example, with
VoID it is not possible to express that, for instance, the data source IMDb is
complete for all movies directed by Tarantino. Having the possibility to provide
in a declarative and machine-readable way (in RDF), such kind of completeness
statements paves the way toward a new generation of services for retrieving and
consuming data. In this latter respect, the semantics of completeness statements
interpreted by a reasoning engine can guarantee the completeness of query an-
swering. We present a comprehensive application scenario in Section 2.

Contributions. This paper lays the foundation for the expression of complete-
ness statements about RDF data sources. It can complement, with qualitative
descriptions, existing proposals like VoID that mainly deal with quantitative de-
scriptions. We develop a formalism and show its feasibility. The second goal of
this paper is to show how completeness statements can be useful in practice. In
this respect, we focus on the problem of query completeness. We believe that our
research has both a theoretical and practical impact. On the theoretical side, we
provide a formalization of completeness for RDF data sources and techniques to
reason about the completeness of query answers in various settings, from plain
RDF to federated data sources. From the practical side, completeness statements
can be easily embedded in current descriptions of data sources and thus readily
used. Finally, we want to point out that our completeness framework has been
implemented in the CoRNER system, which is available for download1.

Outline. In Section 2 we discuss a real world scenario and provide a high
level overview of the completeness framework. Section 3 after providing some

1 http://rdfcorner.wordpress.com/

http://rdfcorner.wordpress.com/

68 F. Darari et al.

background introduces a formalization of the completeness problem for RDF
data sources. This section also describes how completeness statements can be
represented in RDF. In Section 4 we discuss how completeness statements can
be used in query answering when considering a single data source at a time. In
Section 5 we challenge query completeness in federated data sources. Section 6
contains a discussion and Section 7 the conclusions.

2 Motivating Scenario

In this section we motivate the need of formalizing and expressing completeness
statements in a machine-readable way. Moreover we show how completeness
statement are useful for query answering. We start our discussion with a real
data source available on the Web. Fig. 1 shows a screenshot taken from the
IMDb website. The page is about the movie Reservoir Dogs; in particular it lists
the cast and crew of the movie. For instance, it says that Tarantino was not only
the director and writer of the movie but also the character Mr. Brown. As it can
be noted, the data source includes a “completeness statement”, which says that
the page is complete for all cast and crew members of the movie. The availability
of such statement increases the potential value of the data source. In particular,
users who were looking for information about the cast of this movie and found
this page can prefer it to other pages since, assuming the truth of the statement,
all they need is here.

Completeness
statement about the
IMDB data source

Quentin Tarantino
was the character

Mr. Brown

……………
……………

……………

http://www.imdb.com/title/tt0105236/fullcredits?ref_=tt_ov_st_sm#cast

Fig. 1. A completeness statement in IMDb as of 7 May 2013. It says that the source
is complete for the cast and crew of the movie Reservoir Dogs.

The problem with such kind of statements, expressed in natural language, is
that they cannot be automatically processed, thus hindering their applicability,
for instance, in query answering. Indeed, the interpretation of the statement
“verified as complete” is left to the user. On the other hand, a reasoning and
querying engine when requested to provide information about the cast and crew

Completeness Statements about RDF Data Sources 69

members of Reservoir Dogs could have leveraged such statement and inform the
user about the completeness of the results.

Other examples of Web data sources that already provide completeness state-
ments are OpenStreetMap2 and Wikipedia, which has, for instance, a complete
list of works attributed to Vermeer and works by Shakespeare or a complete
list of Olympic medalists in archery from 1900 to 2012. If such statements were
exploited by machines, one would expect that there would be an incentive to
publish them.

Machine-Readable Statements. In the RDF and Linked Data context with
generally incomplete and possibly overlapping data sources and where “anyone
can say anything about any topic and publish it anywhere” [9] having the pos-
sibility to express completeness statements becomes an essential aspect. The
machine-readable nature of RDF enables to deal with the problems discussed in
the example about IMDb; completeness statements can be represented in RDF.
As an example, the high-level description of a data source like DBpedia could
include, for instance, the fact that it is complete for all of Quentin Tarantino’s
movies. Fig. 2 shows how the data source DBpedia can be complemented with
completeness statements expressed in our formalism. Here we give a high level
presentation of the completeness framework; details on the theoretical framework
supporting it are given in Section 3.

dv:dbpdataset rdf:type void:Dataset .

dv:dbpdataset rdfs:comment "This document provides completeness statements
about the dbpedia.org datasource" .

dv:dbpdataset c:hasComplStmt dv:st1.
dv:st1 c:hasPattern [c:subject [spin:varName "m"];

c:predicate rdf:type;
c:object schema:Movie].

dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;
c:object dbp:Tarantino].

dv:st1 rdfs:comment "This completeness statement indicates that
dbpedia.org is complete for all movies directed by Tarantino".

@prefix c: <http://inf.unibz.it/ontologies/completeness#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix schema: <http://schema.org/> .
@prefix spin: <http://spinrdf.org/sp#> .
@prefix dbp: <http://dbpedia.org/resource/> .
@prefix void: <http://rdfs.org/ns/void#> .
@prefix dv: <http://dbpedia.org/void/> .

Fig. 2. An example of completeness statement about dbpedia.org

A simple statement can be thought of as a SPARQL Basic Graph
Pattern (BGP). The BGP (?m rdf:type schema:Movie).(?m schema:director

dbp:Tarantino), for instance, expresses the fact that dbpedia.org is com-
plete for all movies directed by Tarantino. In the figure, this information is

2 http://wiki.openstreetmap.org/wiki/Hall_of_Fame/Streets_complete

http://wiki.openstreetmap.org/wiki/Hall_of_Fame/Streets_complete

70 F. Darari et al.

represented by using an ad-hoc completeness vocabulary (see Section 3.2) with
some properties taken from the SPIN3 vocabulary.

Query Completeness. The availability of completeness statements about data
sources is useful in different tasks, including data integration, data source dis-
covery and query answering. In this paper we will focus on how to leverage
completeness statements for query answering. The research question we address
is how to assess whether available data sources with different degree of com-
pleteness can ensure the completeness of query answers. Consider the scenario
depicted in Fig. 3 where the data sources DBpedia and LinkedMDB are described
in terms of their completeness. The Web user Syd wants to pose the query Q to
the SPARQL endpoints of these two data sources asking for all movies directed
by Tarantino in which Tarantino also starred. By leveraging the completeness
statements, the query engines at the two endpoints could tell Syd whether the
answer to his query is complete or not. For instance, although DBpedia is com-
plete for all of Tarantino’s movies (see Fig. 2) nothing can be said about his
participation as an actor in these movies (which is required in the query). In-
deed, at the time of writing this paper, DBpedia is actually incomplete; this is
because in the description of the movie Reservoir Dogs the fact is missing that
Tarantino was the character Mr. Brown (and from Fig. 1 we know that this is
the case). On the other hand, LinkedMDB, the RDF counterpart of IMDb, can
provide a complete answer. Indeed, with our framework it is possible to express
in RDF the completeness statement available in natural language in Fig. 1. This
statement has then been used by the CoRNER reasoning engine, implementing
our formal framework, to state the completeness of the query.

DBPedia is complete
for all Tarantino's movies

lv:lmdbdataset rdf:type void:Dataset.
lv:lmdbdataset c:hasComplStmt lv:st1.

lv:st1 c:hasCondition [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
lv:st1 c:hasCondition [c:subject [spin:varName "m"];
c:predicate schema:director; c:object dbp:Tarantino].

dv:dbpdataset rdf:type void:Dataset.

dv:dbpdataset c:hasComplStmt dv:st1.
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object dbp:Tarantino].

SELECT ?m
WHERE {?m rdf:type schema:Movie.
?m schema:director dbp:Tarantino.
?m schema:actor dbp:Tarantino}

Select all the movies for which
Tarantino is the director and also an actor

LinkedMDB is complete for all Tarantino's movies
and also movies for which he is an actor

The answer is
incomplete

The answer is
complete

SPARQL
endpoint

@prefix c: <http://inf.unibz.it/ontologies/completeness#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix spin: <http://spinrdf.org/sp#>
@prefix void: <http://rdfs.org/ns/void#>
@prefix dv: <http://dbpedia.org/void/>
@prefix lv: <http://linkedmdb.org/void/>
@prefix dbp: <http://dbpedia.org/resource/>
@prefix schema: <http://schema.org>

Q

lv:lmdbdataset c:hasComplStmt lv:st2.
lv:st2 c:hasPattern [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
lv:st2 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object dbp:Tarantino].

lv:st1 c:hasPattern [c:subject[spin:varName "m"];
c:predicate schema:actor; c:object[spin:varName "a"]].

Endpoint IRI
DBPe

Endpoint IRI
LMDBe

SPARQL
endpoint

Fig. 3. Completeness statements and their usage for query answering

In this specific case, LinkedMDB can guarantee the completeness of the query
answer because it contains all the actors in Tarantino’s movies (represented by

3 http://spinrdf.org/sp.html#sp-variables

Completeness Statements about RDF Data Sources 71

the statement lv:st1) in addition to the Tarantino’s movies themselves (repre-
sented by the statement lv:st2). Note that the statement lv:st1 includes two
parts: (i) the pattern, which is expressed via the BGP (?m, schema:actor, ?a)

and (ii) the conditions, that is, the BGP (?m, rdf:type, schema:Movie).(?m,

schema:director, dbp:Tarantino). Indeed, a completeness statement allows one
to say that a certain part (i.e., with respect to some conditions) of data is com-
plete, or in other words, it can be used to state that a data source contains all
triples in a pattern P1 that satisfy a condition P2. The detailed explanation and
the semantics of completeness statements can be found in Section 3.

Application Scenarios. Completeness statements are particularly useful for
data collections such as works of an artist, cities in countries, election results,
census data and so forth. Completeness statements have wide applicability.
Source selection: as an example for address verification, one needs a complete
set of street names; for Hamburg, Dresden, and other cities in Germany, Open-
StreetMap can be used because completeness is asserted. Search Optimization:
a user wants to look for movies by Tarantino in 2008. By having completeness
statements in IMDb about these movies, a search engine could stop after finding
this specific source without the need to consult other sources.

3 Formal Framework

In the following, we remind the reader of RDF and SPARQL, formalize our
framework and show how completeness information can be expressed in RDF.

RDF and SPARQL. We assume that there are three pairwise disjoint infinite
sets I (IRIs), L (literals) and V (variables). We collectively refer to IRIs and
literals as RDF terms or simply terms. A tuple (s, p, o) ∈ I × I × (I ∪ L) is
called an RDF triple (or a triple), where s is the subject, p the predicate and o
the object of the triple. An RDF graph or data source consists of a finite set of
triples [9]. For simplicity, we omit namespaces for the abstract representation of
RDF graphs.

The standard query language for RDF is SPARQL. The basic building blocks
of a SPARQL query are triple patterns, which resemble RDF triples, except that
in each position also variables are allowed. SPARQL queries include basic graph
patterns (BGP), built using the AND operator, and more sophisticated operators,
including OPT, FILTER, UNION and so forth. In this paper we consider the operators
AND and OPT. Moreover, we also consider the result modifier DISTINCT. Evaluating
a graph pattern P over an RDF graph G results in a set of mappings from the
variables in P to terms, denoted as �P �G. Further information about SPARQL
can be found in [14].

SPARQL queries come as SELECT, ASK, or CONSTRUCT queries. A SELECT query
has the abstract form (W,P), where P is a graph pattern and W is a subset of
the variables in P . A SELECT query Q = (W,P) is evaluated over a graph G by
restricting the mappings in �P �G to the variables in W . The result is denoted
as �Q�G. Syntactically, an ASK query is a special case of a SELECT query where

72 F. Darari et al.

W is empty. For an ASK query Q, we write also �Q�G = true if �Q�G �= ∅,
and �Q�G = false otherwise. A CONSTRUCT query has the abstract form (P1, P2),
where P1 is a BGP and P2 is a graph pattern. In this paper, we only use CONSTRUCT
queries where also P2 is a BGP. The result of evaluating Q = (P1, P2) over G
is the graph �Q�G, that is obtained by instantiating the pattern P1 with all the
mappings in �P2�G.

Later on, we will distinguish between three classes of queries: (i) Basic queries,
that is, queries (W,P) where P is a BGP and which return bags of mappings
(as it is the default in SPARQL), (ii) DISTINCT queries, that is, queries (W,P)d

where P is a BGP and which return sets of mappings, and (iii) OPT queries, that
is, queries (W,P) without projection (W = var(P)) where P is a graph pattern
with OPT.

3.1 Completeness Statements and Query Completeness

We are interested in formalizing when a query is complete over a potentially
incomplete data source and in describing which parts of such a source are com-
plete. When talking about the completeness of a source, one implicitly compares
the information available in the source with what holds in the world and there-
fore should ideally be also present in the source. In this paper, we only consider
sources that may miss information, but do not contain wrong information.

Definition 1 (Incomplete Data Source). We identify data sources with RDF
graphs. Then, adapting a notion introduced by Motro in [12], we define an in-
complete data source as a pair G = (Ga, Gi) of two graphs, where Ga ⊆ Gi. We
call Ga the available graph and Gi the ideal graph.

Example 2 (Incomplete Data Source). Consider the DBpedia data source
and suppose that the only movies directed by Tarantino are Reservoir Dogs,
Pulp Fiction, and Kill Bill, and that Tarantino was starred exactly in the movies
Desperado, Reservoir Dogs, and Pulp Fiction. For the sake of example, suppose
also the fact that he was starred in Reservoir Dogs is missing in DBpedia4. Using
Definition 1, we can formalize the incompleteness of the DBpedia data source
Gdbp as:

Ga
dbp = {(reservoirDogs , director , tarantino), (pulpFiction, director , tarantino),

(killBill, director , tarantino), (desperado , actor , tarantino),

(pulpFiction, actor , tarantino), (desperado , type ,Movie),

(reservoirDogs , type ,Movie), (pulpFiction , type ,Movie), (killBill, type ,Movie)}
Gi

dbp = Ga
dbp ∪ { (reservoirDogs , actor , tarantino) }

We now introduce completeness statements, which are used to denote the
partial completeness of a data source, that is, they describe for which parts the
ideal and available graph coincide.

4 As it was the case on 7 May 2013.

Completeness Statements about RDF Data Sources 73

Definition 3 (Completeness Statement). A completeness statement
Compl (P1 | P2) includes: P1 a non-empty BGP and P2 a BGP. We call P1 the
pattern and P2 the condition of the completeness statement.

For example, we express that a source is complete for all pairs of triples that
say “?m is a movie and ?m is directed by Tarantino” using the statement

Cdir = Compl ((?m , type,Movie), (?m , director , tarantino) | ∅), (1)

whose pattern matches all such pairs and whose condition is empty. To ex-
press that a source is complete for all triples about actors in movies directed by
Tarantino, we use

Cact = Compl ((?m , actor , ?a) | (?m, director , tarantino), (?m , type,Movie)),
(2)

whose pattern matches triples about actors and the condition restricts the actors
to movies directed by Tarantino. The condition in Cact means that the data
source does not necessarily contain triples of the form (?m , director , tarantino)
and (?m , type,Movie). Moving the condition to the pattern imposes that the
data source contains the triples.

We now define when a completeness statement is satisfied by an incomplete
data source. To a statement C = Compl (P1 | P2), we associate the CONSTRUCT

query QC = (P1, P1 ∪ P2). Note that, given a graph G, the query QC returns
those instantiations of the pattern P1 that are present in G together with an
instantiation of the condition. For example, the queryQCact returns all the acting
information of Tarantino movies in G.

Definition 4 (Satisfaction of Completeness Statements). For an incom-
plete data source G = (Ga, Gi), the statement C is satisfied by G, written G |= C,
if �QC�Gi ⊆ Ga holds.

To see that the statement Cdir is satisfied by Gdbp , observe that the query
QCdir

returns over Gi
dbp all triples with the predicate actor and all type

triples for Tarantino movies, and that all these triples are also in Ga
dbp . How-

ever, Cact is not satisfied by Gdbp , because QCact returns over Gi
dbp the triple

(reservoirDogs , actor , tarantino), which is not in Ga
dbp .

When querying a potentially incomplete data source, we would like to know
whether at least the answer to our query is complete. For instance, when querying
DBpedia for movies starring Tarantino, it would be interesting to know whether
we really get all such movies, that is, whether our query is complete over DB-
pedia. We next formalize query completeness with respect to incomplete data
sources.

Definition 5 (Query Completeness). Let Q be a SELECT query. To express
that Q is complete, we write Compl (Q). An incomplete data source G = (Ga, Gi)
satisfies the expression Compl (Q), if Q returns the same result over Ga as it
does over Gi, that is �Q�Ga = �Q�Gi . In this case we write G |= Compl (Q).

74 F. Darari et al.

Example 6 (Query Completeness). Consider the incomplete data source
Gdbp and the two queries Qdir, asking for all movies directed by Tarantino,
and Qdir+act, asking for all movies, both directed by and starring Tarantino:

Qdir = ({ ?m }, { (?m, type,Movie), (?m, director, tarantino) })
Qdir+act = ({ ?m }, { (?m, type,Movie), (?m, director, tarantino), (?m, actor , tarantino) }).

Then, it holds that Qdir is complete over Gdbp while Qdir+act is not. Later on,
we show how to deduce query completeness from completeness statements.

3.2 RDF Representation of Completeness Statements

Practically, completeness statements should be compliant with the existing ways
of giving metadata about data sources, for instance, by enriching the VoID de-
scription [1]. Therefore, it is essential to express completeness statements in RDF
itself. Suppose we want to express that LinkedMDB satisfies the statement:

Cact = Compl ((?m , actor , ?a) | (?m, type,Movie), (?m , director , tarantino)).

Then, we need a vocabulary to say that this is a statement about LinkedMDB,
which triple patterns make up its pattern, and which its condition. We also
need the vocabulary to represent the constituents of the triple patterns, namely
subject, predicate, and object of a pattern. Therefore, we introduce the property
names whose meaning is intuitive:

hasComplStmt, hasPattern, hasCondition, subject, predicate, object

If the constituent of a triple pattern is a term (an IRI or a literal), then it can be
specified directly in RDF. Since this is not possible for variables, we represent a
variable by a resource that has a literal value for the property varName. Now, we
can represent Cact in RDF as the resource lv:st1 described in Figure 3.

More generally, consider a completeness statement Compl (P1 | P2), where
P1 = { t1, . . . , tn } and P2 = { tn+1, . . . , tm } and each ti, 1 ≤ i ≤ m, is a triple
pattern. Then the statement is represented using a resource for the statement
and a resource for each of the ti that is linked to the statement resource by the
property hasPattern or hasCondition, respectively. The constituents of each ti
are linked to ti’s resource in the same way via subject, predicate, and object.
All resources can be either IRIs or blank nodes.

4 Completeness Reasoning over a Single Data Source

In this section, we show how completeness statements can be used to judge
whether a query will return a complete answer or not. We first focus on complete-
ness statements that hold on a single data source, while completeness statements
in the federated setting are discussed in Section 5.

Completeness Statements about RDF Data Sources 75

Problem Definition. Let C be a set of completeness statements and Q be
a SELECT query. We say that C entails the completeness of Q, written C |=
Compl (Q), if any incomplete data source that satisfiesC also satisfies Compl (Q).

Example 7. Consider Cdir from (1). Whenever an incomplete data source G
satisfies Cdir , then Ga contains all triples about movies directed by Tarantino,
which is exactly the information needed to answer query Qdir from Example 6.
Thus, {Cdir } |= Compl (Qdir). This may not be enough to completely answer
Qdir+act , thus {Cdir } �|= Compl (Qdir+act). We will now see how this intuitive
reasoning can be formalized.

4.1 Completeness Entailment for Basic Queries

To characterize completeness entailment, we use the fact that completeness state-
ments have a correspondence in CONSTRUCT queries. For any set C of completeness
statements we define the operator TC that maps graphs to graphs:

TC(G) =
⋃

C∈C

QC(G)

Notice that for any graph G, the pair (TC(G), G) is an incomplete data source
satisfying C and TC(G) is the smallest set (wrt. set inclusion) for which this
holds.

Example 8 (Completeness Entailment). Consider the set of com-
pleteness statements Cdir ,act = {Cdir , Cact } and the query Qdir+act .
Recall that the query has the form Qdir+act = ({ ?m }, Pdir+act),
where Pdir+act = { (?m, type,Movie), (?m , director , tarantino),
(?m , actor , tarantino) }. We want to check whether these statements en-
tail the completeness of Qdir+act , that is, whether Cdir ,act |= Compl (Qdir+act)
holds. Suppose that G = (Ga, Gi) satisfies Cdir ,act . Suppose also that Qdir+act

returns a mapping μ = { ?m �→ m′ } over Gi for some term m′. Then Gi contains
μPdir+act , the instantiation by μ of the BGP of our query, consisting of the three
triples (m ′, type,Movie), (m ′, director , tarantino), and (m ′, actor , tarantino).

The CONSTRUCT query QCdir
, corresponding to our first completeness

statement, returns over μPdir+act the two triples (m ′, type,Movie) and
(m ′, director , tarantino), while the CONSTRUCT query QCact , corresponding to the
second completeness statement, returns the triple (m ′, actor , tarantino). Thus,
all triples in μPdir+act have been reconstructed by TCdir,act

from μPdir+act .
Now, we have μPdir+act = TCdir,act

(μPdir+act) ⊆ TCdir,act
(Gi) ⊆ Ga, where the

last inclusion holds due to G |= Cdir ,act . Therefore, our query Qdir+act returns
the mapping μ also over Ga. Since μ and G were arbitrary, this shows that
Cdir ,act |= Compl (Qdir+act) holds.

In summary, in Example 8 we have reasoned about a set of completeness
statements C and a query Q = (W,P). We have considered a generic mapping
μ, defined on the variables of P , and applied it to P , thus obtaining a graph μP .

76 F. Darari et al.

Then we have verified that μP = TC(μP). From this, we could conclude that for
every incomplete data source G = (Ga, Gi) we have that �Q�Ga = �Q�Gi . Next,
we make this approach formal.

Definition 9 (Prototypical Graph). Let (W,P) be a query. The freeze map-
ping ĩd is defined as mapping each variable v in P to a new IRI ṽ. Instantiating
the graph pattern P with ĩd yields the RDF graph P̃ := ĩd P , which we call the
prototypical graph of P .

Now we can generalize the reasoning from above to a generic completeness check.

Theorem 10 (Completeness of Basic Queries). Let C be a set of complete-
ness statements and let Q = (W,P) be a basic query. Then

C |= Compl (Q) if and only if P̃ = TC(P̃).

Proof. (Sketch) “⇒” If P̃ �= TC(P̃), then the pair (TC(P̃), P̃) is a counterexam-
ple for the entailment. It satisfies C, but does not satisfy Compl (Q) because the
freeze mapping ĩd cannot be retrieved by P over the available graph TC(P̃).

“⇐” If all triples of the pattern P̃ are preserved by TC, then this serves as a
proof that in any incomplete data source all triples that are used to compute a
mapping in the ideal graph are also present in the available graph.

Queries with DISTINCT. Basic queries return bags of answers (i.e., they may
contain duplicates), while DISTINCT eliminates duplicates. For a query Q involv-
ing DISTINCT, the difference to the characterization in Theorem 10 is that instead
of retrieving the full pattern P̃ after applying TC, we only check whether suffi-
cient parts of P̃ are preserved that still allow to retrieve the freeze mapping on
the distinguished variables of Q.

4.2 Completeness of Queries with the OPT Operator

One interesting feature of SPARQL is the OPT (“optional”) operator. With OPT

one can specify that parts of a query are only evaluated if an evaluation is
possible, similarly to an outer join in SQL. For example, when querying for
movies, one can also ask for the prizes they won, if any. The OPT operator is used
substantially in practice [15]. Intuitively, the mappings for a pattern (P1 OPT P2)
are computed as the union of all the bindings of P1 together with the bindings
for P2 that are valid extensions, and including those bindings of P1 that have no
binding for P2 that is a valid extension. For a formal definition of the semantics
of queries with the OPT operator, see [10]. Completeness entailment for queries
with OPT differs from that of queries without.

Example 11 (Completeness with OPT). Consider the following query
with OPT Qmaw = ((?m , type,Movie) OPT (?m, award , ?aw)), asking for
all movies and if available, also their awards. Consider also Caw =
Compl ((?m , type,Movie), (?m , award , ?aw) | ∅), the completeness statement

Completeness Statements about RDF Data Sources 77

that expresses that all movies that have an award are complete and all awards
of movies are complete. If the query Qmaw used AND instead of OPT, then its
completeness could be entailed by Caw . However with OPT in Qmaw , more com-
pleteness is required: Also those movies have to be complete that do not have
an award. Thus, Caw alone does not entail the completeness of Qmaw .

If one uses OPT without restrictions, unintuitive queries may result. Pérez
et al. have introduced the class of so-called well-designed graph patterns that
avoid anomalies that may otherwise occur [14]. Formally, a graph pattern P
is well-designed if for every subpattern P ′ = (P1 OPTP2) of P and for every
variable ?X occurring in P , the following condition holds: if ?X occurs both
inside P2 and outside P ′, then it also occurs in P1. We restrict ourselves in the
following to OPT queries with well-designed patterns, which we call well-designed
queries. Graph patterns with OPT have a hierarchical structure that can be made
explicit by so-called pattern trees. A pattern tree T is a pair (T,P), where (i)
T = (N,E, r) is a tree with node set N , edge set E, and root r ∈ N , and (ii)
P is a labeling function that associates to each node n ∈ N a BGP P(n). We
construct for each pattern P a corresponding pattern tree T . Any OPT-pattern can
be translated into a pattern tree and vice versa [10]. As an example, consider a
pattern ((P1 OPTP2) OPT(P3 OPTP4)), where P1 to P4 are BGPs. Its corresponding
pattern tree would have a root node labeled with P1, two child nodes labeled
with P2 and P3, respectively, and the P3 node would have another child labeled
with P4.

Patterns and pattern trees can contain redundant triples. Letelier et al. [10]
have shown that for every pattern tree T one can construct in polynomial time
an equivalent well-designed pattern tree T NR without redundant triples, which
is called the NR-normal form of T . For every node n in T we define the branch
pattern Pn of n as the union of the labels of all nodes on the path from n to
the root of T . Then the branch query Qn of n has the form (Wn, Pn), where
Wn = var (Pn).

Theorem 12 (Completeness of OPT-Queries). Let C be a set of completeness
statements. Let Q = (W,P) be a well-designed OPT-query and T be an equivalent
pattern tree in NR-normal form. Then

C |= Compl (Q) iff C |= Compl (Qn) for all branch queries Qn of T .

Technically, this theorem allows to reduce completeness checking for an OPT query
to linearly many completeness checks for basic queries.

4.3 Completeness Entailment under RDFS Semantics

RDFS (RDF Schema) is a simple ontology language that is widely used for RDF
data [3]. RDFS information can allow additional inference about data and needs
to be taken into account during completeness entailment.

Example 13 (RDF vs. RDFS). Consider the query Qfilm =
({ ?m }, { (?m, type, film) }), asking for all films, and the completeness statement

78 F. Darari et al.

Cmovie = Compl ((?m , type,movie) | ∅) saying that we are complete for all
movies. A priori, we cannot conclude that Cmovie entails the completeness
of Qfilm , because we do not know about the relationship between films and
movies. When considering the RDFS statements (film , subclass ,movie) and
(movie , subclass, film) saying that all movies and films are equivalent, we can
conclude that {Cmovie} |= Compl (Qfilm).

In the following, we rely on ρDF, which formalizes the core of RDFS [13].
The ρDF vocabulary contains the terms subproperty , subclass , domain, range and
type. A schema graph S is a set of triples built using any of the ρDF terms, except
type, as predicates.

We assume that schema information is not lost in incomplete data sources.
Hence, for incomplete data sources it is possible to extract their ρDF schema
into a separate graph. The closure of a graph G, that is, clS(G) wrt. a schema
S is the set of all triples that are entailed. The computation of this closure can
be reduced to the computation of the closure of a single graph that contains
both schema and non-schema triples as clS(G) = cl(S ∪G). We now say that a
set C of completeness statements entails the completeness of a query Q wrt. a
ρDF schema graph S, if for all incomplete data sources (Ga, Gi) it holds that if
(clS(G

a), clS(G
i)) satisfies C then it also satisfies Compl(Q).

Therefore, the main difference to the previous entailment procedures is that
the closure is computed to obtain entailed triples before and after the com-
pleteness operator TC is applied. For a set of completeness statements C and a
schema graph S, let T S

C denote the function composition clS ◦ TC ◦ clS . Then
the following holds.

Theorem 14 (Completeness under RDFS). Let C be a set of completeness
statements, Q = (W,P) a basic query, and S a schema graph. Then

C |=S Compl (Q) if and only if P̃ ⊆ T S
C (P̃).

5 Completeness Reasoning over Federated Data Sources

Data on the Web is intrinsically distributed. Hence, the single-source query
mechanism provided by SPARQL has been extended to deal with multiple data
sources. In particular, the recent SPARQL 1.1 specification introduces the notion
of query federation [18]. A federated query is a SPARQL query that is evaluated
across several data sources, the SPARQL endpoints of which can be specified in
the query.

So far, we have studied the problem of querying a single data source aug-
mented with completeness statements. The federated scenario calls for an
extension of the completeness framework discussed in Section 4. Indeed, the
completeness statements available about each data source involved in the evalu-
ation of a federated query must be considered to check the completeness of the
federated query. This section discusses this aspect and presents an approach to

Completeness Statements about RDF Data Sources 79

check whether the completeness of a non-federated query (i.e., a query without
SERVICE operators) can be ensured with respect to the completeness statements
on each data source. We also study the problem of rewriting a non-federated
query into a federated version in the case in which the query is complete.

Federated SPARQL Queries. Before introducing the extension of the com-
pleteness framework, we formalize the notion of federated SPARQL queries. A
federated query is a SPARQL query executed over a federated graph. Formally
speaking, a federated graph is a family of RDF graphs Ḡ = (Gj)j∈J where J
is a set of IRIs. A federated SPARQL query (as for the case of a non-federated
query) can be a SELECT or an ASK query [2]. In what follows, we focus on the
conjunctive fragment (i.e., the AND fragment) of SPARQL with the inclusion of
the SERVICE operator. Non-federated SPARQL queries are evaluated over graphs.
In the federated scenario, queries are evaluated over a pair (i, Ḡ), where the first
component is an IRI associated to the initial SPARQL endpoint, and the second
component is a federated graph. The semantics of graph patterns with AND and
SERVICE operators is defined as follows:

�t�(i,Ḡ) = �t�Gi

�P1 AND P2�(i,Ḡ) = �P1�(i,Ḡ) �� �P2�(i,Ḡ)

�(SERVICE j P)�(i,Ḡ) = �P �(j,Ḡ)

where t ranges over all triple patterns and P , P1, P2 range over all graph patterns
with AND and SERVICE operators. We denote federated queries as Q̄.

5.1 Federated Completeness Reasoning Framework

We now extend our completeness reasoning framework to the federated setting.
We assume from now on that the set of IRIs J is fixed and all indices are drawn
from J .

Definition 15 (Incomplete Federated Data Source). An incomplete fed-
erated data source (or incomplete FDS, for short) is a pair Ḡ = (Ḡa, Gi), con-
sisting of an available federated graph Ḡa = (Ga

j)j∈J and an ideal graph Gi,

such that Ga
j ⊆ Gi for all j ∈ J .

This captures the intuition that the ideal graph represents all the facts that
hold in the world, while each source contains a part of those facts. Note that the
graphs of the sources may overlap, as is the case on the Web. Next, we adapt
completeness statements so that they talk about a specific source.

Definition 16 (Indexed Completeness Statements). An indexed complete-
ness statement is a pair (C, k) where C is a completeness statement and k ∈ J
is an IRI. An indexed completeness statement is satisfied by an incomplete FDS
if it is satisfied by the incomplete data source corresponding to the index, that is,

((Ga
j)j∈J , G

i) |=fed (C, k) iff (Ga
k, G

i) |= C.

80 F. Darari et al.

This definition is naturally extended to sets C̄ of indexed completeness
statements.

We associate to each federated query, federated graph, incomplete FDSs, and
set of indexed completeness statements a non-federated version, the flattening.

Definition 17 (Flattening). The flattening Q̄fl of a federated query Q̄ is
obtained from Q̄ by replacing recursively each occurrence of a service call
(SERVICE j P) with the pattern P . The flattening Ḡfl of a federated graph
Ḡ = (Gj)j∈J is the union of the individual graphs, that is, Ḡfl =

⋃
j∈J Gj.

The flattening Ḡ fl of an incomplete FDS Ḡ = (Ḡa, Gi) is the incomplete data
source Ḡ fl = ((Ḡa)fl , Gi) whose available graph is the flattening of the avail-

able federated graph of Ḡ. The flattening C̄
fl
of a set C̄ of indexed completeness

statements is the set C̄
fl
= {C | (C, k) ∈ C̄ }, where we ignore the indices.

Note that the notion of federated entailment is different from the entailment
between a set of completeness statements and a query defined in Section 4 in
the sense that we now have to deal with indexed completeness statements.

Definition 18 (Federated Completeness and Entailment). A federated
query Q̄ is complete over an incomplete FDS Ḡ = (Ḡa, Gi), written Ḡ |=fed

Compl (Q̄), if �Q̄�(j0,Ḡa) = �Q̄fl�Gi for any IRI j0 ∈ J , that is, the evaluation

of Q̄ over the available federated graph returns the same result as evaluating
the flattening of Q̄ over the ideal graph. If C̄ is an indexed set of completeness
statements, then C̄ entails Compl (Q̄), written C̄ |=fed Compl (Q̄), if Ḡ |=fed C̄
implies Ḡ |=fed Compl (Q̄) for all incomplete FDSs Ḡ.

IfQ is a basic query, then we say thatQ is complete over Ḡ ifQ is complete over
the flattening of Ḡ, that is, Ḡ |=fed Compl (Q) iff Ḡ fl |= Compl (Q). This means
that Q is complete if evaluated over the union of all sources in the federation.

Proposition 19 (Completeness of Basic Queries). Let C̄ be a set of
indexed completeness statement and Q be a basic query. Then

C̄ |=fed Compl (Q) iff C̄
fl |= Compl (Q)

This means that we can check the completeness of a basic query with the
criterion in Theorem 10 in Section 4.1. A federated query Q̄ is a federated version
of a basic query Q if Q̄fl = Q. In other words, by dropping the service calls from
Q̄ we obtain Q.

Theorem 20. (Smart Rewriting). Let C̄ be a set of indexed completeness
statement and Q be a basic query such that C̄ |=fed Compl (Q). Then:

1. One can compute a federated version Q̄ of Q such that C̄ |=fed Compl (Q̄).

2. Moreover, whenever (Ḡa, Gi) |=fed C̄, then

�Q�⋃
j∈J Ga

j
= �Q̄�(j0,Ḡa) for any j0 ∈ J .

Completeness Statements about RDF Data Sources 81

To retrieve all answers for an arbitrary query, we have to evaluate each triple
pattern over the union of all sources. For a complete query, the federated version
evaluates each triple pattern only over a single source. Therefore, the evaluation
of the federated version is in general much more efficient.

Example 21 (Federated Data Sources). Consider the two
data sources shown in Fig. 3 plus an additional data source
named FB (= Facebook) with the completeness statement Cfb =
Compl ({ (?m, likes , ?l) } | { (?m, type,Movie), (?m , director , tarantino) }) and
the query: Qfb = ({ ?m, ?l }, { (?m, type,Movie), (?m , director , tarantino),
(?m , likes , ?l) }) that asks for the number of likes of Tarantino’s movies.

In order to answer this query efficiently over the three data sources,
whose endpoints are reachable at the IRIs DBPe, LMDBe and FBe, we com-
pute a federated version Q̄fb . The completeness statements in Fig. 3 plus
Cfb entail wrt. “|=fed” the completeness of the query Qfb (see Defini-
tion 18). By Theorem 20 we can compute a complete federated version Q̄fb ,
which in this case is Q̄fb = ({ ?m, ?l }, { (SERVICE LMDBe {(?m , type ,Movie),

(?m, director , tarantino)}) }) AND (SERVICE FBe {(?m , likes, ?l)}), whose answer is
complete.

6 Discussion

We now discuss some aspects underlying the completeness framework.

Availability of Completeness Statements. At the core of the proposed
framework lies the availability of completeness statements. We have discussed in
Section 2 how existing data sources like IMDb already incorporate such state-
ments (Figure 1) and how they can be made machine-readable with our frame-
work. The availability of completeness statements rests on the assumption that
a domain “expert” has the necessary background knowledge to provide such
statements.

We believe that it is in the interest of data providers to annotate their data
sources with completeness statements in order to increase their value. Indeed,
users can be more inclined to prefer data sources including “completeness marks”
to other data sources. Moreover, in the era of crowdsourcing the availability of
independent “ratings” from users regarding the completeness of data can also
contribute (like in Wikipedia and OpenStreetMap), in a bottom up manner, to
the description of the completeness of data sources. For instance, when looking
up information about Stanley Kubrick in DBpedia, as a by-product users can
provide feedback as to whether all of Kubrick’s movies are present. One can also
imagine approaches based on gamification.

Maintenance. If edits of a source are logged, log items could be automatically
translated into updates of statements. For non-authoritative sources, temporal
guards can be used; e.g., instead of saying “complete for all movies by Tarantino”,
one would say “complete for movies by Tarantino in 2010”.

82 F. Darari et al.

Complexity. All completeness checks presented in this paper are NP-complete.
The hardness holds because classical conjunctive query containment can be en-
coded into completeness checking [17]; the NP upper bound follows because all
completeness checks require conjunctive query evaluation at their core. In prac-
tice, we expect these checks to be fast, since queries and completeness statements
are likely to be small. After all, this is the same complexity as the one of query
evaluation and query optimization of basic queries, as implemented in practical
database management systems.

Vocabulary Heterogeneity. In practice, a query may use a vocabulary dif-
ferent from that of some data sources. In this work, we assume the presence of
a global schema. Indeed, one could use the schema.org vocabulary for queries,
since it has already been mapped to other vocabularies (e.g., DBpedia).

The CoRNER Implementation. To show the feasibility of our proposal, we
developed the CoRNER system. It implements the completeness entailment
procedure for basic and DISTINCT queries with ρDF. The system is imple-
mented in Java and uses the Apache Jena library. It is downloadable at
http://rdfcorner.wordpress.com.

7 Concluding Remarks and Future Work

The availability of distributed and potentially overlapping RDF data sources
calls for mechanisms to provide qualitative characterizations of their content. In
this respect, we have identified completeness as one important dimension. The
motivation underlying this work stems from the fact that although completeness
information is present in some available data sources (e.g., IMDb discussed in
Section 2) it is neither formally represented nor automatically processed.We have
introduced a formal framework for the declarative specification of completeness
statements about RDF data sources and underlined how the framework can
complement existing initiatives like VoID. Then, we studied “how” completeness
statements can be used in the problem of completeness of query answering. In
this respect we considered queries over single and federated data sources and
showed how to assess query completeness. We believe that our research can
be the starting point of further investigation of the problem of completeness of
information on the Web. Considering other application scenarios of completeness
statements like data source integration and selection is in our research agenda.

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets
with the VoID vocabulary. Technical report, W3C (2011)

2. Arenas, M., Gutierrez, C., Pérez, J.: On the semantics of SPARQL. In: Semantic
Web Information Management, pp. 281–307. Springer, Heidelberg (2010)

3. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF Schema.
Technical report, W3C (2004)

http://rdfcorner.wordpress.com

Completeness Statements about RDF Data Sources 83

4. Fürber, C., Hepp, M.: Using SPARQL and SPIN for data quality management on
the Semantic Web. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP,
vol. 47, pp. 35–46. Springer, Heidelberg (2010)

5. Harris, S., Seaborne, A.: SPARQL 1.1 query language. Technical report, W3C
(2013)

6. Harth, A., Speiser, S.: On completeness classes for query evaluation on linked data.
In: AAAI (2012)

7. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of
linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

8. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers (2011)

9. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
abstract syntax. Technical report, W3C (2004)

10. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of
semantic web queries. In: PODS, pp. 89–100 (2012)

11. Levy, A.Y.: Obtaining complete answers from incomplete databases. In: Proc.
VLDB, pp. 402–412 (1996)

12. Motro, A.: Integrity = Validity + Completeness. ACM TODS 14(4), 480–502
(1989)

13. Muñoz, S., Pérez, J., Gutierrez, C.: Simple and efficient minimal RDFS. J. Web
Sem. 7(3), 220–234 (2009)

14. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
TODS 34(3), 16 (2009)

15. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: SWIM
(2011)

16. Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer,
Heidelberg (2006)

17. Razniewski, S., Nutt, W.: Completeness of queries over incomplete databases.
PVLDB 4(11), 749–760 (2011)

18. Seaborne, A., Polleres, A., Feigenbaum, L., Williams, G.T.: SPARQL 1.1 federated
query. Technical report, W3C (2013)

19. Hamilton, H.J., Wang, X., Bither, Y.: An ontology-based approach to data clean-
ing. Department of Computer Science, University of Regina (2005)

	Completeness Statements about RDF Data
Sources and Their Use for Query Answering
	1 Introduction
	2 Motivating Scenario
	3 Formal Framework
	3.1 Completeness Statements and Query Completeness
	3.2 RDF Representation of Completeness Statements

	4 Completeness Reasoning over a Single Data Source
	4.1 Completeness Entailment for Basic Queries
	4.2 Completeness of Queries with the OPT Operator

	4.3 Completeness Entailment under RDFS Semantics

	5 Completeness Reasoning over Federated Data Sources
	5.1 Federated Completeness Reasoning Framework

	6 Discussion
	7 Concluding Remarks and Future Work
	References

