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Abstract. The Semantic Web makes an extensive use of the OWL DL ontology
language, underlied by the SHOIQ description logic, to formalize its resources.
In this paper, we propose a decision procedure for this logic extended with the
transitive closure of roles in concept axioms, a feature needed in several appli-
cation domains. The most challenging issue we have to deal with when design-
ing such a decision procedure is to represent infinitely non-tree-shaped models,
which are different from those of SHOIQ ontologies. To address this issue, we
introduce a new blocking condition for characterizing models which may have an
infinite non-tree-shaped part.

1 Introduction

The ontology language OWL-DL [1] is widely used to formalize data resources on
the Semantic Web. This language is mainly based on the description logic SHOIN
which is known to be decidable [2]. Although SHOIN provides transitive roles to
model transitivity of relations, we can find several applications in which the transitive
closure of roles, that is more expressive than transitive roles, is needed. For instance,
we consider an ontology, namely O1, that consists of the following axioms:
Human � ∃hasAncestor.{Eva}, where hasAncestor is transitive
hasParent � hasAncestor, {Mike} � Human, {Mike} � ∀hasParent.⊥

We can see that O1 is consistent. However, the last axiom in O1 would be considered
as a design error which should lead to inconsistency. If the transitive role “hasAncestor”
is replaced with the transitive closure “hasParent+” (and the second axiom is removed),
the first axiom becomes:

Human � ∃hasParent+.{Eva}

It follows that the modified ontology is consistent. The point is that an instance of
“hasParent+” represents exactly a sequence of instances of “hasParent” while an in-
stance of “hasAncestor” corresponds to a sequence of instances of itself. In this paper,
we consider an extension of SHOIQ by enabling transitive closure of roles in con-
cept axioms. In the general case, transitive closure is not expressible in the first order
logic [3], the logic from which DL is a sublanguage, while the second order logic is
sufficiently expressive to do so.
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In the DL literature ([4]; [5]), there have been works dealing with transitive closure
of roles. Recently, Ortiz [5] has proposed an algorithm for deciding consistency in the
logic ALCQIb+reg which allows for transitive closure of roles. However, nominals are
disallowed in this logic. It is known that reasoning with a DL including number re-
strictions, inverse roles, nominals and transitive closure of roles is hard. The reason
for this is that there exists an ontology in that DL whose models have an infinite non-
tree-shaped part. Calvanese et al. [6] have presented an automata-based technique for
dealing with the logic ZOIQ that includes transitive closure of roles, and showed that
the sublogics ZIQ, ZOQ and ZOI are decidable. To obtain this result, the authors
have introduced the quasi-forest model property to characterize models of ontologies
in these sublogics. Although they are very expressive, none of these sublogics includes
SHOIQ with transitive closure of roles, namely SHOIQ(+). The following exam-
ple1, noted K1, shows that there is an ontology in SHOIQ(+) which does not enjoy
the quasi-forest model property. We consider the following axioms:

(1) {o} � A; A � B � ⊥; A � ∃R.A � ∃R′.B; B � ∃S+.{o}
(2) {o} � ∀X−.⊥; � � ≤ 1 X.�; � � ≤ 1 X−.� where X ∈ {R,R′, S}

Figure 1 shows an infinite non-tree-shaped model of K1. In fact, each individual x
that satisfies ∃S+.{o} must have two distinct paths from x to the individual satisfying
nominal o. Intuitively, we can see that (i) such a x must satisfy ∃S+.{o} and B, (ii)
an individual satisfying B must connect to another individual satisfying A which must
have a R-path to nominal o, and (iii) two concepts A and B are disjoint.

R RR

S− S− S−

AAA{o}, A

B, ∃S+.{o}B, ∃S+.{o}B, ∃S+.{o} B, ∃S+.{o}

R′, S− R′R′

Fig. 1. An infinite non tree-shaped model of K1

This example shows that methods ([7], [8], [6]) based on the hypothesis which says
that if an ontology is consistent it has a quasi-forest model, could fail to address the
problem of consistency in a DL including simultaneously O (nominals), I (inverse
roles), Q (number restrictions) and transitive closure of roles.

In this paper, we propose a decision procedure for the problem of consistency in
SHOIQ with transitive closure of roles in concept axioms. The underlying idea of our
algorithm is founded on the star-type and frame notions introduced by Pratt-Hartmann
[9]. This technique uses star-types to represent individuals and “tiles” them together
to form a frame for representing a model. For each star-type σ, we maintain a function
δ(σ) which stores the number of individuals satisfying this star-type. To obtain termina-
tion, we introduce two additional structures for establishing a new blocking condition:

1 This example is initially proposed by Sebastian Rudolph from an informal discussion.
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(i) the first one, namely cycles, describes duplicate parts of a model resulting from
interactions of logic constructors in SHOIQ, (ii) the second one, namely blocking-
blocked cycles, describes parts of a model bordered by cycles which allow a frame to
satisfy transitive closure of roles occurring in concepts of the form ∃R+.C.

2 The Description Logic SHOIQ(+)

In this section, we present the syntax, the semantics and main inference problems of
SHOIQ(+). In addition, we introduce a tableau structure for SHOIQ(+), which al-
lows us to represent a model of a SHOIQ(+) knowledge base.

Definition 1. Let R be a non-empty set of role names and R+ ⊆ R be a set of tran-
sitive role names. We use RI = {P− | P ∈ R} to denote a set of inverse roles, and
R⊕ = {Q+ | Q ∈ R ∪RI} to denote a set of transitive closure of roles. Each element
of R ∪ RI ∪ R⊕ is called a SHOIQ(+)-role. A role inclusion axiom is of the form
R � S for two SHOIQ(+)-roles R and S such that R /∈ R⊕ and S /∈ R⊕. A role
hierarchy R is a finite set of role inclusion axioms. An interpretation I = (ΔI , ·I)
consists of a non-empty set ΔI (domain) and a function ·I which maps each role name
to a subset of ΔI ×ΔI such that

R−I
= {〈x, y〉 ∈ ΔI ×ΔI | 〈y, x〉 ∈ RI} for all R ∈ R,

〈x, z〉 ∈ SI , 〈z, y〉 ∈ SI implies 〈x, y〉 ∈ SI for each S ∈ R+, and

(Q+)I =
⋃

n>0

(Qn)I with (Q1)I = QI ,

(Qn)I = {〈x, y〉 ∈ (ΔI)2 | ∃z ∈ ΔI , 〈x, z〉 ∈ (Qn−1)I , 〈z, y〉 ∈ QI} for Q+ ∈ R⊕

∗ An interpretation I satisfies a role hierarchy R if RI ⊆ SI for each R � S ∈ R.
Such an interpretation is called a model of R, denoted by I |= R. To simplify notations
for nested inverse roles and transitive closures of roles, we define two functions ·� and
·⊕ as follows:

R� =

⎧
⎪⎪⎨

⎪⎪⎩

R− if R ∈ R;
S if R = S− and S ∈ R;
(S−)+ if R = S+, S ∈ R,
S+ if R = (S−)+, S ∈ R

R⊕ =

⎧
⎪⎪⎨

⎪⎪⎩

R+ if R ∈ R;
S+ if R = (S+)+ and S ∈ R;
(S−)+ if R = S− and S ∈ R;
(S−)+ if R = (S+)− and S ∈ R

∗ A relation ∗� is defined as the transitive-reflexive closure R+ of � on R ∪ {R� �
S� | R � S ∈ R} ∪ {R⊕ � S⊕ | R � S ∈ R} ∪ {Q � Q⊕ | Q ∈ R ∪ RI}. We
define a function Trans(R) which returns true iff there is some Q ∈ R+ ∪ {P� | P ∈
R+} ∪ {P⊕ | P ∈ R ∪RI} such that Q∗�R ∈ R+. A role R is called simple w.r.t. R
if Trans(R) = false.

The reason for the introduction of two functions ·� and ·⊕ in Definition 1 is that
they avoid using R−− and R++. Moreover, it remains a unique nested case (R−)+.
According to Definition 1, axiom R � Q⊕ is not allowed in a role hierarchy R since
this may lead to undecidability [10] even if R is simple. Notice that the closure R+

may contain R � Q⊕ if R � Q belongs to R.
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Definition 2 (terminology). Let C be a non-empty set of concept names with a non-
empty subset Co ⊆ C of nominals. The set of SHOIQ(+)-concepts is inductively
defined as the smallest set containing all C in C, �, C �D, C �D, ¬C, ∃R.C, ∀R.C,
(≤ nS.C) and (≥ nS.C) where n is a positive integer, C and D are SHOIQ(+)-
concepts, R is an SHOIQ(+)-role and S is a simple role w.r.t. a role hierarchy. We
denote⊥ for ¬�. The interpretation function ·I of an interpretation I = (ΔI , ·I) maps
each concept name to a subset of ΔI such that �I = ΔI , (C � D)I = CI ∩ DI ,
(C�D)I = CI∪DI , (¬C)I = ΔI\CI , |{oI}| = 1 for all o ∈ Co, (∃R.C)I = {x ∈
ΔI | ∃y ∈ ΔI , 〈x, y〉 ∈ RI ∧ y ∈ CI}, (∀R.C)I = {x ∈ ΔI | ∀y ∈ ΔI , 〈x, y〉 ∈
RI ⇒ y ∈ CI}, (≥ nS.C)I = {x ∈ ΔI | |{y ∈ CI | 〈x, y〉 ∈ SI | ≥ n},
(≤nS.C)I = {x ∈ ΔI | |{y ∈ CI | 〈x, y〉 ∈ SI | ≤ n} where |S| is denoted for the
cardinality of a set S. An axiom C � D is called a general concept inclusion (GCI)
where C,D are SHOIQ(+)-concepts (possibly complex), and a finite set of GCIs is
called a terminology T . An interpretation I satisfies a GCI C � D if CI ⊆ DI and I
satisfies a terminology T if I satisfies each GCI in T . Such an interpretation is called
a model of T , denoted by I |= T . A pair (T ,R) is called a SHOIQ(+) knowledge
base where R is a SHOIQ(+) role hierarchy and T is a SHOIQ(+) terminology. A
knowledge base (T ,R) is said to be consistent if there is a model I of both T and R,
i.e., I |= T and I |= R. A concept C is called satisfiable w.r.t. (T ,R) iff there is some
interpretation I such that I |= R, I |= T and CI �= ∅. Such an interpretation is called
a model of C w.r.t. (T ,R). A concept D subsumes a concept C w.r.t. (T ,R), denoted
by C � D, if CI ⊆ DI holds in each model I of (T ,R). �

Since unsatisfiability, subsumption and consistency w.r.t. a SHOIQ(+) knowledge
base can be reduced to each other, it suffices to study knowledge base consistency. For
the ease of construction, we assume all concepts to be in negation normal form (NNF),
i.e., negation occurs only in front of concept names. Any SHOIQ(+)-concept can be
transformed to an equivalent one in NNF by using DeMorgan’s laws and some equiva-
lences as presented in [11]. According to [12], nnf(C) can be computed in polynomial
time in the size of C. For a concept C, we denote the nnf of C by nnf(C) and the
nnf of ¬C by ¬̇C. Let D be a SHOIQ(+)-concept in NNF. We define cl(D) to be
the smallest set that contains all sub-concepts of D including D. For a knowledge base
(T ,R), we reuse cl(T ,R) introduced by Horrocks et al. [7] to denote all sub-concepts
occurring in the axioms of (T ,R) as follows:

cl(T ,R) =
⋃

C�D∈T
cl(nnf(¬C �D),R) where

cl(E,R) = cl(E) ∪ {¬̇C | C ∈ cl(E)} ∪ (1)

{∀S.C | (∀R.C ∈ cl(E), S ∗�R) or (¬̇∀R.C ∈ cl(E), S ∗�R)

where S occurs in T or R} ∪ (2)
⋃

∃Q⊕.C occurs in T
cl(∃Q.C � ∃Q.∃Q⊕.C) (3)

Since (1) consists of sub-concepts from T and (2) is formed from concepts in (1)
by replacing a role or a logic constructor with respective another role occurring in R or
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another logic constructor, both of these sets are bounded byO(|(T ,R)|). Thus, cl(T ,R)
is bounded by O(|(T ,R)|).

We have cl(T ,R) is bounded by O(|(T ,R)|) [7]. To translate star-type and frame
structures presented by Pratt-Hartmann (2005) for C2 into those for SHOIQ, we need
to add new sets of concepts, denoted cl1(T ,R) and cl2(T ,R), to the signature of a
SHOIQ(+) knowledge base (T ,R).
cl1(T ,R) = {≤ mS.C | {(≤ nS.C), (≥ nS.C)} ∩ cl(T ,R) �= ∅, 1 ≤ m ≤ n} ∪

{≥ mS.C | {(≤ nS.C), (≥ nS.C)} ∩ cl(T ,R) �= ∅, 1 ≤ m ≤ n}
For a generating concept (≥ nS.C) and a set I ⊆ {0, · · · , �log n+ 1�}, we denote

C I
(≥nS.C) =

�

i∈I

Ci
(≥nS.C) �

�

j /∈I

¬Cj
(≥nS.C) where Ci

(≥nS.C) are new concept names

for 0 ≤ i ≤ �log n+ 1�. We define cl2(T ,R) as follows:
cl2(T ,R) = {Ci

(≥S.C) | (≥ nS.C) ∈ cl(T ,R) ∪ cl1(T ,R), 0 ≤ i ≤ �log n+ 1�}∪
{C I

(≥nS.C) | (≥ nS.C) ∈ cl(T ,R)∪ cl1(T ,R), I ⊆ {0,· · ·, �log n+1�}}

Remark 1. If numbers are encoded in binary then the number of new concept names
Ci

(≥nS.D) for 0 ≤ i ≤ �log n + 1�, is bounded by O(|(T ,R)|) since n is bounded

by O(2|(T ,R)|). This implies that |cl2(T ,R)| is bounded by O(|(T ,R)|). Note that
two concepts C I

(≥nS.C) and C J
(≥nS.C) are disjoint for all I, J ⊆ {0, · · · , �log n+ 1�},

I �= J . The concepts C(∃S.C) and C I
(≥nS.C) will be used for building chromatic star-

types. This notion will be clarified after introducing the frame structure (Definition 6).

Finally, we denote CL(T ,R) = cl(T ,R) ∪ cl1(T ,R) ∪ cl2(T ,R), and use R(T ,R)
to denote the set of all role names occurring in T ,R with their inverse. The definition
of CL(T ,R) is inspired from the Fischer-Ladner closure that was introduced in [13].
The closure CL(T ,R) contains not only sub-concepts syntactically obtained from T
but also sub-concepts that are semantically derived from T w.r.t. R. For instance, if
∀S.C is a sub-concept from T and R∗�S ∈ R then ∀R.C ∈ CL(T ,R).

To describe a model of a SHOIQ(+) knowledge base in a more intuitive way, we
use a tableau structure that expresses semantic constraints resulting directly from the
logic constructors in SHOIQ(+).

Definition 3. Let (T ,R) be an SHOIQ(+) knowledge base. A tableau T for (T ,R)

is defined to be a triplet (S,L, E) such that S is a set of individuals, L: S → 2CL(T ,R)

and E: R(T ,R) → 2S×S. For all s, t ∈ S, C,C1, C2 ∈ CL(T ,R), and R,S,Q⊕ ∈
R(T ,R), T satisfies the following properties:

P1 If C1 � C2 ∈ T and s ∈ S then nnf(¬C1 � C2) ∈ L(s);
P2 If C ∈ L(s), then ¬C /∈ L(s);
P3 If C1 � C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s);
P4 If C1 � C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s);
P5 If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t);
P6 If ∃S.C ∈ L(s) then there is some t ∈ S such that 〈s, t〉 ∈ E(S) and

{C,C(∃S.C)} ⊆ L(t);
P7 If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for R∗�S and Trans(R) then ∀R.C ∈ L(t);
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P8 If ∃Q⊕.C ∈ L(s) then (∃Q.C � ∃Q.∃Q⊕.C) ∈ L(s) and there are s1, · · · , sn−1

∈ S such that ∃Q.C ∈ L(s0) ∪ L(sn−1), 〈si, si+1〉 ∈ E(Q) with 0 ≤ i < n− 1,
s0 = s and ∃Q⊕.C ∈ L(sj) for all 0 ≤ j < n− 1.

P9 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(R�);
P10 If 〈s, t〉 ∈ E(R), R∗�S then 〈s, t〉 ∈ E(S);
P11 If (≥ n S C) ∈ L(s) then there are t1, · · · , tn ∈ S such that

{C,C Ii
(≥nS.C)} ⊆ L(ti) and 〈s, ti〉 ∈ E(S) for all 1 ≤ i ≤ n, and

Ij , Ik ⊆ {0, · · · , �log n+ 1�}, Ij �= Ik for all 1 ≤ j < k ≤ n;
P12 If (≤ n S C) ∈ L(s) then |ST (s, C)| ≤ n;
P13 If (≤ n S C) ∈ L(s) and 〈s, t〉 ∈ E(S) then

{C, .¬C} ∩ L(t) �= ∅ where ST (s, C) := {t ∈ S|〈s, t〉 ∈ E(S) ∧C ∈ L(t)};
P14 If o ∈ L(s) ∩ L(t) for some o ∈ Co then s = t.
P15 For each o ∈ Co, if o occurs in T then there is s ∈ S such that o ∈ L(s).

Note that the property P8 is added to deal with transitive closure of roles. The following
lemma establishes the equivalence between a model of an ontology and a tableau.

Lemma 1. Let (T ,R) be a SHOIQ(+) knowledge base. (T ,R) is consistent iff there
is a tableau for (T ,R).

A proof of Lemma 1 can be found in [14].

3 A Decision Procedure For SHOIQ(+)

This section starts by translating star-type and frame structures presented by Pratt-
Hartmann (2005) for C2 into those for SHOIQ(+).

Definition 4 (star-type). Let (T ,R) be a SHOIQ(+) knowledge base. A star-type
is a pair σ = 〈λ(σ), ξ(σ)〉, where λ(σ) ∈ 2CL(T ,R) is called core label, ξ(σ) =
(〈r1, l1〉, · · · , 〈rd, ld〉) is a d-tuple over 2R(T ,R) × 2CL(T ,R). A pair 〈r, l〉 is a ray of
σ if 〈r, l〉 = 〈ri, li〉 for some 1 ≤ i ≤ d. We use 〈r(ρ), l(ρ)〉 to denote a ray ρ = 〈r, l〉
where r(ρ) = r and l(ρ) = l.

– A star-type σ is nominal if o ∈ λ(σ) for some o ∈ Co.
– A star-type σ is chromatic if ρ �= ρ′ implies l(ρ) �= l(ρ′) for two rays ρ, ρ′ of σ.

When a star-type σ is chromatic, ξ(σ) can be considered as a set of rays.
– Two star-types σ, σ′ are equivalent if λ(σ) = λ(σ′), and there is a bijection π

between ξ(σ) and ξ(σ′) such that π(ρ) = ρ′ implies r(ρ′) = r(ρ) and l(ρ′) = l(ρ).

We denote Σ for the set of all star-types for (T ,R). �

Note that for a chromatic star-type σ, ξ(σ) can be considered as a set of rays since
rays are distinct and not ordered. We can think of a star-type σ as the set of individuals
x satisfying all concepts in λ(σ), and each ray ρ of σ corresponds to a “neighbor”
individual xi of x such that r(ρ) is the label of the link between x and xi; and xi

satisfies all concepts in l(ρ). In this case, we say that x satisfies σ.
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Definition 5 (valid star-type). Let (T ,R) be a SHOIQ(+) knowledge base. Let σ be
a star-type for (T ,R) where σ = 〈λ(σ), ξ(σ)〉. The star-type σ is valid if σ is chromatic
and the following conditions are satisfied:

1. If C � D ∈ T then nnf(¬C �D) ∈ λ(σ);
2. {A,¬A} �⊆ λ for every concept name A where λ = λ(σ) or λ = l(ρ) for each

ρ ∈ ξ(σ);
3. If C1 �C2 ∈ λ(σ) then {C1, C2} ⊆ λ(σ);
4. If C1 �C2 ∈ λ(σ) then {C1, C2} ∩ λ(σ) �= ∅;
5. If ∃R.C ∈ λ(σ) then there is some ray ρ ∈ ξ(σ) such that C ∈ l(ρ) and R ∈ r(ρ);
6. If (≤ nS.C) ∈ λ(σ) and there is some ray ρ ∈ ξ(σ) such that S ∈ r(ρ) then

C ∈ l(ρ) or ¬̇C ∈ l(ρ);
7. If (≤ nS.C) ∈ λ(σ) and there is some ray ρ ∈ ξ(σ) such that C ∈ l(ρ) and S ∈

r(ρ) then there is some 1 ≤ m ≤ n such that {(≤ mS.C), (≥ mS.C)} ⊆ λ(σ);
8. For each ray ρ ∈ ξ(σ), if R ∈ r(ρ) and R∗�S then S ∈ r(ρ);
9. If ∀R.C ∈ λ(σ) and R ∈ r(ρ) for some ray ρ ∈ ξ(σ) then C ∈ l(ρ);

10. If ∀R.D ∈ λ(σ), S ∗�R, Trans(S) and R ∈ r(ρ) for some ray ρ ∈ ξ(σ) then
∀S.D ∈ l(ρ);

11. If ∃Q⊕.C ∈ λ(σ) then (∃Q.C � ∃Q.∃Q⊕.C) ∈ λ(σ);
12. If (≥ nS.C) ∈ λ(σ) then there are n distinct rays ρ1, · · · , ρn ∈ ξ(σ) such that

{C,C Ii
(≥nS.C)} ⊆ l(ρi), S ∈ r(ρi) for all 1 ≤ i ≤ n; and Ij , Ik ⊆ {0, · · · , log n+

1}, Ij �= Ik for all 1 ≤ j < k ≤ n;
13. If (≤ nS.C) ∈ λ(σ) and there do not exist n+1 rays ρ0, · · · , ρn ∈ ξ(σ) such that

C ∈ l(ρi) and S ∈ r(ρi) for all 0 ≤ i ≤ n. �

Roughly speaking, a star-type σ is valid if each individual x satisfies semantically all
concepts in λ(σ). In fact, each condition in Definition 5 represents the semantics of a
constructor in SHOIQ(+) except for transitive closure of roles. From valid star-types,
we can “tile” a model instead of using expansion rules for generating nodes as described
in tableau algorithms. Before presenting how to “tile” a model from star-types, we need
some notation that will be used in the remainder of the paper.

Notation 1. We call P = 〈(σ1, ρ1, d1), · · · , (σk, ρk, dk)〉 a sequence where σi ∈ Σ,
ρi ∈ ξ(σi) and di ∈ N for 1 ≤ i ≤ k.

– tail(P) = (σk, ρk, dk), tailσ(P) = σk , tailρ(P) = ρk, tailδ(P) = dk and |P| = k.
We denote L(P) = λ(tailσ(P)).

– pi(P) = (σi, ρi, di), piσ(P) = σi, piρ(P) = ρi and piδ(P) = di for each 1 ≤ i ≤ k.
– an operation add(P , (σ, ρ, d)) extendsP to a new sequence with add(P , (σ, ρ, d)) =

〈P , (σ, ρ, d)〉.

Definition 6 (frame). Let (T ,R) be aSHOIQ(+) knowledge base. A frame for (T ,R)
is a tuple F = 〈N ,No, Ω, δ〉, where

1. N is a set of valid star-types such that σ is not equivalent to σ′ for all σ, σ′ ∈ N ;
2. No ⊆ N is a set of nominal star-types;
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3. Ω is a function that maps each pair (σ, ρ) with σ ∈ N and ρ ∈ ξ(σ) to a sequence
Ω(σ, ρ) = 〈(σ1, ρ1, d1), · · · , (σm, ρm, dm)〉 with σi ∈ N , ρi ∈ ξ(σi), di ∈ N for
1 ≤ i ≤ m such that for each σi with 1 ≤ i ≤ m, it holds that l(ρ) = λ(σi),
l(ρi) = λ(σ) and r(ρi) = r−(ρ) where r−(ρ) = {R� | R ∈ r(ρ)}.

4. δ is a function δ : N → N. By abuse of notation, we also use δ to denote a function
which maps each pair (σ, ρ) with σ ∈ N and ρ ∈ ξ(σ) into a number in N, i.e.,
δ(σ, ρ) ∈ N. �

Since a frame cannot contain two equivalent star-type (Condition 1 in Definition 6),
the number of different star-types in a frame is bounded. The following lemma provides
such a bound.

Lemma 2. Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge base

(T ,R). The number of different star-types is bounded by O(22
|(T ,R)|

).

The lemma is a consequence of the following facts : (i) the number of different core
labels of star-types is bounded by O(|(T ,R)|), (ii) the number of different ray labels of
star-types is bounded by O(2|(T ,R)|), and (iii) the number of different rays of a star-type
is bounded by O(2|(T ,R)|) due to binary coding of numbers.

The frame structure, as introduced in Definition 6, allows us to compress individuals
of a model into star-types. For each star-type σ and each ray ρ ∈ ξ(σ), a list Ω(σ, ρ) of
triples (σi, ρi, di) with ρi ∈ ξ(σi) is maintained where σi is a “neighbor” star-type of
σ via ρ ∈ ξ(σ), and di indicates the di-th “layer” of rays of σi. We can think a layer of
rays of σi as an individual that connects to its neighbor individuals via the rays of σi.
The following definition presents how to connect such layers to form paths in a frame.

Definition 7 (path). Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge
base (T ,R). A path is inductively defined as follows:

1. A sequence 〈∅, (σ, ρ, 1)〉 is a path, namely nominal path, if σ ∈ No and ρ ∈ ξ(σ);
2. A sequence 〈P , (σ, ρ, d)〉 with P �= ∅ and tail(P) = (σ0, ρ0, d0), is a path if

(σ, ρ, d) = pd0(Ω(σ0, ρ
′)) for each ρ′ �= ρ0. In this case, we say that 〈P , (σ, ρ, d)〉

is the ρ′-neighbor of P , and two paths P , 〈P , (σ, ρ, d)〉 are neighbors.
Additionally, if 〈P , (σ, ρ, d)〉 is a ρ′-neighbor of P andQ ∈ r(ρ′) then 〈P , (σ, ρ, d)〉
is a Q-neighbor of P . In this case, we say that 〈P , (σ, ρ, d)〉 is a Q-neighbor of P ,
or P is a Q�-neighbor of 〈P , (σ, ρ, d)〉.

We define P ∼ P ′ if tailσ(P) = tailσ(P ′) and tailδ(P) = tailδ(P ′). Since ∼ is an
equivalence relation over the set of all paths, we use P to denote the set of all equiva-
lence classes [P ] of paths in F . For [P ], [Q] ∈ P , we define:

1. [P ] is a neighbor (ρ′-neighbor) of [Q] if there are P ′ ∈ [P ] and Q′ ∈ [Q] such that
Q′ is a neighbor (ρ′-neighbor) of P ′;

2. [Q] is a reachable path of [P ] via a ray ρ ∈ ξ(tailσ(P)) if there are [P1], · · · , [Pn] ∈
P such that [Pi] �= [Pj] for 1 ≤ i < j ≤ n, [P ] = [P1], [Q] = [Pn], [P2] is the
ρ-neighbor of [P1], [Pi+1] is a neighbor of [Pi] for all 1 ≤ i < n− 1.

3. [Q] is a Q-neighbor of [P ] if there are P ′ ∈ [P ] and Q′ ∈ [Q] such that Q′ is a
Q-neighbor of P ′, or P ′ is a Q�-neighbor of Q′;
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4. [Q] is a Q-reachable path of [P ] if there are [P1], · · · , [Pn] ∈ P such that [Pi] �=
[Pj ] for 1 ≤ i < j ≤ n, [P ] = [P1], [Q] = [Pn], [P2] is the ρ-neighbor of [P1],
and [Pi+1] is a Q-neighbor of [Pi] for all 1 ≤ i < n. �

Since two paths P and P ′ meet at the same star-type (i.e. tailσ(P) = tailσ(P ′))
and the same layer (i.e. tailδ(P) = tailδ(P ′)) should be considered as identical, we
define the equivalence relation ∼ in Definition 7 to formalize this idea. Note that for
two paths P ,P ′ with tailρ(P) �= tailρ(P ′), we have P ∼ P ′ if tailσ(P) = tailσ(P ′)
and tailδ(P) = tailδ(P ′). This does not allow for extending tailρ(P) to tailρ([P ]).
As a consequence, there may be several “predecessors” of an equivalence class [P ].
However, we can define tailσ([P ]) = tailσ(P), tailδ([P ]) = tailδ(P) and L([P ]) =
L(P). In the sequel, we use P instead of [P ] whenever it is clear from the context.

In a tree-shaped structure where each node has a unique predecessor, each path P
is identical to its equivalence class [P ]. This no longer holds for the general graph
structure. The notion of paths in a frame is needed to define cycles which are crucial to
establish termination condition when building a frame.

Definition 8 (cycle). Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge
base (T ,R) with a set P of paths in F . Let R be a set of pairs (Pr, ξr), called root
paths, where Pr ∈ P and ξr ⊆ ξ(tailσ(Pr)). Let Θ be a set of quadruples (P , ρ,Q, ν)
where P ,Q ∈ P (P �= Q), respectively called cycled and cycling paths of Θ , ρ ∈
ξ(tailσ(P)), ν ∈ ξ(tailσ(Q)), respectively called cycled and cycling rays of Θ. A ρ-
neighbor of a cycled (resp. cycling) path P is a cycled (resp. cycling) neighbor of P if ρ
is a cycled (resp. cycling) ray of P . We say that Θ is a cycle w.r.t. a set R of root paths
if for each quadruple (P , ρ,Q, ν) ∈ Θ the following conditions are satisfied:

1. o /∈ L(P) ∪ L(Q) ∪
⋃

ρ∈ξ(tailσ(P))∪ξ(tailσ(Q)) l(ρ) for all o ∈ Co;
2. L(P) = l(ν), L(Q) = l(ρ) and r(ρ) = r−(ν).
3. for each ray ρ′ ∈ ξ(tailσ(P)) that is not cycled, there are a sequenceP1, · · · ,Pn ∈

P , some (P0, ρ0,Q0, ν0) ∈ Θ and a root path (Pr, ξr) ∈ R such that Pi �= Pj

for 1 ≤ i < j ≤ n, P1 = P , P2 is the ρ′-neighbor of P1, Pi+1 is a neighbor of
Pi for 1 ≤ i < n, Pk = Q0 for some 1 < k < n − 1, and Pn = Pr, Pn−1 is a
ρr-neighbor of Pn with ρr ∈ ξr.

4. for each ray ν′ ∈ ξ(tailσ(Q)) that is not cycling and each sequence P1, · · · ,Pn ∈
P such that Pi �= Pj for 1 ≤ i < j ≤ n, P1 = Q, P2 is the ν′-neighbor of Q, and
Pi+1 is a neighbor of Pi for 1 ≤ i < n, there is some (P0, ρ0,Q0, ν0) ∈ Θ such
that one of the following conditions is satisfied:
(a) there is some 1 < k ≤ n with Pk = Q0 or Pk = P0, and Pi is not a cycling

and cycled neighbor for all 1 ≤ i ≤ k;
(b) there are Pn+1, · · · ,Pn+m ∈ P with P0 = Pn+m or Q0 = Pn+m such that

Pi �= Pj for 1 ≤ i < j ≤ n + m, Pi+1 is a neighbor of Pi for all n ≤ i <
n+m, and Pi is not a cycling and cycled neighbor for all 1 ≤ i ≤ n+m;

We use R0 to denote the set of all pairs (Pr, ξ(tailσ(Pr))) where Pr is a nominal path.
A primary cycle Θ0 is a cycle w.r.t. R0. Furthermore, we define a reachable cycle Θ′ of
a cycle of Θ if Θ′ is a cycle w.r.t. the set of all pairs (Pr, ξr) where Pr is a cycled path
of Θ and ξr is the set of all cycled rays of Pr.
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Note that a cycleΘ may encapsulate a loop if it includes two quadruples (P , ρ,Q, ν),
(P ′, ρ′,Q′, ν′) such that Q′ is a reachable path of Q via ρ. A loop can be formed from
a sequence P1, · · · ,Pn ∈ P (n > 3) such that P1 = Pn, Pi �= Pj for 1 ≤ i < j < n
and Pi+1 is a neighbor of Pi for 1 ≤ i < n). Moreover, it is possible that there are two
quadruples (P , ρ,Q, ν), (P ′, ρ′,Q′, ν′) ∈ Θ such that Q′ = Q, ν = ν′ and P ′ �= P ,
ρ �= ρ′, or P ′ = P , ρ = ρ′ and Q′ �= Q, ν �= ν′.

Intuitively, a (primary) cycle allows one to “cut” all paths started from nominal paths
of a frame into two parts : the first path which is connected to nominal paths is not
replicated while the second part can be infinitely lengthened. Condition 1, Definition
8 says that a cycle should not include nominal star-types which must not replicated.
Condition 2 says that a cycled path “matches” its cycling path via a ray with the same
label. Condition 3 not only provides the relationship between two paths P ,Q for each
(P , ρ,Q, ν) ∈ Θ but also ensures that all non-cycled neighbors of each P are filled
in a cycle. Condition 4 ensures that an extension of cycled paths P via their cycled
neighbors is possible by replicating paths from its cycling path Q via cycling rays.

As a consequence, the existence of a cycle allows one to “unravel” a set P of paths in
a frame to obtain a possibly infinite set P̂ of paths. The following lemma characterizes
this crucial property and provides a bound on the size of a cycle.

Lemma 3. Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge base
(T ,R). Let Θ be a cycle in F .

1. There exists an extension P̂Θ of paths between cycled and cycling paths such that
each path P0 ∈ P̂Θ has exactly |ξ(tailσ(P0))| neighbors.

2. If Θ′ is a reachable cycle of Θ then |Θ′| ≤ |Θ| × |ξ|2� where |ξ| is the maximal
number of rays of a star-type, and 
 = 22×|CL(T ,R)|×|R(T ,R)| .

A proof of Lemma 3 can be based on the fact that all paths between cycling and
cycled paths of a cycle do not cross the borders defined by the cycle. Therefore, these
paths can be replicated and pasted to cycled paths. With regard to the size of a cycle, we
can use the following construction: each path starts from a nominal star-type in No and
is lengthened through star-types (more precisely, through layers of rays of star-types).
We define inductively a level n of a path P as follows: (i) all nominal paths are at level
0, (ii) a path P ′ is at level i+1 if it has a neighbor at level i, and all neighbors of P ′ are
at a level which are equal or greater than i. This implies that there are no two neighbor
paths which are located on two levels whose difference is greater than 1.

Assume that there is a pair of paths (Q,Q′) such that Q is at level i > 1 and Q′ is a
ν-neighbor of Q at level i − 1 iff there is a pair of paths (P ,P ′) such that P is at level
j > i, P ′ is a ρ-neighbor of P at level j + 1, and L(Q) = L(P ′), L(Q′) = L(P),
r(ν) = r−(ρ). This implies that all such quadruples (P , ρ,Q, ν) can form a cycle.
Moreover, there are at most 
 different labels of pairs (Q, ν). This implies that one
cycle can be detected after creating at most 2� levels. Thus, we have |Θ′| ≤ |Θ| × |ξ|2�

where |ξ| is the maximal number of rays of star-type. A more complete proof of Lemma
3 can be found in [14].

Let Θ be a cycle in a frame. Definition 8 ensures that each reachable path of some
path Q with (P , ρ,Q, ν) ∈ Θ goes through a star-type σ = tailσ(P ′) with some
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(P ′, ρ′,Q′, ν′) ∈ Θ. As mentioned in Lemma 3, such a cycle allows one to “unravel”
infinitely the frame to obtain a model of a KB in SHOIQ (without transitive closure
of roles). However, such a cycle structure is not sufficient to represent models of a KB
with transitive closure of roles since a concept such as ∃Q⊕.D ∈ L(P) can be satisfied
by a Q-reachable path P ′ of P which is arbitrarily far from P . There are the following
possibilities for an algorithm which builds a frame: (i) the algorithm stops building the
frame as soon as a cycle Θ is detected such that each concept of the form ∃Q⊕.D oc-
curring in L(P) is satisfied for each cycled path P of Θ, i.e., P has a Q-reachable path
P ′ with ∃Q.D ∈ L(P), (ii) despite of several detected cycles, the algorithm continues
building the frame until each concept of the form ∃Q⊕.D occurring in L(P) is satis-
fied for each cycled path P of Θ. If we adopt the first possibility, the completeness of
such an algorithm cannot be established since there are models in which paths satisfy-
ing concepts of the form ∃Q⊕.D can spread over several “iterative structures” such as
cycles. For this reason, we adopt the second possibility by introducing into frames an
additional structure, namely blocking-blocked cycles, which determines a sequence of
cycles Θ1, · · · , Θk such that Θi+1 is a reachable cycle of Θi for satisfying concepts of
the form ∃Q⊕.D.

Definition 9 (blocking). Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowl-
edge base (T ,R) with a set P of paths in F . A cycle Θ′ is blocked by a cycle Θ if
there are cycles Θ1, · · · , Θk with Θ = Θ1, Θ′ = Θk such that Θi+1 is a reachable
cycle of Θi for 1 ≤ i < k, and the following conditions are satisfied:

1. For each 1 ≤ i < k, there is no cycle Θ′′ such that
(a) Θ′′ is a reachable cycle of Θi and Θi+1 is a reachable cycle of Θ′′, and
(b) For each (P , ρ,Q, ν) ∈ Θ′′ and each concept ∃Q⊕.D ∈ L(P), P has a

Q-reachable path P ′ via a non cycled ray with ∃Q.D ∈ L(P ′) iff the ν-
neighbor Q′ of Q has a Q-reachable path Q′′ via a non cycling ray with
∃Q.D ∈ L(Q′′).

2. For each (Pk, ρk,Qk, νk) ∈ Θk , there is some (P1, ρ1,Q1, ν1) ∈ Θ1 such that
(a) L(P1) = L(Pk), L(Q1) = L(Qk), r(ρ1) = r(ρk), and
(b) If there is a concept ∃Q⊕.D ∈ L(Pk) such that the path Pk has no Q-

reachable path P ′ with ∃Q.D ∈ L(Q′) then the path Q1 has a Q-reachable
path Q such that the two following conditions are satisfied:

i. ∃Q.D ∈ L(Q), or Q has a Q-reachable path Q′ with ∃Q.D ∈ L(Q′),
ii. there are (Pj , ρj ,Qj, νj) ∈ Θj , (Pj+1, ρj+1,Qj+1, νj+1) ∈ Θj+1 with

some 1 ≤ j < k such that Q′ is a reachable path of Qj and Qj+1 is a
reachable path of Q′.

In this case, we say that the path Pk is blocked by the path Q1 via the ray ρk. �

Definition 9 provides an exact structure of a frame in which blocked paths can
be detected. Such a frame contains sequentially reachable cycles between a blocking
cycle Θ1 and its blocked cycle Θk, which allows for unravelling the frame between
Θk and Θ1, and satisfying all concepts of the form ∃Q⊕.D in the labels of paths in
Θ1. Condition 1 ensures that there is no useless cycle for the satisfaction of concepts
∃Q⊕.D which is located between two cycles Θi and Θi with i < k. For a concept
∃Q⊕.D ∈ L(Pk) that is not satisfied from the path Pk to all existing paths (i.e. it is
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not satisfied in the “past”), it must be satisfied from Pk to paths that are devised by
unravelling (i.e. it is satisfied in “the future”). Therefore, it is required that such con-
cepts ∃Q⊕.D are satisfied in the “future” from the blocking path P1 of Pk (Condition
2, Definition 9). Moreover, for a concept ∃Q⊕.D ∈ L(P) that is not satisfied in the
“past”, either it is satisfied from P to some paths that are explicitly added to the frame,
or it is propagated to a some blocked path thanks to Property 11, Definition 4.

Remark 2. The constant k mentioned in Definition 9 depends to the number of distinct
ray labels (i.e. the triple 〈L(P), r(ρ), l(ρ)〉 for each ray ρ ∈ tailσ(P)) occurring a
blocking cycle Θ1 and the number of concepts ∃Q⊕.D occurring in each cycling path
label in Θ1. Since the number of distinct ray labels is bounded by 
 (Lemma 3) and
the number of concepts ∃Q⊕.D occurring in each cycling path label is bounded by
CL(T ,R), we have k is bounded by 2× 
 where 
 = 22×|CL(T ,R)|×|R(T ,R)|.

Definition 10 (valid frame). Let (T ,R) be a SHOIQ knowledge base. A frame F =
〈N ,No, Ω, δ〉 with a set P of paths is valid if the following conditions are satisfied:

1. For each nominal o ∈ Co, there is a unique σo ∈ No such that o ∈ λ(σo) and
δ(σo) = 1;

2. For each star-type σ ∈ N , σ is valid.
3. If ∃Q⊕.C ∈ L(P0) for some P0 ∈ P then there are P ,P ′ ∈ P such that one of

the following conditions is satisfied:
(a) P0 = P = P ′ and ∃Q.C ∈ L(P0);
(b) P ′ is a Q-reachable of P , and ∃Q.C ∈ L(P ′) where P = P0 or P blocks P0;
(c) P is a Q�-reachable of P ′, and ∃Q.C ∈ L(P ′) where P = P0 or P blocks

P0. �

Conditions 1-3 in Definition 10 ensure the satisfaction of tableau properties in Defi-
nition 3. Note that Condition 1 is compatible with the fact that cycles in a frame never
consist of nominal star-types (Definition 8). In particular, Condition 3 provides the sat-
isfaction of concepts ∃Q⊕.D occurring in the labels of paths thanks to the blocking
condition introduced in Definition 9.

We now present Algorithm 1 for building a valid frame. This algorithm starts by
adding nominal star-types to the frame. For each non blocked path P with a ray ρ ∈
ξ(tailσ(P)) such that δ(tailσ(P), ρ) = δ(tailσ(P))+1, the algorithm picks in a nonde-
terministic way a valid star-type ω that matches tailσ(P) via ρ, and updates the values
Ω(tailσ(P), ρ), Ω(ω, ρ′), δ(tailσ(P), ρ), δ(ω, ρ′), eventually, δ(tailσ(P)) and δ(ω) by
calling updateFrame(· · · ). The algorithm terminates when a blocked cycle is detected.
To check the blocking condition, the algorithm can compare Ri for each new level i of
rays with each Rj for all j < i (the notion of levels of rays in a frame is given in the
proof of Lemma 3) where Rj is denoted for the set of different ray labels at level i. If
Rj = Ri and the last cycle that was detected located at some level l < j, then a new
(reachable) cycle from level j to i is formed.

Figure 2 depicts a frame when executing Algorithm 1 for K1 in the example pre-
sented in Section 1. The algorithm builds a frame F = 〈N ,No, Ω, δ〉 where N =
{σ0, σ1, σ2, σ3, σ4} and No = {σ0}. The dashed arrows indicate how the function
Ω(σ, ρ) can be built. For example,Ω(σ0, ρ0) = {(σ1, ν0, 1)},Ω(σ0, ρ1) = {(σ2, ρ

′
0, 1)}
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Require: A SHOIQ(+) knowledge base (T ,R)
Ensure: A frame 〈N ,No, Ω, δ〉 for (T ,R)
1: Let Σ be the set of all star-types for (T ,R)
2: for all o ∈ Co do
3: if there is no σ ∈ N such that o ∈ λ(σ) then
4: Choose a star-type σo ∈ Σ such that o ∈ λ(σo)
5: Set δ(σo) = 1, N = N ∪ {σo} and No = No ∪ {σo}
6: Set δ(σo, ρ) = 0, Ω(σo, ρ) = ∅ for all ρ ∈ ξ(σo)
7: end if
8: end for
9: while there is a path P that is not blocked and a ray ρ ∈ ξ(tailσ(P)) such that

tailδ(P) = δ(tailσ(P), ρ) + 1 do
10: Choose a star-type σ′ ∈ Σ such that there is a ray ρ′ ∈ ξ(σ′) satisfying

l(ρ) = λ(σ′), l(ρ′) = λ(σ), r(ρ′) = r−(ρ), and
σ′ ∈ N implies δ(σ′) = δ(σ′, ρ′) + 1 or δ(σ′) = δ(σ′, ρ′′) for all ρ′′ ∈ ξ(σ′)

11: updateFrame(σ, ρ, σ′, ρ′)
12: end while

Algorithm 1. An algorithm for building a frame

Require: A star-type σ ∈ N in a frame F = 〈N ,No, Ω, δ〉 with a ray ρ ∈ ξ(σ), and a new
star-type σ′ with a ray ρ′ ∈ ξ(σ′) such that l(ρ) = λ(σ′), l(ρ′) = λ(σ), r(ρ′) = r−(ρ)

Ensure: updateFrame(σ, ρ, σ′, ρ′)
1: if there exists a star-type ω ∈ N such that ω is equivalent to σ′ then
2: Set δ(σ, ρ) = δ(σ, ρ) + 1
3: Let ν ∈ ξ(ω) such that r(ν) = r(ρ′) and l(ν) = l(ρ′)
4: if δ(ω, ν) == δ(ω) then
5: Set δ(ω) = δ(ω) + 1
6: end if
7: Set δ(ω, ν) = δ(ω, ν) + 1
8: add(Ω(ω, ν), (σ, ρ, δ(σ, ρ)))
9: add(Ω(σ, ρ), (ω, ν, δ(ω, ν)))

10: else
11: Add σ′ to N
12: Set δ(σ, ρ)=δ(σ, ρ) + 1
13: Set δ(σ′) = 1, δ(σ′, ρ′) = 1 and Ω(σ′, ρ′) = {(σ, ρ, δ(σ, ρ))}
14: Set δ(σ′, ρ′′) = 0 and Ω(σ′, ρ′′) = ∅ for all ρ′′ �= ρ′

15: add(Ω(σ, ρ), (σ′, ρ′, 1))
16: end if

Algorithm 2. updateFrame(σ, ρ, σ′, ρ′) updates F when adding σ′ to N
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where ρ0 and ρ1 are the respective horizontal and vertical rays of σ0; ν0 is the left ray of
σ1; ρ′0 is the vertical ray of σ2. Moreover, the directed dashed arrow from σ0 to σ1 indi-
cates that the ray ρ0 of σ0 can match the ray ν0 on the left ray of σ1 since l(ρ0) = λ(σ1),
r(ν0) = λ(σ0), r(ν0) = r−(ρ0).

The algorithm generates δ(σ0) = 1, δ(σ1) = 1, δ(σ2) = 1 and forms a cycle Θ
consisting of the following quadruples : ((σ3, 3), ρ1, (σ3, 2), ρ2) (ρ1 and ρ2 are the right
and left rays of σ3, respectively) and ((σ4, 2), ρ3, (σ4, 1), ρ4) (ρ3 and ρ4 are the right
and left rays of σ4 respectively). Note that for the sake of brevity, we use just tailσ(P)
and tailδ(P) to denote a path in the quadruples.

The cycle Θ is blocked since all concepts ∃S+.{o} occurring in cycled paths are
satisfied. A model of the ontology can be built by starting from σ0 and getting (i) σ4

via σ1, (ii) σ3 via σ1, and (iii) σ3 via σ2. From σ3 and σ4, the model goes through σ3

and σ4 infinitely. Note that from any individual x satisfying σ3 (or σ4), i.e. the “label”
of x contains ∃Q+.{o}, there is a path containing S which goes back the individual
satisfying σ0. Thus, the concept ∃Q+.{o} is satisfied for each individual whose label
contains ∃Q+.{o}.
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Fig. 2. A frame obtained by Algorithm 1 for K1 in the example in Section 1

Lemma 4. Let (T ,R) be a SHOIQ(+) knowledge base.

1. Algorithm 1 terminates.
2. If Algorithm 1 can build a valid frame for (T ,R) then there is a tableau for (T ,R).
3. If there is a tableau for (T ,R) then Algorithm 1 can build a valid frame F for

(T ,R).

Proof (sketch). Let Θk be a blocked cycle by Θ1. According to Remark 2, k is bounded
by O(2|(T ,R)|). Moreover, after eliminating “useless cycles” between two cycles Θi

and Θi+1 for 1 ≤ i < k according to Condition 1, Definition 9 the number of useful
cycles between Θi and Θi+1 is bounded by O(22

|(T ,R)|
). This implies that Algorithm

1 can add at most a triple exponential number of paths to the frame to form a blocked
cycle. For the soundness of Algorithm 1, we can extend the set P of paths to a set P̂
of extended paths by “unravelling” the frame between blocking-blocked cycles. The set
P̂ allows one to satisfy concepts ∃Q⊕.D in blocked paths which are not satisfied in the
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“past”. Moreover, a concept ∃Q⊕.D of a path that is not satisfied in the “past” will be
propagated to a blocked path via a Q-path. Therefore, it will be satisfied in P̂. Unlike
the unravelling of a completion graph for SHOIQ where there is no loop in the model,
the unravelling of a frame may yield an infinite number of loops in the model. Note
that the unravelling of a frame replicates cycles which may encapsulate loops.

Regarding completeness, we first reduce a tableau to a frame that does not contain
any useless cycle. Then, we use the obtained frame to guide the algorithm (i) to choose
valid star-types, (ii) to ensure that δ(σ) = 1 for each nominal star-type σ, and (iii) to
detect a pair (Θ1, Θk) of blocking and blocked cycles as soon as some “representative”
concepts of the form ∃Q⊕.D in Θ1 are satisfied. We refer the readers to [14] for a
complete proof of Lemma 4. �

The following theorem is a consequence of Lemma 4.

Theorem 1. The problem of consistency forSHOIQ(+) can be decided in non-determi-
nistic triply exponential time in the size of a SHOIQ(+) knowledge base.

4 Optimizing The Algorithm

The algorithm for deciding the consistency of a SHOIQ(+) knowledge base (Algo-
rithm 1) uses at most a doubly exponential number of star-types to build a frame. This
is due to the fact that numbers are encoded in binary, that is, a star-type may have an
exponential number of rays. Pratt-Hartmann [9] has shown that it is possible to use an
exponential number of star-types to represent a model of a KB in C2 which is slightly
different from SHOIQ in terms of expressiveness. If we can transfer this method to
SHOIQ for compressing star-types, it would be applied to SHOIQ(+) since the num-
ber of star-types in a frame does not depend on the presence of transitive closure of
roles.

Another technique presented in [15] can be used to reduce non-determinisms due to
the choice of valid star-types. Instead of guessing a valid star-type from a set of valid
star-types, this technique allows one to build a star-type σ by applying expansion rules
to concepts in the core label of σ. Hence, when a star-type σ is transformed into σ′ by
an expansion rule, an algorithm that implements this technique has to update not only
Ω(σ′, ρ′) and δ(σ′) but also Ω(σ′′, ρ′′) and δ(σ′′) for each neighbor σ′′ of σ and σ′

(σ′′ is a neighbor of σ′ if there is some (σ′′, ρ′′, d′′) ∈ Ω(σ′, ρ′)). These updates must
ensure that each path which has got through σ can now get through σ′. This process of
changes can spread over neighbors of σ′′ and so on.

With regard to blocking, the technique presented in [15] can take advantage of a
specific structure of frames for SHOIQ to design an efficient algorithm for checking
blocking condition. This structure consists of partitioning star-types into layers. Al-
though such a structure of frames cannot be maintained for SHOIQ(+), paths in a
frame for SHOIQ(+) would allow us to achieve the same behavior.

5 Conclusion

In this paper, we have presented a decision procedure for the description logic SHOIQ
with transitive closure of roles in concept axioms, whose decidability was not known.
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The most significant feature of our contribution is to introduce a structure based on
a new blocking condition for characterizing models which have an infinite non-tree-
shaped part. This structure would provide an insight into regularity of such models
which would be enjoyed by a more expressive DL, such as ZOIQ [6], whose decid-
ability remains open. In future work, we aim to improve the algorithm by making it
more goal-directed and aim to investigate another open question about the hardness of
SHOIQ(+).
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