
Simplified OWL Ontology Editing for the Web:

Is WebProtégé Enough?

Matthew Horridge, Tania Tudorache, Jennifer Vendetti, Csongor I. Nyulas,
Mark A. Musen, and Natalya F. Noy

Stanford Center for Biomedical Informatics Research
Stanford University, Stanford, CA, 94305, USA

{horridge,tudorache,vendetti,nyulas,musen,noy}@stanford.edu

Abstract. Ontology engineering is a task that is notorious for its diffi-
culty. As the group that developed Protégé, the most widely used ontol-
ogy editor, we are keenly aware of how difficult the users perceive this
task to be. In this paper, we present the new version of WebProtégé that
we designed with two main goals in mind: (1) create a tool that will be
easy to use while still accounting for commonly used OWL constructs;
(2) support collaboration and social interaction around distributed on-
tology editing as part of the core tool design. We designed this new
version of the WebProtégé user interface empirically, by analysing the
use of OWL constructs in a large corpus of publicly available ontologies.
Since the beta release of this new WebProtégé interface in January 2013,
our users from around the world have created and uploaded 519 ontolo-
gies on our server. In this paper, we describe the key features of the new
tool and our empirical design approach. We evaluate language coverage in
WebProtégé by assessing how well it covers the OWL constructs that are
present in ontologies that users have uploaded to WebProtégé. We evalu-
ate the usability of WebProtégé through a usability survey. Our analysis
validates our empirical design, suggests additional language constructors
to explore, and demonstrates that an easy-to-use web-based tool that
covers most of the frequently used OWL constructs is sufficient for many
users to start editing their ontologies.

1 Introduction

“Protégé is too difficult to use!” The Protégé team hears this sentiment from our
users all too often. As we observe many of them grapple with the difficulties of
learning a highly expressive logic-based ontology language such as OWL, we see
how onerous ontology development can be. Other studies on cognitive complexity
of ontology development bear out these observations [1].

Developers of tools for ontology browsing and editing have faced the dilemma:
On the one hand, we want to support international standards, such as OWL 2,
fully in order to ensure interoperability [2]. On the other hand, we want to make
sure that both beginners and experts alike can develop ontologies easily.

In this paper, we report on our design and evaluation of a major new release
of WebProtégé, a web-based version of Protégé that uses the OWL API [3] and

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 200–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 201

that provides support for editing OWL 2 ontologies. We released this new ver-
sion of WebProtégé in January 2013, and we had two main goals for the design
of this version: (1) create a tool that will be easy to use while still accounting for
commonly used OWL constructs; (2) support distributed ontology editing, col-
laboration, and interaction as part of the core tool design. The new WebProtégé
serves as a “Google docs” environment for ontologies, enabling users to up-
load their ontologies, to initiate new projects, and to invite their collaborators
to participate in the development. We have created a cut-down user interface
in WebProtégé, which makes creating new classes or updating information as
simple as filling out a web form. This interface is the default interface that
WebProtégé users see when they create or upload an OWL ontology. The users
have the option of enabling more advanced features. In this paper, we discuss
the design and evaluation of the choice of language constructs supported in this
default interface, assuming that the default interface is what the majority of our
users will see.

We address the following research questions in this paper: (1) Is there a subset
of OWL that accounts for the majority of term descriptions used by ontology
developers in various scientific domains? (2) How do we design a user interface
that enables efficient editing of the most common constructs while providing an
opportunity for the more expert users to access as much of the advanced features
as possible?

In order to address these questions, we start by analysing a corpus of 330 pub-
licly available ontologies in BioPortal [4,5] to determine which OWL constructs
ontology developers use most frequently (Section 4). We use the results of this
analysis to determine which set of features to include in the default configura-
tion of WebProtégé. We evaluate this new release in two ways. First, we evaluate
the coverage of the constructs supported by the user interface by analysing the
aggregated information about the ontologies that WebProtégé users uploaded
to the WebProtégé server. This new corpus constitutes a set of ontologies that
were created elsewhere and thus presents a “naturally occurring” corpus of on-
tologies. Second, we conducted a survey of the users of the new tool in order to
evaluate the usability of the tool; to understand what the users like and do not
like about the tool; and to gauge whether or not the users feel limited by the
default interface or whether they feel that they can perform all of the editing
tasks that they need to perform (Section 6).

This paper makes the following contributions: (1) We present an empirical
methodology for developing an easy-to-use ontology editor based on analysing
a large training corpus of ontologies. (2) We evaluate the language coverage
provided the user interface in WebProtégé by analysing the OWL constructs
in a test corpus of 230 ontologies that WebProtégé users have created in other
tools and uploaded to WebProtégé. (3) We evaluate the usability of WebProtégé
through a usability questionnaire that close to 20% of WebProtégé users have
answered.

Many of the lessons that we learn from designing and evaluating WebProtégé
are not specific to our tool. Indeed, our paper analyses the broader question

202 M. Horridge et al.

of how we can use a principled approach to make ontology editing easier and
whether simplified ontology editing is indeed possible, practical, and useful.

2 Preliminaries

In the work presented here, we deal with ontologies written in the Web Ontology
Language (OWL), and more specifically OWL 2, its latest version [6]. Through-
out the rest of this paper we refer to OWL 2 simply as OWL. In this section, we
present the main OWL terminology that is useful in the context of this paper.
We assume that the reader has basic familiarity with ontologies and OWL.

OWL and Ontologies. An OWL ontology is a set of axioms. Each axiom makes
a statement about the domain of interest. The building blocks of axioms are
entities and class expressions. Entities correspond to the important terms in the
domain of interest and include classes, properties, individuals, and datatypes.
Properties may be subdivided into object, data, and annotation properties. The
signature of an ontology is the set of entities that appear in that ontology.
OWL is a highly expressive language and features a rich set of class constructors
that allow entities to be combined into more complex class expressions. As a
convention, we use the letters A and B to stand for class names and the let-
ters C and D to stand for (possibly complex) class expressions. In this paper,
we largely focus on subclass axioms SubClassOf(C, D), equivalent class axioms
EquivalentClasses(C, D), disjoint classes axioms DisjointClasses(C, D) and annotation
assertions AnnotationAssertion(P , A, v). We refer to SubClassOf, EquivalentClasses and
DisjointClasses axioms as logical axioms and AnnotationAssertion axioms as non-logical
axioms. We also focus on two broad types of class expressions: (1) class expres-
sions that we loosely term existential restrictions, which specify the existence of
relationships between individuals and by which we mean ObjectSomeValuesFrom(R,

C), DataSomeValuesFrom(R, C), ObjectHasValue(R, a), and DataHasValue(R, l) restrictions;
and (2) class expressions that we term universal restrictions, by which we mean
ObjectAllValuesFrom(R, C) and DataAllValuesFrom(R, C) restrictions.

Frame-Based Views of Ontologies. Even though an OWL ontology is simply a set
of axioms, few ontology-development environments choose to display ontologies
as lists of axioms. Most environments are entity-centric and revolve around the
idea of editing descriptions of entities. In essence, when an entity is selected in a
tool like Protégé, the tool presents (a partial view of) the subset of axioms that
describe or define that entity. We call such a subset of axioms an entity-frame,
or more specifically a class-frame for a class and so on. In this work we focus on
class-frames, which we define as follows:

Definition 1 (Class-Frame). For a class A in the signature of an ontology
O the class-frame for A w.r.t. O is the subset-maximal set of axioms S ⊆ O
where each axiom in S is of the form SubClassOf(A, C), EquivalentClasses(A, C),
DisjointClasses(A, C) and AnnotationAssertion(P , A v), where C is a (possibly complex)
class expression, P is an annotation property, and v is an annotation value (lit-
eral, IRI or anonymous individual).

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 203

OBO and OWL. In the world of biomedical ontologies, there is another, widely
used language, called OBO [7]. There is a close relationship between OBO and
OWL 2, and it is possible to translate faithfully the logical aspects of an OBO
ontology into an OWL 2 ontology [8]. For the purposes of the work here we
therefore view OBO as a syntactic variant of OWL 2.

3 An Overview of WebProtégé

This section presents a high level overview of WebProtégé and its salient features.
The main purpose of this section is to provide a context for the discussion on
our empirically driven user interface (UI) design in Section 4.

WebProtégé is a web-based, multi-user, collaborative editor for OWL ontolo-
gies. The main document unit in WebProtégé is a project, which is a set of
ontologies plus metadata, sharing settings and UI settings. Users create their
own projects, which are hosted on our servers at Stanford.1 They either start by
creating a new ontology, or they start by uploading a set of existing ontologies
that they have already worked on. Having created a project, a user then “shares”
this project, adding the names of her collaborators to the list of those who can
edit her ontology. Now, any time the user or any of her collaborators logs into
WebProtégé, she can see her ontology under development. As one of the users
creates or edits the ontology, others can see the changes immediately. They can
comment on the changes and carry out discussions in the tool—with the discus-
sions linked to the class that they are discussing. If they log in after a few days,
they can see the summary of changes to the ontologies and to the classes on
their “watch list.” As the project matures, they can invite others to participate
and to comment, or choose to publish the ontology in a public repository for the
broader community to use. They can download any revision of their ontology
and process it using any other OWL tools such as reasoners, visualisation, and
query tools.

Figure 1 shows a screenshot of the main editing interface in WebProtégé. The
left pane consists of a tree for navigating the class hierarchy and for selecting a
class frame for editing. The middle pane captures a subset of the selected class
frame. We provide a precise description of and the rationale for what this frame
captures in Section 4. The right pane in Figure 1 contains tools for collaboration.
In particular, it shows a threaded list of issues and discussions and a live activity
feed. Users can configure all elements in the interface, augment it with different
views or reconfigure it completely to suit their needs.

The centre pane in Figure 1 is the main editing form for class frames. The form
is composed of fields which constitute tables of property–value pairs. The fields
feature auto-completion for property, class, individuals and datatype names. The
auto-completion is type sensitive: It will offer only the types of entities that can
be entered based on the information in the ontology up to this point. For exam-
ple, the auto-completion prevents the user from entering datatypes as fillers for
object property restrictions. In terms of OWL, one row in the table corresponds

1 Users can also set up local WebProtégé installations if they have a desire to do so.

204 M. Horridge et al.

Fig. 1. The main editing interface in WebProtégé. The lefthand pane presents the
class tree, indicating which classes have discussions attached to them. The middle
pane presents the class frame. The righthand pane shows the discussions for the class
and the live feed of changes.

to one or more axioms. In the example in Figure 2, the row hasFlightControlSystem

and FlyByWireSystem corresponds to the axiom SubClassOf(:A320, ObjectSomeValues-

From(:hasFlightControlSystem :FlyByWireSystem)).
A key feature of the WebProtégé UI is that it minimises the distinctions that

users have to make explicitly. For example, in previous versions of the tool [9],
when a user created a new property, she had to decide explicitly whether the
property was an object or a data one. Similarly, when entering class expressions
the user had to make various choices such as choosing between SomeValuesFrom

and AllValuesFrom restrictions, and between SomeValuesFrom and HasValue restric-
tions. In the WebProtégé UI, we use simple and reliable heuristics to determine
the type of property and the type of restriction that the user creates based on
the fillers that she specifies. Figure 2 displays a class description that has mixed
use of data and object properties. It also contains mixed use of different types
of class expressions, individuals, and data values: the first row corresponds to
an ObjectSomeValuesFrom class expression whose filler is a class, the second row an
ObjectHasValue class expression whose filler is an individual, and the third row a
DataHasValue class expression whose value is an integer literal. At no point when
entering the information shown in Figure 2 has the user explicitly had to decide
upon and choose the types of class expressions, or decide upon and choose the
types of properties—the system determines these distinctions in a straightfor-
ward but highly effective way. Finally, this UI also supports a kind of on-the-fly
object creation and type inference. In the fourth row in Figure 2 the user wants
to specify a new type of flap for the class (aircraft) that she is describing. How-
ever, hasFlap is a new property name. In this case, the system accepts the new
property name, warns the user that it is new (in case the user has simply made
a typo) and allows her to move on to specify a filler. In this case, she specifies a
new class (DoubleSlottedFlap). Once the user enters this information, WebProtégé

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 205

Fig. 2. Property–value pairs being edited. The class frame in the figure contains mixed
object and data property usage. It also contains a mix of ObjectSomeValuesFrom, Ob-
jectHasValue and DataHasValue class expressions. The auto-completion box prompts the
user to create new entities where necessary. We eliminated the need to choose explicitly
between object and data properties; we determine property types based on filler values.

creates the necessary declarations of the appropriate type and generates the class
expressions and axioms under the hood.

In addition to editing logical information, WebProtégé provides support for
describing extra-logical information about entities through OWL annotations.
These annotations are part of the class frame (Figures 1 and 2). WebProtégé
provides auto-completion support that allows users to reuse annotation vocabu-
lary from well known metadata sets such as DublinCore and SKOS (Figure 1).

4 The WebProtégé Profile (WPP)

The following are our main high level design goals for WebProtégé: (1) to provide
an ontology-editing infrastructure with zero installation and zero setup costs, (2)
to provide a framework that supports multiple editors, commenters and viewers
to work simultaneously on the same ontology; (3) to provide a simple UI that
allows novices and experts alike to enter information in a way that is comfortable
for them. Developing WebProtégé as a Web-app achieves the first goal and goes
some of the way in supporting collaboration. In this section, we look at the
simple UI that WebProtégé provides, what exactly it can represent and, how we
arrived at this current design. We call the set of language features supported by
the UI the WebProtégé Profile (WPP).

Definition of the WebProtégé Profile

Although WebProtégé supports the editing of class, property, and individual
frames, we focus our discussion on class frames. We focus on class frames be-
cause property frames are somewhat simpler than class frames, with fewer design
choices to make, and individual frames are themselves similar to class frames.

206 M. Horridge et al.

The default class frame editor in WebProtégé supports editing class frames de-
fined as follows.

Definition 2 (WPP). A WebProtégé Profile class frame for a class A in the
signature of an ontology O is the subset-maximal set of axioms S ⊆ O such
that each axiom in S conforms to the following grammar, where non-terminals
are shown in bold, terminals are shown in a regular font-weight surrounded by
single quotes, choices are indicated with a bar, zero or more items are shown in
curly brackets. The non-terminals Class, ObjectProperty, DataProperty, Annotation-
Property, NamedIndividual, Datatype, Literal and IRI, are defined as they appear in
the OWL 2 Structural Specification.

ClassFrame := {ClassFrameAxiom}
ClassFrameAxiom := ‘SubClassOf’ ‘(’ A ClassExpression ‘)’ |

‘AnnotationAssertion’ ‘(’ AnnotationProperty A AnnoValue ‘)’
ClassExpression := Class |

‘ObjectIntersectionOf’ ‘(’ ClassExpression ClassExpression {ClassExpression} ‘)’ |
‘ObjectSomeValuesFrom’ ‘(’ ObjectProperty, Class ‘)’ |
‘ObjectSomeValuesFrom’ ‘(’ ObjectProperty, ‘{’ NamedIndividual ‘}’ ‘)’ |
‘ObjectHasValue’ ‘(’ ObjectProperty, NamedIndividual ‘)’ |
‘DataSomeValuesFrom’ ‘(’ DataProperty, Datatype ‘)’ |
‘DataSomeValuesFrom’ ‘(’ DataProperty, ‘{’ Literal ‘}’ ‘)’ |
‘DataHasValue’ ‘(’ DataProperty, Literal ‘)’ |
‘ObjectMinCardinality’ ‘(’ ‘1’ ObjectProperty, Class ‘)’ |
‘DataMinCardinality’ ‘(’ ‘1’ DataProperty, Class ‘)’

AnnoValue := Literal | IRI

Definition 2 (WPP) precisely represents the language that is supported by the
default class frame editor in WebProtégé. We chose what to include in the Defi-
nition 2 (WPP) based on (1) an empirical analysis of commonly used axiom types
and class constructors in a large ontology corpus, and (2) commonly reported er-
rors [10,11] that are made by novices when building OWL ontologies. The corpus
analysis provided information on which constructs we should support. The error
analysis helped us to decide which decisions we should take out of the hands of
novice users.

An Analysis of Constructs from the BioPortal Ontology Corpus

BioPortal is a community-based repository of biomedical ontologies [4].2 At the
time of writing, it contains more than 330 public ontologies with almost six
million terms in them. We used OWL and OBO ontologies from BioPortal as
our corpus to analyse the commonly used OWL constructs.

While BioPortal contains only the ontologies that are developed by researchers
and practitioners in biomedicine, it is still an attractive corpus for a general-
purpose analysis for the following reasons: First, ontologies in BioPortal vary

2 http://bioportal.bioontology.org

http://bioportal.bioontology.org

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 207

Table 1. Class frame axioms and class constructor occurrences in the BioPortal corpus.
The corpus contains 261 ontologies in OWL and OBO. Pn represents the nth percentile
number of occurrences of a particular construct. For example, a P25 of 185 for SubClas-
sOf axioms means that 25% of ontologies contain 185 SubClassOf axioms or less. The
category Existential includes ObjectSomeValuesFrom, DataSomeValuesFrom, ObjectHasValue,
and DataHasValue class expressions. The category Universal includes ObjectAllValuesFrom
and DataAllValuesFrom class expressions. MinCardinality, MaxCardinality and ExactCardinality
combine both object and data cardinality restrictions.

Constructor Type # of % of # occurrences of constructors
ontologies ontologies P25 P50 P75 P90 Max #

SubClassOf 243 93.1 185 521 2705 12,309 847,755
EquivalentTo 80 30.7 4 16 61 403 73,461
DisjointWith 82 31.4 3 28 158 673 56,192

Existential 162 62.1 37 157 1,461 9,651 641,123
Universal 45 17.2 4 22 49 145 22,371
Object Union 64 24.5 3 7 20 65 387
Object Complement Of 19 7.3 1 4 15 35 99
Object One Of 8 3.1 1 1 4 4 5
MinCardinality 28 10.7 1 3 5 14 1,305
MaxCardinality 10 3.8 1 3 10 110 967
ExactCardinality 23 8.8 4 10 20 23 257

greatly in size and expressivity [12]. Second, these ontologies are naturally occur-
ring ontologies, and they are developed by a wide range of groups and ontology
engineers. Finally, biomedical ontologies account for a large fraction of ontologies
under development in tools such as Protégé. Therefore, it seems reasonable that,
if we can provide a UI that accommodates a large proportion of the BioPortal
ontologies, then that UI will also satisfy a large number of potential WebProtégé
users.

Materials and Method. We accessed BioPortal on August 31, 2012 using
the NCBO Web services API [5]. We downloaded all OWL compatible (OWL
plus OBO) ontologies. There were 261 such ontologies. We used the OWL API
(version 3.4.0) to parse and analyse each ontology. We recorded the number
and kinds of class frame axioms (SubClassOf, EquivalentClasses, DisjointWith) for each
ontology, as well as the number of occurrences of the different kinds of OWL
class expressions.

Results. Table 1 shows the occurrences of class frame axioms and class expres-
sions. For each type of constructor, the table presents the number and percentage
of ontologies that contain that constructor and the 25th, 50th, 75th, 90th per-
centile values (over the ontologies containing that constructor), and maximum
occurrences per ontology.

Analysis. It is clear from Table 1 that SubClassOf is the dominant form of ax-
iom type. Most ontologies (93%) contain these types of axioms. By contrast,
DisjointClasses and EquivalentClasses axioms are present in just under one third of
the ontologies in the corpus. Moreover, SubClassOf axioms are present in large

208 M. Horridge et al.

numbers when compared to EquivalentClasses axioms and DisjointClasses axioms—
on average two orders of magnitude more. The picture for class constructors is
similar: The dominant form of class constructor is Existential restriction (including
ObjectSomeValuesFrom, DataSomeValuesFrom, ObjectHasValue, and DataHasValue). Nearly
two thirds of ontologies contain axioms which use one or more type of Existen-

tial restriction. By contrast, Universal restrictions are used in 17% of ontologies
and many of the other class constructors in fewer than 10% of ontologies. Fur-
thermore, on average the occurrences of Existential restrictions are two orders of
magnitude greater than the occurrences of Universal restrictions which are them-
selves on average two orders of magnitude greater than occurrences of all other
types of class constructors. Finally, we observed that some ontologies contain
MinCardinality 1 restrictions as a syntactic variant of Existential restrictions.

The stand-out axioms and class constructors from the BioPortal corpus are
SubClassOf axioms and Existential restriction class expressions. We therefore de-
cided to focus on these constructs in the simplified WebProtégé UI.

5 Evaluating Coverage

One of the features in the new WebProtégé is the ability of users to upload
their ontologies to the WebProtégé server. Users created these ontologies with
other tools or download them from the Web. Since we releasedWebProtégé, users
have uploaded 230 ontologies to our server.3 This corpus represents the naturally
occurring ontologies that WebProtégé users want to work with. Therefore, this
collection of ontologies offers a rich source of data that we can use to empirically
drive forward the development of the tool. In this section, we analyse this corpus
to assess how well the simple profile defined in Definition 2 covers the ontologies
that people actually want to edit in WebProtégé. We then discuss how we can
use this information to evolve WebProtégé in the future.

For the purposes of this evaluation we also examine two extensions of WPP.
The first, WPP-Dis, extends WPP with DisjointClasses axioms and is defined in
Definition 3, while the second, WPP-DisEq, extends WPP with DisjointClasses and
EquivalentClasses axioms and is defined in Definition 4. The motivation for these
extensions is to determine how many class frames are excluded from being rep-
resented in the simplified WebProtégé UI because of the fact that it does not
display DisjointClasses axioms or EquivalentClasses axioms.

Definition 3 (WPP-Dis). A WebProtégé Profile class-frame with DisjointClasses

axioms (WPP-Dis) for a class A is defined as in Definition 2 but with the gram-
mar augmented with the following production rule below, where the non-terminals
ClassFrameAxiom and ClassExpression are specified in Definition 2.

ClassFrameAxiom := ‘DisjointClasses’ ‘(’ A ClassExpression ‘)’

3 The WebProtégé privacy policy prevents us from making this corpus available in
its raw form. Moreover, the analysis that we conducted looks at aggregated data
and ontology constructs from a structural point. We do not critically examine any
domain content of any projects.

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 209

Definition 4 (WPP-DisEq).AWebProtégé Profile class-framewith DisjointClasses

axioms and EquivalentClasses axioms (WPP-DisEq) for a class A is defined as in Def-
inition 2 but with the grammar augmented with the following production rule, where
the non-terminalsClassFrameAxiom andClassExpression are specified inDefinition 2.

ClassFrameAxiom := ‘DisjointClasses’ ‘(’ A ClassExpression ‘)’ |
‘EquivalentClasses’ ‘(’ A ClassExpression ‘)’

Materials and Method. On May 6th 2013 the version of WebProtégé hosted
at Stanford contained 5194 non-empty projects. Of these, 230 projects were cre-
ated by users who uploaded their existing non-empty ontologies (the remaining
projects were edited from scratch in WebProtégé). We parsed each non-empty
ontology in the set of 230 using the OWL API version 3.4.3. We examined the
classes in the signature of each ontology according to Definition 1 to determine
which of them had WPP class frames satisfying Definition 2 (i.e. which of them
can be represented by the simple UI). For each ontology, we measured the cov-
erage in terms of the percentage of WPP, WPP-Dis and WPP-DisEq class frames.

Results. Figure 3 shows a plot of class frames over the WebProtégé ontology
corpus. Each bar represents one ontology (one project) with a non-empty class
signature. The full length of a bar indicates the number of general class frames
(Definition 1) in the ontology represented by that bar. Each bar is divided into
four segments (note that zero size segments are not visible in the plot) represent-
ing the WPP class frames that satisfy Definition 2 (painted white); the WPP-Dis

class frames that satisfy Definition 3 (painted grey); the WPP-DisEq class frames
that satisfy Definition 4 (painted with a hatch effect); and the class frames that
are neither WPP, WPP-Dis or WPP-DisEq frames (painted black). Figure 4 shows
a plot representing the class frame coverage over the complete set of ontolo-
gies in the WebProtégé corpus. Each line represents class frames falling into the
WPP (solid black), WPP-Dis (dashed black) and WPP-DisEq (dashed grey) pro-
files, with the plot showing the relationship between the number of ontologies
and percentage of frames covered.

Analysis. Broadly speaking, the simple UI in WebProtégé can represent the
majority of class frames in the majority of ontologies in this corpus—there are
108 ontologies (or 47% of the corpus) for which it can present 100% of the class
frames, and a further 12 ontologies (coming to just under 60% combined) for
which it can present 90% of the class frames. Figure 4 plots the coverage of
ontologies by the WPP as a black solid line. Each point on the line represents
an ontology and the percentage of its terms covered by the profile. Combined,
there are 156 ontologies (just under 70% of the corpus) for which the WPP can

4 This number does not include a handful of projects created by the authors and
colleagues at Stanford that we excluded from this analysis so as not to bias results.
We also excluded several copies of the “pizza” ontology, which is a tutorial ontology
containing most OWL 2 constructs.

210 M. Horridge et al.

1

10

100

1000

10000

100000

N
um

be
r o

f C
la

ss
-fr

am
es

Ontologies

Class-frames outside of the WebProtégé Profile

Class-frames inside the WebProtégé Profile augmented with DisjointClasses and
EquivalentClasses axioms (WPP-DisEq)

Class-frames inside the WebProtégé Profile augmented with DisjointClasses axioms
(WPP-Dis)

Class-frames inside the WebProtégé Profile (WPP)

Fig. 3. WPP, WPP-Dis and WPP-DisEq class frames by ontology. Each bar represents
one ontology with a signature size greater than zero. The total height of any given bar
represents the total number of classes in the signature of the ontology.

capture 75% or more of the class frames in each ontology. These results are
acceptable for a number of reasons: (1) the simple UI completely caters for a
large fraction (roughly half) of the users that decided to edit their ontologies
in WebProtégé—we expect a mix of novices and experts to use our tool and
therefore the simple UI need not cater for everybody; (2) we do not expect the
UI to cover the whole corpus—if it did, it would ultimately have to capture the
full expressivity of OWL; and (3) it is conceivable that in collaborative settings
there will be a cross-section of users, with less experienced users working with
more experienced users. In these case, less experienced users may well prefer to
edit the majority of the class frames in the ontology in the simple UI, while the
more experienced users take care of class definitions that cannot be expressed in
this UI.

At the lower end of the scale, there are three ontologies (1% of the corpus)
for which the WPP cannot represent any class frames at all, and 38 ontologies
(16% of the corpus) for which it can only represent 50% of class frames or less on
average. A closure examination reveals that all of the ontologies that do not con-
tain any class frames that are captured by the WPP, or ontologies that contain
very low numbers of captured class frames, are like this because they contain
DisjointClasses axioms. Looking at Figure 3, there are several long grey bands.
These bands represent ontologies with large numbers class frames that are not
captured by WPP (Definition 2) but are captured by WPP-Dis (Definition 3).

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 211

Fig. 4. Coverage of ontologies in the WebProtégé corpus. Each point on the X axis
corresponds to an ontology; the Y axis plots the percentage of class frames that are
covered in each profile. Each line represents a profile. The area under a line represents
the number of class frames covered over the whole corpus by the profile represented
by that line. As we extend the WPP profile to the WPP-Dis profile and then to the
WPP-DisEq profile, the number of ontologies with 100% coverage increases.

In other words, they represent class frames which utilise DisjointClasses axioms.
The effect of admitting DisjointClasses axioms to WPP is highlighted in the dif-
ference between plots in Figure 4. The plot shifts to the right, representing the
ontologies for which there is 100% coverage, increasing by almost 20 ontologies
with the addition of disjoint axioms. Put simply, admitting DisjointClasses ax-
ioms by supporting them in the simple UI would allow many more ontologies
to be fully captured. In a similar vein, looking at the difference between the
dashed black and dashed grey plots in Figure 4, it is clear that either including
or excluding EquivalentClasses axioms has a noticeable effect on the number of
ontologies all of whose class frames can be captured by a UI supporting these
type of axioms—the number jumps from 126 (55%) to 152 (67%).

6 Evaluating Usability

In order to evaluate the usability of WebProtégé and to understand what the
users like and dislike about the interface, we have conducted a survey among
those users who had a chance to try the new WebProtégé design, either in its
beta phase or after the official release.

Materials and Method. We have designed the survey using SurveyMonkey R©.
The survey contained three types of questions: (1) qualification: the survey rules
and the question asking respondents to confirm that they have had a chance to
use the new version of WebProtégé. (2) usability: the questions about the user
experience with the tool. (3) demographics: the questions about the user level
of expertise and the type of projects that they were working on.

The survey included six usability questions [13] on a 5-point Likert scale (Fig-
ure 5) as well as free-text questions for feedback about the tool. Specifically, we

212 M. Horridge et al.

asked what users liked about WebProtégé, what they felt needed to be improved,
and what type of content they wanted to enter but could not. The last question
in particular was designed to gain insight on what important OWL 2 constructs
we failed to include in the WebProtégé Profile (WPP—Definition 2).

We emailed the survey link to all the users with the account on the WebProtégé
server, to the Protégé support mailing lists, and posted the link on the Protégé
social media channel. The survey was open for seven days. While the survey was
completely anonymous, participants had the option of entering into a draw for
a $25 gift card as a reward for their participation. Contact details for this were
collected via a completely separate Web-form to preserve anonymity.

Results. We received 55 responses from those who confirmed that they have
used the new version of WebProtégé; 23 of the respondents chose to enter the
draw for the gift card. Given that the WebProtégé change history lists contain
changes or actions from distinct 288 users, our survey contains responses from
19% of the users who tried or used the system. The vast majority of respondents
(90%) followed the link to the survey from the direct invitation email. Others
followed the link in one of the Protégé mailing-list posts (6%), with the remainder
using the links on Web sites. Among the respondents, 70% were from academia
and 17% from industry, with the remainder from government, museums, and
other organisations.We received responses from across the world, with the largest
share of contributions from Europe (40%) and North America (40%).

As far as users’ self-reported level of expertise with ontologies and OWL is
concerned, on a 5-point Likert scale (1-Beginner and 5-Expert), the average ex-
pertise in ontologies was 2.96 (1:15%, 2:21%, 3:27%, 4:27% and 5:10%) and the
average expertise in OWL was 2.7 (1:21%, 2:19%, 3:35%, 4:21% and 5:4%). All
respondents have performed some content editing in WebProtégé, either edit-
ing an ontology (64%), uploading an ontology (57%), downloading an ontology
(45%), defining sharing settings (38%), and other actions. 17% of the respon-
dents participated in collaborative editing.

Figure 5 shows the distribution of answers to the usability questions on a
5-point Likert scale (1-Strongly disagree to 5-Strongly agree). Overall, 78% of
the users agreed that they were satisfied with WebProtégé; 75% agreed that it
was easy to use and 70% agreed that it was easy to learn. We have also looked
separately at the results from the self-identified experts in ontology development
and self-identified beginners. On all questions in Figure 5, experts were slightly
more positive than the overall cohort. Beginners found collaborative features
less useful than the overall group. In general, as can be seen from Figure 5 the
responses for all questions are skewed towards “agree” and “strongly agree”.

We asked the survey respondents to identify specific content that theywanted to
enter but were not able to enter in the simplified interface. Of the 55 respondents,
one missed the ability to directly “create anonymous classes” and one wanted to
“create logical expressions”.The other 53 respondents did not indicate any specific
constructs that they were not able to enter in the simplified UI.

Analysis. While our survey results are limited to the early adopters of the tool
the results are encouraging. The overall skew of the usability question responses

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 213

Fig. 5. A plot of responses to questions in the usability questionnaire. Blocks on
the left of the centre-line (dark/light red) represent negative responses (strongly dis-
agree/disagree). Blocks on the right of the centre-line (mid/dark blue) represent pos-
itive responses (agree/strongly agree). Blocks on the centre-line represent neutral
responses. The size of each block is proportional to the number of responses.

towards “agree” and “strongly agree” indicates that users feel comfortable using
the tool. The fact that only two users commented that they could not enter com-
plex class expressions seems to indicate that users do not necessarily feel limited
by the simple UI. Finally, given the mix of respondent expertise in ontologies
and OWL, we believe that the simple UI might be capturing the best of both
worlds: simple enough for novices to learn and to use, yet powerful enough for
experts to do their job. Indeed, when using the interface ourselves to develop
ontologies, we observed that we ourselves appreciated the many shortcuts that
WebProtégé now provides as they made our work more efficient.

7 Discussion

In the past decade, researchers developed a number of Web-based ontology-
development tools, such as OntoWiki [14], MoKi [15], Neologism [16], Pool-
Party [17], TopBraid EVN and others. Similarly, semantic wikis add semantic
capabilities to traditional wikis. These semantic wikis [18] usually associate a
Web page with a particular instance in the ontology, and the semantic Web
annotations are converted into properties of that instance. Several works have
proposed using controlled natural language to enter OWL constructs as a way
of simplifying construction of OWL ontologies [19,20]. These tools make a va-
riety of trade-offs in terms of which constructs to present to the users. To the
best of our knowledge, WebProtégé is the first web-based interface for ontology
development designed empirically, based on a large ontology corpus.

We used one corpus—BioPortal—to design the interface. Our evaluation of this
interface against a new corpus demonstrated the general validity of our approach.
At the same time, it highlights two key types of axioms—disjoint classes axioms

214 M. Horridge et al.

and equivalent classes axioms—that account for a notable fraction of this new cor-
pus that cannot be represented in the WebProtégé profile.We are currently evalu-
ating several approaches to extend the expressive power of the user interface. First,
we can expand the default UI to account for these types of axioms.Wewill evaluate
how much it affects the simplicity and usability of the interface: there is a danger
that adding more expressive power will clutter the interface and take away what
the users currently like about it. Second, we can design a second preconfigured
interface, which will be geared towards the users who are more experienced with
OWL and will provide greater expressive power. We plan to investigate whether
or not we can limit the default interface to a single interface that satisfies all our
users (something that our survey indicates might be possible) or whether we need
multiple configurations. Finally, we can leave it up to the users to configure the
WebProtégé UI to satisfy their needs. One of the key features of WebProtégé is
that it allows users to custom-tailor their interface, choosing which components
they see in the class definitions, and which widgets they use from each component.
For instance, a user that needs to write complex OWL class expressions that are
not supported by the simple UI can enable a UI component that looks similar to
the class description editor in the desktop version of Protégé.

8 Conclusions

In this paper, we presented the new version of WebProtégé, a web-based OWL
ontology editor with an empirically designed simple user interface. This user
interface accounts for a large fraction of ontologies and class frames in two large
ontology corpora. Yet, a mix of beginner and expert users perceive it as being
both easy to use and easy to learn and they are satisfied with the interface. Our
data shows a significant community uptake. These results point to a novel way
to address the complexity of ontology development through an iterative process
that relies on empirical data and feedback from the user community.

Acknowledgements. This work was supported by grants GM086587 and
GM103316 from the National Institute of General Medical Sciences at the United
States National Institute of Health. We are indebted to all the Protégé users for
their continuous feedback and support.

References

1. Gibson, A., Wolstencroft, K., Stevens, R.: Promotion of ontological comprehen-
sion: Exposing terms and metadata with Web 2.0. In: Workshop on Social and
Collaborative Construction of Structured Knowledge at WWW 2007 (2007)

2. Nixon, L., Garćıa-Castro, R., Wrigley, S., Yatskevich, M., Santos, C.T.D., Cabral,
L.: The state of semantic technology today - overview of the first SEALS evaluation
campaigns. In: 7th Int. Conf. on Semantic Systems (2011)

3. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.
Semantic Web Journal 2(1), 11–21 (2011)

4. Musen, M.A., Noy, N.F., Shah, N.H., Whetzel, P.L., Chute, C.G., Storey, M.A.,
Smith, B.: The NCBO team: The National Center for Biomedical Ontology. Journal
of American Medical Informatics Association 19, 190–195 (2012)

Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 215

5. Whetzel, P.L., Noy, N.F., Shah, N.H., Alexander, P.R., Nyulas, C.I., Tudorache, T.,
Musen, M.A.: BioPortal: Enhanced functionality via new web services from the na-
tional center for biomedical ontology to access and use ontologies in software appli-
cations. Nucleic Acids Research (NAR) 39(Web Server issue), W541–W545 (2011)

6. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2Web Ontology Language struc-
tural specification and functional style syntax. W3C Recommendation. In: W3C –
World Wide Web Consortium (2009)

7. Mungall, C.: OBO Flat File Format 1.4 syntax and semantics (2011)
8. Golbreich, C., Horridge, M., Horrocks, I., Motik, B., Shearer, R.: OBO and OWL:

Leveraging semantic web technologies for the life sciences. In: Aberer, K., Choi,
K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P.,
Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007
and ISWC 2007. LNCS, vol. 4825, pp. 169–182. Springer, Heidelberg (2007)

9. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: WebProtégé: A collabora-
tive ontology editor and knowledge acquisition tool for the web. Semantic Web
Journal 4(1) (2013)

10. Corcho, Ó., Roussey, C.: OnlynessIsLoneliness (oil). In: Proceedings of the Work-
shop on Ontology Patterns (WOP 2009) (2009)

11. Rector, A.L., Drummond, N., Horridge, M., Rogers, J.D., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A.,
Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 63–81. Springer,
Heidelberg (2004)

12. Horridge, M., Parsia, B., Sattler, U.: The state of biomedical ontologies. In: BioOn-
tologies 2011 Co-Located with ISMB (2011)

13. Nielsen, J.: Usability Engineering. Academic Press/Morgan Kaufmann (1994)
14. Auer, S., Dietzold, S., Riechert, T.: OntoWiki–a tool for social, semantic collab-

oration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749.
Springer, Heidelberg (2006)

15. Ghidini, C., Kump, B., Lindstaedt, S., Mahbub, N., Pammer, V., Rospocher,
M., Serafini, L.: MoKi: The enterprise modelling wiki. In: Aroyo, L., Traverso,
P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E.,
Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 831–835. Springer,
Heidelberg (2009)

16. Basca, C., Corlosquet, S., Cyganiak, R., Fernández, S., Schandl, T.: Neologism:
Easy vocabulary publishing. In: Workshop on Scripting for the Semantic Web
(ESWC 2008) (2008)

17. Schandl, T., Blumauer, A.: Poolparty: Skos thesaurus management utilizing linked
data. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt,
H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp.
421–425. Springer, Heidelberg (2010)

18. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In: Cruz, I., Decker,
S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 935–942. Springer, Heidelberg (2006)

19. Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a control natural lan-
guage for authoring ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 348–360. Springer, Hei-
delberg (2008)

20. Power, R.: OWL simplified english: A finite-state language for ontology editing.
In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer,
Heidelberg (2012)

	Simplified OWL Ontology Editing for the Web:
Is WebProt´eg´e Enough?
	1 Introduction
	2 Preliminaries
	3 An Overview of WebProteg´e ´
	4 The WebProt´eg´e Profile (WPP)
	5 Evaluating Coverage
	6 Evaluating Usability
	7 Discussion
	8 Conclusions
	References

