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Preface

How often have you seen a proceedings preface cited on Google Scholar? Or a
person interviewed who refers to “that great preface article from ISWC-2013
that changed my life.” A lot of work goes into organizing a conference and when
it starts winding down towards the end and you suddenly realize, “Oh crap, I
forgot to write the preface!” these thoughts of futility enter your mind and get
in the way. I don’t expect anyone will ever read this.

That said, I’m so honored to have the chance to introduce the proceedings
for this, the twelfth in the ISWC series of conferences and proceedings. Twelve
is, as I’m sure everyone reading this (which, as a mildly autistic logically-trained
and obsessive-compulsive scientist, I have to point out is no one, making the
statement tautologically true) knows, a very important number. It is divisible
by 2,3,4, and 6, unlike the over-celebrated number 10, which is a stupid number
that just so happens to correspond to the normal number of fingers. Why such
an accidental freak of nature should cause this number to become so revered is
beyond me. But I digress.

In a mere 2×2×3 years, the Semantic Web has grown from a debateable and
even controversial topic, discussed by a eclectic community of overly-enthusiastic
entrepreneurs, web developers, and refugees from the AI winter, to an eclectic
community of overly-enthusiastic entrepreneurs, web developers, and inductees
into the AI Hall of Fame. Many of our articles are highly cited, and the conference
itself enjoys a journal level impact factor.

I’m personally excited to express to all of you not reading this that the com-
munity has evolved significantly since the early days of the “machine-readable
Web.” Our proceedings reflects that evolution, with a large number of purely
applied papers, some excellent data science, big data, and even a few papers on
the dreaded “O” word. We seem to have moved past envisioning and designing
the semantic web to using and experimenting with it – because without a doubt,
the semantic web exists.

This volume contains the main proceedings of the International Semantic
Web Conference (ISWC 2013), which was held in Sydney, Australia, in October
2013, making this the twelfth ISWC preface not to be read by anyone. The
Research Track of the conference attracted 210 submissions, all of which were
read (see below), and 45 of which were accepted, resulting in a 21% acceptance
rate. The in-use track received 90 submissions and 16 papers were accepted,
resulting in an 18% acceptance rate. Both the in-use and research tracks saw
more submissions than last year and became more selective. Over the past ten
years of unread ISWC prefaces, the research track submission numbers have
fluctuated between 181 and 264, making this year typical. If we add in the
evaluation and in-use tracks, overall submissions to the conference were 332,
which is the second highest of all time.



VI Preface

Each paper received at least three, and sometimes as many as five, reviews
from members of the Program Committee (impressive, indeed, compared to the
number of readers of the preface). After the first round of reviews, authors had
the opportunity to submit a rebuttal, leading to further discussions among the
reviewers, a meta-review and a recommendation from a member of the Senior
Program Committee (SPC). The SPC held a long virtual meeting in order to
select the final set of accepted papers, paying special attention to papers that
were borderline or had at least one recommendation for acceptance. In many
cases, additional last- minute reviews were sought out to better inform the SPC’s
decision.

This edition of the International Semantic Web Conference marks the sec-
ond year of the Evaluations and Experiments Track. The goal of this track is to
consolidate research material and to gain new scientific insights and results by
providing a place for in-depth experimental studies of significant scale. It aims
at promoting experimental evaluations in Semantic Web/Linked Data domains
where availability of experimental datasets and reproducibility of experiments
are highly important. The Evaluations and Experiments track received 32 sub-
missions from all areas of the Semantic Web. Ten papers were accepted, corre-
sponding to a 31% acceptance rate. We consider this track to be in the incubator
stage, and will continue to promote it in future years.

I cannot even begin to tell you, the non-reader of this preface, of the grati-
tude that we all owe to the excellent Organizing Committee, and especially to
the local organizers Kerry Taylor and Armin Haller. Everyone worked incredibly
hard to ensure the conference was a productive, informative and enjoyable expe-
rience, and receive nothing for their efforts beyond the satisfaction of seeing the
conference go well, our hopefully-not-unexpressed gratitude, and having their
names listed in the unread preface.

Chris Welty, General Chair on behalf of the editors:

August 2013 Harith Alani
Lalana Kagal

Research Track Chairs

Achille Fokoue
Paul Groth

In-Use Track Chairs

Chris Biemann
Josiane Xavier Parreira
Evaluation Track Chairs

Lora Aroyo
Natasha Noy

Doctoral Consortium Chairs

Krzysztof Janowicz
Proceedings Chair
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Sören Auer Universität Leipzig, Germany
Oscar Corcho Universidad Politécnica de Madrid, Spain
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Jérôme Euzenat
Anna Fensel
Miriam Fernandez
Achille Fokoue
Enrico Franconi
Bo Fu
Mark Gahegan
Aldo Gangemi
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Progress in Open-World, Integrative,

Transparent, Collaborative Science Data
Platforms

Peter Fox

Tetherless World Constellation
Rensselaer Polytechnic Institute, US

pfox@cs.rpi.edu

Abstract

As collaborative, or network science spreads into more science, engineering and
medical fields, both the participants and their funders have expressed a very
strong desire for highly functional data and information capabilities that are
a) easy to use, b) integrated in a variety of ways, c) leverage prior investments
and keep pace with rapid technical change, and d) are not expensive or time-
consuming to build or maintain. In response, and based on our accummulated
experience over the last decade and a maturing of several key semantic web
approaches, we have adapted, extended, and integrated several open source ap-
plications and frameworks that handle major portions of functionality for these
platforms. At minimum, these functions include: an object-type repository, col-
laboration tools, an ability to identify and manage all key entities in the platform,
and an integrated portal to manage diverse content and applications, with varied
access levels and privacy options.

At the same time, there is increasing attention to how researchers present
and explain results based on interpretation of increasingly diverse and heteroge-
neous data and information sources. With the renewed emphasis on good data
practices, informatics practitioners have responded to this challenge with matur-
ing informatics-based approaches. These approaches include, but are not limited
to, use case development; information modeling and architectures; elaborating
vocabularies; mediating interfaces to data and related services on the Web; and
traceable provenance. The current era of data-intensive research presents numer-
ous challenges to both individuals and research teams. In environmental science
especially, sub-fields that were data-poor are becoming data-rich (volume, type
and mode), while some that were largely model/ simulation driven are now dra-
matically shifting to data-driven or least to data-model assimilation approaches.
These paradigm shifts make it very hard for researchers used to one mode to shift
to another, let alone produce products of their work that are usable or under-
standable by non-specialists. However, it is exactly at these frontiers where much
of the exciting environmental science needs to be performed and appreciated.



XX Organization

Research networks (even small ones) need to deal with people, and many
intellectual artifacts produced or consumed in research, organizational and/our
outreach activities, as well as the relations among them. Increasingly these net-
works are modeled as knowledge networks, i.e. graphs with named and typed
relations among the ‘nodes’. Some important nodes are: people, organizations,
datasets, events, presentations, publications, videos, meetings, reports, groups,
and more. In this heterogeneous ecosystem, it is important to use a set of com-
mon informatics approaches to co-design and co-evolve the needed science data
platforms based on what real people want to use them for.

We present our methods and results for information modeling, adapting, in-
tegrating and evolving a networked data science and information architecture
based on several open source technologies (e.g. Drupal, VIVO, the Comprehen-
sive Knowledge Archive Network; CKAN, and the Global Handle System; GHS)
and many semantic technologies. We discuss the results in the context of the
Deep Carbon Virtual Observatory and the Global Change Information System,
and conclude with musings on how the smart mediation among the components
is modeled and managed, and its general applicability and efficacy.



Light at the End of the Tunnel

Ramanathan V. Guha

Google Inc., US
guha@guha.com

Abstract

A significant fraction of the pages on the web are generated from structured
databases. A longstanding goal of the semantic web initiative is to get webmas-
ters to make this structured data directly available on the web. The path towards
this objective has been rocky at best. While there have been some notable wins
(such as RSS and FOAF), many of the other initiatives have seen little industry
adoption. Learning from these earlier attempts has guided the development of
schema.org, which appears to have altered the trajectory. Two years after its
launch over 4 million Internet domains are are using schema.org markup.

In this talk, we recount the history behind the early efforts and try to un-
derstand why some of them succeeded while others failed. We will then give an
update on Schema.org, its goals, accomplishments and where it is headed. We
will also discuss some of the interesting research problems being addressed in
the context of this effort.



Semantic Big Data in Australia – From Dingoes

to Drysdale

Jane Hunter

School of ITEE, The University of Queensland, Australia
j.hunter@uq.edu.au

Abstract

This keynote will describe a number of projects being undertaken at the Univer-
sity of Queensland eResearch Lab that are pushing Semantic Web technologies
to their limit to help solve grand challenges in the environmental, cultural and
medical domains. In each of these use cases, we are integrating multi-modal data
streams across space, time, disciplines, formats and agencies to infer and expose
new knowledge through rich multi-layered and interactive visualizations. We are
developing hypothesis-based query interfaces that provide evidence to validate
or refute hypotheses and decision support services that recommend the optimum
actions given current or predicted scenarios. We are using ontologies to influence
and adapt government policies by linking policy-driven implementations, invest-
ments and management actions to real world indicators. Through evaluation of
the methods and assessment of the achievements associated with the OzTrack
[1,2], eReef [3], Skeletome[4] and Twentieth Century in Paint[5] projects, I will
highlight those Semantic Web technologies that have worked for us and our user
communities, those that haven’t and those that need improvement. Finally I will
discuss what I believe will be the major outstanding research challenges facing
Semantic Big Data in the next 5 years and those research areas with the greatest
potential for impact.

References

1. J.Hunter, C.Brooking, W.Brimblecombe, R.Dwyer, H.Campbell, M.Watts,
C.Franklin, OzTrack – e-Infrastructure to support the Management, Analysis
and Sharing of Animal Tracking Data, IEEE eScience, Beijing, October 2013.

2. L.Gao, H. Campbell, O. Bidder and J. Hunter, A Web-based Semantic Tag-
ging and Activity Recognition System for Species’ Accelerometry Data, El-
sevier, Ecological Informatics, Vol 13, January 2012, pp 47-56.

3. J.Hunter, A.Gebers, T.Dettrick, Automating Online Reef Report Cards –
Linking Land Management Practices to Water Quality and Coral Reef
Ecosystem Health, HAICTA 2013, September, 2013, Corfu, Greece.
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4. T. Groza, A. Zankl, Y-F Li, J.Hunter, Using Semantic Web Technologies to
Build a Community-driven Knowledge Curation Platform for the Skeletal
Dysplasia Domain, ISWC 2011 In Use Track, 2011.

5. J. Hunter and S. Odat, Building a Semantic Knowledge-Base for Painting
Conservators, IEEE eScience 2011, Stockholm, Dec 6-8, 2011.
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Abstract. Text-rich structured data become more and more ubiqui-
tous on the Web and on the enterprise databases by encoding heteroge-
neous structural information between entities such as people, locations,
or organizations and the associated textual information. For analyzing
this type of data, existing topic modeling approaches, which are highly
tailored toward document collections, require manually-defined regular-
ization terms to exploit and to bias the topic learning towards structure
information. We propose an approach, called Topical Relational Model, as
a principled approach for automatically learning topics from both textual
and structure information. Using a topic model, we can show that our
approach is effective in exploiting heterogeneous structure information,
outperforming a state-of-the-art approach that requires manually-tuned
regularization.

1 Introduction

We study the problem of learning on text-rich structured data that shares these
main characteristics: it describes interconnected objects (relational) of differ-
ent types (heterogeneous) that are associated with textual attributes (text-rich).
Examples include graph-structured RDF data forming connected resource de-
scriptions and relational database records containing textual values that are
connected via foreign keys.

Topic modeling (TM) approaches have shown to be effective for dealing with
text, which recently, have also been extended to deal with the combination of
textual and structured data [1–9]. However, when dealing with the text-rich
structured data as we consider as an input in this paper (as shown Fig. 1),
two problems mainly arise: First, such data mostly consists of a heterogeneous
structure such as many classes and relations each of which has varying effects
on different topics. Thus entities having different structure information in the
data need to have different topic distributions. For example, any Company entity
having product relation is more related to a topic about manufacturing than
another Company entity of being a movie distributor. Usually such correlations

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 1–16, 2013.
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2 V. Bicer et al.

between the topics and these structural elements (i.e. classes and relations) are
not one-to-one, but the latter can be correlated to one or more topics with
different proportions. Previous TM approaches are not well suited to handle such
complex correlations between the structure and text since they either consider
a homogeneous structure (e.g. social networks [5], citation networks [7] or Web
links [8]) or networks with a few types of relations [9, 7]. An alternative solution
to handle such complex correlations can also be applying Statistical Relational
Learning (SRL) techniques [10] which are naturally formulated as instances of
learning a probabilistic model (e.g. Markov Logic Network (MLN) [11] or (non-
)linear link functions [12]) from the data. However the main problem of directly
applying the SRL techniques into our setting is about handling textual data since
they consider the input data to be available in a sort of structured form (e.g. a
user-movie matrix indicating whether a user likes a movie). Only few works exist
that utilize SRL to learn from text-rich structured data [13, 12] but mainly suffer
from a large and complex structured network required for textual data. At this
point, using the latent topics as low-dimensional representation of textual data
provides a better way to incorporate textual information into the SRL models.

Yet another problem also arises due to the sparsity of these correlations be-
tween the topics and the structure. For example, in Fig. 2 the class City is highly
correlated to the topic t4 but not to the other three topics. Such sparsity is not
well addressed by the previous work, especially the ones focusing on heteroge-
neous networks (e.g. [9, 7]) which aims the topic smoothness instead of sparsity.
One exception to this is the focused topic model [14] which utilizes latent feature
models to control sparsity but it is an unsupervised approach and does not take
the structure information into account.

Fig. 1. An example data graph
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In this paper, we propose Topical Relational Model (TRM) that uses rela-
tional information in structured data for topic modeling (text analysis tasks),
and also allows the learned topics to be employed as a low-dimensional repre-
sentation of the text to capture dependencies between structured data objects.
The main novel aspects of this model are: (1) compared to previous SRL works,
TRM employs hidden topic variables to reduce model complexity. TRM uses
latent topics to represent textual information, targeting the specific case of text-
rich structured data. In this way, it provides a systematic way to learn low-
dimensional features from text (i.e., topics) that can be used for SRL-related
tasks. We show in experiments that topics learned by TRM outperform the
features manually specified in previous SRL works [12, 11]. (2) Compared to
existing TM approaches, TRM is able to exploit the richness in relational infor-
mation available in structured data. With TRM, the learning of topics recognizes
the heterogeneity of classes and relations associated with entities. While some
related TM work [9] requires manually defined regularization terms to exploit
this heterogeneous structure information, TRM captures correlations between
structure and topics through dedicated latent feature model parameter in order
to better handle the sparsity of the correlations. In experiments, we show that
leveraging relational information this way, TRM improves the performance of
state-of-the-art TM approaches [9, 15]. (3) TRM is unique in its hybrid nature:
it is a topic model that incorporates structure in addition to textual information;
at the same time, it is also a Bayesian network capturing relational dependencies
between text-rich objects that can be employed for SRL tasks.

Structure. We present the main ideas behind TRM in Sec. 2.1, TRM variables
in Sec. 2.2 and their dependencies in Sec. 2.3. Sec. 2.4 describes the generative
process, which is reversed in Sec. 2.5 for learning TRM. Experimental results
are presented in Sec. 3, followed by conclusions in Sec. 4.

2 Topical Relational Models

TRM supports different types of graph-structured data including relational, XML
and RDF data. The focus lies on text-rich data describing objects through tex-
tual attributes. More formally, the data is a directed graph G = (V ,R) (see
Fig.1), where V is the disjoint union V = VC �VE representing classes and enti-
ties, respectively, and R stands for binary relations between entities. The set of
classes an entity e belongs to is denoted C(e) = {c | type(e, c)} (type is a special
relation that connects an entity node with a class node), while the relations e
is involved in is R(e) = {r | r(e, e′), r(e′, e) ∈ R ∧ e, e′ ∈ VE}. In our text-rich
data setting, every entity also has some textual attribute values such as name,
comment and description. To incorporate this, every entity node e ∈ VE is
treated as a document, i.e., modeled as a bag of words e = {w1, . . . , w|e|}, which
contains all words in the textual values of e.
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Fig. 2. An excerpt of the TRM result for DBpedia. It captures four TRM topics and
and their top ranked words. Further, classes that are highly correlated with individual
topics and relations that are highly correlated with pairs of topics are shown (strength
of correlation shown in brackets).

2.1 TRM

TRM is a topic model representing G through a set of topics T = {ti, . . . , tK}.
Each t ∈ T is a probabilistic distribution {p(w | t)}w∈V , where

∑
w∈V p(w | t) = 1

and V is the vocabulary of words. However, the context from which topics are
derived is not made up of plain words but also includes entities, classes and rela-
tions in G. This is reflected in the TRM’s output, which includes topics as well as
their strength of correlation w.r.t. words, classes and relations. Fig. 2 illustrates
this. For instance, we can see that the related words employ and merger form
the topic t1. Further, t1 is not only drawn from words but also, correlates with
entities of the types Organization and Company. This topic (and its associated
words) correlates with other topics (words) such as t3 (brand and engine) in
the context of the manufacturer relation.

Because TRM also captures dependencies between structure elements (classes
and relations), it can also be seen as a SRL approach. However, it captures them
only indirectly using topics, which act as a low-dimensional abstraction of the
text. We now present the TRM’s Bayesian network representation to show these
relational dependencies conditioned on topics.

2.2 Template-Based Representation of TRM

A template-based representation of Bayesian networks [16] is used to define TRM
as a set of template attributes and template factors.

Let X denotes some of the random variables, X = {X1, ..., Xn}, where each
Xi ∈ X can be assigned a value from the range V al(Xi). Then, a template at-
tribute (or attribute hereafter) is a function A(α1, ..., αk), whose range is V al(A),
and each argument αi is a placeholder to be instantiated with values of a par-
ticular type. For example, there are the template attributes Company(α1) and
headquarter(α1, α2). The values used to instantiate αi are drawn from the data,
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called the object skeleton, O(A). Given O(A), the variables instantiating A is
XO(A) = {A(o) | o ∈ O(A)}, where V al(Xi) = V al(A) for each Xi ∈ XO(A).
For example, from Company(α1) and O(Company) = {c1, c2, c3}, we obtain the
random variablesXO(Company) = {Company(c1), Company(c2), Company(c3)}.

Template factors are used to define probability distributions over random
variables. They are templates because instead of ground variables, template at-
tributes are taken as arguments. They return real numbers for assignments of
variables instantiated from template attributes, i.e., given a tuple of attributes
A1, ..., Al, a template factor f is a function from V al(A1) × ... × V al(Al) to R.
A special template factor is the conditional probability distribution, which splits
the attributes into two groups, Ac,APa ⊆ {A1, ..., Al}, called child and parent
attributes.

Observed Variables. Elements in G are used to instantiate three template
attributes defined for observed variables, namely the class c, the relation r
and the entity-word assignment w. Their object skeletons are entities belong-
ing to the type c, relations of the type r, and words in the entities’ bag-of-words
representation, i.e., O(c) = {e|c ∈ C(e)}, O(r) = {(e, e′)|r(e, e′) ∈ R} and
O(w) = {(e, v) | e ∈ VE ∧ v ∈ e}. These templates are binary-valued func-
tions, indicating whether an entity, a relation instance or an entity-word assign-
ment exists or not. For example, the variables Company(c1), product(c1, p1)
and w(c1, car) obtained for these templates model whether there is an entity c1

that is a company, p1 is a product of c1 and car is a word associated with c1,
respectively.

Observe that some entity-word assignments are dependent on a particular re-
lation. For instance, the probability of observing the assignment w(e,munich)
is very high, given headquarter(e, e′) indicating “BMW, the company e, has its
headquarter in Germany, the country e′”. Further, such dependencies may exist
only for some particular entities – e.g. not every entity that has its headquarter
in Germany contains the word munich but some other words representing other
cities in Germany. Instead of modeling dependencies between all observable vari-
ables (words and structure elements) directly, TRM models variables as being
dependent on hidden topic-related variables.

Hidden Topic-Related Variables. The hidden topic variables are captured
by the template attributes topic indicator b, topic proportion θ and topic-word
assignment z. For these templates, we need object skeletons that also range
over the topics T . In particular, b is instantiated with entities and topics in the
skeletons O(b) = {(e, t)|e ∈ VE , t ∈ T }. It is a binary-valued function such that
for an entity e, bt(e) = 1 indicates that t is a topic of e. The vector of all topic
indicator variables of e is b(e) = 〈bt1(e), . . . , btK (e)〉.

While b(e) is useful to determine which topics are present for an entity e,
it does not capture sufficient information to model the probabilities of entity
words. Following the tradition of topic modeling, θ is introduced for modeling
entity words through a distribution of topics. While θ is defined over the same
skeletons, it is different to b in that it is real-valued: for an entity e, θt(e) returns a
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Fig. 3. (a) Template-based representation around the entity c1 with observed variables
(dark) and hidden topic-related variables (light). (b) The generative process for two
entities shown in plate notation.

real number and θ(e) = 〈θt1(e), . . . , θtK (e)〉 defines a per-entity topic distribution
such that

∑
t∈T θt(e) = 1.

The semantics of the per-entity topic-word assignment is the same as in LDA.
To capture this, we define a template attribute z that has the same skeleton as
w. However, instead of a binary value, it returns a topic for an entity-word pair,
i.e., z(e, v) = t indicates that the word v associated with e belongs to topic t.

Fig. 3-a depicts variables obtained by instantiating the templates with infor-
mation about the entity c1.

2.3 Probabilistic Dependencies in TRM

Central to TRM is the assumption that given the topic indicator vector of an
entity, all its random variables derived from class and relation attributes are
conditionally independent. That is, instead of capturing dependencies between
these structure variables directly, we propose to use hidden topics. We want
to capture that when entities exhibit structural resemblances, their topics shall
also be similar. Vice versa, given some topics, some structure elements are more
likely to be observed than others. We introduce the model parameters λ and ω
to capture the quantity of how much a particular structure variable depends on
a topic (pair of topics).

First, we consider that the probability of observing an entity e belonging to a
class c depends on its topic indicator vector b(e). We model this as a template
factor captured by a logistic sigmoid function defined over a linear combination
of topic indicators, i.e.,

p(c(e) | b(e)) = σ(λT
c b(e)) = σ

⎛
⎝∑

ti∈T

bti(e) λci

⎞
⎠ (1)
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where σ(x) = 1
1+e−x is the logistic sigmoid mapping values from [−∞,+∞] to

[0, 1] and λ is a global parameter represented as a |VC |×K matrix. Each element
λci in the vector λc represents the strength of dependency between the class c
and topic ti.

Similarly, the probability of observing a relation r(e1, e2) is modeled via lo-
gistic regression over the topic indicator vectors b(e1) and b(e2). A template
factor over r(e1, e2), b(e1) and b(e2) is defined as

p(r(e1, e2) | b(e1),b(e2)) = σ(b(e1)
Tωrb(e2)) (2)

where b(e1)
Tωrb(e2) =

∑
tk,tl∈T btk(e1)btl(e2)ωrkl and ωr is a K ×K matrix.

For any given two entities e1 and e2, where e1 has the topic indicator tk and e2
has tl, the weight of observing a relation r between these two entities is given as
the value of the cell (k, l) of the matrix ωr denoted as ωrkl.

Further, we employ the topic parameters θ and z to bring words into this
picture. We want to capture that given some topics, some words are more likely
than others. This part essentially follows the idea of topic modeling behind LDA.
The only difference is that while LDA defines the topic proportion θ(e) over all
topics, θ(e) here is defined only over the topics captured by the corresponding
topic indicator vector b(e), i.e., topics not in b(e) have no density in θ(e) (this
creates a sparsity of topics similar to focused topic modeling [14]). To capture
this, we introduce the template factor p(θ(e) | b(e)).

This is an important design decision: On one hand, in order to handle the
sparsity of dependencies that occur between the structure variables and the top-
ics, the topics indicated in b(e) determines the probability of observing structure
for the entity. On the other hand, the topic proportions of the entity in θ(e) is
governed by the topic indicator vector b(e) which in turn is determined by the
structure around the entity.

2.4 Generative Process

We specify the full joint distribution for TRM and the generative process so
that we can infer hidden variables from observed data in G. First, we start with
the vector b that specifies binary topic indicators for each entity. We use a
prior distribution over the possible values in b in order to capture our initial
uncertainty about the parameters. Obtaining such a prior is possible with the
Indian Buffet Process (IBP), which is a non-parametric Bayesian process used to
generate latent features via a Beta-Bernoulli distribution [17]. IBP assumes that
each entity e possesses a topic t with probability πt, and that topic indicators
in b(e) are then generated independently. Under this model, the probabilities of
the topics are given as π = {π1, ..., πK}, and each πt follows a Beta distribution
with hyperparameter α, i.e., p(πt | α) = Beta(α/K, 1). Then, for an entity e,
each topic indicator value is sampled from a Bernoulli distribution as p(bt(e) |
πt) = Bernoulli(πt). IBP can be utilized for both finite and infinite number
of topics [18]. Using infinite number of topics dynamically has great benefits in
the case of an unsupervised topic learning so that number of topics gets larger
whenever the need arises. However, in our case we are mostly interested in the
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words of the entity to be distributed only to those topics selected for the classes
and relations that entity has (no matter how many words the entity has, because
we want to bias the topics according to structure). That’s why, for the purpose of
this work, we set the number of topics to a fixed K so that variational inference
can be applied to learn the model in the exponential family [18]. For θ(e), we
set a Dirichlet prior over the topics just like in LDA. However, instead of using a
uniform hyperparameter, we parametrize the Dirichlet with topic indicators b(e):
p(θ(e) | b(e), ρ) = Dirichlet(ρb(e)). As the number of selected topics varies
according to b(e), each entity will have a different density of topic proportions.
For the topic index z and word attribute w, the same process as defined for LDA
involving the hyperparameter β is used. We arrive at the following generative
process (see Fig. 3-b):

1. For each topic t = 1, 2, ..,K:
(a) Draw πt | α ∼ Beta(α/K, 1).

2. For each entity e:
(a) For each topic t:

i. Draw bt(e) | πt ∼ Bernoulli(πt)
(b) For each class c of entity e:

i. Draw c(e) using Eq. 1
(c) Draw θ(e) | ρ ∼ Dir(ρb(e))
(d) For each word v of entity e:

i. Draw topic index z(e, v) | θ(e) ∼Mult(θ(e))
ii. Draw word w(e, v) | z(e, v), β1:K ∼Mult(βz(e,v))

3. For each pair of entities e, e′:
(a) For each relation r ∈ {r | r(e, e′), r(e′, e) ∈ R}:

i. Draw r(e, e′) or r(e′, e) using Eq. 2

2.5 Learning

We propose to learn the posterior distribution of the hidden topic-related vari-
ables b, θ,π and z conditioned on the observed variables w, c and r via varia-
tional Bayesian learning [19]. Intuitively, the variational method approximates
the posterior distribution of p by another simpler distribution q. In particu-
lar, through mean field approximation [19], we have q as a distribution that is
fully-factorized over the hidden variables indexed by the free variational param-
eters ν,γ,φ and τ for Bernoulli, Dirichlet, Multinomial and Beta distribution,
respectively:

q(b,π, θ, z | ν,γ,φ, τ) =

K∏

t=1

⎡

⎣q(πt | τt1, τt2)
∏

e∈VE

q(bt(e) | νt(e))

⎤

⎦

∏

e∈VE

⎡

⎣q(θ(e) | γ(e))
∏

(e,v)∈O(w)

q(z(e, v) | φ(e, v))

⎤

⎦ (3)

These variational parameters are then fit such that q is close to the true
posterior of p, where closeness is measured by the KL-divergence, KL(q ‖ p).
Because the decomposition log p(c, r,w) = KL(q ‖ p) + L(q) and KL(q ‖ p) ≥ 0
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hold [19], minimizing the KL-divergence is equivalent to maximizing the term
L(q), the variational lower bound on the log marginal likelihood. The learning
problem can then be expressed as optimizing

{τ, ν, γ, φ} = argmax
{τ,ν,γ,φ}

L(q) (4)

For this, we use the 2-steps variational Bayesian EM algorithm. It takes the
fixed hyperparameters α and ρ and an initial choice of the model parameters β, λ
and ω as inputs. Then, it iteratively updates the variational parameters τ, ν, γ
and φ until convergence in the E-step. Then, for fixed values of the variational
parameters, the model parameters β, λ and ω are iteratively computed in the
M-step. Thus, parameters are updated until convergence within the two steps,
and both steps are run until convergence in the outer loop of the EM.

Variational E-Step. Update equations for this step can be obtained by setting
the derivative of L(q) equal to zero. For each topic t ∈ K, we compute τt1 and
τt2 of the Beta distribution as

τt1 =
α

K
+

∑
(e,t)∈O(b)

νt(e) (5)

τt2 = 1 + |O(b)| −
∑

(e,t)∈O(b)

νt(e) (6)

The update of νt(e) is given as νt(e) =
1

1+eϑt(e)
where

ϑt(e) = ϑτ +
∑

c∈C(e)

ϑc +
∑

r(e,e′)∈R
ϑr1 +

∑
r(e′,e)∈R

ϑr2 + ϑγ (7)

The update in Eq. 7 has five different parts. The contribution from the Beta prior
can be computed by ϑτ = Ψ(τt1) − Ψ(τt2) where Ψ(·) is the digamma function.
For each class c ∈ C(e) the contribution to the update is given by

ϑc = (1− σ(λT
c ν(e)))λct (8)

If the entity is the source of a relation, i.e., we have r(e, e′), the contribution is

ϑr1 = (1− σ(ν(e)Tωrν(e
′)))ωrt.ν(e

′) (9)

or if it is the target, i.e. r(e′, e), the contribution is

ϑr2 = (1− σ(ν(e′)Tωrν(e)))ωr.tν(e
′) (10)

and ϑγ is updated by

ϑγ = ρ (Ψ(γt(e))− Ψ(
∑
t′

γt′(e))) (11)

The variational Dirichlet parameter γt(e) is

γt(e) = ρνt(e) +
∑

(e,v)∈O(w)

φt(e, v) (12)
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The contribution to the update in Eq. 12 includes the variational multinomial
φt(e, v) and also the variational parameter νt of the corresponding topic indicator
bt, i.e., q(bt(e) | νt(e). This is the direct result of parameterizing the Dirichlet
distribution with the topic indicator vector of each entity instead of using a
non-informative prior α as in LDA.

The updates for the variational multinomial φt(e, v) is identical to that in
variational inference for LDA [15]:

φt(e, v) ∝ exp{logβtv + Ψ(γt(e))− Ψ(
∑
t′

γt′(e))} (13)

where φt(e, v) = q(z(e, v) = t).

Variational M-Step. The update for the topic parameter β is the same as in
LDA because also here, the words are conditionally dependent on β and z.

In order to fit the parameters λ and ω of the logistic regression defined by Eq.
1 and 2, respectively, we employ gradient-based optimization. At each iteration,
we perform updates using the gradient

�λct =
∑
e∈VE

(1− σ(λT
c ν(e)))νt(e) (14)

for each class c and topic t and

�ωrtt′ =
∑

r(e,e′)∈∈R
(1− σ(ν(e)Tωrν(e

′)))ωrtt′νt′(e
′) (15)

for each relation r and topics t and t′.
These gradients cannot be used directly since they are only calculated for

positive observations of classes and relations. For the unobserved cases (r(e, e) =
0) a regularization penalty is applied so the updates decreases ω and λ in each
iteration for the topics controlled by the Beta-Bernoulli prior of b. This also
introduces sparsity of the weights in ω and λ according to the topics selected
in b. In particular, let ε be the number of observations (e.g. entities) for which
the class membership is unknown such that c(e) = 0 and π be a topic-indicator
vector set to be the mean of the Beta-distributed variable π, π = τ1

τ1+τ2
. Then,

the regularization for λc is Rλc
= −ε(σ(λT

c π))π. Similarly, let ζ be the number
of observations where a particular relation is unknown (i.e. r(e, e′) = 0). Then,
the regularization term for ωr is Rωr

= −ζ(σ(πTωrπ)π.

3 Experiments

First, we aim to obtain an initial understanding of the (1) quality of the topic
model produced by TRM. Then, we provide a quantitative analysis of TRM by
comparing its performance to state-of-the-art TM and SRL approaches w.r.t. the
(2) object clustering and (3) link predication tasks, respectively.

Datasets. We use a subset of DBpedia containing 20,094 entities described by
112 distinct classes and 49 different types of relations. All attribute values are
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treated as textual information and put into bags of words. The resulting vocabu-
lary comprises 26,109 unique words after stop word removal. We also employ the
DBLP1 dataset. The abstract and title of the papers are treated as textual data.
In addition, authors and conferences and their relations to papers are taken into
account. We use a subset of papers that belong to the fields of database, data
mining, information retrieval and artificial intelligence. In total, there are 28,569
paper, 28,702 author and 20 conference entities, and a vocabulary comprising
11,771 unique words.

3.1 Topic Analysis

A useful application of TRM is to understand the data. Fig. 2 displays the top
words of four selected topics using the learned β parameter. Words are ranked by
score(v, t) = βtv

(
logβtv − 1

K

∑
t′ logβt′v

)
, which intuitively, assigns high scores

to those words that are characteristic for a topic, relative to all other topics.
We can clearly observe that structure elements (classes and relations) have an
influence on the topics and the words that are ranked high for these topics. For
example, t1 has top words from entities of the type organization whereas t2
captures words related to person. In particular, t1 and t2 have top words from
those organization and person entities that are involved in the keyPerson rela-
tion. In fact, TRM not only exploits structure information for topic modeling but
also explicitly models the strength of dependencies between topics and structure
elements through the ω and λ parameters.

3.2 Link Prediction

Note that TRM captures the joint distribution over variables representing topics
and structure elements. Thus, not only are topics dependent on structure ele-
ments but also vice versa, the existence of certain topics (and their words) can
be used to infer that some structure elements are more likely than others. Here,
we evaluate the effectiveness of using TRM topics for link prediction – based
on the design and implementation used for the previous C3 experiment [12]. We
created training data using the author relations between papers and authors
in DBLP and the starring relations between movies and actors in DBpedia.
Then, this data is divided into a training and test set, with test data set to be
2, 4 and 3

4 times the amount of training data.
However, it should be noted that the task of link prediction in SRL is different

from LP for documents (e.g. [4, 5, 8]) in which topic similarity of documents
is only distinctive feature. In the former each relation (e.g.starring,author) is
characterized differently by its weights to features in a linear model like SVM.
Thats why supervised TMs are not directly applicable on this task. Thus, in this
experiment we show how the topic features based on ω of a relation are distinctive
for link prediction beyond some base features such as the ones employed in C3.
Also note that, unlike other supervised TMs, TRM distinguishes different types
of relations and a separate ω matrix is used for every relation, which assigns

1 http://www.informatik.uni-trier.de/ley/db/

http://www.informatik.uni-trier.de/ley/db/
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cross-topic weights. Link direction is also considered as the matrix omega is
asymmetric.

Methods. We compare TRM against MLN [11] and C3 [12]. To train the MLN,
we use the open source Alchemy2 implementation and adopt the rules as de-
scribed in the Alchemy’s tutorial for link predication. In order to predict links
between two entities, C3 employs SVM along with a set of features including Jac-
ccard similarity computed from textual values of the two entities, words shared
by the entities and adjacent nodes connected to the entities. LibSVM3 is used
to train a nu-SVM with a RBF kernel. The value of nu is set experimentally be-
tween 0.1 and 0.5. To use TRM for link prediction, we consider the combination
of C3 and the topics inferred by TRM. Namely, TRM provides two additional
features that are then used by C3. The first feature is a topic-based similarity
score defined as simr(e1, e2) =

∑
t,t′

∑
v∈VM

p(v | βt) ωrtt′ p(v | βt′) where VM is
the set of words e1 and e2 have in common. Instead of using these shared words
only, we also use all the words in e1 and e2 to calculate a second feature using
the formula above.

Table 1. Precision, recall and accuracy results for link prediction onDBLP andDBpedia

DBLP(1-4) DBLP(1-2) DBLP(3-4)
Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc.

MLN 50.46 74.75 50.05 49.53 71.33 49.23 51.9 76.14 52.31

C3 55.51 76.92 57.69 56.09 71.87 55.14 58.13 78.12 59.80
TRM 66.03 84.84 67.34 65.98 83.87 69.53 68.83 85.54 71.25

DBpedia(1-4) DBpedia(1-2) DBpedia(3-4)
Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc.

MLN 50.72 81.7 51.08 50.4 83.05 50.5 51.45 79.61 52.03
C3 57.14 66.67 54.95 56.52 66.10 54.04 55.88 65.51 54.95

TRM 72.71 78.43 69.04 70.58 74.38 67.84 71.68 74.20 67.28

Results. We present the overall performance in Table 1. Also considering true
negatives as depicted in Fig.4, we observe that while MLN can provide high
recall for positive labeled data (achieves best recall for DBpedia in one setting),
it does not perform well for negative labeled data. C3 performs better than
MLN in terms of precision and accuracy and also, achieves higher true negative
rate. However, C3’s performance could clearly be improved when using TRM
features in additional: TRM outperforms both baselines in terms of precision
and accuracy and achieves average recall comparable to MLN. Also, it is more
superior than these baselines in handling negative labeled data. The second
feature provided by TRM captures the topical correlation between all words of
the entities. It was particularly helpful in eliminating false negatives, i.e., two
entities not correlated topic-wise w.r.t. ωr are mostly not linked. The topic-based
similarity calculated from matching words further helps to find true positives.

2 http://alchemy.cs.washington.edu/
3 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://alchemy.cs.washington.edu/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 4. True negative rate for DBLP and DBpedia

Table 2. Precision and normalized mutual information (NMI) results for object clus-
tering on DBLP and DBpedia

Method/
Metric

Paper(%) Author(%) Venue(%)
Acc. NMI Acc. NMI Acc. NMI

LDA 47.22 15.97 – – – –
TMBP-RW 69.11 45.24 74.67 65.61 65.79 67.48
TMBP-Reg 78.21 58.42 88.55 71.17 75.02 64.01

TRM 89.35 65.51 93.44 78.16 87.73 75.11

(a) DBLP

Method/
Metric

Movie(%)
Acc. NMI

LDA 58.71 22.29
TMBP-RW 57.10 27.65
TMBP-Reg 62.33 31.84

TRM 71.57 44.28

(b) DBpedia

3.3 Object Clustering

For DBPedia, we use entities of the type movie. Following the experiment per-
formed previously [9], we use the six labels in DBLP representing various com-
puter science fields as clusters. The clustering result is evaluated by comparing
the label of each paper with the topic learned from the data.

Methods. We compare TRM to three TM approaches. As the most relevant
baselines, we use two methods for learning topics from heterogeneous networks
[9]: one model is learned with biased random walk (TMBP-RW) and the other
results from biased regularization (TMBP-Reg). TMBP-RW propagates topic
probabilities through the network via random walk, while TMBP-Reg achieves
topic propagation through regularizing a statistical topic model with two generic
terms. A previous experiment [9] has already shown that incorporating heteroge-
neous structure information as performed by these baselines helps to outperform
clustering results of several existing (TM) approaches. For brevity, we thus in-
clude only the results of the standard LDA model [15]. Since LDA cannot be
directly applied to heterogeneous information networks, we only use the bag-of-
words representation of entities and ignore structure information.

Results. Table 2 shows the average results obtained from 10 test runs. TMBP-
RW outperforms LDA on DBLP and is comparable to LDA on DBPedia. TMBP-
Reg slightly outperforms TMBP-RW on both datasets. This suggests that
exploiting structure information as supported by TMBP-RW and TMBP-Reg,
leads to better results than LDA, which only considers word co-occurrences.
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TRM leads to further improvements on both datasets by incorporating the ef-
fects of specific classes and relations on topics. For DBpedia for instance, TRM
automatically infers that the structure elements distributor and country have
a strong discriminative effect on assigning objects to the correct clusters.

4 Related Work

Related to our work, there are TM approaches proposed for homogeneous net-
works such as NetPLSA [2], Pairwise-Link-LDA [3], Nubbi [5], author-topic mod-
els [1], latent topic models for hypertext [6], citation networks [7] and relational
topic models [8]. The major distinction between these models and TRM is that
they consider a homogeneous network structure with only few types of entities
and relations. In addition, more related to TRM, there are approaches over het-
erogeneous networks [9, 7] which utilize specific regularization functions to fit the
topics to the underlying network structure. In general, as the network becomes
more heterogeneous (i.e. more than two types of relations), more complex topic
models are needed to capture complex correlations between the topic and struc-
tural variables. TRM mainly addresses this in a principled way by introducing
sparsity of topics via topic indicators to create specific bias of topics towards
structure information, i.e., classes and relations. In fact these approaches can
be regarded as the extension of previous supervised topic models (e.g. [20–23])
to the networks in which observed variables are the relations instead of some
tags or annotations. Also one similar work to ours is Type-LDA [24] which aims
to discover the clusters of observed relation tuples and their associated textual
expressions. However, that work only has a narrow focus on relation extraction
in NLP and does not address the discovery of the correlations occurring in the
whole data graph.

SRL works such as probabilistic relational models (PRM) [10] and MLN [11]
learn graphical models using relational information. As discussed, this training is
costly when the dependency structure is complex and the number of variables is
high – which is particularly the case when a large amount of text is involved. We
propose the use of hidden topic variables to reduce this complexity. To combine
SRL with topic models, FoldAll [25] uses constraints given as first-order rules in a
MLN to bias the topics by training a MRF. Although biasing the topics according
to structure information can be accomplished through MLN, this approach does
not capture correlations between topics and structure elements (e.g. predicate of
rules). In addition, the number of groundings in the MLN rules poses a problem
for FoldAll, since each grounding is represented as an indicator function in the
corresponding topic model. TRM is unique in terms of using the topics as a
low-dimensional abstraction to capture the correlations between the topics and
classes/relations (i.e λ and ω).

5 Conclusion

We presented TRM, a novel combination of TM and SRL to learn topics from
text-rich structured data. It captures dependencies between words in textual
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and structured data through hidden topic variables in a template-based model
constructed according to the underlying data structure. It represents a novel ap-
proach for automatically using heterogeneous structure information for learning
topics as well as using topics to perform SRL tasks. In experiments, we show
that compared to existing TM approaches, TRM is more effective in exploiting
structure information. It reveals and exploits varying level of dependencies be-
tween topics and specific classes and relations, resulting in higher performance
for both object clustering and link prediction.

As future work we plan to explore the extension of TRM to even richer gen-
erative models, such as time-varying and hierarchical topic models. In addition,
potential application areas of TRM in the field of text-rich databases are many-
fold. In particular, for selectivity estimation of structural queries comprising
string predicates, TRM provides a synopsis of the database by capturing the
topics and their correlations with classes and relations. This way, any structural
query can be interpreted as a probability distribution, from which the query re-
sult size is estimated. We also consider TRM as being useful for keyword search
on structured data. In existing work, keywords are mapped to database elements
and connections between these keyword elements are discovered based on the
relations given in the schema to compute structured results. The ranking of
these results is separated from that computation. Instead of using the schema
for discovering connections and a separate model for ranking, TRM can serve as
a “probabilistic schema”, capturing connections that are most probable. Hence,
it can be used as a holistic model both for result computation and ranking based
on their probability.
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Abstract. We illustrate several novel attacks to the confidentiality of knowledge
bases (KB). Then we introduce a new confidentiality model, sensitive enough to
detect those attacks, and a method for constructing secure KB views. We identify
safe approximations of the background knowledge exploited in the attacks; they
can be used to reduce the complexity of constructing secure KB views.

1 Introduction

There is ample evidence of the need for knowledge confidentiality measures. OWL
and the LOD paradigm are increasingly being used to encode the private knowledge of
companies and public organizations. Linked open government data include potentially
sensitive information, e.g. related to health. Medical records are annotated with seman-
tic metadata based on SNOMED. FOAF assertions and other semantic description of
social networks may affect the privacy of individuals. In all of these cases, semantic web
techniques help in linking different knowledge sources and extract implicit information,
thereby increasing security and privacy risks. Even the authors of public ontologies may
want to hide some axioms to capitalize on their formalization efforts. See [8] for fur-
ther motivations. In order to tackle the confidentiality requirements arising from these
scenarios, several approaches have been proposed. The most popular security criterion
is that the published view of the knowledge base should not entail any secret sentence
(we call it simple confidentiality model). However, there exist attacks that cannot be
blocked this way. The user may exploit various sources of background knowledge and
metaknowledge to reconstruct the hidden part of the knowledge base. This paper con-
tributes to the area of knowledge base confidentiality in several ways:

(i) It highlights some vulnerabilities of the approaches that can be found in the liter-
ature, including attacks based on meta-reasoning (Sec. 3).

(ii) It introduces a stronger confidentiality model that takes both object-level and
meta-level background knowledge into account (Sec. 4), and it defines a method for
computing secure knowledge views (Sec. 5) that generalizes some previous approaches.

(iii) It proposes a safe approximation of background metaknowledge (Sec. 6 and 7).
(iv) It investigates the computational complexity of constructing secure knowledge

base views with our methodology (Sec. 7).
The paper is closed by a discussion of related work (Sec. 9), and conclusions. Some

proofs are omitted due to space limitations.
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2 Preliminaries on Description Logics

We assume the reader to be familiar with description logics, and refer to [1] for all def-
initions and results. We assume a fixed, denumerable signature Σ specifying the names
of concepts, roles, and individuals. Our framework is compatible with any description
logic DL that enjoys compactness (needed by Theorem 6) and has decidable reasoning
problems (e.g.,ALC, EL, SHIQ, etc.). We simply assume that our reference logical
language L is generated from Σ by the grammar of the selected logic DL. By axioms,
we mean members ofL, unless stated otherwise. A knowledge base is any subset ofL.1

Recall that axioms are expressions of the form C � D, R � S , C(a), and R(a, b)
where C,D are concept expressions, R, S are role expressions, and a, b are individual
constants. In some DL, an individual constant a may occur also in a nominal, that is,
a concept expression {a} denoting the singleton containing a. The axioms involving �
are called inclusions (or subsumptions), while C(a) and R(a, b) are called assertions. In
the simplest case, C and R are first order predicates and assertions are actually standard
first-order atomic formulae. Inclusions are syntactic variants of logical implications.

The notion of logical consequence is the classical one; for all K ⊆ L, the logical
consequences of K will be denoted by Cn(K) (K ⊆ Cn(K) ⊆ L).

3 A Simple Confidentiality Model

The most natural way of preserving confidentiality in a knowledge base KB is checking
that its answers to user queries do not entail any secret. Conceptually, the queries of a
user u are answered using u’s view KBu of the knowledge base, where KBu is a maximal
subset of KB that entails no secret. In order to illustrate some possible attacks to this
mechanism, let us formalize the above simple confidentiality model (SCM).2 It consists
of: the knowledge base KB (KB ⊆ L); a set of users U; a view KBu ⊆ KB for each
u ∈ U; a set of secrecies S u ⊆ L for each u ∈ U. Secrecies are axioms that may or may
not be entailed by KB; if they do, then they are called secrets and must not be disclosed
to u. Revealing that a secrecy is not entailed by KB is harmless [4]. For example, there
is no need to protect the information that someone is not having chemotherapy.

A view KBu is secure iff Cn(KBu) ∩ S u = ∅. A view KBu is maximal secure if it is
secure and there exists no K such that KBu ⊂ K ⊆ KB and Cn(K) ∩ S u = ∅.
Attacks Using Object-Level Background Knowledge. Frequently, part of the domain
knowledge is not axiomatized in KB, therefore checking that Cn(KBu)∩S u = ∅ does not
suffice in practice to protect confidentiality. For example, suppose that there is one secret
S u = {OncologyPatient(John)} and KBu = {SSN(John, 12345), SSN(user123, 12345),
OncologyPatient(user123)}. KBu does not entail OncologyPatient(John), so according
to the SCM model KBu is secure. However, it is common knowledge that a SSN uniquely
identifies a person, then the user can infer that John = user123, and hence the secret.

In other examples, the additional knowledge used to infer secrets may be stored in a
public ontology or RDF repository, and confidentiality violations may be automated.

1 Real knowledge bases are finite, but this restriction is not technically needed until Sec. 7.
2 This usage of term “model” is common in Security & Privacy.
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Attacks to Complete Knowledge. Suppose the attacker knows that KB has complete
knowledge about a certain set of axioms. Then the attacker may be able to reconstruct
some secrets from the “I don’t know” answers of a maximal secure view KBu.

Example 1. Consider an organization’s knowledge base that defines a concept
Employee and a role works for that describes which employees belong to which of
the n departments of the company, d1, . . . , dn. The KB consists of assertions like:

Employee(e) (1) works for(e, di) (2)

where we assume that each employee e belongs to exactly one department di. A user
u is authorized to see all assertions but the instances of (2) with i = n, because dn is a
special department, devoted to classified projects. So S u (the set of secrecies for u) is
the set of all assertions works for(e, dn).

Note that there is one maximal secure view KBu. It consists of all instances of (1),
plus all instances of (2) such that i � n. Clearly, KBu is secure according to SCM
(because Cn(KBu) ∩ S u = ∅). However, observe that works for(e, dn) ∈ Cn(KB) iff
Employee(e) ∈ Cn(KBu) and for all i = 1, . . . , n, works for(e, di) � Cn(KBu) (that is, the
members of dn are all the employees that apparently work for no department). Using this
property (based on the knowledge that for each employee e, KB contains exactly one
assertion works for(e, di)) and the knowledge of the protection mechanism (i.e. maxi-
mal secure views), that we assume to be known by attackers by Kerchoff’s principle, a
smart user can easily identify all the members of dn. 	


In practice, it is not hard to identify complete knowledge. A hospital’s KB is expected
to have complete knowledge about which patients are in which ward; a company’s KB
is likely to encode complete information about its employees, etc.

Some approaches filter query answers rather than publishing a subset of KB [7,
14, 16]. We call our abstraction of this method simple answer confidentiality model
(SACM). It is obtained from the SCM by replacing the views KBu ⊆ KB with answer
views KBa

u ⊆ Cn(KB). The difference is that KBa
u is not required to be a subset of KB

and—conceptually—KBa
u may be infinite. KBa

u is secure iff Cn(KBa
u) ∩ S u = ∅.

The reader may easily verify that the SACM is vulnerable to the two kinds of attacks
illustrated for the SCM. It is also vulnerable to a third kind of attacks, illustrated below.

Attacks to the Signature. Suppose the user knows the signature of KB well enough to
identify a symbol σ that does not occur in KB. First assume that σ is a concept name.
It can be proved that:

Proposition 1. If KBa
u is a maximal secure answer view and σ is a concept name not

occurring in KB, then for all secrecies C � D ∈ S u, KBa
u |= C 	σ � D iff KB |= C � D.

The problem is that although C 	 σ � D does not entail the secret inclusion C � D,
still a smart user knows that the former inclusion cannot be proved unless KB entails
also the latter (then maximal secure answer views generally fail to protect secrets). This
attack can be easily adapted to the case where σ is a role name. In practice, it is not
necessary to be sure that σ does not occur in KB. The attacker may make a sequence of
educated guesses (say, by trying meaningless long strings, or any word that is clearly
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unrelated to the domain of the KB); after a sufficient number of trials, the majority of
answers should agree with the “real” answer with high probability. Rejecting queries
whose signature is not contained in KB’s signature mitigates this kind of attacks but it
leaks KB’s signature and it does not provide a complete solution: Any σ occurring in
KB that is logically unrelated to C and D can be used for a similar attack.

4 A Meta-safe Confidentiality Model

In this section we introduce a confidentiality model that makes the vulnerabilities illus-
trated above visible, by taking into account object- and meta-level background knowl-
edge. A bk-modelM = 〈KB,U, f , 〈S u,PKBu,BKu〉u∈U 〉 consists of a knowledge base
KB ⊆ L, a set of users U, plus:

– a filtering function f : ℘(L) × U → ℘(L), mapping each knowledge base K and
each user u on a view f (K, u) ⊆ Cn(K);

– for all u ∈ U:

• a finite set of secrecies S u ⊆ L;
• a set of axioms BKu ⊆ L, encoding the users’ object-level knowledge;
• a set of possible knowledge bases PKBu ⊆ ℘(L) (users’ metaknowledge).3

The view of KB released to a user u is f (KB, u). We adopt PKB because at this stage
we do not want to tie our framework to any specific metalanguage. PKB represents the
knowledge bases that are compatible with the user’s metaknowledge.

Definition 1. A filtering function f is secure (w.r.t.M) iff for all u ∈ U and all s ∈ S u,
there exists K ∈ PKBu such that:

1. f (K, u) = f (KB, u);
2. s � Cn(K ∪ BKu).

Intuitively, if f is safe according to Def. 1, then no user u can conclude that any secret
s is entailed by the KB she is interacting with—enhanced with the object-level back-
ground knowledge BKu—for the following reasons: By point 1, KB and K have the
same observable behavior, and K is a possible knowledge base for u since K ∈ PKBu;
therefore, as far as u knows, the knowledge base might be K. Moreover, by point 2, K
and the object-level background knowledge BKu do not suffice to entail the secret s.

In the rest of the paper we tacitly assume that no secret is violated a priori, that is,
for all secrets s ∈ S u there exists K ∈ PKBu such that s � Cn(K ∪ BKu).4 Moreover,
in order to improve readability, we shall omit the user u from subscripts and argument
lists whenever u is irrelevant to the context.

The attacks discussed in Section 3 can be easily formalized in this setting; so, in
general, the maximal secure views of SCM are not secure according to Def. 1.

3 In practice, bk-models are finite, and filterings computable, but no such assumption will be
technically needed until Sec. 7.

4 Conversely, no filtering function can conceal a secret that is already known by the user.
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Example 2. Example 1 can be formalized in our model as follows: The set of secrecies
S is the set of all assertions works for(e, dn); BK = ∅ and PKB is the set of all the
knowledge bases K that consist of assertions like (1) and (2), and such that for each
axiom Employee(e), K contains exactly one corresponding axiom works for(e, di) and
viceversa. The filtering function f maps each K ∈ PKB on the maximal subset of K that
entails none of S ’s members, that is, f (K) = K \ S (by definition of PKB).

Note that f is injective over PKB, so condition 1 of Def. 1 is satisfied only if K = KB.
So, if KB contains at least one secret, then the conditions of Def. 1 cannot be satisfied,
that is, maximal secure SCM views are not secure in our model. Indeed, KB can be
reconstructed from the secure view by observing that KB = f (KB) ∪ {works for(e, dn) |
Employee(e) ∈ f (KB) ∧ ∀i = 1, . . . , n,works for(e, di) � f (KB)}. 	

Similarly, the formalizations of the other attacks yield injective filtering functions (the
details are left to the reader).

5 A Meta-secure Query Answering Mechanism

In this section we introduce a secure filtering function. It is formulated as an itera-
tive process based on a censor, that is a boolean function that decides for each axiom
whether it should be obfuscated to protect confidentiality. The iterative construction
manipulates pairs 〈X+, X−〉 ∈ ℘(L) × ℘(L) that represent a meta constraint on possible
knowledge bases: we say that a knowledge base K satisfies 〈X+, X−〉 iff K entails all the
sentences in X+ and none of those in X− (formally, Cn(K) ⊇ X+ and Cn(K) ∩ X− = ∅).

Let PAX (the set of possible axioms) be the set of axioms that may occur in the
knowledge base according to the user’s knowledge, i.e. PAX =

⋃
K′∈PKB K′. Let ν =

|PAX|+ 1 if PAX is finite and ν = ω otherwise; let α1, α2, . . . , αi, . . . be any enumeration
of PAX (i < ν).5 The secure view construction for a knowledge base K in a bk-model
M consists of the following, inductively defined sequence of pairs 〈K+i ,K−i 〉i≥0 :

– 〈K+0 ,K−0 〉 = 〈∅, ∅〉 , and for all 1 ≤ i < ν , 〈K+i+1,K
−
i+1〉 is defined as follows:

• if censorM(K+i ,K
−
i , αi+1) = true then let 〈K+i+1,K

−
i+1〉 = 〈K+i ,K−i 〉 ;• if censorM(K+i ,K

−
i , αi+1) = f alse and K |= αi+1 then

〈K+i+1,K
−
i+1〉 = 〈K+i ∪ {αi+1},K−i 〉;• otherwise let 〈K+i+1,K

−
i+1〉 = 〈K+i ,K−i ∪ {αi+1}〉 .

Finally, let K+ =
⋃

i<ν K+i , K− =
⋃

i<ν K−i , and fM(K, u) = K+ .
Note that the inductive construction aims at finding maximal sets K+ and K− that

(i) partly describe what does / does not follow from K (as K satisfies 〈K+,K−〉 by
construction), and (ii) do not trigger the censor (the sentences αi+1 that trigger the censor
are included neither in K+ nor in K−, cf. the induction step).

In order to define the censor we need an auxiliary definition that captures all the sen-
tences that can be entailed with the background knowledge BK and the meta-knowledge
PKB enriched by a given constraint 〈X+, X−〉 analogous to those adopted in the iterative
construction: Let CnM(X+, X−) be the set of all axioms α ∈ L such that

for all K′ ∈ PKB such that K′ satisfies 〈X+, X−〉, α ∈ Cn(K′ ∪ BK) . (3)

5 We will show later how to restrict the construction to finite sequences, by approximating PAX.
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Now the censor is defined as follows: For all X+, X− ⊆ L and α ∈ L,

censorM(X+, X−, α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true if there exists s ∈ S s.t. either s ∈ CnM(X+ ∪ {α},X−)

or s ∈ CnM(X+, X− ∪ {α});
false otherwise.

(4)

In other words, the censor checks whether telling either that α is derivable or that α is
not derivable to a user aware that the knowledge base satisfies 〈X+, X−〉, restricts the
set of possible knowledge bases enough to conclude that a secret s is entailed by the
knowledge base and the background knowledge encoded by BK and PKB.

Note that the censor obfuscates αi+1 if any of its possible answers entail a secret,
independently of the actual contents of K (the two possible answers “yes” and “no”
correspond to conditions s ∈ CnM(X+ ∪ {α}, X−) and s ∈ CnM(X+, X− ∪ {α}), respec-
tively). In this way, roughly speaking, the knowledge bases that entail s are given the
same observable behavior as those that don’t. Under a suitable continuity assumption
on CnM, this enforces confidentiality:

Theorem 1. If CnM(KB+,KB−) ⊆ ⋃i<ν CnM(KB+i ,KB−i ), then fM is secure w.r.t.M.

Proof. Let u and s be arbitrary members of U and S u, respectively. We have to show
that there exists a K ∈ PKBu satisfying the two conditions of Def. 1. Let 〈KB+i ,KB−i 〉i<ν
be the sequence underlying the construction of fM(KB, u). By construction, for all i <
ν, s � CnM(KB+i ,KB−i ). Moreover, by the continuity hypothesis, CnM(KB+,KB−) ⊆⋃

i<ν CnM(KB+i ,KB−i ), where KB+ =
⋃

i<ν KB+i and KB− =
⋃

i<ν KB−i . It follows that
s � CnM(KB+,KB−). Then, by definition of CnM, there exists K ∈ PKBu such that:

Cn(K) ⊇ KB+ (5) Cn(K) ∩ KB− = ∅ (6) s � Cn(K ∪ BKu) . (7)

Since (7) is the second condition of Def. 1, we are only left to show the first one, that
is, fM(K, u) = fM(KB, u). It suffices to prove by induction on i that for all i < ν,

〈K+i ,K−i 〉 = 〈KB+i ,KB−i 〉 . (8)

The base case is trivial. Induction step (i > 0): By induction hypothesis, (8) holds for
i − 1, therefore censorM(K+i−1,K

−
i−1, αi) = censorM(KB+i−1,KB−i−1, αi). If the censors are

true, then (8) follows directly from the induction hypothesis. If the censor is false, then
αi belongs to KB+∪KB−; note that K and KB agree on these formulae, by (5) and (6), so
both knowledge bases insert αi into the same element of the i-th pair and (8) holds. 	

Examples of the behavior of fM are deferred until Sec.7.

6 Approximating Background Knowledge

Of course, the actual confidentiality of a filtering f (KB, u) depends on a careful defini-
tion of the user’s background knowledge, that is, PKBu and BKu. If background knowl-
edge is not exactly known, as it typically happens, then it can be safely approximated by
overestimating it. More background knowledge means larger BKu and smaller PKBu,
which leads to the following comparison relation ≤k over bk-models:
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Definition 2. Given two bk-models M = 〈KB,U, f , 〈S u,PKBu,BKu〉u∈U 〉 and M′ =
〈KB′,U ′, f ′, 〈S ′u,PKB′u,BK′u〉u∈U′ 〉, we writeM ≤k M′ iff

1. KB = KB′, U = U ′, f = f ′, and S u = S ′u (for all u ∈ U);
2. for all u ∈ U, PKBu ⊇ PKB′u and BKu ⊆ BK′u.

The next proposition proves that a bk-modelM can be safely approximated by anyM′
such thatM ≤k M′:
Proposition 2. If f is secure w.r.t.M′ andM ≤k M′, then f is secure w.r.t.M.

Consequently, a generic advice for estimating BK consists in including as many pieces
of relevant knowledge as possible, for example:

(i) modelling as completely as possible the integrity constraints satisfied by the data,
as well as role domain and range restrictions and disjointness constraints;

(ii) including in BK all the relevant public sources of formalized relevant knowledge
(such as ontologies and triple stores).

While object-level background knowledge is dealt with in the literature, the general
metaknowledge encoded by PKB is novel. Therefore, the next section is focussed on
some concrete approximations of PKB and their properties.

7 Approximating and Reasoning about Possible Knowledge Bases

In this section, we investigate the real world situations where the knowledge base KB is
finite and so are all the components of bk-models (U, S u, BKu, PKBu); then we focus
on PKBu that contain only finite knowledge bases. Consequently, fM will turn out to be
decidable and we will study its complexity under different assumptions.

A language for defining PKB is a necessary prerequisite for the practical implemen-
tation of our framework and a detailed complexity analysis of fM. Here we express PKB
as the set of all theories that are contained in a given set of possible axioms PAX 6 and
satisfy a given, finite set MR of metarules like:

α1, . . . , αn ⇒ β1 | . . . | βm (n ≥ 0,m ≥ 0) , (9)

where all αi and β j are in L (1 ≤ i ≤ n, 1 ≤ j ≤ m). Informally, (9) means that if
KB entails α1, . . . , αn then KB entails also some of β1, . . . , βm. Sets of similar metarules
can be succintly specified using metavariables; they can be placed wherever individual
constants may occur, that is, as arguments of assertions, and in nominals. A metarule
with such variables abbreviates the set of its ground instantiations: Given a K ⊆ L,
let groundK(MR) be the ground (variable-free) instantiation of MR where metavariables
are uniformly replaced by the individual constants occurring in K in all possible ways.

Example 3. Let MR =
{ ∃R.{X} ⇒ A(X)

}
, where X is a metavariable, and let K ={

R(a, b)
}
. Then groundK(MR) =

{
(∃R.{a} ⇒ A(a)), (∃R.{b} ⇒ A(b))

}
. 	


If r denotes rule (9), then let body(r) = {α1, . . . , αn} and head(r) = {β1, . . . , βm}. We say
r is Horn if |head(r)| ≤ 1. A set of axioms K ⊆ L satisfies a ground metarule r if either
body(r) � Cn(K) or head(r) ∩ Cn(K) � ∅. In this case we write K |=m r.

6 Differently from Sec. 5, here PKB is defined in terms of PAX.
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Example 4. Let A, B, C be concept names and R be a role name. The axiom set K =
{A � ∃R.B, A � C} satisfies A � ∃R⇒ A � B | A � C but not A � ∃R⇒ A � B. 	

Moreover, if K satisfies all the metarules in groundK(MR) then we write K |=m MR.
Therefore the formal definition of PKB now becomes:

PKB = {K | K ⊆ PAX ∧ K |=m MR} . (10)

In accordance with Prop. 2, we approximate PAX in a conservative way. We will
analyze two possible definitions:

1. PAX0 = KB (i.e., as a minimalistic choice we only assume that the axioms of KB
are possible axioms; of course, by Prop. 2, this choice is safe also w.r.t. any larger
PAX where at least the axioms of KB are regarded as possible axioms);

2. PAX1 = KB ∪⋃r∈groundKB(MR) head(r).

Remark 1. The latter definition is most natural if metarules are automatically extracted
from KB with rule mining techniques, that typically construct rules using material from
the given KB (then rule heads occur in KB).

Example 5. Consider again Example 1. The user’s metaknowledge about KB’s com-
pleteness can be encoded with:

Employee(X)⇒ works for(X, d1) | . . . | works for(X, dn) , (11)

where X is a metavariable. First let PAX = PAX1 . The secure view fM(KB) depends on
the enumeration order of PAX. If the role assertions works for(e, di) precede the con-
cept assertions Employee(e), then, in a first stage, the sets KB+j are progressively filled
with the role assertions with di � dn that belong to KB, while the sets KB−j accumulate
all the role assertions that do not belong to KB. In a second stage, the sets KB+j are
further extended with the concept assertions Employee(e) such that e does not work for
dn. The role assertions works for(e, dn) of KB and the corresponding concept assertions
Employee(e) are neither in KB+ nor in KB−. Note that the final effect is equivalent to
removing from KB all the axioms referring to the individuals that work for dn. Analo-
gously, in [7] the individuals belonging to a specified set are removed from all answers.

Next suppose that the role assertions works for(e, di) follow the concept assertions
Employee(e), and that each works for(e, di) follows all works for(e, dk) such that k < i.
Now all the assertions Employee(e) of KB enter KB+, and all axioms works for(e, di)
with i < n − 1 enter either KB+ or KB−, depending on whether they are members
of KB or not. Finally, the assertions works for(e, di) ∈ Cn(KB) with i ∈ {n − 1, n}
are inserted neither in KB+ nor in KB−, because the corresponding instance of (11)
with X = e has the body in KB+ and the first n − 2 alternatives in the head in KB−,
therefore a negative answer to works for(e, dn−1) would entail the secret works for(e, dn)
by (11). This triggers the censor for all assertions works for(e, dn−1). Summarizing, with
this enumeration ordering it is possible to return the complete list of employees; the
members of dn are protected by hiding also which employees belong to dn−1.

Finally, let PAX = PAX0 . In this case, all possible knowledge bases are subsets of
KB; the latter contains exactly one assertion works for(e, di(e)) for each employee e.
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Then, in order to satisfy (11), every K ∈ PKB containing Employee(e) must contain
also works for(e, di(e)). It follows that fM must remove all references to the individuals
e that work for dn, as it happens with the first enumeration of PAX1. 	

Definition 3. A bk-modelM is canonical if for all users u ∈ U, PAXu is either PAX0

or PAX1 and PKBu is defined by (10) for a given MRu. Moreover,M is in a description
logic DL if for all u ∈ U, all the axioms in KB, PKBu, BKu, and S u belong to DL.

The size of PAX0 and PAX1
7 is polynomial in the size of KB∪MR, therefore PKB is

finite and exponential in the size of KB∪MR. Finiteness implies the continuity hypoth-
esis on CnM of Theorem 1, and hence (using Theorem 1 and Prop. 2):

Theorem 2. IfM is canonical, then fM is secure with respect to allM′ ≤k M.

Proof. SinceM is canonical, for all u ∈ U, PKBu is finite and ν = |PAXu| + 1 < ω. By
construction, the sets KB+i and KB−i in the sequence 〈KB+i ,KB−i 〉i<ν grow monotonically
with i, so

⋃
i<ν KB+i = KB+ν−1 and

⋃
i<ν KB−i = KB−ν−1. Moreover, CnM is monotonic in

both arguments, so
⋃

i<ν CnM(KB+i ,KB−i ) = CnM(KB+ν−1,KB−ν−1). It follows that

CnM(
⋃

i<ν KB+i ,
⋃

i<ν KB−i ) = CnM(KB+ν−1,KB−ν−1) =
⋃

i<ν CnM(KB+i ,KB−i ) ,

that is, the continuity hypothesis of Theorem 1 is satisfied. Then, by Theorem 1, fM is
secure with respect toM, and by Prop. 2, fM is secure with respect to allM′ ≤k M. 	


First we analyze the complexity of constructing the secure view fM(KB) when the
underlying description logic is tractable, like EL and DL-lite for example.

Lemma 1. If the axioms occurring in MR and K are in a DL with tractable subsump-
tion and instance checking, then checking K |=m MR is:

1. in P if either MR is ground or there exists a fixed bound on the number of distinct
variables in MR;

2. coNP-complete otherwise.

Proof. Point 1: K |=m MR can be checked as follows: For each r ∈ groundK(MR) and
all axioms α ∈ body(r) ∪ head(r) check whether K |=m r by verifying whether there
exists either α ∈ body(r) such that α � Cn(K), or α ∈ head(r) such that α ∈ Cn(K). The
cost of each test K |=m r is polynomial in the size of MR and K since membership in
Cn(K) is in P by hypothesis. The number of iterations is polynomial in the size of MR
and K, too, because the hypothesis that the number of variables in r is bounded implies
that |groundK(MR)| is polynomial in the size of MR and K.

Point 2: (Membership) The complementary test K �|=m MR can be carried out in
two steps: first guess an r ∈ MR and a substitution σ that maps each metavariable
in r on an individual constant occurring in K; second, check whether K |=m rσ does
not hold. Checking K |=m rσ is in P (cf. point 1), so K �|=m MR can be checked in
nondetermistic polynomial time, and hence the original problem (K |=m MR) is in coNP.

7 We assume here and in the following complexity results that axiom sets—and hence KBs—
have a natural encoding as strings that determine their size.
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Hardness follows by reducing to K �|=m MR the clause subsumption problem: Given two
clauses (i.e. two sets of literals) G and H, is there a substitution σ such that Gσ ⊆ H?
(if the answer is “yes” then G subsumes H). The problem is still NP-complete if all
literals are positive, terms are function-free, and predicate arity is bounded by 2. Let
G = {p1, . . . , pn} and H be two clauses satisfying these assumptions. Let K = H (i.e.
K is a set of assertions whose concept names and role names are the unary and binary
predicates of H, respectively, and whose individual constants are the terms occurring in
H). Let MR = {p1, . . . , pn ⇒}, where the terms occurring in G and not in H are regarded
as metavariables. Now G subsumes H iff there exists a substitutionσ such that Gσ ⊆ H,
iff there is an instance r ∈ groundK(MR) such that K �|=m r, iff K �|=m MR. 	

With Lemma 1, one can prove the following two lemmas.

Lemma 2. LetM range over canonical bk-models. IfM, s, X+, and X− are in a DL
with tractable subsumption/instance checking, and the number of distinct variables in
MR is bounded by a constant, then checking whether s ∈ CnM(X+, X−) is:

1. in P if MR is Horn and PAX = PAX1;
2. coNP-complete if either MR is not Horn or PAX = PAX0.

Proof. Point 1: By standard logic programming techniques, a minimal K ⊆ PAX satis-
fying MR and entailing X+ can be obtained with the following PTIME construction:

K0 = X+ , Ki+1 = Ki ∪
⋃
{ head(r) | r ∈ groundKi

(MR) ∧ body(r) ⊆ Cn(Ki) } . (12)

This sequence reaches its limit after at most |PAX| iterations. Then s ∈ CnM(X+, X−)
holds iff either s ∈ K|PAX| or K|PAX| ∩ X− � ∅. Both tests are in P since K|PAX| ⊆ PAX.

Point 2: Membership in coNP is straightforward (s � CnM(X+, X−) can be checked
by guessing a K ⊆ PAX that satisfies 〈X+, X−〉 and such that s � Cn(K ∪ BK)). To
prove hardness first assume that PAX = PAX0. For each given 3-SAT instance, encode
its n propositional variables and their negation with 2n concept names Pi and P̄i, re-
spectively. Introduce a concept name Ck for each clause ck = lk,1 ∨ lk,2 ∨ lk,3. Let KB
consist of all the inclusions A � Pi and A � P̄i (1 ≤ i ≤ n), plus all Lk, j � Ck s.t. Lk, j

is the encoding of lk j ( j = 1, 2, 3). Let s = (A � B), BK = ∅ and let MR consists of all
the rules (A � Pi, A � P̄i ⇒), (⇒ Lk, j � Ck), (⇒ A � Ck). MR is Horn, and the given
clause set is satisfiable iff there exists K ⊆ KB = PAX0 such that K |=m MR. For all such
K, s � Cn(K) because B does not occur in KB. Then the given clauses are satisfiable iff
s � CnM(∅, ∅). This proves that checking whether s ∈ CnM(X+, X−) is coNP-hard.

We are left to show a similar result under the assumption that MR is not Horn and
PAX = PAX1. Let KB, s, and BK be defined as before. Let MR be the set of all rules
(A � Pi, A � P̄i ⇒), (⇒ A � Pi | A � P̄i), (A � L̄k,1, A � L̄k,2, A � L̄k,3 ⇒ s), where
each L̄k j is the encoding of the complement of lk j. Clearly, the given set of clauses is
satisfied iff there exists K ⊆ PAX1 such that K |=m MR and s � Cn(K); this is equivalent
to s � CnM(∅, ∅). The theorem follows immediately. 	

Lemma 3. Let M be a canonical bk-model. If M, s, X+, and X− are in a DL with
tractable entailment problems, and there is no bound on the number of variables in the
metarules of MR, then checking s ∈ CnM(X+, X−) is:
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1. in PNP if MR is Horn and PAX = PAX1;
2. in Π p

2 if either MR is not Horn or PAX = PAX0.

Proof. To prove Point 1, we use the same algorithm used for Lemma 2.(1), based on
the bottom-up construction defined by (12). However, due to the lack of bounds on
metavariables, groundKi

(MR) can be exponentially large. Then the complexity of each
iteration in (12) is determined with a different, nondeterministic algorithm: For each
possible ground instance of a rule head (quadratically many due to arity bounds) use
the NP oracle to guess an instance of the rule body and check (in polynomial time)
whether it is entailed by Ki. The deterministic algorithm then runs in polynomial time
using an NP oracle.

Point 2 can be proved with the naive nondeterministic algorithm that guesses a K ⊆
PAX and checks whether (i) K ∈ PKB, (ii) X+ ⊆ Cn(K) and X− ∩ Cn(K) = ∅, and (iii)
s ∈ Cn(K ∪ BKu). Condition (i) can be verified by checking whether K |=m MR; this
test is NP-complete by Lemma 1.(2). Conditions (ii) and (iii) are in P by hypothesis. So
the whole nondeterministic algorithm runs in polynomial time using an NP oracle. 	

The value of censor(X+, X−, α) can be computed straightforwardly by iterating the tests
s ∈ CnM(X+∪{α}, X−) and s ∈ CnM(X+, X− ∪ {α}) for all secrets s ∈ S . Since the set of
secrets is part of the parameterM of the filtering function, the number of iterations is
polynomial in the input and the complexity of the censor is dominated by the complexity
of CnM(). The latter is determined by Lemma 2 and Lemma 3, so we immediately get:

Corollary 1. LetM be a canonical bk-model and suppose thatM, X+, X−, and α are
in a DL with tractable entailment problems. If the number of distinct variables in MR is
bounded by a constant, then computing censor(X+, X−, α) is:

– in P if MR is Horn and PAX = PAX1;
– coNP-complete if either MR is not Horn or PAX = PAX0.

If there is no bound on the number of variables in the metarules of MR, then computing
censor(X+, X−, α) is:

– in PNP if MR is Horn and PAX = PAX1;
– in Π p

2 if either MR is not Horn or PAX = PAX0.

We are now ready to analyze the complexity of filtering functions:

Theorem 3. IfM is a canonical bk-model in a DL with tractable entailment problems,
then computing fM(KB) is:

1. in P if the number of distinct variables in the rules of MR is bounded, MR is Horn,
and PAX = PAX1;

2. PNP-complete if the number of distinct variables in MR is bounded, and either MR
is not Horn or PAX = PAX0;

3. in PNP if the variables in MR are unbounded, MR is Horn, and PAX = PAX1;
4. in Δp

3 if MR is not restricted and PAX ∈ {PAX0,PAX1}.
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Proof. Point 1 follows easily from Corollary 1: use the straightforward algorithm that
iterates over all αi in the enumeration of PAX, and for each of them computes the censor
and checks whether KB |= α (if needed); since the number of iterations is polynomial
in the input, the overall complexity is dominated by the complexity of evaluating the
censor and KB entailments (both are tractable).

Point 2: Assume that PAX = PAX0 and MR is Horn, the other case where PAX =
PAX1 and MR is not Horn can be proved with the techniques adopted in Lemma 2.(2).
Membership in PNP is straightforward, by the same argument applied in Point 1. Hard-
ness is proved by a reduction of the maximum satisfying assignment problem which,
given a set of clauses C = {c1, . . . , cm} in the variables p1, . . . , pn, consists in finding the
lexicographically maximum assignment μmsa ∈ {0, 1}n that satisfies C, or 0 if C is unsat-
isfiable. We extend KB and MR defined at point 2 in Lemma 2 as follows: first, we add
to KB A � C and the set of inclusions A � P′i , with 1 ≤ i ≤ n. Secondly, we replace the
rules⇒ A � Ck, 1 ≤ k ≤ m, with A � C ⇒ A � Ck and add the rules A � P′i ⇒ A � Pi,
with 1 ≤ i ≤ n. Finally, consider an ordering of PAX where α1 = A � C and, for each
1 ≤ i ≤ n, αi+1 = A � P′n+1−i (the rest of the ordering is not relevant).

The inclusion A � C plays the role of a satisfiability checker for C, that is if C is
not satisfiable, then for all K ∈ KB, A � C � Cn(K). Consequently, A � C � fM(KB).
Assume now that C is satisfiable. First of all, since for all 0 ≤ i ≤ n KB |= αi, then
KB− = ∅ and αi ∈ KB+ iff censorM(KB+i , ∅, αi) is false. Now, note that the αi are
not forced to be entailed by any rule, therefore for each K ∈ PKB also K \ {αi} ∈
PKB. Consequently, censorM(KB+i , ∅, αi) is false iff there exists a K ∈ PKB such that
Cn(K) ⊇ KB+i ∪ {αi}. In particular, this ensures that A � C ∈ KB+. Now, since PKB
satisfies the rules A � P′i ⇒ A � Pi and encodes with the inclusions A � Pi all
possible assignments ν that satisfy C, this means that censorM(KB+i , ∅, αi) is false (i.e.
αi ∈ KB+) iff there exists an assignment μ such that μi = 1 and for all 1 ≤ j < i, μ j = 1
iff A � P′j ∈ KB+. Finally, from the fact that most significant A � P′i are processed first,
we have that if C is not satisfiable then A � C � fM(KB), otherwise A � C ∈ fM(KB)
and A � P′i ∈ fM(KB) iff μmsa

i = 1.
Points 3, 4 are straightforward by the same argument for membership in Point 1. 	


Theorem 4. Computing fM(KB) over canonicalM in a DL with ExpTime entailment
(e.g.ALCQO,ALCIO,ALCQI, SHOQ, SHIO, SHIQ), is still in ExpTime.

Proof. Consider any test s ∈ CnM(X+, X−) in the construction of fM(KB, u) (there are
two such tests for each censor evaluation). Carrying out the test for given X+, X−, and
s ∈ S u can be done by brute force, iterating over all the exponentially many K′ ⊆ PAX
(which is either PAX0 or PAX1 whose size is polynomial in KB). For each such K′, we
have to verify whether it belongs to PKB, by checking whether K′ |=m MR; this can
be done in ExpTime by iterating over all the (ground) instances r ∈ groundK(MR) and
checking in polynomial time whether K′ |=m r. Then, for all K′ ∈ PKB, three ExpTime
problems must be solved (X+ ⊆ Cn(K′), X− ∩ Cn(K′) = ∅, and s � Cn(K′ ∪ BKu)).
If they all succeed, s � CnM(X+, X−); otherwise the algorithm continues with the next
K′ ⊆ PAX. So the total cost of each censor call is exponential in the size of KB, MR,
and BKu. In order to compute fM(KB), this cost is iterated for all combinations of se-
crets and axioms in PAX; moreover, for each iteration where the censor is false, an
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additional ExpTime entailment problem is solved (KB |= αi+1). It follows that comput-
ing fM(KB, u) is exponential in the size of KB, MR, BKu, and S u. 	

Theorem 5. Computing fM(KB) over canonicalM inSROIQ(D) is in coNPN2ExpTime.

Proof. (Hint) Use the same brute-force algorithm used in Theorem 4. 	


8 Relationships with the SCM

Here we show that the meta-secure framework is a natural generalization of the SCM.
The main result—roughly speaking—demonstrates that the SCM model can be essen-
tially regarded as a special case of our framework where PKB ⊇ ℘(KB) and BK = ∅. In
this case fM is secure even ifM is not assumed to be canonical.

Theorem 6. LetM = 〈KB,U, fM, 〈S u,PKBu,BKu〉u∈U 〉. If PKB = ℘(KB), BK = ∅, and
KB is finite, then

1. CnM(KB+,KB−) =
⋃

i<ν CnM(KB+i ,KB−i ).
2. For all enumerations of PAX, the corresponding fM(KB, u) is logically equivalent

to a maximal secure view KBu of KB according to the SCM; conversely, for all
maximal secure view KBu of KB (according to the SCM) there exists an enumeration
of PAX such that the resulting fM(KB, u) is logically equivalent to KBu.

3. fM is secure w.r.t. M and w.r.t. any M′ = 〈KB,U, fM, 〈S u,PKB′u,BK′u〉u∈U 〉 such
that PKB′ ⊇ ℘(KB) and BK′ = ∅.

Proof. By the first hypothesis, PAX = KB. As a first consequence, for all α ∈ PAX,
α ∈ Cn(KB), and hence, by definition of the inductive sequence 〈KB+i ,KB−i 〉i<ν, we have
that all for all i < ν, KB−i = ∅. As a second consequence, for all X+ ⊆ KB, we have
X+ ∈ PKB = ℘(KB). Therefore X+ is also the least K ∈ PKB (up to logical equivalence)
such that Cn(K) ⊇ X+ and Cn(K) ∩ ∅ = ∅. This fact and the second hypothesis imply
(by definition of CnM) that

CnM(X+, ∅) = Cn(X+) . (13)

As a special case, we get CnM(KB+i ,KB−i ) = Cn(KB+i ), for all i < ν. Moreover, by
compactness, Cn(

⋃
i<ν KB+i ) =

⋃
i<ν Cn(KB+i ); then Point 1 follows by:

CnM(KB+,KB−) = Cn(KB+) = Cn(
⋃
i<ν

KB+i ) =
⋃
i<ν

Cn(KB+i ) =
⋃
i<ν

CnM(KB+i ,KB−i ).

Now let α1, α2, . . . , αi, . . . be any enumeration of PAX. By induction on i, it is easy to
prove (using (13) and the definitions of K+i+1 and the censor) that for all i < ν, αi � K+i
iff either Cn(K+i−1∪{αi})∩S � ∅ or αi ∈ Cn(Ki−1). It follows immediately that

⋃
i<ν KB+i

is logically equivalent to a maximal subset KBu of KB that does not entail any secret.
By definition, the same holds for fM(KB, u) =

⋃
i<ν KB+i .
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Conversely, let KBu be any maximal subset of KB that entails no secret, and let n =
|KBu|. Let α1, α2, . . . , αi, . . . be any enumeration of PAX such that KBu = {α1, . . . , αn}
(i.e. the sentences in KBu precede those in KB \ KBu). As in the above paragraph, it
can be verified that for all i < ν, αi � K+i+1 iff either Cn(K+i ∪ {αi}) ∩ S � ∅ or αi ∈
Cn(Ki). It follows that KB+n is logically equivalent to KBu, and for all i > n, KB+i =
KBn. Consequently,

⋃
i<ν KB+i is logically equivalent to KBu, and so is fM(KB, u) =⋃

i<ν KB+i . This completes the proof of Point 2.
Point 3: fM is secure w.r.t.M by Theorem 1, whose hypothesis is satisfied by Point 1.

It follows by Proposition 2, that fM is also secure for allM′ such thatM′ ≤k M, which
includes allM′ that are identical toM with the exception of their possible knowledge
bases PKB′, and such that PKB′ ⊇ PKB = ℘(KB). 	

Remark 2. Theorem 6 applies to every canonicalM such that MR = BK = ∅, because
MR = ∅ implies that PAX0 = PAX1 = KB and hence PKB = ℘(KB). This shows
that the SCM can be regarded as a special case of our framework where the user has
no background knowledge. Moreover, by this correpondence, one immediately obtains
complexity bounds for the SCM from those for PAX1 and Horn, bounded-variable MR.

9 Related Work

Baader et al. [2], Eldora et al. [12], and Knechtel and Stuckenschmidt [14] attach se-
curity labels to axioms and users to determine which subset of the KB can be used by
each subject. These works are instances of the SCM so they are potentially vulnerable
to the attacks based on background knowledge; this holds in particular for [14] that
pursues the construction of maximal secure views. Similar considerations hold for [16].
Moreover, in [2, 12] axiom labels are not derived from the set of secrets; knowledge en-
gineers are responsible for checking ex post that no confidential knowledge is entailed;
in case of leakage, the view can be modified with a revision tool based on pinpointing.
Our mechanism produces automatically a secure view from the secrets, instead, and
decides secondary protection, i.e. which additional axioms shall be hidden for security.

Chen and Stuckenschmidt [7] adopt an instance of the SACM based on removing
some individuals entirely. In general, this may be secure against metaknowledge attacks
(cf. Ex. 5). However, no methodology is provided for selecting the individuals to be
removed given a target set of secrets.

In [3], KB is partioned into a visible part KBv and a hidden part KBh. Conceptually,
this is analogous to axiom labelling, cf. the above approaches. Their confidentiality
methodology seems to work only under the assumption that the signatures of KBv and
KBh are disjoint, because in strong safety they do not consider the formulae that are
implied by a combination of KBv and KBh. Surely the axioms of KBh whose signature
is included in the signature of KBv cannot be protected, in general. A partition-based
approach is taken in [10], too. It is not discussed how to select the hidden part KBh

given a set of target secrets (which includes the issue of deciding secondary protection).
Similarly, in [15] only ex-post confidentiality verification methods are provided. In

their model the equivalent of PKB is the set of all knowledge bases that include a
given set of publicly known axioms S ⊆ KB; consequently, their verification method is
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vulnerable to the attacks to complete knowledge based on conditional metaknowledge
(cf. Example 2 and Example 5) that cannot be encoded in their framework.

Cuenca Grau and Horrocks [9] investigate knowledge confidentiality from a prob-
abilistic perspective: enlarging the public view should not change the probability dis-
tribution over the possible answers to a “sensitive query” Q that represents the set of
secrets. In [9] users can query the knowledge base only through a pre-defined set of
views (we place no such restriction, instead). A probability distribution P over the set
of knowledge bases plays a role similar to metaknowledge. However, their confiden-
tiality condition allows P to be replaced with a different P′ after enlarging the public
view, so at a closer look P does not really model the user’s a priori knowledge about the
knowledge base (that should remain constant), differently from our PKB.

Our method is inspired by the literature on controlled (database) query evaluation
(CQE) based on lies and/or refusals ([4, 5, 6] etc). Technically we use lies, because
rejected queries are not explicitly marked. However, our censor resembles the classical
refusal censor, so the properties of fM are not subsumed by any of the classical CQE
methods. For example (unlike the CQE approaches that use lies), fM(KB, u) encodes
only correct knowledge, and it is secure even if users initially know a disjunction of
secrets. Unlike the refusal method, fM can handle cover stories because users are not
told which queries are obfuscated; as an additional advantage, our method needs not to
adapt existing engines to handle nonstandard answers like refusals (mum).

10 Discussion and Conclusions

We identified some novel vulnerabilities of those confidentiality preservation methods
that do not take background knowledge into account. The new confidentiality model of
Sec. 4 can detect these vulnerabilities, based on a generic formalization of object- and
meta-level background knowledge. A general mechanism for constructing secure views
(the filtering fM) is provably secure w.r.t. this model under a continuity assumption,
and generalizes a few previous approaches (cf. Thm. 6 and Ex. 5). In order to compute
secure views in practice we introduced a safe, generic method for approximating back-
ground knowledge, and a specific rule-based metalanguage. In this instantiation of the
general framework fM is always secure and its complexity can be analyzed.

If the underlying DL is tractable, then in the simplest case fM can be computed in
polynomial time. The number of variables in metarules and the adoption of a more
secure approximation (PAX0) may increase complexity up to PNP = Δ

p
2 and perhaps

Δ
p
3 . The complexity of non-Horn metarules, however, can be avoided by replacing each

non-Horn r with one of its Horn strengthenings: body(r) ⇒ α such that α ∈ head(r).
This approximation is safe (because it restricts PKB), and opens the way to a systematic
use of the low-complexity bk-models based on PAX1 and Horn metarules.

For the many ExpTime-complete DL, secure view computation does not increase
asymptotic complexity. So far, the best upper complexity bound for computing secure
views in the description logic underlying OWL DL (i.e. SROIQ(D)) is coNPN2ExpTime .

We plan to refine these complexity results and investigate different tradeoffs between
information availability and computational complexity. Moreover, the idea of mining
metarules from KB is particularly intriguing: it would be the first automated support to
background knowledge approximation.
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We are investigating implementations of the low-complexity frameworks (based on
PAX1 and Horn metarules) using the incremental engine versions available for Pellet
and ELK to avoid repeated classifications in the iterative construction of fM. Metarule
bodies can be evaluated with SPARQL. Answer set programming technologies (e.g.
DLV-Hex [11]) provide interesting alternatives. Secure views are constructed off-line,
so no overhead is placed on user queries, that can be answered with any standard engine.
For these reasons, our approach is expected to be applicable in practice.
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Abstract. Although an increasing number of RDF knowledge bases are
published, many of those consist primarily of instance data and lack so-
phisticated schemata. Having such schemata allows more powerful query-
ing, consistency checking and debugging as well as improved inference.
One of the reasons why schemata are still rare is the effort required
to create them. In this article, we propose a semi-automatic schemata
construction approach addressing this problem: First, the frequency of
axiom patterns in existing knowledge bases is discovered. Afterwards,
those patterns are converted to SPARQL based pattern detection algo-
rithms, which allow to enrich knowledge base schemata. We argue that
we present the first scalable knowledge base enrichment approach based
on real schema usage patterns. The approach is evaluated on a large set
of knowledge bases with a quantitative and qualitative result analysis.

1 Introduction

Over the past years, the quantity and size of RDF knowledge bases has signifi-
cantly increased. Nevertheless, many of those knowledge bases lack sophisticated
schemata and instance data adhering to those schemata. For content extracted
from legacy sources, crowdsourced content, but also manually curated content,
it is challenging to ensure a co-evolution of schemata and data, in particular for
large knowledge bases. For this reason, there has been significant recent interest
in semi-automation of schemata creation and revision based on the available in-
stance data [7,18,31,33]. The combination of instance data and schemata allows
improved querying, inference and consistency checking. In particular, in previous
work [7], we investigated lightweight and efficient schema creation approaches,
which can scale to large knowledge bases. Furthermore, those methods are able
to work with SPARQL based access to knowledge bases, which is currently the
dominating form for querying knowledge bases, which cannot easily be handled
by standard OWL reasoners. The main drawback of this early work is that we
were limited to learn property axioms, e.g. domain and range. In this work,
we go one step further and provide an approach, which is able to handle many
frequent axiom types, while still being efficient. This is achieved by following a
two phase approach: First, we analyse several data repositories to detect which
terminological axiom patterns are frequently used and convert those patterns

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 33–48, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://aksw.org


34 L. Bühmann and J. Lehmann

to SPARQL queries, which help to find those axiom patterns in instance data.
This preparation phase only needs to be performed once. Secondly, we perform
a lightweight statistical analysis to actually find specific axiom candidates as
suggestions for a knowledge engineer and compute a confidence score for each of
them.

Example 1. As a running example for knowledge base enrichment, consider an
axiom pattern1:

A ≡ B  ∃r.C
which can be instantiated by an axiom

SoccerPlayer≡ Person ∃team.SoccerClub

describing that every person which is in a team that is a soccer club, is a soccer
player. Adding such an axiom to a knowledge base can have several benefits: 1.)
The axioms serve as documentation for the purpose and correct usage of schema
elements. 2.) They improve the application of constraint violation techniques.
For instance, when using a tool such as the Pellet Constraint Validator2 on a
knowledge base with the above axiom, it would report soccer players without
an associated team as violation.3 3.) Additional implicit information can be in-
ferred, e.g. in the above example each person, who is in a soccer club team can
be inferred to belong to the class SoccerPlayer, which means that an explicit
assignment to that class is no longer necessary. The main purpose of our research
is, therefore, to reduce the effort of creating and maintaining such schema infor-
mation by providing enrichment suggestions to knowledge base maintainers.

We implemented our enrichment methods in the DL-Learner4 framework [17]
based on earlier work in [22,20]. The ORE tool [19]5 provides a graphical interface
for them. Our main contributions are as follows:

– An analysis of 1392 ontologies containing approximately 20.5 million termi-
nological axioms with respect to axiom patterns.

– Scalable retrieval and evaluation methods via SPARQL using sampling and
confidence estimation.

– A manual evaluation of 11 patterns and 718 axioms in DBpedia [26].
– An open source implementation in DL-Learner.

The article is structured as follows: First, we present the overall workflow in
Section 2. After that, the axiom normalisation into patterns and the estimation
of their usage frequency is described in Section 3. Using [8] for converting such a

1 We use standard description logic syntax in this paper and refer to [2] for an
introduction.

2 http://clarkparsia.com/pellet/icv/
3 Under OWL semantics, this is not a violation, due to the Open World Assumption,
unless we can infer from other knowledge that the player has no team.

4 http://dl-learner.org
5 http://ore-tool.net

http://clarkparsia.com/pellet/icv/
http://dl-learner.org
http://ore-tool.net
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pattern to a SPARQL query, we show how to suggest new candidates for axioms,
which could be added to the knowledge base in Section 4. For each suggestion,
we provide a confidence value based on F-Score, which is detailed in Section 5. A
performance optimisation for the workflow is outlined in Section 6. In Sections 7
and 8, we present our experimental setup and evaluation results, in particular
we discuss benefits as well as cases in which our approach fails to provide correct
suggestions. Related work is presented in Section 9 and we conclude in Section 10.

2 Knowledge Base Enrichment Workflow

In this section, we describe the overall workflow illustrated by Figure 1.

Fig. 1. Enrichment Workflow: In the preparation phase, typical axiom patterns are
detected and converted to SPARQL queries, which are then used in the execution
phase to learn new axiom suggestions

The preparation phase (upper part), described in the next section, results in
an automatically compiled library of query patterns for learning frequent ax-
ioms. Herein, the frequency is determined by analysing several ontology reposi-
tories and, afterwards, applying the method in [8] for converting the patterns to
SPARQL queries.

In the execution phase, which is an extension of previous work [7], the actual
axiom suggestions are generated. To achieve this, a single algorithm run takes
an axiom pattern as input and generates a set of OWL axioms as a result. It
proceeds in three steps:

1. In the optional first step, SPARQL queries are used to obtain existing in-
formation about the schema of the knowledge base, in particular we retrieve
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axioms which allow to construct the class hierarchy. It can be configured
whether to use an OWL reasoner for inferencing over the schema or just
taking explicit knowledge into account.6 Naturally, the schema only needs
to be obtained once per knowledge base and can then be re-used by all
algorithms and all entities.

2. The second step consists of obtaining data via SPARQL, which is relevant
for learning the considered axiom. This results in a set of axiom candidates,
configured via a threshold.

3. In the third step, the score of axiom candidates is computed and the results
returned.

We will explain the preparation phase and steps 2 and 3 of the execution phase
in the following sections in more detail by referring to our running example.

3 Pattern Frequency Detection

For detecting patterns, a set of input OWL files is used. Each axiom in those files
is then transformed to a normal form, which we call an axiom pattern, which is
defined as structural equivalence class7.

An axiom is transformed to a pattern as follows: Let Sig(ax) be the signature
of an OWL axiom ax. Let C be an ordered list of named classes, P be an
ordered list of properties and I be an ordered list of individuals. This order is
then extended to class expressions using an ordering over the different types
of class expressions. Based on this ordering, we can re-order the elements of
intersection and disjunction expressions in axioms. After that, each element of
Sig(ax) is replaced by a placeholder variable.

As an example, this normalisation ensures that the axiom pattern A � B 
∃r.(C) is equally obtained from both Father � Person  ∃hasChild.Male and
Carnivore � ∃eat.Meat  Animal .

Naturally, there is no unique way to define patterns. For instance, in the
above approach, we focus on patterns containing a single axiom. It would also be
possible to detect sets of axioms, which combined result in typical usage patterns.
At this stage, we did not do this due to scalability reasons: The algorithm needs
to be able to read hundreds of potentially large files and, in a later stage, the
generated SPARQL queries need to run on knowledge bases with billions of facts.

4 Data Retrieval

Usually, we have to run 3 SPARQL queries to obtain all data for computing the
score by means of precision and recall: one query for the number of instances

6 Note that the OWL reasoner only loads the schema of the knowledge base and,
therefore, this option worked even in cases with several hundred thousand classes in
our experiments using the HermiT reasoner.

7 http://www.w3.org/TR/owl2-syntax/#Structural_Specification

http://www.w3.org/TR/owl2-syntax/#Structural_Specification
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of the left hand side (|A|), one for the instance count of the right hand side
(|B  ∃ p.C|), and another one to get the number of instances contained in
the intersection of both (|A  B  ∃ p.C|). Based on that information, we can

compute precision P as P = |A�B �∃ p.C|
|B �∃ p.C| and recall R as R = |A�B �∃ p.C|

|A| in

our example.
The transformation function defined in [8] applied to A  B  ∃ p.C (the

intersection) leads to the following SPARQL query pattern:

?x a <A> .

?x a <B> .

?x <r> ?s0 .

?s0 a <C> .

Once having converted an axiom pattern into a SPARQL query pattern, in
a next step we need to replace entities of the query pattern with variables V ,
resulting in another query pattern. Usually, the left hand side of the pattern
represents the named classes in our knowledge base. For this reason, we can also
iterate over all classes. This is not formally necessary, but in practice it splits up
a large problem into subproblems, each of which requires less expensive SPARQL
queries. Assuming that D is the current class, we obtain the following query:

?x a <D> .

?x a ?cls1 .

?x ?p ?s0 .

?s0 a ?cls2.

After that, we group and project the results to all entities which were replaced
by variables in the previous step (?p, ?cls0, ?cls1 in this case), and count the
frequency for each combination. This results in a set of pattern instantiations
and frequency counts. In Example 1, the corresponding is:

SELECT ?p ?cls0 ?cls1 (COUNT(DISTINCT (?x) as ?cnt)) WHERE

{ ?x a <D>.

?x a ?cls0.

?x ?p ?s0 .

?s0 a ?cls1

} GROUP BY ?p ?cls0 ?cls1 ORDER BY DESC (?cnt)

We assume that we do this for all three required queries (left hand side, right
hand side, intersection).

5 Pattern Scoring

In the third workflow phase, we need to compute the confidence score for axiom
candidates, which involves computing the F-measure for each candidate. For
Example 1, computing the F-measure means that we need to count the number
of instances which belong to SoccerPlayer, the number of instances of Person
∃team.SoccerClub, as well as the number of instances belonging to both, i.e.
SoccerPlayer  Person  ∃team.SoccerClub. As explained above, the latter
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value is divided on the one hand by the first value to obtain the recall, and
on the other hand by the second value to get the precision, both resulting in
a total score using standard F-measure. For our running example, assume that
the following facts about some famous soccer players are given:

SoccerPlayer(Wayne Rooney)

SoccerPlayer(Lionel Messi)

Person(Wayne Rooney)

Person(Lionel Messi)

Person(Cristiano Ronaldo)

SoccerClub(FC Barcelona)

SoccerClub(Manchester United F.C.)

SoccerClub(Real Madrid C.F.)

team(Wayne Rooney, Manchester United F.C.)

team(Lionel Messi, FC Barcelona)

team(Cristiano Ronaldo, Real Madrid C.F.)

In the above example, we would obtain a recall of 100% (2 out of 2) and
a precision of 66,7% (2 out of 3), resulting in a total F1 score of 80% for the
pattern instantiation SoccerPlayer≡ Person ∃team.SoccerClub
of Example 1.

A disadvantage of using this straightforward method of obtaining a score is
that it does not take the support for an axiom in the knowledge base into account.
Specifically, there would be no difference between having 100 out of 100 correct
observations or 3 out of 3 correct observations when computing precision and
recall.

For this reason, we do not just consider the count, but the average of the
95% confidence interval of the count. This confidence interval can be computed
efficiently by using the improved Wald method defined in [1]. Assume we have
m observations out of which s were successful, then the approximation of the
95% confidence interval is as follows:

max(0, p′ − 1.96 ·
√

p′ · (1− p′)

m+ 4
) to min(1, p′ + 1.96 ·

√
p′ · (1− p′)

m+ 4
)

with p′ =
s+ 2

m+ 4

This formula is easy to compute and has been shown to be accurate in [1]. In the
above case, this would change the precision to 57.3% (previously 66,7%) and the
recall to 64.5% (previously 100%), thus leading to a total score of 60.7%. This
indicates that there is not much support for the axiom in the knowledge base.
However, when larger amounts of data are available, the score would increase
and ultimately converge to standard F-score.
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6 Optimizations

The disadvantage of the retrieval method in Section 4 is that it performs a
remote count putting high computational load on the SPARQL endpoint in case
of complex axiom patterns and very large data sets. An alternative option is to
compute a relevant fragment of the knowledge base in a first step and then use
that fragment to generate axiom candidates. We generate the relevant fragment
as follows: Since we always had named classes on the left hand side of an axiom
pattern, we iterate over all classes in the knowledge base. For each class A
and axiom pattern p, we retrieve Concise Bounded Descriptions 8 of depth n for
instances of A in a given time limit, where n is the modal depth of p. This is done
via SPARQL CONSTRUCT queries and the result is loaded into a local triple
store. We can then query this local store to obtain a local approximation of the
recall value for specific instantiations of the axiom pattern. Each instantiation
which is above a configurable threshold can then be processed by using the
remote count method described in Section 4. In summary, this method performs
a local filtering of axiom suggestions and only for viable candidates the exact
precision and recall values are computed. The effect of this optimisation is that
we reduce the query load on the triple store, in particular several simple queries
are send instead of few very expensive queries, which could cause timeouts or
overburden endpoints.

7 Experimental Setup

Pattern Frequency Detection. There exists a number of well-known ontology
repositories which are frequently used for empirical experimentation. For the
pattern frequency detection step, we used the following repositories (details are
listed in Table 1):

NCBO BioPortal9, an open repository of biomedical ontologies [28] that al-
lows users to browse, search and visualize ontologies as well as to annotate
and create mappings for ontologies. As of May 2013, the repository contains
385 ontologies in various ontology formats. Due to its ontologies ranging
widely in size and complexity, the BioPortal has become a popular corpus
for testing OWL ontology applications in recent years, such as pattern anal-
ysis [25] and ontology modularization [32].

TONES10, a curated ontology repository which was developed as part of the
TONES project as a means of gathering suitable ontologies for testing OWL
applications. It contains 219 well-known test and in-use ontologies, varying
strongly in size (up to over 100,000 logical axioms) and complexity (from
EL++ to SROIQ). The TONES ontologies are frequently used for empirical
studies, such as the prediction of reasoning performance [15] and ontology
debugging [19].

8 CBD: http://www.w3.org/Submission/CBD/
9 http://bioportal.bioontology.org/

10 http://owl.cs.manchester.ac.uk/repository/

http://www.w3.org/Submission/CBD/
http://bioportal.bioontology.org/
http://owl.cs.manchester.ac.uk/repository/
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Table 1. Overview about the ontology repositories used in the experiments

Repository #Ontologies #Axioms
Total Error Total Tbox RBox Abox

Avg Max Avg Max Avg Max Avg Max

TONES 219 12 14,299 1,235,392 8297 658,449 20 932 5981 1,156,468
BioPortal 385 101 25,541 847,755 23,353 847,755 35 1339 2152 220,948
Oxford 793 0 49,997 2,492,761 15,384 2,259,770 25 1365 34,587 2,452,737

Oxford Ontology Library11, a collection of OWL ontologies which was, simi-
lar to the TONES repository, gathered for the purpose of testing OWL tools.
The library which was established in late 2012 and currently contains 793
ontologies from 24 different sources, including an existing test corpus and
several well-known in-use and test ontologies, the largest containing more
than 2,000,000 axioms.

From the selected repositories, we used all ontologies which were available
online and could be parsed by the OWL API12, leading to 1392 ontologies con-
taining approximately 20.5 million terminological axioms. From the ontologies
that could not be processed (error column in Table 1), it was either not possible
to load them from the given URL (TONES), they could not be parsed by the
OWL API (TONES), or they were not publicly accessible (BioPortal).

Pattern Application. For the evaluation of the pattern application, we used 100
randomly chosen classes with at least 5 instances of the well-known DBpedia
(http://dbpedia.org/sparql) knowledge base, which is a crowd-sourced com-
munity effort to extract structured information from Wikipedia. In the used
version (3.8), it contains facts about 3.77 million resources, many of them de-
scribed by the 359 classes, 800 object properties and 859 datatype properties of
the DBpedia ontology. We applied the optimization described in Section 6 with
a time limit of 60 seconds for the fragment extraction process using thresholds of
0.6. From the results we showed at most 100 pattern instantiations per pattern
to 3 non-author evaluators.

8 Results and Discussion

Pattern Frequency Detection. As a result of the pattern frequency detection,
we obtained an ordered list of the 15 most frequent non-trivial13 TBox axiom
patterns existing in at least 5 ontologies, as shown in Table 2. It shows how
often each axiom pattern occurred (frequency), in how many ontologies it was
contained, and the rank by frequency in each ontology repository. In addition,
we also report the winsorised frequency: In the sorted list of pattern frequencies

11 http://www.cs.ox.ac.uk/isg/ontologies/
12 http://owlapi.sourceforge.net/
13 A � � and A � A were filtered.

http://dbpedia.org/sparql
http://www.cs.ox.ac.uk/isg/ontologies/
http://owlapi.sourceforge.net/
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Table 2. Top 15 TBox axiom patterns ordered by frequency with additional informa-
tion about the rank (if occurred) in each processed repository. Axiom patterns marked
with * were omitted for the user evaluation.

Pattern Frequency Winsorized
Frequency

#Ontologies T
O
N
E
S

B
io
P
o
rt
a
l

O
x
fo
rd

1. A � B 10,174,991 5,757,410 1050 2 1 1
2. A � ∃ p.B 8,199,457 2,450,582 604 1 2 2
3. A � ∃ p.(∃ q.B) 509,963 441,434 24 n/a n/a 3
4. A ≡ B � ∃ p.C 361,777 316,420 319 8 4 4

* 5. B � ¬ A 237,897 53,516 417 3 3 9
6. A ≡ B 104,508 8332 151 13 34 7

* 7. A ≡ ∃ p.B 70,040 11,031 139 36 32 8
8. ∃ p.Thing � A 41,876 34,795 595 6 7 11
9. A � ∀ p.B 27,556 21,046 266 4 11 19
10. A ≡ B � ∃ p.C � ∃ q.D 24,277 20,277 196 11 13 13
11. A ≡ B � C 16,597 16,597 78 5 20 22
12. A � ∃ p.(B � ∃ q.C) 12,453 12,161 84 23 18 15
13. A � ∃ p.{a} 11,816 4342 65 12 22 20
14. A ≡ B � ∃ p.(C � ∃ q.D) 10,430 10,430 60 39 21 17

* 15. p ≡ q− 9943 7393 433 17 19 23

for each ontology (without 0-entries), we set all list entries higher than the 95th
percentile to the 95th percentile. This reduces the effect of outliers, i.e. axiom
patterns scoring very high because of few very large ontologies frequently using
them. The axioms marked with a star (*) are already covered by our previous
work on learning an large knowledge bases [7]. We will use the remaining 12
patterns for our evaluation.

Fixpoint Analysis. Based on the results of the pattern frequency detection, we
performed a fixpoint analysis, i.e. we analysed how the ranking of the most
frequent axiom patterns changed and, thus, investigated whether the ranking of
the axiom patterns is fluctuating or stable. To do this, we processed ontology-
by-ontology in random order and computed the current corresponding frequency
ranking for each axiom pattern. The results shown in Figure 2 indicate that the
ranking shows only minor changes after 300 ontologies and, hence, our input set
of ≈ 1400 ontologies is sufficient.

Manual Evaluation Results. Table 3 shows the result of the manual evaluation,
which was done by 3 non-author evaluators. For the evaluation, we used a thresh-
old score of 0.6. If more than 100 axioms were generated for a pattern type, we
randomly selected 100 entries. This is shown as the sample size in Table 3. For
pattern A � ∀ p.B, we could not find axioms above the threshold. Thus, we only
evaluated the 11 remaining patterns. The last four columns are the result of a
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Fig. 2. Top 15 axiom patterns and its sequence of rank when processing the ontologies
in random order

manual evaluation. All evaluators independently observed the sample manually
and judged the axioms. An advantage of using DBpedia in this context is that
the Wikipedia pages provide sufficient background knowledge in most cases in
order to judge a particular axiom. Four different categories were used: “correct”
indicates that it is likely that they would be accepted by a knowledge engineer,
“minor” are axioms which are logically correct, but have modelling problems,
“incorrect” are those, which contain conceptual flaws and “not judged” are ax-
ioms which could not be evaluated by the authors. Overall, out of 2154 decisions
(718 evaluated axioms for each of the 3 reviewers), 48.2% were judged to be
correct, 2.7% had minor issues, 49.0% were incorrect and 0 not judged. For a
semi-automatic approach with manual validation, this is a reasonable score. The
average interrater agreement was substantial, although it was poor for one axiom
type. While half of the axiom patterns were frequent in DBpedia, one did not
exist at all and 5 were infrequent.

Threshold Analysis. The following diagram shows the correlation between the
computed accuracy score of the pattern instantiations and the evaluator judge-
ments, i.e. how many of the pattern instantiations with an accuracy value in a
particular interval are correct using majority voting (at least 2 out of 3 reviewers
have to judge it as correct).

To perform the analysis, questions were added in 10% buckets by confidence
interval (60–70%, > 70% − 80%, > 80% − 90%, > 90% − 100%). Only buckets
with at least 5 entries were used (which is why the lines are interrupted). For
most axiom types, the trend is that axioms with higher confidence are more likely
to be accepted, although two of the 11 axiom types show a decline with higher
confidence. The overall trend (dashed line) shows a slope from approx. 50% to
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Table 3. Result of the manual evaluation for each axiom pattern

manual evaluation in %
pattern sample size correct minor issues incorrect κFleiss’

A � ∃ p.B 50 88.0 0.7 11.3 24.8
A � B 47 63.8 2.1 34.0 53.8
A ≡ B 25 10.7 0.0 89.3 44.0
A ≡ ∃ p.B 68 29.9 2.0 68.1 60.4
A ≡ B � ∃ p.C 100 25.0 3.0 72.0 72.9
A ≡ B � ∃ p.(C � ∃ q.D) 100 23.0 5.3 71.7 43.5
A � ∃ p.(∃ q.B) 71 85.0 3.3 11.7 34.0
A � ∃ p.(B � ∃ q.C) 100 87.0 0.3 12.7 -2.8
A � ∃ p.{a} 15 71.1 0.0 28.9 45.9
A ≡ B � C 42 14.3 7.1 78.6 46.7
A ≡ B � ∃ p.C � ∃ q.D 100 37.0 2.7 59.7 75.0

718 48.2 2.7 49.0 66.1

Fig. 3. Correlation between the accuracy value of the pattern instantiations and the
confidence of the evaluators

almost 60% indicating that higher accuracy scores result in better axiom sugges-
tions.

Discussion. In this part, we will explain some of the evaluation results and
present specific examples. In general, many axioms appeared to be close to hu-
man intuition. One of the reasons why axioms were often judged to have ”minor
issues” is that several suggestions for a particular class and axiom pattern were
provided. The lower scoring ones often contained irrelevant parts. An example of
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this is GrandPrix ≡ Event (∃poleDriver.Athlete) (∃secondDriver.Agent).
While logically correct, defining a grand prix via the Agent class relation ship
of the driver finishing second is not intuitive.

In other cases, there were conceptual flaws, e.g. in the following axioms:

1. Song � ∃album.MusicalWork
2. Song � ∃artist.(∃recordLabel.RecordLabel)
3. BritishRoyalty � ∃parent.BritishRoyalty
4. President � ∃successor.Person
5. SoccerManager ≡ Agent � (∃birthPlace.Country) � (∃managerClub.SportsTeam)
6. SoccerClubSeason ≡ Organisation � (∃manager.Person) � (∃team.SoccerClub)

The first axiom is not correct, because not each song actually appears on an
album, although that is the case for the vast majority of songs in Wikipedia.
Similarly, not each song is done by an artist having a record label. The third
axiom is flawed, because to our understanding persons can marry British Royals
and, e.g. become queen later on, without having been member of the royalty
before. The fourth axiom is logically incorrect, because the current president does
not have a successor yet. There are many successor relationships in DBpedia,
which were suggested by our approach, so this was a major error type in the
evaluation. The fifth axiom is also a typical example: The conceptual flaw is
that a soccer manager has to manage a soccer team and not just an arbitrary
sports team. This suggestion is generated, because soccer data is dominant in
Wikipedia relative to other sports. However, in the best suggestion for the class
SoccerManager, our approach provides the correct axiom. Finally, the last axiom
is also incorrect. A soccer club season in DBpedia is modeled as a combination
of a soccer club and a specific year, in which the team had a manager. However,
SoccerClubSeason is a subclass of Organisation, which is a modeling error
already in DBpedia itself. This particular modeling error had a negative influence
on a significant number of axiom suggestions. Overall, the conceptual flaws are
either axioms just above the threshold or those for which there is significant
statistical evidence for their truth, but corner cases render them invalid. This is
also the major reason why we believe that knowledge base construction cannot
easily be fully automated.

For equivalent classes, there were 8 axioms above the 60% threshold. However,
the DBpedia ontology does not contain classes, which could be seen as equivalent,
so all axiom suggestions by our algorithm were classes suggested to be equivalent
to their super classes due to having almost the same instances.

9 Related Work

Ontology Enrichment usually involves applying heuristics or machine learning
techniques to find axioms, which can be added to an existing ontology. Naturally,
different techniques have been applied depending on the specific type of axiom.
One of the most complex tasks in ontology enrichment is to find definitions of
classes. This is strongly related to Inductive Logic Programming (ILP) [27] and
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more specifically supervised learning in description logics. Early techniques [9] us-
ing least common subsumers were later enriched with refinement operators [14].
However, those algorithms tend to produce very long and hard-to-understand class
expressions. The algorithms implemented in DL-Learner [22] overcome this prob-
lem and investigate the learning problem and the use of top down refinement in
detail. However, they require the ontology to be stored in an OWL reasoner in
contrast to the work proposed in this article. DL-FOIL [10] is a similar approach,
which is based on a mixture of upward and downward refinement of class expres-
sions. Most recently, [18] implements appropriate heuristics and adaptations for
learning definitions in ontologies.

A different approach to learning the definition of a named class is to compute
the so called most specific concept (msc) for all instances of the class. The most
specific concept of an individual is the most specific class expression, such that
the individual is instance of the expression. One can then compute the least
common subsumer (lcs) [4] of those expressions to obtain a description of the
named class. However, in expressive description logics, an msc does not need to
exist and the lcs is simply the disjunction of all expressions. Other approaches,
e.g. [23] focus on learning in hybrid knowledge bases combining ontologies and
rules.

Another enrichment task is knowledge base completion. The goal of such a task
is to make the knowledge base complete in a particular well-defined sense. For
instance, a goal could be to ensure that all subclass relationships between named
classes can be inferred. The line of work starting in [29] and further pursued in
e.g. [3] investigates the use of formal concept analysis for completing knowledge
bases. [34] proposes to improve knowledge bases through relational exploration
and implemented it in the RELExO framework14. It focuses on simple relation-
ships and the knowledge engineer is asked a series of questions. The knowledge
engineer either must positively answer the question or provide a counterexample.

[35] focuses on learning disjointness between classes in an ontology to allow
for more powerful reasoning and consistency checking. To achieve this, it can
use the ontology itself, but also texts, e.g. Wikipedia articles corresponding to
a concept. The article includes an extensive study, which shows that proper
modelling disjointness is actually a difficult task, which can be simplified via
this ontology enrichment method.

There are further more light-weight ontology enrichment methods. For in-
stance, taxonomies can be learned from simple tag structures via heuris-
tics [7,33,31]. All of those approaches follow similar goals. [7] is the base of
this article and follows the approach described in Section 2. [33] uses association
rule mining with a different set of supported axioms. Learning in this settings
is a batch process, which involves building transaction tables and measuring
extensional overlap between classes. Finally, [31] follows similar idea, but is re-
stricted to learning property domains and ranges as well as class disjointness.
The approach is applied to inconsistency checking in DBpedia.

14 http://code.google.com/p/relexo/

http://code.google.com/p/relexo/
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Table 4. Work in ontology enrichment grouped by type or aim of learned structures

Type/Aim References

Taxonomies [36,7,33]
Definitions often done via ILP approaches such as [21,22,18,10,5],

genetic approaches [16] have also been used
Super Class Axioms [18,33,7]
Rules in Ontologies [23,24]
Disjointness [35,7,31]
Properties of Properties [7,11,31]
Completion formal concept analysis and relational exploration [3,34,30]

Ontology Patterns. There has been a significant amount of research on ontology
design patterns with regular workshops on that topic. In particular, we want
to refer to [13] for a systematic review on ontology design patterns articles in
the Semantic Web community and [12] for a general introduction to the topic.
Many patterns are listed at http://ontologydesignpatterns.org. Initially, we
planned to use this as axiom pattern library. However, it turned out that only
a small percentage of the patterns are applicable in the context of knowledge
base enrichment and it is difficult to judge their relevancy. Therefore, we decided
to perform the described bottom up approach involving several repositories and
hundreds of ontologies. In the context of ontology learning, design patterns have
been employed in [6]. However, the focus in that scenario is on developing on-
tologies from textual input, whereas our approach focuses on creating or refining
schema structures from existing instance data.

10 Conclusions and Future Work

We presented an approach, which allows to detect frequent axiom usage patterns
using ≈ 1400 ontologies and converted them into SPARQL query patterns al-
lowing to find those patterns in instance data. This allows to improve knowledge
base schemata semi-automatically and is the first scalable schema construction
approach based on actual usage patterns to the best of our knowledge. Moreover,
it improves the co-evolution of schema and data as well as querying, constraint
checking and inference. The evaluation shows that the approach is feasible and
able to provide useful suggestions. Nevertheless, we also pointed out corner cases,
which are difficult to handle for such a statistical analysis and require human
attention. In combination with previous efforts [7,18], we have build an efficient
freely available tool, which is able to suggest both TBox and RBox axioms on
large knowledge bases accessible via SPARQL endpoints.

Acknowledgement. This work was supported by grants from the European
Union’s 7th Framework Programme provided for the projects GeoKnow (GA
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Abstract. We study confidentiality enforcement in ontology-based in-
formation systems where ontologies are expressed in OWL 2 RL, a profile
of OWL 2 that is becoming increasingly popular in Semantic Web ap-
plications. We formalise a natural adaptation of the Controlled Query
Evaluation (CQE) framework to ontologies. Our goal is to provide CQE
algorithms that (i) ensure confidentiality of sensitive information; (ii)
are efficiently implementable by means of RDF triple store technologies;
and (iii) ensure maximality of the answers returned by the system to
user queries (thus restricting access to information as little as possible).
We formally show that these requirements are in conflict and cannot be
satisfied without imposing restrictions on ontologies. We propose a frag-
ment of OWL 2 RL for which all three requirements can be satisfied.
For the identified fragment, we design a CQE algorithm that has the
same computational complexity as standard query answering and can be
implemented by relying on state-of-the-art triple stores.

1 Introduction

Preserving confidentiality of information (i.e., ensuring that sensitive data is
only accessible to authorised users) is a critical requirement for the design of
information systems. In recent years, Semantic Web technologies have become
widespread in many application domains. There is consequently a pressing need
for suitable confidentiality enforcement infrastructure in ontology-based informa-
tion systems which rely on RDF as a data model, SPARQL as a query language,
and OWL 2 as a language for describing background knowledge.

In traditional database management systems, confidentiality is enforced by
means of mandatory and discretionary access control mechanisms, where access
to data items such as tuples, entire relational tables, or database views is granted
only to certain (groups of) users. Such access control mechanisms are, however,
problematic for ontology-based information systems: explicitly represented RDF
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data is assumed to be incomplete and hence new, implicit, data can be derived
from the axioms in the ontology via logical reasoning. By granting access to a
certain set of RDF triples, system administrators are de facto disclosing a much
larger set of implicit triples, some of which a user might not be allowed to know.
In contrast, traditional databases are complete, and hence system data is always
explicit; as a result, managing access rights is conceptually a simpler problem.

Controlled Query Evaluation (CQE). [1,2,3,4,5,6] is an approach to confiden-
tiality enforcement where system administrators specify in a declarative way the
information that cannot be disclosed to users (neither directly nor indirectly via
results of previous queries) by means of a confidentiality policy. When given a user
query, a censor checks whether returning the answer would lead to a violation of
the corresponding policy and thus to a disclosure of confidential information to
unauthorised users; in that case, the censor returns a distorted answer.

CQE in databases is a long standing research area [1,2,4,6,3]; existing work,
however, focuses mostly on complete relational databases. CQE for incomplete
databases, which are more closely related to ontologies, remains relatively unex-
plored and research has so far been limited to foundational aspects [5].

In this paper, we are interested in ensuring confidentiality in ontology-based
information systems where the relevant ontologies are expressed in the OWL 2
RL profile [7]—a fragment of OWL 2 for which query answering is known to
be theoretically tractable in the size of both ontology and data, and efficiently
implementable by means of rule-based triple store technologies. OWL 2 RL has
become increasingly popular, and state-of-the-art RL reasoners such as OWLim
[8] and Oracle’s RDF Semantic Graph [9] provide robust and scalable support
for SPARQL queries over OWL 2 RL ontologies and RDF data.

Motivated by the CQE paradigm, we study confidentiality enforcement in the
scenario described next. We assume that the information in the system consists
of background knowledge formalised as an OWL 2 RL ontology, and dataset
formalised as a set of unary and binary facts. The ontology is assumed to be
fully known to all users (a worst-case situation for confidentiality enforcement),
whereas data is assumed to be hidden. Interaction with the system is restricted to
a query interface, which allows users to formulate arbitrary conjunctive queries
(which constitute the core of SPARQL). A confidentiality policy is represented
as a set of facts logically entailed by the ontology and dataset. Given a user
query, the system returns a subset of the certain answers to this query over the
ontology and dataset determined by the censor. Thus, we adopt the basic case
of the CQE paradigm where the censor only filters out problematic answers.

In this scenario, there is a tradeoff between confidentiality and accessibility of
information: a censor that returns the empty answer for each query makes the
system secure, but also equally useless. Thus, we are interested in optimal cen-
sors, i.e., those that return maximal sets of answers to queries which still preserve
the required confidentiality. Also, CQE can be computationally expensive and to
the best of our knowledge practicable algorithms are yet to be developed. We are
consequently interested in censors that can be efficiently implemented, ideally by
relying on the same technology used for query answering in OWL 2 RL.
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Fig. 1. Dataset Dex (a), and the same dataset extended with implicit information (b)

The contributions of this paper are as follows. In Section 3 we take existing
work on CQE for incomplete databases as a starting point, and present a CQE
framework that takes into account the specific features of standard ontology
and query languages. In Section 4 we propose the class of view-definable cen-
sors, which can be implemented by delegating the censor’s main computational
workload to an OWL 2 RL query answering engine. Roughly speaking, the be-
haviour of such a censor is determined by what we call a view : a dataset that
“encodes” the information in the system relevant to the censor’s output for any
user query. We next explore in Section 5 the formal limitations of our approach
and show that censors that are both optimal and view-definable may not ex-
ist; furthermore, even if such a censor exists, the corresponding view might be
exponentially larger than the system’s dataset, thus making efficient implemen-
tations difficult. In Section 6, we identify a fragment of OWL 2 RL for which
these limitations can be circumvented. Our fragment is able to capture non-
trivial extensions of RDF-Schema and is thus relevant for many Semantic Web
applications. We consequently provide a practical CQE evaluation algorithm
that guarantees both optimality and efficiency if the system’s ontology belongs
to our fragment. Finally, in Section 7 we observe that there are cases where dif-
ferent optimal view-definable censors exist, and where there is no good reason
for choosing one over the others; hence, we study how to deal with such cases.

2 Preliminaries

We assume that all our definitions are parameterised by a first-order signature
Σ consisting only of constants, unary predicates, and binary predicates. We also
assume first-order logic with equality over Σ, and denote with ≈ the special
binary equality predicate and ⊥ the special nullary false predicate. A dataset is
a finite set of ground (equality-free) atoms over Σ.

Example 1. Consider the following dataset Dex , where the predicate fOf repre-
sents the “friend of” relation:

person(Bob), knows(Mary, John), fOf(John, Bob), fOf(Bob, Mary).

A graphical representation of Dex is given in Figure 1(a).

Definition 2 (Rule, ontology). A rule r is a first-order sentence of the form
∀x∀z. ϕ(x, z) → ψ(x), where x and z are tuples of variables, ϕ(x, z) is a
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conjunction of atoms not mentioning ≈ or ⊥, and ψ(x) is a single atom. The
conjunction ϕ(x, z) is the body of r and the atom ψ(x) is the head of r; quan-
tifiers are often omitted for simplicity. An ontology is a finite set of rules.

We assume first-order semantics of formulae such as rules, and use |= in the
standard way as the logical consequence relation.

Example 3. Consider the ontology Oex consisting of the following rules:

knows(x, y)→ person(x); knows(x, y)→ person(y); fOf(x, y) → knows(x, y).

Intuitively, Oex says that only people can participate in the relation knows, and if
two people are friends (i.e., they participate in the fOf relation), then they know
each other. In Figure 1(b), we depict the dataset Dex from Example 1 extended
with ground atoms that are logically entailed by Oex ∪Dex . For example, Oex ∪
Dex |= person(John) and Oex ∪ Dex |= knows(John, Bob).

OWL 2 RL was designed as “a syntactic subset of OWL 2 which is amenable to
implementation using rule-based technologies” [7]. In particular, each OWL 2 RL
knowledge base can be normalised as a set of rules. We make two simplifying
assumptions w.r.t. the normative specification of OWL 2 RL. First, we ignore
datatypes for simplicity; second, we assume that no constants occur in rules.
The latter assumption ensures a clean separation between schema knowledge
and data. The following definition characterises a class of rules that is sufficient
to capture normative OWL 2 RL under our basic assumptions.

Definition 4 (RL ontology). An ontology O is an RL ontology if it can be
partitioned as O = O′ � O′′ such that the following properties hold.

1. Each rule r from O′ is constant-free; furthermore, the variables in r consist
of a single root variable x and a set of branch variables y such that:
(a) each binary atom in the body of r must mention x once and only once;
(b) each branch variable y occurs in exactly one binary atom in the body;
(c) if the head atom is binary then it is of the form y ≈ y′, for some y, y′

from y, and the binary atoms in the body, mentioning y and y′, use the
same predicate symbol and have y and y′ on the same position.

2. Each rule in O′′ is of one of the following forms:
(a) R(x, y)→ S(x, y); or (c) R(x, y)→ S(y, x); or
(b) R(x, y) ∧ S(y, z)→ T (x, z); or (d) R(x, y) ∧ S(x, y) → ⊥.

The OWL 2 RL specification requires certain global restrictions to hold in
order to ensure that OWL 2 RL is a syntactic fragment of OWL 2 DL (e.g., tran-
sitive properties cannot occur in cardinality constraints) [7,10]. Such restrictions
are not reflected in Definition 4 since they are immaterial to our results.

Example 5. The ontologyOex is an RL ontology. Moreover, forOex , O′
ex consists

of the first two rules, while O′′
ex consists of the last rule only.
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Definition 6 (Conjunctive query). A conjunctive query Q(x) is a first-order
formula of the form ∃y. ϕ(x,y), where x and y are tuples of variables and
ϕ(x,y) is a conjunction of atoms.

We will write Q instead of Q(x) when x is irrelevant or clear from the context.

Definition 7 (Query answering). Let O be an ontology, D be a dataset, and
let Q(x) be a conjunctive query. A tuple t of constants is a certain answer to
Q(x) w.r.t. O and D if O ∪ D |= Q(t). The set of all certain answers to a
conjunctive query Q(x) w.r.t. O and D is denoted by cert(Q,O,D).

Example 8. Consider the following queries:

Q1(x) = person(x); Q2(x) = ∃y, z. fOf(x, y) ∧ fOf(y, z) ∧ knows(z, x).

Clearly, cert(Q1,Oex ,Dex ) = {John, Bob, Mary} since all constants in Dex are
entailed to be persons (c.f., Figure 1(b)). Also, cert(Q2,Oex ,Dex ) = {John}
since John is a friend of Bob, Bob is a friend of Mary, and Mary knows John.

3 Controlled Query Evaluation for Ontologies

Our approach to confidentiality enforcement in ontology-based information sys-
tems was inspired by the CQE paradigm for incomplete databases first proposed
by Biskup and Weibert [5], which we briefly describe next.

A CQE system in [5] stores a database and a policy, which are both defined
as sets of propositional sentences. The policy is under the control of the system
administrators, and its goal is to declaratively specify the information that is to
be kept secret. Both database and policy are hidden from users, and interaction
with the system is limited to a query interface. Given a (propositional) user
query the system does not directly return the correct answer; instead, a censor
decides whether the answer needs to be modified according to the policy.

Let q1, . . . , qn be any finite sequence of such user queries, let v1, . . . , vn be the
answers (truth values) to these queries returned by the censor for the system’s
database D, and let γ be an arbitrary sentence in the policy. The confidentiality
of γ is compromised if the truth values v1, . . . , vn fully determine the truth value
of γ over D. In other words, to preserve confidentiality of γ there must exist
some other database D′ such that the censor evaluates the queries q1, . . . , qn to
the same values v1, . . . , vn over D′, but γ does not hold in D′. This means that
D and D′ are indistinguishable w.r.t. the user queries and hence the user cannot
decide whether γ holds or not. Hereby, the censor must preserve confidentiality
of all the sensitive data in the policy—that is, it should make sure that users
cannot derive any sentence in the policy by posing any finite set of queries.

Our framework focuses on ontology-based information systems and hence de-
viates from [5] in order to better reflect the specific features of standard ontology
and query languages. In the remainder of this section, we formally describe the
elements of our approach.
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3.1 Policies and CQE-Instances

We start with some assumptions made in our framework. Following [5], we as-
sume that both dataset and policy are hidden and that users can pose arbitrary
(conjunctive) queries to a query interface. We will assume, however, that the sys-
tem’s ontology is fully known to all users. The rationale behind this assumption
is twofold. On the one hand, information represented in ontologies is typically
common knowledge, and it is dangerous to enforce confidentiality by relying on
users’ unawareness of rather straightforward constraints; on the other hand, pub-
lic availability of the system’s background knowledge is key to improving access
to information: familiarity with the rules in the ontology can be invaluable for
users to formulate accurate queries. Furthermore, in our setting, information is
under the control of system developers and domain experts; thus, inconsisten-
cies have been resolved before the query interface is made available to users. We
consequently assume that query answering is always performed over a satisfiable
ontology and dataset. This assumption makes query results meaningful to users.
Finally, we assume that a policy is represented by a set of ground atoms that
are logically entailed by the ontology and dataset in the system.

To sum up, the relevant content of the CQE system for the purpose of confi-
dentiality enforcement is formalised in the following definition.

Definition 9 (Policy, CQE-instance). Let O be an ontology and let D be a
dataset such that O∪D is satisfiable. A policy P for O and D is a dataset such
that O ∪ D |= P, and a CQE-instance is the triple I = (O,D,P).

Example 10. The dataset Pex = {knows(Mary, John)} is a policy for our running
example ontology Oex and dataset Dex since Oex ∪Dex |= Pex . The triple Iex =
(Oex ,Dex ,Pex ) thus constitutes a CQE-instance.

3.2 Censors and Confidentiality Preservation

In [5], Biskup and Weibert consider censors that can distort query answers in
various ways. We adopt a pragmatic approach where censors are required to
return a sound, but possibly incomplete set of certain answers. Thus, the goal
of such a censor is limited to filtering out answers which may compromise the
policy. In contrast to [5], our censors never return unsound answers, or reject
queries.

Definition 11 (Censor). A censor cens for a CQE-instance I = (O,D,P) is
a function which maps each conjunctive query Q to a subset of cert(Q,O,D).

To align with the semantics of OWL 2, we adopt a notion of confidentiality
preservation that is formulated directly in terms of first-order models and en-
tailment. Specifically, with a censor cens for a CQE-instance I = (O,D,P), we
associate the following (possibly infinite) set of first-order sentences:

F(cens) = {Q(t) | t ∈ cens(Q), Q(x) is a conjunctive query}.



Controlled Query Evaluation in OWL 2 RL Ontologies 55

The set F(cens) intuitively represents all the information that a user can po-
tentially gain by interacting with the query interface. Since a user can ask only
a finite (yet unbounded) number of arbitrary queries, the information that the
user can gather from the system can be captured by a finite subset of F(cens).
Confidentiality preservation then amounts to ensuring that no finite subset of
F(cens) can logically entail an atom in the policy when coupled with O.

Definition 12 (Confidentiality preservation). Let I = (O,D,P) be a CQE-
instance. A censor cens for I is confidentiality preserving if for each ground atom
α in the policy P and each finite subset F of F(cens) it holds that O ∪ F �|= α.

Definition 12 is consistent with the notion of confidentiality preservation in [5].
Indeed, if a censor cens is confidentiality preserving for I, then a user cannot entail
any confidential information from P regardless of what queries they pose. Thus,
for each atomα in the policyP and each finite subsetF ofF(cens) there is a model
of O ∪ F in which α does not hold. Moreover, since O is an OWL 2 RL ontology
and F is a finite set of positive existential first-order sentences, there always exists
a finite modelM , which can be seen as a database instance in the sense of Biskup
and Weibert. Since M |= F , the model M cannot be distinguished from D using
the query answers returned by the censor. In contrast, D and M differ w.r.t. the
atom α in the policy, which implies that the user cannot decide whether α holds
or not in D based on returned query answers alone.

3.3 Information Access vs. Confidentiality Tradeoff

There is a tradeoff between confidentiality preservation and accessibility of in-
formation. On the one hand, a censor for a CQE-instance that returns the empty
set of answers for each query is clearly confidentiality preserving, but it also does
not provide any useful information; on the other hand, a censor that returns all
the certain answers to each query maximises information accessibility, but may
not be confidentiality preserving. Hence, we are interested in optimal censors,
which distort the answer only if necessary for enforcing confidentiality.

Definition 13 (Optimality). Let I be a CQE-instance, and let cens be a confi-
dentiality preserving censor for I. The censor cens is optimal if no other censor
cens′ �= cens for I exists such that (i) cens′ is confidentiality preserving; and (ii)
cens(Q) ⊆ cens′(Q) holds for each conjunctive query Q.

As we will discuss later on, there can be several optimal censors for a given
CQE-instance. In general, however, there is no good reason for choosing one over
the others, so we will design an algorithm which constructs all of them; however,
we will also study situations were a unique optimal censor is guaranteed to exist.

We conclude this section with a useful characterisation of the optimality of
cens in terms of its associated theory F(cens).

Proposition 14. Let cens be a confidentiality preserving censor for a CQE-
instance I = (O,D,P). Then, cens is optimal iff for each conjunctive query
Q(x) and each tuple t ∈ cert(Q,O,D) the fact that O ∪F(cens) ∪ {Q(t)} �|= α
holds for each α ∈ P implies that O ∪ F(cens) |= Q(t).
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4 View-Based Controlled Query Evaluation

As already discussed, the main task of the censor in a typical CQE system is
to receive answers to user queries as computed by the query answering engine,
and to decide, according to the policy, which answers are safe to return to the
user and which ones must be distorted. Such a censor is usually conceived as a
separate component, which is implemented on top of the query answering engine.
Unsurprisingly, implementing the censor of a CQE system becomes a major
challenge. The censor’s task can be computationally very expensive, and the
cost of the censor’s evaluation adds to the cost of query answering. Furthermore,
implementing the censor may require dedicated algorithms, and, in particular,
the highly optimised infrastructure available for query answering might not be
reusable. Hence, performance of a CQE system can be significantly affected by
the confidentiality enforcement component, and, as a result, the system might
not be practically feasible in performance-critical situations.

To address these challenges, we develop a novel approach that deviates from
the mainstream separation of query answering engine and censor as different
components of a CQE system. More specifically, we propose to exploit the avail-
able OWL 2 RL triple store infrastructure as much as possible, by delegating
the censor’s main computational workload to the query answering engine.

Our key idea is to associate to each CQE-instance I = (O,D,P) a new dataset,
which we call a view. Such a view V determines a censor censV in the sense
that, for each input user query Q, the censor’s output censV(Q) is uniquely and
trivially extractable from the set cert(Q,O,V) of all certain answers to Q w.r.t.
the ontology O and the view V . Since the view V is associated only with I and is
query-indenpendent, it also does not need to be recomputed until the underlying
dataset D is updated. In this way, the main workload of the censor in a typical
user session boils down to the computation of certain answers, which can be fully
delegated to the query answering engine.

Obviously, if we want the censor censV to enjoy the properties we are after,
the view V must be constructed with care. In order for censV to be indeed a
censor, V must not lead to spurious query answers. Furthermore, in order for
censV to be confidentiality preserving, V and O should not entail any atom in P .
Finally, in order for censV to be optimal, V must “encode” as much information
from D as possible. We next illustrate these ideas with an example.

Example 15. We construct a view Vex for our example CQE-instance Iex =
(Oex ,Dex ,Pex ). Since the policy Pex contains the atom α = knows(Mary, John),
we cannot include α in Vex . An obvious possibility would be to define Vex as
Dex \{α}, and then censVex as the function that returns cert(Q,Oex ,Vex ) for each
conjunctive query Q. Clearly, censVex is a censor for Iex , since cert(Q,Oex ,Vex ) ⊆
cert(Q,Oex ,Dex ), i.e., censVex returns only sound answers. Furthermore, censVex

is confidentiality preserving: since Oex ∪ Vex �|= α and Oex ∪ Vex |= F(censVex ),
it is clear that Oex ∪ F(censVex ) �|= α, as required by Definition 12. The cen-
sor censVex is, however, not optimal. To see this, consider the query Q(x) =
∃y, z. fOf(x, y) ∧ knows(y, z) asking for everyone who is a friend of someone
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Fig. 2. View Vex (a), and view defining an optimal censor for Iex = (Oex ,Dex ,Pex ) (b);
dashed arrows represent binary atoms that do not occur in Dex

who in turn knows somebody else. We have cert(Q,Oex ,Dex ) = {John, Bob},
but cert(Q,Oex ,Vex ) = {John}; nevertheless, answering this query correctly is
“harmless” in the sense that Oex ∪ F(censVex ) ∪ {Q(Bob)} �|= α
(c.f. Proposition 14).

Clearly, we cannot add α back into Vex without compromising the pol-
icy, and hence our only choice is to “encode” the missing information in
Vex by some other means. A possibility is to extend the domain of Vex

with an “anonymised copy” anm of Mary, and extend Vex with the atoms
fOf(Bob, anm) and knows(anm, John) (see Figure 2(a)). As a result, we ob-
tain cert(Q,Oex ,Vex ) = {John, Bob} and Oex ∪ Vex �|= α as we wanted.
There is, however, an undesired effect to this modification: for queries such as
Q′(x) = ∃y. knows(x, y) we would obtain the fresh constant anm as a spurious
answer. The obvious fix is to filter out such answers syntactically, and only re-
turn those answers in cert(Q,Oex ,Vex ) that mention only constants from the
domain of Dex . Although such extended view is still not optimal, we can reiter-
ate this procedure until we achieve optimality. As we will see, the view depicted
in Figure 2(b) defines an optimal censor for Iex .

We are ready to define the notion of a view V and its corresponding censor.

Definition 16 (View). Let I = (O,D,P) be a CQE-instance. A view for I is
a dataset V which satisfies the following properties:

(i) O ∪ V �|= α for each α ∈ P; and
(ii) t ∈ cert(Q,O,V) implies t ∈ cert(Q,O,D) for each conjunctive query Q

and each tuple t of constants from D.

Definition 17 (View-based censor). Let I = (O,D,P) be a CQE-instance
and let V be a view for I. The censor based on V (or view-based censor when V
is clear) is the function censV mapping a conjunctive query Q to the set of tuples

{t | t ∈ cert(Q,O,V), t has constants only from D}.
By Property (ii) in Definition 16, each view-based censor is indeed a censor.

Proposition 18 establishes that view-based censors are confidentiality preserving.

Proposition 18. Let I be a CQE-instance and let V be a view for I. Then censV
is a confidentiality preserving censor for I.
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5 Limitations of View-Based Censors

Before investigating the design of efficient view-based CQE algorithms, we first
explore the theoretical limitations of our approach. In this section we answer the
following important questions about an arbitrary CQE-instance I.

1. Is an optimal view-based censor for I guaranteed to exist?
2. How large can be the smallest view defining an optimal censor for I?

We answer the first question negatively: the presence of equality in the ontology
can preclude the existence of an optimal view-based censor, in the sense that the
“view” corresponding to such a censor would be necessarily infinite. As a result,
there are CQE-instances for which all view-based censors are not optimal.

Concerning the second question, we show that even if the ontology does not
contain equalities, the smallest view associated to an optimal censor can be at
least exponentially larger than the given instance. This is a crucial limitation
in practice, since such a censor would need to compute certain answers over an
exponentially large dataset, with the obvious negative effect on performance.

In Section 6 we will restrict the form of ontology rules to guarantee the exis-
tence of optimal censors based on small views.

5.1 Non-existence of Optimal View-Based Censors

We say that a censor cens for a CQE-instance I is view-definable if there exists a
view V for I such that cens = censV . The following theorem establishes that for
some CQE-instances view-definability and optimality of a censor are in conflict.

Theorem 19. There exists a CQE-instance I = (O,D,P) with an RL ontology
O, for which no censor exists that is both view-definable and optimal.

The intuition behind the proof is given by means of the following example.

Example 20. Consider the CQE-instance I = (O,D,P), where P = {emp(John)},
D = {manages(John, John)}, and O is defined as follows:

O = {manages(x1, y) ∧ manages(x2, y)→ x1 ≈ x2; manages(x, y) → emp(y)}.

The rules in O say that a person can only be managed by a single manager
and that everyone who is managed is an employee. Consider also the following
(infinite) sequence of conjunctive queries (for k ≥ 1):

Qk(x) = ∃x1, . . . , xk. manages(x, x1) ∧ . . . ∧ manages(xk−1, xk).

Clearly, John is the only certain answer to each Qk w.r.t. O and D. Furthermore,
answering each of these queries correctly is “harmless” for the confidentiality
of the policy, and hence each optimal censor for I must answer these queries
correctly. Imagine that such an optimal censor is based on some view V ; in order
for John to be returned as an answer to a given Qk, V must contain atoms
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manages(John, a1), . . . , manages(ak−1, ak). Since k is unbounded and the view
must be finite, some of the individuals ai must be equal; but then, the fact
that manages is axiomatised in O as inverse-functional causes the “management
chain” in V to “collapse” into a cycle involving John. This compromises the
policy since O ∪ V implies that John is managed by someone, and hence is an
employee.

5.2 Exponential Size of Views Defining Optimal Censors

Consider now the situation where an optimal view-based censor exists for a given
instance. The following theorem says that the smallest view associated to any
such optimal censor might necessarily be of size at least exponential in the size
of the given instance. In what follows, |O| and |D| denote the number of atoms
in the rules of the ontology O and in the dataset D, respectively.

Theorem 21. There exists a sequence of CQE-instances In = (On,Dn,P) for
n ≥ 1 such that On is an equality-free RL ontology, |On| ∈ O(n), |Dn| ∈ O(n),
and each view V for In with censV optimal is such that |V| ∈ Ω(2n).

Again, we explain the main ideas of the proof by means of an example.

Example 22. Next we give the second element I2 = (O2,D2,P) of the sequence
In of CQE-instances. Let P = {executive(John)} and

O2 = {Ai
1(x) ∧ Ai

2(x) ∧ managedBy(x, y) → executive(y) | 1 ≤ i ≤ 2},
D2 = {managedBy(Bob, John)} ∪ {Ai

j(Bob) | 1 ≤ i, j ≤ 2}.

The ontology O2 has two rules with four atoms in each, and the dataset D2 has
2× 2 + 1 atoms. Consider the following four queries, which ask for those people
who manage someone satisfying a given subset of requirements:

Qj1,j2(y) = ∃x.A1
j1 (x) ∧ A2

j2(x) ∧ managedBy(x, y); 1 ≤ j1, j2 ≤ 2.

Clearly, John is the only certain answer to each of these queries w.r.t. O2 and
D2. Answering these queries correctly does not compromise the policy, because
none of the pairs of Ai

j from the queries occur together in the body of any rule
in O2.

So, in order to be optimal, a censor censV must answer all these queries cor-
rectly and, for this, the view V must contain four “witnessing” constants aj1,j2 for
each 1 ≤ j1, j2 ≤ 2, such that A1

j1(aj1,j2), A
2
j2(aj1,j2), and managedBy(aj1,j2 , John)

are in V . Furthermore, any pair of these constants cannot be identified into a
single one, since otherwise the user would be able to derive the policy atom.

Similarly, for any other n ≥ 1, the domain of the view has to contain 2n

different constants aj1,...,jn (each witnessing a different query Qj1,...,jn).

This example exploits that RL ontologies allow rules in which unary atoms
refer to branch variables. Alternatively, a similar example can be constructed by
using rules of the form 2(b) in Definition 4 (also known as role chain rules).
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6 Efficient View-Based Controlled Query Evaluation

Theorems 19 and 21 show that ensuring optimality comes at the expense of
practicality. The proofs of these theorems, however, rely on very specific OWL
2 RL constructs: Theorem 19 critically depends on equality, whereas Theorem
21 requires a rule that mentions a unary atom involving a branch variable (or,
alternatively, a rule of the form 2(b) in Definition 4).

We next present a fragment RL− of OWL 2 RL for which the limitations from
Section 5 can be circumvented. We show that for any CQE-instance involving
an RL− ontology it is possible to construct an optimal view in polynomial time
(in the size of I). We start with the definition of RL−.

Definition 23 (RL− ontology). An RL− ontology is an RL ontology O =
O′ � O′′ satisfying the following restrictions.

1. Each rule r in O′ is equality-free. Furthermore, each unary atom in r (both
in the head and body) mentions only the root variable of r.

2. There is no rule of the form 2(b) from Definition 4 in O′′.

In particular, this definition ensures that positive rules in O′ are of the form∧
i
Ai(x) ∧

∧
j
Rj(x, yj) ∧

∧
k
Sk(yk, x) → B(x).

The ontologies in Examples 20 and 22 are not RL− ontologies. Nevertheless,
RL− is powerful enough to capture the rules corresponding to RDFS, includ-
ing subclass and subproperty axioms (i.e., rules of the form A(x) → B(x) and
R(x, y) → S(x, y)) as well as property domain and range axioms (i.e., rules
R(x, y)→ A(x) and R(x, y)→ A(y)). Additionally, RL− goes well beyond RDFS
and can capture other useful kinds of OWL 2 RL rules.

Example 24. Our example ontology Oex is expressible as RDFS rules and hence
also in RL−. The following rules are RL−, but with no correspondence in RDFS:

fOf(x, y) → fOf(y, x); (1)

emp(x) ∧ manages(x, y) → manager(x); (2)

student(x) ∧ onpayroll(x) → PHDStudent(x). (3)

Rule (1) axiomatises fOf as symmetric. Rule (2) says that employees managing
others are managers. Rule (3) says that paid students must be doing a PhD.

We next present an algorithm ComputeView (c.f. Algorithm 1) that takes as
input a CQE-instance I = (O,D,P) such that O is an RL− ontology and returns
a view V for I such that censV is guaranteed to be an optimal censor. This
algorithm works in polynomial time and, hence, computes V of polynomial size.

The algorithm ComputeView starts by creating an anonymised copy of each
constant occurring in D (Line 2), and replicates in Dan all atoms (unary and
binary) of D on these new constants (Lines 3-4). Moreover, if R(a, b) is in D,
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Algorithm 1. ComputeView

INPUT : A CQE-instance I = (O,D,P) with an RL− ontology O
OUTPUT: A view V for I

1 Dan := ∅;
2 foreach constant a occurring in D do create a fresh constant ana;
3 foreach A(a) ∈ D do Dan := Dan ∪ {A(ana)};
4 foreach R(a, b) ∈ D do Dan := Dan ∪ {R(ana, anb), R(a, anb), R(ana, b)};
5 Dsat := D ∪Dan;
6 foreach atom β s.t. O ∪D ∪Dan |= β do Dsat := Dsat ∪ {β};
7 V := ∅;
8 repeat
9 Choose β ∈ Dsat such that O ∪ V ∪ {β} |= α for each α ∈ P ;

10 V := V ∪ {β}
11 until no such β ∈ Dsat can be chosen;
12 return V.

then the algorithm also relates by R inDan the constant a to the anonymised copy
anb of b, and the anonymised copy ana of a to b (Line 4). Then, the algorithm
saturates the resulting dataset Dsat = D∪Dan with all facts entailed by O∪Dsat

(Line 6). Finally, it enforces the policy P by computing a maximal subset V of
the saturated dataset that respects P (Lines 8-11), which is finally returned as
the output. Note, that different choices in Line 9 might lead to different outputs,
i.e., algorithm ComputeView is non-deterministic. Indeed, for a given instance I,
there may be several view-based censors that are optimal, and each run of the
algorithm ComputeView computes one of them; however, as we will see later on,
any view leading to an optimal censor is computed by some run of the algorithm.

Example 25. When receiving our running example CQE-instance Iex as input,
the algorithm ComputeView computes the view given in Figure 2(b). In this case,
the algorithm’s output is independent from the choices made in Line 9, i.e., all
possible runs of the algorithm lead to the same result.

To see how different runs of the algorithm might lead to different outputs,
consider a CQE-instance I = (O,D,P) where O = {A(x) ∧ B(x) → C(x)},
D = {A(a), B(a)}, and P = {C(a)}. There are two possible runs of ComputeView
on I, which lead to two different views {A(a), A(ana), B(ana), C(ana)} and
{B(a), A(ana), B(ana), C(ana)}, respectively.

The following theorem establishes correctness and complexity of the algorithm.

Theorem 26. Let I = (O,D,P) be a valid input of the algorithm ComputeView.
(i) If V is the result of a run of ComputeView on I then censV is an optimal

censor for I.
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(ii) For each optimal censor cens for I, there exists a run of ComputeView on
I that computes V such that cens = censV .

(iii) The algorithm can be implemented to run in time polynomial in |D|+ |O|.

There is a couple of remarks about the proof of Theorem 26 that are worth
to be made here. Polynomial complexity is a direct consequence of two facts:
first, the size of Dsat is polynomial in the size of D and O; second, checking
whether a ground atom can be entailed from an OWL 2 RL ontology and a
dataset can be done in polynomial time in both the size of the ontology and
dataset [7]. Optimality of censV relies on the fact that Dsat captures all the
possible matchings of an input query Q over the least Herbrand model of O∪D;
for this to be the case, the restrictions on rules imposed by RL− are the key.

7 Uniqueness of Optimal View-Based Censors

The fact that the output of ComputeView is not uniquely determined can be
problematic. For example, a CQE system that relies on this algorithm needs to
ensure that the same view is used in different user sessions, as well as for different
users for which equivalent policies apply. One could, of course, determinise the
output of the algorithm using application-dependent heuristics; however, there
may not be a good reason for choosing one possible view over the others.

Our first proposal is to impose further restrictions to the ontology language.
Example 25 suggests that existence of multiple views is related to the presence
of conjunction in the bodies of rules, which suggests the restriction given next.

Definition 27 (Linear RL− ontology). An RL− ontology O is linear if every
rule in O contains exactly one atom in the body.

Each RDFS ontology, such as Oex in our running example, is also a linear RL−

ontology; hence, linearity might not be too strict a restriction for many Semantic
Web applications. Note also that linear RL− is a fragment of OWL 2 QL, in the
sense that every linear RL− rule can be transformed into an equivalent OWL 2
QL axiom. In contrast, non-linear RL− is not captured by OWL 2 QL since it
allows for conjunction in the body of rules. The following theorem shows that
restricting ourselves to linear ontologies has the desired effect.

Theorem 28. If I = (O,D,P) is a CQE-instance with O a linear RL− ontol-
ogy; then, each run of ComputeView on I yields the same result.

Corollary 29. Let I = (O,D,P) be a CQE-instance with O a linear RL− on-
tology and let V be the result of a run of ComputeView on I; then, censV is the
only optimal censor for I.

For applications where linearity is too strict, we can give up optimality in
favour of uniqueness by taking the “intersection” of all optimal views.
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Definition 30. Let I = (O,D,P) be a CQE-instance with O an RL− ontology.
The WIDTIO-view1 for I is the view defined as the following set of atoms:

{ground atom β | O ∪ V |= β for each view V for I with censV optimal}.

The (non-optimal) censor based on the WIDTIO-view implements a “cau-
tious” approach to confidentiality enforcement since it disregards all atoms that
could possibly participate in the disclosure of an atom in P . The following the-
orem shows, however, that this solution might be computationally expensive.

Theorem 31. Deciding whether a ground atom β belongs to the WIDTIO-view
for a CQE-instance I = (O,D,P) with O an RL− ontology is coNP-complete.

8 Related Work

The CQE paradigm was first proposed by Sichermann et al. [6], and was later
extended by Biskup, Bonatti, Kraus and Subrahmanian [3,2,4,1]. CQE in the
context of incomplete databases was studied by Biskup and Weibert [5]. These
foundational works on CQE assume that both the information in the system and
user queries are represented in propositional logic. Recently, Biskup and Bonatti
studied CQE in relational databases where queries contain answer variables [12].

The formal study of data privacy and information hiding has received signif-
icant attention within the database community. Miklau and Suciu introduced
perfect privacy in data exchange [13]. Rizvi et al. studied view-based authorisa-
tion mechanisms [14,15], and Deutsch et al. analysed the logical implications to
privacy derived from publishing views of a database [16]. Formal data privacy
frameworks have been proposed by Kifer et al. [17] and Evfimievski et. al. [18].

Privacy and information hiding in the context of ontologies has been investi-
gated only recently. Information hiding at the schema level has been studied in
[19,20]. Data privacy was studied for EL ontologies by Tao et al. [21]. Bao et al.
introduced the notion of a privacy-preserving reasoner [22] and Stouppa et al.
proposed a framework for data privacy in the context of ALC ontologies [23]. Fi-
nally, Calvanese et al. [24] proposed techniques for ontology access authorisation
based on Zhang and Mendelzon’s database authorisation views paradigm [15].

9 Conclusion and Future Work

We have proposed novel techniques for enforcing confidentiality in information
systems that rely on RDF, SPARQL, and OWL 2 RL for representing data,
queries, and ontologies, respectively. Our techniques ensure an optimal tradeoff
between confidentiality and accessibility of information; furthermore, they can
be efficiently implemented by relying on existing highly optimised OWL 2 RL
triple stores. Our next step is to implement and test our algorithms, and we are

1 This solution is related to the well-known “When In Doubt Through It Out”
(WIDTIO) approach [11] to knowledge base update.
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also planning to consider the problem of view maintenance for applications that
require very frequent changes to the data, such as data streaming applications.
Finally, we will study how our results could be extended to the case where the
ontology is expressed in either the QL, or the EL profile of OWL 2.
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Abstract. With thousands of RDF data sources available on the Web
covering disparate and possibly overlapping knowledge domains, the prob-
lem of providing high-level descriptions (in the form of metadata) of their
content becomes crucial. In this paper we introduce a theoretical frame-
work for describing data sources in terms of their completeness. We show
how existing data sources can be described with completeness statements
expressed in RDF. We then focus on the problem of the completeness
of query answering over plain and RDFS data sources augmented with
completeness statements. Finally, we present an extension of the com-
pleteness framework for federated data sources.

1 Introduction

The Resource Description Framework (RDF) [9] is the standard data model for
the publishing and interlinking of data on the Web. It enables the making of
statements about resources in the form of triples including a subject, a predicate
and an object. Ontology languages such as RDF Schema (RDFS) and OWL
provide the necessary underpinning for the creation of vocabularies to structure
knowledge domains. RDF is now a reality; efforts like the Linked Open Data
project [8] give a glimpse of the magnitude of RDF data today available online.
The common path to access such huge amount of structured data is via SPARQL
endpoints, that is, network locations that can be queried upon by using the
SPARQL query language [5].

With thousands of RDF data sources covering possibly overlapping knowl-
edge domains, the problem of providing high-level descriptions (in the form of
metadata) of their content becomes crucial. Such descriptions will connect data
publishers and consumers; publishers will advertise “what” is there inside a data
source so that specialized applications can be created for data source discovering,
cataloging, selection and so forth. Proposals like the VoID [1] vocabulary touched
this aspect. With VoID it is possible to provide statistics about how many in-
stances a particular class has, information about its SPARQL endpoint and links
with other data sources, among the other things. However, VoID mainly focuses
on providing quantitative information. We claim that toward comprehensive
descriptions of data sources, qualitative information is crucial.

Related Work. Data quality is about the “fitness for use” of data and en-
compasses several dimensions such as accuracy, correctness and completeness.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 66–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fürber and Hepp [4] investigated data quality problems for RDF data originat-
ing from relational databases, while Wang et al. [19] focused on data cleansing.
The problem of assessing completeness of Linked Data sources was discussed by
Harth and Speiser [6]; here, completeness is defined in terms of authoritative-
ness of data sources, which is a purely syntactic property. Polleres et al. [16]
defined a rule language where the need for completeness information emerges.
Hartig et al. [7] discussed an approach to get more complete results of SPARQL
queries over the Web of Linked Data. Their approach is based on traversing RDF
links to discover relevant data during query execution. Still, the completeness
of query answers cannot be guaranteed. In the relational databases world, com-
pleteness was first investigated by Motro [12] who provided a formalization of
completeness of databases and queries. Halevy [11] studied the problem of how
statements of completeness about a database related to query completeness. Re-
cently, Razniewski and Nutt [17] provided a general solution to this problem,
including a comprehensive study of the complexity of reasoning.

Indeed, the semantics of completeness is crucial also for RDF data sources
distributed on the Web, where each data source is generally considered incom-
plete. To the best of our knowledge, the problem of formalizing the semantics
of RDF data sources in terms of their completeness is open. Also from the more
pragmatic point of view, there exist no comprehensive solutions enabling the
characterization of data source in terms of completeness. As an example, with
VoID it is not possible to express that, for instance, the data source IMDb is
complete for all movies directed by Tarantino. Having the possibility to provide
in a declarative and machine-readable way (in RDF), such kind of completeness
statements paves the way toward a new generation of services for retrieving and
consuming data. In this latter respect, the semantics of completeness statements
interpreted by a reasoning engine can guarantee the completeness of query an-
swering. We present a comprehensive application scenario in Section 2.

Contributions. This paper lays the foundation for the expression of complete-
ness statements about RDF data sources. It can complement, with qualitative
descriptions, existing proposals like VoID that mainly deal with quantitative de-
scriptions. We develop a formalism and show its feasibility. The second goal of
this paper is to show how completeness statements can be useful in practice. In
this respect, we focus on the problem of query completeness. We believe that our
research has both a theoretical and practical impact. On the theoretical side, we
provide a formalization of completeness for RDF data sources and techniques to
reason about the completeness of query answers in various settings, from plain
RDF to federated data sources. From the practical side, completeness statements
can be easily embedded in current descriptions of data sources and thus readily
used. Finally, we want to point out that our completeness framework has been
implemented in the CoRNER system, which is available for download1.

Outline. In Section 2 we discuss a real world scenario and provide a high
level overview of the completeness framework. Section 3 after providing some

1 http://rdfcorner.wordpress.com/

http://rdfcorner.wordpress.com/
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background introduces a formalization of the completeness problem for RDF
data sources. This section also describes how completeness statements can be
represented in RDF. In Section 4 we discuss how completeness statements can
be used in query answering when considering a single data source at a time. In
Section 5 we challenge query completeness in federated data sources. Section 6
contains a discussion and Section 7 the conclusions.

2 Motivating Scenario

In this section we motivate the need of formalizing and expressing completeness
statements in a machine-readable way. Moreover we show how completeness
statement are useful for query answering. We start our discussion with a real
data source available on the Web. Fig. 1 shows a screenshot taken from the
IMDb website. The page is about the movie Reservoir Dogs; in particular it lists
the cast and crew of the movie. For instance, it says that Tarantino was not only
the director and writer of the movie but also the character Mr. Brown. As it can
be noted, the data source includes a “completeness statement”, which says that
the page is complete for all cast and crew members of the movie. The availability
of such statement increases the potential value of the data source. In particular,
users who were looking for information about the cast of this movie and found
this page can prefer it to other pages since, assuming the truth of the statement,
all they need is here.

 

Completeness 
statement about the 
IMDB data source

Quentin Tarantino
was the character 

Mr. Brown

……………
……………

……………

http://www.imdb.com/title/tt0105236/fullcredits?ref_=tt_ov_st_sm#cast

Fig. 1. A completeness statement in IMDb as of 7 May 2013. It says that the source
is complete for the cast and crew of the movie Reservoir Dogs.

The problem with such kind of statements, expressed in natural language, is
that they cannot be automatically processed, thus hindering their applicability,
for instance, in query answering. Indeed, the interpretation of the statement
“verified as complete” is left to the user. On the other hand, a reasoning and
querying engine when requested to provide information about the cast and crew
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members of Reservoir Dogs could have leveraged such statement and inform the
user about the completeness of the results.

Other examples of Web data sources that already provide completeness state-
ments are OpenStreetMap2 and Wikipedia, which has, for instance, a complete
list of works attributed to Vermeer and works by Shakespeare or a complete
list of Olympic medalists in archery from 1900 to 2012. If such statements were
exploited by machines, one would expect that there would be an incentive to
publish them.

Machine-Readable Statements. In the RDF and Linked Data context with
generally incomplete and possibly overlapping data sources and where “anyone
can say anything about any topic and publish it anywhere” [9] having the pos-
sibility to express completeness statements becomes an essential aspect. The
machine-readable nature of RDF enables to deal with the problems discussed in
the example about IMDb; completeness statements can be represented in RDF.
As an example, the high-level description of a data source like DBpedia could
include, for instance, the fact that it is complete for all of Quentin Tarantino’s
movies. Fig. 2 shows how the data source DBpedia can be complemented with
completeness statements expressed in our formalism. Here we give a high level
presentation of the completeness framework; details on the theoretical framework
supporting it are given in Section 3.

 
 
 

 

 

                                                                                   

dv:dbpdataset rdf:type void:Dataset .

dv:dbpdataset rdfs:comment "This document provides completeness statements 
about the dbpedia.org datasource" .

dv:dbpdataset c:hasComplStmt dv:st1.
dv:st1        c:hasPattern    [c:subject   [spin:varName "m"];

c:predicate rdf:type;
c:object    schema:Movie     ].

dv:st1        c:hasPattern    [c:subject   [spin:varName "m"];
c:predicate schema:director;
c:object    dbp:Tarantino].

dv:st1       rdfs:comment "This completeness statement indicates that 
dbpedia.org is complete for all movies directed by Tarantino".

@prefix       c: <http://inf.unibz.it/ontologies/completeness#> .
@prefix     rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix    rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix  schema: <http://schema.org/> .
@prefix    spin: <http://spinrdf.org/sp#> .
@prefix     dbp: <http://dbpedia.org/resource/> .
@prefix    void: <http://rdfs.org/ns/void#> .
@prefix      dv: <http://dbpedia.org/void/> .

Fig. 2. An example of completeness statement about dbpedia.org

A simple statement can be thought of as a SPARQL Basic Graph
Pattern (BGP). The BGP (?m rdf:type schema:Movie).(?m schema:director

dbp:Tarantino), for instance, expresses the fact that dbpedia.org is com-
plete for all movies directed by Tarantino. In the figure, this information is

2 http://wiki.openstreetmap.org/wiki/Hall_of_Fame/Streets_complete

http://wiki.openstreetmap.org/wiki/Hall_of_Fame/Streets_complete
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represented by using an ad-hoc completeness vocabulary (see Section 3.2) with
some properties taken from the SPIN3 vocabulary.

Query Completeness. The availability of completeness statements about data
sources is useful in different tasks, including data integration, data source dis-
covery and query answering. In this paper we will focus on how to leverage
completeness statements for query answering. The research question we address
is how to assess whether available data sources with different degree of com-
pleteness can ensure the completeness of query answers. Consider the scenario
depicted in Fig. 3 where the data sources DBpedia and LinkedMDB are described
in terms of their completeness. The Web user Syd wants to pose the query Q to
the SPARQL endpoints of these two data sources asking for all movies directed
by Tarantino in which Tarantino also starred. By leveraging the completeness
statements, the query engines at the two endpoints could tell Syd whether the
answer to his query is complete or not. For instance, although DBpedia is com-
plete for all of Tarantino’s movies (see Fig. 2) nothing can be said about his
participation as an actor in these movies (which is required in the query). In-
deed, at the time of writing this paper, DBpedia is actually incomplete; this is
because in the description of the movie Reservoir Dogs the fact is missing that
Tarantino was the character Mr. Brown (and from Fig. 1 we know that this is
the case). On the other hand, LinkedMDB, the RDF counterpart of IMDb, can
provide a complete answer. Indeed, with our framework it is possible to express
in RDF the completeness statement available in natural language in Fig. 1. This
statement has then been used by the CoRNER reasoning engine, implementing
our formal framework, to state the completeness of the query.

DBPedia is complete 
for all Tarantino's movies

                                                                                  

lv:lmdbdataset rdf:type void:Dataset.
lv:lmdbdataset c:hasComplStmt lv:st1.

lv:st1 c:hasCondition [c:subject [spin:varName "m"];
c:predicate rdf:type; c:object schema:Movie].
lv:st1 c:hasCondition [c:subject [spin:varName "m"];
c:predicate schema:director; c:object dbp:Tarantino].

dv:dbpdataset rdf:type void:Dataset.

dv:dbpdataset c:hasComplStmt dv:st1.
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate  rdf:type;  c:object schema:Movie    ].
dv:st1 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object dbp:Tarantino].

SELECT ?m
WHERE {?m rdf:type schema:Movie.
?m schema:director dbp:Tarantino.
?m schema:actor dbp:Tarantino}

Select all the movies for which 
Tarantino is the director and also an actor

LinkedMDB is complete for all Tarantino's movies 
and also movies for which he is an actor

The answer is
incomplete

The answer is
complete

SPARQL
endpoint

@prefix c: <http://inf.unibz.it/ontologies/completeness#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix spin: <http://spinrdf.org/sp#>
@prefix void: <http://rdfs.org/ns/void#>
@prefix dv: <http://dbpedia.org/void/>
@prefix lv: <http://linkedmdb.org/void/>
@prefix dbp: <http://dbpedia.org/resource/>
@prefix schema: <http://schema.org>

Q

lv:lmdbdataset c:hasComplStmt lv:st2.
lv:st2 c:hasPattern [c:subject [spin:varName "m"];
c:predicate  rdf:type;  c:object  schema:Movie     ].
lv:st2 c:hasPattern [c:subject [spin:varName "m"];
c:predicate schema:director;c:object  dbp:Tarantino ].

lv:st1 c:hasPattern   [c:subject[spin:varName "m"];
c:predicate schema:actor;  c:object[spin:varName "a"]].

Endpoint IRI
DBPe

Endpoint IRI
LMDBe

SPARQL
endpoint

Fig. 3. Completeness statements and their usage for query answering

In this specific case, LinkedMDB can guarantee the completeness of the query
answer because it contains all the actors in Tarantino’s movies (represented by

3 http://spinrdf.org/sp.html#sp-variables



Completeness Statements about RDF Data Sources 71

the statement lv:st1) in addition to the Tarantino’s movies themselves (repre-
sented by the statement lv:st2). Note that the statement lv:st1 includes two
parts: (i) the pattern, which is expressed via the BGP (?m, schema:actor, ?a)

and (ii) the conditions, that is, the BGP (?m, rdf:type, schema:Movie).(?m,

schema:director, dbp:Tarantino). Indeed, a completeness statement allows one
to say that a certain part (i.e., with respect to some conditions) of data is com-
plete, or in other words, it can be used to state that a data source contains all
triples in a pattern P1 that satisfy a condition P2. The detailed explanation and
the semantics of completeness statements can be found in Section 3.

Application Scenarios. Completeness statements are particularly useful for
data collections such as works of an artist, cities in countries, election results,
census data and so forth. Completeness statements have wide applicability.
Source selection: as an example for address verification, one needs a complete
set of street names; for Hamburg, Dresden, and other cities in Germany, Open-
StreetMap can be used because completeness is asserted. Search Optimization:
a user wants to look for movies by Tarantino in 2008. By having completeness
statements in IMDb about these movies, a search engine could stop after finding
this specific source without the need to consult other sources.

3 Formal Framework

In the following, we remind the reader of RDF and SPARQL, formalize our
framework and show how completeness information can be expressed in RDF.

RDF and SPARQL. We assume that there are three pairwise disjoint infinite
sets I (IRIs), L (literals) and V (variables). We collectively refer to IRIs and
literals as RDF terms or simply terms. A tuple (s, p, o) ∈ I × I × (I ∪ L) is
called an RDF triple (or a triple), where s is the subject, p the predicate and o
the object of the triple. An RDF graph or data source consists of a finite set of
triples [9]. For simplicity, we omit namespaces for the abstract representation of
RDF graphs.

The standard query language for RDF is SPARQL. The basic building blocks
of a SPARQL query are triple patterns, which resemble RDF triples, except that
in each position also variables are allowed. SPARQL queries include basic graph
patterns (BGP), built using the AND operator, and more sophisticated operators,
including OPT, FILTER, UNION and so forth. In this paper we consider the operators
AND and OPT. Moreover, we also consider the result modifier DISTINCT. Evaluating
a graph pattern P over an RDF graph G results in a set of mappings from the
variables in P to terms, denoted as �P �G. Further information about SPARQL
can be found in [14].

SPARQL queries come as SELECT, ASK, or CONSTRUCT queries. A SELECT query
has the abstract form (W,P ), where P is a graph pattern and W is a subset of
the variables in P . A SELECT query Q = (W,P ) is evaluated over a graph G by
restricting the mappings in �P �G to the variables in W . The result is denoted
as �Q�G. Syntactically, an ASK query is a special case of a SELECT query where
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W is empty. For an ASK query Q, we write also �Q�G = true if �Q�G �= ∅,
and �Q�G = false otherwise. A CONSTRUCT query has the abstract form (P1, P2),
where P1 is a BGP and P2 is a graph pattern. In this paper, we only use CONSTRUCT
queries where also P2 is a BGP. The result of evaluating Q = (P1, P2) over G
is the graph �Q�G, that is obtained by instantiating the pattern P1 with all the
mappings in �P2�G.

Later on, we will distinguish between three classes of queries: (i) Basic queries,
that is, queries (W,P ) where P is a BGP and which return bags of mappings
(as it is the default in SPARQL), (ii) DISTINCT queries, that is, queries (W,P )d

where P is a BGP and which return sets of mappings, and (iii) OPT queries, that
is, queries (W,P ) without projection (W = var(P )) where P is a graph pattern
with OPT.

3.1 Completeness Statements and Query Completeness

We are interested in formalizing when a query is complete over a potentially
incomplete data source and in describing which parts of such a source are com-
plete. When talking about the completeness of a source, one implicitly compares
the information available in the source with what holds in the world and there-
fore should ideally be also present in the source. In this paper, we only consider
sources that may miss information, but do not contain wrong information.

Definition 1 (Incomplete Data Source). We identify data sources with RDF
graphs. Then, adapting a notion introduced by Motro in [12], we define an in-
complete data source as a pair G = (Ga, Gi) of two graphs, where Ga ⊆ Gi. We
call Ga the available graph and Gi the ideal graph.

Example 2 (Incomplete Data Source). Consider the DBpedia data source
and suppose that the only movies directed by Tarantino are Reservoir Dogs,
Pulp Fiction, and Kill Bill, and that Tarantino was starred exactly in the movies
Desperado, Reservoir Dogs, and Pulp Fiction. For the sake of example, suppose
also the fact that he was starred in Reservoir Dogs is missing in DBpedia4. Using
Definition 1, we can formalize the incompleteness of the DBpedia data source
Gdbp as:

Ga
dbp = {(reservoirDogs , director , tarantino), (pulpFiction, director , tarantino),

(killBill, director , tarantino), (desperado , actor , tarantino),

(pulpFiction, actor , tarantino), (desperado , type ,Movie),

(reservoirDogs , type ,Movie), (pulpFiction , type ,Movie), (killBill, type ,Movie)}
Gi

dbp = Ga
dbp ∪ { (reservoirDogs , actor , tarantino) }

We now introduce completeness statements, which are used to denote the
partial completeness of a data source, that is, they describe for which parts the
ideal and available graph coincide.

4 As it was the case on 7 May 2013.
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Definition 3 (Completeness Statement). A completeness statement
Compl (P1 | P2) includes: P1 a non-empty BGP and P2 a BGP. We call P1 the
pattern and P2 the condition of the completeness statement.

For example, we express that a source is complete for all pairs of triples that
say “?m is a movie and ?m is directed by Tarantino” using the statement

Cdir = Compl ((?m , type,Movie), (?m , director , tarantino) | ∅), (1)

whose pattern matches all such pairs and whose condition is empty. To ex-
press that a source is complete for all triples about actors in movies directed by
Tarantino, we use

Cact = Compl ((?m , actor , ?a) | (?m, director , tarantino), (?m , type,Movie)),
(2)

whose pattern matches triples about actors and the condition restricts the actors
to movies directed by Tarantino. The condition in Cact means that the data
source does not necessarily contain triples of the form (?m , director , tarantino)
and (?m , type,Movie). Moving the condition to the pattern imposes that the
data source contains the triples.

We now define when a completeness statement is satisfied by an incomplete
data source. To a statement C = Compl (P1 | P2), we associate the CONSTRUCT

query QC = (P1, P1 ∪ P2). Note that, given a graph G, the query QC returns
those instantiations of the pattern P1 that are present in G together with an
instantiation of the condition. For example, the queryQCact returns all the acting
information of Tarantino movies in G.

Definition 4 (Satisfaction of Completeness Statements). For an incom-
plete data source G = (Ga, Gi), the statement C is satisfied by G, written G |= C,
if �QC�Gi ⊆ Ga holds.

To see that the statement Cdir is satisfied by Gdbp , observe that the query
QCdir

returns over Gi
dbp all triples with the predicate actor and all type

triples for Tarantino movies, and that all these triples are also in Ga
dbp . How-

ever, Cact is not satisfied by Gdbp , because QCact returns over Gi
dbp the triple

(reservoirDogs , actor , tarantino), which is not in Ga
dbp .

When querying a potentially incomplete data source, we would like to know
whether at least the answer to our query is complete. For instance, when querying
DBpedia for movies starring Tarantino, it would be interesting to know whether
we really get all such movies, that is, whether our query is complete over DB-
pedia. We next formalize query completeness with respect to incomplete data
sources.

Definition 5 (Query Completeness). Let Q be a SELECT query. To express
that Q is complete, we write Compl (Q). An incomplete data source G = (Ga, Gi)
satisfies the expression Compl (Q), if Q returns the same result over Ga as it
does over Gi, that is �Q�Ga = �Q�Gi . In this case we write G |= Compl (Q).
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Example 6 (Query Completeness). Consider the incomplete data source
Gdbp and the two queries Qdir, asking for all movies directed by Tarantino,
and Qdir+act, asking for all movies, both directed by and starring Tarantino:

Qdir = ({ ?m }, { (?m, type,Movie), (?m, director, tarantino) })
Qdir+act = ({ ?m }, { (?m, type,Movie), (?m, director, tarantino), (?m, actor , tarantino) }).

Then, it holds that Qdir is complete over Gdbp while Qdir+act is not. Later on,
we show how to deduce query completeness from completeness statements.

3.2 RDF Representation of Completeness Statements

Practically, completeness statements should be compliant with the existing ways
of giving metadata about data sources, for instance, by enriching the VoID de-
scription [1]. Therefore, it is essential to express completeness statements in RDF
itself. Suppose we want to express that LinkedMDB satisfies the statement:

Cact = Compl ((?m , actor , ?a) | (?m, type,Movie), (?m , director , tarantino)).

Then, we need a vocabulary to say that this is a statement about LinkedMDB,
which triple patterns make up its pattern, and which its condition. We also
need the vocabulary to represent the constituents of the triple patterns, namely
subject, predicate, and object of a pattern. Therefore, we introduce the property
names whose meaning is intuitive:

hasComplStmt, hasPattern, hasCondition, subject, predicate, object

If the constituent of a triple pattern is a term (an IRI or a literal), then it can be
specified directly in RDF. Since this is not possible for variables, we represent a
variable by a resource that has a literal value for the property varName. Now, we
can represent Cact in RDF as the resource lv:st1 described in Figure 3.

More generally, consider a completeness statement Compl (P1 | P2), where
P1 = { t1, . . . , tn } and P2 = { tn+1, . . . , tm } and each ti, 1 ≤ i ≤ m, is a triple
pattern. Then the statement is represented using a resource for the statement
and a resource for each of the ti that is linked to the statement resource by the
property hasPattern or hasCondition, respectively. The constituents of each ti
are linked to ti’s resource in the same way via subject, predicate, and object.
All resources can be either IRIs or blank nodes.

4 Completeness Reasoning over a Single Data Source

In this section, we show how completeness statements can be used to judge
whether a query will return a complete answer or not. We first focus on complete-
ness statements that hold on a single data source, while completeness statements
in the federated setting are discussed in Section 5.
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Problem Definition. Let C be a set of completeness statements and Q be
a SELECT query. We say that C entails the completeness of Q, written C |=
Compl (Q), if any incomplete data source that satisfiesC also satisfies Compl (Q).

Example 7. Consider Cdir from (1). Whenever an incomplete data source G
satisfies Cdir , then Ga contains all triples about movies directed by Tarantino,
which is exactly the information needed to answer query Qdir from Example 6.
Thus, {Cdir } |= Compl (Qdir ). This may not be enough to completely answer
Qdir+act , thus {Cdir } �|= Compl (Qdir+act ). We will now see how this intuitive
reasoning can be formalized.

4.1 Completeness Entailment for Basic Queries

To characterize completeness entailment, we use the fact that completeness state-
ments have a correspondence in CONSTRUCT queries. For any set C of completeness
statements we define the operator TC that maps graphs to graphs:

TC(G) =
⋃
C∈C

QC(G)

Notice that for any graph G, the pair (TC(G), G) is an incomplete data source
satisfying C and TC(G) is the smallest set (wrt. set inclusion) for which this
holds.

Example 8 (Completeness Entailment). Consider the set of com-
pleteness statements Cdir ,act = {Cdir , Cact } and the query Qdir+act .
Recall that the query has the form Qdir+act = ({ ?m }, Pdir+act),
where Pdir+act = { (?m, type,Movie), (?m , director , tarantino),
(?m , actor , tarantino) }. We want to check whether these statements en-
tail the completeness of Qdir+act , that is, whether Cdir ,act |= Compl (Qdir+act )
holds. Suppose that G = (Ga, Gi) satisfies Cdir ,act . Suppose also that Qdir+act

returns a mapping μ = { ?m �→ m′ } over Gi for some term m′. Then Gi contains
μPdir+act , the instantiation by μ of the BGP of our query, consisting of the three
triples (m ′, type,Movie), (m ′, director , tarantino), and (m ′, actor , tarantino).

The CONSTRUCT query QCdir
, corresponding to our first completeness

statement, returns over μPdir+act the two triples (m ′, type,Movie) and
(m ′, director , tarantino), while the CONSTRUCT query QCact , corresponding to the
second completeness statement, returns the triple (m ′, actor , tarantino). Thus,
all triples in μPdir+act have been reconstructed by TCdir,act

from μPdir+act .
Now, we have μPdir+act = TCdir,act

(μPdir+act ) ⊆ TCdir,act
(Gi) ⊆ Ga, where the

last inclusion holds due to G |= Cdir ,act . Therefore, our query Qdir+act returns
the mapping μ also over Ga. Since μ and G were arbitrary, this shows that
Cdir ,act |= Compl (Qdir+act ) holds.

In summary, in Example 8 we have reasoned about a set of completeness
statements C and a query Q = (W,P ). We have considered a generic mapping
μ, defined on the variables of P , and applied it to P , thus obtaining a graph μP .
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Then we have verified that μP = TC(μP ). From this, we could conclude that for
every incomplete data source G = (Ga, Gi) we have that �Q�Ga = �Q�Gi . Next,
we make this approach formal.

Definition 9 (Prototypical Graph). Let (W,P ) be a query. The freeze map-
ping ĩd is defined as mapping each variable v in P to a new IRI ṽ. Instantiating
the graph pattern P with ĩd yields the RDF graph P̃ := ĩd P , which we call the
prototypical graph of P .

Now we can generalize the reasoning from above to a generic completeness check.

Theorem 10 (Completeness of Basic Queries). Let C be a set of complete-
ness statements and let Q = (W,P ) be a basic query. Then

C |= Compl (Q) if and only if P̃ = TC(P̃ ).

Proof. (Sketch) “⇒” If P̃ �= TC(P̃ ), then the pair (TC(P̃ ), P̃ ) is a counterexam-
ple for the entailment. It satisfies C, but does not satisfy Compl (Q) because the
freeze mapping ĩd cannot be retrieved by P over the available graph TC(P̃ ).

“⇐” If all triples of the pattern P̃ are preserved by TC, then this serves as a
proof that in any incomplete data source all triples that are used to compute a
mapping in the ideal graph are also present in the available graph.

Queries with DISTINCT. Basic queries return bags of answers (i.e., they may
contain duplicates), while DISTINCT eliminates duplicates. For a query Q involv-
ing DISTINCT, the difference to the characterization in Theorem 10 is that instead
of retrieving the full pattern P̃ after applying TC, we only check whether suffi-
cient parts of P̃ are preserved that still allow to retrieve the freeze mapping on
the distinguished variables of Q.

4.2 Completeness of Queries with the OPT Operator

One interesting feature of SPARQL is the OPT (“optional”) operator. With OPT

one can specify that parts of a query are only evaluated if an evaluation is
possible, similarly to an outer join in SQL. For example, when querying for
movies, one can also ask for the prizes they won, if any. The OPT operator is used
substantially in practice [15]. Intuitively, the mappings for a pattern (P1 OPT P2)
are computed as the union of all the bindings of P1 together with the bindings
for P2 that are valid extensions, and including those bindings of P1 that have no
binding for P2 that is a valid extension. For a formal definition of the semantics
of queries with the OPT operator, see [10]. Completeness entailment for queries
with OPT differs from that of queries without.

Example 11 (Completeness with OPT). Consider the following query
with OPT Qmaw = ((?m , type,Movie) OPT (?m, award , ?aw )), asking for
all movies and if available, also their awards. Consider also Caw =
Compl ((?m , type,Movie), (?m , award , ?aw) | ∅), the completeness statement
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that expresses that all movies that have an award are complete and all awards
of movies are complete. If the query Qmaw used AND instead of OPT, then its
completeness could be entailed by Caw . However with OPT in Qmaw , more com-
pleteness is required: Also those movies have to be complete that do not have
an award. Thus, Caw alone does not entail the completeness of Qmaw .

If one uses OPT without restrictions, unintuitive queries may result. Pérez
et al. have introduced the class of so-called well-designed graph patterns that
avoid anomalies that may otherwise occur [14]. Formally, a graph pattern P
is well-designed if for every subpattern P ′ = (P1 OPTP2) of P and for every
variable ?X occurring in P , the following condition holds: if ?X occurs both
inside P2 and outside P ′, then it also occurs in P1. We restrict ourselves in the
following to OPT queries with well-designed patterns, which we call well-designed
queries. Graph patterns with OPT have a hierarchical structure that can be made
explicit by so-called pattern trees. A pattern tree T is a pair (T,P), where (i)
T = (N,E, r) is a tree with node set N , edge set E, and root r ∈ N , and (ii)
P is a labeling function that associates to each node n ∈ N a BGP P(n). We
construct for each pattern P a corresponding pattern tree T . Any OPT-pattern can
be translated into a pattern tree and vice versa [10]. As an example, consider a
pattern ((P1 OPTP2) OPT(P3 OPTP4)), where P1 to P4 are BGPs. Its corresponding
pattern tree would have a root node labeled with P1, two child nodes labeled
with P2 and P3, respectively, and the P3 node would have another child labeled
with P4.

Patterns and pattern trees can contain redundant triples. Letelier et al. [10]
have shown that for every pattern tree T one can construct in polynomial time
an equivalent well-designed pattern tree T NR without redundant triples, which
is called the NR-normal form of T . For every node n in T we define the branch
pattern Pn of n as the union of the labels of all nodes on the path from n to
the root of T . Then the branch query Qn of n has the form (Wn, Pn), where
Wn = var (Pn).

Theorem 12 (Completeness of OPT-Queries). Let C be a set of completeness
statements. Let Q = (W,P ) be a well-designed OPT-query and T be an equivalent
pattern tree in NR-normal form. Then

C |= Compl (Q) iff C |= Compl (Qn) for all branch queries Qn of T .

Technically, this theorem allows to reduce completeness checking for an OPT query
to linearly many completeness checks for basic queries.

4.3 Completeness Entailment under RDFS Semantics

RDFS (RDF Schema) is a simple ontology language that is widely used for RDF
data [3]. RDFS information can allow additional inference about data and needs
to be taken into account during completeness entailment.

Example 13 (RDF vs. RDFS). Consider the query Qfilm =
({ ?m }, { (?m, type, film) }), asking for all films, and the completeness statement
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Cmovie = Compl ((?m , type,movie) | ∅) saying that we are complete for all
movies. A priori, we cannot conclude that Cmovie entails the completeness
of Qfilm , because we do not know about the relationship between films and
movies. When considering the RDFS statements (film , subclass ,movie) and
(movie , subclass, film) saying that all movies and films are equivalent, we can
conclude that {Cmovie} |= Compl (Qfilm).

In the following, we rely on ρDF, which formalizes the core of RDFS [13].
The ρDF vocabulary contains the terms subproperty , subclass , domain, range and
type. A schema graph S is a set of triples built using any of the ρDF terms, except
type, as predicates.

We assume that schema information is not lost in incomplete data sources.
Hence, for incomplete data sources it is possible to extract their ρDF schema
into a separate graph. The closure of a graph G, that is, clS(G) wrt. a schema
S is the set of all triples that are entailed. The computation of this closure can
be reduced to the computation of the closure of a single graph that contains
both schema and non-schema triples as clS(G) = cl(S ∪G). We now say that a
set C of completeness statements entails the completeness of a query Q wrt. a
ρDF schema graph S, if for all incomplete data sources (Ga, Gi) it holds that if
(clS(G

a), clS(G
i)) satisfies C then it also satisfies Compl(Q).

Therefore, the main difference to the previous entailment procedures is that
the closure is computed to obtain entailed triples before and after the com-
pleteness operator TC is applied. For a set of completeness statements C and a
schema graph S, let T S

C denote the function composition clS ◦ TC ◦ clS . Then
the following holds.

Theorem 14 (Completeness under RDFS). Let C be a set of completeness
statements, Q = (W,P ) a basic query, and S a schema graph. Then

C |=S Compl (Q) if and only if P̃ ⊆ T S
C (P̃ ).

5 Completeness Reasoning over Federated Data Sources

Data on the Web is intrinsically distributed. Hence, the single-source query
mechanism provided by SPARQL has been extended to deal with multiple data
sources. In particular, the recent SPARQL 1.1 specification introduces the notion
of query federation [18]. A federated query is a SPARQL query that is evaluated
across several data sources, the SPARQL endpoints of which can be specified in
the query.

So far, we have studied the problem of querying a single data source aug-
mented with completeness statements. The federated scenario calls for an
extension of the completeness framework discussed in Section 4. Indeed, the
completeness statements available about each data source involved in the evalu-
ation of a federated query must be considered to check the completeness of the
federated query. This section discusses this aspect and presents an approach to
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check whether the completeness of a non-federated query (i.e., a query without
SERVICE operators) can be ensured with respect to the completeness statements
on each data source. We also study the problem of rewriting a non-federated
query into a federated version in the case in which the query is complete.

Federated SPARQL Queries. Before introducing the extension of the com-
pleteness framework, we formalize the notion of federated SPARQL queries. A
federated query is a SPARQL query executed over a federated graph. Formally
speaking, a federated graph is a family of RDF graphs Ḡ = (Gj)j∈J where J
is a set of IRIs. A federated SPARQL query (as for the case of a non-federated
query) can be a SELECT or an ASK query [2]. In what follows, we focus on the
conjunctive fragment (i.e., the AND fragment) of SPARQL with the inclusion of
the SERVICE operator. Non-federated SPARQL queries are evaluated over graphs.
In the federated scenario, queries are evaluated over a pair (i, Ḡ), where the first
component is an IRI associated to the initial SPARQL endpoint, and the second
component is a federated graph. The semantics of graph patterns with AND and
SERVICE operators is defined as follows:

�t�(i,Ḡ) = �t�Gi

�P1 AND P2�(i,Ḡ) = �P1�(i,Ḡ) �� �P2�(i,Ḡ)

�(SERVICE j P )�(i,Ḡ) = �P �(j,Ḡ)

where t ranges over all triple patterns and P , P1, P2 range over all graph patterns
with AND and SERVICE operators. We denote federated queries as Q̄.

5.1 Federated Completeness Reasoning Framework

We now extend our completeness reasoning framework to the federated setting.
We assume from now on that the set of IRIs J is fixed and all indices are drawn
from J .

Definition 15 (Incomplete Federated Data Source). An incomplete fed-
erated data source (or incomplete FDS, for short) is a pair Ḡ = (Ḡa, Gi), con-
sisting of an available federated graph Ḡa = (Ga

j )j∈J and an ideal graph Gi,

such that Ga
j ⊆ Gi for all j ∈ J .

This captures the intuition that the ideal graph represents all the facts that
hold in the world, while each source contains a part of those facts. Note that the
graphs of the sources may overlap, as is the case on the Web. Next, we adapt
completeness statements so that they talk about a specific source.

Definition 16 (Indexed Completeness Statements). An indexed complete-
ness statement is a pair (C, k) where C is a completeness statement and k ∈ J
is an IRI. An indexed completeness statement is satisfied by an incomplete FDS
if it is satisfied by the incomplete data source corresponding to the index, that is,

((Ga
j )j∈J , G

i) |=fed (C, k) iff (Ga
k, G

i) |= C.
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This definition is naturally extended to sets C̄ of indexed completeness
statements.

We associate to each federated query, federated graph, incomplete FDSs, and
set of indexed completeness statements a non-federated version, the flattening.

Definition 17 (Flattening). The flattening Q̄fl of a federated query Q̄ is
obtained from Q̄ by replacing recursively each occurrence of a service call
(SERVICE j P ) with the pattern P . The flattening Ḡfl of a federated graph
Ḡ = (Gj)j∈J is the union of the individual graphs, that is, Ḡfl =

⋃
j∈J Gj.

The flattening Ḡ fl of an incomplete FDS Ḡ = (Ḡa, Gi) is the incomplete data
source Ḡ fl = ((Ḡa)fl , Gi) whose available graph is the flattening of the avail-

able federated graph of Ḡ. The flattening C̄
fl
of a set C̄ of indexed completeness

statements is the set C̄
fl
= {C | (C, k) ∈ C̄ }, where we ignore the indices.

Note that the notion of federated entailment is different from the entailment
between a set of completeness statements and a query defined in Section 4 in
the sense that we now have to deal with indexed completeness statements.

Definition 18 (Federated Completeness and Entailment). A federated
query Q̄ is complete over an incomplete FDS Ḡ = (Ḡa, Gi), written Ḡ |=fed

Compl (Q̄), if �Q̄�(j0,Ḡa) = �Q̄fl�Gi for any IRI j0 ∈ J , that is, the evaluation

of Q̄ over the available federated graph returns the same result as evaluating
the flattening of Q̄ over the ideal graph. If C̄ is an indexed set of completeness
statements, then C̄ entails Compl (Q̄), written C̄ |=fed Compl (Q̄), if Ḡ |=fed C̄
implies Ḡ |=fed Compl (Q̄) for all incomplete FDSs Ḡ.

IfQ is a basic query, then we say thatQ is complete over Ḡ ifQ is complete over
the flattening of Ḡ, that is, Ḡ |=fed Compl (Q) iff Ḡ fl |= Compl (Q). This means
that Q is complete if evaluated over the union of all sources in the federation.

Proposition 19 (Completeness of Basic Queries). Let C̄ be a set of
indexed completeness statement and Q be a basic query. Then

C̄ |=fed Compl (Q) iff C̄
fl |= Compl (Q)

This means that we can check the completeness of a basic query with the
criterion in Theorem 10 in Section 4.1. A federated query Q̄ is a federated version
of a basic query Q if Q̄fl = Q. In other words, by dropping the service calls from
Q̄ we obtain Q.

Theorem 20. (Smart Rewriting). Let C̄ be a set of indexed completeness
statement and Q be a basic query such that C̄ |=fed Compl (Q). Then:

1. One can compute a federated version Q̄ of Q such that C̄ |=fed Compl (Q̄).

2. Moreover, whenever (Ḡa, Gi) |=fed C̄, then

�Q�⋃
j∈J Ga

j
= �Q̄�(j0,Ḡa) for any j0 ∈ J .
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To retrieve all answers for an arbitrary query, we have to evaluate each triple
pattern over the union of all sources. For a complete query, the federated version
evaluates each triple pattern only over a single source. Therefore, the evaluation
of the federated version is in general much more efficient.

Example 21 (Federated Data Sources). Consider the two
data sources shown in Fig. 3 plus an additional data source
named FB (= Facebook) with the completeness statement Cfb =
Compl ({ (?m, likes , ?l) } | { (?m, type,Movie), (?m , director , tarantino) }) and
the query: Qfb = ({ ?m, ?l }, { (?m, type,Movie), (?m , director , tarantino),
(?m , likes , ?l) }) that asks for the number of likes of Tarantino’s movies.

In order to answer this query efficiently over the three data sources,
whose endpoints are reachable at the IRIs DBPe, LMDBe and FBe, we com-
pute a federated version Q̄fb . The completeness statements in Fig. 3 plus
Cfb entail wrt. “|=fed” the completeness of the query Qfb (see Defini-
tion 18). By Theorem 20 we can compute a complete federated version Q̄fb ,
which in this case is Q̄fb = ({ ?m, ?l }, { (SERVICE LMDBe {(?m , type ,Movie),

(?m, director , tarantino)}) }) AND (SERVICE FBe {(?m , likes, ?l)}), whose answer is
complete.

6 Discussion

We now discuss some aspects underlying the completeness framework.

Availability of Completeness Statements. At the core of the proposed
framework lies the availability of completeness statements. We have discussed in
Section 2 how existing data sources like IMDb already incorporate such state-
ments (Figure 1) and how they can be made machine-readable with our frame-
work. The availability of completeness statements rests on the assumption that
a domain “expert” has the necessary background knowledge to provide such
statements.

We believe that it is in the interest of data providers to annotate their data
sources with completeness statements in order to increase their value. Indeed,
users can be more inclined to prefer data sources including “completeness marks”
to other data sources. Moreover, in the era of crowdsourcing the availability of
independent “ratings” from users regarding the completeness of data can also
contribute (like in Wikipedia and OpenStreetMap), in a bottom up manner, to
the description of the completeness of data sources. For instance, when looking
up information about Stanley Kubrick in DBpedia, as a by-product users can
provide feedback as to whether all of Kubrick’s movies are present. One can also
imagine approaches based on gamification.

Maintenance. If edits of a source are logged, log items could be automatically
translated into updates of statements. For non-authoritative sources, temporal
guards can be used; e.g., instead of saying “complete for all movies by Tarantino”,
one would say “complete for movies by Tarantino in 2010”.
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Complexity. All completeness checks presented in this paper are NP-complete.
The hardness holds because classical conjunctive query containment can be en-
coded into completeness checking [17]; the NP upper bound follows because all
completeness checks require conjunctive query evaluation at their core. In prac-
tice, we expect these checks to be fast, since queries and completeness statements
are likely to be small. After all, this is the same complexity as the one of query
evaluation and query optimization of basic queries, as implemented in practical
database management systems.

Vocabulary Heterogeneity. In practice, a query may use a vocabulary dif-
ferent from that of some data sources. In this work, we assume the presence of
a global schema. Indeed, one could use the schema.org vocabulary for queries,
since it has already been mapped to other vocabularies (e.g., DBpedia).

The CoRNER Implementation. To show the feasibility of our proposal, we
developed the CoRNER system. It implements the completeness entailment
procedure for basic and DISTINCT queries with ρDF. The system is imple-
mented in Java and uses the Apache Jena library. It is downloadable at
http://rdfcorner.wordpress.com.

7 Concluding Remarks and Future Work

The availability of distributed and potentially overlapping RDF data sources
calls for mechanisms to provide qualitative characterizations of their content. In
this respect, we have identified completeness as one important dimension. The
motivation underlying this work stems from the fact that although completeness
information is present in some available data sources (e.g., IMDb discussed in
Section 2) it is neither formally represented nor automatically processed.We have
introduced a formal framework for the declarative specification of completeness
statements about RDF data sources and underlined how the framework can
complement existing initiatives like VoID. Then, we studied “how” completeness
statements can be used in the problem of completeness of query answering. In
this respect we considered queries over single and federated data sources and
showed how to assess query completeness. We believe that our research can
be the starting point of further investigation of the problem of completeness of
information on the Web. Considering other application scenarios of completeness
statements like data source integration and selection is in our research agenda.
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Abstract. For ontology reuse and integration, a number of approaches
have been devised that aim at identifying modules, i.e., suitably small
sets of “relevant” axioms from ontologies. Here we consider three logically
sound notions of modules: MEX modules, only applicable to inexpressive
ontologies; modules based on semantic locality, a sound approximation of
the first; and modules based on syntactic locality, a sound approximation
of the second (and thus the first), widely used since these modules can
be extracted from OWL DL ontologies in time polynomial in the size of
the ontology.
In this paper we investigate the quality of both approximations over

a large corpus of ontologies, using our own implementation of seman-
tic locality, which is the first to our knowledge. In particular, we show
with statistical significance that, in most cases, there is no difference
between the two module notions based on locality; where they differ,
the additional axioms can either be easily ruled out or their number is
relatively small. We classify the axioms that explain the rare differences
into four kinds of “culprits” and discuss which of those can be avoided
by extending the definition of syntactic locality. Finally, we show that
differences between MEX and locality-based modules occur for a minor-
ity of ontologies from our corpus and largely affect (approximations of)
expressive ontologies – this conclusion relies on a much larger and more
diverse sample than existing comparisons between MEX and syntactic
locality-based modules.

1 Introduction

Some notable examples of ontologies describe large and loosely connected do-
mains, as it is the case for SNOMED CT, the Systematized Nomenclature Of
MEDicine, Clinical Terms,1 which describes the terminology used in medicine
including diseases, drugs, etc. Users often are not interested in a whole ontology

1 http://www.ihtsdo.org/snomed-ct/
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O but rather only in a limited part of it which is relevant to their application.
One recently explored technique for addressing this situation is to use modules,
i.e., suitably small subsets of O that behave for specific purposes like the original
ontology over a given signature Σ, i.e., a set of terms (classes and properties).

Using a module rather than a whole ontology aims at improving performance
since only information that is relevant to a restricted vocabulary is processed.
However, the correctness of the outcome can be guaranteed only if the used mod-
ules satisfy certain well-defined properties. For example, reasoning-based tasks
require the modules to provide coverage for O over Σ, i.e., preserve all the en-
tailments of O over Σ (they are called logical modules [9,4]). Applications of
logical modules include reuse of (a part of) well-established ontologies, ontol-
ogy integration, and computing justifications to debug ontologies [11]. In these
scenarios, though, a stronger notion of logical module is required that satisfies
also two additional properties [15,19]: self-containment and depletion. The for-
mer means that the module preserves entailments over all terms that occur in
the module (not just those used to extract the module). The latter means that
O\M does not entail any non-tautological axioms over Σ. In this paper we will
analyze only depleting and self-contained logical modules.

Interestingly, a minimal depleting and self-contained module for a signature
Σ is, under some mild conditions, uniquely determined [15]. Extracting such
modules is, unfortunately, computationally hard or even undecidable for expres-
sive ontology languages [10,17,18]. In order to identify notions of modules whose
extraction is feasible we can follow two alternative strategies. The first one con-
sists of restricting the expressivity of the ontology language, as in the case of the
MEX approach [14]: the MEX system allows for the extraction in polynomial time
of the minimal self-contained and depleting module from acyclic ELI terminolo-
gies. The second strategy consists of looking for practical sufficient conditions to
guarantee the properties of logical modules without imposing minimality on the
module M, as it is the case for the family of logical modules known as locality-
based modules (LBMs) [3]; these modules can be extracted from ontologies as
expressive as SROIQ, are self-contained and depleting, but can contain axioms
that are not relevant to preserve any entailment over the given Σ.

The family of LBMs consists of module notions that are parameterized accord-
ing to two features: (1) the technique used for identifying which axioms need to
be included in the module (semantic or syntactic); (2) the kind of placeholder(s)
used for those terms not included in the signature (bottom, top, or nested). In
the next two paragraphs we provide an intuitive discussion of the meaning of
these two features.

The extraction of semantic LBMs requires entailment checks against an empty
ontology and thus involve reasoning, which makes the computation as hard as
reasoning. Moreover, the kind of reasoning service used is rather unusual for DL
reasoners.2 Hence, although algorithms for extracting semantic LBMs are known,
until now and to the best of our knowledge they had not been implemented.

2 DL reasoners usually classify an ontology: test it for consistency and all concept
names for satisfiability/mutual subsumption.
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In contrast, the extraction of syntactic LBMs involves only parsing the axioms
of the ontology. Algorithms for the extraction of syntactic LBMs are known that
run in time polynomial in the size of the ontology (thus much cheaper than
reasoning), and are implemented in the OWL API.3

The kind of placeholder(s) used for semantic and syntactic LBMs gives a
flavour of the different module notions. The bottom variants of LBMs provide a
view of O from Σ “upwards” since they contain all named superclasses of class
names in Σ; the top variants instead provide a view of O from Σ “downwards”
since they contain all named subclasses of class names in Σ; finally, the nested
variants provide a view of O “within” Σ since they still provide coverage for
Σ as the other variants, but they do not necessarily contain all the sub- or
super-classes of the classes in Σ.

This paper empirically studies the seven module notions depicted in Fig. 1
which summarizes their notations and their inclusion relations. Each node rep-
resents a module notion; the one for the MEX module is shadowed because this
method can be used only for ELI acyclic ontologies. The MEX notion is in the
same column as the nested versions because MEXmodules provide a similar view
of O “within” Σ.

�⊥∗

Δ∅ Δ∅∗

MEX

�⊥

Semantic
locality

Syntactic
locality

MEX
method

bottom top nested

N.A. N.A.

⊇

⊇
⊇

⊇

⊇
⊇⊇ ⊇

Fig. 1. Inclusion relations between the 7 notions of modules investigated

As shown in Fig. 1, the MEX module for a signature Σ is a subset of the
nested semantic LBM, and for each variant bottom, top, and nested, the seman-
tic LBMs are contained in the corresponding syntactic ones. Hence, syntactic
locality can be seen as an approximation of semantic locality which, in turn, is
an approximation of MEX modules. This gives rise to the question of how good
these approximations are: how much larger are the modules extracted by the
approximations, and how much faster is the extraction?

This paper provides emprical answers to these questions by comparing dif-
ferent modules systematically extracted from a large corpus of real-life ontolo-
gies. Specifically, semantic LBMs are compared with syntatic LBMs and with
MEX modules (for acyclic ELI ontologies). This paper substantially extends

3 http://owlapi.sourceforge.net/

http://owlapi.sourceforge.net/
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the previous experiments reported in [14] where MEX modules were compared
with syntactic bottom modules on a sample of 5000 random signatures and the
SNOMED CT ontology. We perform our study on a larger corpus (not restricted
to ELI), compare more notions of logical modules, and also provide rigorous
statistical significance results.

The main contributions of this paper are summarized as follows:
– We show with statistical significance that, for almost all members of a large

corpus of existing ontologies, there is no difference between any syntactic
LBM and its semantic counterpart. In the few cases where differences occur,
those are extremely modest so that it is questionable whether extracting
semantic LBMs is worth the increased computational cost.

– We isolate four culprits, i.e., patterns of axioms that completely explain those
rare differences. One includes simple tautologies that can be removed in a
straightforward preprocessing step.

– Our results show that the extraction of semantic LBMs, which is in princi-
ple hard, is feasible in practice: on average, it is between 3 times (for top-
modules) and 15 times (for bottom- and nested-modules) slower than the
extraction of syntactic LBMs, and both only take milliseconds to seconds
for most ontologies below 10K axioms.

– To obtain these results, we use our own implementation of semantic locality
which, to the best of our knowledge, is the first ever to be implemented.

– We modify the original corpus to obtain for each ontology an acyclic EL
version suitable for the use with the MEX system. We then compare MEX-
modules and the nested-variants of LBMs, and find differences in only ∼27%
of the corpus. We explain one reason for the largest differences observed.

2 Preliminaries

We assume the reader to be familiar with Description Logic languages (e.g.
SROIQ [1,13]), and aim here at fixing the notations and at defining the key
notions around module extraction, with a focus on locality-based modules [3]
and MEX modules [14].

Let O denote an ontology, NC a set of class names, and NR a set of property
names. A signature is a set Σ ⊆ NC ∪ NR of terms. Given a class, property, or
axiom X , we call the set of terms in X the signature of X , denoted X̃. Given a
SROIQ ontology O, a set M⊆ O of axioms from O, and a signature Σ, we say
that O is a deductive Σ-conservative extension (Σ-dCE ) ofM if, for all SROIQ-
axioms α with α̃ ⊆ Σ, it holds that O |= α if and only if M |= α. O is a model
Σ-conservative extension (Σ-mCE ) of M if {I|Σ | I |= O} = {I|Σ | I |= M}.
Dually, M is a dCE-based module of O for Σ if O is a Σ-dCE of M, and it is
an mCE-based module for Σ if O is a Σ-mCE of M. All dCE-based modules
are also mCE-based modules, whilst the converse is not always true. A module
M ⊆ O for Σ is called depleting if there is no non trivial entailment η over Σ
such that O \M |= η; M is called self-contained if M is a module for Σ = M̃.

Since M ⊆ O the monotonicity of SROIQ implies that every entailment
η over Σ derivable from M is also derivable from O. Deciding the converse
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direction is in general computationally hard, or even undecidable for expressive
DLs [10,17,18]. Since we do not need to find all the subsets of O that are a
module for Σ, we can use easier conditions which guarantee that a set of axioms
M⊆ O is a module for Σ.

Let Σ be a signature and O be an ontology. Let x ∈ {MEX, ∅, Δ,⊥,�} be a
notion of module. For each such notion, an oracle “x-check” can be defined that
determines whether an axiom α may be involved in preserving an entailment η
of O over Σ. Then, the x-module x-mod(Σ,O) for Σ in O can be computed by
performing Algorithm 1.

Algorithm 1. Extraction of an x-module for Σ

Input: Ontology O, seed signature Σ, oracle x-check
Output: x-moduleM of O w.r.t. Σ
M← ∅; O′ ← O
repeat
changed ← false
for all α ∈ O′ do

if the x-check for α against Σ ∪ M̃ is positive then
M←M∪ {α}; O′ ← O′ \ {α}; changed ← true

until changed = false
returnM

Algorithm 1 is a special case of the one in [3, Figure 4], and its output M does
not depend on the order in which the axioms α are selected [3].

Due to space limitations, we can just briefly sketch the intuition behind the
definition of each oracle and the corresponding results of interest for this paper.
We refer the interested reader to [3,14] for further details.

The MEX System. In [14], the notion of a MEX-module is defined for acyclic
terminologies, i.e., ontologies that satisfy two conditions: (1) they only contain
axioms of the form A ≡ C or A � C where A is a class name and C is a complex class;
(2) for each A, there is at most one axiom with A on the left-hand side; if one such
axiom α exists, then A is said to be defined, and to be directly dependent on all the
terms X that occur on the right-hand side of α (denoted A � X). The MEXmethod
requires to determine for each defined class A the set dependO(A) of all the terms
X in O such that the pair (A, X) belongs to the transitive closure of �. Intuitively,
then, the MEX-check for an axiom α against a signature Σ tests whether either α
defines a class A ∈ Σ∪M̃ and uses4at least one term X ∈ dependO(A)∩(Σ∪M̃) in
O\M, or if every term on which A depends only via ≡-axioms is used to define4

some term in Σ ∪ M̃. The authors prove that, if O is an acyclic ELI ontology,
then using the oracleMEX-check in Algorithm 1 generates the minimal depleting
self-contained module for a signature Σ in polynomial time.

Semantic Locality. In [3], the authors define a family of notions of locality with
different parameters, the prominent notions being those where the placeholder

4 The expressions use and used to define are high-level intuitive descriptions of the two
conditions given in [14, Fig. 4], to which we refer the reader since a formal definition
goes beyond the scope of this paper.
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x belongs to {∅, Δ}. These two notions of locality can be intuitively described
as follows: a SROIQ axiom α is ∅-local (resp. Δ-local) w.r.t. signature Σ if α′

obtained by replacing all terms in α̃ \ Σ with ⊥ (resp. �) is a tautology, in
which case the x-check returns negative. This treatment of α independently of
the remaining axioms distinguishes the ∅- and Δ-check (as well as the ⊥- and
�-check introduced in the next paragraph) from the MEX-check; hence the name
local. The authors of [3] prove that, if all axioms in O \M are ∅-local (or all

axioms are Δ-local) w.r.t. Σ ∪ M̃, then M is an mCE-based (and hence dCE-
based) module of O for Σ. Since deciding ∅- or Δ-locality requires tautology
checks, this problem is as hard as standard reasoning. In some cases, α′ is not a
SROIQ axiom, so standard reasoners need to be extended.

Syntactic Locality. In order to achieve tractable module extraction, the two
syntactic notions of x-locality for x ∈ {⊥,�} have been defined in [3]. Similarly
to semantic locality, the x-check for an axiom α against a signature Σ operates
on the transformed axiom α′ obtained by replacing all terms not in Σ with
the placeholder x. However, rather than invoking a reasoner, the x-check of α
against Σ makes use of a simple syntactic test [3, Sec. 5.5]. For example, ⊥ � C

is clearly a tautology for each class C. If the x-check is negative, α is said to be ⊥-
or �-local w.r.t. Σ. The x-check used in syntactic LBMs is sound in identifying
non-tautological axioms, but it may fail to spot a tautology, i.e., every ∅-local
(Δ-local, resp.) axiom w.r.t. Σ is also ⊥-local (�-local, resp.) w.r.t. Σ, but not
vice versa. Thus, also ⊥- and �-modules are mCE- and dCE-based modules for
Σ. Applying the syntactic rules requires polynomial time, hence the extraction of
this kind of modules is performed in time polynomial in the size of the ontology.

Modules based on syntactic (semantic) locality can be made smaller by itera-
tively nesting �- and ⊥-extraction (Δ- and ∅-extraction), again obtaining mCE-
and dCE-based modules [3,19], called �⊥∗- and Δ∅∗-modules.

Algorithm 1 guarantees that the module notions considered here are self-
contained and depleting: self-containment holds because of the iteration until
the signature of M remains unchanged; depletion holds because the axioms left
out of M are those whose x-check against the enlarged signature is negative.

3 Research Questions and Experimental Design

A natural question arising is whether syntactic and semantic LBMs differ in
practice, and, if yes, by how much. A second question is whether semantic module
extraction is noticeably more costly: the x-check has to be carried out often—
once per axiom and signature that the algorithm goes through— and it is hard
to predict the feasibility of semantic LBM extraction. Altogether, we want to
know whether syntactic LBMs are a good approximation of semantic LBMs, and
how much they differ in cost. Similarly, for acyclic ELI ontologies the analogous
question arises: how good an approximation of MEX modules are LBMs?

An answer to these questions will allow for a more informed choice of which
module extraction technique to select. One can always construct ontologies with
huge differences in size and time between syntactic and semantic LBMs and
between LBMs and MEX modules. Here, we are interested in these differences
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in currently available ontologies, and thus we need to design, run, and analyse
suitable experiments.

Selection of the Corpus. For our experiments, we have built a corpus con-
taining: (1) all the ontologies from the NCBO BioPortal ontology repository,5

version of November 2012; (2) ontologies from the TONES repository6 which
have already been studied in previous work on modularity [6]: Koala, Mereology,
University, People, miniTambis, OWL-S, Tambis, Galen. From this corpus, we have
removed ontologies that cannot be downloaded, whose .owl file is corrupted or
impossible to parse, or which are inconsistent. Furthermore, we have excluded
those large ontologies (exceeding 10K axioms) where the extraction of a semantic
LBM repeatedly took more than 2 minutes: for each such ontology, the estimated
time needed to perform our experiments could have exceeded 300 hours. How-
ever, to include at least one case of a huge ontology, we have kept in the corpus
NCI, an SH(D) ontology with 123,270 axioms.

This selection results in a corpus of 242 ontologies, which even beside NCI
greatly vary in expressivity (from AL to SROIQ(D)) and in size (10–16,066
axioms, 10–16,068 terms) [12]. For a full list of the corpus, please refer to [5].

As mentioned above, it is not possible for some ontologies to test Δ-locality
(and thus for extracting Δ- and Δ∅∗-modules) using standard DL reasoners, see
[5] for details. To cover these cases, we have extended the reasoner FaCT++ to
cover the use of the �-role as required by the semantic locality tests.

Since MEX handles only acyclic ELI ontologies, we created an ELI version
ELI(O) of each ontology O in our corpus by filtering unsupported axioms and
breaking terminological cycles. A principled way of doing this is beyond the
scope of this paper, and we have used the heuristic described in [5]. The resulting
corpus contains 239 ontologies since 3 were left empty after the ELI-fication.
Comparing Modules and Locality. In order to compare syntactic and se-
mantic locality, as well as LBMs and MEX modules, we want to understand
(1) whether, for a given seed signature Σ, it is likely that there is a difference
between the syntactic, the semantic, and the MEX modules for Σ; if so, the size
of the difference;7 and (2) how feasible the extraction of semantic LBMs is.

For this purpose, we compare (a) ∅-semantic and ⊥-syntactic locality, Δ-
semantic and �-syntactic locality, (b) ∅- and ⊥-modules, Δ- and �-modules,
Δ∅∗- and �⊥∗-modules, (c) MEX modules and Δ∅∗-modules.

Due to the recursive nature of Algorithm 1, our investigation is both on a

per-axiom-basis: given axiom α and signature Σ, is it likely that α is ∅-local
(Δ-local, resp.) w.r.t. Σ but not ⊥-local (�-local, resp.) w.r.t. Σ?

per-module basis: given a signature Σ, is it likely that
– ⊥-mod(Σ,O) �= ∅-mod(Σ,O), or
– �-mod(Σ,O) �= Δ-mod(Σ,O), or

5 http://bioportal.bioontology.org
6 http://owl.cs.manchester.ac.uk/repository/
7 Recall: the MEX module is always a subset of the semantic Σ-module, which is
always a subset of the syntactic Σ-module.

http://bioportal.bioontology.org
http://owl.cs.manchester.ac.uk/repository/
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– �⊥∗-mod(Σ,O) �= Δ∅∗-mod(Σ,O), or
– Δ∅∗-mod(Σ,O) �= MEX-mod(Σ,O)?

If yes, is it likely that the difference is large?

Clearly we need to pick, for each ontology in our corpus, a suitable set of
signatures, and this poses a significant problem. A full investigation is infeasible:
if m = #Õ, there are 2m possible seed signatures, so that testing axioms for
locality against all the signatures is already impossible for m ∼ 100. One could
assume that comparing modules is easier since many signatures can lead to
the same module. However, previous work [6,8] has shown that the number of
modules in ontologies is, in general, exponential w.r.t. the size of the ontology.
Still, different seed signatures can lead to the same module, which makes it hard
to extract enough different modules.

We will consider seed signatures of two kinds: genuine seed signatures and
random seed signatures.

Genuine Seed Signatures. A module does not necessarily show an internal co-
herence: e.g., if we had an ontology O about the domains of geology and philoso-
phy, we could extract the module for the signature Σ = {Epistemology, Mineral}.
That module is likely to be the union of the two disjoint modules for Σ1 =
{Epistemology} and Σ2 = {Mineral} [7].

In contrast, genuine modules can be said to be coherent: they are those mod-
ules that cannot be decomposed into the union of two “⊆”-uncomparable mod-
ules. Interestingly, a module M is genuine iff there exists an axiom α such that
M = x-mod(α̃,O). As a consequence, there are only linearly many genuine
modules in the size of O, and extracting one module per axiom is enough for
obtaining all of them. Moreover, all modules of O are composed from genuine
modules [7]. Thus, genuine modules are of special interest, and we can investigate
all of them, together with the corresponding genuine signatures.

Random Seed Signatures. Since a full investigation of all the signatures is
impossible, we compare locality—both on a per-axiom and per-module basis—as
well as LBMs and MEX modules on a random signature Σ, which we select by
setting each named entity E in the ontology to have probability p = 1/2 of being
included in Σ. This ensures that each Σ will have the same probability to be
chosen. This approach has a clear setback: the random variable “size of the seed
signature generated” follows a binomial distribution, so a random seed signature
is highly likely to be rather large and to contain half the terms of the ontology.
However, we do not yet have enough insight into what typical seed signatures are
for module extraction, so biasing the selection of signatures to, for example, those
of a certain size has no rationale. In contrast, selecting random seed signatures
avoids the introduction of any bias. Moreover, this choice is complementary to
the selection of all the genuine signatures, which are in general small.

With this in mind, we will analyze the modules obtained by random signatures
with p = 1/2, and we will see in Section 4 that the module sizes obtained do
allow for a reliable statement about the differences observed.

How many seed signatures do we have to sample from a given ontology O
in order to obtain statistically significant statements about modules determined
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by the real population of all signatures from O? We apply the usual statistical
model of confidence intervals [20], aiming at a confidence level of 95% that the
true proportion of differences between modules – i.e., the proportion of seed
signatures that lead to different modules – lies in the confidence interval (±5%) of
the observed proportion. Then we can generalize the conclusions for the random
sample to the full population because the probability that the proportion of
differences among modules for all seed signatures differs by no more than 5%
from the proportion observed in the sample (and reported in Section 4) is 95%.
In order to reach this confidence level, we need a sample size of at least 385
elements, independently of the size of the full population: for a two-sided test
to detect a change in the proportion defective of size δ in either direction, the
minimum sample size is

N � p(1− p)

δ2
z21−α/2 ,

where p is the observed proportion, α the significance level, and z1−α/2 the criti-
cal value of the underlying distribution [2]. Here, we use the normal distribution
as an approximation of the binomial distribution which is usually assumed for
proportions in random sampling; hence the significance level of α = 0.05 leads
to z1−α/2 ≈ 1.96. Furthermore, although we do not know the value p in advance,
it is clear that p(1 − p) � 0.25 because 0 � p � 1. The confidence interval of
±5% determines the error of δ = 0.05. Therefore, we obtain

N � 0.25

0.052
· 1.962 ≈ 384.16,

that is, a representative sample for these parameters needs at least 385 elements,
and this number is independent of the population size. For ontologies with at
least 9 elements in the signature, we will therefore draw a sample of size 400.
For all other ontologies, we will look at all of the � 400 signatures.

Summary. We compare, for every ontology O in our corpus,

(T1) for random seed signatures Σ from O,
(a) for each axiom α in O, is α

– ∅-local w.r.t. Σ but not ⊥-local w.r.t. Σ?
– Δ-local w.r.t. Σ but not �-local w.r.t. Σ?

(b) is
– ⊥-mod(Σ,O) �= ∅-mod(Σ,O)?
– �-mod(Σ,O) �= Δ-mod(Σ,O)?
– �⊥∗-mod(Σ,O) �= Δ∅∗-mod(Σ,O)?
– Δ∅∗-mod(Σ, ELI(O)) �= MEX-mod(Σ, ELI(O))?

(T2) the same questions (a) and (b), with Σ ranging over all the genuine
signatures β̃ for β ∈ O.

Our sample selection includes large as well as small seed signatures: the random
seed signatures created to answer T1 will tend to contain around half the terms in
the ontology, while the signatures used to answer T2 will range over all signatures
of single axioms and therefore tend to be small.
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4 Results of the Experiments

4.1 Semantic Versus Syntactic Locality

No Differences in Locality. The main result of the experiment is that, for
the vast majority of the ontologies in our corpus, no difference between syntactic
and semantic locality is observed, for all three variants ⊥ vs. ∅, � vs. Δ, and
�⊥∗ vs. Δ∅∗. More precisely, for 209 out of 242 ontologies, we obtain that:

(T1) for random seed signatures, there is no statistically significant difference

(a) between semantic and syntactic locality of any kind,

(b) between semantic and syntactic LBMs of any kind;

(T2) given any genuine signature, there is no such difference.

More specifically, for all randomly generated seed signatures and all genuine
signatures, the corresponding bottom-modules (and the corresponding top- and
nested-modules, respectively) agree, and every axiom is either ⊥- and ∅-local, or
none of both (and either �- and Δ-local, or none of both).

The 209 ontologies include Galen and People, which are renowned for having
unusually large ⊥-modules [3,8].

In most cases, extracting a semantic and syntactic LBM each took only a few
milliseconds, so a performance comparison is not meaningful. For some ontolo-
gies, the semantic LBM took considerably longer to extract than the syntactic:
up to 5 times for nested-modules in Molecule Role, and up to 34 times in Galen.

Differences in Locality. We have observed differences between syntactic and
semantic locality for 33 ontologies in our corpus. We call the axioms that cause
these differences culprits – patterns of axioms which are not ⊥-local (�-local,
respectively) w.r.t. some signature Σ, but which are ∅-local (Δ-local, respec-
tively) w.r.t. Σ. We have identified four types of patterns, a–d , and we describe
them in the following. Sometimes, culprit axioms pull additional axioms into the
syntactic LBM, due to signature extension during module extraction.

We denote class names by A, B, complex classes by C, D, properties by r, s, . . . ,
nominals by a, non-empty data ranges (e.g., int or int0..9) by R, possibly with
indices. Σ denotes a signature for which a module is extracted or against which
an axiom is checked for locality. Terms outside Σ are overlined; we further use
notation C⊥ and C	 to denote classes that are bottom- or top-equivalent due to
the grammar defining syntactic locality in [3, Fig. 3] and the analogous grammar
for semantic locality.

Culprits of Type a are simple tautologies that accidentally entered the “in-
ferred view” (closure under certain entailments) of an ontology. These axioms do
not occur in the original “asserted” versions and could, in principle, be detected
in a simple preprocessing step. Type-a culprits occur in 10 ontologies of the
above 33 and are of the kinds A � A or r ≡ (r−)−. Each such tautology is triv-
ially ∅-local and Δ-local w.r.t. any Σ, but not always ⊥- or �-local: if Σ contains
all terms in that tautology, then both sides of the subsumption (equivalence) are
neither ⊥- nor �-equivalent.
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Differences Caused Not Solely by Culprits of Type a have been observed
for 27 ontologies. In only 6 of these cases, the differences affect modules; in the
remaining 20, they only affect locality of single axioms (tests T1 a and T2 a). We
will focus on the former 6, listed in Table 1, and refer to [5] for details on all 27.

Table 1. Ontologies that exhibit differences in modules

Ontology Abbreviation DL expressivity #axioms #terms

MiniTambis-repaired MiniT ALCN 170 226
Tambis-full Tambis SHIN (D) 592 496
Bleeding History Phenotype BHO ALCIF(D) 1,925 581
Neuro Behavior Ontology NBO AL 1,314 970
Pharmacogenomic Relationsh... PhaRe ALCHIF(D) 459 311
Terminological and Ontological... TOK SRIQ(D) 466 330

According to Table 1, differences between modules occur for ontologies of
medium to large size and medium to high expressivity. Differences in locality
alone additionally affect small ontologies such as Koala (42 axioms) and Pilot
Ontology (85 axioms), as well as large ontologies such as Galen (4,735 axioms)
and Experimental Factor Ontology (7,156 axioms). The number of axioms causing
these differences (i.e., matching the culprit patterns) in the affected ontologies is
small except for Galen, and most of the observed differences are relatively small.

Table 2 gives a representative selection of the differences in modules observed,
plus the relative sizes of modules extracted for (T1) and (T2). For a complete
overview, including differences in locality of single axioms, see the table in [5].

Table 2. Overview of observed differences between modules

Ontol. Types #diffs size of diffs size of Δ∅∗-modules culprit
affected #axs (rel.) T1 (%) T2 type

range avg. range avg. + freq.
miniT bot, nested 14–25% 1–7 0–600%b 48–79 66 0–8 2 c 3
Tambis bot, nested 32–57% 2–41c 1–62%c 75–88 82 0–34 9 c 8
BHOa nested 17% 1–12 0–300% 55–72 65 0–31 4 b 31
NBOa nested 3% 2 0–200% 64–78 71 0–3 0 d 3
PhaRea top, nested 1–8% 1–326d 0–6,520%d 50–70 60 0–8 1 d 10
TOK top, nested 49–100% 1–7 0–9% 48–68 59 9–17 10 d 3

adifferences only for genuine modules
bdifferences > 5% only for genuine modules
cdifferences > 11 axioms (> 2%) only for genuine modules
ddifferences > 13 axioms (> 1,300%) only for top-modules

The columns show: ontology name (abbreviations: see Table 1); type of modules af-
fected; relative number of module pairs with differences; number of axioms in the
differences (absolute and relative to the ∅- or Δ- or Δ∅∗-case); type of culprit present
and number of axioms of this type involved in differences.
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Table 2 shows small absolute differences for miniT, BHO, NBO, and TOK. In
Tambis, large differences occur only for genuine modules. Finally, in PhaRe, large
differences occur only for top-modules.

For all these ontologies, a single syntactic or semantic module was extracted
within only a few milliseconds, making module extraction times roughly equal.

Culprits of Type b are axioms with an ∃-restriction on a set of nominals or
a non-empty data range on the right-hand side, such as A � ∃r.{a1, . . . , an} or
A � ∃r.R. These axioms are Δ-local w.r.t. a signature that does not contain r

because they become tautologies if r is replaced by �. However, they can never
be �-local unless A is replaced by some C⊥.

Culprit-b axioms affect genuine modules of BHO, and (only) locality of single
axioms for 4 more ontologies. We observed a variant A ≡ C	  ∃r.R.

Culprits of Type c are axioms α that contain a class description C such that
(a) C becomes equivalent to ⊥ (or �) if all terms outside Σ are replaced by
⊥ (or �); (b) this causes α to be semantically ⊥-local (or �-local); but (c)
the grammars for syntactic locality do not “detect” C to be a C⊥ (or C	). For
example, C = ∀r.A  ∃r.� becomes ⊥-equivalent if A is replaced by ⊥; the same
holds with cardinality restrictions in place of “∃”. Consequently, axioms such as
A⊥ ≡ B∀r.C⊥∀s.{a}=3 r.�, (taken from Koala) are ∅-local but not ⊥-local.

We found this pattern in 8 ontologies. Only in miniT and Tambis, it affects a
large proportion of bottom- and nested-modules, with additional axioms “pulled
in”. Still, the size of the differences is modest, as argued above. Some of the
remaining 6 ontologies contain different kinds of complex classes that cause dif-
ferences in top-locality of single axioms.

Culprits of Type d are axioms where a class (or property) name from the left-
hand side occurs on the right-hand side together with a top-equivalent property
(or class), causing differences in top-modules. The simplest such axiom is A �
∃r.A, which is Δ-local because replacing r with � makes it a tautology. The
axiom is only �-local if Σ contains neither r nor A. We have found further, more
complex, examples in Adverse Event Reporting Ontology and Galen; see [5].

We have observed culprits of type d in 17 ontologies, see the detailed overview
in [5]. Only in 3 cases (NBO, PhaRe, and TOK) are modules affected.

Galen contains 121 culprit-d axioms, but they only affect locality of single
axioms. The time differences for Galen are remarkable:checking all axioms for
Δ-locality takes up to 70 times longer than checking them for �-locality.

Module Sizes. The selection of the signatures for the experiment was designed
to allow for the analysis of two, complementary, kinds of modules: 1) genuine
modules, which constitute a base of all modules, extracted from generally small
axiom signatures; 2) a statistically significant amount of random modules, ob-
tained from random, unbiased signatures which are likely to contain half the
terms of the ontology. We argue in what follows that it is neither the case that
genuine modules are so small to be almost irrelevant sets to investigate, nor that
random modules are so big to leave no space for differences to be observed. We
will focus on syntactic modules which contain the other kinds of modules.
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During the experiment we have computed and analyzed a high number of
genuine modules: more than 380K for the ⊥-notion, more than 40K for the �-
notion, and more than 440K for the �⊥∗-notion of locality. As we mentioned
above, these modules tend to be quite small. However, they are not of irrelevant
size: ∼ 8% of the genuine ⊥-modules, ∼ 11% of the genuine �-modules, and
∼ 5% of the genuine �⊥∗-modules contain more than 20% of the axioms of the
corresponding ontology. So the low number of differences observed is not due to
checking only against very small modules.

With a similar and complementary discussion, we argue that the modules
obtained through random, “big” signatures do not necessarily contain almost all
of the ontology: e.g., 39% of all random �⊥∗-modules, and 28% of all random
⊥-modules, contain less that 60% of the axioms of the corresponding ontology.

To sum up, the lack of differences between the modules is not due to too small
or to too big sizes of the modules selected.

Discussion. All culprits hardly ever cause significant differences in modules.
Only for PhaRe are differences between semantic and syntactic modules not
negligible, but we were able to relativize them, see [5].

Table 1 may suggest that culprits occur only in expressive ontologies. However,
patterns a, c, d can, in principle, already occur in simple terminologies in EL
and ALC, respectively. Evidently, type-a culprits can easily be filtered out in
a preprocessing step. For types c and d , there is no hope for an exhaustive
extension to locality because they can (and do) occur in arbitrarily complex
shapes and contexts. For this reason, the identification of culprits can only be
done “on demand”, i.e., by observing the differences in the modules of given
ontologies.

Patterns of type b rely on nominals or datatypes – but they are repairable
by a straightforward extension to the definition of syntactic locality: one can
extend the locality definition to distinguish ⊥- and �-distinct classes, by adding
appropriate grammars to the definition of syntactic locality, and adding more
cases of ⊥- and �-equivalent classes to the existing grammars. However, from
the small numbers of differences observed, we doubt that such an extension of
syntactic locality will have any significant effects in practice.

4.2 LBMs vs MEX Results

The results of the experimental comparison of syntactic/semantic LBMs and
MEX modules are summarized in Table 3. They show that MEX modules smaller
than the corresponding LBMs can be found in ∼27% of the preprocessed on-
tologies, for either random or axiom-based seed signatures. At the same time,
unsurprisingly, syntactic and semantic LBMs do not differ at all for these simple
ELI ontologies.

In experiments with random seed signatures, it can be seen that for those
ontologies where there are differences (most notably, Galen), they occur in many
tests. Thus, the difference appears to be caused by features of the ontology, not
some particular seed signatures. Also, the difference sometimes comes out large
in certain tests, also for genuine modules. For example, for the signature of the
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Table 3. Differences between MEX and LBMs (�⊥∗, Δ∅∗)

Experiment #ontol. % tests avg size of diffs
with diffs. with diffs. #axs rel.

Random signatures 66 84% 0–26 0–13%
Axiom signatures 61 12% 0–13 0–80%

The results from the third column on are averaged over all ontologies with differences
LBM–MEX in at least one module. For example, the last two columns show the average
min and max absolute (resp. relative) difference between LBMs and MEX modules.

following axiom in Galen, both Δ∅∗-mod and �⊥∗-mod contain 127 axioms while
the MEX-module only contains the axiom itself:8 RICF ≡ ICF  ∃ISFO.RSH.

We analyzed whether the differences observed correlate with the size of the
original ontology, its expressivity or the extent of the modification done in the
ELI-fication. There is no correlation with size but, as is to be expected, with
the other two features, which are closely connected to each other. Table 4 illus-
trates the observations by dividing the 239 ontologies tested into four groups.
The ontologies in Group 1 are in a format MEX can handle, so they have not
been modified. The others required more or less heavy modifications (Groups
2–4). Differences between MEX and LBMs as described above occur only for
ontologies that required heavy modifications (Group 4).

Table 4. Overview of MEX experiment

Group #axioms #ontologies ontology size (avg.)
removed

1 unchanged ontologies 0 33 (14%) 19–16,066 (2,176)
no diff. Δ∅∗ \MEX

2 little-changed ontologies 1–28 36 (15%) 13– 6,587 (466)
no diff. Δ∅∗ \MEX

3 largely-changed ontologies 31–7,836 104 (44%) 51–13,153 (2,373)
no diff. Δ∅∗ \MEX (avg. 884)

4 largely-changed ontologies 30–12,185 66 (27%) 42–12,344 (1,843)
with diff. Δ∅∗ \MEX (avg. 1,001)

As expected, the expressivity among Groups 1 and 2 is generally low: only 21
ontologies in Group 2 use expressivity above ALE (up to SHIF(D), which is an
outlier). However, the size of some ontologies in Group 1 is already considerable:
22 out of 33 have > 100 axioms; 10 have > 1, 000 axioms. In contrast, the
ontologies in Group 4 have almost always high expressivity, for example 27 out
of 66 contain nominals.

8 The acronyms denote RightIneffectiveCardiacFunction, IneffectiveCardiacFunction,
isSpecificFunctionOf, RightSideOfHeart.
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Despite the correlation between the impact of the ELI-fication and the differ-
ences observed between MEX- and Δ∅∗-modules, we cannot claim that there is a
causation between the two events. Indeed, we have investigated the reasons for
the differences observed between the two kinds of modules, and we have noticed
that in all the cases the culprit is the proliferation of equivalence axioms. For
example A ≡ B will end up in the Δ∅∗-mod for any seed signature containing
either A or B. It is, however, an mCE of ∅ w.r.t. to either {A} or {B}.

The experimental results in view of this insight are summarized as follows:

Random-modules experiment: the 66 ontologies where differences between
random MEX- and Δ∅∗-modules were observed, coincide exactly with those
where equivalences occur in the ELI-TBox.

Genuine-modules experiment: all 61 ontologies where differences between
genuine MEX- and Δ∅∗-modules were observed contain equivalence axioms.

We conjecture that the low expressivity of the ELI-language reduce the pos-
sibility of MEX- and Δ∅∗-modules to differ only to the presence of equivalences.
In addiction to the empirical evidence for such a claim, we plan to investigate
further this aspect in future work.

5 Conclusion and Outlook

Summary. We obtain three main observations from our experiments. (1) In
general, there is no or little difference between semantic and syntactic locality.
Hence, the computationally cheaper syntactic locality is a good approximation of
semantic locality. (2) In most cases, there is no or little difference between LBMs
and MEX modules. (3) Though in principle hard to compute, semantic LBMs
can be extracted rather fast in practice. Still, their extraction often takes con-
siderably longer than that of syntactic LBMs. We cannot make any statement
about MEX module extraction times because we use the original MEX imple-
mentation, which combines loading and module extraction. Due to results (1)
and (2), hardly any benefit can be expected from preferring potentially smaller
modules (MEX or semantic LBMs) to cheaper syntactic LBMs. For the ontolo-
gies Galen and People, which are “renowned” for having disproportionately large
modules, syntactic and semantic LBMs do not differ. Only for Galen are MEX
modules considerably smaller than LBMs.

Not only does our study evaluate how good the cheap syntactic locality ap-
proximates semantic locality and model conservativity, it also required us to
provide the first implementation for extracting modules based on semantic lo-
cality. Furthermore, we have been able to fix bugs in the existing implementation
of syntactic modularity. A complete report of bugfixes is beyond the scope of
the paper; as an example, early runs of the experiment led us to correcting the
treatment of reflexivity axioms by the locality checker in the OWL API.

Future Work. Two issues are interesting for future work: (1) Sampling seed
signatures so that all sizes of signatures are equally likely to be sampled; (2) Com-
paring LBMs to other types of conservativity-based modules.
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As for (1), the current sampling causes small and large signatures to be un-
derrepresented. One might argue that, for big ontologies, the typical module
extraction scenario does not require large seed signatures – but it does some-
times require relatively small seed signatures, for example, when a module is
extracted to efficiently answer a certain entailment query of typically small size.
We therefore plan to conduct a similar experiment using other sampling methods.
Concerning (2), one could include, for example, the technique based on reduc-
tion to QBF for the OWL 2 QL profile [16] when an off-the-shelf implementation
becomes available.
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Abstract. The normative version of RDF Schema (RDFS) gives non-
standard (intensional) interpretations to some standard notions such as
classes and properties, thus departing from standard set-based semantics.
In this paper we develop a standard set-based (extensional) semantics
for the RDFS vocabulary while preserving the simplicity and computa-
tional complexity of deduction of the intensional version. This result can
positively impact current implementations, as reasoning in RDFS can be
implemented following common set-based intuitions and be compatible
with OWL extensions.

1 Introduction

The Resource Description Framework (RDF) [9] is the standard data model
for publishing and interlinking data on the Web. Its associated vocabulary
RDF Schema (RDFS) (classes, properties, hierarchies) gives non-standard (in-
tensional) interpretations to some standard set theoretical notions such as classes
and properties. This brings some difficulties to the reasoning systems based on
classical first-order logic (FOL). RDF enables the making of statements about
(Web) resources in the form of triples including a subject, a predicate and an
object expressed in manifold vocabularies. Efforts like the Linked Open Data
project [8] give a glimpse of the magnitude of RDF data today available.

In many application scenarios, there is the need to have on top of RDF data
a language to structure knowledge domains. To cope with this aspect, the Web
Consortium developed standard vocabularies such as RDF Schema (RDFS) and
OWL. RDFS was designed with a minimalist philosophy and it includes essen-
tially the machinery for expressing subclass, subproperty, type and such. On the
other hand, OWL is a more expressive language that includes a much richer set
of features.

From a standardization point of view the current normative RDFS has two
weaknesses. First, the interpretations of basic notions such as subclass and sub-
property do not have the usual set-based meaning. For example, in in Fig. 1,
even though :birthCity is a subproperty :birthPlace, one cannot derive the
fact that the range of the property :birthCity must be :Place. Second, the
normative semantics of RDFS and OWL differ for some of their common vocabu-
laries. RDFS, for historical reasons, follows an intensional semantics while OWL

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 101–116, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. An RDFS graph taken from dbpedia.org showing compatibility problems be-
tween OWL and RDFS. The dotted arrow is valid in OWL while not in RDFS.

adopts a standard extensional set-based semantics. This intensional semantics
of RDFS brings compatibility problems with OWL. In the example considered
shown in Fig. 1, the dotted rdfs:range property is a valid set-based deduction,
thus valid in OWL, while not derivable in RDFS.

The designers of RDFS were aware of this problem, and added in a “non-
normative” status the standard set-based semantics and some sound inference
rules for it. This so-called “extensional” version of RDFS corresponds exactly
to the standard set-based interpretation of the vocabulary (and thus is fully
compatible with OWL). The rationale for keeping a weaker (intensional) seman-
tics for RDFS was efficiency: “In some ways the extensional versions provide a
simpler semantics, but they require more complex inference rules. The ’inten-
sional’ semantics [...] provides for most common uses of subclass and subproperty
assertions, and allows for simpler implementations of a complete set of RDFS
entailment rules.” (W3C RDFS Semantics Spec., [7]). According to this specifi-
cation, RDFS inference engines develop following the intensional semantics.

Thus, two relevant problems regarding the natural extensional RDFS seman-
tics have prevented its usage: i) What is the complexity overload associated to
the extensional semantics for RDFS?; ii) Can normative RDFS inference engines
(based on the computation of a completion in a forward-chaining manner) be
easily extended to support extensional RDFS, and at which cost?

Contributions. This paper answer both question in the positive. First, we pro-
vide a simple sound and complete proof system for the extensional semantics of
RDFS. Second, we show that a meaningful completion of the graph computed by
using the rules in a forward-chaining manner can still be computed in
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polynomial case (as for intensional RDFS) thus spurring on current system that
use completion. These two results can be seen as founding the ground for the de-
veloping of the extensional semantics for the RDFS vocabulary while preserving
the simplicity and computational complexity of deduction of the intensional case.

Our results can be considered as an extension of intensional RDFS. Our results
address not only an interesting theoretical open problem, but could impact on
current implementations (for the most part based on the normative intensional
semantics) in a positive sense. Indeed, we show that reasoning in RDFS can
follow common set-based intuitions and be compatible with OWL extensions.
Moreover, we show that the rule system that we present is easily embeddable in
existing libraries such as Jena.

2 Preliminaries

The Resource Description Framework (RDF) [9] and RDF Schema (RDFS) are
the W3C’s standard data model for the publishing and interlinking of data on
the Web. In RDF only simple statements about resources can be expressed via
triples: a resource may be an instance of another resource (representing a class
typing the instance) and/or a property of another resource. RDFS augments
RDF with some minimal vocabulary, allowing to express hierarchies of classes
and properties and to restrict the domain and range of properties. As an example
of an RDFS graph, see Fig. 1. In what follow we will give a simple presentation
abstracted from implementation (e.g., namespace) details.

Let U , L, B three pairwise disjoint sets representing the set of URIs, literals
and blank nodes, respectively. For simplicity, we denote unions of these sets by
simply concatenating their names.

Definition 1 (RDF triple, graph). An RDF triple t is a tuple of the form
(s, p, o) ∈ (UB)×U×(UBL), where s, p, o are called subject, predicate and object,
respectively. A triple is ground if it does not contain blank nodes. A (ground)
RDF graph G is a set of RDF (ground) triples. The vocabulary of G, denoted
voc(G), is the set of elements in UBL that occurs in its triples.

The ρdf Fragment
In this work we will concentrate on a simple and small fragment of RDFS,
which includes only the special RDFS vocabulary type, property, subClass,
subProperty, domain and range. This fragment is called ρdf and was intro-
duced first in [11]. It has been shown to capture the essential semantics of the
full fragment, while avoiding to deal with minor idiosyncrasies. In the following,
we will denote its vocabulary as Vρdf = {sc, sp, dom, range, type}. As it has been
shown in [11], ρdf is self-contained as it does not rely on the RDFS vocabulary
beyond this subset. ρdf is endowed with a set of inference rules that preserves
the original RDFS semantics restricted to this vocabulary [10].

The Intensional (Normative) Semantics
The normative semantics of RDFS [7] is built upon the standard logic notions of
model, interpretation and entailment. In the following we rephrase the normative
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model theory of RDFS using first-order logic (FOL) in the spirit of [4]. The
signature of the language includes a ternary predicate T –to represent RDF
triples – and two unary predicates C and P that will represent the membership of
individuals to “rdfs:Class” and “rdf:Property”, respectively. It can be proved
that, given a ρdf graph {(s1, p1, o1), · · · , (sn, pn, on)}, its models according the
the normative RDFS model theory in the W3C specification [4] are the same as
the models of the FOL formula ∃b T (s1, p1, o1) ∧ · · · ∧ T (sn, pn, on), where b is
the set of blank node symbols appearing in the graph, under the FOL theory
specified by the axioms listed below.

The basic axioms primitively define subClass, subProperty, domain, range
in terms of type in the obvious way –as in set theory1:

∀a, b (a, sc, b) −→ C(a) ∧C(b) ∧ ∀x (x, type, a)→ (x, type, b) (1)

∀a, b (a, sp, b) −→ P (a) ∧ P (b) ∧ ∀x, y (x, a, y) → (x, b, y) (2)

∀a, c (a, dom, c) −→ ∀x, y (x, a, y)→ (x, type, c) (3)

∀a, d (a, range, d) −→ ∀x, y (x, a, y)→ (y, type, d) (4)

To cope with reflexivity and transitivity of the subclass and subproperty relations
we have also the following axioms:

∀a, b, c (a, sc, b) ∧ (b, sc, c) −→ (a, sc, c) (5)

∀a C(a) −→ (a, sc, a) (6)

∀a, b, c (a, sp, b) ∧ (b, sp, c) −→ (a, sp, c) (7)

∀aP (a) −→ (a, sp, a) (8)

The following typing axioms are also needed in normative RDFS:

∀a, b (a, dom, b) −→ P (a) ∧C(b) (9)

∀a, b (a, range, b) −→ P (a) ∧C(b) (10)

∀a, b (a, type, b) −→ C(b) (11)

∀a, b, c (a, b, c) −→ P (b) (12)

P (sc) ∧ P (sp) ∧ P (dom) ∧ P (range) ∧ P (type) (13)

The above axioms define the semantics for the subClass, subProperty, domain
and range predicates.

It is important to observe that rdfs:subClass, rdfs:subProperty, rdfs:
domain, rdfs:range are defined only by means of necessary properties according
to the above axioms: the semantics of normative RDFS is a quite weak one, since
the RDFS vocabulary does not express fully the corresponding relations in set
theory. As a matter of facts, given the RDFS graph from Fig. 1, according the
normative RDFS semantics the statement (:birthCity, rdfs:range, :Place) is
not entailed. Such an entailment is expected since people do read the properties
in the RDFS vocabulary as the corresponding set-based relations – just like in

1 Note that for simplicity we may omit the T symbol in FOL formulas.



The Logic of Extensional RDFS 105

OWL. The normative RDFS semantics is called intensional, since it is unable to
define sets in terms of their elements.

The Extensional (Non-normative) Semantics
The W3C specification [7] introduces in a “non-normative”status an extensional
version of RDFS, in which subClass, subProperty, domain, range are defined
precisely as having the usual set theoretical meaning. This is achieved by adding
to the previous definition of the RDFS semantics the missing implication (left-
direction arrows) in axioms (1) to (4), thus getting axioms (14) to (17). Thus,
axioms (1) to (17) define the semantics of the non-normative extensional RDFS
restricted to the ρdf vocabulary. Note that axioms (1) to (8) are redundant, since
they can be derived from axioms (9) to (17). From now on we will refer to the
non-normative version of RDFS restricted to the ρdf vocabulary as ρdf+.

∀a, b (a, sc, b)←→ C(a) ∧ C(b) ∧ ∀x (x, type, a)→ (x, type, b) (14)

∀a, b (a, sp, b)←→ P (a) ∧ P (b) ∧ ∀x, y (x, a, y)→ (x, b, y) (15)

∀a, c (a, dom, c) ←→ ∀x, y (x, a, y) → (x, type, c) (16)

∀a, d (a, range, d) ←→ ∀x, y (x, a, y)→ (y, type, d) (17)

This (extensional) semantics – which follows exactly the obvious extensional
definitions of the corresponding set-based operators – has been disregarded by
the W3C working group because of some computational problems that were con-
jectured during the definition of the specification. In the non normative section
of the W3C specification only a set of incomplete inference rules for extensional
RDFS is provided.

As for the relations with other KR formalisms, and with the family of de-
scription logics in particular, notice that it is easy to see that ρdf+ without
typing exactly corresponds to the DL-LiteH{core,pos,safe}, namely the well known

DL-LiteH{core} description logic [2,1] without negation and unqualified existen-
tial restrictions on the right-hand side of the inclusion axioms. Obviously, DL-
LiteH{core,pos,safe} includes the normative RDFS. It is easy to see that the usual
unqualified number restrictions of DL-Litecore, once on the left-hand side of the
inclusion axioms, can be used to encode the rdfs:domain and rdfs:range state-
ments, while rdfs:subClass and rdfs:subProperty are nothing but usual DL
concept and role inclusion axioms, respectively.

Although the semantics of RDFS dates back to 2004 and despite the large
amount of research around it, there were still some important open problems
concerning extensional RDFS: i) whether a sound and complete system of infer-
ence rules existed; ii) whether a polynomial algorithm for computing the com-
pletion according to these extensional rules existed; iii) whether the problem of
entailment checking, crucial for query answering, can still be done in the same
complexity bound as for intensional RDFS. In this paper we tackle these three
problems and provide positive answers to each of them.
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3 Reasoning with ρdf+: A Forward-Chaining System

This section presents a set of sound and complete inference rules for ρdf+ that
captures the extensional semantics of RDFS. Our findings complement the set of
rules in the ρdf fragment with additional rules derived from the analysis of axioms
(14)-(17). The complete set of rules is presented in Table 1. For example, the
missing deduction in Fig. 1 can be done now with rule 4(b) with the instantiations
A =birthCity, B =birthPlace and C =Place.

We will need some definitions for the discussion that follows. We follow the
notations of [11].

Definition 2 (Instantiations and maps)

1. An instantiation of a rule is a uniform replacement of the meta variables
occurring in the triples of the rule with elements in UBL, such that all the
triples obtained after the replacement are well-formed RDF triples.

2. A map is a function μ : UBL → UBL preserving URIs and literals i.e., μ(u) =
u for all u ∈ UL. Given a graph G we define μ(G) = {(μ(s), μ(p), μ(o)) :
(s, p, o) ∈ G}. By abusing notation, we speak of a map μ from a graph G1 to a
graph G2 and write μ : G1 → G2 if μ is such that μ(G1) is a subgraph of G2.

Definition 3 (Proof). Let G and H be graphs. We say that G  ρdf+ H iff there
exists a sequence of graphs P1, P2, . . . , Pk, with P1 = G and Pk = H, and for
each j (2 ≤ j ≤ k) one of the following cases hold:

– there exists a map μ : Pj → Pj−1 (rule 8),
– there is an instantiation R

R′ of one of the rules (1)–(7) in Table 1 such that
R ⊆ Pj−1 and Pj = Pj−1 ∪R′.

The sequence of rules used at each step (plus its instantiation or map), is called
a proof of H from G.

The ρdf+ system of rules extends the ρdf system [11] by the rules 3(b), 3(c),
4(b), 4(c) and (7). The following theorem states the soundness and completeness
of  ρdf+.

Theorem 1 (Soundness and completeness). Let |=ρdf+ denote the entail-
ment relation for the extensional ρdf+ semantics obtained from the axioms (1)-
(17). Then, the proof system  ρdf+ (rules in Table 1) is sound and complete for
this extensional semantics; that is, for G and H graphs in ρdf+, then G  ρdf+

H iff G |=ρdf+ H.

Proof. The proof is available in the Appendix. !

Although the natural consequence of Theorem 1 would be that of dropping
the intensional (weaker) semantic conditions in the normative semantics and
replacing them with the extensional (stronger), it is still necessary to investi-
gate whether ρdf+ brings in some source of complexity when applied to the
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Table 1. The �ρdf+ rule system for ρdf+. Capital letters A, B, C, X, and Y , stand
for meta-variables to be replaced by actual terms in UBL.

1. Subclass:

(a) (A,sc,B) (X,type,A)
(X,type,B)

(b) (A,sc,B) (B,sc,C)
(A,sc,C)

2. Subproperty:

(a) (A,sp,B) (X,A,Y )
(X,B,Y )

(b) (A,sp,B) (B,sp,C)
(A,sp,C)

3. Domain:

(a) (A,dom,B) (X,A,Y )
(X,type,B)

(b) (A,sp,B) (B,dom,C)
(A,dom,C)

(c) (A,dom,B) (B,sc,C)
(A,dom,C)

4. Range:

(a) (A,range,B) (X,A,Y )
(Y,type,B)

(b) (A,sp,B) (B,range,C)
(A,range,C)

(c) (A,range,B) (B,sc,C)
(A,range,C)

5. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A) (B,sc,B)

(b) (X,p,A)
(A,sc,A)

for p ∈ {dom, range, type}

6. Subproperty Reflexivity:

(a) (X,A,Y )
(A,sp,A)

(b) (A,sp,B)
(A,sp,A) (B,sp,B)

(c)
(p,sp,p)

for p ∈ ρdf

(d) (A,p,X)
(A,sp,A)

for p ∈ {dom, range}

7. Extensional:

(type,sp,A) (A,dom,B) (X,sc,X)
(X,sc,B)

8. Simple:

G
G′ for a map μ : G′ → G

following important reasoning tasks: i) computation of the closure; ii) checking
of entailment, crucial for query answering.

Computational Properties of ρdf+
The deductive closure of a graph G is the graph obtained by adding to G all
triples that are derivable from G. It can be computed by applying systematically
and recursively the inference rules in Table 1 to all the triples of G. The deductive
closure of a ρdf+ graph is in principle infinite, due to the rule 8, which possibly
introduces new blank nodes. In order to get a finite but still useful completion of
the graph we can consider the closure of G over the same vocabulary of G, that is,
by adding only triples derivable from G which have elements in voc(G)∪Vρdf. We
will denote this restricted closure by clg(G) be the ground closure (or completion)



108 E. Franconi et al.

of a graph G as the closure via the  ρdf+ ground rule system (rules (1)-(7) in
Table 1).

By observing that the number of existing triples with vocabulary in voc(G)∪
Vρdf is of the order O(|G|3), and that all new triples in the closure of G will be
obtained by a successive applications of the rules of the proof system, we obtain
the following result:

Proposition 1 (Closure complexity). The size of the ground closure of a
ρdf graph clg(G) is at most O(|G|3) and it can be computed in polynomial time.

We will now present a result which states how ρdf+ entailment can be con-
structively reduced to computing (possibly offline) and materialising the finite
polynomial completion of the data graph and then by querying the completion
with a standard RDF simple entailment query engine. Note that this is the very
same procedure which is used in real systems for the standard normative RDFS
entailment – of course with the reduced set of normative RDFS inference rules.

Proposition 2 (Entailment for ρdf+). Consider two RDFS graphs G (data)
and H (pattern). Then G |=ρdf+ H iff clg(G) |=RDFsimple

H.

Proof. By the completeness theorem, G  ρdf+ H, which by definition of the clo-
sure is equivalent to clg(G)  ρdf+ H, which means that H is in the completion
clg(G), unless there is an application of rule 8. In this case, H is got by using
the RDF simple entailment in the entailment checking –because of the homo-
morphism checking. !

It can be easily seen that the combined complexity of entailment (in the size
of both graphs) is exactly the same as for normative RDFS and the ρdf system,
which is polynomial if H is a ground graph, and NP-hard otherwise [11]. On the
other hand, the data complexity of entailment (that is, only in the size of the
data graph G) is polynomial [4].

Materializing all data by computing the completion may cause a waste of
space if most of it is never really used. Deciding whether applying materialization
or checking entailment on the fly with a specific algorithm depends on different
factors such as: i) size of the graph: some graphs may not fit in the main memory
and then the completion cannot be avoided; ii) updates: removing a triple from
the graph, causes implicit data to still exist if no special care is taken to remove
it. Hence, materialization vs. on the fly checking is a trade-off between the better
performance of updates, or better performance of look-ups. For this purpose we
have studied a refutation proof system provably sound and complete for ρdf+
based on tableaux calculus, which in addition to ρdf+ deals also with negative
atoms in the data graph. Such a system, which we do not present here, is used
to check entailment on the fly whenever it is not convenient to materialise the
completion (see [5] for further details).

4 Reasoning with Extensional RDFS in Practice

The aim of this section is to illustrate with simple examples the practical impact
of extensional RDFS reasoning. We discuss how the  ρdf+ system of rules can
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be embedded into the Apache Jena library and the impact that it has on the
computation of the completion of an RDFS graph.

The Jena Inference Engine
Jena is a comprehensive Semantic Web library providing a set of features for
data management and reasoning in OWL and RDFS. The library features four
predefined reasoning engines: i) transitive reasoner, which just considers transi-
tive and reflexive properties of RDFS sc and sp; ii) a configurable RDFS rule
reasoner ; iii) a configurable OWL reasoner ; iv) a custom reasoner. This latter
reasoner enables to provide a custom set of inference rules; it supports three
reasoning strategies: i) one implementing the RETE algorithm; ii) a forward
reasoner ; iii) a backward reasoner.

The availability of the custom reasoner is at the core of the integration of the
ground ρdf+ rule system; we have not implemented rule 7, since we assume that
data graphs do not redefine rdf:type, that is, they do not have it in subject
nor object position. As an example the rule 3 (c) in Table 1 is specified in Jena
as: [3c: (?a dom ?b), (?b sc ?c)->(?a dom ?c)]. The specification follows the
pattern [label: Ant ->Cons] where label is a name assigned to the rule, Ant
is the antecedent and Cons the consequent. It is also worth mentioning that the
reasoner can be configured to log derivations so that each triple obtained after
the reasoning task has associated an “explanation”, that is, the reasoning steps
(in terms of rules triggered) that led to the triple. The reader can consult the
Web page https://jena.apache.org/documentation/inference for further
details.

Comparing Inferences at Schema Level
We investigated the impact of ρdf+ on the completion of five existing ontologies.
This experiment only considers triples at schema level; as discussed previously,
we do not need to analyze derived rdf:type triples, since they would be the
same as the rdf:type triples derived by a normative RDFS reasoner. Table 2
provides some information about the ontologies considered.

Table 2. Statistics about the ontologies considered

Ontology #Classes #Properties #dom #range #sc #sp

DBpedia 359 1775 1505 1553 369 -

FOAF 24 51 47 46 15 10

NEPOMUK 399 628 535 561 460 258

MusicOnto 70 97 97 97 68 25

VoxPopuli 140 66 61 78 140 -

The considered ontologies have different sizes; they range from small ontologies
such as FOAF (Friend-of-a-Friend) or MusicOnto (Music Ontology) to relatively
large ontologies like NEPOMUK and DBpedia. None of these (real-life) ontolo-
gies includes RDF triples redefining the RDFS vocabulary, that is, containing the

https://jena.apache.org/documentation/inference
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Fig. 2. Size of the completions

Fig. 3. Times for computing the completions

ρdf vocabulary in subject or object position. Fig. 2 shows some statistics about
the completion of the ontologies by considering the ρdf (intensional RDFS) and
ground ρdf+ (extensional RDFS) rule systems. The comparison between the
completions in terms of number of triples is also shown . As it can be observed
with ρdf+ we obtain a larger number of triples. This is due to the presence of the
rules 3(b), 3(c), 4(b) and 4(c) in Table 1 that enable to derive new rdfs:domain

and rdfs:range relations. The largest number was obtained when considering
DBpedia (∼4000 rdfs:domain and ∼ 1200 rdfs:range). The extensional com-
pletion contains an increase of triples of the order of 30% for DBpedia and
NEPOMUK, 60% for VoxPopuli, 20% for FOAF and 5% for MusicOnto. Fig. 3
reports the times (in ms) taken to compute the completion.

In the extensional case more time is needed because of the presence of addi-
tional inference rules. However, it can be observed that the time remains around
60ms with a large schema like DBpedia.

In order to give a hint on the kind of derivations enabled via ρdf+, Fig. 4 shows
two examples from DBpedia. In Fig. 4 (a) it is shown the new rdfs:range for
the property :beltwayCity obtained by applying rule 4 (c). Fig. 4 (b) shows
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d:Settlement

d:beltwayCity      d:City

rdfs:subClassOf

rdfs:range

rdfs:range

(a)

    d:Athlete

d:prospectTeam    d:IceHockeyPlayer

rdfs:subClassOf

rdfs:domain

rdfs:domain

(b)

d: <http://dbpedia.org/ontology> rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Fig. 4. Examples of new derivations with ρdf+

the derivation of a new rdfs:domain for the property :prospectTeam obtained
via rule 3(c).

5 Related Work

There is a solid body of research on RDFS. A formalisation of RDF regarding
databases issues was done by Gutierrez et al. [6]. Marin [10] and ter Horst [12]
came up with counterexamples (see Fig. 1) which, though pointing to the in-
completeness of the W3C RDF Semantics specification rules, showed an issue
belonging to the intensional approach to RDFS. The merit of Marin was to
overcome the issue keeping the original rules, and adding two additional ones,
and proved that the new set of rules was sound and complete. ter Horst instead
modified the rule system by allowing non-legal RDFS triples within the rule
system by using blank nodes in the predicate position. The formalization of the
semantics of RDF in FOL has been studied by de Brujin et al. [4]. Muñoz et
al. [11] introduced the ρdf fragment; this paper also discusses the quadratic lower
bound for the size of the completion of a graph G pointing out how such size is
impractical from a database point of view. To cope with this issue, the authors
introduce minimal RDFS, which imposes restrictions on the occurrence of the
RDFS vocabulary (it can only occur in predicate position). The advantage of
minimal RDFS is that there exists an efficient algorithm to check graph entail-
ment in the case of ground graphs. They also showed that if triples contain at
most one blank node the bound remains the same.

The common ground of these approaches is that they stick with the norma-
tive specification, that is, intensional RDFS. Other approaches such as RDF-F-
Logic [13] depart from the normative specification. Finally, yet other approaches
focus on the interplay between RDFS and other ontology languages such as
OWL (e.g., RDFS(DL) [3]) and the family of description logics DL-Lite [2,1]. In
contrast to the above approaches, our goal in this paper is to provide a bridge
between the normative (intensional) and non normative (extensional) parts of
the RDFS specification, and study systematically the latter.
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6 Conclusions

In this paper we investigated the extensional semantics for RDFS. Based on the
non-normative specification given in the standard W3C RDF semantics speci-
fication [7], we develop proof systems that show that one can get a practical,
efficient and simple system for the extensional version of RDFS.

We answered an open problem since the publishing of the W3C RDF Seman-
tics [7], which asked for the existence of a simple and efficient system of rules to
codify extensional RDFS entailment. The results presented in the paper showed
that providing a set of sound and complete inference rules for extensional RDFS
is possible, and the complexity of computing the completion of an RDFS graph
remains the same as in the normative case.

Our results will impact on current reasoning libraries (e.g., Jena) for RDFS
that now can obtain more inferences at no significantly additional cost, as em-
phasized by our evaluation. Last, but not least, this extensional version aligns
the semantics of RDFS and OWL, which previously were inconsistent due to the
different meanings given by each of them to set-based notions such as subclass
and subproperty.
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coni, Pirrò, Mosca and Gutierrez were supported by Marie Curie action IRSES
- Net2 (Grant No. 24761). Gutierrez was supported by FONDECYT (Grant No.
1110287). R. Rosati was partially supported by the EU by FP7 project Optique
– Scalable End-user Access to Big Data (Grant No. FP7-318338).

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

2. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

3. Cuenca Grau, B.: A possible simplification of the semantic web architecture. In:
WWW, pp. 704–713. ACM (2004)

4. De Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of normative RDF.
In: OWL: Experiences and Directions Workshop (OWLED 2005), Galway, Ireland
(2005)

5. Franconi, E., Gutierrez, C., Mosca, A., Pirrò, G., Rosati, R.: A Refutation System
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Appendix: Proof of Theorem 1

The following provides a sketch of the argument that proves the completeness
of the  ρdf+ rule system: For graphs G and H in the ρdf+ vocabulary:

G  ρdf+ H iff G |=ρdf+ H.

While the soundness theorem (from left to right) follows straightforwardly from
the observation that each rule in  ρdf+ preserves validity, the completeness the-
orem (from right to left) requires more effort to be proved. The proof is heavily
based in the completeness theorem for the similar (intensional)  ρdf system given
in [11]. The notions of |=ρdf and  ρdf can be found in that paper. First, we need
some auxiliary notion of extended closure.

Definition 4. The extended closure of a graph G, denoted ĉl(G), is the set of
triples entailed from G under ρdf entailment (|=ρdf) plus the axioms (14) - (17).

We now rephrase ĉl(G) using the  ρdf rule system instead of |=ρdf entailment.

Lemma 1. The extended closure of a graph G is the set of triples derived from
G using  ρdf plus the axioms (14) - (17).

Proof. Use the known fact (Theorem 8 from [11]) that, if graphs G and H are
in the ρdf vocabulary, G  ρdf H iff G |=ρdf H. !

The next lemma is at the key to the proof of the theorem:

Lemma 2 (Main). If graphs G and H are in the ρdf vocabulary, then

ĉl(G)  ρdf H iff G  ρdf+ H.

http://www.w3.org/tr/rdf-mt
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From Lemma 1 above it follows that we only have to show how each triple
derived with the axioms (14) - (17) can be also derived with  ρdf+ and vice-versa.

The strategy aims at showing, through an exhaustive combinatoric analysis,
that whatever can be derived by the axioms (14) to (17) can be derived with
the  ρdf+ rule system as well. There are two operations working at the syntactic
level: axiom instantiation and pattern matching. By means of these operations
one can start combining together the axioms, until no more new syntactically
well formed sentences are derivable. The proof strategy then is grounded on the
fact that the only significant ways the axioms can be combined together give
rise to nothing but the atoms that are present in the  ρdf+ system. Note that
we can restrict to the case when H is one atom, because for ground atoms p, q
it holds Σ |= p ∧ q iff Σ |= p and Σ |= q.

Proof. We will introduce for convenience auxiliary extended deductive rules al-
lowing “implications” in the antecedent or in the consequent. This allows to
codify formulas (14)-(17) as follows:

14a (A,sc,B)

(x,type,A)
∀x−→(x,type,B) 14b (A,sc,A)∧(B,sc,B)∧(x,type,A)

∀x−→(x,type,B)
(A,sc,B) (sc)

15a (P,sp,Q)

(x,P,y)
∀xy−→(x,Q,y) 15b (A,sc,A)∧(B,sc,B)∧(x,P,y)

∀xy−→(x,Q,y)
(P,sp,Q) (sp)

16a (P,dom,A)

(x,P,y)
∀xy−→(x,type,A) 16b (x,P,y)

∀xy−→(x,type,A)
(P,dom,A)

(domain)

17a (P,range,A)

(x,P,y)
∀xy−→(y,type,A) 17b (x,P,y)

∀xy−→(y,type,A)
(P,range,A)

(range)

The following are a few remarks to be made on the usage of this new system:

1. Rules with an implication in the antecedent (being universally quantified)
cannot be fired from the graph G because of the presence of the open world
assumption, we cannot know from G if it is valid or not.

2. Two implications can be matched if the meaning of the formulas allow so.

For example, (x, type, A)
∀x−→ (x, type, B) and (y, type, B)

∀y−→ (y, type, C)
would produce another rule:

(x, type, A)
∀x−→ (x, type, B) (y, type, B)

∀y−→ (y, type, C)

(z, type, A)
∀z−→ (z, type, C)

(18)

3. The only way to use an implication in a combination of rules is, either:
(a) To combine it with another implication to derive a third implication

(e.g., to form rules of the form (18)). Table 4 summarizes the only ad-
missible results one can obtain out the combination operation (we use
the notation r1 � r2 to indicate that rule r1 is combined with rule r2).
Note that the only possible relevant formula one could get with this pro-
cedure is a formula of the type ∀x(x, type, A) → (x, type, B), thus, to
deduce a triple of the form (u, sc, v) using rule (14b). Note also that
one cannot use the rules (15b), (16b) or (17b), because they need both
variables universally quantified.
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Table 3. Inference rules obtained by instantiating and combining rules (14a)-(17a).
Rule 7bis can be obtained in turn from 7 and 6c, thus does not appear in Table 1.

Instantiation/Combination Rule obtained Rule in ρdf+ Rule in RDFS

(15a-inst)�16a�14b (type,sp,A),(A,dom,B),(X,sc,X)
(X,sc,B)

7 not available

(16a-inst)�14b�14a (type,dom,A),(X,sc,X)
(X,sc,A)

7 bis not available

(b) To instantiate the implication in the consequent, and using the Deduc-
tion Theorem (p  q→r iff p, q  r). Consider for instance rule (14a); we

have: (A, sc, B)  (x, type, A)
∀x−→ (x, type, B). By using the deduction

theorem, we obtain: (A, sc, B) (x, type, A)  (x, type, B). By systemat-
ically applying this process to rules (14a)-(17a), we obtain the rules in
Table 5.

(c) To use instantiation that make it possible to combine rules. For example
the new rule 7 Extensional follows from rule (15a) instantiated with
P = type, which combined with the rule for domain (16a), gives the
implication ∀x(x, type, y) → (x, type, B), which using rule (14b) gives
(y, sc, B) for y class. Table 3 shows the results of the application of the
instantiation-plus-combination operation.

Table 4. Inference rules obtained by combining rules (14a)-(17a)

Combination Rule obtained Rule in �ρdf+ Rule in intensional RDFS

14a�14a (A,sc,B) (B,sc,C)
(A,sc,C)

1b rdfs 11

15a�15a (P,sp,Q) (Q,sp,R)
(P,sp,R)

2b rdfs 5

15a�16a (P,sp,Q) (Q,dom,A)
(P,dom,A)

3b not available

15a�17a (P,sp,Q) (Q,range,A)
(P,range,A)

4b not available

16a�14a (P,dom,A) (A,sc,B)
(P,dom,B)

3c not available

17a�14a (P,range,A) (A,sc,B)
(P,range,B)

4c not available

Table 5. Set of inference rules obtained by instantiating rules (14a)-(17a)

Rule Instantiated Rule obtained Rule in ρdf+ Rule in intensional RDFS

13a (A,sc,B) (X,type,A)
(X,type,B)

1a rdfs 9

14a (P,sp,Q) (X,P,Y )
(X,Q,Y )

2a rdfs 7

15a (P,dom,A) (X,P,Y )
(X,type,A)

3a rdfs 2

16a (A,range,B) (X,A,Y )
(Y,type,B)

4a rdfs 3

The presented proof system is the collection of all rules obtained. In particu-
lar, an exhaustive combinatorics indicates that the only possible cases are those
considered in ρdf+. The idea is as follows:
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1. Note that the only possible relevant formula one could get with the intro-
duced procedure is a formula of the type ∀x(x, type, A) → (x, type, B),
thus, to deduce a triple of the form (u, sc, v) using rule (14b). Note that one
cannot use the other rules (15b), (16b) or (17b), because they need both
variables universally quantified.

2. With (1) in mind, one should start looking for the successful combinations.
(a) Those that begin with (x, type, y): could be rules (15a), (16a) or (17a) in-

stantiated with P = type. As for Rule (15a), we should instantiate also
y = C, but in this case the rule will give ∀x(x, type, C) → (x,Q,C),
whose consequent cannot be further combined unless Q = type, which
gives nothing. As for rule (16a), it gives our rule 7bis, while rule (17a)
is useless for this argument (notice that in (17a) the y in the implica-
tion changes its position from third to first thus making impossible the
combination with (14b)).

(b) Those that end with (x, type, y): here rule (16a) is relevant once y is
instantiated to a constant; and rules (16a) and (17a) with the restriction
x = y. It is not difficult to note that the first case is useful only for
the instantiation P = type. In the second case, the only productive
combination is to combine it with rule (15a) weakened to x = y. !

Now are read to prove the statement of Theorem 1:

Proof. G |=ρdf+ H
iff G |=RDFS+ H (by definition of |=ρdf+)
iff G ∪ {axioms 14− 17} |=RDFS H (by definition of RDFS+)

iff ĉl(G) |=RDFS H (by Definition 4)

iff ĉl(G) |=ρdf H (Theorem 5 from [11]) because left and right hand sides have
only ρdf vocabulary)

iff ĉl(G)  ρdf H (Soundness and completeness of ρdf –Theorem 8 from [11]–
because there is only ρdf vocabulary)

iff G  ρdf+ H (by Lemma 2).
!
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Abstract. Research effort in ontology visualization has largely focused on de-
veloping new visualization techniques. At the same time, researchers have paid 
less attention to investigating the usability of common visualization techniques 
that many practitioners regularly use to visualize ontological data. In this paper, 
we focus on two popular ontology visualization techniques: indented tree and 
graph. We conduct a controlled usability study with an emphasis on the effec-
tiveness, efficiency, workload and satisfaction of these visualization techniques 
in the context of assisting users during evaluation of ontology mappings. Find-
ings from this study have revealed both strengths and weaknesses of each visua-
lization technique. In particular, while the indented tree visualization is more 
organized and familiar to novice users, subjects found the graph visualization to 
be more controllable and intuitive without visual redundancy, particularly for 
ontologies with multiple inheritance.  

Keywords: Ontology visualization, indented tree, graph, usability study.  

1 Introduction 

Information visualization (InfoVis) is a well-established research field. The goal of 
InfoVis is to transform information into visual representations that enable viewers to 
offload cognition to their perceptual systems in the process of better observing and 
understanding the information at hand. On the semantic web, researchers have applied 
visualization techniques to a range of topics such as semantic search [1], linked open 
data [2] and most notably, ontology design and management [3]. In recent years, 
ontology visualization has attracted much attention from the research community with 
a focus on providing the necessary support to enable users to create new and browse 
existing ontological resources. This research trend is reflected in the various 
visualization plugins developed for the Protégé1 ontology editor [4], and visual 
support designed for querying and browsing ontology libraries [5, 6].  

A commonly used technique in ontology visualization is indented tree where in-
dentation is used to illustrate super/sub-class relationships and there is one path and 
                                                           
1 http://protege.stanford.edu 
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one path only between any pair of nodes. Another observation from the literature is 
that several ontology visualization tools have built upon node–link diagrams (i.e., 
graphs), which are essentially nodes with connecting edges that illustrate ontological 
entities and the relationships that exist among them. While researchers have devoted 
significant effort to develop new tools and techniques, they have paid less attention to 
investigating the usability of existing ontology visualization techniques that many 
practitioners already use on a regular basis. 

Motivated by this research opportunity, we evaluated two frequently used ontology 
visualization techniques in the state of the art: indented tree and graph visualization. 
The goal of our study is to investigate the effectiveness and efficiency of the support 
that these visualization techniques provide. Specifically, we are interested in compar-
ing their support to users during manual mapping evaluation tasks. We used a con-
trolled experimental approach and present quantitative and qualitative analysis of the 
usability issues associated with these visualization techniques. The results from this 
research have uncovered useful information on the suitability of these visualization 
techniques in knowledge representation and mapping evaluation. In particular, we 
identified and highlighted perceived benefits and drawbacks of these techniques.  

2 Related Work 

In recent years, researchers have developed a variety of techniques to visualize 
ontologies. In this section, we present a brief overview on notable advances in this 
area. For extended discussions and classifications, see [3, 7].  

Ontology development is one key activity that routinely relies on visualization. Vi-
sualizations assist users monitoring changes during ontology evolution [8], provide 
alternative development platforms by enabling UML-based editing [9] and rule-based 
authoring2 of ontologies. Ontology editors such as Protégé, WebProtégé [10], OBO-
Edit3 and structOntology4; ontology browsers such as VectorBase5; ontology libraries 
such as BioPortal6; as well as ontology mapping tools such as OntoLink7 all use in-
dented tree visualization to present hierarchical structures that are typically associated 
with ontological entities. Others have applied treemaps [11] in ontology visualization 
to make use of all available screen space and to maximize the information displayed. 
Plaisant and colleagues [12] explored SpaceTree for ontology visualization, which 
extends the conventional node–link diagrams with dynamic rescaling to utilize screen 
space. Parsia and colleagues [13] proposed CropCircle, which illustrates parent–child 
and sibling relationships simultaneously. Protégé visualization plugins such as  

                                                           
2 http://oogis.ru/component/option,com_remository/ 
 Itemid,34/func,fileinfo/id,15/lang,en see DroolsTab 
3 http://oboedit.org 
4 http://openstructs.org/structontology 
5 https://www.vectorbase.org/content/ontology-browser 
6 http://bioportal.bioontology.org 
7 http://www.mindswap.org/2004/OntoLink 
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OwlViz8, NavigOWL9, TGVizTab [19] and OWLPropViz10 use graphs to illustrate 
classes and relationships in ontologies. Other web-based tools using similar node–link 
diagrams to visualize ontologies include FlexViz [20], BioMixer [21] and OLSVis 
[6]. In addition, 3D techniques have been applied to add more space on the screen by 
introducing a third dimension to node–link diagrams, such as OntoSphere [14]. Other 
research has focused on reducing information overload in node–link visualizations by 
presenting only classes above a calculated importance score [15], while several au-
thors [16, 17, 18] have argued for the benefits of multiple visualizations with the goal 
of adapting to user preference and style.  

The vast majority of these tools and techniques use indented tree or graph visuali-
zations. Researchers in the field of InfoVis have extensively studied both techniques 
[22, 23] and proposed a range of evaluation approaches depending on the stage of the 
visualization software [24], including empirical studies [25] and insight-based metho-
dologies [26]. In contrast, evaluation of visualization techniques in the context of 
ontology-focused tasks has been limited. Existing studies have compared Protégé 
plugins [27] and visualizations with built-in query support [28], focusing on evaluat-
ing their ability to support users seeking specific ontological information through 
controlled experiments. This paper aims to fill this research gap by presenting a com-
parative usability study of the commonly used indented tree and graph visualizations 
focusing on how well they illustrate ontological semantics.  

3 Usability Study Overview 

The goal of our usability study is to investigate the extent to which indented trees and 
graphs can support users in the process of understanding the semantics in ontologies.  

Specifically, we asked the study participants to evaluate a given set of mappings 
between pairs of ontologies by interacting with the visualizations of these ontologies. 
To evaluate a mapping successfully, a participant must understand the semantics of 
the mapped entities in their respective ontologies and must use this knowledge to 
determine whether a mapping relation exists. Hence this task setup ensures the study 
focuses on examining the interactions between the participants and visualizations. 
Note that we did not explicitly specify that the participant must generate an overview 
of each ontology as we believe exploratory activities are inevitable in the given tasks. 
To generate a mapping correctly or to identify an incorrect one, the user typically 
must understand the semantics of the entities in their respective ontologies. This un-
derstanding is often a result of exploring the semantics and gaining an overview of the 
structures.  

 

                                                           
8 http://www.co-ode.org/downloads/owlviz 
9 http://klatif.seecs.nust.edu.pk/navigowl 

10 http://www.wachsmann.tk/owlpropviz 
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Fig. 1. Sample Task Screen. In this example, graphs are used to visualize two biomedical on-
tologies. Mappings to be evaluated are presented in a spreadsheet. Interacting with the visuali-
zations, participants must use drop-down lists containing either “yes” or “no” responses to 
evaluate the correctness of existing mappings (in part 1) and add missing mappings by typing 
class names (into part 2 of the spreadsheet).  

3.1 Tasks 

We presented the participants with a set of mappings and asked them to identify cor-
rect and incorrect mappings as well as add missing mappings. The participants were 
assisted by visualizations of the ontology pair. Participants essentially engaged in two 
types of activities: identification activities and creation activities. The former involves 
the identification of correct and incorrect results among an existing set of mappings 
(i.e., determining the correctness of the given mappings). The latter involves the crea-
tion of new mappings that are absent from the existing set (i.e., determining the com-
pleteness of the given mappings). Figure 1 shows an example of what a participant 
saw on her (or his) screen. 

3.2 Datasets 

We used two pairs of ontologies, each accompanied by a set of mapping standards, 
taken from the Ontology Alignment Evaluation Initiative (OAEI) 2012 conference11 

                                                           
11 http://oaei.ontologymatching.org/2012/conference/index.html 



 Indented Tree or Graph? A Usability Study of Ontology Visualization Techniques 121 

 

and the BioMed12 tracks.  Table 1 presents an overview of the ontologies used in this 
study.13 

The conference ontologies describe the organization of conferences with a total of 
74 and 100 classes respectively, at most 3 or 6 classes on the longest path to root, at 
most 8 or 9 subclasses for a class, without any multiple inheritance. The conference 
task represents a less difficult scenario, where the ontologies involved have fewer 
classes, the number of subclasses per class is fewer and the paths to root are shorter.  

The BioMed task involves ontologies describing concepts in the organism domain. 
We reduced the size of the original ontologies and gold standards. In our study, the 
BioMed ontologies have a total of 89 and 181 entities respectively, at most 11 or 12 
classes on the longest path to root, at most 6 or 10 subclasses for a class, with at most 
4 occurrences of multiple inheritance. The BioMed task illustrates a more difficult 
scenario as the ontologies contain more entities, the number of children per entity is 
increased, the paths to root are longer and multiple inheritance is present.   

Based on the OAEI gold standards, for each ontology pair, we randomly removed 
correct mappings from its gold standard and added incorrect mappings in order to 
create two mapping sets to present to the participants. The conference task and the 
BioMed task both required the participants to identify 13 correct results, 3 incorrect 
results and add 7 missing mappings in each task scenario. This setup thus ensures that 
the study outcome (in particular, time on task) is not affected by the number of map-
pings to be evaluated, but rather a result of ontology and visualization complexity.  

Table 1. Characteristics of the Ontologies Used in the Study 

 Conference Ontologies BioMed Ontologies 
O1 O2 O3 O4 

Class Count 38 77 89 181 
Object Property Count 13 33 - - 
Data Type Property Count 23 - - - 
Multiple Inheritance Occurrences - - 2  4  

3.3 Visualization Support 

We presented indented tree visualizations to the participants by loading ontologies 
into Protégé and asked participants to interact with the trees but not with any other 
features in Protégé. We implemented graph visualizations14 in force directed layouts  
 

                                                           
12 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/ 
13 The ontologies and gold standard used in this study can be found at the prefix 

http://webhome.csc.uvic.ca/~bofu/study/datasets/ 
  followed by file name: o1.owl, o2.owl, o3.owl, o4.owl,  

o1-o2%20gold%20standard.rdf or o3-o4%20gold%20standard.rdf 
14 The graph visualization of the ontologies used in the study can be found at the prefix 

http://webhome.csc.uvic.ca/~bofu/study/ followed by file  
  name o1.html, o2.html, o3.html, or o4.html 
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(a) Indented Tree Visualization (b) Graph Visualization 

Fig. 2. Visualization Techniques Investigated in the Study 

using the D3 JavaScript library15. This implementation is representative of current 
graph techniques as it is composed of nodes and connecting edges, which are key 
characteristics of graphs as shown from the literature review.  

Figure 2 presents visualization snippets of the SNOMED ontology using indented 
tree (Figure 2-a) and graph (Figure 2-b). In the indented tree visualization, is-a 
relationships are illustrated by indentation and the expanders allow users to toggle 
children of a node. Participants can use horizontal and vertical scroll bars to adjust the 
viewing area. In the graph visualization, classes are illustrated by vertices and is-a 
relationships are illustrated by directional edges with arrowheads pointing to the 
subclasses. The coloring of the vertices denotes whether a node is expandable (i.e., 
dark-colored vertices illustrate the existence of subclasses whereas light-colored 
vertices illustrate nonexpandable vertices). Clickable vertices allow users to toggle 
children of a particular node. In addition to using scroll bars to adjust the viewing 
area, the graph visualization is also editable: users can customize and manipulate the 
visualization by dragging and dropping nodes to any location on the screen. In both 
visualization techniques, we presented only the ontology root initially and participants 
must expand the root to view other classes. 

3.4 Participants 

We recruited volunteers via engineering departmental mailing lists at the University 
of Victoria. Each participant who successfully completed a study session received a 
$20 gift certificate. A total of 36 participants took part in our study. The participants 
were undergraduate and graduate students enrolled in disciplines including computer 
science, biomedical, biochemistry, and mechanical, electrical, software engineering. 
All participants were novice users of semantic technologies and they were new  
to ontologies and ontology mapping. As users of ontologies and visualizations  
 

                                                           
15 http://d3js.org 
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increasingly include people with little knowledge of semantic technologies (e.g., Bio-
Portal users are clinical and biomedical researchers who are new to ontologies and 
mappings), we were interested in studying the visualization support for novices. This 
group of users is of particular interest to us since a true expert should be able to suc-
cessfully and accurately evaluate mappings regardless of the tool support. We do, 
however, recognize the opportunity to include expert users in future studies  
(discussed in section 6). 

3.5 Protocol 

We carried out one-on-one sessions with participants, where a session lasted approx-
imately two hours. In each study session, we asked the participant to first complete an 
online tutorial on ontologies and ontology mapping.16 The participant was then given 
instructions on the goal of her (or his) tasks: evaluate a set of exact mappings between 
a pair of ontologies.17 We asked each participant to complete two tasks. Each task 
involved one ontology pair and one type of visualization. Each participant was asked 
to complete a video tutorial on how to interact with a given visualization before they 
began a task. We varied the ordering of the ontologies and visualization support be-
tween participants. For example, in one session, we asked Alice to complete the con-
ference task using the indented tree, and then we asked her to complete the BioMed 
task using the graph. In another session, we asked Bob to complete the BioMed task 
using the indented tree, and then we asked him to complete the conference task using 
the graph. We randomly assigned tasks, ensuring equal distribution of tasks in the 
population as well as counterbalancing the order of tasks overall. This protocol en-
sured that a participant did not become overly familiar with a particular visualization, 
nor did the participant learn about the domain of interest over time, thus minimizing 
the impact of task order on the study outcome. Our protocol ensures that the only 
independent variable in the experiment is the visualization type, since we are interest-
ed in how two visualizations differ in their support to the same user group conducting 
the same set of tasks. However, we recognize a potential research opportunity to 
compare behaviors of different user groups in the future (discussed in section 6).  

3.6 Metrics 

To investigate the extent to which the indented tree and graph visualization can assist 
novice users in evaluating mappings effectively and efficiently, we measured task 
success and time on task as follows.   

We calculated success scores for a participant to reflect identification success (i.e., 
the activity focusing on evaluating the correctness), creation success (i.e., the activity 
focusing on evaluating the completeness) and overall success (i.e., combing both type 

                                                           
16 Materials used in this study can be found at  
   https://sites.google.com/site/uvicstudy 
17 Since the evaluation process does not differ regardless of the type of entity or mapping  

relation, it is thus sufficient to use exact mappings as examples for the purpose of this study. 
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of activities). For example, suppose a task presents a set of existing mappings  
between ontology O and O', among which are n1 number of correct mappings, n2 
number of incorrect mappings and n3 number of missing mappings. If a participant 
successfully identifies x number of correct mappings and y number of incorrect  
mappings, then her (or his) identification success = (x+y)/(n1+n2). If a participant 
correctly creates z number of new mappings, then her (or his) creation success = z/n3. 
Her (or his) overall success = (x+y+z)/(n1+n2+n3). Her (or his) error rate is recorded 
as the number of incorrect answers divided by her (or his) total number of answers. 
Success scores range between 0 and 1; the higher the score the more successful the 
participant was at the task. Error rates also range between 0 and 1; the lower it is, the 
fewer mistakes the participant made in the task.  

We asked participants to raise any questions before they began a task as we did not 
allow any interactions during the task. This restriction ensured a clear end state in the 
tasks, whereby time on task is the length of time it took a participant to complete the 
spreadsheet (which included both identification and creation activities).  

3.7 Participant Feedback  

After each task, we collected user feedback through computerized surveys based on 
the NASA-task load index (NASA-TLX) [29], the System Usability Scale (SUS) [30], 
the Usefulness, Satisfaction and Ease of Use (USE) questionnaire [31], and reaction 
cards [32]. We used 7-point Likert scales for all questionnaires.  

Workload is “the cost of accomplishing mission requirements for the human opera-
tor” [33]. The NASA-TLX is specifically designed to measure workload through six 
dimensions, namely mental demand, physical demand, temporal demand, effort, per-
formance and frustration level. Each dimension is measured through a question that 
asks the participant to rate the demand level on scales with endpoints being low-high 
and poor-good. In this study, we used raw NASA-TLX [34], which eliminates weight-
ings between paired dimensions. Raw NASA-TLX is shown to be of no particular 
accuracy loss compared to the original, weighting NASA-TLX [33]. For each partici-
pant, we calculated a single workload score by averaging normalized scores of the six 
dimensions. The workload rating for a dimension ranges between 0 and n-1 given an 
n-point Likert scale. The workload score for a dimension is calculated as (n-1)×100/6. 
The overall workload is the mean of six ratings. The workload rating ranges between 
0 (low workload) and 100 (high workload). 

The SUS is a questionnaire that contains 10 statements collecting feedback on 
agreement scales. Five statements are positively worded and the other five are nega-
tively worded. Example statements include “I thought the visualization was easy to 
use” and “I found the visualization unnecessarily complex”. Using an n-point Likert 
scale, the score contribution for a statement ranges between 0 and n-1. For a positive-
ly worded statement, the score contribution is the scale position minus 1. For a nega-
tively worded statement, the score contribution is n minus the scale position. Multiply 
the sum of ten score contributions by 10/(n-1) to obtain the overall usability score. An 
aggregated usability score can be calculated for a visualization, which ranges between 
0 and 100. The higher it is, the more usable the visualization.  
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In addition to SUS, we used the USE questionnaire, which expresses usability in 
four dimensions: usefulness, ease of use, ease of learning and satisfaction. We col-
lected levels of user agreement to 30 statements. Our goals was to gain a further un-
derstanding in the variations between the two visualization techniques by breaking 
usability down to four dimensions. We calculated a mean rating that ranges between 0 
and 6 to indicate the average rating for each of the four usability dimensions.  

Finally, we presented 118 reaction cards containing adjectives (e.g., “engaging”, 
“powerful”, “rigid”, “dated”, etc.) to participants after the completion of each task. 
We asked the participants to pick out top five cards that best described the specific 
visualization in the given task and explain their choices. This technique aimed to elicit 
commentary and collect qualitative feedback. 

4 Findings 

We present the results of the measures discussed in section 3.6 and 3.7 below.  

4.1 Effectiveness 

Figure 3 presents mean overall success. Table 2 presents further details on the various 
success scores. In the conference task, the user group that was assisted by graphs 
yielded a slightly higher mean overall success score. Both visualization techniques 
generated the same median overall success score. We carried out independent sample 
t tests (with an alpha level equal to 0.05) with the null hypothesis being there is no 
difference between the two user groups. P-values from these independent t tests indi-
cate that there is no significant difference between the user groups.  

 

 

(a) Conference Task (b) BioMed Task 

Fig. 3. Visualization Effectiveness. The vertical axis illustrates mean overall success and the 
horizontal axis represents the user groups using different visualizations. Error bars show 95% 
confidence intervals, i.e., how far from the reported value the true (error free) value might be.  
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In the BioMed task, the user group who used indented trees generated higher mean, 
median and lower standard deviation in identification and overall success scores. 
They also made fewer mistakes, as suggested by lower and less dispersed error rates. 
With the exception of creation success scores, p-values generated from all other 
scores are equal to or less than the alpha level. This finding suggests that there are 
significant differences between the identification score, overall success and error rates 
between the two user groups, indicating that indented trees were more effective. 

Table 2. Task Success. Statistically significant results are bolded.  

Visualization  Task Success Conference Task BioMed Task 
 Mean Median StDev Mean Median StDev 

Indented Tree 

Identification  0.6458 0.6250 0.1134 0.6944 0.6875 0.1514 
Creation  0.1825 0.1429 0.2068 0.1190 0 0.1715 
Overall  0.5048 0.5000 0.1045 0.5193 0.5000 0.1362 
Error  0.3951 0.4045 0.1322 0.3668 0.3640 0.1433 

   

Graph 

Identification  0.6563 0.6563 0.1458 0.5382 0.5625 0.2013 
Creation  0.1746 0.0714 0.2525 0.1111 0.0714 0.1433 
Overall  0.5097 0.5000 0.1534 0.4082 0.4130 0.1507 
Error  0.3794 0.3787 0.1339 0.4747 0.5147 0.1747 

4.2 Efficiency 

Figure 4 presents an overview of the average time spent completing each task using 
different visualizations. Further details are shown in Table 3. It is consistently shown 
in both tasks that user groups assisted by the indented tree visualization were faster at 
completing their tasks than those who used graphs. However, p-values do not provide 
sufficient evidence to indicate a statistically significant difference between the user 
groups, suggesting comparable completion time regardless of the visualization used.   

 

(a) Conference Task (b) BioMed Task 

Fig. 4. Visualization Efficiency. The vertical axis represents mean time-on-task, and the  
horizontal axis illustrates the user group. Error bars show 95% confidence intervals.  
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Table 3. Time on Task 

Visualization  Conference Task BioMed Task 
Mean Median StDev Mean Median StDev

Indented Tree 17.9 15.5 7.8 24.5 25 10.7 
Graph 21.9 21 8.9 33.7 30 16.6 

4.3 Workload 

Figure 5 presents an overview of the workload scores. Further details are presented in 
Table 4. Mean values indicate that the user group assisted by the graph visualization 
found the task more demanding that those who used the indented tree visualization in 
both tasks. In the conference task, the workload scores for graphs are particularly 
disperse, which consequently led to higher mean and median even though the most 
common rating is much lower (see mode) compared to the indented tree visualization. 
However, p-values in both tasks indicate that the differences between the two user 
groups are not statistically significant, i.e., there was no particular increase in  
workload regardless of the type of visualization used.  

Table 4. Workload Scores 

Visualization  Conference Task BioMed Task 
Mean Median Mode StDev Mean Median Mode StDev 

Indented Tree 39.97 41.67 50.00 13.31 52.47 52.78 52.78 12.31 
Graph 47.99 45.83 30.56 18.17 57.87 56.97 61.11 10.05 

 

 

(a) Conference Task (b) BioMed Task 

Fig. 5. Task Workload. The vertical axis represents mean workload scores, and the horizontal 
axis illustrates the user group. Error bars show 95% confidence intervals.  
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4.4 Usability and Qualitative Feedback  

Figure 6 presents an overview of the SUS scores. Further details are shown in Table 5. 
In both tasks, the usability scores indicate that participants found the indented tree more 
usable than graph as the average, mid-point and most commonly occurred values are 
always higher. However, this difference is not statistically significant. 

 

(a) Conference Task (b) BioMed Task 

Fig. 6. Visualization Usability. The vertical axis represents mean usability score, and the hori-
zontal axis illustrates the user group. Error bars show 95% confidence intervals.  

Figure 7 shows USE ratings generated for the visualizations. In the conference 
task, similar ratings are generated for both visualization techniques with the indented 
tree having slightly higher mean and median ratings in all four dimensions. However, 
p-values suggest that the differences shown in this task are not statistically significant. 
In the BioMed task, there is a decrease in all ratings for both visualization techniques, 
although higher mean and median values are found in indented tree. P-values indicate 
a statistically significant difference between the two visualization techniques in terms 
of usefulness (note that statistical significance was not found in ease of use, ease of 
learning and satisfaction ratings). The results suggest that as the evaluation task be-
comes more difficult, visualization support appears to be less helpful regardless of the 
specific technique. Overall, the USE results indicate that all usability dimensions of 
the two visualization techniques are in fact very comparable. 

Table 5. Usability Scores 

Visualization  Conference Task BioMed Task 
Mean Median Mode StDev Mean Median Mode StDev 

Indented Tree 78.70 80.00 71.67 17.54 61.30 60.00 70.00 22.96 
Graph 70.19 73.33 50.00 14.72 53.24 50.83 50.00 20.67 
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(a) Conference Task (b) BioMed Task 

Fig. 7. Visualization Usability Breakdown. Each axis presents a usability dimension (useful-
ness, ease of use, ease of learning and satisfaction). The radar chart presents a mean rating for 
each dimension.  

Visualization  Conference Task BioMed Task 

Indented Tree 

 

Graph 

 

Fig. 8. Reaction Card Responses. Font sizes illustrate the frequency of use for a particular card; 
the bigger the font, the more frequently the card was used to describe a visualization. 

Figure 8 presents tag clouds of reaction card responses. In the conference task, par-
ticipants found both visualization techniques easy to use. They found the indented tree 
familiar and the graph intuitive. In the case of the BioMed task, as the task becomes 
more difficult, more diverse reaction cards are used and an increased number of nega-
tive cards are present for both visualization techniques. For instance, the participants 
described both visualization techniques as distracting, frustrating and confusing. They 
characterized indented trees as organized, straightforward and simplistic, although 
dull, boring and busy. They found the graph visualization to be approachable and 
controllable in the conference task, however, it became annoying and complex in  
the BioMed task. Overall, participants consistently used simplistic to describe the 
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indented tree in both tasks. They also consistently used easy to use to describe the 
graph visualization in both tasks, although this phrase is used much less frequently to 
describe the indented tree in the BioMed task. Furthermore, several participants men-
tioned that they particularly liked how multiple inheritance is visualized in graphs.  

5 Discussion 

We present correlation results and key observations drawn from this study next.  

5.1 Correlation Tests 

Given the range of variables (i.e., effectiveness, efficiency, workload, SUS and USE 
scores) associated with each visualization, we conducted correlation tests to determine 
whether dependable relationships exist. If a strong correlation coefficient exists be-
tween a variable pair, then knowing the value of one variable, we could predict the 
likely value of the other variable for a given visualization. The degree of correlation 
between two variables is represented by the R-value, which ranges between -1 and 1. 
The stronger the correlation, the closer the R-value is towards -1 (negative correla-
tion) or 1 (positive correlation). Overall, results show that R-values indicate mostly 
weak or non-existent associations between variables. An example is presented in Fig-
ure 9. In Figure 9-a, task success is correlated with usability scores. R-values indicate 
that visualization usability did not impact task success. In Figure 9-b, error rates are 
correlated with task completion time. Notably in the BioMed task, we found a strong-
er R-value suggesting that if more time is spent to complete a task, users using graphs 
are likely to make fewer mistakes. 

5.2 Summary of Findings 

The effectiveness results suggest that when ontologies are smaller and have a simpler 
structure, users are likely to achieve the same level of success regardless of the specif-
ic visualization used, such as the case with the conference task. However, given more 
complex ontologies, the indented tree is more effective. More specifically, users are 
likely to be more successful at activities that concern the evaluation of existing map-
pings using indented trees, but more successful at activities that involve creating new 
mappings using the graphs. This finding suggests that the indented tree visualization 
is more suitable for list-checking activities, and the graph visualization is more suita-
ble for overviews.  

The efficiency results suggest that the task completion time is more likely to be a 
result of domain familiarity (the majority of participants being engineering students) 
rather than a direct cause of the specific visualization used, since both tasks had com-
parable completion times and the differences are not statistically significant. Similar 
findings are shown in the workload ratings, where participants did not feel a particular 
visualization is more demanding than the other.  
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(a) Correlating Task Success and Usability Score 

 

(b) Correlating Error Rate and Time on Task 

Fig. 9. Correlation Results. The axes represent the variables being tested for correlation. The 
scattered plots illustrate individual participant results. Trend lines indicate linear regressions 
between the variables.  

Another notable finding is that although most participants were interacting with 
graphs for the first time, they did not feel that it was more difficult to learn as sug-
gested by the ease of learning ratings. Some mentioned that graphs held their attention 
better. However, it is clear that graphs can become difficult to manage once they ex-
ceeded a certain threshold of nodes. This finding suggests that the graph size should 
not be overlooked when determining the suitability of its application.  

Multiple inheritance is inevitable in certain domains. Visualization techniques that 
can seamlessly incorporate such conceptual models are essential to users, and as such, 
graphs are more suitable than indented trees in these scenarios as noted by several 
participants. Take the SNOMED visualization snippets shown in Figure 2 as an ex-
ample. Yeast has two parents: Fungal_morphologic_state and Unclassified_fungus; 
Fungal_morphologic_state also has two parents: Fungal_life-cycle_form and Fungus. 
This semantic structure is illustrated with ease using directional edges in the graph 
visualization (see Figure 2-a). However, Fungal_morphologic_state is shown twice 
and Yeast appears three times (see Figure 1-b) in the indented tree. This visual dupli-
cation in indented trees requires users to make additional efforts when understanding 
the data at hand and can potentially add to confusion.  
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Another disadvantage of the indented tree is that given a fixed screen space, it is 
not always possible to view the entire tree structure. It is particularly challenging 
given ontologies with greater depth and a large number of descendants per node. The 
sheer amount of expanders can be overwhelming and this makes it difficult for the 
user to preserve a mental model of the ontological hierarchy. While the indented tree 
offers little adaptation to the user, the graph visualization is much more customizable 
and adaptive. For example, users can simply place previously explored nodes on the 
far side of the screen to make room for nodes that are of current interest. Users stated 
that the flexibility offered by graphs helped them to better hold their attention during 
the tasks. A disadvantage of the graph is that it can quickly get busy on a fixed screen 
size providing ineffective visualization given a large number of nodes. Overall, the 
advantage of the indented tree is that it is familiar and predictable, as most partici-
pants are already accustomed to this visualization technique given its similarity with 
computer file directories. However, we attempted to minimize this bias by presenting 
visualizations in Protégé (given it is representative of state-of-the-art indented tree 
techniques and none of the participants have encountered it before), as it is unlikely 
for one to find participants who have never seen a computer directory before  
participating in our experiment. 

6 Conclusions, Limitations and Future Work 

Given the different strengths and weaknesses associated with graphs and indented trees, 
their applications should thus be determined upon specific ontology characteristics, 
visualization needs and user goals. Tool designers should consider combining multiple 
ontology visualization techniques that can engage users from different viewpoints yet 
are complementary to one another. In addition, ontology visualization should aim to 
empower users by providing customizable visualizations that are not only in managea-
ble segments but are also adaptive to diverse personal preferences and styles.  

The results of our study are dependent upon the visualization implementation, da-
tasets used and participants involved. Although the graph visualization is representa-
tive of current techniques, some behaviors are unique to this specific force directed 
implementation. For instance, class names can overlap in graphs, and although partic-
ipants can easily drag and rearrange nodes for a better view of the text, this process 
can increase frustration for users. Nevertheless, we have uncovered some motivating 
results from this study.  

Our study suggests several future research directions. First, it would be useful to 
conduct studies with larger participant groups, as increased sample sizes could poten-
tially lead to more statistically significant findings. Feedback regarding the controlla-
ble nature of graphs is specific to the implementation used in this study. Future  
experiments could explore non-editable graph layouts as well as other visualization 
techniques, such as treemaps and SpaceTrees. In addition, although it is relevant to 
investigate usability issues that arise among novice users, it can be even more infor-
mative for the study to recruit true ontology and mapping experts. Secondly, the  
datasets used in this study involve a limited set of ontologies and mappings. Future 
studies including larger ontologies from other domains and an increased number of 
mappings may uncover additional scalability issues. However, it may be challenging 
to recruit volunteers given tasks that could take hours or days to complete. Moreover, 
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the ontologies used in this study mostly contain hierarchical relationships among 
classes. Other object properties (e.g., transitive relationships, inverse relationships, 
etc.) associated with ontological entities can be the focus of further studies. For in-
stance, future experiments could investigate whether graphs are more suitable to  
visualize object properties. Lastly, it may be beneficial to apply other evaluation ap-
proaches discussed in section 2 such as identifying usability issues based on observa-
tions of users over a long period of time.  
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Abstract. The vision behind the Web of Data is to extend the cur-
rent document-oriented Web with machine-readable facts and structured
data, thus creating a representation of general knowledge. However, most
of the Web of Data is limited to being a large compendium of encyclo-
pedic knowledge describing entities. A huge challenge, the timely and
massive extraction of RDF facts from unstructured data, has remained
open so far. The availability of such knowledge on the Web of Data would
provide significant benefits to manifold applications including news re-
trieval, sentiment analysis and business intelligence. In this paper, we
address the problem of the actuality of the Web of Data by presenting
an approach that allows extracting RDF triples from unstructured data
streams. We employ statistical methods in combination with dedupli-
cation, disambiguation and unsupervised as well as supervised machine
learning techniques to create a knowledge base that reflects the content of
the input streams. We evaluate a sample of the RDF we generate against
a large corpus of news streams and show that we achieve a precision of
more than 85%.

1 Introduction

Implementing the original vision behind the Semantic Web requires the provision
of a Web of Data which delivers timely data at all times. The foundational
example presented in Berners-Lee et al’s seminal paper on the Semantic Web [3]
describes a software agent who is tasked to find medical doctors with a rating of
excellent or very good within 20 miles of a given location at a given point in time.
This requires having timely information on which doctors can be found within
20 miles of a particular location at a given time as well as having explicit data on
the rating of said medical doctors. Even stronger timeliness requirements apply
in decision support, where software agents help humans to decide on critical
issues such as whether to buy stock or not or even how to plan their drive
through urban centers. Furthermore, knowledge bases in the Linked Open Data
(LOD) cloud would be unable to answer queries such as “Give me all news of the
last week from the New York Times pertaining to the director of a company”.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 135–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://aksw.org


136 D. Gerber et al.

Although the current LOD cloud has tremendously grown over the last years [1],
it delivers mostly encyclopedic information (such as albums, places, kings, etc.)
and fails to provide up-to-date information that would allow addressing the
information needs described in the examples above.

The idea which underlies our work is thus to alleviate this current drawback
of the Web of Data by developing an approach that allows extracting RDF from
unstructured (i.e., textual) data streams in a fashion similar to the live versions
of the DBpedia1 and LinkedGeoData2 datasets. The main difference is yet that
instead of relying exclusively on structured data like LinkedGeoData or on semi-
structured data like DBpedia, we rely mostly on unstructured, textual data to
generate RDF. By these means, we are able to unlock some of the potential
of the document Web, of which up to 85% is unstructured [8]. To achieve this
goal, our approach, dubbed RdfLiveNews, assumes that it is given unstructured
data streams as input. These are deduplicated and then used as basis to extract
patterns for relations between known resources. The patterns are then clustered
to labeled relations which are finally used as basis for generating RDF triples.
We evaluate our approach against a sample of the RDF triples we extracted from
RSS feeds and show that we achieve a very high precision.

The remainder of this work is structured as follows: We first give an overview
of our approach and give detailed insights in the different steps from unstructured
data streams to RDF. Then, we evaluate our approach in several settings. We
then contrast our approach with the state of the art and finally conclude.

2 Overview
We implemented the general architecture of our approach dubbed RdfLiveNews
according to the pipeline depicted in Figure 1. First, we gather textual data
from data streams by using RSS feeds of news articles. Our approach can yet be
employed on any unstructured data published by a stream. Since input streams
from the Web can be highly redundant (i.e., convey the same information), we
then deduplicate the set of streams gathered by our approach. Subsequently,
we apply a pattern search to find lexical patterns for relations expressed in
the text. After a refinement step with background knowledge, we finally cluster
the extracted patterns according to their semantic similarity and transform this
information into RDF.

2.1 Data Acquisition

Formally, our approach aims to process the output of unstructured data sources
Si by continuously gathering the data streams Di that they generate. Each data
stream consists of atomic elements dij (in our case sentences). Let Di

[t,t+d] be the
portion of Di that was emitted by Si between the times t and t + d. The data
gathering begins by iteratively gathering the elements of the streams Di

[t,t+d].
from all available sources Si for a period of time d, which we call the time
1 http://live.dbpedia.org/sparql
2 http://live.linkedgeodata.org/sparql

http://live.dbpedia.org/sparql
http://live.linkedgeodata.org/sparql
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Fig. 1. Overview of the generic time slice-based stream processing

slice duration. For example, this could mean crawling a set of RSS feeds for a
duration of 2 hours. We call Di

[t,t+d] a slice of Di. We will assume that we begin
this process at t = 0, thus leading to slices Di

[k.d,(k+1).d] with k ∈ N. The data
gathered from all sources during a time slice duration is called a time slice. We
apply sentence splitting on all slices to generated their elements.

2.2 Deduplication

The aim of the deduplication step is to remove very similar elements from slices
before the RDF extraction. This removal accounts for some Web data streams
simply repeating the content of one of several other streams. Our deduplica-
tion approach is based on measuring the similarity of single elements si and
sj found in unstructured streams. Elements of streams are considered to be
different iff qgrams(si, sj) < θ, where θ ∈ [0, 1] is a similarity threshold and
qgrams(si, sj) measures the similarity of two strings by computing the Jaccard
similarity of the trigrams they contain. Given that the number of stream items
to deduplicate can be very large, we implemented the following two-step ap-
proach: For each slice Di

[k.d,(k+1)d], we first deduplicate the elements sij within
Di

[k.d,(k+1)d]. This results in a duplicate-free data stream Δi
[k.d,(k+1)d] = {dij :

(dij ∈ Di
[k.d,(k+1)d]) ∧ (∀sik ∈ Di

[k.d,(k+1)d] ∃dij ∈ Δi
[k.d,(k+1)d] qgrams(sik, d

i
j) ≥

θ) ∧ (∀dij , dik ∈ Δi
[k.d,(k+1)d] qgrams(dik, d

i
j) < θ)}. The elements of Δi

[k.d,(k+1)d]

are then compared to all other elements of the w previous deduplicated streams
Δi

[(k−1).d,kd] to Δi
[(k−w).d,(k−w+1)d], where w is the size of the deduplication win-

dow. Only Δi
[k.d,(k+1)d] is used for further processing. To ensure the scalability

of the deduplication step, we are using deduplication algorithms implemented in
the LIMES framework [18]. Table 2 gives an overview of the number of unique
data stream items in our dataset when using different deduplication thresholds.
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2.3 Pattern Search and Filtering

In order to find patterns we first apply Named Entity Recognition (NER) and
Part of Speech (POS) tagging on the deduplicated sentences. RdfLiveNews can
use two different ways to extract patterns from annotated text. The POS tag
method uses NNP and NNPS 3 tagged tokens to identify a relation’s subject
and object, whereas the Named Entity Tag method relies on Person, Location,
Organization and Miscellaneous tagged tokens. In an intermediate step all con-
secutive POS and NER tags are merged. An unrefined RdfLiveNews pattern p is
now defined as a pair p = (θ,Sθ), where θ is the natural language representation
(NLR) of p and Sθ = {(si, oi) : i ∈ N; 1 ≤ i ≤ n} is the support set of θ, a set of
the subject and object pairs. For example the sentence:

David/NNP hired/VBD John/NNP ,/, former/JJ manager/NN of/IN ABC/NNP ./.

would result in the patterns:

p1 = ( [hired], {(David, John)} and
p2 = ([, former manager of ], {(John, ABC)}).

After the initial pattern acquisition step, we filter all patterns to improve their
quality. We discarded all patterns that did not match these criteria: The pattern
should (1) contain at least a verb or a noun, (2) contain at least one salient
word (i.e. a word that is not a stop word), (3) not contain more than one non-
alpha-numerical character (except ", ’ ‘") and (4) be shorter than 50 characters.
Since the resulting list still contains patterns of low quality, we first sort it by
the number of elements of the support set Sθ and solely select the top 1% for
pattern refinement to ensure high quality.

2.4 Pattern Refinement

The goal of this step is to find a suitable rdfs:range and rdfs:domain as well
as to disambiguate the support set of a given pattern. To achieve this goal we
first try to find an URI for the subjects and objects in the support set of p by
matching the pairs to entries in a knowledge base. With the help of those URIs
we can query the knowledge base for the classes (rdf:type) of the given resources
and compute a common rdfs:domain for the subjects of p and rdfs:range for
the objects respectively. A refined RdfLiveNews pattern pr is now defined as a
quadruple pr = (θ,Sθ

′, δ, ρ), where θ is the natural language representation, Sθ
′

the disambiguated support set, δ the rdfs:domain and ρ the rdfs:range of pr.
To find the URIs of each subject-object pair (s, o) ∈ Sθ we first try to complete

the entity name. This step is necessary and beneficial because entities usually get
only written once in full per article. For example the newly elected president of
the United States of America might be referenced as “President Barack Obama”
in the first sentence of a news entry and subsequently be referred to as “Obama”.
In order to find the subjects’ or objects’ full name, we first select all named
entities e ∈ Ea of the article the pair (s, o) was found in. We then use the

3 All POS tags can be found in the Penn Treebank Tagset.
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longest matching substring between s (or o) and all elements of Ea as the name
of s or o respectively. Additionally we can filter the elements of Ea to contain
only certain NER types. Once the complete names of the entities are found, we
can use them to generate a list of URI candidates Curi. This list is generated
with the help of a query for the given entity name on a list of surface forms
(e.g. “U.S.” or “USA” for the United States of America), which was compiled
by analyzing the redirect and disambiguation links from Wikipedia as presented
in [14]. Each URI candidate c ∈ Curi is now evaluated on four different features
and the combined score of those features is used to rank the candidates and
choose the most probable URI for an entity. The first feature is the Apriori-
score a(c) of the URI candidate c, which is calculated beforehand for all URIs
in the knowledge base by analyzing the number of inbound links of c by the
following formula: a(c) = log(inbound(c)+1). The second and third features are
based on the context information found in the Wikipedia article of c and the
news article text (s, o) was found in. For the global context -score cg we apply
a co-occurrence analysis of the entities Ea found in the news article and the
entities Ew found in the Wikipedia article of c. The global context -score is now
computed as cg(Ea, Ew) = |Ea ∩ Ew| / |Ea ∪ Ew|. The local context -score cl is the
number of mentions of the second element of the pair (s, o), o in the case of s
and vice versa, in Ew. The last feature to determine a URI for an entity is the
maximum string similarity sts between s (or o) and the elements of the list of
surface forms of c. We used the qgram distance4 as the string similarity metric.
We normalize all non-[0, 1] features (cg, cl, a) by applying a minimum-maximum
normalization of the corresponding scores for Curi and multiply it with a weight
parameter which leads to the overall URI score:

c(s, o, uri) =

αa

amax
+

βcg
cgmax

+
γcl
clmax

+ δsts

4

If the URI’s score is above a certain threshold λ ∈ [0, 1] we use it as the URI for
s, otherwise we create a new URI. Once we have computed the URIs for all pairs
(s, o) ∈ Sθ we determine the most likely domain and range for pr. This is done
by analyzing the rdf:type statements returned for each subject or object in Sθ

from a background knowledge base. Since the DBpedia ontology is designed in
such a way, that classes do only have one super-class, we can easily analyze its
hierarchy. We implemented two different determination strategies for analyzing
the class hierarchy. The first strategy, dubbed “most general”, selects the highest
class in the hierarchy for each subject (or object) and uses the most occurring
class as domain or range of pr. The second strategy, dubbed “most specific”,
works similar to the “most general” strategy with the difference that it uses the
most descriptive class to select the domain and range of pr.

4 http://sourceforge.net/projects/simmetrics/

http://sourceforge.net/projects/simmetrics/
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2.5 Pattern Similarity and Clustering

In order to cluster patterns according to their meaning, we created a set of
similarity measures. A similarity measure takes two patterns p1 and p2 as input
and outputs the similarity value s(p1, p2) ∈ [0, 1]. As a baseline we implemented
a qgram measure, which calculates the string similarity between all non stop
words of two patterns. Since this baseline measure fails to return a high similarity
for semantically related, but not textually similar patterns like “’s attorney ,”
and “’s lawyer ,” we also implemented a Wordnet measure. As a first step the
Wordnet similarity measure filters out the stop words of p1 and p2 and applies
the Stanford lemmatizer on the remaining tokens. Subsequently, for all token
combinations of p1 and p2, we apply a Wordnet Similarity metric (Path [20],
Lin [13] and Wu & Palmer [25]) and select the maximum of all comparisons as
the similarity value s(p1, p2). As a final similarity measure we created a Wordnet
and string similarity measure with the help of a linear combination from the
before-mentioned metrics. In this step we also utilize the domain and range of
pr. If this feature is enabled, a similarity value between two patterns p1 and p2
can only be above 0, iff {δp1 , ρp1} \ {δp2 , ρp2} = ∅.

The result of the similarity computation can be regarded as a similarity graph
G = (V,E, ω), where the vertices are patterns and the weight ω(p1, p2) of the
edge between two patterns is the similarity of these patterns. Consequently,
unsupervised machine learning and in particular graph clustering is a viable way
of finding groups of patterns that convey similar meaning. We opted for using
the BorderFlow clustering algorithm [19] as it is parameter-free and has already
been used successfully in diverse applications including clustering protein-protein
interaction data and queries for SPARQL benchmark creation [15]. For each node
v ∈ V , the algorithm begins with an initial cluster X containing only v. Then,
it expands X iteratively by adding nodes from the direct neighborhood of X
to X until X is node-maximal with respect to the border flow ratio described
in [15]. The same procedure is repeated over all nodes. As different nodes can
lead to the same cluster, identical clusters (i.e., clusters containing exactly the
same nodes) that resulted from different nodes are subsequently collapsed to one
cluster. The set of collapsed clusters and the mapping between each cluster and
the nodes that led to it are returned as result.

2.6 Cluster Labeling and Merging

Based on the clusters C obtained through the clustering algorithm, this step
selects descriptive labels for each cluster ci ∈ C, which can afterwards be used to
merge the clusters. In the current version, we apply a straightforward majority
voting algorithm, i.e. for each cluster ci, we select the most frequent natural
language representation θ (stop words removed) occurring in the patterns of ci.
Finally, we use the representative label of the clusters to merge them using a
string similarity and WordNet based similarity measure. This merging procedure
can be applied repeatedly to further reduce the number of clusters, but taking
into account that those similarity measures are not transitive, we are currently
only running it once, as we’re more focused on accuracy.
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2.7 Mapping to RDF and Publication on the Web of Data

To close the circle of the round-trip pipeline of RdfLiveNews, the following pre-
requisite steps are required to re-publish the extraction results in a sensible way:
1. The facts and properties contained in the internal data structure of our tool

have to be mapped to OWL.
2. Besides the extracted factual information several other aspects and meta

data are interesting as well, such as extraction and publication data and
provenance links to the text the facts were extracted from.

3. URIs need to be minted to provide the extracted triples as linked data.
Mapping to OWL. Each cluster ci ∈ C represents an owl:ObjectProperty
propci . The rdfs:domain and rdfs:range of propci is determined by a majority vot-
ing algorithm with respect to δ and ρ of all pr ∈ C. The skos:prefLabel5 of propci
is the label determined by the cluster labeling step and all other NLRs of the pat-
terns in ci get associated with propci as skos:altLabels. For each subject-object
pair in Sθ

′ we produce a triple by using propci as predicate and by assigning
learned entity types from DBpedia or owl:Thing.
Provenance Tracking with NIF. Besides converting the extracted facts from
the text, we are using the current draft of the NLP Interchange Format (NIF)
Core ontology6 to serialize the following information in RDF: the sentence the
triple was extracted from, the extraction date of the triple, the link to the source
URL of the data stream item and the publication date of the item on the stream.
Furthermore, NIF allows us to link each element of the extracted triple to its
origin in the text for further reference and querying.

NIF is anRDF/OWLbased format to achieve interoperability between language
tools, annotation and resources. NIF offers several URI schemes to create URIs for
strings, which can then be used as subjects for annotation. We employ the NIF
URI scheme, which is grounded on URI fragment identifiers for text (RFC 51477).
NIF was previously used by NERD [21] to link entities to text. For our use case, we
extended NIF in two ways: (1) we added the ability to represent extracted triples
via the ITS 2.0 / RDF Ontology8. itsrdf:taPropRef is an owl:AnnotationProperty
that links the NIF String URI to the owl:ObjectProperty by RdfLiveNews. The
three links from the NIF String URIs (str1, str2, str3) to the extracted triple (s,
p, o) itself make it well traceable and queryable: str1 �→ s, str2 �→ p, str3 �→ o, s �→
p �→ o . An example of NIF RDF serialization is shown in Listing 1. (2) Although
[21] already suggested the minting of new URIs, a concrete method for doing so
was not yet researched. In RdfLiveNews we use the source URL of the data stream
item to re-publish the facts for individual sentences as linked data. We strip the
scheme component (http://) of the source URL and percent encode the ultimate
part of the path and the query component9 and add the md5 encoded sentence to
produce the following URI:
5 http://www.w3.org/2004/02/skos/
6 http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
7 http://tools.ietf.org/html/rfc5147
8 http://www.w3.org/2005/11/its/rdf#
9 http://tools.ietf.org/html/rfc3986#section-3

http://www.w3.org/2004/02/skos/
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
http://tools.ietf.org/html/rfc5147
http://www.w3.org/2005/11/its/rdf#
http://tools.ietf.org/html/rfc3986#section-3
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1 @base <http : // rd f l i v enews . aksw . org / ext ra c t i on /www. necn . com/07/04/12/
S c i en t i s t s −d i scover−new−subatomic−pa r t i c / landing . html%3FblockID
%3D735470%26feedID%3D4213/8 a1e5928f6815c99b9d2ce613cf24198 #>.

2 ## pr e f i x e s : p l e as e use http : // p r e f i x . cc , e . g . http : // p r e f i x . cc / r l no
3 ## extrac ted property + r e s u l t o f l i n k i n g
4 r l no : d i r e c to rO f a owl : ObjectProperty ;
5 skos : p r e fLabe l " d i r e c t o r o f " , skos : a l tLabe l " , d i r e c t o r o f " ;
6 owl : equ i va l en tProper ty dbp : d i r e c t o r .
7 ## extrac ted f a c t s :
8 r l n r : Rolf_Heuer a dbo : Person ;
9 r d f s : l a b e l "Rol f Heuer"@en ;

10 r l no : d i r e c to rO f dbpedia :CERN .
11 dbpedia :CERN a owl : Thing ;
12 r d f s : l a b e l "CERN"@en .
13 ## provenance t rack ing with NIF :
14 <char=0,10> i t s r d f : taClassRef dbo : Person ;
15 i t s r d f : taIdentRef r l n r : Rolf_Heuer .
16 <char=14,18> i t s r d f : taIdentRef dbpedia :CERN .
17 <char=11,24> n i f : anchorOf " , d i r e c t o r o f "^^xsd : s t r i n g ;
18 i t s r d f : taPropRef r l no : d i r e c to rO f .
19 ## de t a i l e d NIF output with context , i n d i c e s and anchorOf
20 <char=0,> a n i f : Str ing , n i f : Context , n i f : RFC5147String ;
21 n i f : i s S t r i n g "Rol f Heuer , d i r e c t o r o f CERN , sa id the newly

d i scovered pa r t i c l e i s a boson , but he stopped ju s t shy o f
c l a im ing out r i gh t that i t i s the Higgs boson i t s e l f − an
extremely f i n e d i s t i n c t i o n . " ;

22 n i f : sou rceUr l <http : //www. necn . com/07/04/12/ S c i e n t i s t s −d i scover−
new−subatomic−pa r t i c / landing . html? blockID=735470& feedID =4213>;

23 ## ex tr a c t i on date :
24 dcterms : c r eat ed "2013−05−09T18 :27:08+02:00 "^^xsd : dateTime .
25 ## pub l i sh ing date :
26 <http : //www. necn . com/07/04/12/ S c i e n t i s t s −d i scover−new−subatomic−

pa r t i c / landing . html?blockID=735470&feedID=4213>
27 dcterms : c r eat ed "2012−08−15T14 :48:47+02:00 "^^xsd : dateTime .
28 <char=0,10> a n i f : Str ing , n i f : RFC5147String ;
29 n i f : r e f e r enceContext <char=0,>; n i f : anchorOf " Rol f Heuer " ;
30 n i f : beginIndex "0"^^xsd : long ; n i f : endIndex "10"^^xsd : long ;

Listing 1. Example RDF extraction of RdfLiveNews

http://rdflivenews.aksw.org/extraction/ + example.com:8042/over/ +
urlencode(there?name=ferret) + / + md5(‘sentence‘)

Republication of RDF. The extracted triples are hosted on:
http://rdflivenews.aksw.org. The data for individual sentences is crawlable
via the file system of the Apache2 web server. We assume that source URLs only
occur once in a stream when the document is published and the files will not be
overwritten. Furthermore, the extracted properties and entities are available as
linked data at http://rdflivenews.aksw.org/{ontology|resource}/$name and they
can be queried via SPARQL at http://rdflivenews.aksw.org/sparql.

2.8 Linking

The approach described above generates a set of properties with several labels.
In our effort to integrate this data source into the Linked Open Data Cloud,
we use the deduplication approach proposed in Section 2.2 to link our set of
properties to existing knowledge bases (e.g., DBpedia). To achieve this goal, we

http://rdflivenews.aksw.org
http://rdflivenews.aksw.org/sparql
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consider the set of properties we generated as set of source instances S while
the properties of the knowledge base to which we link are considered to be a set
of target T . Two properties s ∈ S and t ∈ T are linked iff trigrams(s, t) ≥ θp,
where θp ∈ [0, 1] is the property similarity threshold.

3 Evaluation

The aim of our evaluation was to answer four questions. First, we aimed at
testing how well RdfLiveNews is able to disambiguate found entities. Our sec-
ond goal was to determine if the proposed similarity measures can be used
to cluster patterns with respect to their semantic similarity. Third, we wanted
to evaluate the quality of the RDF extraction and linking. Finally, we wanted to
measure if all computational heavy tasks can be applied in real-time, meaning
the processing of one iteration takes less time than its compilation.

For this evaluation we used a list of 1457 RSS feeds as compiled in [10]. This
list includes all major worldwide newspapers and a wide range of topics, e.g.
World, U.S., Business, Science etc. We crawled this list for 76 hours, which
resulted in a corpus, dubbed 100% of 38 time slices of 2 hours and 11.7 million
sentences. The average number of sentences per feed entry is approximately 26.5
and there are 3445 articles on average per time slice. Additionally we created
two subsets of this corpus by randomly selecting 1% and 10% of the contained
sentences. All evaluations were carried out on a MacBook Pro with a quad-core
Intel Core i7 (2GHz), a solid state drive and 16 GB of RAM.

3.1 URI Disambiguation

To evaluate the URI disambiguation we created a gold standard manually. We
took the 1% corpus, applied deduplication with a window size of 40 (contains
all time slices) and a threshold of 1 (identical sentences), which resulted in a
set of 69884 unique sentences. On those sentences we performed the pattern
extraction with part of speech tagging as well as filtering. In total we found
16886 patterns and selected the Top 1%, which have been found by 1729 entity
pairs. For 473 of those entity pairs we manually selected a URI for subject and
object. This resulted in an almost equally distributed gold standard with 456
DBpedia and 478 RdfLiveNews URIs. We implemented a hill climbing approach
with random initialization to optimize the parameters (see Section 2.4). The
precision of our approach is the ratio between correctly found URIs for subject
and object to the number of URIs above the threshold λ as shown in Equation 1.
The recall, shown in Equation 2, is determined by the ratio between the number
of correct subject and object URIs and the total number of subjects and objects
in the gold standard. The F1 measure is determined as usual by: F1 = 2 ·
P ·R
P+R . We optimized our approach for precision since we can compensate a lower
recall and could achieve a precision of 85.01% where the recall is 40.69% and
the resulting F1 is 55.03%. The parameters obtained through the hill-climbing
search indicate that the Apriori-score is the most influential parameter (1.0),
followed by string-similarity (0.78), local-context (0.6), global context (0.45) and
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a URI score threshold of 0.61. If we optimize for F1, we were able to achieve a
F1 measure of 66.49% with a precision of 67.03% and a recall of 65.95%.

For 487 out of the 934 URI in the gold standard no confident enough URI
could be found. The most problems occured for DBpedia URIs which could
not be determined in 305 cases, in comparison to 182 URIs for newly created
resources. Additionally, for 30 resources RdfLiveNews created new URIs where
DBpedia URIs should be used and in 0 cases a DBpedia URI was used where a
new resource should be created. The reason for those mistakes are tagging errors,
erroneous spellings and missing context information. For example Wikipedia has
97 disambiguations for “John Smith” which can not be disambiguated without
prior knowledge.

We used AIDA [11] to compare our results with a state-of-the-art NED algo-
rithm. We configured AIDA with the Cocktailparty setup, which defines the rec-
ommended configuration options of AIDA. AIDA achieved an accuracy of 0.57,
i.e. 57% of the identifiable entities were correctly disambiguated. The corpus
described above provides a difficult challenge due to the small disambiguation
contexts and is limited to graphs evolving from two named entities per text.
AIDA tries to build dense sub-graphs in a greedy manner in order to perform
correct disambiguation. This algorithm would profit from a bigger number of
entities per text. The drawback is AIDA needs 2 minutes to disambiguate 25
sentences. Overall, AIDA performs well on arbitrary entities.

P =
|suric |+ |ouric |
|suri|+ |ouri|

(1) R =
|suric |+ |ouric |

2 · |GS| (2)

3.2 Pattern Clustering

To evaluate the similarity generation as well as the clustering algorithm we relied
on the measures Sensitivity, Positive Predictive Value (PPV) and Accuracy. We
used the adaptation of those measures as presented in [4] to measure the match
between a set of pattern mappings10 from the gold standard and a clustering
result. The gold standard was created by clustering the patterns as presented in
the previous section manually. This resulted in a list of 25 clusters with more
than 1 pattern and 54 clusters with 1 pattern. Since cluster with a size of 1
would skew our evaluation into unjustified good results, we excluded them from
this evaluation.

Sensitivity. With respect to the clustering gold standard, we define sensitivity
as the fraction of patterns of pattern mapping i which are found in cluster j.
In Sni,j = Ti,j/Ni, Ni is the number of patterns belonging to pattern mapping
i. We also calculate a pattern mapping-wise sensitivity Snpmi as the maximal
fraction of patterns of pattern mapping i assigned to the same cluster. Snpmi =
maxmj=1Sni,j reflects the coverage of pattern mapping i by its best-matching
cluster. To characterize the general sensitivity of a clustering result, we compute

10 A pattern mapping maps NLRs to RDF properties.
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a clustering-wise sensitivity as the weighted average of Snpmi over all pattern
mappings: Sn =

∑n
i=1 NiSnpmi∑n

i=1 Ni
.

Positive Predictive Value. The positive predictive value is the proportion of
members of cluster j which belong to pattern mapping i, relative to the total
number of members of this cluster assigned to all pattern mappings. PPVi,j =
Ti,j/

∑n
i=1 Ti,j = Ti,j/T.j

T.j is the sum of column j. We also calculate a cluster-wise positive predictive
value PPVclj , which represents the maximal fraction of patterns of cluster j
found in the same annotated pattern mapping. PPVclj = maxni=1PPVi,j reflects
the reliability with which cluster j predicts that a pattern belongs to its best-
matching pattern mapping. To characterize the general PPV of a clustering
result as a whole, we compute a clustering-wise PPV as the weighted average of
PPVclj over all clusters: PPV =

∑m
j=1 T.jPPVclj∑

m
j=1 T.j

.

Accuracy. The geometric accuracy (Acc) indicates the tradeoff between sensi-
tivity and positive predictive value. It is obtained by computing the geometrical
mean of the Sn and the PPV : Acc =

√
Sn · PPV .

We evaluated the three similarity measures with respect to the underlying
WordNet similarity metric (see Section 2.5). Furthermore we varied the cluster-
ing similarity threshold between 0.1 and 1 with a 0.1 step size. In case of the
qgram and WordNet similarity metric we performed a grid search on the Word-
Net and qgram parameter in [0, 1] with a step size of 0.05. We achieved the best
configuration with the qgram and WordNet similarity metric with an accuracy
of 82.45%, a sensitivity of 71.17% and a positive predictive value of 95.51%.
The best WordNet metric is Lin, the clustering threshold 0.3 and the qgram
parameter is with 0.45 significantly less influential than the WordNet parameter
with 0.75. As a reference value, the plain WordNet similarity metric achieved
an accuracy of 78.86% and the qgram similarity metric an accuracy of 69.1% in
their best configuration.

3.3 RDF Extraction and Linking

To assess the quality of the RDF data extracted by RdfLiveNews, we sampled the
output of our approach and evaluated it manually. We generated five different eval-
uation sets. Each set may only contain triples with properties of clusters having at
least i = 1 . . . 5 patterns. We selected 100 triples (if available) randomly for each
test set. As the results in Table 1 show, we achieve high accuracy on subject and
object disambiguation. As expected, the precision of our approach grows with the
threshold for the minimal size of clusters. This is simply due to the smaller clusters
having a higher probability of containing outliers and thus noise.

The results of the linking with DBpedia (see Table 3) showed the mismatch
between the relations that occur in news and the relations designed to model
encyclopedic knowledge. While some relations such as dbo:director are used
commonly in news streams and in the Linked Data Cloud, relations with a more
volatile character such as rlno:attorney which appear frequently in news text
are not mentioned in DBpedia.
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Table 1. Accuracy of RDF Extraction
for subject (S), predicates (P) and objects
(O) on 1% dataset with varying cluster
sizes Ei

Ei 1 2 3 4 5

SAcc 0.81 0.88 0.86 0.857 0.804
PAcc 0.86 0.89 0.90 0.935 1.00
OAcc 0.93 0.91 0.90 0.948 0.941

TotalAcc 0.86 0.892 0.885 0.911 0.906
|Ei| 100 100 100 77 51

|P | ∈ |Ei| 28 22 12 6 1

Table 2. Number of non-duplicate sen-
tences in 1% of the data extracted from
1457 RSS feeds within a window of 10
time slices (2h each). The second column
shows the original number of sentences
without duplicate removal.

Time
Slice

No dedu-
plication

θ = 1.0θ = 0.95θ = 0.9

1 2997 2764 2764 2759
5 3047 2335 2334 2327
10 3113 2033 2040 2022
15 2927 1873 1868 1866
20 3134 1967 1966 1949
25 3065 1936 1932 1924
30 3046 1941 1940 1933

Table 3. Example for linking between RdfLiveNews and DBpedia

RdfLiveNews-URI DBpedia-URI Sample of cluster

rlno:directorOf dbo:director [manager], [, director of], [, the director of]
rlno:spokesperson dbo:spokesperson [, a spokeswoman for], [spokesperson],

[, a spokesman for]
rlno:attorney — [’s attorney ,], [’s lawyer ,], [attorney]

3.4 Scalability

In order to perform real-time RDF extraction, the processing of the proposed
pipeline needs to be done in less time than its acquisition requires. This also
needs to be true for a growing list of RSS feeds. Therefore, we analyzed the time
each module needed in each iteration and compared these values between the
three test corpora. An early approximation of this evaluation implied that the
pipeline indeed was not fast enough, which led to the parallelization of the pat-
tern refinement and similarity generation. The results of this evaluation can be
seen in Figure 2. With an average time slice processing time of about 20 minutes
for the 100% corpus (2.2 minutes for 10% and 30s for 1%), our approach is clearly
fit to handle up to 1500 RSS and more. The spike in the first iteration results
out of the fact that RSS feeds contain the last n previous entries, which leads to
a disproportional large first time slice. The most time consuming modules are
the deduplication, tagging and cluster merging. To tackle these bottlenecks we
can for example parallelize sentence tagging and the deduplication.

The results of the growth evaluation for patterns until iteration 30 can be seen
in Figure 3. The number of patterns grows with the factor of 3 from 1% to 10%
and 10% to 100% corpora. Also, the number of patterns found by more than one
subject-object pair increases approximately by factor 2. Additionally we observed
a linear growth for all patterns (also for patterns with |S ′

θ| > 1) and 100% showing
the highest growth rate with a factor 2.5 over 10% and 4.8 over 10%.
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right) per iteration
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The results of the growth evaluation for clusters can be seen in Figure 4. The
evaluation shows that the number of clusters increases by a factor of 2.5 from
1% to 10% and 10% to 100%. Moreover, approximately 25% of all cluster have
more than 1 pattern and the number of clusters grows linear for 1% and 10%
but for the 100% corpus it seems to coverage to 800. The same holds true for
clusters with more then one pattern, as they stop to grow at around 225 clusters.

4 Related Work

While Semantic Web applications rely on formal, machine understandable lan-
guages such as RDF and OWL, enabling powerful features such as reasoning and
expressive querying, humans use Natural Language (NL) to express semantics.
This gap between the two different languages has been filled by Information Ex-
traction (IE) approaches, developed by the Natural Language Processing (NLP)
research community [23], whose goal is to find desired pieces of information, such
as concepts (hierarchy of terms which are used to point to shared definitions), en-
tities (name, numeric expression, date) and facts in natural language texts and
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print them in a form that is suitable for automatic querying and processing. Ever
since the advent of the Linked Open Data initiative11, IE is also an important key
enabler for the Semantic Web. For example, LODifier ([2], [6]) combines deep se-
mantic analysis with named entity recognition, word-sense disambiguation and
controlled Semantic Web vocabularies. FOX [17] uses ensemble learning to im-
prove the F-score of IE tools. The BOA framework [9] uses structured data as back-
ground knowledge for the extraction of natural language patterns, which are sub-
sequently employed to extract additional RDF data from natural language text.
The authors of [16] propose a simple model for fact extraction in real-time taking
into account the difficult challenges that timely fact extraction on frequently up-
dated data entails. A specific application for the news domain is described in [24],
wherein a knowledge base of entities for the French news agency AFP is populated.

State-of-the-art open-IE systems such as ReVerb automatically identify and
extract relationships from text, relying on (in the case of ReVerb) simple syn-
tactic constraints expressed by verbs [7]. The authors of [5] present a novel
pattern clusters method for nominal relationship classification using an unsu-
pervised learning environment, which makes the system domain and language-
independent. [22] shows how lexical patterns and semantic relationships can be
learned from concepts in Wikipedia.

5 Conclusion and Future Work

In this paper, we presented RdfLiveNews, a framework for the extraction of
RDF from unstructured data streams. We presented the components of the Rd-
fLiveNews framework and evaluated its disambiguation, clustering, linking and
scalability capabilities as well as its extraction quality. We are able to disam-
biguate resources with a precision of 85%, cluster patterns with an accuracy of
82.5% and extract RDF with an total accuracy of around 90% and handle two
hour time slices with around 300.000 sentences within 20 min on a small server.
In future work, we will extend our approach to also cover datatype properties.
For example from the sentence “. . . , Google said Motorola Mobility contributed
revenue of US$ 1.25 billion for the second quarter.” the triple dbpedia:Google
rlno:says “Motorola Mobility contributed revenue of US$ 1.25 billion for the sec-
ond quarter” can be extracted. Additionally we plan to integrate DeFacto [12],
which is able to verify or falsify a triple extracted by RdfLiveNews. Finally, we
will extend our approach with temporal logics to explicate the temporal scope
of the triples included in our knowledge base.
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Abstract. In the domain of Linked Open Data a need is emerging for develop-
ing automated frameworks able to generate the licensing terms associated to data
coming from heterogeneous distributed sources. This paper proposes and evalu-
ates a deontic logic semantics which allows us to define the deontic components
of the licenses, i.e., permissions, obligations, and prohibitions, and generate a
composite license compliant with the licensing items of the composed different
licenses. Some heuristics are proposed to support the data publisher in choosing
the licenses composition strategy which better suits her needs w.r.t. the data she
is publishing.

1 Introduction

Following the Open Data movement1, several data hubs are being created by public bod-
ies from single cities through to supra national organizations like the European Union
with the final aim to improve the transparency and efficiency of such public bodies and
organizations. In this context, the data is openly published on the Web using different
data models (e.g., RDF, schema.org, CSV). However, even if this movement is receiv-
ing more attention in the last years, still much more effort is required to publish open
data on the Web, possibly in a machine-readable format in such a way that data could
be interlinked, supporting the growth of the Web of Data [3,13]. One open problem
in this context is quality assessment with a particular attention to provenance informa-
tion [12]. More precisely, part of the self-description of the data consists in the licensing
terms which specify the admitted use and re-use of the data by third parties. This issue
is relevant both for i) Linked Data publication as underlined in the “7 Best Practices
for Producing Linked Data”2 where it is required to specify an appropriate license for
the data, and ii) Open Data publication since the possibility to express constraints on
the reuse of the data would encourage the publication of more open data. In this pa-
per, we answer the research question: How to express the licensing terms associated to
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data coming from heterogeneous distributed sources? This research question could be
answered by linking the datasets to normative documents describing the licenses under
which they are released. However, this solution is far from the Web of Data philosophy
where the meta-information about the datasets should be expressed both in a human and
a machine-readable format to allow further reasoning steps. Thus the research question
breaks down into the following subquestions: i) How to express the deontic component
of the licensing terms in a machine-readable format?, and ii) How to compose in a com-
pliant and automated way the licensing terms associated to a set of heterogeneous data
to produce a single composite license?

First, we introduce a lightweight vocabulary called l4lod3 (Licenses for Linked
Open Data) which is composed by the three main deontic components, i.e., Obliga-
tions, Permissions and Prohibitions, and provides an alignment with the other licenses
vocabularies. It is used to express the machine-readable composite license.

Second, we rely on the deontic logic paradigm [24] to address the problem of rec-
onciling a set of licenses associated to heterogeneous datasets whose information items
are returned together for consumption, e.g., resulting from a single SPARQL query
over distributed datasets released under different licenses. Assuming that these datasets
provide the consumer with their own licensing terms, we propose and evaluate a deon-
tic logic semantics which automatically returns to the consumer a so called composite
license which is compliant with the normative semantics of each single license com-
posing it.

The rationale of this work is to support both consumers and publishers of Linked
Open Data. On the one hand, as a consumer it is fundamental to know the kind of
operations you are permitted to perform on the data to avoid data misuses. On the other
hand, we support the publisher to decide which heuristics better suits her needs about
the composition of the licenses associated to her data, e.g., the composite license with
less obligations and more permissions is preferred to the others.

The reminder of the paper is as follows. Section 2 starts with an analysis of the
Linked Data cloud from the licenses point of view and presents the l4lod vocabulary.
In Section 3, we present our deontic logic to represent and reason over the licensing
terms together with the heuristics to guide licenses composition. In Section 4, we eval-
uate our approach using the SPINdle logic reasoner. In Section 5 we present the existing
research, and we compare it with the proposed approach.

2 Licenses for Linked Open Data

The first issue to be addressed with respect to the use of licenses in Linked Open Data
(LOD) is to understand how many datasets of the LOD cloud4 are actually licensed,
and, at a later stage, which are the more popular licenses adopted in those datasets. In
order to perform such analysis, we crawled the LOD cloud5 with a total of 235 datasets
considered. The results of this analysis are as follows:

3 http://ns.inria.fr/l4lod/
4 http://lod-cloud.net/
5 The Data Hub: Linking Open Data Cloud. Retrieved May 02, 2013 (UTC).
http://datahub.io/group/lodcloud

http://ns.inria.fr/l4lod/
http://lod-cloud.net/
http://datahub.io/group/lodcloud
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Licensed-Not Licensed. 221 datasets out of 235 are licensed in some way (Figure 1(a)).
The licensing terms are often reported in the VOID meta-data6 using the
dcterms:license or the dcterms:rights properties of Dublin Core7. The li-
cense is not usually explicited in a machine-readable format, i.e., the URI of the
license is given, but it brings to the human-readable version only (around 95%).

Licenses distribution. The most adopted license is Creative Commons Attributions
(CC-BY)8 (51 out of 221 datasets), and the Creative Commons (CC) licenses [1]
in general represent the 51% of the licenses used on the LOD cloud (Figure 1(b)).
Other popular licenses are Open Data Commons (ODC) ones9 [18] (11%), and
other licenses from specific institutions (18%)10.

(a) (b)

Fig. 1. Surveying the Linked Data Cloud: licensed data statistics

We introduce the l4lod lightweight vocabulary (Licenses for Linked Open Data)
which is used to collect and align existing vocabularies which specify with different
granularity levels the licensing terms associated to the data. l4lod is adopted in our
framework as reference vocabulary to specify in a machine-readable format the licens-
ing terms associated to the composite license we automatically generate. Moreover,
starting by the observation that not all licensed works are creative works [13], l4lod
may be used to specify the deontic components for those licenses outside CC, like for
instance ODC licenses, and the Open Government License (OGL) 11, as through the
Open Digital Rights Language (ODRL) vocabulary12. The fine grained specification of
licensing terms in a machine-readable format is the goal of the ODRL vocabulary, while
the aim of l4lod is to describe the composite license at the level of its basic deontic
components. We are currently investigating how to use the ODRL vocabulary to address
the l4lod requirements as an ODRL Profile.

6 http://www.w3.org/TR/void/
7 http://purl.org/dc/terms/
8 http://creativecommons.org/licenses/by/3.0/
9 http://opendatacommons.org/licenses/

10 LOD cloud highlighting licenses distribution available at http://ns.inria.fr/l4lod/
11 http://www.nationalarchives.gov.uk/doc/open-government-licence/
12 http://www.w3.org/community/odrl/two/model/

http://www.w3.org/TR/void/
http://purl.org/dc/terms/
http://creativecommons.org/licenses/by/3.0/
http://opendatacommons.org/licenses/
http://ns.inria.fr/l4lod/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.w3.org/community/odrl/two/model/
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We define the class License which is equivalent to cc:License13 and
limo:LicenseModel14, and three basic deontic properties which are respec-
tively permits, prohibits, and obliges. These properties connect each license
with its own elements: Reproduction, Derivative, Distribution, Sharing,

Using, CommercialExpl, Publishing (for Permissions), Attribution,

ShareAlike, Citation (for Obligations), and NoCommercial, NoDerivative

(for Prohibitions). The vocabulary does not provide an exhaustive set of properties for
licenses definition. Implementations are free to extend l4lod to add further elements.
In the vocabulary, we distinguish between facts (i.e., rights as in the class License) and
their representation. That is why we introduce the licensingTerms property to con-
nect the license to its human-readable counterpart (domain dc:LicenseDocument).
Further distinctions, e.g., among facts/information, collections of facts, are out of the
scope of this vocabulary and they are carried out by other vocabularies (e.g., ODRL).

The vocabulary considers, among others, the alignment with the following vocabu-
laries: the CC vocabulary, the ODRL vocabulary15, the LiMo vocabulary, the Dublin
Core vocabulary, the Waiver vocabulary16, the Description of a Project vocabulary
(doap)17, the Ontology Metadata vocabulary (omv)18, the Data Dictionary for Preser-
vation Metadata (premis)19, the Vocabulary Of Attribution and Governance (voag)20.

3 Defeasible Deontic Logic for Licenses Composition

We propose an extension of Defeasible Logic, revising earlier works [8,9], to handle
license composition. Dealing with this issue requires reasoning about two components:

Factual and ontology component: the first component is meant to describe the facts
with respect to which Web of Data licenses are applied as well as the ontology of
concepts involved by licenses (thus modeling, e.g., concept inclusion);

Deontic component: the second component aims at capturing the deontic aspects of
Web of Data licenses, thus offering mechanisms for reasoning about obligations,
prohibitions, and permissions in force in each license, and in their composition.

In this paper, we basically focus on the deontic component, even though, for the sake
of completeness, we illustrate the proposed method by also handling, in standard De-
feasible Logic, the factual and ontology component, as done in [4]. However, standard
Defeasible Logic is just an option, and the factual and ontology component can be han-
dled in any other suitable logic and by resorting to a separate reasoner. Also, notice that
we assume that all licenses share a same ontology, or the ontologies are aligned.

The formal language of the logic is rule-based. Literals can be plain, such as p,q,r . . . ,
or modal, such Op (obligatory), Pp (permitted), and Fp (forbidden/prohibited). Ontology

13 http://creativecommons.org/ns
14 http://purl.org/LiMo/0.1
15 http://w3.org/ns/odrl/2/
16 http://vocab.org/waiver/terms/.html
17 http://usefulinc.com/ns/doap
18 http://omv2.sourceforge.net/index.html
19 http://bit.ly/premisOntology
20 http://voag.linkedmodel.org/schema/voag

http://creativecommons.org/ns
http://purl.org/LiMo/0.1
http://w3.org/ns/odrl/2/
http://vocab.org/waiver/terms/.html
http://usefulinc.com/ns/doap
http://omv2.sourceforge.net/index.html
http://bit.ly/premisOntology
http://voag.linkedmodel.org/schema/voag
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rules work as regular Defeasible Logic rules for deriving plain literals, while the logic of
deontic rules provide a constructive account of the basic deontic modalities (obligation,
prohibition, and permission). However, while we assume that all licenses share a same
ontology, the purpose of the formalism is mainly to establish the conditions to derive
different deontic conclusions from different licenses, and check whether they are com-
patible so that they can be attributed to a composite license. Hence, we need to keep track
of how these deontic conclusions are obtained. To this purpose, deontic rules (and, as we
will see, their conclusions) are parametrized by labels referring to licenses.

An ontology rule such as a1, . . . ,an ⇒ b supports the conclusion of b, given a1, . . . ,an,
and so it states that, from the viewpoint of any license any instance enjoying a1, . . . ,an

is also an instance of b. On the contrary, rules as a,Ob ⇒l2
O p state that, if a is the case

and b is obligatory, then Op holds in the perspective of license l2, i.e., p is obligatory
for l2.

The proof theory we propose aims at offering an efficient method for reasoning about
the deontic component of each license and, given that method, for combining different
licenses, checking their compatibility, and establishing what deontic conclusions can be
drawn from the composite license. In other words, if lc = l1#·· ·# ln is the composite
license obtained from l1, . . . , ln, the conclusions derived in the logic for l1, . . . , ln are also
used to establish those that hold in lc.

The reader may argue about the choice of defeasible deontic logics. A simpler ap-
proach would be to foster the adoption of standardized licenses and assign them a URI.
Then, a basic URI comparison can trigger the allowed/appropriate usages of the data.
However, even if we support such kind of standardization, we believe that it is far from
the present situation where different licenses are used on the Web, from the basic pur-
pose licenses up to the national ones. Dealing with licenses composition requires rea-
soning about all deontic provisions, handling and solving normative conflicts arising
from deontically incompatible licenses, and exceptions. A few formalisms can do that.
Defeasible deontic logic is one of the best candidates, as all aspects are managed in an
efficient and computationally tractable way.

3.1 Formal Language and Basic Concepts

The basic language is defined as follows. Let Lic = {l1, l2, . . . , ln} be a finite set of
licenses. Given a set PROP of propositional atoms, the set of literals Lit is the set
of such atoms and their negation; as a convention, if q is a literal, ∼q denotes the
complementary literal (if q is a positive literal p then ∼q is ¬p; and if q is ¬p, then
∼q is p). Let us denote with MOD = {O,P,F} the set of basic deontic modalities. The
set ModLit of modal literals is defined as follows: i) if X ∈ MOD and l ∈ Lit, then Xl
and ¬Xl are modal literals, ii) nothing else is a modal literal.

Let Lbl be a set of arbitrary labels. Every rule is of the type r : A(r) ↪→x
Y C(r), where

1. r ∈ Lbl is the name of the rule;
2. A(r) = {a1, . . . ,an}, the antecedent (or body) of the rule, is a finite set denoting the

premises of the rule. If r is an ontology rule, then each ai, 1≤ i ≤ n, belongs to Lit,
otherwise it belongs to Lit∪ModLit;

3. ↪→∈ {→,⇒,�} denotes the type of the rule;
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4. if r is a deontic rule, Y = O represents the type of conclusion obtained21; otherwise
(for ontology rules), Y ∈ /0;

5. if r is a deontic rule, x ∈ Lic indicates to which license the rule refers to; otherwise
(for ontology rules), x ∈ /0;

6. C(r) = b ∈ Lit is the consequent (or head) of the rule.

The intuition behind the different arrows is the following. Strict rules have the form
a1, . . . ,an →x

Y b. Defeasible rules have the form a1, . . . ,an ⇒x
Y b. A rule of the form

a1, . . . ,an �x
Y b is a defeater. Analogously, for ontology rules, where arrows do not

have superscripts and subscripts. The three types of rules establish the strength of the
relationship. Strict rules provide the strongest connection between a set of premises and
their conclusion: whenever the premises are deemed as indisputable so is the conclu-
sion. Defeasible rules allow to derive the conclusion unless there is evidence for its
contrary. Finally, defeaters suggest that there is a connection between its premises and
the conclusion not strong enough to warrant the conclusion on its own, but such that it
can be used to defeat rules for the opposite conclusion.

A multi-license theory is the knowledge base which is used to reason about the ap-
plicability of license rules under consideration.

Definition 1. A multi-license theory is a structure D = (F,L,Rc,{ROl}l∈Lic,�), where

– F ⊆ Lit∪ModLit is a finite set of facts;
– L ⊆ Lic is a finite set of licenses;
– Rc is a finite set of ontology rules;
– {ROl}l∈Lic is finite family of sets of obligation rules;

– � is an acyclic relation (called superiority relation) defined over (Rc×Rc)∪(ROl ×
ROl′

), where ROl
,ROl′ ∈ {ROl}l∈Lic

22.

R[b] and RX [b] with X ∈ {c,Ol |l ∈ Lic} denote the set of all rules whose consequent is
b and of all rules (of type X). Given a set of rules R the sets Rs, Rsd, and Rdft denote,
respectively, the subsets of R of strict rules, defeasible rules, and defeaters.

3.2 Proof Theory

A proof P of length n is a finite sequence P(1), . . . ,P(n) of tagged literals of the type
+Δ X q, −Δ X q, +∂ X q and −∂ X q, where X ∈ {c,Y l |l ∈ Lic,Y ∈ MOD}. The proof con-
ditions below define the logical meaning of such tagged literals. As a conventional nota-
tion, P(1...i) denotes the initial part of the sequence P of length i. Given a multi-license
theory D, +Δ X q means that literal q is provable in D with the mode X using only facts
and strict rules, −Δ X q that it has been proved in D that q is not definitely provable in D
with the mode X , +∂ X q that q is defeasibly provable in D with the mode X , and −∂ X q
that it has been proved in D that q is not defeasibly provable in D with the mode X23.

21 We will see why we do not need rules for prohibitions and permissions.
22 Notice that we may have that l = l′.
23 As we will see, we shall adopt a reading of permissions according to which they can only be

defeasible. Hence, we will not define the cases ±ΔY l
q where Y = P.
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Given #∈ {Δ ,∂}, P = P(1), . . . ,P(n) is a proof for p in D for the license l iff P(n) =

+#l p when p ∈ Lit, P(n) = +#Xl
q when p = Xq ∈ ModLit, and P(n) = −#Yl

q when
p = ¬Y q ∈ ModLit.

The proof conditions aim at determining what conclusions can be obtained within
composite licenses by using the source licenses. Three heuristics have been proposed
for this purpose [6,23]:

– OR-composition: if at least one of the licenses owns a clause then also lc owns it;
– AND-composition: if all the licenses own a clause then also lc owns it;
– Constraining-value: the most constraining clause among those offered by the sin-

gle licenses is included in lc.

In this paper, we concentrate on deontic effects of licenses, thus working on the obli-
gations, prohibitions, permissions entailed by the composition of a given set of licenses
(instead of the composition of the clauses). Also, since the constraining-value heuristics
requires to fully model the idea of concept inclusion (thus working also on the ontology
part; see discussion in [21]), here we focus the first two heuristics, reframed as:

– OR-composition: lc entails a deontic effect if there is at least one license that en-
tails such effect (and no license prevents it).

– AND-composition: lc entails a deontic effect if all licenses entail it.

In the next sections, we will show by means of examples, how the AND- and OR-
heuristics operate in the logic, including the derived conclusions.

Some notational conventions and concepts that we will use throughout the remainder
of this section: i) let lc = l1#·· ·# ln be any composite license that can be obtained from
the set of licenses Lc = {l1, . . . , ln} ⊆ L; ii) let X ,Y ∈ MOD.

As usual with Defeasible Logic, we have proof conditions for the monotonic part
of the theory (proofs for the tagged literals ±ΔY p) and for the non-monotonic part
(proofs for the tagged literals ±∂Y p). To check licenses’ compatibility and compose
them means to apply the proof conditions of the logic to a multi-license where the set
of licenses is L = Lc. Since the proof theory for the ontology component (±Δ c p and
±∂ c p) is the one for standard Defeasible Logic we will omit it and refer the reader to
[2]. For # ∈ {Δ ,∂} and Y ∈ {O,P,F}, notice that conditions governing conclusions for
the composite license lc and for any each license li interplay recursively: indeed, we
may use a conclusion for lc to fire a rule in li.

3.3 Provability in Each License

Definite Provability. The definitions below for Δ describe just forward (monotonic)
chaining of strict rules.

Obligation Definite Provability

+Δ Oli : If P(n+1) = +Δ Oli q then,
(1) Oq ∈ F or
(2) ∃r ∈ ROli

s [q] :
∀a,Xb,¬Y d ∈ A(r):
+Δ ca, +Δ X lc

b, −ΔY lc
d ∈ P(1..n)

−Δ Oli : If P(n+1) =−Δ Oli q then
(1) Oq �∈ F and
(2) ∀r ∈ ROli

s [q]:
∃a ∈ A(r) : −Δ ca ∈ P(1..n) or
∃Xb ∈ A(r) : −Δ X lc

b ∈ P(1..n) or
∃¬Yd ∈ A(r) : +ΔY lc

d ∈ P(1..n)
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Definite Provability for Prohibitions and Permissions. Definite proof conditions for
prohibitions can be simply obtained from the ones for O.

±Δ Flc
: If P(n+ 1) =±Δ Flc

q, then ±Δ Olc∼q ∈ P(1..n).

The concept of permission is much more elusive (for a discussion, see, e.g., [17]).
Here, we minimize complexities by adopting perhaps the simplest option among those
discussed in [11]. Such an option models permissive norms with defeaters for obliga-
tions: a defeater like a1, . . . ,an �l

O q states that some q is permitted (Pq) in the license l,
since it is meant to block deontic defeasible rules for ∼q, i.e., rules supporting O∼q24.
This reading suggests that permissions are only defeasible, hence we postpone the proof
theory for permission to the section dealing with the non-monotonic part of the theory25.

Defeasible Provability. As usual in standard Defeasible Logic, to show that a literal
q is defeasibly provable we have two choices: (1) we show that q is already definitely
provable; or (2) we need to argue using the defeasible part of a multi-license theory D.
For this second case, some (sub)conditions must be satisfied. First, we need to consider
possible reasoning chains in support of∼q with the modes lc and Xlc

, and show that ∼q
is not definitely provable with that mode (2.1 below). Second, we require that there must
be a strict or defeasible rule with mode at hand for q which can apply (2.2 below). Third,
we must consider the set of all rules which are not known to be inapplicable and which
permit to get ∼q with the mode under consideration (2.3 below). Essentially, each rule
s of this kind attacks the conclusion q. To prove q, s must be counterattacked by a rule
t for q with the following properties: i) t must be applicable, and ii) t must prevail over
s. Thus each attack on the conclusion q must be counterattacked by a stronger rule. In
other words, r and the rules t form a team (for q) that defeats the rules s.

Obligation Defeasible Provability

+∂ Oli : If P(n+1) = +∂ Oli q then
(1)+Δ Oli q ∈ P(1..n) or
(2) (2.1) −Δ Oli∼q ∈ P(1..n) and

(2.2) ∃r ∈ ROli

sd [q] : ∀a,Xb,¬Y d ∈ A(r): +∂ ca,+∂ X li b, −∂Y li d ∈ P(1..n) and

(2.3) ∀l j ∈ Lic, ∀s ∈ ROl j
[∼q], either

(2.3.1) ∃a ∈ A(s) or Xb ∈ A(s) or ¬Y ∈ A(s):

−∂ ca ∈ P(1..n), or −∂ X lc
b ∈ P(1..n), or +∂Y lc

d ∈ P(1..n); or
(2.3.2) ∀lk ∈ Lic, ∃t ∈ ROlk [q]: ∀a,Xb,¬Y d ∈ A(t),

+∂ ca,+∂ lc b,−∂ lc d ∈ P(1..n), and t � s.

24 Hence, we do not make explicit in the language the distinction between the cases where we
have explicit permissive clauses for P (strong permissions of q [25]) from those where some q
is permitted (Pq) because it can be obtained from the fact that ¬q is not provable as mandatory
(weak permission). For an extensive treatment of defeasible permissions, see also [10].

25 For space reasons, we will omit the proof conditions for −∂ Oli , and −∂ Pli , which can all be
obtained applying the so-called Principle of Strong Negation [11], as illustrated for −Δ Oli .
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+∂ Pli : If P(n+1) = +∂ Pli q then
(1) (1.1) −Δ Oli∼q ∈ P(1..n) and

(1.2) ∃r ∈ ROli

dft [q] : ∀a,Xb,¬Y d ∈ A(r): +∂ ca,+∂ X li b, −∂Y li d ∈ P(1..n) and

(1.3) ∀l j ∈ Lic, ∀s ∈ ROl j
[∼q], either

(1.3.1) ∃a ∈ A(s) or Xb ∈ A(s) or ¬Y ∈ A(s):
−∂ ca ∈ P(1..n), or −∂ X lc

b ∈ P(1..n), or +∂Y lc
d ∈ P(1..n); or

(1.3.2) ∀lk ∈ Lic, ∃t ∈ ROlk

dft [q]: ∀a,Xb,¬Y d ∈ A(t),
+∂ ca,+∂ lc b,−∂ lc d ∈ P(1..n), and t � s.

Let us consider two examples that illustrate some aspects of the proof theory, and
how the heuristics are used before to formally introduce them.

Example 1. Assume to work with two licenses l1 and l2 and their composition, and let
us reason only about obligations and permissions:

F = {a,d}

ROl1 = {r1 : a ⇒l1
O p, r2 : d ⇒l1

O ∼e}

ROl2 = {r3 :⇒l2
O ∼p, r4 : a,d �l2

O p, r5 : Pp ⇒l2
O ∼e}

�= {r4 � r3}

Let us consider AND-composition heuristics only. Rule r1 leads in l1 to +∂ Ol1 p (i.e.,
Op in l1). License l2 supports +∂ Pl2 p because the defeater r4 is applicable and is
stronger than r3: hence, AND-composition states that +∂ Plc

p is the case (i.e., that p
is permitted in the composite license). This last conclusion triggers r5 thus obtaining in
l2 the conclusion +∂ Ol2∼e, the same deontic conclusion that is also obtained in l1 by
successfully applying r2: hence, +∂ Olc∼e (i.e., e is prohibited in lc).

Example 2. Consider two software libraries associated to licenses l1 and l2, respec-
tively. License l1 permits Commercial and obliges for Attribution, while license l2 pro-
hibits Commercial, permits Derivative, and obliges for ShareAlike.

L = {l1, l2}

ROl1 = {r1 :⇒l1
O Attribution, r2 :�l1

O Commercial}

ROl2 = {r3 :⇒l2
O ∼Commercial, r4 :⇒l2

O ShareAlike, r5 :�l2
O Derivative}

We have to decide which heuristics better suits our needs with respect to the sin-
gle licenses to compose. If we do not include the obligations present in each single
license (Attribution, ShareAlike), we are not compliant with their normative semantics
thus we violate them. To avoid that, the OR heuristics is used to compose obligations.
Concerning permissions (Derivative, Commercial), we must check that every single li-
cense includes the specific permission, thus we adopt the AND heuristics. Otherwise, if
there is a prohibition (∼Commercial), and we include the permission in lc, we violate
it. Hence, +∂ Olc Attribution, +∂ Olc ShareAlike, and +∂ Plc Derivative.

The proof conditions for composite licenses we define in the next section assume
appropriate definitions for establishing whenever a deontic effect is entailed in a given
license, as we presented.
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3.4 Provability for Composite Licenses

According to the OR-composition and AND-composition heuristics, we may compose
the deontic effects when each of them is entailed either by at least one license or by all
licenses. This idea is directly captured as follows:

OR-composition For # ∈ {Δ ,∂} and X ∈ {O,P,F}:

+#Xlc : If P(n+ 1) = +#Xlc
p, then ∃li ∈ Lic : +#Xli p ∈ P(1..n).

−#Xlc : If P(n+ 1) =−#Xlc p, then ∀li ∈ Lic : − #Xli p ∈ P(1..n).

AND-composition For # ∈ {Δ ,∂} and X ∈ {O,F}:

+#Xlc : If P(n+ 1) = +#Xlc p, then ∀li ∈ Lic : +#Xli p ∈ P(1..n).

−#Xlc : If P(n+ 1) =−#Xlc
p, then ∃li ∈ Lic : − #Xli p ∈ P(1..n).

+∂ Plc : If P(n+ 1) = +∂ Plc p, then ∃li ∈ Lic : + ∂ Pli p ∈ P(1..n) and

∀lk ∈ Lic, li �= lk either +∂ Plk p ∈ P(1..n) or −∂ Olk∼p ∈ P(1..n).

−∂ Plc : If P(n+ 1) =−∂ Plc
p, then ∀li ∈ Lic either −∂ Pli p or +∂ Pli∼p.

The conditions for obligations and prohibitions directly implement what we have in-
formally said in regard to the two heuristics. A brief comment about permissions in
AND-composition: we may establish here that some p is permitted in lc when it is ex-
plicitly permitted (via defeaters) in all licenses, or when there is at least one license
explicitly permitting p and, in all the other licenses where no explicit permission for p
succeeds, p is at least not prohibited (so p is weakly permitted [25,10]).

3.5 Properties and Admissibility

The logic presented here is a variant of the one developed in [8,9]. On account of this
fact, two results can be imported here: its soundness and computational complexity.

Theorem 1. Let D be a multi-license theory where the transitive closure of� is acyclic.
For every # ∈ {Δ ,∂}, X ∈ {l,Y l |l ∈ Lic,Y ∈ {O,F}}, and Z ∈ {l,W l |l ∈ Lic,W ∈
MOD}:

– It is not possible that both D  +#Z p and D  −#Z p;
– For all l ∈ L∪{lc}, it is not possible that both D  +∂ Ol

p and D  +∂ Pl∼p;
– If D  +∂ X p and D  +∂ X∼p, then D  +Δ X p and D  +Δ X∼p.

Given a multi-license theory D, the universe of D (UD) is the set of all the atoms
occurring in D. The extension (or conclusions) ED of D is a structure (Δ+

D ,Δ−
D ,∂+

D ,∂−D ),
where for Xl ∈ MOD and l ∈ L:

Δ±
D = {Xq : D  ±Δ X l

q}∪{q : D  ±Δ cq} ∂±D = {Xq : D  ±∂ X l
q}∪{q : D  ±∂ cq}.

Theorem 2. Let D = (F,L,Rc,{ROl}l∈Lic,�) be a multi-license theory. The extension

of D can be computed in time linear to the size of the theory, i.e., O(|Rc∪{ROl}l∈Lic| ∗
|UD| ∗ |L|).
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Finally, let us establish when a license composition lc is meaningful or admissible.
This can be checked taking into account the following guidelines:

– When only defeasible rules and defeaters are considered, a composition is admis-
sible iff it leads to a non-empty set of deontic conclusions. Defeasible Logic is
skeptical logic, so in case there is no way to solve deontic conflicts (according to
any given heuristics), it means that the composite license does not produce any
effect.

– In the case of conflicting strict rules there is no way to block contradictory conclu-
sions. Hence, checking if a composition is admissible also requires to exclude that
Δ+

D contains contradictory conclusions.
– Facts are supposed to describe a given situation where licenses are applied, thus

they can vary from context to context. Hence, we may have two levels for detecting
unsolvable conflicts in the licenses’ composition: when we consider specific sets of
facts, or when we examine licenses in general.

The following definition formally considers all these aspects:

Definition 2. Let D = (F,L,{Rl}l∈Lic,{ROl}l∈Lic,{RPl}l∈Lic,�) be a multi-license the-
ory and AD is the set of all literals and modal literals occurring in the antecedent of all
rules of D. The license lc = l1#·· ·# ln is F-admissible iff

– L = {l1, . . . , ln},
– ∃Xlcq ∈ ∂+

D , and
– for any literal p, if X ∈ {l,Y l |l ∈ Lic,Y ∈ {O,F}}, then we do not have that D  

+Δ X p and D  +Δ X∼p.

The composite license lc = l1#·· ·# ln is admissible iff it is F-admissible for all F ⊆AD.

4 Mapping into SPINdle and Results

In this section we illustrate how to implement the logic and the heuristics developed
in Section 3 in SPINdle26. SPINdle [15] is a modular and efficient reasoning engine,
written in Java, for defeasible logic and modal defeasible logic implementing and ex-
tending the algorithms of [8,9]. It has been experimentally tested against the benchmark
of [16] showing that it is able to handle very large theories, i.e., theories with hundredth
of thousand rules, indeed the largest theory it has been tested with has 1 million rules.

While SPINdle supports multi-modal defeasible logics, currently it does not support
natively the AND and OR heuristics presented in this paper. Therefore, we first have to
provide polynomial time transformations to implement the two heuristics.

Definition 3. Let # be one of the proof tags. Two multi-license theories D1 and D2

are equivalent (written D1 ≡ D2) iff ∀p,D1  #p iff D2  #p, i.e., they have the same
consequences. Similarly D1 ≡Σ D2 means that D1 and D2 have the same consequences
in the language Σ .

Definition 4. A transformation is a mapping from multi-license theories to multi-
license theories. A transformation T is correct iff for all theories Di, D ≡Σ T (D) where
Σ is the language of D.

26 http://spin.nicta.org.au/spindle/index.html

http://spin.nicta.org.au/spindle/index.html
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The OR-heuristic is implemented by the following transformation27:

tor(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r : A(r) ↪→ p r ∈ Rc

r : A(r)→Oc p r ∈ ROli
s , li ∈ Lic

r : A(r)⇒Oc p r ∈ ROli
d , li ∈ Lic

r : A(r)⇒−Oc ∼p r ∈ ROli
dft , li ∈ Lic

It is immediate to see that tor is a one-to-one transformation. For obligation operators
tor flattens all of them into Oc. In fact, for the OR-heuristics we need to prove p with
+∂ Oli for a single license, and thus the set of rules to be considered for clause (2.2)
is the set of all strict and defeasible obligation rules for p. For permission we use a
particular feature of SPINdle, namely ‘negative’ modalities. A negative modality (e.g.
−Oc) behaves on one side as any other modality, but it is in a symmetric conflict with the
corresponding positive one (i.e., Oc). Thus it can be used to disprove a conclusion for
the positive counterpart without proving it. Hence, it behaves essentially like a defeater.
Theorem 1 shows that the transformation of tor into the logic of SPINdle is correct.

Theorem 1. Let D = (F,L,R,�) be a multi-license theory. Let T (D) = (F,L,{tor(r) :
r ∈ R},�). Then D ≡Σ T (D).

We show now by means of an example how to apply our logic to compose three Web
of Data popular licenses using the SPINdle transformation.

Example 3. Assume the data returned by different datasets are associated to the
Open Government License28, the Open Database License29, and the Attribution-
NonCommercial-NoDerivs 2.0 Generic License30. The three licenses in a machine-
readable format are visualized in Figure 2. The multi-license theory D is as follows:

F = {Open}
L = {lOGL, lODbL, lBY−NC−ND}

ROlOGL
= {r1 :⇒lOGL

O Attribution, r2 : Open �lOGL
O Publishing,

r3 : Open �lOGL
O Distribution, r4 : Open �lOGL

O Derivative,

r5 : Open �lOGL
O Commercial}

ROlODbL
= {r6 :⇒lODbL

O ShareAlike, r7 :⇒lODbL
O Attribution,

r8 :�lODbL
O Sharing, r9 :�lODbL

O Derivative}

ROlBY−NC−ND
= {r10 :⇒lBY−NC−ND

O Attribution, r11 :⇒lBY−NC−ND
O ∼Commercial,

r12 :⇒lBY−NC−ND
O ∼Derivative, r13 :�lBY−NC−ND

O Sharing}
� = {lODbL � lBY−NC−ND}

27 In the remainder, Oc and Pc abbreviate Olc and Plc .
28 http://www.nationalarchives.gov.uk/doc/open-government-licence/
29 http://opendatacommons.org/licenses/odbl/
30 http://creativecommons.org/licenses/by-nc-nd/3.0/

http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://opendatacommons.org/licenses/odbl/
http://creativecommons.org/licenses/by-nc-nd/3.0/


One License to Compose Them All 163

We have now to build the composite license such that lc = lOGL# lODbL# lBY−NC−ND.
AND-composition is admissible since there is at least one deontic effect entailed
by all licenses, i.e., from rules r1, r7 and r10, which lead to the deontic conclusion
+∂ Olc

Attribution. OR-composition is admissible too: notice that a conflict arises be-
tween rule r5 and rule r11 and between rule r12 and rules r4 and r9. The deontic con-
clusions are: +∂ Olc

Attribution, +∂ Olc
ShareAlike, +∂ Plc

Publishing, +∂ Plc
Distribution,

+∂ Plc
Sharing, −∂ Plc

Derivative, −∂ Plc
Commercial. The tor transformation is

>> Open

r1: =>[Oc]Attribution

r2: Open =>[-Oc] -Publishing

r3: Open =>[-Oc] -Distribution

r4: Open =>[-Oc] -Derivative

r5: Open =>[-Oc] -CommercialExpl

r6: =>[Oc] ShareAlike

r7: =>[Oc] Attribution

r8: =>[-Oc] -Share

r9: =>[-Oc] -Derivative

r10: =>[Oc] Attribution

r11: =>[Oc] -CommercialExpl

r12: =>[Oc] -Derivative

r13: =>[-Oc] -Share

r9 > r12

When the above theory is loaded in SPINdle it takes 14 milliseconds to pro-
duce the following conclusions +d [Oc]Attribution, +d [-Oc]-Distribution,
+d [-Oc]-Publishing, +d [-Oc]-Share, +d [Oc]ShareAlike, where +d [Oc]

corresponds to +∂ Oc
, and +d [-Oc]- means +∂ Pc

. Figure 2.d shows the machine-
readable lc.

@prefix l4lod: http://ns.inria.fr/
l4lod/.
@prefix : http://example/licenses.

:licComposite a l4lod:License;
l4lod:obliges l4lod:Attribution;
l4lod:obliges l4lod:ShareAlike;
l4lod:permits l4lod:Publishing;
l4lod:permits l4lod:Distribution;
l4lod:permits l4lod:Sharing.}

@prefix l4lod: http://ns.inria.fr/l4lod/.
@prefix : http://example/licenses.

:licOGL a l4lod:License;
       l4lod:licensingTerms <http://www.nationalarchives.gov.uk/
                                   doc/open-government-licence/>; 
       l4lod:permits l4lod:Publishing;
       l4lod:permits l4lod:Distribution; 
       l4lod:permits l4lod:Derivative;
       l4lod:permits l4lod:CommercialExpl;
       l4lod:obliges l4lod:Attribution.

@prefix l4lod: http://ns.inria.fr/l4lod/.
@prefix : http://example/licenses.

:licODbL a l4lod:License;
         l4lod:licensingTerms <http://opendatacommons.org/
                                          licenses/odbl/>; 
         l4lod:permits l4lod:Sharing;
         l4lod:permits l4lod:Derivative; 
         l4lod:obliges l4lod:Attribution;
         l4lod:obliges l4lod:ShareAlike.

@prefix cc: http://creativecommons.org/ns.
@prefix l4lod: http://ns.inria.fr/l4lod/.
@prefix : http://example/licenses.

:licBY-CC-NC-ND a cc:License;
         cc:legalcode <http://creativecommons.org/licenses
                                              /by-nc-nd/>; 
         cc:permits cc:Sharing;
         cc:requires cc:Attribution;
         cc:prohibits cc:CommercialUse;
         l4lod:prohibits l4lod:NoDerivative.

(a) (b)

(c) (d)

Fig. 2. Licenses to be composed (a-b-c) and the resulting composite license (d)

Notice that the overhead introduced by the licenses composition framework is con-
stituted by the query execution time to retrieve the licenses associated to the triples
returned as query result (if the set of licenses is known, it can be pre-computed), plus
the SPINdle overhead in computing the composite license. For these reasons, we can
say that the actual overhead is represented by SPINdle but, as shown above, it does not
have a serious impact on query execution time (few milliseconds).

For the AND-heuristic, for a multi-license theory D = (F,L = {l1, . . . , ln},R,�), the
transformation is based on the following sets of rules:
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tand(r) = {ri j : A(r)�O j C(r)|r ∈ ROli }∪{r|r ∈ ROli

sd }∪{r : A(r)⇒−Oi C(r)|r ∈ ROli

dft }
R∗ = {oq : O1q, . . . ,Onq ⇒Oc q, pq : P∗q,P1q, . . . ,Pnq ⇒Pc q

pi∗
q : −Oi∼q ⇒P∗ q, pi

q : −Oi∼q ⇒Pi q, f i
q : ¬Oiq ⇒Pi q |

li ∈ L,∃r ∈ ROli
,C(r) = q}

Defeaters are modeled as in the tor transformation. The intuition behind the rules ri j

is that all rules can be use to attack any other rule, irrespectively of the license. Thus
for every obligation rule in a license we create a defeater with the same content for
each other license. For the AND-composition of obligations we need that a literal q is
provable as obligation in every license; this is achieved by rule oq. We have to do the
same for permissions. However, permission requires that at least one license permits q
and for all other licenses q is either permitted or not forbidden. To achieve this we create
a ‘special’ modality P∗ and rules linking this to provability of the negative modality−Oi

(encoding permission in SPINdle). Finally, for each license we create its permission
modality Pi and a literal q can be derived with such modality if it is permitted in license
li (−Oiq, rules pi

q), or if q is not forbidden by that license (i.e., ¬Oiq, rules f i
q).

Theorem 2 shows that the transformation of tand into the logic of SPINdle is correct.

Theorem 2. Let D = (F,L,R,>) be a multi-license theory. T (D) = (F,L,{r|r ∈ Rc}∪
{tand(r)|r ∈ ROli }li∈Lic ∪ R∗,� ∪{(ri j,si j),(ri j ,s),(r,si j)|r � s}li,l j∈Lic). Then D ≡Σ
T (D).

5 Related Work

The logic we presented is an extension of the logic of [8,9]. The debt on previous work
is the general idea of the formalism, and the proof theory for obligations. What is new
is the way for composing licenses (Section 3.4), and for computing permissions and
relative results (Section 3.5). Also, we proved that there is a transformation mapping
the new logic into SPINdle.

Pucella and Weissman [20] propose a logic to check whether the user’s actions follow
the licenses’ specifications. They do not deal with composition and do not provide a
deontic account of licenses’ conclusions. Furthermore, their logic is not able to handle
conflicting licenses.

Nadah et al. [19] propose to assist licensors’ work by providing them a generic way
to instantiate licenses, independent from specific formats. We go towards the definition
of a composite license while they go towards the definition of a specific ontology (about
100 concepts) used for the translation in the different formats.

Gangadharan et al. [6] address the issue of service license composition and compat-
ibility analysis basing on ODRL-S, an extension of ODRL to implement the clauses of
service licensing. They specify a matchmaking algorithm which verifies whether two
service licenses are compatible. In case of a positive answer, the services can be com-
posed and the framework determines the license of the composite service. Truong et
al. [22] address the issue of analyzing data contracts, based on ODRL-S. Contract anal-
ysis leads to the definition of a contract composition where first the comparable contrac-
tual terms from the different data contracts are retrieved, and second an evaluation of
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the new contractual terms for the data mash-up is addressed. Villata and Gandon [23]
follow a similar approach to evaluate the compatibility of CC licenses and compose
them. There are several differences w.r.t. these approaches: (i) the application scenario
is different (service composition vs. Web of Data); (ii) we allow for a normative reason-
ing which goes beyond basic compatibility rules by exploiting normative compliance.
However, common points are the idea of merging the clauses of the different licenses/-
contracts, and the use of RDF for licenses/contracts representation.

Krotzsch and Speiser [14] present a semantic framework for evaluating ShareAlike
recursive statements. In particular, they develop a general policy modelling language,
then instantiated with OWL DL and Datalog, for supporting self-referential policies as
expressed by CC. In this paper, we address another kind of problem that is the compo-
sition of the deontic components of single licenses into a composite license.

Gordon [7] presents a legal prototype for analyzing open source licenses compatibil-
ity using the Carneades argumentation system. Licenses compatibility is addressed at a
different granularity w.r.t. our purpose, and licenses composition is not considered.

The attachment of additional information like rights or licenses to RDF triplets is
linked to an active research field. Carroll et al. [5] introduced Named Graphs in RDF to
allow publishers to communicate assertional intent and to sign their assertions. More-
over, the W3C Provenance WG defines the kind of information to be used to form
assessments about data quality, reliability or trustworthiness [12].

6 Conclusions
In this paper, we propose an automated framework for licenses composition based on
deontic logic. The rationale behind this framework is to build a composite license start-
ing from the single licensing terms associated to heterogeneous data. We adopt deon-
tic logic to ensure the compliance of the composite license with respect to the single
licenses composing it. We evaluate the feasibility of the automatic generation of the
composite license on the SPINdle defeasible reasoner.

There are several lines to pursue as future research. First, we will develop a stan-
dalone licensing module generating the machine-readable composite license every time
a query returns multi-licensed data. Second, we still have to consider the case of data
obtained by inference from one or several licensed datasets. In particular, a special case
we have to address is the one of queries going beyond basic SELECT queries, where
aggregations are present, e.g., return the average, sum, etc. of the data possibly over
distributed datasets. Third, the logic should take into account the temporal aspect of
licenses. In particular, two concepts to be considered are validity time (point in time
where a deontic component is true) and reference time (point in time the obligation,
prohibition or permission applies to) of an obligation, prohibition or permission. Fi-
nally, even if our framework allows to reason about certain characteristics of licenses,
e.g., whether attribution is required or commercial usages are permitted, it is still an
open problem the fact that there is no uniform, cross-national definition of essential
legal terms. We will investigate suitable solutions with further legal experts.
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Abstract. Nowadays, search on theWeb goes beyond the retrieval of tex-
tual Web sites and increasingly takes advantage of the growing amount of
structured data. Of particular interest is entity search, where the units
of retrieval are structured entities instead of textual documents. These
entities reside in different sources, whichmay provide only limited informa-
tion about their content and are therefore called “uncooperative”.
Further, these sources capture complementary but also redundant infor-
mation about entities. In this environment of uncooperative data sources,
we study the problem of federated entity search, where redundant infor-
mation about entities is reduced on-the-fly through entity consolidation
performed at query time. We propose a novel method for entity consoli-
dation that is based on using language models and completely unsuper-
vised, hence more suitable for this on-the-fly uncooperative setting than
state-of-the-art methods that require training data. Further, we apply the
same language model technique to deal with the federated search problem
of ranking results returned from different sources. Particular novel are the
mechanisms we propose to incorporate consolidation results into this rank-
ing.We perform experiments using realWeb queries and data sources. Our
experiments show that our approach for federated entity search with on-
the-fly consolidation improves upon the performance of a state-of-the-art
preference aggregation baseline and also benefits from consolidation.

1 Introduction

Taking advantage of the growing amount of structured data on the Web has been
recognized as a promising way to improve the effectiveness of search and has
therefore gained the interest of researchers and industry [1]. This development is
also driven by the demand from Web search users, whose most dominant search
task is the search for entities. Recent studies showed that about 70% of Web
search queries contain entities [2] and that the intent of about 40% of unique
Web queries is to find a particular entity [3]. In contrast to named entities,
which are text tokens identifying specific concepts, e.g. the name of a person,
the increasing amount of structured data on the Web as well as the availability
of knowledge bases allows to perceive entities not just as single tokens, but as
structured objects with attributes and values, e.g. Figure 1a illustrates an entity
representing the movie “Star WarsIV - A New Hope”.

� Work done while being visiting researcher at Yahoo! Labs, Barcelona.
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(a) A structured entity
with four attributes
and values

(b) The broker obtains only the ranked
result lists RSA, RSB, RSC from each
data source and merges them into one
single ranked list

Fig. 1. Federated Entity Search in an uncooperative setting

The entities reside in different sources across the Web or originate from differ-
ent knowledge bases. These sources capture redundant but also complementary
information about entities. Hence, consolidating co-referent entities referring to
the same real-world object and providing search functionalities over co-referent
entities is a crucial step towards exploiting structured data sources for retrieval.
In particular, the need for large scale and fast coreference has been recognized
and recently a solution in this direction has been proposed [4]. This solution
and the comprehensive work of the database community in this realm [5–7] as-
sume full access to the entire datasets to compute features such as weights of
attributes, co-occurences or to learn parameters, which are then used to resolve
all coreferences between two or more datasets in one run. However, access to the
entire datasets is either not granted in many application scenarios such as search
over multiple Web data sources (where data access is only provided via APIs for
single requests), also called federated search over uncooperative sources [8, 9], or
many data sources are highly dynamic, imposing a high burden on batch pro-
cessing to keep up with frequent changes and to provide fresh information for
time sensitive applications such as search over stock quotes, movies and timeta-
bles. Distributed document retrieval for uncooperative environments has been
studied in the IR community [8, 9]. We investigate the task of federated entity
search with structured entities consisting of a varying number of attributes and
corresponding values. This task is different from document retrieval, where each
document consists of exactly one text body.

Contributions. We address the setting of uncooperative environments, where
neither prior information about the data sources nor training data is available
and propose a language model (LM) based approach for federated entity search
in uncooperative environments using query time entity consolidation.
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We present three contributions: (1) We propose a LM based unsupervised ap-
proach for computing the similarity between entities and use it to perform query
time entity consolidation. (2) We reuse these LM based representations of enti-
ties and we show how this entity representation in combination with composite
relevance models [10, 11] can be used to obtain a combined ranking of results
returned from different sources. The mechanisms we propose to incorporate con-
solidation results into this ranking are particularly novel. (3) In our experiments,
we employ real-world Web queries and data sources and investigate the effects
of federated search in combination with consolidation on retrieval performance.
We show that our approach exceeds a state-of-the-art preference aggregation
method for federated search [12] and show the advantages of consolidation for
search in federated settings.

2 Overview

We follow the definition by Pound et al. [3] and define entity search as the task
of answering arbitrary information needs related to particular aspects of entities,
expressed in unconstrained natural language and resolved using a collection of
structured data. We address a particular kind of entity search, namely the search
over multiple data sources, called federated search, which entails the three main
problems of source representation, source selection, and result merging [8, 9].
We focus on the latter for federated entity search in uncooperative settings as
illustrated in Figure 1b, where only ranked result lists of entity descriptions
are obtained from each source and no further information about the sources is
available. In this scenario, we perform consolidated entity search where entities
representing the same real-world object, called co-referent entities are identified,
linked and incorporated into ranking to avoid redundant results. Further, Web
data is heterogeneous in the sense that differences in schema and vocabulary are
common. Coping with schema differences has been studied in the area of schema
matching and for the given setting also in our previous work [11]. Here, it is
considered as out of scope. We illustrate the addressed problem throughout the
paper using the following example.

Example 1. Assume the keyword query “star wars” is issued to three data sources,
which hold information about movies. Each source returns a ranked list of struc-
tured entities as illustrated in Figure 1b and the same lists are shown in more
detail in Figure 2a. We observe that the lists contain co-referent entities, e.g. eB2

in RSB and eC1 in RSC both represent the same movie “A New Hope”. If we put
all entities in one result list, we obtain a list with redundant results. Later, we will
refer to this case without consolidation as CRMw. In our example, we observe
in Figure 2b that within the first six ranks only three distinct entities are shown,
because {eB2, eC3, eA2} and {eC3, eC2} are co-referent (indicated by identical line
type). Our goal is to consolidate the results by grouping co-referent entities into
sets as illustrated in Figure 2c, which we will later refer to as CRMc. In particu-
lar, we will focus on ranking in this setting and investigate the effects on retrieval
performance of federated search with and without consolidation.
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Fig. 2. (a) Result lists of each source. (b) Merged result list containing co-references
without consolidation (CRMw). (c) Consolidated result list with co-referent sets using
the entity on position 1 as label (CRMc).

We focus on Web data for which the RDF model has been proposed as a W3C
standard for data representation and interchange. For the sake of generality,
we omit RDF specific features, like blank nodes, and employ a general graph-
structured data model.

A data source is a directed and labeled graph G = (N,E). The set of nodes N
is a disjoint union of entities NE and literals NL, i.e. N = NE�NL. Edges E can
be conceived as a disjoint union E = EE �EL of edges representing connections
between entities, i.e. a(ei, ej) ∈ EE , iff ei, ej ∈ NE , and connections between
entities and literals also called attribute values, i.e. a(e, v) ∈ EL, iff e ∈ NE and
v ∈ NL. Given this graph G, we call the bag of attribute value edges A(e) =
{a(e, v) ∈ E|v ∈ NL} the description of the entity e ∈ NE , and each a(e, v) ∈
A(e) is called an attribute of e. The set of distinct attribute labels of an entity
e, i.e. A′(e) = {a|a(e, v) ∈ A(e)}, is called the model of e. Figure 1a illustrates
entity eB2, which has the model A′(eB2) = {label, director, characters, release}.
In our Web scenario, each data source is represented by a graph GX , for example
Figure 1b illustrates three data sourcesX = {A,B,C}. Although arbitrary edges
can connect entities across data graphs, we are only interested in edges denoting
that two entities are co-referent, i.e. asame(eX , eY ), eX ∈ GX , eY ∈ GY , e.g.
owl:sameAs 1.

3 On-the-fly Entity Consolidation

Entity consolidation is typically performed through the main steps of repre-
senting entities as attribute value pairs, and finding the appropriate similarity
metric and threshold to determine whether two given entity representations refer
to the same object or not, i.e. when the similarity computed using the metric
exceeds the threshold. Since several attributes are typically used, state-of-the-art
methods employ supervised machine learning techniques to learn the weights for
attributes or also the metrics and thresholds [13]. In this section, we (1) rep-
resent attribute values as language models (LMs), (2) employ a specific notion

1 http://www.w3.org/TR/owl-ref/#sameAs-def

http://www.w3.org/TR/owl-ref/#sameAs-def
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of distance for LMs as the similarity metric, and (3) propose an unsupervised
technique to estimate the weight associated with each attribute LM. In our ap-
proach, all the steps needed to derive the LM-based entity representation as
well as the actual detection of coreferences are performed on-the-fly during the
execution of a query.

3.1 Entity Representation

In entity search, composite LMs have been proposed to represent an entity as
a collection of multinomial distributions, each capturing one particular entity
attribute [11, 14] and are used to compute the similarity between an entity and a
query. This modeling is suited when entities are not only associated with concise
values but descriptions – which is the case for many Web data sources capturing
entities via attributes such as label and comment. We use this representation
also for the consolidation task.

The composite LM P for an entity e is constructed by considering all attributes
in the model of e, a ∈ A′(e). That is, P contains a LM Pe(w|a) for every a ∈ A′.
Every Pe(w|a) captures the probability of observing a word w in the attribute
values of a associated with e. Let Va(e) be the bag of value nodes of the attribute
a associated with e, i.e. Va(e) = {v|a(e, v) ∈ E, v ∈ NL}, and w a word in the
vocabulary, then Pe(w|a) is estimated using maximum-likelihood as follows:

Pe(w|a) =
∑

v∈Va(e)
n(w, v)∑

v∈Va(e)
|v| (1)

where n(w, v) denotes the count of w in the value v, and |v| is the total number
of words in v.

3.2 Similarity Metric

Given two entities in the result lists, eX ∈ RSX and eY ∈ RSY , we determine
whether they are co-referent or not using a similarity metric. Standard met-
rics used by consolidation methods include edit distance and Jaccard similarity,
which can be applied to two given attribute values. The former captures the
number of edit operations needed to transform one value to the other while the
latter is based on the word overlaps between the two values. Since we apply LMs
to captures values, we measure the overlap of the LMs with the Jensen-Shannon
divergence (JSD), which is based on the Kullback-Leibler divergence (KLD). The
JSD however has the advantages of being symmetric, bounded (0 ≤ JSD ≤ 1),
smoothed and its square root is a metric. Given the probability distributions
PX , PY and R = 1

2PX + 1
2PY , the JSD is defined as:

JSD(PX ||PY ) =
1

2
KLD(PX ||R) +

1

2
KLD(PY ||R) (2)

whereKLD(P ||R) =
∑

w P (w) log2
P (w)
R(w) . For computing the distance d between

two entities eX and eY , d(eX , eY ), we use the square root of the JSDs calculated
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over the LMs constructed for all attributes a that both entities have in common
and weight each overlap measured by the JSD by ω(a):

d(eX , eY )=
1∑
ω(a)

∑
a∈A′(eX )∩A′(eY )

ω(a) JSD(PeX (w|a)||PeY (w|a))
1
2 (3)

3.3 Estimating Weights

The weight ω(a) expresses how discriminative and identifying an attribute a is.
We determine ω(a) w.r.t. the result lists RSX and RSY . First, we construct a LM
PX(w|a) analog to Equation 1. However, PX(w|a) captures the values of all the
entities inRSX instead of a single entity, i.e. Va(RSX) = {v|a(eX , v), eX ∈ RSX}
instead of Va(e). Then, we compute the entropy H(P ) = −

∑
w P (w) log2 P (w)

and set ω(a) to:

ω(a) =
1

2
H(PX)H(PY ) (4)

The rationale behind this formulation is that the entropy is high, if the bag
Va(RSX) contains many diverse values, and it is low, if Va(RSX) contains simi-
lar and hence less discriminative values. Attributes with more diverse values are
associated with higher weights because they provide more discriminate informa-
tion to distinguish entities.

3.4 Entity Similarity

Given the above distance function and two result listsRSX=(eX1, eX2,..., eXi,...)
and RSY = (eY 1, eY 2,..., eY j ,...), we consider two entities eX ∈ RSX and eY ∈
RSY as co-referent, if their distance is below a threshold t and if they are mu-
tually the closest to each other, see Equation 5. The latter condition assures
that only co-references are established, if a candidate entity is favored over all
alternatives. Note, that we also compare the sources to themselves, i.e. X = Y ,
to find co-references within a source.

d(eX , eY ) < t ∧ (5)

d(eX , eY ) = min
i

d(eXi, eY ) = min
j

d(eX , eY j)

4 Ranking Consolidated Entities

We continue our previous Example 1 to illustrate our procedure. First, we ob-
tain the result lists RSX for each source X as depicted in Figure 2a. In addition,
we have now a set of edges Asame linking co-referent entities. Figure 3 depicts
this situation for our example, we see the three result lists and four asame edges
(arrows). The co-references Asame are either obtained through our consolida-
tion process, are already part of the data or provided by external services such
as http://sameas.org. We aim at merging these entities into one ranked list
while taking the coreferences into account. In the following we present our rank-
ing model for consolidated entities and then show our strategy for exploiting
co-references.

http://sameas.org
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Fig. 3. Three lists RSX with four asame:as edges (arrows)

4.1 Ranking for Structured Web Data

The general concept we apply for ranking is based on pseudo-relevance feedback
[10]. We adapt this idea and apply it to federated entity search. In line with
this concept, we build two models, one Query Model (QM) capturing the in-
formation need with the help of relevance feedback and Resource Models (RM)
representing results to be ranked. Each RM is scored against QM and sorted by
its score into the final result list. Both models, QM and RM, share in general
the same structure as entities, as described in Section 3.1, i.e. they contain a
set of attribute labels A′ and a corresponding LM P ∈ P for each attribute.
Formally, the model M ∈ {QM,RM} is a 3-tuple M = (E , A′,P). We denote
the set of entities E of model M as E(M) and the set of attributes A′ of model
M as A′(M) = {a|a ∈ A′(e), ∃e ∈ E(M)}. As before for the consolidation, we
use the JSD (Equation 2) to measure the distance between two corresponding
LMs for all attributes that QM and RM have in common:

Score(QM ||RM) =
∑

a∈⋂
X A′(RSX)

JSD(PQM (w|a)||PRM (w|a))
1
2 (6)

The LMs of QM and RM, see Equation 7, are computed from the respective
LMs of the entities that are comprised by the model and each entity LM Pe

(Equation 1) is weighted with an entity specific weight μ(e):

PM (w|a) =
∑

e∈E(M) μ(e)Pe(w|a)∑
e∈E(M) μ(e)

(7)

The weight μ is the crucial part of the query model QM . For RM the weight
is constant μ = 1. The weight allows to control the impact of each entity on
the query model. With the weight μ, we adapt the ranking framework to the
federated search setting and exploit the ranking of the individual sources. We
use the discounted rank r(eX) of the entity eX in the result list RSX to weight
its influence on the query model:

μ(eX) =
1

log(1 + r(eX))
(8)

By using the ranks in μ, we take advantage of the ranking of the sources.
Although the sources do not provide any information explicitly about them-
selves, all their knowledge, such as domain expertise, popularity, click-data, and
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other signals, are incorporated in their ranking function and thereby implicitly
conveyed in the ranking. Moreover, we tie the importance of an entity rep-
resented by its rank to the content and the structure of the entity, which is
captured by the LM of the entity. For QM, we use all entities returned by the
sources, i.e. E(QM) =

⋃
X RSX and we construct one RM for each entity. Note

that an advantage of the above technique is that it is entirely parameter free.
The whole ranking procedure takes all its ingredients from the results returned
by the sources for the initial query. This is an important feature for dynamic
web environments, where data sources may (dis-)appear frequently and a prior
integration into the federated search process is not possible.

4.2 Ranking Consolidation

Given the result lists RSX , we consider each entity e ∈
⋃

X RSX individually
and construct a corresponding model RM for each entity. Then, we compute a
score for each RM and sort each entity by its score to obtain a ranked list of
entities. This ranked list contains all entities in

⋃
X RSX , one entity on each rank

as depicted in Figure 2(b). At this point we have a ranked list without taking
advantage of the co-references. In the experimental Section 5, we refer to this
stage as CRMw. Now, we allow sets of entities on each rank instead of a single
entity. We iterate through the ranked list from the best to the last ranked entity.
During this iteration we make use of the co-references Asame. If we observe an
entity that has co-references, we position the set of all co-referent entities on this
rank and remove them from their original ranks. Within each rank, the entity
previously ranked highest is first and then we order the co-referent entities by
their previous ranks, see Figure 2(c). The result of this strategy is a list of ranked
sets. In the next section, we refer to this consolidated ranking strategy as CRMc.

5 Experiments

We conducted experiments on consolidation and on ranking in two real-world
scenarios. In one scenario users search for movies and in the another one for
scientific publications. We used publicly accessible APIs available on the Web as
sources of entities. Table 1 lists the sources for both scenarios (RT is abbr. for rot-
tentomatoes.com and MS for Microsoft Academic Search). We used Yahoo! Dap-
per2 to mimic an API using the site search of Citeseer and ACM. All data used
in the experiments is available at http://www.aifb.kit.edu/web/Dhe/data.

Real-World Web Search Queries. We extracted 50 real Web search queries
for each scenario from a Web search engine query log. For each scenario, we
manually created a list of more than ten hostnames, which contains those of the
data sources and highly popular sites. We sampled only queries having at least
two clicks on one of these hostnames to obtain queries for our scenarios. Details
on the query sets and the obtained result lists are given in Table 1 and the first
six queries of each set are shown in Table 2.

2 www.open.dapper.net

http://www.aifb.kit.edu/web/Dhe/data
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Table 1. Queries and obtained result lists RS

Source #q |q| ± σ max|RS| avg|RS| ± σ |RS|=∅
M
ov
ie MovieDb 50 2.58±1.3 20 6.18 ± 7.22 6

Netflix 50 2.58±1.3 100 81.7 ± 30.4 0
RT 50 2.58±1.3 50 12.0 ± 15.5 0

P
u
b
l. Arxiv 50 4.4±2.1 100 83.2±36.2 0

ACM 50 4.4±2.1 20 18.6±4.21 0
Citeseer 50 4.4±2.1 10 9.2±2.51 3
MS 50 4.4±2.1 100 89.0±27.3 0

Table 2. Queries with movie-related intend (left) and scientific intend (right)

mission impossible 4 parameter selection in particle swarm optimization
the debt mobility models in inter-vehicle communications literature
hobbit computer effective to academic learning
cowboys and aliens 2011 bivariate f distribution
the hunters 2011 werner krandick
star wars using truth tables to evaluate arguments

Ground Truth. We obtained the ground truth for both tasks through expert
judgments. The distributions of the co-references between the sources are given
in Table 3. We can observe that co-references exist not just between but also
within the results of a data source. Noteworthy, one source (MS) is dominant in
the publication scenario and is part of 83% of the co-references. We followed the
methodology of [15] to obtain relevance judgments for the ranking evaluation. We
rated the top-10 results for each query. In total, there are 604 relevant entities for
the movie scenario, which are distributed among the sources as follows: RT: 40%,
Netflix: 36%, MovieDb: 23%. For the publication scenario, the raters judged 997
entities as relevant. The distribution of the relevant results is here highly skewed.
MS returned 53% of the relevant results, ACM 24%, Arxiv 15%, and Citeseer
8%. Details on the ground truth are shown in Table 4, such as the number of
raters and in particular the inter-rater agreement measured on the “Overlap”
with Krippendorff’s α for ordinal values [16]. Overall, we consider the agreement
of αordinal > 0.66 high enough to rely on the ground truth [17].

Table 3. Ground truth co-references

MovieDb RT Netflix

MovieDb 4
RT 179 33
Netflix 162 248 10

Total: 636

ACM Arxiv Citeseer MS

ACM 25
Arxiv 14 62
Citeseer 13 1 5
MS 239 75 59 232

Total: 725
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5.1 Consolidation Results

The main focus of our work is on the ranking of consolidated entities. In or-
der to obtain co-references, we applied the procedure described in Section 3. In
Figure 4 we see the effect of the threshold t, the only parameter necessary in
our approach, on the the metrics F1, Precision, and Recall w.r.t to coreferences
between sources. As we have seen in the previous section, many co-references
exist also within one data source. We can assume that within a source the same
vocabulary is used and therefore entities are inherently closer to each other in
terms of our similarity metric compared to entities of different sources. Hence,
a lower threshold is needed when consolidating entities of the same source. As
a consequence, we reduce t by 0.2 in this case and report evaluation results for
tmovie = 0.7 and tpub = 0.6 for the respective scenario. We evaluate consolida-
tion from two perspectives. First, we look at each single co-reference link and
second, we evaluate the entire co-reference sets created from these links. Each
co-reference is classified as true/false positive/negative (abbr. TP, FP, TN,FN).
In Table 5c and 5d we see the confusion matrix for both scenarios over the en-
tire query set. The consolidation performance as an average of the co-references
created for each query is reported in Table 5a and the corresponding numbers
for the sets of co-references are shown in Table 5b. Overall, the performance
numbers are high. Although a direct comparison is not possible, the numbers
are in the same order of magnitudes as previously reported for supervised con-
solidation [18]. We now apply these co-references for consolidated retrieval in
the next section.

Table 4. Ground truth statistics and agreement α

Raters Subjects Ratings Overlap αordinal

Consolidation
Publications 6 3076 4246 1170 0.7596
Movie 3 5783 6061 278 0.8204

Relevance
Publications 6 2736 3022 286 0.7051
Movie 3 1616 1992 376 0.6919

Table 5. Consolidation performance

Avg. per Q Movie Publ.

F1-score 0.8233 0.7672
Accuracy 0.9982 0.9996
Precision 0.8063 0.8636
Recall 0.8781 0.7118

(a) Coreferences

Avg. per Q Movie Publ.

#Co-ref Sets 6.9799 9.7000
Set size 2.5100 2.0740
Set Purity 0.7737 0.8713

(b) Sets of coreferences

Movies

TP:556 FP:166
FN:80 TN:286571

(c) Confusion matrix

Publications

TP:518 FP:77
FN:207 TN:1049954

(d) Confusion matrix
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5.2 Ranking Evaluation

We aim to answer two questions: What is the effect of federated search on
retrieval compared to the performance of the sources separately? Does con-
solidation improve federated search? We assess the ranking using Normalized
Discounted Cumulative Gain (NDCG) and report the results in Table 6a for the
movie and in Table 6b for the publication scenario and indicate statistically sig-
nificant improvements using Fisher’s two-sided, paired randomization test [19].

(a) movie (b) publication

Fig. 4. Consolidation over threshold t

Systems. We implement our Consolidated Relevance Model (CRM) approach in
two different ways. (1) We employ a federated versionwithout using co-references
(CRMw) and (2) a federated and consolidated version exploiting co-references
(CRMc) as described in Section 4. We compare CRM against two baselines,
the individual rankings of the sources and the Multinomial Preference Model
(MPM), a state-of-the-art rank aggregation strategy [12]. We use an unsuper-
vised version of MPM, i.e. without the supervised adherence parameter, and
study two preference encodings. The first encoding C(ei, ej) is binary (labeled
MPM ), where one entity ei is preferred over entity ej when ei has a lower rank
(r(e) denotes the rank of e in the result list RS):

C(ei, ej) =

{
1 if r(ei) < r(ej)
0 otherwise

(9)

The second encoding exploits the difference between ranks to express the degree
of how much ei is preferred over ej using discounted ranks (labeled with subscript
d as MPMd):

Cd(ei, ej)=

{
1

log(1+r(ei))
− 1

log(1+r(ej))
if r(ei) < r(ej)

0 otherwise
(10)

Evaluation Settings. Note that all systems return a ranked list of individual
entities except for those that make use of consolidation, where each result in the
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ranked list returned by MPM , MPMd and CRMc represents a set of entities
instead of a single entity as illustrated in Figure 2(c). In order to assess the
relevance of such a set, we use the best ranked entity within that set as the
representative element, called the label as depicted in Figure 2(c). The relevance
of the set is determined based on the relevance of its label, except for expand as
described below. We evaluate the systems in three different settings:

Table 6. Retrieval performance (NDCG)

System Std NRel Expand

MovieDb 0.4128 0.4025 n/a
RT 0.5360 0.5165 n/a
Netflix 0.5191 0.5141 n/a

CRMw 0.8699† 0.4992 n/a

MPM 0.4936 0.5037 0.8070
MPMd 0.5232 0.5232 0.8366
CRMc 0.5787†� 0.5515◦• 0.8744◦
†stat. diff. α < 0.05 to RT, �to MPM,MPMd

◦stat. diff. α < 0.05 to MPM , •to CRMw

(a) Movie scenario results (NDCG)

System Std NRel Expand

Arxiv 0.1824 0.1737 n/a
ACM 0.3537 0.3455 n/a
Citeseer 0.1630 0.1551 n/a

Publ. 3 sources (Arxiv, ACM, Citeseer)

CRMw 0.3592 0.3310 n/a

MPM 0.2273 0.2273 0.2434
MPMd 0.2541 0.2542 0.2697
CRMc 0.3524� 0.3462�• 0.3697�

�stat. diff. α < 0.01 to MPMd,
•to CRMw

Publ. 4 sources (as above and MS)

MS 0.6474 0.5976 n/a

CRMw 0.5463 0.4430 n/a

MPM 0.4568 0.4230 0.4894
MPMd 0.4869 0.4743 0.5291
CRMc 0.5096 0.4822∗ 0.5604
∗stat. diff. α < 0.01 to CRMw

(b) Publication scenario results (NDCG)

Std: First, we assess the results in the standard way by going through the ranked
lists as they are returned by the systems and simply assess the relevance of each
rank using the ground truth.

Nrel: In the Std. setting, results are considered relevant even if the same results
(i.e. co-referent entities) have been seen in the list before. The Nrel setting
accounts for redundancy by considering subsequent occurrences of co-referent
entities as non-relevant, as suggested by [18]. Even if a result is relevant according
to the ground truth, it is considered here as not relevant when a co-reference has
already been seen.

Expand: The third setting gives special treatment to the systemsMPM ,MPMd

and CRMc that perform consolidation. In the previous settings, relevance as-
sessment of these systems is simply based on the labels of result sets. In this
expand setting, we assess the results in the way proposed for clustered IR [20].
The idea is that a user goes from the top to the bottom of the result list, and
checks the label of each cluster (set of results in this case). If a label is considered
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relevant, the set is expanded and each entity in the set is assessed individually
using the ground truth.

Std Results. First, we look at the effect of federation. When comparing the
single sources, shown in the first three lines in Table 6a for the movie scenario,
we observe that RT performs best (bold digits). Further, note that the per-
formance differences among these sources are relatively small. The federated
approach CRMw outperforms the individual results by 62%. For the publ. sce-
nario, we look at two setups, one with the three sources that share about the
same amount of co-references and relevant results, and a second setup with a
fourth source - MS, which is ‘an outlier’ because it contains 53% of the rele-
vant results and is part of 83% of the co-references, as described above. For the
3-source setup, we observe a different initial situation, see Table 6b. The best
source ACM performs about twice as good as the second best source Arxiv.
Given this unbalanced situation, our federation approach CRMw performs only
marginally better than the best source. When we look at the publ. scenario with
4 sources in the lower part of this table, we observe that the source MS is again
twice as good as the previously best source ACM. Further, adding MS to the
pool of sources, improves the performance of CRMw. However in this skewed
setting, the federated approach CRMw performs not as good as the best source
MS, but better than the three other sources. In summary for the std. setting,
we observe that federation improves retrieval if the sources have about the same
performances. Otherwise, it yields improvements upon most sources but cannot
guarantee the best performance. Next, we investigate the effect of federation in
combination with consolidation, i.e. the systems MPM , MPMd and CRMc.
Through consolidation entities are grouped into sets and as a consequence there
are less (relevant) results, i.e. (relevant) set labels, in the ranked list after con-
solidation than entities in the list before consolidation. In the movie case, where
more co-reference sets exist (3.6 sets per query in the top10 ranks), we observe
as expected that NDCG is much lower than without consolidation. The same
holds for the publ. scenario although the difference is smaller because there are
fewer and smaller co-reference sets (2.9 sets/query in the top10 ranks). Overall,
we observe that federation without consolidation performs best when assessing
relevance using the standard method. We note that however, since the ranked
list with consolidation contains sets of entities, it actually captures much more
(relevant) results that are not considered when only assessing their labels.

NRel Results. We perform the same analysis as before, but now regard re-
dundant results as not relevant. Different to the std. setting, we observe that
the federated system CRMw performs worse than the best single data source
for both movies and the two publication setups. This indicates there were many
co-referent results (redundancy) that are not reflected in the results of the std.
setting. In summary, when taking redundancy into account, we observe that fed-
eration alone no longer improves over the single data sources. If we investigate the
combined effect of federation and consolidation with the system MPM ,MPMd,
and CRMc, we observe a different result. Now, the consolidated CRMc improves
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upon the non-consolidated CRMw system in all cases. Further, CRMc outper-
forms bothMPM models, which do not always outperform the non-consolidated
run. For the 4-sources publ. scenario, we observe that the consolidated run im-
proves upon the non-consolidated runs, but not upon the outlier source MS. In
summary, we observed that consolidation helps federated search when redundant
results are considered non-relevant.

Expand Results.Also here CRMc consistently improves upon theMPM mod-
els. To see the effect of expanding relevant sets as opposed to only using their
labels (and keeping sets with non-relevant labels collapsed), we compare the re-
sults of expand with the best results obtained in the std. setting, where federated
search without consolidation (CRMw) performed best. We observe that CRMc

also slightly improves upon CRMw for both scenarios. This means that consoli-
dated federated search (CRMc) actually outperforms federated search (CRMw)
when the sets’ content representing consolidation results are taken into account.
Hence, consolidation can even be useful when redundancy is not considered in
the evaluation procedure.

Runtime Performance. The main focus of our work is the effectiveness of
ranking strategies. We measured the runtime performance of CRMc on a stan-
dard laptop with Intel Core 2 Duo 2.4 GHz CPU, 4 GB memory and 5400rpm
HDD. On average, consolidation took 0.7s for an average of 117 entities per
query in the movie scenario, and 2.2s for 206 entities in the publication sce-
nario. Ranking took 0.4s for the movie scenario and 1.4s for the publication
scenario. These run times are small compared to the amount of time neces-
sary for remote API calls, which took 4s for the publication case and 31s for
the movie case. In the latter case, the time includes several API calls because
some movie sources return a list of IDs for a query and then each ID has to
be fetched individually. This is because these APIs were in fact designed for a
different use case (browsing) and are thus, not suitable for online search. In ad-
dition, we used developer keys, which may have a lower priority than production
keys when requesting data. A demonstrator of our system is available online at
http://km.aifb.kit.edu/services/conesearch.

6 Related Work

Entity Consolidation is also referred to as record linkage, instance matching
or object de-duplication, has a long history in database research and many ap-
proaches have been proposed [5–7]. Note, that consolidation is different to fusion,
where the goal is to blend instances into one object [21]. With respect to our
work, we focus on entity consolidation in a Web context with limited data access.
Recent work on consolidating entities for Web search shows that consolidation
improves search performance by achieving more diverse and less redundant re-
sults [18]. While they use a supervised approach relying on training examples,
we propose an unsupervised approach that is more suitable to uncooperative
settings where training data is not available. In a Semantic Web context, the

http://km.aifb.kit.edu/services/conesearch
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task of entity consolidation is equivalent to establishing owl:sameAs links be-
tween entities. Using statistics derived from the entire datasets to establish such
links as been studied by [22], who present a self-learning approach, by [23], who
focus on scalability, and by [24], who propose statistics as well as logic-based
approaches to match entities. However, all these unsupervised approaches are
not targeting at search, but have the goal to integrate entire datasets. Hence,
they require access to the full datasets, while our approach only uses data re-
trieved for a given search query. The aspect of query-time data integration has
been studied for schema alignment during Web data search [11], to identify and
consolidate records helpful to process a database query [25], and in the context
of probabilistic databases [26].

Entity Search has been studied in many approaches [1, 27–30]. The aforemen-
tioned approaches assume a central index comprising the entire data collection.
Integrating the data of several sources has been studied in vertical search [31],
where the results of different verticals are combined at the front-end level but
not at the level of the search algorithms.

Federated Search (distributed IR) has been thoroughly studied for document
retrieval [8, 9, 32], where the unit of retrieval are textual documents and not
structured entities. Query translation for federated entity search has been inves-
tigated by [30], who use source-specific query generators to adapt a structured
query to each source. Source selection and ranking algorithms are studied in [27].
We use the rank aggregation strategy of [12] as baseline in our experiment. It
requires the presents of coreferences to form a consensus ranking. Our work dif-
fers by consolidating entities at query-time and incorporating content, structure
and the original rank into the ranking strategy.

7 Conclusion

We have presented the first unsupervised solution for federated entity search
using on-the-fly consolidation for uncooperative environments. Our consolidation
as well as our ranking technique are incorporated into the language model based
IR framework and operate without prior knowledge or training examples, but
only on the data obtained for one query and hence are suitable for search over
Web data sources with access through APIs. Our experiments investigate the
effects of consolidation and federation on retrieval performance. The results show
that our approach outperforms a state-of-the-art preference aggregation strategy
and that consolidation improves the retrieval performance.

Acknowledgements. This work was partially supported by the EU FP7 project
XLIKE (Grant 288342).
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Abstract. The Semantic Web has matured from a mere theoretical vision to a 
variety of ready-to-use linked open data sources currently available on the Web. 
Still, with respect to application development, the Web community is just start-
ing to develop new paradigms in which data as the main driver of applications 
is promoted to first class status. Relying on properties of resources as an indica-
tor for the type, property-based typing is such a paradigm. In this paper, we in-
spect the feasibility of property-based typing for accessing data from the linked 
open data cloud. Problems in terms of transparency and quality of the selected 
data were noticeable. To alleviate these problems, we developed an iterative 
approach that builds on human feedback.  

1 Introduction 

The amount of data available on the Web has considerably increased in the last few 
years. Despite huge efforts in the area of the Semantic Web to make such web data 
machine-processable, only a few applications have been developed that can take full 
advantage of this data. Besides the general sparseness of semantic data, this behavior 
is currently explained by the different representation formalisms of semantic data and 
application programming languages causing a problem of data-model/programming 
language interoperability. Most semantic data stores provide data in Resource De-
scription Framework (RDF) graphs or ontologies represented in the OWL Web  
Ontology Language. Accessing such data from state-of-the-art object oriented (OO) 
programming languages requires mappings from entities and ontology categories to 
programming structures like classes. Fortunately, similarly to Object Relational Map-
ping (ORM) [1] for relational databases, there are frameworks available that map 
RDF and/or OWL to programming structures by means of textual code generation. 
Well known frameworks include Jena [2] and RDFReactor [3].  

However, generated code is often unintelligible, hard to customize and almost im-
possible to maintain. While some frameworks make customization and maintainabili-
ty more convenient by including support for IDEs, compile-time meta-programming 
[4] represents a better technique to cope with the interoperability problem. With com-
pile-time meta-programming, developers can programmatically generate required 
classes instead of providing them directly into the source code. One such approach 
was recently presented by Microsoft as a feature of F# 3.0 (http://msdn.microsoft.com 
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/en-us/library/hh156509.aspx). Called type provider, it’s a component providing 
types, properties and methods for an external data source without having to write 
these types manually for each application. Type providers seem promising for access-
ing data from single data stores. But because each data source may have its own vo-
cabulary, an RDFS type provider for the Linked Open Data cloud (LOD) would be 
useless without proper cleansing. With no global ontology to drive the cleansing and 
alternative solutions like automatic ontology alignment offering just average quality, 
such a type provider would require manual mapping during application development.  

When writing an application, software engineers have some mental representation 
of “things” that are required for the application. It is common knowledge in cognitive 
psychology (imported in information science [5]) that concepts take the place of 
thoughts. They are represented through symbols (words, sounds, etc.), defined inten-
sionally by a set of properties, and extensionally by a set of entities. The goal in pro-
gramming with web data is to easily access the entities that correspond to a concept 
the software engineer thinks of. This concept may easily be expressed by its symbol, a 
word label. In the LOD cloud, entities are associated with concept labels by means of 
the rdf:type property. Detrimental to our purpose, types are provided in different gra-
nularities, e.g., Movie, Animation, FrenchFilm, etc. We found about 1,700 entity 
types for movies in the LOD cloud. Furthermore, for some entities, no type is pro-
vided. In consequence, accessing entities through their type labels is difficult.  

We believe that a property-based data access model as recently sketched in [6, 7] is 
more suitable for programming with semantic data. The type information for such a 
programming approach is given by properties: A type is defined by a set of required 
properties, and every entity with at least those properties is part of that type. When 
designing an application, during the data modeling phase, developers usually think in 
terms of entities – no clear cut types, but concepts like Movie, Actor, etc. When writ-
ing code, these concepts are bound to properties which are required for the program 
logic. This way, concepts are extended to a minimal intensional definition comprising 
core properties (e.g. Movie ≡ {Title, Genre, Director}) required by the program. Simi-
lar to the case of structural subtyping or DuckTyping [8], this definition is used to 
identify entities that belong to the concept (in this case all entities providing values 
for Title, Genre, Director are considered to be Movies). We inspected the feasibility 
of such a programming paradigm for accessing data from the LOD cloud. Our expe-
riments show that simple property-based data access can lead to selecting all kinds of 
entities. For example Music, Video-Games, and Books were also selected when trying 
to access Movies. The quality of the selected data is poor if properties describing the 
intended concept are not well chosen. Based on this observation, we propose ProS-
WIP (Property-based Semantic Web Interactive Programming), an approach which 
empowers property-based data access while maintaining quality under control. Part of 
a cloud-based centralized service for programming the Semantic Web, ProSWIP will 
be accessible from IDEs by means of plugins. Starting from properties provided by 
application developers, ProSWIP estimates the quality of the selected data and if ne-
cessary, identifies additional properties that have high positive impact on the quality. 
In an iterative process, it assists developers to extend the property-based type  
definitions while checking that the extended definition still matches their intentions.  
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The contribution of this paper can be summarized as follows: An extensive inspec-
tion of the property-based paradigm’s feasibility for accessing data from the LOD 
cloud; the presentation and evaluation of a quality metric enabling transparency for 
this programming paradigm; and the presentation and evaluation of a property  
selection method for better data quality. 

2 Property-Based Data Access - Use Case 

To assess the feasibility of the property-based paradigm for accessing data from the 
Web, we conducted an experiment focused on developing applications related to 
movies: When writing such applications developers rely on variables that represent 
movie properties. These properties are used in the property-based paradigm as filters 
so that all entities from the LOD cloud which have values for those properties are 
considered to represent movies. By inspecting the selected entities to identify those 
that actually are movies, we get an impression of the quality of the property-based 
paradigm. But first, what are the properties developers require for programming ap-
plications concerning movies? We conducted an extensive analysis (involving about 
6% of the pages on the Web) to find properties typically associated with movies. 

Motivated by the improved Web visibility promised by rich snippets, application 
developers started to adopt the vocabulary provided by schema.org to semantically 
annotate data published on the Web. Schema.org was launched in 2011 as joint initia-
tive of major search engine providers like Bing, Google, Yahoo and Yandex to pro-
vide a unified set of vocabularies which web masters and application developers can 
use to semantically annotate data published on the Web. The goal of the project was 
to ultimately empower semantic Web search. Currently, schema.org provides a collec-
tion of 406 hierarchically built schemata for various concepts ranging from organiza-
tions, persons and events to creative works like movies, music or books. On average, 
schemata comprise about 34 attributes representing properties of the corresponding 
concepts. Movie (http://schema.org/Movie), with a total of 62 attributes, belongs to 
the fewer schemata that are described in more detail. While any subset of these prop-
erties can theoretically be used by application developers to refer to the Movie con-
cept, some properties may be preferred: To establish which of the 62 properties are 
mostly being used when referring to movies, we analyzed a crawl of 870 million web-
sites. Known as ClueWeb12 (http://boston.lti.cs.cmu.edu/clueweb12/) this Web crawl 
is publicly available as a corpus and consists of only English language sites, which 
have been crawled between February and May 2012. More than a year after sche-
ma.org was introduced, only about 1.56% of the web sites from ClueWeb12 com-
prised data that was annotated with schema.org. Overall, only 192 schemata out of 
406 from schema.org were used for annotating data. On average, annotations com-
prised 4.6 properties. For movies, we observed about 40,000 annotations. In Table 1 
we present a list of the properties most frequently used for annotating movie data. For 
movies, annotations comprised on average 4.5 properties, with a minimum of 1 and a 
maximum of 13 properties. These numbers are rather low considering that the Movie 
schema comprises 62 properties. This observation is not particular to movies but has  
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Table 1. Top “Movie” properties (with frequency above 30%) from schema.org frequently used 
for annotating movie data on Web pages from the ClueWeb12 corpus 

Property Movies annotated 
with property 

Title 78 % 
Description 56 % 
URL 44 % 
Director 39 % 
Genre 38 % 
Actors 38 % 
AggregateRating 33 % 

 
been made for other schemata like events or organizations as well, indicating that the 
property-based approach may suffer from under-specification. 

Assuming that, in part, annotated data published on the Web surfaced as a result of 
some Web application, most developers require on average 3 to 5 properties. These 
properties are most likely the ones that have frequently been annotated. For the Movie 
concept, the most probable property-based definitions are {Title, Description, URL}, 
{Title, Description, URL, Director}, etc.  

According to the property-based paradigm, all entities from the LOD cloud fulfil-
ling these properties represent movies. We rely on the Billion Triples Challenge 2012 
(BTC) dataset to represent the LOD cloud. BTC comprises about 1.4 billion quads of 
the form (subject, predicate, object, source) crawled from major LOD data stores like 
Datahub, DBpedia, Freebase, and others during May and June 2012. Entities and 
properties are provided as unique identifiers (URIs) in the quad subjects and predi-
cates respectively. Sources are not relevant for our approach and will be ignored in 
this paper. The process of selecting data for a set of properties provided in natural 
language works as follows: (i) Property URIs are identified for each property. For this 
purpose, all subjects from tuples of the form (*, rdfs:label, p) are selected for each 
property p (* is a wildcard that may be substituted by any URI). Synonym sets pro-
vided by WordNet or obtained through the owl:sameAs predicate are used to extend 
the coverage of each property (more details in Section 3.1). (ii) With p’ as the URI of 
each property p, the entities to be selected are the set of all distinct subjects s for 
which there are tuples of the form (s, p’, *) in the BTC dataset (* is a wildcard that 
may be substituted by any URI or literal). An overview of the selectivity for different 
property sets is provided in Table 2(a). While Title, Description and URL are quite 
general (1,5 million entities), Director, Actors and especially Genre significantly re-
duce the number of relevant entities. 

Precision and recall are the standard measures for evaluating the quality of re-
trieved information or, in our case, the quality of selected entities. Precision is for our 
scenario defined as the proportion of entities representing movies out of all selected 
entities, while recall is defined as the proportion of selected movies out of all movies 
present in the BTC dataset. Computing precision and recall is not trivial in this case 
since it requires recognizing entities that are movies. As the rdf:type property connects  
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entities to different types that may be related to movies (e.g., Films, Animations, 
FrenchFilms etc.), such types are difficult to automatically map to the Movie type 
without a general movie taxonomy. Without claiming full completeness for this expe-
riment, we extracted from the BTC data set a list of movie types by bootstrapping on 
a seed of movies from the Linked Movie Data Base (LMDB - linkedmdb.org/) and 
manually inspecting the resulting types. More details about this process are presented 
in Section 4. In total, we found 1,736 types expressing different kinds of movies. This 
surprisingly large number is mostly due to the very fine classification provided by 
YAGO. With these types we identified a total of 87,273 movies in the BTC dataset.  

As shown in Table 2(b), the choice of properties has notable impact on the quality 
of the selected entities: Precision increases from a mere 0.02 to 0.78 by adding one 
single property to the definition of Movie. Precision values of 0.92 are possible if the 
“right” properties are chosen. Recall is, with 0.3 for the first three most frequent prop-
erties, quite low. The main reason is the sparseness of the data. This becomes extreme 
in the case of Genre with just a few movies having this property.  

Table 2. Nr. of entities from the BTC data set fulfilling each property set (a).  
The corresponding precision and recall values (b). 

Property Set (a)  Nr. of Entities 
from BTC 

(b) Precision / 
Recall 

{Title, Description, URL} 1,447,813 0.018/0.3 
{Title, Description, URL, Director} 29,328 0.78/0.26 
{Title, Description, URL, Director, Genre} 2,266 0.35/0.01 
{Title, Description, URL, Director, Actors} 21,531 0.92/0.23 

 
Overall, the property-based paradigm can lead to high quality/high precision entity 

selection if properties are well chosen. A major obstacle in the process is the lack of 
transparency: The application developer has no idea about the quality of the selected 
entities. Properties belonging to the concept definition are mandatory and values for 
these properties are required by the application. In consequence, none of the entities 
missing on any of these properties can be used. But this has a high impact on recall. 
Combined with the sparse nature of LOD, the more elaborate the definition, the 
smaller the number of selected entities. In this paper we focus on improving the quali-
ty of the selection throughout precision first, by extending the concept definition with 
a set of well chosen properties. We believe once high quality properties are found, we 
can tackle the recall problem by building on structural similarity focused on the  
extending properties, but leave this as the subject of future work. 

3 System Description 

Starting from a property-based type definition with properties expressed in natural 
language and a large collection of data representing facts from the LOD cloud, 
ProSWIP helps the user to keep data quality problems under control: Relying on a  
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measure of property-based data homogeneity, it measures the quality of the entities 
that fulfill the property-based definition. If the quality is low, key properties contri-
buting the most to better data quality are found. The user has to finally decide if those 
properties are part of the type or not. The definition of the intended type is extended 
to include the user feedback and the process is repeated until the quality reaches a 
satisfactory level. For this purpose, the following functionality is required: i) identify 
and select those entities that fulfill the property-based type definition, ii) compute the 
quality of a collection of entities, iii) find properties that, if added to the set of proper-
ties defining the type, significantly improve the quality of the selected data. 

3.1 Property-Based Data Access 

According to the property-based paradigm, the system selects all entities from the 
LOD cloud having all properties from a given set. But in the LOD cloud, properties 
are represented through URIs. Hence, a mapping between the properties in natural 
language and the URIs is necessary. For this mapping, we rely on the rdfs:label prop-
erty, an instance of rdf:property providing a human-readable name for a resource. For 
better coverage, each property is automatically extended beforehand with a list of 
synonyms from WordNet.  
 
Definition 1 (mapping): Given a property p  Properties,  its set of synonyms 

from WordNet (including p) and LOD a large set of 3-tuples of the form (subject, 
predicate, object), we define map as a function map : Properties → ℘(URIs) with: |  : ( , rdfs: label,   (1) 

For some entities the rdfs:label property may be missing. Furthermore, the same prop-
erty may be present in different data stores under different URIs, possibly connected 
to each other through the owl:sameAs property. In consequence, in a dictionary-like 
fashion, each property is actually mapped to a set of URIs all considered synonyms. 

Mapping Expansion Algorithm: 
With Δ , (  define Δ , Δ , : , owl: sameAs,, owl: sameAs,  

 
(2) 

( Δ ,   
(3) 

By repeatedly linking elements through synonyms, two or more properties from the 
definition set may end up being represented by the same set of URIs. This doesn’t 
play any role in the process of selecting the appropriate entities but may surprise the 
user when accessing values for these properties. Such cases are reported to the user. 
 



190 S. Homoceanu, P. Wille, and W.-T. Balke 

 

At the very core of the property-based paradigm, an entity is relevant with respect 
to a specific property if there is a statement or fact asserting that the entity has this 
property. In the context of linked open data, we define the binary relevance of an 
entity w.r.t. a property as a hit function: 

Definition 2 (hit): Given some entity  E represented by its URI, a property in 
natural language p  Properties and LOD defined as above, we define hit as a  
function hit : (URIs × Properties) → {0, 1} with: 

 ( ,  1    iff  ( : ( , ,  0                                                              (4) 

where * is a wildcard that may be substituted by any literal or URI. 
According to the semiotic triangle from cognitive psychology [5], concepts are de-

fined intensionally by a set of properties, and extensionally by a set of entities. Aim-
ing for simple yet effective access to entities corresponding to a certain concept we 
define conceptual variable types in the sense of programming, as a set of properties 
that intensionally define a concept. This type definition may iteratively evolve based 
on user feedback. Because the user feedback may be negative w.r.t. to some proper-
ties (by negative we mean properties that all entities corresponding to the concept 
definitely shouldn’t possess), we define a type as follows: 

Definition 3 (type): Given a concept c, extensionally defined through the set of enti-
ties given by their URIs, Ec, we define the type of concept c denoted Tc as the set of 
properties Tc =  with  the set of positive properties and  the set of 
negative properties ( ), such that: (      , : ( , 1(ii      , : ( , 0(     : ( , 0  

 

(5) 

While here all properties (initial as well as positive and negative extensions) are 
treated equivalently, the fact that not all properties extending the definition are re-
quired is a starting point for future work. As in the case of properties, in the LOD 
cloud the same entities may end up having multiple URIs. For the sake of simplicity, 
we refer to one entity as being uniquely identified by an URI.  

More often than not, the number of properties employed to refer to some type of 
entity is much smaller than the number of properties that would completely define the 
entity type or intended concept. Actually, extensive experiments presented in  
Section 2 show that on average only 4.6 (out of an average of 34 existing) properties 
have been used to link entities to concepts. This suggests that the developer provides a 
sub-set of properties meant to represent the intended (to us hidden) type. This set of 
properties is one of the many possible super-types of the intended type. Starting from 
a property set that builds a type or a super-type for some concept, all entities having 
all these properties are selected as being relevant for the type or super-type:  
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Definition 4 (property-based data access): Given a set of properties Tc  
representing either a type or super-type for a concept c as before, the set of entities 
selected according to the property-based data access paradigm Ec is the set of entity 
URIs that fulfill all properties from Tc: | |

 
 

(6) 

where | , 1  , 0   
In the ideal case, for a concept c the set of properties Tc is the type of c (not a su-

per-type). Then, the set of selected entities Ec also extensionally defines concept c and 
should perfectly satisfy the user needs. However, there is a high probability that a 
super-type is provided. Since the type intended by the application developer is hidden 
to the system and entities have no clear types, there is no trivial way for checking if 
the selected entities correspond to the intended concept. The developer also has no 
feedback whatsoever regarding how good the selected entities match the intended use. 
This has grave effects on the applicability of the property-based data access paradigm. 
Aiming for better transparency of the whole approach, in the next section we  
introduce a measure of quality for the selected entities. 

3.2 Quality of the Selected Entities 

We measure the quality of entities selected through the property-based model as a 
function of entity homogeneity. The basic assumption is that the application develop-
er describes simple concepts (like “Movies” or “Books”) with all corresponding enti-
ties having the same or almost the same properties and not ad-hoc or composed  
concepts (like “all things having a geo-location”). Consider for example that the de-
veloper provides three properties: Title, Description and Genre. Based on these prop-
erties a set of eight entities is selected. Besides the three properties, each entity is 
described by other additional properties like in Table 3. Properties p4, p5 and p6 may 
be, for instance, Duration, Actors and Director while p7, p8 and p9 could represent 
ISBN, Pages and Editor. As you may have intuited, entities e1, e2, e3 and e4 represent 
movies while the remaining entities represent books. Properties in the LOD cloud 
may be missing. This is reflected also in this artificial example with movies e1, e3 and 
e4 providing no values for properties p4 and respectively p6. Analogously, for the enti-
ties representing books. The rest of the missing values are attributed to the fact that 
properties p4, p5 and p6 are proper to movies while p7, p8 and p9 are proper to books. 

More generally, starting from the set of properties, the system selects a set of enti-
ties as described in the previous section. In a relational sense, together with the union 
of all their corresponding properties (stop properties like rdfs:label, owl:sameAs, 
rdf:type, etc. are first removed) these entities form a relational schema (as in Table 3). 
Especially in the field of schema extraction and discovery, the number of null values 
has successfully been used for establishing the quality of the schema [9] – the better 
the schema, the fewer null values, the more homogeneous the data. Thus, if the data is 
homogeneous in terms of structure - their properties - these properties intensionally 
define a single concept. As a measure of homogeneity we measure the property-based  
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Table 3. On rows - the entities that are selected for the properties set {p1, p2, p3}. On columns -
all properties that describe any of the selected entities. 

 

 
similarity between all entities. But there is a problem: Entities may be selected from 
different data sources (DBpedia, LMDB, etc.). Entities with the same type and from 
the same source tend to share the same properties, usually due to the focus of each 
data store. Different sources have different sizes, and small data sources with many 
properties can introduce null values. These null values are artificially amplified by the 
size of the data source. To handle this problem, we reduce all entities having the exact 
same properties to just one witness. This way, for the example presented in Table 3, e3 
and e4 are both represented by one witness:  having the same properties as e3 or 
e4. The same for e6 and e7. The rest are their own witnesses. Based on this observation 
we define the quality of a set of entities as follows: 

Definition 5 (quality): With the notations of Tc and Ec as above and Wc as the set of 
witnesses represented by URIs of entities from Ec, the quality of the selected entities 
is a function,  Q : ℘(URIs) → [0, 1] with: 

( 1 · ( ,  
 

(7) 

,  Wc, n=|Wc| and ,    is the Jaccard similarity index [10]. 

 is the set of properties of  and  is the set of properties of . 

While the Jaccard index is most suitable for measuring structural similarity between 
entities, any other similarity measure may be used here. 

For the example introduced in Table 3, the quality of the selected entities is 0.55. If 
additional information were provided, like the concept the application developer has 
in mind also has property p5, or doesn’t have property p7, the entities selected by the 
property based model restrict to movies only (entities 1 to 4). The quality in this case 
increases to 0.78, the result being slightly affected by the noise (missing values) in the 
data. In the following subsection we present how to find properties better separating 
various types of entities in the result set. 

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

e 1         

e 2         

e 3         

e 4         

e 5         

e 6         

e 7         

e 8         



 ProSWIP: Property-Based Data Access for Semantic Web Interactive Programming 193 

 

3.3 Property Selection 

Finding the list of properties best distinguishing different types is similar to the prob-
lem of induction of an optimal decision tree in data classification, which is a hard 
task. It has been shown that finding a minimal decision tree consistent with the set of 
labeled entities provided as data is NP-hard [11]. Consequently, greedy algorithms 
like the C4.5 are applied for solving this problem [12]. When it comes to selecting 
some property that better discriminates between different types of entities, informa-
tion gain from the field of information theory is the standard measure for deciding the 
relevance of a property [13]. Generally speaking, the information gain is the change in 
information entropy from a prior state to a state that takes some information as given. 
Computing this entropy change is only possible for entities that have class labels (ent-
ity types) attached. Types are provided in the LOD cloud by means of the rdf:type 
property, however entities may have multiple types partly with different granularities 
e.g., the movie “Gangs of NewYork” has types owl:Thing, schema.org/CreativeWork, 
dbpedia-owl:Film, yago:VictorianEraFilms and 15 other types. For other movies, types 
owl:Thing, or schema.org/CreativeWork are missing. All these types are obviously 
related to each other but without an upper ontology or global type hierarchy, it’s  
difficult to make use of the type property to compute the information gain. 

But the type information strongly correlates with the entity properties [14]: In the 
example presented in Table 3, it’s obvious that entities having properties Duration, 
Actors and Director on top of Title, Description and Genre are movies while entities 
having ISBN, Pages and Editor are books. The type information is latent in the prop-
erties. But the missing values for some entities, as well as the heterogeneity of data 
sources make it difficult to fold all movies together to just one witness – a property 
set representing the movie type. Actually what happens is that more witnesses, with 
more or less similar properties, exist for a single type. The problem of reducing simi-
lar witnesses to a dominant type is similar to the problem of dimension reduction.  

Principal component analysis (PCA) is the best, in the mean-square error sense, li-
near dimension reduction technique [15]. In essence, PCA is a basis transformation 
that seeks to reduce the dimensionality of the data by finding a few orthogonal linear 
combinations (called principal components) of the original variables capturing the 
largest variance. Given Ec the set of entities selected according to the property-based 
data access paradigm, and Wc the set of witnesses of entities from Ec, let X be a n × p 
matrix, where n and p are the number of entity witnesses and the number of properties 
of all witnesses, respectively. Let the matrix decomposition of X be  

 
 

(8) 

Y=UD are the principal components (PCs), where the p × p matrix U is the matrix of 
eigenvectors of the covariance matrix , matrix D is a p × n rectangular diagonal 
matrix of nonnegative real numbers on the diagonal with customary descending order, 
and the n × n matrix V is the matrix of eigenvectors of . The columns of V are 
called loadings of the corresponding principal components. Usually the first PCs  
(capturing the highest data variance) are chosen to represent the dominant  
dimensions.  
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For the example introduced in Table 3 (first all data is reduced to binary values 
and centered on the columns such that the mean of each column is equal to 0), the 
first PC shows the strongest variance of 1.16. The next two components show a va-
riance of 0.2 and the rest are 0 or close to 0. With respect to the properties, the coeffi-
cients of the first PC are clustered together according to their variance (Table 4).  
For this example, the three property clusters that build on the most significant PC 
show the existence of two dominant types that differentiate in terms of properties p4, 
p5, p6 and p7, p8, p9. Showing no variance, properties p1, p2 and p3 can be ignored 
since they belong to both dominant types.  

Table 4. Property coefficients of the first three PCs 

 

In general, depending on the selected entity set, more PCs may be significant. To 
dynamically establish which of them show significant variance, we rely on the 
ISODATA algorithm, an automatic thresholding approach [16] that identifies thre-
sholds in one dimensional spaces that best separate a set of data points. With the PCs 
that show variances above the threshold, one dimensional clusterings (agglomerative 
hierarchical clustering with average inter-cluster similarity) on the coefficients are 
built for each PC. This way each property is assigned to one cluster for each signifi-
cant PC. Each set of properties belonging to the same clusters on all significant PCs 
are grouped together and represent abstract dominant types we will further refer to as 
latent types. For the example in Table 4, considering that only PC1 is significant, the 
extracted latent types are t’ ≡ {p1, p2, p3, p4, p5, p6} and t’’ ≡ {p1, p2, p3, p7, p8, p9}. 
With these types we can now label entities according to the property-based model. 
This way, e2 will be labeled with t’ and e5 with t’’. For the future, we plan to intro-
duce a probabilistic approach to increase the labeling recall, but for now all entities 
missing some values are ignored in the typing process. In this manner a set of labeled 
entities is created. Entities that fulfill properties for multiple types (Audiobooks in the 
context of our example) are automatically associated with multiple labels. 

With the set of labeled entities, the information gain for a property can be  
computed as follows: 
 
Definition 6 (information gain): With the notations of Tc and Ec as previously de-
fined and  the set of all properties of all entities from Ec, the information gain of a 
property  w.r.t. the entity selection Ec is: 

         PCs
Props. PC1 PC2 PC3

p1 0.00 0.00 0.00

p2 0.00 0.00 0.00

p3 0.00 0.00 0.00

p4 0.35 -0.71 0.00

p5 0.50 0.00 0.00

p6 0.35 0.71 0.00

p7 -0.50 0.00 0.00

p8 -0.35 0.00 0.71

p9 -0.35 0.00 -0.71
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( , ( | | || | · ( |,   (9) 

where |  | ( , .  
The entropy (denoted H) represents a measure of the amount of uncertainty in the 

data and is usually computed as follows: ( ( log (   (10) 

where n represents the number of latent types and p(t) represents the probability  
(relative frequency) of latent type t in . 

However in our case, an entity may have multiple types. Known as the multi-label 
learning problem, this poses difficulties for most learning and classification methods. 
The information gain - entropy based approach from the C4.5 decision tree algorithm 
is no exception [17]. To overcome this problem, we employ a modified version of the 
entropy proposed in [18] that considers multiple labels by introducing the probability 
of an entity not belonging to a certain type:  

( (( ( log ( ( ( log (  
 (11) 

with n and p(t) as before and q( ) = 1 – p( ) the probability of not having type . 

4 Evaluation 

The approach we present in this paper has two major objectives: To provide transpa-
rency regarding the quality of the data accessed through the property-based paradigm 
and to improve the quality of the selected data by iteratively, and with user feedback, 
extending the property-based type definition with chosen properties. To evaluate how 
well these objectives have been fulfilled we performed the following experiment: 
Starting from different concepts presented in structured form with schemata on sche-
ma.org, as in the use case presented in Section 2, we build an initial type definition for 
each concept. This initial definition embodies typical properties most application 
developers require in order to program with each concept. It comprises the first four 
properties that have been most frequently annotated in ClueWeb12 for the corres-
ponding schema.org schemata. The property-based data access is applied to these four 
properties and a set of entities from the BTC data corpus is selected. The quality 
score, precision and recall are computed for the selected entities. If the quality score is 
lower than 0.65 (our experiments have shown that a threshold of 0.65 brings satisfy-
ing data quality), a property is chosen based on its information gain. The user is asked 
whether this property belongs to the concept or not. We simulate the user feedback by 
relying on information from schema.org: If the property with the highest information 
gain is part of the schema that describes the corresponding concept on schema.org 
(considering synonymy), then the user feedback is positive. The type definition for 
the concept is in this case extended with this property and all entities having this 
property are kept. If, however, the property with the highest information gain is not 
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part of the schema, then it is considered a negative property and all entities not having 
this property are kept. The process is repeated until the quality score reaches the 
quality threshold. Using schema.org to simulate user feedback is convenient but it has 
some drawbacks that will be addressed in future work: Some properties that are part 
of schema.org may be irrelevant from a human perspective. At the same time, sche-
ma.org doesn’t claim full completeness. In consequence one can’t be sure that  
properties not being part of schema.org are negative properties. 

In order to measure precision and recall, a gold standard is required. The gold stan-
dard represents, in this case, clear type information w.r.t. the concepts: In the context 
of movies, is a given entity a movie or not? We build the gold standard by bootstrap-
ping on a set of 1000 seed entities that we know are of the concept type: We extract 
all rdf:type types for each of the seed entities. On average, about 500 types are found. 
Types that are not related to the concept or that are too general (e.g. owl:Thing or 
schema.org/CreativeWork) are manually pruned. In a second iteration, all entities 
having those types are selected and 100 entities are randomly chosen. Only those 
entities that, on manual inspection show the correct type are kept. Their rdf:type types 
are extracted, and unrelated or general types are again manually pruned. The process 
is repeated one more time. The resulting list of rdf:type values represents the descrip-
tion of a concept type according to the rdf:type property. Any entity that has one of the 
types in the list is considered to be of the respective type. Of course, only a subset of 
the actual expressions of a certain type is found. As a result, the precision and recall 
values computed on this gold standard underestimate the actual values.  

Our system chooses key properties to improve the type definition based on infor-
mation gain. As a baseline, we built Rand, a system choosing properties at random 
(without replacement). The randomization process is repeated 10 times for each prop-
erty selection step. Average quality, precision and recall values are considered for 
each iteration. The property that is closest to the average scores of all 10 random 
picks is chosen to extend the definition for the next iteration. 

We evaluated ProSWIP on multiple concepts from various fields, with different 
characteristics. For brevity reasons, in Table 5 we present the results on the example 
of three chosen concepts. The base iteration (0) is common to both systems and cor-
responds to the most frequent four properties used for annotating the corresponding 
schema in ClueWeb. For Movie, this iteration already produces good precision but it 
is quite restrictive in terms of recall. ProSWIP requires in this case 4 iterations to 
reach quality above 0.65 and perfect precision. With 0.93, precision is already very 
good after the first iteration. Further iterations isolate well defined movies from the 
ones with missing values. This in turn affects recall. Benefitting from high quality 
entity selection from the base iteration (78% of entities selected from the start are 
movies), the random approach is also able to obtain good results. Primarily guided by 
average scores and with high quality semantic feedback, the baseline method achieves 
0.95 precision and a quality score of 0.59 after 4 iterations. Recall however is severely 
affected by the random choice of properties. For Music the base iteration is, with a 
precision of 0.44, of lower quality. Various types of entities are selected. The proba-
bility for the random selector to choose some irrelevant property is higher in this case. 
This is also reflected in the poor performance of Rand for Music. In contrast,  
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ProSWIP achieves the desired level of quality after only two iterations. For Books, 
the base also has low precision with negative consequences on the performance of 
Rand. The quality metric we introduced is highly correlated to precision on all expe-
riments (Pearson’s linear correlation coefficient of 0.94) denoting its expressiveness 
for the quality of the data selection. Precision rapidly increases towards values above 
90%, showing the success of the whole approach. 

Table 5. Quality, Precision and Recall for three chosen concepts and multiple iterations 

 
 

From a technical perspective, ProSWIP is a component implemented in Scala 
(www.scala-lang.org/), which maps variable names to properties from the BTC data 
set. While classical relational databases are not suitable for querying on RDF data, 
graph databases like Neo4j (www.neo4j.org/) have limited performance for our ap-
proach. In comparison, Lucene (lucene.apache.org/) has proven much faster in both 
the time needed for initially loading the data (building the index) as well as in terms 
of querying. With an off-the-shelf commodity computer with Intel I5-3550 quad-core 
CPU with 3.3 GHz. 32 GB RAM and 8.5 ms access hard drive, the index creation for 
the complete BTC data set took about 39 hours (only one core was used). The result-
ing index was about 1T in size including data. One simple entity search takes about 
16 seconds. But the complete process of property-based data access may take up to 
hours as multiple queries, entity and property retrievals are being performed. It was 
possible to speed up the process by introducing caching mechanisms, for instance for 
the property synonymy dictionaries. Computing the quality, principal components, 
latent types and information gain for all properties on large data samples takes under 
2 seconds. Nonetheless, we believe that in order to realize all operations in real-time a 
Lucene-based distributed index leveraging Hadoop is necessary. 

5 Related Work 

Property-based data access and its suitability for programming the Semantic Web has 
recently been discussed in [7, 19]. Challenges and open questions concerning a prop-
erty based approach are discussed in these papers. Sharing their view, we inspect the 

Iteration
Movies ProSWIP Rand ProSWIP Rand ProSWIP Rand

0 0.49 0.49 0.78 0.78 0.26 0.26
1 0.57 0.5 0.93 0.78 0.25 0.26
2 0.55 0.51 0.91 0.74 0.12 0.03
3 0.58 0.53 0.96 0.89 0.11 0.03
4 0.65 0.59 1 0.95 0.07 0

Music
0 0.34 0.34 0.44 0.44 0.82 0.82
1 0.58 0.34 0.99 0.43 0.82 0.78
2 0.67 0.34 0.99 0.43 0.62 0.78

Books
0 0.21 0.21 0.37 0.37 0.71 0.71
1 0.32 0.21 0.83 0.38 0.07 0.07
2 0.52 0.22 0.93 0.39 0.07 0.07
3 0.59 0.25 0.89 0.43 0.04 0.07
4 0.65 0.25 1 0.43 0.03 0.07

Quality(Q) Precision Recall
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practical feasibility of such an approach and address one of the main challenges:  
The data quality problem. 

Structural typing approaches are already employed in programming: Property-
based interfaces have been studied for OO languages [20] or extensible record  
systems for different language settings [21, 22]. But additional challenges like disco-
vering, comprehending and extending property sets to match the intended use arise in 
the context of linked open data. 

From a broader perspective, systems like Tipalo [23] performing automatic typing 
for DBpedia entities are also relevant to our approach. Tipalo extracts types for enti-
ties based on their corresponding Wikipedia pages. But there are several entities in the 
LOD cloud having no article on Wikipedia that would hence remain untyped (there 
are about 14,199 diseases (International Statistical Classification of Diseases: 
http://www.who.int/classifications/icd/en/) most of them documented through 
PubMed but only about 3,000 of them featuring an actual article on Wikipedia). High 
precision knowledge bases like YAGO [24] relying on the Wikipedia category system 
and Infoboxes suffer from the same problem. In contrast, we build on structural  
similarity independent of all-encompassing information sources to find latent,  
contextually relevant types.  

6 Conclusions and Outlook 

We believe that property-based data access represents a cornerstone in programming 
with data from the Web. Our experiments show that such an approach suffers from 
quality problems that the end user is not even aware of. With an entity homogeneity-
based quality metric and iterative feedback from the user on chosen properties, the 
level of quality for the selected data can be controlled. Being highly correlated to 
precision, the quality measure we introduced provides for transparency. With addi-
tional feedback on chosen properties, precision easily reaches values above 0.9,  
confirming the success of this approach.  

The sparse nature of data in the LOD cloud severely affects recall. Leveraging high 
quality property-based definitions, the recall problem can be tackled: We plan to use 
properties that have been found suitable to extend the concept definition, not as filters, 
but as features for entity ranking on structural similarity. This should increase the 
robustness against missing values and have a positive effect on recall. 
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Abstract. Ontology engineering is a task that is notorious for its diffi-
culty. As the group that developed Protégé, the most widely used ontol-
ogy editor, we are keenly aware of how difficult the users perceive this
task to be. In this paper, we present the new version of WebProtégé that
we designed with two main goals in mind: (1) create a tool that will be
easy to use while still accounting for commonly used OWL constructs;
(2) support collaboration and social interaction around distributed on-
tology editing as part of the core tool design. We designed this new
version of the WebProtégé user interface empirically, by analysing the
use of OWL constructs in a large corpus of publicly available ontologies.
Since the beta release of this new WebProtégé interface in January 2013,
our users from around the world have created and uploaded 519 ontolo-
gies on our server. In this paper, we describe the key features of the new
tool and our empirical design approach. We evaluate language coverage in
WebProtégé by assessing how well it covers the OWL constructs that are
present in ontologies that users have uploaded to WebProtégé. We evalu-
ate the usability of WebProtégé through a usability survey. Our analysis
validates our empirical design, suggests additional language constructors
to explore, and demonstrates that an easy-to-use web-based tool that
covers most of the frequently used OWL constructs is sufficient for many
users to start editing their ontologies.

1 Introduction

“Protégé is too difficult to use!” The Protégé team hears this sentiment from our
users all too often. As we observe many of them grapple with the difficulties of
learning a highly expressive logic-based ontology language such as OWL, we see
how onerous ontology development can be. Other studies on cognitive complexity
of ontology development bear out these observations [1].

Developers of tools for ontology browsing and editing have faced the dilemma:
On the one hand, we want to support international standards, such as OWL 2,
fully in order to ensure interoperability [2]. On the other hand, we want to make
sure that both beginners and experts alike can develop ontologies easily.

In this paper, we report on our design and evaluation of a major new release
of WebProtégé, a web-based version of Protégé that uses the OWL API [3] and

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 200–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Simplified OWL Ontology Editing for the Web: Is WebProtégé Enough? 201

that provides support for editing OWL 2 ontologies. We released this new ver-
sion of WebProtégé in January 2013, and we had two main goals for the design
of this version: (1) create a tool that will be easy to use while still accounting for
commonly used OWL constructs; (2) support distributed ontology editing, col-
laboration, and interaction as part of the core tool design. The new WebProtégé
serves as a “Google docs” environment for ontologies, enabling users to up-
load their ontologies, to initiate new projects, and to invite their collaborators
to participate in the development. We have created a cut-down user interface
in WebProtégé, which makes creating new classes or updating information as
simple as filling out a web form. This interface is the default interface that
WebProtégé users see when they create or upload an OWL ontology. The users
have the option of enabling more advanced features. In this paper, we discuss
the design and evaluation of the choice of language constructs supported in this
default interface, assuming that the default interface is what the majority of our
users will see.

We address the following research questions in this paper: (1) Is there a subset
of OWL that accounts for the majority of term descriptions used by ontology
developers in various scientific domains? (2) How do we design a user interface
that enables efficient editing of the most common constructs while providing an
opportunity for the more expert users to access as much of the advanced features
as possible?

In order to address these questions, we start by analysing a corpus of 330 pub-
licly available ontologies in BioPortal [4,5] to determine which OWL constructs
ontology developers use most frequently (Section 4). We use the results of this
analysis to determine which set of features to include in the default configura-
tion of WebProtégé. We evaluate this new release in two ways. First, we evaluate
the coverage of the constructs supported by the user interface by analysing the
aggregated information about the ontologies that WebProtégé users uploaded
to the WebProtégé server. This new corpus constitutes a set of ontologies that
were created elsewhere and thus presents a “naturally occurring” corpus of on-
tologies. Second, we conducted a survey of the users of the new tool in order to
evaluate the usability of the tool; to understand what the users like and do not
like about the tool; and to gauge whether or not the users feel limited by the
default interface or whether they feel that they can perform all of the editing
tasks that they need to perform (Section 6).

This paper makes the following contributions: (1) We present an empirical
methodology for developing an easy-to-use ontology editor based on analysing
a large training corpus of ontologies. (2) We evaluate the language coverage
provided the user interface in WebProtégé by analysing the OWL constructs
in a test corpus of 230 ontologies that WebProtégé users have created in other
tools and uploaded to WebProtégé. (3) We evaluate the usability of WebProtégé
through a usability questionnaire that close to 20% of WebProtégé users have
answered.

Many of the lessons that we learn from designing and evaluating WebProtégé
are not specific to our tool. Indeed, our paper analyses the broader question
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of how we can use a principled approach to make ontology editing easier and
whether simplified ontology editing is indeed possible, practical, and useful.

2 Preliminaries

In the work presented here, we deal with ontologies written in the Web Ontology
Language (OWL), and more specifically OWL 2, its latest version [6]. Through-
out the rest of this paper we refer to OWL 2 simply as OWL. In this section, we
present the main OWL terminology that is useful in the context of this paper.
We assume that the reader has basic familiarity with ontologies and OWL.

OWL and Ontologies. An OWL ontology is a set of axioms. Each axiom makes
a statement about the domain of interest. The building blocks of axioms are
entities and class expressions. Entities correspond to the important terms in the
domain of interest and include classes, properties, individuals, and datatypes.
Properties may be subdivided into object, data, and annotation properties. The
signature of an ontology is the set of entities that appear in that ontology.
OWL is a highly expressive language and features a rich set of class constructors
that allow entities to be combined into more complex class expressions. As a
convention, we use the letters A and B to stand for class names and the let-
ters C and D to stand for (possibly complex) class expressions. In this paper,
we largely focus on subclass axioms SubClassOf(C, D), equivalent class axioms
EquivalentClasses(C, D), disjoint classes axioms DisjointClasses(C, D) and annotation
assertions AnnotationAssertion(P , A, v). We refer to SubClassOf, EquivalentClasses and
DisjointClasses axioms as logical axioms and AnnotationAssertion axioms as non-logical
axioms. We also focus on two broad types of class expressions: (1) class expres-
sions that we loosely term existential restrictions, which specify the existence of
relationships between individuals and by which we mean ObjectSomeValuesFrom(R,

C), DataSomeValuesFrom(R, C), ObjectHasValue(R, a), and DataHasValue(R, l) restrictions;
and (2) class expressions that we term universal restrictions, by which we mean
ObjectAllValuesFrom(R, C) and DataAllValuesFrom(R, C) restrictions.

Frame-Based Views of Ontologies. Even though an OWL ontology is simply a set
of axioms, few ontology-development environments choose to display ontologies
as lists of axioms. Most environments are entity-centric and revolve around the
idea of editing descriptions of entities. In essence, when an entity is selected in a
tool like Protégé, the tool presents (a partial view of) the subset of axioms that
describe or define that entity. We call such a subset of axioms an entity-frame,
or more specifically a class-frame for a class and so on. In this work we focus on
class-frames, which we define as follows:

Definition 1 (Class-Frame). For a class A in the signature of an ontology
O the class-frame for A w.r.t. O is the subset-maximal set of axioms S ⊆ O
where each axiom in S is of the form SubClassOf(A, C), EquivalentClasses(A, C),
DisjointClasses(A, C) and AnnotationAssertion(P , A v), where C is a (possibly complex)
class expression, P is an annotation property, and v is an annotation value (lit-
eral, IRI or anonymous individual).
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OBO and OWL. In the world of biomedical ontologies, there is another, widely
used language, called OBO [7]. There is a close relationship between OBO and
OWL 2, and it is possible to translate faithfully the logical aspects of an OBO
ontology into an OWL 2 ontology [8]. For the purposes of the work here we
therefore view OBO as a syntactic variant of OWL 2.

3 An Overview of WebProtégé

This section presents a high level overview of WebProtégé and its salient features.
The main purpose of this section is to provide a context for the discussion on
our empirically driven user interface (UI) design in Section 4.

WebProtégé is a web-based, multi-user, collaborative editor for OWL ontolo-
gies. The main document unit in WebProtégé is a project, which is a set of
ontologies plus metadata, sharing settings and UI settings. Users create their
own projects, which are hosted on our servers at Stanford.1 They either start by
creating a new ontology, or they start by uploading a set of existing ontologies
that they have already worked on. Having created a project, a user then “shares”
this project, adding the names of her collaborators to the list of those who can
edit her ontology. Now, any time the user or any of her collaborators logs into
WebProtégé, she can see her ontology under development. As one of the users
creates or edits the ontology, others can see the changes immediately. They can
comment on the changes and carry out discussions in the tool—with the discus-
sions linked to the class that they are discussing. If they log in after a few days,
they can see the summary of changes to the ontologies and to the classes on
their “watch list.” As the project matures, they can invite others to participate
and to comment, or choose to publish the ontology in a public repository for the
broader community to use. They can download any revision of their ontology
and process it using any other OWL tools such as reasoners, visualisation, and
query tools.

Figure 1 shows a screenshot of the main editing interface in WebProtégé. The
left pane consists of a tree for navigating the class hierarchy and for selecting a
class frame for editing. The middle pane captures a subset of the selected class
frame. We provide a precise description of and the rationale for what this frame
captures in Section 4. The right pane in Figure 1 contains tools for collaboration.
In particular, it shows a threaded list of issues and discussions and a live activity
feed. Users can configure all elements in the interface, augment it with different
views or reconfigure it completely to suit their needs.

The centre pane in Figure 1 is the main editing form for class frames. The form
is composed of fields which constitute tables of property–value pairs. The fields
feature auto-completion for property, class, individuals and datatype names. The
auto-completion is type sensitive: It will offer only the types of entities that can
be entered based on the information in the ontology up to this point. For exam-
ple, the auto-completion prevents the user from entering datatypes as fillers for
object property restrictions. In terms of OWL, one row in the table corresponds

1 Users can also set up local WebProtégé installations if they have a desire to do so.
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Fig. 1. The main editing interface in WebProtégé. The lefthand pane presents the
class tree, indicating which classes have discussions attached to them. The middle
pane presents the class frame. The righthand pane shows the discussions for the class
and the live feed of changes.

to one or more axioms. In the example in Figure 2, the row hasFlightControlSystem

and FlyByWireSystem corresponds to the axiom SubClassOf(:A320, ObjectSomeValues-

From(:hasFlightControlSystem :FlyByWireSystem)).
A key feature of the WebProtégé UI is that it minimises the distinctions that

users have to make explicitly. For example, in previous versions of the tool [9],
when a user created a new property, she had to decide explicitly whether the
property was an object or a data one. Similarly, when entering class expressions
the user had to make various choices such as choosing between SomeValuesFrom

and AllValuesFrom restrictions, and between SomeValuesFrom and HasValue restric-
tions. In the WebProtégé UI, we use simple and reliable heuristics to determine
the type of property and the type of restriction that the user creates based on
the fillers that she specifies. Figure 2 displays a class description that has mixed
use of data and object properties. It also contains mixed use of different types
of class expressions, individuals, and data values: the first row corresponds to
an ObjectSomeValuesFrom class expression whose filler is a class, the second row an
ObjectHasValue class expression whose filler is an individual, and the third row a
DataHasValue class expression whose value is an integer literal. At no point when
entering the information shown in Figure 2 has the user explicitly had to decide
upon and choose the types of class expressions, or decide upon and choose the
types of properties—the system determines these distinctions in a straightfor-
ward but highly effective way. Finally, this UI also supports a kind of on-the-fly
object creation and type inference. In the fourth row in Figure 2 the user wants
to specify a new type of flap for the class (aircraft) that she is describing. How-
ever, hasFlap is a new property name. In this case, the system accepts the new
property name, warns the user that it is new (in case the user has simply made
a typo) and allows her to move on to specify a filler. In this case, she specifies a
new class (DoubleSlottedFlap). Once the user enters this information, WebProtégé
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Fig. 2. Property–value pairs being edited. The class frame in the figure contains mixed
object and data property usage. It also contains a mix of ObjectSomeValuesFrom, Ob-
jectHasValue and DataHasValue class expressions. The auto-completion box prompts the
user to create new entities where necessary. We eliminated the need to choose explicitly
between object and data properties; we determine property types based on filler values.

creates the necessary declarations of the appropriate type and generates the class
expressions and axioms under the hood.

In addition to editing logical information, WebProtégé provides support for
describing extra-logical information about entities through OWL annotations.
These annotations are part of the class frame (Figures 1 and 2). WebProtégé
provides auto-completion support that allows users to reuse annotation vocabu-
lary from well known metadata sets such as DublinCore and SKOS (Figure 1).

4 The WebProtégé Profile (WPP)

The following are our main high level design goals for WebProtégé: (1) to provide
an ontology-editing infrastructure with zero installation and zero setup costs, (2)
to provide a framework that supports multiple editors, commenters and viewers
to work simultaneously on the same ontology; (3) to provide a simple UI that
allows novices and experts alike to enter information in a way that is comfortable
for them. Developing WebProtégé as a Web-app achieves the first goal and goes
some of the way in supporting collaboration. In this section, we look at the
simple UI that WebProtégé provides, what exactly it can represent and, how we
arrived at this current design. We call the set of language features supported by
the UI the WebProtégé Profile (WPP).

Definition of the WebProtégé Profile

Although WebProtégé supports the editing of class, property, and individual
frames, we focus our discussion on class frames. We focus on class frames be-
cause property frames are somewhat simpler than class frames, with fewer design
choices to make, and individual frames are themselves similar to class frames.
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The default class frame editor in WebProtégé supports editing class frames de-
fined as follows.

Definition 2 (WPP). A WebProtégé Profile class frame for a class A in the
signature of an ontology O is the subset-maximal set of axioms S ⊆ O such
that each axiom in S conforms to the following grammar, where non-terminals
are shown in bold, terminals are shown in a regular font-weight surrounded by
single quotes, choices are indicated with a bar, zero or more items are shown in
curly brackets. The non-terminals Class, ObjectProperty, DataProperty, Annotation-
Property, NamedIndividual, Datatype, Literal and IRI, are defined as they appear in
the OWL 2 Structural Specification.

ClassFrame := {ClassFrameAxiom}
ClassFrameAxiom := ‘SubClassOf’ ‘(’ A ClassExpression ‘)’ |

‘AnnotationAssertion’ ‘(’ AnnotationProperty A AnnoValue ‘)’
ClassExpression := Class |

‘ObjectIntersectionOf’ ‘(’ ClassExpression ClassExpression {ClassExpression} ‘)’ |
‘ObjectSomeValuesFrom’ ‘(’ ObjectProperty, Class ‘)’ |
‘ObjectSomeValuesFrom’ ‘(’ ObjectProperty, ‘{’ NamedIndividual ‘}’ ‘)’ |
‘ObjectHasValue’ ‘(’ ObjectProperty, NamedIndividual ‘)’ |
‘DataSomeValuesFrom’ ‘(’ DataProperty, Datatype ‘)’ |
‘DataSomeValuesFrom’ ‘(’ DataProperty, ‘{’ Literal ‘}’ ‘)’ |
‘DataHasValue’ ‘(’ DataProperty, Literal ‘)’ |
‘ObjectMinCardinality’ ‘(’ ‘1’ ObjectProperty, Class ‘)’ |
‘DataMinCardinality’ ‘(’ ‘1’ DataProperty, Class ‘)’

AnnoValue := Literal | IRI

Definition 2 (WPP) precisely represents the language that is supported by the
default class frame editor in WebProtégé. We chose what to include in the Defi-
nition 2 (WPP) based on (1) an empirical analysis of commonly used axiom types
and class constructors in a large ontology corpus, and (2) commonly reported er-
rors [10,11] that are made by novices when building OWL ontologies. The corpus
analysis provided information on which constructs we should support. The error
analysis helped us to decide which decisions we should take out of the hands of
novice users.

An Analysis of Constructs from the BioPortal Ontology Corpus

BioPortal is a community-based repository of biomedical ontologies [4].2 At the
time of writing, it contains more than 330 public ontologies with almost six
million terms in them. We used OWL and OBO ontologies from BioPortal as
our corpus to analyse the commonly used OWL constructs.

While BioPortal contains only the ontologies that are developed by researchers
and practitioners in biomedicine, it is still an attractive corpus for a general-
purpose analysis for the following reasons: First, ontologies in BioPortal vary

2 http://bioportal.bioontology.org

http://bioportal.bioontology.org
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Table 1. Class frame axioms and class constructor occurrences in the BioPortal corpus.
The corpus contains 261 ontologies in OWL and OBO. Pn represents the nth percentile
number of occurrences of a particular construct. For example, a P25 of 185 for SubClas-
sOf axioms means that 25% of ontologies contain 185 SubClassOf axioms or less. The
category Existential includes ObjectSomeValuesFrom, DataSomeValuesFrom, ObjectHasValue,
and DataHasValue class expressions. The category Universal includes ObjectAllValuesFrom
and DataAllValuesFrom class expressions. MinCardinality, MaxCardinality and ExactCardinality
combine both object and data cardinality restrictions.

Constructor Type # of % of # occurrences of constructors
ontologies ontologies P25 P50 P75 P90 Max #

SubClassOf 243 93.1 185 521 2705 12,309 847,755
EquivalentTo 80 30.7 4 16 61 403 73,461
DisjointWith 82 31.4 3 28 158 673 56,192

Existential 162 62.1 37 157 1,461 9,651 641,123
Universal 45 17.2 4 22 49 145 22,371
Object Union 64 24.5 3 7 20 65 387
Object Complement Of 19 7.3 1 4 15 35 99
Object One Of 8 3.1 1 1 4 4 5
MinCardinality 28 10.7 1 3 5 14 1,305
MaxCardinality 10 3.8 1 3 10 110 967
ExactCardinality 23 8.8 4 10 20 23 257

greatly in size and expressivity [12]. Second, these ontologies are naturally occur-
ring ontologies, and they are developed by a wide range of groups and ontology
engineers. Finally, biomedical ontologies account for a large fraction of ontologies
under development in tools such as Protégé. Therefore, it seems reasonable that,
if we can provide a UI that accommodates a large proportion of the BioPortal
ontologies, then that UI will also satisfy a large number of potential WebProtégé
users.

Materials and Method. We accessed BioPortal on August 31, 2012 using
the NCBO Web services API [5]. We downloaded all OWL compatible (OWL
plus OBO) ontologies. There were 261 such ontologies. We used the OWL API
(version 3.4.0) to parse and analyse each ontology. We recorded the number
and kinds of class frame axioms (SubClassOf, EquivalentClasses, DisjointWith) for each
ontology, as well as the number of occurrences of the different kinds of OWL
class expressions.

Results. Table 1 shows the occurrences of class frame axioms and class expres-
sions. For each type of constructor, the table presents the number and percentage
of ontologies that contain that constructor and the 25th, 50th, 75th, 90th per-
centile values (over the ontologies containing that constructor), and maximum
occurrences per ontology.

Analysis. It is clear from Table 1 that SubClassOf is the dominant form of ax-
iom type. Most ontologies (93%) contain these types of axioms. By contrast,
DisjointClasses and EquivalentClasses axioms are present in just under one third of
the ontologies in the corpus. Moreover, SubClassOf axioms are present in large
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numbers when compared to EquivalentClasses axioms and DisjointClasses axioms—
on average two orders of magnitude more. The picture for class constructors is
similar: The dominant form of class constructor is Existential restriction (including
ObjectSomeValuesFrom, DataSomeValuesFrom, ObjectHasValue, and DataHasValue). Nearly
two thirds of ontologies contain axioms which use one or more type of Existen-

tial restriction. By contrast, Universal restrictions are used in 17% of ontologies
and many of the other class constructors in fewer than 10% of ontologies. Fur-
thermore, on average the occurrences of Existential restrictions are two orders of
magnitude greater than the occurrences of Universal restrictions which are them-
selves on average two orders of magnitude greater than occurrences of all other
types of class constructors. Finally, we observed that some ontologies contain
MinCardinality 1 restrictions as a syntactic variant of Existential restrictions.

The stand-out axioms and class constructors from the BioPortal corpus are
SubClassOf axioms and Existential restriction class expressions. We therefore de-
cided to focus on these constructs in the simplified WebProtégé UI.

5 Evaluating Coverage

One of the features in the new WebProtégé is the ability of users to upload
their ontologies to the WebProtégé server. Users created these ontologies with
other tools or download them from the Web. Since we releasedWebProtégé, users
have uploaded 230 ontologies to our server.3 This corpus represents the naturally
occurring ontologies that WebProtégé users want to work with. Therefore, this
collection of ontologies offers a rich source of data that we can use to empirically
drive forward the development of the tool. In this section, we analyse this corpus
to assess how well the simple profile defined in Definition 2 covers the ontologies
that people actually want to edit in WebProtégé. We then discuss how we can
use this information to evolve WebProtégé in the future.

For the purposes of this evaluation we also examine two extensions of WPP.
The first, WPP-Dis, extends WPP with DisjointClasses axioms and is defined in
Definition 3, while the second, WPP-DisEq, extends WPP with DisjointClasses and
EquivalentClasses axioms and is defined in Definition 4. The motivation for these
extensions is to determine how many class frames are excluded from being rep-
resented in the simplified WebProtégé UI because of the fact that it does not
display DisjointClasses axioms or EquivalentClasses axioms.

Definition 3 (WPP-Dis). A WebProtégé Profile class-frame with DisjointClasses

axioms (WPP-Dis) for a class A is defined as in Definition 2 but with the gram-
mar augmented with the following production rule below, where the non-terminals
ClassFrameAxiom and ClassExpression are specified in Definition 2.

ClassFrameAxiom := ‘DisjointClasses’ ‘(’ A ClassExpression ‘)’

3 The WebProtégé privacy policy prevents us from making this corpus available in
its raw form. Moreover, the analysis that we conducted looks at aggregated data
and ontology constructs from a structural point. We do not critically examine any
domain content of any projects.
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Definition 4 (WPP-DisEq).AWebProtégé Profile class-framewith DisjointClasses

axioms and EquivalentClasses axioms (WPP-DisEq) for a class A is defined as in Def-
inition 2 but with the grammar augmented with the following production rule, where
the non-terminalsClassFrameAxiom andClassExpression are specified inDefinition 2.

ClassFrameAxiom := ‘DisjointClasses’ ‘(’ A ClassExpression ‘)’ |
‘EquivalentClasses’ ‘(’ A ClassExpression ‘)’

Materials and Method. On May 6th 2013 the version of WebProtégé hosted
at Stanford contained 5194 non-empty projects. Of these, 230 projects were cre-
ated by users who uploaded their existing non-empty ontologies (the remaining
projects were edited from scratch in WebProtégé). We parsed each non-empty
ontology in the set of 230 using the OWL API version 3.4.3. We examined the
classes in the signature of each ontology according to Definition 1 to determine
which of them had WPP class frames satisfying Definition 2 (i.e. which of them
can be represented by the simple UI). For each ontology, we measured the cov-
erage in terms of the percentage of WPP, WPP-Dis and WPP-DisEq class frames.

Results. Figure 3 shows a plot of class frames over the WebProtégé ontology
corpus. Each bar represents one ontology (one project) with a non-empty class
signature. The full length of a bar indicates the number of general class frames
(Definition 1) in the ontology represented by that bar. Each bar is divided into
four segments (note that zero size segments are not visible in the plot) represent-
ing the WPP class frames that satisfy Definition 2 (painted white); the WPP-Dis

class frames that satisfy Definition 3 (painted grey); the WPP-DisEq class frames
that satisfy Definition 4 (painted with a hatch effect); and the class frames that
are neither WPP, WPP-Dis or WPP-DisEq frames (painted black). Figure 4 shows
a plot representing the class frame coverage over the complete set of ontolo-
gies in the WebProtégé corpus. Each line represents class frames falling into the
WPP (solid black), WPP-Dis (dashed black) and WPP-DisEq (dashed grey) pro-
files, with the plot showing the relationship between the number of ontologies
and percentage of frames covered.

Analysis. Broadly speaking, the simple UI in WebProtégé can represent the
majority of class frames in the majority of ontologies in this corpus—there are
108 ontologies (or 47% of the corpus) for which it can present 100% of the class
frames, and a further 12 ontologies (coming to just under 60% combined) for
which it can present 90% of the class frames. Figure 4 plots the coverage of
ontologies by the WPP as a black solid line. Each point on the line represents
an ontology and the percentage of its terms covered by the profile. Combined,
there are 156 ontologies (just under 70% of the corpus) for which the WPP can

4 This number does not include a handful of projects created by the authors and
colleagues at Stanford that we excluded from this analysis so as not to bias results.
We also excluded several copies of the “pizza” ontology, which is a tutorial ontology
containing most OWL 2 constructs.
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Fig. 3. WPP, WPP-Dis and WPP-DisEq class frames by ontology. Each bar represents
one ontology with a signature size greater than zero. The total height of any given bar
represents the total number of classes in the signature of the ontology.

capture 75% or more of the class frames in each ontology. These results are
acceptable for a number of reasons: (1) the simple UI completely caters for a
large fraction (roughly half) of the users that decided to edit their ontologies
in WebProtégé—we expect a mix of novices and experts to use our tool and
therefore the simple UI need not cater for everybody; (2) we do not expect the
UI to cover the whole corpus—if it did, it would ultimately have to capture the
full expressivity of OWL; and (3) it is conceivable that in collaborative settings
there will be a cross-section of users, with less experienced users working with
more experienced users. In these case, less experienced users may well prefer to
edit the majority of the class frames in the ontology in the simple UI, while the
more experienced users take care of class definitions that cannot be expressed in
this UI.

At the lower end of the scale, there are three ontologies (1% of the corpus)
for which the WPP cannot represent any class frames at all, and 38 ontologies
(16% of the corpus) for which it can only represent 50% of class frames or less on
average. A closure examination reveals that all of the ontologies that do not con-
tain any class frames that are captured by the WPP, or ontologies that contain
very low numbers of captured class frames, are like this because they contain
DisjointClasses axioms. Looking at Figure 3, there are several long grey bands.
These bands represent ontologies with large numbers class frames that are not
captured by WPP (Definition 2) but are captured by WPP-Dis (Definition 3).
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Fig. 4. Coverage of ontologies in the WebProtégé corpus. Each point on the X axis
corresponds to an ontology; the Y axis plots the percentage of class frames that are
covered in each profile. Each line represents a profile. The area under a line represents
the number of class frames covered over the whole corpus by the profile represented
by that line. As we extend the WPP profile to the WPP-Dis profile and then to the
WPP-DisEq profile, the number of ontologies with 100% coverage increases.

In other words, they represent class frames which utilise DisjointClasses axioms.
The effect of admitting DisjointClasses axioms to WPP is highlighted in the dif-
ference between plots in Figure 4. The plot shifts to the right, representing the
ontologies for which there is 100% coverage, increasing by almost 20 ontologies
with the addition of disjoint axioms. Put simply, admitting DisjointClasses ax-
ioms by supporting them in the simple UI would allow many more ontologies
to be fully captured. In a similar vein, looking at the difference between the
dashed black and dashed grey plots in Figure 4, it is clear that either including
or excluding EquivalentClasses axioms has a noticeable effect on the number of
ontologies all of whose class frames can be captured by a UI supporting these
type of axioms—the number jumps from 126 (55%) to 152 (67%).

6 Evaluating Usability

In order to evaluate the usability of WebProtégé and to understand what the
users like and dislike about the interface, we have conducted a survey among
those users who had a chance to try the new WebProtégé design, either in its
beta phase or after the official release.

Materials and Method. We have designed the survey using SurveyMonkey R©.
The survey contained three types of questions: (1) qualification: the survey rules
and the question asking respondents to confirm that they have had a chance to
use the new version of WebProtégé. (2) usability: the questions about the user
experience with the tool. (3) demographics: the questions about the user level
of expertise and the type of projects that they were working on.

The survey included six usability questions [13] on a 5-point Likert scale (Fig-
ure 5) as well as free-text questions for feedback about the tool. Specifically, we
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asked what users liked about WebProtégé, what they felt needed to be improved,
and what type of content they wanted to enter but could not. The last question
in particular was designed to gain insight on what important OWL 2 constructs
we failed to include in the WebProtégé Profile (WPP—Definition 2).

We emailed the survey link to all the users with the account on the WebProtégé
server, to the Protégé support mailing lists, and posted the link on the Protégé
social media channel. The survey was open for seven days. While the survey was
completely anonymous, participants had the option of entering into a draw for
a $25 gift card as a reward for their participation. Contact details for this were
collected via a completely separate Web-form to preserve anonymity.

Results. We received 55 responses from those who confirmed that they have
used the new version of WebProtégé; 23 of the respondents chose to enter the
draw for the gift card. Given that the WebProtégé change history lists contain
changes or actions from distinct 288 users, our survey contains responses from
19% of the users who tried or used the system. The vast majority of respondents
(90%) followed the link to the survey from the direct invitation email. Others
followed the link in one of the Protégé mailing-list posts (6%), with the remainder
using the links on Web sites. Among the respondents, 70% were from academia
and 17% from industry, with the remainder from government, museums, and
other organisations.We received responses from across the world, with the largest
share of contributions from Europe (40%) and North America (40%).

As far as users’ self-reported level of expertise with ontologies and OWL is
concerned, on a 5-point Likert scale (1-Beginner and 5-Expert), the average ex-
pertise in ontologies was 2.96 (1:15%, 2:21%, 3:27%, 4:27% and 5:10%) and the
average expertise in OWL was 2.7 (1:21%, 2:19%, 3:35%, 4:21% and 5:4%). All
respondents have performed some content editing in WebProtégé, either edit-
ing an ontology (64%), uploading an ontology (57%), downloading an ontology
(45%), defining sharing settings (38%), and other actions. 17% of the respon-
dents participated in collaborative editing.

Figure 5 shows the distribution of answers to the usability questions on a
5-point Likert scale (1-Strongly disagree to 5-Strongly agree). Overall, 78% of
the users agreed that they were satisfied with WebProtégé; 75% agreed that it
was easy to use and 70% agreed that it was easy to learn. We have also looked
separately at the results from the self-identified experts in ontology development
and self-identified beginners. On all questions in Figure 5, experts were slightly
more positive than the overall cohort. Beginners found collaborative features
less useful than the overall group. In general, as can be seen from Figure 5 the
responses for all questions are skewed towards “agree” and “strongly agree”.

We asked the survey respondents to identify specific content that theywanted to
enter but were not able to enter in the simplified interface. Of the 55 respondents,
one missed the ability to directly “create anonymous classes” and one wanted to
“create logical expressions”.The other 53 respondents did not indicate any specific
constructs that they were not able to enter in the simplified UI.

Analysis. While our survey results are limited to the early adopters of the tool
the results are encouraging. The overall skew of the usability question responses
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Fig. 5. A plot of responses to questions in the usability questionnaire. Blocks on
the left of the centre-line (dark/light red) represent negative responses (strongly dis-
agree/disagree). Blocks on the right of the centre-line (mid/dark blue) represent pos-
itive responses (agree/strongly agree). Blocks on the centre-line represent neutral
responses. The size of each block is proportional to the number of responses.

towards “agree” and “strongly agree” indicates that users feel comfortable using
the tool. The fact that only two users commented that they could not enter com-
plex class expressions seems to indicate that users do not necessarily feel limited
by the simple UI. Finally, given the mix of respondent expertise in ontologies
and OWL, we believe that the simple UI might be capturing the best of both
worlds: simple enough for novices to learn and to use, yet powerful enough for
experts to do their job. Indeed, when using the interface ourselves to develop
ontologies, we observed that we ourselves appreciated the many shortcuts that
WebProtégé now provides as they made our work more efficient.

7 Discussion

In the past decade, researchers developed a number of Web-based ontology-
development tools, such as OntoWiki [14], MoKi [15], Neologism [16], Pool-
Party [17], TopBraid EVN and others. Similarly, semantic wikis add semantic
capabilities to traditional wikis. These semantic wikis [18] usually associate a
Web page with a particular instance in the ontology, and the semantic Web
annotations are converted into properties of that instance. Several works have
proposed using controlled natural language to enter OWL constructs as a way
of simplifying construction of OWL ontologies [19,20]. These tools make a va-
riety of trade-offs in terms of which constructs to present to the users. To the
best of our knowledge, WebProtégé is the first web-based interface for ontology
development designed empirically, based on a large ontology corpus.

We used one corpus—BioPortal—to design the interface. Our evaluation of this
interface against a new corpus demonstrated the general validity of our approach.
At the same time, it highlights two key types of axioms—disjoint classes axioms
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and equivalent classes axioms—that account for a notable fraction of this new cor-
pus that cannot be represented in the WebProtégé profile.We are currently evalu-
ating several approaches to extend the expressive power of the user interface. First,
we can expand the default UI to account for these types of axioms.Wewill evaluate
how much it affects the simplicity and usability of the interface: there is a danger
that adding more expressive power will clutter the interface and take away what
the users currently like about it. Second, we can design a second preconfigured
interface, which will be geared towards the users who are more experienced with
OWL and will provide greater expressive power. We plan to investigate whether
or not we can limit the default interface to a single interface that satisfies all our
users (something that our survey indicates might be possible) or whether we need
multiple configurations. Finally, we can leave it up to the users to configure the
WebProtégé UI to satisfy their needs. One of the key features of WebProtégé is
that it allows users to custom-tailor their interface, choosing which components
they see in the class definitions, and which widgets they use from each component.
For instance, a user that needs to write complex OWL class expressions that are
not supported by the simple UI can enable a UI component that looks similar to
the class description editor in the desktop version of Protégé.

8 Conclusions

In this paper, we presented the new version of WebProtégé, a web-based OWL
ontology editor with an empirically designed simple user interface. This user
interface accounts for a large fraction of ontologies and class frames in two large
ontology corpora. Yet, a mix of beginner and expert users perceive it as being
both easy to use and easy to learn and they are satisfied with the interface. Our
data shows a significant community uptake. These results point to a novel way
to address the complexity of ontology development through an iterative process
that relies on empirical data and feedback from the user community.
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tive ontology editor and knowledge acquisition tool for the web. Semantic Web
Journal 4(1) (2013)
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1 CENTRIA & Departamento de Informática, Universidade Nova de Lisboa, Portugal
2 Department of Computing Mathematics and Cybernetics,

Ufa State Aviation Technical University, Russia

Abstract. We present the Protégé plug-in NoHR that allows the user to take an
EL+

⊥ ontology, add a set of non-monotonic (logic programming) rules – suitable
e.g. to express defaults and exceptions – and query the combined knowledge base.
Our approach uses the well-founded semantics for MKNF knowledge bases as
underlying formalism, so no restriction other than DL-safety is imposed on the
rules that can be written. The tool itself builds on the procedure SLG(O) and,
with the help of OWL 2 EL reasoner ELK, pre-processes the ontology into rules,
whose result together with the non-monotonic rules serve as input for the top-
down querying engine XSB Prolog. With the resulting plug-in, even queries to
very large ontologies, such as SNOMED CT, augmented with a large number
of rules, can be processed at an interactive response time after one initial brief
pre-processing period. At the same time, our system is able to deal with possible
inconsistencies between the rules and an ontology that alone is consistent.

1 Introduction

Ontology languages have become widely used to represent and reason over taxonomic
knowledge, and often such knowledge bases are expressed within the language of the
OWL 2 profile OWL 2 EL [23]. For example, the clinical health care terminology
SNOMED CT,1 arguably the most prominent example in the area of medicine and cur-
rently used for electronic health record systems, clinical decision support systems, or
remote intensive care monitoring, to name only a few, builds on a fragment of OWL 2
EL and its underlying description logic (DL) EL++ [5].

Whereas the OWL ontology languages based on DLs [4] are monotonic by nature,
which means that once drawn conclusions persist when adopting new additional infor-
mation, the ability to model defaults and exceptions with a closed-world view is fre-
quently requested as a missing feature. For example, in [25], modeling pharmacy data
of patients with the closed-world assumption would have been preferred in the study
to match patient records with clinical trials criteria, because usually it can be assumed
that a patient is not under a specific medication unless explicitly known. Similarly, in
clinical health care terminology, it would be advantageous to be able to express that
normally the heart is on the left side of the body unless the person is a dextrocardiac.

In recent years, there has been a considerable amount of effort devoted to extending
DLs with non-monotonic features – see, e.g., related work in [12,24]) – and many of
the existing approaches focus on combining DLs and non-monotonic rules as known

1 http://www.ihtsdo.org/snomed-ct/
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from Logic Programming. The latter are one of the most well-studied formalisms that
admit expressing defaults, exceptions, and also integrity constraints in a declarative
way and are part of RIF [6], the other expressive language for the Semantic Web whose
standardization is driven by the W3C.2

Here we focus on one such combination – Hybrid MKNF under the well-founded
semantics [20] – for two reasons. First, the overall approach, which was introduced in
[24] and is based on the logic of minimal knowledge and negation as failure (MKNF)
[22], provides a very general and flexible framework for combining DL ontologies and
non-monotonic rules (see [24]). Second, [20], which is a variant of [24] based on the
well-founded semantics [14] for logic programs, has a (lower) polynomial data com-
plexity and is amenable for applying top-down query procedures, such as SLG(O) [2],
to answer queries based only on the information relevant for the query, and without
computing the entire model – no doubt a crucial feature when dealing with large on-
tologies such as SNOMED with over 300,000 classes or [25] with millions of assertions.

In this paper, we describe the system NoHR, realized as a plug-in for the ontology
editor Protégé 4.X,3 that allows the user to query combinations of EL+

⊥ ontologies and
non-monotonic rules in a top-down manner. To the best of our knowledge, it is the first
Protégé plug-in to integrate non-monotonic rules and top-down queries. Our approach
is theoretically founded in the abstract procedure SLG(O) and based on utilizing the
consequence-driven, concurrent EL reasoner ELK, which is considerably faster than
other EL reasoners [18], to classify the ontology part and then translate the result into
rules which, together with the non-monotonic rules, serve as input for the top-down
query engine XSB Prolog.4 Additional features of the plug-in include: the possibility
to load and edit rule bases, and define predicates with arbitrary arity; guaranteed termi-
nation of query answering, with a choice between one/many answers; robustness w.r.t.
inconsistencies between the ontology and the rule part. Our main contributions are:

– We generalize the procedure presented in [2] to avoid the normalization of EL+
⊥

knowledge bases, which is not necessary for ELK, also reducing the size of the
XSB file and of the tables in XSB. At the same time we significantly improve the
formalization in [2] – including the correct handling of complex concept assertions
– in order to show that our procedure is correct.

– We describe an implementation of this revised procedure in Java including an ELK
reasoner for preprocessing the ontology, whose translated output, together with the
rules, can be queried interactively under XSB via the Java front-end Interprolog.5

– We evaluate the performance of our tool, showing that even SNOMED augmented
with a large number of rules can be preprocessed in a brief period of time and then
query answering is possible at interactive response time.

The remainder of the paper is structured as follows. In Sect. 2, we briefly recall the
DL EL+

⊥ and MKNF knowledge bases as a tight combination of the former DL and
non-monotonic rules. Then, we present the revised reasoning algorithm that allows us

2 http://www.w3.org
3 http://protege.stanford.edu
4 http://xsb.sourceforge.net
5 http://www.declarativa.com/interprolog/

http://www.w3.org
http://protege.stanford.edu
http://xsb.sourceforge.net
http://www.declarativa.com/interprolog/
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Table 1. Syntax and semantics of EL+
⊥

Syntax Semantics

atomic concept A ∈ NC AI ⊆ ΔI

atomic role R ∈ NR RI ⊆ ΔI ×ΔI

individual a ∈ NI aI ∈ ΔI

top � ΔI

bottom ⊥ ∅
conjunction C �D CI ∩DI

existential restriction ∃R.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ RI ∧ y ∈ CI}
concept inclusion C � D CI ⊆ DI

role inclusion R � S RI ⊆ SI

role composition R1 ◦ · · · ◦Rk � S (x1, x2) ∈ RI
1 ∧ . . . ∧ (xk, y) ∈ RI

k → (x1, y) ∈ SI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

to query such MKNF knowledge bases in Sect. 3. In Sect. 4, we introduce our imple-
mentation of the plug-in and evaluate it in Sect. 5, before we conclude in Sect. 6.

2 Preliminaries

2.1 Description Logic EL+
⊥

We start by recalling the syntax and semantics of EL+
⊥, a large fragment of EL++ [5],

the DL underlying the tractable profile OWL 2 EL [23], following the presentation in
[18,19]. For a more general and thorough introduction to DLs we refer to [4].

The language of EL+
⊥ is defined over countably infinite sets of concept names NC,

role names NR, and individual names NI as shown in the upper part of Table 1. Building
on these, complex concepts are introduced in the middle part of Table 1, which, together
with atomic concepts, form the set of concepts. We conveniently denote individuals by
a and b, (atomic) roles by R and S, atomic concepts by A and B, and concepts by C
and D. All expressions in the lower part of Table 1 are axioms. A concept equivalence
C ≡ D is an abbreviation for C � D and D � C. Concept and role assertions are ABox
axioms and all other axioms TBox axioms, and an ontology is a finite set of axioms.

The semantics of EL+
⊥ is defined in terms of an interpretation I = (ΔI , ·I) consist-

ing of a non-empty domain ΔI and an interpretation function ·I . The latter is defined
for (arbitrary) concepts, roles, and individuals as in Table 1. Moreover, an interpretation
I satisfies an axiom α, written I |= α, if the corresponding condition in Table 1 holds.
If I satisfies all axioms occurring in an ontology O, then I is a model of O, written
I |= O. If O has at least one model, then it is called consistent, otherwise inconsistent.
Also, O entails axiom α, written O |= α, if every model of O satisfies α. Classification
requires to compute all concept inclusions between atomic concepts entailed by O.
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2.2 MKNF Knowledge Bases

MKNF knowledge bases (KBs) build on the logic of minimal knowledge and negation
as failure (MKNF) [22]. Two main different semantics have been defined [24,20], and
we focus on the well-founded version [20], due to its lower computational complexity
and amenability to top-down querying without computing the entire model. Here, we
only point out important notions, and refer to [20] and [2] for the details.

We start by recalling MKNF knowledge bases as presented in [2] to combine an
(EL+

⊥) ontology and a set of non-monotonic rules (similar to a normal logic program).

Definition 1. Let O be an ontology. A function-free first-order atom P (t1, . . . , tn) such
that P occurs in O is called DL-atom; otherwise it is called non-DL-atom. A rule r is
of the form

H ← A1, . . . , An,notB1, . . . ,notBm (1)

where the head of r, H , and all Ai with 1 ≤ i ≤ n and Bj with 1 ≤ j ≤ m in the body
of r are atoms. A program P is a finite set of rules, and an MKNF knowledge base K is
a pair (O,P). A rule r is DL-safe if all its variables occur in at least one non-DL-atom
Ai with 1 ≤ i ≤ n, and K is DL-safe if all its rules are DL-safe.

DL-safety ensures decidability of reasoning with MKNF knowledge bases and can be
achieved by introducing a new predicate o, adding o(i) toP for all constants i appearing
in K and, for each rule r ∈ P , adding o(X) for each variable X appearing in r to the
body of r. Therefore, we only consider DL-safe MKNF knowledge bases.

Example 2. Consider an MKNF knowledge base for recommending vacation destina-
tions taken from [24] (with a few modifications). We denote DL-atoms and constants
with upper-case names and non-DL-atoms and variables with lower-case names.6

PortCity(Barcelona) OnSea(Barcelona,Mediterranean)

PortCity(Hamburg) NonSeaSideCity(Hamburg)

RainyCity(Manchester) Has(Manchester ,AquaticsCenter)

Recreational(AquaticsCenter)

SeaSideCity � ∃Has .Beach
Beach � Recreational

∃Has .Recreational � RecreationalCity

SeaSideCity(x ) ← PortCity(x ),notNonSeaSideCity(x )

interestingCity(x ) ← RecreationalCity(x ),notRainyCity(x )

hasOnSea(x ) ← OnSea(x , y)

false ← SeaSideCity(x ),nothasOnSea(x )

summerDestination(x ) ← interestingCity(x ),OnSea(x , y)

This example shows that we can seamlessly express defaults and exceptions, such as
every port city normally being a seaside city, integrity constraints, such as requir-
ing to know for every seaside city on which sea it lies, and at the same time taxo-
nomic/ontological knowledge including information over unknown individuals, such as

6 To ease readability, we omit the auxiliary atoms that ensure DL-safety and leave them implicit.
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a seaside city being recreational even if we do not know the specific name of the beach.
Note that, unlike [24], the rule with head false is not a true integrity constraint in our
case. Rather, whenever the keyword false would be derivable, we know that there is at
least one seaside city for which we do not know on which sea it lies.

The semantics of MKNF knowledge bases K is usually given by a translation π into
an MKNF formula π(K), i.e., a formula over first-order logic extended with two modal
operators K and not. Namely, every rule of the form (1) is translated into KH ←
KA1, . . . ,KAn,notB1, . . . ,notBm, π(P) is the conjunction of the translations of
its rules, and π(K) = Kπ(O) ∧ π(P) where π(O) is the first-order translation of O.
Reasoning with such MKNF formulas is then commonly achieved using a partition of
modal atoms, i.e., all expressions of the form Kϕ for each Kϕ or notϕ occurring in
π(K). For [20], such a partition assigns true, false, or undefined to (modal) atoms, and
can be effectively computed in polynomial time. If K is MKNF-consistent, then this
partition does correspond to the unique model of K [20], and, like in [2], we call the
partition the well-founded MKNF model Mwf(K). Here, K may indeed not be MKNF-
consistent if the EL+

⊥ ontology alone is inconsistent, which is possible if ⊥ occurs, or
by the combination of appropriate axioms in O and P , e.g., A � ⊥ and A(a) ←. In
the former case, we argue that the ontology alone should be consistent and be repaired
if necessary before combining it with non-monotonic rules. Thus, we assume in the
following that O occurring in K is consistent.

2.3 Querying in MKNF Knowledge Bases

In [2], a procedure, called SLG(O), is defined for querying MKNF knowledge bases
under the well-founded MKNF semantics. This procedure extends SLG resolution with
tabling [9] with an oracle to O that handles ground queries to the DL-part of K by
returning (possibly empty) sets of atoms that, together with O and information already
proven true, allows us to derive the queried atom. We refer to [2] for the full account of
SLG(O), and only recall a few crucial notions necessary in the following.

SLG(O) is based on creating top-down derivation trees with the aim of
answering (DL-safe) conjunctive queries Q of the form q(X) ← A1, . . . ,
An,notB1, . . . ,notBm where each variable in Q occurs in at least one non-DL atom
in Q, and where X is the (possibly empty) set of requested variables appearing in the
body.

In general, the computation of Mwf(K) uses two different versions of K in parallel
to guarantee that a) coherence is ensured, i.e., if ¬P (a) is derivable, then notP (a) has
to be true as well (cf. also [20]), and b) MKNF-consistency of K can be verified. For
a top-down approach this is impractical, so, instead, a doubled MKNF knowledge base
Kd = (O,Od,Pd) is defined in which a copy of O with new doubled predicates is
added, and two rules occur in Pd for each rule in P , intertwining original and doubled
predicates (see Def. 3.1 in [2]). It is shown that an atom A is true in Mwf(K) iff A is
true in Mwf(Kd) and A is false in Mwf(K) iff Ad is false in Mwf(Kd). Note that Kd is
indeed necessary in general, but if K does not contain ⊥, then we can use K directly.
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In [2], the notion of oracle is defined to handle ground queries to the ontology, but
before we recall that notion, we use an example to illustrate the idea.

Example 3. Recall K in Ex. 2. Since⊥ does not occur in K, we can restrict ourselves to
K here. First, consider query q = interestingCity(Manchester). We find a rule whose
head unifies with q, and obtain two new queries, RecreationalCity(Manchester) and
notRainyCity(Manchester). There is no rule whose head matches the former, but we
can query the ontology and the answer is yes together with an empty set of atoms,
i.e., RecreationalCity(Manchester) can be proven from O alone. Now we handle
notRainyCity(Manchester), so we query RainyCity(Manchester) which can also
be proven by O alone. Therefore notRainyCity(Manchester) fails, so q is false.

Now, consider q1 = interestingCity(Barcelona). We obtain again two new queries,
q2 = RecreationalCity(Barcelona) and q3 = notRainyCity(Barcelona). In this
case, q2 = RecreationalCity(Barcelona) cannot be proven from O alone, but the or-
acle could return Has(Barcelona,X ) and Recreational(X ), which, if we would find
a value for X , would allow us to derive q2. However, neither of the two atoms ap-
pear in a rule head in P , so we will never be able to derive it from P . In fact, the
only proper answer the oracle may return is q4 = SeaSideCity(Barcelona). From the
corresponding rule in P we obtain two new queries q5 = PortCity(Barcelona) and
q6 = notNonSeaSideCity(Barcelona). Then, q5 can be derived from O alone, and q6
succeeds, because NonSeaSideCity(Barcelona) fails. So q4 succeeds, and therefore
also q2. Finally q3 succeeds since RainyCity(Barcelona) fails, so q1 is true.

We recall the notions of a complete and a (correct) partial oracle from [2].

Definition 4. Let Kd = (O,Od,Pd) be a doubled MKNF KB, I a set of ground atoms
(already proven to be true), S a ground query, and L a set of ground atoms such that
each L ∈ L is unifiable with at least one rule head in Pd. The complete oracle for
O, denoted compTO, is defined by compTO(I, S,L) iff O ∪ I ∪ L |= S or Od ∪ I ∪
L |= S. A partial oracle for O, denoted pTO, is a relation pTO(I, S,L) such that if
pTO(I, S,L), then O ∪ I ∪ L |= S or Od ∪ I ∪ L |= S for consistent O ∪ I ∪ L and
Od ∪ I ∪ L, respectively.

A partial oracle pTO is correct w.r.t. compTO iff, for all MKNF-consistent Kd, re-
placing compTO in SLG(O) with pTO succeeds for exactly the same set of queries.

Partial oracles may avoid returning unnecessary answers L, such as non-minimal
answers or those that try to derive an MKNF-inconsistency even though Kd is MKNF-
consistent. Moreover, correctness of partial oracles is only defined w.r.t MKNF-
consistentK. The rationale is that, when querying top-down, we want to avoid checking
whether the entire KBKd is MKNF-consistent. This leads to para-consistent derivations
if Kd is not MKNF-consistent, e.g., some atom P is true, yet P d is false, while other
independent atoms are evaluated as if Kd was MKNF-consistent (see [2]).

3 Pre-processing the Ontology and Querying

In [2], an SLG(O) oracle for EL+
⊥ is defined based on the reasoning algorithm for

ontology classification presented in [5], which is restricted to normalized ontologies.
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Even though the process of normalizing EL ontologies is linear, it introduces auxiliary
predicates to achieve the normal form, which, e.g., not only is counter-intuitive to the
idea of finding meaningful explanations for information derived by top-down queries
but also increases the size of the resulting XSB file and tables used in XSB. Since the
reasoning algorithm of ELK [18,19] is defined for the general case, and ELK is the
reasoner we want to use for implementing our query-tool, because it is considerably
faster than other EL reasoners, we generalize the algorithm in [2] to non-normalized
ontologies. At the same time, we fix a problem in [2] w.r.t. handling non-atomic concept
assertions, and we improve the formalization to prove correctness of our oracle.

In the following, we first utilize the algorithm underlying ELK to compute implicit
information derivable from a given ontology. After that, we discard certain axioms,
because, with the implicit information computed, they are no longer required for the
query task used in SLG(O). Then, we translate the remaining set of axioms into rules,
which can equally be used as an EL oracle.

3.1 Simplifying the Ontology

The basic idea for an EL+
⊥ oracle is to translate the ontology into rules. The only ob-

stacle are concept inclusions with ∃R.C on the right-hand side since these cannot be
translated straightforwardly. However, such axioms alone can never contribute to ora-
cle derivations. Consider, e.g., querying K in Ex. 2 for Beach(i) for any constant i:
an oracle cannot derive Beach(i) even if SeaSideCity(c) and has(c, i) were already
known to be true. Yet, such axioms are useful indirectly, e.g., to obtain that proving
SeaSideCity(Barcelona) would suffice to derive RecreationalCity(Barcelona). So,
classification is applied first to make such implicit links explicit, and then all concept
inclusions with sub-concepts ∃R.C on the right-hand side can be rewritten or removed.

The consequence-based procedure for classification of TBoxes in EL+
⊥ is described

in [19]. Here we only sketch it with a focus on the results important for our purposes.
First, the initial set input is defined to contain one axiom init(A) for each atomic

concept A in O. Then, a set of EL+
⊥ inference rules for TBox reasoning in EL+

⊥ (see
[19]) is applied exhaustively to input, yielding Closure as final result, which contains
axioms derivable fromO and axioms of the form init(C) and C R−→ D, where the latter
represents that, for two (initialized) concepts C and D, C � ∃R.D is entailed.

Theorem 5 ([19]). Let O be an EL+
⊥ ontology, input a set of expressions init(C),

and Closure the closure of input under the EL+
⊥ inference rules w.r.t. O. Then, for

each concept C such that init(C) ∈ Closure and each atomic concept A, we have

1. O |= C � ⊥ iff C � ⊥ ∈ Closure,
2. O |= C � A iff C � ⊥ ∈ Closure or C � A ∈ Closure.

Note that one of the inference rules (R−
∃ ) allows init(D) ∈ Closure if C � ∃R.D ∈

Closure. Hence, Theorem 5 does not apply only to init(C) ∈ input.
One thing missing so far, which is not correctly covered in the translation presented

in [2], is that concept assertions also have to be considered since, e.g., ∃R.C(a) together
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with ∃R.C � D, make D(a) derivable, yet the EL+
⊥ inference rules are defined for

TBox axioms. The solution, adapted from [19], is to apply a transformation N that
translates concept assertions C(a) into concept inclusions Na � C, where the set of
atomic concepts contains an atomic concept Na for every a ∈ NI s.t. Na does not
appear in O, and leaves all other axioms unchanged. Note that we do not translate role
assertions R(a, b), because R is just an atomic role without occurrences of concepts of
the form ∃R.C. Still, it holds for consistent O and axiom α that do not contain atomic
concepts of the form Na, that O |= α iff N(O) |= N(α) ([19], Theorem 3).

We are now ready to present the new definition of a reduced ontology.

Definition 6. Let O be an EL+
⊥ ontology, input a set of expressions init(A) for each

atomic concept A, and Closure the closure of input under the EL+
⊥ inference rules

w.r.t. N(O). The reduced ontology of O is obtained from O1 = N(O) ∪ Closure as
follows.

1. Remove all statements of the forms init(C), C R−→ D, and C � ∃R.D from O1;
2. Remove all sub-concepts of the form ∃R.D from the right-hand side of any axiom

C � D1 D2 ∈ O1; if no conjunct is left, remove the entire axiom from O1;
3. Substitute all concept inclusions of the form Na � C remaining after 1. and 2. by

C(a) for all a ∈ NI.

Note that input does contain init(Na) for all a ∈ NI. Moreover, steps 1. and 2. already
remove all sub-concepts of the form ∃R.D from concept inclusions that represent con-
cept assertions, so indeed the reduced ontology does not contain concepts of the form
∃R.D in concept assertions and the right-hand sides of concept inclusions. We can show
that reduced O contain all atomic concept assertions they entail.

Lemma 7. Let O be reduced and A an atomic concept. If O |= A(a), then A(a) ∈ O.

Also O and the reduced O′ entail the same unary and binary atoms.

Lemma 8. Let O be an EL+
⊥ ontology, O′ the reduced ontology of O, A a unary and

R a binary predicate: O |= A(a) iff O′ |= A(a) and O |= R(a, b) iff O′ |= R(a, b).

Now, we show that we can use the reduced ontology of O instead of O as an EL+
⊥

oracle. First, we specify a partial oracle that is necessarily a correct partial oracle for O.

Definition 9. Let Kd = (O,Od,Pd) be a doubled MKNF KB, I a set of ground atoms
(already proven to be true), S a ground query, and L a set of ground atoms such that
each L ∈ L is unifiable with at least one rule head in Pd. The abstract partial oracle for
O, denoted pT a

O, is a relation pT a
O(I, S,L) such that pT a

O(I, S,L) iff O ∪ I ∪ L |= S
or Od ∪ I ∪ L |= S for consistent O ∪ I ∪ L and Od ∪ I ∪ L, respectively.

Such an abstract partial oracle is not necessarily efficient, since it does return all possible
consistent tuples (I, S,L) but it certainly is correct.

Proposition 10. Let Kd = (O,Od,Pd) be a doubled MKNF KB. The abstract partial
oracle pT a

O is correct w.r.t. compTO.
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Based on this result, we can show thatO can be substituted with the reduced ontology
of O and still yield a correct partial oracle.

Theorem 11. Let Kd = (O,Od,Pd) be a doubled MKNF KB and O′ the reduced
ontology of O. Then pT a

O′ is a correct partial oracle w.r.t. compTO.

3.2 Translation into Rules

Now, we can show how to translate a reduced EL+
⊥ ontology into rules. The only

thing missing is pointing out a technical detail on how coherence and detection of
MKNF-inconsistencies is achieved in [20,2]. We would like to remind that coherence
intuitively ensures that an atom being “classically” false also is false by default in the
non-monotonic rules. That allows us, e.g., to derive from C � ⊥, C(a) ← notD(a),
and D(a) ← notC(a) that C(a) is false and D(a) is true, and is therefore useful in
general, even if Kd is MKNF-consistent. In SLG(O), special atoms NH(ti) are used
to represent a query ¬H(ti) to the oracle. Care must be taken when translating an on-
tology containing ⊥ to rules, so that these queries still work properly. Of course, if ⊥
does not appear in O, then considering K suffices.

To ease the presentation of the following translation, we introduce a few a priori
simplifications. First, in a reduced ontology, the concepts C of concept assertions C(a)
and the right-hand sidesD of concept inclusionsC � D are all of the formC1. . .Cn

with n > 0. We can separate these into an equivalent set of n axiomsCi(a) andC � Ci,
respectively, for 1 ≤ i ≤ n, simplifying in particular where some Ci is ⊥ and another
an atomic concept. Moreover, we assume without loss of generality that ⊥ does not
occur on the left-hand side of concept inclusions. We know that ⊥  C and ∃R.⊥ are
both equivalent to ⊥ and ⊥ � C is always true, so we do not need to care translating
such cases into rules. Finally, for �, only axioms of the form � � C and sub-concepts
of the form ∃R.� deserve our attention, all other instances, namely �(a), C � �, or
C � � D, are irrelevant. Hence, � is not considered in assertions, the right-hand side
of concept inclusions, and in conjunctions on the left-hand side of concept inclusions,
all the more, since � does not appear in P . We also omit the auxiliary DL-safe atoms.

First, we translate arbitrary concepts into a set of correctly connected atoms.

Definition 12. Let C be an EL+
⊥ concept without occurrences of ⊥, x a variable, and

X a set of variables with x �∈ X . We define tr(C, x) as follows:

tr(C, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{A(x)} if C = A

∅ if C = �
tr(C1, x) ∪ tr(C2, x) if C = C1  C2

{R(x, y)} ∪ tr(D, y) if C = ∃R.D

where y ∈ X is a new variable that has not been used before. We obtain tr(C, x)d from
tr(C, x) by substituting all predicates P in tr(C, x) with P d, and, given a set of atoms
S, S is a sequence of all atoms contained in S separated by “,”.

Each y is indeed intended to be a variable that is globally new in the process of translat-
ingC. E.g., ∃R.((∃S.�)(A∃R.B)) translates into S = {R(x, y1), S(y1, y2), A(y1),
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R(y1, y3), B(y3)}. Then S is simply “R(x, y1), S(y1, y2), A(y1), R(y1, y3), B(y3)”
which can appear as such in a rule body.

Definition 13. Let K = (O,P) be an MKNF KB with consistent and reduced O. We
definePd

O fromO, whereA is an atomic concept,C a concept,D a non-atomic concept,
R, Ri, S roles, and a, b individuals, as the smallest set containing:

(a1) for each A(a) ∈ O: A(a)← and Ad(a) ← notNA(a).
(a2) for each R(a, b) ∈ O: R(a, b)← and Rd(a, b)← notNR(a, b).
(t1) for each � � A ∈ O: A(x) ← and Ad(x) ← notNA(x).
(c1) for each C � A ∈ O : A(x) ← tr(C, x) and Ad(x) ← tr(C, x)d,notNA(a).
(r1) for each R � S ∈ O: S(x, y) ← R(x, y) and

Sd(x, y) ← Rd(x, y),notNS(x, y).
(r2) for each R1 ◦ · · · ◦Rk � S ∈ O: S(x1, y)← R1(x1, x2), . . . , Rk(xk, y) and

Sd(x1, y)← Rd
1(x1, x2), . . . , R

d
k(xk, y),notNS(x1, y).

(i1) for each A � ⊥ ∈ O: NA(x) ←.
(i2) for each D � ⊥ ∈ O: {NA(y)← tr(D, x) \ {A(y)} | A(y) ∈ tr(D, x)} ∪

{NR(y, z)← tr(D, x) \ {R(y, z)} | R(y, z) ∈ tr(D, x)}.

We create in Pd
O the rule representation for both O and Od. Again, if ⊥ does not occur

in O, then we can skip all rules with doubled predicates, and (i1) and (i2) will not
contribute anything either. The additional default atoms of the form notNA(x) and
notNS(x, y) are added to the doubled rules to be in line with the idea of the doubling
of rules in [2]: whenever, e.g., A(x) is “classically false” for some x, then we make
sure that Ad(x) is derviable as false for that same x from the rules, but not necessarily
A(x), thus allowing to detect potential MKNF-inconsistencies. That is also the reason
why (i1) and (i2) do not produce the doubled counterparts: atoms based on predicates
of the forms NCd or NRd are not used anywhere.

We can show that the translation also maintains derivability of atoms.

Lemma 14. Let O be a reduced EL+
⊥ ontology, A a unary and R a binary predicate:

O |= A(a) iff Pd
O |= A(a) and Od |= Ad(a) iff Pd

O |= Ad(a), and, likewise,
O |= R(a, b) iff Pd

O |= R(a, b) and Od |= Rd(a, b) iff Pd
O |= Rd(a, b).

Thus, we can define a correct partial oracle based on Pd
O.

Theorem 15. Let Kd = (O,Od,Pd) be a doubled MKNF KB, O1 the reduced ontol-
ogy of O, and pT EL

O a partial EL oracle such that pT EL
O (I, S,L) iff Pd

O1
∪ I ∪L |= S.

Then pT EL
O is a correct partial oracle w.r.t. compTO.7

Instead of coupling two rule reasoners that interact with each other using an oracle,
we can simplify the process altogether and integrate both into one rule reasoner. The
resulting approach is decidable with data complexity in P.

Theorem 16. Let K = (O,P) be an MKNF KB with EL+
⊥O. An SLG(O) evaluation

of a query in KEL+
⊥
= (∅, (Pd ∪ Pd

O)) is decidable with data complexity in P.



226 V. Ivanov, M. Knorr, and J. Leite

XSBJava Virtual Machine

Protégé
NoHR Plugin

GUI

ELK

Query 
Processor

InterProlog

NoHR 
Rules Tab

OWL File

NM Rules
File

XSB 
Knowledge 

Base

Query 
Answering

Tables

Tracer/
Debugger

NoHR 
Query Tab

Translator

Ontology

NM Rules

Protégé
Ontology

NM Rules 
Base

Fig. 1. System Architecture of NoHR

4 System Description

In this Section, we briefly describe the architecture of our plug-in for Protégé as shown
in Fig. 1 and discuss some features of our implementation and querying in XSB.

The input for our plug-in consists of an OWL file, which can be manipulated as
usual in Protégé, and a rule file. For the latter, we provide a tab called NoHR Rules
that allows us to load, save and edit rule files in a text panel. The syntax follows Prolog
conventions, so that one rule from Ex. 2 can be represented, e.g., by

SeaSideCity(X) :- PortCity(X), not NonSeaSideCity(X).

The NoHR Query tab also allows for the visualization of the rules, but its main pur-
pose is to provide an interface for querying the combined KB. Whenever the first query
is posed by pushing “Execute”, the translator is started, initiating the ELK reasoner to
classify the ontology and return the inferred axioms to translator. It is verified whether
DisjointWith axioms appear in O which determines whether the application of the
transformations presented in Sect. 3 provides a doubled set of rules or not, and whether
the non-monotonic rules have to be doubled as well. Then, accordingly, a joint (non-
monotonic) rule set is created in which all predicates and constants are encoded using
MD5 to ensure full compatibility with XSB Prolog’s more restrictive admitted input
syntax. The result is transfered to XSB via InterProlog [8], which is an open-source
Java front-end allowing the communication between Java and a Prolog engine.

Next, the query is sent via InterProlog to XSB, and answers are returned to the query
processor, which collects them and sets up a table showing for which variable substitu-
tions we obtain true, undefined, or inconsistent valuations (or just shows the truth value
for a ground query). The table itself is shown in the Result tab of the Output panel,
while the Log tab shows measured times and system messages, including those from
XSB via InterProlog. XSB itself not only answers queries very efficiently in a top-down
manner, with tabling, it also avoids infinite loops.

Once the query has been answered, the user may pose other queries, and the system
will simply send them directly without any repeated preprocessing. If the user changes

7 Of course, the partial EL oracle has to be defined w.r.t. the reduced O1.
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 # Axioms ELK Translator XSB Total

ChEBI 67184 3,92 7,41 1,75 9,16

EMAP 13730 2,94 5,14 0,00 5,14

Fly Anatomy 19211 2,70 4,99 0,83 5,82

FMA 126548 7,56 14,67 3,58 18,25

GALEN-OWL 36547 5,00 8,76 2,46 11,22

GALEN7 44461 5,88 9,67 4,56 14,23

GALEN8 73590 21,90 42,76 28,12 70,88

GO1 28897 3,74 6,06 1,09 7,15

GO2 73590 4,57 8,90 5,02 13,92

Molecule Role 9629 3,41 5,14 0,15 5,29

SNOMED CT 294480 20,61 43,32 24,69 68,01

Fig. 2. Preprocessing time (s) of different EL ontologies

data in the ontology or in the rules, then the system offers the option to recompile, but
always restricted to the part that actually changed.

Our plug-in is under active development and the most recent version is available at
https://code.google.com/p/nohr-reasoner/.

5 Evaluation

In this section, we evaluate our system with the aim of showing that a) different EL
ontologies can be preprocessed for querying in a short period of time, b) adding rules
increases the time of the translation only linearly, and c) querying time is in comparison
to a) and b) in general completely neglectable.

We performed the tests on a Mac book air 13 under Mac OS X 10.8.4 with a 1.8 GHz
Intel Core i5 processor and 8 GB 1600 MHz DDR3 of memory. We used OWL API
3.4.2 for managing ontologies, the ELK libraries 0.3.2, directly integrated into our tool,
InterProlog 2.3a4 as Java front end between Java and Prolog, and XSB 3.4.0 for query-
ing. We ran all tests in a terminal version and Java with the “-XX:+AggressiveHeap”
option, and test results are averages over 5 runs.

First, we preprocessed a number of ontologies without additional rules and measured
the time. The results are shown in Fig. 2.

We considered the ontologies, mentioned in [19], that are available online8 or, in the
case of SNOMED CT, freely available for research and evaluation.9 The second column
of Fig. 2 shows the number of axioms in each ontology to give an idea of their size. Very
detailed measures of these ontologies are presented in [19].

We measured the time it takes to only classify these ontologies with the ELK stan-
dalone application for comparison (third column), and also the time to translate the

8 http://code.google.com/p/elk-reasoner/
9 http://www.ihtsdo.org/licensing/

https://code.google.com/p/nohr-reasoner/
http://code.google.com/p/elk-reasoner/
http://www.ihtsdo.org/licensing/
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OWL file into a file that can be loaded into XSB (Translator, fourth column). Then, we
measured the time to load the resulting file dynamically into XSB (fifth column) and
we also show the total time (sixth column, sum of columns four and five).

One can observe that the total time is not proportional to the number of axioms,
but rather also influenced by which kinds of axioms appear in each ontology which in
particular affects the reasoning time of ELK (see also [19]). We can also see that the
translator (including ELK processing) takes approximately twice the amount of time of
ELK alone, while loading the file in XSB varies from 0 sec. (EMAP) to approximately
the same time as running ELK alone, depending on the number of derived axioms that
can be translated into rules. Still, the total preprocessing time varies from 5.14 sec. to
70.88 sec. which we belief is acceptable since this has to be executed only once before
querying.

Next, we considered only SNOMED CT and added a varying number of non-
monotonic rules. These rules were generated arbitrarily, using predicates from the on-
tology and additional new predicates (up to arity three), producing rules with a random
number of body atoms varying from 1 to 10 and facts (rules without body atoms) with
a ratio of 1:10. Note that, due to the translation of the DL part into rules, all atoms
literally become non-DL-atoms. So ensuring that each variable appearing in the rule
is contained in at least one non-negated body atom suffices to guarantee DL-safety for
these rules.

The results are shown in Fig. 3 (containing also a constant line for classification of
ELK alone and starting with the values from the first experiment with no additional
rules), and clearly show that the time of translator and loading the file in XSB only
grows linearly on the number of rules with a small degree, in particular in the case of
translator. This indicates that adding non-monotonic rules to ontologies has a rather low
impact on preprocessing.

Finally, we tested the querying time. To this purpose, we randomly generated and
handcrafted several queries of different sizes and shapes, some satisfiable while others
not, using SNOMED CT with a varying number of non-monotonic rules as described in
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the previous experiment. More concretely, we tested queries ranging from single atoms
to complex conjunctive queries. We also varied the depth of classes and properties in the
hierarchies, how many sub-elements the considered classes/properties have themselves
(the more they have, the more answers are returned w.r.t. the arbitrarily many created
rules and facts), and how variables are connected. E.g., we considered sequences of
atoms without any (positive variable) connection between them, thus creating all com-
binations of the answers for each atom, but also queries in which properties (or new
predicates of arity greater 1) introduce connections or where the same variable appears
in different queried classes. In all cases, we observed that the query response time is
interactive, mostly significantly below one second, observing longer reply times only if
the number of replies is very high because either the queried class contains many sub-
classes in the hierarchy or if the arbitrarily generated rules create too many meaningless
links, thus in the worst case requiring to compute the entire model. Requesting only one
solution avoids this problem. Additionally, the question of realistic randomly generated
rule bodies for testing querying time remain an issue of future work.

6 Conclusions

We have presented NoHR, the first plug-in for the ontology editor Protégé that integrates
non-monotonic rules and top-down queries with ontologies in the OWL 2 profile OWL
2 EL. Our approach realizes an SLG(O) oracle for EL+

⊥, utilizing the EL reasoner ELK
for preprocessing an ontology and then translating it into rules, which can be queried
together with the non-monotonic rules in XSB.

We have generalized the procedure presented in [2] to non-normalized EL+
⊥ knowl-

edge bases and shown that this formalization provides a correct SLG(O) oracle. We
also have discussed how this procedure is implemented in our tool, and that it offers the
representation of non-monotonic knowledge such as defaults and exceptions in a seam-
less way. We have evaluated the performance showing that different EL ontologies can
be preprocessed for querying in a short period of time, adding rules increases this time
only linearly, and querying time is in comparison to preprocessing insignificant.

There are several relevant approaches discussed in the literature. Most closely related
are probably [16,21], because both build on the well-founded MKNF semantics [20].
In fact, [16] is maybe closest in spirit to the original idea of SLG(O) oracles presented
in [1]. It utilizes the CDF framework already integrated in XSB, but its non-standard
language is a drawback if we want to achieve compatibility with standard OWL tools
based on the OWL API. On the other hand, [21], presents an OWL 2 QL oracle based
on common rewritings in the underlying DL DL-Lite [3]. Less closely related is the
work pursued in [7,15] that investigates direct non-monotonic extensions of EL, so that
the main reasoning task focuses on finding default subset inclusions, unlike our query-
centered approach.

Two related tools are DReW [26] and HD Rules [10], but both are based on different
underlying formalisms to combine ontologies and non-monotonic rules. The former
builds on dl-programs [12] and focuses on datalog-rewritable DLs [17], and the latter
builds on Hybrid Rules [11]. While a more detailed comparison is surely of interest,
the main problem is that both underlying formalisms differ from MKNF knowledge
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bases in the way information can flow between its two components and how flexible
the language is [12,24]. Finally, SWRL-IQ [13] is also interesting because it utilizes
expressive features of XSB, but in a monotonic setting and under Protégé 3.X, so OWL
2 is not supported.

In terms of future work, we consider extending our tool so that it is possible to
load files in RIF format, thereby achieving a tool to jointly utilize the two language
paradigms present in the ongoing standardization of the Semantic Web. We also want
to work on extending the language, to allow nominals, or at least safe nominals [19].
Finally, improving the user interface is also in our focus leveraging XSB language fea-
tures, in particular in the light of [13], which uses an expressive query language and
elaborate traces for finding explanations.
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Abstract. We describe a method for updating the classification of ontologies ex-
pressed in the EL family of Description Logics after some axioms have been
added or deleted. While incremental classification modulo additions is relatively
straightforward, handling deletions is more problematic since it requires retract-
ing logical consequences that are no longer valid. Known algorithms address this
problem using various forms of bookkeeping to trace the consequences back to
premises. But such additional data can consume memory and place an extra bur-
den on the reasoner during application of inferences. In this paper, we present a
technique, which avoids this extra cost while being very efficient for small in-
cremental changes in ontologies. The technique is freely available as a part of
the open-source EL reasoner ELK and its efficiency is demonstrated on naturally
occurring and synthetic data.

1 Introduction and Motivation

The EL family of Description Logics (DLs) are tractable extensions of the DL EL fea-
turing conjunction and existential restriction. Despite a limited number of constructors,
EL became the language of choice in many applications, especially in Biology and
Medicine, which require management of large terminologies. The DL EL++ [1]—an
extension of EL with other features such as complex role inclusion axioms, nominals,
and datatypes—became the basis of the OWL EL profile [2] of the Web ontology lan-
guage OWL 2 specifically aimed at such applications.

Ontology classification is one of the main reasoning tasks. It requires computing all
entailed (implicit) subsumption relations between atomic concepts. Specialized EL rea-
soners, such as CEL [3], ELK [4], jcel [5], and Snorocket [6] are able to compute the
classification for ontologies as large as SNOMED CT [7] with about 300,000 axioms.
Classification plays the key role during ontology development, e.g., for detecting mod-
eling errors that result in mismatches between terms. But even with fast classification
procedures, frequent re-classification of ontologies can introduce significant delays in
the development workflow, especially as ontologies grow over time.

Several incremental reasoning procedures have been proposed to optimize frequent
ontology re-classification after small changes. Most procedures maintain extra informa-
tion to trace conclusions back to the axioms in order to deal with axiom deletions (see
Section 2). Although managing this information typically incurs only a linear overhead,
it can be a high cost for large ontologies such as SNOMED CT. In this paper, we pro-
pose an incremental reasoning method which does not require computing any of such

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 232–247, 2013.
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information. The main idea is to split the derived conclusions into several partitions.
We identify partitions containing ‘affected’ consequences (those that could be inval-
idated by deletion) using a simple forward chaining procedure, and then re-compute
all conclusions in these partitions. This way, we avoid storing any bookkeeping infor-
mation for checking whether the affected consequences still follow from other conclu-
sions. Our hypothesis is that, if the number of partitions is sufficiently large, changes
are relatively small, and most inferences happen within individual partitions, the re-
computation of affected partitions will not be too expensive. We describe a particular
partitioning method for EL that has this property, and verify our hypothesis experimen-
tally. Our experiments demonstrate that for large ontologies, such as SNOMED CT,
incremental classification can be 10–40 times faster than the (already highly optimized)
full classification, thus making re-classification almost instantaneous.

In this paper we focus on the DL EL+, which covers most of the existing OWL EL
ontologies, and for simplicity, consider only additions and deletions of concept axioms,
but not of role axioms. Although the method can be extended to changes in role axioms,
it is unlikely to pay off in practice, because such changes are more likely to cause a
significant impact on the result of the classification.

2 Related Work

Directly relevant to this work are various extensions to DL reasoning algorithms to
support incremental changes.

Incremental classification in EL modulo additions implemented in the CEL system,
comes closest [8]. The procedure works, essentially, by applying new inferences corre-
sponding to the added axioms and closing the set of old and new conclusions under all
inference rules. Deletion of axioms is not supported.

Known algorithms that support deletions require a form of bookkeeping to trace
conclusions back to the premises. The Pellet reasoner [9] implements a technique called
tableau tracing to keep track of the axioms used in tableau inferences [10]. Tracing
maps tableau elements (nodes, labels, and relations) to the responsible axioms. Upon
deletion of axioms, the corresponding elements get deleted. This method is memory-
intensive for large tableaux and currently supports only ABox changes.

The module-based incremental reasoning method does not perform full tracing of
inferences, but instead maintains a collection of modules for derived conclusions [11].
The modules consist of axioms in the ontology that entail the respective conclusion,
but they are not necessarily minimal. If no axiom in the module was deleted then the
entailment is still valid. Unlike tracing, the method does not require changes to the
reasoning algorithm, but still incurs the cost of computing and storing the modules.

The approach presented in this paper is closely related to the classical DRed (over-
delete, re-derive) strategy for incremental maintenance of recursive views in databases
[12]. In the context of ontologies, this method was applied, e.g., for incremental updates
of assertions materialized using datalog rules [13], and for stream reasoning in RDF
[14]. Just like in DRed, we over-delete conclusions that were derived using deleted
inferences (to be on the safe side), but instead of checking which deleted conclusions are
still derivable using remaining inferences (which would require additional bookkeeping
information), we re-compute some well-defined subset of ‘broken’ conclusions.
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Table 1. The syntax and semantics of EL+

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top � ΔI

bottom ⊥ ∅
conjunction C �D CI ∩DI

existential restriction ∃R.C {x | ∃y ∈ CI : 〈x, y〉 ∈ RI}
Axioms:

concept inclusion C � D CI ⊆ DI

role inclusion R � S RI ⊆ SI

role composition R1 ◦R2 � S RI
1 ◦RI

2 ⊆ SI

3 Preliminaries

3.1 The Description Logic EL+

In this paper, we will focus on the DL EL+ [3], which can be seen as EL++ [1] without
nominals, datatypes, and the bottom concept ⊥. It is defined w.r.t. a vocabulary consist-
ing of countably infinite sets of (atomic) roles and atomic concepts. Complex concepts
and axioms are defined recursively in Table 1. We use the letters R,S for roles, C,D,E
for concepts, and A,B for atomic concepts. An ontology is a finite set of axioms. Given
an ontology O, we write �∗

O for the smallest reflexive transitive binary relation over
roles such that R �∗

O S holds for all R � S ∈ O.
An interpretation I consists of a nonempty set ΔI called the domain of I and an

interpretation function ·I that assigns to each role R a binary relation RI ⊆ ΔI ×
ΔI , and to each atomic concept A a set AI ⊆ ΔI . This assignment is extended to
complex concepts as shown in Table 1. I satisfies an axiom α (written I |= α) if
the corresponding condition in Table 1 holds. I is a model of an ontology O (written
I |= O) if I satisfies all axioms in O. We say that O entails an axiom α (written
O |= α), if every model of O satisfies α. The ontology classification task requires to
compute all entailed subsumptions between atomic concepts occurring in O.

3.2 Inferences and Inference Rules

Let Exp be a fixed countable set of expressions. An inference over Exp is an object inf
which is assigned with a finite set of premises inf.Premises ⊆ Exp and a conclusion
inf.conclusion ∈ Exp. When inf.Premises = ∅, we say that inf is an initialization
inference. An inference rule R over Exp is a countable set of inferences over Exp; it is
an initialization rule if all these inferences are initialization inferences. The cardinality
of the rule R (notation ||R||) is the number of inferences inf ∈ R. In this paper, we view
an inference system as one inference rule R representing all of their inferences.
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R0
C � C

: C occurs inO

R�
C � � : C and � occur in O

R�
C � D

C � E
: D � E ∈ O

R−
�

C � D1 �D2

C � D1 C � D2

R+
�

C � D1 C � D2

C � D1 �D2
: D1 �D2 occurs in O

R∃
E � ∃R.C C � D

E � ∃S.D :
∃S.D occurs in O
R �∗

O S

R◦
E � ∃R1.C C � ∃R2.D

E � ∃S.D :
S1 ◦ S2 � S ∈ O
R1 �∗

O S1

R2 �∗
O S2

Fig. 1. The inference rules for reasoning in EL+

We say that a set of expressions Exp ⊆ Exp is closed under an inference inf if
inf.Premises ⊆ Exp implies inf.conclusion ∈ Exp. Exp is closed under an inference
rule R if Exp is closed under every inference inf ∈ R. The closure under R is the
smallest set of expressions closed under R. Note that the closure is always empty if R
does not contain initialization inferences.

We will often restrict inference rules to subsets of premises. Let Exp ⊆ Exp be a
set of expressions, and R an inference rule. By R(Exp) (R[Exp]) we denote the rule
consisting of all inferences inf ∈ R such that inf.Premises ⊆ Exp (respectively Exp ⊆
inf.Premises). We can combine these operators: for example, R[Exp1](Exp2) consists
of those inferences in R whose premises contain all expressions from Exp1 and are a
subset of Exp2. Note that this is the same as R(Exp2)[Exp1]. For simplicity, we write
R(), R[], R(exp), and R[exp] instead of R(∅), R[∅], R({exp}), and R[{exp}] respectively.
Note that R[] = R and R() consists of all initialization inferences in R.

3.3 The Reasoning Procedure for EL+

The EL+ reasoning procedure works by applying inference rules to derive subsump-
tions between concepts. In this paper, we use the rules from EL++ [1] restricted to
EL+, but present them in a way that does not require the normalization stage [4].

The rules for EL+ are given in Figure 1, where the premises (if any) are given above
the horizontal line, and the conclusions below. Some rules have side conditions given
after the colon that restrict the expressions to which the rules are applicable. For exam-
ple, rule R+

� contains one inference inf for each C,D1, D2, such that D1 D2 occurs
in O with inf.Premises = {C � D1, C � D2}, inf.conclusion = C � D1 D2. Note
that the axioms in the ontologyO are only used in side conditions of the rules and never
used as premises of the rules.

The rules in Figure 1 are complete for deriving subsumptions between the concepts
occurring in the ontology. That is, if O |= C � D for C and D occurring in O,
then C � D can be derived using the rules in Figure 1 [1]. Therefore, in order to
classify the ontology, it is sufficient to compute the closure under the rules and take the
derived subsumptions between atomic concepts. The following example illustrates the
application of rules in Figure 1 for deriving the entailed subsumption relations.
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Example 1. Consider the following EL+ ontology O:

(ax1):A � ∃R.B (ax2):∃H.B � C (ax3):R � H

(ax4):B � ∃S.A (ax5): ∃S.C � C

The subsumptions below can be derived via rules in Figure 1:

A � A by R0 since A occurs in O, (1)

B � B by R0 since B occurs in O, (2)

C � C by R0 since C occurs in O, (3)

∃R.B � ∃R.B by R0 since ∃R.B occurs in O, (4)

∃S.A � ∃S.A by R0 since ∃S.A occurs in O, (5)

∃H.B � ∃H.B by R0 since ∃H.B occurs in O, (6)

∃S.C � ∃S.C by R0 since ∃S.C occurs in O, (7)

A � ∃R.B by R� to (1) using (ax1), (8)

B � ∃S.A by R� to (2) using (ax4), (9)

∃R.B � ∃H.B by R∃ to (4) and (2) using (ax3), (10)

∃H.B � C by R� to (6) using (ax2), (11)

∃S.C � C by R� to (7) using (ax5), (12)

A � ∃H.B by R∃ to (8) and (2) using (ax3), (13)

∃R.B � C by R� to (10) using (ax2), (14)

A � C by R� to (13) using (ax2), (15)

∃S.A � ∃S.C by R∃ to (5) and (15), (16)

B � ∃S.C by R∃ to (9) and (15), (17)

∃S.A � C by R� to (16) using (ax5), (18)

B � C by R� to (17) using (ax5). (19)

The subsumptions (1)–(19) are closed under these rules so, by completeness, A � A,
B � B, C � C, A � C, B � C are all atomic subsumptions entailed by O.

3.4 Computing the Closure under Inference Rules

Computing the closure under inference rules, such as in Figure 1, can be performed
using a well-known forward chaining procedure presented in Algorithm 1. The algo-
rithm derives consequences by applying inferences in R and collects those conclusions
between which all inferences are applied in a set Closure and the remaining ones in a
queue Todo. The algorithm first initializes Todo with conclusions of the initialization
inferences R() ⊆ R (lines 2–3), and then in a cycle (lines 4–9), repeatedly takes the
next expression exp ∈ Todo, if any, inserts it into Closure if it does not occur there,
and applies all inferences inf ∈ R[exp](Closure) having this expression as one of the
premises and other premises from Closure. The conclusions of such inferences are then
inserted back into Todo.
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Algorithm 1. Computing the inference closure
input : R: a set of inferences
output : Closure: the closure under R

1 Closure, Todo← ∅;
2 for inf ∈ R() do /* initialize */
3 Todo.add(inf.conclusion);

4 while Todo = ∅ do /* close */
5 exp← Todo.takeNext();
6 if exp /∈ Closure then
7 Closure.add(exp);
8 for inf ∈ R[exp](Closure) do
9 Todo.add(inf.conclusion);

10 return Closure;

The following example illustrates the execution of Algorithm 1 for computing the
deductive closure under inferences in Figure 1.

Example 2 (Example 1 continued). The conclusions (1)–(19) in Example 1 are already
listed in the order in which they would be inserted into Todo by Algorithm 1. When a
conclusion is inserted into Closure, all inferences involving this and the previous con-
clusions are applied. For example, when (10) is inserted, the previous conclusions (1)–
(9) are already in Closure, so (14) is derived and added into Todo after (11)–(13).

Note that Algorithm 1 performs as many insertions into Todo as there are inferences
in R(Closure′) for the result Closure′ because every inference inf ∈ R(Closure′) is even-
tually applied, and an inference cannot apply more than once. Therefore, the number of
inferences performed by Algorithm 1 is exactly ||R(Closure′)||. The time complexity of
the algorithm depends highly on the representation of the inference rules. If the initial-
ization inferences inf ∈ R() in line 2 and matching inferences inf ∈ R[exp](Closure) in
line 8 can be effectively enumerated, the algorithm runs in O(||R(Closure′)||).

4 Incremental Deductive Closure Computation

In this section, we discuss algorithms for updating the deductive closure under a set of
inferences after the set of inferences has changed. Just like in Section 3.4, the material
in this section is not specific to any particular inference system, i.e., does not rely on
the EL+ classification procedure described in Section 3.3.

The problem of incremental computation of the deductive closure can be formulated
as follows. Let R, R+ and R− be sets of inferences, and Closure the closure under R.
The objective is to compute the closure under the inferences in (R \ R−) ∪ R+, using
Closure, R, R+, or R−, if necessary.
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Algorithm 2. Update modulo additions

input : R, R+: sets of inferences, Closure: the closure under R
output : Closure: the closure under R ∪ R+

1 Todo← ∅;
2 for inf ∈ (R+ \ R)(Closure) do /* initialize */
3 Todo.add(inf.conclusion);

4 R← R ∪ R+;
5 while Todo = ∅ do /* close */
6 exp← Todo.takeNext();
7 if exp /∈ Closure then
8 Closure.add(exp);
9 for inf ∈ R[exp](Closure) do

10 Todo.add(inf.conclusion);

11 return Closure;

4.1 Additions Are Easy

If there are no deletions (R− = ∅), the closure under R ∪ R+ can be computed by
Algorithm 2. Starting from Closure, the closure under R, the algorithm first initializes
Todo with conclusions of new inferences inf ∈ (R+ \ R) applicable to Closure, and
then processes this queue with respect to the union of all inferences R ∪ R+ as it is
done in Algorithm 1. Note that Algorithm 1 is just a special case of Algorithm 2 when
Closure = ∅ and the initial set of inferences R is empty.

Let Closure be the set in the input of Algorithm 2, and Closure′ the set obtained in
the output. Intuitively, the algorithm applies all inferences in (R ∪ R+)(Closure′) that
are not in R(Closure) because those should have been already applied. If, in contrast,
we compute the closure from scratch using Algorithm 1, we would need to apply all
inferences in (R ∪ R+)(Closure′). Note that it is essential that Algorithm 2 starts with
the closure under R. If we start with a set that is not closed under R, we may lose some
conclusions because no inference in R(Closure) is applied by the algorithm.

4.2 Deletions Are Difficult

Let us now see how to update the closure under deletions, i.e., when R+ = ∅. Con-
sider Algorithm 3, which works analogously to Algorithm 2, but removes conclusions
instead of adding them. In this algorithm, the queue Todo is used to buffer conclusions
that should be removed from Closure. We first initialize Todo with consequences of
the removed inferences inf ∈ R−(Closure) (lines 2–3), and then remove such elements
from Closure together with the conclusions of inferences from Closure in which they
participate (lines 5–10). Note that in this loop, it is sufficient to consider only conse-
quences under the resulting R = R\R− because all consequences under R− are already
added into Todo during the initialization stage (lines 2–3).

Unfortunately, Algorithm 3 might not produce the closure underR\R−: it may delete
expressions that are still derivable in R \ R−. For example, for the input
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Algorithm 3. Update modulo deletions (incomplete)

input : R, R−: sets of inferences, Closure: the closure under R
output : Closure: a subset of the closure under (R \ R−)(Closure)

1 Todo← ∅;
2 for inf ∈ R−(Closure) do /* initialize */
3 Todo.add(inf.conclusion);

4 R← R \ R−;
5 while Todo = ∅ do /* close */
6 exp← Todo.takeNext();
7 if exp ∈ Closure then
8 for inf ∈ R[exp](Closure) do
9 Todo.add(inf.conclusion);

10 Closure.remove(exp);

11 return Closure;

R = {/a, a/b, b/a} (x/y is an inference with the premise x and conclusion y), R− =
{b/a}, and Closure = {a, b}, Algorithm 3 removes both a since it is a conclusion of
R−(Closure), and b since it is a conclusion of (R \ R−)[a](Closure), yet both a and b
are still derivable by the remaining inferences R \ R− = {/a, a/b}.

A common solution to this problem is to check which of the removed expressions are
conclusions of the remaining inferences in R(Closure), put them back into Todo, and
re-apply the inferences for them like in the main loop of Algorithm 2 (lines 5–10). This
is known as the DRed (over-delete, re-derive) strategy in logic programming [12]. To
check whether an expression is a conclusion of some inference from Closure, however,
one either needs to record how conclusions where produced, or build indexes that help
to identify matching premises in Closure by conclusions. Storing this information for
everything derived can consume a lot of memory and slow down the inference process.

Note that it makes little sense to ‘simply re-apply’ all inferences in R to the set
Closure produced by Algorithm 3. This differs little from running Algorithm 1 from
scratch, which applies exactly the same inferences anyway. Most of the inferences are
likely to be already applied to Closure, so, even if it is not ‘fully’ closed under R, it may
be ‘almost’ closed. The main idea behind our method presented in the next section, is
to identify a large enough subset of expressions Closure1 ⊆ Closure and a large enough
subset of inferences R1 ⊆ R, such that Closure1 is already closed under R1. We can
then re-compute the closure under R incrementally from Closure1 using Algorithm 2
for R+ = R \ R1. As has been shown, using this approach we can avoid applying the
already applied inferences in R1(Closure1).

Let Closure be the set in the input of Algorithm 3, and Closure′ the set obtained in
the output. Similarly to Algorithm 2, Algorithm 3 applies all inferences in R(Closure)
except for those in (R \ R−)(Closure′). Indeed, during initialization (lines 2–3) the
algorithm applies all inferences in R−(Closure), and in the main loop (lines 5–10) it
applies each inference in (R \ R−)(Closure) that is not in (R \ R−)(Closure′)—exactly
those inferences that have at least one premise in Closure \ Closure′. The conclusion of
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every such inference is removed from Closure, i.e., it is an element of Closure\Closure′.
Although, as has been pointed out, the output Closure′ is not necessarily the closure
under R \ R−, it is, nevertheless, a subset of this closure:

Lemma 1. Let Closure be the set in the input of Algorithm 3, and Closure′ the set
obtained in the output. ThenClosure′ is a subset of the closure under (R\R−)(Closure′).

Proof. Let Closure′′ be the closure under (R \ R−)(Closure′). We need to prove that
Closure′ ⊆ Closure′′. Clearly, Closure′ ⊆ Closure and Closure′′ ⊆ Closure. Define
Closure1 := (Closure \ Closure′) ∪ Closure′′ ⊆ Closure. We claim that Closure1 is
closed under R. Indeed, take any inf ∈ R(Closure1). Then there are two cases possible:

1. inf ∈ R(Closure)\(R\R−)(Closure′): Then inf was applied in Algorithm 3. There-
fore, inf.conclusion ∈ Closure \ Closure′ ⊆ Closure1.

2. inf ∈ (R \ R−)(Closure′): Since inf ∈ R(Closure1) and Closure′ ∩ Closure1 ⊆
Closure′′, we have inf ∈ (R \ R−)(Closure′′). Since Closure′′ ⊆ Closure1 and
Closure′′ is closed under (R \ R−)(Closure1), then Closure′′ is closed under inf.
Therefore inf.conclusion ∈ Closure′′ ⊆ Closure1.

Now, since Closure1 ⊆ Closure is closed under R and Closure is the smallest set
closed under R, we have Closure1 = Closure. Therefore, ∅ = Closure \ Closure1 =
Closure′ \ Closure′′, and so, Closure′ ⊆ Closure′′, as required.

Note that Lemma 1 claims something stronger than just that Closure′ is a subset of
the closure underR\R−. It is, in fact, a subset of the closure under (R\R−)(Closure′) ⊆
R \ R−. Not every subset of the closure under R \ R− has this property. Intuitively, this
property means that every expression in Closure′ can be derived by inferences in R\R−

using only expressions in Closure′ as intermediate conclusions. This property will be
important for correctness of our method.

4.3 Incremental Updates Using Partitions

Our new method for updating the closure under deletions can be described as follows.
We partition the set of expressions in Closure on disjoint subsets and modify Algo-
rithm 3 such that whenever an expression is removed from Closure, its partition is
marked as ‘broken’. We then re-apply inferences that can produce conclusions in broken
partitions to ‘repair’ the closure.

Formally, let Pts be a fixed countable set of partition identifiers (short partitions),
and every expression exp ∈ Exp be assigned with exactly one partition exp.partition ∈
Pts. For an inference rule R and a set of partitions Pts ⊆ Pts, let R〈Pts〉 be the set of
inferences inf ∈ R such that inf.conclusion.partition ∈ Pts and exp.partition /∈ Pts for
every exp ∈ inf.Premises. Intuitively, these are all inferences in R that can derive an
expression whose partition is in Pts from expressions whose partitions are not in Pts.

We modify Algorithm 3 such that whenever an expression exp is removed from
Closure in line 10, we add exp.partition into a special set of partitions Broken. This set
is then used to repair Closure in Algorithm 4. The goal of the algorithm is to collect in
the queue Todo the conclusions of inferences in R(Closure) that are missing in Closure.
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Algorithm 4. Repair of over-deletions
input : R: a set of inferences, Closure: a subset of the closure under R (Closure),

Broken: a set of partitions such that if inf ∈ R(Closure) and
inf.conclusion /∈ Closure then inf.conclusion.partition ∈ Broken

output : Todo: the conclusions of inferences in R (Closure) that do not occur in Closure

1 Todo, ToRepair, Repaired← ∅;
2 for inf ∈ R〈Broken〉(Closure) do /* initialize */
3 if inf.conclusion /∈ Closure then
4 Todo.add(inf.conclusion);
5 else
6 ToRepair.add(inf.conclusion);

7 while ToRepair = ∅ do /* close */
8 exp← ToRepair.takeNext();
9 if exp /∈ Repaired then

10 for inf ∈ R[exp](Closure) do
11 if inf.conclusion.partition ∈ Broken then
12 if inf.conclusion /∈ Closure then
13 Todo.add(inf.conclusion);
14 else
15 ToRepair.add(inf.conclusion);

16 Repaired.add(exp);

17 return Todo;

This is done by applying all possible inferences inf ∈ R(Closure) that can produce such
conclusions. There can be two types of such inferences: those whose premises do not
belong to any partition in Broken, and those that have at least one such premise. The
inferences of the first type are R〈Broken〉(Closure); they are applied in initialization
(lines 2–6). The inferences of the second type are applied in the main loop of the algo-
rithm (lines 7–16) to the respective expression in Closure whose partition is in Broken.

Whenever an inference inf is applied and inf.conclusion belongs to a partition in
Broken (note that it is always the case for inf ∈ R〈Broken〉(Closure), see also line 11),
we check if inf.conclusion occurs in Closure or not. If it does not occur, then we put the
conclusion into the output Todo (lines 4, 13). Otherwise, we put it into a special queue
ToRepair (lines 6, 15), and repeatedly apply for each exp ∈ ToRepair all inferences
inf ∈ R[exp](Closure) of the second type in the main loop of the algorithm (lines 7–16).
After applying all inferences, we move exp into a special set Repaired (line 16), which
is there to make sure that we never consider exp again (see line 9).

Lemma 2. Let R, Closure, and Broken be the inputs of Algorithm 4, and Todo the
output. Then Todo = {inf.conclusion | inf ∈ R(Closure)} \ Closure.
Proof. Let Closure′ = {inf.conclusion | inf ∈ R(Closure)}. We need to demonstrate
that Todo = Closure′ \ Closure. Since Todo ⊆ Closure′ and Closure ∩ Todo = ∅, it is
sufficient to prove that Closure′ \ Closure ⊆ Todo.
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First, note that Closure′ is the closure under R(Closure). Indeed, if Closure′′ is the
closure under R(Closure), then Closure ⊆ Closure′′ by the assumption of Algorithm 4.
Hence, for every inf ∈ R(Closure) ⊆ R(Closure′′), we have inf.conclusion ∈ Closure′′.
Therefore, Closure′ ⊆ Closure′′, and since Closure′ is closed under R(Closure), we
have Closure′ = Closure′′.

Let Closure1 = {exp ∈ Closure | exp.partition /∈ Broken}. Then it is easy to see
from Algorithm 4 that for every inf ∈ R(Closure1∪Repaired), we have inf.conclusion ∈
Closure1 ∪ Repaired ∪ Todo. Indeed, if inf.conclusion.partition /∈ Broken then by
assumption of Algorithm 4, since inf ∈ R(Closure) and inf.conclusion.partition /∈
Broken, we must have inf.conclusion ∈ Closure, and thus inf.conclusion ∈ Closure1.

If inf.conclusion.partition ∈ Broken, there are two cases possible. Either inf ∈
R(Closure1), thus, inf ∈ R〈Broken〉(Closure). In this case inf is applied in Algorithm 4
during initialization (lines 2–6). Or, otherwise, inf has at least one premise in Repaired,
and hence, it is applied in the main loop of Algorithm 4 (lines 7–16). In both cases the
algorithm ensures that inf.conclusion ∈ Repaired ∪ Todo.

Now, since Closure1 ∪Repaired∪Todo is closed under R(Closure1 ∪Repaired) and
Closure∩Todo = ∅, it is also closed underR(Closure) (if inf ∈ R(Closure) is applicable
to Closure1∪Repaired∪Todo then inf ∈ R(Closure1∪Repaired)). Since Closure′ is the
closure under R(Closure), we therefore, have Closure′ = Closure1∪Repaired∪Todo ⊆
Closure ∪ Todo. Hence, Closure′ \ Closure ⊆ Todo, as required.

After computing the repair Todo of the set Closure using Algorithm 4, we can com-
pute the rest of the closure as in Algorithm 2 using the partially initialized Todo. The
correctness of the complete incremental procedure follows from Lemma 1, Lemma 2,
and the correctness of our modification of Algorithm 2 when Todo is initialized with
missing conclusions of R(Closure).

Algorithm 4 does not impose any restrictions on the assignment of partitions to ex-
pressions. Its performance in terms of the number of operations, however, can substan-
tially depend on this assignment. If we assign, for example, the same partition to all
expressions, then in the main loop (lines 7–16) we have to re-apply all inferences in
R(Closure). Thus, it is beneficial to have many different partitions. At another extreme,
if we assign a unique partition to every expression, then R〈Broken〉 would consist of all
inferences producing the deleted expressions, and we face the problem of identifying
such inferences in lines 2–6. Next, we present a specific partition assignment for the
EL+ rules in Figure 1, which circumvents both of these problems.

5 Incremental Reasoning in EL+

In this section, we apply our method for updating the classification of EL+ ontologies
computed using the rules in Figure 1. We only consider changes in concept inclusion
axioms while resorting to full classification for changes in role inclusions and com-
positions. We first describe our strategy of partitioning the derived subsumptions, then
discuss some issues related to optimizations, and, finally, present an empirical evalua-
tion measuring the performance of our incremental procedure on existing ontologies.
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5.1 Partitioning of Derived EL+ Subsumptions

The inferences R in Figure 1 operate with concept subsumptions of the form C � D.
We partition them into sets of subsumptions having the same left-hand side. Formally,
the set of partition identifiers Pts is the set of all EL+ concepts, and every subsumption
C � D is assigned to the partition corresponding to its left-hand side C. This assign-
ment provides sufficiently many different partitions, which could be as many as there
are concepts in the input ontology. It also has the advantage that the inferences R〈Pts〉
for any set Pts of partitions can be easily identified. Indeed, note that every conclusion
of a rule in Figure 1, except for the initialization rules R0 and R�, has the same left-
hand side as one of the premises of the rule. Therefore, R〈Pts〉 can only contain those
initialization inferences in R0 and R� for which C ∈ Pts.

5.2 Optimizations

Let us discuss a few optimizations that are specific to the EL+ inference rules.

Rule Optimizations: The approach described in Section 4 can be used with any EL+

classification procedure that implements the inference rules in Figure 1 as they are.
Existing implementations, however, include several optimizations to avoid unnecessary
applications of some rules. One of such optimizations in ELK prevents applying rule
R−
� to conclusions of R+

� , and rules R∃ and R◦ if its left premise was obtained by
R∃ [15]. Even though the closure computed by Algorithm 1 does not change under
such optimizations (the algorithm just derives fewer duplicate conclusions), if the same
optimizations are used for deletions in Algorithm 3, some subsumptions that are no
longer derivable may remain in Closure. Intuitively, this happens because the inferences
for deleting conclusions in Algorithm 3 can be applied in a different order than they
were applied in Algorithm 1 for deriving these conclusions. Please refer to the technical
report [16] for an extended example of this situation.

To fix this problem, we do not use rule optimizations for deletions in Algorithm 3. To
repair the closure using Algorithm 4, we also need to avoid optimizations to make sure
that all expressions in broken partitions of Closure are encountered, but it is sufficient
to insert only conclusions of optimized inferences into Todo.

Subsumptions That Cannot Be Re-Derived: When Algorithm 3 deletes an expression
exp from Closure, we mark exp.partition as broken because this expression could be
re-derived. In some situations this is not possible. One property of the EL+

⊥ rules in
Figure 1, is that they derive only subsumptions of the form C � D or C � ∃R.D where
C and D occur in the ontology. So, if a deleted subsumption is not of this form for the
ontology after deletion, we know that it cannot be re-derived. For example, consider
the following ontology O: (ax1) A � B, (ax2) B � C, from which (ax2) is deleted.
When the previously derived conclusion A � C is deleted, there is no need to mark the
partition of A as broken since C does not occur in the ontology after the deletion.

Structural Rules: When we apply our incremental procedure for the EL+
⊥ in Figure 1,

we take R− to be the inferences that are no longer valid after deletion of axioms. An
inference by a rule in Figure 1 is not valid when its side condition is not satisfied. For
example, for the rule R�, the subsumption D � E may be removed from the ontology,
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or for the rule R+
� , the conjunction D1 D2 does not occur in the ontology any more.

But the impact of these two inferences is different: the conclusion of R� may be not

correct if the side condition does not hold, but the conclusion of R+
� is always correct,

but may be just irrelevant. This distinction between the rules can be used in our next
optimization. We call the rules R0, R�, R+

� , R−
� , and R∃ structural—these rules use

only the structure of the concepts; they are sound even if their side conditions are not
satisfied. Avoiding application of some structural rules during deletions may result in
fewer broken partitions as shown in the next example.

Consider an ontology O: (ax1) A � B, (ax2) A � C, (ax3) (B C) D � E. The
rules in Figure 1 derive the following conclusions (with the partition A):

A � A by R0 since A occurs in O, (20)

A � B by R� to (20) using (ax1), (21)

A � C by R� to (20) using (ax2), (22)

A � B  C by R+
� to (21) and (22) using (ax3). (23)

Now, assume that (ax3) is deleted from O. Normally, we should revert the inference
producing (23) by R+

� using (ax3) in the deletion stage, which would then mark the
partition of A as broken. We can, however, leave this rule applied (because it is still
sound), which not only makes the partition of A unaffected, but also prevents further
deletion of subsumptions A � B and A � C by rule R−

� applied to (23).

5.3 Experimental Evaluation
We have implemented the procedure described in Section 4.3 in the OWL EL reasoner
ELK v.0.4.0,1 and performed some experiments to evaluate its performance.

We used three large OWL EL ontologies which are frequently used in evaluations
of EL reasoners [3–6]: the Gene Ontology GO [17] with 84, 955 axioms, an EL+-
restricted version of the GALEN ontology with 36, 547 axioms,2 and the official Jan-
uary 2013 release of SNOMED CT with 296, 529 axioms.3

The recent change history of GO is readily available from the public repository.4 We
took the last (as of April 2013) 342 changes of GO (the first at r560 with 74, 708 axioms
and the last at r7991 with 84, 955 axioms). Each change is represented as sets of added
and deleted axioms (an axiom modification counts as one deletion plus one addition).
Out of the 9 role axioms in GO, none was modified. Unfortunately, similar data was
not available for GALEN or SNOMED CT. We used the approach of Cuenca Grau et.al
[11] to generate 250 versions of each ontology with n random additions and deletions
(n = 1, 10, 100). For each change history, we classified the first version of the ontology
and then classified the remaining versions incrementally. We used a PC with Intel Core
i5-2520M 2.50GHz CPU, running Java 1.6 with 4GB of RAM available to JVM.

1 In fact, the incremental procedure in ELK supports many other features outside of EL+, such
as assertions, disjointness axioms, and restricted use of nominals and datatype restrictions, see
http://elk.semanticweb.org for the full release notes.

2 http://www.co-ode.org/galen/
3 http://www.ihtsdo.org/snomed-ct/
4 svn://ext.geneontology.org/trunk/ontology/

http://elk.semanticweb.org
http://www.co-ode.org/galen/
http://www.ihtsdo.org/snomed-ct/
svn://ext.geneontology.org/trunk/ontology/
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Table 2. Number of inferences and running times (in ms.) for test ontologies. The results for
each incremental stage are averaged (for GO the results are only averaged over changes with a
non-empty set of deleted axioms). Time (resp. number of inferences) for initial classification is:
GO (r560): 543 (2,224,812); GALEN: 648 (2,017,601); SNOMED CT: 10,133 (24,257,209).

Ontology Changes Deletion Repair Addition Total
add.+del. # infer. |Broken| time # infer. time # infer. time # infer. time

GO (r560) 84+26 62,384 560 48 17,628 8 58,933 66 138,945 134
GALEN 1+1 3,444 36 18 4,321 4 3,055 13 10,820 39
(EL+ version) 10+10 68,794 473 66 37,583 17 49,662 52 156,039 147

100+100 594,420 4,508 214 314,666 96 426,462 168 1,335,548 515
SNOMED CT 1+1 4,022 64 120 423 1 2,886 68 7,331 232
(Jan 2013) 10+10 42,026 251 420 8,343 4 31,966 349 82,335 789

100+100 564,004 3,577 662 138,633 56 414,255 545 1,116,892 1,376

The results of the initial and incremental classifications are given in Table 2. For
GO we have only included results for changes that involve deletions (otherwise the
averages for deletion and repair would be artificially lower). First note that in each
case, the incremental procedure makes substantially fewer inferences and takes less
time than the initial classification. Unsurprisingly, the difference is most pronounced
for larger ontologies and smaller values of n. Also note that the number of inferences in
each stage and the number of partitions |Broken| affected by deletions, depend almost
linearly on n, but not the running times. This is because applying several inferences
at once is more efficient than separately. Finally, observe that the repair stage takes a
relatively small fraction of the total time.

In order to compare our method to the module-based approach of [11] (the only
implemented incremental reasoning procedure for DLs which works for TBox additions
and deletions that we are aware of) we classified the same history of GO changes using
the implementation included in the standard distribution of Pellet 2.3.2.5 Pellet provides
a consequence-based procedure for EL classification which was used for re-classifying
the affected parts of the ontology. Unfortunately the same experiment was not possible
for the other two ontologies due to time-outs (10 hours). The results for GO are as
follows: initial classification together with module extraction takes 126 seconds, the
average incremental classification 101 seconds, the average numbers of re-computed
modules are 634 (when processing deletions) and 672 (for additions).

Abstracting from the much worse time results,6 which are likely due to a naive imple-
mentation of the module-based incremental procedure and/or the EL algorithm in Pel-
let, it is interesting to compare the average number of modules which are re-computed
during the deletion stage with the average number of broken partitions reported by our
algorithm. Intuitively, both of these metrics characterise the number of named concepts
for which subsumers need to be re-computed upon an axiom change. The number of
modules (634) is greater than the number of broken partitions (560). Interestingly,
this relationship is of general nature. We prove in the technical report [16] that if a

5 http://clarkparsia.com/pellet/
6 Note that the times in Table 2 are in milliseconds, not in seconds.

http://clarkparsia.com/pellet/
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subsumption C � D is deleted by our (optimized) incremental algorithm as a result of
deleting some axiom α, then α is contained in the locality-based module for C and thus
the module must be re-computed. Simply put, the generic module-based approach may
not incur less overhead than our method for EL+.

In general, this relationship does not hold in the other direction since modules can
contain more axioms than used in derivations. For example, consider the ontology O
containing A � ∃R.B and B � C. The rules in Figure 1 derive only A � A and
A � ∃R.B in the partition for A, thus removing B � C will not break the partition for
A. On the other hand, the locality-based module for A contains all axioms in O, and
thus, it has to be re-computed after the deletion. The difference between the number of
re-extracted modules and the number of broken partitions is likely to be greater for more
complex ontologies, e.g., GALEN. The structure of the anatomical part of GALEN is
known to induce very large locality-based modules [11].

Finally, we have evaluated the effectiveness of the two optimizations from Sec-
tion 5.2 that can reduce the set of broken partitions when some concepts get deleted
from the ontology. Avoiding applications of structural rules during deletion gives the
most improvement. It reduces the set Broken by roughly 10%, e.g., 498 vs 560 on av-
erage for GO. This leads to reduction of the total number of rule applications also by
10%. The time difference is most visible for smaller change sizes, e.g. ±1 and ±10 for
GALEN and SNOMED CT. Please see the technical report [16] for detailed results.

6 Summary and Future Research

In this paper we have presented a new method for incremental classification of EL+ on-
tologies. It is simple, supports both additions and deletions, and does not require deep
modification of the base reasoning procedure. Our experiments, though being prelim-
inary due to the shortage of revision histories for real-life EL ontologies, demonstrate
that the reasoning results can be obtained almost instantly after small changes. Poten-
tial applications of the method range from background classification of ontologies in
editors to stream reasoning and query answering. The method could also be used to
handle ABox changes (via a TBox encoding) or easily extended to consequence-based
reasoning procedures for more expressive Description Logics [18, 19].

The main idea of our method is that we can benefit from knowing the exact rules of
EL+, which is not possible in the general DRed setting. In particular, we can exploit the
‘granularity’ of the EL+ procedure, namely that subsumers of different concepts can be
often computed independently of each other. A similar property is a corner stone for the
concurrent EL classification algorithm used in ELK where contexts are similar to our
partitions [4]. In the future, we intend to further exploit this property for on-demand
proof generation (for explanation and debugging) and distributed EL reasoning.
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Abstract. When it comes to publishing data on the web, the level of
access control required (if any) is highly dependent on the type of content
exposed. Up until now RDF data publishers have focused on exposing
and linking public data. With the advent of SPARQL 1.1, the linked
data infrastructure can be used, not only as a means of publishing open
data but also, as a general mechanism for managing distributed graph
data. However, such a decentralised architecture brings with it a number
of additional challenges with respect to both data security and integrity.
In this paper, we propose a general authorisation framework that can be
used to deliver dynamic query results based on user credentials and to
cater for the secure manipulation of linked data. Specifically we describe
how graph patterns, propagation rules, conflict resolution policies and in-
tegrity constraints can together be used to specify and enforce consistent
access control policies.

1 Introduction

In the early days, the Web was primarily used as a medium for sharing and
linking static information. However it wasn’t until challenges with respect to
data confidentiality, authenticity and integrity were addressed that electronic
business became common place. It is not surprising that the Semantic Web
is following a similar evolution. With the advent of SPARQL 1.1, an update
language for RDF graphs, it is possible for the Semantic Web to evolve from a
medium for publishing and linking data to a dynamic read/write distributed data
source, that can support the next generation of electronic business applications.
However, in order to make the move from simply exposing to maintaining linked
data we must first provide solutions for data security and integrity.

To date researchers have focused primarily on the specification of access con-
trol policies for RDF stores based on RDF patterns [13, 8, 4, 1, 6] or the spec-
ification and enforcement of access control ontologies over linked data [3, 14].
Although some of these authors touch upon reasoning over access control poli-
cies, they do not propose a general authorisation framework which can support
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reasoning based on a combination of propagation rules, conflict resolution poli-
cies and integrity constraints.

In previous work, we provided a summary of access control requirements that
are needed to cater for Discretionary Access Control (DAC) over RDF data
[11]. In this paper, we demonstrate how authorisations together with stratified
Datalog rules can be used to enforce DAC over the RDF data model. The contri-
butions of the paper can be summarised as follows: We (i) demonstrate how the
hierarchical Flexible Authorisation Framework [9] can be adapted to work with
graph data; (ii) provide a formal definition of an RDF instantiation of the frame-
work, which we refer to as the ”Graph based Flexible Authorisation Framework”
or G-FAF; (iii) describe how together pattern matching and propagation rules
can be used to ease the maintenance of access control policies for linked data
sources; and (iv) show how conflict resolution policies and integrity constraints
can ensure access control policy integrity.

The remainder of the paper is structured as follows: Section 2, examines alter-
native approaches for the enforcement and administration of access control over
RDF data. Section 3, provides an overview of DAC requirements in the context of
the RDF data model and describes the Flexible Authorisation Framework, which
has been successfully applied to both the relational and the xml data models.
Section 4, demonstrates how the authorisation framework can be extended to
cater for the RDF graph data model. Section 5, details how graph patterns,
propagation rules, integrity constraints and conflict resolution policies can be
used to specify and enforce access control over the RDF data model. Whereas
Section 6, discusses how the extended framework can be used to enforce access
control over linked data sources and details the results of our performance eval-
uation. Finally Section 7, summarises the contributions and outlines directions
for future work.

2 Related Work

Initially Semantic Web researchers focused on the modelling and the enforcement
of access control over RDF stores. A number of authors have proposed access
control policies based on RDF patterns that can be mapped to one or more RDF
triples [13, 8, 4, 1]. Reddivari et al. [13] define a set of actions required to manage
an RDF store and demonstrate how query based access control can be used to
permit or prohibit access based on these actions. The authors propose default
and conflict preferences that can simply be set to either permit or deny. Jain
and Farkas [8] propose a data level security model which can be used to protect
both explicit and inferred triples. They provide formal definitions for a number
of RDF security objects and define an algorithm which generates security labels,
based on a security policy and a conflict resolution strategy. Limited details of
the implementation are supplied and no evaluation is performed. Whereas Abel
et al. [1] propose the evaluation of access control policies at both the query
and the data layers. Access conditions that are not dependent on RDF data are
evaluated by a policy engine. Whereas access conditions that are dependent on
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RDF data are injected into the query. Such an approach requires the substitution
of variables to ensure uniqueness however in doing so they are able to leverage
the highly optimized query evaluation features of the RDF store. The authors
adopt a denial by default conflict resolution strategy.

Gabillon and Letouzey [6] highlight the possible administration burden asso-
ciated with the maintenance of access control policies that are based on triple
patterns. They propose the logical distribution of RDF data into SPARQL views
and the subsequent specification of access control policies based on existing RDF
graphs or predefined views. They describe a query based enforcement framework
whereby each user defines a security policy for the RDF graphs/views that they
own. The authors acknowledge the need for conflict resolution however, they do
not propose a conflict resolution strategy.

More recently the focus has shifted to the specification and enforcement of
access control policies over web resources. Costabello et al. [3] and Sacco et al.
[14] both propose access control ontologies and enforcement frameworks that rely
on SPARQL ASK queries to determine if the requester possesses the attributes
necessary to access the requested resource. Costabello et al. [3] use context data
supplied by the requester to limit the scope of the SPARQL query to autho-
rised named graphs. The authors propose the disjunctive evaluation of policies
thus circumventing the need for a conflict resolution mechanism. Whereas Sacco
et al. [14] provide a filtered view of a data providers FOAF profile based on
a matching between the data providers privacy preferences and the requesters
attributes. Policies can be specified for an entire graph, one or more triples or
individual subjects, predicates and objects. The authors do not propose any
conflict resolution strategy.

In our early work, we demonstrated how annotated RDF can be used to limit
access to triples and to derive access rights for inferred triples using annotated
RDFS inference rules [12]. In this paper, we allow for the specification of au-
thorisations based on quad patterns, thus catering multiple levels of granularity
(i.e. one or more graphs, triples, classes or properties). Moreover, we provide a
general mechanism for the administration and enforcement of access control poli-
cies using a combination of propagation rules, integrity constraints and conflict
resolution policies.

3 Preliminaries

In previous work [11], we examined how DAC principles, that have been success-
fully applied to relational and XML data, can be applied to the RDF data model.
In this paper, we introduce the hierarchical Flexible Authorisation Framework
[9], henceforth referred to as H-FAF, and demonstrate how it can be extended
to cater for DAC over the RDF graph data model, which we intuitively name
G-FAF. We start by providing a summary of DAC requirements for the RDF
data model, before providing the necessary background information about the
H-FAF data system and authorisation architecture.
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3.1 Discretionary Access Control for RDF Data

In DAC access to resources is constrained by a central access control policy how-
ever, users are allowed to override the central policy by passing their access rights
on to others [16], known in the literature as delegation. DAC principles that have
been successfully integrated into a number of operating systems, databases and
information systems developed by well known software vendors (e.g. Oracle, Mi-
crosoft, SAP, IBM). However, our decision to base our work on the DAC model
was threefold: it has been adopted by several relational DBMS vendors; its inher-
ent flexibility makes it particularly suitable for distributed data; and its potential
for handling context based authorisations in the future. Based on our analysis,
of DAC for both the relational and XML data models [11], an authorisation
framework needs to be able to cater the following requirements:

– In order to ensure the expressivity and the maintainability of access control
policies it should be feasible to specify authorisations at multiple levels of
granularity, from both a data (i.e. nodes, arcs, triples, collection of triples
and name graphs) and a schema (i.e. classes and properties) perspective.

– Like the relational and XML data models RDF access rights should be tightly
coupled with the operations performed on the data model. However, as graph
update operations can only be applied to triples and graph management
operations are only appropriate for graphs, integrity constraints are needed
to ensure the consistency of the access control policies.

– In both the relational and hierarchical data models authorisations can be
derived based on the schema. When it comes to the RDF data model similar
derivations are highly desirable as they simplify authorisation maintenance.

– In DAC access to resources is constrained by a central access control policy
however, users are permitted to pass their own access rights on to others [16],
known formally as delegation.

– As conflicts can occur as a result of inconsistent explicit, derived and dele-
gated policies conflict resolution strategies are required to ensure a conclu-
sion can always be reached. Samarati [15] highlights the need for a flexible
conflict resolution mechanism which can support different conflict resolution
strategies depending on the situation.

3.2 H-FAF Data System and Authorisation Framework

The H-FAF is an authorisation framework that can be used to restrict access
to different classes of data objects (e.g. files, relations, objects, images), with
different access control requirements. The authors provide a general definition for
a data system and devise a modular architecture which together with declarative
rules can be used to ease access control policy administration, by exploiting the
hierarchical structure of the data system components.

Data System Components. An authorisation framework describes the items
to be protected (data items), to whom access is granted (users, groups, roles
collectively known as authorisation subjects) and the operations that need
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to be protected (access rights). Together these components are known as a
data system formally defined by Jajodia and Samarati [9] as follows:

Definition 1 (Data System). A Data System (DS) is a 5-tuple
〈OTH,UGH,RH,A,Rel〉 where: OTH is an object-type hierarchy; UGH is a
user-group hierarchy; RH is a role-hierarchy; A is a set of access rights and Rel
is a set of n-ary relationships over the different elements of DS.

Authorisation Framework. In addition to the formal data system definition
Jajodia and Samarati [9] propose a number of distinct components that together
provide support for access control enforcement and administration:

– Authorisations are rules that dictate the access rights that authorisation
subjects are allowed/prohibited to perform on data items.

– Propagation Rules enable the derivation of implicit authorisations from ex-
plicit authorisations and the hierarchical structure of data system

components.
– Conflict Resolution Policies are rules that provide flexible support for dif-

ferent conflict resolution strategies.
– Integrity Constraints are rules that enforce restrictions on authorisation

specification thus decreasing the potential for runtime errors.

Rules are expressed in stratified Datalog with negation and are constructed from
a combination of explicit authorisations, historical authorisations and both the
hierarchical structure of and the relationship between the different data system

components.

4 From a Hierarchical to a Graph Data System

As both the hierarchical structure of and the relationship between the data

system components can be recorded as RDF in this paper we adapt and extend
the original data system and rule definitions to work with the RDF data model.
As per the original framework we chose a declarative approach as it has been
proven to work well and is based on familiar concepts. We start by describing the
individual G-FAF data system components in the context of RDF and extend the
original formal definition of a data system to cater for graph data structures.
Although we are dealing with graph data the authorisations and the rules can
also be expressed using stratified Datalog with negation. Throughout the paper,
we use examples from the Berlin SPARQL Benchmark (BSBM) Dataset 1 as it
is a well known dataset which is sufficiently complex to represent a real world
use case. Prefixes are used as a shorthand notation for each vocabulary (e.g. rdf,
rdfs, bsbm) and variables are represented using a ? prefix. The following default
prefix is used to increase readability:
(http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromVendor1).

1 Berlin SPARQL Benchmark (BSBM) - Dataset Specification,
http://wifo5-03.informatik.uni-mannheim.de/

bizer/berlinsparqlbenchmark/spec/Dataset/

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/Dataset/.
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/Dataset/.
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4.1 Individual Data System Components

In G-FAF data items, access rights and authorisation subjects are rep-
resented as one or more graphs that may or may not be disjoint.

Data Items. In the Semantic Web information is represented as RDF triples
that are used to make statements about resources in the form of subject-
predicate-object expressions. An RDF graph is a finite set of RDF triples. Named
graphs are used to collectively refer to a number of RDF statements. Although
there are several RDF representation formats in this paper we use nquads.

Definition 2 (RDF Quad). An RDF Quad is formally defined as a 4-tuple
〈S, P,O,G〉 ∈ UB × U × UBL × U 2, where S is called the subject, P the
predicate, O the object and G the named graph. U, B and L, are in turn used to
represent URIs, blank nodes and literals respectively.

Example 1 (RDF Quad). The following quad states that there exists a triple in
the Graph2013 dataset stating that Vendor1 is a vendor.
:Vendor1 rdf:type bsbm:Vendor :Graph2013 �

Access Rights. Like databases and file systems access can be restricted based
on the operations that a user attempts to execute on the data items [11]. In
the case of RDF these operations take the form of: graph query operations
(SELECT, CONSTRUCT, ASK and DESCRIBE); graph update operations (INSERT,
DELETE, DELETE/INSERT); and a number of operations specifically for graph
management (DROP, COPY, MOVE and ADD). Three additional access rights are
required to facilitate access control administration, namely: GRANT, REVOKE and
FULL ACCESS. The GRANT privilege allows users to grant access to others based
on their own privileges. Whereas the REVOKE privilege allows users to revoke the
access rights they have granted to others. FULL ACCESS is a super access right
that subsumes all other access rights. We model the operations as one or more
RDF graphs and use vocabularies such as RDFS to define a partial order over
the operations. Although it is possible to infer implicit access rights based on
the partial order, we do not provide specific details in this paper.

Authorisation Subjects. Subject is an umbrella term used to collectively
refer to different user credentials. We propose the verification of access based on
credential matching, as such we make no distinction between a user playing a
role as opposed to belonging to a group. Therefore, we merge both the user-group
and role hierarchies and refer to them simply as authorisation subjects. Such
a merge does not impact the specification or enforcement of authorisations and
in fact affords a greater degree of flexibility with respect to the inclusion of
additional types of user credentials. As RDF is a web based distributed data
model we extend the subject definition, to include user attributes. Combined
users, groups, roles and attributes can be represented as one or more RDF graphs
possibly disjoint.

2 For conciseness, we represent the union of sets simply by concatenating their names.
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Authorisation Framework

Propagation
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Integrity 
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Fig. 1. Authorisation Framework

4.2 Extending the Original Data System Definition

We formally extend the original definition of a data system to consider compo-
nents that are represented as graphs as opposed to hierarchies. As the relation-
ship between data items, access rights and authorisation subjects can
also be represented as RDF it is is not necessary to define a set of relations
over the different elements of the data system. Although in this paper we focus
specifically on RDF the extended data system definition is more general than
the original and therefore it can be applied to both hierarchical and graph data
models.

Definition 3 (Graph Data System). AGraph Data System (GDS) is defined
as a 3-tuple 〈DIG,ASG,ARG〉 where: DIG represents one or more data graphs,
that may be disjoint; ASG denotes one or more subject graphs ; and ARG stands
for graphs of access rights used to restrict access to the data items in DIG.

5 G-FAF Authorisation Enforcement and Administration

Given an arbitary but fixed Graph Data System, we describe the individual
G-FAF components (Fig. 1) and demonstrate how together these components
can be used to deliver dynamic query results based on user credentials and to
cater for the secure manipulation of RDF graph data (Section. 6). We extend
the original framework to include the Data component, which is necessary to
infer new access control policies based on a combination of RDF data and rules.
Although in this paper, we do not examine the role of the History component,
it is worth noting that historical information is important for accountability and
also to cater for contextual access control policies that rely on historical data.

5.1 Authorisations

An RDF Quad Pattern is an RDF quad with optionally a variable V in the
subject, predicate, object and/or graph position. A Quad Pattern is a flexible
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mechanism which can be used to grant/restrict access to an RDF quad, a col-
lection of RDF quads (multiple quads that share a common subject), a named
graph (arbitrary views of the data), specific classes or properties.

Example 2 (RDF Quad Pattern). A single quad pattern containing variables
in both the subject (?S) and graph (?G) positions is used to match products
spanning multiple graphs.
?S rdf:type bsbm:Product ?G. �

More expressive authorisations can be achieved using an RDF Graph Pattern,
which is composed of multiple quad patterns.

Example 3 (RDF Graph Pattern). A graph pattern with variables in both the
subject (?S) and graph (?G) positions is used to match all products for Pro-
ducer1 from multiple graphs.
?S rdf:type bsbm:Product ?G1.
?S bsbm:producer bsbm-inst:Producer1 ?G2. �

In order to cater for certain conflict resolution strategies and for the delega-
tion of access rights we extend the original authorisation definition to include
Type and By attributes. The Type attribute is necessary to differentiate between
explicit and inferred authorisations, whereas the By attribute is used to denote
the person who created the authorisation. By default the Type attribute is set
to E for explicit and the By attribute defaults to a reserved literal OWNER.

Definition 4 (Authorisation). An authorisation is represented as a 6-tuple
〈Sub,Acc, Sign,RGP, Type,By〉. Sub represents the authorisation subject. Acc
is used to denote access rights. Sign indicates if the user is granted or denied
access. RGP symbolises the RDF Graph Pattern. Type is used to indicate if the
authorisation is explicit (E) or implicit (I) and By represents the person who
created the authorisation.

Example 4 (Authorisation). Using the following authorisation a bsbm:admin can
grant all bsbm:partners UPDATE access to all triples in the :Graph2008 graph.
〈 bsbm:Partner, UPDATE, +, 〈 ?S, ?P, ?O, :Graph2008〉, E, bsbm:Admin 〉 �

5.2 Propagation Policies

Propagation policies can be used to simplify authorisation administration by
allowing for the derivation of implicit authorisations from explicit ones. For
example, we can derive new authorisations based on the logical organisation
of authorisation subjects, access rights and data items [10] or the RDF
Schema vocabulary [11]. We provide a formal definition for a propagation rule
which can be used as a blueprint for both general and specific derivation rules
(Def. 5). In addition, we present a propagation algorithm (Alg. 1) which can be
used to either evaluate the propagation policy at query time or alternatively to
materialise implicit authorisations when authorisations are added or removed.
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Definition 5 (Propagation Policy). A Propagation Policy is a a rule of the
following format: 〈?Suby, ?Accy, ?Signy , 〈RGPy〉, ?Typey , ?Byy〉 ←
〈?Subx, ?Accx, ?Signx, 〈RGPx〉, ?Typex, ?Byx〉 , [〈RGP1〉 ∧...∧〈RGPx〉∧...∧〈RGPy〉∧...∧〈RGPn〉]
The premise is composed of an Authorisation and an RDF Graph Pattern. If the
Authorisation exists in the list of Authorisations and the RDF Quad Pattern
exists in the Data then we can infer the conclusion.

Example 5 (Subject Hierarchy Inheritance). Using the following rule the access
rights assigned to employees can be derived for all managers.
〈 bsbm:Mgr, ?Acc, ?Sign, 〈?S, ?P, ?O, ?G〉, I, ?By〉 ←
〈 bsbm:Emp, ?Acc, ?Sign, 〈?S, ?P, ?O, ?G〉, ?Type, ?By〉 ,
[〈 bsbm:Mgr, rdf:type, bsbm:Emp, ?G〉 ∧ 〈?S, ?P, ?O, ?G〉] �

Example 6 (Class to Instance Propagation). The following rules propagates the
access rights assigned to a bsbm:Product class to all instances of the class.
〈?Sub, ?Acc, ?Sign, 〈?Z, ?Y, ?A, ?Gx〉, I, ?By〉 ←
〈?Sub, ?Acc, ?Sign, 〈 bsbm:Product, rdf:type, rdf:Class, ?Gy〉, ?Type, ?By〉 ,
[〈?Z, rdf:type, bsbm:Product, ?Gz〉 ∧ 〈?Z, ?Y, ?A, ?Gx〉]

〈?Sub, ?Acc, ?Sign, 〈?Z, ?Y, ?A, ?Gx〉, I, ?By〉 ←
〈?Sub, ?Acc, ?Sign, 〈 bsbm:Product, rdf:type, rdf:Class, ?Gy〉, ?Type, ?By〉 ,
[〈?Z, rdf:type, bsbm:Product, ?Gz〉 ∧ 〈?A, ?Y, ?Z, ?Gx〉] �

5.3 Conflict Resolution Rules

Rather than propose a conflict resolution strategy we provide a formal defini-
tion for a conflict resolution rule (Def. 6) that can be used to determine access
given several different conflict resolution strategies. For example conflict reso-
lution policies based on the structure of the graph data system components;
the sensitivity of the data requested; or contextual conditions pertaining to the
requester. In order to cater for type matching the Authorisation RDF Graph
Pattern is replaced with an Extended RDF Graph Pattern which includes the
reserved words CON and VAR, that are used to match all constants and variables
respectively. As multiple conflict resolution rules may be applicable, each rule
should be assigned a priority and rules should be evaluated based on priority
until the conflict has been resolved. The default rule which matches everything
is assigned the lowest priority thus ensuring a conclusion can always be drawn.

Definition 6 (Conflict Resolution Rule). A Conflict Resolution Rule is a
rule of the following format:
〈?Subx, ?Accx, ?Signx, 〈ERGPx〉, ?Typex, ?Byx〉 ←
〈?Subx, ?Accx, ?Signx, 〈ERGPx〉, ?Typex, ?Byx〉 > 〈?Suby, ?Accy, ?Signy , 〈ERGPy〉, ?Typey , ?Byy〉
where > indicates the authorisation to the left of the > symbol takes precedence
over the authorisation to the right; ?Sub, ?Acc, ?Type and ?By match authori-
sation subjects, access rights, type and by attributes, represented as constants or
variables, and ERGP denotes an Extended RDF Graph Pattern.
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Data: Authorisations, PropPolicy, RDFData
Result: Authorisations
forall the pol in PropPolicy do

if Authorisations CONTAINS pol.premise.authorisation then
if RDFData CONTAINS pol.premise.graphPattern then

Authorisations += pol.conclusion.authorisation
end

end

end
return Authorisations

Algorithm 1. Applying the Propagation Rules

Example 7 (Most Specific takes precedence). The following rule states that au-
thorisations assigned to specific subject, predicate and objects in a graph override
authorisations assigned to the whole graph.
〈?Subx, ?Accx, ?Signx, 〈CON, CON, CON, CON〉, ?Typex, ?Byx〉 ←
〈?Subx, ?Accx, ?Signx, 〈CON, CON, CON, CON〉, ?Typex, ?Byx〉 >
〈?Suby, ?Accy, ?Signy, 〈VAR, VAR, VAR, CON〉, ?Typey, ?Byy〉 �

Example 8 (Explicit overrules Implicit). Using the following rule it is possible
to state that explicit authorisations override implicit authorisations.
〈?Subx, ?Accx, ?Signx, 〈?Sx, ?Px, ?Ox, ?Gx〉, E, ?Byx〉 ←
〈?Subx, ?Accx, ?Signx, 〈?Sx, ?Px, ?Ox, ?Gx〉, E, ?Byx〉 >
〈?Suby, ?Accy, ?Signy, 〈?Sy, ?Py, ?Oy , ?Gy〉, I, ?Byy〉 �

5.4 Integrity Constraints

Integrity constraints are used to restrict authorisation creation based on the
existing relationships between SPARQL operations and RDF data items. For
example, INSERT and DELETE can only be applied to an RDF quad whereas
DROP, CREATE, COPY, MOVE and ADD can only be associated with a named graph.
As per conflict resolution rules the integrity constraints use the Extended RDF
Graph Pattern which includes the reserved words CON and VAR that are used to
match all constants and variables respectively. We provide a formal definition of
an integrity constraint (Def. 7) and demonstrate how general rules can be used
to constrain the specification of the INSERT (Ex. 9) and the CREATE (Ex. 10)
access rights.

Definition 7 (Integrity Constraint). An Integrity Constraint is a rule of
the following format:
error ← [¬] 〈?Sub, ?Acc, ?Sign, 〈ERGPx〉, ?Type, ?By〉
where square brackets [] are used to denote the optional classical negation prefix
(¬); ?Sub, ?Acc, ?Type and ?By match authorisation subjects, access rights, type
and by attributes, represented as constants or variables and ERGP denotes an
Extended RDF Graph Pattern.
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Fig. 2. Authorisation Architecture

Example 9 (INSERT Constraint). Using an integrity constraint we can ensure
that the INSERT access right is only applied to RDF quads.
error ← ¬〈?Sub, INSERT, ?Sign, 〈CON, CON, CON, CON〉, ?Type, ?By〉 �

Example 10 (CREATE Constraint). The following integrity constraint ensures
that the CREATE graph management access right is only associated with named
graphs.
error ← ¬〈?Sub, CREATE, ?Sign, 〈VAR, VAR, VAR, CON〉, ?Type, ?By〉 �

6 Application and Evaluation

RDF data is mostly exposed on the web via sparql endpoints. Although the
architecture we propose will work with any query language in this paper we
describe how it can be used in conjunction with SPARQL to enforce and ad-
minister access control over RDF. First, we discuss how the framework can be
used to enforce and administer access control over linked data sources. Next, we
examine the performance of our Java implementation of the framework.

6.1 Applying the Framework to Linked Data

The Authorisation Architecture in Fig. 2 depicts how G-FAF can be used for
the enforcement and administration of access control policies over linked data
sources. We do not focus on authentication in this paper, and thus we assume
that the credentials supplied by the requester have been successfully authen-
ticated via alternative means, for example WebId and self-signed certificates,
working transparently over HTTPS.

Enforcement of Authorisations. In addition to the usual sparql query the
requester must submit their credentials, which are verified by an external au-
thentication system. The Authorisation Interface maps the sparql query to an
Authorisation Request of the form 〈Sub,Acc,RGP 〉 (a subset of Def. 4) and
submits it to the Authorisation Framework (Fig. 2). The authorisation algo-
rithm (Alg. 2) checks if the Authorisation Request can be derived using the
Authorisations and the Conflict Resolution Policies. If the algorithm manages
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Data: AuthRequest, AuthHashMap, ConflictPolicy
Result: grant/deny
key = AuthRequest.sub + AuthRequest.acc
authHashSet = getAuthHashSet(key, AuthHashMap)
quadHashMap = createQuadHashMap(authHashSet)
dominantAuth = quadHashMap.Auth
while quadHashMap CONTAINS AuthRequest.RGP do

authMatches += quadHashMap.Auth
end
if authMatches CONTAINS true and authMatches CONTAINS false then

dominantAuth = resolveConflict(authMatches, ConflictPolicy)
end
return dominantAuth.Sign

Algorithm 2. Authorisation Enforcement Algorithm

Data: AuthRequest, AuthHashMap, IntegrityPolicy, PropRules
Result: true/false
newAuth = AuthRequest + sign.Grant + type.E + by.Owner
if AuthRequest.Acc==INSERT or AuthRequest.Acc==ADD or
AuthRequest.Acc==COPY then

if checkIntegrity(AuthRequest, IntegrityPolicy) = true then

AuthHashMap += newAuth
AuthHashMap = applyPropRules(AuthHashMap, PropRules)
return true

end

end
else if AuthRequest.Acc==DELETE or AuthRequest.Acc==DROP or
AuthRequest.Acc==MOVE then

AuthHashMap -= newAuth
return true

end
return false

Algorithm 3. Authorisation Administration Algorithm

to successfully derive the authorisation, access to the requested data is granted
otherwise the request is denied. If access is granted the Authorisation Interface
passes the sparql query to the Query Engine, which in turn processes the query
in the normal way. Finally, the query results are returned to the Requester via
the Authorisation Interface. In the current implementation the subject must
be granted access to each triple in order to be permitted to execute the query.
In future work we plan to investigate the data integrity implications of granting
access to subsets of the graph pattern through query rewriting. For example, if
a user requests the names of all employees who earn more than 50,000, and that
user is denied access to salary data, all employees would be returned leading
them to believe that this is the answer to their query.
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Table 1. Dataset and Authorisations description

DS1 DS2 DS3 DS4 DS5

quads 250223 500258 1000109 2000164 4000936
scale factor 830 1689 3402 6830 13780
file size (MB) 24.5 49 98 195 391

QS1 QS2 QS3 QS4 QS5

authorisations 60000 120000 240000 480000 960000
file size (MB) 6.5 13 26 53 105

Administration of Authorisations. We propose an ownership model,
whereby the data producer is granted FULL ACCESS to the data items they cre-
ate. When a user issues a graph update or graph management query, access is
verified using the authorisation algorithm (Alg. 2). If authorisation succeeds the
sparql query is passed to the Query Engine. For INSERT, ADD or COPY operations,
if the query succeeds the administration algorithm (Alg. 3) ensures it adheres to
the integrity constraints prior to creating a new authorisation. For DELETE, DROP
or MOVE operations, if the query succeeds the administration algorithm (Alg. 3)
simply deletes relevant authorisations from the access control policy. In both
instances the update of both the RDF graph and the authorisation table should
be wrapped in a transaction to ensure that either both or neither succeed.

Delegation of Access Rights. In order to cater for delegation of access con-
trol, a number of administration modules are required. For example the ability
to list your own access rights, grant/revoke access rights to others and view the
access rights you have delegated. Based on the ownership model data producers
are granted FULL ACCESS to the data items they create and have the ability to
GRANT and REVOKE access to/from others. As neither the grant nor the revoke
algorithms are dependent on the data model traditional revocation approaches
such as cascading [5, 7] and non-cascading [2] can be used in conjunction with
the proposed framework.

6.2 Performance Evaluation

For the evaluation of G-FAF we created three separate experiments to: (i) exam-
ine the overhead associated with access control over different data sets; (ii) de-
duce the impact given an increasing number of authorisations; and (iii) determine
the performance increase for a number of propagation rules (the most expen-
sive administration operation). The benchmark system has an Intel(R) Xeon(R)
CPU 8 core 2.13GHz processor, 64 GB of memory and runs Debian 6.0.3. The
authorisation framework was written in Java and the evaluation was performed
over an in memory store using Jena ARQ. Both the datasets (Table. 1) and the
queries were generated from the Berlin SPARQL Benchmark (BSBM) dataset.
Two separate query sets were created: (i) QSS which contained 10 SELECT
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Table 2. Queries over increasing datasets

DS1 DS2 DS3 DS4 DS5

QSS query time (ms)
∅ 345 657 1432 2604 5005
∃ 429 700 1164 2549 5149

QSU query time (ms)
∅ 8 8 9 8 9
∃ 9 9 9 9 9

Table 3. Queries over increasing authorisations

AS1 AS2 AS3 AS4 AS5

QSS query time (ms) 5056 4801 4861 4892 4869
QSU query time (ms) 9 8 9 8 9

queries; and (ii) QSU which contained 5 INSERT and 5 DELETE queries. In
both instances the queries composed of a combination of one, two and three triple
patterns. Access was granted or restricted to all quads (?S ?P ?O ?G); a partic-
ular graph (?S ?P ?O G1); all quads of type offer (?S rdf:type bsbm:Offer ?G);
all classes (?S rdf:type rdf:Class); and all properties (?S rdf:type rdf:Property).
Users were either assigned ( select; select & insert; select, insert & delete ) or
denied ( delete; insert & delete; select, insert & delete; ) access to single quad
patterns. The integrity constraints presented in Examples 9 and 10 were added,
to ensure that INSERT and DELETE operations were only applied to RDF quads.
The conflict resolution rules presented in Examples 7 and 8 along with an ad-
ditional denial takes precedence rule, were executed in the event of a conflict.
The datasets, queries and the conflict resolution, integrity and propagation rules
used in the experiments can be found at http://gfaf.sabrinakirrane.com/.
All calculations presented were based on an average of 20 response times exclud-
ing the two slowest and fastest times.

In order to evaluate the enforcement algorithm we ran both the select (QSS)
and the update (QSU ) query sets, without access control (∅), with access con-
trol for users who were granted access (∃), over an authorisation set containing
588,000 grant and 402,001 deny authorisations. As expected the results indicate
that select query execution times are not impacted when the dataset is increased
(Table 2). However, little or no increase in performance times over increasing
authorisations (Table 3 and Fig. 3a) was unexpected. Such behavior can be at-
tributed to the fact that all authorisations are indexed by a combined subject

access right key and subsequently by graph pattern (seeAlg. 2). For the
evaluation of the propagation rules we examined the impact associated with three
schema based derivations from: classes to all instances of that class; properties
to all instances of that property; and an instance to property values associated
with that instance. Again we ran the experiment over increasing datasets and
authorisations (Table 4). Based on the results we can see that reasoning behaves

http://gfaf.sabrinakirrane.com/
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Table 4. Propagation rules performance

DS1 DS2 DS3 DS4 DS5

AS5 query time (ms) 98531 104894 107017 106823 106248

AS1 AS2 AS3 AS4 AS5

DS5 query time (ms) 6248 12733 24257 51339 112887
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Fig. 3. Query and Propagation times

linearly when the number of authorisations are increased (Fig. 3b), whereas there
is little or no impact when the dataset was increased.

7 Conclusions and Future Work

With the introduction of RDF update languages, such as SPARQL 1.1, it is now
feasible to both query and manage distributed and linked RDF data. However
like web applications and web services, SPARQL endpoints need to protect the
security of the data source and the privacy and the integrity of the data therein.
In this paper, we discussed how the hierarchical Flexible Authorisation Frame-
work, proposed by Jajodia and Samarati [9], can be adapted to cater for secure
manipulation of RDF graph data. We provided a formal definition of authori-
sations, propagation rules, conflict resolution policies and integrity constraints,
within the context of RDF, and describe how together these components can
simultaneously provide access control over interlinked RDF graphs. The results
of our initial performance evaluation are very promising, as in general they show
only a negligible increase in query processing time and a linear increase in deriva-
tion times over increasing authorisations.

To date we have focused on the application of access control to simple graph
pattern queries. In future work we will look into handling more expressive
queries, for example those that include filters, subqueries, aggregates etc, and in-
vestigate integrity issues with respect to query rewriting. We also plan to extend
the integrity constraints to ensure the integrity of both the rules and conflict
resolution policies.
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Abstract. The Semantic Web makes an extensive use of the OWL DL ontology
language, underlied by the SHOIQ description logic, to formalize its resources.
In this paper, we propose a decision procedure for this logic extended with the
transitive closure of roles in concept axioms, a feature needed in several appli-
cation domains. The most challenging issue we have to deal with when design-
ing such a decision procedure is to represent infinitely non-tree-shaped models,
which are different from those of SHOIQ ontologies. To address this issue, we
introduce a new blocking condition for characterizing models which may have an
infinite non-tree-shaped part.

1 Introduction

The ontology language OWL-DL [1] is widely used to formalize data resources on
the Semantic Web. This language is mainly based on the description logic SHOIN
which is known to be decidable [2]. Although SHOIN provides transitive roles to
model transitivity of relations, we can find several applications in which the transitive
closure of roles, that is more expressive than transitive roles, is needed. For instance,
we consider an ontology, namely O1, that consists of the following axioms:
Human � ∃hasAncestor.{Eva}, where hasAncestor is transitive
hasParent � hasAncestor, {Mike} � Human, {Mike} � ∀hasParent.⊥

We can see thatO1 is consistent. However, the last axiom inO1 would be considered
as a design error which should lead to inconsistency. If the transitive role “hasAncestor”
is replaced with the transitive closure “hasParent+” (and the second axiom is removed),
the first axiom becomes:

Human � ∃hasParent+.{Eva}

It follows that the modified ontology is consistent. The point is that an instance of
“hasParent+” represents exactly a sequence of instances of “hasParent” while an in-
stance of “hasAncestor” corresponds to a sequence of instances of itself. In this paper,
we consider an extension of SHOIQ by enabling transitive closure of roles in con-
cept axioms. In the general case, transitive closure is not expressible in the first order
logic [3], the logic from which DL is a sublanguage, while the second order logic is
sufficiently expressive to do so.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 264–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In the DL literature ([4]; [5]), there have been works dealing with transitive closure
of roles. Recently, Ortiz [5] has proposed an algorithm for deciding consistency in the
logic ALCQIb+reg which allows for transitive closure of roles. However, nominals are
disallowed in this logic. It is known that reasoning with a DL including number re-
strictions, inverse roles, nominals and transitive closure of roles is hard. The reason
for this is that there exists an ontology in that DL whose models have an infinite non-
tree-shaped part. Calvanese et al. [6] have presented an automata-based technique for
dealing with the logic ZOIQ that includes transitive closure of roles, and showed that
the sublogics ZIQ, ZOQ and ZOI are decidable. To obtain this result, the authors
have introduced the quasi-forest model property to characterize models of ontologies
in these sublogics. Although they are very expressive, none of these sublogics includes
SHOIQ with transitive closure of roles, namely SHOIQ(+). The following exam-
ple1, noted K1, shows that there is an ontology in SHOIQ(+) which does not enjoy
the quasi-forest model property. We consider the following axioms:

(1) {o} � A; A  B � ⊥; A � ∃R.A  ∃R′.B; B � ∃S+.{o}
(2) {o} � ∀X−.⊥; � � ≤ 1 X.�; � � ≤ 1 X−.� where X ∈ {R,R′, S}

Figure 1 shows an infinite non-tree-shaped model of K1. In fact, each individual x
that satisfies ∃S+.{o} must have two distinct paths from x to the individual satisfying
nominal o. Intuitively, we can see that (i) such a x must satisfy ∃S+.{o} and B, (ii)
an individual satisfying B must connect to another individual satisfying A which must
have a R-path to nominal o, and (iii) two concepts A and B are disjoint.

R RR

S− S− S−

AAA{o}, A

B, ∃S+.{o}B, ∃S+.{o}B, ∃S+.{o} B, ∃S+.{o}

R′, S− R′R′

Fig. 1. An infinite non tree-shaped model of K1

This example shows that methods ([7], [8], [6]) based on the hypothesis which says
that if an ontology is consistent it has a quasi-forest model, could fail to address the
problem of consistency in a DL including simultaneously O (nominals), I (inverse
roles), Q (number restrictions) and transitive closure of roles.

In this paper, we propose a decision procedure for the problem of consistency in
SHOIQ with transitive closure of roles in concept axioms. The underlying idea of our
algorithm is founded on the star-type and frame notions introduced by Pratt-Hartmann
[9]. This technique uses star-types to represent individuals and “tiles” them together
to form a frame for representing a model. For each star-type σ, we maintain a function
δ(σ) which stores the number of individuals satisfying this star-type. To obtain termina-
tion, we introduce two additional structures for establishing a new blocking condition:

1 This example is initially proposed by Sebastian Rudolph from an informal discussion.
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(i) the first one, namely cycles, describes duplicate parts of a model resulting from
interactions of logic constructors in SHOIQ, (ii) the second one, namely blocking-
blocked cycles, describes parts of a model bordered by cycles which allow a frame to
satisfy transitive closure of roles occurring in concepts of the form ∃R+.C.

2 The Description Logic SHOIQ(+)

In this section, we present the syntax, the semantics and main inference problems of
SHOIQ(+). In addition, we introduce a tableau structure for SHOIQ(+), which al-
lows us to represent a model of a SHOIQ(+) knowledge base.

Definition 1. Let R be a non-empty set of role names and R+ ⊆ R be a set of tran-
sitive role names. We use RI = {P− | P ∈ R} to denote a set of inverse roles, and
R⊕ = {Q+ | Q ∈ R ∪RI} to denote a set of transitive closure of roles. Each element
of R ∪ RI ∪ R⊕ is called a SHOIQ(+)-role. A role inclusion axiom is of the form
R � S for two SHOIQ(+)-roles R and S such that R /∈ R⊕ and S /∈ R⊕. A role
hierarchy R is a finite set of role inclusion axioms. An interpretation I = (ΔI , ·I)
consists of a non-empty set ΔI (domain) and a function ·I which maps each role name
to a subset of ΔI ×ΔI such that

R−I
= {〈x, y〉 ∈ ΔI ×ΔI | 〈y, x〉 ∈ RI} for all R ∈ R,

〈x, z〉 ∈ SI , 〈z, y〉 ∈ SI implies 〈x, y〉 ∈ SI for each S ∈ R+, and

(Q+)I =
⋃
n>0

(Qn)I with (Q1)I = QI ,

(Qn)I = {〈x, y〉 ∈ (ΔI)2 | ∃z ∈ ΔI , 〈x, z〉 ∈ (Qn−1)I , 〈z, y〉 ∈ QI} for Q+ ∈ R⊕

∗ An interpretation I satisfies a role hierarchy R if RI ⊆ SI for each R � S ∈ R.
Such an interpretation is called a model of R, denoted by I |= R. To simplify notations
for nested inverse roles and transitive closures of roles, we define two functions ·� and
·⊕ as follows:

R� =

⎧⎪⎪⎨⎪⎪⎩
R− if R ∈ R;
S if R = S− and S ∈ R;
(S−)+ if R = S+, S ∈ R,
S+ if R = (S−)+, S ∈ R

R⊕ =

⎧⎪⎪⎨⎪⎪⎩
R+ if R ∈ R;
S+ if R = (S+)+ and S ∈ R;
(S−)+ if R = S− and S ∈ R;
(S−)+ if R = (S+)− and S ∈ R

∗ A relation ∗� is defined as the transitive-reflexive closure R+ of � on R ∪ {R� �
S� | R � S ∈ R} ∪ {R⊕ � S⊕ | R � S ∈ R} ∪ {Q � Q⊕ | Q ∈ R ∪ RI}. We
define a function Trans(R) which returns true iff there is some Q ∈ R+ ∪ {P� | P ∈
R+} ∪ {P⊕ | P ∈ R ∪RI} such that Q∗�R ∈ R+. A role R is called simple w.r.t. R
if Trans(R) = false.

The reason for the introduction of two functions ·� and ·⊕ in Definition 1 is that
they avoid using R−− and R++. Moreover, it remains a unique nested case (R−)+.
According to Definition 1, axiom R � Q⊕ is not allowed in a role hierarchy R since
this may lead to undecidability [10] even if R is simple. Notice that the closure R+

may contain R � Q⊕ if R � Q belongs to R.
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Definition 2 (terminology). Let C be a non-empty set of concept names with a non-
empty subset Co ⊆ C of nominals. The set of SHOIQ(+)-concepts is inductively
defined as the smallest set containing all C in C, �, C D, C !D, ¬C, ∃R.C, ∀R.C,
(≤ nS.C) and (≥ nS.C) where n is a positive integer, C and D are SHOIQ(+)-
concepts, R is an SHOIQ(+)-role and S is a simple role w.r.t. a role hierarchy. We
denote⊥ for ¬�. The interpretation function ·I of an interpretation I = (ΔI , ·I) maps
each concept name to a subset of ΔI such that �I = ΔI , (C  D)I = CI ∩ DI ,
(C!D)I = CI∪DI , (¬C)I = ΔI\CI , |{oI}| = 1 for all o ∈ Co, (∃R.C)I = {x ∈
ΔI | ∃y ∈ ΔI , 〈x, y〉 ∈ RI ∧ y ∈ CI}, (∀R.C)I = {x ∈ ΔI | ∀y ∈ ΔI , 〈x, y〉 ∈
RI ⇒ y ∈ CI}, (≥ nS.C)I = {x ∈ ΔI | |{y ∈ CI | 〈x, y〉 ∈ SI | ≥ n},
(≤nS.C)I = {x ∈ ΔI | |{y ∈ CI | 〈x, y〉 ∈ SI | ≤ n} where |S| is denoted for the
cardinality of a set S. An axiom C � D is called a general concept inclusion (GCI)
where C,D are SHOIQ(+)-concepts (possibly complex), and a finite set of GCIs is
called a terminology T . An interpretation I satisfies a GCI C � D if CI ⊆ DI and I
satisfies a terminology T if I satisfies each GCI in T . Such an interpretation is called
a model of T , denoted by I |= T . A pair (T ,R) is called a SHOIQ(+) knowledge
base where R is a SHOIQ(+) role hierarchy and T is a SHOIQ(+) terminology. A
knowledge base (T ,R) is said to be consistent if there is a model I of both T and R,
i.e., I |= T and I |= R. A concept C is called satisfiable w.r.t. (T ,R) iff there is some
interpretation I such that I |= R, I |= T and CI �= ∅. Such an interpretation is called
a model of C w.r.t. (T ,R). A concept D subsumes a concept C w.r.t. (T ,R), denoted
by C � D, if CI ⊆ DI holds in each model I of (T ,R). �

Since unsatisfiability, subsumption and consistency w.r.t. a SHOIQ(+) knowledge
base can be reduced to each other, it suffices to study knowledge base consistency. For
the ease of construction, we assume all concepts to be in negation normal form (NNF),
i.e., negation occurs only in front of concept names. Any SHOIQ(+)-concept can be
transformed to an equivalent one in NNF by using DeMorgan’s laws and some equiva-
lences as presented in [11]. According to [12], nnf(C) can be computed in polynomial
time in the size of C. For a concept C, we denote the nnf of C by nnf(C) and the
nnf of ¬C by ¬̇C. Let D be a SHOIQ(+)-concept in NNF. We define cl(D) to be
the smallest set that contains all sub-concepts of D including D. For a knowledge base
(T ,R), we reuse cl(T ,R) introduced by Horrocks et al. [7] to denote all sub-concepts
occurring in the axioms of (T ,R) as follows:

cl(T ,R) =
⋃

C�D∈T
cl(nnf(¬C !D),R) where

cl(E,R) = cl(E) ∪ {¬̇C | C ∈ cl(E)} ∪ (1)

{∀S.C | (∀R.C ∈ cl(E), S ∗�R) or (¬̇∀R.C ∈ cl(E), S ∗�R)

where S occurs in T or R} ∪ (2)⋃
∃Q⊕.C occurs in T

cl(∃Q.C ! ∃Q.∃Q⊕.C) (3)

Since (1) consists of sub-concepts from T and (2) is formed from concepts in (1)
by replacing a role or a logic constructor with respective another role occurring in R or
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another logic constructor, both of these sets are bounded byO(|(T ,R)|). Thus, cl(T ,R)
is bounded by O(|(T ,R)|).

We have cl(T ,R) is bounded by O(|(T ,R)|) [7]. To translate star-type and frame
structures presented by Pratt-Hartmann (2005) for C2 into those for SHOIQ, we need
to add new sets of concepts, denoted cl1(T ,R) and cl2(T ,R), to the signature of a
SHOIQ(+) knowledge base (T ,R).
cl1(T ,R) = {≤ mS.C | {(≤ nS.C), (≥ nS.C)} ∩ cl(T ,R) �= ∅, 1 ≤ m ≤ n} ∪

{≥ mS.C | {(≤ nS.C), (≥ nS.C)} ∩ cl(T ,R) �= ∅, 1 ≤ m ≤ n}
For a generating concept (≥ nS.C) and a set I ⊆ {0, · · · , &log n+ 1'}, we denote

C I
(≥nS.C) =

�
i∈I

Ci
(≥nS.C) 

�
j /∈I

¬Cj
(≥nS.C) where Ci

(≥nS.C) are new concept names

for 0 ≤ i ≤ &log n+ 1'. We define cl2(T ,R) as follows:
cl2(T ,R) = {Ci

(≥S.C) | (≥ nS.C) ∈ cl(T ,R) ∪ cl1(T ,R), 0 ≤ i ≤ &log n+ 1'}∪
{C I

(≥nS.C) | (≥ nS.C) ∈ cl(T ,R)∪ cl1(T ,R), I ⊆ {0,· · ·, &log n+1'}}

Remark 1. If numbers are encoded in binary then the number of new concept names
Ci

(≥nS.D) for 0 ≤ i ≤ &log n + 1', is bounded by O(|(T ,R)|) since n is bounded

by O(2|(T ,R)|). This implies that |cl2(T ,R)| is bounded by O(|(T ,R)|). Note that
two concepts C I

(≥nS.C) and C J
(≥nS.C) are disjoint for all I, J ⊆ {0, · · · , &log n+ 1'},

I �= J . The concepts C(∃S.C) and C I
(≥nS.C) will be used for building chromatic star-

types. This notion will be clarified after introducing the frame structure (Definition 6).

Finally, we denote CL(T ,R) = cl(T ,R) ∪ cl1(T ,R) ∪ cl2(T ,R), and use R(T ,R)
to denote the set of all role names occurring in T ,R with their inverse. The definition
of CL(T ,R) is inspired from the Fischer-Ladner closure that was introduced in [13].
The closure CL(T ,R) contains not only sub-concepts syntactically obtained from T
but also sub-concepts that are semantically derived from T w.r.t. R. For instance, if
∀S.C is a sub-concept from T and R∗�S ∈ R then ∀R.C ∈ CL(T ,R).

To describe a model of a SHOIQ(+) knowledge base in a more intuitive way, we
use a tableau structure that expresses semantic constraints resulting directly from the
logic constructors in SHOIQ(+).

Definition 3. Let (T ,R) be an SHOIQ(+) knowledge base. A tableau T for (T ,R)

is defined to be a triplet (S,L, E) such that S is a set of individuals, L: S→ 2CL(T ,R)

and E: R(T ,R) → 2S×S. For all s, t ∈ S, C,C1, C2 ∈ CL(T ,R), and R,S,Q⊕ ∈
R(T ,R), T satisfies the following properties:

P1 If C1 � C2 ∈ T and s ∈ S then nnf(¬C1 ! C2) ∈ L(s);
P2 If C ∈ L(s), then ¬C /∈ L(s);
P3 If C1  C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s);
P4 If C1 ! C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s);
P5 If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t);
P6 If ∃S.C ∈ L(s) then there is some t ∈ S such that 〈s, t〉 ∈ E(S) and

{C,C(∃S.C)} ⊆ L(t);
P7 If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for R∗�S and Trans(R) then ∀R.C ∈ L(t);
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P8 If ∃Q⊕.C ∈ L(s) then (∃Q.C ! ∃Q.∃Q⊕.C) ∈ L(s) and there are s1, · · · , sn−1

∈ S such that ∃Q.C ∈ L(s0) ∪ L(sn−1), 〈si, si+1〉 ∈ E(Q) with 0 ≤ i < n− 1,
s0 = s and ∃Q⊕.C ∈ L(sj) for all 0 ≤ j < n− 1.

P9 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(R�);
P10 If 〈s, t〉 ∈ E(R), R∗�S then 〈s, t〉 ∈ E(S);
P11 If (≥ n S C) ∈ L(s) then there are t1, · · · , tn ∈ S such that

{C,C Ii
(≥nS.C)} ⊆ L(ti) and 〈s, ti〉 ∈ E(S) for all 1 ≤ i ≤ n, and

Ij , Ik ⊆ {0, · · · , &log n+ 1'}, Ij �= Ik for all 1 ≤ j < k ≤ n;
P12 If (≤ n S C) ∈ L(s) then |ST (s, C)| ≤ n;
P13 If (≤ n S C) ∈ L(s) and 〈s, t〉 ∈ E(S) then

{C, .¬C} ∩ L(t) �= ∅ where ST (s, C) := {t ∈ S|〈s, t〉 ∈ E(S) ∧C ∈ L(t)};
P14 If o ∈ L(s) ∩ L(t) for some o ∈ Co then s = t.
P15 For each o ∈ Co, if o occurs in T then there is s ∈ S such that o ∈ L(s).

Note that the property P8 is added to deal with transitive closure of roles. The following
lemma establishes the equivalence between a model of an ontology and a tableau.

Lemma 1. Let (T ,R) be a SHOIQ(+) knowledge base. (T ,R) is consistent iff there
is a tableau for (T ,R).

A proof of Lemma 1 can be found in [14].

3 A Decision Procedure For SHOIQ(+)

This section starts by translating star-type and frame structures presented by Pratt-
Hartmann (2005) for C2 into those for SHOIQ(+).

Definition 4 (star-type). Let (T ,R) be a SHOIQ(+) knowledge base. A star-type
is a pair σ = 〈λ(σ), ξ(σ)〉, where λ(σ) ∈ 2CL(T ,R) is called core label, ξ(σ) =
(〈r1, l1〉, · · · , 〈rd, ld〉) is a d-tuple over 2R(T ,R) × 2CL(T ,R). A pair 〈r, l〉 is a ray of
σ if 〈r, l〉 = 〈ri, li〉 for some 1 ≤ i ≤ d. We use 〈r(ρ), l(ρ)〉 to denote a ray ρ = 〈r, l〉
where r(ρ) = r and l(ρ) = l.

– A star-type σ is nominal if o ∈ λ(σ) for some o ∈ Co.
– A star-type σ is chromatic if ρ �= ρ′ implies l(ρ) �= l(ρ′) for two rays ρ, ρ′ of σ.

When a star-type σ is chromatic, ξ(σ) can be considered as a set of rays.
– Two star-types σ, σ′ are equivalent if λ(σ) = λ(σ′), and there is a bijection π

between ξ(σ) and ξ(σ′) such that π(ρ) = ρ′ implies r(ρ′) = r(ρ) and l(ρ′) = l(ρ).

We denote Σ for the set of all star-types for (T ,R). �

Note that for a chromatic star-type σ, ξ(σ) can be considered as a set of rays since
rays are distinct and not ordered. We can think of a star-type σ as the set of individuals
x satisfying all concepts in λ(σ), and each ray ρ of σ corresponds to a “neighbor”
individual xi of x such that r(ρ) is the label of the link between x and xi; and xi
satisfies all concepts in l(ρ). In this case, we say that x satisfies σ.



270 C. Le Duc, M. Lamolle, and O. Curé

Definition 5 (valid star-type). Let (T ,R) be a SHOIQ(+) knowledge base. Let σ be
a star-type for (T ,R) where σ = 〈λ(σ), ξ(σ)〉. The star-type σ is valid if σ is chromatic
and the following conditions are satisfied:

1. If C � D ∈ T then nnf(¬C !D) ∈ λ(σ);
2. {A,¬A} �⊆ λ for every concept name A where λ = λ(σ) or λ = l(ρ) for each

ρ ∈ ξ(σ);
3. If C1 C2 ∈ λ(σ) then {C1, C2} ⊆ λ(σ);
4. If C1 !C2 ∈ λ(σ) then {C1, C2} ∩ λ(σ) �= ∅;
5. If ∃R.C ∈ λ(σ) then there is some ray ρ ∈ ξ(σ) such that C ∈ l(ρ) and R ∈ r(ρ);
6. If (≤ nS.C) ∈ λ(σ) and there is some ray ρ ∈ ξ(σ) such that S ∈ r(ρ) then

C ∈ l(ρ) or ¬̇C ∈ l(ρ);
7. If (≤ nS.C) ∈ λ(σ) and there is some ray ρ ∈ ξ(σ) such that C ∈ l(ρ) and S ∈

r(ρ) then there is some 1 ≤ m ≤ n such that {(≤ mS.C), (≥ mS.C)} ⊆ λ(σ);
8. For each ray ρ ∈ ξ(σ), if R ∈ r(ρ) and R∗�S then S ∈ r(ρ);
9. If ∀R.C ∈ λ(σ) and R ∈ r(ρ) for some ray ρ ∈ ξ(σ) then C ∈ l(ρ);

10. If ∀R.D ∈ λ(σ), S ∗�R, Trans(S) and R ∈ r(ρ) for some ray ρ ∈ ξ(σ) then
∀S.D ∈ l(ρ);

11. If ∃Q⊕.C ∈ λ(σ) then (∃Q.C ! ∃Q.∃Q⊕.C) ∈ λ(σ);
12. If (≥ nS.C) ∈ λ(σ) then there are n distinct rays ρ1, · · · , ρn ∈ ξ(σ) such that

{C,C Ii
(≥nS.C)} ⊆ l(ρi), S ∈ r(ρi) for all 1 ≤ i ≤ n; and Ij , Ik ⊆ {0, · · · , log n+

1}, Ij �= Ik for all 1 ≤ j < k ≤ n;
13. If (≤ nS.C) ∈ λ(σ) and there do not exist n+1 rays ρ0, · · · , ρn ∈ ξ(σ) such that

C ∈ l(ρi) and S ∈ r(ρi) for all 0 ≤ i ≤ n. �

Roughly speaking, a star-type σ is valid if each individual x satisfies semantically all
concepts in λ(σ). In fact, each condition in Definition 5 represents the semantics of a
constructor in SHOIQ(+) except for transitive closure of roles. From valid star-types,
we can “tile” a model instead of using expansion rules for generating nodes as described
in tableau algorithms. Before presenting how to “tile” a model from star-types, we need
some notation that will be used in the remainder of the paper.

Notation 1. We call P = 〈(σ1, ρ1, d1), · · · , (σk, ρk, dk)〉 a sequence where σi ∈ Σ,
ρi ∈ ξ(σi) and di ∈ N for 1 ≤ i ≤ k.

– tail(P) = (σk, ρk, dk), tailσ(P) = σk , tailρ(P) = ρk, tailδ(P) = dk and |P| = k.
We denote L(P) = λ(tailσ(P)).

– pi(P) = (σi, ρi, di), piσ(P) = σi, piρ(P) = ρi and piδ(P) = di for each 1 ≤ i ≤ k.
– an operation add(P , (σ, ρ, d)) extendsP to a new sequence with add(P , (σ, ρ, d)) =
〈P , (σ, ρ, d)〉.

Definition 6 (frame). Let (T ,R) be aSHOIQ(+) knowledge base. A frame for (T ,R)
is a tuple F = 〈N ,No, Ω, δ〉, where

1. N is a set of valid star-types such that σ is not equivalent to σ′ for all σ, σ′ ∈ N ;
2. No ⊆ N is a set of nominal star-types;
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3. Ω is a function that maps each pair (σ, ρ) with σ ∈ N and ρ ∈ ξ(σ) to a sequence
Ω(σ, ρ) = 〈(σ1, ρ1, d1), · · · , (σm, ρm, dm)〉 with σi ∈ N , ρi ∈ ξ(σi), di ∈ N for
1 ≤ i ≤ m such that for each σi with 1 ≤ i ≤ m, it holds that l(ρ) = λ(σi),
l(ρi) = λ(σ) and r(ρi) = r−(ρ) where r−(ρ) = {R� | R ∈ r(ρ)}.

4. δ is a function δ : N → N. By abuse of notation, we also use δ to denote a function
which maps each pair (σ, ρ) with σ ∈ N and ρ ∈ ξ(σ) into a number in N, i.e.,
δ(σ, ρ) ∈ N. �

Since a frame cannot contain two equivalent star-type (Condition 1 in Definition 6),
the number of different star-types in a frame is bounded. The following lemma provides
such a bound.

Lemma 2. Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge base

(T ,R). The number of different star-types is bounded by O(22
|(T ,R)|

).

The lemma is a consequence of the following facts : (i) the number of different core
labels of star-types is bounded byO(|(T ,R)|), (ii) the number of different ray labels of
star-types is bounded byO(2|(T ,R)|), and (iii) the number of different rays of a star-type
is bounded by O(2|(T ,R)|) due to binary coding of numbers.

The frame structure, as introduced in Definition 6, allows us to compress individuals
of a model into star-types. For each star-type σ and each ray ρ ∈ ξ(σ), a list Ω(σ, ρ) of
triples (σi, ρi, di) with ρi ∈ ξ(σi) is maintained where σi is a “neighbor” star-type of
σ via ρ ∈ ξ(σ), and di indicates the di-th “layer” of rays of σi. We can think a layer of
rays of σi as an individual that connects to its neighbor individuals via the rays of σi.
The following definition presents how to connect such layers to form paths in a frame.

Definition 7 (path). Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge
base (T ,R). A path is inductively defined as follows:

1. A sequence 〈∅, (σ, ρ, 1)〉 is a path, namely nominal path, if σ ∈ No and ρ ∈ ξ(σ);
2. A sequence 〈P , (σ, ρ, d)〉 with P �= ∅ and tail(P) = (σ0, ρ0, d0), is a path if

(σ, ρ, d) = pd0(Ω(σ0, ρ
′)) for each ρ′ �= ρ0. In this case, we say that 〈P , (σ, ρ, d)〉

is the ρ′-neighbor of P , and two paths P , 〈P , (σ, ρ, d)〉 are neighbors.
Additionally, if 〈P , (σ, ρ, d)〉 is a ρ′-neighbor ofP andQ ∈ r(ρ′) then 〈P , (σ, ρ, d)〉
is a Q-neighbor of P . In this case, we say that 〈P , (σ, ρ, d)〉 is a Q-neighbor of P ,
or P is a Q�-neighbor of 〈P , (σ, ρ, d)〉.

We define P ∼ P ′ if tailσ(P) = tailσ(P ′) and tailδ(P) = tailδ(P ′). Since ∼ is an
equivalence relation over the set of all paths, we use P to denote the set of all equiva-
lence classes [P ] of paths in F . For [P ], [Q] ∈ P , we define:

1. [P ] is a neighbor (ρ′-neighbor) of [Q] if there are P ′ ∈ [P ] and Q′ ∈ [Q] such that
Q′ is a neighbor (ρ′-neighbor) of P ′;

2. [Q] is a reachable path of [P ] via a ray ρ ∈ ξ(tailσ(P)) if there are [P1], · · · , [Pn] ∈
P such that [Pi] �= [Pj] for 1 ≤ i < j ≤ n, [P ] = [P1], [Q] = [Pn], [P2] is the
ρ-neighbor of [P1], [Pi+1] is a neighbor of [Pi] for all 1 ≤ i < n− 1.

3. [Q] is a Q-neighbor of [P ] if there are P ′ ∈ [P ] and Q′ ∈ [Q] such that Q′ is a
Q-neighbor of P ′, or P ′ is a Q�-neighbor of Q′;
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4. [Q] is a Q-reachable path of [P ] if there are [P1], · · · , [Pn] ∈ P such that [Pi] �=
[Pj ] for 1 ≤ i < j ≤ n, [P ] = [P1], [Q] = [Pn], [P2] is the ρ-neighbor of [P1],
and [Pi+1] is a Q-neighbor of [Pi] for all 1 ≤ i < n. �

Since two paths P and P ′ meet at the same star-type (i.e. tailσ(P) = tailσ(P ′))
and the same layer (i.e. tailδ(P) = tailδ(P ′)) should be considered as identical, we
define the equivalence relation ∼ in Definition 7 to formalize this idea. Note that for
two paths P ,P ′ with tailρ(P) �= tailρ(P ′), we have P ∼ P ′ if tailσ(P) = tailσ(P ′)
and tailδ(P) = tailδ(P ′). This does not allow for extending tailρ(P) to tailρ([P ]).
As a consequence, there may be several “predecessors” of an equivalence class [P ].
However, we can define tailσ([P ]) = tailσ(P), tailδ([P ]) = tailδ(P) and L([P ]) =
L(P). In the sequel, we use P instead of [P ] whenever it is clear from the context.

In a tree-shaped structure where each node has a unique predecessor, each path P
is identical to its equivalence class [P ]. This no longer holds for the general graph
structure. The notion of paths in a frame is needed to define cycles which are crucial to
establish termination condition when building a frame.

Definition 8 (cycle). Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge
base (T ,R) with a set P of paths in F . Let R be a set of pairs (Pr, ξr), called root
paths, where Pr ∈ P and ξr ⊆ ξ(tailσ(Pr)). Let Θ be a set of quadruples (P , ρ,Q, ν)
where P ,Q ∈ P (P �= Q), respectively called cycled and cycling paths of Θ , ρ ∈
ξ(tailσ(P)), ν ∈ ξ(tailσ(Q)), respectively called cycled and cycling rays of Θ. A ρ-
neighbor of a cycled (resp. cycling) pathP is a cycled (resp. cycling) neighbor of P if ρ
is a cycled (resp. cycling) ray of P . We say that Θ is a cycle w.r.t. a set R of root paths
if for each quadruple (P , ρ,Q, ν) ∈ Θ the following conditions are satisfied:

1. o /∈ L(P) ∪ L(Q) ∪
⋃

ρ∈ξ(tailσ(P))∪ξ(tailσ(Q)) l(ρ) for all o ∈ Co;
2. L(P) = l(ν), L(Q) = l(ρ) and r(ρ) = r−(ν).
3. for each ray ρ′ ∈ ξ(tailσ(P)) that is not cycled, there are a sequenceP1, · · · ,Pn ∈

P , some (P0, ρ0,Q0, ν0) ∈ Θ and a root path (Pr, ξr) ∈ R such that Pi �= Pj

for 1 ≤ i < j ≤ n, P1 = P , P2 is the ρ′-neighbor of P1, Pi+1 is a neighbor of
Pi for 1 ≤ i < n, Pk = Q0 for some 1 < k < n − 1, and Pn = Pr, Pn−1 is a
ρr-neighbor of Pn with ρr ∈ ξr.

4. for each ray ν′ ∈ ξ(tailσ(Q)) that is not cycling and each sequence P1, · · · ,Pn ∈
P such that Pi �= Pj for 1 ≤ i < j ≤ n, P1 = Q, P2 is the ν′-neighbor of Q, and
Pi+1 is a neighbor of Pi for 1 ≤ i < n, there is some (P0, ρ0,Q0, ν0) ∈ Θ such
that one of the following conditions is satisfied:
(a) there is some 1 < k ≤ n with Pk = Q0 or Pk = P0, and Pi is not a cycling

and cycled neighbor for all 1 ≤ i ≤ k;
(b) there are Pn+1, · · · ,Pn+m ∈ P with P0 = Pn+m or Q0 = Pn+m such that

Pi �= Pj for 1 ≤ i < j ≤ n + m, Pi+1 is a neighbor of Pi for all n ≤ i <
n+m, and Pi is not a cycling and cycled neighbor for all 1 ≤ i ≤ n+m;

We use R0 to denote the set of all pairs (Pr, ξ(tailσ(Pr))) where Pr is a nominal path.
A primary cycle Θ0 is a cycle w.r.t. R0. Furthermore, we define a reachable cycle Θ′ of
a cycle of Θ if Θ′ is a cycle w.r.t. the set of all pairs (Pr, ξr) where Pr is a cycled path
of Θ and ξr is the set of all cycled rays of Pr.



A Decision Procedure for SHOIQ with Transitive Closure of Roles 273

Note that a cycleΘ may encapsulate a loop if it includes two quadruples (P , ρ,Q, ν),
(P ′, ρ′,Q′, ν′) such that Q′ is a reachable path of Q via ρ. A loop can be formed from
a sequence P1, · · · ,Pn ∈ P (n > 3) such that P1 = Pn, Pi �= Pj for 1 ≤ i < j < n
and Pi+1 is a neighbor of Pi for 1 ≤ i < n). Moreover, it is possible that there are two
quadruples (P , ρ,Q, ν), (P ′, ρ′,Q′, ν′) ∈ Θ such that Q′ = Q, ν = ν′ and P ′ �= P ,
ρ �= ρ′, or P ′ = P , ρ = ρ′ and Q′ �= Q, ν �= ν′.

Intuitively, a (primary) cycle allows one to “cut” all paths started from nominal paths
of a frame into two parts : the first path which is connected to nominal paths is not
replicated while the second part can be infinitely lengthened. Condition 1, Definition
8 says that a cycle should not include nominal star-types which must not replicated.
Condition 2 says that a cycled path “matches” its cycling path via a ray with the same
label. Condition 3 not only provides the relationship between two paths P ,Q for each
(P , ρ,Q, ν) ∈ Θ but also ensures that all non-cycled neighbors of each P are filled
in a cycle. Condition 4 ensures that an extension of cycled paths P via their cycled
neighbors is possible by replicating paths from its cycling path Q via cycling rays.

As a consequence, the existence of a cycle allows one to “unravel” a set P of paths in
a frame to obtain a possibly infinite set P̂ of paths. The following lemma characterizes
this crucial property and provides a bound on the size of a cycle.

Lemma 3. Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowledge base
(T ,R). Let Θ be a cycle in F .

1. There exists an extension P̂Θ of paths between cycled and cycling paths such that
each path P0 ∈ P̂Θ has exactly |ξ(tailσ(P0))| neighbors.

2. If Θ′ is a reachable cycle of Θ then |Θ′| ≤ |Θ| × |ξ|2� where |ξ| is the maximal
number of rays of a star-type, and � = 22×|CL(T ,R)|×|R(T ,R)| .

A proof of Lemma 3 can be based on the fact that all paths between cycling and
cycled paths of a cycle do not cross the borders defined by the cycle. Therefore, these
paths can be replicated and pasted to cycled paths. With regard to the size of a cycle, we
can use the following construction: each path starts from a nominal star-type in No and
is lengthened through star-types (more precisely, through layers of rays of star-types).
We define inductively a level n of a path P as follows: (i) all nominal paths are at level
0, (ii) a path P ′ is at level i+1 if it has a neighbor at level i, and all neighbors of P ′ are
at a level which are equal or greater than i. This implies that there are no two neighbor
paths which are located on two levels whose difference is greater than 1.

Assume that there is a pair of paths (Q,Q′) such that Q is at level i > 1 and Q′ is a
ν-neighbor of Q at level i − 1 iff there is a pair of paths (P ,P ′) such that P is at level
j > i, P ′ is a ρ-neighbor of P at level j + 1, and L(Q) = L(P ′), L(Q′) = L(P),
r(ν) = r−(ρ). This implies that all such quadruples (P , ρ,Q, ν) can form a cycle.
Moreover, there are at most � different labels of pairs (Q, ν). This implies that one
cycle can be detected after creating at most 2� levels. Thus, we have |Θ′| ≤ |Θ| × |ξ|2�

where |ξ| is the maximal number of rays of star-type. A more complete proof of Lemma
3 can be found in [14].

Let Θ be a cycle in a frame. Definition 8 ensures that each reachable path of some
path Q with (P , ρ,Q, ν) ∈ Θ goes through a star-type σ = tailσ(P ′) with some
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(P ′, ρ′,Q′, ν′) ∈ Θ. As mentioned in Lemma 3, such a cycle allows one to “unravel”
infinitely the frame to obtain a model of a KB in SHOIQ (without transitive closure
of roles). However, such a cycle structure is not sufficient to represent models of a KB
with transitive closure of roles since a concept such as ∃Q⊕.D ∈ L(P) can be satisfied
by a Q-reachable path P ′ of P which is arbitrarily far from P . There are the following
possibilities for an algorithm which builds a frame: (i) the algorithm stops building the
frame as soon as a cycle Θ is detected such that each concept of the form ∃Q⊕.D oc-
curring in L(P) is satisfied for each cycled path P of Θ, i.e., P has a Q-reachable path
P ′ with ∃Q.D ∈ L(P), (ii) despite of several detected cycles, the algorithm continues
building the frame until each concept of the form ∃Q⊕.D occurring in L(P) is satis-
fied for each cycled path P of Θ. If we adopt the first possibility, the completeness of
such an algorithm cannot be established since there are models in which paths satisfy-
ing concepts of the form ∃Q⊕.D can spread over several “iterative structures” such as
cycles. For this reason, we adopt the second possibility by introducing into frames an
additional structure, namely blocking-blocked cycles, which determines a sequence of
cycles Θ1, · · · , Θk such that Θi+1 is a reachable cycle of Θi for satisfying concepts of
the form ∃Q⊕.D.

Definition 9 (blocking). Let F = 〈N ,No, Ω, δ〉 be a frame for a SHOIQ(+) knowl-
edge base (T ,R) with a set P of paths in F . A cycle Θ′ is blocked by a cycle Θ if
there are cycles Θ1, · · · , Θk with Θ = Θ1, Θ′ = Θk such that Θi+1 is a reachable
cycle of Θi for 1 ≤ i < k, and the following conditions are satisfied:

1. For each 1 ≤ i < k, there is no cycle Θ′′ such that
(a) Θ′′ is a reachable cycle of Θi and Θi+1 is a reachable cycle of Θ′′, and
(b) For each (P , ρ,Q, ν) ∈ Θ′′ and each concept ∃Q⊕.D ∈ L(P), P has a

Q-reachable path P ′ via a non cycled ray with ∃Q.D ∈ L(P ′) iff the ν-
neighbor Q′ of Q has a Q-reachable path Q′′ via a non cycling ray with
∃Q.D ∈ L(Q′′).

2. For each (Pk, ρk,Qk, νk) ∈ Θk , there is some (P1, ρ1,Q1, ν1) ∈ Θ1 such that
(a) L(P1) = L(Pk), L(Q1) = L(Qk), r(ρ1) = r(ρk), and
(b) If there is a concept ∃Q⊕.D ∈ L(Pk) such that the path Pk has no Q-

reachable path P ′ with ∃Q.D ∈ L(Q′) then the path Q1 has a Q-reachable
path Q such that the two following conditions are satisfied:

i. ∃Q.D ∈ L(Q), or Q has a Q-reachable path Q′ with ∃Q.D ∈ L(Q′),
ii. there are (Pj , ρj ,Qj, νj) ∈ Θj , (Pj+1, ρj+1,Qj+1, νj+1) ∈ Θj+1 with

some 1 ≤ j < k such that Q′ is a reachable path of Qj and Qj+1 is a
reachable path of Q′.

In this case, we say that the path Pk is blocked by the path Q1 via the ray ρk. �

Definition 9 provides an exact structure of a frame in which blocked paths can
be detected. Such a frame contains sequentially reachable cycles between a blocking
cycle Θ1 and its blocked cycle Θk, which allows for unravelling the frame between
Θk and Θ1, and satisfying all concepts of the form ∃Q⊕.D in the labels of paths in
Θ1. Condition 1 ensures that there is no useless cycle for the satisfaction of concepts
∃Q⊕.D which is located between two cycles Θi and Θi with i < k. For a concept
∃Q⊕.D ∈ L(Pk) that is not satisfied from the path Pk to all existing paths (i.e. it is
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not satisfied in the “past”), it must be satisfied from Pk to paths that are devised by
unravelling (i.e. it is satisfied in “the future”). Therefore, it is required that such con-
cepts ∃Q⊕.D are satisfied in the “future” from the blocking path P1 of Pk (Condition
2, Definition 9). Moreover, for a concept ∃Q⊕.D ∈ L(P) that is not satisfied in the
“past”, either it is satisfied from P to some paths that are explicitly added to the frame,
or it is propagated to a some blocked path thanks to Property 11, Definition 4.

Remark 2. The constant k mentioned in Definition 9 depends to the number of distinct
ray labels (i.e. the triple 〈L(P), r(ρ), l(ρ)〉 for each ray ρ ∈ tailσ(P)) occurring a
blocking cycle Θ1 and the number of concepts ∃Q⊕.D occurring in each cycling path
label in Θ1. Since the number of distinct ray labels is bounded by � (Lemma 3) and
the number of concepts ∃Q⊕.D occurring in each cycling path label is bounded by
CL(T ,R), we have k is bounded by 2× � where � = 22×|CL(T ,R)|×|R(T ,R)|.

Definition 10 (valid frame). Let (T ,R) be a SHOIQ knowledge base. A frame F =
〈N ,No, Ω, δ〉 with a set P of paths is valid if the following conditions are satisfied:

1. For each nominal o ∈ Co, there is a unique σo ∈ No such that o ∈ λ(σo) and
δ(σo) = 1;

2. For each star-type σ ∈ N , σ is valid.
3. If ∃Q⊕.C ∈ L(P0) for some P0 ∈ P then there are P ,P ′ ∈ P such that one of

the following conditions is satisfied:
(a) P0 = P = P ′ and ∃Q.C ∈ L(P0);
(b) P ′ is a Q-reachable of P , and ∃Q.C ∈ L(P ′) where P = P0 or P blocks P0;
(c) P is a Q�-reachable of P ′, and ∃Q.C ∈ L(P ′) where P = P0 or P blocks

P0. �

Conditions 1-3 in Definition 10 ensure the satisfaction of tableau properties in Defi-
nition 3. Note that Condition 1 is compatible with the fact that cycles in a frame never
consist of nominal star-types (Definition 8). In particular, Condition 3 provides the sat-
isfaction of concepts ∃Q⊕.D occurring in the labels of paths thanks to the blocking
condition introduced in Definition 9.

We now present Algorithm 1 for building a valid frame. This algorithm starts by
adding nominal star-types to the frame. For each non blocked path P with a ray ρ ∈
ξ(tailσ(P)) such that δ(tailσ(P), ρ) = δ(tailσ(P))+1, the algorithm picks in a nonde-
terministic way a valid star-type ω that matches tailσ(P) via ρ, and updates the values
Ω(tailσ(P), ρ), Ω(ω, ρ′), δ(tailσ(P), ρ), δ(ω, ρ′), eventually, δ(tailσ(P)) and δ(ω) by
calling updateFrame(· · · ). The algorithm terminates when a blocked cycle is detected.
To check the blocking condition, the algorithm can compare Ri for each new level i of
rays with each Rj for all j < i (the notion of levels of rays in a frame is given in the
proof of Lemma 3) where Rj is denoted for the set of different ray labels at level i. If
Rj = Ri and the last cycle that was detected located at some level l < j, then a new
(reachable) cycle from level j to i is formed.

Figure 2 depicts a frame when executing Algorithm 1 for K1 in the example pre-
sented in Section 1. The algorithm builds a frame F = 〈N ,No, Ω, δ〉 where N =
{σ0, σ1, σ2, σ3, σ4} and No = {σ0}. The dashed arrows indicate how the function
Ω(σ, ρ) can be built. For example,Ω(σ0, ρ0) = {(σ1, ν0, 1)},Ω(σ0, ρ1) = {(σ2, ρ′0, 1)}
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Require: A SHOIQ(+) knowledge base (T ,R)
Ensure: A frame 〈N ,No, Ω, δ〉 for (T ,R)
1: Let Σ be the set of all star-types for (T ,R)
2: for all o ∈ Co do
3: if there is no σ ∈ N such that o ∈ λ(σ) then
4: Choose a star-type σo ∈ Σ such that o ∈ λ(σo)
5: Set δ(σo) = 1, N = N ∪ {σo} and No = No ∪ {σo}
6: Set δ(σo, ρ) = 0, Ω(σo, ρ) = ∅ for all ρ ∈ ξ(σo)
7: end if
8: end for
9: while there is a path P that is not blocked and a ray ρ ∈ ξ(tailσ(P)) such that

tailδ(P) = δ(tailσ(P), ρ) + 1 do
10: Choose a star-type σ′ ∈ Σ such that there is a ray ρ′ ∈ ξ(σ′) satisfying

l(ρ) = λ(σ′), l(ρ′) = λ(σ), r(ρ′) = r−(ρ), and
σ′ ∈ N implies δ(σ′) = δ(σ′, ρ′) + 1 or δ(σ′) = δ(σ′, ρ′′) for all ρ′′ ∈ ξ(σ′)

11: updateFrame(σ, ρ, σ′, ρ′)
12: end while

Algorithm 1. An algorithm for building a frame

Require: A star-type σ ∈ N in a frame F = 〈N ,No, Ω, δ〉 with a ray ρ ∈ ξ(σ), and a new
star-type σ′ with a ray ρ′ ∈ ξ(σ′) such that l(ρ) = λ(σ′), l(ρ′) = λ(σ), r(ρ′) = r−(ρ)

Ensure: updateFrame(σ, ρ, σ′, ρ′)
1: if there exists a star-type ω ∈ N such that ω is equivalent to σ′ then
2: Set δ(σ, ρ) = δ(σ, ρ) + 1
3: Let ν ∈ ξ(ω) such that r(ν) = r(ρ′) and l(ν) = l(ρ′)
4: if δ(ω, ν) == δ(ω) then
5: Set δ(ω) = δ(ω) + 1
6: end if
7: Set δ(ω, ν) = δ(ω, ν) + 1
8: add(Ω(ω, ν), (σ, ρ, δ(σ, ρ)))
9: add(Ω(σ, ρ), (ω, ν, δ(ω, ν)))

10: else
11: Add σ′ toN
12: Set δ(σ, ρ)=δ(σ, ρ) + 1
13: Set δ(σ′) = 1, δ(σ′, ρ′) = 1 and Ω(σ′, ρ′) = {(σ, ρ, δ(σ, ρ))}
14: Set δ(σ′, ρ′′) = 0 and Ω(σ′, ρ′′) = ∅ for all ρ′′ = ρ′

15: add(Ω(σ, ρ), (σ′, ρ′, 1))
16: end if

Algorithm 2. updateFrame(σ, ρ, σ′, ρ′) updates F when adding σ′ to N
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where ρ0 and ρ1 are the respective horizontal and vertical rays of σ0; ν0 is the left ray of
σ1; ρ′0 is the vertical ray of σ2. Moreover, the directed dashed arrow from σ0 to σ1 indi-
cates that the ray ρ0 of σ0 can match the ray ν0 on the left ray of σ1 since l(ρ0) = λ(σ1),
r(ν0) = λ(σ0), r(ν0) = r−(ρ0).

The algorithm generates δ(σ0) = 1, δ(σ1) = 1, δ(σ2) = 1 and forms a cycle Θ
consisting of the following quadruples : ((σ3, 3), ρ1, (σ3, 2), ρ2) (ρ1 and ρ2 are the right
and left rays of σ3, respectively) and ((σ4, 2), ρ3, (σ4, 1), ρ4) (ρ3 and ρ4 are the right
and left rays of σ4 respectively). Note that for the sake of brevity, we use just tailσ(P)
and tailδ(P) to denote a path in the quadruples.

The cycle Θ is blocked since all concepts ∃S+.{o} occurring in cycled paths are
satisfied. A model of the ontology can be built by starting from σ0 and getting (i) σ4
via σ1, (ii) σ3 via σ1, and (iii) σ3 via σ2. From σ3 and σ4, the model goes through σ3
and σ4 infinitely. Note that from any individual x satisfying σ3 (or σ4), i.e. the “label”
of x contains ∃Q+.{o}, there is a path containing S which goes back the individual
satisfying σ0. Thus, the concept ∃Q+.{o} is satisfied for each individual whose label
contains ∃Q+.{o}.
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Fig. 2. A frame obtained by Algorithm 1 for K1 in the example in Section 1

Lemma 4. Let (T ,R) be a SHOIQ(+) knowledge base.

1. Algorithm 1 terminates.
2. If Algorithm 1 can build a valid frame for (T ,R) then there is a tableau for (T ,R).
3. If there is a tableau for (T ,R) then Algorithm 1 can build a valid frame F for

(T ,R).

Proof (sketch). Let Θk be a blocked cycle by Θ1. According to Remark 2, k is bounded
by O(2|(T ,R)|). Moreover, after eliminating “useless cycles” between two cycles Θi

and Θi+1 for 1 ≤ i < k according to Condition 1, Definition 9 the number of useful
cycles between Θi and Θi+1 is bounded by O(22

|(T ,R)|
). This implies that Algorithm

1 can add at most a triple exponential number of paths to the frame to form a blocked
cycle. For the soundness of Algorithm 1, we can extend the set P of paths to a set P̂
of extended paths by “unravelling” the frame between blocking-blocked cycles. The set
P̂ allows one to satisfy concepts ∃Q⊕.D in blocked paths which are not satisfied in the
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“past”. Moreover, a concept ∃Q⊕.D of a path that is not satisfied in the “past” will be
propagated to a blocked path via a Q-path. Therefore, it will be satisfied in P̂. Unlike
the unravelling of a completion graph for SHOIQ where there is no loop in the model,
the unravelling of a frame may yield an infinite number of loops in the model. Note
that the unravelling of a frame replicates cycles which may encapsulate loops.

Regarding completeness, we first reduce a tableau to a frame that does not contain
any useless cycle. Then, we use the obtained frame to guide the algorithm (i) to choose
valid star-types, (ii) to ensure that δ(σ) = 1 for each nominal star-type σ, and (iii) to
detect a pair (Θ1, Θk) of blocking and blocked cycles as soon as some “representative”
concepts of the form ∃Q⊕.D in Θ1 are satisfied. We refer the readers to [14] for a
complete proof of Lemma 4. �

The following theorem is a consequence of Lemma 4.

Theorem 1. The problem of consistency forSHOIQ(+) can be decided in non-determi-
nistic triply exponential time in the size of a SHOIQ(+) knowledge base.

4 Optimizing The Algorithm

The algorithm for deciding the consistency of a SHOIQ(+) knowledge base (Algo-
rithm 1) uses at most a doubly exponential number of star-types to build a frame. This
is due to the fact that numbers are encoded in binary, that is, a star-type may have an
exponential number of rays. Pratt-Hartmann [9] has shown that it is possible to use an
exponential number of star-types to represent a model of a KB in C2 which is slightly
different from SHOIQ in terms of expressiveness. If we can transfer this method to
SHOIQ for compressing star-types, it would be applied to SHOIQ(+) since the num-
ber of star-types in a frame does not depend on the presence of transitive closure of
roles.

Another technique presented in [15] can be used to reduce non-determinisms due to
the choice of valid star-types. Instead of guessing a valid star-type from a set of valid
star-types, this technique allows one to build a star-type σ by applying expansion rules
to concepts in the core label of σ. Hence, when a star-type σ is transformed into σ′ by
an expansion rule, an algorithm that implements this technique has to update not only
Ω(σ′, ρ′) and δ(σ′) but also Ω(σ′′, ρ′′) and δ(σ′′) for each neighbor σ′′ of σ and σ′

(σ′′ is a neighbor of σ′ if there is some (σ′′, ρ′′, d′′) ∈ Ω(σ′, ρ′)). These updates must
ensure that each path which has got through σ can now get through σ′. This process of
changes can spread over neighbors of σ′′ and so on.

With regard to blocking, the technique presented in [15] can take advantage of a
specific structure of frames for SHOIQ to design an efficient algorithm for checking
blocking condition. This structure consists of partitioning star-types into layers. Al-
though such a structure of frames cannot be maintained for SHOIQ(+), paths in a
frame for SHOIQ(+) would allow us to achieve the same behavior.

5 Conclusion

In this paper, we have presented a decision procedure for the description logic SHOIQ
with transitive closure of roles in concept axioms, whose decidability was not known.
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The most significant feature of our contribution is to introduce a structure based on
a new blocking condition for characterizing models which have an infinite non-tree-
shaped part. This structure would provide an insight into regularity of such models
which would be enjoyed by a more expressive DL, such as ZOIQ [6], whose decid-
ability remains open. In future work, we aim to improve the algorithm by making it
more goal-directed and aim to investigate another open question about the hardness of
SHOIQ(+).
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Abstract. Linked Stream Data extends the Linked Data paradigm to
dynamic data sources. It enables the integration and joint processing of
heterogeneous stream data with quasi-static data from the Linked Data
Cloud in near-real-time. Several Linked Stream Data processing engines
exist but their scalability still needs to be in improved in terms of (static
and dynamic) data sizes, number of concurrent queries, stream update
frequencies, etc. So far, none of them supports parallel processing in
the Cloud, i.e., elastic load profiles in a hosted environment. To remedy
these limitations, this paper presents an approach for elastically paral-
lelizing the continuous execution of queries over Linked Stream Data.
For this, we have developed novel, highly efficient, and scalable parallel
algorithms for continuous query operators. Our approach and algorithms
are implemented in our CQELS Cloud system and we present extensive
evaluations of their superior performance on Amazon EC2 demonstrating
their high scalability and excellent elasticity in a real deployment.

Keywords: Cloud, Linked Data, linked stream processing, continuous
queries.

1 Introduction

Realistically, all data sources on the Web are dynamic (across a spectrum). Many
current sources are of a slow update nature which is well supported by the ex-
isting batch-update infrastructure of Linked Data, e.g., geo-data or DBpedia.
However, a fast increasing number of sources produce streams of information for
which the processing has to be performed as soon as new data items become
available. Examples of such data sources include sensors, embedded systems,
mobile devices, Twitter, and social networks, with a steep, exponential growth
predicted in the number of sources and the amount of data [22]. Integrating
these information streams with other sources will enable a vast range of new
“near-real-time” applications. However, due to the heterogeneous nature of the
streams and static sources, integrating and processing this data is a difficult and
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labor-intensive task which gave rise to Linked Stream processing, i.e., extend-
ing the notion of Linked Data to dynamic data sources. Linked Stream Data
processing engines, such as C-SPARQL [3], EP-SPARQL [1], SPARQLstream [5],
and CQELS [19], have emerged as an effort to facilitate this seamless integra-
tion of heterogeneous stream data with the Linked Data Cloud using the same
abstractions.

None of the above systems could yet systematically and satisfactorily address
all scalability aspects existing in Linked Stream Data processing [20], such as
the wide range of stream data production frequencies, the size of static data,
the number of concurrent queries, elastic load profile support, etc. The existing
approaches start to fail when some of these scalability aspects go beyond certain
thresholds. For instance, C-SPARQL and EP-SPARQL only can deal with small
RDF datasets (∼1 million triples) and most of the approaches are only able
consume very slow input stream rates of around 100 triples/second when the
number of concurrent queries grows up to 100–1000 [20]. These thresholds are
rather modest for real-time and Web applications and must be improved to make
the systems usable for practical applications in practical settings, e.g., each car
in a city producing a data stream.

On top of this, further scalability issues come from practical limits of computer
hardware such as memory size, network bandwidth, processor speed, etc. Even
though these parameters will increase over time (Moore’s Law), the general
argument is likely to remain true for the foreseeable future [17]. However, today’s
typical computer hardware is cheap and almost indefinitely replicable [17]. The
total-cost-of-ownership of 8 off-the-shelf commodity servers with 8 processing
cores and 128GB of RAM each is much lower than that of a single system with
64 processors and 1TB of RAM. Therefore, distributing the processing load of a
Linked Stream Data processing engine over networked computers is a promising
strategy to achieve scalability.

Additionally, the trend to Cloud infrastructures, i.e., renting servers on a
“pay-per-use” basis, provides a further argument in favor of this strategy. Ama-
zon EC2, Google Cloud, and Microsoft Azure are prominent examples for this
development. Building a Linked Stream Data processing engine running on such
an elastic cluster potentially enables the engine to adapt to changing processing
loads by dynamically adjusting the number of processing nodes in the cluster at
runtime. This “elasticity” is vital for processing stream data due to its fluctu-
ating stream rates (e.g., bursty stream rates) and the unpredictable number of
parallel queries (e.g., queries can be registered/unregistered at run-time) which
result in hard-to-predict computing loads and resource requirements. To enable
elasticity in a Cloud environment with on-demand load profiles, the used al-
gorithms and data access must lend themselves to parallelization or must be
re-engineered to achieve this property.

To address the above problems, this paper introduces an elastic execution
model based on a comprehensive suite of novel parallelizing algorithms for in-
cremental computing of continuous query operators on Linked Stream Data.
We present the CQELS Cloud implementation of this model and provide a
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comprehensive evaluation of its scalability and elasticity based on an extensive
set of experiments on Amazon EC2. The results show that CQELS Cloud can
scale up to throughputs of 100,000s of triples per second for 10,000s of concur-
rent queries on a cluster of 32 medium EC2 nodes. As we will demonstrate in
the paper this is not the ultimate limit of scalability but our approach can scale
gracefully to nearly arbitrary loads if more nodes are added.

The remainder of this paper is organized as follows: Section 2 describes our
abstract execution model for processing continuous queries over Linked Stream
Data on a cluster of networked computers. The required parallelizing algorithms
for this execution framework are described in Section 3. Section 4 presents the
implementation details of our CQELS Cloud engine and the results of our com-
prehensive experimental evaluation. We discuss related work in Section 5 and
then present our conclusions in Section 6.

2 Elastic Execution of Continuous Queries

This section describes the elastic execution model for processing continuous
queries over Linked Stream Data. The execution model is based on the Linked
Stream Data model and the query semantics of the CQELS query language
(CQELS-QL) [19]. The Linked Stream Data model [3,5,19] is used to model
both stream data represented in RDF and static RDF datasets. CQELS-QL is
a declarative continuous query language and is a minimal extension of SPARQL
1.1 with additional syntactical constructs to define sliding window operators on
RDF data streams.

Our execution model accepts a set of CQELS-QL queries over a set of RDF
input streams which produce a set of output streams (RDF streams or relational
streams in SPARQL-result formats). These queries will be compiled to a logical
query network. The network defines which query algebras the input stream data
should go through to return results in the output streams. Figure 1a shows and
illustrating example: First triples are extracted from RDF streams by a set of
pattern matching operators (basic graph patterns), which then are sent to a
number of sliding window joins (derived from the original queries). The triples
resulting from these operations are then sent to a set of aggregation operators.
The outputs of the aggregation operators are the result streams of the original
queries comprising the network.
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Σ

Σ

Σ

(a) A continuous query network
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(b) Elastic execution architecture

Fig. 1. Elastic execution model for Linked Stream Data
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Our execution model is based on a distributed architecture as shown in Fig-
ure 1b. The logical query network is mapped to a processing network distributed
among processing nodes, called Operator Containers (OCs) (see Section 4). The
Global Scheduler of the Execution Coordinator uses the Coordination Service
to distribute the continuous processing tasks to OCs to trigger the correspond-
ing executions concurrently. Similar to Eddies [2,19], the continuous processing
tasks are input stream elements associated with operator signatures that in-
dicate which physical operators the stream elements need to be processed to
satisfy their processing pipeline (mandated by the original queries). Each OC
hosts a set of physical query operators that process input streams and forward
the output to the consuming operators in the network. The Local Scheduler of
an OC is responsible for scheduling the execution of processing tasks assigned
by the Global Scheduler to make the best use of computing resources allocated
for that OC. This execution architecture supports elasticity by allowing the ma-
chines running OCs to join and leave the network dynamically at runtime. The
Coordination Service monitors the OC instances for failure or disconnection. In
the event that an OC instance leaves, the Coordination Service will notify the
Global Scheduler to re-balance / re-assign the “missing” processing to the rest
of the network. The Coordination Service maintains all processing state of the
whole network whereas each OC only has a mirrored copy of the processing state
necessary for its processing tasks. When an OC instance leaves, the Coordina-
tion Service will recover its processing state (progress) from the last successful
processing state and reassign the tasks to other nodes in the network. When a
new OC instance joins, it will notify the Coordination Service of its availability
to receive tasks. To start processing assigned tasks, each OC has to synchronize
its processing state with the processing state of the Coordination Service. To
avoid a single point of failure problem through a failure of the Coordination
Service, its processing state is replicated among a set of machines.

Distributing computing over multiple computers supports scalability but also
incurs performance costs because bandwidth and latency of the network are sev-
eral orders of magnitude worse than those of RAM (scalability outweighs the
costs as demonstrated by Grids as the predecessor to Clouds). Therefore, to
avoid the huge communication overheads of processing raw, “very wordy” RDF
streams, we use the dictionary encoding approach of CQELS [19] for compres-
sion, i.e., the processing state – input triples, mappings, etc. – is represented
as integers. Another way of reducing the communication cost is grouping the
operators processing the same inputs into one machine. For example, instead of
sending an input triple to multiple machines to apply different triple matching
patterns, these triple matching patterns can be grouped to a single machine to
avoid sending multiple copies of an input triple (see Section 3.1). Furthermore,
the data exchanged among machines is combined into larger units to reduce
the additional overhead of packaging and transferring single data items (this is
standard “good networking” practise applied in any networking protocol, see
Section 4). On the other hand, network latency is much lower than disk latency.
Therefore, the performance cost of storing and retrieving data on/from other
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nodes in a network is comparable to the cost of local disk access. Thus, data
that cannot be stored entirely in memory is distributed to multiple partitions
on the disks of multiple computers “in parallel.” For instance, the intermediate
results from a sub-query to a static data set might have millions of mappings [19]
which can be split and indexed (for future search and retrieval operations) on
multiple nodes. As a result, the access bandwidth to persistent data can be
increased if the number of processing node increases. Interestingly, on typical
server hardware, the sequential access to a disk is comparably faster than com-
pletely random access to RAM [17]. Storing data to be fetched in sequential
blocks and providing distributed indexes to such blocks will overcome the I/O
bottleneck of accessing a single disk on a single computer. The availability of
data to be searched and fetched can also be increased by increasing the data
replicating ratio.

While these strategies may seem overly complicated and heavy, they ensure
optimal resource usage, fault tolerance, elasticity, and scalability in line with the
accepted state of the art in distributed computing and cloud systems and thus
are necessary to achieve our performance and scalability goals.

3 Parallelizing Algorithms for Incremental Evaluation
of Continuous Query Operators

The continuous query operators of CQELS-QL, e.g., join, filter, and aggre-
gate [19], are defined as operators on bags of mappings. Each of these operators
consumes a set of bags of mappings and returns a bag of mappings which then
can be used as intermediate mappings to be consumed in another operator of
an execution pipeline, called upper operator. In each pipeline, the inputs at the
input side are bags of mappings stored in the window buffers of the concerned
sliding window operators and the operators return a bag of mappings on the out-
put side. The execution pipelines are continually applied to the input streams.
The parallelizing approaches for this continuous evaluation are presented and
discussed in the following sections.

3.1 Parallelizing the Incremental Evaluation of Sliding Window
Operators

To support maximum throughput and efficiency in a Cloud environment, we de-
signed incremental evaluation strategies for sliding window operators [10] which
minimize computational efforts by avoiding re-computations and which can dis-
tribute the incremental computing tasks to multiple processing nodes. The in-
cremental computing tasks are triggered by two types of events: the arrival or
the expiration of a stream data item, e.g., a mapping. We use a negative tuple
approach [10,13] to signal expiration events, called negative mappings. To imple-
ment this, a continuous processing task is assigned to an OC as a mapping with
extra information to indicate if it is a negative mapping or a new mapping and
to provide operator signatures. The operator signatures are information about
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which operator instances should process the mapping [2]. These signatures are
used by the Local Scheduler to construct a processing pipeline corresponding to
that task.

Stateless operators, e.g., select, project, filter, and triple matching, do not
have to maintain a processing state for incremental evaluation, i.e., they do not
need to access any previous input. Therefore, parallelizing the incremental eval-
uation of stateless operators is straight-forward, since a new or expired mapping
can be processed directly in parallel to produce the corresponding new or ex-
pired mappings. The time necessary for each execution of this kind is usually
much shorter than the time spent for transferring an input data item. To save
communication cost, we group executions that consume the same input in a sin-
gle machine. Additionally, grouping executions might improve performance for
evaluating concurrent queries. For instance, instead of iterating over all triple
patterns to check if an input triple is matched with the constants of these triple
patterns, the indexes of such constants can be used to efficiently find which triple
patterns have constants being matched with values of the input triple. Group-
ing operators does not limit the possible degree of parallelization because the
processing load is split and distributed per stream data item.

For stateful operators such as join and aggregation, the previous input data
have to be consulted to compute the updates necessary when a new or a negative
mapping is received. To parallelize the incremental evaluation of these operators,
the workers involved in the processing have to be coordinated to share a con-
sistent processing state. How this can be done will be discussed in the next
sections. Due to space limitations, we discuss only two operators in the the fol-
lowing which benefit the most from parallelizing their executions: multiway join
and aggregation. Their parallel, incremental algorithms are presented below.

3.2 Parallel Multiway Join

Based on an extensive analysis of queries and their executions, we have found
that multiway joins are a dominating cost factor in typical queries [18,20]. In-
spired by the MJoin approach [23], we developed a parallel multiway join that
works over more than two input buffers which are used to store data for sliding
windows defined in the continuous execution model introduced in Section 2. As
the multiway join is symmetric, without loss of generality, the evaluation of a
new mapping μ1 being inserted into the input buffer R1 is illustrated in Fig-
ure 2. When a mapping μ1 is inserted into the input buffer R1, it will be used
to probe one of the other input buffers R2 · · ·Rn. Let us assume that R2 is the
next input buffer in the probing sequence. For each mapping μi

2 in R2 that is
compatible with μ1, an intermediate joined mapping in the form μ1 ◦ μi

2 is gen-
erated. Subsequently, μ1 ◦μi

2 is recursively used to probe the other input buffers
to generate the final mappings. When a buffer that does not return any compat-
ible mapping is found, the probing sequence stops. Following the negative tuple
approach [10,13], if a negative mapping arrives, it is used to invalidate expired
outputs. This invalidation operation is done by the next in the query pipeline,
which consumes the multiway join output as its input buffer.
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Fig. 2. Multiway join process

The probing sequence and the invalidation operation are triggered by a new
mapping or negative mapping and can be executed in parallel on multiple ma-
chines given that each machine can access the same set of input buffers. Algo-
rithm 1 shows our incremental evaluation algorithm for the parallel multiway
join with n input buffers. Lines 2–5 handle new mappings and line 7 is for for-
warding a negative mappings to the upper operator. Lines 2 and 3 synchronize
the window W [i] in all machines running this operator. Line 4 checks if the cur-
rent multiway join is supposed to compute the probing sequence triggered from
this new mapping by verifying its operator signatures. Line 5 calls the recur-
sive sub-routine probingPropagate (see Algorithm 2) to initialize the probing
sequence. The next step in the probing sequence is defined in the sub-routine
findNextProbWin in line 2. It chooses the next window buffer W [inext] to be
probed to find a compatible mapping to forward to in the next step (line 3).
The sub-routine findNextProbWin can be used to inject additional adaptive
optimization algorithms for multiway joins [8]. Note that, a multiway join might
use buffers to store intermediate mappings from subqueries on static data. They
are just a special case of buffers used for sliding windows.

Algorithm 1. Parallel Multi-Way Join

Input: n input buffers W1,..,Wn

1 if a new mapping μ arrives at window W[i] then
2 remove expired tuples from all windows
3 W[i].insert(μ)
4 if μ is assigned for this multiway join instance then
5 probingPropagate(μ,{W[1],..,W[n]}\{W[i]})

6 else
7 propagate negative mapping to upper operator



Elastic and Scalable Processing of Linked Stream Data in the Cloud 287

For different window joins which share join predicates over the same RDF
streams, we group them into a shared computing network, i.e., a shared join, to
reduce network communication overhead as well as to avoid wasting resources
due to redundant computation. A shared join has a single execution plan for
multiple queries and produces multiple output streams for each separate query
involved. The shared join operator consists of two components: the join compo-
nent and the routing component.

Algorithm 2. Probing propagation probingPropagate

Input: μ, k sliding windows {W[i1],..,W[ik ]}
1 if k==0 then
2 inext ← findNextProbWin( μ,{W[i1],..,W[ik ]})
3 for μ∗ ∈ W[inext].probe(μ) do
4 probePropagate(μ ◦ μ∗, {W1,..,Wk}\{W[inext]})

5 else
6 dispatch μ

The join component produces a single intermediate output stream for all
queries, and the routing component routes the valid output items to the cor-
responding output buffer of each continuous query [14]. The join component
dominates the query load because the complexity of an m-way join operation is
much higher than that of a filtering operation of the routing component for n

queries (n is usually smaller than
i=m∏
i=1

Wi where Wi is the size of buffer i of the

m-way join).
To share the computations and the memory when processing multiple joins

that have the same set of input buffers, the multiway join algorithm can be used
to build a shared join operator, i.e, the multiple join operator. Let us assume m
multiple window joins W 1

j · · · �� Wm
j where j=1...k and W i

j is a window buffer

extracted from the RDF stream Si, i = 1...n. Let W i
max be the window buffer

that has a window size equal to the maximum window size over all W i
j , j = 1...k.

Then, the following containment property [14] holds:

W 1
j · · · �� Wn

j ⊆W 1
max · · · �� Wn

max

Due to this property, the processing of the query W 1
max · · · �� Wn

max produces
an output that contains the outputs of all queries W 1

j · · · �� Wn
j , j = 1...k.

Therefore, the join component only has to execute a single multiway query for
W 1

max · · · �� Wn
max. In the routing component, each resulting mapping then has

to be routed to the query that takes it as an input. We call the routing component
of the multiple join operator router. The router maintains a sorted list of the
windows relevant to each join. The windows are ordered by window sizes in
increasing order. Each output mapping is checked if its constituent mappings
are valid within valid time intervals of the windows of a query. When a mapping
satisfies the time condition of the query, it is routed to the query’s output buffer.



288 D. Le-Phuoc et al.

Figure 3 illustrates a multiple join operator for 3 queries over 2 streams S1 and
S2 where Q1 = W 1

1 �� W 2
1 , Q2 = W 1

2 �� W 2
2 and Q3 = W 1

3 �� W 2
3 . This multiple

join operator connects the 2-way join operator W 1
max��W

2
max to its router where

W 1
max = W 1

3 and W 2
max = W 2

3 . The left-hand side of the figure shows how
the router delivers the output mappings from the 2-way join to each query. For
instance, when the new mapping 〈a1, b6〉 arrives at the stream S1, the 2-way
join probes the input buffer W 2

max to generate two output mappings 〈a1, b6, c1〉
and 〈a1, b6, c5〉. Based on the window conditions of each query, the router routes
〈a1, b6, c5〉 to Q1 and Q2 and both 〈a1, b6, c1〉 and 〈a1, b6, c5〉 to Q3.

Fig. 3. Shared windows example

Generally, the concurrent queries registered to the system only share subsets of
the streams involved in their queries. Therefore, we create a network of multiple
join operators to enable sharing of the execution of subqueries for a group of
queries. For each group of joins that share the same set of streams a multiple
join operator is created. Figure 4 illustrates a network of 4 queries over 4 streams
S1, S2, S3 and S4, where Q1 = W 1

1 �� W 2
1 �� W 3

1 , Q2 = W 2
2 �� W 3

2 Q3 = W 2
3 ��

W 3
3 �� W 4

3 and Q4 = W 2
4 �� W 3

4 �� W 4
4 . This network is composed of three

multiple join operators ��M1 , ��M2 and ��M3 where ��M1 is for Q1, ��
M
2 is for Q2

and ��M3 for Q3 and Q4. Due to space limits, we refer the reader to [18] for a
detailed technical discussion of this setting.

Fig. 4. A network of multiple join operators
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3.3 Aggregation

An aggregation operator AGGf1(A1),f2(A2),...,fk(Ak) maps each input mapping to
a group G and produces one output mapping for each non-empty group G.
The output has the form <G, V al1, .., V alk>, where G is the group identifier
(grouping key) and V ali is the group’s aggregate value of the function fi(Ai).
The value V ali is updated whenever the set of mappings in G changes in the case
of new and expired mappings. Both new mappings and expired mappings can
result in an update to the value of a group and the aggregate operator needs to
report the new value for that group. The incremental computation of each group
can be done independently, therefore, they can be assigned to different machines
to be computed in parallel. The Global Scheduler can distribute the incremental
aggregation tasks by routing new mappings and expired mappings to processing
nodes based on their grouping keys. A simple routing policy is splitting based on
the hash values of grouping keys. The algorithms for incremental computation of
aggregation over sliding windows in [13,10] can be used to incrementally update
the value of each group.

4 Implementation and Evaluation

We implemented our elastic execution model and the parallel algorithms us-
ing ZooKeeper [16], Storm1 and HBase.2 The architecture of CQELS Cloud is
shown in Figure 5. The Execution Coordinator coordinates the cluster of OCs
using coordination services provided by Storm and HBase which share the same
Zookeeper cluster. The Global Scheduler uses Nimbus,3 an open source EC2/S3-
compatible Infrastructure-as-a-Service implementation, to deploy the operators’
code to OCs and monitor for failures. Each OC node runs a Storm supervi-
sor which listens for continuous processing tasks assigned to its machine via
Nimbus. The processing tasks that need to process the persistent data use the
HBase Client component to access data stored in HBase. The machines running
an OC also host the HDFS DataNodes of the HBase cluster. The DataNodes are
accessed via the OC’s HRegionServer component of HBase.

Machines runningOCs communicatedirectlywithoutusing intermediate queues
via ZeroMQ4 used inside Supervisors. Their available communication bandwidths
are optimized by ZeroMQ’s congestion detection mechanism. Based on ZeroMQ,
OCs use inter-process communication interfaces as defined by Storm’s “spouts”
(stream source) and “bolts”(processing) infrastructure by sending tuples. Links
among spouts and bolts in a Storm topology indicate how tuples should be passed
among them. In CQELS Cloud spouts are used to stream data from sources. Bolts
receive any number of input streams from upstream processes that trigger pro-
cessing pipelines and continually output results as new streams. Processing queries

1 http://storm-project.net/
2 http://hbase.apache.org/
3 http://www.nimbusproject.org/
4 http://www.zeromq.org/

http://storm-project.net/
http://hbase.apache.org/
http://www.nimbusproject.org/
http://www.zeromq.org/
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Fig. 5. CQELS Cloud architecture

works as follows: Using the parallelizing algorithms presented in Section 3 a logical
query plan is transformed to a Storm topology composed of bolts for all query oper-
ators. The stream inputs of the query plan will be mapped to spouts which stream
data to special spouts for encoding rawRDF stream. Inner query operators will be
connected to the encoding spouts following the acyclic query graph of the logical
query plan. Finally, the outermost bolts will be connected to the decoding bolts to
transform the query output back into the decoded version.

Data is routed to a bolt using a routing policy, called stream grouping. In
CQELS Cloud we use three stream grouping policies provided by Storm, namely,
shuffle grouping, all grouping and fields grouping. The shuffle grouping policy is
used to evenly distribute the input to the parallel stateless operator instances.
The all grouping policy is used to synchronize the input buffers of the parallel
multiway join algorithm in Section 3. The fields grouping policy is used to route
mappings that have a certain key to the aggregation operator instance responsi-
ble for computing the aggregated value of the group corresponding to that key
(see Section 3.3).

In CQELS Cloud, input mappings are ordered and put into batches carried
by Storm tuples that are routed among bolts and spouts. For optimization pur-
poses, we encode the data, thus, mappings contain only fixed-size integers. Con-
sequently, batching a series of mappings in an array of integers will reduce the
delay of consuming data from the network as well as the serialization and de-
serialization. On top of that, this enables us to employs fast compression algo-
rithms such as [9,21] for further speed-up. As the input streams coming to the
buffers of an operator instance running in one machine can be unordered, we use
the well-established heart-beat approach [24] for guaranteeing the strict order of
stream inputs to ensure the correct semantics of the continuous operators.

We use HBase to store the dictionary for the encoding and decoding operations.
The dictionary is partitioned by the keys of RDF nodes to store on OC nodes. The
encoding and decoding tasks for RDF nodes for the input and output streams are
evenly distributed among the nodes using the fields grouping policy on hash values
of the RDF nodes. HBase stores the written data in memory using its MemStore
before flushing partitions of the dictionary into sequential disk blocks on the disks
of the destined OC nodes. This allows the writing operations of the dictionary
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encoding to be carried out in parallel and has high throughput onOCnodes. Along
with the dictionary, HBase is also used to store and index intermediate results
from subqueries (which can be huge) on static RDF datasets [19]. This data is
stored and indexed by the keys used for the lookup operation which facilitates
high throughput of the probing and fetching operations for the parallel processes
of the multiway join algorithm.

All state is kept in the Zookeeper cluster which enables high access availability
through its built-in replication service. Its reliability, performance and availabil-
ity can be tuned by increasing the number of machines for the cluster. However,
Storm does not directly support state recovery, i.e., resuming a computation
state of a node when it crashes. Therefore, we implemented the state recovery
for OCs ourselves via timestamped checkpoints which is aided by Storm’s con-
cept of guaranteed message processing. Storm guarantees that every input sent
will be processed by its acknowledgment mechanism. This mechanism allows
a downstream processing node to notify its upstream processing node “up to
which time point” it has processed downstream inputs successfully. The check-
point timestamps are encoded in the acknowledgement messages of Storm. This
provides an implicit recovery checkpoint when a new node taking over should
restart the computation by reconstructing the processing state up to the last
“successful” state.

It is important to note that while we use a sophisticated combination of top-
class distributed infrastructures, this is “just” the programmatical foundation
we base on, in order not to have to deal with classical distributed computing
problems ourselves. The mere use of this infrastructures would neither provide
elasticity nor scalability of stream processing. Our main contribution lies in the
parallel algorithms, operator implementation, and data structures used for this
and the highly optimized implementation of these concepts. For example, our
operator implementations do not map 1-to-1 to Storm’s bolts and spouts, but
those are used as a communication components that trigger an execution pipeline
from inputs tagged with data workflows.

4.1 Evaluation Setup

To demonstrate the efficiency, performance, scalability and elasticity of our ap-
proaches, we evaluated CQELS Cloud using a real deployment on the Amazon
EC2 cloud. Our current version of CQELS Cloud uses Zookeeper 3.4.5-cdh4.2,
Storm 0.8.2 and HBase 0.94.2. The configuration of the Amazon instances we
use for all experiments is “medium” EC2 instances, i.e., 3.5 GB RAM, 1 virtual
core with 2 EC2 Compute Units, 410 GB instance storage, 64 Bit platform, mod-
erate I/O performance. A cluster includes 1 Nimbus node, 2 Zookeeper nodes, 1
HBase Master node and 2-32 OC nodes within the same administrative domain.
In each experiment, we registered a set of queries or operators and then stream
a defined number of stream items to measure the average processing throughput
(triples/second or mappings/second).5 This process is repeated for 2, 4, 8, 16 and

5 In the following we mean average processing throughput when talking about
processing throughput.
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32 OC nodes. To test the elasticity, OC nodes are added and removed during the
experiments without stopping the CQELS Cloud engine. Our baseline is given
by processing the same queries on a single node, i.e., we show how the global
scalability can be improved by adding more nodes. This shows the benefits of
our central contribution which is the data- and operator-aware load distribution
algorithm for stream queries. Our evaluation focuses on showing how multi-joins
scale – as in Linked Data star-shaped n-way joins are the dominating operation
– when increasing the number of processing nodes, rather than comparing the
performance of different join operators. We conducted sets of experiments:6

Operator scalability: We evaluate the scalability and overheads of our algorithms
proposed in a controlled setting by increasing the number of machines running
OCs. For each operator, we fix some parameters to have that kind of process-
ing loads which shows a clear impact of the parallelization. The used data is
generated randomly.

Parallel queries: We evaluate the performance and scalability of CQELS Cloud
when processing multiple concurrent queries over the Social network scenario of
LSBench [20]. LSBench is a benchmarking system for Linked Stream Processing
engines which provides a data generator to simulate Social Network streams.
We choose LSBench over SRBench [25], because LSBench enables us to con-
trol the experimental settings to demonstrate the scalability properties of our
system. Furthermore, with LSBench, we can choose four queries with different
complexities for our experiments: Q1 (simple matching pattern), Q4 (3-way join
on streams only), Q5 (3-way join on stream and static data) and Q10 (3-way join
and aggregation). We randomly vary the constant of Q1 to generate 100-100,000
queries and the window sizes of Q4, Q5, Q10 to generate 10-10,000 queries for
each. We use LSBench to generate a dataset for 100k users. The dataset presents
a social network profile of 121 million triples and 10 billion triples from 5 streams.
This dataset can generate tens of millions of intermediate mappings, e.g., more
than 33 million for Q5.

The validity of the throughput measurement for a stream processing engine
is defined by the correctness and completeness of its output results [20]. For
instance, the mismatches of the outputs generated from different implementa-
tions of time-based sliding windows may lead to incorrect interpretations when
comparing throughput among them [7]. In our experiments, as we only measure
the throughput of one implementation with different configurations, we verify
the validity by two types of tests on only count-based windows for any query:
unit tests for operator implementations and mismatch tests for output results of
queries defined in LSBench [20].

4.2 Evaluation Results

Figure 6a shows the results of 5 experiments: The first two experiments are for
the triple matching operator with 10,000 and 100,000 concurrent triple patterns.

6 A detailed guide for how to reproduce our experiments on Amazon EC2 can be found
at https://code.google.com/p/cqels/wiki/CQELSCloud

https://code.google.com/p/cqels/wiki/CQELSCloud
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The next two are for the 5-way join and aggregation. The 5-way join has 5 count-
based windows of 100,000 mappings and the selectivity of the join predicates
is 1%. The aggregation is connected to a window of 1 million mappings. The
last one is for a binary join between a window buffer and a bag of 10 million
mappings stored in HBase. Note that, the 5-way join and the binary join are
two distinct examples to show how the multi-join scales when increasing the
number of processing nodes rather than comparing the performance of different
join operators.
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(b) Peak network traffic

Fig. 6. Operator behaviors

From the graphs we can see that the throughputs increase linearly with the
increasing numbers of OC nodes (logscale on y-axis). This means that the per-
formance increases nearly linearly with the number of processing nodes which is
close to the optimal theoretical limit. In terms of throughput, the light-weight
operators like triple matching (for 10k triple patterns) and aggregation achieve
more than 100k inputs/second with 8 nodes. The ones with heavier query load
like triple pattern matching for 100k patterns or the binary join deliver even bet-
ter scale factors. To confirm that network congestion did not effect the scalability
significantly, we show the accumulated network bandwidth of the experiments in
Figure 6b. The maximum bandwidth used is less than 500MB/sec for all experi-
ments. This means that we use only a maximum of 4GBit/sec of the 10GBit/sec
network offered by the Amazon EC2 cluster and thus the effects incurred by
network communication are negligible.

Figure 7 shows more results for four types of queries. Each graph shows the
throughputs of an experiment for a certain number of concurrent queries. Simi-
larly to the previous experiments, the throughput of CQELS Cloud increases lin-
early for a constant query load when we increase the number of OC nodes. When
we increase the query load, e.g., by a factor 10, the throughput only decreases
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(b) Q4 : 3-way join on streams
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(c) Q5: 3-way join on streams and static
data
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(d) Q10: Join and Aggregation

Fig. 7. Multiple queries on Social Network streams

approximately by a factor of 2. Considering the best throughputs of standalone
systems reported in [20] with the same settings for query Q4 and Q10 as base-
lines, approximately 1000 triples/second for 10 queries and 100 triples/second
for 100 queries, the CQELS Cloud can achieve more than 24 times and 210 times
of these baseline throughputs for 10 and 100 queries respectively. Furthermore,
the more concurrent queries the system handles, the better is the scalability in
relation to the baselines. This may be explained by the increasing reuse of inter-
mediate results by multiple queries. This demonstrates excellent scalability and
shows the advantages of our data- and query-aware load distribution strategy.

5 Related Work

To the best of our knowledge, CQELS Cloud is the first system addressing elastic
and scalable processing for Linked Stream Data but our approaches touch on a
number of areas.

Linked Stream Data processing : CQELS Cloud has a data model and query
semantics similar to Streaming SPARQL [4], C-SPARQL [3], CQELS [19], etc.
However, all these are designed to run on a single machine, while CQELS Cloud
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goes beyond that and specifically focuses on scalability issues – discussed in
detail in [20] – by distributing the computing and defining an architecture and
algorithms suitable for Cloud deployments. There is also preliminary work for
distributed stream reasoning on S4 [15] which provides some scalability results
for certain queries and reasoning but is not a complete system like ours.

Distributed stream processing engines : Classical distributed stream processing
engines such as Borealis [6] and StreamCloud [12] are the distributed versions
of the stand-alone engines and only support the relational data model or very
generic stream data primitives and operators. They can be used as black-boxes to
delegate Linked Data Stream processing tasks, but, as shown in [19,20], the over-
head of data transformation and query rewriting seriously impact on scalability,
rendering them no competitive option. However, approaches and techniques from
distributed stream processing such as load balancing, operator placement and
optimizations [11] can be used to improve the performance of CQELS Cloud.

Generic parallel stream computing platforms: Storm and S4 are the most popu-
lar elastic stream computing platforms and provide very generic primitives and
data types for representing stream elements. None supports declarative query
languages nor the Linked Data model. On top of that, neither Storm nor S4
support correlating data from distributed storages as CQELS Cloud does with
HBase. There are also other systems such as Kafka7 and Scribe8 that target
specific, narrow application domains (and do so efficiently). For instance, Kafka
and Scribe are used to programmatically create reliable and scalable processing
pipelines for stream logs in LinkedIn and Facebook, respectively. We consider
these works as complimentary work that we can draw on to potentially improve
our implementation.

6 Conclusions

Our goal was to devise scalable algorithms and an infrastructure for Linked
Stream processing that scales to realistic scenarios with high stream frequen-
cies, large numbers of concurrent queries and large dynamic and static data
sizes along with the possibility to deploy them in a hosted Cloud environment
to achieve elasticity in the load profiles and enable “pay-as-you-go” scenarios.
The experimental evaluations show that we have achieved this aim to a large
degree: Our algorithms and implementation exhibit excellent scalability in the
Cloud, essentially supporting arbitrary loads only limited by the number of nodes
and the hardware and software characteristics of the used Cloud platform. We
achieved this through a completely distributed design with novel parallel al-
gorithms for Linked Stream processing, along with a number of optimization
techniques adapted for our purpose and a well-justified combination of sophis-
ticated distributed computing infrastructures. CQELS Cloud provides the same

7 http://kafka.apache.org/
8 https://github.com/facebook/scribe

http://kafka.apache.org/
https://github.com/facebook/scribe
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or even better scalability as the established stream processing approaches outside
the Linked Data world and will help to make the Linked Data paradigm an
increasingly serious competitor in this area.
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J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler,
J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS,
vol. 7650, pp. 300–312. Springer, Heidelberg (2012)

21. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. CoRR, abs/1209.2137 (2012)

22. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.H.: Big data: The next frontier for innovation, competition, and productivity.
Technical report, McKinsey Global Institute (June 2011)

23. Naughton, V.J.F., Burger, J.: Maximizing the output rate of multi-way join queries
over streaming information sources. In: VLDB. VLDB Endowment (2003)

24. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In:
ACM SIGMOD-SIGACT-SIGART. ACM, New York (2004)

25. Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: A Streaming
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Abstract. Automation of service composition is one of the most interesting chal-
lenges facing the Semantic Web and the Web of services today. Despite ap-
proaches which are able to infer a partial order of services, its data flow remains
implicit and difficult to be automatically generated. Enhanced with formal rep-
resentations, the semantic links between output and input parameters of services
can be then exploited to infer their data flow. This work addresses the problem of
effectively inferring data flow between services based on their representations. To
this end, we introduce the non standard Description Logic reasoning join, aiming
to provide a “constructive evidence” of why services can be connected and how
non trivial links (many to many parameters) can be inferred in data flow. The
preliminary evaluation provides evidence in favor of our approach regarding the
completeness of data flow.

Keywords: Semantic Web, Web Service, Service Composition, Data Flow,
Automated Reasoning, Non Standard Reasoning.

1 Introduction

The Semantic Web [1] is considered to be the future of the current Web. In the Seman-
tic Web, Web services [2] are enhanced using rich description languages e.g., OWL
the Web Ontology Language [3]. The underlying descriptions, expressed by means of
Description Logic (DL) concepts [4] in domain ontologies, are used to describe the
semantics of services e.g., their functional inputs, outputs parameters. Intelligent soft-
ware agents can, then, use these descriptions to reason about Web services and automate
their use to accomplish goals specified by the end-user including intelligent tasks e.g.,
discovery, selection, composition and execution.

We focus on composition and more specially on its data flow i.e., links (or con-
nections) which explain how data is exchanged among services (Right Panel in Fig.1).
While most approaches [5, 6] derive control flow of compositions (i.e., a partial order
on services - Left Panel in Fig.1) according to a goal to achieve, its data flow remains
implicit [7] through opaque and pre-defined assignments from incoming to outgoing
services. Usually it is up to developers to provide their details e.g., through BPEL
(Business Process Execution Language) assign types or filtering/merging operators.

� The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement ID 318201 (SIMPLI-CITY).

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 298–313, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Existing approaches mainly focus in ordering services in a control flow rather than gen-
erating its data flow in an automated way. The latter limits flexibility of service oriented
computing [8]. Therefore the following are example of open questions in the Web of
service community: how to dynamically re-generate data flow specification of “built-in”
compositions in case of late change of services? Which data is required from which ser-
vices to turn a composition in its executable state? Does it require data transformation
from one description to another? This work investigates the benefits of having semantic
descriptions of services a la SA-WSDL [9], OWL-S [10] or WSMO [11] to derive a
data flow description of any control flow-based service composition in an automated
way.

Towards these issues, some methods [12] exploit expressive DLs to link services
through their descriptions, impacting the tractability of the approach. Other approaches
[13] limit the expressivity of description through syntactic representation, making data
flow very difficult to be automatically derived. In both contexts, complex data links
(e.g., filtering, merging) between services cannot be generated in an automated way,
providing either abstract or incomplete composition specification. Despite some efforts
for pre-defining [14] and inferring [15, 16] compatibilities between services parame-
ters, it remains difficult to derive how data is actually “flowing” from one description
to another. In addition, data flow is mainly studied between single outputs and inputs
(aka. trivial links). Such links are not appropriate for modeling data flow of complex
compositions, limiting their application in real world scenarios. This work tackles this
problem.

s: Service Non Trivial
Control FLow Trivial Links

Input Parameter
Links

Output Parameter

s2s2

s6

s5s4

s1

s3

s6

s5s4

s1

s3

Fig. 1. Control Flow (Left) vs. Data Flow (Right) Views

Suppose some Semantic Web services1 being organized in a partial order (based on
their overall goals): how to effectively infer their non trivial data flow (e.g., filtering,
merging). First of all we define non standard DL reasoning join to provide a “con-
structive evidence” of why services can be connected and how non trivial links can be
inferred in data flow. The concept join is required to exhibit descriptions J from output
parameters Out (of services) which properly ensure Out to be compatible with any
input parameter In (of services). In other words the description J is constructed for
“glue”-ing outputs and inputs parameters of services, and more importantly used for

1 Polymorphic services (i.e., exposing several functions depending on inputs combinations) are
not investigated here, but can be addressed though conditional compositions [6].
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understanding how data is flowing among services in a composition. Then we describe
how non trivial data flow can be generated, checked and repaired using concept join in
order to ensure flexible data flow construction. Service descriptions are formalized in
EL++, where subsumption and satisfiability are decidable [17]. For the sake of clarity,
we assume compositions without open preconditions. Our work assumes that relevant
services are already identified and discovered [18]. Control [7] and data flow [19] based
composition techniques, combined with the method introduced in the paper, are then
applied to derive ready-to-be-executed compositions.

The remainder of this paper is organized as follows. First of all we summarize data
flow-oriented composition, its semantic links and limits. Then we present the DL rea-
soning join to provide a “constructive evidence” of why services can be connected. The
next sections (i) describe how join can be adapted to simulate and construct complex
data flow, and (ii) report some experimental results through comparisons with state-of-
the-art approaches. Finally we comment on related work and draw some conclusions.

2 Data Flow-Oriented Service Composition

2.1 Service, Semantic Link and Composition

In the Semantic Web, input and output parameters of services are described accord-
ing to a common ontology or Terminology T (e.g., Fig.2), where the OWL-S profile,
WSMO capability or SA-WSDL can be used as encoding2, also known as fixed data
type or description. Semantic links [19] are defined between output and input parame-
ters of services, based on semantic similarities of their DL encoding. Fig.2 sketches a
description of the axioms that are used in the ontology in which the input and output
parameters are expressed. Similarities are judged using a matching function between
two knowledge representations encoded using the same terminology.

NetwConnection ≡ ∃netSpeed.Speed // Netw: NetworkConnection
Speed ≡ ∃mBytes.NoNilSpeed, HighReliable � Reliable
SlowNetwConnection ≡ NetwConnection � ∃netSpeed.Adsl1M
USProvider ≡ ∃to.US, UKProvider ≡ ∃to.UK, UK � US � ⊥
EUProvider ≡ ∃to.EU, UK � EU, EU � US � ⊥, Business � �
Adsl1M ≡ Speed � ∃mBytes.1M, 1M � NoNilSpeed

Fig. 2. DL EL++ Axioms used for representing Output and Input Parameters

In this context, data flow-oriented service composition consists in retrieving semantic
links sli,j :

sli,j
.
= 〈si, SimT (Out, In), sj〉 (1)

between an output parameter Out of service si and input parameter In of service sj ,
where both Out and In are DL descriptions. Thereby si and sj are partially linked

2 In case of multiple ontologies used for services descriptions, alignment techniques [20] need
to be investigated.
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according to a matching function SimT , specifying its data flow. Given a terminology
T , the range of SimT is determined by five matching types following [21, 22]: i) Exact
i.e., Out ≡ In, ii) PlugIn i.e., Out � In, iii) Subsume i.e., In � Out, iv) Intersection
i.e., ¬(Out  In � ⊥) and v) Disjoint i.e., Out  In � ⊥. The cases i)-iv) iden-
tify compatible descriptions while the case v) identifies incompatible descriptions Out
and In.

2.2 Limitations

As stated in Introduction, models such as (1) are mainly considered for representing
trivial semantic links i.e., (boolean) one-to-one compatibility (though matching types)
between single output and input parameters. Towards this issue, we generalize (1) by
considering In and Out respectively as a conjunction of inputs and outputs of services.
Semantic links between “any” output and input at a time i.e., non trivial data flow, can
be then represented in (1), which is more appropriate for modeling complex data flow.

However such a model is still limited to understand how data is “flowing” from
services to services. Indeed, how data is properly manipulated and adapted between
services to ensure data flow? Which part of services descriptions is the most relevant?
Is it maximal, minimal, effective and how? These are general questions which remain
open in the join domains of Semantic Web and Web of services.

This work suggests concept join as a constructive reasoning to provide a “construc-
tive evidence” of why services can be connected and how complex data flow can be
inferred in services composition.

3 Towards Constructive Evidence of Data Flow

Towards the issue of explaining why services can be connected and how non trivial
links can be inferred in data flow, Section 3.1 introduces the innovative concept join
(Definitions 1, 2 and Propositions 1,2) between data descriptions. Section 3.2 follows
the methodology of [23] and [24] to prove the computational complexity of the join rea-
soning. In particular Proposition 3 is inspired from [23], but highly adapted to concept
join (which constructs different descriptions - see Section 6.2). Section 3.3 combines in
an innovative way state-of-the-art abduction (Definition 3) and contraction (Definition
4) reasoning techniques to extend the applicability of concept join in a (i) context of
service composition, and (ii) when Proposition 1 does not hold (Algorithm 2). Impor-
tantly, Section 3.3 explains how non standard reasoning abduction and contraction can
be used for enriching the number of joins between services in a composition.

3.1 Concept Join: Definitions and Propositions

We are interested in descriptions in Out which ensure Out and In to be compatible.
Therefore we aim at extracting J (Join - Definition 1) from Out such that J � In
remains true in T (Definition 1). The descriptions R (Remainder), part of Out, such
that Out ≡ R  J will need to be removed from Out since they move Out away from
In under subsumption �T . J highlights descriptions which could be properly joined
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with In in order to compose outputs Out and inputs In while R points out descriptions
which are not required by In.

Definition 1 (Concept Join)
Let L be a DL, Out, In be two concepts in L, and T be a set of axioms in L such
that T �|= Out  In � ⊥. A Concept Join Problem, denoted as CJP 〈L, Out, In, T 〉
(shortly Out � In) is finding a pair of concepts 〈R, J〉 ∈ L × L such that i) T |=
Out ≡ R  J and ii) T |= J � In. Then J (or �J ), which is not symmetric, is a join
between Out and In in T .

We useP as a symbol for a CJP 〈L, Out, In, T 〉 and we denote with SOLCJP (P)
the set of all solutions of the form 〈R, J〉 to a CJP P . In case T �|= Out � In, the
CJP P has no solution at all, as stated formally in Proposition 1.

Proposition 1. (No Solution of a CJP )
Let P = 〈L, Out, In, T 〉 be a CJP such that T �|= Out � In. The set SOLCJP (P)
is defined by ∅.

Proof. Since Out can be rewritten as R  J (condition (i) in Definition 1) with R = �
and J = Out without loss of generality, then T �|= Out � In (Proposition 1) becomes
T �|= J � In. The latter contradicts T |= J � In (condition (ii) in Definition 1), so no
possible solution of a CJP P in case T �|= Out � In.

T |= Out � In implies that there is always the trivial solution 〈�, Out〉 to a CJP
〈L, Out, In, T 〉.

Proposition 2. (Trivial Solution of a CJP )
If Out ≡ In in T then 〈�, Out〉 ∈ SOLCJP (〈L, Out, In, T 〉).

This case refers to an exact composition [25] of services si and sj : if we want to
proceed sj , all outputs Out of si are required (since J is defined by Out in Proposition
2) to achieve all input In of sj . Then, no description R has to be removed from Out.
On the other hand, when Out � In (i.e., T |= Out � In and T �|= Out ≡ In),
〈�, Out〉 is also one potential solution of the CJP problem. However, other solutions
with R not being � are possible. Obviously, in order to achieve a composition between
Out and In the first case (in Proposition 2) is in a much better shape than the second
one. Indeed all descriptions In, which are required by sj , are provided by Out. If we
want to use join to highlight the closest descriptions in Out (i.e., the most general) to
In, emphasising the most compatible descriptions in Out for In to compose si and sj ,
“effective” joins under �T need to be defined (Definition 2 adapted from [26]).

Definition 2 (Effective Join Solution)
Let P = 〈L, Out, In, T 〉 be a CJP . The set SOLCJP�(P) is the subset of
SOLCJP (P) whose join concepts J are maximal under �T . The set SOLCJP≤(P)
is the subset of SOLCJP (P) whose join concepts have minimum length.

Formally the set SOLCJP�(P) satisfies both Definition 1 and the following con-
dition: ∀〈R′, J ′〉 ∈ L × L : T |= Out ≡ R′  J ′ ∧ T |= J ′ � In ⇒ J ′ � J .
Maximality under �T is considered as a effectiveness criterion since no unnecessary
joins is assumed between Out and In.
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Example 1 (Effective Join Solution - Fig.3)
Let s1 be an InternetEligibility service which returns as output Out: the Net-
workConnection (e.g., Speed, UK Country) of a desired geographic zone together with
information about its network provider (Reliability, Business type). Lets2be another tele-
com service which requires a Reliable network provider in UK as input In to be executed.
Out and In, as DL representations of functional parameters in Fig.3, ensure Out � In
in T . On the one hand ∃netSpeed.Adsl1M  ∃to.UK � NetwConnection. On
the other handHighReliable � Reliable. In other words some outputs produced by s1
can be consumed by some inputs of s2. The effective join J of Out and In (under�T ) is
∃netSpeed.Adsl1M  ∃to.UK HighReliablewhile the discarded description R is
Business. An instance ofJ is then required to instantiate In (and execute s2):SlowNC
(NC refers to NetwConnection), ∃to.UK , Reliable while an instance of Business
is not. The description J acts as a filter between s1, s2 to restrict Out over the data flow.
In other words J establishes which descriptions are relevant to link Out to In. The two
output instances of s1 are then practically merged into one instance for s2 through the
construction of J .The latter ensures the executability of s2.
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Fig. 3. Effective Join Solution

In [26] it was proven that ≤-minimality is more appropriate for conciseness, but
largely depending on T . Indeed, by simply adding axioms A ≡ R and B ≡ J , we
obtain a ≤-minimal solution 〈A,B〉 for each pair 〈R, J〉 ∈ SOLCJP (P).

3.2 Computational Complexity

Since concept join can be considered as an extension of concept subsumption with
respect to a TBox, its lower bounds carry over to decision problems related to a CJP .

Proposition 3. (Deciding Existence of Join)
Let P = 〈L, Out, In, T 〉 be a CJP . If concept subsumption with respect to a T in L
is a problem C-hard for a complexity class C, then deciding whether a pair of concepts
〈R, J〉 ∈ L × L belongs to SOLCJP (P) is C-hard.

Proof. Since T |= Out � In iff 〈�, Out〉 ∈ SOLCJP (P), such a problem is C-hard.

In our EL++ context, deciding whether a pair of concepts 〈R, J〉 belongs to SOLC-
JP (P) is PTIME-hard [27] with respect to both acyclic and cyclic TBoxes T .

Regarding upper bounds, a simple result can be derived from the fact that 〈�, Out〉
is always a solution of the CJP 〈L, Out, In, T 〉 if Out � In in T (Proposition 2) al-
though not always an effective one for join. Following [23], a total length-lexicographic
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order ≺lex can be defined over concepts as follows: given two concepts Out, In ∈ L,
let Out ≺lex In if either |Out| < |In|, or both |Out| = |In| and Out is lexicographi-
cally before In. Based on this total order, an approach for finding a ≤-minimal solution
of a CJP , using polynomial space relatively to an oracle for subsumption in L, is pre-
sented in Algorithm 1. Algorithm 1 is innovative as it enumerates concept join solutions
over a total length-lexicographic ordered concepts.

Algorithm 1. Effective �J of a CJP

1 Input: A CJP P = 〈L, Out, In, T 〉 with T |= Out � In.
2 Result: A concept x ∈ L such that 〈R, x〉 ∈ L × L is in SOLCJP≤(P).
3 begin
4 x← �; // Initialisation
5 while |x| < |Out| do
6 if T |= Out � x and T |= x � In then
7 return x;

8 x← next concept following x in ≺lex;

9 x← Out; return Out;

Algorithm 1 uses polynomial space (considering one call to subsumption as an ora-
cle) since it just tries all concepts with less symbols than Out, and returns Out if it does
not find a shorter solution. Thus, it provides an upper bound on the complexity of CJP ,
depending on the complexity class to which subsumption in L belongs to. Although this
result does not directly lead to a practical algorithm, it provides an upper bound on the
complexity of the problem, hence on the complexity of every optimal algorithm.

Theorem 1. (Finding a Solution in SOLCJP≤(P))
Let P = 〈L, Out, In, T 〉 be a CJP . If concept subsumption with respect to a T in
L belongs to a complexity class C that is included in PSPACE then finding a pair of
concept in SOLCJP≤(P) is a problem in PSPACE. Otherwise if PSPACE is included
in C, then finding a pair of concept in SOLCJP≤(P) is a problem in C.

According to Theorem 1, inspired from [26], finding a pair of concept for the prob-
lem SOLCJP�(P ) in EL++ is in PSPACE. Theorem 1 simply builds on top of the
subsumption properties.

3.3 Incompatible Descriptions in Concept Join

As highlighted by Proposition 1, Definition 1 has no solution if T �|= Out � In.
This limits the applicability of concept join by restricting services to exchange data
(from Out to In) only under Out � In in T . Even if this is a basic requirement to
compose and join services, other potential compositions, which do not satisfy Out �
In [25], would be ignored since their join cannot be derived. Towards this issue, we
exploit constructive DL reasoning abduction [28] (Definition 3) and contraction [24]
(Definition 4) to respectively consider join if i) In does not subsume Out but have a
consistent conjunction i.e., T �|= OutIn � ⊥ and ii) their conjunction is inconsistent
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i.e., T |= OutIn � ⊥. While concept abduction derives description which is missing
inOut to be subsumed by In, concept contraction [24] retracts specificationG (for Give
up) in Out to obtain a concept K (for Keep) such that K  In is satisfiable in T . The
latter extends abduction to unsatisfiable conjunction of Out and In.

Definition 3 (Concept Abduction)
Let L be a DL, Out, In be two concepts in L, and T be a set of axioms in L such that
T �|= Out  In � ⊥. A Concept Abduction Problem: In\Out is finding a concept
H ∈ L such that T �|= Out H ≡ ⊥, and T |= Out H � In.

Similarly to concept join, abduction extends subsumption. It also constructs a con-
cept H to ensure Out  H be subsumed by In. By computing description H using
abduction, join can be derived between Out  H (instead of Out) and In. Abduc-
tion is then required to enlarge the scope of Definition 1 i.e., from Out � In to
¬(Out  In � ⊥) in T .

Contraction, which extends satisfiability, aims to retract specification G (for Give
up) in Out to obtain a concept K (for Keep) such that K  In is satisfiable in T .

Definition 4 (Concept Contraction)
Let L be a DL, Out, In be two concepts in L, and T be a set of axioms in L where both
Out and In are satisfiable in T . A Concept Contraction Problem, denoted as In	Out
is finding a pair of concepts 〈G,K〉 ∈ L × L such that T |= Out ≡ G  K and
T �|= K  In � ⊥. Then K (or 	K) is a contraction of Out according to In and T .

By computing (1) contraction 	K : a part of Out which ensures 	K  In to be satis-
fiable in T (i.e., validating conditions of Definition 3), and then (2) abduction In\	K
which ensures 	K(In\	K) � In, join can be derived between 	K(In\	K) and In.
Thus contraction can be applied to enlarge the scope of Definition 1: from Out � In
to Out  In � ⊥ in T .

Algorithm 2 sketches the approach to enlarge the scope of Definition 1. It ensures
that Out and In can be joined by iteratively weakening and strengtheningOut through
contraction and abduction. Besides the case already supported by Propositions 1 and 2
and its extension to Out � In (line 6), abduction (lines 10, 14) is applied if Out  In
is consistent (line 9) in T . Alternatively contraction (line 13) is required beforehand
(line 12). The most specific contraction is considered to obtain a description as close as
possible to Out. Thus, the join is derived between (1) Out and In in the trivial case
Out � In (line 6), (2) Out (In\Out) and In if T �|= Out In � ⊥ (line 9) and (3)
(In	KOut)  (In\(In	KOut)) and In if T |= Out  In � ⊥ (line 12).

The complexity of Algorithm 2 is in PSPACE in EL++. Indeed lines 6, 9, 12 are
in PTIME [17], line 13 is in PTIME (Theorem 4 in [24]), lines 10, 14 are in PSPACE
(Theorem 1 in [28]), line 15 is in PSPACE (Theorem 1).

4 Composing Services with Concept Join

We present how concept join can be used to compose properly services through complex
data flow modelling.
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4.1 Join-ing Data and Descriptions of Services

Compositions of any outputsOut with inputs In can be derived using Algorithm 2. The
data flow is established by joining their descriptions. In case their join cannot be derived
(lines 9 and 12), we apply contraction and abduction to identify data descriptions which
need to be removed/added from/to outputs Out of services with respect to inputs In.

Algorithm 2. Computing Join (Case T �|= Out � In)

1 Input: A CJP P = 〈L, Out, In, T 〉.
2 Result: A pair 〈R,J〉 ∈ L × L which is in SOLCJP�(P).
3 begin
4 H ← �; //Initialisation
5 // Trivial Case of Subsumption between Out and In.
6 if T |= Out � In then
7 ; // Propositions 1, 2 and its Extension to Out � In.

8 // Extension to Consistent Conjunction | T |= Out � In.
9 else if T |= Out � In � ⊥ then

10 H ← In\Out; // Abduction

11 // Extension to Inconsistent Conjunction of Out and In.
12 else if T |= Out � In � ⊥ then
13 Out← (In	KOut); // Contraction
14 H ← In\Out; // Abduction

15 〈R, J〉 ← SOLCJP�〈L, Out �H, In, T 〉; // Min. Join
16 return 〈R, J〉;

In some cases, Semantic Web services consumed and produced data that does not
fit its static semantic description, making semantics of data not as precise as it should
be. In this context, we proceed as following: (1) detecting the most accurate semantic
description of concrete data values following [20]), (2) expanding the domain ontology
with this new description, mainly for reasoning purpose, and (3) applying Algorithm 2
at run time to obtain joins. The steps (1) and (2) ensures that the reasoning at description
level (through Algorithm 2) is also valid at a lower (i.e., data) level. This case of non-
alignment between data and their description justifies and reinforces the use of non
standard reasoning to capture composition. Indeed, more inconsistent joins could occur,
limiting the applicability of pure equivalence-based approaches [16].

4.2 Simulating Complex Data Flow Operators

Definition 1, as a way to identify (semantic) link-“able” descriptions in composition,
can be used to simulate/infer complex data flow operators e.g., “Data Filter”, “Merge”.
Their benefit is twofold: modeling and explaining how services and their data can be
properly manipulated and adapted in data flow-oriented composition. Contrary to [25,
16, 6], among others, automated generation, verification and repair of complex data
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flow in composition can be enabled once integrated in a composition engine [29]. In the
following the symbol � will denote the problem in Definition 1 where both (i) effective
join solutions (Definition 2) and (ii) maximality under �T are considered.
• Data Filter: [14] commonly used the data filter operator in data flow-oriented

service composition to i) extract some descriptions Y and ii) block the rest In from
an incoming description X with respect to a filter (description) Z (see illustration in
Fig.4). This operator is simulated by X � Z and its solution 〈In, Y 〉. X � Z since Z
is used as a filter for X . The effectiveness condition (Definition 2) is crucial to avoid
any undesired data in Y e.g., In. The more specific the filter Z (i.e., the closer to X),
the less descriptions blocked by Z (the least is �).

Example 2 (Data Filter - Fig.4 a))
Let Y be defined by ∃to.UK and D be defined by Business. The descriptions Y and
D are respectively extracted and blocked from description X i.e., ∃to.UK Business
using the filter Z , defined by ∃to.EU . Each data instance from X is split along Y and
D. Only instance of X is connected to Y .

• Data Merge: In [7] it is used to aggregate descriptions X1 and X2 into a descrip-
tion Y with respect to a filter Z (see illustration in Fig.4). If X1 and X2 are compatible,
this operator can be simulated by (X1X2) � Z and its solution 〈In, Y 〉. X1X2 � Z
since Z is used as a filter for X1 and X2. In refers to descriptions which are blocked
from X1 and X2 with respect to Z . In case X1X2 ≡ Z , all descriptions from X1X2

are merged, ensuring In to be � i.e., none of descriptions in X1 X2 is blocked from
Y . A generalization to n descriptions to merge is straightforward.

∃to.UK
 Reliable

∃netSpeed.Adsl1M
Y :

 ∃to.UK
X2:

D: Reliable

b) Data Mergea) Data Filter

X: ∃to.UK
Y :

D: Business

∃to.UK
 Business

Filter Z: ∃to.EU

∃netSpeed.Adsl1MX1:

Filter Z: ∃netSpeed.Speed  ∃to.UK

Fig. 4. Simulation of Data Filter and Merge with Join

Example 3 (Data Merge - Fig.4 b))
∃netSpeed.Adsl1M  ∃to.UK is the merging description of X1, X2 in Fig.4 b) us-
ing the filter ∃netSpeed.Speed  ∃to.UK while Reliable is the description which is
blocked.

Based on a straightforward extension of Algorithm 2 with effective concept join,
most common complex data flow operators e.g., Data Merge, Filter can be derived
in any data flow, modeling and explaining how services and their data are adapted.
Algorithm 2 can be also used to validate pre-defined links or complete existing ones.
More generally effective concept join can be used in any data-based application e.g., as
a way to retrieve instances of Z from a large set of data Y given some constraints X
i.e., Y � Z .
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5 Experimental Results

In more details we analyze our approach (Algorithm 2 and its extension for data flow
simulation) by comparing its performance against existing approaches [5–7] along two
dimensions: (i) CPU time (in ms) to generate composition and (ii) completeness of
data flow. The second dimension is evaluated by computing the rate: data descriptions
connections retrieved against those expected in the optimal composition. This compo-
sition, which is manually constructed based on services descriptions and their goal, has
no open links (i.e., links reaching to a non executable process) and no redundant links.
The experiments have been conducted on Intel(R) Core (TM)2 CPU, 2.4GHz, 2GB
RAM.
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Fig. 5. Computation Time of Composition Approaches

• Context: Compositions with up to 50 services have been extracted from [30] and
enriched using a commercial EL++ ontology (1100 concepts, 390 properties: 384 con-
cepts subsume the 716 remaining ones with a maximal depth of 8). The semantic anno-
tations are important for deriving data flow in our approach. SOUR3 is used for services
annotations. The annotation process is costly e.g., 8 person/hours for 50 services (with
an average of 5 inputs/outputs) with the latter ontology, but has a positive impact on
automation of compositions. For scalability purpose we guided the semantic link de-
tection since each composition is bound by n × 2n potential semantic links, with n be
the number of services. In more details we limited the number of Out (input of Al-
gorithm 2) to be computed beforehand e.g., by ranking Out with respect to In (e.g.,
size of their contraction/abduction) and considering only Out which ensures to obtain
the top k contraction/abduction. The semantic link detection was required only by our
approach, mainly to (i) identify potential data flow in composition and (ii) avoid the
computation of an exponential number of join, which strongly reduce the overall com-
putation time. The data flow requirements are formalized for [7] while only composition
goals are defined for [5, 6].

3 http://www.soa4all.eu/tools.html

http://www.soa4all.eu/tools.html
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• Results - Computation Time: Fig.5 illustrates the computation costs for con-
structing compositions with up to 50 services. Our approach is the most time consum-
ing although (i) a control flow-based compositions is pre-defined and (ii) conjunctions
of outputs are considered satisfiable. Other approaches, generating control flow-based
compositions, are faster. The best approach [5] generates compositions of 50 services
in 7.2 seconds.
• Results - Data Flow Completeness: Fig.6 sketches the comparison of our ap-

proach vs. existing approaches. The same number of compositions has been retrieved
in all cases. The only difference is related to its data flow description. On average our
approach automatically derives 83% of the final data flow structure (i.e., data filter,
merge operators) of a data flow-free composition. The 17% remaining connections, are
cyclic-based data flow operators e.g., loop, which is not supported by our current im-
plementation. On average no more than 55% of connections are retrieved with the state-
of-the-art approach [7]. The approach of [5] generates an average of 9% of connections.
As reported by their authors, this is more appropriate for independent services.
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Fig. 6. Data Flow Completeness

• Lessons Learned: Even if state-of-the art approaches are appropriate for fast elab-
oration of control-flow-based composition, they are not necessarily adequate for (i)
detecting connections between services and (ii) connecting their descriptions. The au-
tomated construction of complex data flow in EL++ DL has a negative impact on the
computation costs but ensures a finer description of compositions, which are ready for
execution. The size and the structure of the ontology have a limited impact. The main
factors for the increase of computation cost are (i) the expressivity of the DL and (ii)
the number of DL conjuncts (and their complexity) used to describe services. The re-
duction of its expressivity has a positive impact on scalability, but it also decreases the
completeness and quality of data flow. The scalability can be improved by consider-
ing only subsumption-based comparisons of descriptions (line 6), removing computa-
tion of abduction and contraction. In such a case the rate of data flow completeness is
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also decreasing. By removing the abduction and contraction parts of Algorithm 2 (from
line 9 to 14), our approach is more scalable than state-of-the-art approaches, but only
55% of data flow description is retrieved. According to our experiments a best trade-
off is proposed in [7], while [5, 6] fits perfectly independent services with a better
scalability for [5].
• Limitations: The computed potential connections are all used for defining the data

flow of the composition. However if multiple services provide similar output (respec-
tively input) descriptions, they are all equally considered. All their output (respectively
input) descriptions are aggregated and subject to a join with other services. This case
falls in a special case of “Data Merge” (Fig.4 b where X1 ≡ X2, with X1 and X2 out-
puts of two distinct services). Additional manual efforts are required if such cases need
to be avoided, which were not foreseen in our applications.

6 Related Work

6.1 Data Flow-Based Semantic Service Composition

Fig.7 positions existing approaches in relation to 3 dimensions: control flow, data flow,
description expressivity. These dimensions aree used to structure the remainder of this
section.

Mash-up-based approaches [31, 13] and semantics-based methods [7, 32, 14], posi-
tioned in Front Cluster of Fig.7, achieve composition by linking services according to
different expressivity of static control flow and pre-defined data flow operators (with
explicit requirements). They are all limited by the expressivity of service descriptions.
Indeed the latter are constrained by RDF/S while the former support only basic XML-
based transformation. By embedding compositions with advanced control flow [7], the
data flow construction is reduced. [14] provide a more complete (pre-designed) panel of
data flow operators, such as Construct and Mix, which can be simulated by Definition
1, but support only RDF/S, focusing at instance level. Their applicability to expressive
semantics and the automated construction of data flow is then limited.

AI planning- [6, 33] and DL-based approaches [15, 12], positioned in Back Clus-
ter of Fig.7) elaborate composition of services by reasoning on their descriptions. De-
spite higher expressivity, only sequence-based data flow is inferred. The approaches
of [15, 25, 32] are even more restrictive as they consider (specialized) semantic links
between one output and input. More elaborated operators have been presented by [16]
towards this issue. Contrary to our approach, data flow is based on concrete values and
not their semantic descriptions, which is more flexible for handling misalignment data-
description e.g., the instance defined by (∃hasConnection.ADSL512KBS) where
ADSL512KBS is a SlowNetwConnection partially respects the description Slow-
NetwConnection  ∃to.UK . Indeed no instance of a provider is provided. We ad-
dress it by using non standard reasoning. Other approaches simulate sequence [33] and
conditional-based [6], e.g., through forward effects for the latter, limiting the expressiv-
ity of compositions.
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6.2 Existing Constructive DL Reasoning

While abduction [26] derives description which is missing in Out to be subsumed by
In, concept contraction [24] retracts specification G (for Give up) in Out to obtain a
conceptK (for Keep) such thatKIn is satisfiable in T . The latter extends abduction to
unsatisfiable conjunction of Out and In. Approximate subsumption has been presented
by [34]. Such types of reasoning construct concepts which are missing or over-specified
in Out to be respectively (1) subsumed by and (2) consistent with In. Concept join
constructs more general concepts from Out which are subsumed by In. In particular,
its effective solutions (under �T ) refer to the most general description of Out which
is subsumed by In. Abduction and approximate subsumption extend Out while join
extracts a part of Out for the same objective i.e., being subsumed by In. If Out � In,
abduction, contraction and approximate subsumption do not construct any description
while concept join does. It explains the way they are joined.

Subsumption between DLs concepts Out and In can be explained by deriving its
formal proof (i.e., which descriptions in In subsume which descriptions in Out) in
[35]. Concept join does not provide any explanation of subsumption, but instead closer
descriptions J (in Out) of In given Out under �T .

7 Conclusion

In this paper we studied data flow-oriented Web service composition. Our work has
been directed to meet the main challenges facing this problem i.e., how to effectively
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infer data flow between services based on their DL EL++ descriptions? Firstly we in-
troduced the constructive reasoning join in EL++, aiming to provide a “constructive
evidence” of why services can be connected. Then we described how non trivial data
flow can be generated, checked and (potentially) repaired using concept join, all ensur-
ing flexible data flow construction. Thus, implications of control flow modification on
data flow can be investigated. The experimental results provide evidence in favor of our
approach regarding the completeness of data flow.

Future works will focus on modeling data flow operators at instance level [14] i.e.,
how do loops in control flow work together with data flow? We will also investigate
metrics for evaluating data flow precision.
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Carsten Lutz1, İnanç Seylan1, David Toman2, and Frank Wolter3

1 Universität Bremen, Germany
{clu,seylan}@informatik.uni-bremen.de

2 Cheriton School of CS, University of Waterloo, Canada
david@cs.uwaterloo.ca

3 University of Liverpool, United Kingdom
wolter@liverpool.ac.uk

Abstract. The basic idea of the combined approach to query answering
in the presence of ontologies is to materialize the consequences of the
ontology in the data and then use a limited form of query rewriting to
deal with infinite materializations. While this approach is efficient and
scalable for ontologies that are formulated in the basic version of the
description logic DL-Lite, it incurs an exponential blowup during query
rewriting when DL-Lite is extended with the popular role hierarchies. In
this paper, we show how to replace the query rewriting with a filtering
technique. This is natural from an implementation perspective and allows
us to handle role hierarchies without an exponential blowup. We also
carry out an experimental evaluation that demonstrates the scalability
of this approach.

1 Introduction

In recent years, ontology-based data access (OBDA) has emerged as a promising
and challenging application of ontologies. The idea is to enrich data with a
‘semantic layer’ in the form of an ontology, used as an interface for querying
and to derive additional answers. A central research problem in this area is to
design query answering engines that can deal with sufficiently expressive ontology
languages yet scale to very large data sets. The most popular ontology languages
that have been considered for OBDA include the three OWL profiles OWL2 RL,
OWL2 QL, and OWL2 EL, as well as various description logics and Datalog
variants related to these profiles [2,3,5,14,17].

Currently, there are two major methodologies for answering queries in an
OBDA setting: rewriting-based approaches (also called backward chaining) and
materialization-based approaches (also called forward chaining). In the former,
one compiles the ontology T and the query q into a new query qT that contains
the relevant knowledge from the ontology, i.e., the answers to q over A and T
coincide with the answers to qT over A. One can thus store A in a relational
database management system (RDBMS) and execute qT over A. In material-
ization approaches, the data A is completed with the relevant knowledge from
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the ontology T , i.e., for any query q, the answers given to q over A and T coin-
cide with the answers given to q over the completed data AT ⊇ A without any
ontology. Thus, one can store AT in a RDBMS and execute q over AT .

A technical problem that arises in materialization approaches is that the com-
pleted data AT easily becomes infinite; in particular, this may happen when
the ontology expresses cyclic dependencies and has existential quantifiers in the
heads of its concept inclusions, which is allowed in most ontology languages in-
cluding the ones mentioned above. To overcome this problem, an economic way
of reusing individuals introduced for existential quantifiers has been proposed in
[9,11] for the case where ontologies are formulated in description logics from the
EL and DL-Lite families, which are the logical cores of the OWL2 EL and OWL2
QL ontology languages. While the resulting completed data sets are finite, they
can give spurious answers to conjunctive queries (CQs) that involve a cycle. To
recover soundness, it is thus necessary to include an additional step, resulting in
the combined approach to query answering: the original query is rewritten in a
way that eliminates spurious answers. In contrast to pure rewriting, the auxil-
iary query rewriting required in the combined approach turns out to be rather
simple—an additional selection condition applied to the results of the original
CQ over the completed data—and often of polynomial size. Indeed, experiments
indicate that the combined approach admits very efficient query execution for
expressive variants of EL and DL-Lite [9,11].

Unfortunately, there are certain combinations of logical operators that are
important from an application perspective, but for which an exponential blowup
of the query seems to be unavoidable both in the query rewriting approach and
in the combined approach. In particular, this is the case for the combination
of inverse roles and role hierarchies as found in DL-LiteR [3], the extension of
basic DL-Lite with role hierarchies that underpins OWL2 QL. It has been shown
that, in the query rewriting approach, an exponential blowup of the query size is
unavoidable when the ontology is formulated in DL-LiteR [8]. For the combined
approach, an auxiliary query rewriting strategy for DL-LiteR ontologies and CQs
is presented in [9], but it incurs an exponential blowup and it seems unlikely that
the rewriting can be improved to a poly-sized one (although this question is yet
to be resolved).

In this paper, we present a new variation on the combined approach that can
handle CQs and DL-LiteR ontologies and eliminates the need for auxiliary query
rewriting altogether, thus also eliminating the need to deal with exponentially
sized queries. Specifically, we replace auxiliary query rewriting with a filtering
component : spurious answers are eliminated by a polynomial-time filtering pro-
cedure (called a filter in the rest of the paper) that is installed as a user-defined
function in the underlying RDBMS. Our main contributions are as follows.

(1) We develop a polynomial time procedure for filtering out spurious answers
to CQs for ontologies formulated in DL-LiteR. Interestingly, the existence of
such a filtering procedure appears to be quite sensitive to how exactly the
data is completed. Compared to the data completion for the original combined
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approach [9], the filtering technique requires subtle modifications to the data
completion in order to obtain a polytime filter.

(2) To analyze the performance of our approach and to compare it with the query
rewriting approach, we modify the Lehigh University Benchmark (LUBM) [7] by
introducing additional concepts into the ontology, modifying the data generator
so that the produced data is incomplete, and replacing the original, very simple
queries by more challenging ones.

(3) We have implemented our approach in a system called Combo and carry out
an experimental evaluation based on the modified LUBM benchmark, both to
evaluate the feasibility of our approach and to compare it with the query rewrit-
ing approach. Our experiments show that the combined approach is significantly
more robust than the rewriting approach when the number of (sub)classes in the
ontology or the size of the data increases.

Some technical proofs and details of our experimental evaluation are presented
in the appendix of the full version of this paper, available at http://www.

informatik.uni-bremen.de/~clu/combined/. This paper is an extended ver-
sion of the workshop paper [10]. In particular, the experimental evaluation car-
ried out in this paper is much more comprehensive than the one in [10].

2 Preliminaries

We introduce DL-LiteR-TBoxes, ABoxes, and conjunctive queries. Let NI, NC,
and NR be countably infinite sets of individual names, concept names and role
names. Roles R, simple concepts C, and concepts D are built according to the
following syntax rules, where P ranges over NR and A over NC:

R ::= P | P−, C ::= A | ∃R, D ::= C | ¬C | ∃R.A.

As usual, we use N−
R to denote the set of all roles and identify (P−)− with P .

In DL-LiteR, a TBox is a finite set T of concept inclusions (CIs) C � D with
C a simple concept and D a concept, and role inclusions (RIs) R1 � R2 with
R1, R2 roles.

An ABox is a finite set of concept assertions A(a) and role assertions P (a, b),
where A ∈ NC, P ∈ NR and a, b ∈ NI. We denote by Ind(A) the set of individual
names used in A, and write P−(a, b) ∈ A instead of P (b, a) ∈ A if convenient.
A knowledge base (KB) is a pair (T ,A) with T a TBox and A an ABox.

The semantics of TBoxes and ABoxes is defined in the standard way based
on interpretations I = (ΔI , ·I), where ΔI is a non-empty domain and ·I an
interpretation function that maps each A ∈ NC to a subset AI ⊆ ΔI , each
P ∈ NR to a relation P I ⊆ ΔI×ΔI , and each a ∈ NI to an element aI ∈ ΔI ; for
details consult [1,3]. An interpretation is a model of a TBox T if it satisfies all
inclusions in T ; models of ABoxes and knowledge bases are defined analogously.
A knowledge base is consistent if it has a model. For a CI or RI α, we write
T |= α when α is a consequence of T (satisfied in all models of T ). Instead of
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T |= R � S, we usually write R �∗
T S to clearly distinguish consequences of

this form (which are RIs) from consequences of the form T |= ∃R � ∃S (which
are CIs). Note that, in DL-LiteR, deciding consistency and logical consequence
amounts to computing a form of transitive closure [3].

Let NV be a countably infinite set of variables. Taken together, the sets NV

and NI form the set NT of terms. A conjunctive query (CQ) takes the form
q = ∃y ψ(y,x), where ψ is a conjunction of concept atoms A(t) and role atoms
P (t, t′) where t, t′ ∈ NT. As in the case of ABox assertions, we do not distinguish
between P−(t, t′) and P (t′, t). The free variables x of ϕ are called the answer
variables ; we say that q is k-ary if x comprises k variables. If k = 0, then q is a
Boolean query. A union of conjunctive queries (UCQ) is a disjunction of CQs.
We denote by term(q) the set of terms in q.

Let q = ∃y ψ(y,x) be a k-ary CQ with x = x1, . . . , xk, and I an interpreta-
tion. A mapping π : term(q) → ΔI with π(a) = aI for all a ∈ term(q) ∩ NI is a
match for q in I if I satisfies ψ under the variable assignment that maps each
t ∈ term(q) to π(t); in this case, we write I |=π q. For a k-tuple of individual
names a = a1, . . . , ak, a match π for q in I is an a-match if π(xi) = aIi for
i ≤ k. We say that a is an answer to q in an interpretation I if there is an
a-match for q in I and use ans(q, I) to denote the set of all answers to q in I.
Finally, a is a certain answer to q over a KB K = (T ,A) if a ⊆ Ind(A) and
I |= q[a] for all models I of K. The set of all certain answers to q over K is
denoted by cert(q,K). The query answering problem considered in this paper is:
given a DL-LiteR knowledge base K and a CQ q, compute cert(q,K).

To simplify notation, throughout the paper we adopt the unique name as-
sumption (UNA), i.e., require that aI �= bI for distinct a, b ∈ NI. This assump-
tion has no impact on the query answering problem.

3 ABox Completion

As explained in the introduction, the central idea of the combined approach is
to materialize consequences of the TBox in the ABox as a preprocessing step,
and then to execute queries over the completed data stored in an RDBMS as a
plain table. We illustrate this using two examples from the university domain,
similar in spirit to the LUBM ontology used in the experimental evaluation.

Example 1. For any ABox A, the concept inclusions

Student � Person (1)

Student � ∃takesCourse (2)

lead to the following additions: (1) for every assertion Student(a) ∈ A, add
(1) Person(a) and (2) takesCourse(a, b) for some fresh individual b (unless such
assertions are already present). After this completion, a CQ such as

q1(x) = ∃y Person(x) ∧ takesCourse(x, y)

correctly returns each a with Student(a) ∈ A as a certain answer.
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Fig. 1. Completed ABox for Example 3

The following example shows that naive completion can result in infinite ABoxes.

Example 2. Completed naively, the ABox {Faculty(a)} and LUBM inclusions

Faculty � ∃degreeFrom ∃degreeFrom− � Univ (3)

Univ � ∃deptOf− ∃deptOf � Dept (4)

Dept � ∃teachesAt− ∃teachesAt � Faculty (5)

result in an infinite role chain that indefinitely repeats the roles degreeFrom,
deptOf−, and teachesAt−.

The problem can be overcome by reusing fresh individuals in an economic way.

Example 3. Consider again the TBox (3)-(5). By reusing individuals, the ABox
{Faculty(a)} can be completed as shown in Figure 1, replacing the infinite role
chain with a cycle. Individual reuse compromises soundness of query answering
as some queries now have spurious answers; for example, the CQ

q2(x) = ∃y, z Faculty(x) ∧ degreeFrom(x, y) ∧ Univ(y) ∧
deptOf(z, y) ∧ Dept(z) ∧ teachesAt(x, z)

returns c as an answer when executed over the completed ABox shown in Fig-
ure 1. This answer is spurious for two reasons: first, the cycle in Figure 1 is
present only due to individual reuse and thus should be disregarded for answer-
ing queries; and second, the freshly introduced individuals b, c, d are ‘labeled nulls’
and thus can never be returned as answers.

To recover soundness, it is necessary to eliminate the spurious answers. In the
original combined approach, this was achieved by query rewriting [9,11]. In this
paper, the spurious answers are eliminated by a filtering procedure that is in-
stalled as a user-defined function in the RDBMS. In the remainder of this sec-
tion, we introduce ABox completion in full detail. In the subsequent section, we
describe the filtering procedure.

From a conceptual perspective, the ABox completion step can be viewed as
replacing the original ABox with the canonical model IK of the knowledge
base K [9]. To define IK, we need a few preliminaries. From now on, we will
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generally disallow concepts of the form ∃R.C. This can be done without loss of
generality since each CI D � ∃R.C can be replaced with D � ∃RC , RC � R,
and ∃R−

C � C, where RC is a fresh role name.
Let K = (T ,A) be a DL-LiteR KB. We use rol(T ) to denote the set of all

role names in T plus their inverses. The canonical model comprises at most two
fresh individuals for every role in rol(T ). However, we only want to introduce
the fresh individuals for a given role when necessary. Formally, we call a role
R ∈ rol(T ) generating in K if there exist an a ∈ Ind(A) and R0, . . . , Rn ∈ rol(T )
such that Rn = R and the following conditions hold:

(agen) K |= ∃R0(a) and R0(a, b) /∈ A for all b ∈ Ind(A) (written a � ∃R0),

(rgen) for i < n, T |= ∃R−
i � ∃Ri+1 and R−

i �= Ri+1 (written ∃R−
i � ∃Ri+1).

To facilitate the implementation of efficient filters, we refine the definition of
canonical models as given in [9]: in some cases, we introduce two fresh individuals
for a given role instead of only a single one. This helps to avoid choices in the
elimination of spurious answers (see Example 8), which are related to particular
role configurations in the TBox called a loop: a set {R,S} ⊆ rol(T ) (where
potentially R = S) is a loop in T if R �= S−, T |= ∃R− � ∃S, T |= ∃S− � ∃R,
and there is some T ∈ rol(T ) such that S− �∗

T T and R �∗
T T . Let LT denote

the set of all roles that occur in a loop in T . The canonical model IK is then
based on the domain

ΔIK = Ind(A) ∪ {cR,0 | R ∈ rol(T ) \ LT is generating in K}
∪ {cR,0, cR,1 | R ∈ LT is generating in K}.

To define the extension of roles in IK, we need some additional preparation. Let
“≺” be an arbitrary, but fixed total ordering on rol(T ). For all d, d′ ∈ ΔIK and
each role R, we write d �R d′ whenever there is an S such that S �∗

T R and
one of the following cases applies:

– d = a ∈ Ind(A), a � ∃S, and d′ = cS,0;
– d = cT,i, ∃T− � ∃S, d′ = cS,j, and one of the following holds

• i = j and {S, T } is not a loop in T ;
• i = j, {S, T } is a loop in T , and S ≺ T ;
• i = j, {S, T } is a loop in T , and T = S or T ≺ S (for 0 = 1 and 1 = 0).

The canonical model IK for K is now defined as follows, based on the domain
ΔIK introduced above:

AIK = {a ∈ Ind(A) | K |= A(a)} ∪ {cR,i ∈ ΔIK | T |= ∃R− � A},
RIK = {(a, b) ∈ Ind(A)× Ind(A) | ∃S : S(a, b) ∈ A and S �∗

T R} ∪
{(d, d′) ∈ ΔIK | d �R d′ or d′ �R− d},

aIK = a.

Note that the slightly more straightforward version of canonical models defined
in [9] can be obtained from our canonical models by identifying all elements cR,0

and cR,1.
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Fig. 2. Canonical model IK and unraveled canonical model UK for Example 5

The ABox completion consists of replacing the ABox A originally stored in
the RDBMS with its canonical model IK. This can be achieved by executing a
set of FO/SQL-queries whose size is polynomial in the size of T [9].

It can be shown that IK is a model of K whenever K is consistent. Note that
one can find a Boolean CQ qT of size polynomial in the size of T such that for
any ABox A stored in the RDBMS, qT gives a positive answer iff K = (T ,A)
is consistent [9]. We can thus safely assume that the knowledge base has been
tested for consistency before query answering.

Example 4. Reconsider Examples 2 and 3. The canonical model for the ABox
{Faculty(a)} and TBox (3)-(5) is the structure displayed in Figure 1. Follow-
ing our construction above, the fresh individuals b, c, d are named cdegreeFrom,0,
cteachesAt−,0, and cdeptOf−,0. Note that the TBox (3)-(5) does not give rise to any
loops, and thus all cR,i have index i = 0.

Example 5. The following TBox gives rise to the loop {worksFor, paysSalaryOf}:

Employee � ∃worksFor ∃worksFor− � Employer (6)

Employer � ∃paysSalaryOf ∃paysSalaryOf− � Employee (7)

worksFor− � isAffiliatedWith paysSalaryOf � isAffiliatedWith. (8)

A part of the canonical model for the ABox {Employee(a)} and the TBox (6)-(8)
with paysSalaryOf ≺ worksFor is shown on the left-hand side of Figure 2, where
concept names are omitted and role names are abbreviated by their first letter.

To characterize the spurious answers that have to be filtered out, it is useful
to introduce an unraveled (infinite) version of canonical models. Let K be a
knowledge base. A path is a finite sequence ad1 · · · dn, n ≥ 0, such that a ∈
Ind(A), d1, . . . , dn ∈ ΔIK \ Ind(A), a �R d1 for some R ∈ N−

R , and di �R di+1

for some R ∈ N−
R , 1 ≤ i < n. We denote by tail(σ) the last element of the path σ.

The unraveled canonical model UK is then defined by taking:

ΔUK is the set of all paths in IK,
aUK = a, for all a ∈ Ind(A),
AUK = {σ ∈ ΔUK | tail(σ) ∈ AIK},
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RUK = {(a, b) ∈ Ind(A)× Ind(A) | ∃S : S(a, b) ∈ A and S �∗
T R} ∪

{(σ, σd) | σd ∈ ΔUK and tail(σ) �R d} ∪
{(σd, σ) | σd ∈ ΔUK and tail(σ) �R− d}.

As an example, the canonical model UK for the KB from Example 5 is shown on
the right-hand side of Figure 2. The following result shows that, as one would
expect, UK does not suffer from spurious answers.

Theorem 1. For every consistent DL-LiteR-KB K and every CQ q, we have
cert(q,K) = ans(q,UK).

The proof of Theorem 1 is standard and omitted, see [9] for a similar proof.

4 Filtering

To remove spurious answers, we install a filtering procedure as a user-defined
function in the RDBMS. In this approach, calls to the filtering procedure are
delegated to the RDBMS in hopes that the query optimizer will eliminate spu-
rious answers as early as possible in the execution plan. The procedure takes as
input a match of the query in the canonical model IK stored in the RDBMS and
returns “false” if this match is spurious and “true” otherwise. We assume that
the filtering procedure has access to the query and the TBox, but not to the
data. To define its behavior more precisely, we formally define spurious matches
based on unraveled canonical models UK and Theorem 1.

Let K be a KB and q(x) a CQ. A match π of q in IK is reproduced by a match
τ of q in UK if for all t ∈ term(q), we have π(t) = tail(τ(t)). We say that π is
spurious if it is not reproduced by any match τ of q in UK. The following lemma,
which is an immediate consequence of Theorem 1, shows that IK can be used
for query answering when spurious matches are filtered out.

Lemma 1. a ∈ cert(q,K) iff there is a non-spurious a-match π of q in IK.

We want to show that it can be decided in time polynomial in the size of q and T
(and without accessingA at all) whether a given match in IK is spurious. Clearly,
it is enough to test for each maximally connected component of q whether the
match is spurious on that component. We thus assume that q is connected.

We need a few preliminaries. An anonymous path is a path without the leading
individual name, i.e., it is a finite sequence d1 · · · dn, n ≥ 1, such that d1, . . . , dn ∈
ΔIK\Ind(A) and di �R di+1 for someR ∈ N−

R , 1 ≤ i < n. We use Paths to denote
the set of all paths, both anonymous and non-anonymous. A root configuration
for q given π is a set ρ ⊆ term(q) such that one of the following conditions is
true:

– ρ is the set of those t ∈ term(q) such that π(t) ∈ NI and this set is non-empty;
– the above set is empty and ρ contains exactly one term (actually a variable).

The filtering procedure immediately returns “false” if some answer variable is
mapped to an element of ΔIK that is not from Ind(A) (based on the name of
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Fig. 3. Canonical model IK for Example 6

the element, i.e., whether it is of the form cR,i). Then the procedure iterates
through all root configurations ρ. For each ρ, it constructs a sequence S0

ρ , S
1
ρ , . . .

of relations Si
ρ ⊆ term(q)× Paths as follows:

– S0
ρ contains all pairs (t, π(t)) with t ∈ ρ;

– Si+1
ρ is Si

ρ extended with the following pairs:

(a) (t, σπ(t)) for all R(s, t) ∈ q with (s, σ) ∈ Si
ρ and π(s) �R π(t);

(b) (t, σπ(t)) for all R(s, t) ∈ q with (s, σπ(t)π(s)) ∈ Si
ρ and π(t) �R− π(s).

The computation stops as soon as the sequence stabilizes or Si
ρ becomes non-

functional which happens after at most |term(q)| iterations. The procedure re-
turns “true” if the final Si

ρ is a function with domain term(q) for some root
configuration ρ, and “false” otherwise.

Example 6. Consider the TBox (1)-(2) from Example 1, the query

q3(x, y) = ∃z Student(x)∧Student(y)∧takesCourse(x, z)∧takesCourse(y, z), (9)

and the ABox
{Student(a1), . . . , Student(an)}. (10)

The canonical model IK is shown in Figure 3. Suppose the filter gets as input
the match π = {x �→ a1, y �→ a2, z �→ ctakesCourse,0}. There is only one possible
root configuration for π, which is ρ = {x, y}. The procedure computes

Sρ = {(x, a1), (y, a2), (z, a1ctakesCourse,0), (z, a2ctakesCourse,0)}

which is not a function; thus, the match is spurious and “false” is returned.

Example 7. Consider the ABox {Faculty(a)}, TBox (3)-(5), and query q2 from
Example 3. To make things a bit more interesting, assume that x is a quantified
variable in q2 rather than an answer variable. Recall that the canonical model IK
is shown in Figure 1, modulo the names of fresh individuals. Given the match
π = {x �→ c, y �→ b, z �→ d} and considering the root configuration ρ = {x}, the
procedure computes

Sρ = {(x, c), (y, cb), (z, cbd), (x, cbdc)}

and stops because of non-functionality. For the other root configurations ρ = {y}
and ρ = {z}, the procedure fails in a similar way and thus returns “false”.
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Similar to the “tree witnesses” from [9], the filtering procedure follows a simple
idea for reproducing the input match π in IK as a match τ in UK: when we have
already decided that τ(x) = σ /∈ Ind(A) and R(x, y) ∈ q, then there is a uniquely
determined individual σ′ to which y can be matched. This follows from requiring
π(y) = tail(τ(y)) and the following property of UK:

if (σ, σ′) ∈ RUK and (σ, σ′′) ∈ RUK with σ′ �= σ′′, then tail(σ′) �= tail(σ′′).

In fact, it is this determinism of matches that is made explicit by Conditions (a)
and (b) of the filtering procedure. Note that, without introducing two individual
names cR,0 and cR,1 whenever R is involved in a loop, the above crucial property
of UK fails. In fact, we do not know whether polytime filtering is possible based
on the variation of the canonical model where all individuals cR,0 and cR,1 are
identified. The problem is illustrated by the following example.

Example 8. Consider the ABox {Employee(a)} and TBox (6)-(8) from Exam-
ple 5 and the CQ

q4(x) = ∃y, z, u w(x, y) ∧ p(y, z) ∧ i(u, z).

Let π = {x �→ a, y �→ cw,0, z �→ cp,0, u �→ cw,1}. The only root configuration is
ρ = {x}. During the first two iterations, the filtering procedure produces

S2
ρ = {(x, a), (y, acw,0), (z, acw,0cp,0)}.

S2
ρ says that z has to be mapped to acw,0cp,0. Due to the atom i(u, z) ∈ q4 and

the two i-edges incoming to acw,0cp,0 in UK, the possible targets for u are acw,0
and acw,0cp,0cw,1. However, to produce a match in UK that is compatible with π,
we can only choose a target that ends with π(u) = cw,1 and obtain

S3
ρ = {(x, a), (y, acw,0), (z, acw,0cp,0), (u, acw,0cp,0cw,1)}

which is functional, showing that the match π is not spurious. In a canonical
model IK where cw,0 and cw,1 are identified, there are indeed two choices for
mapping of u. This makes it non-obvious how to find a polytime filtering proce-
dure in this case, if one exists at all.

We now analyze the runtime and correctness of the filtering procedure. First
note that, in Conditions (a) and (b), the filtering procedure has to check whether
π(s) �R π(t) and π(t) �R− π(s), respectively. As required, both conditions can
be tested without access to the ABox A. For example, in Condition (a) we have:

– if π(t) ∈ Ind(A), then π(s) �R π(t) does not hold and checking whether
π(t) ∈ Ind(A) requires only to check whether or not π(t) is of the form cR,i;

– if π(s) ∈ Ind(A) and π(t) /∈ Ind(A), then π(s) �R π(t) holds by the con-
struction of IK since π is a match of q in IK, and;

– if π(s) /∈ Ind(A) and π(t) /∈ Ind(A), then π(s) �R π(t) can be checked by
using only π and T based on the definition of “�R”.
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It is not hard to see that the algorithm runs in polynomial time. The runtime
is quadratic in the size of q because we first have to iterate over all root con-
figurations ρ and then need to compute Sρ, essentially a breadth-first search
of (the graph of) q. We conjecture that iterating over all root configurations
is avoidable at the cost of a less transparent filtering procedure, improving the
runtime to linear in the size of q. The runtime also depends on T as checking
the applicability of Conditions (a) and (b) involves testing consequences of the
forms T |= ∃R � ∃S and S �∗

T R. Since it is efficient to pre-compute all these
consequences in practical cases, this amounts to a simple lookup.

The following lemma asserts correctness of the filtering procedure. It is proved
in the appendix of the full version.

Lemma 2. Given a match π of q in IK, the filtering procedure returns “true”
iff π is not spurious.

5 Implementation and Experiments

We have implemented our approach in the Combo system, a collection of tools
that support the user in setting up the tables of a relational database system to
store ABoxes and their completion, implements the actual data completion via
querying, and allows to compile an ontology into a filter that takes the form of
a user defined function. The preferred relational database system for use with
Combo is IBM DB2.

We use this combination to carry out an experimental evaluation of our ap-
proach, and to compare it to the query rewriting approach. The experiments are
based on a modified version of the ontology from the Lehigh
University Benchmark (LUBM) [7] and on ABoxes produced by a modified ver-
sion of the LUBM data generator. We use six queries that were hand-crafted
specifically for our experiments. The mentioned modifications aim at making
the LUBM suite more realistic for OBDA evaluation. We believe that this
setup might be interesting also for future experiments and provide it online
at http://www.informatik.uni-bremen.de/~clu/combined/.

Regarding the query rewriting approach, we use Rapid (v0.3) [4] and Presto
(version March 25th 2013) [15] as typical examples of state-of-the-art rewriting
tools. Both Rapid and Presto are able to generate rewritings into UCQs and into
non-recursive Datalog (DLog), and they use various optimizations to generate
as small rewritings as possible.

5.1 Ontology, Data, and Queries

The LUBM ontology comprises 42 concept names and 25 role names and is
formulated in the description logic ELI extended with transitive roles, role hier-
archies, and datatypes. The TBox contains concept inclusions of the formA � C,
concept definitions A ≡ C as abbreviations for A � C, C � A, and domain and
range restrictions of the form ∃R � A and ∃R− � A. We converted this on-
tology to DL-LiteR by dropping all datatypes, treating the only transitive role

http://www.informatik.uni-bremen.de/~clu/combined/
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subOrganizationOf as a standard role, replacing concept equations A ≡ C with
A � C, and breaking up conjunctions A � C1  C2 into A � C1, A � C2.

While the resulting TBox is formulated in DL-LiteR as required, it is only
moderately interesting for evaluating query answering techniques: first, there is
a lack of existential restrictions ∃R and ∃R.C on the right-hand side of con-
cept inclusions, which leads to extremely few fresh anonymous individuals being
generated during the ABox completion, and consequently to very few role edges
between those individuals (from now on, we call this part of the canonical model
IK the anonymous part); second, the overall size of the TBox is too small to be
representative for real-world ontologies. To attenuate these deficiencies while still
being able to use the LUBM data generator, we extended the DL-LiteR-version
of LUBM in two directions:

(1) We added 26 carefully chosen concept inclusions, many of which have exis-
tential restrictions on the right-hand side, to generate a more interesting anony-
mous part of canonical models. A complete list of these CIs can be found in the
appendix of the full version of this paper.

(2) With reasonable effort, it does not seem possible to significantly increase
the size of LUBM (to hundreds or thousands of concepts) while retaining a
careful modeling. One particularly unrealistic aspect of LUBM and a striking
difference to many real-world ontologies is its limited concept hierarchy, where
each concept has only very few subconcepts. To alleviate this shortcoming, we
added subconcepts to each of the LUBM concepts Course, Department, Professor,
and Student by introducing subject areas, such as MathCourse, BioCourse, and
CSCourse for courses, MathProfessor, BioProfessor for professors, etc.

We call the resulting TBox LUBM∃
n with n indicating the number of sub-

concepts introduced in Point 2 above (20 by default). For example, LUBM∃
20

contains 106 concept names and 27 role names.
To generate ABoxes, we use the LUBM Data Generator (UBA) version 1.7,

modified so as to complement our modifications to the TBox. Specifically, the
original UBA generates data that is complete w.r.t. existential restrictions in the
LUBM ontology: it produces ABoxes A such that for every assertion A(a) ∈ A
and CI A � ∃R (and A � ∃R.B) in LUBM∃

n, there is already an R-successor of
a in A. Our modifications introduce a controlled amount of incompleteness: the
modified data generator takes a probability p as a parameter and, in selected
parts of the data, drops generated role assertions with probability p. More infor-
mation can be found in the appendix of the full version. The second modification
of the data generator is linked to the subconcepts introduced in Point 2 above.
Whenever the original generator produces an instance a of Student, the new
generator randomly chooses a value between 1 and n and generates an asser-
tion for the i-th subject, SubjiStudent(a); similarly for Course, Department, and
Professor.

We use the six queries in Figure 4 that we have hand-crafted specifically for our
experiments. Note that cq3 is designed to stress-test the filtering approach: based
on the data generation scheme, it is expected to produce a very large number
of spurious answers. Requiem test queries are commonly used for benchmarking
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query rewriting systems [12]. We did not include those queries since they are
too simple for our purposes. In fact, they are answered effortlessly both by our
approach and by the query rewriting approach.

5.2 Results

We report on two experiments: in the first experiment we vary the complexity
of the ontology by increasing the number of subclasses (the parameter n of
the ontology LUBM∃

n) and in the second experiment we vary the data size by
increasing the number of universities that are generated by the modified LUBM
data generator. It turned out that, in general, the degree of incompleteness had
only very limited effect on the execution time of queries. We therefore do not
vary the degree of incompleteness but use 5% incompleteness in the data for
both experiments. All experiments were carried out on a Linux (3.2.0) machine
with a 3.5Ghz quad-core processor and 8GB of RAM, using IBM DB2 Express-C
version 9.7.5.

cq1(x,z)<-Student(x), takesCourse(x,y), Subj1Course(y), teacherOf(z,y),

Professor(z), headOf(z,w), Department(w), memberOf(x,w)

cq2(x) <-Faculty(x), degreeFrom(x,y), University(y),

subOrganizationOf(z,y), Department(z), memberOf(x,z)

cq3(x,y)<-Professor(z), memberOf(z,x), Subj3Department(x),

publicationAuthor(w,z), Professor(v), memberOf(v,y),

Subj4Department(y), publicationAuthor(w,v)

cq4(x,y)<-Department(x), memberOf(z,x), Student(z), takesCourse(z,v),

teacherOf(w,v), Professor(w), memberOf(w,y), Department(y)

cq5(x) <-Person(x), worksFor(x,y), Department(y), takesCourse(x,z),

Course(z)

cq6(x) <-Student(x), publicationAuthor(y,x), Publication(y),

teachingAssistantOf(x,z), Course(z)

Fig. 4. Queries cq1 to cq6

Original ABox Data Completion
#Univ. individuals concepts roles time concepts roles time

200 4M 7M 12M 7m30s 12M 22M 16m55s
500 10M 17M 31M 39m06s 31M 55M 70m48s
1000 21M 35M 63M 43m17s 63M 111M 146m39s

Fig. 5. Size original and completed ABox (in million) and load and completion time

The size of the test data for the experiments is detailed in Figure 5, where we
give (for 20 subclasses) the number of individuals in the original ABox (there are
only about 200 additional individuals in the completion), the number of concept
and role assertions (in the original ABox and in its completion), and the load
time for the original and the completed ABox (including the completion time).
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Test System cq1 cq2 cq3 cq4 cq5 cq6
1000.10 Rap-DLog 23.54 TO 40.88 TO TO 50.41

Pre-DLog 23.61 TO 43.66 75.33 TO 15.69
Combo 24.42 393.97 TO 267.55 23.67 38.93

1000.20 Rap-DLog TO TO 33.80 TO TO 54.12
Pre-DLog 22.86 TO 32.48 TO TO 17.24
Combo 18.13 460.16 587.76 266.97 28.30 38.72

1000.40 Rap-DLog TO TO 76.69 TO TC 65.45
Pre-DLog 23.21 TO 75.71 TO TO 18.27
Combo 13.56 456.84 279.09 270.12 28.31 37.43

1000.80 Rap-DLog TO TO UM TC TC TC
Pre-DLog TO TO UM TC TC 17.81
Combo 7.10 448.69 152.55 268.86 28.07 39.26

Fig. 6. Run time for varying number of subclasses

Test System cq1 cq2 cq3 cq4 cq5 cq6
200.20 Rap-DLog 6.72 4.68 3.35 13.37 14.36 9.22

Pre-DLog 5.84 55.55 5.79 146,26 11.76 2.78
Combo 4.75 22.65 25.58 51.17 6.50 4.07

500.20 Rap-DLog 14.32 343.47 15.04 TO TO 25.58
Pre-DLog 11.32 344.36 14.96 TO TO 8.18
Combo 14.14 116.34 161.16 135.36 11.59 19.46

1000.20 Rap-DLog TO TO 33.80 TO TO 54.12
Pre-DLog 22.86 TO 32.48 TO TO 17.24
Combo 18.13 460.16 587.76 266.97 28.30 38.72

Fig. 7. Run time for varying number of universities

cq1 cq2 cq3 cq4 cq5 cq6
Rap-UCQ 57984 15120 14880 162288 1950 1702
Rap-DLog 85 68 39 81 118 105
Pre-UCQ TO 15120 14880 TO 1950 1702
Pre-DLog 85 68 39 81 86 63

Fig. 8. Number of disjuncts in UCQ and rules in Datalog program

For our experiments, summarized in Figures 6 and 7, we report the execution
time (in seconds; TO stands for 600s timeout, TC for the DB2 output “The
statement is too long or too complex”, and UM for the DB2 output “Unexpect
maxNumBrunch”) for the Datalog rewritings generated by Rapid and Presto
(transformed into SQL by unfolding them into positive existential queries) and
for the Combo filtering approach. We do not report execution times for any
UCQ rewritings because they are excessively large and DB2 fails to execute
them in all of our experiments, see Figure 8.1

1 We are not aware of any experimental evaluation of the query execution time of
rewritings into non-recursive Datalog. Our experiments show that Datalog rewritings
can be significantly more efficient than UCQ rewritings.
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cq1 cq2 cq3 cq4 cq5 cq6
spurious answers 0 2 600K 35K 0 0
valid answers 32K 2K 0 20K 0 465K

Fig. 9. Number of answers for 1000 universities, 20 subclasses

The main outcomes of our experiments are as follows:

1. the Combo filtering approach is significantly more robust than the rewriting
approaches when both the complexity of the ontology and the size of the data
increase. We observe only one timeout for the filtering approach (cq3 for 1000
universities and 10 subclasses) but the rewriting approach eventually fails
for all queries with the exception of cq6.

2. For smaller data sets or for simple class hierarchies (e.g., 200 universities
and 20 subclasses), the filtering and rewriting approaches are comparable.

3. In contrast to the rewriting approach, the performance of the filtering ap-
proach does not depend significantly on the number of subclasses.2

The poor performance of the rewriting approach for complex ontologies and
large data is due to the fact that for complex queries (the SQL queries corre-
sponding to the datalog rewriting) the DB2 query optimizer realizes that the
use of data structures, such as B-tree indices, becomes imperative and attempts
to distribute (index) joins into unions to take advantage of these indices. Such
an attempt, however, commonly leads to exhausting the resources available for
query optimization (DB2 then aborts by outputting TC or UM).

The poor performance of the filtering approach for query cq3 is due to the
large number of spurious answers, see Table 9 for an overview of the number of
valid and spurious answers for all queries. It is possible to avoid this behavior at
the cost of slight increase of the size of the canonical model: by duplicating the
anonymous parts of the canonical model so that no two (or few) individuals in
the original ABox ‘share’ an anonymous part of the canonical model.

We close by commenting on the data loading and completion times reported
in Figure 5. Here the completion time is spent almost exclusively on loading the
data into the DBMS: indeed, loading large amounts of data into a relational
DBMS can be time consuming since the system needs to build up indexes and
other auxiliary data structures. Note, however, that bulk-loading data is rare in
most applications: standard workloads typically add and remove few tuples at a
time. In our case adding (removing), e.g., 100 concept/role assertions into (from)
the original ABox results in adding and removing less than 500 tuples from the
completed data (for the LUBM ontology), yielding an essentially instant update.
Moreover, the changes to the completed data can be efficiently computed given
the original ABox and the update request using incremental view maintenance
technology [6].

2 The increase of performance for cq1 and cq3 when the number of subclasses grows
is due to each subclass becoming less populated as the data size is fixed.
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6 Conclusion

We have modified the combined approach to OBDA by replacing the query
rewriting part with a filtering technique. This is natural from an implementation
perspective and allows to avoid an exponential blowup of the query. We have
implemented our approach in the Combo system and generated an improved
version of the LUBM benchmark that aims at evaluating OBDA approaches.
Our experiments demonstrate the scalability and robustness of our approach.

In the future we plan to extend the combined approach with filtering to other
description logics for which, until now, it is unknown how to avoid an exponential
blowup of the query. For example, we believe that polytime filtering is possible
for the extension of EL with transitive roles, as found in the OWL2 EL profile.
Note that, based on the workshop predecessor [10] of this paper, the combined
approach with filtering has already been picked up to implement OBDA for an
extension of EL (but without transitive roles) [16].

From an applied perspective, it would be interesting to compare our approach
also with the promising new optimization techniques that have recently been
developed in [13,14]. While some of them (such as the exploitation of ABox
integrity constraints) aim specifically at the query rewriting approach, others
(such as semantic indexing) can easily be used also for the combined approach.
We did not include those optimizations and systems in our evaluation because
all available implementations seem to require prerequisites that are not satisfied
in our tests (such as the availability of mappings from a relational database to
the ontology or the storage of the ABox in an in-memory database).
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Abstract. Tool development for and empirical experimentation in OWL
ontology engineering require a wide variety of suitable ontologies as in-
put for testing and evaluation purposes and detailed characterisations of
real ontologies. Empirical activities often resort to (somewhat arbitrarily)
hand curated corpora available on the web, such as the NCBO BioPor-
tal and the TONES Repository, or manually selected sets of well-known
ontologies. Findings of surveys and results of benchmarking activities
may be biased, even heavily, towards these datasets. Sampling from a
large corpus of ontologies, on the other hand, may lead to more rep-
resentative results. Current large scale repositories and web crawls are
mostly uncurated and suffer from duplication, small and (for many pur-
poses) uninteresting ontology files, and contain large numbers of ontology
versions, variants, and facets, and therefore do not lend themselves to
random sampling. In this paper, we survey ontologies as they exist on
the web and describe the creation of a corpus of OWL DL ontologies
using strategies such as web crawling, various forms of de-duplications
and manual cleaning, which allows random sampling of ontologies for a
variety of empirical applications.

Keywords: Ontology Engineering, empirical methods, corpus, OWL.

1 Introduction

Since its standardisation by the W3C in 2004, the Web Ontology Language
OWL1 has become a widely used language for representing ontological knowl-
edge. OWL ontologies are used across a wide spectrum of domains, ranging from
chemistry to bio-health informatics and medical data. There exists an increasing
amount of tool support for OWL ontologies, such as OWL reasoners, ontology ed-
itors, ontology browsers and visualisation tools, as well as numerous approaches
to tasks such as ontology mapping, debugging, and modularisation. Testing and
evaluation of proposed techniques and tools form an important part of the de-
velopment process, and while there are some tools that are specifically tailored
towards certain ontologies (such as, for example, the Snorocket reasoner2 which
is aimed at classifying the SNOMED CT ontology [15]), most tools are aimed at
general OWL ontologies. One of the core decisions required for a sound empirical

1 http://www.w3.org/TR/owl2-overview/
2 http://protegewiki.stanford.edu/wiki/Snorocket

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 331–346, 2013.
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methodology is the selection of a suitable dataset and some clarity about that
choice and its implications. In particular, choice of data set can threaten both
the internal validity (i.e. whether a found correlation indicates a causal relation)
and external validity (i.e. the extent to which the result can be generalised).

Current empirical evaluations, such as OWL reasoner benchmarking and stud-
ies on the effectiveness of various debugging techniques, often cherry-pick a few
example ontologies or sample from ontology repositories such as the NCBO Bio-
Portal.3 Alternatively, crawlers such as Swoogle [6] have collected huge amounts
of semantic documents, contributing a lot to our understanding of the use of
semantic web languages, and allowing us to catch a glimpse of the impact that
OWL has on the web ontology landscape. While these crawl-based datasets are
certainly useful for many purposes, they do not necessarily lend themselves to
ontology research as they collect OWL files which may not individually corre-
spond to distinct OWL ontologies.

In this paper, we characterise the landscape of OWL ontologies found on the
web, with a focus on using collections of ontologies for OWL tool development
and evaluation purposes. We describe the challenges of gathering a large and
meaningful corpus of OWL DL ontologies that is suitable for such experimental
tasks, which is based on an automated web crawl combined with several filtering
steps to identify OWL ontologies based on heuristics, and to take into account
duplicates, versions, and facets of ontologies. We discuss the characteristics of
the corpus, such as axiom and constructor usage, OWL profiles, and provenance
data, and compare it to several other collections of OWL ontologies that are
frequently used (or designed for) testing purposes. The purpose of this paper is
twofold: first, we provide insights into the landscape of OWL ontologies found
on the web nearly a decade after OWL became an official standard. Second, we
highlight the issues faced when selecting suitable test corpora in the OWL tool
development process and aim to support tool developers in making informed
decisions when choosing test collections.

2 Preliminaries and Background

In this section, we will give a very brief introduction to the web ontology language
OWL 2 and the OWL 2 profiles. We then discuss the use of OWL ontology
collections in empirical evaluations.

2.1 The Web Ontology Language OWL

OWL 2 [3], the latest revision of the Web Ontology Language OWL, comprises
two species of different expressivities, namely OWL 2 DL and OWL 2 Full. The
underlying formalism of OWL 2 DL is the description logic SROIQ(D) [10].
While OWL 2 DL has the familiar description logic semantics (Direct Seman-
tics), OWL 2 Full4 has an RDF-based semantics, which is a superset of the OWL

3 http://bioportal.bioontology.org/
4 http://www.w3.org/TR/owl2-rdf-based-semantics/

http://bioportal.bioontology.org/
http://www.w3.org/TR/owl2-rdf-based-semantics/
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2 Direct Semantics; OWL reasoners, however, are restricted to ontologies in (a
subset of) OWL DL.

There exist three named ‘profiles’ for OWL 2, which are syntactic subsets of
OWL 2 DL that are tailored towards different applications, trading expressivity
of the language for efficient reasoning. The OWL 2 EL profile is a tractable
fragment of OWL 2 which is based on the description logic EL++ [2]. OWL 2 QL
(Query Language) which is based on the DL-Lite family of description logics [1],
has been defined for use in applications which focus on query answering over large
amounts of instance data. Reasoning systems for ontologies in the OWL 2 RL
(Rule Language) profile can be implemented using rule-based reasoning engines.

2.2 Datasets Used in Practice

A wide range of empirical ontology research requires access to a somehow ‘in-
teresting’ set of ontologies as input to experiments. Empirical studies involving
OWL tools and techniques frequently make use of existing ontologies and on-
tology repositories for test and evaluation purposes. In order to put our work
into context with empirical OWL research, we will give an overview of some
of the curated OWL ontology repositories and large-scale collections that are
commonly used for empirical evaluations.

Curated Ontology Repositories. There exists a number of well-known on-
tology repositories which are frequently used for empirical experimentation. In
what follows, we will briefly describe some of the most prominent repositories
and their applications in OWL research.

The NCBO BioPortal is an open repository of biomedical ontologies which
invites submissions from OWL researchers. As of April 2013, the repository
contains 341 ontologies in various ontology formats including the full set of OBO
Foundry5 ontologies. Due to its ontologies ranging widely in size and complexity,
BioPortal has become a popular corpus for testing OWL ontology applications in
recent years, such as justification computation [9], reasoner benchmarking [11],
and pattern analysis [13].

The TONES repository is a curated ontology repository which was devel-
oped as part of the TONES project as a means of gathering suitable ontologies
for testing OWL applications. It contains 219 OWL and OBO ontologies and
includes both well-known test ontologies and in-use ontologies, varying strongly
in size and complexity. While ontologies are occasionally added to the reposi-
tory, it can be considered rather static in comparison with frequently updated
repositories, such as BioPortal. The TONES ontologies are frequently used for
empirical studies, either as a whole [11,16], by (semi-)randomly sampling from
the set [12], or as a source of individual ontologies.

Similar to the TONES repository, the Oxford ontology library6 is a collec-
tion of OWL ontologies gathered for the purpose of testing OWL tools.

5 http://www.obofoundry.org/
6 http://www.cs.ox.ac.uk/isg/ontologies/

http://www.obofoundry.org/
http://www.cs.ox.ac.uk/isg/ontologies/
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The library, which was established in late 2012, currently contains 793 ontolo-
gies from 24 different sources, including an existing test corpus and several well-
known in-use and test ontologies.

The Protégé ontology library7 is a submission-based collection of ontolo-
gies linking to 95 OWL ontologies including some well-known test and in-use
ontologies. While it is not used as frequently as the TONES repository (e.g.
[17]), it fulfils a similar purpose of offering a selection of ontologies from a vari-
ety of domains.

Large-Scale Crawl-Based Repositories. Crawl-based collections containing
thousands and millions of files are popular sources of ontologies used in exper-
iments. While the two largest collections, Swoogle and Watson, seem to be no
longer under active development, the Billion Triple Challenge dataset is still
updated annually.

Swoogle [6] is a crawl-based semantic web search engine that was established
in 2004. The crawler searches for documents of specific filetypes (e.g. .rdf, .owl),
verifies their status as a valid document of that type, and uses heuristics based
on the references found in existing files to discover new documents. In April 2013,
Swoogle indexed nearly two million documents, and a search for ontologies (i.e.
documents which contain at least one defined class or property) that match
‘hasFiletype:owl’ returned 88,712 results. While Swoogle is an obvious choice for
gathering a large number of OWL ontologies for use in empirical studies (e.g.
[17,14,16]), it does not have a public API and prevents result scraping in order
to reduce server load, which makes it difficult to gain access to all search results.
Furthermore, since the content is not filtered beyond removal of duplicate URLs,
a random sample from Swoogle is most likely to return a set of small, inexpressive
ontologies, or may be heavily biased towards ontologies from certain domains,
as we will discuss in detail in the Section 3.2.

Similar to Swoogle, Watson [4] is a search engine which indexes documents
based on a web crawler that targets semantic web documents. Watson uses
filtering criteria in order to only include valid (that is, parseable) documents and
ranks results according to their semantic richness, which is based on properties
such as the expressivity of an ontology and the density of its class definitions.
In addition to its web interface, Watson also provides APIs which allow users
to retrieve lists of search results for a given keyword. At the time of its release,
Watson was indexing around 25,500 documents; however, to the best of our
knowledge, the service is no longer under active development.

The Billion Triple Challenge (BTC) dataset is an annually updated large
dataset of RDF/XML documents used in the Semantic Web Challenge.8 The
2011 set which contains 7.411 million RDF/XML documents crawled from the
web using various well-known Linked Data applications as seeds, such as DBPe-
dia and Freebase. According to an analysis by Glimm et al. [7], the set contains
just over 115,000 documents that contain a the rdfs:subClassOf predicate, which

7 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
8 http://challenge.semanticweb.org/
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may be considered sufficient to class the document as an ontology. However,
the authors identified that the corpus is biased towards several large clusters
of documents from the same domain, which is indicated by the relatively small
number of domains (109) that these potential ontologies originate from.

3 Gathering a Corpus of OWL DL Ontologies

While hand curated repositories often lack the potential for generalisability of
claims, large-scale document collections suffer from a different problem: they
typically contain many small and trivial OWL files as well as large numbers of
duplicates, which means that a (naive) random sample is likely to introduce a
heavy bias towards irrelevant cases for applications such as reasoner benchmark-
ing and ontology profiling. If we want to make claims about OWL ontologies on
the web, we need a way to obtain a set of unique ontologies (at least to some
degree). For our corpus, we consider ontologies that are in OWL DL (and not
mere RDFS), contain some logical content and are parseable by the OWL API.
In this section, we present our approach to addressing this issue by collecting a
large amount of documents through web crawling and applying a series of filter-
ing procedures. The focus of our work lies on the filtering steps applied to arrive
at a set with a a high density of (relatively) unique OWL DL ontologies. Table
1 shows an overview of the individual steps in the data curation procedure and
the numbers of files filtered out in each step.

3.1 Data Collection

The initial set of documents was collected using a standard web crawler with a
large seed list of URLs obtained from existing repositories and previous crawls.
The sample obtained for this survey is preliminary in the sense that it is the
result of only three weeks of downloading and crawling. We expect the results
to improve gradually as the crawler collects more data, which also allows us to
refine our heuristics for identifying OWL ontologies. The seeds for the crawl were
identified as follows:

– 336,414 URLs of potential ontology files obtained directly from a Google
search, Swoogle, OBO foundry, Dumontier Labs,9 and the Protégé Library.

– 43,006 URLs obtained from an experimental crawl in 2011.
– 413 ontologies downloaded from the BioPortal REST API.

The crawler is based on crawler4j,10 a multi-threaded web crawler implemented
in Java. We use a standard crawling strategy (broad and deep seeding, low
crawling depth, i.e. 3 levels), searching for files ‘typical’ extensions, e.g. owl, rdf,
obo, owl.xml, and variations of the type owl.txt, owl.zip, etc. Additionally, the
crawler tests whether a link it followed might actually be an OWL file by using

9 http://dumontierlab.com/
10 http://code.google.com/p/crawler4j/
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a set of syntactic heuristics (e.g. OWL namespace declaration in all its syntactic
variants), thus catching those OWL files that do not have a file extension (or a
non-standard one). The crawler only identifies potential URLs, which are then
passed on to a candidate downloader that attempts to download files in certain
intervals. In the short period of time that the crawler was running, 68,060 new
candidate documents where discovered. A large number of candidates in the seeds
were not retrievable, due to, amongst others, unreachable domains or possibly
restrictions for crawler access.

3.2 Data Curation

Identifying Valid OWL Files. Many surveys of documents on the web ac-
knowledge the necessity of preprocessing crawl results in order to remove irrele-
vant and duplicate files. Our pipeline for identifying candidate OWL files from
the files gathered by the crawler is as follows:
1. Attempting to load and parse files with the OWL API can be computa-

tionally expensive, especially for non-OWL files for which the API tries out
every possible parser before failing, and for large OWL files. Thus, we applied
syntactic heuristics to filter out documents
– that were clearly not OWL (less than six lines of text, first fifty lines

contain the <html> tag),
– or did not contain any OWL declaration (in any syntax) or OBO format

version in the first sixty lines.
This step reduced the initial dataset from 268,944 files to 231,839. A random
(statistically significant) sample of 1,037 files that we attempted to load with
the OWL API revealed that approximately 11% of the thus removed files
were falsely identified as not being OWL.

2. The next step was the removal of byte-identical files. We used Apache Com-
mons IO11 to determine file stream identity. 43,515 files were grouped into
clusters of byte-identical files.

3. Next, all remaining unique files were loaded and saved with the OWL API
[8]. Relatively few files (4,590) where not loadable due to parser errors, while
31 did not terminate loading in practical time. After this step, the corpus
contained 213,462 valid OWL files.

4. We then removed further duplicates by excluding 6,142 files that have a
byte-identical OWL/XML serialisation. The result of the curation pipeline
to this point is a set of 207,230 unique (in terms of byte-identical duplicates)
and valid OWL files.

Note that we consider the loss of ontologies which cannot be parsed by the
OWL API to be negligible, since this API is the most comprehensive of its kind,
covering most types of OWL syntaxes and all OWL 2 constructs.

Cluster Detection. One of the main difficulties of gathering a corpus of on-
tologies rather than a corpus of arbitrary OWL files is the problem of identifying

11 http://commons.apache.org/io/
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Table 1. Summary of the curation pipeline

Document state Removed Size after

Retrieved 268,933
Passed heuristic 37,094 231,839
Passed OWL API, de-duplicated (byte identity) 18,377 213,462
De-duplicated (byte identity after common serialisation) 6,142 207,320
Systematically manually filtered 197,449 9,871
Non-OWL 2 DL and empty ontologies filtered 5,324 4,547

what exactly constitutes a single ontology. This results from the different non-
standard ways of publishing ontologies:
1. There may exist several different versions of an ontology. These can be either

subsequent versions which have been released in sequence (e.g. version 1.0,
1.1, . . . ), or slightly modified variants, such as ‘light’ or ‘full’.

2. Single ontologies may be distributed over multiple files (e.g. DBPedia, Se-
mantic Media Wikis) or published in modules contained in individual files
(faceted publishing). The individual files are often very small and describe
only trivial fragments of larger OWL ontologies.

In order to identify clusters of versions, variants, and distributed ontologies,
we applied two filtering steps based on similar file sizes and file names, and based
on the source of the OWL file.

File Name and File Size Patterns. First, a random sample of 100 ontologies was
repeatedly drawn from the corpus, and grouped by file size and file name patterns
in order to identify clusters of files. If an identified cluster contained large groups
of very similar files (such as pages of a Semantic Media Wiki or proofs from
Inference Web), all files belonging to the cluster (based on the domain and file
name pattern) were removed from the corpus. This process was repeated until
a random sample of 100 ontologies appeared heterogeneous enough, i.e. did not
contain large numbers of files with obviously similar file names and sizes. In this
process, the sample was reduced from 207,230 to just above 19,000 files, which
is a reduction by more than 90%.

Domain Names. The file based cluster detection worked well for weeding out the
most prominent clusters of distributed ontologies. We then grouped the remain-
ing files by the domain source and inspected the biggest clusters of domains man-
ually to remove files that have no usage (including mere usage of owl:sameAs).
Some large contributor domains were eliminated almost entirely (productontol-
ogy.com), others required more careful attention (sweet.jpl.nasa.gov, for exam-
ple, provides subsequent versions of each ontology, of which we decided to keep
the latest ones).

The largest clusters identified in the cluster detection stage were data gen-
erated by various Semantic Media Wikis (146,866), files containing formulas,
rules, and related metadata from the Inference Web (19,042). Other notable
clusters were generated by the New York Times subject headings SKOS
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(a) Before manual cluster removal (b) After manual cluster removal

Fig. 1. Similarity graphs before (sample) and after manual cluster removal

vocabulary (10,438), the UniProt Protein Knowledge Base (5,580 RDF files),
as well as files describing instance data of the well-known Friend of a Friend
(FOAF) vocabulary (2,312). In total, the clustering process removed over 50%
of the ontologies in the crawl set, reducing the corpus to 9,871 files which we
presumed to be largely cluster-free.

In order to illustrate the effects of the manual cluster removal, Figure 1 shows
two graphs describing the (pairwise) similarity between the ontologies in the cor-
pus before the clustering (on a random sample of 4,547 out of 207,230 ontologies)
in Figure 1a and after the clustering (the final 4,547 ontologies, as described in
the next section) in Figure 1b. Our notion of similarity is described in section
4.5. We can see that the degree of similarity within the corpus before the filtering
is significantly higher than after the cluster removal, with 2,815 connected com-
ponents before the cluster removal, compared to 521 in the final corpus. Also,
the amount of ontologies with no or only few similarity relations is considerably
lower after the cluster removal (higher degree of uniqueness).

OWL DL Filtering. Having applied the filtering steps described above, the
remaining corpus of OWL ontologies obtained from the crawl contained 9,871
files of which 9,827 files could be loaded.12 Out of these, 208 were empty (ei-
ther no axioms, or no entities in the signature, including annotation properties)
and 3,207 fell under RDF(S). A further 1,865 ontologies were not in the OWL
2 DL profile for reasons other than missing declarations. We consider missing
declarations to be minor violations and thus decided to simply inject them to
ensure a more meaningful profile membership (an ontology with a missing class
declaration should still be in DL if it was in DL without it).

Apart from missing class- (77.4%), annotation- (67.8%), object property-
(34.4%) and data property declarations (15.1%), the main reason for the remain-
ing 1,865 ontologies not falling into OWL DL was the use of reserved vocabulary,
most prominently for class IRIs, which occurred in 62.5% of the ontologies and

12 Since the ontologies were not merged with their imports closure at the time of down-
loading, some ontologies failed loading due to missing imports during the analysis.
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(a) Top level domains (b) Syntaxes (c) File extensions

Fig. 2. Provenance data of the ontologies in the crawl corpus

for object properties in 16.5%. Further, a number of ontologies (up to 5%) suf-
fered from various other invalid IRI problems, such as using an IRI for both a
datatype and a class (5.2%) and using non-absolute IRIs (2.8%). The remaining
issues were caused by the use of non-simple properties in cardinality restrictions.
All these violations—which affected almost one fifth of the 9,827 valid OWL files
we gathered—cause common OWL DL reasoners to either reject or only process
parts of the ontologies.

3.3 Provenance Data

Domain Sources. In the final corpus of 4,547 valid and non-empty OWL files,
we count 728 distinct domains (an average of 6.5 ontologies per domain), spread
across 52 top level domains. The distribution of top level domains is very similar
to the one determined by a Swoogle study characterising the semantic web in
2006 [5]. As Figure 2a shows, ‘.org’ contributes almost half of the documents
(42%), followed by ‘.com’ (12%) and ‘.edu’ (10%).

File Extensions and Syntax. Figures 2b and 2c show an overview of the
OWL syntaxes and file extensions used for the published OWL files. We can
see that the vast majority of ontologies were originally serialised in RDF/XML
(4,170), while only a fraction (less than 1%) were published as OWL/XML files.
The most frequent file extension used was .owl (67% of the files), followed by
.rdf (15%) and .obo (5%). Interestingly, it appears that only a single file in
the corpus had the extension .owx, the recommended extension for OWL/XML
serialisations.13

4 Comparison of OWL Collections

In order to put our crawl-based OWL corpus in context with existing collections
of OWL ontologies, we compare its basic ontology metrics against four commonly
used datasets. The datasets were selected based on their popularity and intended

13 http://www.w3.org/TR/owl2-xml-serialization/
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Table 2. Entity usage (average, median, maximum) in the five collections

Crawl BioPortal Oxford Swoogle TONES

Classes
avg 1,320 11,534 5,652 16 763
med 27 470 209 9 138
max 518,196 847,760 244,232 5,104 524,039

Object properties
avg 43 37 43 11 34
med 8 7 10 15 8
max 4,951 1,390 964 251 922

Data properties
avg 14 9 5 16 13
med 1 0 0 18 0
max 2,501 488 1,371 133 708

Individuals
avg 484 1,075 3,810 29 163
med 1 0 0 15 0
max 604,209 232,646 466,937 855 178,308

Logical axioms
avg 3,789 28,050 49,990 60 1,332
med 69 958 729 8 256
max 740,559 1,163,895 2,492,725 5,098 1,100,724

use as test corpora, as discussed in Section 2.2; thus, some of the less prevalent
sets (e.g. the Protégé library) were excluded. The statistics are given here to
allow a comparison between the collections, but no statement is made about
which dataset is ‘better’, as this obviously depends heavily on the purpose.
Importantly, the collections in this section are largely left untouched and are not
curated in the way the Web Crawl was: they may even contain OWL Full and
RDFS. The only criterion for inclusion apart from availability was parseability
by the OWL API.

The BioPortal and TONES snapshots are from November 2012 and include
those OWL and OBO files that could be downloaded and loaded by the OWL
API. Files that could be retrieved, but not parsed, usually suffered from unre-
solvable imports. The third dataset is a sample from a Swoogle snapshot from
May 2012 containing OWL and SKOS ontologies. We drew a statistically sig-
nificant random sample (99% confidence, confidence interval 3) of 1,839 files
from the Swoogle snapshot, of which 1,757 could be loaded. The last collection
is a snapshot of the Oxford ontology library from April 2013. The final sets
were: Crawl (4,547), BioPortal (292), Oxford (793), Swoogle sample (1,757) and
TONES (205). For the reasons discussed in section 3.2, missing entity declara-
tions were injected prior to metrics gathering in all cases.

4.1 Entity Usage

Classes, Properties, Individuals. Table 2 shows a detailed overview of the
average, median, and maximum values of the relevant logical entities occurring in
the five collections (minimum numbers were 0 in all collections, thus they are not
listed in the table). Swoogle clearly stands out as a collection with comparatively
small numbers of entities per ontology. On average, both the BioPortal and
Oxford collections contain very large numbers of logical axioms and classes,
with the Oxford collection also containing several ontologies that are particularly



A Snapshot of the OWL Web 341

1

10

100

1000

10000

(a) Absolute distribution

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%
Crawl

BioPortal

Oxford

Swoogle

TONES

(b) Relative distributions

Fig. 3. Distribution of ontology sizes, binned by number of logical axioms

heavy on individuals. In comparison, the crawl corpus contains ontologies with
on average significantly fewer classes than the curated repositories.

Logical Axioms. In addition to the logical axiom counts given in Table 2,
Figures 3a and 3b show a comparison of the ontology sizes in the five collections,
sorted into six size bins ranging from less than 10 to over 100,000 logical axioms.
We can see that the majority of ontologies in the crawl-based collections (Crawl
and Swoogle) are in the lower two bins of fairly small ontologies (less than 100
axioms), whereas the other three collections roughly follow a normal distribution
(given this particular binning). On closer inspection we find that the Swoogle
snapshot still contains a large number of trivial files from the Semantic Media
Wiki, which significantly adds to the number of small ontologies. In the case of
the Oxford library and TONES this is likely to be due to the editors explicitly
selecting a range of ‘interesting’ (i.e. medium to large) ontologies.

4.2 Constructors and Axiom Types

Constructors. Figure 4 shows a comparison of the constructor usage in the five
collections (as returned by the OWLAPI). In the crawl corpus, we can see that be-
yond the basic constructors in AL (intersection, universal restrictions, existential
restrictions of the type ∃r.�, and atomic negation) which are used by the major-
ity (88%) of ontologies in the crawl, property-based constructors, such as inverse
properties I (35% of ontologies) and property hierarchies H (30%), are the most
prevalent across the crawl corpus. Perhaps surprisingly, full existential restriction
(of the type ∃r.C for a possibly complex expression C) are only used in 16% of
the ontologies. Furthermore, only a very small number of ontologies make use of
qualified number restrictions Q (5%) and complex property hierarchies R (4%),
which might be explained by the fact that they were only introduced with OWL 2.

Regarding the other collections, the Swoogle snapshot only makes use of very
few constructors, leaving out most of the more expressive ones.
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Fig. 4. Frequency of OWL constructor usage in the five collections. Bar height indicates
the proportion of ontologies in a collection that use the constructor.

Looking at the axiom type usage in Table 3, this may be explained by the
fact that the Swoogle snapshot contains mainly assertion axioms which, in this
case, only contain atomic entities and no complex constructors. On the other
end of the spectrum, the remaining collections contain similarly large numbers
of ontologies using property-related constructors such as transitive properties
(TRAN), inverse properties I, and property hierarchies H. While there is no
general trend towards a ‘most complex’ collection, we can find high numbers
of ontologies with transitive properties in the BioPortal and Oxford collections,
whereas the crawl corpus contains a comparatively large number of ontologies
with nominals O (28%) and unqualified number restrictions N , and all three
curated collections (BioPortal, Oxford, and TONES) contain (proportionally)
more full existential restrictions E than the crawl. As with the crawl corpus,
the least used constructors in all collections are qualified number restrictions Q
and complex property hierarchies R, along with the union (‘or’) operator, which
occurs in less than 10% of ontologies in all collections.

Axiom Types. Table 3 shows an overview of the most frequent axiom types
(in terms of total usage in all collections, not taking into account entity dec-
larations).14 We can see that by far the most frequently used axiom types in
the crawl corpus are AnnotationAssertion and SubClassOf axioms. Domain and
range axioms on object properties also occur in nearly half of the ontologies
in the corpus; interestingly, their frequency is roughly pairwise identical across
all collections, which may indicate that ontology developers generally add do-
main and range axioms together when introducing object properties. As we have
already seen in the discussion on constructors, object property related axiom
types such as subproperties, transitive and inverse properties occur frequently in

14 Note that annotations were removed during the BioPortal download and serialisation
process; thus, the corpus does not contain any AnnotationAssertion axioms.
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Table 3. Axiom type usage as proportion of ontologies that use an axiom type

Crawl BioPortal Oxford Swoogle TONES

SubClassOf 77.0% 96.9% 79.4% 5.6% 92.2%
AnnotationAssertion 78.1% - 88.9% 36.4% 68.3%
ClassAssertion 44.8% 30.0% 69.7% 35.5% 26.3%
ObjectPropertyRange 47.2% 36.5% 45.8% 1.0% 44.4%
ObjectPropertyDomain 45.6% 38.2% 44.1% 0.9% 43.4%
EquivalentClasses 36.8% 37.9% 44.6% 1.1% 45.4%
SubObjectPropertyOf 30.1% 40.6% 44.4% 0.6% 34.6%
TransitiveObjectProperty 22.0% 46.1% 42.9% 0.3% 28.3%
DisjointClasses 31.0% 42.3% 24.8% 0.3% 41.0%
InverseObjectProperties 31.1% 33.4% 32.8% 0.6% 27.3%
DataPropertyRange 31.5% 29.7% 15.1% 0.6% 27.3%
FunctionalObjectProperty 18.4% 29.4% 24.3% 0.2% 26.8%
DataPropertyDomain 29.6% 27.3% 13.7% 0.5% 22.9%
ObjectPropertyAssertion 17.2% 13.3% 18.5% 26.2% 12.2%
FunctionalDataProperty 15.2% 21.2% 5.4% 0.2% 20.0%
DataPropertyAssertion 13.0% 9.6% 10.8% 19.0% 6.8%

between one fifth and nearly half of the ontologies in the different collections
(with the exception of Swoogle). Class related axioms, such as DisjointClasses
and EquivalentClasses, can be found equally often in the four collections. This
shows that, while the clear majority of axioms are fairly ‘trivial’ SubClassOf
and ClassAssertion axioms, more complex axiom types occur frequently in these
OWL ontologies.

4.3 Datatypes

Regarding the usage of datatypes, we found that a very small number of built-in
datatypes occur frequently in the five collections, whereas the remaining types
are only used rarely. The most frequently used datatypes are rdf:plainLiteral (be-
tween 25.9% in BioPortal15 and 82.1% of the ontologies in the Oxford corpus)
and xsd:string datatypes (between 26.8% in the Swoogle snapshot and 59.7%
in our crawl corpus). In the Swoogle snapshot, the general datatype usage is
lower than in the other collections, with a maximum of only 36.6% of ontolo-
gies using rdf:plainLiteral. Interestingly, however, the ontologies in the Swoogle
snapshot make more frequent use of xsd:integer (25.3%), xsd:dateTime (25.1% of
ontologies), and xsd:decimal (24.2%) than the other collections, which all range
between only 1.5% and 10.7% for these types. Finally, across the collections,
most other built-in datatypes occur in a small number of ontologies, with the
exception of rdfs:literal, which can be found in 18% of the ontologies in the crawl
corpus, and xsd:anyURI, which is used in over a third (37.8%) of the ontologies
in the Oxford collection.

4.4 OWL Profiles

As mentioned in Section 2, the OWL 2 profiles are relevant for OWL reasoners,
which are only compatible with OWL DL ontologies, or may be tailored towards

15 Due to the removal of annotations in the BioPortal download it is likely that the
figures for the BioPortal collection are lower than they would be with annotations.
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Table 4. OWL 2 profiles in the collections

Crawl BioPortal Oxford Swoogle TONES

Full 0.0% 17.1% 15.3% 3.2% 22.4%
DL 100% 82.9% 84.7% 96.8% 77.6%

EL only 1.8% 16.4% 3.0% 0.0% 9.8%
EL total 4.0% 29.4% 3.2% 0.6% 19.0%

QL only 3.6% 0.7% 0.9% 0.1% 0.0%
QL total 4.8% 33.2% 9.2% 57.5% 18.0%

RL only 15.4% 1.0% 18.0% 33.3% 2.0%
RL total 19.6% 22.9% 27.1% 90.3% 11.7%

DL only 72.7% 29.8% 53.6% 5.8% 46.8%

Table 5. Overlap comparison
between the collections

Corpus 1 Corpus 2 Sim. Con.

Crawl BioPortal 10.9% 17.6%
Crawl TONES 11.8% 19.1%
TONES BioPortal 11.9% 17.9%
Swoogle Oxford 12.5% 17.3%
Swoogle BioPortal 14.2% 15.9%
Swoogle TONES 15.0% 17.1%
Crawl Swoogle 15.1% 36.3%
Oxford BioPortal 16.7% 23.2%
Crawl Oxford 16.8% 24.2%
TONES Oxford 19.1% 27.0%

a specific subset of OWL 2 DL. Table 4 shows an overview of the profiles for the
different ontologies. Note that the profiles are not exclusive, that is, an ontology
in one profile may also be in the other profiles; thus, we distinguish between
ontologies which are in one profile only, and the total proportion of ontologies
in a profile (including other profiles). ‘DL only’ denotes the proportion of OWL
DL ontologies that do not fall into any of the three sub-profiles.

Across the collections, the level of OWL DL ontologies is fairly high (minimum
77.6% in TONES), whereas the occurrence of ontologies in the OWL profiles
varies strongly. We can see immediately that the majority of ontologies in the
crawl corpus does not fall into any of the sub-profiles EL, QL, or RL, whereas
the Swoogle ontologies are largely in a combination of the RL and QL profiles
(due to them being fairly inexpressive), with only a fraction (5.8%) being more
expressive. A comparatively large number of ontologies (16.4%) in BioPortal fall
into the OWL 2 EL (only) profile, which is likely caused by the presence of
many large bio-medical ontologies in the corpus that are explicitly designed to
be in EL. On the other hand, there are almost no QL or RL only ontologies in
BioPortal.

4.5 Overlap Analysis

In order to determine the to which extent the different collections overlap (i.e.
shared ontologies), we performed a pairwise comparison of the ontologies in
each of the five collections based on two measurements: a) two ontologies are
similar if the overlap (the intersection of the signatures divided by the union of
the signatures) is at least 90%. b) There exists a containment relation between
two ontologies O1, O2, if sig(O1) ⊆ sig(O2) or sig(O2) ⊆ (O1). As shown
in Table 5, the pairwise similarity overlap (Sim.) between the collections ranges
between 10.9% (crawl vs. BioPortal) and 19.1% (TONES vs. Oxford repository).
The containment overlap (Con.) between the collections is significantly higher,
ranging between 15.9% (Swoogle vs. BioPortal) and 36.3% for the containment
relations between the crawl corpus and the Swoogle sample, which is likely to
be caused by the heavy use of Swoogle results as seeds for the web crawler.
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5 Conclusions and Future Work

In this paper, we have presented an overview of the OWL ontology landscape
with a focus on the application of different collections for empirical evaluations.
We presented an approach to creating a large yet interesting corpus of OWL
DL ontologies suitable for testing and evaluation purposes, characterised the
corpus, and compared it to other existing collections of OWL ontologies, such
as the NCBO BioPortal and a random sample from the Swoogle search engine.
We have seen that drawing a random sample from an unfiltered crawl-based
collection may be representative for the general population of OWL files ‘found
on the web’, however, it does not yield relevant data to be used for measuring, for
example, reasoner performance on ‘actual’ ontologies. The direct comparison of
these ontology metrics allows OWL tool developers to make an informed decision
when selecting a suitable collection of OWL ontologies for testing purposes, while
it also shows that a careful filtering procedure of a crawl-based corpus brings
the resulting set closer to curated repositories in terms of ontology size and
expressivity.

While we believe that we have laid the foundations for a large, crawl-based
repository of ontologies for empirical evaluations, we acknowledge some of the
limitations our current collection strategy suffers from:
1. Resource limitations (essentially memory allocated to the Java Virtual Ma-

chine) might have caused a few very big ontologies to have slipped through
in the initial steps of the curation procedure.

2. Web crawlers may not reach the Hidden or Deep Web.
3. The manual curation steps are not easily repeatable.
4. Problems with unavailable ontology imports.
The main limitations of our approach stem from general problems with web
crawling, since it is unlikely that we will be able to index all OWL ontologies
that are reachable on the web. However, we expect that a stronger focus on meta
crawling (i.e. crawling search engines) and more extensive (manual) repository
reviewing will gradually expand our seed. With the insights we have gained into
general cluster characteristics, we aim to replace the manual filtering procedures
by automated ones. The problem of unavailable ontology imports can be easily
solved by downloading the imports closure of an ontology in the crawling and
ontology validation process.

In addition to improving the crawling and validation strategies and the anal-
ysis of the actual content of the ontologies, we focus on establishing a repository
of OWL ontologies that allows researchers to retrieve specific samples of ontolo-
gies for various empirical tasks. One common problem for ontology researchers
is the retrieval of a set of ontologies of a particular characteristic, for example
‘a set of OWL 2 EL ontologies with more than 100 axioms’. We plan to provide
an infrastructure that makes it possible to retrieve datasets that can also be
made permanently accessible to other researchers, thus aiding the reproducibil-
ity of empirical experimentation. A prototype of this repository can be found at
http://owl.cs.manchester.ac.uk/owlcorpus.

Nicolas Matentzoglu is supported by a CDT grant by the UK EPSRC.

http://owl.cs.manchester.ac.uk/owlcorpus
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Abstract. Web-scale relation extraction is a means for building and extending
large repositories of formalized knowledge. This type of automated knowledge
building requires a decent level of precision, which is hard to achieve with au-
tomatically acquired rule sets learned from unlabeled data by means of distant
or minimal supervision. This paper shows how precision of relation extraction
can be considerably improved by employing a wide-coverage, general-purpose
lexical semantic network, i.e., BabelNet, for effective semantic rule filtering. We
apply Word Sense Disambiguation to the content words of the automatically ex-
tracted rules. As a result a set of relation-specific relevant concepts is obtained,
and each of these concepts is then used to represent the structured semantics of
the corresponding relation. The resulting relation-specific subgraphs of BabelNet
are used as semantic filters for estimating the adequacy of the extracted rules. For
the seven semantic relations tested here, the semantic filter consistently yields a
higher precision at any relative recall value in the high-recall range.

Keywords: Relation Extraction, Semantics, WSD, Rule Filtering, Web-scale,
Semantic relations.

1 Introduction

Information Extraction (IE) automatically finds relevant entities or relations (including
facts and events) in natural language texts. The task of Relation Extraction (RE) is
to recognize and extract instances of semantic relations between entities or concepts
mentioned in these texts. Usually the relations are given, but they may also be induced
from the data, as in Open IE [3] where tuples of potential relations are extracted without
role labeling. In this paper, we address Web-scale domain-adaptive RE with semantic
labeling for given relations of varying arity.

Precision and recall are two important performance measurements. In the past, re-
call, scalability, domain adaptability and efficiency were regarded as much greater chal-
lenges than achieving high precision, because research employed learning data limited
in size, types and domains that did not give rise to the noise levels encountered when
using the Web as learning corpus. Much research also concentrated on intelligence ap-
plications, where recall is much more important than precision. But the limited learning
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data were not sufficient to overcome the recall barriers, because of the long tail in the
skewed frequency distribution of relevant linguistic patterns. Today, the availability of
(i) large open-source knowledge databases such as Freebase [6], (ii) nearly unlimited
textual resources on the Web and (iii) efficient NLP systems such as dependency parsers
(e.g., [2,46]) enables the creation of large-scale distantly (or minimally) supervised RE
systems for many relations with acceptable efficiency [22,25,36,38,59]. These systems
can achieve much better recall without the need for larger volumes of labeled data.
Their drawback is their lack of precision, resulting from the large number of candi-
date patterns which are selected but not sufficiently constrained by the seed knowledge.
Filtering by lexical features (e.g., part-of-speech information, word sequences, etc.),
syntactic features such as dependency relations, or simple manually-defined heuristics
[1,4,8,22,25] does not suffice. A major open challenge is the exploitation of semantic
information in the text and in existing semantic resources beyond the seed data. Several
recent approaches add secondary semantic features to their systems which, however,
have been shown to offer only slight improvements in RE precision [19,60].

In this paper, we propose a new method that automatically learns relation-specific
lexical semantic resources from a general-purpose knowledge base without any task-
specific manual annotation. The input of this unsupervised learning method is a large
collection of noisy RE patterns (40K rules per relation on average) acquired by the
RE system Web-DARE [22], together with their sentence mentions from 20M Web
pages retrieved by searching for the named-entity tuples of the seed facts. The pat-
terns are dependency structures extracted from the parse trees of the sentence mentions.
The learning system acquires relation-relevant word senses by applying Word Sense
Disambiguation [30] to the words in the patterns and then extracts the corresponding
relation-specific lexical semantic subgraphs from a large-scale general purpose lexical
semantic network, i.e., BabelNet [31]. These relation-specific subgraphs are utilized as
semantic knowledge for filtering out bad rules. In contrast to frequency-based filters,
our semantic rule filter, on the one hand, deletes those high-frequency rules which do
not contain any relation-relevant words, but at the same time, on the other hand, it also
preserves any low-frequency rules which are semantically relevant (owing to their low
frequency such rules would previously have been, erroneously, filtered out). It thereby
increases both precision and recall.

The main contributions of this paper are to:

– introduce a novel unsupervised, scalable learning method for automatically build-
ing relation-specific lexical semantic graphs representing the semantics of the con-
sidered relation. Moreover, we show the usefulness of these graphs for filtering
semantically irrelevant rules and improving the precision of large-scale RE;

– report on a first comparison of WordNet and BabelNet with respect to improving
RE: BabelNet achieves better recall and F-score than WordNet both in rule filtering
and in RE;

– demonstrate that relation-specific lexical semantic resources can improve RE per-
formance: For seven semantic relations tested, the semantic filter consistently yields
a higher precision at any relative recall value in the high-recall range.
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2 Related Work

In recent years several approaches to RE have tried to circumvent the costly, and still
not satisfactory, corpus annotation needed for supervised learning. Minimally or weakly
supervised methods start with limited initial knowledge and unlabeled data. By a boot-
strapping process partial labeling of data and system training are performed in several
iterations (e.g., [1,7,8,39,55]). However, these systems often have to cope with low re-
call and precision, the latter partially due to semantic drift.

A newer class of approaches, sometimes referred to as distant supervision, utilizes
extensive volumes of preexisting knowledge for partially labeling large volumes of data.
[25] train a linear-regression classifier on Freebase relation instances occurring in a
large Wikipedia corpus. In order to achieve high precision (without much consideration
for recall), lexical features, syntactic dependency information and negative examples
are employed. The resulting precision is 67.6% for 10,000 sampled instances of 102
relations.

Open IE systems such as TextRunner and its successors [3,4,13,56], together with
subsequent developments [48,27,28], detect instance candidates of any unknown rela-
tion. The Open IE task, however, is faced with even higher levels of noise. Shallow
linguistic analysis and numerous heuristics based on lexical features and frequencies
are utilized to filter out noisy or irrelevant information for both learning and extraction.

However, all these RE methods are faced with the problem of estimating the con-
fidence of automatically labeled information and learned rules. Some approaches use
the confidence value of the extracted instances or the seed examples as feedback for
estimating the confidence of rules [1,7,55]. In most cases, however, the confidence
values rely on redundancy. Many approaches utilize negative examples for filtering
[25,51,54]. As mentioned above, lexical features such as word sequences or part-of-
speech information are often utilized for further filtering [3,4,25,56]. Some approaches
employ domain-relevant terms for filtering rules [35,52]. Web-DARE [22] filters rules
by their absolute frequency and their relative frequency in comparison to other related
relations (overlap). In order to improve precision, NELL – a large-scale RE system de-
signed to learn factual knowledge from the Web in a never-ending manner [8] – employs
the “coupled learning” of a collection of classifiers for several relations. By exploiting
this method it is possible to filter out noisy relation instances recognized by mutually
exclusive classifiers. However, even if some of these approaches reach the goal of high
precision, this is obtained at the cost of recall.

To obtain high precision while at the same time preserving recall, the use of semantic
approaches can be highly beneficial. One of the first attempts was presented in [24]
where the authors proposed a method for adding semantic features to the labeled data
used for training a syntactic parser. However, even if the authors obtained promising
results, the major drawback of this approach is the need for huge volumes of annotated
data, which, even today, is hard to obtain. Other approaches add semantic features to
feature-based RE systems that learn relation-specific extractors [20,60]. However, none
of these approaches has taken full advantage of syntactic and semantic analysis, and thus
they have achieved only small improvements [19]. A recent trend in this research strand
is the utilization of tree kernel-based approaches, which can efficiently represent high-
dimensional feature spaces [36,59]. However, supervision is stil required and semantic
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analysis is only marginally employed. In contrast, in this paper we draw only upon
semantic knowledge to obtain significant improvements over non-semantic systems.

To integrate and make the most of semantics in RE systems we need a lexical rep-
resentation of knowledge that can be exploited to obtain a semantic description of the
relations. In contrast to many state-of-the-art resources [15,18,29], BabelNet [31] in-
tegrates encyclopedic (i.e., from Wikipedia) and lexicographic knowledge (i.e., from
WordNet) to obtain a rich multilingual “encyclopedic dictionary”.

3 Web-DARE and NELL

Our goal is to leverage semantic knowledge to improve the quality of the RE rules
learned by two Web-scale RE systems, i.e., Web-DARE and NELL, introduced
hereafter.

3.1 Web-DARE

The Web-DARE system [22] learns RE rules for n-ary relations in a distant-supervision
manner [25]. For 39 relations, 200k instances, i.e. seeds, were collected from the freely-
available knowledge base Freebase. Utilizing these relation instances as Web-search
queries, a total of 20M Web pages were retrieved and processed, extracting from them
3M sentences mentioning the arguments (entities) of a seed instance. After analyzing
these sentences by additional NER and parsing, 1.5M RE rules were extracted from the
dependency parses. The following example rule contains four arguments, two married
persons plus the wedding location and the starting date of the marriage:

(1) person marry
nsubj�� dobj ��

prep�� prep ��

person

location in
pobj�� on

pobj ��
date

FO-Filter. The reported recall for Web-DARE is rather high. To overcome the ex-
tremely low precision, a rule filter (called FO-Filter) is introduced based on the rule
frequency and mutual exclusiveness of relations with similar entity-type signatures.
Whenever a particular rule has been learned for more than one relation, it will be added
to one relation if its relative frequency in this relation is the highest in comparison to
other relations. Rule frequency is the number of the sentence mentions from which a
rule has been learned. Relative frequency of a rule in a relation is calculated on the basis
of the frequency of this rule in this relation compared to the total frequency of all rules
in this relation. Furthermore, a frequency threshold has been applied to exclude rules
with low frequency.

3.2 NELL
NELL [8] is a system designed to learn factual knowledge from an immense corpus
over a long period. NELL’s background ontology contains several hundred entity types
(categories) and binary relations, which are related in that certain pairs of categories
or relations are marked as being sub- or supersets of each other, or as being mutually
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exclusive. This coupling of relations is beneficial when estimating the correctness of
newly extracted facts. Earlier versions of NELL, described by [5] and [9], were based
mainly on a learner of lexico-syntactic rules. The architecture was extended with an
extractor working on semi-structured parts of Web pages, i.e., HTML lists and tables,
by [10]. Afterwards, a classifier for categorizing noun phrases into entity types based
on morphological features as well as an inference-rule learning component was added
to NELL [8,23]. NELL’s rules are binary and surface-level oriented, as illustrated by
the following example:

(1) person and husband person.

While in the NELL system these patterns are only a single piece in a bigger learning and
extraction pipeline, we employ them here on their own for RE. The NELL rules serve
mainly as an additional testing ground for our semantic filter. This implies that the RE
results presented in Section 6 are not representative of the performance of NELL itself.

4 WordNet and BabelNet

In this section we give a brief overview of the knowledge bases that we use to ob-
tain a semantic description of the considered relations. The first is WordNet [15] which
is a manually-created lexical network of the English language, initiated by George A.
Miller in the mid-1980s. The two main components of this resource are the synsets and
the semantic relations between them. A synset is a set of synonyms representing the
same concept. Each synset is connected to other synsets through lexical and semantic
relations. There are roughly 20 relations, among which are hyponymy, meronymy and
entailment.

The second resource that we draw upon is BabelNet1 [31], a large-scale multilingual
semantic network which, in contrast to WordNet, was built automatically through the
algorithmic integration of Wikipedia and WordNet. Its core components are the Babel
synsets, which are sets of multilingual synonyms. Each Babel synset is related to other
Babel synsets by semantic relations such as hypernymy, meronymy and semantic relat-
edness, obtained from WordNet and Wikipedia. Moreover, since BabelNet is the result
of the integration of a lexical resource and an encyclopedic resource, it is perfectly in
line with the multilingual linguistic Linked Open Data project [12]. This project con-
sists of a vision of the Semantic Web in which a wealth of linguistic resources are linked
to each other so as to obtain a bigger and optimal representation of knowledge [32].

One major difference between these two resources is in respect of their considerably
different sizes, both in terms of number of concepts and semantic relation instances. On
the one hand, WordNet provides roughly 100K synsets, 150K lexicalizations and 300K
relation instances. On the other hand, BabelNet contains roughly 5.5M synsets, 15M
lexicalizations and 140M relation instances. Moreover, given the multilingual nature of
BabelNet (the current version 1.1.1 considers six different languages: Catalan, English,
French, German, Italian and Spanish), this resource can exploit multilinguality to per-
form state-of-the-art knowledge-based Word Sense Disambiguation [33] (in contrast to
WordNet which encodes only English lexicalizations), thereby enabling new methods
for the automatic understanding of the multilingual (Semantic) Web.

1 http://babelnet.org

http://babelnet.org
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5 Rule Filtering with Relation-Specific Semantic Graphs

Current statistical approaches to the rule filtering problem do not take into account the
semantic information available within the rules. As a consequence they are not able
to identify bad rules, which, from the point of view of the extracted arguments, look
correct. For instance, the rule PERSON met PERSON, extracted for the relation mar-
ried, is not specific to the considered semantic relation even if it extracts several good
relation instances. We tackle this issue by introducing a novel approach to explicitly
represent the semantics of each rule and relation. To do this, we apply Word Sense Dis-
ambiguation (WSD) to the automatically extracted rules and then build relation-specific
semantic graphs which represent the semantics of the considered relation. For instance,
our semantic representation of the relation married contains concepts that are seman-
tically distant from the concepts usually associated with the term met. As a result, our
approach is able to correctly filter out the aforementioned rule.

5.1 Building Semantic Graphs

Given a semantic relation ρ , we consider the set of rules Rρ automatically extracted by
the Web-DARE system, together with the set S of sentences from which these rules were
extracted. Our goal is to build a semantic representation for the relation ρ . In Algorithm
1 we show the pseudocode of our semantic graph construction approach, described in
the following.

WSD (lines 4–13 of Algorithm 1). In this first part of the algorithm we compute a fre-
quency distribution over the synsets of the considered knowledge base for the semantic
relation ρ . Given the set S of sentences used by the Web-DARE system and a rule
r ∈ Rρ , we define the subset Sr ⊂ S as the set of sentences from which the rule r was ex-
tracted (see line 6). For instance, we add the sentence It was here that the beautiful Etta
Place first met Harry Longabaugh to the set SPERSON_met_PERSON. Then, for each sen-
tence s in Sr, we perform WSD on each content word of the rule r using the remaining
content words of s as context (see line 9). For instance, using the previous sentence and
given the word met, we use as context the following words: was, here, beautiful, Etta,
Place, first, Harry, Longabaugh obtaining the synset2 meet1v . We use an off-the-shelf
API for knowledge-based WSD3 which exploits a knowledge base and graph connec-
tivity measures to disambiguate words [34]. For each synset selected by the WSD API,
we increment its count (see line 10 in Algorithm 1). As a result of this step, we obtain
Σρ , a synset frequency distribution representing the unstructured semantics of the given
relation ρ (see lines 4–10 in Algorithm 1). Then, to avoid data sparsity, we discard all
the synsets that occur only once (lines 11–13). For example, given the semantic relation
ρ = marriage, the most frequent synsets returned by the WSD API are: marry1

v , wife1
n

and husband1
n.

2 For ease of readability, in what follows we use senses to denote the corresponding synsets. We
follow [30] and denote with wi

p the i-th sense of w with part of speech p.
3 We did not use supervised approaches as they would have required a separated training phase

for each considered domain.
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Algorithm 1. Building the relation-specific semantic graph
1: input: S, the set of sentences from which the rules where extracted;

Rρ , the set of rules automatically extracted for the the relation ρ;
Ekb, the edges, i.e. the semantic relation instances, of the knowledge base;
k, our free parameter.

2: output: Gρ , the semantic graph for ρ .
3: function SEMANTICGRAPH(S,Rρ,Ekb,k)
4: Σρ := Map<Synset, Integer>
5: for each r ∈ Rρ do
6: Sr := {s ∈ S : s matches r}
7: for each sentence ∈ Sr do
8: for each word ∈ contentWords(r) do
9: synset :=W SD(word, sentence)

10: Σρ [synset]++ // we increase by one the integer associated with the synset

11: for each synset ∈ keys(Σρ ) do
12: if Σρ [synset] = 1 then
13: Σρ .remove(synset)

14: Γρ := Top(Σρ ,k) // we initialize the core synsets with the top-k most frequent synsets
15: for each synset ∈ keys(Σρ ) do
16: if ∃synset′ ∈ Top(Σρ ,k) s.t. (synset,synset′) ∈ Ekb then
17: Γρ := Γρ ∪{synset}

18: return Gρ := (Γρ ,{(synset1,synset2) ∈ Ekb : synset1,synset2 ∈ Γρ})

marry1
v

wife1
n husband1

n

marriage1
n

divorce1
n

divorce2
v

Fig. 1. An excerpt of the semantic graph associated with the relation marriage with k = 2

Core Synsets (lines 14–18 of Algorithm 1). In the second part of Algorithm 1 we build
a subset Γρ ⊆ Σρ of core synsets, i.e., the most semantically representative concepts
for a semantic relation ρ . We initialize Γρ with the top-k most frequent synsets in Σρ
(line 14). For instance, with k = 2 and the relation ρ = marriage, we have Γmarriage :=
{marry1

v ,wife1
n}. We then look at each synset s in Σρ and we check if there exists a

semantic relation in the knowledge base that connects the synset s to any of the top-k
frequent synsets. If this is the case, we augment Γρ with s, i.e., we extend our initial set
of core synsets with additional semantically related synsets (lines 15–17). For example,
with k = 2 and the relation ρ = marriage, we add husband1

n, marriage1
n and divorce2

v to
Γmarriage, among others (see Figure 1). Finally, the algorithm returns the subgraph Gρ
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Algorithm 2. Classifying the rules of a semantic relation
1: input: Gρ , the semantic graph associated with the relation ρ;

Rρ , the set of rules associated with the relation ρ;
2: output: GR, the good rules
3: function FILTER(Gρ,Rρ )
4: GR := /0
5: for each rule ∈ Rρ do
6: if ∃ word ∈ contentWords(rule), synset ∈V (Gρ ) such that

word ∈ lexicalizations(synset) then
7: GR := GR∪{rule};

8: return GR;

of the given knowledge base induced by the set of core synsets Γρ (see line 18), which
will be used to filter out bad rules as described in Section 5.2. An excerpt of the kind of
graphs that we obtain is shown in Figure 1.

5.2 Filtering Out Bad Rules

We now describe our semantic filter, whose pseudocode is shown in Algorithm 2, which
filters out bad rules by exploiting the semantic graph Gρ previously described. For each
rule r ∈ Rρ associated with a semantic relation ρ , we check if any of its content words
matches one lexicalization of the concepts contained in the semantic graph Gρ (see line
6). If this is the case we mark r as a good rule, otherwise we filter out r. For instance,
our filter recognizes the rule PERSON married PERSON as a good rule, while filtering
out PERSON met PERSON because none of the senses of meetv matches any of the core
synsets automatically associated with the relation married.

6 Experiments and Evaluations

6.1 Experimental Setup

Overview. We carried out two different experiments to assess the quality of our seman-
tic filtering algorithm: an intrinsic evaluation (i.e., evaluating the quality of the filtered
rules against a gold-standard rule set without taking into account the extraction perfor-
mance) and an extrinsic evaluation (i.e., determining its effect on recall and precision of
real RE). In both evaluations, we experiment with different values of k for Algorithm 1,
ranging from 1 to 15.

Our evaluation aims at obtaining insights concerning the following aspects:

– rule-frequency driven FO Filter vs. filtering based on lexical semantics: We test
our semantic rule filter against the previous FO-Filter to compare the performance
difference.

– impact of the selection among lexical semantic resources: We evaluate the effects
of training our filtering algorithm with two different knowledge bases: manually
generated WordNet vs. BabelNet, a massive extension of WordNet automatically
created from Wikipedia information (cf. Section 4).
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Table 1. Statistics about (a) the input data for the rule filters, (b) the gold standard for intrinsic
evaluation, (c) the baseline (pre-filtering) performance for the extrinsic evaluation. Values are
shown for both Web-DARE (WD) and NELL (N) systems. “Freebase Mentions” refers to the
number of correctly identified Freebase mentions in a sample of the evaluation corpus.

INPUT
INTRINSIC

(SEC. 6.2)
EXTRINSIC (SEC. 6.3)

Relation # Rules
# Gold-Set

Rules
# Extracted

Mentions
Baseline
Precision

# Freebase
Mentions

WD N WD (+|-) WD N WD N WD N WD ∪ N

acquisition 26,986 272 52|48 17,913 296 14.20% 28.04% 93 1 93
marriage 88,350 547 47|53 92,780 2,586 11.60% 8.50% 161 9 168
person birth 22,377 995 50|50 63,819 2,607 36.50% 5.60% 77 0 77
person death 31,559 5 50|50 84,739 17 18.00% 100.00% 300 0 300
person parent 45,093 956 22|78 93,800 358 13.20% 66.20% 91 5 92
place lived 47,689 829 51|49 84,389 3,155 47.90% 92.00% 68 38 106
sibling relationship 26,250 432 12|88 59,465 211 5.60% 51.18% 48 2 49

sum 288,304 4,036 284|416 496,905 9,230 – – 838 55 885
average 41,186 577 41|59 70,986 1,319 21.00% 50.22% 120 20 126

– generality of the semantic filtering method: We also apply our filtering to the NELL
rule set to check whether the filtering is general enough to apply beyond DARE
rules.

Table 1 lists our target relations in column “Relation” while in column “INPUT” we
show the respective number of rules given by the Web-DARE and NELL4 systems.

6.2 Intrinsic Evaluation

Dataset. For the intrinsic evaluation, we manually validate a set of 700 Web-DARE
rules to create a balanced gold standard of correct rules (+) and incorrect ones (-) from
all target relations. Column “INTRINSIC” of Table 1 presents the number of manually
validated rules per relation.

Results. In this section we describe the intrinsic evaluation of our filtering algorithm.
To evaluate the filtered rules, we compute their precision, recall and F-score against
the manually built gold standard rule set. We do this without considering the relation
extraction performance of the filtered rules, i.e., how many good relation instances are
effectively extracted by these rules, as this is the focus of the extrinsic evaluation.

Figure 2 displays precision, recall and F-score values for the total set of seven se-
mantic relations using WordNet and BabelNet as knowledge bases and varying the pa-
rameter k from 1 to 15 (see Algorithm 1 in Section 5). As Figure 2 shows, we obtain a
considerable increase in recall by using BabelNet instead of WordNet (with a maximum
value of roughly 90% for BabelNet and 70% for WordNet). Despite the gain in recall

4 NELL rules were taken from iteration 680,
http://rtw.ml.cmu.edu/resources/results/08m/

http://rtw.ml.cmu.edu/resources/results/08m/
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Fig. 2. Precision, Recall and F-score considering all the 7 semantic relations, using WordNet
(dotted) and BabelNet (solid), varying the value k from 1 to 15

for the BabelNet filter, precision stays roughly the same as for the WordNet filter (for
each value of k), which yields an F-score boost of roughly 10%.

The main reason for the observed improvement can be found in the rich set of seman-
tic relation instances of BabelNet, i.e. when using BabelNet as our knowledge base, the
filtering method is able to discover semantic connections between concepts that are not
provided by WordNet. For instance, WordNet does not contain a semantic connection
between the concepts of marriage and divorce, whereas BabelNet does.

6.3 Extrinsic Evaluation

Dataset. In the extrinsic evaluation, we use the Los Angeles Times/Washington Post
(henceforth LTW) portion of the English Gigaword v5 corpus [37] for RE. LTW is
comprised of 400K newswire documents from the period 1994–2009. We match all
Web-DARE and NELL rules against the LTW corpus, resulting in more than 500K
detected relation mentions, shown in column “EXTRINSIC” of Table 1. To estimate
the precision of RE, we manually check a random sample of 1K extracted mentions
per relation and system, giving us the pre-filtering performance depicted in column
“Baseline Precision”. To estimate the RE coverage of the rules, we investigate how
many mentions of Freebase facts the systems find on LTW. The values are listed in the
last three columns of Table 1, labeled “Freebase Mentions”. Only actual mentions are
taken into account, i.e., sentences containing the entities of a Freebase fact and actually
referring to the corresponding target relation. Relative recall values stated in this section
are to be understood as recall with respect to the set of Freebase-fact mentions found
by at least one of the two rule sets (Web-DARE/NELL), i.e., relative to the very last
column of Table 1.

Semantic Filter for Web-DARE Rules. Figure 3 presents the precision vs. relative
recall results of RE when performed with the baseline Web-DARE rules, the statistical
approach (FO-Filter) and our semantic filtering algorithm (S-Filter) using BabelNet and
WordNet. The FO-filter is able to increase the precision from the baseline of 20% up
to close to 100%, since by varying the frequency threshold, any value between 40%
and 98% can be reached. But this filtering sacrifices a large portion of the initial recall.
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Fig. 3. RE performance of Web-DARE rules with different applied filters. Dashed curves in gray
depict points with equal F1 score. For the semantic filter (“S-Filter”), the curves resulted from
varying k from 1 to 15. FO-Filter is described in [22]. Results are averaged over seven relations.

Table 2. Impact of WordNet (WN) vs. BabelNet (BN) utilization on Web-DARE rule filtering.
Results are averaged over seven relations, all values are in %.

k (Alg. 1)
Precision Recall F1

WN BN WN BN WN BN

(Basel.) 21.00 93.83 34.32
15 33.24 38.50 68.87 84.37 44.84 52.87
10 38.89 46.16 68.01 82.20 49.48 59.12
5 49.07 52.99 67.40 80.04 56.79 63.76
3 65.57 65.76 49.93 78.69 56.69 71.64
2 74.43 68.79 49.84 76.61 59.70 72.49
1 59.43 74.66 27.84 60.73 37.92 66.98

In contrast, the semantic filter trained with BabelNet does not permit precision levels
above 75% for the average of the relations targeted in this paper, but it has at the same
time a more reasonable precision-recall trade-off, e.g., by retaining about 15 percentage
points recall above the FO-Filter at a precision level of around 70%. In the recall range
covered by the BabelNet filter, its precision is consistently higher.

As illustrated by the chart, training the S-Filter with WordNet instead of BabelNet
leads to inferior performance. Table 2 shows the Web-DARE RE performance for dif-
ferent parameter values of Algorithm 1. The use of BabelNet consistently leads to a
higher F-score compared to WordNet. For example at k = 2, the F-score is roughly
thirteen percentage points higher.
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Fig. 4. RE performance of NELL rules, both with and without semantic filter (“S-Filter”). k varies
from 1 to 15. Results are averaged over seven relations.

Semantic Filter for NELL Rules. Figure 4 shows the precision versus relative recall
results of the baseline and our semantic filtering algorithms when applied to NELL’s
patterns. Again, the RE precision increases. The relative recall values on our test data
do not permit any conclusions to be drawn for the NELL system. Due to the low number
of mentions found in the NELL recall baseline (see Table 1), the filter application has
a high impact on the depicted recall values and thus the curves show a non-monotonic
growth. Nevertheless, as the chart indicates, the proposed filter can also be applied to
pattern sets of different RE rule formalisms. Similarly to Figure 3, Figure 4 demon-
strates that training the filter on BabelNet leads to superior RE performance compared
to the filter variant trained on WordNet.

6.4 Result Analysis and Insights

Generality. Both Figures 3 & 4, as well as Table 2, show significant performance
improvements after the application of the semantic filter, regardless of the underlying
pattern formalism, i.e., dependency-analysis-based or surface-level-based. This means
that our algorithm could be applied in a large variety of application scenarios, as long as
the patterns or rules contain content words to which the semantic filter can be applied.

BabelNet vs. WordNet. The semantically-enhanced RE performance values of Web-
DARE and NELL as given in Sections 6.2 & 6.3 fully support our initial expectation
that BabelNet, with its richer inventory of lexical semantic relations, is better suited for
effective rule filtering.
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Consider the following example from the marriage relation:

(3) person
appos �� widow

prep �� of
pob j �� person

This rule draws on the concept of deceased spouses, i.e. widow, for detecting the
target relation. Since the semantic graph created with BabelNet contains this concept,
the rule is identified as being useful for RE and hence it is not filtered out, in contrast to
the filter from WordNet, which erroneously excludes it.

Individual Relations. The performance of the filter varies across relations. Due to
space limitations we cannot show detailed per-relation results here. The filter works
particularly well for relations like acquisition and person birth/death, whereas the re-
sults are rather discouraging for place lived. Investigating the sampled mentions of the
latter relation, we found that this can be attributed to the larger lexical diversity of this
relation. Often the semantic information is carried by constructions such as “Belfast
writer J. Adams”, where the lexical anchor “writer” is semantically insignificant to the
relation. To get high coverage on such mentions extraction rules would have to match
a certain set of semantically diverse nouns here, without matching all nouns (“Belfast
visitor Cameron”). The relation seems to require much background knowledge, which
may have to include entailment and other inferences. For example, a mention of a per-
son being a senator for some (US) state could, depending on legal requirements, indeed
be a mention for place lived.

Semantic Filter vs. FO-Filter. Finally, we investigated the causes of the superior per-
formance of our new semantic filter compared to the pre-existing FO-Filter. In addition
to the problem of always finding mutually exclusive relations with compatible entity
signatures, the FO-Filter also has the disadvantage of not excluding erroneous rules
which belong neither to the particular target relation nor to any of the compatible rela-
tions. In contrast, the new semantic filter works independently for each relation.

The following low-precision Web-DARE rules illustrate this point, all learned for the
marriage relation:

(4) person lose
prep ��nsub j�� to

pob j �� person

(5) person date
dob j ��nsub j�� person

(6) person meet
dob j ��nsub j�� person

These rules, as they express typical relations for married couples, get strong statistical
support for the marriage relation against the other relations. Therefore, the FO-Filter is
not able to correctly identify them as wrong. In contrast, the semantic filter correctly
disposes of them.

Another shortcoming of the FO-Filter is the recurring exclusion of high-quality pat-
terns for which there is only limited support in the training data. When taking only the
frequency of a pattern into account, these patterns cannot be distinguished from erro-
neously learned ones. Our use of an additional lexical-semantic resource, such as Word-
Net/BabelNet, provides a filtering mechanism that correctly identifies the appropriate
meaning of the target relation. Consider the following example rule, which, as it has
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a low frequency, gets filtered out by the FO-Filter, whereas, as it expresses a relevant
word sense for the considered relation, gets classified as correct by our semantic filter:

(7) person widower
appos ��poss�� person

7 Conclusion and Outlook

After the successful utilization of parsing for large-scale RE, the time seems ripe for
injecting more semantics into this most challenging task within IE. This paper demon-
strates that exploiting advanced comprehensive semantic knowledge resources can sig-
nificantly improve extraction performance.

This is just the beginning, opening the way for new lines of research. The semantic
classifier should now be extended for rule classification with respect to relations, build-
ing a bridge between traditional IE and open IE. The synonyms provided by semantic
resources could also be applied to extend the rule set for increased coverage, in addition
to filtering it. As a side result of the comparison between the FO-Filter and the new se-
mantic filter, we observed that the two methods exhibit different shortcomings, giving
rise to the hope that a combination may further improve RE performance.
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Abstract. We describe work on automatically inferring the intended
meaning of tables and representing it as RDF linked data, making it avail-
able for improving search, interoperability and integration. We present
implementation details of a joint inference module that uses knowledge
from the linked open data (LOD) cloud to jointly infer the semantics
of column headers, table cell values (e.g., strings and numbers) and re-
lations between columns. We also implement a novel Semantic Message
Passing algorithm which uses LOD knowledge to improve existing mes-
sage passing schemes. We evaluate our implemented techniques on tables
from the Web and Wikipedia.

Keywords: Tables, Semantic Web, Linked Data, Graphical Models.

1 Introduction

Tables are an integral part of documents, reports and Web pages, compactly
encoding important information that can be difficult to express in text. Table-
like structures outside documents, such as spreadsheets, CSV files, log files and
databases, are widely used to represent and share information. A Google study
[2] found more than 150 million high quality relational tables on the Web. Many
governments share public data useful to citizens and businesses as tables. The
U.S. government’s data sharing website, for example, had nearly 400,000 such
datasets as of September 2012. Medical researchers can asses treatment efficacy
via a meta-analysis of previously published clinical trials, often using systems
like MEDLINE1 to find relevant articles and extract key data, which is typically
summarized in tables, like the one in Figure 1.

Integrating and searching over this information benefits from a better under-
standing of its intended meaning, a task with several unique challenges. The
very structure of tables which adds value and makes it easier for human under-
standing also makes it harder for machine understanding. Web search engines,
for example, perform well when searching over narrative text on the Web, but
poorly when searching for information embedded in tables in HTML documents.
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We might interpret tables using proven NLP techniques; after all, tables also
contain text. We understand the meaning of a sentence by understanding the
meaning of the individual words, which in turn are understood using grammatical
knowledge and the context provided by the surrounding text. Contrast that with
a table like Figure 1, where uncovering its meaning requires interpreting the
row and column headers, the relation between them and mapping cell values to
appropriate measurements.

The intended meaning of tables is strongly

Fig. 1. Tables in clinical trials re-
ports [22] often have both row and
column headers, contain numerical
data and have captions with critical
metadata

suggested by the column and row headers,
cell values and relations between the
columns. Additional context can often be
found in a caption or other text near the
table. How does one capture this intended
meaning? Consider the leftmost column in
the table shown in Figure 2. The column
header City represents the class and the val-
ues Baltimore, Philadelphia, New York and
Boston are instances of that class. Captur-
ing the relationships between table columns
can help confirm or deny prior understand-
ing. Consider the strings in the third column
of the table in Figure 2. An initial analysis
of the column might suggest that they refer to Politicians. Additional informa-
tion that strings in column one represent cities, can help confirm that they are
not only Politicians but also Mayors of the cites mentioned in the first column.

Our goal is to encode a table as City State Mayor Population
Baltimore MD S.Rawlings-Blake 640,000
Philadelphia PA M.Nutter 1,500,000
New York NY M.Bloomberg 8,400,000
Boston MA T.Menino 610,000

Fig. 2. A table with information about U.S.
cities

RDF linked data, mapping columns
to appropriate classes, linking cell
values to entities, literal constants or
implied measurements, identifying re-
lations between columns and assert-
ing appropriate RDF triples. We
describe an extensible, domain-independent framework to do this using back-
ground knowledge from an LOD resource. A novel feature is the incorporation
of semantic knowledge in the message passing algorithm used for joint assign-
ments in a graphical model.

Producing linked data representation is a complex task that requires devel-
oping an overall understanding of the intended meaning of the table as well as
choosing the right URIs to represent its schema and instances. We decompose it
as follows: (1) assign column (and/or row) headers classes from an appropriate
ontology, (2) link cell values to literals or entities (creating them as necessary),
(3) discover relations between table columns and add properties to represent
them, and (4) generate a linked data representation. We describe our approach
to these tasks and an evaluation of the results in the remainder of the paper.
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2 Approach

Figure 3 shows our extensible and domain independent framework for inferring
the meaning of a table and representing it explicitly as linked data. An input
table first goes through a preprocessing phase with modules to handle a number
of pragmatic issues, such as sampling rows from large tables and recognizing
and expanding acronyms and stylized literal values (e.g., phone numbers). These
modules can be developed independently and added to the framework without
affecting others or hampering the workflow. Puranik [14], for example, developed
modules to identify whether a column in a table consists of commonly encoded
data such as SSN, zip codes, phone numbers and addresses.

A table is then processed by the query

Fig. 3. Our extensible and domain in-
dependent framework relies on a joint
inference module to generate a represen-
tation of the meaning of the table as a
whole

and rankmodule which queries the back-
ground LOD sources to generate initial
ranked lists of candidate assignments for
column headers, cell values and relations
between columns. Once candidate
assignments are generated, the joint in-
ference component uses a probabilistic
graphical model to capture the correla-
tion between column headers, cell val-
ues and column relations to make class,
entity and relation assignments. After
the mapping is complete, linked data
triples are produced. Although our goal
is to develop a fully automated system
achieving a high level of accuracy, we
recognize that practical systems will
benefit from or even require human in-
put. Future work is planned to allow
users to view the interpretation and give
feedback and advice if it is incorrect.

While we presented a brief sketch of our framework previously [11], the con-
tributions of this paper include (1) an implementation of the graphical model
with improved factor nodes, (2) enhancements to our novel Semantic Message
Passing algorithm and a detailed description of its implementation, and (3) a
thorough evaluation. The rest of the section consists of a brief review of the
query and rank module followed by details of the joint inference module, which
is the key focus of this paper.

2.1 Query and Rank

The query and rank module generates an initial ranked list of candidate assign-
ments for the column headers, cell values and column relations using data from
DBpedia [1], Yago [17] and Wikitology [18]. For most of the general tables, es-
pecially ones found on the Web, these knowledge sources provide good coverage.
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Additional LOD data sources can be selected and incorporated, automatically
or manually, based on the table’s domain.

Generating and Ranking Candidates for Cell Values. We generate an ini-
tial set of candidate entities for each cell value using Wikitology, a hybrid knowl-
edge base combining unstructured and structured information from Wikipedia,
DBpedia and Yago. The contents of the column header and other row values
are used as context when querying Wikitology. The query for Baltimore, for ex-
ample, consists of the query string Baltimore and the context data City, MD,
S.C.Rawlings-Blake, and 640,000 [12]. Wikitology returns ranked lists of entities
and classes, which for Baltimore, include the entities Baltimore, John Baltimore
and Baltimore Ravens along with DBpedia classes City, PopulatedPlace and
Place and Yago types CitiesInMaryland and GeoclassPopulatedPlace. An en-
tity ranker then re-ranks a cell’s candidates entities using an approach adapted
from [4] and features from [12] to return a measure of how likely the given en-
tity (e.g., John Baltimore) is the correct assignment for the string mention (e.g.,
Baltimore).

Generating Candidates for Columns. Initial candidate classes for a column
are generated from its cell values, each of which has a set of candidate entities,
which in turn have sets of DBpedia and Yago classes. The column’s potential
classes is just the union of the classes from the its cells. We generate two separate
set of candidate classes – one for DBpedia classes and another for Yago classes.

Generating Candidate Relations between Columns. Identifying relations
between table columns is an important part of table understanding and is mod-
eled by finding appropriate predicates from the reference LOD’s ontologies (e.g.,
DBpedia). We generate candidate relations for every pair of columns in the table,
based on the cell value pairs in the respective columns. Each cell value has a set
of candidate entities, which in turn may be linked to other entities in the refer-
ence LOD resources. For example, the DBpedia entities Baltimore and Maryland
are linked via the predicates isPartOf and subdivisionName.

We use the links between pairs of entities to generate candidate relations. For a
pair of cell values in the same row between the two columns, the candidate entity
sets for both cells are obtained. For each possible pairing between the entities in
both the candidate sets, we query Yago and DBpedia, to obtain relation in either
direction i.e. entityrow1 someproperty1 entityrow2 and entityrow2 someproperty2
entityrow1. This gives us a candidate set between pair of row cell values. The
candidate relation set for the entire column pair is generated by taking a union of
the set of candidate relations between individual pairs of row cell values. Thus
for example, the candidate relations between column City and column State
might include isPartOf, capitalCity, bornIn etc. Again, we generate two sets of
candidate relations, one from DBpedia and the other from Yago.

Literal Constants. We use a regular expression to distinguish string men-
tions, which probably refer to entities, and literal constants such as numbers
and measurements, which probably do not. If the cell value is a literal constant,
candidate entities are not generated and the cell is mapped to no-annotation.
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If all the cells in a column are literals, we update the column header annotation
to no-annotation.

2.2 Joint Inference

Once the initial sets of candidate assignments are generated, the joint inference
module assigns values to columns and row cell values and identifies relations
between the table columns. The result is a representation of the meaning of the
table as a whole. Probabilistic graphical models [8] provide a powerful and con-
venient framework for expressing a joint probability over a set of variables and
performing inference or joint assignment of values to the variables. Probabilistic
graphical models use graph based representations to encode probability distri-
bution over a set of variables for a given system. The nodes in such a graph
represent the variables of the system and the edges represent the probabilistic
interaction between the variables.

We represent a table as a Markov

Fig. 4. This graph represents the inter-
actions between the variables in a simple
table. Only some of the connections are
shown to keep the figure simple.

network graph in which the column
headers and cell values represent the
variable nodes and the edges between
them represent their interactions. The
edges in a Markov network graph are
undirected because the interactions be-
tween the variables are symmetrical. In
the case of tables, interactions between
the column headers, table cell values
and the relation between table columns
are symmetrical and thus a Markov net-
work is well suited for tables.

Figure 4 shows interaction between
the column headers (represented by Ci

where i ∈ 1 to 3) and cell values (rep-
resented by Rij where i, j ∈ 1 to 3). In a typical well-formed table, each column
contains data of a single syntactic type (e.g., strings) that represent entities or
values of a common semantic type (e.g., people). For example, in a column of
cities, the column header City represents the semantic type of values in the col-
umn and Baltimore, Boston and Philadelphia are instances of that type. Thus,
knowing the type of the column header, influences the decision of the assignment
to the table cells in that column and vice-versa. To capture this interaction, we
insert an edge between the column header variable and each of the cell values in
that column.

Table cells across a given row are also related. Consider a table cell with a
value Beetle, which might refer to an insect or a car. Suppose an adjacent cell has
a string value red, which is a reference to a color, and another cell in the same
row has the string value Gasoline, which is a type of fuel source. As a collection,
the cell values suggest that the row represents values of a car rather than an
insect. Thus, the interpretation of each cell is influenced by the interpretation
of the others in its row. This co-relation when considered between pairs of table
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cell values between two columns can also be used to identify relations between
table columns. To capture this context, we insert edges between all the table
cells in a given row.

Similar interactions exist between the column headers. By itself, the column
header City suggests that column’s cells might refer to city instances. However,
if the other columns appear to refer to basketball players, coaches and basketball
divisions, we can infer that the cities column refers to a team itself. This is an
example of metonymy, in which an entity (i.e., the team) is referenced by one
of its significant properties (i.e., the location of its base). This interaction is
captured by inserting edges between column header variables.

To perform any meaningful inference

Fig. 5. This factor graph is a parameter-
ized Markov network wherein the square
nodes represent factor nodes

over the graph, it must be parameter-
ized. We do so by representing the
graph in Figure 4 as a factor graph as
shown in Figure 5. The graph’s square
nodes represent what are known as ‘fac-
tor nodes’, which compute and capture
affinity or agreement between interact-
ing variables. For example, ψ3 in Figure
5 computes the agreement between the
class assigned to column header and en-
tities linked to the cell values in that
column; ψ4 between row cell values for
a given pair of columns and ψ5 between
column headers.

Semantic Message Passing. Factor nodes allow the joint inference process
to operate. Typical inference algorithms such as belief propagation and message
passing rely on pre-computed joint probability distribution tables (PDTs) stored
at the factor nodes. For example, the factor node ψ3 for column header variable
C1 would store a PDT over the variables C1, R11, R12, R13; i.e. ψ3 would pre–
compute and store a PDT over the column header and all row cell values. As the
size of the candidate set of values that Ci and Rij can be mapped to increases,
the size of the PDT will rapidly grow. Assuming that the size of the candidate
set for a variable is 25, ψ3 associated with the variables C1, R11, R12, R13 would
have 390,625 entries in the joint PDT!

We implement a variation of an inference algorithm which incorporates seman-
tics and background knowledge from LOD to avoid the problem of computing
large joint PDTs at factor nodes. Our Semantic Message Passing algorithm is
conceptually similar to the idea of Message Passing schemes.

The variable nodes in the graph send their current assignment to the fac-
tor nodes to which they are connected. For example, R11 sends its current
assignment to factor nodes ψ3 and ψ4. Once the factor nodes receive values
from all connected variable nodes, they compute agreement between the values.
Thus, in one of the iterations, ψ3 might receive values City, Baltimore Ravens,
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Philadelphia, New York and Boston. The goal of ψ3 is to determine if all the
assignments agree and, if not, identify the outliers.

In this case ψ3 identifies Baltimore Ravens as an outlier and sends a change

message to R11, together with its semantic preferences for a new, alternate value
that R11 might produce. In our example, ψ3 informs R11 of its preference for
update to an entity of type City. To the rest of the variable nodes, ψ3 sends
a no-change message. This process is performed by all factor nodes. Once a
variable node receives messages from all of its connected factor nodes, it decides
whether to update its value or not.

If it receives a message of no-change from all factor nodes, its current as-
signment is in agreement with the others and it need not update its assignment.
If it receives a change message from some or all factor nodes, it updates its
current assignment, taking into consideration the semantic preferences provided
by the factor nodes. The entire process repeats until convergence, i.e., agreement
over the entire graph is achieved. A hard convergence metric could be to repeat
the process until no variable node receives a change message.

Our Semantic Message Passing algorithm thus circumvents the problem of
computing joint PDTs at factor nodes by computing agreement over current
assigned values. Furthermore, our scheme not only detects individual variable
nodes that have incorrect assignments, but provides the nodes with guidance on
the characteristics or semantics associated with the value that a variable node
should update to. This capability requires defining semantically-aware factor
nodes that can perform such functions. In this paper, we describe our imple-
mentation of factor nodes ψ3 and ψ4 and the process by which a variable node
updates its values based on the messages received and our metric for graph
convergence.

ψ3 – Column Header and Row Cell Value Agreement Function. The
ψ3 factor node computes agreement between the class assigned to the column
and the entities assigned to its cell values. For example, agreement between the
column assigned type City and candidate cell assignments Baltimore Ravens,
Philadelphia, New York and Boston. Recall that at the end of the query and rank
phase, every row cell value has an initial entity assignment and every column
header has a set of candidate classes. In our current implementation every column
header Ci maintains two separate sets of candidate classes – one from Yago’s
classes and the other from DBpedia’s. Each cell value in a column is mapped to
an initial entity e which in itself has its own set of Yago and DBpedia classes.
The initial entities assigned to a column’s cell values perform a majority voting
over the Yago and DBpedia class set to pick the top Yago and DBpedia class.
Each entity votes and increments the score of a class from the candidate set by
1 if the class is present in the class set associated with e.

The Yago and DBpedia candidate class sets are ordered by votes. ψ3 computes
the top score for each of the top classes.The top score is simply equal to the number
of votes for the top class divided by the number of rows in the column. Ideally, we
want to pickmore specific classes (e.g., City) over general classes (e.g., Place) when
making an assignment to the column headers. Thus, if multiple Yago classes get
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voted as top class, we use a ‘granularity’ score as tie-breaker. The ‘granularity’
score is computed by simply dividing the number of instances that belong to the
class by the total number of instances and subtracting the result from one. This
assigns a higher score to specific classes and a lower score to general classes.

Once the top class(es) are identified and their scores computed, ψ3 determines
if they can be used in the process of identifying cell values with incorrect as-
signments. It checks whether the top scores for the classes are below a certain
threshold. If so, it implies lower confidence and agreement between row cell val-
ues and that the top classes cannot be relied upon. In such scenarios, ψ3 sends
a message of low-confidence and no-change to the variable nodes and also
maps the column header class to no-annotation.

If scores for both the top Yago and DBpedia classes are above the threshold,
ψ3 assigns both the classes to the column header and uses them in the process
of identifying its cell values with incorrect assignments. However if either class is
below threshold, it checks if the classes are aligned. We define the two classes as
aligned if either the DBpedia class is a subclass of the Yago class or vice-versa.
The subclass relation between the DBpedia and Yago classes is obtained via the
PARIS project [16].

If the alignment exists, then ignoring the lower score to either Yago or DB-
pedia, ψ3 picks both the classes as the Yago and DBpedia assignments for the
column header respectively. Otherwise, the class with the lower score is ignored,
and the other one is selected as the column class. Once the column header is
mapped to a class assignment, ψ3 revisits each entity assignment in the column.
All cell values (variable nodes) whose currently assigned entity e include the top
class(es) in their class set are sent a message of no-change. Ones whose entity
do not contain the top class in their class set are sent a change message. These
variable nodes are also provided with the top class(es) as semantic preferences
that their next entity assignment should try to fulfill. ψ3 also sends the top score
as a confidence score associated with the message.

ψ4 – Relations between Pair of Columns. The goal of factor node ψ4 is to
discover if a relation exists between a pair of columns, say City and State, and,
if so, to use it as evidence to uncover any incorrect entity assignments in the
columns’ cells. At the end of query and rank phase, every row cell value has an
initial entity assignment, e. The pair of column headers is also associated with a
set of candidate relations. The initial assigned pair of entities in the two columns
perform majority voting to select the best possible relation from the candidate
relation set. Each pair of entities in every row between the two columns votes
for a relation rel. It increments its score by 1 if < ei,k > < rel > < ej,k > or
< ej,k > < rel > < ei,k > is true (here i, j refer to two columns and k refers
to entities from the k th row between the two columns). Factor node ψ4 queries
Yago and DBpedia separately to check if the relations exists. The current ψ4

implementation also maintains two separate sets of candidate relations (one for
Yago and the other for DBpedia) ordered by votes.

Factor nodeψ4 also computes a value for topScore for both top Yago andDBpe-
dia relations as the number of votes divided by the number of cells in the
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column. If a score is below the current threshold, the relations are discarded andψ4

sends low-confidence and no-change messages to all of the row cell values in
both columns and updates the relation between the columns to no-annotation.
If the scores are above threshold, the top Yago and DBpedia relations between the
two columns are updated. ψ4 then revisits the pair of entities from the columns
to discover possible incorrect assignments. For every currently assigned entity e in
the two columns, ψ4 checks if e appears as a subject or object of the top relations
(depending upon the relation direction; either Yago or DBpedia). If e satisfies this
constraint, a no-changemessage is sent to the row cell and a changemessage is
sent otherwise. The ψ4 factor node also sends the relation information as charac-
teristics the row cell should use for picking the next entity assignment and topScore
as confidence score associated with the message.

Updating Entity Annotations for Row Cell Value Variables. Every row
cell r in the table receives messages from two types of factor nodes – column
header factor node (ψ3) and relation factor node (ψ4). While r will receive only
one message from the column header (since r belongs to only one column), it
might receive multiple messages from relation factor nodes if its column is related
to several columns in the table. For example, the column City is associated with
columns State, Mayor and Population. The result is that r can receive conflicting
messages – some factor nodes might send a change message, while others a no-

change message.
If all of the messages received by r are no-change, r does not update. If

all messages received by r are change, it decides to update its assignment. In
the case of conflicting messages, r uses the confidence score sent by each factor
node along with the message to compute the average score associated with the
change messages and compares it against the average score associated with the
no-change messages. If the average change message score is higher, r updates
its current assignment, otherwise it does not.

When r chooses to update its current assignment, it picks a new assignment
based on the semantic preferences sent by the factor nodes. For example, a row cell
value in the first column of the table in Figure 2might receivemessages to update to
an entity which will have a rdf:type City and is the subject of relations isPartOf and
hasMayor. The row cell value r iterates through its ranked list of candidate entity
set and picks the next best entity satisfying all the semantic preferences specified in
the message. In cases where r cannot find an entity that satisfies them all, it orders
them based on the confidence scores associated with the respective messages and
attempts to pick an entity assignment that satisfies the highest rank combination.
For example, if there were three preferences, ranked 1, 2 and 3, r will first attempt
to find an entity that satisfies[1,2,3] followed by [1,2] ; [1,3]; [2,3]; [1]; [2] and so
on. If r is unable to find an entity that satisfies any preferences, then it updates its
current assignment to no-annotation.

An exception to this process occurs when the candidate entities for the cell all
have low confidence (i.e., below the threshold (index threshold)). This is typically
the case if the entity is absent from the knowledge base. In such cases, the algorithm
maps the row cell value to no-annotation rather than linking to any candidate.
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If the column header is mapped to no-annotation, the row cell values retain the
top ranked entity assignment as suggested by the entity ranker.

Halting Condition. Once the row cell values have updated, they send their
new assignments to the factor nodes and the entire process repeats. Ideally, the
process should be repeated until best possible assignments are achieved; i.e., re-
peat until no variable node receives a change message or none of the variable
nodes select a new assignment. Practically, this a hard convergence metric and
it is often not achieved. In our current implementation, the Semantic Message
Passing algorithm lets this cycle repeat for five iterations. After five iterations,
the algorithm checks the number of variables that have received a change mes-
sage. If the number of variables is lower than the threshold required to update
the column header or relation annotation, the process is stopped, else the pro-
cess continues until convergence or the tenth iteration has been completed. The
assignments at the end of the final iteration are chosen as final values.

3 Evaluation

We begin by describing the experimental setup and follow by presenting our eval-
uation and analysis for column header, cell value and relation annotations, and
performance of the graphical model in terms of convergence and running times.

Experimental Setup. We
Dataset Col & Rel Cell Value Avg.[Col,Row]

Web Manual 150 371 [2,36]
Web Relation 28 – [4,67]
Wiki Manual 25 39 [4,35]
Wiki Links – 80 [3,16]

Fig. 6. Number of tables and the average num-
ber of columns (col) and rows in the sets used for
column header, cell value and relation annotation.
Average is over the number of tables used in cell
value annotation.

used tables from four different
sets in our evaluation (see Fig-
ure 6). The original table sets,
obtained from [10], include
ground truth annotations in
which column headers are
mapped to Yago classes, rela-
tions between columns to Yago
properties and row cell values
linked to Yago entities. However, we could not use these assessments for column
headers and relations, since our system uses data from both DBpedia and Yago,
and thus developed our own gold standard. We ran our factor nodes ψ3 and ψ4

at low threshold (5%) to generate candidate classes and relation between table
columns. We presented these candidates along with raw tables to human anno-
tators, who marked each as vital, okay or incorrect (as in [20]). For example,
annotators could mark the label City as vital, PopulatedPlace as okay and Per-
son as incorrect for the first column of the table in Figure 2. Thus each column
can have multiple vital and okay class labels as per annotator judgment.

For the evaluation that follows, we used the framework with the following
values: for every cell value we chose the top 25 candidate entities from the entity
ranker; the column header top score threshold used by ψ3 and the relation top
score threshold used by ψ4 were set to 0.5; index threshold used by a row cell
value to determine low confidence entities was set to 10. The number of joint
inference model iterations is as described in the previous section.



Generating Linked Data from Tables 373

Fig. 7. (a) Precision, Recall and F-scores for column header annotations. (b) % of vital
and okay class labels at rank 1.

Evaluating Column Header Annotations. We generated a ranked list of at
most top ten class annotations for every column, with no-annotation as the
single value if no appropriate class was found. We compared the set of generated
classes to those obtained from annotators, computing precision and recall for
each k between 1 to 10. For precision, we assign a score of 1 for every vital class
and 0.5 for every okay class identified by the framework. For recall, we assign 1
for every vital and okay class identified. This evaluation scheme is similar to the
one described in [20].

Figure 7(a) shows the annotation results for class labels at rank 1 across three
different sets. We observed that a single column had more than one label marked
vital or okay by annotators and the recall increasing with k. The lower recall can
be explained by the combination of having multiple labels for each column and
only one label retrieved at rank 1. Due to space constraint, we do not show
results for precision and recall for values of k between two and ten.

We also computed how often the label predicted at rank 1 was either vital or
okay, as shown in Figure 7(b). The high percentage of a combination of vital and
okay labels at rank 1 for all three sets (79% or greater) indicates that the top ranked
labels are relevant. The results for the three sets are for the classes from the DBpe-
dia ontology.We note that our F–scores forWeb Manual (0.57) andWiki Manual
(0.60) are better than the previously reported scores of 0.43 and 0.56 in [10]. We
fare slightly poorer for both datasets against scores of 0.65 and 0.67 as reported
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Fig. 8. (a) Precision, Recall and F-scores for relation annotations. (b) % of vital and
okay relation labels at rank 1, as predicted by the framework. Dataset names followed
by a dbp are results for DBpedia relations; whereas the ones followed by yago are for
Yago relations.

in [20]. However, we note that their evaluation is over the annotations of the orig-
inal ground truth in which every column header had only one, or sometimes two,
correct classes. This leads to a better recall at rank 1, as compared to multiple cor-
rect classes, as in our case, with a combination of vital and okay labels. We also
note that the task of the system in [20] is predicting classes for column headers
and relation between “primary column” (e.g., a key) and other columns in the ta-
ble independently. Our framework, in contrast, attempts to jointly map column
header, cell values, relation between columns to appropriate assignments which in
certain cases can lead to incorrect assignments.

Evaluating Relation Annotations. We generated and ranked the best ten
relations (as RDF properties) both from DBpedia and Yago. We compared the
set of relations generated to those obtained from the annotators, computing
precision and recall for k from 1 to 10 as described in the previous section. Figure
8(a) shows the results across four different sets for both Yago and DBpedia
relations. While it is plausible for a column header to have multiple vital and
okay classes, the same may not hold true for relation between columns. We
observed in our annotations that for every pair of columns, the set of vital and
okay relations was smaller.
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Fig. 9. X is the iteration number and Y the number of variables that received change

message in that iteration. The value at x=0 is the number of cells in the table.

We explored possible relations between all pairs of columns, even though ta-
bles typically represent a small number of relations. Typically a table’s primary
(e.g., key) column participates in binary relations with many or most of the
other columns in the table. Thus our system generates a fair number of no-
annotation labels. We believe both these reasons explain higher values for
precision and recall. We also compute the percentage of vital and okay relations
predicted by the framework at rank 1 (see Figure 8 (b)). Analogous to precision
and recall results, a high percentage of labels were vital and okay indicating that
our framework is generating relevant labels. Our F–scores for relation annota-
tions for the datasets Web Manual yago (0.89), Web Relation yago(0.86) and
Wiki Manual yago(0.97) fare better as compared to the scores of 0.51, 0.63, 0.68
reported in [10].

Evaluating Cell Value Annotations. We compared the entity links gener-
ated by our framework to those obtained as ground truth from the original
dataset [10]. Our framework linked the table cell value to an entity from DBpe-
dia wherever possible, else it linked to no-annotation. If our predicted entity
link matched the ground truth, we considered it as a correct prediction, else in-
correct. We obtained an accuracy of 75.89% over the Wiki Links dataset; 67.42%
over the Wiki Manual dataset and 63.07% over the Web Manual dataset. Lower
accuracy for entity linking is likely due to the lack of relevant data in Yago
and DBpedia. Although our framework might have discovered the correct as-
signments for column header and relation, if the entity did not have the class
and relation information present on DBpedia or Yago, our framework will fail
to find it.

For example, even if we discover the Yago class YagoGeoEntity which links
all places, the DBpedia Berlin entity does not have that class, thus can lead
to an incorrect assignment. Lower accuracy may also stem from the size of the
candidate entity set. We restricted the size of the candidate entity set to 25; thus
it is possible that the correct assignment could be outside this set. We also note
certain discrepancy in the ground truth annotations. We discovered cases where
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we were able to discover a correct entity annotation, whereas the ground truth
said it was no-annotation, which led to counting our annotation as incorrect.
We are working on improving the ground truth annotation and we have not
incorporated the results from the updated ground truth.

Graph Convergence. Figure 9 gives insight into how quickly the graph con-
verges, showing the number of variable nodes that receive a change message at
the end of every iteration (for eight tables). For most tables, the number of vari-
able nodes that receive a change message stabilize after the first iteration. We
had few cases, where the variable count fluctuated, i.e., increasing and decreas-
ing as iterations increased. We also noticed cases where the variable count does
not go to zero. Some number of “stubborn” variables keep receiving a change

message at the end of every iteration, but cannot find a new value. However, we
noticed that the number of stubborn variables are less as compared to the origi-
nal number of variables in the table. We present results for eight tables for visual
purposes; the results are representative of rest of the tables in the dataset. The
average time required for the inference model across all tables was 3.4 seconds.

Entity Ranker. The entity ranker uses a classi-
Class Precision Recall F-Score

0 0.959 0.849 0.901
1 0.871 0.966 0.916

Fig. 10. Precision, recall and
F-score for the Naive Bayes
model

fier that produces likelihoods that strings should
be linked to entities. The training and test
datasets were generated using the ground truth
for entity annotations from Wiki Links set. For
every string mention in the table, we queried
Wikitology to get candidate entities and then
computed feature values for the string similarity and popularity metrics for each
mention/entity pair. A class label of 1 was assigned if the candidate entity was
the correct assignment (available via ground truth in the dataset) and a 0 other-
wise. The training set included 600 instances, evenly split between positive and
negative instances. The test set included in all 681 instances with 331 positive
and 350 negative instances. Out of the 681 instances, the model was able to
correctly classify 619 instances with an accuracy of 90.9 %. The precision, recall
and F-score are presented in Figure 10.

4 Related Work

Our work is related to two threads of research, one focused on pragmatically gen-
erating RDF from databases, spreadsheets and CSV files and a more recent one
that addresses inferring the implicit semantics of tables. Several systems have
been implemented to generate semantic web data from databases [15,19,13],
spreadsheets [6,9] and CSV files [3]. All are manual or only partially automated
and none has focused on automatically generating linked RDF data for the entire
table. In the domain of open government data, for example, [3] presents tech-
niques to convert raw data (CSV, spreadsheets) to RDF but the results do not
use existing classes or properties for column headers, nor does it link cell values
to entities from the LOD cloud. Generating richer, enhanced mappings requires
a manually constructed configuration file.
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Early work in table understanding focused on extracting tables from docu-
ments and web pages [7,5] with more recent research attempting to understand
their semantics. Wang et al. [21] began by identifying a single ‘entity column’ in a
table and, based on its values and rest of the column headers, associate a concept
from the Probase knowledge base with the table. Their work does not attempt to
link the table cell values or identify relations between columns. Ventis et al. [20]
associate multiple class labels (or concepts) with columns in a table and identify
relations between the ‘subject’ column and the rest of the columns in the table.
Their work also does not attempt to link the table cell values. Limaye et al. [10]
use a graphical model which maps every column header to a class from a known
ontology, links table cell values to entities from a knowledge-base and identifies
relations between columns. They rely on Yago for background knowledge. The
core of our framework is a probabilistic graphical model that captures more se-
mantics, including relations between column headers and between row entities.
Current table interpretation systems rely on semantically poor and possibly noisy
knowledge-bases and do not attempt to produce a complete interpretation of a
table. None generate high quality linked data from the inferred meaning or can
interpret columns with numeric values and use the results as evidence in table
interpretation, a task essential for many domains.

5 Conclusions

Generating an explicit representation of the meaning implicit in tabular data
will support automatic integration and more accurate search. In this paper, we
presented an implementation of our graphical model which infers a table’s mean-
ing relative to a knowledge base of general and domain-specific knowledge. We
described a novel Semantic Message Passing algorithm which avoids computing
potentially huge joint-probability distribution tables normally required in such
graphical models.

A thorough evaluation showed promising results, but leaves room for improve-
ment. We believe our extensible and domain independent framework can address
the existing challenges in converting tabular data to RDF or high quality linked
data. In the future, we will work on designing a cooperative environment in which
a person-in-the-loop identifies bad system choices for column classes and rela-
tions, cell value entities and optionally suggests better ones from the alternate
candidates.
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Abstract. We present our work on developing a software platform for
mining mathematical scholarly papers to obtain a Linked Data represen-
tation. Currently, the Linking Open Data (LOD) cloud lacks up-to-date
and detailed information on professional level mathematics. To our mind,
the main reason for that is the absence of appropriate tools that could
analyze the underlying semantics in mathematical papers and effectively
build their consolidated representation. We have developed a holistic ap-
proach to analysis of mathematical documents, including ontology based
extraction, conversion of the article body as well as its metadata into
RDF, integration with some existing LOD data sets, and semantic search.
We argue that the platform may be helpful for enriching user experience
on modern online scientific collections.

Keywords: Linked Data, Ontology Engineering, Ontology Extraction.

1 Introduction

The Linking Open Data (LOD) initiative1 has recently revealed the added value
of representing heterogeneous data from different content providers as a sin-
gle “cloud” of interconnected objects. The data are loaded and transformed to
RDF from various sources including relational databases, web pages, and semi-
structured textual documents. The unified structured representation benefits
follow-up Linked Data consumers. For example, contemporary semantic search
applications like the semantic search engine Sindice2 or mashup Sig.ma3 harness
the published data to be able to either handle search queries more accurately or
aggregate information about entities users are interested in.

1 http://linkeddata.org
2 http://sindice.com/
3 http://sig.ma/

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 379–394, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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At the same time, the LOD cloud lacks up-to-date and detailed data sets on
professional level mathematics. Currently, there exist some unofficial data sets
that make available information from well-known publishers and online collec-
tions in the academic domain including ACM4, DBLP5, and CiteSeer6, as Linked
Data. They have contributed a large amount of scientific article metadata to the
LOD cloud. However, exposing only article metadata for mathematical papers is
palliative, since the primary objects of interest in these documents are formulas
and certain parts such as theorems or proofs. In our particular case, we have faced
with the requirements of the publishing department at Kazan Federal University,
which plans to make publicly available metadata as well as the contents of 1 330
articles of the “Izvestiya Vuzov. Matematika” (IVM, Proceedings of Higher Edu-
cation Institutions: Mathematics) journal published in 1997-2009. The publisher
expects that it will benefit professional researchers and learning students at the
university, by providing them opportunities to get access to a knowledge source
integrated into the global knowledge base. Thus, our primary goal is to develop
a machinery that facilitates the process and, eventually, constructs a new LOD
data set having a collection of mathematical scholarly articles.

In the paper, we present our approach of designing and implementing a pro-
gramming solution to extract a semantic LOD representation of mathematical
scholarly papers in a given digital collection. The core of the approach is model-
ing the given collection of documents as a unified semantic graph. Both the nodes
(mathematical knowledge objects) and the edges (relations between them) in it
are defined by a set of math-aware vocabularies that specify the logical structure
of mathematical documents (theorems, proofs, definitions, formulas etc.) as well
as mathematical concepts. In summary, our key contributions are:

– a thorough domain model that includes an ontology of the logical structure
of mathematical scholarly papers along with an ontology of mathematical
knowledge concepts in Russian/English;

– a language-independent method for extraction of the logical structure
elements;

– a method for extraction of mathematical named entities from texts in
Russian;

– a method that connects mathematical named entities to symbolic
expressions.

The rest of the paper is organized as follows. In Section 2, we meticulously
describe our approach for publishing mathematical scholarly papers as Linked
Data. Section 3 contains implementation details of the developed prototype. We
report on our evaluation experiments in Section 4. Section 5 provides the data
set statistics and several use cases. Section 6 gives a brief overview of related
work. We conclude and discuss the future work in Section 7.

4 http://acm.rkbexplorer.com/
5 http://dblp.rkbexplorer.com/
6 http://citeseer.rkbexplorer.com/

http://acm.rkbexplorer.com/
http://dblp.rkbexplorer.com/
http://citeseer.rkbexplorer.com/
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2 Approach

In this section, we first describe our domain-specific ontologies that provide
a vocabulary for extraction methods. Next, we present our solution for NLP
and semantic annotation tasks. Finally, we explain our techniques for article
metadata extraction and interlinking with existing LOD data sets.

2.1 Domain Model

Mocassin Ontology. The ontology7 of our Mocassin project8 aims to capture
the semantics of typical structural elements in mathematical scholarly papers.
The ontology is a compromise between the semantics of highly formalized models
we have seen in the previous works (discussed in Section 6) and facts that can be
extracted by automatic methods. Each structural element in Mocassin Ontology
represents the finest level of granularity and has its inherent features, such as
starting and ending positions, text contents, and functional role. In particular,
the ontology defines some ubiquitous document parts, such as theorems, lem-
mas, proofs, definitions, corollaries etc. Besides, the ontology declares two types
of object binary relations – navigational and restricted. The property instances
of the first relation type, which is represented by refersTo and dependsOn re-
lations, tend to occur in mathematical documents when the author points at
significant parts of a publication in the form of referential sentences. The part-
whole property (hasPart) and followedBy property belong to the first type too.
An example of a relation of the second type is proves relation, which occurs
between a proof – the only valid element type here – and a statement the proof
justifies. In our application, we follow the closed world assumption, and interpret
range and domain of a property as constraints.

To add support of structural elements that are common for scientific publi-
cations on a wide range of fields, the ontology imports SALT Document Ontol-
ogy (SDO) [1], an ontology of the rhetorical structure of scholarly publications.
Specifically, it defines Section, Figure, and Table classes.

To enable making connections between structural elements and other objects
contained by them and described elsewhere, e.g. mathematical named entities
extracted from their text contents, we add a specific property – mentions –
as follows: mentions(x, y) → (DocumentSegment(x) ∨ Table(x) ∨ Figure(x) ∨
Section(x)) ∧ Thing(y). Document Segment class is the root of the Mocassin
Ontology hierarchy.

The ontology also defines classes to represent several types of mathematical
expressions – Mathematical Expression, Variable, and Formula. The datatype
property hasLatexSource is defined for storing a LATEX representation of the ex-
pression as a string. Yet, for the purpose of connecting formulas to mathematical
named entities, there is hasNotation property in the ontology: hasNotation(x, y)
→ Thing(x)∧MathematicalExpression(y). For example, it enables us to state
a fact that an empty set is denoted with ∅ in a text.

7 http://cll.niimm.ksu.ru/ontologies/mocassin
8 http://code.google.com/p/mocassin/

http://cll.niimm.ksu.ru/ontologies/mocassin
http://code.google.com/p/mocassin/
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In addition, the ontology contains logical rules and cardinality axioms. One of
the cardinality axioms states that every proof must justify at most one statement.
An example logical rule is dependsOn(x, y)∧hasPart(z, y) → dependsOn(x, z),
which e.g. we use to infer dependency between a proof and theorem, if the
theorem contains an equation the proof depends on.

The ontology has been developed in OWL2/RDFS languages, which provide
rich expressiveness, including cardinality and transitivity, and are also decidable
theoretically and practically, for example, by using state-of-the-art reasoners like
Pellet and FaCT++, or, to some extent, by in-house reasoners in modern RDF
triple stores. A possible use case to exploit this feature is visualization of a
dependency graph of theorems in related papers.

OntoMathPRO. OntoMathPRO is an applied ontology for automatically pro-
cessing professional mathematical articles in Russian and English9. The ontology
defines the concepts commonly used in mathematics as well as the developing
and not well established vocabulary (e.g. a term Bitsadze-Samarsky problem in
differential equations). OntoMathPRO covers a wide range of fields of mathemat-
ics such as number theory, set theory, algebra, analysis, geometry, mathemat-
ical logic, discrete mathematics, theory of computation, differential equations,
numerical analysis, probability theory, and statistics. Each class has a textual
explanation, Russian and English labels including synonyms.

The terminological sources used during the development are classical text-
books, online resources like Wikipedia and Cambridge Mathematical Thesaurus,
scholarly papers from the IVM journal, and personal experience of practicing
mathematicians at Kazan Federal University. Thus, we expect that the ontology
suffices the expert-level semantics on the fields.

In the ontology, one could distinguish two taxonomies with respect to ISA-
relationship – a hierarchy of fields of mathematics and a hierarchy of math-
ematical knowledge objects. The first one is rather conventional and close to
the related part of the Universal Decimal Classification10. The top level of the
second taxonomy contains concepts of three types: i) basic metamathematical
concepts, e.g. Set, Operator, Map, etc; ii) root elements of the concepts related
to the particular fields of mathematics, e.g. Element of Probability Theory or El-
ement of Numerical Analysis; iii) common scientific concepts: Problem, Method,
Statement, Formula, etc. Due to multiple inheritance, the same class can be
a sub-class of several classes. For example, Sparse Grid is a sub-class of both
Formula and Element of Theory of Differential Equations.

OntoMathPRO defines three types of object properties:

– a directed relation between a mathematical knowledge object and a field
of mathematics (belongsTo), e.g. Barycentric Coordinates belongsTo Metric
Geometry;

– a directed relation of logical dependency between mathematical knowledge
objects (isDefinedBy), e.g. Christoffel Symbol isDefinedBy Connectedness;

9 http://cll.niimm.ksu.ru/ontologies/mathematics
10 http://www.udcc.org

http://cll.niimm.ksu.ru/ontologies/mathematics
http://www.udcc.org
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– a symmetric associative relation (“soft dependency”) between mathemati-
cal knowledge objects (seeAlso), e.g. Chebyshev Iterative Method seeAlso
Numerical Solution of Linear Equation Systems.

OntoMathPRO is developed in OWL-DL/RDFS languages. Numerically,
OntoMathPRO contains 3 450 classes, 5 object properties, 3 630 subclass-of
property instances, and 1 140 other property instances.

2.2 NLP Annotation

At this stage, we solve a standard task of annotating noun phrases in mathe-
matical texts. In our approach, mathematical expressions are considered as valid
parts of noun phrases. That is, they can be prefixes in hyphenated words, e.g.
“σ-algebra”.

Our solution relies on the “OntoIntegrator” [2], our tool for general-purpose
linguistic analysis, which was adapted for peculiarities of mathematical texts,
and currently supports only Russian language. It consecutively solves the stan-
dard linguistic tasks such as tokenization, sentence splitting, morphological anal-
ysis, and noun phrase extraction.

Morphological analysis is based on the Russian grammar dictionary extended
with the vocabularies of general and domain-specific abbreviations, and paren-
theses. The result of the analysis is a grammar markup for words. In addition,
homonyms are annotated with a fixed set of grammar annotations.

In Russian, noun phrases (NP) usually consists of the main noun, which we
denote as NP.Head, and its left- and right modifiers (NP.Dependent). The re-
lationship between the main noun and its dependent words is syntactical. Con-
structing noun phrases is described with the rules, which consider the definitive
internal structure.

In our case, the main noun can be a noun, a pronominal noun, an abbreviation,
a proper noun, a formula, or a citation reference. Among dependent words, there
can be adjectives, pronominal adjectives, numerals, participles, adverbs, and
prepositions. The noun phrase extraction method seeks noun phrases within a
given sentence. Every noun phrase may contain exactly one or several segments,
that is, word groups with certain characteristics. Within a segment, all the words
are consistent according to their grammar characteristics. If there is more than
one segment extracted in the noun phrase, the leftmost segment is considered
as the main one and may have arbitrary grammatical characteristics – the case
and the number. We assume that the other segments necessarily require the
only form – the genitive case of a dependent noun. Gathering segments in a
noun phrase is done from the right to the left. While annotating a noun phrase,
the NP.Head is distinguished and normalized. The normalized form of the noun
phrase is marked with a special “Form” annotation attribute. Math expressions
are annotated with special “Math” tags. Further, the annotated noun phrases
are used through ontology extraction.
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Replacing the current NL processor with a module that supports noun phrase
extraction as well as handling math symbols, abbreviations, formulas could
switch the language to English as an example. A math-aware extension of the
Stanford NLP parser11 is a promising candidate.

2.3 Semantic Annotation

During this phase, we perform annotating documents in terms of the domain
ontologies.

Mining the Logical Structure. Our method [3] receives NLP annotations and
extracts structural elements according to the Mocassin and SALT SDO ontolo-
gies. This procedure falls into two tasks: (i) recognizing the types of structural
elements; (ii) recognizing the semantic relations between them. As a result, the
method outputs a semantic graph that contains, on the one hand, structural
elements as nodes, each of which is assigned to a particular ontology class or
marked “unrecognized” otherwise, and, on the other hand, ontology relation in-
stances as edges. Aside from the object properties, each node has annotations
corresponding to its title, text contents, and page numbers in the compiled PDF
document. The information may be used in further applications for organizing
a convenient navigation through document parts or highlighting more specific
relevant search results.

Mathematical Named Entity Extraction. This task is a classification of
extracted noun phrases as instances of OntoMathPRO classes, i.e., mathematical
named entities (MNEs).

Our extraction method is uncertain and is based on a overlap of words in
a noun phrase and ontology labels, respectively. We use Jaccard similarity co-
efficient as a confidence measure. Therefore, the method implies choosing the
threshold value for filtering out wrong matchings. Specifically, given an NP and
an ontology class, the confidence score C is defined according to the following
rules:

– C ranges from 0 (minimal confidence) to 1 (maximal confidence);
– if the class label does not contain the main word of the NP (NP.Head), then

C = 0;
– if the length (in terms of word count) of the class label is greater than the

length of the NP, then C = 0;
– otherwise, C is equal to the Jaccard similarity coefficient for sets of words.

For example, the score between a noun phrase “Sobolev-like space” and a class
Sobolev Space is equal to 2/3. On the contrary, the score between “number” and
Fermat Number is equal to 0 because of the different lengths, or the score between
“integral of the function of square-rooting” and Function of Square-rooting is
also equal to 0 due to the different main words in the phrases.

11 http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml
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Connecting MNEs to Formulas. We solve the following tasks within a single
document:

– parsing mathematical expressions, i.e., detection of variables and seeking
their occurrences in mathematical formulas;

– matching mathematical variables with noun phrases.

The method relies on “Math”, token, sentence and NP annotations. Regular
expressions are used as a main tool during formula analysis. At the beginning, a
formula is refined from special markup elements and redundant spaces. Then, the
formula is split into separate elements, the delimiters are braces, brackets, oper-
ation symbols, punctuation marks, and spaces. The given elements are assigned
to specific groups – markup keywords, indices, numbers etc. Each unclassified
element is checked additionally on that its starting symbol is not a number, or
if the element is in the set of Greek letters. As a result, all the mathematical
expressions are divided into three groups – variables, formulas, and auxiliary
fragments.

All the variables and formulas are stored in the index, which contains infor-
mation about occurrences of variables in formulas. We provide an example that
illustrates the semantics of such a relationship.

Example 1. Given a text fragment (translated from Russian):
Let α be a second fundamental form of n-surface M , ∇ is a Levi-Civita con-

nection of the metric g. Then, the equality holds:

∂XdfY − df∇XY = α(X,Y ).

The text fragment contains variables α, n, M , ∇, g, and a formula that uses
α and ∇ variables. Implicit bound variables X and Y are defined nowhere in the
document, and, therefore, not included into the index. The instances of hasPart
relation induced from the inclusions are depicted in Figure 1.

Fig. 1. A semantic graph to Example 1
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The next step is connecting noun phrases to extracted variables and formulas.
In principle, there are two possible cases of mutual positioning of a variable and
an NP: first, an NP may contain a variable, and, second, the elements follow
each other.

In the first case, an NP is the only candidate for linking. The simplest variation
is if the NP contains a single main word. In Example 1, we have an NP “equality
$”, where $ is a formula in the NP. This means that the formula will be linked
with this NP (see Figure 1). The complex variation is if an NP contains more than
one word. In Example 1, variable g will not be linked with an NP “Levi-Civita
connection of the metric $”, because the main word is “Levi-Civita connection”
and the variable is a complement here. Similarly, we ignore expression prefixes:
in Example 1, “n” is left without linking, but a variable M will be linked with
an NP “second fundamental form of the $-surface $”.

In the second case, the key idea behind analysis is a concept of maximal
feasible distance (MFD) in terms of symbol positions between “Math” and NP
annotations in the text. For a given pair, we constrain MFD to be always less
than the length of a sentence that contains both the annotations. The optimal
value for MFD can be found empirically and, as our experiments have shown,
the results are robust to its actual value. Finally, the method chooses the closest
NP annotation to a given formula. Though, some cases are handled specifi-
cally, e.g. such popular text patterns as “[formula] – [NP]” with the dash in the
middle.

2.4 Article Metadata Extraction

At this stage, we solve a task of extraction and conversion of article metadata
as well as bibliographic references according to a standardized vocabulary. For
this purpose, we choose AKT Portal Ontology12. Comparing to its alternatives,
such as BIBO13 and SWRC14, the ontology covers the academic domain in more
details and is widely used in existing LOD data sets. The extraction method:

– crawls a collection of documents and extracts from the headers the follow-
ing information – title, author names, their affiliation, journal title, journal
volume, and publication year;

– makes identifiers out of publication titles;
– post-processes bibliographies using the identifiers.
– prepares the article data for for serializing according to the AKT schema.

Article URIs are generated compatible with URLs on MathNet.Ru15, a large
online digital collection. In particular, it means that article URIs from our data
set can be easily dereferenced in an Internet browser.

12 http://www.aktors.org/ontology/
13 http://bibliontology.com/specification
14 http://ontoware.org/swrc
15 http://mathnet.ru

http://www.aktors.org/ontology/
http://bibliontology.com/specification
http://ontoware.org/swrc
http://mathnet.ru
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2.5 Interlinking

We solve a task of interlinking the IVM data set with existing data sets in
the LOD cloud. Essentially, the task is two-fold: first, aligning OntoMathPRO

ontology with DBpedia, and, second, seeking duplicates in the AKT based LOD
data sets. Our solution is not integrated with the processing units described
above, and, unlike them, requires additional human efforts. We heavily use Silk
application16 for both the subtasks.

Aligning OntoMathPRO with DBpedia. It is based on the following
features:

– class and resource labels (rdfs:label property);
– links to Wikipedia – during the development of the ontology, some definitions

were imported from Wikipedia and refer to it. We compare these references
with foaf:primaryTopic and rdfs:labels property values in DBpedia.

For interlinking, we only use DBpedia resources that belong to the Mathemat-
ics category and its subcategories (e.g. Algebra, Geometry, Mathematical logic,
Dynamical Systems) up to 5 levels with respect to skos:broader property. This
is mainly caused by the shortcomings of Silk and DBpedia concerning handling
and representing transitive properties17.

After the linking has been accomplished, we generate triples connecting the
classes of the OntoMathPRO with the resources from DBpedia by using
skos:closeMatch property.

Seeking Duplicates in AKT Based Data Sets. We have investigated data
sets based on the AKT schema. It turns out that the CORDIS data set18 is the
only appropriate one at the moment. Matching has been performed using in-
formation about organizations. In particular, akt:name and akt:has-pretty-name
properties are used.

3 Implementation

In this section, we provide implementation details of our prototype.
The overall infrastructure of the publishing workflow is depicted in Figure 2.

LATEX is the only input document format supported by the prototype at the
moment. Then, we use the arXMLiv tools [4] to convert LATEX source files into
a convenient XML representation. The NLP annotation module is based on the
facilities of “OntoIntegrator” [2], a proprietary software tool for linguistic analy-
sis of texts in Russian, developed by two of the authors. It supports XML as an

16 http://www4.wiwiss.fu-berlin.de/bizer/silk/
17 As we noticed during experiments, using the deeper levels may even lead to poor
results. For example, there is a transitive chain between Topology and Alice in
Wonderland categories!

18 http://cordis.rkbexplorer.com

http://www4.wiwiss.fu-berlin.de/bizer/silk/
http://cordis.rkbexplorer.com
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Fig. 2. Prototype Architecture

input/output format. The module for MNE extraction is implemented as a JS
script19. It accepts XML files for processing and an OWL file of OntoMathPRO

ontology. Relying on the NLP annotations, it complements XML files with ad-
ditional attributes. The module for mining the logical structure is a part of
the Mocassin project, an open source mathematical semantic search engine in
Java. It processes XML documents using the GATE architecture20 along with
custom processing analyzers. The module for connecting MNEs to formulas is
implemented as a GATE plugin21. Article metadata extraction is carried out by
the special Bash scripts22. All the data from the previous steps flow together
into the RDF generation unit to be converted to RDF. For the purpose, we
use the OpenRDF Sesame library23 written in Java, which prepares the RDF
triple statements and saves them into the triple store, a Virtuoso Community
Edition server instance24. Virtuoso is a high-performance RDBMS server with
extensive RDF/SPARQL support and materialized OWL reasoner. Interlinking
is supported by a custom SILK configuration script that uses a list of DBpedia
categories related to mathematics25.

4 Experiments and Evaluation

We have conducted an evaluation of some critical performing tasks to make sure
that the extracted data are of high quality. In the section, we present the results
and discuss possible failures of the developed methods.

19 http://bit.ly/cll-mne-extraction
20 http://gate.ac.uk/
21 http://bit.ly/cll-gate-morph-formula
22 http://bit.ly/cll-akt-metadata-extraction
23 http://www.openrdf.org/
24 http://sourceforge.net/projects/virtuoso/
25 http://bit.ly/cll-interlinking

http://bit.ly/cll-mne-extraction
http://gate.ac.uk/
http://bit.ly/cll-gate-morph-formula
http://bit.ly/cll-akt-metadata-extraction
http://www.openrdf.org/
http://sourceforge.net/projects/virtuoso/
http://bit.ly/cll-interlinking
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NLP Annotation. We randomly selected 24 documents out of the collection
and checked 10 623 NLP annotations assigned by our method. It turns out that
the sentence segmentation task is solved at high level of precision (98.9%) and
recall (98.83%). Some errors occur, if the author places a period, the mark of
the sentence end, inside a mathematical environment. Then, the method for NP
extraction gives precision no less than 88%. The error types are as follows: miss-
ing fixed prepositional phrases (5%), missing right definition (2%), incomplete
NP structure (2%) etc. The method can be improved by more deep syntacti-
cal analysis (e.g. of participial phrases) and considering more fixed phrases of
mathematical vernacular.

MNE Extraction. While indexing the entire collection, the NLP subsystem
outputs 330 462 NPs. The module of MNE extraction links 138 032 (41.7%)
NPs to the ontology classes with non-zero confidence score values. After filtering
documents on the field of mathematical analysis and removing duplicates, we
had 16 300 unique MNE candidates, which were grouped into buckets according
to observed confidence score values and were given to an expert in mathematical
analysis for manual checking. Table 1 shows the distribution of recall/precision
estimates depending on varying the confidence score threshold.

Table 1. Evaluation of MNE Extraction

Confidence score # of candidates # of correct Recall Precision
threshold candidates

0.27 16 300 12 255 1.000 0.752
. . . . . . . . . . . . . . .
0.33 15 964 12 117 0.989 0.759
. . . . . . . . . . . . . . .
0.57 2 470 2 426 0.198 0.982
. . . . . . . . . . . . . . .
1.00 1 254 1 254 0.102 1.000

Finally, for constructing the RDF data set, we choose the following strategy,
which accents the precision:

– for candidates with confidence score greater than 0.57, we generate “hard”
relation instances (rdf:type), where every NP is treated as an individual of
the linked ontology classes;

– for candidates, which confidence is between 0.33 and 0.57, we generated
“soft” relation instances (skos:closeMatch).

Connecting MNEs to Formulas. We have studied the quality of connecting
MNEs to formulas depending on the actual value of MFD. We manually select 8
documents from different fields of mathematics. The overall evaluation statistics
is shown in Table 2.
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Table 2. Statistics of Connecting MNEs to Formulas. TP means true positive,
TN – true negative, FP – false positive, FN – false negative.

MFD TP, TN, FP, FN, Accuracy,
% % % % %

15 36.3 30.5 23.9 9.3 66.8
20 42.3 25.5 25.7 6.5 67.8
25 41.0 20.7 23.0 15.3 61.7

In total, there are 1 247 mathematical expressions and 1 357 NPs. The op-
timal value of MFD is equal to 20. It gives 67.8% in accuracy. We emphasize
that this value absorbs the errors of NLP annotation and some misspellings in
the texts, e.g. replacing dashes with hyphens. Additionally, varying MFD in a
range between 15 and 40 has 64.0% mean accuracy with 2.7% standard devi-
ation, which supports our claim that choosing MFD for our method is not so
critical in practice. Among the necessary improvements of the formula linking
method, there are a special handling of equation groups and accurately filtering
of mathematical expressions.

Aligning OntoMathPRO with DBpedia. The alignment has resulted in
947 connections with 907 OntoMathPRO classes (some classes were linked with
several DBpedia resources). Thus, the ontology coverage is about 27%. The
manual assessment gave a precision estimate of 95%. The errors come from the
following issues:

– inconsistencies in interwiki linking in Wikipedia: ontomathpro:Sum of the
Series �= dbpedia:Convergence tests

– an issue with homonymous concepts and categories in DBpedia: ontomath-
pro:Ideal �= dbpedia:Ideal ethics, the latter occurs in the transitive chain of
categories: Philosophy of Life→ Life→ Universe→ Astronomical dynamical
systems → Dynamical Systems.

Seeking Duplicates in AKT Based Data Sets. The module returns only 91
correct and 13 wrong duplicates of organizations from the CORDIS data set. It
means that there is no much overlap between these data sets. The module failed
to find duplicates of all the types in the DBLP data set due to the absence of such
data (in case of organizations) and retrieving limits of its SPARQL endpoint.

5 IVM Data Set: Statistics and Use Cases

The resulting RDF data set26 contains 854 284 triples including the descriptions
of 43 963 variables, 17 397 formulas, 4 190 theorems, 3 035 proofs, 2 356 lemmas, 1

26 The data set can be accessed via a SPARQL endpoint – http://cll.niimm.ksu.ru:
8890/sparql-auth, the endpoint is secured, please email the authors to get access
to it.

http://cll.niimm.ksu.ru:
8890/sparql-auth
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015 definitions and other mathematical entities indexed. Below, we demonstrate
several use cases using SPARQL queries to illustrate possible applications.

Use Case 1. Let us assume, we would like to find articles with theorems about
finite groups.

PREFIX moc: <http://cll.niimm.ksu.ru/ontologies/mocassin#>

PREFIX math: <http://cll.niimm.ksu.ru/ontologies/mathematics#>

SELECT ?article WHERE {

?article moc:hasSegment ?theorem .

?theorem moc:mentions ?entity; a moc:Theorem .

?entity a math:E2183

}

In this query, we use Theorem, a Mocassin ontology class, and its properties
hasSegment and mentions along with a class Finite Group (E2183) from the
OntoMathPRO ontology.

Use Case 2. The next query is to determine the fields a particular article
belongs to.

define input:inference

"http://cll.niimm.ksu.ru/ontologies/mathematics/rules"

PREFIX moc: <http://cll.niimm.ksu.ru/ontologies/mocassin#>

PREFIX math: <http://cll.niimm.ksu.ru/ontologies/mathematics#>

SELECT ?field ?label WHERE {

<http://mathnet.ru/ivm327> moc:hasSegment _:a .

_:a moc:mentions _:b . _:b a _:c .

_:c owl:equivalentClass _:d . _:d owl:onProperty math:P3 ;

owl:allValuesFrom ?field . ?field rdfs:label ?label

} GROUP BY ?field

A URI http://mathnet.ru/ivm327 maps to an article URL on MathNet.Ru. A
math:P3 stands for the inverse property for belongsTo. The query outputs classes
that represent some mathematical domains, such as Discrete Mathematics, The-
ory of Computation, Mathematical analysis, and Probability Theory, that are
relevant to the given article.

Use Case 3. Finally, for Empty Set, a certain DBpedia concept, we would like
to determine its notations occurred in the articles.

PREFIX moc: <http://cll.niimm.ksu.ru/ontologies/mocassin#>

SELECT ?latexSource from <http://cll.niimm.ksu.ru/ivm> WHERE {

?class skos:closeMatch dbpedia:Empty_set .

?notation moc:hasLatexSource ?latexSource .

?entity moc:hasNotation ?notation;

a ?class .

}

This query may help to choose the proper notation for a beginning researcher
in mathematics. On our data set, the search results are as follows: ω, ∅, ω ∈ D.
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6 Related Work

Mathematical knowledge representation, as a field, has its own rich history. There
have been developed various models and tools to formalize different aspects
of the mathematical domain. For example, domain-specific languages, such as
MathLang [5] and OMDoc [6], give opportunities to build semantically enriched
models of a mathematical document and natively support representing logical
structure elements like theorems or definitions. However, creating such highly
formalized mathematical documents is still a laborious process. The paper [7]
presented an approach to author math lecture notes with specific sTEX macro
package. This work primarily focuses on mathematical formulas and elements of
the logical structure and appears to be the first work aiming to fit mathematical
texts and LOD together.

Historically, the Bourbaki group’s series of books was the first ever attempt to
create an ontology of mathematical knowledge rooted in G. Cantor’s set theory.
Their seminal work establishes a conceptual framework for defining mathemat-
ical entities organized in different fields. There have been a few applied domain
models developed in the digital era. For example, [8] presents a formal ontology of
mathematics for engineers that covers abstract algebra andmetrology. Cambridge
Mathematical Thesaurus27 contains a taxonomy of about 4 500 entities connected
with logical dependency and associative relationships. This resource covers terms
from the undergraduate level mathematics. Next, relying on Wikipedia, Encyclo-
pedia of Science, and the engaged research community, the ScienceWISE project
ontology [9] gives over 2 500 mathematical definitions connected with ISA-, part-
whole, associative, and importance relationships. The project focuses on achiev-
ing a consensus of opinion among mathematicians about given definitions. In the
context of modeling mathematical concepts with the help of Semantic Web tools,
we would like to note a recent adaptation of Mathematics Subject Classification28

using SKOS as a linked data set [10]. From this perspective, our OntoMathPRO

ontology overlaps with this data set in case of modeling hierarchy of fields, but it
is significantly richer for representing mathematical named entities.

Impressive advances in ontology extraction have been achieved across many
domains. However, before our work, only a few projects have applied ontol-
ogy based NLP techniques for scholarly papers in mathematics. The mArachna
project [11] focuses on extracting ontologies combining the mathematical knowl-
edge and information about the document structure. However, a comparison
of mArachna with our work is problematic, because the project aims for Ger-
man, and its authors do not provide many details about the specification of the
structure, and implementation of the entity extraction techniques to enable a
replication of their results. Next, linguistic modules of the arXMLiv project [4]
are intended for resolving ambiguities in mathematical notation for texts in En-
glish. We are going to conduct a comparative analysis with this work after adding
support of English language to our NLP annotation module.

27 http://bit.ly/cambridge-math-thesaurus
28 www.ams.org/msc/

http://bit.ly/cambridge-math-thesaurus
www.ams.org/msc/
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Most research insights and tasks, the solutions of which we described here,
were stated in [12]. To our knowledge, the present work is first to extract a
Linked Data representation of academic papers in mathematics using not only
their metadata, but also the text contents, in an automatic way.

7 Conclusion and Outlook

We present a platform prototype for mining a structured standardized repre-
sentation of scholarly papers in mathematics. The platform aims for automatic
publication their contents as well as metadata in the format of LOD-compliant
data. The tool has been applied on a collection of over 1 300 mathematical pub-
lications to demonstrate feasibility of the solution. We report on evaluation of
the most important tasks solved during the development. Finally, we provide
several use cases to illustrate utility of the published data. As a future work, we
are aiming to integrate all the modules into a full-fledged toolkit, add support
of English language, and extend our approach to other natural science domains,
such as physics, chemistry, and biology.
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Abstract. The discovery of links between resources within knowledge bases is
of crucial importance to realize the vision of the Semantic Web. Addressing this
task is especially challenging when dealing with geo-spatial datasets due to their
sheer size and the potential complexity of single geo-spatial objects. Yet, so far,
little attention has been paid to the characteristics of geo-spatial data within the
context of link discovery. In this paper, we address this gap by presenting Orchid,
a reduction-ratio-optimal link discovery approach designed especially for geo-
spatial data. Orchid relies on a combination of the Hausdorff and orthodromic
metrics to compute the distance between geo-spatial objects. We first present two
novel approaches for the efficient computation of Hausdorff distances. Then, we
present the space tiling approach implemented by Orchid and prove that it is op-
timal with respect to the reduction ratio that it can achieve. The evaluation of our
approaches is carried out on three real datasets of different size and complexity.
Our results suggest that our approaches to the computation of Hausdorff distances
require two orders of magnitude less orthodromic distances computations to com-
pare geographical data. Moreover, they require two orders of magnitude less time
than a naive approach to achieve this goal. Finally, our results indicate that Orchid
scales to large datasets while outperforming the state of the art significantly.

Keywords: Link discovery, Record Linkage, Deduplication, Geo-Spatial Data,
Hausdorff Distances.

1 Introduction

The Linked Open Data Cloud (LOD Cloud) has developed to a compendium of approx-
imately 300 datasets over the last few years. Currently, geographic data sets contain
approximately 6 billion triples and make up 19.4% of the triples in the LOD Cloud.
Projects such as LinkedGeoData1 promise an increase of these numbers by orders of
magnitude in the near future. However, only 7.1% of the links between knowledge
bases in the LOD Cloud currently connect geographic entities. This means that less
than 1% of triples within the geographic datasets of the LOD Cloud are links between

1 See http://linkedgeodata.org . Last access: January 11th, 2013.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 395–410, 2013.
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knowledge bases.2 This blatant lack of links is partly due to two factors: First, it is due
to the large number of geo-spatial entities available on the Linked Open Data Cloud.
Moreover, the geo-spatial resources are often described as (often ordered) sets of points
which describe geometric objects such as (multi-) polygons or (multi-) polylines. This
way of describing resources differs considerably from the approach followed for most
Linked Data resources, which are commonly easiest identified by the means of a label.
Consequently, such descriptions have not yet been payed much attention to in the field
of link discovery (LD).

We address this gap by presenting Orchid, a reduction-ratio-optimal approach for
LD. Orchid assumes the LD problem as being formulated in the following way: Given
a set S of source instances, a set T of target instances and a distance threshold θ, find the
set of triples (s, t, δ(s, t)) ∈ S × T × R+ such that δ(s, t) ≤ θ. Given this assumption, the
idea behind Orchid is to address the LD problem on geographic data described as (or-
dered) sets of points by two means. First, Orchid implements time-efficient algorithms
for computing whether the distance between two polygons s and t is less or equal to a
given distance threshold θ. Moreover, Orchid implements a space tiling algorithm for
orthodromic spaces which allows discarding yet another large number of unnecessary
computations.

The rest of this paper is structured as follows: In Section 2, we present the core
notation used throughout this paper as well as some formal considerations underlying
our approach. Section 3 presents two approaches that allow computing the Hausdorff
distance between two polygons efficiently.3 Subsequently, we present the space dis-
cretization approach implemented by Orchid and show that it is optimal with respect
to its reduction ratio. We then present a thorough evaluation of our approach on three
datasets of different sizes and complexity. We also compare our approach with a state-
of-the-art LD framework which implements the orthodromic distance. We conclude the
paper with a brief overview of related work (Section 6) and a discussion of our results
(Section 7). The approach presented here was integrated in the LIMES framework.4 Due
to space restrictions, we had to omit some details of the approaches presented herein.
These can be found in the corresponding technical report on the project webpage.

2 Preliminaries

The formal specification of LD adopted herein is tantamount to the definition proposed
in [11]: Given a set S of source resources, a set T of target resources and a relation
R, our goal is to find the set M ⊆ S × T of pairs (s, t) ∈ S × T such that R(s, t). If
R is owl:sameAs, then we are faced with a deduplication task. Given that the explicit
computation of M is usually a very complex endeavor, M is usually approximated by
a set M̃ = {(s, t, δ(s, t)) ∈ S × T × R+ : δ(s, t) ≤ θ}, where δ is a distance function and
θ ≥ 0 is a distance threshold. For geographic data, the resources s and t are described

2 See http://wifo5-03.informatik.uni-mannheim.de/lodcloud/state/ for an
overview of the current state of the Cloud. Last access: January 11th, 2013.

3 The Hausdorff distance can be used to compare the distance between any two sets of ordered
points located in a space where a distance function is defined. Thus, while we focus on poly-
gons in this paper, our approach can be used for all sets of points.

4 http://limes.sf.net

http://wifo5-03.informatik.uni-mannheim.de/lodcloud/state/
http://limes.sf.net
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by using single points or (ordered) sets of points, which we regard as polygons. Given
that we can regard points as polygons with one node, we will speak of resources being
described as polygons throughout this paper. We will use a subscript notation to label
the nodes that make up resources. For example, if s had three nodes, we would denote
them s1, s2, and s3. For convenience’s sake, we will write s = {s1, s2, s3} and si ∈ s.

While there are several approaches for computing the distance between two poly-
gons [2], a common approach is the use of the Hausdorff distance [14] hd:

hd(s, t) = max
si∈s
{min

t j∈t
{δ(si, t j)}}, (1)

where δ is the metric associated to the affine space within which the polygons are de-
fined. We assume that the earth is a perfect ball with radius R = 6378 km. Then, δ
is the orthodromic distance and will be denoted od in the rest of this paper. Given
these premises, the LD task we investigate in this paper is the following: Find the set
M̃ = {(s, t, hd(s, t)) ∈ S × T : hd(s, t) ≤ θ} where ∀si ∈ s ∀t j ∈ t δ(si, t j) = od(si, t j). It
is important to notice that the orthodromic distance is known to be a metric, leading to
the problem formulated above being expressed in a metric space.

Two requirements are central for the approaches developed herein. First, the ap-
proaches have to be complete (also called lossless [11]), which simply means that they
must be able to compute all triples (s, t, hd(s, t)) ∈ S × T × R+ for which hd(s, t) ≤ θ
holds. This characteristic is not fulfilled by certain blocking approaches, which trade
runtime efficiency for completeness. In addition to developing a complete approach,
we aim to develop a reduction-ratio-optimal approach [10]: Let A be an algorithm for
computing M̃ and α be the vector that contains all parameters necessary to runA. More-
over, let |A(α)| be the number of computations of hd carried out by A when assigned
the vector of parameters α. We callA(α) reduction-ratio-optimal when

∀r < 1 − |M̃||S ||T | ∃α : 1 − |A(α)|
|S ||T | ≥ r. (2)

Naive approaches to computing M̃ have two drawbacks: First, they require |s||t| calls
of od to compute hd(s, t). Moreover, they carry out |S ||T | computations of hd to find all
elements of M̃. Addressing the time complexity of LD on geographic data thus requires
addressing these two quadratically complex problems. Our approach addresses the time
complexity of the first problem by making use of the Cauchy-Schwarz inequality, i.e.,

od(x, y) ≤ od(x, z) + od(z, y), (3)

and of bounding circles for approximating the distance between polygons. The second
problem is addressed by the means of a reduction-ratio-optimal tiling approach similar
to theHR3 algorithm [10].

3 Efficient Computation of Hausdorff Distances

Several approaches have addressed the time-efficient computation of Hausdorff dis-
tances throughout literature (see [14] for a good overview). Yet, so far, these approaches
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have not been concerned with the problem of only finding those triples (s, t, hd(s, t))
with hd(s, t) ≤ θ. In the following, we present several approaches for achieving this
goal. These approaches are later evaluated in Section 5. For space reasons, we omit the
pseudo-code for the first two approaches. These can be found in the technical report.

3.1 Naive Approach

The naive approach for computing hd(s, t) would compare all elements of the polygon
s ∈ S with all elements of the polygons t ∈ T by computing the orthodromic distance
between all si ∈ s and t j ∈ t. Let S̄ be the average size of the polygons in S and T̄ be
the average size of the polygons in T . The best- and worst-case runtime complexities of
the naive approach are then O(|S ||T |S̄ T̄ ).

3.2 Bound Approach

A first idea to make use of the bound hd(s, t) ≤ θ on distances lies in the observation
that

∃si ∈ S : min
t j∈t
{od(si, t j)} > θ → hd(s, t) > θ (4)

This insight allows terminating computations that would not lead to pairs for which
hd(s, t) ≤ θ by terminating the computation as soon as a si is found that fulfills Eq.
(4). In the best case, only one point of each s ∈ S is compared to all points of t ∈ T
before the computation of hd(s, t) is terminated. Thus, the best-case complexity of the
approach is O(|S ||T |T̄). In the worst case (i.e., in the case that the set of mappings
returned is exactly S × T ), the complexity of the bound approach is the same as that of
the naive approach, i.e., O(|S ||T |S̄ T̄ ).

3.3 Indexed Approach

The indexed approach combines the intuition behind the bound approach with geomet-
rical characteristics of the Hausdorff distance by using two intuitions. The first intuition
is that if the minimal distance between any point of s and any point of t is larger than
θ, then hd(s, t) > θ must hold. Our second intuition makes use of the triangle inequality
to approximate the distances od(si, tk). In the following, we present these two intuitions
formally. We dub the indexed approach which relies on the second intuition alone CS
while we call the indexed approach that relies on both intuitions BC +CS .

Intuition 1: Bounding Circles. Formally, the first intuition can be expressed as
follows:

min
si∈s, t j∈t

{od(si, t j)} > θ→ hd(s, t) > θ. (5)

Finding the two points si and t j which minimize the value of od(si, t j) requires O(|s||t|)
computations of od, i.e., O(|S ||T |S̄ T̄ ) overall. However, a lower bound for this minimum
for all pairs (s, t) ∈ S × T can be computed efficiently by using encompassing circles:
Let C(s) resp. C(t) be the smallest circles that fully encompass s resp. t. Moreover, let
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r(s) resp. r(t) be the radius of these circles and ζ(s) resp. ζ(t) be the centers of the circles
C(s) resp. C(t). Then,

min
si∈s,t j∈t

{od(si, t j)} > od(ζ(s), ζ(t)) − (r(s) + r(t)) = μ(s, t). (6)

Figure 1 displays the intuition behind this approximation graphically. Note that this
equation also holds when the circles overlap (in which case od(ζ(s), ζ(t))−(r(s)+r(t)) <
0 as od(ζ(s), ζ(t)) < (r(s) + r(t)).

s 

r(s) 

(s) 

t 

(t) 

r(t) 

(s,t) 

Fig. 1. Lower bound of Hausdorff distances based on circles

Computing the smallest circle that encompasses any polygon x can be carried out in
O(|x|2) by simply computing od(xi, xk) for all (xi, xk) ∈ x2. Then,

r(x) =
max

xi∈x,xk∈x
od(xi, xk)

2
(7)

while

ζ(x) =
x+ + x−

2
where (x+, x−) = arg max

xi∈x,xk∈x
od(xi, xk). (8)

The proof that the radius r(x) must have the value shown in Equation 7 is as follows:
The points within a circle with radius r′ are at most at a distance 2r′ of each other.
Consequently, any circle with radius r′ < r(x) cannot contain both elements of the
pair (x+, x−) = arg max

xi∈x,xk∈x
od(xi, xk). Thus, the smallest possible radius of a circle that

encompasses x fully must be the maximal distance between points which belong to x.
This is exactly the value of r(x). Now the only way to ensure that a circle with radius
r(x) really encompasses all points in x is to have x+ and x− to be diametrically opposite.
Thus, ζ(x) must be exactly in the middle of x+ and x−.

The runtime complexity of this approximation is O(|S |S̄ 2+ |T |T̄ 2+ |S ||T |). O(|S |S̄ 2+

|T |T̄ 2) computations of od are required to determine the circles and their radii while
O(|S ||T |) computations are required to compare the circles computed out of S with
those from T . Note that for large problem S̄ 2 resp. T̄ 2 are very small compared to |S |
resp. |T |, leading to O(|S |S̄ 2 + |T |T̄ 2 + |S ||T |) ≈ O(|S | + |T | + |S ||T |) ≈ O(|S ||T |).

Intuition 2: Distance Approximation Using the Cauchy-Schwarz Inequality. Now
given that we have computed all distances between all pairs (t j, tk) ∈ t2, we can reuse
this information to approximate distances from any si to any tk by relying on the
Cauchy-Schwarz inequality in a fashion similar to the LIMES algorithm presented
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in [12]. The idea here is that we can compute an upper and a lower bound for the
distance od(si, tk) by using the distance od(si, t j) previously computed as follows:

|od(si, t j) − od(t j, tk)| ≤ od(si, tk) ≤ od(si, t j) + od(t j, tk). (9)

For each si, exploiting these pre-computed distances can be carried out as follows:
For all tk for which od(si, tk) is unknown, we approximate the distance from si to tk by
finding a point t j for which

t j = arg min
tx∈t′

od(tx, tk) (10)

holds, where t′ ⊆ t is the set of points tx of t for which od(si, tx) is known. We call the
point t j an exemplar for tk. The idea behind using one of points closest to tk is that it
gives us the best possible lower bound |od(si, t j) − od(t j, tk)| for the distance od(si, tk).
Now if |od(si, t j) − od(t j, tk)| > θ, then we can discard the computation of the distance
od(si, tk) and simply assign it any value Θ > θ. Moreover, if |od(si, t j) − od(t j, tk)| is
larger than the current known minimal distance between si and points in t, then we can
also discard the computation of od(si, tk). If such an exemplar does not exist or if our
approximations fail to discard the computation, then only do we compute the real value
of the distance od(si, tk).

The best-case complexity of this step alone would be O(|S ||T |S̄ ) while in the worst
case, we would need to carry out O(|S ||T |S̄ T̄ ) computations of od. The overall com-
plexity of the indexed approach is O(|S |S̄ 2 + |T |T̄ 2 + |S ||T |) (i.e., that of the bounding
circles filter) in the best case and O(|S |S̄ 2 + |T |T̄ 2 + |S ||T |+ |S ||T |S̄ T̄ ) in the worst case.
The overall algorithm underlying the indexed approach is shown in Algorithm 1.

4 ORCHID

Although the indexed method presented above can significantly reduce the number of
computations carried out to compare S and T , it still needs at least |S ||T | comparisons.
For example, imagine our source and target data sets were all geo-spatial entities on
the portion of the surface of the planet shown in Figure 2. If Oslo (which has the co-
ordinates (59?56’58” N, 10?45’23” E)) was the resource to link via dbp:near, then
the approaches above would compare it with each of the other elements of the dataset.
The idea behind Orchid is to reduce the number of comparisons even further while re-
maining complete and being reduction-ratio-optimal. To achieve this goal, Orchid uses
a space discretization approach and only compares polygons t ∈ T which lie within
a certain range of s ∈ S . An example of the discretization generated by Orchid is
shown in Figure 2. Instead of comparing Oslo with all other elements of the dataset,
Orchid would only compare it with the geo-spatial objects shown in the gray cells.
In the following, we present Orchid formally and prove that it is both complete and
reduction-ratio-optimal.

4.1 Preliminaries

Explaining the approach implemented by Orchid prerequisites the explication of a set
of characteristics of the orthodromic distance od. Given a polygon s, finding all points
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Algorithm 1. Implementation of the BC + CS Hausdorff distance computation. The
implementation of CS lacks lines 1,2,3 and 28.
1: if (od(c(s), c(t)) − r(s) − r(t) > θ) then
2: return ∅
3: else
4: max← 0
5: for si ∈ s do
6: min← ∞
7: for t j ∈ t do
8: e = exemplar(t j)
9: if e � ∅ then

10: approx = |od(si, e) − od(e, t j)|
11: if approx > θ ∨ approx > min then
12: d(si, t j) = θ + 1
13: else
14: d(si, t j) = od(si, t j)
15: end if
16: else
17: d(si, t j) = od(si, t j)
18: end if
19: min = min(min, d(si, t j))
20: end for
21: max = max(max,min)
22: end for
23: if max > θ then
24: return ∅
25: else
26: return max
27: end if
28: end if

t such that hd(s, t) ≤ θ requires being able to find all points y for which od(x, y) ≤ θ
given a point x. In general, a point x on the surface of the planet can be characterized by
two values: its latitude lat(x) and its longitude long(x). These two values are bound as
−π/2 ≤ lat(x) ≤ π/2 and −π ≤ lon(x) ≤ π always hold.5 We write x = (lat(x), lon(x))
to denote points. Now, given a point y with lon(x) = lon(y), then od(x, y) = R|lat(x) −
lat(y)|. Yet, if lat(x) = lat(y), then od(x, y) = R|lon(x) − lon(y)|cos(lat(x)). This dif-
ference between latitude and longitude is central when finding all points y for which
od(x, y) ≤ θ. Formally, it means that we can create a discretization in which we treat the
latitude values independently from the longitude values but not the other way around.
This particular characteristic of latitude and longitude values lies at the heart of Orchid.

4.2 Discretization for Geo-Spatial Points

The idea behind Orchid is to make use of the values of latitude and longitude being
bound to first create a grid on the surface of the planet. We call α ∈ N the granularity

5 All angles in this paper are assumed to be in radian unless stated otherwise.
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56° 
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64° 

2° 4° 6° 8° 10° 12° 14° 16° 18° 20° 

Oslo 

Stavanger Stockholm Friederikstad 

Hamer 

Boras 

Mora 

Fig. 2. Example of tiling for α = 1 and θ = 222.6km (i.e., ΔR = 2◦). Here, the resource to link is
Oslo. The gray cells are the elements of A(Oslo).

parameter of Orchid. Given the premises described in Section 4.1, we can infer that for
x ∈ s ∈ S and t ∈ T ∈ T

od(x, y) ≤ θ → |lat(x) − lat(y)| ≤ θ/R = θR. (11)

Based on this equation, we can create a grid such that width and height of each cell of
the grid is ΔR = θR/α. For each cell ci, two whole numbers clat

i and clon
i exist such that

ci contains only points x for which

(clat
i Δ ≤ lat(x) < (clat

i + 1)Δ) ∧ (clon
i Δ ≤ lon(x) < (clon

i + 1)Δ) (12)

holds. We call (clat
i , c

lon
i ) the coordinates of ci. Moreover, we write x ∈ ci if Equation 12

holds for x. We also write ci(x) to signify the cell to which x belongs. In our example
(Figure 2), the cell which contains Oslo has the coordinates (29, 5). Given this definition
of a grid, the set M̃(x) of y with od(x, y) ≤ θ is clearly a subset of all y for which |lat(x)−
lat(y)| ≤ θR holds. With respect to our grid, we can infer the following inequality:

x ∈ ci ∧ y ∈ c j ∧ |clat
i − clat

j | > α→ y � M̃(x). (13)

We call the set of all cells which abide by this inequation LAT (x). Finding a similar
equation for longitudes is more demanding, as the equation depends on the latitude of
cells ci and c j. Formally, the set M̃(x) of y with od(x, y) ≤ θ is clearly a subset of all
y for which |lat(x) − lat(y)| ≤ θR/min{cos(lon(x), lon(y))} holds. Consequently, we can
derive the following equation:

x ∈ ci ∧ y ∈ c j ∧ |clon
i − clon

j | >
⌈

α

mincos(ci, c j)

⌉
→ y � M̃(x) (14)

where

mincos(ci, c j) = min{cos(αci), cos(α(ci + 1)), cos(α(c j)), cos(α(c j + 1)). (15)

We call this set LON(x). Now, if one the minimal cosine values in Equation 15 is 0, then
Equation 14 is not well-defined. This happens when one of the cells ci or c j is adjacent to
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one of the poles. In this case, we assume α
mincos(ci,c j)

= 0. This assumption has the simple
consequence that we select all cells c j at the poles to contain potential y with od(x, y) ≤
θ. We can now generate a first approximation of M̃(x) by computing the intersection
of all y that abide by Equations 13 and 14. We call this set A(x) = LAT (x) ∩ LON(x).
Note that M̃(x) ⊆ A(x). An example of such a set is shown in Figure 2 where A(Oslo) is
depicted as a set of gray squares. Note that given that α = 1, we only need to consider
the cells with 28 ≤ clat

i ≤ 30. Yet, given that cos(60?) = 0.5, the number of cells that
have to be considered in longitude grows from 5 to 7 when crossing the 60th north
parallel.

4.3 Optimality of Orchid for Points

While it is guaranteed that M̃(x) ⊆ A(x), it is possible that A(x) contains grid cell c
with ∀y ∈ c, (x, y, od(x, y)) � M̃.6 Such cells must be eliminated from A(x) as they lead
to unnecessary comparisons. Achieving this goal can be carried out by measuring the
minimal distance from the cell c(x) which contains x and all other cells c ∈ A(x). Let us
assume that c is at the north east of c(x) (for reasons of symmetry, the argumentation can
be extended to all other cells). In our example, such a cell would be that which contains
Mora. Then the most north eastern point of ne(c(x)) has the coordinates Δ(clat

i (x) +
1, clon

i (x) + 1) while the most south western point of sw(c) of c has the coordinates
Δ(clat

i , c
lon
i ). Consequently, the minimal distance from points in c(x) to points in c is

min
od

(c(x), c) = od(Δ(clat
i (x) + 1, clon

i (x) + 1), Δ(clat
i (x), clon

i )). (16)

We thus define the set OPT (x) ⊆ A(x) as

OPT (x) = {y ∈ A(x) : min
od

(c(x), c(y)) ≤ θ}. (17)

This set is guaranteed not to contain any cell with which elements of c(x) should be
compared. Consequently, it is the set of points x and all other elements of c(x) are
compared to by Orchid.

OPT (x) is optimal in the sense that

lim
α→+∞OPT (x) = M̃(x). (18)

This is simply due to α→ +∞ leading to Δ→ 0. In this case, c(x) = {x} and c(y) = {y}.
Thus, minod(c(x), c(y)) = od(x, y) which allows to infer that OPT (x) = M̃(x) from
Equation 17. Note that this proof shows that Orchid fulfills a necessary and sufficient
condition to be reduction-ratio-optimal on single points in the sense of [10]. In our
example A(Oslo) = OPT (Oslo).

4.4 Comparing Polygons with Orchid

The extension of OPT (x) to polygons is based on the following observation: Given the
definition of Hausdorff distances,

hd(s, t) ≤ θ → ∀si ∈ s ∃t j ∈ t : od(si, t j) ≤ θ (19)

6 Note that od(x, y) = hd(x, y) for |x| = |y| = 1.
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holds. Consequently, OPT (s) =
⋂
si∈s

OPT (si). The reduction-ratio optimality of Orchid

for polygons follows from its reduction-ratio-optimality for points.

5 Evaluation

The goal of the evaluation was to assess the performance of our approaches with respect
to their runtime and the number of computation of the orthodromic distance that they
carried out. To achieve this goal, we first compare the naive, bound, CS and BC+CS im-
plementations of the computations of bound Hausdorff distance on samples from three
different datasets. Note that we refrained from using the whole datasets because the
runtime of the naive approach would have been impracticable. In the second part of our
evaluation, we study the combination of Orchid and our Hausdorff implementations.

5.1 Experimental Setup

We selected three publicly available datasets of different sizes for our experiments. The
first dataset, Nuts, contains a detailed description of 1,461 specific European regions.7

The second dataset, DBpedia, contains all 731,922 entries from DBpedia that possess
a geometry entry.8 Finally, the third dataset, LGD, contains all 3,836,119 geo-spatial
objects from LinkedGeoData that are instances of the class Way.9 An overview of the
distribution of the polygon sizes in these datasets is given in Figure 3. In addition, we
used a dataset that consists of all points which have the wgs84:geometry property10

from DBpedia for the comparison with SILK.11 The 732,224 entities in this dataset are
single points on the surface of the planet. We used this dataset because SILK 2.5.3 does
not yet support the Hausdorff distance but implements the orthodromic distance.

(a) Nuts (b) DBpedia (c) LGD

Fig. 3. Distribution of polygon sizes

All experiments were carried out on a 32-core server running JDK 1.7 on Linux
10.04. The processors were 8 quadcore AMD Opteron 6128 clocked at 2.0 GHz. Un-
less stated otherwise, each experiment was assigned 10GB of memory and was ran 5

7 We used version 0.9.1 as available at http://nuts.geovocab.org/data/
8 We used version 3.8 as available at http://dbpedia.org/Datasets
9 We used the RelevantWays dataset (version of April 26th, 2011) of LinkedGeoData as avail-

able at http://linkedgeodata.org/Datasets
10 wgs84 stands for http://www.w3.org/2003/01/geo/wgs84_pos#
11 The dataset was extracted from the RelevantNodes dataset (version of April 26th, 2011) of

DBpedia as available at http://linkedgeodata.org/Datasets

http://nuts.geovocab.org/data/
http://dbpedia.org/Datasets
http://linkedgeodata.org/Datasets
http://www.w3.org/2003/01/geo/wgs84_pos#
http://linkedgeodata.org/Datasets
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times. The time-out for experiments was set to 3 hours per iteration. The granularity
parameter α was set to 1. In the following, we present the minimal runtime of each of
the experiments.

5.2 Results

Hausdorff Implementations. In the first part of our evaluation, we measured the
runtimes achieved by the three different implementation of the Hausdorff distances
on random samples of the Nuts, DBpedia and LGD data sets. We used three differ-
ent thresholds for our experiments, i.e., 100 m, 0.5 km and 1 km. In Figure 4, we present
the results achieved with a threshold of 100 m. The results of the same experiments for
0.5 km and 1 km did not provide us with significantly different insights. All exact values
can be found on the project website. As expected the runtime of all three approaches
increases quadratically with the size of the sample. There is only a slight variation in the
number of comparisons (see Figure 4) carried by the three approaches on the DBpedia
dataset. This is simply due to most polygons in the dataset having only a small number
of nodes as shown in Figure 3. With respect to runtime, there is no significant difference
between the different approaches on DBpedia. This is an important result as it suggests
that we can always use the CS or BC + CS approaches even when the complexity of
the polygons in the datasets is unknown.

On the two other datasets, the difference between the approaches with respect to both
the number of comparisons and the runtime can be seen clearly. Here, the bound im-
plementation requires an order of magnitude less comparisons than the naive approach
while the indexed implementations need two orders of magnitude less comparisons. The
runtimes achieved by the approaches reflect the observations achieved on the compar-
isons. In particular, the bound approach is an order of magnitude faster than the naive
approach. Moreover, the BC + CS approach outperforms the bound approach by ap-
proximately one further order of magnitude. Note that up to approximately 1.07% of
the comparisons carried out by BC +CS are the result of the indexing step.

Deduplication. In our second series of experiments, we deduplicated the three datasets
at hand by using four different thresholds between 100 m and 2 km. We compared the
combination of Orchid (α = 1) and of all different implementations of the Hausdorff
distance. The rationale behind this experiment was to measure whether the bound and
indexed implementations were of any use even within the smaller sub-problems gener-
ated by Orchid. The results achieved show that using these implementations can indeed
lead to significant improvements in both runtime and comparisons (see Figure 5). In
particular, the indexed distance profits from the fact that it can discard a large number
of computations that would lead to distance below and above the distance threshold.
Thus, it requires over than two orders of magnitude less computations than the bound
and naive versions on the Nuts dataset. Given the small size of the index that it gener-
ates for Nuts, the indexed approach is also two orders of magnitude faster across all the
thresholds. On the LGD dataset, the indexed approach is the only one that terminated
within the set time of 3 hours. Due to the topology of the DBpedia data, the runtimes
on DBpedia are comparable for all approaches. Here, it is important to note that for
smaller thresholds, the indexed approach still requires close to an order of magnitude
less comparisons than the naive approach.
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(a) Comparisons on Nuts (b) Runtime on Nuts

(c) Comparisons on DBpedia (d) Runtime on DBpedia

(e) Comparisons on LGD (f) Runtime on LGD

Fig. 4. Number of comparisons and runtimes on samples of the datasets

Scalability. We were also interested in knowing how our approach performs with grow-
ing dataset sizes. We thus ran Orchid in combination with BC with randomly selected
slices of LinkedGeoData and DBpedia and computed the runtime against the size of
the data slices. The similarity threshold was set to 0.1 km as in the previous experiment.
The results on DBpedia and LinkedGeoData are shown in Table 1. We omitted Nuts
because it is too small for scalability experiments. The runtimes and number of com-
parisons on DBpedia suggest that the approach behaves in a quasi-linear fashion on low-
dimensional and sparsely distributed data. Note that the number of mappings because
partly larger than the number of computations on this dataset is simply due to items with
the same URI being found in both source and target and thus not necessitating any com-
parisons for deduplication. This is more rarely the case in the LinkedGeoData dataset.
The runtimes on LinkedGeoData yet suggest that both the number of computations and
the runtime required of our approach grow sub-linearly with the number of mappings
to be computed when the number of points per polygon grows. This can be explained
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(a) Comparisons on Nuts (b) Runtime on Nuts

(c) Comparisons on DBpedia (d) Runtime on DBpedia

(e) Comparisons on LGD (f) Runtime on LGD

Fig. 5. Number of comparisons and runtime of Orchid

by our approach making effective use of existing data to discard computations and re-
duce the ratio of number of computations to mappings with growing data size. Thus,
our approach promises to scale well to even larger data sets.

Comparison with Other Approaches. SILK12 [6] is of the few other LD framework
which implements the orthodromic distance. To the best of our knowledge, no other LD
framework implements the Hausdorff distance. Thus, we compare Orchid in combina-
tion with the naive implementation of the Hausdorff distance to SILK on all 732,224
points from DBpedia that contain longitude and latitude information. The results of
four different distance thresholds are shown in Figure 6. Our results clearly show that
Orchid outperforms SILK by more than one order of magnitude in all settings.

12 Throughout our experiments, we used SILK 2.5.3.
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Table 1. Scalability results. The top section shows the results on DBpedia while the lower section
shows the results on LinkedGeoData.

Sample Size od computations Runtime (ms) Mappings

105 34,959 2,936 103,428
2 × 105 97,798 5,783 215,096
4 × 105 341,986 10,423 459,681

7.3 × 105 1,035,222 20,727 932,848

105 5,703,683 42,437 77,003
2 × 105 11,734,609 57,935 159,878
4 × 105 24,844,435 153,174 342,477
8 × 105 55,212,459 411,248 777,826

16 × 105 131,405,064 819,636 1,902,803

Fig. 6. Comparison of runtime of SILK and Orchid

6 Related Work

The work presented herein is related to record linkage, deduplication, LD and the effi-
cient computation of Hausdorff distances. An extensive amount of literature has been
published by the database community on record linkage (see [7,4] for surveys). With
regard to time complexity, time-efficient deduplication algorithms such as PPJoin+ [19],
EDJoin [18], PassJoin [8] and TrieJoin [17] were developed over the last years. Several
of these were then integrated into the hybrid LD framework LIMES [11]. Moreover,
dedicated time-efficient approaches were developed for LD. For example, RDF-AI [15]
implements a five-step approach that comprises the preprocessing, matching, fusion,
interlink and post-processing of data sets. [12] presents an approach based on the
Cauchy-Schwarz that allows discarding a large number of unnecessary computations.
The approaches HYPPO [9] andHR3 [10] rely on space tiling in spaces with measures
that can be split into independent measures across the dimensions of the problem at
hand. Especially, HR3 was shown to be the first approach that can achieve a relative
reduction ratio r′ less or equal to any given relative reduction ratio r > 1. Standard
blocking approaches were implemented in the first versions of SILK and later replaced
with MultiBlock [6], a lossless multi-dimensional blocking technique. KnoFuss [13]
also implements blocking techniques to achieve acceptable runtimes.
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Hausdorff distances are commonly used in fields such as object modeling, computer
vision and object tracking. [1] presents an approach for the efficient computation of
Hausdorff distances between convex polygons. While the approach is quasi-linear in
the number of nodes of the polygons, it cannot deal with non-convex polygons as com-
monly found in geographic data. [5] presents an approach for the comparison of 3D
models represented as triangular meshes. The approach is based on a subdivision sam-
pling algorithm that makes use of octrees to approximate the distance between objects.
[16] present a similar approach that allows approximating Hausdorff distances within
a certain error bound while [3] presents an exact approach. [14] present an approach
to compute Hausdorff distances between trajectories using R-trees within an L2-space.
Note that our approach is tailored to run in orthodromic spaces. Still, some of the in-
sights presented in [14] may be usable in an orthodromic space. To the best of our
knowledge, none of the approaches proposed before address the problem of finding
pairs of polygons (A, B) such that hd(A, B) ≤ θ in an orthodromic space.

7 Conclusion and Future Work

In this paper, we presented Orchid, a LD approach for geographic data. Our approach
is based on the combination of Hausdorff and orthodromic distances. We devised two
approaches for computing bound Hausdorff distances and compared these approaches
with the naive approach. Our experiments showed that we can be more than two orders
of magnitude faster on typical geographic datasets such as Nuts and LinkedGeoData.
We then presented the space tiling approach which underlies Orchid and proved that
it is reduction-ratio-optimal. Our most interesting result was that our approach seems
to be sub-linear with respect to the number of comparisons and the runtime it requires.
This behavior can be explained by the approach making use of the higher data density to
perform better distance approximations and thus discarding more computations of the
orthodromic distance. In addition to comparing different parameter settings of Orchid
with each other, we also compared our approach with the state-of-the-art LD framework
SILK. Our results show that we outperform the blocking approach it implements by
more than one order of magnitude. In future work, we will extend our approach by
implementing it in parallel and integrating it with a load balancing approach.
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Project GeoKnow (Grant Agreement No. 318159).

References

1. Atallah, M.J.: A linear time algorithm for the hausdorff distance between convex polygons.
Technical report, Purdue University, Department of Computer Science (1983)

2. Atallah, M.J., Ribeiro, C.C., Lifschitz, S.: Computing some distance functions between poly-
gons. Pattern Recognition 24(8), 775–781 (1991)
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Abstract. We discuss the problem of minimizing TBoxes expressed in the light-
weight description logic EL, which forms a basis of some large ontologies like
SNOMED, Gene Ontology, NCI and Galen. We show that the minimization of
TBoxes is intractable (NP-complete). While this looks like a bad news result,
we also provide a heuristic technique for minimizing TBoxes. We prove the cor-
rectness of the heuristics and show that it provides optimal results for a class of
ontologies, which we define through an acyclicity constraint over a reference re-
lation between equivalence classes of concepts. To establish the feasibility of our
approach, we have implemented the algorithm and evaluated its effectiveness on
a small suite of benchmarks.

1 Introduction

It is well-known that the same facts can be represented in many different ways, and that
the size of these representations can vary significantly. This is also reflected in ontology
engineering, where the syntactic form of ontologies can be more complex than neces-
sary. For instance, throughout the development (and the life-cycle) of an ontology, the
way in which concepts and the relationship between them are represented within the
ontology are constantly changing. For example, a name for a complex concept expres-
sion is often introduced only after it has been used several times and has proved to be
important. Another example are dependencies between concepts that evolve over time,
resulting in new subsumption relations between concepts (A1 � A2). As a result, previ-
ously reasonable concept expressions may become unnecessarily complex. In the given
example, A1  A2 becomes equivalent to A1.

Clearly, unnecessary complexity impacts on the maintenance effort as well as the
usability of ontologies. For instance, keeping track of dependencies between complex
concept expressions and relationships between them is more cumbersome when it con-
tains unnecessarily complex or unnecessarily many different concept expressions. As
a result, the chance of introducing unwanted consequences is higher. Moreover, unin-
tended redundancy decreases the overall quality of the ontology.

Removing unnecessary syntactic complexity from ontologies by hand is a difficult
task: for the average ontology, it is almost impossible to obtain the minimal represen-
tation without tool support. Thus, automated methods that help to assess the current
succinctness of an ontology and generate suggestions on how to increase it would be
highly valued by ontology engineers.

It is easy to envision scenarios that demonstrate the usefulness of rewriting for re-
ducing the cognitive complexity of axioms. For instance, when a complex concept C is
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frequently used in the axioms of an ontology and there is an equivalent atomic concept
AC , the ontology will diminish in size when occurrences of C are replaced by AC .

Example 1. Consider the following excerpt from the ontology Galen [1]:

Clotting � ∃ actsSpecificallyOn.(Blood � ∃ hasPhysicalState. (1)

(PhysicalState � ∃ hasState.liquid))�
∃hasOutcome.(Blood � ∃ hasPhysicalState.solidState)

LiquidState ≡ PhysicalState � ∃ hasState.liquid (2)

LiquidBlood ≡ Blood � ∃ hasPhysicalState.LiquidState (3)

Given concepts defined in Axioms 2 and 3 above, we can easily rewrite Axiom 1 to obtain the
following, simpler axiom containing only 6 references to concepts and roles (as opposed to 10
references in Axiom 1):

Clotting � ∃ actsSpecificallyOn.LiquidBlood� (4)

∃hasOutcome.(Blood � ∃ hasPhysicalState.solidState)

In description logics [2], few results towards simplifying ontologies have been ob-
tained so far. Grimm et al. [3] propose an algorithm for eliminating semantically redun-
dant axioms from ontologies. In the above approach, axioms are considered as atoms
that cannot be split into parts or changed in any other way. With the specific goal of
improving reasoning efficiency, Bienvenu et al. [4] propose a normal form called prime
implicates normal form for ALC ontologies. However, as a side-effect of this transfor-
mation, a doubly-exponential blowup in concept size can occur.

In this paper, we investigate the succinctness for the lightweight description logic
EL. The tractable OWL 2 EL profile [5] of the W3C-specified OWL Web Ontology
Language [6] is based on DLs of the EL family [7]. We consider the problem of finding
a minimal equivalent representation for a given EL ontology. First, we demonstrate
that we can reduce the size of a representation by up to an exponent even in the case
that the ontology does not contain any redundant axioms. We show that the related
decision problem (is there an equivalent ontology of size ≤ k?) is NP-complete by
a reduction from the set cover problem, which is one of the standard NP-complete
problems. We also show that, just as for other reasoning problems in EL, ontology
minimization becomes simpler under the absence of a particular type of cycles. We
identify a class of TBoxes, for which the problem can be solved in PTIME instead
of NP and implement a tractable algorithm that computes a minimal TBox for this
class of TBoxes. The algorithm can also be applied to more expressive and most cyclic
TBoxes1, however without a guarantee of minimality. We apply an implementation of
the algorithm to various existing ontologies and show that their succinctness can be
improved. For instance, in case of Galen, we managed to reduce the number of complex
concepts occurrences by 955 and the number of references to atomic concepts and roles
by 1130.

The paper is organized as follows: In Section 2, we recall the necessary preliminar-
ies on description logics. Section 3 demonstrates the potential of minimization. In the

1 The extension to general TBoxes is a trivial modification of the algorithm.
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same section, we also introduce the basic definitions of the size of ontologies and for-
mally state the corresponding decision problem. In Section 4, we derive the complexity
bounds for this decision problem. Section 5 defines the class of TBoxes, for which the
problem can be solved in PTIME instead of NP and presents a tractable algorithm that
computes a minimal TBox for this class of TBoxes. In Section 6, we present experimen-
tal results for a selection of ontologies. Finally, we discus related approaches in Section
7 before we conclude and outline future work in Section 8. Further details and proofs
can be found in the extended version of this paper.

2 Preliminaries

We recall the basic notions in description logics [2] required in this paper. Let NC

and NR be countably infinite and mutually disjoint sets of concept symbols and role

symbols. An EL concept C is defined as

C ::= A|�|C  C|∃r.C,
where A and r range over NC and NR, respectively. In the following, we use
symbols A,B to denote atomic concepts and C,D,E to denote arbitrary concepts.
A terminology or TBox consists of concept inclusion axioms C � D and concept
equivalence axioms C ≡ D used as a shorthand for C � D and D � C. The sig-
nature of an EL concept C or an axiom α, denoted by sig(C) or sig(α), respectively,
is the set of concept and role symbols occurring in it. To distinguish between the set
of concept symbols and the set of role symbols, we use sigC(C) and sigR(C), re-
spectively. The signature of a TBox T , in symbols sig(T ) (correspondingly, sigC(T )
and sigR(T )), is defined analogously. Additionally, we denote the set of subconcepts
occurring in a concept C as sub(C) and the set of all subconcepts including part-
conjunctions as sub�(C). For instance, forC = ∃r.(A1A2A3) we obtain sub(C) =
{∃r.(A1  A2  A3), A1  A2  A3, A1, A2, A3} and sub�(C) = {∃r.(A1  A2 
A3), A1 A2 A3, A1 A2, A1 A3, A2 A3, A1, A2, A3}. Accordingly, we denote
the set of subconcepts occurring in a TBox T as sub(T ) and the set of all subconcepts
including part-conjunctions as sub�(T ).

Next, we recall the semantics of the above introduced DL constructs, which is de-
fined by means of interpretations. An interpretation I is given by the domain ΔI and a
function ·I assigning each concept A ∈ NC a subset AI of ΔI and each role r ∈ NR

a subset rI of ΔI × ΔI . The interpretation of � is fixed to ΔI . The interpretation
of an arbitrary EL concept is defined inductively, i.e., (C  D)I = CI ∩ DI and
(∃r.C)I = {x | (x, y) ∈ rI , y ∈ CI}. An interpretation I satisfies an axiom C � D
if CI ⊆ DI . I is a model of a TBox, if it satisfies all of its axioms. We say that a TBox
T entails an axiom α (in symbols, T |= α), if α is satisfied by all models of T . A TBox
T entails another TBox T ′, in symbols T |= T ′, if T |= α for all α ∈ T ′. T ≡ T ′ is a
shortcut for T |= T ′ and T ′ |= T .

3 Reducing the Complexity of Ontologies

The size of a TBox T is often measured by the number of axioms contained in it
(|T |). This is, however, a simplified view of the size, which neither reflects cognitive
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complexity, nor the reasoning complexity. In this paper, we measure the size of a con-
cept, an axiom, or a TBox by the number of references to signature elements as stated
in the definition below.

Definition 1. The size of an EL concept D is defined as follows:

– for D ∈ sig(T ) ∪ {�}, ∫(D) = 1;
– for D = ∃r.C, ∫(D) = ∫(C) + 1 where r ∈ sigR(T ) and C is an arbitrary

concept;
– for D = C1  C2, ∫(D) = ∫(C1) + ∫(C2) where C1, C2 are arbitrary concepts;

The size of an EL axiom (one of C1 � C2, C1 ≡ C2) and a TBox T is accordingly
defined as follows:

– ∫(C1 � C2) = ∫(C1) + ∫(C2) for concepts C1, C2;
– ∫(C1 ≡ C2) = ∫(C1) + ∫(C2) for concepts C1, C2.
– ∫(T ) =

∑
α∈T ∫(α) for a TBox T .

The above definition, for instance, can serve as a basis for computing the average size
of axioms (∫(T ) ÷ |T |) within an ontology. In addition to the above measure of size,
the number of distinct complex concept expressions sub(T ) and the overall number of
occurrences of such concept expressions (with the corresponding values related to |T |)
can serve as an indication of how complex are concept expressions within the ontology.
In the following example, we demonstrate the difference between the two measures |T |
and ∫(T ) and show how the complexity of an ontology can be reduced in principle (by
up to an exponent for ontologies without redundant axioms, i.e., axioms that can be
omitted without losing any logical consequences).

Example 2. Let concepts Ci be inductively defined by C0 = A, Ci+1 = ∃r.Ci 
∃s.Ci. Intuitively, Ci of concepts have the shape of binary trees with exponentially
many leaves. Clearly, the concepts grow exponentially with i, since ∫(Ci) = 2 + 2 ·
∫(Ci−1). For a natural number n, consider the TBox Tn:

Cn−1 � B

Bi ≡ Ci 1 ≤ i ≤ n− 1

While Tn does not contain any redundant axioms, it can easily be represented in a more
compact way by recursively replacing each Ci by the corresponding Bi, yielding T ′

n:

Bn−1 � B

B1 ≡ C1

Bi+1 ≡ ∃r.Bi  ∃s.Bi 1 ≤ i ≤ n− 1

While the number of axioms is the same in both cases, the complexity of Tn is clearly
lower. E.g., for n = 5, we obtain ∫(Tn) = 134 and ∫(T ′

n) = 24.

We now consider the problem of finding the minimal equivalent EL representation
for a given TBox. The corresponding decision problem can be formulated as follows:
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Definition 2 (P1). Given an EL TBox T and a natural number k, is there an EL TBox
T ′ with ∫(T ′) ≤ k such that T ′ ≡ T .

In general, the corresponding minimal result is not unique. We denote the set {T ′ |
T ′ ≡ T } by [T ]. Note that the minimality of the result is trivially checked by deciding
P1 for a decreasing number k until the answer is negative.

In literature, there are different variations of the ontology minimization problem that
cover specific cases. Perhaps the simplest examples for avoidable non-succinctness are
axioms that follow from other axioms and that can be removed from the ontology with-
out losing any logical consequences. While some axioms including the last axiom in
the above example can be removed in any representations, in general, subsets of axioms
can be exchangeable.

Example 3. Consider the ontology T :

C � ∃r.C ∃r.D � D

C � D ∃r.C � ∃r.D

T has two subset ontologies, T1 and T2:

T1 = {C � ∃r.C, ∃r.C � ∃r.D, ∃r.D � D}

T2 = {C � ∃r.C, C � D, ∃r.D � D}
Neither of the two contains any axioms that are entailed by the remainder of the on-
tology. There are also no sub-expressions that can be removed. However, T2 is less
complex than T1, because C � D is simpler (shorter) than ∃r.C � ∃r.D.

While the above problem is already known to be non-tractable and can have many
solutions, the ability to rewrite axioms of the ontology can further increase the diffi-
culty and the number of possible solutions: While in the above cases a minimal on-
tology contains only subconcepts sub(T ) of the original ontology T , in general, a
minimal ontology can introduce new concept expressions as demonstrated in the
following example.

Example 4. Consider the following TBox T :

C1 � A2 A2 � C3

∃r.D � D ∃s.C1 � D

∃s.C3 � ∃r.(∃s.C1)

Assume that ∫(C1) and ∫(C3) are large. Then the axiom ∃s.C1 � D needs to be
exchanged by ∃s.A2 � D to obtain a smaller TBox. The TBox Tm given below is a
minimal representation of T .

C1 � A2 A2 � C3

∃r.D � D ∃s.A2 � D

∃s.C3 � ∃r.(∃s.C1)

We notice that the original ontology T does not contain the expression ∃s.A2 ∈
sub(Tm).
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We can conclude that considering subsumption relations between subconcepts
sub(T ) of T is not sufficient when looking for a minimal equivalent representation.
In the next section, we show that the corresponding decision problem P1 is in fact NP-
complete.

4 NP-Completeness

In this section, we first show the NP-hardness of the problem and then establish its NP-
completeness. We show NP-hardness by a reduction from the set cover problem, which
is one of the standard NP-complete problems. For a given set S = {S1, S2, . . . , Sn}
with carrier set S =

⋃n
i=1 Si, a cover C ⊆ S is a subset of S, such that the union of the

sets in C covers S, i.e., S =
⋃

C∈C C.
The set cover problem is the problem to determine, for a given set S = {S1, S2, . . . ,

Sn} and a given integer k, if there is a cover C of S with at most k ≥ |C| elements. We
will use a restricted version of the set cover problem, which we call the dense set cover
problem (DSCP). In the dense set cover problem, we require that

– neither the carrier set S nor the empty set is in S,
– all singleton subsets (sets with exactly one element) of S are in S, and
– if a non-singleton set S is in S, so is some subset S′ ⊆ S, which contains only one

element less than S (|S � S′| = 1).

Lemma 1. The dense set cover problem is NP-complete.

Proof Sketch. For the full version of the proof, see extended version of the paper.
The proof shows how to convert the cover of the non-dense set into a cover of the
corresponding dense set and vise versa. !

Given the above NP-completeness result, we show that the size of minimal equiva-
lents specified in P1 is a linear function of the size of the minimal cover. To this end,
we use the lemma below to obtain a lower bound on the size of equivalents. Intuitively,
it states that for each entailed non-trivial equivalence C ≡ A, the TBox must contain at
least one axiom that is at least as large as C′ ≡ A for some C′ with T |= C ≡ C′:

Lemma 2. Let T be an EL TBox, A ∈ sig(T ) and C,D EL concepts such that T |=
C ≡ A, T |= A � D (the latter is required for induction). Then, one of the following
is true:

1. A is a conjunct of C (including the case C = A);
2. there exists an EL concept C′ such that T |= C ≡ C′ and C′ �� A ∈ T or

C′ �� A D′ ∈ T for some ��∈ {≡,�} and some concept D′.

Proof Sketch. For the full version of the proof, see extended version of the paper. We
use the sound and complete proof system for general subsumption in EL terminologies
introduced in [8] and prove the lemma by induction on the depth of the derivation of
C � A  D. We assume that the proof has minimal depth and consider the possible
rules that could have been applied last to derive C � A  D. In each case the lemma
holds. !
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We now show how to encode the dense set cover problem as an ontology minimiza-
tion problem. Consider an instance of the dense set cover problem with the carrier set
A = {B1, . . . , Bn}, the set S = {A1, . . . , Am, {B1}, . . . , {Bn}} of subsets that can
be used to form a cover. By interpreting the set and element names as atomic concepts,
we can construct TSbase as follows:

TSbase = {A′′ ≡ A′ B | A′′, A′ ∈ S, B ∈ A,A′′ = A′ ∪ {B}, A′′ �= A′}.

Observe that the size of TSbase is at least 3m. Clearly, TSbase |= Ai ≡
�

B∈Ai
B.

Let TS = TSbase ∪ {A ≡
�

B∈AB}. We establish the connection between the size of
TS equivalents and the size of the cover of S as follows:

Lemma 3. TS has an equivalent of size ∫(TSbase)+ k+1 if, and only if, S has a cover
of size k.

Proof. For the if-direction, assume that S has a cover of size k. We construct T ′
S of size

∫(TSbase) + k + 1 as follows: T ′
S = TSbase ∪ {A ≡

�
A′∈C A

′}. Clearly, T ′
S ≡ TS .

For the only-if-direction, we assume that k is minimal and argue that no equivalent
T ′ ∈ [TS ] of size ≤ ∫(TSbase) + k can exist. Assume that T is a minimal TBox with
T ∈ [TS ]. With the observation, that the m+n atomic concepts that represent elements
of S are pairwise not equivalent with each other or the concept A that represents the
carrier set, we can conclude that no two atomic concepts are equivalent. From Lemma
2 it follows that, for each Ai with i ∈ {1, . . . ,m}, there is an axiom Ci ≡ C′

i ∈ T or
Ci � C′

i ∈ T such that T |= Ci ≡ Ai and Ai is a conjunct of C′
i or Ai = C′

i . Since
there are no equivalent atomic concepts and Ci �= Ai due to the minimality of T , the
size of each such axiom is at least 3 and none of these axioms coincide. Additionally,
since TS �|= Ai � A, A cannot occur as a conjunct of Ci or as a conjunct of C′

i;
Finally, we estimate the size of the remaining axioms and show that their cumulative

size is > k. It also follows from Lemma 2 that there exists an axiom C ≡ C′ ∈ T
or C � C′ ∈ T such that T |= C ≡ A and A is a conjunct of C′ or A = C′. It
holds that T |= C ≡

�
B∈AB. We also know that for no proper subset S′ � A holds

T |=
�

B∈S′ B � C. Thus, we have found a cover of S and the size of the axiom must
be ≥ k + 1. Thus, the overall size of T must be ≥ ∫(TSbase) + k + 1. !
Theorem 1. P1 is in NP.

Proof. We ask the non-deterministic algorithm to guess a TBox of the size ≤ k. It
remains to verify T ′ ≡ T , which can be done in PTIME [7]. !
Theorem 2. P1 is NP-complete.

Proof. The problem is NP-hard as an immediate consequence of Lemmas 3 and 1.
Given the result of Theorem 1, we establish NP-completeness of the problem. !

5 Minimizing Acyclic TBoxes

In this section, we develop an algorithm for minimizing TBoxes in polynomial time,
which is guaranteed to provide a minimal TBox for a class of EL TBoxes satisfying a
certain type of acyclicity conditions. The algorithm can also be applied to more expres-
sive and some cyclic TBoxes, however without the guarantee of minimality.
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5.1 Acyclicity Conditions

In this subsection, we introduce equivalence classes on concepts and discuss cyclic
dependencies between equivalence classes and their impact on computing minimal rep-
resentations. Let T be an EL TBox and let C be a concept in sub(T ). We use the
notation [C]T = {C′ ∈ sub(T ) | T |= C ≡ C′} to denote the equivalence class of the
concept C and CT = {[C]T | C ∈ sub(T )} to denote the set of all equivalence classes
over the set sub(T ). In case T is clear from the context, we omit the index. We base
the acyclicity conditions on the following reference relations, which use both syntactic
and semantic dependencies between equivalence classes:

Definition 3. Let T be an EL TBox. The reference relations ≺�,≺� and ≺s, all sub-
sets of C × C, are given as follows:

– [C] ≺s [C
′] if, for some C1 ∈ [C], C2 ∈ [C′], it holds that C2 occurs in C1;

– [C] ≺� [C′] if, for some C1 ∈ [C], C2 ∈ [C′], it holds that [C1] ≺s [C2] or
T |= C1 � C2;

– [C] ≺� [C′] if, for some C1 ∈ [C], C2 ∈ [C′], it holds that [C1] ≺s [C2] or
T |= C1 . C2.

We call a TBox cyclic, if any of the above relations ≺�,≺�,≺s is cyclic. We say
that a TBox T is strongly cyclic if ≺s is cyclic. The algorithm presented in this paper
is applicable for TBoxes not containing strong cycles. Most of the large bio-medical
ontologies including Galen, Gene Ontology and NCI do not contain strong cycles. This
was also the case for earlier versions of SNOMED, e.g., the one dated 09 February
2005 [9]. Note that asking for the absence of cycles in ≺s is a weaker requirement than
for ≺� or ≺�, as ≺s⊆≺� ∩ ≺�. But the reverse relationship between the conditions
holds.

In some cases, TBoxes contain cycles that are caused by redundant conjuncts and
can easily be removed.

Example 5. {A  B � C,A � B} has a cyclic ≺� relation due to a cycle between
A B and A. It can be transformed into an acyclic TBox {A � C,A � B}.

We call conjunctions C′  C′′ in sub(T ) such that T |= C′ � C′′ subsumer-
containing conjunctions. We can easily eliminate subsumer-containing conjunctions
in TBoxes before applying the algorithm: for each subsumer-containing conjunction
C′  C′′ in sub(T ) with T |= C′ � C′′, we replace C′  C′′ in T by C′, and
add the axiom C′ � C′′ to T . We can show that the closure of each equivalence
class [C] of an acyclic TBox T is finite if we exclude subsumer-containing conjunc-
tions. We denote such a closure with [C]∗ = {C′ | T |= C ≡ C′ and C′ is not a
subsumer-containing conjunction}. We denote the extended set of subconcepts of T by
sub(T )∗ =

⋃
[C]∈C[C]∗.

Another kind of removable cyclic dependencies are conjunctions on the right-hand
side. We use a simple decomposition, in which all conjunctions on the right-hand side
of axioms are replaced by separate inclusion axioms for each conjunct. We obtain the
decomposed version T ′ of a TBox T by replacing each C � D1  D2 ∈ Tm by
C � D1, C � D2 until a fixpoint is reached. Composition is the dual transformation:
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we replace any two axioms C � D1, C � D2 by C � D1  D2 until a fixpoint is
reached.

Unless we state otherwise, in the following we assume that TBoxes are decomposed
and do not contain subsumer-containing conjunctions.

5.2 Uniqueness of Minimal TBoxes

Acyclic TBoxes are better behaved not only with respect to the complexity of mini-
mization, but they also have a unique minimal TBox modulo replacement of equivalent
concepts by one another (if we assume that the TBox with the lower number of equiva-
lence axioms should be preferred in case of equally large TBoxes).

To be able to determine a unique syntactic representation of a TBox T , we choose
a representative C′ ∈ [C]∗ for each equivalence class [C] ∈ C and denote it using the
representative selection function r : C → sub(T )∗ with r([C]) = C′. We say that r is
valid, if for all [C], [D] ∈ C with [C] �= [D] it holds that C′ ∈ [C]∗ occurs in r([D])
only if C′ = r([C]), i.e., representatives can only contain other representatives, but not
other elements of equivalence classes.

Definition 4. Let T be a TBox and ��∈ {≡,�}. We say that T is aligned with r, if for
each C �� D ∈ T one of the following conditions holds:

– if T �|= C ≡ D, then C = r([C]) and D = r([D]);
– if T |= C ≡ D, then for each C′ such that C′ �= C, C′ �= D and C′ occurs in C

or D it holds that C′ = r([C′]).

In other words, the only axioms, in which we allow an occurrence of a non-
representative C are axioms relating C with concepts equivalent to it.

Since minimal TBoxes can sometimes contain subsumption axioms relating two
equivalent concepts with each other, the otherwise unique TBox result can vary in the
choice between subsumption and equivalence axioms. For the sake of uniqueness, we
assume that, whenever we have a choice between equivalence (≡) and subsumption
axioms (�) in the resulting TBox, we prefer subsumption axioms.

We call a TBox non-redundant, if there is no α ∈ T such that T �{α} |= α. In order
to show how to compute a minimal equivalent TBox for an acyclic initial TBox, we first
show that we do not need new equivalence classes or new relations between them to ob-
tain any non-redundant, decomposed, equivalent TBox. In other words, non-redundant,
decomposed axioms encoding relations between equivalence classes are unique up to
exchanging equivalent concepts.

Lemma 4. Let T1, T2 be two non-redundant, acyclic EL TBoxes such that T1 ≡ T2.
Let C � D ∈ T2. Then there is C′ � D′ ∈ T1 such that T1 |= C′ ≡ C, T1 |= D′ ≡ D.

While the above lemma addresses relations between equivalence classes in non-
redundant, decomposed TBoxes, it does not allow us to draw conclusions about axioms
representing relations within equivalence classes. The purpose of the below lemma is
to determine the part of the TBox that encodes relations between equivalent concepts
within equivalence classes. For this, we divide the TBox into partitions: one for non-
equivalence axioms T 0 = {C � D ∈ T | T �|= C ≡ D} and one for axioms encoding
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relations within each equivalence class: T [C′] = {C ≡ D ∈ T | C,D ∈ [C′]} for each
[C′] ∈ C. We denote the set of all subsumption dependencies holding within a partition
by T full,[C′] = {C � D | C,D ∈ [C′]}. In each (equivalence class) partition, a part
of dependencies can be deducible from the remainder of the TBox.

Example 6. Consider the TBox T = {A � B, ∃r.A ≡ ∃r.B}. For the equivalence
class {∃r.A, ∃r.B}, the subsumption ∃r.A � ∃r.B follows from A � B.

We denote entailed dependencies for an equivalence class [C′] by T red,[C′] = {C �
D | C,D ∈ [C′]}. We now consider alternative representations of each partition T [C′].
We first show that, in any acyclic TBox T aligned with some valid r, we can determine
the entailed dependencies T red,[C′] within each T full,[C′] based on T 0.

Lemma 5. Let T be a non-redundant, acyclic EL TBox aligned with a valid represen-
tative selection function r. Then, for each non-singleton equivalence class [C′] ∈ C(T )
and each pair C,D ∈ [C′], it holds that C � D ∈ T red,[C′] exactly if one of the
following conditions is true:

1. D = �
2. there are concepts C′, D′ such that C = ∃r.C′, D = ∃r.D′ and T |= C′ � D′,

T �|= C′ ≡ D′.

As a consequence, each equivalence class partition can be considered independently
from other equivalence class partitions. In particular, this implies that, for any syntactic
representation T [C] of a partition for equivalence class [C′], we can obtain T full,[C′]

from T [C] ∪ T red,[C] by computing its transitive closure 2.

Lemma 6. Let T be a non-redundant, acyclic EL TBox aligned with a valid represen-
tative selection function r. Then, for each equivalence class [C] ∈ C(T ) it holds that
(T [C] ∪ T red,[C])∗ = T full,[C′].

Since our implementation operates on ontologies represented in the OWL Web On-
tology Language, we consider here an important detail of this language. In addition
to constructs mentioned in preliminaries, OWL Web Ontology Language allows for
OwlEquivalentClassesAxioms - axioms, in which we can specify a set of equivalent
concepts. With the exception of equivalence classes containing �, for which there ex-
ists an equally small representation without an OwlEquivalentClassesAxiom, this is
clearly the smallest representation for equivalence class partitions.

Let [C]nonred = [C] � {C′ ∈ [C] | C′ � D′
1 and C′ . D′

2 ∈ T red,[C] for
some D′

1, D
′
2}. Let T nonred,[C] be the corresponding OWLEquivalentClassesAxiom

with [C]nonred as the set of equivalent concepts. Note that, according to the seman-
tics of OwlEquivalentClassesAxioms, it holds that T nonred,[C] |= T full,[C]nonred . Thus,
T nonred,[C] ∪ T red,[C] |= T full,[C]. Note that ∫(T nonred,[C]) =

∑
C′∈[C]nonred ∫(C′).

Lemma 7. Let T be a non-redundant, acyclic EL TBox aligned with a valid represen-
tative selection function r. Then, ∫(T nonred,[C]) ≤ ∫(T [C]) for each equivalence class
[C] ∈ C(T ).

2 For a set T of axioms, the transitive closure (T )∗ is obtained by including C � D for any
C,D such that there exists C′ with T |= {C � C′, C′ � D}.
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Algorithm 1. Rewriting Tin
Data: Tin acyclic decomposed TBox
Result: Tout minimal equivalent TBox

1 Call ← C;
2 CTODO ← Call;
3 Tout ← remove equivalence axioms from Tin;
4 while CTODO = ∅ do
5 for [C] ∈ leaves(CTODO) do
6 choose minimal representative r([C]);
7 replace C′ ∈ [C] in Tout by r([C]);
8 replace C′ ∈ [C] in CTODO \ {[C]} by r([C]);
9 replace C′ ∈ [C] in Call \ {[C]} by r([C]);

10 CTODO ← CTODO \ {[C]};

11 Te ←
⋃

[C]∈Call,|[C]|≥2 T
nonred,[C];

12 for α ∈ Tout do
13 if Tout ∪ Te \ {α} |= α then
14 Tout ← Tout \ {α};

15 Tout ← Tout ∪ Te ;
16 Tout ← compose(Tout);

Based on the above two lemmas, we can show that, in the acyclic case, we can com-
pute a minimal TBox by eliminating redundant axioms, fixing the representative selec-
tion function r to some minimal value, constructing the core representation T nonred,[C]

for each non-singleton equivalence class [C] and composing T again.

Definition 5. Let T be an EL TBox and r a corresponding valid representative selec-
tion function. We say that r is minimal, if for each [C] ∈ C holds: there is no C ∈ [C]∗

such that ∫(C) < ∫(r([C])).

We can now state the minimality of the composed TBox containing T 0 and a parti-
tion T nonred,[C] for each non-singleton equivalence class [C] ∈ C.

Theorem 3. Let T be a non-redundant, acyclic EL TBox and r a minimal, valid rep-
resentative selection function. Let the TBox Tn = T 0 ∪

⋃
[C]∈C,|[C]|≥2 T nonred,[C] be

aligned with r. Let T ′
n be a composed version of Tn. Then, for any minimal TBox Tm

with Tm ≡ T it holds that ∫(Tm) = ∫(T ′
n).

Algorithm 1 implements the iterative computation of r and the minimal TBox T ′
n.

It takes an acyclic decomposed TBox Tin and computes the corresponding minimal
equivalent TBox Tout. Line 3 is not strictly necessary, but allows for a more efficient
processing. In Lines 4-10, a minimal representative selection function r is iteratively
determined – for one equivalence class at a time – and all data structures are aligned
with r. We distinguish two versions of equivalence classes: CTODO contains equivalence
classes, for which the minimal representative has not been selected yet. In each iteration,
we process the leaves in CTODO ordered with the reference relation ≺s and remove those
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equivalence classes from CTODO. Call contains all equivalence classes that are stepwise
aligned with a minimal representative selection function r. In each step, we also align
axioms Tout corresponding to the partition T 0 with r by replacing concepts with the
representative r([C]) fixed in Line 6.

In Line 11, we build partitions for non-singleton equivalence classes. In Lines 12-
14, we compute the non-redundant part of Tout. The function compose(Tout) in Line
16 composes subsumption axioms with identical left-hand sides into a single axiom.

Clearly, Algorithm 1 runs in PTIME. sub(T ) is polynomially large in the size of T
and C can be computed in PTIME due to tractable reasoning in EL. Equivalence axioms
can be removed in linear time. Lines 4-10 are executed |C| times and can be executed
in PTIME. The same holds for building partitions for non-singleton equivalence classes
and computing the non-redundant part of Tout. Composition can be performed in lin-
ear time. Note that the algorithm remains tractable only assuming the tractability of
reasoning in the underlying logic. Otherwise, the complexity of reasoning dominates.
In principle, the result could be obtained after computing the representatives for each
equivalence class by simply selecting all subsumption relations between classes. How-
ever, this would result in a less efficient implementation with large intermediary results.

Theorem 4. Let T be an acyclic EL TBox. Algorithm 1 computes a minimal equivalent
TBox in PTIME.

Minimality is a consequence of Theorem 3. Equivalence follows from T nonred,[C] ∪
T red,[C] |= T full,[C] for each non-singleton equivalence class [C] and from Lemma 4.

6 Experimental Results

For our evaluation, we have implemented the algorithm using the latest version of OWL
API and Hermit reasoner. We have used an optimized version of Algorithm 1, where
entailment checking is done in two phases, the first of which can be run by several
threads.

A selection of publicly available ontologies (as shown in Table 1) that vary in size and
expressivity have been used in the experiments3. Table 2 shows the number |CONo(T )|
of occurrences of complex concepts CON(T ) = sub(T ) � sigC(T ) in the first two
columns (the original value followed by the new value relative to the original one).
The two subsequent columns show the number of pairwise different complex concepts
|CON(T )|. The last two columns show ∫(T ) – the size of each ontology measured as the
number of occurrences of entities in sig(T ).

The implementation was first applied to Snomed [10]. However, the available fully-
fledged reasoners Pellet and Hermit run out of heap space when classifying the ontol-
ogy even with 10 GB memory assigned to the corresponding Java process. The ELK
reasoner [11] is capable of classifying Snomed, but it does not currently implement
entailment, which is essential for our implementation.

3 The wine ontology can be retrieved from http://www.w3.org/TR/2003/
PR-owl-guide-20031209/wine. All other ontologies used can be found in the
TONES ontology repository at http://owl.cs.manchester.ac.uk/repository

http://www.w3.org/TR/2003/
PR-owl-guide-20031209/wine
http://owl.cs.manchester.ac.uk/repository
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Table 1. Properties of ontologies used in experiments

|T | ∫ (T )/|T | CON(T )/|T | CONo(T )/|T | Logic

Snomed 83,259 4.99 1.14 2.57 EL++
Gene Ontology 42656 3.37 1.20 0.27 EL++
NCI 97811 1.10 0.00 0.14 ALCH(D)
Galen 4735 2.81 0.52 1.13 ALEHIF+
Adult Mouse 3464 2.48 0.15 0.48 EL++
Wine 657 1.03 0.21 0.40 SHOIN (D)
Nautilus 38 2.18 0.29 0.40 ALCHF(D)
Cell 1264 2.16 0.09 0.16 EL++
DOLCE-lite 351 1.42 0.13 0.14 SHIF
Software 238 25.21 2.60 7.26 ALHN (D)
Family Tree 36 6.19 1.02 1.33 SHIN (D)
General Ontology 8803 0.48 0.03 0.03 ALCHOIN (D)
Substance 609 2.33 0.22 0.36 ALCHO(D)
Generations 38 1.87 0.58 1.21 ALCOIF
Periodic Table 58 1.38 0.38 0.43 ALU

From the ontologies used in our experiments, only Snomed did not satisfy the acyclic-
ity conditions for ≺s sufficient to guarantee termination of our algorithm. On the one
hand, Snomed contains cyclic concept definitions. For instance, Mast cell leukemia
is defined by means of the corresponding equivalence axiom as

Leukemia disease �
Mast cell malignancy �
∃ RoleGroup.

(∃ Associated morphology. Mast cell leukemia �
∃ Finding site. Hematopoietic system structure)) �

∃ RoleGroup.(
∃ Has definitional manifestation. White blood cell finding)

On the other hand, Snomed contains a cyclic reference relation between the concepts
Wound and Wound finding, which is the only cyclic dependency with more than one
element.

We have manually evaluated how the rewriting has affected ontologies. In all cases
where concepts became smaller, the improvement has been achieved by either elimina-
tion of redundant axioms or exchanging complex expressions by atomic concepts.

In case of the Galen ontology [1], the algorithm managed to reduce the number
of occurrences of complex concepts by 955, which is 17%. The size of the ontology
in number of references was reduced by 1130 (9%). The number of distinct complex
concepts used in the ontology was reduced by 76 (3%). The situation is similar for the
NCI [12] ontology.

The other large medical ontology – Gene Ontology [13] – does not contain any equiv-
alent concepts, i.e., each equivalence class has only one element. The current algorithm
did not find any possibility to rewrite the ontology. The same holds for Adult Mouse
and Periodic Table ontologies.
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Table 2. Minimization results for different ontologies

CONo(T ) |CON(T )| ∫ (T )
Snomed 213,856 – 95,315 – 415,541 –
Gene Ontology 11,686 1 8,508 1 143,900 1
NCI 13,961 0.87 4,000 0.99 107,841 0.94
Galen 5,368 0.83 2,475 0.97 13,285 0.91
Adult Mouse 1,649 0.99 507 1 8,575 0.99
Wine 262 0.89 141 0.98 677 0.93
Nautilus 15 1 11 1 83 0.86
Cell 206 0.87 114 0.96 2,732 0.96
DOLCE-lite 49 0.92 46 0.98 497 0.66
Software 1,728 0.81 620 1 6,001 0.81
Family Tree 48 0.77 37 0.78 223 0.83
General Ontology 281 0.83 278 0.83 4,182 0.83
Substance 221 1 135 1 1,417 0.95
Generations 46 0.65 22 1 71 0.90
Periodic Table 25 1 22 1 80 1

Results for the other, relatively small ontologies are similar to those of Galen and in
some cases more prominent (Table 2). The highest improvement (66% of ∫(T )) was
achieved in the DOLCE-Lite ontology [14].

7 Related Work

The work on knowledge compilation [15] is closely related to the work presented in
this paper. Knowledge compilation is a family of approaches, in which a knowledge
base is transformed in an off-line phase into a normal form, for which reasoning is
cheaper. The hope is that the one-off cost of the initial preprocessing will be justified by
the computational savings made on subsequent reasoning. One of such normal forms
proposed in description logics is the prime implicates normal form for ALC ontolo-
gies [4]. Prime implicates of a logical formula are defined to be their strongest clausal
consequences. Concepts in the prime implicates normal form are expected to be easier
to read and understand. Reasoning is also expected to be more efficient for knowledge
bases in this normal form. For example, concept subsumption can be tested in quadratic
time. However, the problem with such normal forms is the blowup caused by the trans-
formation. For ALC ontologies, a doubly-exponential blowup in the concept size can
occur. Given that reasoning in ALC is PSPACE-complete [16], such a transformation
can be disadvantageous in general.

Grimm et al. [3] propose two different algorithms for eliminating semantically re-
dundant axioms from ontologies, which is one of the sources of non-succinctness. How-
ever, as shown in Section 3, it does not guarantee that we obtain a minimal TBox in
[(]T ). The advantage of this restricted approach to improving succinctness is that the
result contains only axioms that are familiar to the users of the ontology.

Work on laconic and precise justifications [17] (minimal parts of the ontology im-
plying a particular axiom or axioms) is also related to this paper. The authors propose
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an algorithm for computing laconic justifications – justifications that do not contain
any logically superfluous parts. Laconic justifications can then be used to derive precise
justifications – justifications that consist of flat, small axioms, and are important for the
generation of semantically minimal repairs.

Nikitina et al. [18] propose an algorithm for an efficient handling of redundancy in
inconsistent ontologies during their repair. Similarly to the approach by Grimm et al.
axioms are considered as atoms that cannot be further separated into parts.

8 Summary and Outlook

We have considered the problem of finding minimal equivalent representations for on-
tologies expressed in the lightweight description logic EL. We have shown that the task
of finding such a representation (or rather: its related decision problem) is NP-complete.
Further, we have identified a class of TBoxes for which the problem is tractable. We
have implemented a polynomial algorithm for minimizing the above class of TBoxes.
For general TBoxes, the algorithm can be used as a heuristic. We have implemented the
algorithm and presented experimental results, which show that the complexity of vari-
ous existing ontologies can be improved. For instance, in case of Galen, the number of
complex concepts occurrences could be reduced by 955 and the number of references
to atomic concepts and roles by 1130.

There are various natural extensions of this work. Inspired by recent results on uni-
form interpolation in EL [8], the problem can be extended to finding minimal represen-
tations for ontologies using a signature extension. The results in [8] imply that, even for
the minimal equivalent representation of an ontology, an up to triple-exponentially more
succinct representation can be obtained by extending its signature. Auxiliary concept
symbols are therefore important contributors towards the succinctness of ontologies,
e.g., used as shortcuts for complex EL concepts or disjunctions thereof. The results of
our evaluation indicate that there are many complex concept expression that occur re-
peatedly in ontologies but do not have an equivalent atomic concept that could be used
instead. Therefore, introducing names for such frequently used concepts could yield a
further decrease of the ontology’s complexity.

The results obtained within this paper can be transferred to the context of ontology
reuse, where rewriting is applied to obtain a compact representation of the facts about
a subset of terms [19], in particular in its extended form as suggested above.

Finally, minimizing representations is an interesting problem for knowledge repre-
sentation formalisms in general, and similar questions can (and should) be asked for
more expressive ontology languages.
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Abstract. Combining structured queries with full-text search provides
a powerful means to access distributed linked data. However, executing
hybrid search queries in a federation of multiple data sources presents a
number of challenges due to data source heterogeneity and lack of sta-
tistical data about keyword selectivity. To address these challenges, we
present FedSearch – a novel hybrid query engine based on the SPARQL
federation framework FedX. We extend the SPARQL algebra to incor-
porate keyword search clauses as first-class citizens and apply novel op-
timization techniques to improve the query processing efficiency while
maintaining a meaningful ranking of results. By performing on-the-fly
adaptation of the query execution plan and intelligent grouping of query
clauses, we are able to reduce significantly the communication costs mak-
ing our approach suitable for top-k hybrid search across multiple data
sources. In experiments we demonstrate that our optimization techniques
can lead to a substantial performance improvement, reducing the execu-
tion time of hybrid queries by more than an order of magnitude.

1 Introduction

With the growing amount of Linked Data sources becoming available on the Web,
full-text keyword search is becoming more and more important as a paradigm for
accessing Linked Data. Already today the majority of triple stores support both
full-text search and structured SPARQL queries, allowing for hybrid queries that
combine these approaches. Given the distributed nature of Linked Data, efficient
processing of user queries in a federated environment with multiple data sources
has become a central research area in the Semantic Web Community [1,2].

In practice there are many use cases where hybrid search is required. Consider
as an example a scenario involving a text-based database (e.g., a Semantic Wiki)
that offers access to its data via a SPARQL interface (e.g., through LuceneSail).
In addition, there might be one or more external RDF databases required to
fulfill the information needs of the user.

However, execution of hybrid search queries presents several challenges at
different levels. The first class of problems is caused by data source heterogeneity:
Because there is no formal representation of full-text index search included in
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Table 1. Hybrid Search Queries for Different Selected Triple Stores

a) OWLIM2 b) Virtuoso3 c) LuceneSail4

SELECT ?page WHERE {
?id rdfs:label ?val .
?val luc:luceneIndex "obama" .
?nytId owl:sameAs ?id .
?nytId nyt:topicPage ?page .

}

SELECT ?page WHERE {
?id rdfs:label ?val .
?val bif:contains "obama" .
?nytId owl:sameAs ?id .
?nytId nyt:topicPage ?page .

}

SELECT ?page WHERE {
?id search:matches ?m .
?m search:query "obama" .
?m search:property rdfs:label .
?nytId owl:sameAs ?id .
?nytId nyt:topicPage ?page .

}

Triple store vendors use custom vocabularies to express keyword search: OWLIM uses the
http://www.ontotext.com/owlim/lucene# namespace (luc), Vituoso uses a predefined bif prefix
and LuceneSail uses the http://www.openrdf.org/contrib/lucenesail# namespace (search).

the standard SPARQL syntax1, triple store manufacturers model keyword search
clauses using proprietary vocabularies. Table 1 shows how a search for the term
“obama” and an associated news page is specified for three selected sample
repositories. The consequence of this heterogeneity is that hybrid queries written
for a particular triple store are system-specific, making it hard to define such
a query in a federated environment. Additionaly, a system has to deal with
semantic heterogeneity such as, for instance, different scoring schemes for result
ranking.

The second challenge concerns efficient runtime processing of hybrid queries
in order to minimize the execution time. Optimal ordering of operators and the
choice of processing techniques (e.g., nested loop join and symmetric hash join)
depend on the selectivity of graph patterns and characteristics of the federated
environment (e.g., hardware equipment and network latency of repositories). As
a federation may include external data sources, collecting statistical information
about remote sources may be infeasible (especially, if data is frequently updated).
While there are heuristics for estimating the selectivity of SPARQL graph pat-
terns using only static information (e.g., number of free variables, number of
relevant data sources), estimating the selectivity of keyword search requests can
be particularly difficult.

Finally, given that full-text and hybrid search queries often require only a
subset of most relevant results, they represent a special case of top-k queries.
Optimal processing techniques for such queries can be different from the ones
retrieving complete result sets.

With this work we make the following novel contributions:

• We propose an extension to the SPARQL query algebra that allows to repre-
sent hybrid SPARQL queries in a triple-store-independent way (Section 3).
On the basis of this algebra extension, we propose query optimization tech-
niques to match keyword search clauses to appropriate repositories, combine
retrieved results seamlessly, and reduce the processing time.

1 http://www.w3.org/TR/sparql11-query/
2 http://www.ontotext.com/owlim
3 http://virtuoso.openlinksw.com/rdf-quad-store/
4 http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail

http://www.w3.org/TR/sparql11-query/
http://www.ontotext.com/owlim
http://virtuoso.openlinksw.com/rdf-quad-store/
http://dev.nepomuk.semanticdesktop.org/wiki/LuceneSail
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• We propose novel runtime query execution techniques for optimized schedul-
ing of tasks (Section 4), supporting on-the-fly adaptation of the query execu-
tion plan based on a cost model. These mechanisms allow for time-effective
and robust execution of hybrid queries even in the absence of statistical data
about federation members.

• We present and evaluate FedSearch (Section 5), which allows to process hy-
brid SPARQL queries efficiently in heterogeneous federations. Our evalua-
tion based on two benchmarks shows substantial performance improvements
achieved with static and runtime optimization mechanisms of FedSearch,
sometimes reducing execution time by more than an order of magnitude.

2 Related Work

Processing queries in a federation of data sources has been studied for a long
time in the database community [3,4]. Although this research forms the ba-
sis for approaches tackling distributed Linked Data sources, differences in data
representation formats and access modes require special handling mechanisms.
Existing systems divide into two categories depending on the assumed data ac-
cess protocol: link traversal [5,6], where new sources are added incrementally by
dereferencing URIs, and endpoint querying [1,2], which assume a set of known
sources providing SPARQL endpoint services. While the former approach is tar-
geted at open scenarios involving public Linked Data sources, the latter is more
suitable for enterprise use cases that involve a set of internal repositories and
combine their data with selected third-party ones.

The tasks of a query processing engine involve matching query clauses to rel-
evant data sources, query optimization to find an optimal execution plan, and
query execution aimed at minimizing the processing time. Default federation
support in SPARQL 1.15 assumes explicit specification of graph patterns in
a SERVICE clause, which are evaluated at the specified endpoint. Some sys-
tems go further and automatically determine relevant data sources for different
query parts. For this purpose, SPLENDID [7] uses VoID[8] descriptors of feder-
ation members, while systems such as DARQ [9] utilize custom source profiles.
Avalanche [10] does not require having data source statistics in advance, but
gathers this information as part of the query optimization workflow. To avoid the
need for statistical data about federation members, FedX [1] uses ASK queries to
endpoints, while ANAPSID [2] utilises only schema-level information for source
selection and uses sampling-based techniques to estimate selectivity and adap-
tive query processing to adjust the execution process on the fly. A substantial
body of related work already exists on the topic of general SPARQL query op-
timization: e.g., in [11] an optimizer efficiently combining left-linear and bushy
query plans is proposed. A good empirical comparison of the behavior of systems
utilizing different join strategies is given by [12].

Keyword-based entity search over structured data represents a special case of
semantic search and has been studied in parallel to structured query

5 http://www.w3.org/TR/sparql11-federated-query/

http://www.w3.org/TR/sparql11-federated-query/
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processing (a survey of methods can be found in [13]). A natural evolution of
purely keyword-based search involves hybrid search combining both paradigms.
For processing such queries, Wang et al. [14] propose an extended ranking
schema taking into account features from both full-text and structured data.
Although existing approaches already provide complex and efficient query pro-
cessing models, these techniques usually rely on detailed statistical information
about both structured and unstructured data stored in the repositories. For this
reason, we consider these methods complementary to our approach, which does
not require such apriori information.

Finally, full-text and hybrid queries often require results to be ranked ac-
cording to their relevance, while typically only the highest ranked ones are of
interest for the user. For this reason, hybrid search queries represent a special
case of top-k queries, in which the ranking function has to aggregate the ranking
scores associated with keyword search results. The SPARQL-RANK algebra [15]
was proposed to enable static optimization of query plans containing ORDER
and LIMIT modifiers. Our approach extends this algebra to incorporate full-text
search clauses. A complementary approach proposed in [6] focuses on top-k query
answering using link traversal for data access. This method features push-based
processing of algebra operators instead of traditional pull-based techniques to
reduce the effect of network latency issues and slow data sources.

3 Hybrid Search in SPARQL

Different triple stores use different syntax to express hybrid search SPARQL
queries. In order to process such queries in a federation of heterogeneous data
sources, a given query has to be tailored to the standards expected by each fed-
eration member. Given that keyword search clauses produce ordered result sets,
the query engine must be able to adjust the query plan to retrieve top-k ranked
query results in the most efficient way. To achieve this, our proposed approach in-
volves abstracting from repository-specific syntax and expressing keyword search
clauses in the query algebra in a uniform way. This section provides the necessary
background information and discusses our extension of the SPARQL query alge-
bra to represent hybrid queries and static query optimization techniques aimed
at minimizing processing costs.

3.1 Basic Definitions

In a SPARQL query, the WHERE clause defines a graph pattern to be evaluated
on an RDF graph G. An atomic graph pattern is a triple pattern defined as a
tuple from (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ), where I, L, and V correspond
to the sets of IRIs, literals, and variables respectively. Arbitrary graph patterns
are constructed from triple patterns by means of JOIN, UNION, FILTER, and
OPTIONAL operators. A mapping is defined as a partial function μ : V →
(I ∪ L ∪ B) (B is a set of blank nodes) [16], and the domain of the mapping
dom(μ) expresses a subset of V on which the mapping is defined. Then, the
semantics of SPARQL queries is expressed by means of a function �P �G, which
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takes as input a graph pattern P and produces a set of mappings from the set
of variables var(P ) mentioned in P to elements of the graph G. The binding
of the variable ?x according to the mapping μ is denoted as μ(?x). The basic
query algebra then defines the standard operations (Selection σ, Join �, Union
∪, Difference \, and Left Join �����) over the sets of mappings, and query evaluation
involves translating the query into a query tree composed of these operations.
For simplicity, in this paper we use the notation P1 � P2 to refer to the join
operation over sets of mappings produced by the patterns P1 and P2.

In order to allow efficient processing of top-k queries, the SPARQL-RANK
algebra [15] introduces a new rank operator ρ(P ) which orders the set of input
mappings according to some scoring function F . The function F(b1, . . . , bn) is
defined over the set B of ranking criteria bi(?x1, . . . , ?xm), where each rank-
ing criterion specifies a function over the set of variables var(P ). Based on the
semantics of the rank operator, the SPARQL-RANK algebra proposes the rank-
aware modifications of the standard combination operators (RankJoin �ρ and
RankUnion Uρ) and defines algebraic equivalences which can be used to re-
formulate and optimize the algebraic query tree, such as rank splitting, rank
commutative law, and propagation of rank over union and join operations.

3.2 Background: FedX Federated SPARQL Query Engine

FedX [1] provides a framework for transparent access to data sources through
a federation. It establishes a federation layer which employs several static and
runtime optimization techniques. Static optimization includes reordering join
operands with the aim of evaluating selective query parts first and executing
filters early to reduce the size of intermediate results. At runtime FedX utilizes
sophisticated join execution strategies based on distributed semijoins. One such
strategy is the Bind Nested Loop Join (BNLJ) algorithm denoted by �BNLJ

– a variation of the block nested loop join, in which each subquery sent to a
remote data source probes it at once for several partial mappings pulled from the
left operand. This significantly reduces the number of required remote requests.
In addition, FedX applies pipelining to compute results as fast as possible: a
special scheduler maintains a queue of atomic operations, and processes them
in parallel. Instead of waiting for execution of each subquery in sequence, the
system sends them in parallel and collects results as soon as they arrive, which
further improves the execution performance.

The system further identifies situations where a query can be partitioned into
so-called exclusive groups Σexcl, which combine several triple patterns that can
be evaluated together on the same data source. All these optimization techniques
are applied automatically and do not require any interaction with the user. An
important feature of FedX is its independence from statistical data about the
federation members. Instead of relying on indexes or catalogs to decide on the
relevance of a source, FedX uses caching in combination with SPARQL ASK
queries. In this way it allows for on-demand federation setup (meaning that
data sources can be added and removed from the federation at query time). Our
extension of FedX – FedSearch – maintains this property.
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3.3 Hybrid Search in SPARQL Algebra

To enable hybrid queries without modifying the SPARQL syntax, existing triple
stores express keyword search using special graph patterns which use proprietary
vocabularies. At evaluation time, the query engine recognizes these special terms,
extracts the search parameters (keywords and projected variables), evaluates the
keyword search using its full-text index, and returns a set of mappings binding
the projected variables to search answers and their properties (related resource,
matched value, relevance score). Thus, graph patterns defining search parameters
do not follow the SPARQL semantics, as their result sets are in general not
equivalent to the result of algebra operations combining the mapping sets of their
constituting triple patterns. This has strong implications for federated query
processing, as triple patterns related to keyword search cannot be evaluated
separately either on the same or different federation members. Such proprietary
graph patterns have to be recognized by the query engine, isolated, and evaluated
as whole blocks.

For this purpose, FedSearch introduces the notion of a keyword search group
as a special graph pattern in the query tree.

Definition 1: A keyword search group ΣKS is a tuple (q, v, r, s, p, sn) defined
as follows:

– q ∈ L – a literal value representing the keyword query
– v ∈ (V ∪ {nil}) – a variable bound to a literal value matching the keyword
– s ∈ (I ∪ V ) – a subject resource connected to v.
– p ∈ (I ∪ V ∪ {nil}) – a property connecting s to v
– r ∈ (V ∪ {nil}) – a variable bound to a literal value between 0 and 1 rep-

resenting a normalized keyword search score (1 corresponding to the highest
degree of relevance)

– sn ∈ (V ∪ {nil}) – a value snippet highlighting the matching keywords

The value nil provided for a tuple element implies that the corresponding
value or variable does not need to be included in the query: e.g., the queries
shown in Table 1 do not explicitly project the relevance score.

Some of these elements are source-dependent: e.g., not all data repositories
can provide the value snippet (a standard feature of LuceneSail, but not available
in OWLIM), or, more importantly, returned score values cannot be compared
across different data sources, even those of the same type. Traditionally, methods
for combining ranked search results [17,18] primarily rely on the analysis of
matched values and re-estimation of their relevance to the query string. This
procedure, however, is too costly in the context of SPARQL query processing,
as it requires additional downloading, parsing, and processing of whole matched
values. Thus, meaningful ranking of the combined result set according to some
common relevance criterion is impossible without knowing the statistics of back-
end repositories.

For this reason, FedSearch operates over normalized query scores lying in the
interval [0, . . . , 1]. It also applies the algebra operatorsRankUnion and RankJoin.
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The RankUnion operation over normalized scores (1) preserves the order of re-
sults retrieved from the same source and (2) ensures that results from one source
do not suppress results from another source due to different scales. To combine
ranking scores from different keyword search groups, the RankJoin operation ap-
plies the function F(r1, r2) = avg(r1, r2). This function preserves monotonicity
of the result ranking with respect to the original scores (i.e., if (r1[μ1] < r1[μ2])
AND (r2[μ1] < r2[μ2]) ⇒ (F(r1[μ1], r2[μ1]) < F(r1[μ2], r2[μ2])), while also tak-
ing both scores into account and maintaining the original scale.

3.4 Static Query Optimization

FedSearch assumes that the user’s query is expressed using the vocabulary sup-
ported by one of the federation members. By default, the parsed query tree
only consists of basic SPARQL operations applied to atomic triple patterns: for
example, Figure 1 shows the initial plan for the example query from Table 1
expressed in LuceneSail syntax. The original FedX system applies static query
optimization techniques aimed at adjusting the given query to the federated en-
vironment: matching triple patterns to relevant sources, combining together the
exclusive groups of triple patterns, reordering join operands according to their
estimated selectivity.

π ?page

��
��

��
��

(?id, search:match, ?m) (?m, search:query, ’Obama’)

(?m, search:property, rdfs:label)

(?nytId, owl:sameAs, ?id)

(?nytId, nyt:topicPage, ?page)

Fig. 1. Unoptimized hybrid search query tree

To process a hybrid query, the task of the static optimization stage includes
three additional subtasks:

Detecting and Isolating Keyword Search Groups. At this stage, the
query optimizer selects and groups triple patterns, which together form key-
word search groups. In the query tree, these triple patterns are replaced
with a single ΣKS pattern. The result of this stage is an abstract query tree
independent of concrete triple stores.

Mapping Keyword Search Groups to Relevant Data Sources. Unless
the target is given in the SERVICE clause, each ΣKS can potentially pro-
duce mappings from any data source supporting full-text search. Accord-
ingly, the ΣKS is replaced with the grounded repository-dependent graph
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pattern ΣKS
g , which is associated with all endpoints of the same type (Luce-

neSail, Virtuoso, etc) and contains corresponding source-dependent triple
patterns. The federation configuration contains the backend repository type
of its members. If the federation includes repositories of several types, the
keyword search group is replaced with a union of several grounded keyword
search groups. The result of this stage is a grounded query tree.

Modifying the Query Tree to Take Result Ranking into Account.
Each keyword search graph pattern ΣKS

g is expanded to return the score
value ri, if it does not project the relevance score explicitly,

π ?page

��ρ

��ρ⋃
ρ∑KS

g

(’Obama’, ?id, rdfs:label)

@ LuceneSail

∑KS

g

(’Obama’, ?id, rdfs:label)

@ Virtuoso

∑KS

g

(’Obama’, ?id, rdfs:label)

@ OWLIM

(?nytId, owl:sameAs, ?id)

(?nytId, nyt:topicPage, ?page)

Fig. 2. Grounded and optimized hybrid search query tree

The resulting expanded query tree is further processed to enforce the order-
ing of final results according to the combined score F({ri}) and to minimize
the query execution time. For this purpose, equivalence relations defined in the
SPARQL-RANK algebra are applied:

– Partial ranking criteria ri of keyword search clauses are propagated towards
the root of the query tree. This involves converting the standard Union and
Join operations to corresponding RankUnion and RankJoin according to the
rules defined in [15]. Relevance scores are combined using normalization and
averaging, as discussed in section 3.3.

– Top-level ordering criteria (if defined) are propagated down the query tree
so that atomic clauses produce their mapping sets already ordered.

– LIMIT thresholds are moved towards the leaves of the tree using the relation
SLICE(P1 ∪ P2, lim) = SLICE(SLICE(P1, lim) ∪ SLICE(P2, lim), lim).
This reduces the costs of local evaluation of keyword search clauses as well
as network resources for transferring result sets.

Figure 2 shows the result of the static optimization operations applied to the
example query from Table 1 for a federation including repositories of three types:
OWLIM, Virtuoso, and LuceneSail.

4 Optimizing Top-k Hybrid Query Execution

Although static query optimization already helps to reduce the expected exe-
cution time, the actual performance strongly depends on the way the operators



FedSearch: Efficiently Combining Structured Queries 435

(primarily, joins) are processed. The Bind Nested Loop Join technique of the
original FedX system significantly reduces the number of required remote re-
quests by grouping together several binding sets in one probing request and
using pipelining.

For processing top-k queries and hybrid queries in particular, however, this
mechanism is insufficient for several reasons:

– Optimal scheduling of remote requests can differ for top-k queries and queries
without a LIMIT modifier. For top-k queries it is important to produce the
first complete results as soon as possible, even at the cost of some extra syn-
chronization time, as it can possibly make processing of low-ranked partial
results unnecessary.

– More importantly, performance strongly depends on the order of operands.
In case if one operand is more selective than the other, reversing their order
leads to big differences in execution time. While static optimization tries to
sort the join operands according to the expected selectivity, there is no way
to estimate selectivity of keywords in the general case.

To deal with these issues, we apply runtime join processing optimization tech-
niques: synchronization of loop join requests and adaptive parallel competing join
processing for queries containing several ordered clauses.

4.1 Synchronization of Loop Join Requests

As an example, let us consider a hybrid search query, which searches for all drugs
interacting with aspirin and their side effects, while taking input in different
languages:

SELECT ?drugName ?sideEffect WHERE {

1 ?val luc:luceneIndex "acetylsalicylsäure" . //DBpedia

2 ?id1 rdfs:label ?val .

3 ?id2 owl:sameAs ?id1 . //DrugBank

4 ?interaction drugbank:interactionDrug1 ?id2 .

5 ?interaction drugbank:interactionDrug2 ?id3 .

6 ?id3 rdfs:label ?drugName .

7 ?id3 owl:sameAs ?id4 .

8 ?id4 sider:sideEffect ?sideEffectId . //SIDER

9 ?sideEffectId rdfs:label ?sideEffect .

}

This query involves combining data from 3 sources: DBpedia6 (triple patterns
1-2), DrugBank7(3-7), and SIDER8(8-9). During the static optimization stage
these triple patterns are combined into 3 groups, which we denote as ΣKS

1 (DB-
pedia), Σ2 (DrugBank), and Σ3 (SIDER). When performing a bind nested loop
join, the algorithm will iterate through the mapped tuples μi of the Σ

KS
1 result

6 http://dbpedia.org
7 http://wifo5-04.informatik.uni-mannheim.de/drugbank/
8 http://wifo5-04.informatik.uni-mannheim.de/sider/

http://dbpedia.org
http://wifo5-04.informatik.uni-mannheim.de/drugbank/
http://wifo5-04.informatik.uni-mannheim.de/sider/
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set and probe the second operand Σ2 binding the variable ?id1. While gradually
receiving results μij from (ΣKS

1 �BNLJ Σ2) and iterating through them, the
last operand Σ3 will be joined using the mappings μij(?id4). As described in [1],
this process is parallelized so that each probing subquery in the nested loop is
scheduled in a processing queue and then sent in a separate thread. However,
depending on the scheduling approach, the process can be performed in two
ways:

– Breadth-first : In this way, all probing subqueries will be immediately added
to the processing queue. Thus, the executor will first send all subqueries for
Σ2(μi(?id1)) and only then, while results are arriving, send the subqueries
for Σ3(μij(?id4)).

– Depth-first : In this way, when the results from Σ2(μi(?id1)) begin to arrive,
and subqueries for Σ3(μij(?id4)) are added to the queue, the executor im-
mediately moves them to the start of the queue, even if not all Σ2(μi(?id1))
requests have been sent yet.

Depending on the type of the query, FedSearch decides on using either of the two
techniques. For top-k queries, the depth-first technique is applied. This involves
additional synchronization costs to manipulate the task queue and maintain the
result set ordering: results returned by probing subqueries to the operands Σ2

and Σ3 must be processed in the same order as they were sent. However, the
depth-first approach allows receiving first complete results early and potentially
terminate the processing early after k results are collected. On the contrary, the
breadth-first approach gives an advantage when a complete result set is required:
because all nested loops have to be executed completely, extra synchronization
handling is unnecessary.

4.2 Adaptive Processing of Rank-Join Operators: Parallel
Competing Joining

If a query contains more than one keyword search clause, it is impossible to
determine the more selective one without possessing the distribution statistics
of keywords. As a result, the join sequence determined at the static optimization
stage can lead to a non-optimal execution plan. To avoid this, in the following we
present parallel competing rank join processing, a novel technique which allows
on-the-fly adaptation of the query plan at execution time.

Processing N-ary Join. The high-level idea of this technique is to use a subset
of the join operands as seeds to allow adaptive query processing. In particular,
competing join plans for those operands that determine the ordering are executed
in parallel – thus competing against each other – while the other join operands
are computed iteratively using the intermediate results from the seeds as soon as
they arrive. Whenever an iteration completes with processing its partial result
set, a re-evaulation of all query plans takes place to ensure that the next operand
is joined to the most selective seed. Finally, the ordered intermediate result
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sets of competing join plans are combined using the N -ary Pull/Bound Rank
Join algorithm (PBRJ) [19], which produces the results ranked according to the
aggregated scores of its operands.

Algorithm 1 a) depicts our Parallel Competing Rank Join technique. Given
the set of ranked join operands P ρ (including all ΣKS groups) – the seeds –
and the set of unranked operands Pu, our algorithm first determines suitable
competing join plans and then executes each competing seed P ρ

i in parallel.
The incoming intermediate results are processed and joined using the cost-based
adaptive query technique explained below, yielding ordered results sets for each
competing join plan. To combine the partial result sets produced by all seeds,
FedSearch uses the N -ary PBRJ variant which modifies the symmetric hash join
technique to process RankJoin in an efficient way.

Algorithm 1. Adaptive Processing of Rank Joins
a) Parallel Competing Rank Joins

1: Pρ: ranked operands (incl. all ΣKS )
2: Pu: unranked operands
3: Pleft ← Pu

4: for all P
ρ
i

∈ Pρ do

5: Qi ← joinOrderSort(Pu )

6: Pi ← P
ρ
i

7: start(Pi)

8: . . .
9: if Pleft = ∅ then

10: return PBRJ({Pi})

b) Processing Incoming Results
1: procedure pushResults(Pcurr , �Pcurr�G)
2: Pu

next ← Qcurr.next

3: c = cost(Pcurr �BNLJ Pu
next)

4: for all Pi �= Pcurr do
5: pos = Qi.indexOf(Pu

next)
6: ci = costLeft(Pi)

7: +
∑pos

j=1
cost(Pi �BNLJ Pu

j )

8: +cost(Pi �BNLJ Pu
next)

9: if ci < c then
10: return
11: Pcurr ← Pcurr �BNLJ Pu

next
12: for all Qi do
13: Qi ← Qi\{P

u
next}

14: Pleft ← Pleft\{Pu
next}

15: start(Pcurr )

The processing step of incoming intermediate results is depicted in Algo-
rithm 1 b). Whenever a seed-computation has received the complete result set
�Pcurr�G for its current operation, a re-evaluation of the execution plans takes
place. The re-evaluation procedure estimates the cost c of executing the join
Pcurr � Pu

next and compares it to the respective costs ci of joining the operand
Pu
next as part of other “competitor” query plans. The cost model used in Algo-

rithm 1 b) is described in detail in the following.

Estimating Join Cost. The basis for our cost model is the average request
time of a Bind Nested Loop Join (BNLJ) operation at a remote SPARQL service.
In general, these execution times can differ substantially for two different queries
over the same endpoint. However, FedSearch only estimates the cost of BNLJ
subqueries over single triple patterns, which have similar access times. For that
reason, FedSearch keeps the statistics of executing BNLJ requests including the
average execution time for the data source τavg(s) and the average execution
time over all sources τavg. Note that the latter value is used instead of τavg(s) if
for some source s there is no sufficient historical data.

Cost of a future join. In Algorithm 1, the cost of a join is estimated based on
the average request time and the known cardinality of the received result set
according to the following formula:
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cost(Prec �BNLJ Pu
next) =

(N(|�Pi�G|)− 1) ∗ τavg(s)
Nthread/|Pρ| + τavg(s)

Here N(|�Pi�G|) denotes the number of probing subqueries where according
to BNLJ each subquery holds bindings for multiple mappings μ ∈ �Pi�G. If the
operand Pu

next has multiple data sources, we use the maximal average execution
time of all sources, denoted by maxs(τavg(s)). Finally, Nthread holds the number
of parallel worker threads used by the system, which means that processing one
of the competing query plans can utilize on average Nthread/|Pρ| threads, where
Pρ denotes the set of ranked operands (i.e., the seeds).

For non-atomic operands involving other joins and unions, the cost is deter-
mined as follows:

– if the operand is a union, the cost is determined by the maximum cost of
the individual union operands multiplied by a coefficient w that estimates
the additional cost of combining the results.

– if the operand is a join, left-join or difference, the cost is determined by the
sum of the individual costs of the join operands.

Estimating costs of competing branches. The cost ci of joining the next operand
Pu
next as part of a join sequence Qi, which competes with the current sequence

Qcurr, consists of two components:

1. the remaining cost of the current operation, denoted by costLeft(Pi).

2. the cost of joining Pi with all operands in Qi until P
u
next (inclusive):∑pos

j=1 cost(Pi �BNLJ Pu
j ) + cost(Pi �BNLJ Pu

next)

The remaining cost is only considered if the operation is running, and can
be estimated as costLeft(Pk) = τpassed ∗ ( Ntotal

Nreceived
− 1), where τpassed is the

time since the start of the operation, Ntotal is a total number of subqueries sent,
and Nreceived is the number of subqueries for which results have already been
received.

Decision on joining the next operand. Depending on the computed costs for
the competing execution sequences Qi, FedSearch decides to either execute a
sequence or reject it. If the cost c is found to be lower than all competitors’
costs, the respective execution sequence continues. Otherwise, the execution of
the current sequence Qcurr is considered rejected in favour of a competing plan
Qcomp. Note that a rejected execution plan can be re-initiated, if during process-
ing of Qcomp its cost is re-estimated to be higher than Qcurr, and the operand
Pu
next has not been joined as a part of Qcomp yet.
In this way, multiple ranked operands are processed in an efficient way: due to

the cost estimation process and the fact that more selective seed queries usually
return results earlier, new operands are naturally joined to the more selective
seed, thus minimizing the number of required nested loop join subqueries.
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5 Evaluation

To validate the FedSearch approach, we performed experiments with two differ-
ent benchmark datasets. First, we reused the LUBMft query benchmark proposed
in [20] for evaluating full-text search performance of RDF triple stores. The bench-
mark extends the well-known LUBM university benchmark dataset [21] with full-
text data and includes a comprehensive set of full-text and hybrid SPARQLqueries
testing variousperformance aspects. Second,we reused the set of Life Sciences data
sources from the FedBench benchmark for federated query processing [22]. Since
FedBench does not include hybrid search queries, we have extended the query set
with 6 additional queries involving full-text search clauses. In both sets of exper-
iments target endpoints were hosted as separate OWLIM repositories on a Win-
dows server with two 3GHz Intel processors and 20GB of RAM. We compared
the runtime query processing techniques of FedSearch with two other systems: the
original FedX architecture and ARQ-RANK, the open source implementation of
SPARQL-RANKalgebra provided by its authors9. The original FedX architecture
made use of the static optimization techniques described in section 3.4 (so that full-
text search clauses could be matched to appropriate sources), but not the runtime
optimization. For ARQ-RANK, which cannot automatically determine relevant
data sources, the queries were expanded so that each graph pattern was explicitly
targeted at relevant endpoints using SERVICE clauses. Each query was executed
10 times, out of which the first 5 queries were considered “warm-up” to fill the rele-
vant endpoint caches, while the result was equivalent to the average over remaining
5 runs. Benchmark queries, the complete results of the tests, as well as a download-
able version of FedSearch are available online on our web site10.

5.1 LUBMft Benchmark

To perform tests with the LUBMft benchmark dataset, it has been split into
6 parts which represented different endpoints: generated dump files were dis-
tributed equally between endpoints resulting in a horizontal partitioning. The
benchmark includes 24 queries aimed at testing different triple store capabili-
ties related to keyword search. We used only the first 14 queries covering pure
full-text search and hybrid search. Out of these, 8 queries contain only key-
word search clauses, while 6 queries are hybrid: 3 queries containing 1 key-
word search clause, 2 queries with 2 clauses, and 1 query with 3 keyword search
groups. Table 2 shows the average query processing times achieved on the largest
LUBMft dataset (N = 50)11. For all values of k FedSearch achieved the best
overall performance. For pure full-text queries (q1.1 - q4 ) performance of all
three systems is similar when the complete result set is required. However, for

9 http://sparqlrank.search-computing.org/
10 http://fedsearch.fluidops.net/resource/FedSearch
11 Queries 2.1, 2.2, 5.1, and 5.2 are skipped due to the lack of space, as they are largely
redundant with respect to 1.1 and 1.2. However, they are included in our complete
result set available online as well as results for N = 1, 5, 10.

http://sparqlrank.search-computing.org/
http://fedsearch.fluidops.net/resource/FedSearch
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Table 2. Average execution time (sec) for LUBMft queries (N=50) taken over 5 query
runs. Numbers in brackets indicate the number of runs which resulted in timeout.

k System q1.1 q1.2 q3 q4 q6 q7 q8 q9 q10 q11 Geom.
Mean

Nanswers 1933 51257 52784 51 1933 1933 704 60 2783 15

all
FedSearch 0.33 12.51 13.39 0.04 4.96 9.93 13.42 13.36 22.58 14.20 4.75
FedX 0.29 12.54 13.22 0.02 5.53 6.58 18.87 110.48 455.19 (2) 396.79 (2) 10.24
ARQ-RANK 0.62 12.72 13.01 0.22 32.79 66.65 169.34 142.75 Timeout Timeout 13.63

100
FedSearch 0.08 0.11 0.10 0.04 0.80 1.23 5.01 10.22 26.71 15.48 0.96
FedX 0.35 11.53 13.34 0.03 4.22 8.79 17.82 123.07 459.90 (3) 106.92 (3) 9.41
ARQ-RANK 0.58 1.60 5.07 0.22 2.16 4.79 18.84 142.75 Timeout Timeout 3.60

10
FedSearch 0.03 0.34 0.04 0.03 0.58 0.73 3.55 11.88 24.25 16.71 0.78
FedX 0.29 11.56 12.51 0.27 4.31 7.76 18.26 144.22 456.18 153.83 (3) 12.15
ARQ-RANK 0.57 1.59 1.52 0.22 0.67 0.98 1.66 142.75 Timeout Timeout 1.62

1
FedSearch 0.02 0.04 0.04 0.02 0.74 0.72 1.82 11.47 23.95 15.09 0.54
FedX 0.43 11.54 12.93 0.02 4.21 8.03 17.94 135.80 455.32 (3) 398.25 (3) 10.42
ARQ-RANK 0.57 1.59 1.52 0.22 0.54 0.63 0.41 142.75 Timeout Timeout 1.25

top-k queries applying static optimization (pushing the limit modifier to atomic
clauses) reduces the cost of remote evaluation and result set transfer over the net-
work. FedSearch further improves on this due to parallelization. Hybrid queries
with a single FTS clause (q6 -q8 ) demonstrate respective benefits of depth-first
and breadth-first N -ary join processing: the former gives an advantage when ex-
ecuting top-k queries (FedSearch and ARQ-RANK outperform FedX) while the
latter is preferred when a complete result set is required. Finally, queries q9 -q11,
which contain two or more FTS clauses, illustrate the benefits of the parallel
competing rank join algorithm. Results obtained for FedSearch and two other
systems differ sometimes by more than one order of magnitude, while FedSearch
delivers more robust performance: evaluation time does not depend on the join
order produced at the static optimization stage.

5.2 FedBench Life Sciences Benchmark

The Life Sciences module of the FedBench benchmark includes 4 datasets con-
taining medicine-related data: KEGG12, DrugBank13, ChEBI14, and a subset of
DBpedia15. To test hybrid query performance we used a set of 6 queries, which
we constructed with the following requirements:

– Each query requires accessing at least 3 datasets from the federation.
– Queries include different proportion of full-text vs graph clauses: 2 queries

are full-text only, 2 queries are hybrid with 1 full-text search clause, and 2
queries are hybrid with 2 full-text search clauses.

– Full-text search clauses have different degrees of selectivity.

Evaluation results with these queries are shown in Table 3 (due to smaller
size of result sets, we only performed experiments with k = 10). The scale of

12 http://www.genome.jp/kegg/kegg1.html
13 http://wifo5-04.informatik.uni-mannheim.de/drugbank/
14 http://www.ebi.ac.uk/chebi/userManualForward.do
15 http://dbpedia.org

http://www.genome.jp/kegg/kegg1.html
http://wifo5-04.informatik.uni-mannheim.de/drugbank/
http://www.ebi.ac.uk/chebi/userManualForward.do
http://dbpedia.org
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differences between processing engines is smaller than in case of horizontal par-
tioning: mainly because triple patterns with bound predicates do not need to
be evaluated on all endpoints, which reduces the overall number of required
remote requests. However, the results are largely consistent with the LUBMft
experiments. For pure full-text top-k search, applying static top-k optimization
leads to substantial performance improvement if the overall result set is large.
For hybrid queries with a single keyword search clause using depth-first N -ary
join processing reduces execution time (ARQ-RANK even marginally outper-
forms FedSearch due to “fixed costs” of static optimization), while, however, it
becomes a drawback when a complete result set is required. Finally, for hybrid
queries with multiple FTS clauses the parallel competing bound join algorithm
provides a clear advantage.

Table 3. Average execution time (sec) for Life Science queries taken over 5 query runs

k System q1 q2 q3 q4 q5 q6 Geom.
Mean

Nanswers 8129 57 255 930 15 22

all
FedSearch 0.50 0.09 0.55 6.20 2.33 7.40 1.17
FedX 0.72 0.03 0.66 6.42 8.47 28.53 1.62
SPARQL-RANK 0.95 0.24 3.24 32.10 4.56 21.54 3.64

10
FedSearch 0.06 0.03 0.74 0.81 2.36 7.85 0.50
FedX 0.78 0.02 0.70 6.34 5.30 38.32 1.57
SPARQL-RANK 0.07 0.01 0.12 0.42 3.73 21.41 0.39

6 Conclusion and Outlook

In this paper, we proposed novel static and runtime optimization techniques as
a means to enable processing hybrid search queries in a federation of SPARQL
endpoints. The evaluation of our implemented system, FedSearch, has shown
that it allows for substantial reduction of processing time without relying on
statistical data about the content of federation members.

One immediate practical benefit provided by FedSearch is the possibility to
realize data access to a diverse set of sources including different triple stores
and full-text indices through a common access interface. As a future direction
of work, we are planning to utilize this ability to support practical use cases
requiring end-user applications to consume data stored in multiple data sources
in a seamless way.

While the ability to establish on-demand federation without significant addi-
tional effort is a requirement for our system, existing statistical data (e.g., VoID
descriptors) can be utilized to further improve its performance. Employing addi-
tional techniques to estimate keyword selectivity (e.g., based on [23]) constitutes
another promising direction.
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Abstract. With hundreds, if not thousands, of ontologies available to-
day in many different domains, ontology search and ranking has become
an important and timely problem. When a user searches a collection of
ontologies for her terms of interest, there are often dozens of ontologies
that contain these terms. How does she know which ontology is the most
relevant to her search? Our research group hosts BioPortal, a public
repository of more than 330 ontologies in the biomedical domain. When
a term that a user searches for is available in multiple ontologies, how
do we rank the results and how do we measure how well our ranking
works? In this paper, we develop an evaluation framework that enables
developers to compare and analyze the performance of different ontology-
ranking methods. Our framework is based on processing search logs and
determining how often users select the top link that the search engine
offers. We evaluate our framework by analyzing the data on BioPortal
searches. We explore several different ranking algorithms and measure
the effectiveness of each ranking by measuring how often users click on
the highest ranked ontology. We collected log data from more than 4,800
BioPortal searches. Our results show that regardless of the ranking, in
more than half the searches, users select the first link. Thus, it is even
more critical to ensure that the ranking is appropriate if we want to have
satisfied users. Our further analysis demonstrates that ranking ontolo-
gies based on page view data significantly improves the user experience,
with an approximately 26% increase in the number of users who select
the highest ranked ontology for the search.

1 “I’m Feeling Lucky” in Ontology Search

Consider a user who needs to find an ontology to use as a source of terms to
annotate descriptions of clinical trials. She searches a library of ontologies [1],
such as BioPortal, a public repository of more than 300 biomedical ontologies
and terminologies [2]. She puts in a term “myocardial infarction”—her subject of
interest. She receives 149 results in 32 ontologies. Twenty two ontologies contain
a class named precisely “myocardial infarction” (with variation only in capital-
ization); other results have this phrase as synonyms of the class name, or have

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 444–459, 2013.
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it in a property value. If our user is not familiar with the ontologies, how does
she know which one of the 22 ontologies to use? Which one does everybody else
use? Which one has more information about the terms that she is interested in?
Naturally, to answer this question perfectly, we must know much more than our
user’s search term. It would help to know which task she is trying to achieve
(e.g., annotation of text), what are her preferred ontologies, whether or not she
requires conformance to specific standards, and so on. However, in many cases,
we do not have this information; when a user searches an ontology library, the
only information that we often have is the user’s search term—and we must
produce the best ranking of results based only on this information.

Ontology researchers have addressed the problem of ontology selection and
ranking over the years. They have proposed a number of algorithms, which take
into account the ontologies themselves, the search terms, and the repository as a
whole. We review some of these approaches in Section 2. Researchers evaluated
these approaches in small-scale user studies with hand-selected users.

In this paper, we propose a framework for evaluating the effectiveness of on-
tology ranking by using search logs. We analyze the position of the ontologies
that the user selects after an ontology-search engine presents her with the search
results. We use the position of that selection among the search results as a mea-
sure of the effectiveness of a ranking algorithm: the closer the user’s selection
is to the top-ranked result, the better the algorithm worked for this user. Our
goal is to achieve a ranking in which most users feel “lucky” by following the top
link, just as many of us do with Web search engines (e.g., Google and Bing). We
evaluate our approach by using extensive search logs from the users who perform
search on the BioPortal site over a period of several months. Specifically, this
paper makes the following contributions:

– We propose a data-driven framework for evaluating ontology ranking based
on user search logs.

– We propose several features for ontology ranking based on user behavior
in BioPortal, an open community-based ontology repository. These features
include pageviews, web service calls, comments left on the site, and others.

– We use our data-driven framework to evaluate the effect of different features
on the ontology ranking based on search logs from four months of BioPortal
searches (4,859 by users from 969 unique IP addresses).

2 Related Work in Ontology Ranking and Evaluation

The problem of finding the “best” ontology in response to a user’s search consists
of two main components: (1) selecting relevant ontologies from a collection and
(2) ranking the results to present the most relevant ontologies first.

Over the past decade, researchers have developed many algorithms for select-
ing ontologies that are relevant to a user query. These algorithms use descrip-
tion logic reasoning [3], corpus analysis [4,5], graph matching [6] and other
approaches in order to find the relevant ontologies. When traditional retrieval
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methods do not return sufficient results, algorithms use query expansion based
on the hierarchy in the ontology [7], lexical-semantic relations [8], or statisti-
cal analyses [9]. In many cases, terms in more than one ontology match the
user query, and therefore, we must rank the results in a way that we believe to
be most meaningful to the user [10]. Researchers have explored links between
ontologies [11], structure-based ranking [12], user ratings [13], and hybrid rank-
ing based on several factors, such as frequency of search terms, where in the
metadata the search results appear, and the type of the ontology [14].

A number of the studies of the methods for ontology search and ranking
conducted some user evaluations. However, to the best of our knowledge, none
of these works used the log analysis of user searches to evaluate the ranking.
Furthermore, when researchers conducted user studies to evaluate how well the
ranking worked (e.g., AKTiveRank [12]), these studies were based on the results
from a small number of users. The high number of visitors to BioPortal (more
than 100,000 page views and more than 60,000 unique visitors each month)
allowed us for the first time to perform an analysis that used thousands of user
searches. Thus, both the approach and the scale make our analysis unique.

3 The Framework for Data-Driven Evaluation of
Ontology Ranking

The basic idea in our framework is rather simple: when users search a collection
of ontologies, our goal is for the user to find what she is looking for in the first
result on the page. We use ontology ranking to order the search results and we
record in the search log the position of the ontology that the user selected. The
more users click on the first result, or the higher the average position that the
users click on, the better the ontology ranking that we used to order the results.
We explain our framework using the search in BioPortal as an example.

3.1 Ontology Search in BioPortal

BioPortal is a community-based repository of biomedical ontologies [15].1 At the
time of this writing, it contains more than 330 public ontologies with almost six
million terms in them. Search across all ontologies is one of the key features
of BioPortal. The system indexes all preferred names, synonyms, and property
values for all classes across all ontologies. Users search against this index. The
users can limit the search only to preferred names or ids of the terms, or choose to
include property values. The users can search across all ontologies or in a group
of ontologies of interest, or in a single ontology; they can choose to include or to
exclude obsolete terms from the search, and so on.

For instance, Figure 1 shows the search results in BioPortal after the user has
searched for “myocardial infarction” across all ontologies. The first 22 results
correspond to the ontologies that have the exact term “myocardial infarction.”
We group the result by ontologies. If an ontology has more than one class that

1 http://bioportal.bioontology.org

http://bioportal.bioontology.org
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1. Search term

2. Total results
(including non-
exact matches)

3. Top-ranked ontology 
with exact match

4. More results available 
in NCI Thesaurus

5. Other ontologies 
with exact match

Fig. 1. Search results for “myocardial infarction” in BioPortal: 1. User searches for
“myocardial infarction.” 2. There are 33 ontologies that contain classes with names,
term URIs, or property values that match the search term exactly or partially; of these,
22 ontologies have the exact match. 3. Among the ontologies with the exact match, the
NCI Thesaurus has the highest ranking and BioPortal presents it first in the search
results. 4. The NCI Thesaurus has 5 more results, which are not necessarily exact
matches. 5. The order of other ontologies with exact matches (MeSH, SNOMED CT,
etc.) corresponds to their ranking (Table 1, column Pageviews).

is relevant to the query, users can access these results by expanding the link for
“more from this ontology.” For instance, the top result, the NCI Thesaurus, has
12 more search results. The search result shows the pertinent information for the
term that matched the user query exactly: the term label, the term URI, and
a snippet of a textual definition of the term if the ontology has such definition.
The user can also click on a link to have additional details about the term or
to have a graph visualizing the neighborhood of the term to appear in a pop-up
window. After the user examines the search results, she clicks on the result that
seems most relevant to access the term in the ontology browser in BioPortal.

In the example in Figure 1, our search returned 22 ontologies that contain a
class with preferred name matching the search string precisely. BioPortal has
an ordered ranked list of all its ontologies, which we update regularly. Sec-
tion 4 discusses the specific ranking approaches that we tested. For instance,
the API+Projects column in Table 1 shows the top 10 ontologies in the ranking
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that BioPortal used when we took the screenshot for Figure 1. In this ranking,
among the ontologies that had an exact match for the term “myocardial infarc-
tion,” the highest rank belonged to NCI Thesaurus. The two ontologies that are
ranked higher than NCI Thesaurus (column API+Projects in Table 1) do not
contain the search term and hence do not appear in the search results.

The rest of the columns in Table 1 present the top 10 ontologies in other
ranking orders that we evaluated (Section 4). In order to determine which rank-
ing works better for our users, we recorded user actions in the search logs. Each
time a user selects an ontology in the search results to open this ontology in the
browser, we record the following data: the search term, the position that the user
clicked, whether or not the result was an exact match or an approximate match,
the ontologies that were ranked higher than the one that the user selected, the
user IP address and other provenance information.

We use the position of the ontology that the user selected as a measure of
how effective our ranking was for this particular search. If the user selects the
first link and later finds out that this link is not what she was looking for, she
will come back to the search results and follow a different link. We record both
actions as two different searches.

In order to analyze the effectiveness of a specific ranking relative to another
ranking, we compare the collection of positions of ontologies that the users select.
We can compare the median and the mean of the position in a set of user search
logs. The closer both numbers are to 1 (the user selecting only the highest ranked
result), the closer our ranking is to a perfect one.

This framework provides a data-driven evaluation approach to ontology rank-
ing. By varying the internal ranking R, we can compare the effect of various
features in composing the ranking: given two rankings, Ri and Rj , the one with
the lower mean and median of the positions of selected ontologies is the closer
one to a perfect ranking.

3.2 Defining the Data-Driven Evaluation Framework

More formally, consider an ontology collection C and a set of ontologies {O1, O2,
....On} in the collection C. We define a ranking R as a complete order on the
set {O1, O2, ....On}. When a user searches the collection C for a term t (e.g.,
“myocardial infarction”), let the set Ct be the subset of ontologies from C that is
returned as the result of the search for the term t. In the search results presented
to the user, the ontologies in the set Ct are ordered according to the ranking R.

We define the effectiveness of the ranking R based on the user behavior
after the search engine presents the ontologies in the set Ct ranked according
to R. The ranking R is a perfect ranking if every user selects the first choice
presented by the search engine. The closer the user behavior is to the perfect
ranking, the more effective the ranking R is.
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Table 1. The top 10 ontologies in each of the four ontology rankings that we used in
the study. This ranking dictates the order of search results. The table presents four
rankings: The first group are the top 10 ontologies based on pageviews in BioPortal;
the second group presents the ranking based on combination of pageviews in BioPortal
and API calls; the third group is the ranking based on API calls and use in projects
submitted by users; the final group presents the ranking based on combination of all
features. See Section 4 for details of the ranking features in.

Pageviews Pageviews + API

1. National Drug File 1. SNOMED Clinical Terms
2. SNOMED Clinical Terms 2. NCI Thesaurus
3. MedDRA 3. Human disease ontology
4. International Classification of Diseases 4. MedDRA
5. NCI Thesaurus 5. International Classification of Diseases
6. Mouse adult gross anatomy 6. National Drug File
7. RadLex 7. Ontology for Biomedical Investigations
8. Bioinformatics operations... (EDAM) 8. Human Phenotype Ontology
9. Human disease ontology 9. Experimental Factor Ontology
10. RxNORM 10. Medical Subject Headings (MeSH)

API + Projects All

1. Gene Ontology 1. NCI Thesaurus
2. Gene Ontology Extension 2. SNOMED Clinical Terms
3. NCI Thesaurus 3. Ontology for Biomedical Investigations
4. Medical Subject Headings (MeSH) 4. Human disease ontology
5. Ontology for Biomedical Investigations 5. RadLex
6. Foundational Model of Anatomy 6. Experimental Factor Ontology
7. SNOMED Clinical Terms 7. Medical Subject Headings (MeSH)
8. NCBI organismal classification 8. Foundational Model of Anatomy
9. Chemical entities of biological interest 9. NCBI organismal classification
10. Cell type 10. NIF Standard Ontology

3.3 Analyzing and Comparing Rankings

We use the search-log data to analyze the effectiveness of a specific ontology
ranking and to compare the effectiveness of different rankings to one another.
For our analysis, we use only the results that had the exact match for the search
term—these results constitute the first batch of search results that BioPortal
presents to users and it orders this set based on its current internal ontology
ranking R. For each result, we take the position of the ontology that the user
selected. For example, consider five entries in our search log for a period of time
when a ranking Ri was active: Suppose one entry indicates that the user selected
the ontology in position 2, another entry has the user selecting the ontology in
position 10 for her search, and the three remaining entries have the users select
the top link. Then, PRi = {2, 10, 1, 1, 1}. Thus, we get a set PR of all positions
of ontologies that users have selected over a period of time when the ranking R
was active. We analyze the set PRi for each ranking Ri that we want to evaluate.
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In order to analyze each individual ranking Ri, we compute the following
metrics for the corresponding set PRi :

Median Selected Position: the median position that the user selects;
Mean Selected Position: the average value for the position of the ontology

that users select; the closer this value is to 1, the closer our ranking is to a
perfect ranking for ontology search.

Percentage of Selections in the Top Position: the fraction of users that
have selected the top link among the results that the search engine
presented.

We use a randomly generated ranking of ontologies Rrandom as a baseline.
Presenting ontologies in a random order for several days allowed us to obtain
the baseline for user behavior. We created this baseline in order to answer the
question of how much the users tend to select the first result that we present,
regardless of the ontology rank.

To compare rankings among one another, we performed a series of pair-wise
statistical tests based on the Wilcoxon rank-sum test, followed by a Bonferroni
correction to reduce the chance of type-I errors due to multiple comparisons.
We first perform a one-sided Wilcoxon rank-sum test to determine whether each
of the rankings Ri provides a statistically significant improvement over the ran-
domly generated rankingRrandom as determined by the two corresponding sets of
selected ontology positions PRi and PRrandom

(Test 1). Here, the null hypothesis
(H0) is that the distributions of PRi and PRrandom

are identical. The alternative
hypothesis (Ha) is that the distribution of PRrandom

is shifted to the right of
PRi ; in other words, ranking Ri is more effective than Rrandom. A small p-value
in this case is an indicator that the location shift (i.e, ranking improvement) is
unlikely to due to chance. We then compare each pair of rankings Ri , Rj to
each other using a two-sided Wilcoxon rank-sum test to determine whether they
are statistically different (Test 2). In this test, Ha is the hypothesis that the
distributions of PRi , PRj are not identical (location shift is not equal to zero);
or in other words, the distributions PRi , PRj are statistically different.

In the rest of this paper, we describe the application of this framework to
analyze a number of ontology ranking features in BioPortal.

4 Features in BioPortal Ontology Ranking

We have actively solicited suggestions from our user community on what features
to use in ranking BioPortal ontologies. As the result of these discussion, we
selected the following list of features that could affect the ranking of ontologies:

Pageviews (PV ): We use Google Analytics to measure the number of
pageviews that each ontology in BioPortal receives. Because BioPortal al-
lows users to browse multiple versions of the same ontology, we aggregate
browsing history across versions: whichever version of an ontology OVi a user
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browses, those pageviews contribute to the browsing activity for the ontol-
ogy O. We use an interval of one month each time to create a new ranking
of BioPortal ontologies based on pageviews. This feature measures how fre-
quently users browse an ontology in BioPortal: the more frequently the users
browse a particular ontology, the higher its rank.

API Activity (API): Many developers use the NCBO Web services API [15]
to access the ontologies from within their applications. Web service calls al-
low the caller to specify which ontology to use. For example, a group focusing
on diseases may use all disease ontologies or specify only the ontologies that
they consider to be the “best.” The more frequently an ontology is explic-
itly specified in the Web service API calls, the higher its ranking along this
feature. Specifically, we count the number of unique API keys (users) that
access each ontology through the API.

Projects (Pr): BioPortal users can describe their ontology-related projects on
the BioPortal site. The users can then link these project descriptions to the
ontologies that they use in the projects. The more projects use an ontology,
the higher its rank based on this feature.

Notes and Reviews (NR): BioPortal users can also provide reviews of on-
tologies and attach comments (notes) and new term requests to individual
classes in an ontology. This activity is another indicator that we take into
account to determine the ontology rank.

We ranked the ontologies based on each feature and then combined the ranks
to create the ranking that relied on more than one feature. We could also add
a weight to any of the features if we want to emphasize any one of them. In
our experiments to date, we assigned each feature the same weight. We discuss
additional features that we can include in ontology ranking in Section 6.

In our experiment, we evaluated the following ontology rankings, with each
ranking being active for a period of time. For rankings that use multiple features,
we added the ranks for each feature and based the combined ranking on this sum.

Random (Rrandom): provides a baseline for the user search behavior
Browsing Activity only (RPV ): reflects the interaction with BioPortal on-

tologies through the browser
Browsing Activity and API Activity (RPV +API): reflects the general use

of an ontology, through the pageviews or through API calls
API Activity and Number of Projects (RAPI+Pr): reflects the use of the

ontology in projects through measuring the explicit links between ontologies
and projects as specified by the users on the BioPortal site and the use of
the ontology in the API calls that developers make.

All of the Above (RAll): reflects a combination of all the measures that we
studied. Specifically, it combines PV , API, and Pr, all with equal weights.

Using projects (RPr) or Notes and reviews (RNR) alone did not differentiate
the ontologies significantly, with 87% of the ontologies having at most one note
or review. For RPr, 78% of ontologies had 4 or fewer projects. Thus, we did not
yet use this feature by itself for the ranking in the live system. In future work,
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we plan to consider additional combination of features that take into account
the features with low degree of differentiation, such as RNR. Because there was
some variability in the number of projects, with 22 different ranks, we used RPr

in combination with RAPI .

5 Results

We collected the data on user activity in BioPortal between January 1, 2013
and April 10, 2013 (Table 2).2 The number of searches for each ranking ranged
between 500 and 694. We considered only the searches where the user clicked on
one of the ontologies with the exact match. This search behavior was affected
the most by the rankings.

We describe the analysis of the features that we used for ranking (Section 5.1),
search-log data in Section 5.2 and we compare the effects of features that we
described in Section 4 on the effectiveness of ranking in Section 5.3.

5.1 Analysis of the Features

Figure 2 presents the ranges for the features that we considered for the ranking.
Recall that when computing combined rank, we used the rank of ontologies for
each feature rather than the absolute values for the features. The graphs show
that the notes provided too little differentiation between ontologies and thus we
did not use them in these experiments.

5.2 Analysis of the Search Data

In the period that we studied, the users performed the total of 4,859 searches.
Of these searches, we analyzed the 3,029 searches (62%) where the user selected
one of the ontologies with an exact match for the search term. These searches
came from 969 unique IP address.

The users searched for 2,276 unique terms. In other words, more than 75% of
the search terms appeared only once in searches over a period of 81 days.

The average number of ontologies that BioPortal returned for the searches in
our analysis was 11 ontologies with exact matches for the user’s search term.

BioPortal users can create an account on the site and log in to the site as
they browse. Being logged in allows users, for example, to custom-tailor the set
of ontologies that they see (e.g., by limiting this set only to the ontologies that
they are interested in), to add reviews and comments on the ontologies, and to
describe their projects. We found that only 3% of the searches were performed
by users who were logged in to BioPortal during the search.

2 The exact date when we pushed each new ranking to the BioPortal depended on the
release schedule and other operational requirements, resulting in the slight variation
in the number of days for each ranking. We decided to keep all the data rather than
to truncate each period to 15 days in order to analyze as much data as possible.
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Fig. 2. The distribution of absolute values for the features. The pageviews provide the
most discrimination among ontologies, whereas notes and reviews provide essentially
none, with most ontologies having fewer than 2 notes. We used the relative rank of an
ontology based on the specific feature rather than absolute values. The pageview plot
excludes the top 5 ontologies; the monthly pageviews for these ontologies ranged from
1,000 to 10,000.

5.3 Comparing the Rankings

In each ranking that we considered, including the case when we ranked the
ontologies randomly, the median position of the selected ontology was 1. In
other words, more than half the time, users click on the first search result.

Table 3 displays p-values for Test 1 (Section 3.3), which we used to determine
whether each of the four rankings (RPV , RPV +API , RAPI+Pr, and RAll) pro-
vides a statistically significant improvement over a randomly generated ranking
(Rrandom). According to the information in Table 3, there is strong statistical ev-
idence (extremely small p-values) that the ranking improvement provided by the
RPV and RPV +API ranking algorithms is unlikely due to chance (non-random).
Furthermore, the p-values support the finding that the RPV and RPV+API al-
gorithms provide performance that is superior to the other ranking algorithms.
In other words, using pageviews or pageviews in combination with the API calls
as the basis for ranking provides greater improvement compared to using API
and projects (RAPI+Pr) or the combination of all the features (RAll), which do
not provide performance that is drastically different from the randomly gener-
ated ranking. Indeed, as Table 2 shows, the number of searches where the user
select the ontology in the top position is 27% and 26% higher than random for
RPV and RPV +API , respectively. For RPV , almost 75% of searches result in the
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Table 2. The summary information about the ranking algorithms used in the study

Random Pageviews Pageviews API All
+API + Projects

Period (all dates in 2013) 1/15-1/30 1/1-1/15 3/6-3/21 3/21-4/10 2/4-2/19
Number of days 16 15 15 20 15

Number of searches 500 589 694 639 607
Unique IP addresses 190 168 213 218 180
Searches by logged in users 4 13 11 29 43
Unique search terms 380 455 556 491 490
Unique search terms (%) 76.0% 77.2% 80.1% 76.8% 80.7%

Mean position selected 2.44 1.72 1.78 2.1 2.25
Users selecting top ontology 57.6% 74.4% 72.9% 63.9% 60.8%
Median position selected 1 1 1 1 1

Table 3. Comparing rankings to the random ranking. The p-values to test if improve-
ment in ranking is due to chance (Test 1). The rankings that use Pageviews (RPV ) and
Pageviews with API (RPV +API) provide performance that is statistically significant.

Pageviews Pageviews + API Projects+API All

Random 1.26E-09 1.64E-09 0.01192 0.3306

selection of the top link. Notwithstanding, when comparing RPV and RPV +API

to each other (Test 2, Section 3.3) we find that the two rankings are statisti-
cally indistinguishable from each other (p-value=0.67). This data suggests that
combining the API feature with the PV feature does not provide a significant
performance improvement over using the PV feature by itself.

6 Discussion

In this paper, we have developed a framework that enables us to evaluate ontol-
ogy ranking algorithms in a data-driven way. Indeed, we need only to swap out
one ranking for another and to continue to collect the data in order to compare
different ranking. Because of the relatively high volume of searches on BioPor-
tal, we get sufficient data to determine whether or not a ranking algorithm is
working in a matter of a couple of weeks.

6.1 Changes in Ontology Ranking

We start our discussion by providing a sense of how much movement we observed
in the four rankings of BioPortal ontologies that we presented in this study. There
are more than 330 ontologies in BioPortal and their order differed significantly
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Fig. 3. Rank changes for the top 10 ontologies in the RPV ranking (the ranking based
on pageviews). Each line indicates the rank of the ontology based on the corresponding
ranking algorithm. The graph captures the ranks between 1 and 50. The line for Med-
DRA (green) drops off the chart for the ranking based on Projects and API because
MedDRA was ranked 89 in that ranking.

from one ranking to another. We compare the movement of ontologies in the
rankings relative to the RPV ranking, the ranking that performed the best in
our evaluation. Consider the graph in Figure 3, which tracks the ranks of the
top ten ontologies in the RPV ranking. Each line represents the rank for a single
ontology among these top ten, when we use the corresponding features for the
ranking. The ranks for these ontologies ranged from 1 to 89 in the other rankings.
We observed the biggest shift from the RPV ranking in the RAll ranking, a
ranking based on combination of all features. Indeed, the MedDRA terminology,
which is ranked first based on page views, was ranked 89th in the ranking based
on projects and APIs—an indication that while users often browse MedDRA
in BioPortal, they do not use it in their ontology-related projects or access it
through the BioPortal API.

Table 4 shows the average number of positions that the ontologies moved up
or down relative to the RPV ranking, for the top 100 ontologies. On average,
each ontology that moved higher in the ranking, compared to RPV , moved by
17.3 spots in the ranking. Each ontology that moved down in the ranking, moved
by 60.7 spots, with the largest average movement between the ranking based on
projects and API, RPr+API , and the ranking based on pageviews, RPV . This
result is not surprising because RPr+API is the only ranking among the ones
that we considered that does not take pageviews into account.

6.2 Comparing the Rankings

Our analysis of the four ranking approaches for BioPortal ontologies demon-
strated several trends. First, the majority of users select the top link, regardless
of the ontology that it comes from. This observation is similar to the results
that Joachims and colleagues [16] reported for regular Web search and what
they referred to as “Trust bias.” The fact that the user behavior changes as the
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Table 4. The average movement distance (in the position change) for ontologies relative
to the RPV ranking. The data is for the top 100 ontologies in the RPV ranking.

Pageviews + API Projects + API All

Moving higher in the ranking 12 24 16
Moving lower in the ranking -52 -73 -57

ranking changes confirms the “quality bias” reported by Joachims and colleagues:
the quality of the ranking does affect the clicking behavior of the users. The
trust bias appears to be more pronounced in ontology search than in regular
web search, possibly because it is harder for users to assess the quality of the
result from the snippets that BioPortal provides. For example, not all terms in
ontologies have textual definitions, and therefore, the only information that the
user might see is the term name and id. This information may not be enough to
make informed decision.

Therefore, the better we are at putting the most relevant ontology at the
top of the list, the more satisfied the users will be. Second, the rankings that
performed the best in our experiments, RPV and RPV+API , were the ones that
reflected the activity of users in the BioPortal user interface. In both rankings,
the analysis of pageviews for an ontology played the key (or the only) role. This
result is not surprising: indeed, the users who interact with the BioPortal search
interface—the ones whose logs we used in the analysis—are exactly the users
who browse BioPortal. The other rankings had a stronger component from the
developers and users who already know which ontologies they need and thus
were less helpful in ranking the ontologies in the user interface. These rankings
did not improve the effectiveness of the search.

6.3 Other Condiserations

In our study, we focused on the users who perform ontology search. On the one
hand, such filtering allowed us to rely on a smaller number of users who perform
the same task [17]. At the same time, this decision led to several limitations.

First, if a user selected the top ontology, was not satisfied and then came back
and selected a lower ranked one, we will record both selections in the log. This
analysis is equivalent to the “click > skip above” strategy described Joachims
and colleagues [16]. That work demonstrated that this strategy of assuming
that the user finds any clicked result more relevant than the results above it,
provide to be one of the most accurate strategies.

In reality, the user did not find what she was looking for in the ontologies that
she selected first. Indeed, many users may not have precise or explicit criteria to
select the ontology that will satisfy their needs and many of the searches might
be exploratory. In order to be more precise about the satisfaction of the user,
we may want to count only the last of the positions in a batch of selections
from the same IP address with the same search term. Our initial analysis of the
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data indicates that this change will not have a significant effect on the results
because the search logs are dominated by unique search terms. However, we plan
to perform the detailed analysis that takes into account the history of consecutive
selections from the same user.

Second, we are of course unlikely to have a ranking where every user will select
the first search result because users have different requirements and might be
interested in different ontologies. The best we can do is get the best result as
the top result for as many users as possible. We could also use the user personal
preferences and search history to custom-tailor the order. For instance, we can
monitor the user’s behavior and the ontologies that the specific user browses
more frequently, and rank those ontologies higher for the specific user. Recall,
however, that only 3% of the searches in our study came from the users who
were logged in and “known” to the system.

Furthermore, we currently do not take the search results within the ontology
into account: whether an ontology has several non-exact hits on the search term
or only one does not effect its ranking for the specific search result. In the future,
we can add this information to the ranking for a specific search.

We do not normalize pageviews–the key indicator in the ranking–by the on-
tology size, a decision that maybe counter-intuitive at first glance. However, it
generally takes as much time on behalf of the user to perform X pageviews in a
large ontology as it does in a small ontology. Because each page view corresponds
to an explicit action by a user, this metric does not privilege large ontologies.
However, because large ontologies have broader coverage and are more likely
to appear in search results, uses might visit them more often for that reason.
Large ontologies (e.g., SNOMED CT, ICD) also usually have some institutional
support behind them and thus users are more likely to use those ontologies.

Finally, the ranking that we produce is only as good as the information that we
use as input to the ranking. For instance, we believe that the project information
is incomplete as many BioPortal users have not entered information for their
projects. We are involved in an active outreach effort to expand the coverage
of project descriptions. As these descriptions become more comprehensive, the
effect of this feature on the ranking may change as well. Similarly, we we get
more notes and reviews on the ontologies, that feature will differentiate the
projects more and will have a different effect on the ranking. We plan to use our
framework to re-evaluate the effects of these features continuously.

6.4 Future Work

Our analysis points to several future directions in improving ontology ranking
methods—methods that we can continue testing in our framework. First, we can
consider different weights on the features that go into the ranking. For example,
we can weigh the rank based on pageview more, but still include other features.
Second, we can use our framework to investigate a number of other features
that can contribute to ontology ranking, in addition to the features that we have
described in this paper. For example, we can consider the following features:
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– the percentage of ontology terms that have textual definitions: if ontology
developers took care of providing natural-language description for all, or
most, of the terms, it might indicate that ontology is more useful for users;

– the number of other ontologies that import an ontology or reuse its terms:
if an ontology is frequently reused, it might be ranked higher than others;

– coverage of a document corpus: we use ontologies to index records in many
public datasets; an ontology where higher percentage of the terms that are
reflected in large teal-life corpora may be more useful.

Our framework enables us to evaluate the effectiveness of ontology ranking
for the purposes of ontology search. These result do not necessarily translate
to a more general solution to ontology-evaluation. Indeed, as many researchers
have pointed out, the best way to approach ontology evaluation is through task-
specific evaluation [18]. While there is likely a correlation between the ranking for
the purposes of improving the user search experience and more general ontology
evaluation, we need to investigate this link in further research.

Note that these and other features and their positive or negative effect on
ontology ranking are the hypotheses that we can test in our framework. Our
results so far have demonstrated that some “common-sense” hypotheses do not
necessarily hold if we analyze search data.

In our experiments, we focused exclusively on the search task. Analyzing the
user behavior throughout the system, including their browsing of ontologies, will
give us a more complete picture of user satisfaction. For example, the usage logs
can reveal whether users explore multiple ontologies before settling on a single
one. We can analyze howmuch time users spend on each ontology, how much time
they spend on the pages following the search, and what actions they perform.
Analyzing the data beyond the search page will give us a more complete picture
of the user behavior and their implicit satisfaction with the search results.

7 Conclusions

Our framework provides an efficient way to compare various approaches to on-
tology ranking in a data-driven way by analyzing the user behavior in select-
ing search results. Our analysis of different ranking approaches for biomedi-
cal ontologies in BioPortal, shows that the majority of users always select the
first search result, making good ontology ranking ever more important for user
satisfaction.
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Abstract. Despite the large number and variety of tools and services available 
today for exploring scholarly data, current support is still very limited in the 
context of sensemaking tasks, which go beyond standard search and ranking of 
authors and publications, and focus instead on i) understanding the dynamics of 
research areas, ii) relating authors ‘semantically’ (e.g., in terms of common 
interests or shared academic trajectories), or iii) performing fine-grained 
academic expert search along multiple dimensions. To address this gap we have 
developed a novel tool, Rexplore, which integrates statistical analysis, semantic 
technologies, and visual analytics to provide effective support for exploring and 
making sense of scholarly data. Here, we describe the main innovative elements 
of the tool and we present the results from a task-centric empirical evaluation, 
which shows that Rexplore is highly effective at providing support for the 
aforementioned sensemaking tasks. In addition, these results are robust both 
with respect to the background of the users (i.e., expert analysts vs. ‘ordinary’ 
users) and also with respect to whether the tasks are selected by the evaluators 
or proposed by the users themselves. 

Keywords: Scholarly Data, Visual Analytics, Data Exploration, Empirical 
Evaluation, Ontology Population, Data Mining, Data Integration.  

1 Introduction 

Understanding what goes on in a research area is no easy task. Typically, for a given 
topic, this sensemaking process may require exploring information about a variety of 
entities, such as publications, publication venues, researchers, research groups, events, 
and others, as well as understanding the relationships which exist between them. Such 
exploration and sensemaking tasks can take place in a variety of contexts, involving 
different categories of users. For instance, one of the authors of this paper is Editor-
in-Chief of a scientific journal and in such a role he regularly needs to consider 
competing proposals for special issues, a task which requires (among other things) to 
analyze the dynamics of one or multiple research areas, in order to formulate a view 
on whether the proposals in question concern areas that are ‘hot’ and growing, or are 
instead to a lesser extent at the cutting edge. In other task contexts, such scholarly 
data are also of great interest to research managers, funding bodies and government 
agencies, who i) may want to find out about the performance of specific individuals 
and groups, and compare them with their peers both at national and international 
level; or ii) may need to gather objective evidence about research trends to inform 
funding policy decisions.  
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Obviously, there are many tools and services currently available, which already 
provide a wide variety of functionalities to support the exploration of scholarly data –
see Section 2.1 for a review of the state of the art. Nevertheless, as Dunne et al. point 
out [1], there is still a need for an integrated solution, where the different scholarly 
tasks are provided in a coherent manner, through an environment able to support a 
seamless navigation between different views and functionalities. In addition, as 
discussed in detail in the next section, we believe that there are also a number of 
important functionalities, which are crucial to providing effective support for 
exploring and making sense of scholarly data, but are currently missing from existing 
solutions. These include (but are not limited to) the ability i) to investigate research 
trends effectively at different levels of granularity, ii) to relate authors ‘semantically’ 
(e.g., in terms of common interests or shared academic trajectories), and iii) to 
perform fine-grained academic expert search along multiple dimensions.  

To address this gap we have developed a novel tool, Rexplore [2], which integrates 
statistical analysis, semantic technologies, and visual analytics to provide effective 
support for exploring and making sense of scholarly data. In this paper, we illustrate 
the main innovative elements of the tool and we also present the results from a task-
centric empirical evaluation, which shows that Rexplore is highly effective at 
providing support for the aforementioned sensemaking tasks. In addition, these results 
are robust both with respect to the background of the users (i.e., expert analysts vs. 
‘ordinary’ users) and also with respect to whether the tasks are selected by the 
evaluators or proposed by the users themselves. 

2 Exploring Scholarly Data 

2.1 State of the Art 

A large variety of systems support the exploration of scholarly data, some of them 
providing an interface to a specific repository of bibliographic data, others integrating 
multiple data sources to provide access to a richer set of data and/or to provide a 
richer set of functionalities. The most widely used academic search engine is probably 
Google Scholar (http://scholar.google.com), which primarily supports search and 
citation services, providing comprehensive access to the academic literature. DBLP 
(http://www.informatik.uni-trier.de/~ley/db/) is a well-known computer science 
bibliography website and can be browsed using FacetedDBLP [3], an interface which 
exploits the faceted search paradigm to support data exploration. CiteSeerX [4] focuses 
instead on large-scale harvesting and indexing of research papers and includes 
mechanisms for suggesting relevant papers. These systems mainly focus on providing 
a good interface for publication search and are not designed to support sensemaking 
tasks in the academic domain. On the contrary, Microsoft Academic Search 
(http://academic.research.microsoft.com/) provides a variety of visualizations, 
including co-authorship graphs, publication trends, and co-authorship paths between 
authors. In a similar way Arnetminer [5] also offers different visualizations and 
provides support for expert search and trend analysis. Saffron [6], which builds on the 
Semantic Web Dog Food Corpus [7], exploits keywords for expert search and 
estimates the strength of an author/topic relationship by analyzing co-occurrences on 
the Web. A common aspect of these systems is that they use keywords extracted from 
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publications as proxies for research topics. However these are noisy and lack structure 
(see Section 2.2.1 for a detailed discussion on this aspect). 

Recently, reference management tools have emerged, such as Zotero (http://www. 
zotero.org), EndNote (http://endnote.com) and Mendeley (http://www.mendeley. 
com), as well as specialized social networks sites for researchers –e.g., ResearchGate 
(http://www.researchgate.net) and Accademia.edu (http://www.academia.edu). 
However, while these systems support exploration to some degree, again they only 
provide limited support for sensemaking tasks.  

A key challenge for a system exploring scholarly data is how to assist users in 
searching and navigating through a variety of different dimensions –e.g., topic, 
organization, co-author, etc. A popular paradigm is faceted browsing [8], in which a set 
of objects can be filtered progressively along several dimensions in different orders. The 
\facet tool [9] exploits this idea to allow for an easier exploration of heterogeneous 
Semantic Web repositories by using the different resources found in RDF repositories as 
alternative facets. mSpace [10] tackles the problem of dealing with high-dimensional 
spaces, by showing a subset of the data at the time, called “a slice”, and arranging them 
in a hierarchy of columns in accordance with user-defined priorities. Other approaches 
rely on the pivot (or multi-pivot) paradigm [11], which allows users to identify key 
elements in the data space (the pivots), and use these to introduce structure and facilitate 
the navigation process. For example, PaperCUBE [12] offers advanced data 
visualization functionalities and it specifically focuses on scholarly data, providing 
effective visual modalities to browse citation networks and relations between authors 
and to situate a paper in a research context. However, the focus here is primarily on 
individual publications and little support is provided for higher-level tasks, such as 
understanding research dynamics and fine-grained expert search.  

2.2 Gap Analysis 

As we have seen in the previous section, the space of solutions for exploring scholarly 
data is large, comprising both powerful systems for crawling and indexing scholarly 
data, such as Google Scholar, as well as a variety of visualization solutions and data 
exploration paradigms, some generic in nature, others specifically customized for 
scholarly data.  However, despite the availability of such a variety of systems, 
exploring scholarly data remains challenging, especially once we move away from 
basic search (for authors or publications) and we aim to capture the dynamic elements 
to do with research trends and relationships between authors (which go beyond 
citation and collaboration), or we aim to perform expert search at a very fine-grained 
level –e.g., by searching for researchers with expertise in multiple topics, at a certain 
career stage, within a certain geographical area, who have a track record of publishing 
in the top conferences associated with one or multiple research areas, etc. In what 
follows we will discuss these issues in more detail, highlighting the key gaps that 
Rexplore aims to address. 

2.2.1 No Semantic Characterization of Research Areas 
A key precondition for an effective exploration of scholarly data concerns the 
mapping of people and publications to the relevant research areas. However, ‘research 
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area’ is rarely treated as a first class concept and instead systems tend to use keywords 
as proxies for research areas. This limitation creates a number of problems. For 
instance, the Arnetminer page for Enrico Motta includes “International Semantic Web 
Conference” as a research interest, even though research interests should arguably 
concern topics1, rather than conferences.  A similar problem can be seen by looking at 
the Microsoft Academic Search (MAS) page for Enrico Motta, which lists three high 
level ‘fields’ for him, “Database”, “Web”, and “Artificial Intelligence”, and then 
supplements this information with a number of keywords, including “Case Study”, 
which (again) is arguably not a research area. 

Another problem stemming from a syntactic, rather than semantic, treatment of 
research areas is that systems do not take into account important semantic relations 
between research areas, such as an area being a sub-area of another one, or two labels 
referring to the same research area. This problem has been traditionally addressed by 
relying on manually curated taxonomies, such as the ACM classification 
(http://www.acm.org/about/class/). However these classifications suffer from several 
problems. First of all, they are very shallow –for example the entry “Intelligent Web 
Services and Semantic Web” in the ACM classification only contains four sub-topics, 
thus failing to reflect the variety of topics being tackled by the Semantic Web 
research community. In addition, because they are manually curated, they evolve very 
slowly and as a result, they fail to reflect the latest research trends. Finally, they are 
actually very opaque, as it is not clear what does it mean for a topic to be classified 
under another topic. For instance, “Ontology Languages” is classified under 
“Intelligent Web Services and Semantic Web”; however one could argue that it is 
strange to say that the former is a sub-topic of the latter, given that ontology 
languages were being designed well before the Semantic Web was recognized as a 
research area. In addition, these classifications do not cater for situations where there 
are different ways to refer to the same area. For instance, most people would agree 
that the labels “Ontology Matching” and “Ontology Alignment” refer to the same area 
of research.   

2.2.2   Lack of Granular Analysis 
Systems such as MAS provide ways to visualize research trends.  However, these are 
considered at a very high-level of abstraction. For example, MAS can visualize 
publication trends in “World-Wide-Web” and “Databases”, but cannot provide this 
feature for “Semantic Web”, let alone more fine-grained topics, such as “Semantic 
Web Services”. However, both researchers and students tend to be interested in rather 
fine-grained trends – e.g., what’s happening with Linked Data, rather than what’s 
happening with the Web.  A wider range of topics is provided by Arnetminer, 
however these still cover only a subset of the research topics (e.g., key topics for the 
Semantic Web community, such as “Linked Data” and “Ontology Evolution” are not 
included) and in addition they are provided as a flat list, rather than in a structured, 
easily navigable form. 

                                                           
1 In what follows, we will use the terms ‘topic’ and ‘research area’ interchangeably. 
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2.2.3   Digital Library Bias 
Another limitation of most existing systems in the context of the sensemaking tasks 
that we wish to support is the emphasis on classic digital library functionalities, such 
as supporting search for publications and providing citation services. While of course 
these are key functionalities and essential building blocks for more advanced services, 
they do not necessarily provide the right level of support when the goal is to make 
sense of what goes on in a research area, rather than to identify a specific paper. For 
instance, in the example given in Section 1, where a research area needs to be 
investigated in the context of making a decision about a special issue proposal, what 
is needed from a system is the ability to support the user in identifying quickly the 
important trends in the area –such as, whether it is growing (and in this case where are 
the new researchers coming from) or shrinking (and in this case where are the 
researchers migrating to), rather than following citation links or locating a specific 
paper. Another negative side-effect of this ‘bias’ is the aforementioned problem 
highlighted by Dunne et al. [1], concerning the lack of an integrated environment, 
supporting a seamless exploration of the space of scholarly data, as opposed to 
providing ‘atomic’ functionalities, to do with static visualizations or search and 
citation services, which is the situation with most current systems.  

3 Overview of Rexplore 

The goal of Rexplore is to provide an environment capable of overcoming the 
limitations discussed in the previous section to support users effectively by enabling 
them i) to detect and make sense of the important trends in one or more research 
areas, ii) to identify researchers and analyze their academic trajectory and 
performance in one or multiple areas, according to a variety of fine-grained 
requirements, iii) to discover and explore a variety of dynamic relations between 
researchers, between topics, and between researchers and topics, and iv) to support 
ranking of specific sets of authors, generated through multi-dimensional filters, 
according to various metrics. 

Rexplore addresses the problem of the lack of a semantic characterization of 
research areas by introducing a fine-grained, automatically populated topic ontology, 
in which topics are identified and structured according to a number of semantic 
relationships [13]. The resulting knowledge base is generated using a combination of 
statistical methods and background knowledge on the basis of a large-scale corpus of 
publications (Section 3.1) and is then augmented with geographic information 
(Section 3.2). Research topics can then be browsed and analyzed by means of a 
variety of visual analytics solutions, which exploit the rich set of relations in the data, 
and in particular the fine-grained characterization of research areas (Section 3.3). 
Authors can be investigated by plotting a number of metrics on a timeline, and their 
associated research areas can be analyzed at different levels of abstraction (Section 
3.4). Powerful query/search facilities are also provided, supporting complex multi-
dimensional queries that can include logical connectives (Section 3.5). Finally, 
Rexplore also takes advantage of the fine-grained semantic characterization of authors 
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automatically extracted from the text of a publication) and performs three key operations, 
using a combination of statistical methods and background knowledge: 

• It identifies research areas from the given set of keywords, tidying them up by 
fixing errors and by removing keywords that do not denote research areas – 
e.g., “Case Study” or “NeOn Project”. 

• It automatically computes three types of semantic relationships between 
research areas – see below for more details.  

• It returns a knowledge base of semantic relationships expressed in OWL. 

In particular, Klink computes the following three relationships between topics: 

• skos:broaderGeneric. This is used to indicate that a topic, say T1, is a sub-topic 
of another topic, say T2. For instance, “Semantic Web Services” can be 
characterized as a sub-topic of both “Semantic Web” and “Web Services”. 

• contributesTo. This is defined as a sub-property of skos:related and it is used 
to characterize relations where there is evidence (gathered through statistical 
methods and/or background knowledge) that research in topic T1 is seen as an 
important contribution to research in topic T2, but it would be incorrect to say 
that T1 is a sub-topic of T2.  An example is the relation between “Ontology 
Engineering” and “Semantic Web”, where there is significant evidence that 
results from the former are relevant to the latter, but it would be incorrect to 
say that “Ontology Engineering” is a sub-topic of “Semantic Web”, given that 
it is a much older research area than “Semantic Web” and, even today, there is 
a lot of work in Ontology Engineering, which is carried out independently of 
Semantic Web research.  

• relatedEquivalent. This is also defined as a sub-property of skos:related and it 
is used to indicate that two keywords, e.g., “Ontology Matching” and 
“Ontology Alignment” are simply different labels for the same research area2.  

Our ontology3 builds on the BIBO ontology, which in turn builds on SKOS,4 
FOAF,5 and other standards. Our extensions are very conservative and comprise only 

                                                           
2 Here we could have used Owl:sameAs, given that Rexplore functionally treats two 

relatedEquivalent topics as being the same one.  However, from an epistemological point of 
view, it can be argued that this would be too strong a commitment and that in other 
scenarios one may want to consider topics with different names as different ones. Hence, to 
avoid overcommitting our ontology, we have introduced the relatedEquivalent property.  

3 http://kmi.open.ac.uk/technologies/rexplore/ 
  ontologies/BiboExtension.owl. 
4 The most recent specification of the SKOS model, which can be found at 

http://www.w3.org/TR/2009/REC-skos-reference-20090818/, proposes a 
new property, skos:broaderTransitive, to support the representation of transitive hierarchical 
relations.  However, our ontology currently sticks to the older SKOS specification, primarily 
because it builds on the BIBO ontology, which in turn builds on the 2004 SKOS model. 

5 http://xmlns.com/foaf/spec/ 
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the relatedEquivalent and contributesTo object properties described earlier, and the 
class Topic, which is used to refer to research topics. The resulting OWL knowledge 
base is exploited to support knowledge-based exploration, pattern extraction and 
author clustering in Rexplore. Currently it comprises 1500 topics linked by almost 
3000 semantic relationships. A detailed description of Klink, including an empirical 
evaluation of the algorithm can be found in [13].  

3.2 Geographic Enrichment 

The data sources used by Rexplore offer in most cases only the name of the author’s 
affiliation (e.g., Universities, Research Labs, Hospitals), which is usually derived 
from parsing research papers and thus it is simply treated as a string. As a result, 
affiliations may in some cases lack the actual geographical location or may use 
different ways to refer to the same institution –e.g., “University of Turin” and 
“University of Torino”. Since a correct affiliation linked to the correct geographic 
location provides valuable information for filtering and exploring authors, we use a 
simple but effective geographic enrichment procedure which i) defines a standard 
name for each affiliation, avoiding duplications, and ii) maps the affiliation to 
GeoNames, a well-known geographic database. The procedure uses initially 
Wikipedia to retrieve a ‘standard’ identifier for the affiliation and then searches for 
the location associated with the affiliation in DBpedia. If the latter search is 
unsuccessful, then the Wikipedia page is parsed for the tag “location” from which city 
and country are extracted using a set of heuristic rules. After recovering information 
about the city or the country, the affiliation is mapped to the correct GeoNames ID. If 
the search for affiliation and/or location in Wikipedia/DBpedia fails, then the 
affiliation name is stripped of a set of typical terms, such as “university”, “college” or 
“hospital”, and the remaining string is searched for in the GeoNames database. This 
simple method provided good results, allowing us to correctly map disambiguated 
affiliations to GeoNames in about 85% of the cases. 

3.3 Topic Analysis 

Rexplore takes advantage of the Klink-generated OWL knowledge base by 
considering every publication tagged with topic T1 to be also about topic T2, if T2 is 
broaderGeneric than T1, or relatedEquivalent to T1 (it should be noted that 
broaderGeneric is transitive). This has a dramatic effect on the quality and dimension 
of data available for each topic: for example, our knowledge base includes 11,998 
publications tagged with the string “Semantic Web”, while the publications regarding 
the topic “Semantic Web” (including sub-topics, such as “Linked Data”) are almost 
double (22,143).  
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Fig. 2. Exploring the topic “Semantic Web” in Rexplore  

For analyzing a topic, Rexplore provides an interface that includes: i) general 
information about the topic, ii) access to the relevant authors and publications, iii) the 
topic navigator, iv) visual analytics on broaderGeneric and contributesTo sub-topics, 
and v) visual analytics on authors’ migration patterns from other topics to and from 
the topic in question. As an example, Figure 2 shows the page for the topic “Semantic 
Web”, which (on the left) includes basic statistics, access to basic functionalities, and 
the topic navigator showing the relevant fragment of the topic hierarchy generated by 
Klink. On the right hand side of the figure, a histogram is shown, as the user has 
selected to visualize the publication trends for research in Linked Data, OWL and 
RDF. In particular, Figure 2 shows that the Linked Data area has exploded in the past 
few years, while research in OWL appears to have reached a plateau. 

Rexplore is able to visualize different topic trends: 1) publication trends, 2) author 
trends and 3) migration trends. The first two are the number of publications or authors 
associated with a semantically enriched topic on a timeline. The latter is defined as 
the number of estimated migrations between two topics and is computed by analyzing 
the shifting in authors’ interest, as described in [15]. 

3.4 Author Analysis 

Every author in Rexplore has a personal page which includes i) general bio 
information, ii) author’s scores according to different bibliometric measures, iii) topic 
analysis, iv) co-author analysis, v) pattern analysis, and vi) graph view. The page 
offers the possibility of deploying more than 20 different charts to plot each metric as 
a function of time. The topic analysis makes it possible to browse and plot on a 
timeline the main research areas in which the author has published or was cited.  
The topics and sub-topics are displayed in a multilevel list in such a way that it is 
possible to choose the granularity level. For example it is possible to conduct a high  
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level analysis by focusing on the main topics (e.g., “Semantic Web” or “Artificial 
Intelligence”) or otherwise to zoom in one of them (e.g., “Semantic Web”) and further 
analyze its sub-topics in details, exploiting the semantic structure generated by Klink. 
The co-author analysis section ranks the co-authors according to the number of 
publications or citations they have in common. It is also possible to select a number of 
co-authors and visualize their collaboration with the author in question by year and by 
topic. The pattern analysis section groups authors with a similar publications/citations 
pattern and can be also used to forecast future publication activity and impact for an 
author (in particular one at a reasonably early career stage). The graph view will be 
discussed in detail in Section 3.6.  

3.5 Faceted Search and Data Browsing 

Rexplore offers a number of facets to be used both for the formulations of complex 
search queries and for context-based data navigation and analysis. Indeed, both the 
topic and author analysis interfaces offer the possibility of focusing on specific 
combinations of facets, in order to allow the users to navigate/retrieve data according 
to specific dimensions. For example, authors can be filtered by 1) name or a part of it, 
2) career range (that is the time from the first published work), 3) topics of interest 
and 4) venues in which they published. Both venue and topic fields accept multiple 
values, which can be combined using logical connectives. Hence it is easy to 
formulate complex queries, e.g., to retrieve career-young authors, who have worked 
in both “Semantic Web” and “Social Networks”, and have published in ISWC. 

The results can be ranked by a variety of metrics that, for author-centric searches, 
include: 1) number of publications, 2) number of citations, 3) H-Index, 4) G-Index, 5) 
HT-Index, 6) GT-Index, 7) number of publications/citations in a topic or set of topics, 
8) number of publications/citations in a venue or set of venues. Here it is worth to 
highlight that the fine-grained structure of research topics generated by Klink supports 
the definition of fine-grained impact metrics, such as “citations in topics”, which 
allow to measure very specific elements of academic impact. 

HT-Index and GT-Index are based on the standard G-Index and H-Index, however 
they are normalized by the number of average citations in each topic. Hence they are 
useful for comparing authors who publish in fields with different levels of field-
specific impact.  

Often users want to start the data exploration process from the query results, for 
example by analyzing each one of a number of authors. Rexplore assists this seamless 
navigation by remembering the specified search filters –e.g., when switching from a 
list of results to a graph view.  

3.6 The Graph View 

The graph view is a novel, highly interactive tool to explore the space of authors and 
their relationships using faceted filters. It takes as input one or multiple authors and  
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displays their relations allowing the user to choose among a variety of types of links, 
ranking criteria, and filters. As an example, in Figure 3 we show the graph view 
displaying the authors most similar to Enrico Motta according to the temporal topic 
similarity, a novel metric which reflects the similarity of people's research trajectories 
with respect to the temporal sequencing of their research interests. The radius of the 
nodes in the graph reflects the number of his/her publications in the Semantic Web 
area. Other author ranking measures, as discussed in the previous section, can also be 
used. Users can also choose from six types of relations between authors: co-
publication, co-citation, topic similarity, temporal topic similarity, publication pattern 
similarity and citation pattern similarity. 

 

Fig. 3. A graph view in Rexplore 

The topic similarity reflects how similar two authors are with respect to their 
research topics and takes advantage of the fine-grained topic structure generated by 
Klink and its semantic characterization. A naïve way to compute it would be to 
directly compare the vectors representing the number of publications associated with 
a keyword. However, treating topics as strings, as many systems do, would yield poor 
result. In fact, keywords referring to a related area, to a sub area, or even indicating 
the same topic with a different name would be considered different. For example, a 
prominent author in the field of Linked Data would have most of his or her 
publications associated to a “Linked Data” keyword, and may be considered 
uncorrelated to authors who have papers tagged as “Semantic Web”. Thus we exploit 
a variation of the semantic enrichment procedure already mentioned in Section 3.3 on 
the publication vectors of the authors, assigning each publication on a topic also to its 
broaderGeneric or relatedEquivalent topics. However, in this case we want also to 
include contributesTo relationships, which yield important information but cannot be 
handled in the same way. In fact, it is not automatic that a paper published under a  
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topic (e.g., “Ontology Engineering”) is also about its contributesTo topics  
(e.g., “Semantic Web”). It seems however appropriate to use the probability that the 
contributing topic T1 refers to a certain topic T2 to assign an additional bonus to T2. 
Thus, in case of a contributesTo(T1,T2) relationship, we assign to T2 only a fraction of 
the publications in T1 according to the formula: 

(  ( ,  

where T is a topic, n is the number of publications of an author that are not already 
associated with T but have at least one topic in a contributesTo relationship with T, ( ,  is the set of topics associated with the i-th publication that are in a 
contributesTo relationship with T, ( ,  is the probability for a paper with the 
set of topics ( ,  to be also explicitly associated with area T (or with a topic 
having a broaderGeneric or relatedEquivalent relationship with T) before the 
publication date of the i-th paper and α is a factor which modulates the contributesTo 
relationship (empirically set to 0.5 in the prototype).  

By taking into account the publication date of each paper, the formula considers 
also the changes in topic relations over time. For example a paper about “Ontology 
Engineering” in the year 2001 would have a lower probability to be about “Semantic 
Web” than a paper about the same topic in 2010 and thus should contribute much less 
to “Semantic Web” in the author publication vector. The topic similarity is finally 
computed as the cosine similarity between the semantically enriched vectors of 
publications. 

The temporal topic similarity builds on the topic similarity measure and makes it 
possible to identify groups of researchers who appear to be following similar research 
trajectories, sharing research interests and moving from one topic to another in a 
similar way. In particular, this is very useful to identify the various sub-communities 
that populate a particular research area. The temporal topic similarity takes into 
account the order and the time span in which an author has published on a certain 
topic and is calculated as the weighted average of the topic similarities computed on 
different time intervals. Thus, if author A worked on T1 and then moved to T2, he or 
she may be similar to author B who was originally in T2 and then moved to T1 in 
terms of topic similarity, but will be different in terms of temporal topic similarity. 

Finally, the publication/citation pattern similarity reflects how similar two authors 
are with respect to their career progression in terms of number of publications/ 
citations. 

The graph view also provides a variety of standard interface operations, such as 
changing the level of granularity in the view, expanding, closing, or hiding nodes, etc. 
In addition, both nodes and links can be filtered with respect to specific years, topics, 
and venues. For example, it is possible to customize a graph and visualize only the co-
authors of a particular researcher, who have between 5 and 15 career years, have 
published in both Linked Data and Social Networks, and have publications in CHI. 
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4 Empirical Evaluation 

4.1 Experimental Setup 

For the evaluation we enrolled 17 PhD students and researchers drawn from the 
members of the Knowledge Media Institute in UK and the University of Turin in 
Italy. None of these subjects had been involved in the work on Rexplore, or indeed 
knew the system prior to the evaluation session. At the beginning of the evaluation 
session, every subject filled a questionnaire about his/her research experience, topics 
of interest, and familiarity with a list of systems that included Google Scholar (GS), 
MAS, DBLP, and Citeseerx. This was followed by a 15-minutes tutorial about 
Rexplore and then the subjects were asked to perform the activities listed in Table 1.  

Table 1. Activities in the Evaluation Process 

Table 2. Evaluation Tasks 

Warm-up Task. Find the 3 main co-authors (in any field) of the author with most 
publications in the topic User Modelling. 
Task 1. Find the top 3 ‘rising stars’ in the United Kingdom with expertise in both Semantic 
Web and Social Networks, in the career range 5-15 years from first publication, ranked in 
terms of number of citations in these 2 areas. 
Task 2. Find the top 5 authors with the highest number of publications in the Semantic Web 
and rank them in terms of number of publications in Artificial Intelligence. For each of them 
find their most cited paper in Artificial Intelligence. 
Task 3. Which are the 2 sub-topics in Semantic Web that have grown the most in 2005-2010 
(as measured by the difference between the number of papers in 2010 and in 2005) and who 
are the top 2 authors (ranked by number of publications in topic) in these 2 topics. 

 
The rationale for selecting GS and MAS as control systems was that GS is the most 

widely used bibliographic search engine, while MAS provides a number of features, 
in terms of time-based visualizations, which go well beyond what is provided by GS.  

Each task was recorded with screen capturing software and the time taken for 
completion was measured; if a task was not solved within 15 minutes, it was recorded 
as ‘failed’.  Tasks not completed within the time limit were considered as 15 minutes 
performance. After completing the various tasks, the 17 participants were requested to 
fill in a usability SUS questionnaire [16] and a second questionnaire about the 
strengths/weaknesses of the tested systems. On average the total time required to 
complete each evaluation session was slightly less than 2 hours. 

 
 

Activity 1. Carry out the tasks shown in Table 2 using Rexplore.  
Activity 2. Select one of the three tasks in Table 2 and attempt to achieve it using either 
Google Scholar (GS) or Microsoft Academic Search (MAS).  
Activity 3. Suggest a task you would consider valuable and perform it using Rexplore.  
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In contrast with other evaluation studies –e.g., see [17], where participants were 
divided in different groups and each group would use a different tool to perform the 
same set of tasks, here we did not carry out a straightforward ‘tool shootout’, but we 
instead implemented a more faceted experimental design, comprising usability 
questionnaires and a task-centric evaluation, and also providing the participants with 
the opportunity both to suggest their own tasks and also to try out other tools.  The 
reason for this is that GS and MAS do not directly support the kinds of sensemaking 
tasks for which Rexplore offers support, hence a ‘tool shootout’ would have provided 
little valuable data and most likely caused a high degree of frustration for the subjects. 
For this reason we decided to focus the bulk of the evaluation on identifying 
opportunities to evaluate and gather feedback on Rexplore, while still collecting some 
comparative data.  

The tasks given to the subjects cover common scenarios to do with expert search 
and trend detection. Task 1 is a common expert search task –e.g., for research leaders 
who wish to identify ‘new blood’ to fill a certain position. Task 2 is also a common 
expert search task, where, given a pool of people with expertise in topic A, we want to 
identify the person in the pool that can be considered as the top expert in topic B. 
Task 3 is about detecting trends and analyzing research topics. It is a common task for 
many professionals, such as managers in research funding bodies, who may wish to 
identify which areas appear to be particularly ‘hot’ within a broader research field.  

4.2 Results 

In Activity 1, the 17 subjects were able to complete within the requested 15 minutes 
50 of the 51 (17*3) tasks using Rexplore, with a 98% success rate. The only failure 
was registered in Task 2. Task 1 was the simplest one and was performed on average 
in about 3 minutes. In fact this task required only the ability to formulate a complex 
query, followed by the manual identification of a number of authors. Task 2 required 
a more complex exploration of the system, since the user had to first select five 
authors and then explore them using the graph view or the author analysis page, to 
find out their contributions in Artificial Intelligence.  Task 3 required the use of visual 
charts showing the publication trends of the sub-topics and the use of the topic 
navigator to identify the best authors.   

Table 3. Experimental results (in min:secs) using Rexplore and MAS. The tasks performed 
with GS yielded no success, thus their average time is by definition equal to 15:00. 

 Rexplore (N=17) MAS (N=9) 
 Task 1 Task 2 Task 3 Task 1 

(N=6) 
Task 2 
(N=2) 

Task 3 
(N=1) 

Average Time 3:06 8:01 7:51 14:46 13:52 15:00 
Standard Dev. 0:45 2:50 2:32 0:24 1:35 00:00 
Success Rate 100% 94% 100% 33% 50% 0% 
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In Activity 2, eight subjects were asked to work with GS and nine with MAS.  
Task 1 was chosen by 6 users on MAS and 5 on GS, while Task 2 was chosen 
respectively by 2 and 3 subjects. Task 3 was perceived by the subjects as practically 
impossible to do with a system without a fine-grained topic analysis functionality, and 
as a result was tried only by one subject (using MAS). Only three people out of nine 
completed a task with MAS (overall 33% success rate) and none at all with Google 
Scholar. Hence, the success rates of the three systems are significantly different: the 
two by two table comparison between Rexplore and MAS analyzed with a Fisher test 
(a standard statistical significance test used in the analysis of contingency tables when 
the numbers involved are small) yields p=10-5, whereas the three by two table 
including also GS yields p <10-7.  Incidentally, the users who were able to complete 
the chosen task on MAS (2/8 for Task 1 and 1/2 for Task 2) were among the best 
performers in Activity 1, and required for the same task about 5 times longer on MAS 
than on Rexplore, even after having already successfully completed the task in 
Rexplore. Table 3 summarizes the time employed for the assigned tasks on Rexplore 
and MAS and the relative success rate –i.e., the number of jobs completed correctly 
within 15 minutes.  

An important question when using a tool for navigating a research area is how 
much prior knowledge of the domain affects task performance. The results of the 
evaluation show that the average time for completing the three tasks by subjects with 
expertise in Semantic Web (that is the main area of the tasks) is not significantly 
different from the one obtained by the others (p=0.63 according to the t-test). 
However, the experts in tools for exploring academic data, who are active in fields 
such as Bibliometric and Learning Analytics, were instead able to get acquainted with 
the Rexplore system much more quickly and use it more effectively than the other 
subjects. The average time of the former group on the three tests was 5:01±0:02 min, 
against 6:52 ± 0:06 min of the latter (p < 0.022). On the contrary, no correlation was 
found with the usage of other tools for academic exploration, such as GS, MAS, 
DBLP, ACM, Citeseerx and Scopus. Hence the data appears to show that no domain-
specific expertise is needed to use Rexplore to make sense of a particular research 
area, while at the same time the tool does not penalize experts in Bibliometrics and 
Learning Analytics, who are used to carrying out these kinds of analyses.  

The tasks proposed by the subjects in Activity 3 were a good mix of routine 
searches and creative queries, and thus the performances cannot be directly compared. 
59% of the subjects chose to investigate a single author, using mainly the topic 
analysis and the graph view, whereas 23% of them preferred to explore a research 
area to understand better its migration patterns and trends. The ability to filter by 
multiple topics or using them for author analysis was widely appreciated: 71% of the 
proposed tasks involved topic filtering or topic analysis on an author or group of 
authors. The integration of the different Rexplore functions made it possible to try 
particularly interesting exploration tasks: for example, a particularly creative subject 
tried to find a better affiliation for an author by analyzing organizations, topic 
similarity and prominence of the researchers connected to him through the various 
links provided by Rexplore (incidentally, he opted for MIT).  
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15 out of the 17 subjects considered their suggested task satisfactorily concluded. 
One of them was unable to complete her proposed task because of problems with the 
original data tagging: the subject was searching for papers of a certain author about 
Semantic Web, which were actually tagged only as “Knowledge Base” in the original 
data which Rexplore uses. This suggests that relying exclusively on user-defined 
keywords may not be sufficient and even when these are available, it may be useful to 
refine them by analyzing the abstract or the full text of the paper.  

Rexplore reached a score of 75/100 on the standard SUS usability test, based on 
ten multiple-choice questions. A score of 75 can be converted to a percentile rank of 
72%, meaning that the usability of Rexplore was considered equal or superior than 
72% of the 500 tested systems. In particular 94% of the subjects agreed or strongly 
agreed on the fact that the functions of the system are well integrated and 82% stated 
that they would be happy to use Rexplore for their work.     

The post-task questionnaire included three sections. In the first and second parts 
the users were asked for their opinions about the support given by Rexplore and 
GS/MAS for the assigned tasks. In the third part they were asked to comment about 
the support provided by Rexplore for the task suggested by them.  

In the first section, 94% of the subjects described Rexplore as “very effective”, 
while 18% described it as “easy/natural/intuitive”. Among the most useful features 
were the faceted filters (59%), the visualization/charts (47%), the graph view (47%) 
and the semantic characterization of topics (41%). The main weaknesses of Rexplore 
were found to be its visual complexity (41%) and a not always well-evidenced 
navigation context (35%). Indeed, according to some users, the high number of 
functionalities offered by Rexplore may also be overwhelming. 

When asked to suggest new features that would facilitate their exploration of 
academic data, 23% of subjects suggested some “minor interface change”, especially 
in the direction of solving the aforementioned problem of “making the context clearer 
in any moment” (18%). 23% of them thought Rexplore did not need any additional 
features and 18% proposed additional filters. Other features that the users suggested 
include a natural language interface for formulating complex searches and the ability 
to retrieve and search the full text of a publication from within Rexplore.  

Trying to perform the kind of task described in Table 2 with MAS or GS frustrated 
the users: 88% of the subjects using MAS and 89% using GS described the support of 
those systems as “ineffective”. The reasons of their frustration were various: not 
effective contextual filtering (77% MAS, 65%GS), absence of semantic/structured 
topics (56% MAS, 63%GS), and poor support for complex/multidimensional queries 
(33% MAS, 50% GS). Finally, the support provided by Rexplore for user-defined 
tasks (Activity 3) was also rated positively. 76% of the participants defined such 
support as “effective/very effective/unique”, while 12% of them, though they were 
able to complete their task, found some “minor problems”, usually to do with missing 
filter options. Indeed it seems that users could do with a variety of filters well beyond 
what it is normally considered in these systems: one of the subjects suggested a filter 
able to discriminate genders, while another asked to be able to split publications by 
the particular author position (e.g., first or second author). Nonetheless the results of 
the evaluation appear very satisfactory, confirming that Rexplore provide a degree of 
support that users consider effective and valuable for performing real-world tasks.  
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5 Conclusions 

In this paper we have presented Rexplore, a novel tool for exploring scholarly data, 
which integrates a semantic foundation with statistical and visual analytics solutions 
to support users in exploring and making sense of scholarly data. The results from the 
empirical evaluation confirm the effectiveness of the functionalities provided by  
the tool and show a high value of user satisfaction. In particular, users rate very highly 
the semantic underpinning of the tool, which arguably affords a major advantage over 
other tools in its ability to support i) the visualization of trends at a very fine level of 
granularity, ii) methods to identify ‘semantic’ relations between authors, and iii) fine-
grained multi-dimensional academic expert search.  

For the future we plan to extend the tool by enhancing its functionalities through 
the integration of other sources of data relevant to academic activities and we also aim 
to address the minor interface issues identified during the evaluation. We also plan to 
add to the number of navigation filters, a feature which users appear to value 
extremely high.  Finally, we are actively discussing with a number of commercial 
providers of scholarly data, with the aim to release a version of the tool with 
comprehensive data coverage for use by the scientific community.  
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Abstract. Though subgraph matching has been extensively studied as
a query paradigm in semantic web and social network data environments,
a user can get a large number of answers in response to a query. Just like
Google does, these answers can be shown to the user in accordance with
an importance ranking. In this paper, we present scalable algorithms to
find the top-K answers to a practically important subset of SPARQL-
queries, denoted as importance queries, via a suite of pruning techniques.
We test our algorithms on multiple real-world graph data sets, showing
that our algorithms are efficient even on networks with up to 6M vertices
and 15M edges and far more efficient than popular triple stores.

1 Introduction

Facebook recently introduced a new feature called “graph search”1 that enables
users to search Facebook’s social graph. This graph contains entities like persons,
media items, companies, events, and associated data of these entities like name
or age. For example, users can search for cities that friends of their parents
like or restaurants their friends have been to. Such queries are a special case of
SPARQL queries and of the class of subgraph matching queries (for the first
example the pattern is the path graph user ↔ parent ↔ friend ↔ city) with
additional constraints on the vertex properties.

In this paper, we go beyond subgraph matching and consider the case of
subgraph queries augmented with “importance” metrics that are specified by
the user in his query. Such queries can be easily expressed in SPARQL using
FILTER and ORDER BY clauses. In classical subgraph queries, the user specifies
a query subgraph – and all matches of that subgraph with subgraphs of the
graph database are considered equally important. However, when the nodes in
the graph have associated semantic labels, then there are cases where the user
may specify an importance measure that marks some matches as being “more
important” than others.

1 https://www.facebook.com/about/graphsearch
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A query for restaurants a person’s friends have been to can return hundreds
or thousands of answers, as many Facebook users have hundreds of friends.
However, users will prefer a short list of the most relevant restaurants. We want
to provide users a tool to find the most relevant answers from their perspective.
An importance query is an extended subgraph query with a scoring mechanism,
and as such they are a subset of SPARQL queries. With importance queries
users can, e.g. search for restaurants with the highest star ranking their friends
like or the largest cities friends of the parents have been to.

Figure 1 shows a Facebook-style graph with four types of edges (friend of,
resident of, located in, likes). Each vertex in this graph has different kinds of
properties such as the type of the vertex (person, restaurant, city), the age and
gender of persons, and the star rating of restaurants. A possible query on this
graph is: Which are the restaurants with the highest star ranking in London that
my friends who live in London like?

stars=3 

stars=4 

Paul 

Charlie 

Eve Alice 

London 

Bejing 

Kelly 

Peter 

Paris 

Steak House 

Fast Food 

New York 

Asia Bistro 

stars=1 

age=28 
gender=m 

Steve 

Eric 

age=53 
gender=m 

George 

Fred 
age=45 

gender=m 

stars=2 

Diner 

Ann 

friend of 
resident of  
located in 
likes 

age=63 
gender=m 

age=45 
gender=f 

age=23 
gender=f 

age=35 
gender=m 

age=41 
gender=f 

age=35 
gender=m 

age=38 
gender=f 

age=33 
gender=m 

Fig. 1. Example of a data graph

Our technical solution for finding the most important pattern matches in
a graph is based on classic subgraph matching algorithms rather than join-
based techniques for RDF database engines. Especially because of expensive join
operations, finding patterns in large graph-structured datasets stored as triples
is inefficient [16]. Our experimental evaluation compares the newly developed
algorithms to RDF triples stores, and shows that our algorithms beat them on
importance queries.

An important point to note is that in this paper we only consider anchored
queries, i.e. subgraph queries where we already know the mapping for at least
one of the vertices in the query. This is often a more realistic problem set-
ting compared to arbitrary, non-anchored queries, because people usually create
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searches with themselves as an anchor (queries containing terms like my friends,
my company, cities I like).

In this paper we extend the subgraph matching problem and try to find the
most important matches (according to a user provided definition) in attributed
graphs (i.e. graphs with edge labels and where vertices may have associated
properties). We make the following contributions.

– First, we formally define importance queries and define answers (and the
top-k answers) to such queries (Section 2).

– We then define a simple baseline algorithm to solve such queries, followed by
our more sophisticated OptIQ algorithm that can efficiently prune part of the
search space and scale our top-k algorithms to find answers to importance
queries (Sections 3 and 4).

– We present the results of experiments to analyze the influence of query prop-
erties on the performance of query algorithms (Section 5). Our experiments
– on CiteSeerX, YouTube, Flickr and GovTrack data, show that our algo-
rithms scale well to data sets containing up to 6.2M vertices and 15.2M
edges. We also show that popular triple stores are much slower in answering
importance queries.

2 Importance Queries on Graphs

In this section, we formalize the concept of importance queries – the query type
we developed fast answering algorithms for. We use the following notation in this
paper. R denotes the set of all non-negative real numbers. VP, EP, and VAR are
arbitrary but fixed mutually disjoint sets of symbols for vertex predicates, edge
labels and variables, respectively. Variable symbols start with a “?” (e.g. ?x).
Every vertex predicate p ∈ VP has a domain dom(p) which is some set disjoint
from each of VP,EP,VAR.

Definition 1 (Graph Database). A graph database (GDB) is a triple G =
(V,E, ℘) with V a finite set of vertices, E ⊆ V × EP× V a finite set of labeled
edges and ℘ : V × VP →

⋃
p∈VP dom(p) a property function. We assume that

for all v ∈ V, p ∈ VP, ℘(v, p) ∈ dom(p).

VG , EG , ℘G denote the vertices, edges, and property functions of a GDB G.
Throughout this paper, we assume that G = (V,E, ℘) is an arbitrary but fixed
graph. Figure 1 shows a sample of such a GDB.

Definition 2 (Term; Numeric Term). (i) Every member of
⋃

p∈VP dom(p)
is a term. If nt ∈

⋃
p∈VP dom(p) ∩ R, then nt is a numeric term.

(ii) If ?x ∈ VAR and p ∈ VP, then ?x.p is a term. If dom(p) ⊆ R, then ?x.p is a
numeric term.
(iii) If nt1, nt2 are numeric terms, then nt1 + nt2 and nt1 ∗ nt2 are numeric
terms.
A term is ground if no variables occur in it. We say a term t is solely about
variable ?x if ?x is the only variable occurring in t.
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The importance query (definition follows) shown in Figure 2 contains the numeric
term ?r.stars. We assume that all ground numeric terms are evaluated, e.g. the
numeric term 2 + 3 is evaluated to 5.

Definition 3 (Constraint). (i) If t1, t2 are terms, then t1 = t2 and t1 �= t2
are constraints.
(ii) If nt1, nt2 are numeric terms, then nt1 < nt2, nt1 ≤ nt2, nt1 > nt2, nt1 ≥ nt2
are constraints.
(iii) If c1, c2 are constraints, then c1 ∧ c2 is a constraint.
We say constraint C is solely about variable ?x if ?x is the only variable occur-
ring in C.

The example importance query in Figure 2 contains for variable ?r the constraint
?r.type = restaurant.

Definition 4 (Importance Query). An importance query is a 4-tuple PQ =
(SQ, χ, #, agg) where:

1. SQ is a pair SQ = (QV,QE) where QV ⊆ V ∪ VAR and QE ⊆ (V ∪
VAR,EP, V ∪ VAR). Because V and VAR are finite sets, QV and QE are
finite sets as well. SQ is called a subgraph query.

2. χ associates a constraint that is solely about ?x with each variable ?x ∈
QV ∩ VAR.2

3. # is a partial function from QV ∩ V AR to numeric terms s.t. there is at least
one ?x ∈ QV ∩ V AR which is mapped to a numeric term with ?x occurring
in it.

4. agg is one of four aggregation function MIN, MAX, SUM or AVG.3

Suppose SQ = (QV,QE) is a subgraph query. A substitution is a mapping
θ : QV ∩ VAR → V . Thus, substitutions assign vertices in a GDB G to variables
in QV . The application of a substitution θ to a term t, denoted tθ, is the result
of replacing all variables ?x in t by θ(?x). When t contains no variables, then
tθ = t.

If we consider the sample query Q shown in Figure 2, it has two answers w.r.t.
the graph database shown in Figure 1:

θ1 ≡ ?p = Steve, ?r = AsiaBistro

θ2 ≡ ?p = Paul, ?r = SteakHouse

Definition 5 (Answer; Answer Value). Suppose G is a GDB, PQ =
(SQ, χ, #, agg) is an importance query, and θ is a substitution w.r.t. SQ. θ is an
answer of PQ w.r.t. G if:

2 If we do not wish to associate a constraint with a particular variable ?x, then χ(?x)
can simply be set to a tautologous constraint like 2 = 2.

3 These functions map multisets of reals to the reals and are defined in the usual way.
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Alice 

London ?r 
?r.type = restaurant 

?p  
?p.type = person 

?r.stars 

Fig. 2. Example of an importance query described by a subgraph query, constraints
(italic) and an IQ-term (gray box)

(i) for every edge (v1, ep, v2) ∈ QE, it is the case that (v1θ, ep, v2θ) ∈ E and
(ii) for each vertex ?x ∈ QV ∩ VAR, the constraint χ(?x)θ is true.

The answer value of a substitution θ, denoted Aval(θ, PQ,G) =
agg({(#(?x))θ | ?x ∈ dom(#)}). When the set on the right hand side is empty,
Aval(θ, PQ,G) = 0.

We use ANS(PQ,G) to denote the set of all answers of importance query PQ
w.r.t. GDB G.

In our example # assigns the very simple IQ-term ?r.stars to the variable ?r.
So the answer value of θ1 is 3 and the answer value of θ2 is 4.

3 Baseline Best Answer Algorithm

In Section 2 we defined importance queries. Depending on the size of the data
graph and the constrained IQ-query, the number of results can be very large.
We defined the notion of importance queries as users are usually only interested
in the most important query answers. Consequently, we will discuss top-k query
answer algorithms.

A straightforward algorithm to compute the answers of an importance query
follows the definition of importance queries and first computes all subgraph query
answers, filters the set of answers to those answers that satisfy the constraints
and then computes the IQ-values. Any subgraph matching algorithm could be
used here (see Sec. 6). However, we use an implementation that considers our
specific problem situation (queries with anchors and large disk-residing graphs).
Subgraph matching algorithms are branch-and-bound algorithms that follow a
search tree. In our case, first, an anchor is selected. Then an unmapped neighbor
of an anchor or a mapped variable in the query graph gets selected, and all
candidates for this variable in the data graph are determined. For every candidate
the variable is mapped to the candidate, and the search with the next unmapped
variable is continued recursively. We only use the I/O- efficient pruning on vertex
degrees because determining vertex degrees does not require one to read extra
data. Loading index data for advanced indexes from disk usually does not pay off.
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Algorithm 1. Optimized Importance Query (OptIQ) Algorithm

1 Function AnswerQuery

Input: Data Graph G, Importance Query q = (SQ = (QV,QE), χ, �, agg),
partial substitution θ, result size k

Output: answered stored in global variable A: set of tuples (vertex, score)
2 if θ maps every variable to a ground term then
3 A← A ∪ {θ}
4 if |A| > k then
5 A← A \ {θ ∈ A with minimal score(θ) }

6 nextvars← {(c, ?v)|?v → c or c→?v ∈ QE} //edges with one mapped endpoint
7 foreach (c, ?v) ∈ nextvars do
8 Rc,?v ← getNeighborNum(G, c, getEdgeLabel((c, ?v)))
9 Bc,?v ← getExpBenefit(G, q, (c, ?v), θ) // for WCOST only

10 if Rc,?v = 0 then return

11 (c, ?w)← (c, ?v) ∈ nextvars with max Bc,?v // for WCOST
12 with min Rc,?v // otherwise
13 N?w ←GetValidNeighbors(G, q, (c, ?w))
14 foreach m ∈ N?w in decreasing order of score �(m) do
15 θ′ ← θ ∪ (?w→ m)
16 s← calculateMaxScore (G, θ′)
17 if |A| > k and s < lowest score of any θ ∈ A then continue
18 AnswerQuery(G, qθ′,θ′,k)

19 Function GetValidNeighbors

Input: Data Graph G, query q, tuple (vertex c, variable ?w)
Output: vertices that can be mapped to ?w among all c’s neighbors

20 Function getNeighborNum

Input: Data Graph G, vertex c, edge label l
Output: The number of c’s neighbors which are connected through an edge of

the label l

21 Function getExpBenefit

Input: Data Graph G, query q, tuple (vertex c, variable ?w), partial mapping θ
Output: getExpScore (G, q, (c, ?w), θ) / getCost (G, (c, ?w))

22 Function getExpScore

Input: Data Graph G, query q, tuple (vertex c, variable ?w), partial mapping θ
Output: agg({?v ∈ QV ∩ V AR : value(?v)}), where value(?v) = �(?v)θ if θ

maps ?v, value(?v) = localAvg(?v) if all candidates for ?v are in a
known, cached subgraph of the subgraph index of G, and
value(?v) = 0 otherwise

23 Function getCost

Input: Data Graph G, tuple (vertex c, variable ?w)
Output: n log n, where n=getNeighborNum (G, (c, ?w)), i.e. sorting time in l. 14

24 Function calculateMaxScore

Input: Data Graph G, partial mapping θ
Output: agg({?v ∈ QV ∩ V AR : value(?v)}), where value(?v) = �(?v)θ if θ

maps ?v, value(?v) = localMax(?v) if all candidates for ?v are in a
known, cached subgraph of the subgraph index of G, and
value(?v) = globalMax(?v) otherwise
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4 Optimized (OptIQ) Algorithm

The baseline algorithm (Sec. 3) performs the 4 steps (1) Subgraph Matching, (2)
Constraint Checking, (3) Scoring and (4) Top-k Selection sequentially and in-
dependently. An obvious improvement is the integration of the uncoupled steps.
If we check the constraints in the subgraph matching step, then we do not have
to create a possibly large list of subgraph matches that needs to be checked for
meeting the constraints. Likewise, we can maintain a sorted list of top-k sub-
stitutions. Every time a new substitution with a score greater than the lowest
score in the top-k list has been identified, we update the list.

Algorithm 1 shows the integrated algorithm. All blue code segments are ex-
tensions to improve the performance, but are not necessary to compute answers
to IQ-queries per se. We will discuss these improvements in Sections 4.2–4.4.

Lines 2–5 check whether a complete substitution has been generated, and add
a complete substitution to the answer set if its score is among the top-k. Lines
6–10 inspect every edge of the query graph whose one end is mapped to a vertex
of the data graph and whose other end is not. In Rc,?v, we store the number
of c’s neighbors in the data graph that are connected through an edge with the
same label between c and ?v, i.e. Rc,?v is the number of candidates for ?v. In
line 11 we select the query graph edge with the lowest number of candidates.
GetValidNeighbors() returns the set of all valid vertices that can be mapped to
?w. Here, we use DOGMA’s pruning technique based on IPD values (see Section
4.1) to filter neighbors that cannot be part of a valid answer. Other pruning
strategies (see e.g. [4, 13, 14]) could be used as well. In line 14–18, we substitute
?w with each candidate m and recursively continue the assembly of answers.

Before we can discuss the performance improving techniques shown in the
blue code segments of Algorithm 1, we need to introduce our graph database
index.

4.1 Database Index

To efficiently answer importance queries on large graphs, we use a disk-based
index inspired by the DOGMA index [3]. We decompose the data graph into a
large number of small, densely connected subgraphs and store them in an index.
Our partitioning algorithm follows the multi-level graph partitioning scheme [7].
Like DOGMA, we iteratively halve the number of vertices by merging randomly
selected vertices with all of their neighbors. When the resulting graph has less
than 100 vertices, we iteratively expand the graph using the GGGP algorithm
from the METIS algorithm package [5] to bisect the graph components at each
level.4 For every block of the partition we extract the subgraph it induces from
the graph database and store it as one block of data to disk.

The objective of the DOGMA index is two-fold: (1) to increase the I/O-
efficiency by exploiting data locality – only those parts of the graph that are

4 We also conducted preliminary experiments with other partitioning algorithms but
they showed no significant difference for the query processing performance.
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necessary to answer a query have to be retrieved from disk (2) DOGMA stores
for every vertex the internal partition distance (IPD), i.e. the number of hops
from a vertex to the nearest other vertex outside the subgraph. Using the IPD, we
can quickly compute a minimum distance between vertices, and prune candidates
if their distance is higher than the distance between their respective query graph
variables.

We extend this concept and store additional information in the index for ad-
vanced top-k pruning strategies. First, we store global maximum values for every
vertex property. Additionally, we store together with each induced subgraph Gs

the edges that connect it to other subgraphs (inter-subgraph edges) and aggre-
gated information (maximum and average) of the predicate values of the vertices
in Gs and of those vertices not in Gs but adjacent to a vertex in Gs (denoted as
the boundary of Gs).

4.2 Simple Top-k Pruning on Scores

The optimized baseline algorithm does not exploit the fact that we are only
interested in the top-k answers. During the stepwise assembly of substitutions,
there will be partial substitutions which cannot make it into the top-k given
the scores of the full substitutions that are already in the answer set. If we
identify them, we can prune the respective branch of the search tree and save
computation time.

First, the set N?w should be sorted by score in line 14. I.e., if ?w is scored
by an IQ-term, N?w is sorted in decreasing order of the value of the term. This
ensures that we evaluate the most promising candidates first.

The IQ-score of a substitution is the value of the aggregation function agg
on the values assigned by the IQ-terms to the variables (see Def. 5). For a
partial substitution θ, we can compute an upper bound of its answer value Aval
by using upper bounds for #(?v)θ of all unmapped variables. That means, we
calculate an upper bound of the answer value by using the exact term score
for every previously mapped variable and upper bounds for currently unmapped
variables. This is performed by calculateMaxScore(). Our simple top-k pruning
strategy uses precomputed global upper bounds, i.e. maxx∈V ℘(x, pi), for each
vertex property pi.

When the variance of vertex property values is high, using the global upper
bound of a vertex property will not allow us to prune many branches of the
search tree. A tighter upper bound is desirable. The mappings of the partial
substitutions restrict the set of valid candidates for the currently unmapped
variables. What we need is a fast way to find tight upper bounds for vertex
property values given the mappings in the partial substitutions.

4.3 Advanced Top-k Pruning on Scores

In Section 4.2 we presented a simple top-k pruning strategy using upper bounds
for the reachable substitution scores. Using the proposed database index, we can
find tighter upper bounds that provide a higher pruning power.
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For the candidate set N?v of ?v, we can compute the upper bound for #(?v)
using maxx∈N?v

℘(x, pi). But computing the upper bound in this way would
require us to read the property scores of all vertices in N?v. This is prohibitively
expensive because of the high costs of reading from disk. However, if we store the
maximal property scores of a subgraph in the index, we can find a good upper
bound in a reasonable amount of time.

In calculateMaxScore(), we compute the upper bound of the answer value of
a partial mapping θ by computing the upper bound for each variable ?v’s #(?v)
(denoted as value()). If θ maps a variable ?v to a vertex of the data graph, we
know the exact value of #(?v)θ. For a currently unmapped ?v, we look at its
distance to already mapped variables c, dist(c, ?v). If dist(c, ?v) < IPD(c) for
some c, we know that ?v has to be mapped to the same subgraph as c. Then, we
use localMax to compute value using the local maximum values of the subgraph
of c. If dist(c, ?v) < IPD(c)+ 1, we do the same but using the maximum values
of the subgraph and its boundary. However, if dist(c, ?v) > IPD(c) + 1 for all
c, we have no local information and globalMax computes value using global
maximum values.

4.4 Processing Order

The baseline algorithm iteratively selects the unmapped variable with the small-
est candidate set for processing. However, for importance queries this strategy
sometimes leads to the late discovery of top-k answers. Selecting a variable with
a higher number of candidates might not be bad when most candidates can be
pruned very early. To weigh the different objectives (low number of branches to
follow, following more promising paths first) we compute the benefit score Bc,?v

in line 9 and process candidates in decreasing order of their benefits. We define
the benefit of substituting a variable ?w with n candidates in a partial substi-
tution θ′ as wexp(θ′)/f(n), where f(n) is the cost to process n candidates and
wexp(θ′) is the expected score of θ′. In Algorithm 1, getExpBenefit() calculates
this score.

As in the case of computing upper bounds for substitution scores for pruning
(Section 4.3), we compute wexp(θ′) with the precomputed property scores of
subgraphs. But additionally we weigh the expected term scores using the inde-
gree of a candidate. The indegree is a simple heuristic for the probability that the
variable will be mapped to a vertex. As I/O-efficiency is the primary problem of
our algorithm, we use only information already read from disk to determine the
expected score. Unavailable vertex property score estimates are replaced by 0.

To compute the expected value we proceed as follows. We classify unmapped
variables in the query graph in two groups.

– If a variable ?v has no vertex c whose hop(?v, c) is less than or equal to c’s
IPD value, we assume the property scores are 0 (or ∞ if the MIN aggre-
gation is used). Computing an expected value would require reading many
additional disk pages (which we want to avoid) or using global averages. But
underestimating the real expected score is in this case favorable because it
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puts variables whose mapping requires additional disk access at the end of
the priority list.

– Otherwise, we use the weight expected value of the subgraph c is residing
in. We know that all query variables whose distance from c is less than or
equal to c’s IPD value will be mapped in the same subgraph. So, we can use
the precomputed weighted average property values of the subgraph as the
expected value.

5 Experiments

In the following, we present an evaluation of the previously introduced top-
k algorithms. We conducted experiments with 5 algorithm variants: the non-
integrated baseline algorithm Base, the optimized importance query (OptIQ),
the extension of OptIQ by simple top-k pruning (GMax), the extension of OptIQ
by advanced top-k pruning (LMax), and the extension of LMax by the improved
processing order (WCOST).

To see how our algorithms perform in relation to triple stores, we ran addi-
tional experiments using Apache Jena TDB 2.10.0 [1] and OWLIM-SE 5.3.5925
[8]. We considered using RDF-3x [10] as well, but had to omit RDF-3x because
it cannot answer queries with cross-products because of a bug that still exists in
the latest release. Importance queries can be easily written in SPARQL with its
FILTER and ORDER BY clauses.

5.1 Experimental Setup

To evaluate our algorithms, we use four real-world datasets. Basic properties of
these datasets are shown in Table 1.

Table 1. Evaluation datasets

Name #Vertices #Edges #V.Prop. #E.Labels

CiteSeerX 0.93M 2.9M 5 4
YouTube 4.6M 14.9M 8 3
Flickr 6.2M 15.2M 4 3
GovTrack 120K 1.1M 5 6

We analyze the performance of the algorithms with randomly generated im-
portance queries. We created the queries by selecting random subgraphs of the
data graph with n vertices and m edges. Random subgraphs are created by
starting with a random vertex of the data graph. We iteratively add a randomly
selected vertex from the neighborhood of any previously selected vertices. From
the random subgraphs we created IQ-queries in the following way. We randomly
selected c vertices of the subgraph, defining them as anchors, and mapped to
the respective vertices of the data graph. The remaining n − c vertices of the
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randomly selected subgraph are defined as variables. The edges (including the
edge labels) of the subgraph are edges in the query. With a probability p, a con-
straint is created from a numeric property of a vertex in the random subgraph.
With a equal probability a constraint is a > or < constraint. The reference value
of a > constraint is the property value in the subgraph - 1, and the reference
value of a < constraint is the property value in the subgraph + 1. Scoring terms
are created similarly to constraints. With a probability t, a numeric property of
a vertex is select to be included in an IQ-term. If an IQ-term consists of more
than one property, the properties are concatenated with a +. The aggregation
function is MAX or SUM with equal probability.

This query generation process ensures that all queries have at least one so-
lution (which is the random subgraph the query has been generated from) and
that (in probability) the distribution of structural patterns and properties used
in constraints and query terms in a set of random queries resembles the respective
distributions in the data graph.

5.2 Experimental Results

We evaluated our system by the selectivity of a query (i.e. the number of answers
a query has), the size of the query (i.e. the number of vertices and edges the
subgraph query has) and the number of desired answers. We used a set of 1000
random queries for the experiments.

Results by Selectivity. Figure 3 shows the runtime in relation to the answer size of
the subgraph query. All algorithms show a sub-linear increase in the runtime with
an increasing answer size. Reading subgraphs from disk is a dominating factor
of the total runtime. The number of answers to the subgraph query increases
much faster than the required number of subgraph reads because usually many
answers lie in the same subgraphs. Compared to the baseline more sophisticated
algorithms like WCOST and LMax can receive good speed-ups in some but not
all settings - especially when the answer size is high. For non-selective queries
our algorithms are up to one order of magnitude faster than the evaluated triple
stores. For some datasets (Flickr, GovTrack) triple stores perform considerably
worse even for very selective queries.

Results by Subgraph Query Size. For experiments on the subgraph query size,
we use 2 pairs of query types (1000 random queries each) where each pair differs
in the number of edges. The results of Figure 4 show that our algorithms scale
very well in the number of vertices. As we increase the number of edges in a
query, the runtime usually decreases as the query gets more selective (i.e. has
fewer answers). Once again we see that our algorithms perform much better than
the triple stores, and the performance difference is especially high for complex
queries.
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Fig. 3. Results by selectivity. Each caption shows the query size, e.g. 6,5,2 means 6
vertices, 5 edges, and 2 anchors.

Results by Parameter k. We analyzed the impact of the desired number of an-
swers on runtime. Overall the scaling of our algorithms with respect to the
number of answers is very good (see Figure 5), and is much less marked than for
the triple stores. The almost constant runtime of our algorithms for low values
of k is once again the result of the domination of the total runtime by the time
needed to read a subgraph from disk. When most subgraphs in the neighborhood
of the anchors have to be read to find the top-1 answer then the time to create
a few additional solutions is low.

6 Related Work

We presented algorithms to identify the best answers to importance queries on
attributed graphs. We extended subgraph matching algorithms to answer these
queries, as non-specialist database systems (SQL as well as RDF databases) have
a bad performance on complex subgraph queries. Subgraph queries on relational
databases require many expensive self-joins on a potentially very large edge
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Fig. 4. Results by query size (Top 10, bar: mean, line: median)

table. RDF databases built on top of relational databases suffer from the same
problem. Only RDF databases that store their data as graphs and not as triples
could potentially provide a good performance. Recently Zou et al. [16] showed
the performance advantage of subgraph matching algorithms compared to join-
based algorithms used by triple stores for answering SPARQL queries. A way
to improve the performance of triple stores for top-k SPARQL queries has been
proposed by Magliacane et al. [9]. They presented a rank-aware join algorithm for
top-k SPARQL queries. However, SPARQLRank supports only limited ranking
functions and in particular does not support aggregation functions in the ranking
term as we do.

So answering importance queries via subgraph matching algorithms is the
best available approach, and with the Base algorithm we presented the straight-
forward way to answer importance queries by calling a subgraph matching al-
gorithm. But we also showed that we can do much better than the simple Base
approach by using sophisticated pruning techniques. Pruning strategies for sub-
graph matching have been discussed for decades. A considerable amount of
literature has been published on subgraph matching on a single large graph.
Since the early work of Ullman [12] most work on subgraph matching has been
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Fig. 5. Results by parameter k of top-k queries

conducted on finding better ways to prune the search space of branch-and-bound
algorithms. State-of-the-art algorithms store sophisticated graph invariants in
precomputed indexes [4, 13, 14] to speed up the search. Invariants (in the sim-
plest case the degree of a vertex) can be used to determine whether a vertex in
the graph database cannot be a mapping for a variable in the query graph in an
answer. Good overviews on different algorithms and pruning techniques are in
[6, 11].

Our problem setting is different to this classical problem in two very impor-
tant ways. First, classic subgraph matching searches only for structural patterns
without anchors. This makes the overall computational effort much higher and
is usually – depending on the dataset – in the range of hours. Second, the data
graph is stored in memory. In our problem setting with anchored queries, the
computational effort is much lower. However, our objective is to answer queries
in interactive settings within seconds on large, disk-resident datasets. So I/O effi-
ciency is an important issue for us. As we showed, we can answer most anchored
queries in less than a second. This is less time than an in-memory algorithm
spends loading the data graph into memory.
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We defined importance queries as an extension of standard subgraph queries,
but deriving it from approximate [15] or probabilistic [2] subgraph matching
definitions is straightforward. Approximate matching algorithms do not search
for exact matches, but for a subgraph similar to the query graph. Probabilistic
matching algorithms work on probabilistic graphs, i.e. graphs that model the
probability of the existence of an edge. The intent is to address the problem
of errors in the data or limited knowledge of the system that is modeled in
the graph. The techniques we developed for the advanced WCOST and GMAX
algorithms could be transfered to related problems. Join-based algorithms for
triple stores lack this flexibility.

7 Conclusion and Future Work

In this paper, we motivated and defined the problem of importance queries on
graph databases. Such queries can also be expressed in SPARQL through the
FILTER and ORDER BY constructs. We designed query algorithms for efficient
retrieval of top-k answers to importance queries and evaluated the performance
of the algorithms on large real-world.

By computing upper-bounds for the IQ-scores of partial substitutions, our
most advanced algorithms are able to prune branches of the search tree that will
not lead to a top-k answer. Thus, these algorithms achieve a significantly better
performance than naive implementations. Our best algorithms need less than a
second to answer the majority of our random test queries on graphs with up to
about 15 million edges.

We believe importance queries are an important next step to personalized
graph queries. As a next step, we plan to extend the concept to probabilis-
tic subgraph matching. Then we can extend the search to probabilistic graph
databases. For example, image probabilistic “acquaintance” edges in Facebook-
style graph databases inferred from the co-occurrence of people in images.
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Abstract. DBpedia is a large-scale knowledge base that exploits Wikipedia as
primary data source. The extraction procedure requires to manually map
Wikipedia infoboxes into the DBpedia ontology. Thanks to crowdsourcing, a
large number of infoboxes has been mapped in the English DBpedia. Conse-
quently, the same procedure has been applied to other languages to create the
localized versions of DBpedia. However, the number of accomplished mappings
is still small and limited to most frequent infoboxes. Furthermore, mappings need
maintenance due to the constant and quick changes of Wikipedia articles. In this
paper, we focus on the problem of automatically mapping infobox attributes to
properties into the DBpedia ontology for extending the coverage of the existing
localized versions or building from scratch versions for languages not covered
in the current version. The evaluation has been performed on the Italian map-
pings. We compared our results with the current mappings on a random sample
re-annotated by the authors. We report results comparable to the ones obtained
by a human annotator in term of precision, but our approach leads to a significant
improvement in recall and speed. Specifically, we mapped 45,978 Wikipedia in-
fobox attributes to DBpedia properties in 14 different languages for which map-
pings were not yet available. The resource is made available in an open format.

1 Introduction

DBpedia is a community project1 aiming to develop a large-scale knowledge base that
exploits Wikipedia as primary data source. Wikipedia represents a practical choice as
it is freely available under Creative Commons License, covers an extremely large part
of human knowledge in different languages (45 out of 285 have more than 100,000
articles), and is populated by more than 100,000 active contributors, ensuring that the
information contained is constantly updated and verified. At the time of starting this
paper, the English DBpedia contained about 3.77 million entities, out of which 2.35
millions are classified in the DBpedia Ontology, available as Linked Data,2 and via
DBpedia’s main SPARQL endpoint.3 Due to the large and constantly increasing number

1 http://dbpedia.org/
2 http://wiki.dbpedia.org/Downloads
3 http://dbpedia.org/sparql
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of links from and to other data sources, DBpedia continues to gain popularity and today
it plays a central role in the development of the Web of Data.

The DBpedia ontology, consisting of 359 classes (e.g., person, city, organization)
– organized in a subsumption hierarchy – and 1,775 properties (e.g., birth place, lat-
itude, family name), is populated using a semi-automatic rule-based approach that
relies prominently on Wikipedia infoboxes, a set of attribute-value pairs that rep-
resent a summary of the most important characteristics Wikipedia articles have in
common. For example, country pages in the English Wikipedia typically contain
the infobox Infobox_country containing specific attributes such as currency,
population, area, etc. Specifically, the DBpedia project provides an information
extraction framework4 used, first, to extract the structured information contained in the
infoboxes and, second, to convert it into RDF triples. Then, crowdsourcing is exten-
sively used to map infoboxes and their attributes to the classes and properties of the
DBpedia Ontology, respectively. For example, the Infobox_country is mapped to
the class Country and its attribute area is mapped to the property areaTotal.
Finally, all Wikipedia articles (instances) containing mapped infoboxes are automat-
ically added to the DBpedia ontology, and mapped properties are used to add facts
(statements) describing these instances. There are three main problems to solve. First,
infoboxes do not have a common vocabulary, as the collaborative nature of Wikipedia
leads to a proliferation of variants for the same concept. This problem is addressed us-
ing crowdsourcing, a public wiki for writing infobox mappings: editing existing ones,
as well as editing the ontology, is available since DBpedia 3.5. Second, the number of
infoboxes is very large, and consequently the mapping process is time consuming. To
mitigate this problem, the mapping process follows an approach based on the frequency
of infobox usage in Wikipedia articles. Most frequent elements are mapped first, ensur-
ing a good coverage as infobox utilization follows the Zipf’s distribution [17]. In this
way, even though the number of mappings is small, a large number of Wikipedia ar-
ticles can be added to the knowledge base. Third, mappings need maintenance due to
the constant and quick changes of Wikipedia articles. For example, the Italian template
Cardinale_della_chiesa_cattolica (Cardinal of the Catholic Church) has
been replaced by a more generic Cardinale (Cardinal). In this particular case, the
Wikipedia editors decided to delete the template, without creating a redirect link, there-
fore the mapping5 between the template and the DBpedia class Cardinal becomes
orphan, and the DBpedia extraction framework is no longer able to extract the corre-
sponding entities.

At the early stages of the project, the construction of DBpedia was solely based
on the English Wikipedia. More recently, other contributors around the world have
joined the project to create localized and interconnected versions of the knowledge
base. The goal is to populate the same ontology used in the English project, extracting
articles from editions of Wikipedia in different languages. In its current version 3.8,
DBpedia contains 16 different localized datasets and the information extraction frame-
work has been extended to provide internationalization and multilingual support [7].

4 http://dbpedia.org/documentation
5 http://mappings.dbpedia.org/index.php/
Mapping_it:Cardinale_della_chiesa_cattolica

http://dbpedia.org/documentation
http://mappings.dbpedia.org/index.php/Mapping_it:Cardinale_della_chiesa_cattolica
http://mappings.dbpedia.org/index.php/Mapping_it:Cardinale_della_chiesa_cattolica
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However, the inclusion of more languages has emphasized the problems described
above. Furthermore, the DBpedia ontology needs frequent extensions and modifica-
tions as it has been created on the English Wikipedia, while each edition of Wikipedia
is managed by different groups of volunteers with different guidelines.

In this paper, we focus on the problem of automatically mapping infobox attributes
to properties into the DBpedia ontology for extending the coverage of the existing lo-
calized versions (e.g., Italian, Spanish) or building from scratch versions for languages
not yet covered (e.g., Swedish, Norwegian, Ukranian). This task is currently performed
using crowdsourcing and there are no published attempts to perform it automatically.
Related work has exclusively focused on developing automatic approaches to attribute
mapping between different Wikipedia editions; these results can be used to automatize
the mapping process, though this solution is highly prone to changes in Wikipedia, a no-
ticeable drawback considering how fast edits are made. This study is complementary to
previous investigations in which we studied the mapping of infoboxes to classes in the
DBpedia ontology [10,11]. The above problem can be classified as schema matching,
limited to alignment as we do not perform any successive merging or trasforming.

We propose an instance-based approach, that exploits the redundancy of Wikipedia
in different editions (languages), assuming that attributes and properties are equivalent
if their values are similar. Specifically, the mapping is cast as a binary classification task
in which instances are infobox attribute/ontology property pairs extracted from versions
of Wikipedia and DBpedia in different languages and cross-language links are used to
represent the instances in a unified space. This allows us to learn the mapping function,
for example, from existing mappings in English and German and predict Swedish in-
stances. Attributes and properties are compared using their values taking into account
their types (i.e., date, integer, object, etc.). For attributes, the type is calculated; for
properties, the type is given by the ontology. We show that this approach is robust with
respect to rapid changes in Wikipedia, differently from approaches that first map in-
foboxes among Wikipedia editions. The evaluation has been performed on the Italian
mappings. We compared our results with the current mappings on a random sample
re-annotated by the authors. We report results comparable to the ones obtained by a hu-
man annotator in term of precision (around 87%), but our approach leads to a significant
improvement in recall (around 80%) and speed.

Finally, we mapped 45,978 Wikipedia infobox attributes to DBpedia properties in
14 different languages for which mappings were not yet available; the resource is made
available in an open format.6

2 Problem Formalization

We consider the problem of automatically mapping attributes of Wikipedia infoboxes
into properties of the DBpedia ontology. The problem can be classified as schema/on-
tology matching in which we are interested in equivalence relations between attributes
and properties.

An infobox is a set of attribute/value pairs that represent a summary of the
most salient characteristics Wikipedia articles have in common. For example, the

6 http://www.airpedia.org/

http://www.airpedia.org/
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infobox Officeholder in the English Wikipedia contains generic attributes, such as
name, birth_date, and birth_place, and specific ones, such as term_start,
party, and office. Notice that each Wikipedia edition is maintained by different
communities and has different guidelines that can have a strong impact on the mapping
results. For example, in the Italian edition, Carica_pubblica (Officeholder)
does not contain generic attributes that are usually contained in the infobox Bio. In ad-
dition, there are no constraints on types, therefore in some editions of Wikipedia there
can be a single attribute born containing both place and date of birth, while other
languages decide to split this information into different attributes.

A DBpedia property is a relation that describes a particular characteristic of an ob-
ject. It has a domain and a range. The domain is the set of objects where such property
can be applied. For instance, birthDate is a property of Person, therefore Person
is its domain. Around 20% of the DBpedia properties use the class owl:Thing as do-
main. The range is the set of possible values of the property. It can be a scalar (date, inte-
ger, etc.) or an object (Person, Place, etc.). For example, the range of birthDate
is date and the range of spouse is Person.

Manual mappings are performed as follows. First, human annotators assign an in-
fobox to a class in the DBpedia ontology. Then, they map the attributes of the infobox
to the properties of the ontology class (or to its ancestors). An example of mapping is
shown in Figure 1.

Wikipedia DBpedia

Fig. 1. Example of DBpedia mapping

The rest of the section is devoted to analyze the difficulties to adapt existing systems
that perform infobox matching and completion (e.g., [13,4,1]) to solve this task. We
could use existing approaches to map infoboxes between different Wikipedia editions
and, then, use the existing DBpedia mappings to extend the mappings to languages
not yet covered. An example is shown in Figure 2, where the template Persondata
in English has been mapped to Bio in Italian, and similarly Officeholder to
Carica_pubblica. Suppose that Italian mappings do not exist yet, they can be de-
rived using the existing English DBpedia mappings. However, approaching the problem
in this manner leads to a series of problems.
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– Alignment of Wikipedia templates in different languages is often not possible, be-
cause there are no shared rules among the different Wikipedia communities on the
management of infoboxes. In the example of Figure 2, Carica_pubblica only
refers to politician, while Officeholder is more general.

– Properties may be mapped to different infoboxes in different languages.
For example, the Italian DBpedia uses attributes of the Bio template to
map generic biographical information, because specialized templates, such as
Carica_pubblica, in the Italian Wikipedia do not contain generic information.
This is not true in the English edition and in many other languages.

– Due to the previous point, some infoboxes are not mapped to any DBpedia class.
This is the case of the Persondata template in English: since its informa-
tion is repeated in the more specialized templates (for example, date of birth,
name, occupation), the DBpedia annotators ignored it. A system that should align
Bio and Persondata, and then transfer the mappings from English to Italian,
would not map Bio to any DBpedia class since there is no mapping available for
Persondata; therefore, all the generic biographical information would be lost.

Fig. 2. An example of infobox alignment

3 Workflow of the System

In this work, we propose an automatic system for generating DBpedia mappings. For-
mally, given an infobox I and an attribute AI contained in I , our system maps the pair
〈I, AI〉 to a relation R in the DBpedia ontology.

Our approach exploits the redundancy of Wikipedia across editions in different lan-
guages, assuming that, if values of a particular infobox attribute are similar to values of
a particular DBpedia property, then we can map the attribute to the property.
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This approach requires existing versions of DBpedia to train the system, in partic-
ular we exploit the English, German, French, Spanish, and Portuguese editions. Given
a target language l, the system extracts the mappings between DBpedia properties and
infobox atttributes in such language. Note that the target language l can also be included
in the set of languages chosen as training data; however, in our experiments we do not
use this approach since we are interested in building mappings for those chapters of
Wikipedia for which the corresponding DBpedia does not exist yet. Our system con-
sists of three main modules: pre-processing, mapping extraction, and post-processing.
Figure 3 depicts the workflow of the system.

Fig. 3. Workflow of the system

4 Pre-processing

This section describes how we collect and normalize the data needed for the mapping
between DBpedia and Wikipedia.

4.1 Entity Matrix Creation

The proposed approach makes considerable use of the redundancy of information among
different versions of Wikipedia. In particular, we focus on the semi-structured informa-
tion contained in the infoboxes. For example, the English Wikipedia page of Barack
Obama contains an infobox with his birth date, birth place, etc. The same information
is often included in the infoboxes of the corresponding pages in other Wikipedia edi-
tions. Therefore, the first step consists in building a matrix that aggregates the entities
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(rows) in the different languages of Wikipedia (columns). The alignment is trivial as
Wikipedia provides cross-language links between pairs of articles describing the same
concept in different editions.

The accuracy of cross-language links has been investigated in the Semantic Web
community [13,7], and conflicts have been found in less than 1% of the articles. In our
implementation, when a conflict is found, the corresponding page is discarded.

In the rest of the paper, Pl1 , Pl2 , . . . denote the Wikipedia pages in languages
l1, l1, . . ., and P denotes the entity described by the corresponding row in the entity
matrix. Figure 4 shows a portion of the matrix.

en de it es . . .
Xolile Yawa Xolile Yawa null null . . .
The Locket null Il segreto del medaglione null . . .
Barack Obama Barack Obama Barack Obama Barack Obama . . .
null null Giorgio Dendi null . . .
Secoya People null Secoya Aido pai . . .
. . . . . . . . . . . . . . .

Fig. 4. A portion of the entity matrix

4.2 DBpedia Dataset Parsing

DBpedia releases its ontology description in OWL format. The source file contains the
description of the classes and properties, with all their characteristics. In our case, we
search for the type (range) of each property. Depending on this feature, we can split
them into two categories:

– Datatype properties, when the relation connects instances of classes to literals of
XML (scalar values). For example birthDate connects a Person to a date.

– Object properties, when the relation connects instances of two classes (not neces-
sarily different). For example, birthPlace connects a Person to a Place and
spouse connects a Person to a Person.

Performing the mapping task, we use different strategies depending on the range of
the category.

4.3 Template and Redirect Resolution

In Wikipedia, templates are particular pages created to be included into other pages.
Infoboxes are a particular subset of templates that are usually rendered as a table in
the upper-right corner of the corresponding Wikipedia article. Although this particular
subset of templates is useful for information extraction from Wikipedia, only around
10% of templates belong to this category: the majority of them is used to give graphic
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coherence to the same types of elements in different articles. For example, countries
are often shown in Wikipedia infoboxes as the flag of the country followed by the
name. These templates are often used as values for the infobox attributes. Since dif-
ferent languages have different strategies in using templates, the alignment between
values containing templates is not trivial. During the alignment phase, these discrep-
ancies may lead to errors. To address this problem, we pre-process the attribute values
using the Bliki engine,7 a parser that converts templates to their expanded text. After this
operation, templates such as {{EGY}} are rendered as the Egypt flag followed by the
name of the country linked to its page.

4.4 Data Extraction

In our approach, the main difficulty consists in the comparison between data obtained
from DBpedia and attribute values stored in Wikipedia infoboxes. This is due to the
fact that DBpedia is strongly typed, while Wikipedia does not have an explicit type sys-
tem. Attribute values often contain a mixture of dates, numbers, and text, represented,
formatted, and approximated in different ways depending on the Wikipedia edition and
on the users who edit articles. These types of data can be formatted in different ways
in different languages. For example, in English, we can express a date using different
patterns, such as, “June 4th, 1983”, “04/06/1983”, or even “06/04/1983.” Furthermore,
numeric values can be approximated using variable precision depending on a particular
edition of Wikipedia. For instance, the total area of Egypt is 1,002,450 in the English
Wikipedia and 1.001.449 in the Italian one, where both the value and the format are
different.

To tackle these problems, we defined a function e that, using a set of heuristics for
numbers and dates, extracts – for each attribute value – four different sets of elements:
numbers, dates, links and text tokens.

attribute value
name Diego Maradona
image Maradona at 2012 GCC Champions League final.JPG
image_size 250
birth_place [[Lanús]], [[Buenos Aires province|Buenos Aires]], [[Argentina]]
birth_date {{Birth date and age|1960|10|30|df=yes}}
height {{height|m=1.65}}
youthyears1 1968–1969
youthyears2 1970–1974
youthyears3 1975–1976
. . . . . .

Fig. 5. Infobox_football_biography attributes for Diego Maradona

7 https://code.google.com/p/gwtwiki/

https://code.google.com/p/gwtwiki/
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In Figure 5 an example of Infobox_football_biography is presented.
In the birth_place value, the value “[[Lanús]], [[Buenos Aires province|Buenos
Aires]], [[Argentina]]” of the attribute birth_place is converted into the bag of
links {Lanús,Buenos_Aires_province,Argentina} and the set of tokens
{Lanús, “,”,Buenos,Aires, “,”,Argentina}, leaving the remaining sets (dates and num-
bers) empty. In the birth_date value, the template “Birth date and age” is parsed
using the Bliki engine (see Section 4.3), resulting in “30 October 1960 (age 52)”;
then, the string is converted into the set of dates {1960-10-30}, the set of numbers
{30, 1960, 52}, and the set of tokens {30,October, 1960, (, age, 52, )}, leaving the links
set empty.

5 Mapping Extraction

In this section, we describe the matching algorithm used to determine whether an at-
tribute AI contained in the infobox I in Wikipedia can be mapped to a given property
R in DBpedia. To find the mappings, we have to calculate the pairwise similarities be-
tween the elements in the set of all the possible attributes AI and the elements in the
set of all the possible properties R. The candidates are represented as pairs (AI , R),
the pairs with the highest similarity S(AI , R) are considered correct mappings. The
similarity is an average result calculated using instance-based similarities between the
values of property R in different DBpedia editions and the values of the attribute AI in
different Wikipedia pages in the target language. This process can lead to large number
of comparisons to determine if a pair (AI , R) can be mapped. The rest of the section
provides a detailed and formal description of the algorithm.

Given a relation R in DBpedia in languages L = {l1, l2, . . . , ln} and a target lan-
guage l, the algorithm works as follows.

1. We build the following set, discarding entities that are not involved in the relation:

ΠR = {Pli : Pli has its corresponding Pl

and exists at least an instance of R in DBpedia in language li.}

2. For each pair (AI , R), we compute Sl:

Sl(AI , R) =

∑
Pli

∈ΠR
σl(e(AI , Pl), v(R,Pli))

|ΠR|

where the function σl is defined in Section 6 and the division by |ΠR| is used to
calculate the average similarity between attributes and properties based on their
values in different languages.

3. All pairs AI , R for which Sl(AI , R) < λ are discarded. Varying λ, we can change
the trade-off between precision and recall.

4. For each infobox I , for which at least a pair (AI , R) exists, we select A∗
I such that

the pair (A∗
I , R) maximizes the function S.

5. Finally, we obtain the set MR of the selected pairs (AI , R).
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6 Inner Similarity Function

The inner similarity σl(e(AI , Pl), v(R,Pli)) → [0, 1] is computed between the value
of AI in language l, extracted and normalized by the function e defined in Section 4.4,
and the values of R in the DBpedia editions in languages l1, l2, . . . , ln, extracted by the
function v. In sections 6.1 and 6.2, the function σl is formally defined depending on the
two categories used to classify the property R (see Section 4.2). We use VW and VD to
indicate the values returned by the functions e and v, respectively.

6.1 Similarity between Object Properties

When the range of the propertyR is an object, the value VD corresponds to a Wikipedia
page. Using the entity matrix E, we look for the equivalent page V l

D in the target lan-
guage l. Then, we search V l

D in the links set of VW , and we set σl(VD, VW ) = 1/k if we
find it – k is the cardinality of the links subset of VW . By dividing by k, we downgrade
the similarity in case of partial matching. If the links set of VW does not contain V l

D ,
or if VD does not have a corresponding article in the target language (and therefore V l

D

does not exist), we compare the string representations of VD and VW (see Section 6.2).

6.2 Similarity between Datatype Properties

When the range of the property R is not an object, we handle 9 types of data: cal-
endar related (date, gYearMonth, gYear), numeric (double, float, nonNegativeInteger,
positiveInteger, integer), and string. We discard the boolean type, as it affects only 4
properties out of 1,775, and it is never used in languages different from English.

Calendar Related Data. Given the value VD of type date and the set VW , we compute
σl(VD, VW ) by searching the day, the month and the year of VD in the set VW . In
particular, the month is given only if it appears as text, or if it is included in the numbers
set of VW together with the day and the year. Similarly, we look at the day only if it
appears with the month. We look at the date parts separately, because some Wikipedia
editions split them into different infobox attributes. We assign a value of 1/3 to each
part of the date VD that appears in VW .

σl(VD, VW ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if day-month-year are present in VW

2/3 if day-month are present in VW

2/3 if month-year are present in VW

1/3 if year is present in VW

Similarly, for gYearMonth we set σl(VD, VW ) = 1 if both month and year appear in
the dates set of VW , and σl(VD, VW ) = 0.5 if VW contains only one of them. Finally,
for gYear we set σl(VD, VW ) = 1 if the year is included in the numbers set of VW .
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Numeric Data. While for calendar related data we expect to find the exact value, often
properties involving numbers can have slightly different values in different languages
(see Section 4.4 for an example). If VD = 0, we check if the numbers subset of VW

contains 0. If true, then σl(VD, VW ) = 1, otherwise σl(VD, VW ) = 0. If VD �= 0, we
search for values in VW near to VD , setting a tolerance ν > 0. For each n in the numbers
set of VW , we calculate ε = |VD − n| / |VD|. If ε < ν, then we set σl(VD, VW ) = 1
and exit the loop. If the end of the loop is reached, we set σl(VD, VW ) = 0.

Strings. String kernels are used to compare strings. To compute the similarity, this
family of kernel functions takes into account two strings and looks for contiguous and
non-contiguous subsequences of a given length they have in common. Non contiguous
occurrences are penalized according to the number of gaps they contain. Formally, let
Σ be an alphabet of |Σ| symbols, and s = s1s2 . . . s|s| a finite sequence over Σ (i.e.,
si ∈ Σ, 1 � i � |s|). Let i = [i1, i2, . . . , in], with 1 � i1 < i2 < . . . < in � |s|, be
a subset of the indices in s, we will denote as s[i] ∈ Σn the subsequence si1si2 . . . sin .
Note that s[i] does not necessarily form a contiguous n-gram of s. The length spanned
by s[i] in s is l(i) = in − i1 + 1. The gap-weighted subsequences kernel (or string
kernel) of length n is defined as

Kn(s, t) = 〈φn(s), φn(t)〉 =
∑

u∈Σn

φn
u(s)φ

n
u(t), (1)

where
φn
u(s) =

∑
i:u=s[i]

μl(i), u ∈ Σn (2)

and μ ∈]0, 1] is the decay factor used to penalize non-contiguous subsequences.8 An
explicit computation of Equation 1 is unfeasible even for small values of n. To evaluate
more efficientlyKn, we use the recursive formulation based on a dynamic programming
implementation [8,14,5].

In our implementation, subsequences are n-grams (strings are tokenized), where n =
min {|VD|, |V ∗

W |} and V ∗
W is the tokenized set of VW where some n-grams have been

replaced with their translation when cross-language links exist. The similarity function
is defined as the first strictly positive value returned by the following loop:

σl(VD, VW ) =
Ki(VD, V

∗
W )

n− i+ 1
for each i = n, n− 1, . . . , 1.

7 Post-processing

Some infoboxes contain attributes with multiple values. For example, the musical genre
of a particular album can be “rock” and “pop”, or a book can have more than one au-
thor. In these cases, Wikipedia provides more than one attribute describing the same
relation, and adds an incremental index after the name of the attribute (sometimes

8 Notice that by choosing μ = 1 sparse subsequences are not penalized. The algorithm does not
take into account sparse subsequences with μ→ 0.
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also adding an underscore between the attribute name and the index). For example, the
Infobox_settlement template contain the attribute twinX used for twin cities,
where X can vary from 1 to 9. In our system, if MR contains a mapping AI → R, we
also add the set of mappings A′

I → R where the name of attribute A′ differs from A
only for an added or replaced digit. This filter is applied on the set M of mappings built
in the mapping phase (Section 5) and is only used to increase recall.
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Fig. 6. Precision/recall curve of our system compared with the DBpedia original manual mapping
in Italian. From left to right, λ value is 0.9, 0.7, 0.5, and 0.3.

8 Evaluation

Experiments have been carried on Italian, using existing DBpedia editions in five lan-
guages (English, Spanish, Portuguese, German, and French) as training data. To per-
form the evaluation, three annotators created a gold standard by manually annotating
15 infoboxes (for a total of 100 different attributes), randomly extracted from the first
100 most frequent infoboxes in the Italian Wikipedia. The inter annotator agreement is
91%, with respect to Fleiss’ kappa measure [6]. The gold standard is available online
on the Airpedia website.9 As baseline, we use the manually mapped Italian infoboxes
that can be downloaded from the DBpedia official website. 10 Specifically, we used the

9 http://www.airpedia.org/download/
dbpedia-property-mappings-in-14-languages/

10 http://mappings.dbpedia.org/

http://www.airpedia.org/download/
dbpedia-property-mappings-in-14-languages/
http://mappings.dbpedia.org/
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version available on April 5th, 2013, made available by the Italian DBpedia project,11

consisting of around 50 infoboxes and 469 attributes (in 18 infoboxes) mapped by one
annotator during the spring 2012.

Figure 6 shows the precision/recall curve. Different precision/recall points are ob-
tained by varying the parameter λ described in Section 5. The grey dashed lines join
points with the same F1. The results show that the coverage of the baseline (Human) is
around 38% with a precision of around 88%. Our system is able to achieve comparable
results in term of precision (87%), but it leads to a significant improvement in recall
maintaining acceptable precision. Specifically, we can see that, by exploiting existing
mappings, we can cover up to 70% of the attributes with a precision around 80%. Even
though the procedure is not generally error-prone, we believe that it can be used as a
starting point for releasing new DBpedia editions or extending existing ones. In the next
section, we describe the current release of the resource.

9 The Resource

Overall, our system mapped 45,978 Wikipedia infobox attributes to DBpedia properties
in 14 different languages for which mappings do not yet exist.12 For each language, we
only consider templates that appear more than 10 times in the corresponding Wikipedia
and release the mappings paired with the value of the function f , described in the Sec-
tion 5. The system has been trained on the DBpedia datasets in 6 languages (English,
Italian, French, German, Spanish and Portuguese).

Table 1 shows the number of mappings extracted for each language (λ = 0.3). Notice
that, even if the precision is not 100% and the process still needs human supervision,
our approach can drastically reduce the time required, estimated in around 5 minutes
per mapping per language if performed from scratch.13

Table 1. Mappings extracted and available as a resource

Language Mappings Language Mappings
Belarusian 1,895 Norwegian 4,226
Danish 3,303 Romanian 4,563
Estonian 1,297 Slovak 2,407
Finnish 3,766 Albanian 1,144
Icelandic 646 Serbian 4,343
Lithuanian 3,733 Swedish 5,073
Latvian 2,085 Ukranian 5,760

10 Related Work

The main reference for our work is the DBpedia project [2]. Started in 2007, it aims
at building a large-scale knowledge base semi-automatically extracted from Wikipedia.

11 http://it.dbpedia.org/
12 The complete resource is available at http://www.airpedia.org/
13 This is an average time evaluated during the mapping of the Italian DBpedia.

http://it.dbpedia.org/
http://www.airpedia.org/
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Wikipedia infobox attribute names do not use the same vocabulary, and this results in
multiple properties having the same meaning but different names and vice versa. In or-
der to do the mapping-based extraction, DBpedia organizes the infobox templates into a
hierarchy, thus creating the DBpedia ontology with infobox templates as classes. They
manually construct a set of property and object extraction rules based on the infobox
class. Nowadays, the ontology covers 359 classes which form a subsumption hierar-
chy and are described by 1,775 different properties. The English version is populated
by around 1.7M Wikipedia pages, although the English Wikipedia contains almost 4M
pages.

Yago [16], similarly to DBpedia, extracts structured information and facts from
Wikipedia using rules on page categories. Conversely, FreeBase [3] and WikiData [18]
are collaborative knowledge bases composed mainly by their community members.

The problem faced in this paper falls into the broader area of schema matching.
A general survey on this topic is presented by Rahm and Bernstein [12]. Their work
compares and describes different techniques, establishing also a taxonomy that is used
to classify schema matching approaches. Similarly, Shvaiko and Euzenat [15] present a
new classification of schema-based matching techniques. It also overviews some of the
recent schema/ontology matching systems, pointing which part of the solution space
they cover.

Bouma et al. [4] propose a method for automatically completing Wikipedia tem-
plates. Cross-language links are used to add and complete templates and infoboxes
in Dutch with information derived from the English Wikipedia. First, the authors show
that alignment between English and Dutch Wikipedia is accurate, and that the result can
be used to expand the number of template attribute-value pairs in Dutch Wikipedia by
50%. Second, they show that matching template tuples can be found automatically, and
that an accurate set of matching template/attribute pairs can be derived using intersec-
tive bidirectional alignment. In addition, the alignment provides valuable information
for normalization of template and attribute names and can be used to detect potential
mistakes. The method extends the number of tuples by 50% (27% for existing Dutch
pages).

Adar et al. [1] present Ziggurat, an automatic system for aligning Wikipedia in-
foboxes, creating new infoboxes as necessary, filling in missing information, and de-
tecting inconsistencies between parallel articles. Ziggurat uses self-supervised learning
to allow the content in one language to benefit from parallel content in others. Experi-
ments demonstrate the method’s feasibility, even in the absence of dictionaries.

Nguyen et al. [9] propose WikiMatch, an approach for the infobox alignment task
that uses different sources of similarity. The evaluation is provided on a subset of
Wikipedia infoboxes in English, Portuguese and Vietnamese.

More recently, Rinser et al. [13] propose a three-stage general approach to infobox
alignment between different versions of Wikipedia in different languages. First, it aligns
entities using inter-language links; then, it uses an instance-based approach to match
infoboxes in different languages; finally, it aligns infobox attributes, again using an
instance-based approach.
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11 Conclusion and Future Work

In this paper, we have studied the problem of automatically mapping the attributes of
Wikipedia infoboxes to properties of the DBpedia ontology. To solve this problem, we
have devised an instance-based approach that uses existing DBpedia editions as training
data. We evaluated the system on Italian data, using 100 manually annotated infobox
attributes, demonstrating that our results are comparable with the current mappings
in term of precision (87% versus 88% for the human annotation), but they lead to a
significant improvement in term of recall (70%) and speed (a single mapping may need
up to 5 minutes by a human), maintaining an acceptable precision (80%). The system
has been used to map 45,978 infobox attributes in 14 different languages for which
mappings were not yet available; the resource is made available in an open format.

There remains room for further improvements. For example, the similarity function
can be refined with a smarter normalization and a better recognition of typed entities
(like temporal expressions, units, and common abbreviations).

We will also evaluate to what extent (precision/recall) DBpedia class mappings can
be generated from the property mappings automatically found using our system.

Finally, we will adapt the proposed approach to detect errors in the DBpedia map-
pings (during our tests we encountered a relevant number of wrong mappings in DB-
pedia), or to maintain the mappings up-to-date whenever the corresponding Wikipedia
templates are updated by the Wikipedia editors.
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Abstract. Type information is very valuable in knowledge bases. How-
ever, most large open knowledge bases are incomplete with respect to
type information, and, at the same time, contain noisy and incorrect
data. That makes classic type inference by reasoning difficult. In this pa-
per, we propose the heuristic link-based type inference mechanism SD-
Type, which can handle noisy and incorrect data. Instead of leveraging
T-box information from the schema, SDType takes the actual use of a
schema into account and thus is also robust to misused schema elements.

Keywords: Type Inference, Noisy Data, Link-based Classification.

1 Introduction

Type information plays an important role in knowledge bases. Axioms stat-
ing that an instance is of a certain type are one of the atomic building blocks
of knowledge bases, stating, e.g., that Thomas Glavinic is an instance of type
Writer. Many useful queries to a knowledge base use type information, e.g., Find
all writers from Vienna, Is Night Work a novel or a short story?, etc.

In many knowledge bases, type information is incomplete for different reasons.
For instance, in a crowd-sourced knowledge base, the problem may be simply
that no one may have entered the type(s) for a certain instance. When using
open world semantics, as in many semantic web knowledge bases, this is not a
problem from a logic point of view – however, it drastically limits the usefulness
of the knowledge base.

Cross-domain knowledge bases, unlike closed-domain knowledge bases, most
often contain a large variety of types. Since it is often not feasible to manu-
ally assign types to all instances in a large knowledge base, automatic support
creating type information is desirable. Furthermore, since open, crowd-sourced
knowledge bases often contain noisy data, logic-based reasoning approaches are
likely to multiply errors.

In this paper, we show how type information can be generated heuristically
by exploiting other axioms in a knowledge base, in particular links between in-
stances. Unlike classic reasoning approaches, we use a weighted voting approach
taking many links into account, which avoids the propagation of errors from
single wrong axioms.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 510–525, 2013.
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The rest of this paper is structured as follows. Section 2 motivates our work
by showing typical problems of reasoning on real-world datasets. Section 3 in-
troduces the SDType approach, which is evaluated in Sect. 4 in different ex-
perimental settings. In Sect. 5, we show how SDType can be applied to solve a
real-world problem, i.e., the completion of missing type information in DBpedia.
We conclude our paper with a review of related work in Sect. 6, and a summary
and an outlook on future work.

2 Problems with Type Inference on Real-World Datasets

A standard way to infer type information in the Semantic Web is the use of
reasoning, e.g., standard RDFS reasoning via entailment rules [20]. To illustrate
the problems that can occur with that approach, we have conducted an exper-
iment with DBpedia knowledge base [2]. We have used the following subset of
entailment rules:

– ?x a ?t1. ?t1 rdfs:subClassOf ?t2 entails ?x a ?t2

– ?x ?r ?y . ?r rdfs:domain ?t entails ?x a ?t

– ?y ?r ?x . ?r rdfs:range ?t entails ?x a ?t

We have applied these three rules to the instance dbpedia:Germany. These rules
in total induce 23 types for dbpedia:Germany, only three of which are correct.
The list of inferred types contains, among others, the types award, city, sports
team, mountain, stadium, record label, person, and military conflict.

A reasoner requires only one false statement to come to a wrong conclusion.
In the example of dbpedia:Germany, at most 20 wrong statements are enough
to make a reasoner infer 20 wrong types. However, there are more than 38,000
statements about dbpedia:Germany, i.e., an error rate of only 0.0005 is enough to
end up with such a completely nonsensical reasoning result. In other words: even
with a knowledge base that is 99.9% correct, an RDFS reasoner will not provide
meaningful results. However, a correctness of 99.9% is difficult, if not impossible,
to achieve with real-world datasets populated either (semi-)automatically, e.g.,
by information extraction from documents, or by the crowd.

In the example above, the class Mountain in the above is induced from a
single wrong statement among the 38,000 statements about dbpedia:Germany,
which is dbpedia:Mže dbpedia-owl:sourceMountain dbpedia:Germany. Like-
wise, the class MilitaryConflict is induced from a single wrong statement,
i.e., dbpedia:XII Corps (United Kingdom) dbpedia-owl:battle dbpedia:

Germany.
These problems exist because traditional reasoning is only useful if a) both

the knowledge base and the schema do not contain any errors and b) the schema
is only used in ways foreseen by its creator [4]. Both assumptions are not real-
istic for large and open knowledge bases. This shows that, although reasoning
seems the straight forward approach to tackle the problem of completing missing
types, it is – at least in its standard form – not applicable for large, open knowl-
edge bases, since they are unlikely to have correct enough data for reasoning to
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Table 1. Type distribution of the property dbpedia-owl:location in DBpedia

Type Subject (%) Object (%)

owl:Thing 100.0 88.6
dbpedia-owl:Place 69.8 87.6
dbpedia-owl:PopulatedPlace 0.0 84.7
dbpedia-owl:ArchitecturalStructure 50.7 0.0
dbpedia-owl:Settlement 0.0 50.6
dbpedia-owl:Building 34.0 0.0
dbpedia-owl:Organization 29.1 0.0
dbpedia-owl:City 0.0 24.2
... ... ...

produce meaningful results. What is required is an approach for inducing types
which is tolerant with respect to erroneous and noisy data.

3 Approach

An RDF knowledge base consists of an A-box, i.e., the definition of instances and
the relations that hold between them, and a T-box, i.e., a schema or ontology.
The SDType approach proposed in this paper exploits links between instances
to infer their types using weighted voting. Assuming that certain relations oc-
cur only with particular types, we can heuristically assume that an instance
should have certain types if it is connected to other instances through certain
relations. For example, from a statement like :x dbpedia-owl:location :y,
we may conclude with a certain confidence that :y is a place.

3.1 Link-Based Type Inference

SDType uses links between resources as indicators for types, i.e., we propose a
link-based object classification approach [6]. The basic idea is to use each link
from and to a instance as an indicator for the resource’s type. For each link, we
use the statistical distribution (hence the name SDType) of types in the subject
and object position of the property for predicting the instance’s types.

For each property in a dataset, there is a characteristic distribution of types
for both the subject and the object. For example, the property dbpedia-owl:

location is used in 247,601 triples in DBpedia. Table 1 shows an excerpt of the
distribution for that property.1

Based on that example distribution, we can assign types with probabilities to
:x and :y when observing a triple like :x dbpedia-owl:location :y. Given the
distribution in table 1, we could assign P (?x a dbpedia-owl:Place) = 0.698,
P (?y a dbpedia-owl:Place) = 0.876, etc.

More formally, the basic building blocks of SDType are conditional properties
measuring how likely a type T is, given a resource with a certain property p,
expressed as P (T (r)|(∃p.�)(r)), where p may be an incoming or an outgoing

1 All DBpedia examples in this paper use version 3.8.
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property. Furthermore, each property is assigned a certain weight wp, which
reflects its capability of predicting the type (see below). With those elements,
we can compute the confidence for a resource r having a type t as

conf (T (r)) :=
1

N
·

∑
all properties p of r

P (T (r)|(∃p.�)(r)), (1)

where N is the number of properties that connects a resource to another one.
By using the average probabilities of each type, we address the problem of faulty
links, since they do not contribute too much to the overall probability.

In the example with dbpedia:Germany used above, the class Mountain was
inferred due to one wrong statement out of 38,000. With the above definition,
that relation would only be weighted with 1

38,000 , thus, the type Mountain would
receive a comparably small overall confidence.

By looking at the actual distribution of types co-occurring with a property,
instead of the defined domains and ranges, properties which are “abused”, i.e.,
used differently than conceived by the schema creator, do not cause any problems
for SDType. As long as a property is used more or less consistently throughout
the knowledge base, the inferences will always be consistent as well. Single in-
consistent usages, just like single wrong statements, do not contribute too much
to the overall result. Furthermore, when looking at the actual usage of a schema,
the results can be more fine-grained than when using the schema only. For ex-
ample, on the MusicBrainz dataset2, foaf:name is always used as a property
of mo:MusicArtist. While RDFS entailment rules could not infer any specific
type from the foaf:name property, since it has no explicit domain defined.3

While using the actual distribution instead of defined domains and ranges
eliminates those problems, it can induce new ones when a dataset is heavily
skewed, i.e., the extensions of some classes are several orders of magnitude larger
than others. This is a problem in particular with general purpose properties, such
as rdfs:label or owl:sameAs, which are rather equally distributed in the overall
knowledge base. If that knowledge base is heavily skewed (e.g., a database about
cities and countries which contains 10,000 cities per country on average), and it
contains many of such general purpose properties, there is a danger of overrating
the more frequent types. Thus, we define a weight wp for each property (note that
p and p−1 are treated independently and are each assigned an individual weight),
which measures the deviation of that property from the apriori distribution of
all types:

wp :=
∑

all types t

(P (t)− P (t|∃p.�))
2

(2)

With those types, we can refine the above definition to

conf (T (r)) := ν ·
∑

all properties p of r

wp · P (T (r)|(∃p.�)(r)), (3)

with the normalization factor ν defined as
2 http://dbtune.org/musicbrainz/
3 The defined domain of foaf:name is owl:Thing, see http://xmlns.com/foaf/spec/

http://dbtune.org/musicbrainz/
http://xmlns.com/foaf/spec/
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Fig. 1. Implementation of the type completion prototype as a sequence of table creation
operations

ν =
1∑

all properties p of r wp
(4)

Intuitively, SDType implements a weighted voting approach, where for each
link, a vote consisting of a distribution of types is cast. The weights reflect the
discriminate power of the individual links’ properties.

Looking at these weights in DBpedia, for example, we can observe that the
maximum weight is given to properties that only appear with one type, such as
dbpedia-owl:maximumBoatLength, which is only used for dbpedia-owl:Canal.
On the other end of the spectrum, there are properties such as foaf:name, which,
in DBpedia, is used for persons, companies, cities, events, etc.

Consider, for example, the triples :x dbpedia-owl:location :y . :x

foaf: name "X", and an apriori probability of dbpedia-owl:Person and
dbpedia-owl: Place of 0.21 and 0.16, respectively. With those numbers and dis-
tributions such as in table 1, definition (1) would yield a confidence score for
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:x a dbpedia-owl: Person and :x a dbpedia-owl:Place of 0.14 and 0.60,
respectively.4

When using weights, the numbers are different. In our example from DBpedia,
the obtained weights for dbpedia-owl:location and foaf:name are 0.77 and
0.17, hence, the overall confidence scores for :x a dbpedia-owl:Person and :x

a dbpedia-owl:Place in that example, using definition (3), are 0.05 and 0.78,
respectively. This shows that the weights help reducing the influence of general
purpose properties and thus assigning more sensible scores to the types that
are found by SDType, and in the end help reducing wrong results coming from
skewed datasets.

In summary, we are capable of computing a score for each pair of a resource
and a type. Given a reasonable cutoff threshold, we can thus infer missing types
at arbitrary levels of quality – thresholds between 0.4 and 0.6 typically yield
statements at a precision between 0.95 and 0.99.

3.2 Implementation

SDType has been implemented based on a relational database, as shown in
Fig. 1. The input data consists of two tables, one containing all direct property
assertions between instances, the other containing all direct type assertions.

From these input files, basic statistics and aggregations are computed: the
number of each type of relation for all resources, and the the apriori probability
of all types, i.e., the percentage of instances that are of that type. Each of those
tables can be computed with one pass over the input tables or their join.

The basic statistic tables serve as intermediate results for computing the
weights and conditional probabilities used in the formulas above. Once again,
those weights and conditional probabilities can be computed with one pass over
the intermediate tables or their joins.

In a final step, new types can be materialized including the confidence scores.
This can be done for all instances, or implemented as a service, which types
an instance on demand. Since of each of the steps requires one pass over the
database, the overall complexity is linear in the number of statements in the
knowledge base.

4 Evaluation

To evaluate the validity of our approach, we use the existing type information in
two large datasets, i.e., DBpedia [2] and OpenCyc [9], as a gold standard,5 and
let SDType reproduce that information, allowing us to evaluate recall, precision,
and F-measure.
4 The actual numbers for DBpedia are: P (Person|foaf#name) = 0.273941,
P (P lace|foaf#name) = 0.314562, P (Person|dbpedia#location) = 0.000236836,
P (P lace|dbpedia#location) = 0.876949.

5 In the case of DBpedia, the dataset is rather a silver standard. However, it provides
the possibility of a larger-scale evaluation. A finer-grained evaluation with manual
validation of the results by an expert can be found in Sect. 5.
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Table 2. Characteristics of the datasets used for evaluation

DBpedia OpenCyc

Number of instances 3,600,638 193,049
Number of distinct classes 359 119,941
Number of distinct properties 1775 18,526
Average depth of leaf classes in the class hierarchy 2.4 10.7

Average number of type statements per (typed) instance 5.6 59.9
Average number of instances per type 38,003.3 755.2
Average number of ingoing properties per instance 8.5 4.8
Average number of outgoing properties per instance 8.8 4.0

4.1 Datasets

DBpedia is generated automatically from Wikipedia infoboxes, and has a large
coverage, at the price of reduced precision, e.g., due to parsing errors or mistakes
in Wikipedia itself. OpenCyc, on the other hand, is more focused on precise
data allowing for exact reasoning, but has a lower coverage than DBpedia. The
DBpedia dataset contains all types from the infobox types dataset (i.e., DBpedia
ontology, schema.org, and UMBEL).6

While DBpedia has all type information for the DBpedia ontology fully ma-
terialized w.r.t. rdfs:subClassOf, we manually materialized all direct types in
OpenCyc, using simple RDFS-like inference for subclasses and subproperties (the
latter are not used at all in the DBpedia ontology). Table 2 lists some relevant
characteristics of the datasets.

It can be observed that the class hierarchy of OpenCyc is several orders of mag-
nitude larger and more fine-grained than the class hierarchy of DBpedia. At the
same time, the average number of instances in each class is much smaller for Open-
Cyc. Since the average number of properties per instance is also lower, the problem
of inferring types with SDType on OpenCyc is harder for two reasons: there is les
evidences for each instance, and the number of classes to predict is higher.

For both datasets, we have used random samples of 10,000 instances. Further-
more, we restrict our approach to using only ingoing properties. The reason is
that classification based on outgoing properties would oversimplify the problem.
In DBpedia, outgoing properties and types are generated in the same step, so
the correct type can be trivially predicted from outgoing properties. The same
holds for OpenCyc, which uses per class templates for populating instance data
[17]. Furthermore, when trying to infer missing types, the instances with missing
types most often have no outgoing properties.

4.2 Results

Figure 2 shows the results of SDType on DBpedia.7 While it can be observed that
SDType works sufficiently well on the overall dataset (i.e., instances that have at

6 http://dbpedia.org/Downloads38
7 The predicted types include those defined in the DBpedia ontology, schema.org, and
UMBEL, as well as owl:Thing.

http://dbpedia.org/Downloads38
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Fig. 2. Precision/recall curves of SDType on DBpedia, for instances with at least one,
at least 10, and at least 25 incoming links

least one ingoing link), achieving an F-measure of 88.5%, the results are slightly
better on instances that have at least 10 or 25 ingoing links, with an F-measure
of 88.9% and 89.9%, respectively. The differences show more significantly in the
precision@95% (i.e. the precision that can be achieved at 95% recall), which
is 0.69 (minimum one link), 0.75 (minimum ten links), and 0.82 (minimum 25
links), respectively.

Figure 3 depicts the corresponding results for OpenCyc. The first observation
is that the overall results are not as good as on DBpedia, achieving a maximum
F-measure of 60.1% (60.3% and 60.4% when restricting to instances that have
at least 10 or 25 ingoing links). The second observation is that the results for
instances with different numbers of ingoing properties do not differ much – in
fact, most of the differences are too small to be visible in the figure. While 95%
recall cannot be reached on OpenCyc with SDType, the precision@90% is 0.18
(minimum one link), 0.23 (minimum ten and 25 links), respectively.

The strong divergence of the results between DBpedia and OpenCyc, as dis-
cussed above, was to be expected, since OpenCyc has on the one hand more (and
more specific) types per instance, on the other hand less evidence per instance,
since the number of properties connecting instances is smaller.

As the diagrams show, looking at instances with more links improves the re-
sults on DBpedia, but not on OpenCyc (apart from a small improvement in
precision at a recall of around 0.9). The reason for that is that DBpedia, with its
stronger focus on coverage than on correctness, contains more faulty statements.
When more links are present, the influence of each individual statement is re-
duced, which allows for correcting errors. OpenCyc, on the other hand, with its
stronger focus on precision, benefits less from that error correction mechanism.

Since we assume that it is more difficult to predict more specific types (such
as Heavy Metal Band) than predicting more general ones (like Band or even
Organization), we have additionally examined the best F-measure that can be
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Fig. 3. Precision/recall curves of SDType on OpenCyc, taking into account only
incoming, only outgoing, and both incoming and outgoing properties

achieved when restricting the approach to a certain maximum class hierarchy
depth. The results are depicted in Fig. 4. It can be observed that SDType in fact
works better on more general types (achieving an F-measure of up to 97.0% on
DBpedia and 71.6% on OpenCyc when restricting the approach to predicting
only top-level classes). However, the effects are weaker than we expected.

5 Application: Completing Missing Types in DBpedia

In the following, we apply SDType to infer missing type information in DBpe-
dia. While DBpedia has a quite large coverage, there are millions of missing
type statements. To infer those missing types, we have combined the approach
sketched above with a preclassification step separating typeable from untypeable
resources in order to reduce false inferences.

5.1 Estimating Type Completeness in DBpedia

Aside from the type information in DBpedia using the DBpedia ontology, which
is generated using Wikipedia infoboxes, resources in DBpedia are also mapped
to the YAGO ontology [18]. Those mappings are generated from Wikipedia page
categories. Thus, they are complementary to DBpedia types – an article may
have a correct infobox, but missing category information, or vice versa. Both
methods of generating type information are prone to (different types of) errors.
However, looking at the overlaps and differences of type statements created by
both methods may provide some approximate estimates about the completeness
of DBpedia types.

To estimate the completeness of type information in DBpedia, we used a
partial mapping between the YAGO ontology [18] and the DBpedia ontology.8

8 http://www.netestate.de/De/Loesungen/DBpedia-YAGO-Ontology-Matching

http://www.netestate.de/De/Loesungen/DBpedia-YAGO-Ontology-Matching
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Fig. 4. Maximum achievable F-measure by maximum class depth for DBpedia and
OpenCyc. The graph depicts the maximum F-measure that can be achieved when
restricting the approach to finding classes of a maximum hiearchy depth of 1, 2, etc.

Assuming that the YAGO types are at least more or less correct, we can estimate
the completeness of a DBpedia type dbpedia#t using the mapped YAGO type
yago#t by looking at the relation of all instances of dbpedia#t and all instances
that have at least one of the types dbpedia#t and yago#t:

completeness(dbpedia#t) ≤ |dbpedia#t|
|dbpedia#t∪ yago#t| (5)

The denominator denotes an estimate of all instances that should have the type
dbpedia#t. Since the actual number of resources that should have that type can
be larger than that (i.e., neither the DBpedia nor the YAGO type is set), the
completeness can be smaller than the fraction, hence the inequation.

Calculating the sum across all types, we observe that DBpedia types are at
most 63.7% complete, with at least 2.7 million missing type statements (while
YAGO types, which can be assessed accordingly, are at most 53.3% complete).
The classes the most missing type statements are shown in Fig. 5

Classes that are very incomplete include

– dbpedia-owl:Actor (completeness ≤ 4%), with 57,000 instances missing
the type, including, e.g., Brad Pitt and Tom Hanks

– dbpedia-owl:Game (completeness ≤ 7%), with 17,000 instances missing the
type, including Tetris and Sim City

– dbpedia-owl:Sports (completeness ≤ 5.3%), with 3,300 instances missing
the type, including Beach Volleyball and Biathlon

A similar experiment using the classes dbpedia-owl:Person and foaf:Person

(assuming that each person should have both types) yielded that the class
dbpedia-owl:Person is at most 40% complete. These examples show that the
problem of missing types in DBpedia is large, and that it does not only affect
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Fig. 5. Largest number of (estimated) missing type statements per class

marginally important instances. In DBpedia, common reasons for missing type
statements are

– Missing infoboxes – an article without an infobox is not assigned any type.

– Too general infoboxes – if an article about an actor uses a person infobox
instead of the more specific actor infobox, the instance is assigned the type
dbpedia-owl:Person, but not dbpedia-owl:Actor.

– Wrong infobox mappings – e.g., the videogame infobox is mapped
to dbpedia- owl:VideoGame, not dbpedia-owl:Game, and dbpedia-owl:

VideoGame is not a subclass of dbpedia-owl:Game in the DBpedia ontology.

– Unclear semantics – some DBpedia ontology classes do not have clear seman-
tics. For example, there is a class dbpedia-owl:College, but it is not clear
which notion of college is denoted by that class. The term college, accord-
ing to different usages, e.g., in British and US English, can denote private
secondary schools, universities, or institutions within universities.9

5.2 Typing Untyped Instances in DBpedia

In our second experiment, we have analyzed how well SDType is suitable for
adding type information to untyped resources. As discussed above, resources
may be missing a type because they use no infobox, an infobox not mapped to
a type, or are derived from a Wikipedia red link. In particular in the latter case,
the only usable information are the incoming properties.

Simply typing all untyped resources with SDType would lead to many errors,
since there are quite a few resources that should not have a type, as discussed

9 See http://oxforddictionaries.com/definition/english/college

http://oxforddictionaries.com/definition/english/college
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in [1]. Examples are resources derived from list pages,10 pages about a category
rather than an individual,11 or general articles.12

In order to address that problem, we have manually labeled 500 untyped
resources into typeable and non-typeable resources. For those resources, we have
created features using the FeGeLOD framework [13], and learned a ruleset for
classifying typeable and non-typeable resources using the Ripper rule learner
[3]. The resulting rule set has accuracy of 91.8% (evaluated using 10-fold cross
validation).

From all 550,048 untyped resources in DBpedia, this classifier identifies 519,900
(94.5%) as typeable. We have generated types for those resources and evaluated
them manually on a sample of 100 random resources. The results for various
thresholds are depicted in Fig. 6. It can be observed that 3.1 types per instance
can be generated with a precision of 0.99 at a threshold of 0.6, 4.0 types with a
precision of 0.97 at a threshold of 0.5, and 4.8 types with a precision of 0.95 at a
threshold of 0.4.13. In contrast, RDFS reasoning on the test dataset generates 3.0
types per instance with a precision of 0.96, which shows that SDType is better
in both precision and productivity.

With those thresholds, we can generate a total of 2,426,552 and 1,682,704 type
statements, respectively, as depicted in Table 3. It can be observed that with the
higher threshold guaranteeing higher precision, more general types are generated,
while more specific types such as Athlete or Artist, are rarely found. In most
cases, the generated types are consistent, i.e., an Artist is also a Person, while
contradicting predictions (e.g., Organization and Person for the same instance)
are rather rare.

6 Related Work

The problems of inference on noisy data in the Semantic Web has been identi-
fied, e.g., in [16] and [8]. While general-purpose reasoning on noisy data is still
actively researched, there have been solutions proposed for the specific problem
of type inference in (general or particular) RDF datasets in the recent past, us-
ing strategies such as machine learning, statistical methods, and exploitation of
external knowledge such as links to other data sources or textual information.

[11] use a similar approach as ours, but on a different problem: they try to
predict possible predicates for resources based on co-occurrence of properties.
They report an F-measure of 0.85 at linear runtime complexity.

Many ontology learning algorithms are capable of dealing with noisy data [19].
However, when using the learned ontologies for inferring missing information
using a reasoner, the same problems as with manually created ontologies occur.

10 e.g., http://dbpedia.org/resource/Lists_of_writers
11 e.g., http://dbpedia.org/resource/Writer
12 e.g., http://dbpedia.org/resource/History_of_writing
13 A web service for DBpedia type completion, as well as the code used to produce the
additional types, is available at
http://wifo5-21.informatik.uni-mannheim.de:8080/

DBpediaTypeCompletionService/

http://dbpedia.org/resource/Lists_of_writers
http://dbpedia.org/resource/Writer
http://dbpedia.org/resource/History_of_writing
http://wifo5-21.informatik.uni-mannheim.de:8080/DBpediaTypeCompletionService/
http://wifo5-21.informatik.uni-mannheim.de:8080/DBpediaTypeCompletionService/
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Table 3. Results for typing untyped resources, including main types found. The table
lists all types which were predicted for at least 1% of the instances in the test set.

Threshold 0.4 0.6
Estimated precision ≥ 0.95 ≥ 0.99
Total typed instances 440,849 373,366
Total type statements 2,426,552 1,682,704
Average types per typed instance 5.5 4.5
Distinct types assigned 144 121

Main types:

Person 236,608 (53.7%) 173,944 (46.6%)
– Athlete 71,226 (16.2%) 544 (<0.1%)
– Artist 21,219 (4.8%) 22 (<0.1%)
– Musical Artist 10,533 (2.4%) 21 (<0.1%)
– Writer 4,973 (1.1%) 0 (0.0%)

Place 79,115 (17.9%) 72,593 (19.4%)
– Settlement 52,622 (11.9%) 23,060 (6.2%)
– Natural Place 4,846 (1.1%) 2,293 (1.0%)

Organization 73,148 (16.6%) 46,988 (12.6%)
– Company 25,077 (5.7%) 21,509 (5.8%)
– Sports Team 15,176 (3.4%) 14,635 (3.9%)
– Record Label 13,444 (3.0%) 13,158 (3.5%)
– Band 12,770 (2.9%) 6 (<0.1%)

Creative Work 15,542 (3.5%) 13,130 (3.4%)
– Album 12,516 (2.8%) 191 (<0.1%)

Species 8,249 (1.8%) 7,988 (2.1%)
– Animal 7,815 (1.7%) 6,744 (1.8%)

One of the first approaches to type classification in relational data is discussed
in [10]. The authors train a machine learning model on instances that already
have a type, and apply it to the untyped instances in an iterative manner. The
authors report an accuracy of 0.81, treating type completion as a single-class
problem (i.e., each instance is assigned exactly one type).

The work discussed in [12] assumes that for many instances, there are some,
but not all types. Association rule mining is employed to find common patterns
of the type if type A and B are set, type C is also set, and apply them to the
knowledge base. The authors report that they can add around 3 additional types
to an average instance at a precision of 85.6%.

In [1], an approach is introduced which first exploits cross-language links be-
tween DBpedia in different languages to increase coverage, e.g., if an instance has
a type in one language version and does not have one in another language version.
Then, they use nearest neighbor classification based on different features, such as
templates, categories, and bag of words of the corresponding Wikipedia article.
On existing type information, the authors report a recall of 0.48, a precision of
0.91, and an F-measure of 0.63.

The Tipalo system [5] leverages the natural language descriptions of DBpedia
entities to infer types, exploiting the fact that most abstracts in Wikipedia follow
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Fig. 6. Precision and average number of type statements per resource generated on
untyped resources in DBpedia

similar patterns. Those descriptions are parsed and mapped to the WordNet and
DOLCE ontologies in order to find appropriate types. The authors report an
overall recall of 0.74, a precision of 0.76, and an F-measure of 0.75.

The authors of [7] exploit types of resources derived from linked resources,
where links between Wikipedia pages are used to find linked resources (which are
potentially more than resources actually linked in DBpedia). For each resource,
they use the classes of related resources as features, and use k nearest neighbors
for predicting types based on those features. The authors report a recall of 0.86,
a precsion of 0.52, and hence an F-measure of 0.65.

The approach discussed in [15] addresses a slightly different problem, i.e.,
the mapping DBpedia entities to the category system of OpenCyc. They use
different indicators – infoboxes, textual descriptions, Wikipedia categories and
instance-level links to OpenCyc – and apply an a posteriori consistency check
using Cyc’s own consistency checking mechanism. The authors report a recall of
0.78, a precision of 0.93, and hence an F-measure of 0.85.

The approaches discussed above, except for [12], are using specific features for
DBpedia. In contrast, SDType is agnostic to the dataset and can be applied to
any RDF knowledge base. Furthermore, none of the approaches discussed above
reaches the quality level of SDType (i.e., an F-measure of 88.5% on the DBpedia
dataset).

With respect to DBpedia, it is further noteworthy that SDType is also capable
of typing resources derived from Wikipedia pages with very sparse information
(i.e., no infoboxes, no categories, etc.) – as an extreme case, we are also capable
of typing instances derived from Wikipedia red links only by using information
from the ingoing links.

7 Conclusion and Outlook

In this paper, we have discussed the SDType approach for heuristically com-
pleting types in large, cross-domain databases, based on statistical distributions.



524 H. Paulheim and C. Bizer

Unlike traditional reasoning, our approach is capable of dealing with noisy data
as well as faulty schemas or unforeseen usage of schemas.

The evaluation has shown that SDType can predict type information with
an F-measure of up to 88.9% on DBpedia and 63.7% on OpenCyc, and can be
applied to virtually any cross-domain dataset. For DBpedia, we have further-
more enhanced SDType to produce valid types only for untyped resources. To
that end, we have used a trained preclassifier telling typeable from non-typeable
instances at an accuracy of 91.8%, and are able to predict 2.4 million missing
type statements at a precision of 0.95, or 1.7 million missing type statements
at a precision of 0.99, respectively. We have shown that with these numbers, we
outperform traditional RDFS reasoning both in precision and productivity.

The results show that SDType is good at predicting higher-level classes (such
as Band), while predicting more fine-grained classes (such as Heavy Metal Band)
is much more difficult. One strategy to overcome this limitation would be to use
qualified relations instead of only relation information, i.e., a combination of the
relation and the type of related objects. For example, links from a music group
to an instance of Heavy Metal Album could indicate that this music group is to
be classified as a Heavy Metal Band. However, using such features results in a
much larger feature space [13] and thus creates new challenges with respect to
scalability of SDType.

The type statements created by SDType are provided in a web service in-
terface, which allows for building applications and services at a user-defined
trade-off of recall and precision, as sketched in [14].

The statistical measures used in this paper cannot only be used for predicting
missing types. Other options we want to explore in the future include the vali-
dation of existing types and links. Like each link can be an indicator for a type
that does not exist in the knowledge base, it may also be an indicator that an
existing type (or the link itself) is wrong.

In summary, we have shown an approach that is capable of making type in-
ference heuristically on noisy data, which significantly outperforms previous ap-
proaches addressing this problems, and which works on large-scale datasets such
as DBpedia. The resulting high precision types for DBpedia have been added to
the DBpedia 3.9 release and are thus publicly usable via to the DBpedia services.

Acknowledgements. The authors would like to thank Christian Meilicke for
his valuable feedback on this paper.
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J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler,
J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS,
vol. 7649, pp. 65–81. Springer, Heidelberg (2012)

6. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explorations
Newsletter 7(2), 3–12 (2005)

7. Giovanni, A., Gangemi, A., Presutti, V., Ciancarini, P.: Type inference through
the analysis of wikipedia links. In: Linked Data on the Web (LDOW) (2012)

8. Ji, Q., Gao, Z., Huang, Z.: Reasoning with noisy semantic data. In: Antoniou, G.,
Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J.
(eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 497–502. Springer, Heidelberg
(2011)

9. Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J.: An introduction to the
syntax and content of cyc. In: Proceedings of the 2006 AAAI Spring Symposium
on Formalizing and Compiling Background Knowledge and its Applications to
Knowledge Representation and Question Answering (2006)

10. Neville, J., Jensen, D.: Iterative classification in relational data. In: Proc. AAAI-
2000 Workshop on Learning Statistical Models from Relational Data, pp. 13–20
(2000)

11. Oren, E., Gerke, S., Decker, S.: Simple algorithms for predicate suggestions using
similarity and co-occurrence. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 160–174. Springer, Heidelberg (2007)

12. Paulheim, H.: Browsing linked open data with auto complete. In: Semantic Web
Challenge (2012)

13. Paulheim, H., Fürnkranz, J.: Unsupervised Feature Generation from Linked Open
Data. In: International Conference on Web Intelligence, Mining, and Semantics,
WIMS 2012 (2012)

14. Paulheim, H., Pan, J.Z.: Why the semantic web should become more imprecise. In:
What will the Semantic Web Look Like 10 Years from Now? (2012)

15. Pohl, A.: Classifying the wikipedia articles in the opencyc taxonomy. In: Web of
Linked Entities Workshop (WoLE 2012) (2012)

16. Polleres, A., Hogan, A., Harth, A., Decker, S.: Can we ever catch up with the web?
Semantic Web Journal 1(1,2), 45–52 (2010)

17. Shah, P., Schneider, D., Matuszek, C., Kahlert, R.C., Aldag, B., Baxter, D., Cabral,
J., Witbrock, M.J., Curtis, J.: Automated population of cyc: Extracting informa-
tion about named-entities from the web. In: Proceedings of the Nineteenth Inter-
national Florida Artificial Intelligence Research Society Conference (FLAIRS), pp.
153–158. AAAI Press (2006)

18. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge.
In: Proceedings of the 16th international conference on World Wide Web, WWW
2007, pp. 697–706. ACM (2007)

19. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik,
M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

20. W3C. RDF Semantics (2004), http://www.w3.org/TR/rdf-mt/

http://www.w3.org/TR/rdf-mt/


What’s in a ‘nym’?

Synonyms in Biomedical Ontology Matching

Catia Pesquita1, Daniel Faria1, Cosmin Stroe2, Emanuel Santos1,
Isabel F. Cruz2, and Francisco M. Couto1
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Abstract. To bring the Life Sciences domain closer to a Semantic Web
realization it is fundamental to establish meaningful relations between
biomedical ontologies. The successful application of ontology matching
techniques is strongly tied to an effective exploration of the complex and
diverse biomedical terminology contained in biomedical ontologies. In
this paper, we present an overview of the lexical components of several
biomedical ontologies and investigate how different approaches for their
use can impact the performance of ontology matching techniques. We
propose novel approaches for exploring the different types of synonyms
encoded by the ontologies and for extending them based both on internal
synonym derivation and on external ontologies.
We evaluate our approaches using AgreementMaker, a successful on-

tology matching platform that implements several lexical matchers, and
apply them to a set of four benchmark biomedical ontology matching
tasks. Our results demonstrate the impact that an adequate consider-
ation of ontology synonyms can have on matching performance, and
validate our novel approach for combining internal and external syn-
onym sources as a competitive and in many cases improved solution for
biomedical ontology matching.

Keywords: Ontology Matching, Synonym Derivation, Ontology Exten-
sion, Biomedical Ontologies.

1 Introduction

Research in the Life Sciences, and in particular in biomedical research, has much
to gain from Semantic Web technologies due to the amount and complexity of
the data involved. One crucial development has been the creation of ontolo-
gies that describe biomedical knowledge and support several applications, both
theoretical and practical, such as the representation of encyclopedic knowledge,
semantic search and query, data exchange and integration, and reasoning sup-
port [1]. However, to fully benefit from the overall knowledge contained in those
ontologies, meaningful connections need to be established across the concepts
from various ontologies. To establish these relations, we can use ontology match-
ing techniques that are able to find correspondences between semantically related
entities belonging to different ontologies [2].
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The matching of biomedical ontologies poses considerable challenges, given
their particular characteristics. The domains they cover are usually complex
and large, with many biomedical ontologies possessing tens of thousands of
classes dedicated to highly specific areas such as genomics, phenotypes or cellu-
lar structures. Moreover, biomedical terminology is characterized by ambiguity
and complexity, features that further complicate the application of many on-
tology engineering techniques. However, the biomedical domain also presents
some interesting opportunities such as the exploration of an abundant scien-
tific literature or the availability of many related biomedical ontologies. Despite
the efforts of the community to provide orthogonal ontologies [3], many contain
overlapping knowledge. For instance, in BioPortal [4], a portal for biomedical
ontologies, there are currently 306 ontologies distributed by categories, of which
59 in health, 38 in anatomy and 21 in biological processes.

In recent years the OAEI (Ontology Alignment Evaluation Initiative) [5] has
been the major playfield for biomedical ontology alignment, both in its anatomy
track, and more recently in the large biomedical ontologies track. An important
finding of the OAEI is that many of the anatomy ontologies correspondences
are rather trivial and can be found by simple string comparison techniques. To
confirm this finding, a simple string matching algorithm, LOOM, was applied
to several ontologies available in the NCBO BioPortal, obtaining high levels of
precision in most cases [6]. Explanations for this fact include the simple structure
of most biomedical ontologies, the high number of synonyms they contain, and
their low language variability. Several strategies have been used by the top ranked
systems at OAEI to increase recall that go beyond internal lexical similarity,
including the use of external knowledge resources (SAMBO [7]) and ontologies
(GOMMA [8], AgreementMaker [9]), global similarity computation techniques
(AgreementMaker [10], SOBOM [11]), and more complex measures of label and
structural similarity (AgreementMaker, LogMap [12]). A combination of these
strategies has enabled two of the best systems, GOMMA and AgreementMaker,
to reach a F-measure above 90% in the anatomy track. With the introduction
of the large biomedical ontologies track in 2012, competing systems developed
strategies to handle the very large size of the ontologies therein, including the
selection of specific portions of the ontologies to apply matching [13]. Likewise,
a new emphasis on the coherence of the generated alignments, prompted several
systems to incorporate strategies to improve their alignments coherence [8, 12].

However, this shift in ontology matching systems to ensure the ontological
quality of their strategies and results has not translated to the handling of ter-
minological properties, despite the common knowledge of their importance to
support matching.

The purpose of this paper is to show the positive impact that is brought by a
deep understanding of the terminology contained in ontologies, when used in con-
junction with current ontology matching approaches. To support this premise,
we have surveyed the terminological component of several biomedical ontologies
(including those used by the OAEI tracks) with a special emphasis on syn-
onyms, and tested several novel approaches to improve lexical based matching
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approaches. These approaches include: (1) the ranking and weighting of names
and synonyms based on their degree of closeness; (2) the derivation of new syn-
onyms based on the ones encoded by a single or both ontologies; and (3) the
addition of new synonyms based on cross-references or lexical matches to related
external ontologies.

The paper is organized as follows: Section 2 describes the terminological com-
ponent of several biomedical ontologies and discusses their implications for ontol-
ogy matching. Section 3 describes our three approaches to improve lexical-based
matches. Section 4 describes the evaluation methods, while Section 5 presents
and discusses the results obtained using those methods. Finally Section 6 con-
textualizes our contributions including their limitations and future work.

2 Synonyms in Biomedical Ontologies

Biomedical terminology is complex and ambiguous—frequently the same entity
has several names (e.g., gluconeogenesis, glucose synthesis and glucose biosyn-
thesis, all refer to the same metabolic process), a common word refers to a
biomedical entity (e.g., hedgehog, and fruitfly are both gene names), or even the
same word can be applied to two different entities (e.g., lingula, can either be a
structure of the brain or of the lung). These challenges provide one of the major
motivations to develop biomedical ontologies, given their explicit definition of
concepts through ontological properties.

Biomedical ontologies characteristically have a strong terminological compo-
nent in the form of names and multiple types of synonyms. Most ontologies
define a primary name or label for each class, which is usually encoded as ei-
ther a localname property or a label property when localnames are reserved
for alphanumeric identifiers. Since biomedical entities usually have more than
one name, ontologies encode alternative labels as different kinds of synonym
properties, which help distinguish between the main label of a class and its
alternatives, be they equivalent or merely related. Ontologies under the Open
Biomedical Ontologies initiative [3] usually encode the following synonyms types:
hasExactSynonym, where the alias exhibits true synonymy; hasBroadSynonym
and hasNarrowSynonym where the aliases are broader or narrower than the pri-
mary name; and hasRelatedSynonym, where the alias is related to the primary
class name but not necessarily broader or narrower. Other biomedical ontologies
usually also encode distinct types of synonyms, reflecting different degrees of
closeness in meaning to the main term. To the set of main labels and synonyms
we henceforth call names. Some biomedical ontologies have cross-reference prop-
erties that connect ontology classes to classes from other ontologies. These links
can be used to transfer name properties between cross-referenced classes. Table 1
presents some statistics on synonyms and cross-references for several biomedical
ontologies, namely those provided by the OAEI, which will be used as a testbed
for our proposed approaches. Most ontologies encode several synonyms for each
class, with the notable exception of SNOMED, where synonyms are very rare.
At the other end of the spectrum we have UBERON, an ontology designed to
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Table 1. Name properties in biomedical ontologies

Ontology Classes Name properties Names per class

NCI Human (OAEI) 3304 label 3304 1.59
hasRelatedSynonym 5264

MA (OAEI) 2739 label 2739 1.13
hasRelatedSynonym 345

FMA (OAEI) 79042 label 133629 1.69
NCI (OAEI) 66917 label 175972 2.63

SNOMED (OAEI) 122464 label 122566 1.00

FMA 78977 label 105490 1.92
hasExactSynonym 45996

NCI 96717 FULL SYN* 303121 4.13
label 96717

UBERON 8659 label 8659 12.11
hasExactSynonym 20955
hasRelatedSynonym 6150
hasNarrowSynonym 562
hasBroadSynonym 442
hasDbXref** 68068

*equivalent to hasExactSynonym, **link to an external ontology or resource

integrate cross-species anatomy, which encodes a high number of distinct syn-
onym properties, as well as cross-references to several other ontologies, including
MA, NCI, SNOMED and FMA.

Although state of the art ontology matching systems use synonyms in their
strategies, they do so without considering the ontological property that encon-
des them and its meaning. In ontologies encoding more than one kind of name
property it makes sense that ontology matching techniques differentiate between
them.

3 Methods for Exploring the Use of Synonyms
in Ontology Matching

3.1 Synonym Ranking and Weighting

Considering that several ontologies encode distinct types of synonyms, we base
our approach on the notion that a synonym should contribute to the similarity
score between two ontology classes in proportion to its closeness to the main
name of the class it belongs to. To arrive at this weight, we first rank the syn-
onyms encoded in an ontology according to the synonym property they are as-
signed to. Following the logical definition of commonly used synonym properties,
we propose the following default ranking of name properties: (1) localname, (2)
label, (3) exact synonym, (4) related synonym, (5) broad synonym, (6) narrow
synonym, (7) other synonyms. Whenever an ontology does not possess one of
these properties, the rank of the following properties can be increased. This is
especially relevant when matching an ontology where the localname corresponds
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to a unique alphanumeric identifier to an ontology where the localname is the
main label of the class. These ranks can then be used to attribute weights to a
classs names given the input of a single interval according to:

weight = 1.0− (interval ∗ (rank − 1)) (1)

3.2 Ontology Lexicon Extension through Synonym Derivation

Despite the already high number of synonyms present in most biomedical on-
tologies, it is a cumbersome task for ontology developers to cover all possible
variants. Moreover, when ontologies belong to similar but parallel domains (for
instance, when they cover the anatomy of distinct mammal species) they will
encode the synonyms that belong to their strict domain, but many times forgo
synonyms of broader spectrum. One strategy that can be used to circumvent
this omission is to extend the synsets of ontology classes with WordNet syn-
onyms [14]. However, in the biomedical domain this strategy has been shown to
slightly increase recall but at a higher cost of precision [15], which is likely due
to the highly specialized vocabulary contained in biomedical ontologies and its
limited coverage by WordNet.

Our novel approach is based on the notion that we can explore the synonymy
relations established between sets of names within the ontologies to derive new
synonyms. A preliminary implementation of this approach was integrated in
AgreementMaker in 2011 [9]. The main idea behind this approach is that by
finding common terms (both single and multi-word) between ontology synonyms
we can infer a synonym relation between the remaining distinct terms. These
terms can then be used to generate new synonym names. Since this approach is
solely based on ontology terminology, we expect it to avoid the issues encountered
when using a non-specific resource such as WordNet. For example, in the mouse
anatomy ontology the class named as ‘stomach serosa’ has the synonym ‘gastric
serosa’, which supports the inference that the terms ‘stomach’ and ‘gastric’ are
synonymous. These synonymous terms are then used to create novel synonyms,
by substituting terms with their synonyms in existing names. For instance, we
can create a new synonym for the class ‘stomach secretion’ using the synonyms
‘stomach’ and ‘gastric’ to create the new synonym ‘gastric secretion’.

We implement our approach in two main steps: (1) the construction of one or
two thesauri containing synonym terms; and (2) the derivation of new synonyms
based on thesaurus entries. The thesauri can be built based on a single ontology,
one for each ontology, or based on both ontologies, resulting in a single thesaurus.
This means that when new synonym terms are derived, they can be based on
synonym terms inferred from the same ontology, or from both ontologies. We
name these two options as intra- and inter-ontology synonym derivation, respec-
tively. This approach is described in Algorithm 1, where creating a thesaurus T
is achieved by finding the overlapping portion of the names of each class c in an
ontology O, and inferring a synonym relation between the non-overlapping por-
tion. Extension of synonyms through derivation is based on the computation of
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Algorithm 1. Create thesaurus from name properties

input: O
T ← ∅
for each c ∈ O do

names ← c.getNames()
for each n1 ∈ names do

for each n2 ∈ names do
common term ← n1.overlap(n2)
n1 synonym term ← n1.remove(common term)
n2 synonym term ← n2.remove(common term)
T.add(n1 synonym term, n2 synonym term)

end for
end for

end for
return T

Algorithm 2. Extend synonyms based on derivation

input: O,max
//get all n-grams of all ontology names with sizes [1,max]
names ← O.getNames()
ngrams ← names.getNgrams(max)
for each ngram ∈ ngrams do

namesn ← names.contain(ngram)
thesn ← T.get(ngram) //thesaurus entries that match the n-gram
for each name ∈ namesn do

class ← O.getClass(name)
for each t ∈ thesn do

new name ← name.replace(ngram, t)
class.addNewName(new name)

end for
end for

end for

all ontology classes’ names n-grams, which can then be replaced by appropriate
thesaurus entries. This approach is described in Algorithm 2.

We also propose another approach to create new synonyms that is based on
removing common words (i.e., words that convey little information) from the
beginning or the end of names, such as ‘structure’ in ‘spinal nerve structure’. To
identify common words, we compute the evidence content for each word present
in ontology names, according to the inverse logarithm of its frequency [16], then
select those below a given evidence content threshold. Then for each name, we
create a new synonym where leading and trailing common words are removed.
We have called this approach CommonWord Removal Synonym Extension (CW-
SynExt), and describe it in Algorithm 3.

Coupled with this strategy, we have implemented a weighting method, where
the weight of the newly created synonym is equal to the weight of the original
name multiplied by a confidence factor, which is given by the total evidence
content of the synonym divided by the total evidence content of the original
name. Thus, the lower the total evidence content of the removed words is, the
closer the synonym captures the information conveyed by the original name and
the higher will be its confidence factor.
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Algorithm 3. Extend synonyms based on common word removal

input: O
for each name ∈ O.getNames() do

new name = name
//checks leading words
for each word ∈ new name do

while word ∈ common words do
new name ← new name.remove(word)

end while
end for
//checks trailing words
for each word ∈ new name.reversed() do

while word ∈ common words do
new name ← new name.remove(word)

end while
end for
if new name �= name then

class ← O.getClass(name)
class.addNewName(new name)

end if
end for

3.3 Ontology Lexicon Extension Using External Ontologies

Given the abundance of biomedical ontologies with overlapping domains,
it makes sense to capitalize on correspondences to a mediating ontology to help
derive the final correspondences between the ontologies to align [17]. A mediating
ontology can be particularly helpful if it contains a large number of synonyms.
This approach of matching a mediating ontology to each ontology and then use
these results to arrive at the final alignment has been successfully used by several
ontology matching systems in the biomedical domain [9, 8].

However, many biomedical ontologies encode cross-references to external on-
tologies, which represent relationships between classes belonging to distinct on-
tologies. To the best of our knowledge these have never been explicitly explored
by ontology matching systems. These cross-references can be used to extend the
lexicon of the ontologies being matched, by adding the name properties of the
cross-referenced class to the class of the ontology being matched. For instance,
the UBERON ontology encodes cross-references to the Mouse Anatomy ontology,
which means that all names and synonyms of an UBERON class that references
a Mouse Anatomy class can be added to its synset. This strategy bypasses the
need to rely on a lexical matching between the ontologies, since the transference
of the names is based on the ontology defined properties.

4 Evaluation

To evaluate our approaches that use synonyms in biomedical ontology matching
we use the AgreementMakerLight system [18], a lightweight framework based
on the AgreementMaker system [19], which has been optimized to handle the
matching of larger ontologies. AgreementMakerLight supports a wide variety of
matching methods, called matchers, which can be used in series or parallel such
that the results from several matching algorithms can be combined into a single
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final result, and where correspondences are filtered by a similarity threshold. It
is based on the same approaches of AgreementMaker, which have achieved top
results in OAEI tracks in several years [20–22].

To remain focused on lexical approaches to ontology matching, we restrict our
evaluation to two matchers that are based on the pairwise comparison of ontol-
ogy classes: a name-based matcher and a word-based matcher. These matchers
correspond to commonly used techniques, which are used across several other
ontology matching systems (e.g., GOMMA, LogMap and YAM++ [23]). The
name-based matcher (NM) consists of a straightforward comparison of the full
labels or synonyms of ontology classes. The word-based matcher (WM) relies
on the comparison of the words belonging to the labels or synonyms of classes
through a weighted Jaccard similarity based on the evidence content of words
within ontologies [18]. Although we implement our approaches as extensions to
the AML framework, they are independent from it and can be used with any
ontology matching system that uses lexical-based matching. To maintain further
the independence of our approaches from any specific configurations of AML, we
choose to combine the results of matchers through a simple join, and select them
based on an empirically chosen threshold of 0.6.

We test our approaches on four matching tasks proposed by OAEI: (1) Mouse
Anatomy (MA) - NCI Human Anatomy (NCI Human), (2) FMA - NCI; (3)
FMA-SNOMED; (4) NCI-SNOMED. The first task corresponds to the anatomy
track, and the remaining three belong to the large biomed track. In the large
biomed tasks we are only aligning small overlapping fragments, which is one of
the tasks supported by OAEI. This means that the portion of FMA being aligned
in task 2 is not the same one that is being aligned in task 3. The same applies
to NCI and SNOMED. The reference alignment used in the anatomy track was
manually created and has been extensively tested. For the large biomed track
the existing reference alignment is a silver standard based on mappings encoded
in UMLS, a biomedical terminology resource [24].

5 Results and Discussion

We first evaluate an approach that uses a ranking and weighting strategy for
name properties. Table 2 shows the impact on F-measure when using our pro-
posed default ranking and weighting strategy with an interval of 0.05, in com-
bination with two matching approaches: NM by itself, or combined with WM.
Weighting of name properties has a very noticeable impact on the alignment of
the mouse and human anatomies, however that impact is much reduced in the
other three matching tasks. Based on these results, and since the computational
cost for this strategy is quite low, we incorporate the ranking and weighting
approach into our other approaches as well.

Our second approach extends the number of synonyms in ontologies either
through a synonym derivation technique based on internal ontology synonyms
or on the removal of common words (described in Algorithms 1, 2, and 3). These
we consider to be internal synonym extension strategies, since they only use
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Table 2. Ranking and weighting synonym properties

Matchers MA-NCI Human FMA-NCI FMA-SNOMED SNOMED-NCI

Standard AML

NM 0.819 0.826 0.411 0.689
NM-WM 0.829 0.838 0.586 0.732

Ranking & Weighting

NM 0.825 0.826 0.412 0.689
NM-WM 0.862 0.840 0.586 0.732

NM: name-based matcher; WM: word-based matcher

Comparison of the F-measure obtained in all four tasks when using the ranking and
weighting strategy with two different matching approaches, one based on matching
the full name and the other also considering word matches.

information contained in the ontologies that are being aligned. However, exter-
nal ontologies can also be used to increase the number of synonyms through
the transference of names from cross-referenced classes. As a source for cross-
references we use the UBERON ontology, which encodes direct cross-references
to the mouse and human anatomies, as well as NCI. Figure 1 shows the increase
in number of name properties in each ontology after synonym extension. The
number of new name properties created by intra- and inter-ontology synonym
derivation is closely tied to the original number of synonyms (see Table 1), there-
fore for SNOMED the use of intra-ontology synonym extension does not lead to
a noticeable increase in number of name properties, since there are very few syn-
onyms to leverage on to create the internal thesaurus. However, when ontologies
have very frequent words in their terminology, the number of synonyms created
by the common word removal approach increases. This is clearly exemplified
by SNOMED, where the existence of many names with common words such as
‘structure’ (e.g., ‘structure of hair of trunk’, ‘portal vein structure’ and ‘spinal
nerve structure’) results in the creation of many more synonyms.

To test the impact of synonym extension we couple it with the NM matcher.
Both intra- and inter-ontology synonym derivation can lead to a high num-
ber of erroneous names, however when used with the NM matcher these is-
sues are circumvented since a single match between two names is enough to
map two classes and the presence of erroneous words in the names has no im-
pact. Given the low impact intra- and inter-ontology synonym derivation has on
SNOMED’s terminology, we would expect a reduced impact of these strategies
on the matching performance of SNOMED alignments, particularly when using
the inter-ontology approach. Indeed, in the last two tasks (see Table 3), FMA-
SNOMED and SNOMED-NCI have an equivalent or reduced performance when
using this approach. In particular, extending SNOMED with inter-ontology syn-
onyms leads to a marked drop in precision. On the other hand, for the alignment
of the mouse and human anatomies, synonym derivation improves performance
through an increase in recall, particularly for the intra-ontology approach where
recall increases by 7.5%. In FMA-NCI, there is also an improvement, though not
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Fig. 1. Increase in number of names after synonym extension approaches for each
ontology in each task

(Intra-: intra-ontology; Inter-: inter-ontology; CW-: common word removal; XR-: cross-references to
UBERON; SynExt: synonym extension)

as marked, with recall increasing by 1.7%. The common word removal synonym
extension approach has little to no impact on the MA-NCI Human and FMA-
NCI alignments, but has a considerable impact on FMA-SNOMED, where it
increases recall by more than 40%, increasing F-measure from 41.2% to 74.5%.
This is due to the fact that removing the common words in SNOMED names
results in direct matches to several FMA classes. This effect is less noticeable in
SNOMED-NCI, but it still increases recall by nearly 5%.

Our third approach is based on exploring external ontologies that contain
cross-references to the ontologies that are to be matched, or whose domains are
closely related. In this evaluation we use three ontologies as external resources:
UBERON, FMA and NCI. FMA and NCI versions correspond to the full ontolo-
gies (obtained from OBO, not from OAEI). Table 4 presents the results of several
distinct matching strategies that use these external ontologies. Using a combi-
nation of NM and a mediating matcher (MM) based on NM to FMA (NM-MM),
results in a better performance in the mouse and human anatomies as well as
in SNOMED-NCI. The same strategy using NCI only impacts SNOMED-NCI
results. However, when UBERON is used, there is a marked improvement in
both MA-NCI Human and FMA-NCI, which is due to MA, NCI Human, FMA
and UBERON sharing the same domain (anatomy).

UBERON encodes cross-references to MA, NCI, SNOMED and FMA. How-
ever, the cross-references are established using alphanumeric identifiers, which
are unavailable in the OAEI versions of FMA and SNOMED. Consequently, we
have only explored the cross-references to MA and NCI. For the MA-NCI Human,
given that UBERON encodes cross-references to both ontologies it is possible
to create an alignment based solely on them (XRM). This has an F-measure
of 91.7%, which is higher than any of the other approaches tested so far. A
combination with NM further increases F-measure up to 92.6%. However, the
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Table 3. Impact of internal synonym extension approaches on matching performance

No SynExt Inter-SynExt Intra-SynExt CW-SynExt

MA-NCI-human

Precision 0.985 0.983 0.966 0.985
Recall 0.691 0.709 0.766 0.691
F-measure 0.825 0.835 0.860 0.825

FMA-NCI

Precision 0.945 0.936 0.939 0.944
Recall 0.723 0.736 0.74 0.723
F-measure 0.826 0.83 0.834 0.827

FMA-SNOMED

Precision 0.953 0.926 0.945 0.897
Recall 0.178 0.182 0.180 0.618
F-measure 0.412 0.411 0.413 0.745

NCI-SNOMED

Precision 0.97 0.888 0.965 0.967
Recall 0.489 0.477 0.497 0.537
F-measure 0.689 0.651 0.693 0.721

(Intra-: intra-ontology; Inter-: inter-ontology; CW-: common word removal; SynExt: synonym
extension)

cross-references can also be explored to extend the name properties of classes
and then be used on an NM matching approach (NM-XR-SynExt), pushing F-
measure up by another 0.9%. Combining this approach with the more complex
WM results in an F-measure of 93.7% (NM-XR-SynExt-WM). The synonym
extension that is based on cross-references can also be used in the NCI matching
tasks, which yields the best performance we obtained for FMA-NCI, 86.4%, but
has no impact on SNOMED-NCI. This is likely due to the fact that the NCI
fragment in FMA-NCI belongs to the anatomy domain (the same as UBERON),
whereas the SNOMED and NCI fragments of NCI-SNOMED do not.

The overall very positive success of exploring cross-references, both for di-
rect matching and for synonym extension, clearly demonstrates the untapped
potential of these ontology properties.

To complete our evaluation we present a table with the comparison of our
best results with the best results obtained by OAEI 2012 competitors in each
task (see Table 5). For simplicity we name the integration of our approaches
into AML as AMLnym. Our best results are obtained using two distinct strate-
gies: for the MA-NCI Human and FMA-NCI tasks the two lexical matchers
(name-based and word-based) are coupled with the synonym extension derived
from UBERON cross-references (NM-WM-XR-SynExt), whereas for the FMA-
SNOMED and SNOMED-NCI they are coupled with the common word removal
synonym extension (NM-WM-CW-SynExt). The only task where we surpass the
best OAEI competitor is the MA-NCI Human, where the use of cross-references
to extend the name properties has a positive impact on performance, with 93.7%
in F-measure, which is 1.4% higher than the top ranked system GOMMA-bk.
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Table 4. Using External Ontologies through cross-references and matching

Matchers MA-NCI H. FMA-NCI FMA-SNM SNM-NCI Ext. Ont.

NM-MM

0.837 0.826 0.412 0.691 FMA

0.826 0.827 0.412 0.691 NCI

0.910 0.849 0.412 0.690

U
B
E
R
O
NXRM 0.917 N.A. N.A. N.A.

+NM 0.926 N.A. N.A. N.A.

NM-XR-SynExt 0.935 0.864 N.A. 0.690

+MM 0.936 N.A. N.A. N.A.

+WM 0.937 N.A. N.A. N.A.

Comparison of the F-measure obtained when using different matching techniques and
external ontologies to support matching. (XRM: cross-references matcher; MM: mediating

matcher; WM: word-based matcher; XR-SynExt: cross-references based synonym extension)

Table 5. Comparison of our approaches with the best OAEI 2012 competitors in each
task.

MA-NCI Human FMA-NCI FMA-SNOMED NCI-SNOMED

A
M
L
+
N
y
m NM-WM-XR-SynExt NM-WM-CW-SynExt

P 0.957 0.940 0.870 0.925

R 0.917 0.802 0.670 0.589

F 0.937 0.869 0.763 0.738

O
A
E
I
2
0
1
2 U
M
L
S

GOMMA-bk GOMMA-bk GOMMA-bk LogMapnoe

P 0.917 0.914 0.826 0.893

R 0.928 0.922 0.912 0.659

F 0.923 0.918 0.886 0.758

n
o
U
M
L
S GOMMA GOMMA LogMapLt

P 0.945 0.834 0.938

R 0.856 0.377 0.560

F 0.898 0.520 0.701

Comparison of the performance obtained by our approaches (AML+Nym) with the
best competitors in OAEI 2012 (GOMMA and LogMap) with and without the use of
UMLS as an external resource (P:Precision; R:Recall; F:F-measure; NM: name-based matcher;

NM: name-based matcher; WM: word-based matcher; XR-SynExt: cross-references based synonym

extension; CW-SynExt: common word removal synonym extension)

For the other three tasks our results are below those obtained by the leading
systems. However, both GOMMA-bk and LogMapnoe use UMLS as an exter-
nal resource. Since the reference alignment is a silver standard based on UMLS,
using the same resource is a biased approach that clearly results in improved
performance. Considering this, we also include in the table the results obtained
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by those systems when using their less elaborate variants, which do not use
UMLS. In FMA-NCI we still remain below GOMMA’s results by 2.9%, but in
the remaining tasks our approaches have a better performance, with an advan-
tage of 24.3% in FMA-SNOMED over GOMMA and 3.7% in SNOMED-NCI
over LogMapLt. However, it is important to note that GOMMA and LogMapLt
differ from their more complete variants in more than just the use of UMLS,
which can also explain part of the drop in performance.

6 Conclusions

We have presented three novel approaches for a better use of an ontology’s ter-
minological properties within ontology matching tasks. These approaches capi-
talize on biomedical ontology properties such as a rich terminology, with several
synonyms of different kinds being encoded, as well as the existence of related
ontologies with overlapping domains.

Our first approach distinguished between different name properties by assign-
ing to them weights that reflect their closeness in meaning to the main name.
Our results demonstrate the success of this strategy, which resulted in an in-
crease in performance for several terminological-based matchers. Furthermore,
we have shown that it is possible to extend the number of name properties of
an ontology through two synonym derivation techniques, one which explores the
reflexive property of synonyms to infer synonymy between words or multi-word
terms that belong to synonym labels, and used these terms to compose new syn-
onym labels, and another based on common word removal. In many cases these
approaches increase the performance of name and word-based matchers up to
competitive levels with more complex strategies based on external resources and
structural approaches. However, the success of the synonym derivation technique
based on synonym terms depends on the existence of synonyms encoded by the
ontologies, which is why it is less suited for ontologies with few synonyms such as
SNOMED. The synonym derivations techniques can be also be used for ontology
extension, since they are able to add novel synonyms to an ontology. Ontology
extension in the biomedical domain is a budding field [25, 26], for which ontology
matching has been identified as a crucial technique [27–29]. Finally, our third
approach consisted in using ontologies with cross-references to the ontologies
being aligned. This was shown to have a high impact on matching performance,
both when the strategy was used to directly produce matches, and when it was
used to extend the number of synonyms within ontologies.

The application of these approaches to OAEI tasks demonstrated the impact
they can have on ontology matching performance. In the anatomy track, our
results were better than those obtained by the best OAEI 2012 participant. In
the three tasks of the large biomed track, our strategies proved insufficient to
place above the leading systems. However, these systems benefit strongly from
using UMLS as an external resource, and also from structural and logic-based
strategies. When we compare our results with simpler versions of the leading
systems that do not use these additional strategies, our approaches produce the



What’s in a ‘nym’? Synonyms in Biomedical Ontology Matching 539

best results in two out of three tasks. These results lead us to believe that the
integration of our approaches in more complex matching strategies, using both
structural and logic-based matchers will lead to an improvement of the current
state of the art in biomedical ontology matching.

Furthermore, our results demonstrate that when there is an adequate external
resource that links both ontologies, using it as a source for synonym extension
can strongly improve matching performance. Ascertaining if an external resource
is relevant for a matching task is then a relevant question, which we will address
in future work. We also hope to address the extension of our synonym derivation
technique to other kinds of relations such as hypernymy and holonymy.

We have demonstrated the importance of an adequate consideration of termi-
nological properties in ontology matching, specifically of distinguishing between
different synonym properties and of extending synonyms based both on ontology
internal knowledge and on references to external resources. Our novel approaches
will become increasingly relevant as ontologies grow and become more refined,
defining more synonyms through distinct properties. We envision that the next
step in exploring synonyms in biomedical ontology matching will include finding
other kinds of relations, not just equivalence, so as to enable linking different
entities such as diseases, symptoms, genes, anatomical structures, phenotypes
and organisms, in a true biomedical Semantic Web.
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Abstract. Large-scale information processing systems are able to ex-
tract massive collections of interrelated facts, but unfortunately trans-
forming these candidate facts into useful knowledge is a formidable
challenge. In this paper, we show how uncertain extractions about enti-
ties and their relations can be transformed into a knowledge graph. The
extractions form an extraction graph and we refer to the task of remov-
ing noise, inferring missing information, and determining which candi-
date facts should be included into a knowledge graph as knowledge graph
identification. In order to perform this task, we must reason jointly about
candidate facts and their associated extraction confidences, identify co-
referent entities, and incorporate ontological constraints. Our proposed
approach uses probabilistic soft logic (PSL), a recently introduced prob-
abilistic modeling framework which easily scales to millions of facts. We
demonstrate the power of our method on a synthetic Linked Data corpus
derived from the MusicBrainz music community and a real-world set of
extractions from the NELL project containing over 1M extractions and
70K ontological relations. We show that compared to existing methods,
our approach is able to achieve improved AUC and F1 with significantly
lower running time.

1 Introduction

The web is a vast repository of knowledge, but automatically extracting that
knowledge at scale has proven to be a formidable challenge. Recent evaluation
efforts have focused on automatic knowledge base population [1,2], and many
well-known broad domain and open information extraction systems exist, in-
cluding the Never-Ending Language Learning (NELL) project [3], OpenIE [4],
and efforts at Google [5], which use a variety of techniques to extract new knowl-
edge, in the form of facts, from the web. These facts are interrelated, and hence,
recently this extracted knowledge has been referred to as a knowledge graph [6].

A key challenge in producing the knowledge graph is incorporating noisy in-
formation from different sources in a consistent manner. Information extraction
systems operate over many source documents, such as web pages, and use a col-
lection of strategies to generate candidate facts from the documents, spanning
syntactic, lexical and structural features of text. Ultimately, these extraction
systems produce candidate facts that include a set of entities, attributes of these
entities, and the relations between these entities which we refer to as the extrac-
tion graph. However errors in the extraction process introduce inconsistencies in
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the extraction graph, which may contain duplicate entities and violate key onto-
logical constraints such as subsumption, mutual exclusion, inverse, domain and
range constraints. Such noise obscures the true knowledge graph, which captures
a consistent set of entities, attributes and relations.

Our work infers the knowledge graph from the extraction graph generated by
an information extraction system. We demonstrate that the errors encountered
by information extraction systems require jointly reasoning over candidate facts
to construct a consistent knowledge graph. Our approach performs entity res-
olution, collective classification and link prediction while also enforcing global
constraints on the knowledge graph, a process which we refer to as knowledge
graph identification.

In order to implement knowledge graph identification, we use probabilistic
soft logic (PSL) [7], a recently introduced framework for reasoning probabilis-
tically over continuously-valued random variables. PSL provides many advan-
tages: models are easily defined using declarative rules with first-order logic
syntax, continuously-valued variables provide a convenient representation of un-
certainty, weighted rules and weight learning capture the importance of model
rules, and advanced features such as set-based aggregates and hard constraints
are supported. In addition, inference in PSL is a convex optimization that is
highly scalable allowing us to handle millions of facts in minutes.

We develop a PSL model for knowledge graph identification that both cap-
tures probabilistic dependencies between facts and enforces global constraints
between entities and relations. Through this model, we define a probability dis-
tribution over interpretations - or truth value assignments to facts - each of which
corresponds to a possible knowledge graph. By performing inference using the
extraction graph and an ontology, we are able to find the most probable knowl-
edge graph. We establish the benefits of our approach on two large datasets:
a synthetic dataset derived from the MusicBrainz community and ontological
relationships defined in the Music Ontology as well as noisy extractions from
NELL, a large-scale operational knowledge extraction system.

Our contributions in this work are 1) formulating the knowledge graph iden-
tification problem that supports reasoning about multiple, uncertain extractor
sources in the presence of ontological constraints; 2) solving knowledge graph
identification efficiently with convex optimization using PSL; and 3) demon-
strating the power of knowledge graph identification by presenting results on
benchmark datasets that are superior to state-of-the-art methods and gener-
ating massive knowledge graphs on the scale of minutes that are infeasible to
compute in competing systems.

2 Related Work

Early work on the problem of jointly identifying a best latent KB from a collec-
tion of noisy facts was considered by Cohen et al. [8], however they considered
only a small subset of KB errors. More recently, Jiang et al. [9] perform knowl-
edge base refinement at a broader scope by using an ontology to relate candidate
extractions and exploring many different modeling choices with Markov Logic
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Networks (MLNs) [10]. Jiang et al. provide a crisp codification of ontological
constraints and candidate facts found in a knowledge base as rules in first-order
logic, contributing an attractive abstraction for knowledge bases which we adopt
in our modeling. However, the choice of MLNs as a modeling framework comes
with certain limitations. In MLNs, all logical predicates must take Boolean truth
values, making it difficult to incorporate the confidence values. Moreover, the
combinatorial explosion of Boolean assignments to random variables makes in-
ference and learning in MLNs intractable optimization problems. Jiang et al.
surmount these obstacles with a number of approximations and demonstrate
the utility of joint reasoning in comparison to a baseline that considers each fact
independently. By using PSL we can avoid these representational and scalability
limitations, and we build on and improve the model of Jiang et al. by including
multiple extractors in our model and reasoning about co-referent entities.

Other research has used relevant techniques for problems related to knowl-
edge graph identification. Namata et al. [11] introduced the problem of graph
identification to uncover the true graph from noisy observations through en-
tity resolution, collective classification, and link prediction. However, Namata’s
approach considered these tasks iteratively and could not easily support logical
constraints such as those found in an ontology. Memory et al. [12] also use PSL to
resolve confounding evidence. Their model performs graph summarization across
multiple ontologies and uses inference only for inferring missing links. Work by
Yao et al. [13] employs joint reasoning at the extractor level by using conditional
random fields to learn selectional preferences for relations.

3 Motivation: Knowledge Graph Identification

In this work, we represent the candidate facts from an information extraction
system as a knowledge graph where entities are nodes, categories are labels
associated with each node, and relations are directed edges between the nodes.
Information extraction systems can extract such candidate facts, and these ex-
tractions can be used to construct an extraction graph. Unfortunately, the ex-
traction graph is often incorrect, with errors such as spurious and missing nodes
and edges, and missing or inaccurate node labels. Our approach, knowledge
graph identification (KGI) combines the tasks of entity resolution, collective
classification and link prediction mediated by rules based on ontological infor-
mation. We motivate the necessity of our approach with examples of challenges
taken from a real-world information extraction system, the Never-Ending Lan-
guage Learner (NELL) [3].

Entity extraction is a common problem: many textual references that initially
look different may refer to the same real-world entity. For example, NELL’s
knowledge base contains candidate facts involving the entities “kyrghyzstan”,
“kyrgzstan”, “kyrgystan”, “kyrgyz republic”, “kyrgyzstan”, and “kyrgistan”
which are all variants or misspellings of the country Kyrgyzstan. In the extracted
knowledge graph, these incorrectly correspond to different nodes. Our approach
uses entity resolution to determine co-referent entities in the knowledge graph,
producing a consistent set of labels and relations for each resolved node.
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country 

Kyrgyzstan Kyrgyz Republic 

bird Bishkek h

SameEnt 

Mut 

Fig. 1. An illustration of the example showing how knowledge graph identification can
resolve conflicting information in an extraction graph. Entities are shown in rectangles,
dotted lines represent uncertain information, solid lines show ontological constraints
and double lines represent co-referent entities found with entity resolution.

Another challenge in knowledge graph construction is inferring labels consis-
tently. For example, NELL’s extractions assign Kyrgyzstan the labels “country”
as well as “bird.” Ontological information suggests that an entity is very unlikely
to be both a country and a bird at the same time. Using the labels of related
entities in the knowledge graph can allow us to determine the correct label of
an entity. Our approach uses collective classification to label nodes in manner
which takes into account ontological information and neighboring labels.

A third problem commonly encountered in knowledge graphs is determining
the relationships between entities. NELL also has many facts relating the loca-
tion of Kyrgyzstan to other entities. These candidate relations include statements
that Kyrgyzstan is located in Kazakhstan, Kyrgyzstan is located in Russia, Kyr-
gyzstan is located in the former Soviet Union, Kyrgyzstan is located in Asia, and
that Kyrgyzstan is located in the US. Some of these possible relations are true,
while others are clearly false and contradictory. Our approach uses link prediction
to predict edges in a manner which takes into account ontological information
and the rest of the inferred structure.

Refining an extraction graph becomes even more challenging as we consider
the interaction between the predictions and take into account the confidences
we have in the extractions. Figure 1 illustrates such a complex example. As
mentioned earlier, NELL’s ontology includes the constraint that the labels “bird”
and “country” are mutually exclusive. Reasoning collectively allows us to resolve
which of these two labels is more likely to apply to Krygyzstan. For example,
NELL is highly confident that the Kyrgyz Republic has a capital city, Bishkek.
The NELL ontology specifies that the domain of the relation “hasCapital” has
label “country.” Entity resolution allows us to infer that “Kyrgyz Republic”
refers to the same entity as “Kyrgyzstan.” Deciding whether Kyrgyzstan is a
bird or a country now involves a prediction where we include the confidence
values of the corresponding “bird” and “country” facts from co-referent entities,
as well as collective features from ontological relationships of these co-referent
entities, such as the confidence values of the “hasCapital” relations. We refer
to this process of inferring a knowledge graph from a noisy extraction graph
as knowledge graph identification. Unlike earlier work on graph identification
and knowledge base refinement, we use a very different probabilistic framework,
PSL, allowing us to jointly infer a knowledge graph while incorporating extractor
confidence values and supporting a rich collection of ontological constraints.
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4 Background: Probabilistic Soft Logic

Probabilistic soft logic (PSL) [7,14] is a recently-introduced framework which
allows users to specify rich probabilistic models over continuous-valued random
variables. Like other statistical relational learning languages such as Markov
Logic Networks (MLNs), it uses first-order logic to describe features that define
a Markov network. In contrast to other approaches, PSL employs continuous-
valued random variables rather than binary variables and casts most probable
explanation (MPE) inference as a convex optimization problem that is signifi-
cantly more efficient to solve than its combinatorial counterpoint (polynomial
vs. exponential).

A PSL model is composed of a set of weighted, first-order logic rules, where
each rule defines a set of features of a Markov network sharing the same weight.
Consider the formula

P(A,B)∧̃Q(B,C)
w⇒ R(A,B,C)

which is an example of a PSL rule. Here w is the weight of the rule, A, B,
and C are universally-quantified variables, and P, Q and R are predicates. A
grounding of a rule comes from substituting constants for universally-quantified
variables in the rule’s atoms. In this example, assigning constant values a, b,
and c to the respective variables in the rule above would produce the ground
atoms P(a,b), Q(b,c), R(a,b,c). Each ground atom takes a soft-truth value in
the range [0, 1].

PSL associates a numeric distance to satisfaction with each ground rule that
determines the value of the corresponding feature in the Markov network. The
distance to satisfaction is defined by treating the ground rule as a formula over
the ground atoms in the rule. In particular, PSL uses the Lukasiewicz t-norm
and co-norm to provide a relaxation of the logical connectives, AND (∧), OR(∨),
and NOT(¬), as follows (where relaxations are denoted using the ∼ symbol over
the connective): p∧̃q = max(0, p+ q − 1)

p∨̃q = min(1, p+ q)

¬̃p = 1− p

This relaxation coincides with Boolean logic when p and q are in {0, 1}, and
provides a consistent interpretation of soft-truth values when p and q are in the
numeric range [0, 1].

A PSL program, Π, consisting of a model as defined above, along with a
set of facts, F , produces a set of ground rules, R. If I is an interpretation (an
assignment of soft-truth values to ground atoms) and r is a ground instance of
a rule, then the distance to satisfaction φr(I) of r is 1 − Tr(I), where Tr(I) is
the soft-truth value from the Lukasiewicz t-norm. We can define a probability
distribution over interpretations by combining the weighted degree of satisfaction
over all ground rules, R, and normalizing, as follows:

f(I) =
1

Z
exp

[
−
∑
r∈R

wrφr(I)
p

]
Here Z is a normalization constant, wr is the weight of rule r, and p in {1, 2}
allows a linear or quadratic combination of rules. Thus, a PSL program (set
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of weighted rules and facts) defines a probability distribution from a logical
formulation that expresses the relationships between random variables.

MPE inference in PSL determines the most likely soft-truth values of unknown
ground atoms using the values of known ground atoms and the dependencies be-
tween atoms encoded by the rules, corresponding to inference of random variables
in the underlying Markov network. PSL atoms take soft-truth values in the inter-
val [0, 1], in contrast to MLNs, where atoms take Boolean values. MPE inference
in MLNs requires optimizing over combinatorial assignments of Boolean truth
values. In contrast, the relaxation to the continuous domain greatly changes
the tractability of computations in PSL: finding the most probable interpreta-
tion given a set of weighted rules is equivalent to solving a convex optimization
problem. Recent work from [15] introduces a consensus optimization method
applicable to PSL models; their results suggest consensus optimization scales
linearly with the number of ground rules in the model.

5 Knowledge Graph Identification Using PSL

Knowledge graphs contain three types of facts: facts about entities, facts about
entity labels and facts about relations. We represent entities with the logical
predicate Ent(E) and labels with the logical predicate Lbl(E,L) where entity E
has label L. Relations are represented with the logical predicate Rel(E1,E2,R)
where the relation R holds between the entities E1 and E2, eg. R(E1,E2).

In knowledge graph identification, our goal is to identify a true set of atoms
from a set of noisy extractions. Our method for knowledge graph identification
incorporates three components: capturing uncertain extractions, performing en-
tity resolution, and enforcing ontological constraints. We show how we create
a PSL program that encompasses these three components, and then relate this
PSL program to a distribution over possible knowledge graphs.

5.1 Representing Uncertain Extractions

We relate the noisy extractions from an information extraction system to the
above logical predicates by introducing candidate predicates, using a formulation
similar to [9]. For each candidate entity, we introduce a corresponding predicate,
CandEnt(E). Labels or relations generated by the information extraction sys-
tem correspond to predicates CandLbl(E,L) or CandRel(E1,E2,R) in our sys-
tem. Uncertainty in these extractions is captured by assigning these predicates
a soft-truth value equal to the confidence value from the extractor. For exam-
ple, the extraction system might generate a relation, hasCapital(kyrgyzstan,
Bishkek) with a confidence of .9, which we would represent as CandRel(-
kyrgyzstan,Bishkek, hasCapital) and assign it a truth value of .9.

Information extraction systems commonly use many different extraction tech-
niques to generate candidates. For example, NELL produces separate extractions
from lexical, structural, and morphological patterns, among others. We repre-
sent metadata about the technique used to extract a candidate by using sepa-
rate predicates for each technique T, of the form CandRelT and CandLblT .
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These predicates are related to the true values of attributes and relations we
seek to infer using weighted rules.

CandRelT (E1, E2, R)
wCR−T⇒ Rel(E1, E2, R)

CandLblT (E,L)
wCL−T⇒ Lbl(E,L)

Together, we denote the set of candidates, generated from grounding the rules
above using the output from the extraction system, as the set C.

5.2 Entity Resolution

While the previous PSL rules provide the building blocks of predicting links
and labels using uncertain information, knowledge graph identification employs
entity resolution to pool information across co-referent entities. A key compo-
nent of this process is identifying possibly co-referent entities and determining
the similarity of these entities, which we discuss in detail in Section 6. We use
the SameEnt predicate to capture the similarity of two entities, for example
SameEnt(kyrgyzstan, kyrgz republic).

To perform entity resolution using the SameEnt predicate we introduce three
rules, whose groundings we refer to as S, to our PSL program:

SameEnt(E1, E2)∧̃Lbl(E1, L)
wEL⇒ Lbl(E2, L)

SameEnt(E1, E2)∧̃Rel(E1, E,R)
wER⇒ Rel(E2, E,R)

SameEnt(E1, E2)∧̃Rel(E,E1, R)
wER⇒ Rel(E,E2, R)

These rules define an equivalence class of entities, such that all entities related
by the SameEnt predicate must have the same labels and relations. The soft-
truth value of the SameEnt, derived from our similarity function, mediates the
strength of these rules. When two entities are very similar, they will have a high
truth value for SameEnt, so any label assigned to the first entity will also be
assigned to the second entity. On the other hand, if the similarity score for two
entities is low, the truth values of their respective labels and relations will not
be strongly constrained. We introduce these rules as weighted rules in the PSL
model, where the weights can capture the reliability of the similarity function.

5.3 Enforcing Ontological Constraints

In our PSL program we also leverage rules corresponding to an ontology, the
groundings of which are denoted as O. Our ontological rules are based on the
logical formulation proposed in [9]. Each type of ontological relation is repre-
sented as a predicate, and these predicates represent ontological knowledge of
the relationships between labels and relations. For example, the ontological pred-
icatesDom(hasCapital, country) andRng(hasCapital, city) specify that the
relation hasCapital is a mapping from entities with label country to entities
with label city. The predicate Mut(country, city) specifies that the labels
country and city are mutually exclusive, so that an entity cannot have both
the labels country and city. We similarly use predicates for subsumption of
labels (Sub) and relations(RSub), and inversely-related functions (Inv). To use
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this ontological knowledge, we introduce rules relating each ontological predicate
to the predicates representing our knowledge graph. We specify seven types of
ontological constraints in our experiments using weighted rules:

Dom(R,L) ∧̃ Rel(E1, E2, R)
wO⇒ Lbl(E1, L)

Rng(R,L) ∧̃ Rel(E1, E2, R)
wO⇒ Lbl(E2, L)

Inv(R,S) ∧̃ Rel(E1, E2, R)
wO⇒ Rel(E2, E1, S)

Sub(L, P ) ∧̃ Lbl(E,L)
wO⇒ Lbl(E,P )

RSub(R,S) ∧̃ Rel(E1, E2, R)
wO⇒ Rel(E1, E2, S)

Mut(L1, L2) ∧̃ Lbl(E,L1)
wO⇒ ¬̃Lbl(E,L2)

RMut(R,S) ∧̃ Rel(E1, E2, R)
wO⇒ ¬̃Rel(E1, E2, S)

5.4 Probability Distribution over Uncertain Knowledge Graphs

Combining the logical rules introduced in this section with atoms, such as can-
didates from the information extraction system (e.g. CandRel(kyrgyzstan,
Bishkek, hasCapital)), co-reference information from an entity resolution sys-
tem (e.g. SameEnt(kyrgyzstan, kyrgz republic)) and ontological informa-
tion (e.g. Dom(hasCapital, country)) we can define a PSL program, Π. The
inputs to this program instantiate a set of ground rules, R, that consists of the
union of groundings from uncertain candidates, C, co-referent entities, S, and
ontological relationships, O. The distribution over interpretations, I, generated
by PSL corresponds to a probability distribution over knowledge graphs, G:

PΠ(G) = f(I) =
1

Z
exp

[∑
r∈R

wrφr(I)
p

]
The results of inference provide us with the most likely interpretation, or soft-
truth assignments to entities, labels and relations that comprise the knowledge
graph. By choosing a threshold on the soft-truth values in the interpretation, we
can select a high-precision set of facts to construct a knowledge graph.

6 Experimental Evaluation

6.1 Datasets and Experimental Setup

We evaluate our method on two different datasets: a synthetic knowledge base de-
rived from the LinkedBrainz project [16], which maps data from the MusicBrainz
community using ontological information from the MusicOntology [17] as well as
web-extractiondata fromtheNever-EndingLanguageLearning (NELL)project [3].
Our goal is to assess the utility of knowledge graph identification, formulated as a
PSL model, at inferring a knowledge graph from noisy data. Additionally, we con-
trast two very different evaluation settings. In the first, as used in previous work [9]
inference is limited to a subset of the knowledge graph generated from the test or
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Fig. 2. Subset of Music Ontology mapped using LinkedBrainz for MusicBrainz data in
our synthetic dataset

query set. In the second evaluation setting, inference produces a complete knowl-
edge graph,which is not restrictedby the test set but employs a soft-truth threshold
for atoms. We provide documentation, code and datasets to replicate our results
on GitHub1.

MusicBrainz. MusicBrainz is a community-driven, open-source, structured
database for music metadata, including information about artists, albums, and
tracks, The Music Ontology is built on top of many well known ontologies, such
as FRBR [18] and FOAF [19], and has been used widely, for instance in BBC
Music Linked Data sites [20]. However, the relational data available from Mu-
sicBrainz are expressed in a proprietary schema that does not map directly to
the Music Ontology. To bridge this gap, the LinkedBrainz project publishes an
RDF mapping between the freely available MusicBrainz data and the Music
Ontology using D2RQ [21]. A summary of the labels and relations we use in
our data is show in Figure 2. We use an intuitive mapping of ontological rela-
tionships to the PSL predicates, using ontological information from FRBR and
FOAF classes used by the Music Ontology. Specifically we convert rdfs:domain
to Dom, rdfs:range to Rng, rdfs:subClassOf to Sub, rdfs:subPropertyOf
to RSub, owl:inverseOf to Inv, and owl:disjointWith to Mut.

Our synthetic knowledge graph uses a sample of data from the LinkedBrainz
mapping of the MusicBrainz project2 and adds noise to generate a realistic data
set. To generate a subset of the LinkedBrainz data, we use snowball sampling
from a set of tracks in the MusicBrainz dataset to produce a set of recordings,
releases, artists and labels. Next, we introduce noise into this graph by randomly
removing known facts and adding inconsistent facts as well as generating random
confidence values for these facts. This noise can be interpreted as errors intro-
duced by a MusicBrainz user misspelling artist names, accidentally switching
input fields, or omitting information when contributing to the knowledge base.

We model these errors by distorting a percentage of the true input data. For
labels, we omit known labels and introduce spurious labels for 25% of the facts

1 https://github.com/linqs/KnowledgeGraphIdentification
2 http://linkedbrainz.c4dmpresents.org/content/rdf-dump

https://github.com/linqs/KnowledgeGraphIdentification
http://linkedbrainz.c4dmpresents.org/content/rdf-dump
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in the input data. When dealing with relations, we focus on the foaf:maker

and foaf:made relations between artists and creative works. We randomly re-
move one of these pair of relations 25% of the time. Finally, 25% of the time we
remove the relationship between a work and its artist, and insert a new relation-
ship between the work and a generated artist, adding a SameEnt for these two
artists. The confidence values for facts found in the input are generated from a
Normal(.7, .2) distribution while inconsistent facts have lower confidence values
generated from a Normal(.3, .2) distribution. The high variance in these distri-
butions ensures a significant overlap. For the SameEnt the similarity values
are generated from a Normal(.9, .1) distribution. In all cases, the distribution is
thresholded to the [0, 1] range.

We summarize important data statistics in Table 1. In our experiments, we
represent the noisy relations and labels of the knowledge graph as candidate
facts in PSL with the predicates CandLbl and CandRel. During evaluation,
we use the PSL program for knowledge graph identification to infer the most
probable knowledge graph. In this setting, we use quadratic combinations of
static weights for all rules, where wCL = wCR = 1, wEL = wER = 25 and
wO = 100. We evaluate our results by comparing to the true knowledge graph
used to generate the data, and include false labels corresponding to spurious
data we introduce.

NELL. The goal of NELL is to iteratively generate a knowledge base. In each it-
eration, NELL uses facts learned from the previous iteration and a corpus of web
pages to generate a new set of candidate facts. NELL selectively promotes those
candidates that have a high confidence from the extractors and obey ontological
constraints with the existing knowledge base to build a high-precision knowledge
base. We present experimental results on the 165th iteration of NELL, using the
candidate facts, promoted facts and ontological relationships that NELL used
during that iteration. We summarize the important statistics of this dataset in
Table 1. Due to the diversity of the web, the data from NELL is larger, includes
more types of relations and categories, and has more ontological relationships
than our synthetic data.

NELL uses diverse extraction sources, and in our experiments we use dis-
tinct predicates CandLblT and CandRelT for the sources CBL, CMC, CPL,
Morph, and SEAL while the remaining sources, which do not contribute a signifi-
cant number of facts, are represented with CandLbl andCandRel predicates.
In addition to candidate facts, NELL uses a heuristic formula to “promote” can-
didates in each iteration of the system into a knowledge base, however these
promotions are often noisy so the system assigns each promotion a confidence
value. We represent these promoted candidates from previous iterations as an
additional source with corresponding candidate predicates.

In addition to data from NELL, we use data from the YAGO database [22] as
part of our entity resolution approach. Our model uses a SameEnt predicate to
capture the similarity of two entities. To correct against the multitude of variant
spellings found in the data, we use a mapping technique from NELL’s entities
to Wikipedia articles. We then define a similarity function on the article URLs,
using the similarity as the soft-truth value of the SameEnt predicate.
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The YAGO database contains entities which correspond to Wikipedia articles,
variant spellings and abbreviations of these entities, and associated WordNet
categories. Our approach to entity resolution matches entity names in NELL with
YAGO entities. We perform selective stemming on the NELL entities, employ
blocking on candidate labels, and use a case-insensitive string match to find
corresponding YAGO entities. Once we find a matching set of YAGO entities,
we can generate a set of Wikipedia URLs that map to the corresponding NELL
entities. We can judge the similarity of two entities by computing a set-similarity
measure on the Wikipedia URLs associated with the entities. For our similarity
score we use the Jaccard index, the ratio of the size of the set intersection and
the size of the set union.

In our experiments using NELL, we consider two scenarios. The first is sim-
ilar to experimental setup in [9] where rule weights are learned using training
data and predictions are made on a limited neighborhood of the test set. The
neighborhood used in this previous work attempts to improve scalability by gen-
erating a grounding of the test set and only including atoms that are not trivially
satisfied in this grounding. In practice, this produces a neighborhood that is dis-
torted by omitting atoms that may contradict those in the test set. For example,
if ontological relationships such as Sub(country,location) and Mut(country,
city) are present, the test set atom Lbl(kyrgyzstan,country) would not intro-
duce Lbl(kyrgyzstan,city) or Lbl(country,location) into the neighborhood,
even if contradictory data were present in the input candidates. By removing the
ability to reason about contradictory information, we believe this evaluation set-
ting diminishes the true difficulty of the problem. We validate our approach on
this setting, but also present results from a more realistic setting. In the second
scenario we perform inference independently of the test set, lazily generating
truth values for atoms supported by the input data, using a soft-truth value
threshold of .01. This second setting allows us to infer a complete knowledge
graph similar to the MusicBrainz setting.

6.2 Knowledge Graph Identification Results for MusicBrainz

Our experiments on MusicBrainz data attempt to recover the complete knowl-
edge graph despite the addition of noise which introduces uncertainty for facts,
removes true information and adds spurious labels and relations. We evaluate a
number of variants on their ability to recover this knowledge graph. We measure
performance using a number of metrics: the area under the precision-recall curve
(AUC), as well as the precision, recall and F1 score at a soft-truth threshold of
.5, as well as the maximum F1 score on the dataset. Due to the high variance of
confidence values and large number of true facts in the ground truth, the maxi-
mum F1 value occurs at a soft-truth threshold of 0, where recall is maximized,
in all variants. These results are summarized in Table 2.

The first variant we consider uses only the input data, setting the soft-truth
value equal to the generated confidence value as an indicator of the underlying
noise in the data. The baseline results use only the candidate rules we introduced
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Table 1. Summary of dataset statistics for NELL and MusicBrainz, including (a) the
number of candidate facts in input data, the distinct relations and labels present, and
(b) the number of ontological relationships defined between these relations and labels

(a)

NELL MusicBrainz

Cand. Label 1.2M 320K
Cand. Rel 100K 490K
Promotions 440K 0

Unique Labels 235 19
Unique Rels 221 8

(b)

NELL MusicBrainz

Dom 418 8
Rng 418 8
Inv 418 2
Mut 17.4K 8
RMut 48.5K 0
Sub 288 21
RSub 461 2

Table 2. A comparison of knowledge graph identification methods on MusicOntology
data shows knowledge graph identification effectively combines the strengths of graph
identification and reasoning with ontological information and produces superior results

Method AUC Prec Recall F1 Max F1

Baseline 0.672 0.946 0.477 0.634 0.788
PSL-EROnly 0.797 0.953 0.558 0.703 0.831
PSL-OntOnly 0.753 0.964 0.605 0.743 0.832

PSL-KGI-Complete 0.901 0.970 0.714 0.823 0.919

in subsection 5.1. We improve upon this data by adding either the entity res-
olution rules introduced in subsection 5.2, which we report as PSL-EROnly, or
with weighted rules capturing ontological constraints introduced in subsection
5.3. Finally, we combine all the elements of knowledge graph identification intro-
duced in section 5 and report these results as PSL-KGI-Complete. The results
on the baseline demonstrate the magnitude of noise in the input data; less than
half the facts in the knowledge graph can be correctly inferred. Reasoning jointly
about co-referent entities, as in graph identification, improves results. Using on-
tological constraints, as previous work in improving extraction in this domain
has, also improves results as well. Comparing these two improvements, adding
entity resolution has a higher AUC, while ontological constraints show a greater
improvement in F1 score. However, when these two approaches are combined, as
they are in knowledge graph identification, results improve dramatically. Know-
eldge graph identification increases AUC, precision, recall and F1 substantially
over the the other variants, improving AUC and F1 over 10% compared to the
more competitive baseline methods. Overall, we are able to infer 71.4% of true
relations while maintaining a precision of .97. Moreover, a high AUC of .901
suggests that knowledge graph identification balances precision and recall for a
wide range of parameter values.
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6.3 Knowledge Graph Identification Results for NELL

Comparison to Previous Work. While results on data with synthetic noise
confirm our hypothesis, we are particularly interested in the results on a large,
noisy real-world dataset. We compare our method to data from iteration 165 of
NELL using previously reported results on a manually-labeled evaluation set [9].
A summary of these results is shown in Table 3. The first method we compare to
is a baseline similar to the one used in the MusicBrainz results where candidates
are given a soft-truth value equal to the extractor confidence (averaged across
extractors when appropriate). Results are reported at a soft-truth threshold of
.45 which maximizes F1.

We also compare the default strategy used by the NELL project to choose
candidate facts to include in the knowledge base. Their method uses the ontology
to check the consistency of each proposed candidate with previously promoted
facts already in the knowledge base. Candidates that do not contradict previous
knowledge are ranked using a heuristic rule based on the confidence scores of
the extractors that proposed the fact, and the top candidates are chosen for
promotion subject to score and rank thresholds. Note that the NELL method
includes judgments for all input facts, not just those in the test set.

The third method we compare against is the best-performing MLN model
from [9], that expresses ontological constraints, and candidate and promoted
facts through logical rules similar to those in our model. The MLN uses ad-
ditional predicates that have confidence values taken from a logistic regression
classifier trained using manually labeled data. The MLN uses hard ontological
constraints, learns rule weights considering rules independently and using logis-
tic regression, scales weights by the extractor confidences, and uses MC-Sat with
a restricted set of atoms to perform approximate inference, reporting output at a
.5 marginal probability cutoff, which maximizes the F1 score. The MLN method
only generates predictions for a 2-hop neighborhood generated by conditioning
on the values of the query set, as described earlier.

Our method, PSL-KGI, uses PSL with quadratic, weighted rules for onto-
logical constraints, entity resolution, and candidate and promoted facts as well
as incorporating a prior. We also incorporate the predicates generated for the
MLN method for a more equal comparison. We learn weights for all rules, includ-
ing the prior, using a voted perceptron learning method. The weight learning
method generates a set of target values by running inference and conditioning on
the training data, and then chooses weights that maximize the agreement with
these targets in absence of training data. Since we represent extractor confidence
values as soft-truth values, we do not scale the weights of these rules. Using the
learned weights, we perform inference on the same neighborhood defined by the
query set that is used by the MLN method. We report these results, using a soft-
truth threshold of .55 to maximize F1, as PSL-KGI. As Table 3 shows, knowledge
graph identification produces modest improvements in both F1 and AUC.

Analyzing Variations of Knowledge Graph Identification. To better un-
derstand the contributions of various components of our model, we explore
variants that omit one aspect of the knowledge graph identification model.
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Table 3. Comparing against previous work on the NELL dataset, knowledge graph
identification using PSL demonstrates a substantive improvement

Method AUC Prec Recall F1

Baseline 0.873 0.781 0.881 0.828
NELL 0.765 0.801 0.580 0.673
MLN 0.899 0.837 0.837 0.836

PSL-KGI 0.904 0.777 0.944 0.853

Table 4. Comparing variants of PSL graph identification show the importance of on-
tological information, but the best performance is achieved when all of the components
of knowledge graph identification are combined

Method AUC Prec Recall F1

PSL-NoSrcs 0.900 0.770 0.955 0.852
PSL-NoER 0.899 0.778 0.944 0.853
PSL-NoOnto 0.887 0.813 0.839 0.826
PSL-KGI 0.904 0.777 0.944 0.853

Table 5. Producing a complete knowledge graph reduces performance on the test set,
suggesting that the true complexity of the problem is masked when generating a limited
set of inferences

Method AUC Prec Recall F1

NELL 0.765 0.801 0.580 0.673
PSL-KGI-Complete 0.718 0.709 0.929 0.804

PSL-KGI 0.904 0.777 0.944 0.853

PSL-NoSrcs removes predicates CandLblT and CandRelT for different can-
didate sources, replacing them with a single CandLbl or CandRel with the
average confidence value across sources. PSL-NoER removes rules from subsec-
tion 5.2 used to reason about co-referent entities. PSL-NoOnto removes rules
from subsection 5.3 that use ontological relationships to constrain the knowl-
edge graph. While source information and entity resolution both provide bene-
fits, ontological information is clearly a principal contributor to the success of
knowledge graph identification. One drawback of our comparisons to previous
work is the restriction of the model to a small set of inference targets. The con-
struction of this set obscures some of the challenges presented in real-world data,
such as conflicting evidence. To assess the performance of our method in a set-
ting where inference targets do not restrict potentially contradictory inferences,
we also ran knowledge graph identification using the same learned weights but
with no predefined set of targets, allowing lazy inference to produce a complete
knowledge graph. The resulting inference produces a total of 4.9M total facts,
which subsumes the test set. We report results on the test set as PSL-KGI-
Complete. Allowing the model to optimize on the full knowledge graph instead
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of just the test set reduced the performance as measured by the particular test
set, suggesting that the noise introduced by conflicting evidence does have a
significant impact on results. Compared to the NELL scoring method, KGI has
lower AUC and precision but higher recall and F1. One possible explanation
for this lackluster performance may be the use of weights learned for a differ-
ent setting. For example, during weight learning the weights for the Mut rule
dropped significantly. However, as results on the MusicBrainz data show, knowl-
edge graph identification can be very powerful at recovering a full knowledge
graph.

Scalability. One advantage of using PSL for knowledge graph identification is
the ability to frame complex joint reasoning as a convex optimization. Knowledge
graph identification implemented in PSL can handle problems from real-world
datasets like NELL, which include millions of candidate facts. Inference when an
explicit query set of 70K facts is given (PSL-KGI) requires a mere 10 seconds.
The MLN method we compare against takes a few minutes to an hour to run for
the same setting. When inferring a complete knowledge graph without known
query targets, as in the LinkedBrainz and complete NELL experiments, inference
with MLNs is infeasible. In contrast, knowledge graph identification on the NELL
dataset can produce the complete knowledge graph containing 4.9M facts in
only 130 minutes. The ability to produce complete knowledge graphs in these
realistic settings is an important feature of our implementation of knowledge
graph identification.

7 Conclusion

We have described how to formulate the problem of knowledge graph identifica-
tion: jointly inferring a knowledge graph from the noisy output of an information
extraction system through a combined process of determining co-referent enti-
ties, predicting relational links, collectively classifying entity labels, and enforc-
ing ontological constraints. Using PSL, we illustrate the benefits of our approach
on two knowledge graph inference problems: synthetic data from MusicBrainz
and noisy, real-world web extractions from NELL. On both datasets, knowledge
graph identification produces superior results by combining the strengths of on-
tological reasoning with graph identification. Moreover, our method is solved
through efficient convex optimization allowing previously infeasible problems
to be solved on the order of minutes. In the future, we hope to apply knowl-
edge graph identification to larger, more varied problems with richer ontological
relationships.
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Abstract. We present the architecture and technologies underpinning
the OBDA system Ontop and taking full advantage of storing data in
relational databases. We discuss the theoretical foundations of Ontop:
the tree-witness query rewriting, T -mappings and optimisations based
on database integrity constraints and SQL features. We analyse the per-
formance of Ontop in a series of experiments and demonstrate that, for
standard ontologies, queries and data stored in relational databases, On-
top is fast, efficient and produces SQL rewritings of high quality.

1 Introduction

Ontology-based data access (OBDA) [6,11,22] is regarded as a key ingredient for
the new generation of information systems, especially for Semantic Web appli-
cations that involve large amounts of data. In the OBDA paradigm, an ontology
defines a high-level global schema and provides a vocabulary for user queries,
thus isolating the user from the details of the structure of data sources (which
can be relational databases, triple stores, datalog engines, etc.). The OBDA sys-
tem transforms user queries into the vocabulary of the data and then delegates
the actual query evaluation to the data sources.

In this paper, we concentrate on OBDA with ontologies given in OWL2QL,
a profile of OWL2 designed to support rewriting of conjunctive queries (CQs)
over ontologies into first-order (FO) queries. A standard architecture of such an
OBDA system over relational data sources can be represented as follows:

CQ q

ontology T

FO q′

mapping

SQL

data DABox A

+

rewriting

+

unfolding

+

ABox virtualisation

The user is given an OWL2QL ontology T and can formulate CQs q(x) in the
signature of T . The system rewrites q and T into an FO-query q′(x), called
a rewriting of q and T , such that (T ,A) |= q(a) iff A |= q′(a), for any set
A of ground atoms (called an ABox) in the signature of T and any tuple a
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of individuals in A. A number of different rewriting techniques have been pro-
posed and implemented for OWL2QL (PerfectRef [22], Presto/Prexto [27,26],
Rapid [5], the tree-witness rewriting [15]) and its extensions ([16], Nyaya [9],
Requiem/Blackout [20,21], Clipper [7]).

The rewriting q′ is formulated in the signature of T and, before evaluation,
has to be further transformed into the vocabulary of the data source D. For
instance, q′ can be unfolded into an SQL query by means of a GAV mapping M
relating the signature of T to the vocabulary of D. Strangely enough, mappings
and unfoldings have largely been ignored by query rewriting algorithms (with
Mastro-I [22] being an exception), partly because the data was assumed to be
given as an ABox (say, as a universal table in a database or as a triple store).
We consider the query transformation process as consisting of two steps—query
rewriting and unfolding—and argue that this brings practical benefits (even in
the case of seemingly trivial mappings for universal tables or triple stores).

The performance of first OBDA systems based on the architecture above was
marred by large rewritings that could not be processed by RDBMSs, which led
the OBDA community to intensive investigations of rewriting techniques and
optimisations. There are 3 main reasons for large CQ rewritings and unfoldings:

(E) Sub-queries of q with existentially quantified variables can be folded in
many different ways to match the canonical models of possible knowledge
bases (T ,A), all of which must be reflected in the rewriting q′.

(H) Classes/properties occurring in q can have many subclasses/subproperties
according to T , which all have to be included in the rewriting q′.

(M) The mappingM can have multiple definitions of the ontology terms, which
may result in an exponential blowup when q′ is unfolded into a (most suitable
for RDBMSs) union of Select-Project-Join queries.

In fact, most of the proposed techniques produce rewritings in the form of unions
of CQs (UCQs) and try to tame (E) using various optimisations in unification
strategies to reduce the size of rewritings, with expensive CQ containment as the
last resort. Presto [27] and the tree-witness rewriting [15] use nonrecursive data-
log to deal with (H); this, however, is of little help if a further transformation to
a UCQ is required. The combined approach [17] constructs finite representations
of (in general) infinite canonical models of (T ,A) thereby totally removing (H).
It also solves (E) for ontologies without role inclusions; otherwise, rewritings
can still be of exponential size, or the filtering procedure [19] may have to run
exponentially many times.

In theory, (E) turns out to be incurable under the architecture above: there
are CQs and OWL2QL ontologies for which any FO- (or nonrecursive datalog)
rewriting is superpolynomial (or exponential) [13,14], which happens indepen-
dently of the contribution of (H) and (M); the polynomial rewriting of [10] hides
this blowup behind extra existential quantifiers. Fortunately, it seems that only
(artificially) complex CQs and ontologies trigger issues with (E). Our experi-
ments show that, for standard benchmark CQs and ontologies, the number of
foldings in (E) is small and can be efficiently dealt with by the tree-witness
rewriting.
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In this paper, we attack both (H) and (M) at the same time using two key
observations. First, the schema and integrity constraints (dependencies), Σ, of
the data source D together with the mapping M often provide valuable infor-
mation about the class of possible ABoxes over which the user CQ is rewritten.
(These ABoxes are virtual representations of D and are not materialised.) For
example, if we know that all our virtual ABoxes A are ∃-complete with respect
to T (that is, contain witnesses for all ∃R in T ) then we can ignore (E); if
all A are H-complete (that is, A contains A(a) whenever it contains B(a) and
T |= B � A, and similarly for properties) then the problem (H) does not exist.
Second, we can make the virtual ABoxes H-complete by taking the composition
of T and M as a new mapping. This composition, called a T -mapping [24], can
be simplified with the help of Σ and the features of the target query language
before being used in the unfolding. As the simplifications use Σ, they preserve
correct answers only over database instances satisfying Σ. (Even if the mappings
are trivial and the data comes from a universal table or a triple store, it often
has a certain structure and satisfies certain constraints, which could be taken
into account to make query answering more efficient [12]).

These observations underpin the system Ontop (ontop.inf.unibz.it) imple-
mented at the Free University of Bozen-Bolzano and available as a plugin for
Protégé 4, SPARQL end-point and OWLAPI and Sesame libraries. The process
of query rewriting and unfolding in Ontop with all optimisations is shown below
(the dashed lines show processes that aid explanations but do not take place):

CQ q

ontology T

UCQ qtw

T -mappingmappingM

dependencies Σ

SQL

data D

virtual ABox

H-complete ABox A

+

tw-rewriting ➊

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

H-completion

+

composition ➋
SQO

➌

SQ
O

➍

This architecture, which is our main theoretical contribution, will be discussed
in detail in Section 2. Here we only emphasise the key ingredients:

➊ the tree-witness rewriting qtw assumes the virtual ABoxes to be H-complete;
it separates the topology of q from the taxonomy defined by T , is fast in
practice and produces short UCQs;

➋ the T -mapping combines the system mapping M with the taxonomy of T
to ensure H-completeness of virtual ABoxes;

➌ the T -mapping is simplified using the Semantic Query Optimisation (SQO)
technique and SQL features; the T -mapping is constructed and optimised
for the given T and Σ only once, and is used to unfold all rewritings qtw;

➍ the unfolding algorithm uses SQO to produce small and efficient SQL queries.

ontop.inf.unibz.it
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In Section 3, we evaluate the performance of Ontop and compare it with other
systems using a number of standard ontologies, including LUBM with generated
data and the Movie Ontology with real data. Our experimental results show that
UCQ rewritings over arbitrary ABoxes are not scalable in the presence of class
and property hierarchies; in contrast to that, rewritings of real-world queries
and ontologies over H-complete ABoxes (or equivalent datalog rewritings) turn
out to be unions of few (at most two, in our experiments) CQs whose size does
not exceed (in fact, is often smaller than) the size of the original query. Class
and property hierarchies can be tackled by optimisations of T -mappings and
the SQO, which use the structure of databases and integrity constraints, so that
Ontop automatically produces SQL queries of reasonably high quality. As a
result, Ontop successfully competes with and often outperforms systems based
on materialisation of inferences.

2 The Architecture of Ontop

We begin by describing the three main ingredients of Ontop: the tree-witness
rewriting over H-complete ABoxes, T -mappings and the unfolding algorithm. To
avoid long formulas, we use the DL parlance [2] for OWL2QL ontologies and the
datalog notation for conjunctive queries. Thus, subclass axioms are of the form
A1 � A2, for concept (class) names Ai; property inclusions are R1 � R2, where
the Ri are role (object and datatype property) names or their inverses; and
property P domain and range axioms are ∃P � A1 and ∃P− � A2, respectively.
Conjunctive queries (CQs) are of the form q(x) ← α1, . . . , αn, where x is a
vector of answer variables and each αi is a unary or binary atom (the variables
in the αi that are not in x are existentially quantified). Throughout the paper,
we identify atoms P−(y, x) and P (x, y) (in query heads, bodies and ABoxes).

Suppose we are given a CQ q(x) and an OWL2QL ontology T . Ontop starts
its work by constructing the semantic-based tree-witness rewriting of q and T
over H-complete ABoxes. We say that an ABox A is H-complete with respect to
T in case it satisfies the following conditions:

A(a) ∈ A if A′(a) ∈ A, T |= A′ � A or R(a, b) ∈ A, T |= ∃R � A,

P (a, b) ∈ A if R(a, b) ∈ A and T |= R � P.

2.1 Tree-Witness Rewriting over H-Complete ABoxes

We explain the essence of the tree-witness rewriting using an example; a formal
definition can be found in [25]. Consider an ontology T with the axioms

RA � ∃worksOn.Project, Project � ∃isManagedBy.Prof, (1)

worksOn− � involves, isManagedBy � involves, (2)

and the CQ q(x) asking to find those who work with professors:

q(x) ← worksOn(x, y), involves(y, z), Prof(z).
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Observe that if a model I of (T ,A), for some ABox A, contains individuals
a ∈ RAI and b ∈ ProjectI then I must also contain the following fragments:

a

RA Project

u

Prof

vworksOn

involves−

isManagedBy

involves

b

Project Prof

wisManagedBy

involves

where the points u, v, w are not necessarily named individuals from the ABox,
but can be (anonymous) witness for the existential quantifiers of (1) (or labelled
nulls in the chase); we say that these fragments are generated by RA and Project,
respectively, and use the bold-faced font to indicate that. It follows that a is an
answer to q(x) whenever a is an instance of RAI , in which case the atoms of q
(thick lines) are mapped to the fragment generated by RA as follows:

q
x y

Prof
zworksOn involves

I a
RA Project ProfworksOn, involves− isManagedBy, involves

Alternatively, we obtain the following match (provided that a is also in Prof I):

q x
yProf

z

worksOn

involves

I a
RA,Prof Project ProfworksOn, involves− isManagedBy, involves

Another option is to map x and y to ABox individuals, a and b, and if b is in
ProjectI , then the last two atoms of q can be mapped to the anonymous part
generated by Project:

q
x y

Prof
zworksOn involves

I b
Project ProfisManagedBy, involves

Finally, all the atoms of q can be mapped to ABox individuals. The possible
ways of mapping parts of the CQ to the anonymous part of the models are
called tree witnesses. The tree-witnesses for q found above give the following
UCQ tree-witness rewriting qtw(x) of q(x) and T over H-complete ABoxes:

qtw(x) ← RA(x),

qtw(x) ← Prof(x),RA(x),

qtw(x) ← worksOn(x, y),Project(y),

qtw(x) ← worksOn(x, y), involves(y, z),Prof(z).

(It is to be noted that qtw(x) is not a rewriting of q(x) and T over all ABoxes.)
Having computed the UCQ qtw, Ontop simplifies it using two optimisations.

First, it applies a subsumption algorithm to remove redundant CQs from the
union: for example, the first query in the example above subsumes the second,
which can be safely removed. It also reduces the size of the individual CQs in
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the union using the following observation: any CQ q (viewed as a set of atoms)
has the same certain answers over H-complete ABoxes as

q \ {A(x)}, if A′(x) ∈ q and T |= A′ � A with A′ �= A, (3)

q \ {A(x)}, if R(x, y) ∈ q and T |= ∃R � A, (4)

q \ {P (x, y)}, if R(x, y) ∈ q and T |= R � P with R �= P, (5)

Surprisingly, such a simple optimisation, especially (4) for domains and ranges,
makes rewritings substantially shorter [27,9].

We have to bear in mind, however, that in theory, the size of the resulting
UCQ rewritings can be very large: there exists [13,14] a sequence of qn and
Tn generating exponentially many (in |qn|) tree witnesses, and any first-order
(or nonrecursive datalog) rewriting of qn and Tn is of superpolynomial (or ex-
ponential) size (unless it employs |qn|-many additional existentially quantified
variables [10]). On the other hand, to generate many tree witnesses, the CQ q
must have many subqueries that can be matched in the canonical models, which
requires both q and T to be quite sophisticated, with q ‘mimicking’ parts of
the canonical models for T . To the best of our knowledge, this never happens
in real-world CQs and ontologies used for OBDA. More often than not, they
do not generate tree witnesses at all; see Section 3.1. It is also known [15, The-
orem 21] that, if the query and ontology do not contain fragments as in the
example considered above, then the number of tree witnesses is polynomial.

2.2 Optimising T -Mappings

In a typical scenario for Ontop, the data comes from a relational database rather
than an ABox. A database schema [1] contains predicate symbols (with their
arity) for both stored database relations and views (with their definitions in
terms of stored relations) as well as a set Σ of integrity constraints (in the
form of inclusion and functional dependencies). Any instance I of the database
schema must satisfy its integrity constraints Σ. The vocabularies of a database
schema and an ontology are linked together by means of mappings. We define a
mapping, M, as a set of GAV rules of the form

S(x)← ϕ(x, z),

where S is a class or property name in the ontology and ϕ(x, z) a conjunction of
atoms with database relations (both stored relations and views) and a filter, that
is, a Boolean combination of built-in predicates such as = and <. (Note that,
by including views in the schema, we can express any SQL query in mappings.)
Given a mapping M and a data instance I, the ground atoms

S(a), for S(x)← ϕ(x, z) in M and I |= ∃z ϕ(a, z),

comprise the ABox,AI,M, which is called the virtual ABox forM over I. We can
now define certain answers to a CQ q over an ontology T linked by a mapping
M to a database instance I as certain answers to q over (T ,AI,M).
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The tree-witness rewriting qtw of q and T works only for H-complete ABoxes.
An obvious way to define such ABoxes is to take the compositionMT ofM and
the inclusions in T given by

A(x) ← ϕ(x, z) if A′(x) ← ϕ(x, z) ∈M and T |= A′ � A,

A(x) ← ϕ(x, y, z) if R(x, y)← ϕ(x, y, z) ∈M and T |= ∃R � A,

P (x, y)← ϕ(x, y, z), if R(x, y)← ϕ(x, y, z) ∈M and T |= R � P

(we do not distinguish between P−(y, x) and P (x, y)). Thus, to compute answers
to q over T withM and a database instance I, it suffices to evaluate the rewriting
qtw over AI,MT : for any I and any tuple a of individuals in AI,M,

(T ,AI,M) |= q(a) iff AI,MT |= qtw(a). (6)

Given a CQ q and an ontology T , most OBDA systems first construct a
rewriting of q and T over arbitrary ABoxes and then unfold it, using a mapping
M, into a union of Select-Project-Join (SPJ) queries, which is forwarded for
execution to an RDBMS. By (6), the same result can be achieved by unfolding
a rewriting over H-complete ABoxes with the help of the composition MT . In
principle, this may bring some benefits if the SQL query is represented as a union
of SPJ queries over views for class and property names, but only if the RDBMS
can evaluate such queries efficiently (each view is a union of simple queries, for
rules in MT listing subclasses and subproperties). On the other hand, there
will be no benefit if the query is unfolded into a union of SPJ queries either by
the RDBMS or by the OBDA system itself. However, the resulting query will
produce duplicating answers if the ontology axioms express the same properties
of the application domain as the integrity constraints of the database [23].

For this reason, before applying MT to unfold the tree-witness rewriting in
Ontop, we optimise the mapping using the database integrity constraints Σ. This
allows us to (a) reduce redundancy in answers, and (b) substantially shorten the
SQL queries. We say that a mapping M is a T -mapping over Σ if the ABox
AI,M is H-complete with respect to T , for any data instance I satisfying Σ.
(The composition MT is trivially a T -mapping over any Σ.)

To illustrate the optimisations, we take a simplified IMDb
(www.imdb.com/interfaces) whose schema contains relations title[m, t, y] with in-
formation about movies (ID, title, production year), and castinfo[p,m, r] with
information about movie casts (person ID, movie ID, person role), and an on-
tology MO (www.movieontology.org) describing the application domain in terms
of, for example, classes mo:Movie and mo:Person, and properties mo:cast and
mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie � ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− � mo:Person.

A mapping M that relates the ontology terms to the database schema contains,
for example, the following rules:

mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y),

mo:cast(m, p),mo:Person(p)← castinfo(p,m, r).

www.imdb.com/interfaces
www.movieontology.org
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Inclusion Dependencies. Suppose M∪ {S(x) ← ψ1(x, z)} is a T -mapping
over Σ. If there is a more specific rule than S(x) ← ψ1(x, z) inM, thenM itself
is also a T -mapping. To discover such ‘more specific’ rules, we run the standard
query containment check (see, e.g., [1]), but taking account of the inclusion
dependencies. For example, since T |= ∃mo:cast � mo:Movie, the composition
MMO of mapping M and MO contains the following rules for mo:Movie:

mo:Movie(m) ← title(m, t, y),

mo:Movie(m) ← castinfo(p,m, r).

The latter is redundant as IMDb contains the foreign key (inclusion dependency)

∀m
(
∃p, r castinfo(p,m, r) → ∃t, y title(m, t, y)

)
.

Disjunctions in SQL. Another way to reduce the size of a T -mapping is to
identify pairs of rules whose bodies are equivalent up to filters w.r.t. constant
values. This optimisation deals with the rules introduced due to the so-called type
(discriminating) attributes [8] in database schemas. For example, the mapping
M for IMDb and MO contains six rules for subclasses of mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),
· · ·

mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

Then the composition MMO contains six rules for mo:Person that differ only in
the last condition (r = k), 1 ≤ k ≤ 6. These can be reduced to a single rule:

mo:Person(p) ← castinfo(c, p,m, r), (r = 1) ∨ · · · ∨ (r = 6).

Note that such disjunctions lend themselves to efficient evaluation by RDBMSs.

Materialised ABoxes and Semantic Index. In addition to working with
proper relational data sources, Ontop supports ABox storage in the form of
structureless universal tables : a binary relation CA[id, class-id ] and a ternary
relation RA[id1, id2, property-id ] represent class and property membership asser-
tions. The universal tables give rise to trivial mappings, and Ontop implements
a technique, the semantic index [24], that takes advantage of SQL features in
T -mappings for this scenario. The key observation is that since the IDs in the
universal tables CA and RA can be chosen by the system, each class and property
name in the TBox T can be assigned a numeric index and a set of numeric in-
tervals in such a way that the resulting T -mapping contains simple SQL queries
with interval filter conditions. For example, in IMDb, we have

mo:Actor � mo:Artist, mo:Artist � mo:Person, mo:Director � mo:Person;

so we can choose index 1 and interval [1,1] formo:Actor, 2 and [1,2] for mo:Artist,
3 and [3,3] for mo:Director and 6 and [1,6] for mo:Person. This will generate a
T -mapping with, for instance,
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mo:Person(p) ← CA(p, class-id), (1 ≤ class-id ≤ 6),

mo:Artist(p) ← CA(p, class-id), (1 ≤ class-id ≤ 2).

So, by choosing appropriate class and property IDs, we effectively construct
H-complete ABoxes without the expensive forward chaining procedure (and the
need to store large amounts of derived assertions). On the other hand, the se-
mantic index T -mappings are based on range expressions that can be evaluated
efficiently by RDBMSs using standard B-tree indexes [8].

2.3 Unfolding with Semantic Query Optimisation (SQO)

The unfolding procedure [22] applies SLD-resolution to qtw and the T -mapping,
and returns those rules whose bodies contain only database atoms (cf. partial
evaluation [18]). Ontop applies SQO [4] to rules obtained at the intermediate
steps of unfolding. In particular, it eliminates redundant self-Join operations
caused by reification of database relations by means of classes and properties.
Consider, for example, the CQ

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010).

It has no tree witnesses, and so qtw = q. By straightforwardly applying the
unfolding to qtw and the T -mapping M above, we obtain the query

q′
tw(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),

which requires two (potentially) expensive Join operations. However, by using
the primary key m of title:

∀m ∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m ∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2) → (y1 = y2)

)
(a functional dependency with determinant m), we reduce two Join operations
in the first three atoms of q′

tw to a single atom title(m, t, y):

q′′
tw(t, y)← title(m, t, y), (y > 2010).

Note that these two Join operations were introduced to reconstruct the ternary
relation from its reification by means of the roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL
queries. While some of the SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundant and expensive Join operations [28].
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Table 1. Tree-witness UCQ rewritings over H-complete ABoxes

A & S a1 a2 a3 a4 a5 s1 s2 s3 s4 s5

tree witnesses 1 1 0 1 0 0 0 0 0 0
CQs in qtw 2 2 1 2 1 1 1 1 1 1
atoms in q 2 3 5 3 5 1 3 5 5 7
atoms in qtw 2+2 1+3 5 2+3 5 1 1 3 2 4

LUBM∃
20 r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

tree witnesses 0 0 0 0 0 1 1 0 1 0 0 0 3 1
CQs in qtw 1 1 1 1 1 2 2 1 2 1 1 1 1 1
atoms in q 2 3 6 3 4 8 4 6 8 5 8 13 13 34
atoms in qtw 2 1 4 1 2 4+6 3+4 5 5+8 4 6 12 6 33

3 Experiments

In this section, we present the results of experiments conducted to evaluate
the performance of Ontop in comparison with other systems (for details see
sites.google.com/site/ontopiswc13). We begin by testing the tree-witness
rewriter.

3.1 Tree Witnesses: The Topology of Ontop Rewritings

We ran the Ontop tree-witness rewriter on the usual set of ontologies and CQs:
Adolena (A) and StockExchange (S) [20] with the original queries a1–a5 and
s1–s5, respectively, and LUBM∃

20 [19] with queries r1–r5 from the Requiem eval-
uation [20], q1–q6 from the combined approach evaluation [19], and q7–q9 from
the Clipper evaluation [30]. Our aim was to understand the size of the topo-
logical part of the rewritings that reflects matches into the anonymous part of
the canonical models (as opposed to the taxonomical one). Table 1 shows the
number of tree witnesses, the number of CQs in the rewriting, and the number
of atoms in the input query and in each of the CQs of the rewriting.

Note that these CQs and ontologies have very few tree witnesses. More pre-
cisely, in 67% of the cases there are no tree witnesses at all, and in 29% we have
only one. Even for the specially designed q8, the structure of tree witnesses is
simpler than in our example from Section 2.1 (e.g., they do not overlap). And
although q8 and q9 do have tree witnesses, the resulting UCQs contain only one
CQ since these tree witnesses are generated by other atoms of the queries. In
fact, all tree-witness rewritings in our experiments contain at most two CQs: one
of them is an optimised original CQ (in particular, by the domain/range optimi-
sation (4) in s2–s5, r2–r5, q1, q3, q5–q8) and the other is obtained by replacing
the atoms of the tree-witness with its generator. Thus, each of the CQs in the
rewritings is not larger than the input query and has a very similar structure.

To illustrate, consider the following subquery of q8:

q0(x0) ← Publication(x0), publicationAuthor(x0, x11), Subj1Professor(x11),

worksFor(x11, x12), Department(x12),

sites.google.com/site/ontopiswc13
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Table 2. The size of rewritings over LUBM∃
20 (DNF = Did Not Finish in 600s)

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

UCQ (number of CQs)

Requiem 2 1 23 2 10 DNF 2 DNF 14,880 690 DNF DNF DNF DNF

Nyaya 2 1 23 2 10 DNF 2 DNF DNF 690 DNF DNF DNF DNF

IQAROS 2 1 23 2 10 DNF 1 15,120 14,400 690 23,552 DNF DNF DNF

Rapid 2 1 23 2 10 3,887 2 15,120 14,880 690 23,552 DNF 1 16

datalog (number of non-taxonomical rules)

Rapid 1 1 1 1 1 2 3 1 2 1 1 1 27 1
Clipper 1 1 1 1 1 8 7 1 5 1 1 1 512 16
tw-rewriter 1 1 1 1 1 2 2 1 2 1 1 1 1 1

0s

0.05s

1s

60s

600s

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

Requiem Nyaya IQAROS Rapid-UCQ Rapid tw-rewriting

Fig. 1. Rewriting time for queries over LUBM∃
20

where x11, x12 do not occur in the rest of q8. This CQ has a tree witness com-
prising the last two atoms because of the LUBM∃

20 axiom Faculty � ∃worksFor.
However, Subj1Professor is a subclass of Faculty, and so any of its instances is
always connected to Department by worksFor (either in the ABox or in the
anonymous part). Thus, the last two atoms of q0 do not affect its answers
and can be removed. The first atom is redundant by (4) with the domain ax-
iom ∃publicationAuthor � Publication, which results in the following rewriting:
q′
0(x0) ← publicationAuthor(x0, x11), Subj1Professor(x11). As q0 represents a

natural and common pattern for expressing queries—select a Publication whose
publicationAuthor is a Subj1Professor, etc.—any OBDA system should be able
to detect such redundancies automatically.

For comparison, we computed the rewritings of the CQs over LUBM∃
20 us-

ing Requiem [20], Nyaya [9], IQAROS (v 0.2) [29], Rapid (v 0.3) [5] and Clipper
(v 0.1) [7]. The first four return UCQ rewritings, the numbers of CQs in which are
shown in Table 2. The last two return nonrecursive datalog rewritings over arbi-
trary ABoxes. These rewritings consist of a number of ‘main’ rules and a number
of taxonomical rules for completing the ABoxes by subclasses/subproperties; to
compare with Ontop, Table 2 shows only the number of the ‘main’ rules. In-
terestingly, Clipper and Rapid return single-rule rewritings in the cases without
tree witnesses, but generate more rules than Ontop (e.g., q8 and q9) otherwise.

Figure 1 shows the time required for rewriting (it was impossible to sepa-
rate rewriting from DLV execution in Clipper, but it terminated within 1.5s
on every query). The UCQ-based systems do not finish in many cases and
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require a substantial amount of memory (up to 1GB in some cases). In contrast,
the datalog-based systems and Ontop produce rewritings very quickly. Observe
that the rewritings returned by the four UCQ-based systems can be obtained
from the tree-witness rewritings by replacing each class/property with its sub-
classes/subproperties (IQAROS’s rewritings of q2 and possibly q4 are incorrect):
for instance, q7 gives 216,000 (= 303×23) CQs, q3 gives 15,120 (=4×5×21×36) CQs
and q1 gives 3,887 (= 23 + 2×4×21×23) CQs as Student, Faculty and Professor
have 23, 36 and 30 subclasses, respectively, worksFor has 2 subproperties, etc.
Such an operation (if needed) could be performed in fractions of seconds.

The experiments reported in this section imply that dealing efficiently with
class/property hierarchies is the most critical component of any OBDA system.
We discuss how Ontop copes with this task in the next section.

3.2 T -mappings: Class and Property Hierarchies

We compare the query execution time in Ontop, Stardog 1.2 [21] and OWLIM [3].
Both Stardog and OWLIM use internal data structures to store RDF triples.
Stardog is based on rewriting into UCQs (as we saw above, such systems can
run out of memory during the rewriting stage, even before accessing the data).
OWLIM is based on inference materialisation (forward chaining); but the imple-
mented algorithm is known to be incomplete for OWL2QL [3].

It was impossible to compare Ontop with other systems: Rapid and IQAROS
are just query rewriting algorithms; Clipper (v 0.1) supports only the DLV dat-
alog engine that reads queries and triples at the same time (which would be
a serious disadvantage for large datasets). The experiments were run on an
HP Proliant with 24 Intel Xeon 6-core 3.47GHz CPUs, 106GB RAM and a
1TB@15000rpm HD under 64-bit Ubuntu 12.04 with Java 7, MySQL 5.6 and
DB2 10.1.

Data as Triples: The Semantic Index. We first compare the performance of
the three systems for the case where the data is stored in the form of triples. In
this case, Ontop uses universal tables, and the SQO optimisations do not play
any role. We took LUBM∃

20 with the data created by the modified LUBM data
generator [19] for 50, 200 and 1000 universities (5% incompleteness) with 7m,
29m and 143m triples, respectively.

OWLIM requires a considerable amount of time for loading and materialising
the inferences—14min, 1h 23min and 8h 4min, respectively—expanding the data
by 93% and obtaining 13m, 52m and 252m triples. Neither Stardog nor Ontop
need this expensive loading stage. The results of executing the queries from
Section 3.1 are given in Table 3 (in order to reduce the influence of the result
size, which are quite large in some cases, we executed queries that counted the
number of distinct tuples rather than returned the tuples themselves). We note
first that Stardog runs out of memory on 50% of the queries, with a likely cause
being the query rewriting algorithm, which is an improved version of Requiem
(cf. Table 2). On the remaining queries, Stardog is fast, which is probably due
to its optimised triple store. Unlike Stardog, both OWLIM and Ontop return
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Table 3. Query execution time (in seconds) and the result size over LUBM∃
20

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

50 universities
DB2 0 0.03 0.50 0.01 0 25.2 0.47 0.39 0.04 1.37 0.07 0.51 0.13 0

O
n
to
p

MySQL 0 0.19 3.76 0.08 0 31.0 2.48 10.54 0.13 4.22 2.19 0.48 0.13 0
OWLIM 0.01 0.78 2.43 0.28 0.17 12.9 2.68 0.21 0.29 3.95 0.78 0.23 0.23 0.04
Stardog 0.01 0.79 1.16 0.34 0.10 DNF 0.10 DNF DNF DNF DNF DNF DNF 0.04
result size – 102k 12k 34k – 1.2m – 89 – 205k – – – –

200 universities
DB2 0 0.08 7.33 0.07 0 522.9 1.75 3.48 0.12 5.52 0.26 0.86 0.25 0

O
n
to
p

MySQL 0 1.21 14.6 0.32 0 260.4 9.30 34.02 0.49 16.11 8.45 1.66 0.54 0
OWLIM 0.01 3.10 9.28 0.94 0.79 46.4 10.52 0.89 15.15 16.91 3.32 0.92 0.92 0.05
Stardog 0.01 3.22 2.92 1.12 0.27 DNF 0.33 DNF DNF DNF DNF DNF DNF 0.06
result size – 410k 48k 137k – 4.6m – 399 – 825k – – – –

1000 universities
DB2 0 0.24 11.6 0.19 0 2761 3.29 11.3 0.58 12.7 1.15 5.38 1.23 0

O
n
to
p

MySQL 0 1.54 70.9 0.85 0 1232 90.9 185.3 2.37 132.7 2.86 7.75 2.48 0
OWLIM 0.01 18.9 63.6 6.40 3.38 308 65.7 5.11 94.3 105.7 2.76 5.84 5.79 0.10
Stardog 0.21 20.7 13.7 9.36 1.11 DNF 3.07 DNF DNF DNF DNF DNF DNF 0.17
result size – 2m 239k 685k – 23m – 2k – 4.1m – – – –

answers to all queries, and their performance is comparable. In fact, in 83% of
the cases Ontop with DB2 outperforms OWLIM.

It is to be emphasised that Ontop can work with a variety of database
engines and that, as these experiments demonstrate, Ontop with MySQL in
many case is worse in executing queries than with DB2 (but is still compet-
itive with OWLIM). Two techniques turned out to be crucial to improve the
performance of the engines. First, in the universal relations CA[id, class-id] and
RA[id1, id2, property-id], we store integer URI identifiers rather than URIs them-
selves, with a special relation URI[id, uri] serving as a dictionary to de-reference
the URI identifiers. Second, a significant improvement of performance was achi-
eved by creating indexes on sequences of attributes of the universal relations: for
example, CA has indexes on (id, class-id), (id) and (class-id). The full impact of
such indexes on storing data in the form of RDF triples is yet to be investigated.

Finally, we observe that some queries do not need evaluation because Ontop
simplifies them to empty queries: in fact, r1, r5 and q9 contain atoms that have
no instances in the generated data, and only 6 out of the 14 CQs return any
answers (which probably reflects the artificial nature of the benchmark).

These experiments confirm once again that rewritings into UCQs over arbi-
trary ABoxes can be prohibitively large even for high-performance triple stores
such as Stardog. The materialisation approach should ‘by definition’ cope with
large taxonomies. We have demonstrated that the semantic index used in Ontop
is able to deal with this problem as efficiently as (and often better than) inference
materialisation, without the considerable overhead expense of the latter.
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Table 4. Query and rewriting metrics, result sizes and execution times (in seconds)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

atoms in query 4 15 6+f 4+f 9 6 8 6 9+f 3+f
UCQ rewriting 2 48 2 1 24 2 4 16 4 1
tables in SQL 3 13 3 2 6 4 5 4 8 2
result size 6 14,688 15,010 2,224 1,921 84 4 59,211 48 26

Stardog result size 0 0 4,047 0 9 0 0 27,804 0 26

Ontop-DB2 0.003 0.626 0.495 0.355 7.525 0.005 0.001 0.699 0.167 0.358
Ontop-MySQL 0.005 6.138 0.679 0.571 9.190 0.009 0.023 3.563 0.460 0.457
OWLIM 0.005 0.562 5.413 2.833 0.681 0.009 0.007 4.307 0.046 0.836
Stardog 0.030 1.136 1.329 2.227 1.389 0.029 0.038 1.277 0.409 0.584

Ontop of Databases. We now evaluate the performance of the T -mapping
approach to answering queries over OWL2QL ontologies with mappings to
real-world databases. We use the Movie Ontology (MO, www.movieontology.org)
and the data from the SQL version of the Internet Movie Database (IMDb,
www.imdb.com/interfaces). Both the database and ontology were developed
independently by third parties for purposes different from benchmarking; the
mapping was created by the Ontop development team. MO has 137 class and
property names and 157 inclusion axioms; the mapping contains 271 rules and
the virtual ABox has 42m assertions. We tested 10 natural queries to IMDb:
e.g., q3 retrieves the companies from East Asia and the movies they produced
between 2006 and 2010.

The metrics of the queries and their rewritings, the numbers of returned tu-
ples, and the execution times by Ontop with DB2 and MySQL, OWLIM and
Stardog over the materialised ABox are shown in Table 4. The line ‘atoms in
query’ gives the number of atoms in the input query (+f denotes a filter ex-
pression). Each query coincides with its tree-witness rewriting (there are no tree
witnesses, and none of the atoms is redundant). The line ‘UCQ rewriting’ shows
the number of CQs in the rewritings over arbitrary ABoxes, which reflects the
size of class and property hierarchies. The resulting SQL query contains a single
Select-Project-Join component with the number of tables given by ‘tables
in SQL’—this corresponds to the number of Joins in the SQL query. Because of
the SQO, the SQL queries have fewer tables and Joins than the original one (or
the rewriting). For example, q3 with 6 atoms produces a single SPJ query with
3 tables (and one disjunction over 7 country codes rather than 7 subqueries):

SELECT DISTINCT Q3.name, Q1.title, Q1.production year
FROM title Q1, movie companies Q2, company name Q3
WHERE (Q1.id = Q2.movie id) AND (Q2.company id = Q3.id) AND
((’[tw]’ = Q3.country code) OR ... OR (’[kr]’ = Q3.country code)) AND
(Q1.production year <= 2010) AND (Q1.production year >= 2006)

Note that Stardog, on the same set of triples as OWLIM, returns fewer tuples
in all cases but q10, which may explain the better execution times (one of the
Stardog optimisations [21] removes empty CQs from the rewriting and may be
responsible for the missing tuples).

www.movieontology.org
www.imdb.com/interfaces
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In 70% cases, Ontop with DB2 outperforms OWLIM (and is efficient even
with MySQL). Moreover, OWLIM takes 45min to load the data into the triple
store (and will have to do this again every time the data is changed). This
demonstrates that on-the-fly inference over real-world databases by means of the
tree-witness rewriting and T -mappings is efficient enough to successfully com-
pete with materialisation-based techniques. Moreover, the usual problems asso-
ciated with query-rewriting-based approaches disappear in Ontop: T -mappings
efficiently deal with hierarchical reasoning avoiding the exponential blowup, and
the SQO improves the performance of the produced SQL queries by taking ac-
count of the structure and integrity constraints of the database.

4 Conclusions

To conclude, we believe this paper shows that—despite the negative theoretical
results on the worst-case OWL2QL query rewriting and sometimes disappoint-
ing experiences of the first OBDA systems—high-performance OBDA is achiev-
able in practice when applied to real-world ontologies, queries and data stored
in relational databases. In such cases, query rewriting together with SQO and
SQL optimisations is fast, efficient and produces SQL queries of high quality.
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Abstract. Over the last years the Web of Data has developed into
a large compendium of interlinked data sets from multiple domains.
Due to the decentralised architecture of this compendium, several of
these datasets contain duplicated data. Yet, so far, only little attention
has been paid to the effect of duplicated data on federated querying.
This work presents DAW, a novel duplicate-aware approach to feder-
ated querying over the Web of Data. DAW is based on a combination
of min-wise independent permutations and compact data summaries. It
can be directly combined with existing federated query engines in or-
der to achieve the same query recall values while querying fewer data
sources. We extend three well-known federated query processing engines
– DARQ, SPLENDID, and FedX – with DAW and compare our exten-
sions with the original approaches. The comparison shows that DAW
can greatly reduce the number of queries sent to the endpoints, while
keeping high query recall values. Therefore, it can significantly improve
the performance of federated query processing engines. Moreover, DAW
provides a source selection mechanism that maximises the query recall,
when the query processing is limited to a subset of the sources.

Keywords: federated query processing, SPARQL, min-wise indepen-
dent permutations, Web of Data.

1 Introduction

The emergence of the Web of Data has resulted in a large compendium of inter-
linked datasets from multiple domains available on the Web. The central prin-
ciples underlying the architecture of these datasets include the decentralized
provision of data, the reuse of URIs and vocabularies, as well as the link-
ing of knowledge bases [2]. As a result, certain queries can only be answered
by retrieving information from several data sources. This type of queries,
called federated queries, are becoming increasingly popular within the Web of
Data [1,3,8,9,12,14,21,22]. Recently, the W3C released the SPARQL 1.1 specifi-
cation which directly addresses federated queries 1. Due to the independence of

� This work was carried out while the author was a research assistant in DERI.
1 http://www.w3.org/TR/sparql11-federated-query/

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 574–590, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the data sources, certain pieces of information (i.e., RDF triples) can be found in
multiple data sources. For example, all triples from the DrugBank2 and Neuro-
commons3 datasets can also be found in the DERI health Care and Life Sciences
Knowledge Base4. We call triples that can be found in several knowledge bases
duplicates.

While the importance of federated queries over the Web of Data has been
stressed in previous work, the impact of duplicates has not yet received much
attention. Recently, the work in [11] presented a benefit-based source selection
strategy, where the benefit of a source is inversely proportional to the over-
lap between the source’s data and the results already retrieved. The overlap is
computed by comparing data summaries represented as Bloom filters [5]. The
approach follows an “index-free” paradigm, and all the information about the
sources is obtained at query time, for each triple pattern in the query.

In this paper we present DAW, a duplicate-aware approach for federated query
processing over the Web of Data. Similar to [11] our approach uses sketches to
estimate the overlap among sources. However, we adopt an “index-assisted” ap-
proach, where compact summaries of the sources are pre-computed and stored.
DAW uses a combination of min-wise independent permutations (MIPs) [6] and
triple selectivity information to estimate the overlap between the results of dif-
ferent sources. This information is used to rank the data sources, based on how
many new query results are expected to be found. Sources that fall below a
predefined threshold are discarded and not queried.

We extend three well-known federated query engines – DARQ [21], SPLEN-
DID [8], and FedX [22] – with DAW, and compare these extensions with the
original frameworks. The comparison shows that DAW requires fewer sources
for each of the query’s triple pattern, therefore improving query execution times.
The impact on the query recall due to the overlap estimation was minimal, and
in most cases the recall was not affected. Moreover, DAW provides a source se-
lection mechanism that maximises the query recall when the query processing is
limited to a subset of the sources.

The rest of this paper is zed as follows: Section 2 describes the state-of-the-art
in federated query processing and different statistical synopsis approaches that
can be used for approximating duplicate-free result sets. Section 3 describes our
novel duplicate-aware federated query processing approach. An evaluation of
DAW against existing federated query approaches is given in Section 4. Finally,
Section 5 concludes our paper and presents directions for future work.

2 Related Work

In recent years, many approaches have been proposed for federated query pro-
cessing for the Web of Data. Quilitz and Leser [21] propose an index-assisted fed-
erated query engine named DARQ for remote RDF data sources.

2 http://datahub.io/dataset/fu-berlin-drugbank
3 http://neurocommons.org/page/RDF_distribution
4 http://hcls.deri.org:8080/openrdf-sesame/repositories/hclskb

http://datahub.io/dataset/fu-berlin-drugbank
http://neurocommons.org/page/RDF_distribution
http://hcls.deri.org:8080/openrdf-sesame/repositories/hclskb
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DARQ combines service descriptions, query rewriting mechanisms and a cost-
based optimisation approach to reduce the query processing time and the band-
width usage. Langegger et al. [13] describe a solution similar to DARQ that relies
on a mediator to keep its service descriptions up-to-date. SPLENDID [8] uses
VOID5 descriptions for data source selection along with SPARQL ASK queries.
All of the approaches described above can be considered to be index-assisted,
since they all rely in some sort of local index to guide the source selection pro-
cess. Index-free approaches include FedX [22] and the Avalanche system [3]. In
FedX, the source selection is performed by using ASK queries, while Avalanche
gathers endpoints dataset statistics and bandwidth availability on the fly before
the query federation. Ludwig and Tran [12] propose a hybrid query engine that
assumes some incomplete knowledge about the sources to select and discover
new sources at run time. A symmetric hash join is used to incrementally pro-
duce answers. Acosta et al. [1] present ANAPSID, a query engine that adapts
the query execution schedulers to the SPARQL endpoints’ data availability and
run-time conditions.

Overlap estimation among data sources have been used in a number
of approaches in the area of distributed and P2P information retrieval
[4,10,15,18,23,24]. COSCO [10] gathers statistics about coverage and overlap
from past queries and uses them to determine in which order the overlapping
collections should be accessed to retrieve the most new results in the least num-
ber of collections. Bender et al. [4] describes a novelty estimator that uses Bloom
filters [5] to estimate the overlap between P2P data sources. Bloom filters are
also used in the BBQ strategy for benefit-based query routing over federated
sources [11].

Statistical synopsis such as Min-Wise Independent Permutations (MIPs) [6],
Bloom filters [5], Hash sketches [19], XSKETCH [20], fractional XSKETCH [7],
and compressed Bloom filters [16] have been extensively used in the literature to
provide a compacted representation of data sets. MIPs have been shown to be the
provide a good tradeoff between estimation error and space requirements [15,6].
In addition, MIPs of different lengths can be compared, which can be beneficial
for datasets of different sizes.

3 Duplicate-Aware Federated Query Processing

In this section we present our DAW approach. DAW can be used in combination
with existing federated query processing systems to enable a duplicate-aware
query execution.

Given a SPARQL query q, the first step is to perform a triple pattern-wise
source selection, i.e., to identify the set of data sources that contain relevant
results for each of the triple patterns of the query. This is done by the underlying
federated system. For a given triple pattern, the relevant sources are also called
capable sources. The idea of DAW federated query processing is, for each triple
pattern and its set of capable sources, to (i) rank the sources based on how

5 http://www.w3.org/TR/void/

http://www.w3.org/TR/void/
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SELECT ?uri  ?label  ?symb 
WHERE  
{   
 ?uri   rdfs:label   ?label.      
 ?uri  diseasome:bio2rdfSymbol   ?symb.  

}  

Triple  pattern-wise source selection and skipping 

s1 Ds1 s2 s3 s1 Ds2 s2 s4 

  100        50           0                        100        50            5  

Min.  new triples = 10 
Total triple pattern-wise selected sources  =  6 
Total triple pattern-wise skipped sources  = 2 

   New triples 

   Total triples   100        50          70                       100        50           60 

Fig. 1. Triple pattern-wise source selection and skipping example

much they can contribute with new query results, and (ii) skip sources which
are ranked below a predefined threshold. We call these two steps triple pattern-
wise source ranking and triple-pattern wise source skipping. After that, the query
and the list of not skipped sources are forwarded to the underlying federated
query engine. The engine generates the subqueries that are sent to the relevant
SPARQL endpoints. The results of each subquery execution are then joined to
generate the result set of q.

To better illustrate this, consider the example given in Figure 1, which shows
a query with two triple patterns (tp1 and tp2), and the lists of capable sources
for both patterns. For each source we show the total number of triples containing
the same predicate of the triple pattern and the estimated number of new triples,
i.e. triples that do not overlap with the previous sources in the list. The triple
pattern-wise source ranking step orders the sources based on their contribution.
As we see in the example, for the triple pattern tp1, source S1 is ranked first, since
it is estimated to produce 100 results. S1 is followed by S2, which can contribute
with 40 new results, considering the overlap between the two sets. S3 is ranked
last, despite having more triples than S2. This is because our duplicated-aware
estimation could not find any triple in S3 which is not in either S1 or S2. In
the triple-pattern wise source skipping step, S3 will be discarded, and tp1 will
not be sent to S3 during query execution. We can also set a threshold on the
minimum number of results. For instance, by setting the threshold to 10 results,
source S4 will be skipped, since it can only contribute with 5 new results for tp2.
By applying our duplicate-aware approach – which would select S1 and S2 both
for tp1 and tp2 and would skip S3 and S4 – we would only send subqueries to
two endpoints instead of four.

Both steps are performed prior to the query execution, by using only infor-
mation contained in the DAW index. The main innovation behind DAW is to
avoid querying sources which would lead to duplicated results. We achieve this
by extending the idea of min-wise independent permutations (MIPs) [6], which
are explained in the next section.

3.1 Min-Wise Independent Permutations (MIPs)

The main rationale behind MIPs is to enable the representation of large sets
as vectors of smaller magnitude and to allow the estimation of a number of set
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operations, such as overlap and union, without having to compare the original
sets directly. The basic assumption behind MIPs is that each element of an
ordered set S has the same probability of becoming the minimum element under
a random permutation. MIPs assumes an ordered set S as input and computes
N random permutations of the elements. Each permutation uses a linear hash
function of the form hi(x) : = ai*x + bi mod U where U is a big prime number,
x is a set element, and ai, bi are fixed random numbers. By ordering the set of
resulting hash values, we obtain a random permutation of the elements of S. For
each of the N permutations, the MIPs technique determines the minimum hash
value and stores it in an N -dimensional vector, thus capturing the minimum set
element under each of these random permutations. The technique is illustrated
in Figure 2.

Let VA = [a1, a2, . . . , aN ] and VB = [b1, b2, . . . , bN ] be the two MIPs vectors
representing two ordered ID’s sets SA, SB, respectively. An unbiased estimate
of the pair-wise resemblance between the two sets, i.e. the fraction of elements
that both sets share with each other, is obtained by counting the number of
positions in which the two MIPs vectors have the same number and dividing this
by the number of permutations N as shown in Equation 1. It can be shown that
the expected error in the estimation O(1/

√
N) [6]. Given the resemblance and

the sizes of the two set, their overlap can be estimated as shown in Equation 2.
A MIPs vector representing the union of the two sets, SA and SB, can be created
directly from the individuals MIPs vectors, VA and VB , by comparing the pair-
wise entries, and storing the minimum of the two values in the resulting union
vector (see Figure 2). A nice property of MIPs is that unions can be computed
even if the two MIPs vectors have different sizes, as long as they use the same
sequence of hash functions for creating their permutations. In general, if two
MIPs have different sizes, we can always use the smaller number of permutations
as a common denominator. This incurs in a loss of accuracy in the result MIPs,
but still yields to a more flexible setting, where the different collections do not
have to agree on a predefined MIPs size [15].

Resemblance(SA, SB) =
|SA ∩ SB|
|SA ∪ SB|

≈ |VA ∩ VB |
N

(1)
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Overlap(SA, SB) ≈
Resemblance(VA, VB)× (|SA|+ |SB|)

(Resemblance(VA, VB) + 1)
(2)

In the DAW index, MIPs are used as follow: For a distinct predicate p be-
longing to a data source S, we define T (p, S) as the set of all triples in S with
predicate p. A MIPs vector is then created for every T (p, S). First an ID set
is generated by mapping each triple in T (p, Sr) to an integer value. A triple is
given in the form of subject, predicate and object tuples, i.e. < s, p, o >. Since all
triples in T (p, S) share the same predicate by definition, the mapping is done by
concatenating the subject (s) and object (o) of the triple, and applying a hash
function to it (Figure 2). Then, the MIPs vector is created by computing the N
random permutations of each element in the ID set and storing their minimum
value. Finally, the MIPs vector is stored and mapped to each capability of the
service description, as explained in the next section.

3.2 DAW Index

In order to detect duplicate-free subqueries, DAW relies on an index which con-
tains the following information for every distinct predicate p in a source S:

1. The total number of triples nS(p) with the predicate p in S.
2. The MIPs vector MIPsS(p) for the predicate p in S, as described in the

previous section.
3. The average subject selectivity of p in S, avgSbjSelS(p).
4. The average object selectivity of p in S, avgObjSelS(p).

The average subject and object selectivities are defined as the inverse of the
number of distinct subjects and objects which appears with predicate p, respec-
tively. For example, given the following set of triples:

S = {< s1, p, o1 >,< s1, p, o2 >,< s2, p, o1 >,< s3, p, o2 >} (3)

the avgSbjSelS(p) is equal to
1
3 and the avgObjSelS(p) is

1
2 . These two values

are used in combination with the MIPs vector to address the expressivity of
SPARQL queries as explained below.

Suppose that in a given triple pattern, neither the subject nor the predicate
are bound. That means the pattern is of the form<?s, p, ?o >, where the question
mark denotes a variable. In this case, the MIPs vectors in the DAW index can be
used directly to estimate the overlap among the data sources that can provide
results for the pattern. This is because the MIPs vectors are created by grouping
triples according to their predicate. However, if any of the subject or object is
bound (for example, < s1, p, ?o >), the selectivity of the pattern becomes much
higher and the MIPs vectors alone are unable to address this. As a result, overlap
will be overestimated. To address this issue the modify Equation 2 to account
for the subject and object selectivities as follows:

Overlaptp(SA, SB) ≈
Resemblance(VA, VB)× (|S′

A|+ |S′
B |)

(Resemblance(VA, VB) + 1)
(4)
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Listing 1.1. DAW index example

[ ] a sd : S e rv i c e ;
sd : endpointUrl <http :// l o c a l ho s t :8890/ sparq l> ;
sd : c ap ab i l i t y [
sd : p r ed i ca t e diseasome : name ;
sd : t o t a l T r i p l e s 147 ;
sd : avgSbjSe l ‘ ‘ 0 . 0068 ’ ’ ;
sd : avgObjSel ‘ ‘ 0 . 0069 ’ ’ ;
sd :MIPs ‘ ‘−6908232 −7090543 −6892373 −7064247 . . . ’ ’ ; ] ;

sd : c ap ab i l i t y [
sd : p r ed i ca t e diseasome : chromosomalLocation ;
sd : t o t a l T t r i p l e s 160 ;
sd : avgSbjSe l ‘ ‘ 0 . 0062 ’ ’ ;
sd : avgObjSel ‘ ‘ 0 . 0072 ’ ’ ;
sd :MIPs ‘ ‘−7056448 −7056410 −6845713 −6966021 . . . ’ ’ ; ] ;

where the original size of a set Si is replaced by a value |S′
i| which is given by

the following equation:

|S′
i| =

⎧⎨⎩
|Si| if neither subject nor object are bound,

|Si| × avgSbjSelS(p) if subject is bound,

|Si| × avgObjSelS(p) if object is bound.

We call the set CS(p) = {p, nS(p), avgSbjselS(p), avgObjSelS(p),MIPsS(p)}
a capability of the data source. The total number of capabilities of a data source
is equal to the number of distinct predicates in it.

It is crucial to keep the index size small to minimise the pre-processing time.
On the other hand, this index must also contain sufficient information to en-
able an accurate source selection and duplicate-free subquery generation. Some
federated query approaches such as DARQ and SPLENDID already provide
the total number of triples, as well as the average selectivity values. There-
fore, the storage overhead create by the DAW index depends mostly on the size of
the MIPs vectors which can be adjusted to any length. In general, MIPs can pro-
vide a good estimation of the overlap between sets with a few integer in length.
An example of a DAW index is given in Listing 1.1.

3.3 DAW Federated Query Processing

As explained earlier, given a SPARQL query, DAW performs the triple pattern-
wise source ranking and skipping steps in order to rank the sources based on
how much they can contribute with new query results, and skip sources which
are below a given threshold. In this section we describe these two steps in detail.

Triple Pattern-Wise Source Ranking: Given the heterogeneity and inde-
pendence of data sources, it is expected that each source contributed differ-
ently in answering a given triple pattern, and the same result might be returned
by multiple sources. Our goal is to provide a rank of the sources, according
to the estimated number of new results it can contribute. By new results we
mean with respect to the results already retrieved from sources ranked higher.
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The source ranking step works as follows: First, as no source has been ranked
yet, the algorithm chooses the largest source, as it will likely to contribute with
more results. To select the next source we use the DAW index to compute the es-
timated overlap between the already selected source and every remaining source.
The remaining source with the least amount of overlap is then chosen and ranked
second. Before selecting the next source in the rank, we first need to estimate the
union of the already selected sources. This is needed since we want to find out
how much a source can contribute with results are not in the sources selected
so far. The union can be easily estimated by applying a vector operator on the
original MIPs, as explained in Section 3.1. The new union MIPs can be further
combined with other MIPs to get the estimation of the union among several sets.
The source ranking step continues until no more sources are left to be ranked.

Triple Pattern-Wise Source Skipping: Given the rank of capable sources,
the next step is to prune the rank, but skipping sources which cannot contribute
with a minimum number of new results. This is done by setting a threshold,
and pruning every source which falls below it. Since the total number of results
depends on the triple pattern, the threshold is chosen in terms of the minimum
percentage of new results a source can contribute. For instance, if the threshold
is set to zero, DAW will aim at retrieving as much results as possible, while still
skipping sources which cannot contribute with new results. Alternatively, the
threshold can be set to higher values, in cases where the tradeoff between recall
and number of sources queries is more important.

The pseudo code of the triple pattern-wise source ranking and skipping is
given in Algorithm 1. It takes a triple pattern tpi(s, p, o), its list of capable
sources Si, and the predefined threshold value as input and returned a ranked
list of a subset of the capable source set Ri, Ri ⊆ Si as output. The ranked
list and the MPIs with the union of the selected sources are initialised with the
largest source. Lines 8-14 adjust the size of the dataset to reflect the subject or
object selectivities, depending on the query. Lines 15-16 estimate the overlap and
number of new triples. The source with the highest amount of new triples is then
selected (Lines 17-19). The triple pattern-wise source skipping is done in Line
23 and sources ranked higher than the threshold are added to the final ranked
list (Line 24). The union MIPs is then updated (Line 26) and the algorithm
continues until no more sources are left.

Before we present our experimental analysis of DAW it is important to note
the difference between the number of triple pattern-wise sources and the number
of sources (e.g. SPARQL endpoints). The total number of triple pattern-wise
selected sources for a query is calculate as follow: Let NSi ∈ {1 . . .M} be the
number of sources capable of answering a triple pattern tpi where M is the
number of available (physical) sources. Then, for a query q with n triple patterns,
{tp1, tp2, . . . tpn }, the total number of triple pattern-wise sources is the sum of
the sources for individual triple patterns, i.e.

∑n
j=1 NSj . In the example from

Figure 1, the number of sources is 4 (s1, s2, s3, s4) but the number of triple
pattern-wise sources is equal to 6.
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Algorithm 1. Triple pattern source-wise ranking and skipping

Require: tpi(s,p,o) ∈ T; Si; thresholdVal //triple pattern tpi, capable data sources
of tpi; Threshold Value

1: rank1Source = getMaxSizeSource(Si, tpi) ; rnkNo = 1
2: unionMIPs = getMIPs(rank1Source, tpi) //get MIP vector for a tp of a source
3: Ri[rnkNo] = selectedSource
4: Si = Si - {selectedSource}
5: rnkNo = rnkNo+1
6: while Si = ∅ do
7: selectedSource = null; maxNewTriples =0
8: for each Si ∈ Si do
9: MIPs = getMIPs(Si, tpi)
10: if s is bound in tpi then
11: MIPsSetSize =MIPsSetSize*getAvgSbjSel(Si,tpi)
12: else if o is bound in tpi then
13: MIPsSetSize =MIPsSetSize*getAvgObjSel(Si,tpi)
14: end if
15: overlapSize = Overlap(unionMIPs,MIPs)
16: newTriples = unionMIPsSetSize - overlapSize
17: if newTriples > maxNewTriples then
18: selectedSource = Si

19: maxNewTriples = newTriples
20: end if
21: end for
22: curThresholdVal = unionMIPsSetSize / maxNewTriples
23: if curThresholdVal � thresholdVal then
24: Ri[rnkNo] = selectedSource
25: selectedMIPs = getMIPs(selectedSource, tpi)
26: unionMIPs = Union(unionMIPs,selectedMIPs)
27: rnkNo = rnkNo+1
28: end if
29: Si = Si - {selectedSource}
30: end while
31: return Ri //ranked list of capable sources for tpi

4 Experimental Evaluation

In this section we present an experimental evaluation of the DAW approach. We
first describe the experimental setup, followed by the evaluation results. All data
used in this evaluation can be found at the project web page.6

4.1 Experimental Setup

Datasets: For our experiments, we used four different datasets. The Diseasome
dataset contains diseases and disease genes linked by disease-gene associations.

6 https://sites.google.com/site/DAWfederation/

https://sites.google.com/site/DAWfederation/
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Table 1. Overview of the datasets used in the experiments

Dataset Number Dataset Index Index. Gen. Discrepancy No. Duplicated Duplicate
Triples Size (MB) Size (MB) Time (sec) Slices Slice ID

Diseasome 91,122 18.6 0.17 4 1,500 1 10
Publication 234,405 39.0 0.24 6 2,500 1 10
Geo 1,900,006 274.1 1.63 133 50,000 2 5,8
Movie 3,579,616 448.9 1.66 201 100,000 1 2

Table 2. SPARQL endpoints specifi-
cation

EP CPU(GHz) RAM Hard Disk
1 2.2, i3 4GB 300 GB
2 2.9, i7 16 GB 256 GB SSD
3 2.6, i5 4 GB 150 GB
4 2.53, i5 4 GB 300 GB
5 2.3, i5 4 GB 500 GB
6 2.53, i5 4 GB 300 GB
7 2.9, i7 8 GB 450 GB
8 2.6, i5 8 GB 400 GB
9 2.6, i5 8 GB 400 GB
10 2.9, i7 16 GB 500 GB

Table 3. Distribution of query types
across datasets

Dataset STP S-1 S-2 P-1 P-2 P-3 Total
Diseasome 5 5 5 4 5 2 26
Geo 5 5 5 - - - 15
Movie 5 - - - - - 5
Publication 5 5 5 7 7 4 33
Total 20 15 15 11 12 6 79

The Publication dataset is the Semantic Web Dog Food dataset and contains
information on publications, venues and authors of publications. The Geo dataset
resulted from retrieving the portion of triples from DBpedia that maps resources
to their geo-coordinates. Finally, the Movie dataset is the RDF version of IMDB
and contains amongst others a large number of actors, movies and directors. To
simulate a federated scenario with fragmented datasets distributed across several
sources, we partitioned each dataset in 10 slices and distributed the slices across
10 data sources (one slice per data source). Each data source is a Virtuoso-2012-
08-02 SPARQL endpoint with the specifications given in Table 2.

To distribute the data across our 10 endpoints we defined a discrepancy factor,
which controls the maximal size difference between the different slices.

discrepancy = max
1≤i≤M

|Li| − min
1≤j≤M

|Lj |, (5)

where Li stands for the ith slice. The data is first partitioned randomly among
the slices in a way that

∑
i

|Li| = D and ∀i∀j i �= j → ||Li|−|Lj || ≤ discrepancy.

None of the existing benchmarks for federated query processing addresses the
data duplication issue. Therefore, in order to add duplicates among slices, we
randomly selected a number of slices and duplicated their contents across all
remaining slices. For the DAW index, we use MIPs vectors of different sizes to
better reflect the number of triples per predicate in each source. The sizes were
chosen in a way that the overall index size is kept small. Table 1 presents an
overview of the datasets, including the total number of triples and total size, the
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size of the DAW index, the index generation time, the discrepancy value among
the 10 slices, the number of slices that were duplicated and their correspond-
ing ID.

Queries: We used three types of queries in our experiments: Single triple pat-
terns queries (STP), star-shaped queries (S-1, S-2), and path-shaped queries
(P-1, P-2, P-3). Single triple pattern (STP) queries consist of exactly one triple
pattern in the query. Star-shaped and path-shaped queries are defined as in [9].
A S-k star-shaped query has one variable as subject and k joins, i.e., (k+1) triple
patterns. An example of a S-1 star-shaped query is given in Figure 1. A P-k path-
shaped query is generated by using the object of one triple pattern as subject
in the next triple pattern, and it also contains (k+1) triple patterns. Previous
work has shown that these query shapes are the most common shapes found
in real-world RDF queries [17]. Our benchmark data consisted of 79 queries as
shown in Table 3. Some query shapes could not be used on certain datasets due
to the topology of the underlying ontology. For example, P-1 queries could not
be sent to the Geo dataset since it only contained object properties. Each type a
query was executed we used a random resource as subject or object, depending
on the query type. The predicates of all queries are fixed.

FederatedQueryEngines:We implemented our DAWapproach on top of three
different federated query engines: DARQ [21], SPLENDID [8], and FedX [22]. Both
DARQandSPLENDID already provide an indexwith some of the statistics needed
in DAW. Therefore, we only needed to extend this index. For FedX, which is index-
free, we added an index similar to the one in DARQ with our DAW extension. The
underlying query execution mechanism remained the same.

Metrics: We compared the three federated approaches against their DAW ex-
tensions. For each query type we measured (i) the average number of triple
pattern-wise sources that were skipped, (ii) the average recall, and (iii) the aver-
age query execution time. We did not consider the number of endpoints requests,
as it depends on a number of factors, such as join type, block and buffer size,
that vary across the different federated query processors. The threshold was ini-
tially set to zero, in order to maximise recall while querying fewer sources. All
experiments were carried out in a machine with a 2.53GHz i5 processor, 4 GB
RAM, and 500 GB hard disk. Experiments were carried out in a local network,
so the network costs were negligible. After the first warm up run, each query
type was executed 10 times and results were averaged.

4.2 Experimental Results

Triple Pattern-Wise Source Skipping: Table 4 shows the number of capable
triple pattern-wise sources that were skipped by our approach, for each query
type, as well as the recall. The total number of triple pattern-wise sources se-
lected by the original systems is shown in brackets. The threshold was set to
zero, which means that only sources that were estimated to returned no new
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Listing 1.2. A Single Triple Pattern (STP) query example

SELECT ? t i t l e WHERE
{ www2008−paper :103 pub : t i t l e ? t i t l e . }

Table 4. Distribution of the triple pattern-wise source skipped by DAW extensions
for threshold value 0

Dataset STP S-1 S-2 P-1 P-2 P-3 Total Recall
Diseasome 14(35) 30(77) 40(107) 35(65) 65(125) 30(50) 214(459) 100%
Geo 22(40) 23(55) 37(101) - - - 82(196) 99.99%
Movie 22(38) - - - - - 22(38) 100%
Publication 9(30) 10(37) 15(86) 14(60) 21(120) 32(102) 101(435) 100%
Total 67(143) 63(169) 92(294) 49(125) 86(245) 62(152) 419(1128) -

(a) DARQ

Dataset STP S-1 S-2 P-1 P-2 P-3 Total Recall
Diseasome 7(28) 30(77) 40(107) 35(65) 65(125) 30(50) 207(452) 100%
Geo 19(37) 23(55) 37(101) - - - 79(193) 99.99%
Movie 15(31) - - - - - 15(31) 100%
Publication 3(24) 10(37) 15(86) 14(60) 21(120) 32(102) 95(429) 100%
Total 44(120) 63(169) 92(294) 49(125) 86(245) 62(152) 396(1105) -

(b) FedX and SPLENDID

results were pruned. We can see that DAW can effectively reduce the total triple
pattern-wise selected sources, thus enable fewer subqueries federation. The high-
est gain was in the Diseasome dataset, where 214 sources were skipped in the
DARQ approach, without affecting the recall. This corresponds to a decrease on
the number of queried sources from 459 to 245. In other words, a full recall was
achieved by querying only 53% of the available triple pattern-wise sources. In
all cases except in the Geo dataset, the recall was not affected and all relevant
results were retrieved. In the Geo dataset, the DAW index incorrectly pruned a
small number of relevant sources, but the recall was still 99.99%. That means
that DAW can deliver the same query results while querying much fewer sources.
The source selection methods from FedX and SPLENDID return the same set of
sources, therefore the number of skipped sources was the same for both. More-
over, they both use SPARQL ASK queries in the selection mechanisms, which
leads to a better performance for STP queries. For example, consider the STP
query given in Listing 1.2 where both the subject and predicate are bound. It is
likely that a WWW2008 paper with id 103 is found in only one data source but
the property pub:title may be found in every source. As a result, FedX and
SPLENDID will only select a single capable source while DARQ will select all
sources containing that predicate.

Query Execution Time: For each dataset and query type, we measured the av-
erage query execution time in each of the federated query approaches and also in
their DAW extension. Again, the threshold was set to zero and the
average was over 10 queries. Figures 3, 4, and 5 show the results. We can see
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Fig. 4. Query execution time of SPLENDID and its DAW extension

that DAW improves the query performance for most of the cases. For three of the
datasets, Diseasome, Geo andMovie, DAW improved the query execution times of
all federated systems tested, for all query types. The query performance in the Dis-
easome dataset showed the highest improvements. This is due to the large number
of triple pattern-wise sources that were pruned. We can also see that if the num-
ber of skipped sources is low – as for the Publication dataset – the overhead in
computing the sources overlap can be higher than the execution time saved by
querying fewer sources, so the overall query execution time is worse. The overall
performance is summarised in Table 5. We were able to improve the query execu-
tion time in DARQ by 16.46%, the SPLENDID by 11.11%, and FedX by 9.76%.
For the Diseasome dataset, the improvement for the DARQ approachwas 23.34%.
These are averaged values across all datasets and query types. DAW led to a per-
formance gain for most of the settings. We expect that in a setup with larger
datasets and higher overlap, DAW can lead to even better improvements.

Number of Queried Sources vs. Query Recall: The evaluation presented
so far focused on achieving full recall, and only discarded sources that the DAW
index estimated to contribute with no new results. We have shown that the
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Table 5. Overall performance evaluation. Exe.time is the average execution time in
seconds. Gain is the percentage in the performance improvement.

Diseasome Publication Geo Data Movie Overall
Exe.time Gain Exe.time Gain Exe.time Gain Exe.time Gain Exe.time Gain

DARQ 8.27 5.26 23.44 1.96 9.59
DAW 6.34 23.34 4.94 6.14 19.62 16.31 1.68 13.88 8.01 16.46

SPLENDID 3.78 2.18 7.27 1.90 3.71
DAW 3.04 19.48 2.38 -8.94 6.22 14.40 1.68 11.16 3.30 11.11
FedX 2.44 1.48 4.60 1.74 2.44
DAW 1.98 18.79 1.67 -12.38 3.92 14.71 1.61 7.59 2.20 9.76

estimation given by our algorithm is quite accurate, as only 0.01% of the results
in one dataset were missing. There might be cases, however, where full recall
is not crucial and the query processing budget is limited. Here, the goal is to
retrieve as many results as possible by querying only a subset of capable sources.
Standard federated query processing approaches are only able to identify the
set of capable sources. They are not able to compare the contribution of the
sources in order to identify which subset yields to a better recall. With DAW, an
approximation of this contribution is provided by the ranking step. For any given
threshold, DAW is able to provide the subset of capable sources that will deliver
the best recall for that number of sources. To demonstrate this, we computed the
query recall for different threshold values for the DAW DARQ extension. We ran
each of the STP queries 10 times on the Diseasome and Publication datasets and
averaged the results. We varied the threshold value in order to limit the query to a
fixed number of endpoints and we computed the query recall based on the DAW
source selection. We compared it with the optimal duplicate-aware approach,
where sources were manually selected to maximise the recall. The results are
show in Figure 6. We can see that, in both cases, the source selection given by
DAW is very close to the optimal case. Moreover, our experiment demonstrates
the great potential in using source ranking for federated query processing. For
the Diseasome dataset, by querying only 3 out of the 10 endpoints, DAW is
able to retrieve 80% of the query results. A full recall is achieved with only 6
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Fig. 6. Recall for varied number of endpoints queried

endpoints. This naturally depends on the degree of overlap, but nevertheless it
shows promising results that should be further explored.

5 Conclusion and Future Work

In this paper we presented DAW, an approach for duplicate-aware federated
query over the Web of Data. DAW combines min-wise independent permuta-
tions with selectivity values to estimate the number of duplicate-free results.
This estimation is used to first rank triple pattern-wise sources, based on their
contribution, and to skip sources that contribute with little or no new results.
DAW can be directly combined with existing index-assisted federated query pro-
cessing systems, in order to improve the query execution. We evaluated our
approach against DARQ, SPLENDID and FedX – three well known federated
systems. The evaluation shows that by using the DAW extension the query ex-
ecution times were improved in most of the cases, while recall was marginally
affected. Moreover, DAW is suitable for maximising the recall for a fixed number
of queried sources.

We will look at extending our index to further reduce the query execution
time, for instance, by pre-computing some of the overlap statistics, based on
query logs. The effect of different MIPs sizes and threshold values to find the
optimal trade-off between execution time and recall will also explored, as well
as different data partition methods.
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Abstract. Experimentation is an important way to validate results of Semantic
Web and Computer Science research in general. In this paper, we investigate the
development and the current status of experimental work on the Semantic Web.
Based on a corpus of 500 papers collected from the International Semantic Web
Conferences (ISWC) over the past decade, we analyse the importance and the
quality of experimental research conducted and compare it to general Computer
Science. We observe that the amount and quality of experiments are steadily in-
creasing over time. Unlike hypothesised, we cannot confirm a statistically sig-
nificant correlation between a paper’s citations and the amount of experimental
work reported. Our analysis, however, shows that papers comparing themselves
to other systems are more often cited than other papers.

1 Introduction

Popper characterizes the nature of science in terms of the falsifiability of claims [1].
Following this statement, careful validation of proposed methods and theories are com-
monly accepted as the core of reputable research. Over time different scientific disci-
plines have developed a variety of methodologies for evaluating results ranging from
mathematical proofs to use cases and experiments. Semantic Web research and com-
puter science as a whole is a discipline that has a strong formulative research approach
[2]: it creates new formalisms, algorithms and systems claimed to be superior to pre-
vious proposals. If we follow the idea of reputable science, these claims have to be
substantiated by a suitable method of validation, typically formal proofs, controlled ex-
periments or use cases and examples. We claim that Semantic Web research is even
more forced to validate scientific claims as it is a rather new area of research that often
has to face prejudices of more established disciplines inside computer science and on
the other hand faces the dilemma formulated by Wright: ”In [...] dynamic areas, re-
searchers often face the choice: corroborating prior work to strengthen the foundations
of the research area or ’pushing the envelope’ while relying on prior work that may
be less reliable” [3]. We conclude that experimentation is an important way to validate
results of Semantic Web research, especially as it has been argued that it challenges
established results in more traditional disciplines [4] and is therefore less accessible to
a strictly formal treatment.
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Having accepted that experimental research is important on the Semantic Web, we
want to investigate the status of experimental research on the Semantic Web with respect
to the quantity and the quality of experimental work. In particular, we want to compare
the area of Semantic Web with other areas of computer science with respect to the
importance given to experimental research. Further, we want to have a closer look at the
way experiments are conducted to determine the usefulness of the reported experimental
work for validating the claims and a reference for other researchers working on related
problems. This question that is linked with the quality of the experimental work is much
harder to capture than the pure amount of experimental work. Finally, we are interested
in the question, whether doing experiments pays off in terms of research reputation
and try to answer this question by analyzing citation statistics for papers with different
amounts of experimental work.

Following the design of previous studies on experimental research in computer sci-
ence (in particular [5] and [6]), we analyzed all papers from the International Seman-
tic Web Conference starting in 2002 with respect to the type of work and amount of
experimentation.

Going beyond previous studies, we also took a closer look at experiments with re-
spect to the data used, the parameters measured, and the comparisons conducted.

This paper is structured as follows. In Section 2, we first give an overview of pre-
vious studies concerned with experimental work in computer science, summarizing the
findings of these studies as a reference we can compare to. Subsequently, we define
our research questions and hypotheses concerning the role of experimental work in Se-
mantic Web research, provide more details about the data used, and the steps of the
methodology that led us to our results (Section 3). This is followed by a detailed pre-
sentation and discussion of the results in Section 4. In Section 5, we conclude with
discussing limitations of our study and the reliability of the results.

2 Empirical Studies of Experimental Research in Computer
Science

Computer science is mostly regarded as a constructive science concerned with the cre-
ation of artefacts that cannot be entirely validated using formal methods [7]. Glass and
others compare research approaches in different disciplines related to computer science
[2]. Based on a review of major ACM and IEEE journals they conclude that almost
80% of computer science papers propose some new design or method that would actu-
ally require evaluation. While the amount of such papers is lower in certain subareas of
computer science, like software engineering (55%), still a significant amount of work
in computer science is formulative and requires some evaluation.

So far, the most detailed and systematic investigation of experimental research as a
means for evaluating formulative research has been carried out by Tichy and others in
1995 [5]. Based on a sample of publications from major computer science journals the
authors categorize papers into formal theory, design and modeling, as well as empirical
work and others. The papers in the category design and modeling, which correspond to
the formulative work in [2] are further analyzed with respect to the importance that is
given to experimental work. For this purpose, Tichy and others further classified papers
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in this category according to the space devoted to the description of experimental work.
It turned out that in computer science literature experimental work is much less promi-
nent than in engineering or natural sciences that were used as a reference. The study
was repeated by Wainer and others focussing on a sample of papers published in 2005
by the ACM [6]. The authors used roughly the same setup and compared their results
with the findings of Tichy and others, concluding that experimental work had gained
importance, but is still behind the level found in other disciplines. We will discuss the
results of these studies in more detail and compare them to our findings later.

Different additional studies have been performed in subdisciplines of computer sci-
ence. Most notable in Software Engineering [8,9] and Computer-supported cooperative
work [10,11]. Zelkowitz [8] identifies different forms of validation that can be found
in the area of Software engineering and investigates the use of these different forms
of validation in the Software Engineering literature in a quantitative study. In 2009
Zelkowitz repeated the study and reports the development over time [9]. He concludes
that the amount of papers with a real evaluation has risen from only about 30% in 2000
to over 60% in 2009 moving towards the level that Tichy and others have presented
for Computer Science as a whole. Pinelle and others [10] look at evaluation in pa-
pers on computer-supported collaborative work. The findings are in line with the above
mentioned studies with a fraction of about 70% of the papers containing some kind of
evaluation. On the other hand, only 30% of the papers used controlled experiments in
a laboratory setting. Wainer and Barsottini performed a follow-up study on papers sub-
mitted to the ACM CSCW conference over a period of six years [11]. They found out
that while overall the amount of experimental work has not increased, there was a sig-
nificant increase in papers that performed an evaluation in terms of field experiments.
Some smaller studies have been carried out in narrower fields. Prechelt performed a
quantitative study of experimental approaches in the field of neural networks [12]. Like
Machine Learning as a whole this area heavily depends on experimentation as a form of
evaluation. Therefore the study is less concerned with the amount of experimentation,
but with the specific setting of the experiments. As a central point of study, Prechelt
looks at the nature and the number of datasets used in the experiments, discovering that
most papers only use one single dataset as a basis for controlled experiments.

In summary, previous studies identified design as the dominant research methodol-
ogy in Computer Science while empirical work is less important. Further, the studies
showed that the importance of systematic experiments as a means of validating design
research has gained importance over the last decades.

3 Research Questions and Method

The goal of this paper is to investigate the status of experimental research in the area
of Semantic Web. In particular, we aim at investigating whether the importance of ex-
perimental work is comparable to the one in computer science in general as it has been
identified in the previous studies discussed above. This question has two aspects: we
need to identify work that can be characterized as Design and Modeling and there-
fore asks for an experimental evaluation. Having identified this work, we want to know
whether experimental work has the same importance as in computer science in general.
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As Semantic Web research is a rather young discipline, we are specifically interested
in the development of the role of experimental research over time. Beyond these purely
descriptive aspects, we also want to analyze the factors influencing the importance of
experimental work. With respect to this, we look at the relation between amount and
quality of experimental work and impact of a paper in terms of citations.

H1. Like in computer science in general, Design and Modeling work is the dominant
form of research on the Semantic Web.

H2. The importance of experimental work on the Semantic Web is comparable with
computer science in general.

H3. The importance of experimental work on the Semantic Web is increasing over
time.

H4. The quality of experimental work on the Semantic Web is increasing over time.
H5. Strong experimental work increases the impact of a paper.

We conducted an empirical study for testing these hypotheses. For this purpose, we
took the papers published at ISWC since 2002 and manually classified them according
to the scheme proposed by [5]. In addition, we had a closer look at papers containing
descriptions of experimental work with respect to the data used and the claims made. In
the following, we describe the study design and the data used in detail and discuss the
results of the study as well as the implications for the hypotheses stated above.

3.1 Data

As the goal of the study is to make valid assertions about the area of Semantic Web as a
whole, the dataset used in the study has to be representative for the work conducted in
the area. Making a good selection is complicated by the fact that the area of Semantic
Web is not as well defined as more established research areas. Today, many conferences
and journals contain work relevant for the Semantic Web. On the other hand, many re-
searchers active in Semantic Web research also publish in other scientific disciplines
such as artificial intelligence or database systems. Instead of trying to identify relevant
work in different scientific outlets, we decided to focus on the International Seman-
tic Web Conference as the major community event assuming that the work published
there is representative for the whole area. Therefore, we included all full papers from
the main research track of the ISWC conferences since 2002 instead of taking samples
from different outlets. There are other potential sources of publications in particular,
the ESWC and ASWC conference series as well as the Journal of Web Semantics and
the Semantic Web Journal. Concerning ESWC and ASWC, we can safely assume that
the ISWC conference series is the leading outlet and thus a more representative source
of data. We explicitly decided against including journals, because conferences better
reflect developments in young and dynamic fields such as the Semantic Web. The Jour-
nal of Web Semantics, however, might be included in future studies to compare the
different kinds of publication outlets.

The dataset used in this study thus includes 500 papers from the following conference
editions:
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– 11. ISWC 2012: Boston, MA, USA (41 papers1)
– 10. ISWC 2011: Bonn, Germany (50 papers2)
– 9. ISWC 2010: Shanghai, China (51 papers3)
– 8. ISWC 2009: Chantilly, VA, USA (43 papers, Research Track4)
– 7. ISWC 2008: Karlsruhe, Germany (43 papers, Research Track5)
– 6. ISWC / 2. ASWC 2007: Busan, Korea (50 papers, Research Track6)
– 5. ISWC 2006: Athens, GA, USA (52 papers, Research Track7)
– 4. ISWC 2005: Galway, Ireland (53 papers, Research Track8)
– 3. ISWC 2004: Hiroshima, Japan (48 papers, Research Track9)
– 2. ISWC 2003: Sanibel Island, Florida, USA (42 papers, Research Track10)
– 1. ISWC 2002: Chia, Sardinia, Italy (27 papers, Research Track11)

In order to measure the impact of papers in the dataset, we use citation statis-
tics from Google Scholar (http://scholar.google.de/) and Microsoft Academic Search
(http://academic.research.microsoft.com/). We use two different sources of citation
statistics because it is well known that citation counts can differ significantly between
different sources depending on the coverage of sources and the counting policy. Google
Scholar has a very liberal counting policy that typically leads to a very high number of
citations. In particular, as pointed out in [13], Google Scholar also covers grey literature
citing a publication. Microsoft Academic Search is more conservative and counts fewer
citations on average.

3.2 Annotation Scheme

In order to be able to compare our findings to previous studies on the role of experimen-
tal work in computer science as a whole, we used the classification scheme proposed
in [5] with the modifications described in [11], i.e. the merge of the two categories ’Em-
pirical Work’ and ’Hypothesis Testing’. This allows us to relate our results to the finding
reported in both papers. In particular, we classified papers according to the following
four major categories.12

1) Formal Theory. Papers whose main contributions are formal propositions, e.g. lem-
mata and theorems and their proofs.

2) Design and Modeling. Papers whose main contributions are systems, techniques
(e.g. algorithms) or models whose claimed properties cannot formally be proven.

1
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2012-1.html

2
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2011-1.html

3
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2010-1.html

4
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2009.html

5
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2008.html

6
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2007.html

7
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2006.html

8
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2005.html

9
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2004.html

10
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2003.html

11
http://www.informatik.uni-trier.de/˜ley/db/conf/semweb/iswc2002.html

12 Descriptions of categories are taken from [5].

http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2012-1.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2011-1.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2010-1.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2009.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2008.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2007.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2006.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2005.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2004.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2003.html
http://www.informatik.uni-trier.de/~ley/db/conf/semweb/iswc2002.html
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3) Empirical Work / Hypothesis Testing. Papers that collect, analyze and interpret
observations about known designs, systems, models or hypotheses.

4) Other. Papers that do not fit the other categories (e.g. surveys).

Further, we annotated all papers in Category 2 with additional information about the
experiments conducted. Following Tichy et al., we use the number of pages devoted
to the description of the experiment and its outcome as an indicator for importance of
the experimental work and therefore annotate every paper with the number of pages
describing experiments and the fraction of the overall paper they constitute.

Further, we annotate all papers of Category 2 with the following information about
the nature of the experiments.

Standard Used for Comparison. Does the paper report about different settings or the
system or method? Are results compared against existing baselines? Are results
compared against the results of other systems? The latter includes both indirect
comparisons against results reported in other papers and direct comparisons ob-
tained by executing the other system as part of the experiments.

Datasets Used. Has one dataset been used or have several datasets been used within
the experiments? Has the dataset been self-created by the authors for the purpose
of conducting the experiments or is it externally provided?

We use this information as an indication of the quality of the experimental design,
assuming that an ideal experimental design will compare a proposed system against
other leading systems or at least sensible baselines using several datasets with differ-
ent characteristics. One can argue about whether externally provided datasets should be
preferred over self-created ones, in many cases externally provided datasets are pub-
licly accessible benchmarks that support the comparison with other systems, which we
consider desirable.

3.3 Study Design

Annotation Process. The classification of papers into the four categories was performed
manually by a group of five annotators, three of which were senior and two junior level
researchers. One of the senior researchers acted as a judge, while the other four were
annotators. We started with the 2012 papers which were annotated by all four annotators
to get a feeling for the level of agreement and discuss difficult cases to reach a common
understanding of the category definitions and typical problems. In a second round, the
remaining papers were annotated by two groups consisting of one senior and one junior
annotator. One group performed the annotation of papers from even years, the other
of papers from odd years. All papers where the annotators disagreed on the correct
category were forwarded to the judge who made a final decision on the category.

In the same way, the number of pages devoted to experimental work was annotated
at a granularity of half pages. First all annotators determined the number of pages for
the 2012 conference. Subsequently, all remaining papers were annotated in two groups.
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Papers with a disagreement were forwarded to the judge. In case of consensus on the
category and a disagreement of just half a page, the judgment of the senior annotator
was used. The detailed analysis of the experimental setting was carried out by two
senior researchers where one annotated the papers from odd and another annotated the
papers from even years.

In order to check how hard it is to decide on the classification of each paper, the inter-
annotator agreement for both annotator pairs in the second round was computed using
Cohen’s Kappa [14]. The result for each pair is a number between zero and one, where
zero means that the agreement between both annotators cannot be distinguished from
chance, while one means perfect agreement. The annotators of the odd years reached a
kappa of κ = 0.63 while the group annotating the even years scored κ = 0.47. There is
no universally accepted value range defined for Cohen’s Kappa, but there are interpre-
tations of Cohen’s Kappa in the literature that say these results can be considered to be
moderate (even years) and substantial (odd years) agreement [15]. It is safe to say that
the kappa values easily exceed an agreement by chance which means that the classifica-
tion task was well defined. Most disagreement result from confusions between Category
1 and 2, i.e. 32 out of 77 disagreements. That means it is often unclear whether a paper
should be considered as a theoretical paper or a modeling paper without experiments.
All disagreements were finally resolved by the decision of the judge.

Test of Hypotheses. Based on the classification of papers according to the four main
categories, we compare the distribution of papers from ISWC to the distributions re-
ported in previous studies for general computer science and other disciplines (H1).
Further, we look at papers from Category 2 (Design and Modeling) in more detail. In
particular, we analyze how the papers distribute across the subcategories defined by the
fraction of the pages devoted to the description of experimental work (0%, (0% - 10%],
(20% - 50%], > 50%) and compare the distribution with previous studies (H2). We then
look at the development of experimental work over time by plotting the distribution of
papers across all categories over the past eleven years. We also look at the average
number of pages devoted to experimental work in the different years and compute the
correlation between year of publication and number of pages (H3). In a similar way we
look at the experimental setting in more detail. For papers from Category 2 we analyze
the standards used for comparisons and the datasets used as input to the experiments.
We interpret these features and their characteristics as indicators for experimental qual-
ity in terms of significance and validity and analyze whether the experimental quality
has increased over the past eleven years (H4). Finally, we used statistical models to test
for correlation between the pages devoted to experimental work and the features that
are indicators for experimental quality on the one hand and the impact of the paper on
the other hand. We control the influence of other variables, such as the year of publica-
tion, to avoid spurious correlations, that do not appropriately reflect the dependencies
between experimental work and its influence on a papers impact (H5).

4 Results

In the following, we discuss our findings regarding the different hypotheses in more
detail. In particular, we present descriptive statistics of the ISWC paper collection and
results of investigating possible correlations with research impact.
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4.1 H1. Like in Computer Science in General Design and Modeling Work Is the
Dominant Form of Research on the Semantic Web

We investigated the first hypothesis by comparing the distribution of papers across the
four main categories ’Formal Theory’, ’Design and Modeling’, ’Empirical Work’ and
’Other’, with the results of the previous studies conducted by Tichy et al. and Wainer et
al. respectively. The results are shown in Table 1.

Table 1. Comparison of the relative share of papers in each of the four research method categories.
While the figures from [5] refer to papers published in 1995, and [6] used papers from 2005, our
study covers 11 consecutive years from 2002 – 2012. This also explains the comparably high
number of papers (500) included in our study. Noteworthy is that all three studies found a similar
pattern, revealing Category 2) Design and Modeling as being the domination method of research.

ISWC 2002-2012 [6] [5]
1) Formal Theory 11.2% (56) 4.1% (6) 18.7% (48)
2) Design / Modeling 80.8% (404) 70.1% (103) 64.1% (164)
3) Empirical Work 5.4% (27) 22.4% (33) 10.2% (26)
4) Other 2.3% (13) 3.4% (5) 7.0% (18)

100% (500) 100% (147) 100% (256)

Looking at the results, we see that like in previous studies, most of the work, namely
80.8% falls into the category ’Design and Modeling’ while 11.2% of the work is of
theoretical nature and only 5.4% is empirical work in the sense of our classification,
leaving 2.3% other papers. This confirms our hypothesis that Design and Modeling is
the dominant form of research on the Semantic Web. Comparing this to the results of
the previous study, we can see that the dominance of design and modeling work is
even more visible than in the previous studies, where 64.1% and 70.1% of the work
was classified as Design and Modeling. Partially this difference can be explained by
the general trend to more practical work in computer science and the different periods
the studies were carried out: While Tichy and others only considered papers published
in 1993 and Wainer and others analyzed papers published in 2005, our study includes
papers published between 2002 and 2012. This means that our results should at least be
comparable with the results from Wainer and others that fall into the period covered by
our study.

Another noticeable observation is the lack of a significant amount of empirical work
on the Semantic Web. With only 5.4% of all papers, the fraction of empirical work is
only half as large as in the 1995 study and only a quarter of the amount found by the
2005 study. In fact, besides some papers that investigated the amount and nature of
linked data and ontologies found on the web, there is no empirical work concerned with
Semantic Web technologies. This could be explained by the fact that the Semantic Web
is still a very young area of research where the focus is still on creating new technologies
rather than on analyzing the impact of the new technologies on the Web.
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4.2 H2. The Importance of Experimental Work on the Semantic Web Is
Comparable with Computer Science in General

We investigate the claim that experimental work has the same importance in the Seman-
tic Web area as in Computer Science in General based on the criterion of importance
proposed by Tichy and others in their original study. In particular, Tichy and others pro-
pose to use the fraction of the paper devoted to the description of experimental work.
We follow this suggestion and compare the distribution of papers in the relevant cat-
egory of Design and Modeling Papers across the different subcategories proposed by
Tichy and others.

31.44% 33.01% 
45.12% 

11.88% 9.71% 

16.46% 22.28% 21.36% 

12.80% 

33.66% 30.10% 
22.56% 

0.74% 5.83% 3.05% 

0%
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ISWC 2002 - 2012 [Wainer et al 2009] [Tichy et al 1995]

0% (0% - 10%] (10% - 20%] (20% - 50%] > 50%

Fig. 1. Comparison between three studies reporting on the relative share of pages of Category 2
papers dedicated to experiments. While the figures from [5] refer to papers published in 1995,
and [6] used papers from 2005, our study covers 11 consecutive years from 2002 – 2012.

Figure 1 compares the distribution of papers across classes between our study and
the two previous studies looking at Computer Science in general. The first observation
is that in the study of Tichy conducted in 1995 the fraction of Design and Modeling
papers that contained no description of experimental work at all is significantly larger
(45% vs. 31% and 33%) while the fraction of papers with more than 20% of the pages
devoted to the description of experiments is significantly smaller (approx. 26% vs. 34%
and 36%) than in the other two studies. This visible difference, again can be explained
by the general increase of importance of experimental work since the early Nineties.
Comparing our results to the Study of Wainer et al., we can see that the difference
between the distribution is very small. Except for the category of papers with more than
50% of the pages devoted to experimental work, the differences between the classes
are always within two percentage points. This seems to suggest that the importance of
experimental work on the Semantic Web is comparable with General Computer Science
literature published by the ACM.

Being aware of the general tendency that experiments become more important over
time, we take another look at the papers from the study of Wainer and others and the
papers from ISWC 2005 to be able to directly compare papers published in the same
year. The results are summarized in Table 2.
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Table 2. Comparison of the relative share of pages of Category 2 papers dedicated to experiments.
For both studies, ours and [6], we report only papers from 2005 here. We observe a generally
lower amount of pages for experiments when comparing ISWC to general Computer Science.

ISWC 2005 ACM Sample 2005 [6]
0% 40% 33%
(0% - 10%] 11.1% 9.7%
(10% - 20%] 15.6% 21.4%
(20% - 50%] 28.9% 30.1%
> 50% 4.4% 5.8%

Here, we observe a slightly different picture. When only looking at papers from
2005, we see that the fraction of papers without any experimentation is higher (40%)
than the figure reported by Wainer and others (33%) and also higher than the average
fraction across all ISWC conferences. On the other hand, the fraction of papers with
more than 10% of the pages describing experiments is lower (49%) compared to the
study by Wainer (57%) and also much lower than the average across all ISWC con-
ference (also 57%). We conclude that at least in 2005, experimental work did not yet
have the same level of importance in Semantic Web research than in general Computer
Science, while averaged across all ISWC conferences, the importance is comparable to
general Computer Science in 2005.

4.3 H3. The Importance of Experimental Work on the Semantic Web Is
Increasing over Time

The inconclusive result of comparing the number of pages as an indicator for the impor-
tance of experimental work across the different studies asks for a deeper analysis of the
development of the indicator over time. We explain the observation that, while in 2005
experimentation was not as prominent in ISWC papers than in general computer science,
the results measured across all ISWC conferences was comparable with the results of
the 2005 study by Wainer et al. by hypothesizing that the importance of experimental
work was rather low in the early years of the ISWC conference. This is not uncommon
for new fields of research, as first, the principled ideas have to be laid out and basic ideas
have to be tested in prototypical form. Only later, when the field is more established and
the problems are better understood, systematic experiments become the standard way of
validation. As the first ISWC conference took place in 2002, the field was still in a rather
early stage in 2005. According to our hypotheses H3, we expect the importance to have
significantly increased since then, which would explain the result over all conferences.

We test this hypotheses by looking at the development of the different categories
over the years 2002 to 2012. In particular, we look at the development of the different
subcategories under Design and Modeling to get an impression, whether the importance
of experiments is increasing in this category. The results are summarized in Figure 2.
The first observation to be made is, that the overall amount of papers in Design and
Modeling stays roughly the same - around 80% - with a slight decrease to about 75%
in the last two years. Inside this category, however, we can see a radical shift in the
classification from 2002 to 2012. The shift can best be observed when looking at the
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Fig. 2. Barchart showing the relative share of papers of Category 2 (Design and Modeling),
grouped by the relative number of pages dedicated to experiments per year: 0%, (0% − 10%],
(10%− 20%], (20%− 50%], > 50%. All other categories (1, 3, 4) are summarized in one class.
Most noteworthy is the decrease over time for papers without any experiments (0% pages), while
the group of (20%− 50%] is growing.

subcategory of papers with 0% of pages describing experimentation and the subcategory
of papers with 20% to 50% of the pages devoted to experimentation. While the former
category contained about 70% of the papers in 2002 it completely disappeared by 2012,
showing that today Design and Modeling papers without experimentations are not any
more considered to be adequate. On the other hand, the amount of papers with 20-50%
experimentation show a constant increase and represents more than 50% of the papers
in 2012. In 2005 there were still more papers without experiments (about 35%) than
papers with 20-50% (about 25%), which explains the results reported above.

The increase in importance can also be observed well when directly looking at the
number of pages instead of the categories. Figure 3 shows a standard box-plot for the
relative number of experiment pages for Category 2 (Design and Modeling) papers. We
identify a trend of growing importance of experiments over time. With the exception
of 2010, the median is constantly rising up to 25% in 2012. Measuring this trend in
figures, the Spearman Correlation Coefficient is statistically significant (rS(402) =
.49, p < .000).

4.4 H4. The Quality of Experimental Work on the Semantic Web Is Increasing
over Time

With respect to H4, we decided to focus on four binary variables as indicators for
experimental quality. Our choice is based on the following assumptions.

– Using several datasets is better than using only one dataset (SEVERAL).
– Using an already existing dataset is better than using a dataset that has been created

for the purpose of conducting the experiments (OTHER).13

13 During our annotation phase, we observed problems in deciding whether a simple setting
should or should not be treated as a baseline. For that reason we did not distinguish between
comparisons against a baseline and comparisons of different settings and counted each such
comparison in the same variable.
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Fig. 3. Box-plot showing the relative number of pages of Category 2 (Design and Modeling)
papers by year of publication. The median starting at 0% in 2002 increases constantly (with the
exception of 2010) over time, reaching its top of 24% in 2012. The second/third quartile, denoted
by the box, varies, but is since 2009 clearly above zero. Outliers are displayed as circles/stars.

– Comparing the proposed approach against a baseline or comparing different set-
tings against each other is better than no such comparison (BASEDIFF).

– Comparing the proposed approach against other algorithms/systems is better than
no comparison (SYS).

The variables SEVERAL and OTHER can be interpreted as indicators for the universal
validity of the reported results. The variables BASEDIFF and SYS indicate whether the
authors informed the reader on the performance (e.g. runtimes), quality (e.g. precision),
or usability compared to alternative approaches. Without such a comparison, it is hardly
possible to draw any conclusions related to the improvements made.

The results of our analysis are shown in Figure 4, where we depicted the countings
for all four variables with respect to Category 2 papers. Figure 4 reveals a clear trend.
The quality of experimental work is increasing over time with respect to each vari-
able. In 2003 only a minor share of all papers had a positive characteristic in one of
the four variables, while in 2012 more than 50% of all papers had a positive charac-
teristic in three of four variables. However, only 33% of all papers in 2012 compared
their results against other systems (SYS). While this is an improvement compared to
the previous years, there are still many papers that do not compare their results against
other systems. We computed also the correlation between the year of publication and
the four quality measures using Spearman’s rank correlation coefficient. We find that all



On the Status of Experimental Research on the Semantic Web 603

Fig. 4. Development of relative share of Category 2 (Design and Modeling) papers complying to
different evaluation quality indicators over time. While all indicators start at a low level of≤ 11%
in 2003 and rise with the years, we found the usage of externally provided datasets (OTHER) to in-
crease the most. Nevertheless, even in 2012 only about on third of all papers compare themselves
to other existing systems (SYS).

variables show positive and statistically significant correlations with the year of publi-
cation (rS between .36 and .46, p ≤ .000).

Our observations can be explained by two factors. One factor might be an increasing
awareness of the importance attributed to experimental work. Another factor might be
the general development of the community. What has been a novel area of research 10
years ago, might have become an established research area associated with well-defined
problems, commonly accepted formats, well-known datasets and accepted benchmarks.
Obviously, both factors go hand in hand, resulting in the positive trend that we reported
in our evaluation.

4.5 H5. Strong Experimental Work Increases the Impact of a Paper

For analyzing the potential relation between the amount of experimental work of a paper
and its impact, we employ a generalized linear model (GLM). As described above, we
take the relative number of pages describing experiments (RELPAGES) as a general
proxy for the importance of the experimental part within a paper. Following [5], we
thus make the assumption that the better the experiments in a paper are, the more the
paper reports about the experiments.

For measuring the impact of a paper, we divide the citation count by the age of a
paper in years (RELCITATIONPA). We use only Google Scholar data, as the Microsoft
Academics citation figures are strongly correlated with the Google Scholar data, the
statistically significant Pearson’s correlation is 0.969, and would thus result in similar
findings.

Our first analysis reviews the simple pairwise variable correlation. For all correla-
tions here df = 402. We find that a statistically significant Spearman’s correlation
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Table 3. Spearman’s Correlation Coefficient for the citation count per year, the relative number
of pages for experiments, and the year of publication. All correlations are statistically significant
and negative with respect to the year of publication. The experimental pages count was surveyed
only for the 404 Category 2 papers.

Correlation Sig. (2-tailed) N
Scholar Citation Count per Year (RELCITATIONPA) 1.000 .000 500
Experimental Pages Count (RELPAGES) −0.175 .000 404
Year of publication (YEAR) −0.458 .000 500

(rS = −0.175) between RELCITATIONPA and RELPAGES exists. This would indi-
cate that a decrease in the number of citations goes hand in hand with an increase
of the amount of pages spend on experiments. But as shown in Table 3, we also ob-
serve a strong correlation of −0.458 between RELCITATIONPA and the year of pub-
lication (YEAR). This is consistent with the temporal development reported above in
Section 4.3. Thus, from this data it cannot be concluded if RELCITATIONPA effects
the impact of a paper, or if both developments just coincided with the general develop-
ment over time. For a more fine-grained analysis of the effects, we thus use a GLM for
regression analysis.

The GLM takes a log-link function to explain the outcome of our dependent vari-
able RELCITATIONPA as the result of a Tweedie(p = 1.5)-Distribution14 taking into
account RELPAGES and AGE, as well as the binary quality measures BASEDIFF, SYS,
OTHER, and SEVERAL. We choose a Tweedie distribution function as it suits citation
count data, where several papers have zero citations, well. In addition, we find that the
model shows better goodness of fit values, measured by the Akaike Information Crite-
rion (AIC), for our data, compared to a linear regression as well as to a loglinear GLM
with a Poisson distribution (Poisson-Regression). The Omnibus likelihood-ratio Chi-
Square test of our model (df = 18, cf. Table 4) versus the intercept-only model confirms
a significant difference (p ≤ .000). We use the 404 Category 2 (Design and Modeling)
papers and group the values for RELPAGES into the five classes described above, see
e.g. Figure 2, and denoted them in the following by the variable RELPAGESCLASS.

Under this model, RELPAGESCLASS has a negative parameter and thus indicates a
negative effect of the number of pages on the likelihood to be cited. But as the model
effects test given in Table 4 reports a non-significance (p = .239), we cannot conclude
that RELPAGESCLASS has an effect on RELCITATIONPA. On the other hand, SYS and
SEVERAL both have a statistical significance (p = .050 and p = .053). SEVERAL has
a positive parameter (0.250), thus indicating a positive effect of reporting experimental
results for different datasets and not only for one dataset. We make a similar observation
for papers comparing their own system to other systems, as SYS has also a positive
parameter (0.301). Because both variables, SYS and SEVERAL, are strong indicators for
profound experimental work, we may take this finding as a support for our hypothesis
and conclude, that comparing oneself to others increases the likelihood to get cited.
Nevertheless, if this correlations reveals a causality remains somehow doubtful, as the
positive correlation may also originate from the fact that papers with an active and

14 For 1 < p < 2, this is a compound Poisson-Gamma distribution with a point mass at zero.
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Table 4. Test of Model Effects with Wald-Chi-Square for the GLM with RELCITATIONPA as
depended variable. Variable RELPAGESCLASS is not statistically significant for the model, but
the two quality indicators SYS and SEVERAL have significance test values of p ≤ .05 and .053.

Wald Chi-Square Deg. of Freedom Significance
(Intercept) 281.760 1 .000
RELPAGESCLASS 5.510 4 .239
AGE 164.634 10 .000
BASEDIFF 3.139 1 .076
SYS 3.835 1 .050
OTHER 0.205 1 .651
SEVERAL 3.750 1 .053

large research community have more opportunities to cite other systems, while papers
on isolated topics simply do not have peer papers to related to. Regarding all other
variables, our model can currently not give a statistically reliable explanation whether
they have any effect or not.

5 Conclusion

After more than 10 years of Semantic Web conferences, we believe it has been time to
conduct a study like this. It serves a basis for a backward analysis of what has happened
so far alike as actuates fruitful future discussions that will help steering the kind of
research conducted in our community. Our main aim was to learn how the field of
Semantic Web research is doing compared to general computer science and to show that
the field is on its way to become an established scientific discipline with high standards
concerning experimental evaluation of work.

Our results confirm that Semantic Web, as other emerging fields, has undergone a
significant change with respect to the importance and quality of experimental work. We
found that the amount of experimental work done is comparable to Computer Science
in general and that the quality of experiments in terms of the use of publicly available
datasets and comparison to other systems and benchmarks has continuously increased
over the last ten years. In particular, we see that today it is virtually impossible to get
design and modeling work accepted in the main track of ISWC without having exper-
imental results. Further, our results show that papers that relate their contribution to
existing datasets or other systems are more often cited than others.

As next steps, we will add more Semantic Web conferences like ESWC and journals
such as Journal of Web Semantics and Semantic Web Journal. In addition, we will
conduct more detailed analyses such as investigating the influence of (co-)authorship
with respect to citations. We also plan to conduct analyses of the citations based on
the single ISWC conferences. To this end, we are looking at the papers published in
a specific year of a conference only and investigate whether the papers of a specific
category are statistically more cited than papers in other categories. Finally, we would
like to automatically obtain the topic of the articles by extracting topic models from the
abstracts and analysing the citation distribution over these topics.
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Abstract. Semantic models of data sources and services provide sup-
port to automate many tasks such as source discovery, data integration,
and service composition, but writing these semantic descriptions by hand
is a tedious and time-consuming task. Most of the related work focuses
on automatic annotation with classes or properties of source attributes
or input and output parameters. However, constructing a source model
that includes the relationships between the attributes in addition to their
semantic types remains a largely unsolved problem. In this paper, we
present a graph-based approach to hypothesize a rich semantic descrip-
tion of a new target source from a set of known sources that have been
modeled over the same domain ontology. We exploit the domain ontology
and the known source models to build a graph that represents the space
of plausible source descriptions. Then, we compute the top k candidates
and suggest to the user a ranked list of the semantic models for the new
source. The approach takes into account user corrections to learn more
accurate semantic descriptions of future data sources. Our evaluation
shows that our method produces models that are twice as accurate than
the models produced using a state of the art system that does not learn
from prior models.

Keywords: semantic description, source modeling, source description,
semantic model, Semantic Web.

1 Introduction

Today, information sources such as relational databases andWeb services provide
a vast amount of structured data. A common approach to integrate sources
involves building a global model and constructing source descriptions that specify
mappings between the sources and the global model [8]. In the traditional data
integration approaches, source descriptions are specified as global-as-view (GAV)
or local-as-view (LAV) descriptions. In the Semantic Web, what is meant by a
source description is a semantic model describing the source in terms of the
concepts and relationships defined by an ontology. This semantic model can be
viewed as a graph with ontology classes as the nodes and ontology properties as
the links between the nodes.
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The first step in building a source description of a source is to determine the
semantic types. That is, each source attribute is labeled with a class or a data
property of the domain ontology. However, simply annotating the attributes is
not sufficient. For example, consider a data table with two columns: name, which
is mapped to the class Person, and place, which is mapped to the class City.
Unless the relationship between the two columns is explicitly specified, we do not
know whether the city is the birth place of the person or it is the place where she
currently lives. A precise source description needs a second step that determines
the relationships between attributes in terms of properties in the ontology.

Writing source descriptions by hand requires significant effort and expertise.
Although desirable, generating these descriptions automatically is a challenging
problem [1,7,10,17,20]. Most of the proposed approaches on the Semantic Web
focus on the first step of the modeling process. In our previous work [13], we pre-
sented an algorithm to construct semantic models of data sources by computing
a Steiner tree in a graph derived from the ontology and the semantic types. If
the suggested tree is not the correct model of the data, the user interactively
imposes constraints on the algorithm through a graphical user interface to build
the correct model. However, the system does not learn the refinements done by
the user and always suggests a random minimal tree as the initial model of the
new sources.

In this work, we present algorithms to improve the quality of the automatically
generated models by using the already modeled sources to learn the patterns that
more likely represent the intended meaning of a new source. The insight of our
approach is that different sources in the same domain often provide similar or
overlapping data. Thus, it should be possible to exploit knowledge of previously
modeled sources to learn descriptions for new sources. First, we construct a
graph whose main components are subgraphs corresponding to the known source
models. We use the domain ontology to infer the possible paths connecting the
nodes across different subgraphs. This graph models the space of plausible source
descriptions. Next, we label each source attribute with a semantic type and try
to find a set of candidate mappings between these semantic types and the nodes
in the graph. For each resulting set of the nodes, we compute the minimal tree
that connects them and consider this tree as a plausible source model. Then,
we score the models to prefer the ones formed with more coherent and frequent
patterns. Finally, we generate a ranked list of possible semantic models. We can
put users in the loop by allowing them to select the correct model or refine one
of the suggested models. The correct model will be added to the graph as a new
component yielding more accurate models in the future.

Our work provides a basis to learn the source descriptions of information
sources. The main contribution of our work are the techniques to leverage at-
tribute relationships in known source descriptions to hypothesize attribute re-
lationships for new sources, and capturing them in source descriptions. Such
source descriptions are beneficial to automate tasks such as source discovery,
information integration, and service composition. They also make it possible to
convert sources into RDF and publish them in the Linked Data cloud [23].
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Fig. 1. The ontology that we use to model the sources in the example

2 Motivating Example

In this section, we explain the problem of learning source descriptions by giving
a concrete example that will be used throughout the paper to illustrate our
approach. In this example we have five data sources whose definitions are as
follows:

s1 = personalInfo(name, birthdate, city, state, workplace)
s2 = getCities(state, city)
s3 = businessInfo(company, ceo, city, state)
s4 = getEmployees(employer, employee)
s5 = postalCodeLookup(zipcode, city, state)

s1 is a dataset providing information about people; s2 is a Web service that
takes as input a U.S. state and returns all the cities of that state; s3 is a dataset
providing information about businesses such as their name; s4 is a list of U.S.
companies and their employees; and s5 is a Web service that returns the list of
all the cities in a ZIP code. We use the ontology shown in Figure 1 to build a
source description for each source. These descriptions are illustrated in Figure
2. Now, suppose that the first three sources (s1, s2, and s3) have already been
modeled and the other two (s4 and s5) are new sources not modeled yet. The
goal is to automatically infer the source descriptions for s4 and s5 given the
ontology and the models for s1, s2, and s3.

Automatically building a source description of an unknown source is difficult.
First, the system must map the source attributes to classes in the ontology.
Considering source s4 in Figure 2, attribute employer should be mapped to name
of Organization and attribute employee should be mapped to name of Person.
Next, the system needs to infer the relationships between the classes used to
model the attributes. Our sample ontology has two links between Person and
Organization, namely worksFor and ceo. The system needs to select worksFor,
which captures the intended meaning of s4. The problem is more complicated in
cases when the relevant classes are not directly connected in the ontology and
there exist multiple paths connecting them to each other.
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Fig. 2. Source descriptions of sample data sources according to the introduced ontology

In this work, we exploit already modeled sources to build semantic models that
are more accurate in terms of the relationships between the source attributes.
One of the metrics helping us to build our models is the link popularity, neverthe-
less, simply using link and node popularity would lead to myopic decisions that
select nodes and links that appear frequently in other models without taking into
account how these nodes are connected to other nodes in the given models. The
main idea of our approach is taking into account the coherency of the patterns
and this is much harder to do. Suppose that we have one model containing the
link organizer between Event and Person and the link location between Event
and Place. We also have several models including Person and Place (but not
Event) connected by the relation bornIn. If the new source contains Person,
Place, and Event, just using the link popularity yields to an incorrect model.

3 Problem Formulation

Having given the example above, we state the problem of learning source
descriptions of sources formally.

A source is a n-ary relation s(a1, · · · , an), with a set of attributes 〈a1, · · · , an〉,
denoted as Attributes(s).

A semantic model m is a directed graph containing two types of nodes, class
nodes and data nodes. Class nodes (ovals in Figure 2) correspond to classes in
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the ontology and are labeled with class URIs (if v is a class node, uri(v) is
URI of the associated class). Data nodes (rectangles in Figure 2), correspond
to the range of data properties and are labeled with a pair of URIs: one is the
URI of a data property and the the other is the URI of one of the domains
of that property e.g., 〈Person, name〉 or 〈City, name〉. The links in the graph
correspond to ontology properties and are labeled with property URIs (if e is a
link, uri(e) represents the URI of the property). In general, a semantic model
may contain multiple nodes and links labeled with the same URI.

An attribute mapping function φ:Attributes(s)→Nodes(m) is a mapping from
the attributes of source s to a subset of the nodes in m. It can be a partial
mapping, i.e, only some of the attributes are connected to the nodes in m.

A source description is a triple (s,m, φ) where s is a source, m is a semantic
model, φ is an attribute mapping function that connects the source to the model,
and m can be written as a conjunctive query over the predicates of the domain
ontology O (in this work, we do not deal with source descriptions involving more
complex constructs such as aggregation, union, or negation).

Figure 2 shows the source descriptions for our five example sources. In the fig-

ure, φ is represented using the inverted arrows symbols ( ) connecting attributes
in the source to nodes in the model.

The problem of inferring source descriptions can be stated as follows. Let O
be a domain ontology and S = {(s1,m1, φ1) · · · , (sk,mk, φk)} a set of source
descriptions. Given a new source ŝ, we want to compose a semantic model m̂
and an attribute mapping function φ̂ such that (ŝ, m̂, φ̂) is an appropriate source

description. Clearly, many triples (ŝ, m̂i, φ̂i) are well-formed source descriptions,

i.e., m̂i and φ̂i are well defined, but only one or a few capture the intended mean-
ing of the data contained in ŝ. Our goal is to automatically compute (ŝ, m̂, φ̂)
such that it minimizes the graph edit distance to a source description that the
user would deem correct. We evaluate our approach by computing the graph edit
distance from (ŝ, m̂, φ̂) to a user-defined source description.

4 Learning Semantic Descriptions

The approach we take to learn the source description of a new source aims to
characterize a source in terms of the concepts and properties in the domain
ontology. In general, the ontology defines a large space (sometimes infinite) of
possible source descriptions and without additional information, we do not know
which one describes the source more precisely. The main idea here is that data
sources in the same domain usually provide overlapping data. Therefore, we can
leverage the knowledge of previously described sources to limit the search space
and get some hints to hypothesize more plausible candidates.

Our approach has four steps. First, we construct a graph whose main compo-
nents are the semantic models of the known source descriptions. We use the do-
main ontology to enrich the graph by adding the nodes and the links that connect
these components. Second, we label the source attributes with semantic types.
This step is not the focus of this paper and we use an existing technique [12]
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to annotate the attributes. Third, we find all possible mappings between the
assigned semantic types and nodes of the graph and select the k most promising
mappings. We compute a semantic model m̂ and an attribute mapping function
φ̂ for each mapping to construct the top k source descriptions (ŝ, m̂, φ̂). Finally,
we define metrics to rank the generated candidates.

4.1 Building a Graph from Known Semantic Models

The central component of our method is a directed weighted graph G built on
top of the known semantic models mi and expanded using the domain ontology
O. Similar to the graph of semantic models, G contains both class nodes and data
nodes and links corresponding to properties in O. However, the links in G are
weighted and they also store a list of the model identifiers, called support models.
Algorithm 1 explains how we create G from the known models.

Before we describe the algorithm, we need to define the functions closure(c)
and relations(ci, cj). For every class c in O, we define closure(c) as the set
of classes that either are superclasses of c or can reach c or one of its su-
perclasses by a directed path whose links are object properties. For example,
closure(Person) = {Organization, Event} because there are the links ceo
and organizer from Organization and Event to Person. As another exam-
ple, closure(City) = {Place, State, Person, Organization, Event}. Place is
in the set because it is a superclass of City and the other classes have a path
to either Place or City. We define relations(ci, cj) between two class nodes as
the properties connecting ci to cj . It includes the subClassOf relation and also
the properties inherited from the class hierarchy. For instance, relations(Person,
City) = {bornIn, livesIn} and relations(City, Place) = {subClassOf , nearby,
isPartOf}.

The algorithm has three main parts. In the first part (lines 4-17), we add a
component to G for each semantic modelmi that is not a subgraph of the existing
components, i.e., mi introduces a new pattern. If mi is subsumed by some of the
components, we just update the support models of the corresponding links in
those components. That means if a pattern appears in k models, all the links of
that pattern will have k elements in their support models. Figure 3 illustrates
the graph built over M = {m1,m2,m3}. Although we have three known models,
two components are added to G since m2 is a subgraph of m1 and we only need
to update the support models of the common links between m1 and m2.

Next (lines 18-20), we find all the classes that are connected to the current
nodes through a path in the ontology. To do this, for every class node v, we
calculate closure(uri(v)). Then, for each class uri in the resulting set, if G does
not already include a node with the same label, we add a new node marked with
class uri. In our example in Figure 3, applying this step adds nodes 9 and 11 to
the graph because Event ∈ closure(City) ∪ closure(State) ∪ closure(Person)
and Place ∈ closure(City) ∪ closure(State). In the final part (lines 21-25),
we use the ontology properties to connect different components of the graph.
We compute relations(vi, vj) to find all the possible links between the two class
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Fig. 3. The graph constructed from M = {m1,m2,m3} (semantic models of s1, s2,
and s3) and the domain ontology O

nodes vi and vj that are not both in the same component. For legibility, we only
show some of the links in Figure 3.

Assigning weights to the links of the graph is fundamental in our algorithm.
We assign a very low weight wmin = ε to all the links inside a component
associated with semantic models (black links in Figure 3). For all other links
(blue links in Figure 3), we assign a high weight wmax. The intuition behind
this decision is to produce more coherent models later when we compute the
minimal tree. In our example, wmax = 17 because the total number of links in
the set of known models (M) is 17. Regarding the links that do not belong to
any component of G (their support models is empty), we use a simple counting
mechanism to prefer the more popular ones (lines 42-44). For example, the weight
of the link worksFor from node 13 to node 7 is 16 because we have seen the
same link with the same domain and range in m1 (the link from node 4 to node
7). As another example, the link bornIn from node 13 to node 6 has a weight of
(17 − 1

17 ). The reason is that although there exist one link with the same label
in m1, the target of the links do not match each other.

4.2 Semantic Labeling of Source Attributes

When presented with a new source ŝ whose source description is unknown, the
first step is recognizing semantic types of its data. We formally define a semantic
type to be either an ontology class or a pair consisting of a data property and its
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Algorithm 1. BuildGraph(M, O)

Input: A set of known semantic models M = {m1, · · · ,mn} and the domain ontology O
Output: A weighted directed graph G that will be used later in learning semantic
descriptions of new sources

1: wmin ← ε
2: wmax ← ∑n

i=1|Edges(mi)| � wmax = total number of the links in M
3: components ← {} � subgraphs of G corresponding to the semantic models

� add the known semantic models to the graph
4: for each mi ∈ M do
5: if mi is a subgraph of c ∈ components then
6: let c′ ⊆ c be a subgraph of c that matches mi

7: add “mi” to the support models of the links in c′
8: else � mi introduces a new pattern
9: create a new component ci by cloning mi
10: for each link e ∈ ci do
11: support models(e) ← “mi”
12: weight(e) ← wmin

13: end for
14: components ← components ∪ ci
15: end if
16: end for
17: G =

⋃

ci∈components
ci � add disjoint components to the graph G

� traverse the ontology O to find the classes that do not map to any node in the graph
but are connected to them through a path in the ontology

18: for each class node v ∈ G do
19: AddClosure(v, G)
20: end for

� use the properties defined in O to join the disconnected components
21: for vi, vj ∈ G do
22: if vi, vj are both class nodes but do not belong to the same pattern then
23: AddLinks(vi , vj , G)
24: end if
25: end for

26: return G

27: procedure AddClosure(v, G)
28: ClosureSet ← closure(uri(v))
29: for each class uri ∈ ClosureSet do
30: if there is no node in G labeled with class uri then
31: add a new node u to G
32: uri(u) ← class uri
33: end if
34: end for
35: end procedure

36: procedure AddLinks(vi , vj , G)
37: RelationSet ← relations(uri(vi), uri(vj))
38: for each property uri ∈ RelationSet do
39: add a new link e from vi to vj
40: uri(e) ← property uri
41: support models(e) ← empty
42: c1 ← ∑

e′∈E1
|support models(e′)| where E1={links of G whose label, source,

and target match e}
43: c2 ← ∑

e′∈E2
|support models(e′)| where E2={links of G labeled with uri(e)}

44: weight(e) ← min(wmax − c1, wmax − c2/wmax)
45: end for
46: end procedure
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domain. We use a class as a semantic type for attributes whose values are URIs
for instances of a class and for attributes containing automatically-generated
database keys that can also be modeled as instances of a class. We use a data
property/domain pair as a semantic type for attributes containing literal val-
ues. For example, the semantic type for the first attribute of s4, employer, is
〈Organization, name〉.

We employ a supervised machine learning technique introduced in our previ-
ous work [12] to learn semantic types. To achieve high accuracy, we use a Condi-
tional Random Field (CRF) [15] method that uses features extracted both from
the attribute names and their values. The CRF is trained with user-specified as-
signments of attributes to semantic types, specified when the source descriptions
for sources s1 to sn were constructed.

Applying this method on a new source ŝ yields a set of candidate semantic
types, each with a confidence value. Our algorithm then selects the topm seman-
tic types for each attribute as an input to the next step of the process. To make
the description of the source description construction algorithm simpler, we de-
scribe the case of m = 1 and then explain how our algorithm can be generalized
to handle m > 1 (the general case is interesting because it enables the algorithm
to cope with situations when the top ranked semantic type is incorrect). Thus,
if the new source ŝ has n attributes denoted by Attributes(ŝ) = {a1, · · · , an},
the output of the semantic labeling step is Labels(ŝ) = {l1, · · · , ln} where li is
the semantic type of ai. For example, for s4 with Attributes(s4) = {employer,
employee}we will have Labels(s4) = {〈Organization, name〉, 〈Person, name〉}.

4.3 Generating Candidate Models

So far, we have annotated the source attributes with semantic types. To build
a complete source description we still need to determine the relationships be-
tween the attributes. For example, after labeling s4’s attributes, even though
〈Organization, name〉 and 〈Person, name〉 are assigned as the semantic types,
the relationship between the attributes is not fully determined. It is not clear
whether s4 describes organizations and their employees (using worksFor prop-
erty from Person to Organization) or organizations and their CEOs (using
ceo property from Organization to Person). As we can see, even for simple
sources like s4 having few attributes, the problem of learning an accurate se-
mantic description is a difficult problem. What we propose here is to leverage
the knowledge of the known semantic models to discover the most popular and
coherent patterns connecting the semantic labels of a new source ŝ.

The inputs to this step of our algorithm, Labels(ŝ), are the semantic types
assigned to the new source ŝ and the graphG, which includes the known semantic
models, M , and is expanded using the domain ontology O. The output is a set of
candidate source descriptions for the new source ŝ where each candidate (ŝ, m̂, φ̂)

contains the model m̂ along with the mapping φ̂ from the source attributes to
the nodes of m̂. Algorithm 2 shows the steps of our approach.
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Algorithm 2. GenerateCandidates(Labels(ŝ), G)

Input: A set of semantic types Labels(ŝ) = {l1, · · · , ln} and the graph G

Output: A set of candidate source descriptions (ŝ, m̂, φ̂)

1: Candidates ← {}
� mapping semantic types to the nodes of the graph

2: for each li ∈ Labels(ŝ) do
3: matched(li) ← all the nodes in G whose label match li
4: if matched(li) is empty then � add new node(s) if no node matches li
5: if li represents a class then
6: add a new class node u to G and uri(u) ← li
7: matched(li) ← u
8: else � li is in form of 〈domain, data property〉
9: add a new data node v to G and uri(v) ← li
10: matched(li) ← v
11: add a new class node u to G and uri(u) ← domain(li)
12: add a new link e from u to v and uri(e) ← data property(li)
13: end if
14: AddClosure(u, G) � compute the closure of the new node u
15: for class nodes vi, vj where either vi or vj ∈ new nodes do
16: AddLinks(vi , vj , G) � connect the new added nodes to the other nodes
17: end for
18: end if
19: end for
20: MatchedSet ← {{v1, · · · , vn}|vi ∈ matched(li)}

� for each possible mapping from the semantic types to the nodes, we compute the minimal
tree that connects those nodes

21: for each {v1, · · · , vn} ∈ MatchedSet do
22: SteinerNodes ← {v1, · · · , vn}
23: m̂ ← SteinerTree(G, SteinerNodes) � find the tree with minimal cost

24: φ̂ ← {〈a1, v1〉, · · · , 〈an, vn〉}
25: Candidates ← Candidates ∪ (ŝ, m̂, φ̂)
26: end for

return Candidates

In the first part of the algorithm (lines 2-20), we find all the mappings from the
semantic types to the nodes of the graph. Since it is possible that a semantic type
maps to more than one node in G, more than one mapping might exist from the
semantic types to the nodes. For example, if we look into the graph shown in Fig-
ure 3, the semantic type 〈Organization, name〉maps to nodes 10 and 15 and the
semantic type 〈Person, name〉maps to nodes 2 and 14. Thus, for ŝ = s4, we have
four mappings from the semantic types to the graph nodes, r1 = {〈Organization,
name〉 → node 10, 〈Person, name〉 → node 2}, r2 = {〈Organization, name〉
→ node 10, 〈Person, name〉 → node 14}, r3 = {〈Organization, name〉 →
node 15, 〈Person, name〉 → node 2}, and r4 = {〈Organization, name〉 →
node 15, 〈Person, name〉 → node 14}. If a semantic type does not map to any
node in the graph, we add a new node to the graph. We use the procedure Ad-

dClosure to add the related nodes and then call AddLinks to connect the
newly-added nodes to the rest of the nodes in G.

In the next step (lines 21-26), for each set of nodes in each mapping, we find
the minimum-cost tree connecting these nodes. Given an edge-weighted graph
and a subset of the vertices, called Steiner nodes, the goal is to find the minimum-
weight tree that spans all the Steiner nodes. Because the Steiner tree problem
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is NP-complete, we use an approximation algorithm [14] with an approximation
ratio bounded by 2(1 − 1/l), where l is the number of leaves in the optimal
Steiner tree. One problem with this algorithm is that if there is large number
of mappings from the semantic types to the nodes of the graph, the algorithm
becomes inefficient, because we will get a large number of sets as the possible
Steiner nodes and we need to run the Steiner tree module over all of them. To
solve this problem, we perform an optimization step right after computing the
possible mappings. We use a blocking method to eliminate the mappings that are
unlikely to generate higher ranked models. This step is not shown in Algorithm
2 to make the algorithm more readable, but we explain it here.

As we will see in the next section, one of the factors to rank the candidate
models is their cost. While it is true that the exact cost cannot be calculated
until we compute the Steiner tree, the way the links are weighted in G enables
us to estimate which sets of Steiner nodes generate lower-cost models. As previ-
ously described, all the links inside a known pattern have a very low weight (ε).
Consequently, sets of Steiner nodes containing larger number of nodes belonging
to the same pattern are more likely to yield Steiner trees with lower cost. We
apply this idea by sorting all sets of Steiner nodes (MatchedSet in line 20) based
on how coherent each set is. For example, considering the four possible mappings
we showed earlier for s4, r1 and r4 will be ranked higher than r2 and r3, as their
matched nodes are part of the same pattern. Once all the node sets are sorted,
we pick the top k ones and compute the Steiner tree algorithm only over these
sets to generate k candidate models for the new source ŝ. Figure 4 illustrates

the top two candidate models for s4 and s5. The inverted arrows ( ) depict the
mappings from the source attributes to the nodes of the models (φ).

The blocking method to reduce the number of mappings also supports gener-
alizing our algorithm to handle the case where each attribute is labeled with a
set of possible semantic types rather than only one semantic type (case m > 1
discussed in the previous section). To handle this case, we compute the set of
all permutations of the semantic types and for each permutation, we find the
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possible mappings from the semantic types to the nodes of the graph. Once the
mappings are calculated, we apply the blocking technique to get the k most
promising node sets. Then, we run the Steiner tree algorithm for each node set
to generate k candidate models.

4.4 Ranking Source Descriptions

The final step in learning the semantic description of a source is ranking the
candidates produced in the previous step. We define two metrics to rank source
descriptions, coherence and cost. The cost of a candidate (ŝ, m̂, φ̂) is the sum
of the link weights,

∑
e∈m̂ weight(e). The goal of defining the coherence is to

give more priority to the models containing larger segments from the known
patterns. Let Ep = {e|e ∈ m̂∧ |support models(e)|> 0} be the links in model m̂
coming from an observed pattern. We partition Ep to create groups of links that
belong to the same pattern. More concretely, we define a list I = (〈x1, y1〉, · · · ,
〈xn, yn〉), where xi is the size of a group of links sharing a model identifier in
their support models (links seen in the same pattern), yi is the number of model
identifiers shared between all of the links in that group, and

∑n
i=1 xi = |Ep|.

In Figure 4, both candidates of m̂4 have I = {〈3, 1〉}, for the first candidate of
m̂5 (at the left) I = {〈3, 2〉}, and for the second candidate of m̂5 (at the right),
I = {〈3, 1〉}. Note that in m̂5, Ep does not include the links connecting Place to
the other nodes because Place does not exist in any of the observed patterns.

We sort the candidate source descriptions first based on their coherence and
then based on their cost. To compare two models regarding the coherence, we
compare their coherence lists. We sort the elements of each list descending and
then compare the elements one by one. The inequality equation between two
elements z1 = 〈xi, yi〉 and z2 = 〈xj , yj〉 can be defined as [z1 > z2; if (xi >
xj) ∨ (xi = xj ∧ yi > yj)]. For example, for s5 the first candidate will be ranked
higher than the second one and for s4, both candidates will be ranked in the
same place since they have the same coherence list and the same cost.

5 Evaluation

We evaluated our approach using 17 data sources containing overlapping data
(the first column in Table 1 shows the signatures of these sources). We created
source descriptions for them manually using the DBpedia, FOAF, GeoNames,
and WGS84 ontologies, and used these source descriptions as the gold standard
to evaluate our approach. We then used our algorithm to learn a source de-
scription for each source given the manually created source descriptions of the
other sources as training data (The original source descriptions and the results
are available at: http://isi.edu/integration/data/iswc2013). Since the se-
mantic labeling is not the focus of this paper, we assume that Algorithm 2 is
given the correct semantic type for each attribute (we evaluated the semantic
labeling in our previous work [13, 24]).

We used k = 50 in the third step of our approach to generate 50 candidate
source descriptions and measured the graph edit distance (GED) between the

http://isi.edu/integration/data/iswc2013
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top ranked description and the manually created one. The results are shown in
the second column in Table 1. The value of GED is the (minimum) sum of the
costs of the edit operations needed to convert one graph to another. The edit
operations include node insertion, node deletion, edge insertion, edge deletion
and edge relabeling. Edge relabeling means that we substitute a link between two
nodes with another link with the same direction but another URI. We assigned
a cost of one to each edit operation.

We compared the results of our approach with the results of Karma [13], a
data integration tool that allows users to semi-automatically create source de-
scriptions for sources and services. To make the Karma results comparable to
our approach, we also gave Karma the correct semantic types for each attribute.
We measured GED between the source description that Karma generates auto-
matically (i.e., without user adjustments) and the gold standard. The results are
shown in the third column of Table 1.

The results show that our algorithm generates source descriptions that are
more than twice as accurate than Karma-generated ones. Karma learns to as-
sign semantic types, but in this evaluation we gave it the correct semantic types,
so Karma was not leveraging any knowledge learned from other source descrip-
tions. Our approach outperformed Karma on all the sources except one. The
one incorrect choice is not unexpected since there are cases for which there is
no prior evidence or the evidence is misleading. Both systems use a Steiner-
tree algorithm to compute their models, so the results show that the learning

Table 1. Evaluation results for learning the semantic descriptions of sample data
sources. The second column is the graph edit distance between our hypotheses and
the correct source descriptions and the third column is the edit distance between the
Karma-generated source descriptions and the correct ones.

Source Signature
GED of
our models

GED of
Karma models

nearestCity(lat,lng,city,state,country) 1 6

findRestaurant(zipcode,restaurantName,phone,address) 0 1

zipcodesInCity(city,state,postalCode) 1 3

parseAddress(address,city,state,zipcode,country) 1 6

companyCEO(company,name) 0 1

personalInfo(firstname,lastname,birthdate,brithCity,birthCountry) 1 4

citiesOfState(state,city) 0 1

restaurantChef(restaurant,firstname,lastname) 1 2

capital(country,city) 1 2

businessInfo(company,phone,homepage,city,country,name) 8 10

findSchool(city,state,name,code,homepage,ranking,dean) 6 8

ocean(lat,lng,name) 1 2

employees(organization,firstname,lastname,birthdate) 2 1

education(person,hometown,homecountry,school,city,country) 4 9

postalCodeLookup(zipcode,city,state,country) 1 6

country(lat,lng,code,name) 0 2

administrativeDistrict(city,province,country) 1 4

Total 29 68
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algorithms presented here enable the system to produce more accurate source
descriptions.

We also evaluated our approach on five museum datasets modeled using the
Europeana EDM, SKOS and FOAF ontologies. The models were created by do-
main experts for the purpose of creating an integrated dataset. The preliminary
results show a 30% improvement, which we believe can be improved further. This
improvement is not as large as the improvement on the other test dataset, but
it shows that the method works with large, real-world datasets and ontologies.

6 Related Work

The problem of describing semantics of data sources is at the core of data in-
tegration [8] and exchange [3]. The main approach to reconcile the semantic
heterogeneity among sources consists in defining logical mappings between the
source schemas and a common target schema. The R2RML W3C recommenda-
tion [6] captures this practice for Semantic Web applications. Although these
mappings are declarative, defining them requires significant technical expertise,
so there has been much interest in techniques that facilitate their generation.

The mapping generation problem is usually decomposed in a schema matching
phase followed by schema mapping phase [4]. Schema matching [20] finds cor-
respondences between elements of the source and target schemas. For example,
iMAP [7] discovers complex correspondences by using a set of special-purpose
searchers, ranging from data overlap, to machine learning and equation dis-
covery techniques. We use our previous work on semantic labeling [12], which
considers attributes that map to the same semantic type as potential matches.
Schema mapping defines an appropriate transformation that populates the tar-
get schema with data from the sources. Mappings may be arbitrarily procedures,
but of greater interest are declarative mappings expressible as queries in SQL,
XQuery, or Datalog. These mapping formulas are generated by taking into ac-
count the schema matches and schema constraints. There has been much re-
search in schema mapping, from the seminal work on Clio [10], which provided a
practical system and furthered the theoretical foundations of data exchange [11]
to more recent systems that support additional schema constraints [17]. Alexe
et al. [1] generate schema mappings from examples of source data tuples and
the corresponding tuples over the target schema. Karma [13] and An et al. [2]
generate mappings into ontologies, suggested by exploring low-cost Steiner trees
that connect matching semantic types within a graph derived from the target
ontology. Karma allows the user to correct the mappings interactively.

Our work in this paper is complementary to these schema mapping techniques.
Instead of focusing on satisfying schema constraints, we analyze known source
descriptions to propose mappings that capture more closely the semantics of the
target source, in ways that schema constraints could not disambiguate. For ex-
ample, suggesting that a worksFor relationship is more likely than ceo in a given
domain. Moreover, following Karma, our algorithm can incrementally refine the
mappings based on user feedback and improve future predictions. Carman and
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Knoblock [5] also use known source descriptions to generate a LAV mapping
for an unknown target source. However, a limitation of that work is that their
approach could only learn descriptions that were conjunctive combinations of
known source descriptions. By exploring paths in the domain ontology, in addi-
tion to patterns in the known sources, we can hypothesize target mappings that
are more general than previous source descriptions or their combinations.

Semantic annotation of services [21, 22] and more recently of web tables [16,
18, 25] has also received attention. Most of this work learns types for services
parameters or table columns, but is limited in learning relationships. Limaye et
al [16] generate binary relationships leveraging the Yago ontology.

Ontology alignment [9] usually considers alignments between individual classes,
so it is more applicable to the matching phase. However, Parundekar et al. [19] use
an extensional approach to discover alignments between conjunctions and
disjunctions of classes from linked data ontologies.

7 Discussion

We presented a novel approach to automatically learn the semantic description
of a new source given a set of known semantic descriptions as the training set
and the domain ontology as the background knowledge. The learned semantic
descriptions explicitly represent the relationships between the source attributes
in addition to their semantic types. These precise descriptions of data sources
makes it possible to automatically integrate the data across sources and provides
rich support for source discovery.

In our approach we build a graph whose main components are the known
semantic descriptions expanded using the domain ontology. Next, we use a ma-
chine learning technique to label the attributes of the new source with classes
and properties of the ontology. We find the possible one-to-one mappings from
the semantic types to the nodes of the graph and calculate the top k promising
mappings. Then, we build a tree over each mapping to generate k candidate
models. Finally, we score the candidates to output a ranked list of the most
plausible semantic models. The evaluation results showed that our algorithm
generates models that are more accurate than Karma, a state of the art tool to
semi-automatically model data sources.

The graph construction in the presented algorithm is an incremental process,
i.e., we augment the graph with a new component when a new known model is
presented to the system. The algorithm that we use to compute the Steiner tree
is an approximation algorithm whose complexity is O(|S||V |2) where V is the
set of nodes in the graph and S is a subset of the nodes (size of S is equal to the
number of the new source attributes). Thus, computing the candidate models
might be challenging when the size of the graph is very large in terms of the
number of the nodes, even though we are using a polynomial time algorithm. In
future work, we plan to investigate the idea of creating a more compact graph
by consolidating the overlapping segments of the known semantic models. This
will reduce the number of nodes added to the graph when a new pattern is given
to the system. We also plan to integrate our approach into Karma in order to
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suggest more accurate semantic models to users. This will make it possible to
automatically produce source descriptions with minimal user input.
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Abstract. QODI is an automatic ontology-based data integration system (OBDI).
QODI is distinguished in that the ontology mapping algorithm dynamically de-
termines a partial mapping specific to the reformulation of each query. The query
provides application context not available in the ontologies alone; thereby the
system is able to disambiguate mappings for different queries. The mapping al-
gorithm decomposes the query into a set of paths, and compares the set of paths
with a similar decomposition of a source ontology.

Using test sets from three real world applications, QODI achieves favorable
results compared with AgreementMaker, a leading ontology matcher, and an
ontology-based implementation of the mapping methods detailed for Clio, the
state-of-the-art relational data integration and data exchange system.

Keywords: QODI, Ontology-based data integration, Query-specific ontology
mapping.

1 Introduction

Web-wide integration of structured data is being enabled by the emerging Semantic
Web protocols that specify uniform query interfaces to the databases included in the
deep web [10]. These developments were recently boosted by W3C ratification of stan-
dards for publishing relational database content as RDF1. The scope of the deep web
underscores the need for automating data integration. The Semantic Web technology
stack enables an ontology to serve as a federating data model. Heterogeneous dis-
tributed database systems that use an ontology as a federating data model are called
ontology-based data integration systems (OBDI).

This paper details the mapping algorithms of Query-driven Ontology-based Data
Integration (QODI). QODI is currently deployed as the mediator of a faceted search
system over RNA databases2. QODI considers two OWL ontologies: the target ontol-
ogy, which is the federating data model, and the source ontology. SPARQL queries are
issued over the target ontology by users, and translated to the queries over the source
ontology. Although QODI is designed to integrate RDF data, a primary motivation is
the integration of relational data. Several of our test cases comprise relational databases
virtualized as RDF, and SQL schemas translated to ontologies [13,14].

1 http://www.w3.org/2001/sw/wiki/RDB2RDF
2 http://ribs.csres.utexas.edu/ontoexplorer
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(a) Traditional (b) The proposed, QODI

Fig. 1. Diagram of OBDI systems with traditional and the proposed ontology mapping

time

name

Course

string

date

People

teacher student

title

(a) Ontology T

hasSchedule

name

Course

string date

Student

name

Teacher

place

Schedule

date

offeredBy takenBy

name

(b) Ontology S

Prefix course : < T/Course >

Prefix people : < T/People >

Select ?t

Where {
?c course : time ?t .

?c course : teacher ?p .

?p people : name “Einstein′′ .}

(c) SPARQL query
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(d) Query graph

Fig. 2. Example ontologies and SPARQL query about the domain of course. Oval vertices repre-
sent classes, and rectangular vertices are datatypes. Edges represent object properties, or datatype
properties. The SPARQL query asks for the time of any course taught by “Einstein”.

In the typical organization of an OBDI system, ontology mapping is a separate and
prerequisite step of query reformulation (see Figure 1(a)). Ontology matchers may be
introduced to automatically determine corresponding entities [3,6]. In this paper, an
entity refers to a class or a property. We tested AgreementMaker [5], one of the top
finishers in 2010 Ontology Alignment Evaluation Initiative (OAEI) [1]. The highest
accuracy of AgreementMaker on our test sets is less than 42%. Inspection of these
results revealed two dominant challenges: ambiguous mapping and missing mapping.
We create a small example to illustrate the challenges. Figure 2 shows a target ontology
T , a source ontology S, and a SPARQL query q which asks for the time of any course
that is taught by Einstein.

The Ambiguous Mapping Challenge: An entity in the target ontology has an ambigu-
ous mapping if it can be mapped to more than one entity in the source ontology, and
the correct choice is dependent on the application. In other words, there is not enough
information in the ontologies alone to determine a correct mapping. An example of am-
biguous mapping considers that name of class People in T can be mapped to name of
either class Teacher or Student in S. There is no basis for preferring one mapping or
another. However, considering query q, clearly Teacher is preferred.

Some matchers would identify this example as a complex mapping such that name
of People maps to the union of both name of Teacher and Student, since both Teacher
and Student can be identified as subclasses of People. In isolation of an application,
the logic of the complex mapping is correct. But, if the example query is reformulated
using both alternatives, the translated query will return the time of any course that either
taught or taken by Einstein. The reformulation is incorrect. Thus, only after the query
is known, is it possible to disambiguate the mapping.
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Ambiguous mappings occur often. In our real world test sets, two out of three do-
mains have ambiguity. In those, 10% to 30% of the query workload displays ambiguity.

The Missing Mapping Challenge: Some entities do not have any mapping, such as the
class Schedule and property hasSchedule in S. Matchers can find out that both Course in
T and S are mapped, and time and date are mapped. However, Schedule and hasSched-
ule, which are in the middle of the path from Course to date, do not have any mapping.
Query q cannot be reformulated for execution on S without including Schedule and
hasSchedule.

We formally define query-specific ontology mapping. For each input query, the sys-
tem determines a partial ontology mapping sufficient to reformulate the specific query.
In effect, a query becomes a third argument to the ontology mapping algorithm (see
Figure 1(b)). Note that using the query as context requires no extra input from users or
experts. In QODI, both the input query and the source ontology are decomposed into
paths, and mapping concerns identifying correspondences between paths instead of en-
tities. Path similarity is estimated based on the feature vectors that are generated by
representing each path as a bag of entity labels. Given an input query, QODI searches
for a subgraph of the source ontology, such that the set of path correspondences has the
highest confidence. QODI exploits efficient heuristic search algorithms, which guaran-
tee to find an optimal solution. By leveraging queries to provide context, the ambiguous
mapping challenge is resolved. Since the path similarity is not dependent on the precise
alignment of entities, the missing mapping challenge is resolved.

In our running example, the path that contains People and name in query q also con-
tains teacher. In ontology S, the path with Teacher has higher string vector similarity
than the one with Student. The two path correspondences for the query should be:

{Course,teacher,People,name,string} = {Course,offeredBy,Teacher,name,string}
{Course,time,date} = {Course,hasSchedule,Schedule,date,date}

QODI is evaluated on three real world application domains: Life Science, Bibliogra-
phy, and Conference Organization. QODI outperforms all baselines on all test cases.

2 Problem Definition

The following section begins with graph definitions and culminates with the formal
definition of the mapping problem.

2.1 Basic Graph Definition

An ontology graph is a representation of an ontology as a directed labeled graph, where
classes and datatypes are vertices, and properties are edges (see Figure 2). Target and
source ontologies are distinguished as T and S, respectively. These notations are used
interchangeably to denote ontologies and ontology graphs. To simplify handling inher-
itance relationships, rather than coding the logic of inheritance into the path-related
algorithms, an ontology graph is expanded by replicating properties. If the domains or
ranges of a property have subclasses, new edges with the same label as that property are
created for each subclass.
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Definition 1 (source and sink). In a directed labeled graph G, a source is a vertex
with 0 in-degree, and a sink is a vertex with 0 out-degree. The sets of all sources and
sinks of G are denoted SOURCEG and SINKG, respectively.

Definition 2 (ss-path). A source-to-sink path or ss-path is a path from a vertex v1 to a
vertex v2 in a directed labeled graph G, where v1 is a source and v2 is a sink of G.

For convenience, we represent a path p as an ordered list of vertices and edges, and
define the length, denoted as |p|, as the sum of the number of vertices and edges in p.

Definition 3 (ss-path-set). The set of all possible ss-paths from source v1 to sink v2 in
a directed labeled graph G is called an ss-path-set (denoted as SS-PATH-SETG,v1,v2).

Definition 4 (graph-ss-path-set). Given a directed labeled graph G, the set of all ss-
paths (denoted as GRAPH-SS-PATH-SETG) is the union of all ss-path-sets from all
sources to all sinks in G.

Definition 5 (query graph). Given a SPARQL query q over ontology T , a query graph
(denoted as Q) is a subgraph of T that corresponds to q.

The query graph of the SPARQL query in Figure 2(c) is shown in Figure 2(d).

2.2 Assumptions

Basic assumptions are as follows:
1. All object properties and datatype properties have domains and ranges. This as-

sumption simplifies the construction of ontology graphs. High quality manually de-
signed ontologies will detail domains and ranges. Ontologies automatically translated
from relational schemas include domains and ranges [13,14].

2. We consider conjunctive SPARQL queries in the SELECT query form, and ex-
clude variables from the predicates of triple patterns. For each variable, the class, which
is the type that the variable is binding to, either can be inferred from the domains or
ranges of predicates or is provided by rdf:type. Given these assumptions, there exists
only one query graph for each query. If multiple query graphs are allowed, each of them
can be mapped separately. For simplicity, we leave the relaxing of these assumptions
for future work.

3. The sinks of a query graph only represent datatypes. This paper concerns ontolo-
gies that describe database content and queries that retrieve information from databases.
Retrieving database data ultimately requires the rewriting of datatype properties.

2.3 Query-Specific Ontology Mapping

The following definitions define query-specific ontology mapping, which is the core
problem of this paper. An ss-path correspondence records the mapping confidence be-
tween two ss-paths.

Definition 6 (ss-path correspondence). Given two directed labeled graphs G and
G′, an ss-path correspondence between two ss-paths p and p′ (denoted by πp,p′ ) is
< p, p′, απp,p′ >, such that p ∈ GRAPH-SS-PATH-SETG, p′ ∈ GRAPH-SS-PATH-
SETG′ , and απp,p′ is a confidence measure between 0 and 1.
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A match candidate is a set of ss-path correspondences between the ss-paths in the
query graph, and the ss-paths in a subgraph of the source ontology graph.

Definition 7 (match candidate). Given a query graph Q, a match candidateΩQ,G is a
set of ss-path correspondences between the ss-paths in Q and the ss-paths in a graph G,
which is a subgraph of the source ontology S, if the following conditions are satisfied:

– The sinks of G are datatypes;
– for each ss-path p ∈ GRAPH-SS-PATH-SETQ, there exists exactly one ss-path cor-

respondence πp,p′ ∈ ΩQ,G, where p′ ∈ GRAPH-SS-PATH-SETG;
– for each ss-path p′ ∈ GRAPH-SS-PATH-SETG, there exists ss-path correspon-

dences πp,p′ ∈ ΩQ,G, where p ∈ GRAPH-SS-PATH-SETQ;
– for each pair of ss-paths p1, p2 ∈ GRAPH-SS-PATH-SETQ, if they share a common

source, then the two corresponding ss-paths p′1, p
′
2 ∈GRAPH-SS-PATH-SETG also

share a common source, where πp1,p′
1
∈ ΩQ,G, πp2,p′

2
∈ ΩQ,G.

Definition 7 contains several constraints. First, all sinks of G are required to be
datatypes, because the sinks of the query graph Q are also datatypes. Second, we are
interested in a one-to-one mapping, which restricts each ss-path in Q to be contained
in exactly one correspondence. Third, if the ss-paths in Q share a source, the mapped
ss-paths in G also share a source. We assign a confidence measure βΩQ,G , which is
defined as the product of all ss-path correspondence confidence measures:

βΩQ,G =
∏

πp,p′ ∈ ΩQ,G

απp,p′

The task of query-specific ontology mapping, q-mapping, is to find the match candi-
date with the highest confidence.

Definition 8 (q-mapping). Given two ontology graphs T , S, and a SPARQL query q
over T , the query-specific ontology mapping (denoted as q-mapping(T ,S,q)) is the set
of ss-path correspondences ΩQ,Ḡ, where Q is the query graph, and Ḡ is a subgraph of
S, such that ΩQ,Ḡ is a match candidate, and βΩQ,Ḡ

= maxG⊆S βΩQ,G .

3 QODI: Mapping and Reformulation

The goals of mapping include defining a similarity score between two ss-paths, and
determining the highest scoring ss-path correspondences without an exhaustive search.

3.1 ss-path Similarity Measure

The ss-path similarity measure must be able to disambiguate uncertain mappings. Given
a pair of ss-paths, the similarity is defined as a product of four factors: similarity be-
tween source classes, similarity between datatype properties, similarity between path
labels, and a penalty for path length differences. The source class and datatype property
determine the two ends of an ss-path. A path label, containing the labels of all entities
except datatypes in an ss-path, is used to disambiguate uncertain mappings.
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Similarity estimation of source classes and datatype properties has been well stud-
ied in prior work [5,12,6]. Any existing method may be used for this component. In
the experiments, we evaluated both simple string distance and sophisticated ontology
matchers. The similarity between all classes and datatype properties can be computed
beforehand and stored as similarity matrices for lookup.

We borrow techniques from information retrieval to measure the similarity between
path labels. For an ss-path, we process the labels of all entities except datatypes in the
path using linguistic processing, and add the processed strings to a list. The linguis-
tic processing includes tokenization by punctuation, numbers, and uppercase letters (if
the letter is not preceded by an uppercase letter); stop words removal; and stemming
(using SimPack3). All strings are converted to lowercase. A feature vector is generated
by indexing the list of strings, and using frequencies as features. Given that different
labels may contain a different number of tokens, the frequency of a token is set to one
over the number of tokens in a label. The path label similarity, SL, is computed as the
intersection between the two feature vectors.

SL(p, p
′) =

∑m
i=1 min(fi(p), fi(p

′))∑m
i=1 fi(p) + fi(p′)−min(fi(p), fi(p′))

(1)

where fi(p) is the ith element of the feature vector of ss-path p, and m is the dimension
of the feature vectors.

If two paths are similar, their lengths may not have a large difference. We use an
exponential function to penalize the path length difference. The ss-path similarity mea-
sure, SSS , is defined as,

SSS(p, p
′) = SC(p, p

′)
1

np · SD(p, p′) · SL(p, p
′) · e−η · | |p|−|p′| | (2)

where SC and SD are similarity measures for source classes and datatype properties,
which are provided by matchers. |p| is the length of path p, and η is a non-negative real
number. np is the number of ss-paths in the query graph that share the same source with
p. np is introduced because the same similarity between sources will be multiplied np

times when measuring the confidence of a match candidate.

3.2 q-mapping

We denote the set of all possible match candidates of query graph Q as MQ. Ḡ, which
is the subgraph of S involved in the match candidate with the highest similarity, is
determined by maximizing the confidence measure. q-mapping(T ,S,q) is the set of ss-
path correspondences ΩQ,Ḡ between Q and Ḡ.

Ḡ = argmax
ΩQ,G∈MQ

βΩQ,G

= argG⊆S {
∏

c∈SOURCEQ

{ max
c′∈SOURCEG

{

∏
p∈SS-PATH-SETQ,c,∗

{ max
p′∈SS-PATH-SETG,c′,∗

SSS(p, p
′)}}}} (3)

3 files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/

files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/
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where βΩQ,G is the confidence measure of the match candidate, and SS-PATH-SETG,c,∗
represents the set of all ss-paths with source c in G.

Equation (3) specifies the mapping as: for each source vertex in the query graph, find
a vertex in the source ontology as a source vertex, such that the product of all ss-path
similarities is the maximum.

3.3 Solving the Maximization

Equation (3) does not specify how to solve the maximization. A naive algorithm may
score all possible match candidates. However, the number of all possible paths can be
exponential in the number of vertices for acyclic ontology graphs, and is infinite for
cyclic ontology graphs. It is infeasible to compute similarity between all pairs of paths.
Thus, we employ heuristic search algorithms to reduce the computation.

We decompose the search problem into two phases: 1) given an ss-path in the query
graph and a vertex in S, search for the ss-path in S with the given vertex as source that
has the highest similarity; 2) given a set of ss-paths that share a source in the query
graph, find a set of paths in S that share a source and have the highest product of
similarities. Phase 1) is a subproblem of 2). Thus, we solve 1) then 2).

Phase 1) can be solved by a heuristic search algorithm similar to A* search. A* is
commonly applied to find a minimal cost path in a graph [9]. A* requires a function
that computes the cost of a partial path, and a heuristic cost function that estimates the
cost of completing a path. The search is guaranteed to terminate with an optimal path
if the heuristic is admissible. We cannot exploit the traditional structure of A* search.
Our definition of path similarity considers all labels in a path as a bag of words. Thus,
we can not decompose a partially computed answer into the sum of two functions.
We define a single function that, given a partial path, will never overestimate the cost
of a complete optimal path. With similar proof as A* search, our heuristic search is
guaranteed to find an optimal path. The implementation of the search algorithm remains
largely unchanged. Search states, representing partial paths, are saved in an open-listP .
P is initialized by the path that only contains one vertex (the given vertex). The paths
in P are sorted in ascending order using our heuristic function. The search terminates
when a path p̄ containing a sink (datatype) is pulled from P .

We introduce two techniques to help create the heuristic cost function. First, the
similarity between datatype properties (SD), which is a factor of SSS , is considered
at the beginning of the search. A datatype property is the last edge in an ss-path, and
connects to a datatype. Thus, a large amount of computation can be potentially wasted
by the search before discovering the similarity between datatype properties is low. To
address this, P is initialized by a set of paths, each of which only contains the given
vertex and only leads to the sink through a specific datatype property. Following that,
SD is a constant for each path. SC is also a constant, since the source vertex is given.
Only the cost of adding new vertices and edges to the path needs to be considered.

The second technique is a preprocessing step that associates reachable label sets
and shortest path lengths to each class. We define a reachable label set from a ver-
tex through a datatype property as the union of the path labels of all possible paths
from the vertex to a datatype through the datatype property. Each vertex of S is associ-
ated with the reachable label sets, from itself through each datatype property. Figure 3
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Fig. 3. An example ontology graph with reachable label sets. The dashed boxes around each non-
sink vertex contain the reachable label sets through the two datatype properties c1 and d1. For
example, the reachable label set from C through c1 is {C, c1}, and through d1 is empty.

illustrates an example of reachable label sets. The reachable label sets are computed
by recursively propagating the reachable label sets of each vertex to its parents. The
algorithm terminates when the reachable label sets are not changed for all vertices. The
worst case complexity of this algorithm is quadratic in the number of vertices. Given
that a reachable label set is a superset of the labels that may appear in an optimal path, a
heuristic can be defined to guarantee the optimality. In addition, each vertex of S is also
associated with the lengths of the shortest paths from itself to datatypes through each
datatype property. The lengths of shortest paths are also used in the heuristic. Note that
the preprocessing only need run once.

We denote the ss-path in the query graph as r, the path in S that needs heuristic
scoring as p, the last element of p as x, and the objective datatype as e. The reachable
label set from x to e is denoted as Lx,e, and the length of the shortest path from x to e
is denoted as lx,e. The heuristic cost function h is defined as follows:

h(p) = − SC(r, p)
1

nr ·SD(r, p)·
∑m

i=1 min(fi(r), fi(p) + f̄i(r, p, Lx,e))∑m
i=1 fi(r) + fi(p)−min(fi(r), fi(p))

·e−η · g(r,p,lx,e)

(4)
where nr is the number of paths in the query graph that share the same source as r, and
fi(p) is the ith element of the feature vector of path p. f̄i(r, p, Lx,e) and g(r, p, lx,e) are:

f̄i(r, p, Lx,e) =

{
max(fi(r)− fi(p), 0) , if x �= e and string i ∈ Lx,e

0 , otherwise
(5)

g(r, p, lx,e) =

{
max(|p|+ lx,e − 1− |r|, 0) , if x �= e
| |p| − |r| | , if x = e

(6)

Comparing (4) with (2), h is derived from the negation of SSS by substituting a real
path by an estimation. Let us denote the path as p̄, when the search terminates. Based on
the termination condition, x = e. Substituting x with e, h(p̄) = −SSS(r, p̄). The fol-
lowing lemma and theorem prove that p̄ is the best scoring path. Lemma 1 corresponds
to the proof of admissibility of the heuristic in A* search.

Lemma 1. Suppose the search has not terminated. For any optimal path p̃, there exists
a path p in the priority queue P , which can be expanded to p̃, such that h(p) ≤ h(p̃).
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Proof. h is the negation of a product of four non-negative factors. We will prove that
each factor of h(p) is greater than or equal to the corresponding factor of h(p̃). Then
h(p) ≤ h(p̃).

The first two factors, SC and SD, are the same for both p and p̃.
Consider the third factor. Denote the last element in path p as x. The reachable label

set, Lx,e, contains the labels of all possible paths from x to e, including those in p̃. Per
the definition of f̄i, the numerator in h(p) is greater than or equal to that in h(p̃). Since
p is a sub-path of p̃, the denominator in h(p) is less than or equal to that in h(p̃). Thus
the third factor of h(p) is greater than or equal to the third factor of h(p̃).

Consider the fourth factor. lx,e is the length of the shortest path from x to e, so
|p|+ lx,e − 1 ≤ |p̃|. Consider two cases:

1. |p|+lx,e−1 ≥ |r|. Then g(r, p, lx,e) = |p|+lx,e−1−|r|, and g(r, p̃, le,e) = |p̃|−|r|.
Thus, g(r, p, lx,e) ≤ g(r, p̃, le,e).

2. |p|+lx,e−1 < |r|. Then g(r, p, lx,e) = 0, and g(r, p̃, le,e) ≥ 0. Thus, g(r, p, lx,e) ≤
g(r, p̃, le,e).

Thus the fourth factor of h(p) is greater than or equal to the fourth factor of h(p̃).

Theorem 1. When the search terminates, the path p̄ is an optimal path.

The proof of Theorem 1 can be derived from the proof of the similar theorem for A*
search by substituting the sum of the two cost functions with our heuristic h(p) [9].

If there is no path from the given vertex through any datatype property, there is no
solution for the search. The search algorithm terminates by knowing the reachable label
sets of the vertex are all empty. Otherwise, the algorithm will find an optimal path with
finite length, because h of a path with infinite length is infinitesimal due to the path
length penalty. Most real world queries do not have cycles, so we prune cyclic paths
during the search to further reduce the computation. This heuristic can be disabled for
the applications with cyclic queries.

Phase 2) involves selecting a vertex as a source, and jointly finding multiple opti-
mal paths that share a source. For each possible source class, we exploit the heuris-
tic proposed in phase 1) to estimate the product of the highest path similarities of all
paths as the score for the class. The algorithm in phase 1) runs using each class as the
given source in descending order of the estimated score. If the real score of a class is
greater than or equal to the estimated score of the remaining classes, those classes can
be pruned. This algorithm also terminates with an optimal solution. The proof is similar
to the proof of Theorem 1.

If the query graph has multiple sources, the algorithm in phase 2) runs for each
source separately.

3.4 Query Reformulation

The primary focus of this paper is mapping. Thus, we only briefly explain the benefits
of using q-mapping for query reformulation. A central challenge in query reformulation
is missing mapping. In QODI, this challenge manifests as a mapping between a path
in the query graph and a path in the source ontology graph. The determination of an
ss-path correspondence anticipates that the paths may be of different lengths.



QODI: Query as Context in Automatic Data Integration 633

Given ss-path correspondences as mapping, the reformulation algorithm is simplified
as traversing the mapped ss-paths, and generating a triple pattern for each graph edge.
The URI of each edge in the ss-path is translated as the predicate of a triple. The subject
and object of the triple are variables or literals assigned to the domain and range of the
edge, respectively. Assigning variables to classes that are shared by multiple paths is an
open research topic. We do not elaborate on this topic. For the query in Figure 2, a path
correspondence and the resulting translated triple patterns are:

{Course,teacher,People,name,string} = {Course,offeredBy,Teacher,name,string}
?c1 course:offeredBy ?c2 . ?c2 teacher:name “Einstein” .

4 Experimental Setup

4.1 Test Sets

The test sets comprise three application domains: Life Science, Bibliography, and Con-
ference Organization. The test cases include an ontology created by an international
standards body, two ontologies created from direct mapping relational databases, and
three ontologies used in OAEI [1].

The Life Science domain consists of Darwin Core and Specify. Darwin Core is an on-
tology at the center of the standardization efforts of the Global Biodiversity Information
Foundation (GBIF), an organization concerned with cataloging the impacts of climate
change. Darwin Core contains 18 classes, and 71 properties. The Specify ontology was
created from direct mapping the SQL schema of the database in the Specify biologi-
cal collections software package4. Specify is used to manage over 200 field specimen
collections. The specify ontology has 11 classes, and 413 properties. The Bibliogra-
phy domain comprises the UMBC ontology from OAEI, and an ontology that models
DBLP, generated from the direct mapping of a relational database of DBLP metadata
through Ultrawrap [14]. Class hierarchies are manually added. DBLP ontology has 17
classes, and 51 properties. The Conference domain consists of the two ontologies from
OAEI, SIGKDD and SOFSEM. We have made the test suite available on our website5.

Sets of test queries are also required, and were created as follows. First, groundtruth
mappings were manually generated, containing all correct ss-path mappings between
each pair of ontologies. Subsequently, a computer program systematically generated
two kinds of SPARQL queries for each ontology. 1) A PathOnly query has a query
graph consisting of only one ss-path in the groundtruth. 2) A ClassAll query has a query
graph consisting of all ss-paths (at least two) that share a source in the groundtruth. A
ClassAll query is the most complicated query with one conjunction over the source.
In English specification, a PathOnly query asks for all values of a single attribute of
a concept, and a ClassAll query asks for all values of all attributes of a concept. For
ontology T in Figure 2, a PathOnly query could ask for names of all students taking
courses, and a ClassAll query could ask for titles, time, and names of all students of all
courses. Figure 4 shows examples of real PathOnly and ClassAll queries generated for
the Specify ontology, as well as the meaning of both queries.

4 http://specifysoftware.org/
5 http://ribs.csres.utexas.edu/qodi

http://specifysoftware.org/
http://ribs.csres.utexas.edu/qodi
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(a) PathOnly query, asking for
the latitude of all locations.

(b) ClassAll query, asking for the dates, remarks, and quali-
fiers of all determination of taxons, as well as the birthdays
of the agents that determine the taxons.

Fig. 4. Real SPARQL queries generated for Specify ontology in the experiments

4.2 Baselines

We compare QODI against two kinds of baselines: ontology matching systems, and an
ontology-based implementation of an existing relational data integration system.

For ontology matching baselines, a matcher computes the similarity between classes,
object properties, and datatype properties. Given a query, each entity is translated to an
entity in S with the highest similarity.

Clio is a relational data integration and exchange system that is closely related to
QODI [7]. Clio generates mappings between attributes, and finds associations between
those mappings through foreign key constraints. We implement baselines with similar
ideas as Clio. A matcher first generates mappings between datatype properties by pick-
ing the ones with the highest similarity. Given a query, the baselines find the match
candidates that contain all the mapped datatype properties. Clio asks a user to pick one
match candidate, which is not allowed in our automated setting. We approximate this
process by first picking the match candidates with highest similarity between source
classes, and then picking the one with the least summation of path lengths.

We use three matchers for all methods. One matcher is substring string similarity that
measures the portion of the longest common substrings between entity labels. The sec-
ond matcher is SMOA string similarity between entity labels [15]. The third is Agree-
mentMaker configured as detailed in OAEI 2010 conference track [5].

4.3 Metrics

The assessments are reminiscent of recall and precision used in ontology matching and
information retrieval. valid rate is the metric similar to recall, which is the proportion
of queries with complete q-mappings generated, independent of correctness. We use #
to represent the number of.

Definition 9 (complete q-mapping). A q-mapping with a set of correspondencesΩQ,Ḡ

is complete, if for every ss-path in the query graph Q, there exists a correspondence to
an ss-path in Ḡ with non-zero confidence measure.

valid rate =
# queries with complete q-mappings generated

# queries
(7)
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For measuring the precision of mapping systems, we consider the case that a query
is correctly mapped, and also the case that a query is partially correctly mapped.

query precision =
# correctly mapped queries

# queries
(8)

path precision =

∑
q percentage of correctly mapped ss-paths in q

# queries
(9)

A measure of ambiguity can facilitate the analysis of experimental results. An accu-
rate measure of ambiguity is difficult, since it has to anticipate all possible application
scenarios. We define an approximate measure of ambiguity, which only considers map-
ping between datatype properties as the source of ambiguity, and considers two datatype
properties as mapped if a matcher assigns them the highest similarity.

Definition 10 (datatype ambiguous q-mapping). Given a datatype property similar-
ity measure SD, a target ontology T , a source ontology S, a query q over T , and the set
of ss-path correspondencesΩ of q-mapping(T ,S,q), the mapping is datatype ambiguous
if for at least one ss-path correspondence πpt,ps ∈ Ω, SD(pt, ps) = maxp SD(pt, p),
and there exists a datatype property d /∈ ps, such that the similarity between d and the
datatype property of pt equals SD(pt, ps).

ambiguous rate is a measure of the proportion of queries that have datatype
ambiguous q-mappings.

ambiguous rate =
# queries with datatype ambiguous q-mapping

# queries
(10)

5 Experimental Results

Given a pair of ontologies, O1 and O2, the experiments are conducted on two directions
of mappings: using O1 as target and using O2 as target. The results for the two mapping
directions are shown separately for ambiguous rate to distinguish the differences. For
other metrics, the results are averaged. We set η = 0.3 based on the tuning on the
Bibliography test set with PathOnly queries using Substring as matcher. Section 5.3
discusses the accuracy using different η. Due to the space limit, only part of the results
are reporting. Please refer to the technical report for all results [16].

5.1 Valid rate

Figure 5 shows the valid rate for Bibliography test set. Conference and Life Science
test sets have similar numbers, and not reported here. The three methods of QODI
achieve 100% valid rate for all test sets. This is because QODI does not determine any
entity mapping beforehand. Each path correspondence is assigned a confidence, and the
mapped paths has the highest confidence.

The Clio baselines are able to generate complete mappings for the PathOnly query
set but not all ClassAll queries. For some ClassAll queries, Clio cannot find a complete
q-mapping if the mapped entities are incorrectly selected from ambiguous mappings.
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(a) Bibliography, PathOnly (b) Bibliography, ClassAll (c) legend

Fig. 5. valid rate for Bibliography test set. Higher number means better performance.

(a) Life Science, PathOnly (b) Bibliography, PathOnly (c) Conference, PathOnly

(d) Life Science, ClassAll (e) Bibliography, ClassAll (f) Conference, ClassAll

Fig. 6. query precision for different test sets. Refer to Figure 5(c) for legend.

The comparison between QODI and Clio shows that disambiguation is important even
for generating complete q-mappings regardless of correctness.

The ontology matching baselines are able to generate complete q-mappings for less
than 50% of PathOnly queries, but barely generate complete q-mappings for ClassAll
queries. The big gap between ontology matching baselines and Clio baselines demon-
strates the importance of the missing mapping challenge.

5.2 Precision

Figure 6 and 7 show the precisions of all methods. For all test sets, at least one QODI
method dominates all baselines in terms of both precision measures. For ClassAll query
sets, there are big gaps between QODI and all baselines. QODI is the only system that
achieves non-zero query precision for the Life Science test set with ClassAll query set.
For ClassAll query set, each query has more than one path that shares a source. On one
hand, more paths may lead to poor mapping results since each path may be mapped
incorrectly. On the other hand the context from different paths may be used by QODI
to map the correct source class shared by the paths. The precision results indicate the
importance of resolving the ambiguous mapping challenge.

Comparing Clio with ontology matching baselines, for all test sets and all measures,
at least one Clio baseline dominates or performs as well as ontology matching baselines.
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(a) Life Science, ClassAll (b) Bibliography, ClassAll (c) Conference, ClassAll

Fig. 7. path precision with ClassAll query sets for different test sets. Refer to Figure 5(c) for
legend. path precision for PathOnly query sets is the same as query precision.

(a) Bibliography, PathOnly (b) Bibliography, ClassAll (c) legend

Fig. 8. query precision of Bibliography test set when using different η (horizontal axis)

5.3 Parameter Tuning

Figure 8 shows the query precision of Bibliography test set using different path length
penalty parameter η. The results for Conference and Life Science sets are not reported
due to space limit. With the same length difference, a large η gives big penalty. As a
special case, η = 0 does not have any penalty on the path length.

For most cases, the penalty improves query precision comparing to the case of η = 0.
However, if η is too large, the query precision can be decreased. With large η, the
penalty of length dominates the similarities of source classes, datatype properties, and
path labels in (2). Thus only the paths with the same lengths are considered as similar,
ignoring the labels of the paths.

5.4 Ambiguity

As the primary motivation is the identification that mapping correctness may be query
dependent (ambiguous), we assess how much of QODIs improved performance over
Clio is explained by the presence of ambiguity and the respective systems ability to
resolve it. In this section, we measure the ambiguous rate of all test sets, and compute
the query precision of all methods over PathOnly queries with ambiguous mappings to
measure the capability of disambiguation. If there is no ambiguity, the precision column
is empty as shown in Table 1.

Two out of three test sets, Life Science and Bibliography, have non-zero ambigu-
ous rate. The ambiguous rate measured with different matchers share similarities. All
three matchers assert that Life Science with Darwin Core as target ontology has ambi-
guity, with rates from 0.139 to 0.333. Substring and SMOA agree on the ambiguity of
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Table 1. The ambiguous rate (row 2) and query precision of queries with datatype ambiguous
q-mapping (row 3, 4, 5) using SMOA as matcher. L↑ uses Darwin Core and L↓ uses Specify as
the target ontology for the Life Science test set. B↑ uses UMBC and B↓ uses DBLP as the target
ontology for the Bibliography test set. C↑ uses SIGKDD and C↓ uses SOFSEM as the target
ontology for the Conference test set. If ambiguous rate is zero, there is no query precision for the
queries with datatype ambiguous q-mapping. Higher query precision means better performance.

L↑ L↓ B↑ B↓ C↑ C↓
ambiguous rate 0.194 0.000 0.177 0.000 0.000 0.000

SMOA 0.143 - 0.364 - - -
Clio SMOA 0.429 - 0.364 - - -

QODI SMOA 0.714 - 0.636 - - -

Bibliography with UMBC as target ontology, with rates 0.242 and 0.177. We only report
the query precision using SMOA as matcher in Table 1. Other matchers show similar
results. For both L↑ and B↑, QODI achieves the highest query precision on the queries
with datatype ambiguous q-mappings. Comparing with Clio, the relative improvement
of QODI is 66% and 75%. This shows that QODI is capable of disambiguation.

6 Related Work

Ontology matching has been well studied [2,6,3,8]. Many ontology matching systems
compete in the OAEI [1], such as AgreementMaker [5] and RiMOM [12]. In the ontol-
ogy matching world, most of systems focus on mapping between entities. In this paper,
we define query-specific mapping for OBDI systems.

Clio, the state-of-the-art semi-automatic data integration and exchange system has
close similarities with QODI [7]. Schema mapping in Clio is done in 2-steps: find-
ing initial mappings between attributes; and associating mappings by logical inference
through referential constraints. A semi-automatic OBDI system, Karma, is recently
built to map structured data sources to ontologies [11]. For both Clio and Karma, the
mapping is generated based on schemas alone. Neither system uses context from queries
for resolving ambiguous mappings. Ontology based data access (OBDA) uses ontolo-
gies expressed in Description Logic as a conceptual view over data sources [4]. The
mapping generated by QODI may be used for OBDA with proper representation.

7 Conclusions and Future Work

In this paper, we introduce query-specific ontology mapping, and implement an OBDI
system, QODI. Departing from existing ontology matchers, QODI generates path cor-
respondences, instead of entity correspondences, to facilitate query reformulation. The
correspondences are discovered by heuristic search algorithm. A query is used as an in-
put to the mapping to provide context for disambiguation and also reduce the mapping
complexity.
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Future work consists of at least three possible directions. First, the fundamental or-
ganization of QODI admits integration of user interaction for refinement. Second, path
mappings can be accumulated over time as in pay-as-you-go systems. Third, new simi-
larity measures and the relaxing of the basic assumptions can be explored.
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Abstract. Much of Web search and browsing activity is today centered
around entities. For this reason, Search Engine Result Pages (SERPs)
increasingly contain information about the searched entities such as pic-
tures, short summaries, related entities, and factual information. A key
facet that is often displayed on the SERPs and that is instrumental for
many applications is the entity type. However, an entity is usually not
associated to a single generic type in the background knowledge bases
but rather to a set of more specific types, which may be relevant or not
given the document context. For example, one can find on the Linked
Open Data cloud the fact that Tom Hanks is a person, an actor, and a
person from Concord, California. All those types are correct but some
may be too general to be interesting (e.g., person), while other may be
interesting but already known to the user (e.g., actor), or may be ir-
relevant given the current browsing context (e.g., person from Concord,
California). In this paper, we define the new task of ranking entity types
given an entity and its context. We propose and evaluate new methods
to find the most relevant entity type based on collection statistics and
on the graph structure interconnecting entities and types. An extensive
experimental evaluation over several document collections at different
levels of granularity (e.g., sentences, paragraphs, etc.) and different type
hierarchies (including DBPedia, Freebase, and schema.org) shows that
hierarchy-based approaches provide more accurate results when pick-
ing entity types to be displayed to the end-user while still being highly
scalable.

1 Introduction

Many online queries are about entities [14]. Commercial search engines are in-
creasingly returning rich Search Engine Result Pages (SERPs) that contain not
just ten blue links but also images, videos, news, etc. When searching for a spe-
cific entity, users may be presented in the SERP with a summary of the entity
itself. This search task is known as ad-hoc object retrieval [20], that is, finding
an entity described by a keyword query in a structured knowledge base. After
correctly identifying the entity described by the user query, the subsequent task
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is that of deciding what entity information to present on the SERP among all
potential pieces of information available in the knowledge base. It is possible, for
example, to display pictures, a short textual description, and related entities.

One interesting entity facet that can be displayed in the SERP is its type.
In public knowledge bases such as Freebase, entities are associated with several
types. For example, the entity ‘Peter Jackson’ in Freebase1 has 17 types, among
which ‘Person’, ‘Ontology Instance’, ‘Film director’, and ‘Chivalric Order Mem-
ber’ can be found. When deciding what to show on the SERP, it is important to
select the few types the user would find relevant only. Some types are in most
cases not compelling (e.g., ‘Ontology Instance’) while other types (e.g., ‘Film di-
rector’) may be interesting for a user who does not know much about the entity.
Users who already know the entity but are looking for some of its specific facets
might be interested in less obvious types (e.g., ‘Chivalric Order Member’, and
its associated search results).

More than just for search, entity types can be displayed to Web users while
browsing and reading Web pages. In such a case, pop-ups displaying contex-
tual entity summaries (similar to the ones displayed on SERPs like in Google’s
Knowledge Panel) can be shown to the users who want to know more about a
given entity she is reading about. In this case again, picking the types that are
relevant is critical and highly context-dependent.

A third example scenario is to use selected entity types to summarize the
content of Web pages or online articles. For example, one might build a summary
for a given news article by extracting the most important entities in the article
and listing their most relevant types (e.g., ‘this article is about two actors and
the president of Kenya’).

In this paper, we focus on the novel task of ranking available entity types based
on their relevance given a context. We propose several methods exploiting the
entity type hierarchy (i.e., types and their subtypes like ‘person’ and ‘politician’),
collection statistics such as the popularity of the types or their co-occurrences,
and the graph structure connecting semantically related entities (potentially
through the type hierarchy).

We experimentally evaluate our different approaches using crowdsourced judg-
ments on real data and extracting different contexts (e.g., word only, sentence,
paragraph) for the entities. Our experimental results show that approaches based
on the type hierarchy perform more effectively in selecting the entity types to
be displayed to the user. The combination of the proposed ranking functions by
means of learning to rank models yields the best effectiveness. We also assess
the scalability of our approach by designing and evaluating a Map/Reduce ver-
sion of our system, TRank, over a large sample of the CommonCrawl dataset2

containing schema.org annotations.
In summary, the main contributions of this paper are:

– The definition of the new task of entity type ranking, whose goal is to select
the most relevant types for an entity given some context.

1 http://www.freebase.com/edit/topic/en/peter_jackson
2 http://commoncrawl.org/

http://www.freebase.com/edit/topic/en/peter_jackson
http://commoncrawl.org/
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– Several type-hierarchy and graph-based approaches that exploit both schema
and instance relations to select the most relevant entity types based on a
query entity and the user browsing context.

– An extensive experimental evaluation of the proposed entity type ranking
techniques over a Web collection and over different entity type hierarchies
including YAGO [23] and DBpedia [1] by means of crowdsourcing relevance
judgements.

– A scalable version of our type ranking approach evaluated over a large an-
notated Web crawl.

The rest of the paper is structured as follows. We start below by describ-
ing related work surveying entity-search and ad-hoc object retrieval techniques.
We formally define our new type ranking task in Section 3 and propose a se-
ries of approaches to solve it based on collection statistics, type hierarchies,
and entity graphs in Section 4. Section 5 presents experimental results com-
paring the effectiveness of our various entity ranking approaches over different
document collections and type hierarchies as well as a scalability validation of
our Map/Reduce implementation over a large corpus. Finally, we conclude in
Section 6.

2 Related Work

Entity-centric data management is an emerging area of research at the inter-
section of several fields including Databases, Information Retrieval, and the Se-
mantic Web. In this paper we target the specific problem of assigning types to
entities that have been extracted from a Web page and correctly identified in a
preexisting knowledge base.

Classic approaches to Named Entity Recognition (NER) typically provide as
output some type information about the identified entities; In most cases, such
types consist of a very limited set of entities including Person, Location, and
Organization (see e.g., [4,5]). While this is useful for applications that need to
focus on one of those generic types, for other applications such as entity-based
faceted search it would be much more valuable to provide specific types that are
also relevant to the user’s browsing context.

In the field of Information Retrieval, entity retrieval has been studied for a
few years. In this context, TREC3 organized an Entity Track where different
entity-centric search tasks have been studied: Four entity types were considered
in that context, i.e., people, products, organizations, and locations. Type infor-
mation can also be used for entity search tasks, e.g., by matching the types of the
entities in the query to the types of the retrieved entities (see for instance [7]).
In the NLP field, entity extraction methods are continuously being developed.
Here also, the types that are considered are typically rather limited. For example,
in the method proposed in [9] 18 types are considered. In [19,18], authors pro-
pose a NER system to recognize 100 entity types using a supervised approach.

3 http://trec.nist.gov

http://trec.nist.gov
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The starting point to define the 100 entity types is the BBN linguistic collection4

which includes 12 top types and 64 subtypes.
The Semantic Web community has been creating large-scale knowledge bases

defining a multitude of entity types. Efforts such as YAGO [23] have assigned
to LOD entities many types by combining Wikipedia categories and Word-
Net senses. More recently, projects such as DBpedia [1] and Freebase [2] have
collected large collections of structured representations of entities along with
their related types. Such knowledge bases hence represent extremely valuable
resources when working on entity type ranking as we do in this paper.

In a recent demo [25], the task of selecting the most relevant types to be
used to summarize an entity has been proposed. However, the focus of this work
was on generating an entity description of a given size, while our focus is to
select the most relevant types given the context in which the entity is described.
Similarly to that work, we build our approaches using large knowledge bases
such as YAGO and DBpedia. Another related approach is Tipalo [10], where
the authors propose an algorithm to extract entity types based on the natural
language description of the entity taken from Wikipedia.

Several applications of our techniques could be based on existing work. For
instance, entity-type ranking could be applied on open-domain Question An-
swering [13], where candidate answers are first generated and later on filtered
based on the expected answer types. For systems like Watson [26], identifying
specific and relevant entity types could potentially significantly improve effec-
tiveness. Another application depending on high-quality entity types is entity
resolution over datasets of different entity types. In [27], the authors evaluate
their approach on top of four entity types (that is, persons, addresses, schools,
and jobs). The availability of more specific entity types would probably be ben-
eficial for this type of task as well.

3 Task Definition

Given a knowledge base containing semi-structured descriptions of entities and
their types, we define the task of entity type ranking for a given entity e appearing
in a document d as the task of ranking all the types Te = {t1, . . . , tn} associated
to e based on their relevance to its textual context ce from d. In RDFS/OWL,
the set Te is typically given by the objects that are related to the URI of e via the
<rdfs:type> predicate. Moreover, we take into consideration entities connected
to e via a <owl:sameAs> to URIs of other selected ontologies and we add to Te

all the types directly attached to them. For example, <dbpedia:Tom Cruise>

has an <owl:sameAs> connection to <freebase:Tom Cruise>, which allows us
to add the new type <freebase:fashion models>.

The context ce of an entity e is defined as the textual content surrounding
the entity taken from the document d in which e is mentioned. This context
can have a direct influence on the rankings. For example, the entity ‘Barack
Obama’ can be mentioned in a Gulf War context or in a golf tournament context.

4 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T33

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T33
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The most relevant type for ‘Barack Obama’ is probably different given one or the
other context. The different context types we consider in this paper are: i) three
paragraphs around the entity reference (one paragraph preceding, one following,
and the paragraph containing the entity); ii) one paragraph only, containing
the entity mention; iii) the sentence containing the entity reference; and iv) the
entity mention itself with no further textual context.

To rank the types by their relevance given a context, we exploit hierarchies
of entity types. In RDFS/OWL, a type hierarchy is typically defined based on
the predicate <rdfs:subClassOf>. For example, in DBpedia we observe that
<dbpedia-owl:Politician> is a subclass of <dbpedia-owl:Person>. Knowing
the relations among types and their depth in the hierarchy is often helpful when
automatically ranking entity types. For example, given a type hierarchy related
to a specific entity, we might prefer a more specific type rather than a too general
one.

We evaluate the quality of a given ranking (ti, . . . , tj) by using ground truth
relevance judgements assessing which types are most relevant to an entity e given
a context ce. We discuss rank-based evaluation metrics in Section 5.

4 Approaches to Entity Type Ranking

4.1 TRank System Architecture

Our solution, TRank, automatically selects the most appropriate entity types
for an entity given its context and type information. TRank implements several
components to extract entities and automatically determine relevant types. First,
given a Web page (e.g., a news article), we identify entities mentioned in the tex-
tual content of the document using state-of-the-art NER focusing on persons,
locations, and organizations.5 Next, we use an inverted index constructed over
DBpedia literals attached to its URIs and use the extracted entity as a query
to the index to select the best-matching URI for that entity.6 Then, given an
entity URI, we retrieve (for example, thanks to a SPARQL query to a knowledge
base) all the types attached to the entity. In this way, we obtain types such as
<owl:Thing>, <yago:JapanPrizeLaureates> and <yago:ComputerPioneers>

for the entity <dbpedia:Tim Berners-Lee>. Finally, our system produces a
ranking of the resulting types based on the textual context where the entity
has been mentioned. A summary of the different steps involved is depicted by
Figure 1.

Integrating Different Type Hierarchies. For the purpose of our task, we require
a large, integrated collection of entity types to enable fine-grained typing of en-
tities. There are several large ontologies available, both manually constructed [16]

5 The current implementation of our system adopts a Conditional Random Field
approach to identify entities [8].

6 This is the same baseline approach used in [6] and in [24] for Entity Linking.
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Fig. 1. The TRank Architecture

as well as based on the widespread success of Wikipedia combined with in-
formation extraction algorithms [1,23]. However, the lack of alignments among
such ontologies hinders the ability of comparing types belonging to different
collections.

In TRank, we exploit pre-existing mappings provided by DBpedia and
PARIS [22] to build a coherent tree of 447, 260 types, rooted on <owl:Thing>

and with a depth of 19. The tree is formed by all the <rdfs:subClassOf>

relationships among DBpedia, YAGO and schema.org types. To eliminate cy-
cles and to enhance coverage, we exploit <owl:equivalentClass> to create
<rdfs:subClassOf> edges pointing to the parent class (in case one of the two
Classes does not have a direct parent). Considering that the probabilistic ap-
proach employed by PARIS does not provide a complete mapping between
DBpedia and YAGO types, we have manually added 4 <rdfs:subClassOf>

relationships (reviewed by domain experts) to obtain a single type tree rather
than a forest of 5 trees.7 Figure 2 shows a visual representation of the integrated
type hierarchy used by TRank.

Entity Type Retrieval and Ranking. Finally, given the entity URI we retrieve all
its types (from a background RDF corpus or from a previously created inverted
index) and rank them given a context. In this paper, we use the Sindice-2011
RDF dataset8 [3] to retrieve the types, which consists of about 11 billion RDF
triples.

The proposed approaches for entity type ranking can be grouped in entity-
centric, context-aware, and hierarchy-based. Figure 3 shows on which data such
approaches are based. The entity-centric approaches look at the relation of the
entity e with other entities in a background knowledge base following edges such
as <dbpedia-prop:wikiLink> and <owl:sameAs>. Context-aware approaches
exploit the co-occurrence of the entity e with other entities in the same textual

7 The type hierarchy created in this way is available in the form of a small inverted
index that provides for each type the path to the root and its depth in the hierarchy
at http://exascale.info/TRank

8 http://data.sindice.com/trec2011/

http://exascale.info/TRank
http://data.sindice.com/trec2011/
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context. Hierarchy-based approaches look at the structure of the type hierarchy
and rank types based on it.

4.2 Entity-Centric Ranking Approaches

We now turn to the detailed description of several techniques to rank entity
types. The first group of approaches we describe only considers background
information about a given entity and its types without taking into account the
context in which the entity appears.

Our first basic approach (FREQ) to rank entity types is based solely on the
frequency of those types in the background knowledge base ranking first the most
frequent type of an entity. For example, the type Person has a higher frequency
(and thus is more popular) than EnglishBlogger.

Our second approach (WIKILINK) exploits the relations existing between the
given entity and further entities in the background knowledge base. Hence, we
count the number of neighboring entities that share the same type. This can be
performed by issuing the following SPARQL queries retrieving connected entities
from/to e to rank ti ∈ Te:

SELECT ?x WHERE { <e> <dbpedia-prop:wikilink> ?x . ?x <rdfs:type> <t_i> }
SELECT ?x WHERE { ?x <dbpedia-prop:wikilink> <e> . ?x <rdfs:type> <t_i> }
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For example, in Figure 3a to rank types for the entity e we exploit the fact
that linked entities have also the type ‘Actor’ to rank it first.

In a similar way, we exploit the entity graph from the knowledge base by
following <owl:sameAs> connections and observing the types attached to such
URIs (SAMEAS):

SELECT ?x WHERE {<e> <owl:sameAs> ?x . ?x <rdfs:type> <t_i> }

Our next approach (LABEL) adopts text similarity methods. We consider
the label of e and measure its TF-IDF similarity with other labels appearing in
the background knowledge base in order to find related entities.9 At this point,
we inspect the types of the most related entities to rank the types of e. More
specifically, we select the top-10 entities having the most similar labels to e and
rank types based on the frequency of ti ∈ Te for those entities.

4.3 Context-Aware Ranking Approaches

We describe approaches leveraging the entity context below. A first approach
(SAMETYPE) taking into account the context ce in which e appears is based
on counting how many times each type ti ∈ Te appears in the co-occurring
entities e′ ∈ ce also mentioned in the context. In this case, we consider a match
whenever the same type URI is used by e and e′, or when the type of e′ has the
same label as the type from e. For example, in Figure 3b we rank first the type
‘Actor’ for the entity e because it co-occurs with other entities of type Actor in
the same context.

A slightly more complex approach (PATH) leverages both the type hierarchy
and the context in which e appears. Given all entities appearing in the context
e′ ∈ ce, the approach measures how similar the types are based on the type hier-
archy. We measure the degree of similarity by taking the intersection between the
paths from the root of the type hierarchy (i.e., <owl:Thing>) to ti ∈ Te and to
tj ∈ Te′ . For instance, when ranking types for the entity ‘Tom Hanks’ in a context
where also ‘Tom Cruise’ appears, we measure the similarity between the types
by considering the common paths between the root of the type hierarchy and
both types, e.g., “Thing-Agent-Person-Artist-Actor-AmericanTelevisionActors”
and “Thing-Agent-Person-Artist-Actor-ActorsFromNewJersey” would be con-
sidered as highly similar. On the other hand, the ‘Tom Hanks’ type
path “Thing-PhysicalEntity-CausalAgent-Person-Intellectual-Scholar-Alumnus-
CaliforniaStateUniversity,SacramentoAlumni” is not very similar with the
previous ‘Tom Cruise’ path. Hence, the approach ranks the ‘AmericanTelevi-
sionActors’ type higher given the context in which it appears.

4.4 Hierarchy-Based Ranking Approaches

The more complex techniques described below make use of the type hierarchy
and measure the depth of an entity type ti attached to e in order to assess its

9 This can be efficiently performed by means of an inverted index over entity labels.
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relevance. We define the DEPTH ranking score of a type ti as the depth of ti
in the type hierarchy. This approach favors types that are more specific (i.e.,
deeper in the type hierarchy).

In some cases, the depth of an entity type in the hierarchy may not be enough.
To detect the most relevant entity types, it might also be useful to determine
the branch in the type hierarchy where the most compelling entity types are
defined. In that context, we define a method (ANCESTORS) that takes into
consideration how many ancestors of ti ∈ Te are also a type of e. That is, if
Ancestors(ti) is the set of ancestors of ti in the integrated type hierarchy, then
we define the score of ti as the size of the set {tj|tj ∈ Ancestors(ti) ∧ tj ∈ Te}.
For example, in Figure 3c we rank first the type ‘Actor’ because ‘Person’ is its
ancestor and it is also a type of e. On the other hand, the type ‘Humanitarian
Foundation’ has a bigger depth but no ancestor which is also a type of e.

A variant of this approach (ANC DEPTH) considers not just the number of
such ancestors of ti but also their depth. Thus,

ANC DEPTH(ti) =
∑

tj∈Ancestor(ti)∧tj∈Te

depth(tj). (1)

4.5 Learning to Rank Entity Types

Since TRank ranking approaches cover fairly different types of evidence (based
on the entity-graph, the context, or the type hierarchy) to assess the relevance
of a type, we also propose to combine our different techniques by determining
the best potential combinations using a training set, as it is commonly carried
out by commercial search engines to decide how to rank Web pages (see for
example [15]). Specifically, we use decision trees [11] and linear regression models
to combine the ranking techniques described above into new ranking functions.
The decision tree method we used is M5 [21], which is specifically designed for
regression problems. The effectiveness of this approach is discussed in Section 5.

4.6 Scalable Entity Type Ranking with MapReduce

Ranking types using the above methods for all the entities identified in a large-
scale corpus using a single machine and SPARQL end-points is impractical, given
the latency introduced by the end-point and the intrinsic performance limitations
of a single node. Instead, we propose a self-sufficient and scalable Map/Reduce
architecture for TRank, which does not require to query any SPARQL end-point
and which pre-computes and distributes inverted indices across the worker nodes
to guarantee fast lookups and ranking of entity types. More specifically, we build
an inverted index over the DBpedia 3.8 entity labels for the entity linking step
and an inverted index over the integrated TRank type hierarchy which provides,
for each type URI, its depth in the integrated type hierarchy and the path to
the root of the hierarchy. This enables a fast computation of the hierarchy-based
type ranking methods proposed in Section 4.4.
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5 Experiments

5.1 Experimental Setting

We created a ground truth of entity types mentioned in 128 news articles selected
from the top news of each category from the New York Times (NYT) website
during the Feb 21 – Mar 7 2013 period. On average, each article contains 12
entities. After the entity linking step, each entity gets associated with an average
of 10.2 types from our Linked Data collection. We crowdsourced the selection of
the most relevant types by asking the workers to select the most relevant type
given a specific textual context.

Crowdsourced Relevance Judgements. We used paid crowdsourcing to create the
ground truth.10 We decided to ask anonymous Web users rather than creating
the ground truth ourself as they are a real sample of Web user who could benefit
from the envisioned application. Each task, which was assigned to 3 different
workers from the US, consists of asking the most relevant type for 5 different
entities, and was paid $0.10 for entities without context and $0.15 for entities
with a context. Additionally, we allowed the workers to tag entities that were
wrongly extracted, and to add an additional type if the proposed ones were not
satisfactory. Overall, the relevance judgement creation cost $190.

In order to better understand how to obtain the right information from the
crowd, we ran a pilot study where we compared different task designs for the
entity type judgement task. We assessed the approach of asking the crowd to
select all types which are relevant for an entity given its context as compared to
asking which is the best type. Given the results of the pilot study, we selected the
design that asks the worker to pick the best type only as this also best models
the use case of showing one single entity type to a user browsing the Web.
To generate our ground truth out of the crowdsourcing results, we consider as
relevant each type which has been selected by at least one worker, in order to
obtain binary judgements. We take the number of workers who selected a type
as its relevance score in a graded relevance setting.

Evaluation Measures. As the main evaluation measures for comparing different
entity type ranking methods, we use Mean Average Precision (MAP). Average
Precision (AP) for the types Te of an entity e is defined as

AP (Te) =

∑
ti∈Te

rel(ti) · P@i

|Rel(Te)|
(2)

where rel(ti) is 1 if ti is a relevant type for the entity e and 0 otherwise, Rel(Te)
is the set of relevant types for e, and P@i indicates Precision at cutoff i. MAP
is defined as the mean of AP over all entities in the collection.

MAP is a standard evaluation measure for ranking tasks which consider bi-
nary relevance: A type ti is either correct or wrong for an entity e. Since the

10 We run our tasks over the Amazon MTurk platform. The collected data and task
designs are available for others to reuse at http://exascale.info/TRank

http://exascale.info/TRank
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original relevance judgements are not binary (i.e., more than one worker can
vote for a type and thus have a higher relevance value than a type with just one
vote), we also measure the Normalize Discounted Cumulative Gain (NDCG)
[12], which is a standard evaluation measure for ranking tasks with non-binary
relevance judgements. NDCG is defined based on a gain vector G, that is, a
vector containing the relevance judgements at each rank. Then, the discounted
cumulative gain measures the overall gain obtained by reaching rank k putting
more weight at the top of the ranking: DCG[k] =

∑k
j=1 G[j]/(log2(1 + j)). To

compute the final NDCG, we normalize it by dividing DCG by its optimal value
obtained with the optimal gain vector which puts the most relevant results first.

5.2 Dataset Analysis

Out of the NYT articles we have crawled, we created four different datasets to
evaluate and compare our approaches for the entity type ranking task. First,
we use a collection consisting exclusively of entities and their types as extracted
from the news articles. This collection is composed of 770 distinct entities: out of
the original 990 extracted entities we consider only those with at least two types
and we removed the errors in NER and entity linking which were identified by
the crowd during the relevance judgements.

Sentence Collection. We built a Sentence collection consisting of all the sentences
containing at least two entities. In this and the following collections we asked
the human assessor to judge the relevance of a type given a context (e.g., a
sentence). This collection contains 419 context elements composed of an average
number of 32 words and 2.45 entities each.

Paragraph Collection. We constructed a collection consisting of all the para-
graphs longer than one sentence and containing at least two entities having
more than two types. This collection contains 339 context elements composed of
an average number of 66 words and 2.72 entities each.

3-Paragraphs Collection. The last collection we have constructed contains the
largest context for an entity: the paragraph where it appears together with the
preceding and following paragraphs in the news article. This collection contains
339 context elements which are composed on average of 165 words each. The
entire context contains on average 11.8 entities which support the relevance of
the entities appearing in the central paragraph.

5.3 Experimental Results

Table 1 shows the overall effectiveness obtained by the proposed approaches.
When we compare the results obtained among the different collections (i.e.,
entity-only, sentence, paragraph, and 3 paragraphs) we observe that effectiveness
values obtained without context are generally higher, supporting the conclusion
that the type ranking task for an entity without context is somehow easier than
when we need to consider the story in which it is mentioned. Among the entity
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Table 1. Type ranking effectiveness for different textual contexts. Statistically signi-
ficative improvements (t-test p < 0.05) of the regression methods over the best ranking
approach are marked with ∗ and of the best hierarchy-based method over the best
method from the other groups with †.

Entity-only Sentence Paragraph 3-Paragraphs
Approach NDCG MAP NDCG MAP NDCG MAP NDCG MAP

FREQ 0.6284 0.4659 0.5409 0.3758 0.5315 0.3739 0.5250 0.3577
WIKILINK-OUT 0.6874 0.5406 0.6050 0.4521 0.6063 0.4550 0.6059 0.4444
WIKILINK-IN 0.6832 0.5342 0.5907 0.4213 0.5879 0.4254 0.5853 0.4143

SAMEAS 0.6848 0.5328 0.6049 0.4310 0.5990 0.4221 0.6172 0.4417
LABEL 0.6672 0.5067 0.6075 0.4265 0.5883 0.4104 0.5821 0.4034

SAMETYPE - - 0.6024 0.4452 0.5917 0.4327 0.5813 0.4256
PATH - - 0.6507 0.4956 0.6538 0.4974 0.6315 0.4742
DEPTH 0.7432 0.6128 0.6754 0.5385 0.6797 0.5475 0.6741 0.5354

ANCESTORS 0.7424 0.6154 0.6967† 0.5637† 0.6949† 0.5662† 0.6879† 0.5562†

ANC DEPTH 0.7469† 0.6236† 0.6832 0.5488 0.6885 0.5546 0.6796 0.5423

DEC-TREE 0.7614 0.6361 0.7373∗ 0.6079∗ 0.7979∗ 0.7019∗ 0.7943∗ 0.6914∗

LIN-REG 0.7373 0.6079 0.6906 0.5579 0.6987 0.5702 0.6899 0.5529

centric approaches, in most of the cases the best approach is WIKILINK-OUT,
that is, the approach that follows the <dbpedia-prop:wikiLink> edges starting
from the entity e and that checks the frequency of its types among its connected
entities. Among the context-aware approaches, the PATH method performs best.
Interestingly, the hierarchy-based approaches clearly outperform the methods
looking at the context or at the entity itself. The relatively simple DEPTH ap-
proach performs very effectively. The approaches looking at the ancestor of a type
in the integrated hierarchy are the most effective approaches for ranking entity
types among the ones we propose. Nevertheless, there are cases in which context-
aware approaches rank types better than hierarchy-based ones. For example, in
some document “Mali” co-occurs with “Paris”, “Greece”, and “Europe”. The
top-3 results selected by ANCESTORS for “Mali” are “LeastDevelopedCoun-
tries”, “LandlockedCountries”, and “French-speakingCountries”, which are all
non-relevant since they are too specific with respect to the context. In contrast,
the top-3 types selected by PATH: “PopulatedPlace”, “Place”, and “Country”,
are all relevant according to the crowd.

To evaluate the combination of approaches using machine-learning methods,
we run 10-fold cross validation over 7884, 11875, 11279, and 11240 data points in
the four different collections. Out of the ranking approaches we have proposed,
we selected 12 features which cover all the different methodologies (i.e., entity-
centric, context-aware, and hierarchy-based) to train regression models for entity
type ranking. We observe that the best performing method is the one based on
decision trees, which significantly outperforms all other approaches.

Figure 4 shows the evolution of MAP and NDCG values by looking at entities
with a different number of associated types. Generally speaking, we see that
entity having many different types are more difficult to handle. On the other
hand, even for the simple approach FREQ, when few types are assigned to an
entity we obtain effective results. On the right side of Figure 4, we can observe
the robustness of DEC-TREE over entities with an increasing number of types.
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Fig. 4. MAP and NDCG of FREQ (left) and DEC-TREE (right) for entities with
different numbers of types on the 3-paragraphs collection

Crowd-powered Entity Type Assignment. In some cases the knowledge base may
not contain types that are good enough. For example, some entities have only
<owl:Thing> and <rdfs:Resource> attached to them. In such cases, we asked
the crowd to suggest a new type for the entity they are judging. While extend
existing LOD ontologies with additional schema element is not the focus of this
paper, we observe that this can be easily achieved by means of crowdsourcing.
The suggestion of new types from the crowd may also suggest an error at the
entity linking step (i.e., a wrong URI has been assigned to the entity mention).
Some examples of crowd-originated entity types are shown in Table 2.

TRank Scalability. We ran the MapReduce TRank pipeline over a sample of
CommonCrawl containing schema.org annotations. Upon writing this paper,
CommonCrawl is formed by 177 valid crawling segments, accounting for 71TB
of compressed Web content. We uniformly sampled 1TB of data over the 177
segments, and kept only the HTML content with schema.org annotations. This
resulted in a corpus of 1, 310, 459 HTML pages, for a total of 23GB (compressed).
Our MapReduce testbed is composed of 8 slave servers, each with 12 cores at
2.33GHz, 32GB of RAM and 3 SATA disks. The relatively small size of the 3
Lucene inverted indices (∼ 600MB) used by the TRank pipeline allowed us to
replicate the indices on each single server (transparently via HDFS). In this way,
no server represented a read hot-spot or, even worse, a single point of failure.

Table 2. Examples of crowd-originated entity types

Entity Label Existing Types Crowd Suggested Type

David Glassberg
Alumnus, Resource,

New York City policemanNorthwestern University Alumni,
American television journalists

Fox Thing, Eukaryote Television Network

Bowie
Minor league team,

Musical Artist
Minor league sports team

Atlantic Resource, Populated Place Ocean
European Commission Type of profession, Landmark Governmental Organizations

Childress Thing, Resource Locality
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Table 3. Efficiency breakdown of the TRank MapReduce pipeline

Text Extraction NER Entity Linking Type Retrieval Type Ranking
18.9% 35.6% 29.5% 9.8% 6.2%

Table 4. CommonCrawl sample statistics

Domain % in corpus
youtube.com 39.65
blogspot.com 9.26
over-blog.com 0.67
rhapsody.com 0.54
fotolog.com 0.52

Schema.org type % in corpus
http://schema.org/VideoObject 40.79
http://schema.org/Product 32.66
http://schema.org/Offer 28.92
http://schema.org/Person 20.95

http://schema.org/BlogPosting 18.97

We argue that the good performance of our MapReduce pipeline is in majorly due
to the use of small, pre-computed inverted indices instead of expensive SPARQL
queries.

Processing the corpus on such a testbed takes 25 minutes on average, that is,
each server runs the whole TRank pipeline at 72 documents per second. Table 3
shows a performance breakdown for each component of the pipeline. The value re-
ported for “Type Ranking” refers to the implementation of ANCESTORS, but it
is comparable for all the other techniques presented in the paper (except the ones
based on the Learning to Rank approach, which we did not test in MapReduce).

The observed schema.org class distributions almost overlaps with the one
previously found by [17] (see Table 4).11 Table 5 shows the most frequent entity
types selected by TRank for entities contained in our sample of CommonCrawl.
We can observe how TRank types refer to specific entities mentioned in topic-
specific pages as, for example, <yago:InternetCompaniesOfTheUnitedStates>
entities that are contained in <http://schema.org/Product> Web pages.

Fig. 5. Occurrences of distinct TRank types in CommonCrawl (log scale)

Figure 5 shows the variety of entity types selected by TRank for Web pages
annotated with different schema.org classes. We clearly recognize a power-low

11 More statistics can be found at http://exascale.info/TRank

http://exascale.info/TRank
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Table 5. Co-occurrences of top Schema.org annotations with entity types.

Schema.org type top-3 most frequent TRank types

http://schema.org/VideoObject
<dbpedia-owl:GivenName>
<dbpedia-owl:Settlement>
<dbpedia-owl:Company>

http://schema.org/Product
<yago:InternetCompaniesOfTheUnitedStates>

<yago:PriceComparisonServices>
<dbpedia-owl:Settlement>

http://schema.org/Offer
<yago:InternetCompaniesOfTheUnitedStates>

<yago:PriceComparisonServices>
<dbpedia-owl:Company>

http://schema.org/Person
<dbpedia-owl:GivenName>
<dbpedia-owl:Company>

<yago:FemalePornographicFilmActors>

distribution where the top schema.org classes contain very many different entity
types while most of the others have a low diversity of entity types.

6 Conclusions

In this paper, we focused on the new task of ranking types for online entities
given some textual context and links to background knowledge bases. Numerous
applications can be developed once the most relevant entity types are correctly
determined, including SERP enrichment, faceted browsing, and document sum-
marization. We proposed different classes of ranking approaches and evaluated
their effectiveness using crowdsourced relevance judgments. We also evaluated
the efficiency of the proposed approach by taking advantage of inverted indices
for fast access to entity and type hierarchy information and of a MapReduce
pipeline for efficient entity type ranking over a Web crawl.

Our experimental results show that the approaches considering the relations
between entity types in the overall type hierarchy outperform the other classes
of approaches. A regression model learned over training data combining the
different classes of ranking approaches significantly outperforms the individual
ranking approaches, reaching a Mean Average Precision value of 0.70. As future
work, we aim at improving TRank effectiveness by differentiating types and
roles to design new ranking approaches based both on natural types and on
the interaction among entities in the context. In addition, we plan to test the
behavior of our system with different domains and ontologies, and to evaluate
the user impact of entity typing by running a large-scale experiment using a
browser plugin to display contextual entity types while the user is surfing.

Acknowledgments. This work was supported by the Swiss National Science
Foundation under grant number PP00P2 128459, and by the Haslerstiftung in
the context of the Smart World 11005 (Mem0r1es) project.
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Abstract. One of the main advantages of using semantically annotated
data is that machines can reason on it, deriving implicit knowledge from
explicit information. In this context, materializing every possible im-
plicit derivation from a given input can be computationally expensive,
especially when considering large data volumes.

Most of the solutions that address this problem rely on the assumption
that the information is static, i.e., that it does not change, or changes very
infrequently. However, theWeb is extremely dynamic: online newspapers,
blogs, social networks, etc., are frequently changed so that outdated in-
formation is removed and replaced with fresh data. This demands for a
materialization that is not only scalable, but also reactive to changes.

In this paper, we consider the problem of incremental materializa-
tion, that is, how to update the materialized derivations when new data
is added or removed. To this purpose, we consider the ρdf RDFS frag-
ment [12], and present a parallel system that implements a number of al-
gorithms to quickly recalculate the derivation. In case new data is added,
our system uses a parallel version of the well-known semi-naive evaluation
of Datalog. In case of removals, we have implemented two algorithms,
one based on previous theoretical work, and another one that is more
efficient since it does not require a complete scan of the input.

We have evaluated the performance using a prototype system called
DynamiTE , which organizes the knowledge bases with a number of in-
dices to facilitate the query process and exploits parallelism to improve
the performance. The results show that our methods are indeed capa-
ble to recalculate the derivation in a short time, opening the door to
reasoning on much more dynamic data than is currently possible.

1 Introduction

One of the main advantages of using semantically annotated data is that ma-
chines can reason on it, deriving new, implicit, knowledge from existing infor-
mation. To this end, several systems have been developed over the last few years
to make all possible conclusions from a given input explicit, so that no reasoning
is needed when the user queries the knowledge base.

This task, also called materialization, can be computationally expensive, es-
pecially if the input is large. In fact, while some of these systems can perform
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the materialization of several billions of statements [10,16,20], they still demand
for significant computational resources, and the process may require up to a
few days to complete. Because of this, most of these systems work under the
assumption that the input data is static, i.e., that it does not change, or changes
very infrequently. This assumption does not match with the current Web, which
is extremely dynamic: online newspapers, blogs, social networks, are frequently
changed and updated. This demands for a materialization process that is not
only scalable, but also reactive to changes, by reducing the cost of updating
the materialization. A new research area, called stream reasoning, has recently
emerged to address this specific problem [4].

With this paper, we contribute to this area by considering the problem of
incrementally maintaining a large materialized knowledge base in the presence
of frequent changes, using monotonic rule-based reasoning as the method to
derive new information. More specifically, we propose DynamiTE , a parallel
system capable of efficiently generating the complete materialization of large
RDF knowledge bases, and maintaining it after the knowledge base is updated.

We consider two types of updates: (i) the addition of new information, which
requires a re-computation of the materialization to add new derivations, and
(ii) the removal of existing information, which requires the deletion of the ex-
plicit knowledge, and also of all the implicit information that is no longer valid.

For the addition updates, DynamiTE applies in parallel the well-known Data-
log semi-naive evaluation. For the removal updates, it implements two
algorithms: one that was presented in the literature but only from a theoret-
ical perspective [11], and another one, which is more efficient since it does not
require a complete scan of the input for every update.

To evaluate the performance of DynamiTE , we consider the minimal RDFS
fragment ρdf [12], which captures the main semantic functionality of RDFS [9]
limiting the materialization accordingly. Furthermore, its ruleset can be ex-
pressed with Datalog [1] and this allows us to reuse its theory to define the
semantics of our process. We designed some experiments to study the behavior
of our system over large amounts of data, trying to understand, from a system
point of view, what are the main factors that drive the performance. The results
show that our system is capable of efficiently computing the materialization of
large knowledge bases up to one billion statements, and can alter them in a
range from hundred of milliseconds to less than two minutes when considering
substantial updates of two hundred thousand triples.

The remaining of this paper is organized as follows: Section 2 contains some
background information to make the reader familiar with the concepts we use
throughout the paper. Next, Section 3 reports an overview of our system while
Sections 4 and 5 focus on the crucial task of the system, i.e., the incremental
maintenance of the materialization. After this, we present an evaluation of our
system in Section 6. Finally, Section 7 discusses related work and Section 8
concludes the paper, also reporting some indications for future research.
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2 Background

To describe our system, we use the notions and notations of the Datalog lan-
guage. Because of space constraints, we cannot present a complete overview of
this language. Therefore, we only present some basic concepts that we use in the
paper, and we refer the reader to existing literature, e.g. [1], for more details.

First of all, a Datalog program P is defined as a finite set of rules in the form
R1(w1) ← R2(w2), R3(w3), ..., Rn(wn), where each component Ri(wi) is called
a literal. A literal is composed of a predicate (e.g. Ri) and a tuple of terms
wi := t1, ..., tm. A term ti can be either a variable from a finite domain V or a
constant term from another disjoint finite domain C. We denote with tj ∈ Ri(wi)
the term that appears at the jth position of wi.

We define var(Ri(wi)) as the set of all variables in the literal Ri(wi), and
const(Ri(wi)) as the set of all its constants. The left side of a rule r is called the
head of r (head(r)), while the right side is defined as its body (body(r)). Datalog
imposes that each variable that appears in the head of the rule must also appear
in its body. This means that ∀v ∈ var(R1(w1)) there must be an i ∈ (2..n) so
that v ∈ var(Ri(wi)). Furthermore, Datalog makes a distinction between edb
predicates, which never appear in the head of a rule, and idb predicates, which
appear in the head of some rule.

A literal containing only constants is called a fact. We say that a fact f
instantiates the literal l if they share the same predicate, every ci ∈ const(l)
that appears in l at position i is equal to the corresponding term ti of f , and
if there is a variable v ∈ var(l) which appears in l at two different positions i
and j, then ti = tj in f . We call f1 ← f2, f3, ..., fn an instantiation of a rule
R1(w1) ← R2(w2), R3(w3), ..., Rn(wn) if every fi∈{1..n} is an instantiation of
the corresponding Ri(wi), and that any term tj ∈ fi is equal to another term
tm ∈ fj∈{1..n}∧i�=j if vi ∈ var(Ri(wi)), vj ∈ var(Rj(wj)), and vi = vj .

In Datalog, the operator TP is called the immediate consequence operator of
P . This operator maps a generic database I (defined as a finite set of facts) to
another database TP (I) that contains all facts that are direct consequences for
I and P . A fact f is a direct consequence for I and P if either f ∈ I(R)1 for
some edb predicate R in P or f ← f1, f2, ..., fn is an instantiation of a rule in P
and each fi∈{1..n} ∈ I. Intuitively, TP can be seen as the abstract operator that
applies the rules in P over I to derive new conclusions.

TP is monotonic: given two databases I, I′, if I ⊆ I′, then TP (I) ⊆ TP (I
′).

Because of this, repeated executions of the TP operator over augmented versions
of a database I will lead to a fix-point. This means that if we define T n

P (I) as

T n
P (I) =

{
I n = 0

TP (T
n−1
P (I)) n > 0

there is a n′ such that T n′+1
P (I) = T n′

P (I). In this case, T n′

P (I) is named as the
fix-point of TP , and denoted with Tω

P (I). T
ω
P (I) is the materialization of I, since

it contains all the possible derivations that can be obtained from I and P .

1 The database I(R) contains all and only the facts f ∈ I with predicate R.
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Table 1. Supported ruleset. Datalog variables are in italics; constants are in fixed-
width characters. The abbreviations SPO, SCO, TYPE, RANGE and DOMAIN stand for
the URIs rdfs:subProperty, rdfs:subClassOf, rdf:type, rdfs:range, and rdfs:domain. The
first rule is only used to map the edb predicate Te to the idb predicate Ti that is used
in the other rules.

Head Body

Ti(A,P,B) ⇐ Te(A,P, B)
Ti(A, SPO, C) ⇐ Ti(A, SPO, B), Ti(B, SPO, C)
Ti(A,P,B) ⇐ Ti(Q, SPO, P ), Ti(A,Q,B)
Ti(A, TYPE, C) ⇐ Ti(B, SCO, C), Ti(A, TYPE, B)
Ti(A, SCO, C) ⇐ Ti(A, SCO, B), Ti(B, SCO, C)
Ti(A, TYPE, D) ⇐ Ti(P, DOMAIN, D), Ti(A,P, B)
Ti(A, TYPE, R) ⇐ Ti(P, RANGE, R), Ti(B,P,A)

A trivial way to compute Tω
P (I) is to start from n = 0, execute TP , and

increase n until the fix-point is reached. This approach, known as the naive
evaluation, is very inefficient since, at each iteration, an application of TP will
recompute all the derivations already computed in the previous iterations.

A more efficient algorithm, called semi-naive evaluation [1], optimizes this
process by instantiating a rule r only if at least one fact that instantiates a literal
in body(r) was derived in the previous iteration. In this way, the algorithm is
able to significantly decrease the number of duplicates.

The semi-naive evaluation can be implemented by annotating each fact in the
database with a numeric step that indicates at which stage of the derivation
that information was derived (facts in the original input are marked with a step
of zero). Then, at every nth iteration of the evaluation, the operator Tp accepts
only instantiations if at least one fact that instantiates a literal has a step that
is equal or greater than n − 1. This significantly reduces the number of rules
execution and consequently the number of duplicates that are generated.

3 DynamiTE: System Overview

The purpose of DynamiTE is to efficiently compute and incrementally maintain
the materialization of a database, which consists of RDF triples. We consider the
minimal RDFS fragment ρdf [12], and execute the rules presented in Table 1.

To formalize our problem in Datalog, let P be a program consisting of the rules
in Table 1, and I a given database, which represents the initial RDF knowledge
base expressed as a set of Datalog facts Te(s, p, o) where Te is an edb predicate,
and s, p, o are respectively the subject, predicate, and object of a RDF triple
that are mapped to constant terms in Datalog.

DynamiTE implements three main tasks: (i) First, it computes the com-
plete materialization of I. Then, it maintains it after a set of triples δ is either
(ii) added, or (iii) removed. More formally, in (i) the system calculates Tω

P (I),
in (ii) Tω

P (I ∪ δ), and in (iii) Tω
P (I \ δ) is computed.
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Fig. 1. DynamiTE : General System Workflow

3.1 System Workflow

Fig. 1 shows the general workflow of DynamiTE . The initial input consists of a
collection of triples encoded with the N-Triples format. First, DynamiTE per-
forms the Compress Input operation, which converts the textual terms into num-
bers using the technique of dictionary encoding. The algorithm used for this
phase is an adaptation of the distributed MapReduce version presented in [17].

The next operation, Create Indices, stores the compressed data into B-Tree
indices (along with the dictionary tables to allow quick decompression). Since the
size of the database can easily become too large to fit in main memory, we need
to consider data structures that can be off-loaded to disk. To this end, we use
six on-disk B-Trees to store all the possible permutations of the input triples.
We chose the B-Tree data structure because we want our system to support
generic querying, and storing six indices has proven to be ideal for SPARQL [14]
querying, allowing an efficient retrieval for all possible atomic queries [21]. As we
will show in the evaluation, the Create Indices operation is the most expensive
of the entire workflow. To reduce its cost, DynamiTE sorts the triples before
insertion (in our tests, this improves the performance by at least 10%).

Next, DynamiTE performs the Full Materialization. We describe this process
in detail in Section 4.1. This operation implements a parallel version of the semi-
naive evaluation, which iteratively reads the entire input and augments it with
new derivations. The B-Trees are not particularly efficient in supporting these
operations. Therefore, during the full materialization, the system writes the new
derivation on plain files, and copies them on the B-Trees in the next operation,
Copy into Indices. According to some tests we performed, using files makes the
entire process at least 30% faster.

At this point, DynamiTE is ready to receive updates (see Fig. 1, bottom). For
each update δ, it first compresses the content of δ, and then performs incremental
reasoning. We describe this last operation in Sections 4 and 5.

3.2 Physical Rules Instantiation

In order to physically instantiate the rules, we make a fundamental distinction
between schema and generic triples. We denote as schema all those triples having
SPO, SCO, DOM, or RANGE as predicate. We call all the others generic triples. The
design and implementation of our algorithm for rules instantiation relies on the
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assumption that the number of schema triples in the input is significantly smaller
than the rest, so that all of them (explicit and inferred) will fit in main memory.
This assumption holds for the vast majority of web data [16], but there can be
scenarios where this is no longer true.

First, the system assigns all the rules to three disjoint subsets, named Type 1 ,
Type 2 , and Type 3 , depending on the number and type of their literals. The
assignment criteria for a rule r are defined as follows:

– Type 1. All the literals in r can be instantiated only by schema triples.
– Type 2. The body of r consists of only one literal and can be instantiated by

generic triples.
– Type 3. The body of r contains exactly two literals, one of them can be

instantiated only by schema triples while the other is instantiated by generic
triples.

DynamiTE implements a different rules instantiation strategy depending on
the type of the rules. Rules of Type 1 are instantiated by first loading all schema
triples, i.e., all the triples that can instantiate the literals in body(r), in memory.
Then, in case there is only one literal in body(r) the instantiation becomes trivial
since the system only needs to generate a new triple that instantiates head(r)
and copy the values of the variable in the body to the corresponding position
in the head. If there are multiple literals in the body, then the system must
join the triples having common terms. Consider for example the second rule in
Table 1: its application needs to find all the pairs of triples s, p, o, and s′, p′, o′,
such that p = p′ = SPO and o = s′. The system performs this operation in
memory, computing a hash join between the two sets of triples.

Rules of Type 2 are similar to rules of Type 1 with only one literal in their
body. The only difference is that here the system cannot assume that they fit
into the main memory and thus it needs to retrieve them from the disk.

Rules of Type 3 are the most challenging, since they require a join between
two sets of triples, schema and generic triples, where the second set can be
quite large. In previous work, we tackled this problem proposing a distributed
execution over multiple processing nodes using the MapReduce model and the
Hadoop framework [16]. Schema triples were replicated on every node, and a
hash join was performed against the generic triples that were being read from
the input. While this approach proved to be scalable, it introduced high latency
(due to the usage of Hadoop), which conflicts with our need for reactivity. In
DynamiTE , we re-implemented similar algorithms to replicate the MapReduce
programming model without using a resilient and distributed architecture such
as Hadoop, but instead exploiting the parallelism offered by modern multi-core
hardware to reduce the processing time.

4 Materialization after Data Additions

We distinguish two types of updates, depending on whether the initial database
is empty. In the first case we perform a full materialization, while in the second
an incremental materialization is done.
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Fig. 2. DynamiTE : One iteration of the full materialization. In this figure, there are
n rules of Type 1 , RS1...RSn, m rules of Type 2 , RG1...RGm , and k rules of Type 3 ,
RGS1...RGSk.

4.1 Full Materialization

For this task, DynamiTE provides a parallel implementation of the semi-naive
evaluation to exploit the parallelism of modern computer architectures. As we
described in Section 2, the semi-naive evaluation performs multiple iterations,
until it reaches a fix-point. Fig. 2 shows a single iteration in our system. On top
of the figure there is the database, physically stored both on six B-Trees and
on a number of files. During the full materialization, we read the database and
write the derivation only to files, except for the schema triples that are always
being replicated on the B-Trees to improve their retrieval in the next iterations.

First, DynamiTE applies all the rules of Type 1 . This step is shown in the
gray box marked with a “1”. The execution is parallel, with each rule r being
instantiated in a separate thread t. Each thread t retrieves from the B-Trees the
schema triples that instantiate the literals in body(r), joins them, if needed, and
generates the triples that instantiate head(r). Finally, it stores all derivations
both in the B-Trees and on files.

Next, DynamiTE instantiates rules of Type 2 and Type 3 . They require a
complete scan over the input, which can potentially be large. DynamiTE op-
timizes this step by partitioning the input files into smaller blocks, with each
block b being read by a different thread t. First, each thread t applies the rules
of Type 2 on the triples in b. Then, it applies rules of Type 3 , considering both
the original input and the output of the rules of Type 2 . Rules of Type 3 are
instantiated using the MapReduce algorithm outlined in Fig. 2. Notice that,
for executing rules of Type 3 , DynamiTE also accesses the B-Trees for retriev-
ing schema triples. After execution, all the derivations are stored on files, while
schema triples are also replicated in the B-Trees.

As mentioned, DynamiTE implements the semi-naive evaluation, where only
the last derivations are considered during rule execution. To make this possible,
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Fig. 3. DynamiTE : One iteration of the incremental materialization

it marks each triple with a step attribute, representing the step when it was
first derived. For example, at the first iteration all the triples derived by rules of
Type 1 have step one; the derivations from rules of Type 2 are marked with step
two, and so on. After the first iteration, the system accepts a derivation only if
at least one of the triples that instantiate a literal in the body of the rule has a
step greater or equal than the current one minus three.

The algorithm stops iterating the rules instantiation when none of them de-
rived new triples. As described in the previous section (see Fig. 1), after the
materialization is complete, all the derived triples are copied into the B-Tree
indices for efficient querying.

4.2 Incremental Materialization

The previous section showed how DynamiTE computes the full materialization
of a knowledge base and stores it into B-Tree indices. Now, we show how it
maintains this materialization in the presence of data additions.

Our system performs this operation incrementally, fully exploiting the existing
materialization Tω

P (I). The process can be divided into three main steps: (i) Load
the update into a set called δ, which is stored in main memory. (ii) Perform a
semi-naive evaluation on Tω

P (I) ∪ δ to derive new triples. In this case a rule is
instantiated only if at least one fact is contained in δ. (iii) Add all the new
derivations into the B-Tree indices, making them available for querying.

Fig. 3 shows how the semi-naive evaluation in phase (ii) is implemented in
DynamiTE . Every gray block in Fig. 3 is implemented as shown in Fig. 2 and is
executed in parallel. At every iteration, these blocks consider only rules where
at least one literal in the body can be instantiated from a triple in δ, and might
produce new derivations that become the new δ in the next iteration. Moreover,
all previously derived triples remain available in main memory since they might
contribute in the following iterations to produce new derivation.

The first block considers rules of Type 1 and reads schema triples from both
memory and B-Trees. The last block reads only the generic triples in δ and
executes rules of Type 2 on them. We split the execution of rules of Type 3
into three blocks: one reads both schema and generic triples from memory; one
reads only schema triples in δ and the generic triples from the B-Trees; the
last one reads schema triples from the B-Trees and generic triples from δ. This
division is important since it allows us to significantly reduce the amount of
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information read from the B-Trees, and hence from Tω
P (I), to only the triples

that can produce new derivations. This is achieved by first reading a triple t
from δ, and then retrieving from the B-Trees only the triples that can be joined
with t to complete the instantiation.

After launching the execution of these blocks on different threads, DynamiTE
waits for them to finish, removes the duplicates, and continues to iterate until
no new derivation is produced.

5 Materialization after Data Removals

When removing a set of triples δ from a database I, we also need to remove
from the materialized view all the triples that cannot be derived from I \ δ.
In this section, we describe the implementation of two algorithms, one already
described in [11] (but only from a theoretical perspective) and another one that
is based on the idea of counting all the direct derivations.

5.1 DRed Algorithm (and Derivatives)

The first algorithm implemented by DynamiTE is known as Delete and Rederive
(DRed) and was first introduced in [7]. It works in two steps: (i) First, it com-
putes all the triples that can be derived from δ, and removes them from the
knowledge base. This process clearly computes an overestimation of the triples
to remove, since some of them can have alternative derivations in I\δ. Therefore,
as a second step, (ii) the algorithm re-derives the triples that are still valid, and
adds them again to the knowledge base.

Our implementation is based on a similar version of DRed, presented in [11],
which has the advantage of using only the original set of rules for maintaining
the materialization. More precisely, it implements the first phase (Delete) as a
semi-naive evaluation that only considers rule evaluations in which at least one
literal in the body of the rule is instantiated from a triple in δ (or derived from
δ in previous iterations). All the triples derived in this phase are removed from
the knowledge base. The second phase (Rederive) is again implemented as a
semi-naive evaluation, which considers all the triples left in the knowledge base.

Since we assume that the size of our update (and the derivations it produces)
is small, we first load δ in memory. Then, we start executing the Delete phase:
we do so by using the implementation of the semi-naive evaluation presented in
Fig. 3. This means that we consider only derivations that involve triples in δ (or
derived from δ in previous steps) and we store the output of the computation in
memory, until we reach the fix-point.

After the first phase completes, we remove all the derivations stored in memory
from the knowledge base, and we start the second, Rederive phase. Here too, we
exploit the implementation of the semi-naive evaluation described above. This
step outputs (and stores in main memory) all the triples that were removed from
the knowledge base in the Delete phase, but that could actually be derived from
I \ δ. As a final step, we add them again into our knowledge base.
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Fig. 4. Counting algorithm. An example of how the count attribute is computed. Nodes
represent triples and include their name and their count. Arrows represent applications
of rules and are labeled with the name of the rule.

5.2 Counting Algorithm

During the Delete phase, the previous algorithm computes all the triples that can
be derived using triples in δ. Let us call this set Tδ. We call Dδ ⊆ Tδ the subset of
triples that cannot be derived from I\δ, and Aδ = Tδ\Dδ. While only the triples
in Dδ have to be removed from the knowledge base, the previous algorithm does
not have enough information for recognizing them. For this reason, it removes
all the triples in Tδ and then recalculates the set Aδ during the Rederive phase.

To improve the performance, we propose an alternative method, where all
the triples are annotated with additional information that allows for immediate
discrimination between the two sets Aδ and Dδ. This additional information
consists of a new count attribute, which represents the number of possible rule
instantiations that produced t as a direct consequence, plus one if the triple was
also present in the original input.

As an example of how the count attribute is computed, consider Fig. 4. The
figure shows a simple graph of derivations, where nodes represent triples and ar-
rows represent applications of rules. For instance, T5 can be derived by applying
rule R1 to T0 and T1. T0, T1, T2, and T3 are the facts in the original input. They
are stored in the knowledge base with count equal to one. T4 can be derived
from rule R2 using T2, and from rule R3 using T3, so its count is two. Similarly,
T5 can be derived using R1 from T0 and T1, and from T4 with R2, so its count is
two. Finally, T6 can be derived from T0 and has count equal to one. Notice that
we consider only direct derivations: although T4 can be derived in two ways, it
participates in the count of T5 only once.

During the Delete phase, the presence of the count attribute enables us to
discriminate between triples in Dδ and Aδ. As an example, consider again the
graph in Fig. 4, and assume that we want to remove T0, i.e., δ = {T0}.

We start a semi-naive evaluation to compute all the triples that can be derived
from T0, i.e., T5 and T6, and we decrement their counts by one. All the triples
whose count goes to zero (T6, in our example) do not have alternative derivations.
They belong to Dδ, and can be removed from the knowledge base. On the other
hand, T5 has count two in the materialized database: by removing T0, its count
is decreased by one, but still there is one derivation left. This means that T5 is
part of Aδ (i.e., it can still be derived from I \ δ), and should not be removed
from the materialized database.
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In this simple example, the semi-naive evaluation just required one iteration to
reach the fix-point. If more iterations are needed the algorithm works as follows:
at iteration n, it considers only rule instantiations that involve triples that were
actually removed from the knowledge base at iteration n− 1, i.e., triples whose
count went to zero at iteration n− 1.

Using this algorithm, the Delete phase computes only the triples that actu-
ally need to be removed from the knowledge base, i.e., the triples in Dδ. As a
consequence, we can skip the Rederive phase.

Finally, notice that the counting algorithm requires the count attribute to
be computed and maintained for each triple in the knowledge base. To do so,
we implemented a slightly different version of the algorithms described in the
previous sections for computing the (complete or incremental) materialization in
case of data additions. In particular, after each derivation step, we never remove
duplicates. Instead, every time we add a triple to the knowledge base, we check
whether it was already present or not. If it is new, we add it with a count of one;
otherwise, we increase its count by one.

6 Evaluation

Our evaluation has two goals: first, we want to test the absolute performance of
DynamiTE when considering the computation of a full materialization and its
maintenance in case of updates. Second, we want to compare the behavior of an
existing state of the art algorithm for incremental update, namely DRed, with
the other counting algorithm. To perform the experiments, we used one machine
in the DAS-4 cluster2, which is equipped with a dual quad-core Intel E5620
CPU, 24GB of main memory, two hard disks of 1TB connected with RAID-0,
and one 500GB SSD disk.3.

Dynamite is fully written in Java4, and it uses BerkeleyDB Java Edition [13] as
implementation of the on-disk B-Trees. We chose BerkeleyDB since it is among
the most widely used databases, and it fully supports many functionalities such
as transactions and concurrency. We use the LUBM [5] benchmark test to eval-
uate the performance of our system. We chose this dataset for two reasons: (i) it
is one of the de-facto standard benchmarks to test the performance of reasoning
on RDF data; (ii) it allows us to tune the experiments to control the amount of
derivation that is produced.

We present three sets of experiments, with the following goals: (i) to evaluate
the costs of performing the complete materialization; (ii) to evaluate the cost of
the updates, and (iii) to discover the performance bottlenecks of our system.

Complete Materialization. Fig. 5 (left) shows the execution time required by
each single task of the initial workflow (see Fig. 1) to materialize the LUBM(1000)
dataset, which contains about 138 million triples. From this table, we notice that

2 http://www.cs.vu.nl/das4
3 In some experiments the machine had only a 256GB SSD disk.
4 The code is available online at http://github.com/jrbn/dynamite

http://www.cs.vu.nl/das4
http://github.com/jrbn/dynamite
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Fig. 5. (Left) Execution time for all the tasks during the loading of the database.
(Right) Execution time of the complete closure.

both compression and materialization take a relatively short time compared to
the operation of copying the triples into the B-Tree indices. This last task is not
related to reasoning, yet it is a necessary part in our workflow.

To better understand the performance of our system in computing the full ma-
terialization, we study this single operation in more detail. To this purpose, Fig. 5
(right) shows how the execution time for the full materialization changes with
the number of triples present in the original input, starting from LUBM(125),
consisting of 16 million triples, to LUBM(8000), of about one billion triples.
We observe that our implementation has good scalability, since the execution
time increases linearly with respect to the size of the input. Furthermore, the
system has a high throughput: it computes the closure of about one billion
LUBM triples in about 4400 seconds, which results in an input processing ra-
tio of about 227K triples/sec. As an informal comparison, the throughput per
machine of WebPIE [16] to materialize the same dataset with RDFS was about
55K triples/sec, four times lower than DynamiTE .

Incremental Updates. After the system has materialized the input knowledge
base, the user can update it by removing or adding new triples. Unfortunately,
to the best of our knowledge there is no benchmark tool to evaluate reasoning
on a sequence of additions and removals. Because of this, to evaluate the per-
formance of this operation, we created six different type of updates from the
LUBM dataset:5

– Update 1. Add/Remove one triple, which does not trigger any reasoning.
– Update 2. Add/Remove ∼ 16k triples, which do not trigger any reasoning.

– Update 3.Add/Remove∼ 8k triples with the predicate LUBM:emailAddress.
This update triggers reasoning so that a fixed number of triples is derived.

– Update 4. Remove the triple indicating that the property LUBM:headOf is
a subproperty of LUBM:worksFor. This removal triggers a reasoning process
that derives a number of triples proportional to the input size. To simulate
the same reasoning for the addition, we add two new triples that indicate
that LUBM:headOf is a subproperty of a new property LUBM:responsibleOf,
which is also a subproperty of a new LUBM:Manager.

– Update 5 and 6. Add/Remove respectively one and two entire universities.

5 For reproducibility, also these updates are available in the repository of the project.
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We chose Update 1 and Update 2 to evaluate the insertion cost and the
overhead of checking that no reasoning can be applied. Update 3 represents a
small update that produces only limited reasoning. Update 4 consists of schema
information, which has a consistent impact on the knowledge base. Update 5
and Update 6 represent large updates, which trigger the execution of multiple
rules. Notice that significantly larger updates are not possible since we store the
update in main memory. Such updates can be handled either by splitting them
in chunks so that the produced data can fit in memory, or by re-launching a full
materialization which can be more efficient since it reads the input from plain
files rather than the B-Trees.

Table 2 shows the execution time of these updates using the three algorithms
explained above. We noticed a certain fluctuation in the runtime, so we repeated
every measurement five times and report their average. First of all, we notice that
the runtime for the addition ranges from 117 ms (insertion of one triple) to 31.8 s
(addition of two universities, i.e., ∼ 250k triples). Even though these runtimes
cannot always guarantee a real-time processing, they are significantly lower than
recomputing a complete materialization. A significant result is represented by
the results obtained in Update 1 and in Update 2. In both cases, no reasoning is
triggered; however, Update 2 is significantly slower, since it requires DynamiTE
to add 16k triples into the BTrees. Once again, this experiment demonstrates
how accessing the B-Trees on disk represents the main cost for DynamiTE .

Considering the removal, we immediately observe that the DRed algorithm
is very slow, with a runtime that is always larger than 30 minutes. This is
due to the fact that the Rederive phase needs to access the entire input to re-
compute possible conclusions that were incorrectly removed in the Delete phase.
In contrast, the counting algorithm is much faster, with a runtime that ranges
from 117 ms (removal of a triple) to 135 s (removal of two universities). We
must remark that the procedure of enabling the counting slows down the initial
preprocessing by about 49%6. However, the advantage obtained during a removal
is so significant that this additional cost is quickly amortized after only a few
updates.

Performance Bottleneck. To further investigate the behavior of DynamiTE ,
and to identify the main performance bottlenecks, we launched the complete ma-
terialization and the incremental Update 4 changing two critical settings of the
system: the kind of disk adopted and the number of threads used for processing.

First, we changed the disk storage from an SSD to a normal HDD. The full
closure was only 6% slower, but the incremental addition and removal became
30 times and 15 times slower, respectively. This clearly indicates that the disk
speed is a performance bottleneck for accessing and updating the B-Tree indices.

Second, we decreased the degree of parallelism by decreasing the number of
concurrent processing threads from eight to four (the SSD disk was used for
the storage). The runtime of the materialization became 12% slower, while the
runtime of the incremental addition and removal became respectively at most
6% and 30% slower.

6 This overhead is already included in the results presented in Fig. 5.
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Table 2. Runtime of four type of updates on LUBM(1000) after a complete material-
ization that required about 15 minutes (see Fig. 5)

Update Addition (sec.) Removal (sec.)
DRed Counting

Update 1 0.117 2902.7 0.117
Update 2 8.2 2049.6 25.7
Update 3 3.7 2121.9 25.4
Update 4 31.8 2132.2 51.0
Update 5 16.8 2196.0 74.6
Update 6 30.5 3830.2 135.8

From these experiments, we can conclude that the degree of parallelism is an
important component in shaping the performance, especially for the full materi-
alization. However, disk throughput remains the largest performance bottleneck
for the incremental updates, since the disk-based data structure heavily relies
on it to retrieve the data.

7 Related Work

The problem of updating derived information upon changes in the knowledge
base has been widely studied by both the AI and database communities in
the contexts of truth maintenance [3], view maintenance [6], and deductive
databases [15]. In both areas, the idea of incrementally updating derived infor-
mation has been studied since the beginning of the 1980s, and in the database
community it led to two main algorithms: DRed (Delete and Rederive) [7], and
PF (Propagate Filter) [8]. Both algorithms share the same idea: when some base
facts are removed, they first compute an overestimation of the derived knowledge
that needs to be deleted, and then rederive the information that is still valid.

A declarative version of the DRed algorithm was first introduced in [15] and
then extended in [18,19] to consider also updates in the ruleset. These algorithms,
however, create an update program that can be significantly larger than the
original program (in terms of number of rules). Moreover, the update program
can include negations, even if they are not present in the original program. Our
implementation of the DRed algorithm follows the work presented in [11], which
overcomes the limitations listed above and manages incremental updates without
changing the set of derivation rules. As we show in the evaluation, DRed has the
disadvantage of always requiring to read full knowledge base.

The counting algorithm is significantly more efficient than DRed, since it
avoids (when possible) a complete scan over the input. This algorithm is based on
the operation of counting and decrementing the number of possible derivations.
This idea was also introduced in the original DRed paper [7], but it was not
implemented nor designed for a declarative language.

Recently, new solutions for incremental materialization in the domain of stream
reasoning were being proposed [4]. In particular, in [2], the authors proposed a
novel algorithm and implemented it into the C-SPARQL execution engine. In
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this algorithm all data structures are stored in the main memory. The evalua-
tion of this approach, based on the transitive property, proved that it is faster
than DRed for updates that involve less than 13% of changes into the knowl-
edge base. However, this algorithm is tailored for a specific application scenario
(stream reasoning in C-SPARQL), and relies on some strong assumptions, e.g.,
that the expiration time of triples is known a-priori. In practice, this only hap-
pens if triples are observed through a fixed time window; unpredictable changes
or other kinds of observation windows are not supported.

8 Conclusions

In this paper, we presented DynamiTE , a parallel system designed to efficiently
compute and maintain the materialization of a knowledge base in the presence
of addition or removal of triples.

For data addition, DynamiTE implements a parallel version of the well-known
semi-naive evaluation. For data removal, it implements two algorithms, one
that is among the state of the art in the literature, and a more efficient one.
DynamiTE is designed to exploit multi-core hardware for improved performance,
adopting data structures that enable fast retrieval of information, e.g., to effi-
ciently execute queries. Our evaluation shows the efficiency of DynamiTE , both
in computing a complete materialization, and in managing incremental updates.
Furthermore, it shows how the removal algorithm that we propose significantly
outperforms existing state of the art approaches.

As future work, we plan to extend the algorithms implemented in DynamiTE
to support different types of reasoning rules, and dynamic changes in the ruleset.
Furthermore, future research could explore whether the implemented algorithms
can be improved with heuristics. Finally, we intend to investigate how distributed
processing can further increase the scalability.

To conclude, we have shown how our system encodes efficient parallel methods
to perform full and incremental materialization adapting well-known algorithms
to the task of reasoning. The throughput is higher than state of the art methods
(per machine), so that a full materialization of 1 billion triples takes less than 75
minutes, while the response time to updates ranges from hundreds of milliseconds
to a few minutes. This allows the system to perform a large-scale materialization
on much more dynamic inputs than currently possible.

Acknowledgments. This research has been funded by the Dutch national
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Abstract. Wikipedia’s infoboxes contain rich structured information of
various entities, which have been explored by the DBpedia project to
generate large scale Linked Data sets. Among all the infobox attributes,
those attributes having hyperlinks in its values identify semantic rela-
tions between entities, which are important for creating RDF links be-
tween DBpedia’s instances. However, quite a few hyperlinks have not
been anotated by editors in infoboxes, which causes lots of relations be-
tween entities being missing in Wikipedia. In this paper, we propose
an approach for automatically discovering the missing entity links in
Wikipedia’s infoboxes, so that the missing semantic relations between
entities can be established. Our approach first identifies entity mentions
in the given infoboxes, and then computes several features to estimate
the possibilities that a given attribute value might link to a candidate en-
tity. A learning model is used to obtain the weights of different features,
and predict the destination entity for each attribute value. We evaluated
our approach on the English Wikipedia data, the experimental results
show that our approach can effectively find the missing relations between
entities, and it significantly outperforms the baseline methods in terms
of both precision and recall.

Keywords: Wikipedia, Infobox, Linked Data.

1 Introduction

Wikipedia is a free, collaborative, online encyclopedia that contains more than
20 million articles written in 285 languages by March 2013. Wikipedia articles
contain rich structured information, such as infoboxes, categorization informa-
tion, and links to external Web pages. Therefore, a number of projects have
acquired data from Wikipedia to build large-scale machine readable knowledge
bases [2,1,16,3]. One of the most valuable contents in Wikipedia is its infoboxes,
which display articles’ most important facts as a table of attribute-value pairs,

� Corresponding author.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 673–686, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



674 M. Xu et al.

and can be easily converted into machine-readable data. It was reported that
DBpedia generated over 26 million RDF triples out of Wikipedia’s infoboxes in
2009 by its generic infobox extraction algorithm. With the development of the
DBpedia project these years, much more infobox RDF triples in 111 different
languages have been generated.

Wikipedia uses infobox templates to define the schemas of infoboxes for dif-
ferent types of entities. An infobox template provides important attributes that
are commonly used to describe related entities. Some attributes in infobox tem-
plates are relational that their values usually contain links referring to other
entities within Wikipedia, which identify semantic relations between entities.
Such relational attributes can be transformed into object properties in Linked
Data, which facilitate establishing typed links between instances. Since creat-
ing links of structured data on the Web is the central idea of Linked Data,
relational attributes in Wikipedia are especially important for creating Linked
Data. However, sometimes the relational attributes cannot really connect en-
tities in Wikipedia because the hyperlinks from the attributes’ values to the
corresponding entities are not annotated by editors. This problem causes lots of
valuable relations between entities being missing in Wikipedia.

(a) (b)

Fig. 1. Sample Wikipedia infobox: (a) display format; (b) editing format
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Fig. 1 (a) and (b) show a sample infobox and its source data in editing for-
mat from the article Tim Berners-Lee in Wikipedia, respectively. Relational at-
tributes such asOccupation and Parents have values with links to other entities in
Wikipedia; for these attributes, we use arrow lines to connect the corresponding
contents in Fig. 1 (a) and (b). The attributes Born place, Nationality and Resi-
dence are supposed to be relational, but there are no links in their values. This
problem does not only occur in this sample infobox. In order to get insight into
the entity links in the infoboxes, we investigate all the 123,246 English person in-
foboxes and 1,162 Chinese person infoboxes in Wikipedia. Fig. 2 and Fig. 3 show
the number of times that the value has a link and has no link of the top ten fre-
quently used attributes in English and Chinese, respectively. In Fig. 2, it is ob-
served that most of the top used attributes (except for the attribute birth name
and attribute years active) can be considered as relational ones because they con-
tain large number of links in their values; however, there are still parts of their val-
ues having no links. The percentage of values without links varies among different
attributes, which ranges form 7% (birth place to 81% (children). Similar observa-
tions can also be obtained in Chinese infoboxes; Fig. 3 shows that larger portion
of attribute values have no links comparing to English infoboxes.
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Fig. 2. Statistics of links in person infoboxes in English Wikipedia

In order to solve the problem of missing semantic relations in Wikipedia, we
need a system that can automatically add entity links in the attribute values
in infoboxes. Recently, several approaches have been proposed to link entities in
plain texts with Wikipedia [9,11,7,15]. These approaches first identify important
named entities in the given text and then link them to the corresponding entities
in Wikipedia. Since infoboxes contain structured information and are quite dif-
ferent from plain texts, traditional entity linking approaches cannot guarantee
good results. Therefore, we propose an approach to automatically add entity
links in infobox attribute values. Our approach first identifies all the entity men-
tions in a given infobox, and then decides the entity links based on 7 features of
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Fig. 3. Statistics of links in person infoboxes in Chinese Wikipedia

mention-entity pair. A learning model is used to obtain the appropriate weights
of features, so that entity links can be predicted accurately.

The rest of this paper is organized as follows, Section 2 describes the proposed
approach in detail; Section 3 presents the evaluation results; Section 4 discusses
some related work and finally Section 5 concludes this work.

2 The Proposed Approach

In this section, we introduce our proposed approach in detail. Given an infobox
with some missing entity links in their attribute values, our approach first auto-
matically extracts the candidate name mentions that might refer to entities in
Wikipedia, and then identifies the correct corresponding entity for each mention.

2.1 Mention Identification

To extract entity mentions in infoboxes, we build a mention dictionary that
includes all the entity mentions in Wikipedia. In Wikipedia, an entity link is
annotated by square brackets [[entity]] in the source data of articles. Here entity
denotes the unique name of the referred entity. When the mentioned name of
an entity is different from its unique name, the link is annotated by [[entity |
mention]]; mention denotes the string tokens that actually appear in the text.
In order to get all the mentions that have appeared in Wikipedia, we process all
the annotated entity links in the form of [[entity | mention]] in Wikipedia. In
addition, all the titles of articles in Wikipedia are also taken as mentions, which
will be included in the mention dictionary. The mention dictionary also records
the possible entities that each mention might refer to. Therefore, the dictionary
can be represented as 2-tuple D = (M,E), where M = {m1,m2, ...,mk} is the
set of all mentions in Wikipedia, and E = {Em1 , Em2 , ..., Emk

} is the sets of
entities corresponding to the mentions in M .
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After the dictionary D being built, our approach extracts mentions in in-
foboxes by matching all the n-grams of the attribute values with mentions M in
the dictionary D. The result of mention identification is a set of mentions that
are matched by the n-grams. Because the goal of our approach is to find the
missing entity links in infoboxes, only attribute values having no links will be
processed to identify entity mentions.

2.2 Features for Predicting Entity Links

Once a set of mentions are identified in an infobox, our approach computes 7
features for each mention-entity pair to assess the possibility that a link exists
between them from different respects.

Before defining other features, we first introduce a metric Semantic Related-
ness [10]. This metric is used to compute the relatedness between the candidate
entity and the context of a mention in different aspects.

Definition 1. Semantic Relatedness. Given two entities a and b in Wikipedia,
the Semantic Relatedness between a and b is computed as

r(a, b) = 1− log(max(|Ia|, |Ib|)) − log(|Ia ∩ Ib|)
log(|W |)− log(min(|Ia|, |Ib|))

(1)

where Ia and Ib are the sets of inlinks of article a and article b, respectively; and
W is the set of all articles in the input wiki.

Let B be a set of entities in Wikipedia, the Semantic Relatedness between an
entity a and a set of entities B is defined as

SR(a,B) =
1

|B|
∑
b∈B

r(a, b) (2)

Given a mention m in an infobox, let Em represent the set of candidate
entities that m might link to. For each entity e ∈ Em, the following features are
computed for (e,m).

Feature 1: Entity Occurrence
According to the introduction of infobox given by Wikipedia, the information
presented in the infobox should still be presented in the main text of the article.
Therefore, if there is already a link to a certain entity in the text of article, there
will be very likely a link to this entity in the infobox. Here, we define an Entity
Occurrence feature to capture this information:

f1(e,m) =

{
1 if e ∈ Carticle(m)
0 otherwise

(3)

where Carticle(m) is the set of entities appearing in the main text of the current
article containing m.

Feature 2: Link Probability
Link Probability feature approximates the probability that a mention m links to
an entity e:
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f2(e,m) =
count(m, e)

count(m)
(4)

where count(m, e) denotes the number of times that m links to e in the whole
Wikipedia, and the count(m) denotes the number of times that m appears in
Wikipedia.

Feature 3: Infobox Context Relatedness
Let Cinfobox(m) be the set of entities already be linked in the infobox where
m appear, we define the infobox context relatedness between a candidate entity
e ∈ Em and a mention m as

f3(e,m) = SR(e, Cinfobox(m)) (5)

Feature 4: Article Context Relatedness
Let Carticle(m) be the set of entities already linked by mentions in the article
text that m appear, we define the article context relatedness between a candidate
entity e ∈ Em and mention m as

f4(e,m) = SR(e, Carticle(m)) (6)

Feature 5: Abstract Context Relatedness
The first paragraph in the text of an article usually defines the subject of the
article, and contains the most important information about the subject of the
article, which is usually called the abstract or the definition of the article. Let
Cabstract(m) be the entities appear in the abstract, here we define the abstract
context relatedness between a candidate entity e ∈ Em and a mention m as

f5(e,m) = SR(e, Cabstract(m)) (7)

Feature 6: Attribute Range Context Relatedness
Let Catt rang(m) be the set of entities that appear in the value of attribute attm,
we define the attribute value context relatedness between a candidate entity
e ∈ Em and mention m as

f6(e,m) = SR(e, Catt rang(m)) (8)

Attribute Range Context Relatedness can assess the similarity between a candi-
date entity and the set of entities that have already been linked in the value of a
concerned attribute. Therefore, this feature can estimate what types of entities
are more likely to be linked by the concerned attribute.

Feature 7: Attribute Domain Context Relatedness
Let Catt dom(m) be the set of entities that described by the attribute attm,
we define the attribute domain context relatedness between a candidate entity
e ∈ Em and mention m as

f7(e,m) = SR(e, Catt dom(m)) (9)
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2.3 Learning to Predict New Entity Links

To predict new entity links, our approach computes the weighted sum of features
between mentions and entities by the following score function:

s(m, e) = ω1 × f1(m, e) + ...+ ω6 × f6(m, e) + ω7 × f7(m, e) (10)

For each mention m, the entity e∗ that maximizes the score function s(m, e∗)
is predicted as the destination entity of m. The idea of predicting entity links
is simple and straight, but how to appropriately set the weights of different
similarity features is a challenging problem, which highly influences the final
results.

Here, we use the already existing entity links L = {< mi, ei >}ki=1 in infoboxes
as training data, and train a logistic regression model to get the weights of
different features. Given a mention m and its corresponding entity e, the learned
weights should ensure

ω · (f (m, e∗)− f (m, e)) > 0, (e ∈ Em, e �= e∗) (11)

where ω =< ω1, ..., ω7 > and f (·) =< f1(·), ..., f7(·) >.
Therefore, we can use the sigmoid function to compute the probability that an

entity e1 is better than another entity e2 (denoted as e1 � e2) as the destination
for a mention.

P ((e1 � e2) = true) =
1

1 + e−ω·(f(m,e1)−f(m,e2))
(12)

If s(m, e1) > s(m, e2), P ((e1 � e2) = true) > 0.5; otherwise P ((e1 � e2) =
true) < 0.5. In this case, the weights ω can be determined by the MLE (maxi-
mum likelihood estimation) technique for logistic regression.

Therefore, we generate a new dataset D = {(xj, yj)}mj=1 based on the known

entity links L = {< mi, ei >}ki=1 to train a logistic regression model; xj is the
input vector and yj represents the class label (positive or negative). For each

mention mi, a positive example (f (mi, ei) − f (mi, e
′
), positive) or a negative

example (f(mi, e
′
)−f(mi, ei), negative) is generated for each entity e

′ ∈ (Emi−
{ei}). We make the number of positive examples and negative examples be
the same, which avoids the imbalanced classification problem. After the logistic
regression model being trained, the learned weights ω =< ω1, ..., ω7 > will be
used in Equation 10 to predict new entity links.

For some identified mentions, there might not be its corresponding entities in
Wikipedia. Therefore, a threshold δ is set to filter out entity links with low scores.
In the learning process, when the optimal weights of features are obtained, the
threshold δ is determined by optimizing the overall performance on the training
dataset.
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3 Experiment

3.1 Datasets

We use the datasets of English Wikipedia to evaluate the proposed approach. We
downloaded the English Wikipedia XML dump fromWikipedia’s download site1,
which was archived in August 2012, and has 4 million articles. 100 infoboxes are
randomly chosen from the whole dataset for the evaluation. There are 630 already
existing entity links in the selected infoboxes, 50% of these links are randomly
selected as the ground truth for the evaluation, which are removed from the
infoboxes before the infoboxes are fed to our approach. After the execution of
our approach, we collect the new discovered entity links and compare them
against the ground truth links. In the experiments, 40% of the selected ground
truth links were used for training the prediction model, the rest of 60% selected
links were used as testing data in the evaluation.

3.2 Evaluation Metrics

We use precision, recall, and F1-score to evaluate the performance of the pro-
posed approach. These measures are computed as follows:

Precision (p): It is the percentage of correctly discovered entity links in all the
discovered entity links.

p =
|A ∩ T |
|A| (13)

where T is the set of ground truth entity links, A is the set of discovered entity
links.

Recall (r): It is the percentage of correctly discovered entity links in the ground
truth entity links.

r =
|A ∩ T |
|T | (14)

F1-score (F1): F1-Measure considers the overall result of precision and recall.

F1 =
2pr

p+ r
(15)

3.3 Comparison Methods

Here we use three comparison methods as the baselines of evaluation:

– Wikify!. This method was proposed by Mihalcea and Csomai [9], which is
able to automatically perform the annotation task following the Wikipedia
guidelines. Wikify! first uses a unsupervised extraction algorithm to identify
and rank mentions, and then combines both knowledge-based approach and
data-driven method to discover new entity links.

1 http://dumps.wikimedia.org/enwiki/
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– M&W.Milne andWitten proposed an learning based entity linking approach
[11]. Their approach uses three features (Commonness, Relatedness, and Con-
text Quality) and C4.5 classifier to predict new entity links. Here, we first use
our approach to identify mentions in the infoboxes, and then employ Milne
and Witten’s disambiguation method to predict new entity links.

– SVM. This method first computes the similarities defined in Section 2.2
for each mention-entity pair, and then trains a SVM [4] classification model
on the training entity links. New mention-entity pairs are predicted by the
trained SVM as entity links or not entity links.

3.4 Results Analysis

Here we first compare the performance of our approach with the comparison
methods, and then analysis the contribution of different features in our approach.
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Fig. 4. Performance of different methods (%)

Performance Comparison. Fig. 4 shows the performance of 4 different meth-
ods. According to the results, the Wikify! method does not perform very well
on the infobox data. Wikify! only achieves 50.74% precision and 11.53% recall.
It seems that Wikify! can not make good decision given only the string tokens
of a infobox. The method of M&W performs better than Wikify!, but the SVM
method achieves both better precision and recall than M&W. Therefore, it shows
that the features defined for our approach have better discriminant ability than
the features in M&W method. Compared with three baseline methods, our pro-
posed approach achieves the best results in terms of both precision and recall.
Our proposed approach outperforms SVM method by 11.58% in terms of F1-
score, which means that the learning method in our approach is more suitable
for the entity linking tasks; training classifiers directly on the original features
cannot get the best performance.
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Feature Contribution Analysis. Among 7 defined features, which one is the
most important? To get insight to this question, we perform an analysis on the
contribution of different features. Here, we run our approach 7 times on the
evaluation data. Each time one feature is removed from the feature vectors of
mention-entity pairs. We record the decrease of F1-score for each feature when
it is removed; it is reasonable to evaluate the importance of each feature by com-
paring their corresponding F1-score decrease. Fig. 5 compares the importance
of different features. According to the results, we can rank these features based
on their importance in a descending order as: Feature 1, Feature 6, Feature 3,
Feature 5, Feature 2 and Feature 7.

It seems that the occurrence of candidate entities in the main text of article is
very important for identifying the correct entity links. The Attribute Range Con-
text Relatedness feature is also important, it might because this feature can reflect
what types of entities are possible to appear in the values of certain attributes. The
Attribute Domain Context Relatedness feature is the least important one among
all the 7 features, it might because different entities usually have different values
of the same attribute; the relatedness between candidate entities and the entities
described by a specific attribute is less relevant to the entity links.
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Fig. 5. Contribution analysis of different features (%)

4 Related Work

In this section, we review some related work.

4.1 Entity Linking

A group of closely related work is Entity Linking, which aims to identify enti-
ties in documents and link them to a knowledge base, such as Wikipedia and
DBpedia.
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Wikify! [9] is a system which is able to automatically perform the annotation
task following the Wikipedia guidelines. Wikify! has two components: the key-
word extraction and the link disambiguation. In the first components, Wikify!
uses a unsupervised keyword extraction algorithm to identify and rank mentions.
In the disambiguation component, Wikify! combines both knowledge-based ap-
proach and data-driven method to predict the links from mentions to entities in
Wikipedia.

Milne et al. [11] proposed a learning based approach for linking entities in
text to Wikipedia. Their approach trains a C4.5 classifier based on three features
(commonness, relatedness and context quality) of entity-mention pairs for link
disambiguation. A classification algorithm is also used in the candidate link
detection.

Kaulkarni et al. [7] proposed a collective approach for annotating Wikipedia
entities in Web text. Their approach differs from the former approaches in that
it combines both local mention to entity compatibility and global document level
topical coherence. The collective prediction of entity links improves the accuracy
of results.

Following a similar collective decision idea, Han et al. [6] proposed a graph-
based collective entity linking algorithm. Their approach first construct a referent
graph, where nodes corresponds to all name mentions in a document and all pos-
sible referent entities of these name mentions, edge between a name mention and
an entity represents a compatible relation between them, edge between two enti-
ties represents a sematic-related relation between them. Both the compatibility
and semantic relatedness are propagate through the referent graph. The entity
linking problem is solved by selecting the entity for a mention that maximizes
the product of compatibility and relatedness.

Mendes et al. [8] developed a system DBpedia Spotlight for automatically
annotating text documents with DBpedia URIs. DBpedia Spotlight first recog-
nizes the phrases in a sentence that may indicate a mention of a DBpedia entity;
then the recognized mention is mapped to candidate entities in DBpedia; a dis-
ambiguation stage is employed to find the most likely entities for the mention.
The disambiguation task is cast as a ranking problem in DBpdia Spotlight, and
Vector Space Model and a new weighting method Inverse Candidate Frequencty
(ICF) are used for similarity computation.

Shen et al. [15] proposed a system LINDEN, which is a novel framework to
link named entities in text with a knowledge base by leveraging the rich semantic
knowledge embedded in the Wikipedia and the taxonomy of the knowledge base.
The LINDEN builds a feature vector for each entity, which includes link proba-
bility, semantic associativity, semantic similarity and global coherence. And the
system uses a max-margin technique to rank the candidate entities for the entity
mentions.

LIEGE [14] is another work of Shen et al., a general framework for linking
entities in web lists with knowledge base. In order to find the proper entity
from knowledge base as the mapping entity for the list item, LIEGE defines
several metrics to measure the link quality of the candidate mapping entity,
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including the prior probability, coherence, type hierarchy based similarity, and
distributional context similarity. A max-margin technique is used to learn the
weights for different feature values to calculate the linking quality.

The above entity linking approaches mainly take plain texts as inputs, and
the infoboxes are quite different from plain texts. Information in infoboxes is
structured, and some existing entity links might appear in infoboxes. Based on
these observations, we define more specific features to describe the relations
between mentions and entities. What’s more, we use a new learning method to
get the weights of different features. Because there are lots of context entity links
for each mention in infobox, we can still get desired results when entity links are
predicted not in a collective way.

4.2 Instance Matching

Another group of related work is Instance Matching, which aims to find equiva-
lent entities in different linked datasets. Instance matching tools can be used to
find new RDF links between linked datasets.

Silk [17] is a link discovery engine which automatically finds RDF links be-
tween data sets. Users must specify which type of RDF links should be discovered
between the data sources as well as which conditions data items must fulfill in
order to be interlinked. These link conditions can apply different similarity met-
rics to multiple properties of an entity or related entities that are addressed using
a path-based selector language.

idMesh [5] is a graph-based algorithm for online entity disambiguation based
on a probabilistic graph analysis of declarative links relating pairs of entities.
idMesh derives a factor-graph from the entity and the source graphs to retrieve
equivalent entities.

Raimond et al.[13] propose a interlinking algorithm for automatically linking
music-related data sets on the web, taking into account both the similarities of
the web resources and of their neighbors. Their algorithm provides online linking
function based on accessing data through SPARQL end-points.

Nikolov et al. [12] present a data integration architecture called KnoFuss and
proposed a component-based approach, which allows flexible selection and tuning
of methods and takes the ontological schemata into account to improve the
reusability of methods.

The purpose of our approach is to add semantic relations between entities in
Wikipedia, which will finally enrich RDF links in DBpedia. Although Instance
Matching also can add RDF links between different datasets, it mainly focuses
on discovering the sameAs links, which is different from finding arbitrary typed
relations between entities.

5 Conclusion and Future Work

In this paper, we propose an approach for automatically discovering the missing
typed relations between entities in Wikipedia’s infoboxes. Our approach works
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in two steps: it first identifies entity mentions in the given infoboxes, and uses a
learning model to predict new entity links based on several features of mention-
entity pair. The experimental results show that our approach can accurately find
missing links in infoboxes, and it performs better than the baseline methods.

Actually, there are some wrongly annotated entity links in Wikipedia’s in-
foboxes. Besides of adding new entity links in infoboxes, we also want to discover
wrong entity links in infoboxes in the future work. By the efforts of adding and
refining entity links in infoboxes, more semantic relations of high quality between
entities can be obtained. Our future work also includes extending our approach
to solve the problem of finding missing RDF links between linked datasets.
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Abstract. In this paper we present the infrastructure of the contextual
tag cloud system which can execute large volumes of queries about the
number of instances that use particular ontological terms. The contex-
tual tag cloud system is a novel application that helps users explore a
large scale RDF dataset: the tags are ontological terms (classes and prop-
erties), the context is a set of tags that defines a subset of instances, and
the font sizes reflect the number of instances that use each tag. It visual-
izes the patterns of instances specified by the context a user constructs.
Given a request with a specific context, the system needs to quickly find
what other tags the instances in the context use, and how many instances
in the context use each tag. The key question we answer in this paper
is how to scale to Linked Data; in particular we use a dataset with 1.4
billion triples and over 380,000 tags. This is complicated by the fact that
the calculation should, when directed by the user, consider the entail-
ment of taxonomic and/or domain/range axioms in the ontology. We
combine a scalable preprocessing approach with a specially-constructed
inverted index and use three approaches to prune unnecessary counts for
faster intersection computations. We compare our system with a state-
of-the-art triple store, examine how pruning rules interact with inference
and analyze our design choices.

Keywords: Linked Data, Tag Cloud, Semantic Data Exploration,
Scalability.

1 Introduction

We present the contextual tag cloud system1 as an attempt to address the fol-
lowing questions: How can we help casual users explore the Linked Open Data
(LOD) cloud? Can we provide a more detailed summary of linkages beyond
the LOD cloud diagram2? Can we help data providers find potential errors or
missing links in a multi-source dataset of mixed quality? There are two aspects
of a dataset: the ontological terms (classes and properties) and the instances;
and correspondingly, there are two types of linkages: ontological alignment and

1 Contextual Tag Cloud Browser. http://gimli.cse.lehigh.edu:8080/btc/
2 The Linking Open Data cloud diagram. http://lod-cloud.net/

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 687–702, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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owl:sameAs links between instances. We allow the user to specify a context as
a combination of ontological terms, and then visualize the degree of overlap be-
tween this context and all other terms. The context can be thought of as a class
expression in description logic, but is significantly simplified for usability rea-
sons. The overlap is the intersection of the context class and any other term. An
appropriate visualization of these counts can reflect the patterns of co-occurrence
of ontological terms as used in the instance data.

We build on the idea of a contextualized tag cloud system. In analogy to tra-
ditional Web 2.0 tag cloud systems, an instance is like a web document or photo,
but is “tagged” with formal ontological classes, as opposed to folksonomies. Thus,
we simply use “tags” as another name for the categories of instances. We extend
the expressiveness and treat classes, properties and inverse properties as tags
that are assigned to any instances using these ontological terms in their triples.
The font sizes in the tag cloud reflect the number of matching instances for each
tag. To explore the data, users can select a set of tags to form a context and the
displayed tags are resized to indicate intersection with this context. Note, this
system is neither an information retrieval system nor a SPARQL query engine,
instead it is designed for exploration and pattern discovery.

With any uncurated dataset, one must maintain a healthy skepticism towards
all axioms. Although materialization can lead to many interesting facts, a single
erroneous axiom could generate thousands of errors. Rather than attempting
to guess which axioms are worthwhile, our system supports multiple levels of
inference; and at any time a user can view tag clouds with the same context
under different entailment regimes, which helps users understand the dataset
better and helps data providers investigate the errors in the dataset.

These simple but powerful interface concepts propelled the Contextual Tag
Cloud Browser to win the Billion Triples Track of the 2012 Semantic Web Chal-
lenge3. Our initial version of the system [17] was used on DBPedia data [3].
For the Semantic Web Challenge, we added features and loaded the entire 2012
BTC dataset. This complex dataset contains 1.4 billion triples, from which we
extract 198.6M unique instances, and assign more than 380K tags to these in-
stances. This multi-source, large-scale dataset brings us challenges in achieving
acceptable performance and user-interface design. Although we believe the user
interface provides a convenient tool for exploring a Linked Data dataset, the
focus of this paper is presenting novel approaches for efficient and scalable com-
putation over noisy data with tremendous diversity.

The contributions of this paper are: (1) We propose using an inverted index to
speed up a special kind of query, namely querying the intersection of generalized
classes, and propose a scalable approach to preprocess it; (2) Some special cases
of these queries can be answered without accessing the index, we propose three
approaches to prune unnecessary queries and analyze alternative preprocessing
approaches; (3) We develop formulae for supporting the first problems with
multi-level inference and discuss our decision to materialize entailments and
an efficient mechanism to store the results of these entailments. Although this

3 SWC 2012 Winners. http://challenge.semanticweb.org/2012/winners.html

http://challenge.semanticweb.org/2012/winners.html
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paper focuses on a very specific application, we believe scalable computation of
conditional distributions can be applied to statistic based algorithms such as
association rule learning. The rest of the paper is organized as follows: we first
briefly describe the use cases of the tag cloud system and formally define the
problem; then we discuss the preprocessing and online computation and how we
support multi-level inference; after that we provide some experimental results of
the system; then we compare with related works; and lastly we conclude.

2 The Problem: Use Case and Formal Definition

Initially, the system shows a tag cloud with no context tags selected, and the
tags in the cloud reflect the number of instances related to each tag. If a tag is
clicked, it will be added to the current context, and then a new tag cloud will
be shown for the updated context. A user can add/remove any tags to/from
the context, and explore any dynamically defined types of instances specified by
the context. Then in the resulting tag cloud, the font size for each tag reflects the
number of instances possessing the tag within the type specified by the contexts.
Mathematically, this contextual tag cloud actually reveals the conditional dis-
tribution of the data: the probability that an instance has a tag given that
it is an instance of the user-defined type. For example in Fig. 1, the property
tag cloud shows us the degree to which instances of foaf:Group that are not in
schema:MusicGroup are used with specific properties.

This kind of pattern visualization helps users learn about the dataset for
different purposes. For example, large tags indicate frequent co-occurrence and
can be used to form a SPARQL query spanning diverse, multiple, linked data

Tag font sizes reflect 
sizes of intersections. 

Users can construct a context by 
clicking on tags or removing them

Tags of an instance can vary 
under different inference rules

Fig. 1. Property Tag Cloud with context foaf:Group and ∼schema:MusicGroup
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sources that is most likely to return results; by focusing on the smaller tags, users
can investigate rare combinations, and by drilling into the data determine if these
are unusual facts or the product of data errors, such as incorrect owl:sameAs
links. Additionally the user can dynamically change which entailment regime
will be used to generate the tag cloud, thereby getting a big picture view of
the impact of entailment on the data. This feature can be used to track down
schema errors such as incorrect rdfs:domain statements.

An important aspect of the user interface is responsiveness. Ideally, each new
tag cloud should be generated in under one second, or users will quickly doubt the
system and/or become bored. Achieving this goal is particularly challenging since
the dataset contains billions of triples with hundreds of thousands of ontological
tags. In addition to an interface design that ensures the user is presented with
partial results as quickly as possible, we carefully designed an infrastructure that
is optimized for our unique form of queries. Before we describe our approach, we
now formalize the computation problem.

Given a RDF dataset, an entailment regime R defines what kind of entailment
rules will be applied to the explicit triples. In our implementation, we have two
specific sets of rules: RSub for sub/equivalent class/property entailment (rdfs5,
rdfs7, rdfs9 and rdfs114); and RDR for property domain/range entailment
(rdfs2, rdfs3). We also support the combination of these two sets, leading to
four distinct entailment regimes R = {∅, RSub, RDR, RSub ∪RDR}.

Let I be the set of all the instances, and T be the set of all possible tags
assigned to instances in the dataset. Given R, we define a function TagsR : I →
2T that returns all the tags assigned to the given instance under R-inference
closure. For i ∈ I we assign three types of tags: (1) Class C, if 〈i, rdf:type,
C〉 is entailed under R. (2) Property p, if ∃j ∈ I, s.t. 〈i, p, j〉 is entailed. (3)
Inverse Property p−, if ∃j ∈ I, 〈j, p, i〉 is entailed. Note under monotonic
logic, R1 ⊆ R2 ⇒ TagsR1

(i) ⊆ TagsR2
(i). The function InstR : 2T → 2I returns

the set of all instances assigned the given set of tags. For convenience, we define
the frequency of a set of tags T as fR(T ) = |InstR(T )|.

We can generalize various entailment rules into tag subsumptions. Tag t1 is
a sub tag of tag t2 if and only if the entailment regime requires InstR({t1}) ⊆
InstR({t2}). This sub tag relation includes RDF subclasses/subproperties plus
the ones entailed by the domain/range axioms: If 〈p, rdfs:domain, C〉 and 〈p,
rdfs:range,D〉, then p is a sub tag of C and p− is a sub tag of D. We compute
the full closure on tag subsumptions for each inference regime.

A context is an expression of tags dynamically constructed by a user. In our
implementation, it is the intersections of any number of tags or their negations.
A Negation Tag ∼t is virtually assigned to an instance i, if t /∈ TagsR(i). Note
that the semantics are based on negation-as-failure. We argue that this is the
correct semantics for a system where what is not said is sometimes as important
as what is said. Thus a context with {t1, . . . , tn,∼s1, . . . ,∼sm} actually defines
a subset of instances: InstR({t1, . . . , tn}) −

⋃
x=1,...,m InstR({sx}). For a given

context and entailment regime R, the system shows all the tags used by any

4 RDFS Entailment Rules: http://www.w3.org/TR/rdf-mt/#RDFSRules

http://www.w3.org/TR/rdf-mt/#RDFSRules
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instance in the subset specified by the context, and the size of each tag reflects
the number of instances having this tag within the subset.

Due to limited space, we omit the subtle details required to process negation
tags for the remainder of this paper. This allows us to present a simplified expo-
sition where a context T ⊂ T is a set of tags, and the instances specified by the
context is InstR(T ). For more details, please refer to our technical report [18].

Since our goal is to display the frequency of all tags given a context T , our
main challenge is to compute fR({t} ∪ T ) for ∀t ∈ T efficiently. There are two
ways to approach this problem: (1) ensure efficient calculation of fR(T ) for any
T ; and (2) prune unnecessary calls of fR({t} ∪ T ). To achieve this, we need to
correctly structure the repository and develop an efficient preprocessing step. In
the following section we will solve these problems for the situation where there is
only a single set of inference rules R. Then we will discuss how to “infer” relations
between tags and instances, and how to determine co-occurrence between tags
under tag inference.

3 Preprocessing

Our previous experiments [17] showed that an RDBMS with decomposed storage
model [1,11] is not as efficient as using an Information Retrieval (IR) style index
for this specific application purpose, both in terms of load time (8X slower)
and online query time (18X slower). Therefore we extend our IR approach, but
meanwhile add more steps to deal with the BTC dataset.

Our preprocessing is shown in Figure 2, where the dashed boxes are input
or intermediate data and the solid ones are data results for the online system.
First, we parse the raw data and categorize triples into three files: the ontol-
ogy file which includes specific properties (e.g., rdfs:subClassOf) or classes
(e.g., owl:Class), the owl:sameAs (instance equivalence statements) file, and
the file of remaining instance triples. This step can be skipped if the ontology
and sameAs files are provided separately. The ontology is processed into a closure
set of sub-tag axioms for the given entailment regime (or regimes); the closure
is then responsible for two functions: subR(t) and superR(t) which respectively
return the sets of sub/super tags of tag t under inference R. We also use the well-
known union-find algorithm to compute the closure for owl:sameAs statements,
and pick a canonical id for each owl:sameAs cluster.

Raw 
Data

Ontology

sameAs
Axioms

Instance
Triples

Replaced Flipped
Instance Triples

(in n Files )

Sorted R&F
Instance Triples

[Multi-Inference]
Inference Closure

[Multi-Inference]
Instance Index

[No-Inference] Tag 
Co- Occurrence

Fig. 2. Preprocessing for the tag cloud system
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Then for the instance triples, we replace each instance with its owl:sameAs

canonical id (if any). If the object of the triple is also an instance, we flip the triple
and add it to the intermediate file, i.e., if the triple is 〈i, p, j〉, the flipped one is
〈j, p−, i〉. By this means, we can find all the tags (particularly inverse property
tags) of an instance i by simply looking at the triples with i as a subject. In order
to index an instance, we need to first group all of its triples together. To do this,
we first output the triples into n files based on the hashcode of their subjects, so
that we keep the information of an instance in the same file while making each
file relatively small. Then we use merge sort on each “replaced and flipped” file,
so that triples with the same subject instance are clustered together. Note that
by splitting the triples into n files, we gain benefits from two sides: (1) sorting
each file becomes faster (and since we only need to group triples with the same
subject, we do not need to merge the sorted files); (2) we can sort in parallel
(either with multiple machines or with multiple threads). We use these sorted
files together with the given inference closure to build an inverted index of the
instances.

The inverted index is built with tags as indexing terms and each tag has a
sorted posting list of instances with that tag. This means given a “type” defined
by a set of tags we can quickly find all the instances by doing an intersection
over the posting lists. Also, since we use negation as failure, we do not need to
index negation tags; their size can be calculated from its complementary tag.
i.e. fR({∼t} ∪ T ) = fR(T ) − fR({t} ∪ T ). Meanwhile we add other fields such
as labels of instances, sameAs sets, file pointers to the raw file, etc. to facilitate
other features in our tag cloud system.

To help prune unnecessary tags when computing the conditional distribu-
tion of tags under any given context T , we precompute the Co-occurrence
Matrix for all the tags. Define MR as a |T | × |T | symmetric boolean ma-
trix, where MR(x, y) denotes whether tags tx and ty co-occur, i.e. MR(x, y) =
(fR({tx, ty}) > 0). There are three ways to generate MR.

1. Traverse all the instances. For each instance i ∈ I, we get all of its tags
TagsR(i), for any pair of tags (tx, ty) ∈ TagsR(i)× TagsR(i), set MR(x, y).

2. Traverse pairs of tags. For any pair of tags (ta, tb) ∈ T ×T , if fR({ta, tb}) >
0, set MR(x, y).

3. Traverse tag instances. For each tag tx ∈ T , we get all of its instances
InstR({tx}), and then set occurrences for all tags in them. For i ∈ InstR(tx),
for any tag ty ∈ TagsR(i), set MR(x, y).

We can roughly estimate the execution time of each method from how much
index access (the functions TagsR, fR, and InstR) is needed. Assume on average
a tag has d instances and an instance has e tags. The cost of InstR({tx, ty}) (or
fR({tx, ty})) is estimated as c1d, because the intersection needs to simultaneously
walk through both sorted posting lists. The cost of TagsR(i) is estimated as
c2e. Here, c1, c2 are constants given the dataset and the environment. Roughly
speaking, the first method has |I| iterations and takes |I|c2e; the second has
|T |2/2 iterations and takes c1d|T |2/2; and the third has d|T | iterations and
takes c2ed|T |.
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There is one problem with the estimations above: we ignored the cost of
setting M . For the second and the third approach, they both only need to set
each MR(x, y) once; the first approach however can repeatedly set the same cell.
What is even worse, for a large scale dataset, we might be unable to have the
full matrix in memory, and thus updating random cells becomes more costly. In
contrast, the third approach calculates cells row by row, and both the second
and the third approach can stream out the results since each cell is set at most
once. When choosing between the second and the third approach, we pick the

third one if the ratio r = c1d|T |2/2
c2ed|T | = c1|T |

2c2e
> 1. Note both c1 and c2 can be easily

estimated by experiment, and c2 is usually one to two orders of magnitude larger
than c1. In general, if the size of all the tags is small enough to hold the full
matrix in memory, then use the first approach; otherwise, if we find in the dataset
that each instance usually uses a very small portion of all the tags (e.g. less than
1%), the third approach is preferred than the second. In a multi-source cross-
domain dataset such as the BTC dataset, instances usually have very few tags
from other domains, e.g. a musician instance will seldom use tags from domains
like e-Government or life sciences; thus we use third approach.

This matrix provides a function for each tag tx to return all the tags that
co-occur with it in at least one instance. i.e. COR(tx) = {ty|MR(x, y) = 1}. We
shall discuss the significance of this function next.

4 Online Computation

Given a context T and entailment regime R, the online computation will return
all the fR({t} ∪ T ) for every tag t. With our index, we can simply issue an IR
query for each t that counts all the instances with all tags in T and t, which is
getting the number of total hits for a boolean AND query. Note that the underlying
system compares the posting lists of all tags in the query, and because T is the
common part among this series of queries, the intersected posting list can be
shared among queries. Thus increasing |T |, i.e., the size of the context, may
simplify the queries by generating a shorter posting list for T . A quality IR
system can answer a count query within a few milliseconds, but since we have
hundreds of thousands of tags, we need to focus on how to reduce the number
of queries.

There are two special cases of the fR results: (1) fR({t} ∪ T ) = fR(T ); and
(2) fR({t} ∪ T ) = 0. The question is whether we can know the results without
issuing fR queries. For the first case, if t is a super tag of any tag in T , i.e.
∃t′ ∈ T, t ∈ superR(t

′), adding t to T does not change the instance set and
thus does not change fR. For the second case, ideally we want to skip every tag
with an empty intersection without issuing a query. For convenience, we define
ZR(T ) = {z|fR({z}∪T ) = 0}. Let CL be the candidate list of tags whose queries
are finally issued. We propose three different pruning approaches to make CL
as short as possible.
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1. Use the Co-occurrence Matrix (M). Given T ,
⋂

t′∈T COR(t
′) has (and

not necessarily only has) all the tags {t|fR({t} ∪ T ) > 0}. When |T | = 1, it
returns only the co-occurring tags and prunes all the ZR(T ). When |T | > 1,
it returns a super set of the co-occurred tags, because the returned tags are
only known to pairwise co-occur with any tag in T , but are not guaranteed
to co-occur with all tags in T in the same instance.

2. Use the previous tag cloud cache (C). Since InstR({t}∪T ) ⊆ InstR(T ),
the set of co-occurred tags given context {t}∪T is also a subset of that given
T . Thus if we cache the previous tag cloud, which has the same context T
except for the most recently added tag, we can get another super set of
the co-occurred tags for context T . This relies on the tag cloud application
scenario: it is very likely that the current request is from a user adding a new
tag to the context. However we believe it can be applied to any scenarios
involving a depth-first search of the context space.

3. Dynamic update (D). When computing fR({t}∪ T ) for all the candidate
tags from the above two approaches, if we find fR({tx} ∪ T ) = 0, we know
∀ty ∈ subR(tx), ty ∈ ZR(T ), and these tags will be ignored in further compu-
tation. This approach can be optimized if we sort the list of tags such that
sub tags always follow super tags. However, our tag cloud system does not
use this optimization because it needs to stream results alphabetically.

?

Add to 

pop next tag in CL

?
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N
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M

D

? Y
N

Cache 
with key 

Fig. 3. Pruning for Online Computation

The online computation works as shown in Fig. 3, where the pruning steps
are marked with red circles. First, the input context T will be simplified (under
R-Inference) to its semantic-equivalent T ′ so that any redundant tags will be
removed (e.g., if T = {t1, t2} and t1 is a super tag of t2 then T ′ = {t2}) and any
equivalent tag will be changed deterministically to a representative tag. Then
the system checks whether this semantic-equivalent request has been kept in
cache for direct output. If not, the system will get candidate lists CLM from the
first approach using T ′ and CLC from the second approach using T . Then we
use the intersection CL = CLM ∩CLC as the candidate list for queries and keep
updating it using the third approach. It is easy to prove that using simplified T ′ in
the first approach will get the same candidate tags as using T . Given T = {t1, t2}
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where t1 is a super tag of t2, we can see COR(t1) ∩ COR(t2) = COR(t2) since
COR(t1) ⊇ COR(t2). However by removing super tags, we can avoid unnecessary
intersection of lists when computing the candidates. On the other hand, the cache
approach needs the original T in order to get the previous context; subsequently,
this previous context is simplified for cache lookup.

5 Supporting Different Entailment Regimes

From the raw dataset, we get only Tags∅, the tags of each instance with no
inference applied. In order to implement TagsR, InstR and COR for different R,
we can either materialize them so that they serve as independent repositories; or
we can always do the inference on-the-fly. We first discuss how to represent the
three functions under R by combining the R = ∅ versions (i.e., with no inference)
with the tag subsumption functions superR and subR. After that we will discuss
the design choice regarding materialization.

By adding inference, an instance will be assigned with the super tags of its
explicit tags, and a tag will be assigned to all instances of its sub tags. i.e.

TagsR(i) =
⋃

t′∈Tags∅(i)

superR(t
′) (1)

InstR(T ) =
⋂
t∈T

⋃
t′∈subR(t)

Inst∅(t
′) (2)

From Eq. (1), we know that

t ∈ TagsR(i)⇔ ∃t
′ ∈ subR(t), t

′ ∈ Tags∅(i) (3)

If tag s co-occurs with tag t under R,

s ∈ COR(t)⇔ ∃i ∈ I, s ∈ TagsR(i) ∧ t ∈ TagsR(i)

⇔ ∃i ∈ I,∃sx ∈ subR(s),∃ty ∈ subR(t), sx ∈ Tags∅(i) ∧ ty ∈ Tags∅(i)

⇔ ∃sx ∈ subR(s),∃ty ∈ subR(t), sx ∈ CO∅(ty) (4)

For convenience, we define

super∪R(T ) =
⋃
t′∈T

superR(t
′) = {t|∃t′ ∈ T, t ∈ superR(t

′)} (5)

And similarly,

CO∪
R(T ) =

⋃
t′∈T

COR(t
′) = {t|∃t′ ∈ T, t ∈ COR(t

′)} (6)

Then we compute COR(t) from Eq. (4).

COR(t) = {s|∃sx ∈ subR(s),∃ty ∈ subR(t), sx ∈ CO∅(ty)}
= {s|∃ty ∈ subR(t),∃sx ∈ CO∅(ty), s ∈ superR(sx)}
= super∪R({sx|∃ty ∈ subR(t), sx ∈ CO∅(ty)})
= super∪R(CO

∪
∅ (subR(t))) (7)
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In our implementation, as shown in Fig. 2, we materialize TagsR for all 4
entailment regimes, thus we do not need to compute Eq. (2) for online computa-
tion. However we only precompute CO∅ and use Eq. (7) at online computation.
We made our design choices based on two reasons. First, How much slower will
it be if not materialized? Both Eq. (2) and (7) include union and intersection of
sets or posting lists, however the lists of instances are usually much larger and
using Eq. (2) significantly increases the execution time compared to the mate-
rialized index. Second, How important is the runtime performance? As in our
scenario, for each tag cloud (or conditional distribution) given T , COR is only
called once, however InstR is called for each tag from the candidate set.

Also note Eq. (7) can be used for either online computation of COR or pre-
computation if it is materialized. Building the co-occurrence matrix MR is a
time consuming step (see Fig. 4). We should avoid repeating it four times for
four inference regimes. Instead, we only need to build M∅, which is the easiest
because each instance has the minimal number of tags, and the co-occurrence
for all the other inference regimes can be computed based on Eq. (7).

6 Experiments

Our system is implemented in Java and we conducted all experiments on a
RedHat machine with a 12-core Intel 2.8 GHz processor and 40 GB memory.

In order to test the performance of our preprocessing approach, we apply it to
all five subsets of the BTC 2012 dataset, as well as the full dataset. The statistics
are listed in Table 1.

Table 1. Statistics of Triples in the subsets of BTC 2012 dataset

Set Name Total Ontology Triples SameAs Triples Instance Triples

rest 22 M 54.7 K 734 K ∼22 M

freebase 101 M 0 897 K 92 M

dbpedia 198 M 1.8 K 22,818 K 175 M

timbl 205 M 1,260.1 K 340 K 203 M

datahub 910 M 466.0 K 4,490 K 905 M

full set 1,437 M 1,782.6 K 37,357 K 1,397 M

Fig. 4 illustrates how long each step of preprocessing takes for each subset.
The Multi-Inference step is not included in the figure since it is too short (41s
for the full set) compared with other steps. In general the sorting step and the
steps that involve a full scan of the dataset, such as Replace/Flip and index,
are the most substantial. Each step is related to certain factors of the dataset
provided in Table 1. E.g. the time for inference is related to the number of tag
subsumption axioms, which is correlated with the number of ontology triples; the
time for union-find on sameAs is related to the number of SameAs triples; and
most of the other steps are related to the number of instance triples. Despite the
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differences in the portions of different kinds of triples, we also plot the time/space
for datasets against their numbers of total triples in Fig. 5, which shows the
scalability of our preprocessing approach. The reported disk space includes both
the index and the no-inference co-occurrence matrix (M∅), and is dominated by
the index, which usually takes > 90%. We can see the time is quite linear with
the total number of triples, because most of the major steps are linear w.r.t.
the number of triples. The space however is slightly less correlated to the total
number of triples, since many different triples might only contribute to a single
tag in the index. For example, there might be 1000 triples saying a foaf:Person
foaf:knows 1000 different people, however these triples only contribute a single
property tag to this person. This is exactly what happens in the timbl subset,
and explains why we see timbl has slightly more triples than dbpedia but needs
less time/space.
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Fig. 4. Time for steps of preprocessing various datasets
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We then test the response time of fR({t} ∪ T ) queries, i.e. how long it takes
to count the instances of tag t with context T by querying the index. To ensure
a random but meaningful context T , i.e. InstR(T ) �= ∅, we randomly pick an
instance i and get a subset (size of 6) from its tags Tags∅(i) as [ti,1, ti,2, . . . , ti,6].
Thus the six tags in this array are known to co-occur under all entailment
regimes. We generate 100 such arrays using different i. Additionally, we pick
a set S of 10000 random tags. Starting from5 k = 1 . . . 6, we use the first k tags

5 The initial tag cloud (|T |=0) is precomputed and cached, thus we do not test it here.
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in the arrays as contexts T , and we measure the average time of fR({s} ∪ T )
for all s ∈ S. While S might overlap with some T , it does not impact the
query time since we issued the same fR queries without removing redundant
query terms. By doing this, we can compare the average query time for different
contexts T because they are intersected with the same tags; and we can com-
pare the difference when adding more tags to contexts because as k increases,
each array will provide a more “strict” context then before. We also change
R = ∅, RSub, RDR, RSub∪RDR to examine the impact of different inference. The
average time per 10K queries grouped by |T | is shown in Fig. 6. In average,
it takes 0.6∼0.7 milliseconds for a single fR query. The time slightly increases
(sub-linear) when we add more tags to context. It takes longer if R has more
inference rules due to longer posting lists of tags in the index. As we expect,
since there are fewer tags added to each instance from domain/range inference,
we find the curves for RDR and ∅ are close, while RSub and RSub ∪ RDR are
nearly identical.
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Fig. 6. Average time for 10K queries as context T grows for each entailment regime

A reasonable question is whether a high-performance triple store could be used
as a backend for our system. To answer this question, we compare the response
time of this specific kind of queries with RDF-3X [10] a state-of-the-art SPARQL
engine that “outperforms its previously best systems by a large margin”. It takes
9 hours and 11 minutes to load the full BTC dataset into RDF-3X. Note that this
loading does not include any kind of inference, sameAs closure/replacement, nor
co-occurrence computation as we do in our preprocessing. Similar to the previous
experiment, for context size |T | = 1, . . . , 5, we randomly pick 50 (10 of each)
contexts, and this time we measure how long it takes for both systems to compute
the full contextual tag cloud without pruning. i.e. for a given T , we compute
f∅({t}∪T ) for ∀t ∈ T . We use R = ∅ because RDF-3X does not explicitly do any
inference. The comparison results are shown in Table 2. In addition to the average
execution time of both systems, we also list the Average/Maximum/Minimum
Differences, which shows how much faster our system is compared to RDF-3X,
with respect to an average query, its best query and its worst query. Note, the
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times in this table are longer than those in Fig. 6, because we are issuing ∼380K
queries as opposed to 10K. It is clear that our system always outperforms RDF-
3X. Averaging across all queries in our test set, our system is 10 times faster than
RDF-3X. The differences are more pronounced when |T | increases, although both
systems have a sub-linear increase in query execution time as |T | increases. There
are two outliers of the Max/Min trends. When |T | = 1, the Max Diff. occurs
when f∅(T ) = 49, 584, 018, which is the largest set of instances specified by the
context in our test set. When |T | = 5, the Min Diff. occurs when f∅(T ) = 143,
which is the smallest set of instances specified by the context in our test set. It is
possible that the smaller sizes of instances specified by the context lead to more
efficient joins in RDF-3X, allowing it to approach our system’s performance. The
key point to recognize here is that one-size-fits-all triple stores are not always
the best solution for scalable applications. By choosing a carefully constrained
user interaction method, we are able to design a specialized infrastructure that
can meet our performance requirements. That said, we posit that the systems
capable of performing voluminous tag intersections can be used not just for
supporting user interfaces, but for data mining and anomaly detection as well.

Table 2. Comparison on Time Cost for Computing Full Tag Cloud (No Pruning)

|T | Avg. Time Ours Avg. Time RDF-3X Avg. Diff. Max Diff. Min Diff.

1 65.8 s 887.6 s 13.5 X 93.2 X 1.71 X

2 84.9 s 516.7 s 6.09 X 15.6 X 2.87 X

3 90.7 s 721.2 s 7.95 X 20.6 X 4.56 X

4 92.8 s 1030.8 s 11.1 X 30.8 X 6.24 X

5 110.3 s 1359.7 s 12.3 X 33.4 X 4.44 X

All 88.9 s 903.2 s 10.2 X 93.2 X 1.71 X

We also test how well our system does for pruning candidate tags under the
most complex inference R = RSub∪RDR. Using the approach above, we generate
100 arrays of length 6 from TagsR(i), by changing the length of sub arrays we
get 600 random T . As we discussed in the previous section, there are three
approaches: by co-occurrence matrix (M), by previous cache (C), or by dynamic
update (D). By each combination of approaches, we can count how many fR
queries are finally issued, and see how many queries are pruned. Note there is
always some pruning due to super tags of tags in contexts. When using approach
C, we always assume the previous cache is available.

The average number of pruned tags is shown in Fig. 7. There are |T | =389K
tags in total however most tags only co-occur with a few other tags. Pruning
usually saves us unnecessary queries. We can see when |T | increases any ap-
proach will generally prune more tags because more tags in T means a more
constrained context. Among the three approaches, M in average prunes more
tags, and enabling the other two approaches with M only provides less than 1%
more pruning (thus we do not show the overlapping curves for combinations MC,
MD and MCD). This justifies the preprocessing for the co-occurrence matrix.
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C also has good pruning except that when |T | = 1, the cache of |T | = 0 is a list
of every tag and C will not help. However, in the tag cloud scenarios, |T | = 1 is
important as it will decide the response after the user’s first click. Also in prac-
tice, the history cache might not always be available (e.g. a user adds t1, t2, t3
and then removes t2). So its availability is a concern although it requires no
preprocessing. The time cost for COR is not a key concern to our system. The
average time for the above test set is 1.1s with all approaches enabled. However
running this pruning saves ∼300K fR queries or in average 0.6ms×300K = 180s
for each tag cloud. For the above 600 T , we have an average time of 8.8s per
tag cloud, with max of 48.8s. Thanks to the paging and streaming features in
our interface design, the first 200 tags in the tag cloud page almost always show
within 2 seconds, which we consider an acceptable responsiveness.

7 Related Work

To the best of our knowledge, we have not seen any other works like the con-
textual tag cloud system, nor papers focusing on optimization for the specific
kind of query and resolving related problems. To compare with general purpose
triple stores, Rohloff et al. [12] present a comparison of scalability performance
of various triple store technologies using the LUBM benchmark [8], and reported
that Sesame [4] was the most scalable: It loads around 850M triples in about
12 hours, but it takes more than 5 hours to answer LUBM Query 14, which,
similar to our task, requests the instances of a class. Sakr and Al-Naymat [13]
survey RDF data stores based on relational databases and classify them into
three categories: (1) each triple is stored directly in a three-column table, (2)
multiple properties are modeled as n-ary table columns for the same subject,
and (3) each property has a binary table. Abadi, et al. [2] explore the trade-off
and state the third category is superior to the others on queries. However our
previous experiments [17] show using an inverted index is much faster for the
queries that count instances of intersections of classes/properties. In this paper
we continue to compare our inverted index approach with the state-of-the-art
RDF store RDF-3X [10]. The difference in the experiments indicates that a
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general purpose SPARQL engine is not always the right choice for a Semantic
Web system which requires scalable performance on special kinds of queries.

There are many applications using inverted indices on Semantic Web data.
Many of them are Semantic Web search engines. E.g. Sindice [14] and Watson
[6] are used to locate Semantic Web documents, while other search engines such
as Falcons [5], SIREn [7], and SemSearch [9] are used for locating Semantic
entities, and thus whether to index labels, URLs, literal values or other metadata
might differ between them. Occasionally, question answering systems [15,16] use
inverted indices to help identify entities from natural language inputs, which
in some sense is also an entity search engine. Despite the categorization, all
the above systems index with keywords because the intended usage is to locate
relevant resources based on natural language queries posed by users. Our system
is very different because the “terms” in our index are no longer keywords but
ontological tags. As a result, our index is compatible with entailments sanctioned
by the ontologies in the data. This is also why we propose our preprocessing steps
prior to indexing, which we have not seen in other works.

8 Conclusion

The contextual tag cloud system is a novel tool that helps both casual users
and data providers explore the BTC 2012 dataset: by treating classes and prop-
erties as tags, we can visualize patterns of co-occurrence and get summaries of
the instance data. From the common patterns users can better understand the
distribution of data in the KB; and from the rare co-occurrences users can either
find interesting special facts or errors in the data.

In this paper we discuss the underlying computation problem for the contex-
tual tag cloud system. The main problem we solve is to efficiently compute the
conditional distribution of types with respect to the intersection of any num-
ber of other types. We use an inverted index for this specific kind of query and
propose a scalable preprocessing approach. We also propose pruning approaches
to save unnecessary queries. We develop formulas to calculate inference under
different entailment regimes. Our experiments verify the scalability of both pre
and online computation as well as the effectiveness of our pruning approach.

Although the infrastructure described in this paper is specialized for the con-
textual tag cloud, we believe this infrastructure can be generally applied to other
applications. For example, currently we present the visual patterns to users and
rely on human intelligence to recognize any common pattern or unlikely co-
occurrence. In the future, we will investigate automated algorithms to learn
association rules from or detect anomalies in the dataset.
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Abstract. The Web of Data is a rich common resource with billions of triples
available in thousands of datasets and individual Web documents created by both
expert and non-expert ontologists. A common problem is the imprecision in the
use of vocabularies: annotators can misunderstand the semantics of a class or
property or may not be able to find the right objects to annotate with. This de-
creases the quality of data and may eventually hamper its usability over large
scale. This paper describes Statistical Knowledge Patterns (SKP) as a means to
address this issue. SKPs encapsulate key information about ontology classes, in-
cluding synonymous properties in (and across) datasets, and are automatically
generated based on statistical data analysis. SKPs can be effectively used to auto-
matically normalise data, and hence increase recall in querying. Both pattern ex-
traction and pattern usage are completely automated. The main benefits of SKPs
are that: (1) their structure allows for both accurate query expansion and restric-
tion; (2) they are context dependent, hence they describe the usage and meaning
of properties in the context of a particular class; and (3) they can be generated
offline, hence the equivalence among relations can be used efficiently at run time.

1 Introduction

The Web of Data is a rich common resource with billions of triples available in
thousands of datasets and Web documents (including RDFa and microdata annotations)
created by a growing number of people, including non expert ontologists (e.g. Web
managers generating schema.org microdata annotations). This, however, brings the risk
of imprecision in the use of vocabularies (schemas and ontologies), including their sys-
tematic misuse. Annotators can misunderstand the semantics of a concept or relation or
may not be able to find the right classes and properties to annotate with1. This decreases
the quality of data and may eventually hamper its usability over large scale. The prob-
lem gets even more complex when using several datasets together, which may refer to
the same classes, e.g. DBpedia types, but use different sets of properties.

1 Throughout this paper we use the terms “concept” and “class” interchangeably, to mean a
concept defined in a vocabulary (i.e., ontology). Similarly, we use the term “relation” as a
synonym for “property”.

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 703–719, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper we focus on a problem found in numerous datasets: the use of classes
and properties which are alien to the reference vocabulary provided for the dataset, but
that may be equivalent to existing classes or properties in the reference vocabulary, or
may be used to extend that vocabulary at data creation time. This issue generates low
recall when querying datasets, as the user must guess which properties are actually used
in the dataset as opposed to the ones formally defined in the vocabulary. A similar issue
also arises when attempting to query interlinked datasets, but only being aware of the
vocabulary used in one of them. The linked datasets may use different properties, but
still contain overlapping and complementary data. Without exploring property usage in
all those datasets, queries may miss relevant parts of the data.

We propose the definition and use of Statistical Knowledge Patterns (SKP) as a mean
to address these issues. An SKP is class-specific and encapsulates key information about
an ontology class, including synonymous properties used within (and potentially be-
tween) datasets. SKPs aim at reducing the complexity of understanding and querying
data, by reducing the variety of properties to only include the core properties of the main
SKP class, and their characteristics. We propose an unsupervised approach to generate
SKPs based on statistical data analysis, and introduce a measure of “synonymity” of
two properties of a class, which is used to cluster synonymous properties. Effectively,
an SKP addresses the vocabulary heterogeneity of classes based on their usage data,
within datasets, or between datasets that are linked through that class. One possible us-
age of an SKP is query expansion when querying the data underlying the SKP (shown
in Sect. 5).

Both pattern extraction and pattern usage are completely automated. The main ben-
efits of SKPs are: that (1) their structure allows for both accurate query expansion and
restriction; (2) they are context dependent, hence they can describe the usage and mean-
ing of properties in the context of a particular class and even within a specific dataset
(or group of datasets), hence also accounting for synonymity that hold only in specific
repositories, domains or communities; and (3) they can be generated offline, hence the
synonymity among properties can be used efficiently at run time.

The paper is organised as follows: Sect. 2 describes related work; Sect. 3 introduces
the SKP generation method, and Sect. 4 presents the synonymity measure and property
clustering in detail; Sect. 5 describes our experiments and discusses the evaluation of
our approach; Sect. 6 concludes the paper and discusses future work.

2 Related Work

Knowledge Patterns (KP) have been defined as general templates or structures used to
organise knowledge [8]. In the Semantic Web scenario they are used both for construct-
ing ontologies [3,7,14] and for using and exploring them [2,10,11,13].

In the area of ontology engineering several kinds of patterns [7] have been used. On
such type is the Content Ontology Design Patterns (CODPs), which are small, reusable
pieces of ontologies that consist of just a few classes. They represent core concepts
in an ontology and are either extracted or re-engineered from ontologies or other data
structures. CODPs are similar to SKPs in the way that they also represent concepts with
their most distinguishing characteristics. Unlike SKPs however, they have to be created
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manually or semi-automatically, and since they are abstract patterns intended for being
used as “templates” in ontology engineering they usually lack any direct connection to
data and cannot directly (without manual specialisation) be used for querying Linked
Data. Since CODPs represent an abstract top-down view, they additionally do not con-
sider aspects such as diversity and synonymy among properties, which is one of the
things we focus on in this paper.

The approach closest to ours is the generation of Encyclopedic Knowledge Patterns
(EKPs) [11], which have been built mainly for usage in exploratory search [10]. The
EKP generation process exploits statistics of links from Wikipedia to select which
classes are the most representative for describing each concept. The assumption is that
if entities of a class A frequently link to entities of class B, then class B is an impor-
tant descriptor for class A. This information is formalised as small OWL ontologies
(the EKPs), each having one main class and relations to other (significantly frequent)
classes. The main purpose of EKPs is to filter out irrelevant data when presenting DB-
pedia entities, while the ability to query for data is not a primary concern. Hence, EKPs
mainly contain abstractions of properties, such as “linksToClassB”, which expresses the
fact that instances of class A commonly link to instances of class B (links which could
in many cases in turn be represented by DBpedia properties, but not necessarily). This
is however not sufficient for our case, since our main goal is to use SKPs to query actual
data. Hence, we propose an extension of EKPs, which also include a sufficient coverage
of actual properties of the datasets. Basse et al. [2] also exploit statistics from a specific
dataset to produce topic frames of that dataset. In contrast to Nuzzolese et al. [11] they
don’t produce a pattern for each class but rather generate clusters of classes (up to 15
classes each) that reflect main topics of the dataset, which is again not sufficient for our
goal. Presutti et al. [13] explore the challenges of capturing KPs in a scenario where
explicit knowledge of datasets is neither sufficient nor straight-forward. They propose
a dataset analysis approach to capture KPs and support datasets querying. Our SKPs
expand on this work as not only do we capture direct statistical information from the
underlying datasets, but also further characterise relevant properties with additional fea-
tures (e.g. synonymous properties and range axioms), which we show to be beneficial
for querying datasets. As well as exploratory purposes, another common usage of KPs
is within Query Expansion (QE), and Question Answering (QA) in general. Typical ap-
proaches [5] use the lexicalizations of concepts to map natural language to URIs (with
NLP techniques) but they may fail to capture synonymous relations with completely
different lexicalizations.

A core component of our method of creating SKPs is measuring synonymity between
ontology properties. This is related to the work on linking ontological resources in gen-
eral [6,9,15]. A large amount of work in this area addresses linking ontology classes
and data instances, linking properties, however is insufficiently addressed. Typical ap-
proaches employ similarity metrics such as string edit distance and semantic similarity
measures. However, string similarity fails to identify equivalent relations if their lexi-
calisations are wholly distinct, which is very common in Linked Data. Semantic simi-
larity often depends on taxonomic structures in existing ontologies [4]. Unfortunately,
many relations which are used in Linked datasets are invented arbitrarily or originated
from rudimentary ontologies [12]. Our previous research [1] shows that a bottom-up
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approach that uses Linked Data statistics offers effective solution to measuring similar-
ity. Therefore in this work we introduce a data-driven synonymity measure for proper-
ties on Linked Data and we use it in the construction of SKPs.

3 SKP Construction Overview

A Statistical Knowledge Pattern (SKP) is an ontological view over a class (defined in
a reference ontology), and captures and summarises the usage of that class (hereafter
called the main class of the SKP) in data. An SKP is represented and stored as an
OWL ontology. The term “statistical” refers to that the pattern is constructed based on
statistical measures on data. Each SKP contains: (1) properties and axioms involving
the main class derived from a reference ontology; (2) properties and axioms involving
the main class that are not expressed in the reference ontology, but which can be induced
from statistical measures on statements published as Linked Data.

The generation of SKPs is mainly characterized by the identification (based on data
triples) and selection of (1) synonymous (i.e. interchangeable) properties; (2) ranges
for properties that have no prior range in the reference ontology. Not all properties (or
clusters of synonymous properties) are stored in the final SKP. To decide which ones
are representative of the SKP main class, their relevance is measured based on the
frequency of usage in available data. The information encoded in the SKP is specific to
the main class, i.e., it does not show a general interpretation of the involved properties
but rather the specific way they are used with the main class. For example, the same
property may be present in several SKPs, but with distinct range axioms and as part of
separate property clusters, depending on how it is used with the respective main class
of each SKP. A concrete example is the property dbp:lakeName2 which is synonymous
to foaf:name, but only for the class dbo:Lake.

At the moment we only consider the properties that are used with instances of the
main class in the subject position, as part of the characterization of that class, which in
our experience is usually the case for Linked Data, e.g., the way the DBpedia Ontology
is structured. One may also consider properties with the opposite “direction”, i.e., in-
stances of the main class as objects (for example, isLocationOf instead of hasLocation),
however, we do not include this at the moment (acknowledging the risk of loosing some
fraction of the data) since we have no method to determine what the main focus of a
triple is, we therefore make the simple assumption that being a subject of a triple means
that this is the entity the triple is describing. The SKP generation is fully automated,
whereby SKPs can be re-generated as soon as data change, without manual effort. At
the same time SKPs are used as stored resources hence increasing usage efficiency.

Relation to EKP Extraction. Since SKPs are an extension of EKPs [11], if an EKP
already exists it can be used as an abstract frame for the concrete properties and axioms

2 Prefixes used are dbo :< http : //dbpedia.org/ontology/ >,
dbp :< http : //dbpedia.org/property/ >,
skos :< http : //www.w3.org/2004/02/skos/core# >,
f oa f :< http : //xmlns.com/ f oa f /0.1/ >,
rd f s :< http : //www.w3.org/2000/01/rd f − schema# >
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that are added through our SKP generation method. In particular, the abstract proper-
ties introduced by EKPs (i.e., “links to class X”) can be used to group properties with
overlapping range axioms, to give the SKP a more intuitive structure and improve hu-
man understandability of the pattern. However, we do not restrict an SKP to being an
EKP, i.e., a set of “paths” in DBpedia (c.f. Def. 2 in [11]), but rather the SKP notion
is both independent of what reference ontology and datasets are used, and the resulting
SKPs may include any OWL axioms that can be statistically induced from data. Our
method for extracting the patterns also differs significantly from the EKP extraction
method in [11], i.e., we use triple data from the dataset in focus (DBpedia is used as
an example for the experiments) while the EKPs are extracted from a wikilink dataset,
which means that we operate on triples using distinct named properties rather than just
“links”. With respect to comparing the methods, we are not using the EKP notion of
“path”, c.f. [11] where a path is defined as a triple with the first element being the sub-
ject type, the second being the property dbo:wikiPageWikiLink and the third being the
object type, i.e., the first and last element of a path being classes. In our case we are
not initially interested in the object types, but rather the object instances (resources)
themselves, hence, the path abstraction is replaced by actual RDF triples, with concrete
instances (resources) as subjects and objects, but selected based on the fact that the sub-
ject type is the main class of the SKP. This means that, for instance, we also include
datatype properties, and triples where the object type is missing, as opposed to the EKP
extraction method. Similarly to [11], however, we only use single triples, not chains of
triples. Paths are selected for EKP inclusion based on their so called “path popularity”,
i.e., a measure on how large fraction of the individuals of the main class have links
to an individual of a certain type (c.f. indicators in [11]), putting the focus on the ob-
ject types (classes). SKPs, on the contrary, put the main focus on the properties, and
apply a frequency measure on property usage, i.e. subject-object pairs of RDF triples
using that property (c.f. experiments on different such measures and thresholds in Sect.
5.1), where subjects are all instances of the SKP main class, for setting an inclusion
threshold.

Fig. 1. Extract from the SKP for the DBpedia Ontology class Lake (in TopBraid Composer’s RDF
graph notation)
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SKP Example. As an example, we take the SKP generated for the DBpedia Ontology
class dbo:Lake3. A property from the reference ontology, which is sufficiently frequent
in actual data to be included in the SKP, is dbo:shoreLength, hence, it is included in
the SKP. Additionally, it has been found to be synonymous to the property dbp:shore,
hence a skos:closeMatch assertion is added for the two properties. In this case ri =

dbo:shoreLength is a reference property having a set of “synonymous properties” SRi

induced from data (in this case consisting of only one member). Figure 1 illustrates
an extract from the same SKP showing another example; the property dbp:lakeName
has been clustered with the properties dbp:name, dbp:label, foaf:name, and dbp:centre,
which is expressed via the skos:closeMatch assertion. The selection of synonymous
properties is obtained via a synonymity measure, described in Section 4, but before
taking a deeper look at the measure we provide an overview of the steps of the two
main phases of the overall method; detecting synonymity, and selecting properties.

Synonymity of Properties. To create an SKP we identify the properties used for the SKP
main class based on data and measure their synonymity. We propose a novel synonymity
measure of properties or relations to be detailed in Section 4. The overall process is:

1. Query the dataset for all the instances (IND) of the main class; query the dataset for
all triples having any i ∈ IND in subject position (INDsub j) and collect the types
(through rdf:type or a datatype) of the objects of all those triples.

2. For each property used in INDsub j, collect the subset of IND having the property as
predicate, INDprop - the subject-object pairs of this set represents the characteristics
of that property, given the main class at hand.

3. Do a pairwise comparison of all subject-object pairs in INDprop for all the proper-
ties and calculate a synonymity score for each pair.

4. Use the synonymity scores (representing evidence of properties being interchange-
able) to cluster properties representing the same semantic relation.

Selection of Properties. The aim of the above process is to discover for each specific
main class clusters of properties with the same meaning. In practice, certain number of
properties are found to be noise or non-representative. Thus we further refine the set of
selected properties for each SKP as follows:

1. Calculate the frequencies of properties used in data, i.e. counting distinct objects in
INDprop. For clusters, treat the cluster as if it was a single property hence add the
frequency counts of the constituent properties.

2. Use a cutoff threshold T to filter out unfrequent properties (or clusters). Add those
above the threshold to the SKP, including information about their appropriate prop-
erty type (e.g. owl:DatatypeProperty or owl:ObjectProperty), with their original
namespace intact. We experiment with several approaches for setting the threshold
T, and report on this in Section 5.

3. For each member of a property cluster that is added to the SKP, add a skos:closeMatch
relation between the cluster members.

3 http://ontologydesignpatterns.org/skp/Lake.owl



Statistical Knowledge Patterns 709

4. For each property, create the set of possible ranges. Construct a range axiom in-
cluding each range class that is given to the property in the reference ontology (if
present), and if no range axiom is present, construct a range axiom as the union of
each range class that can be identified in data (frequent object types of the triples).

5. Add rdfs:subPropertyOf axioms for those properties where the ranges match some
abstract EKP property (i.e., the “links to class X” abstract properties).

6. Store the SKP as an OWL2 file.

4 Synonymity Measure and Property Clustering

We consider synonymity to be symmetric and argue that the synonymity for each dis-
tinct pair of properties or relations depends on three components: triple overlap, cardi-
nality ratio and clustering.

Triple Overlap. evaluates the degree of overlap in terms of the usage of properties in
triples. Let p be a property and rp be the set of triples containing p as predicate, and let
S O(p) be the collection of subject-object pairs from rp and S Oint the intersection

S Oint(p, p′) = S O(rp) ∩ S O(rp′) (1)

then the triple overlap TO(p, p′) is calculated as

MAX{ |S Oint(rp, rp′ )|
|rp| ,

|S Oint(rp, rp′ )|
|rp′ | } (2)

Intuitively, if two properties p and p′ have a large overlap of subject-object pairs in their
data instances, they are likely to have identical meaning. The MAX function minimises
the impact of infrequently used, but still synonymous relations (i.e., where the overlap
covers most triples of an infrequently used relation but only a very small proportion of
a much more frequently used).

Subject Agreement. While triple overlap looks at the data in general, subject agreement
looks at the overlap of subjects of two relations, and the degree to which these subjects
have overlapping objects. Let S (p) return the set of subjects of relation p, and O(p|s)
returns the set of objects of relation p whose subjects are s, i.e.:

O(p|s) = O(rp|s) = {to|tp = p, ts = s} (3)

we define:

S int(p, p′) = S (rp) ∩ S (rp′ ) (4)

α =

∑
S∈S int (p,p′)

{
1 if |O(p|s) ∩ O(p′|s)| > 0
0 otherwise

|S int(p,p′)| (5)

β =
√|S int(p, p′)|/|S (p) ∪ S (p′)| (6)
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then the agreement AG(p, p′) is

AG(p, p′) = α · β (7)

In Equation 7, α counts the number of overlapping subjects whose objects have at
least one overlap. The higher the value of α, the more the two relations agree in terms of
their shared subjects. We do not consider the absolute value of overlap because both p
and p′ can be 1:many relations and a low overlap value could mean that one is densely
populated while the other is not, which does not necessarily mean they do not agree. β
evaluates the degree to which two relations share the same set of subjects. The agree-
ment AG(p, p′) balances the two factors by taking their product. As a result, relations
that have high level of agreement will have more subjects in common (β), and a large
proportion of shared subjects who also have shared objects (α).

Cardinality Ratio is a ratio between cardinality of the two relations. Cardinality of a
relation CD(p) is calculated based on data:

CD(p) =
|rp|
|S (rp)| (8)

and the cardinality ratio is calculated as

CDR(p, p′) =
MIN{CD(p),CD(p′)}
MAX{CD(p),CD(p′)} (9)

On a sufficiently large sample, the derived cardinality value should be close to the
conceptually true value and two equivalent relations should also have the same cardi-
nality. The final synonymity measure integrates all the three components to return a
value in [0, 2]:

E(p, p′) =
T O(p, p′) + AG(p, p′)

CDR(p, p′)
(10)

Clustering. We apply the measure to every pair of relations of a concept of interest, and
keep those with a non-zero synonymity score. The goal of clustering is to create groups
of synonymous relations based on the pair-wise synonymity scores. We use a simple
rule-based agglomerative clustering algorithm that uses a number of thresholds. First,
we build initial clusters based on all property pairs. We rank all property pairs by their
synonymity score, then we keep a pair as an initial cluster if (i) its score and (ii) the
number of triples covered by each property are above a certain threshold, TminS yn and
TminT P respectively (i.e., we create a cluster containing p and p′ if E(p, p′) > TminS yn

and |rp| > TminT P and |rp′ | > TminT P). Next, to merge clusters, given an existing cluster
C and a new pair (p, p′) where either p ∈ C or p′ ∈ C, the other property is added to C
if E(p, p′) is close to the average of all equivalence scores of connected pairs in C. The
closeness is determined by another threshold TminS ynRel, which is a fractional number.
Thus if the average of the equivalence scores of all connected pairs in C is 0.7, the new
pair (p, p′) is merged with C if E(p, p′) > 0.7 ∗ TminS ynRel. This preserves the strong
connectivity in a cluster. This is repeated until no further merge action is taken.
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5 Evaluation

To evaluate the use of SKPs we have chosen to focus on two main aspects: (1) the extent
to which the SKPs describe and characterise the underlying data, and give access to that
data; (2) the extent to which the identification of “synonymous” properties improve on
retrieval coverage, without introducing erroneous data in the result. Thus we perform
two sets of experiments for different purposes.

We used DBpedia as the underlying semantic data repository in this experiment and
we query the live DBpedia SPARQL endpoint to retrieve data, and use the DBpedia
Ontology as reference ontology4. In this evaluation, we created SKPs for 34 DBpedia
classes5, which are exactly the classes that can be extracted from the queries of the
QALD1 question answering dataset6. These classes were selected for the experiments
since we intend to in the future apply the SKPs to query expansion and make use of the
QALD1 dataset as a benchmark. The SKP construction method is not restricted to any
particular ontology or datasets, but can be applied to any reference ontology-dataset pair
for which they are needed. In the experiments we use TminS yn = 0.1, TminT P = 0.01%
and TminS ynRel = 0.6 as thresholds.

5.1 SKP Observation

SKPs aim at reducing the variety of properties to only include the core properties of
the main SKP class, however, to be useful in practice, such a reduced representation
should still allow for accessing as large part of the underlying data as possible. We have
measured two aspects of each SKP, (1) the absolute number of properties included in
the SKP and the fraction of the total number of distinct properties of the main class that
this set represents, and (2) the fraction of the total number of triples (where the subject
is an instance of the main class) that the properties included in the SKP allows to cover.
The ideal situation would be that a low absolute number (1) of properties would still
render an almost perfect coverage of triples (2).

However, first we need to generate a set of SKPs to assess, and for this we need to
set an appropriate property selection threshold. Three sets of experiments have there-
fore been performed, each applying a different method for setting the threshold on what
properties to include in the SKP. For each such threshold, the parameters of the thresh-
old have been varied, so as to evaluate (a) the amount of properties included, and (b) the
amount of triples covered, in each case. This leads us to conclude both which method
for setting the threshold that seems to perform best over the SKP test set, and also
gives us an evaluation of how well the SKPs using that threshold perform on criteria (1)
and (2).

A naive approach would be to set an absolute threshold on the count of triples us-
ing a certain property, i.e. including all properties with more than a certain number of

4 http://dbpedia.org/sparql, ontology: http://dbpedia.org/ontology
5 The preliminary SKPs used in the evaluation, including skos:closeMatch statements, can be

found at http://ontologydesignpatterns.org/skp/SKPs130510.zip
6 http://greententacle.techfak.uni-bielefeld.de/
˜cunger/qald1/evaluation/dbpedia-test.xml

http://dbpedia.org/sparql
http://dbpedia.org/ontology
http://ontologydesignpatterns.org/skp/SKPs130510.zip
http://greententacle.techfak.uni-bielefeld.de/~cunger/qald1/evaluation/dbpedia-test.xml
http://greententacle.techfak.uni-bielefeld.de/~cunger/qald1/evaluation/dbpedia-test.xml
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triples (subject type being the SKP main class). Figure 2 shows the performance of this
approach, illustrating both the best (maximum triple coverage and minimum fraction
of included properties), worst (minimum triple coverage and maximum fraction of in-
cluded properties) and the average performance of each criteria (average triple coverage
and average fraction of included properties), over the SKP set. At an absolute threshold
of 20 triples we have a triple coverage between 79 and 98%, at an included property
fraction of between 14 and 45%.

Fig. 2. Performance of the absolute thresholds (when set to 5, 10, 20 and 50 triples)

A more elaborate threshold would consider the properties that represent at least a
certain fraction of the total number of triples (subject type being the SKP main class).
Although this may sound reasonable at first glance, Figure 3 shows that this threshold
actually performs worse than the absolute threshold. There is actually no value of the
fraction that we could find which both guarantees us to get any properties at all, for
all the SKPs in our set, but with no SKP on the other hand including the complete set
of properties (even those with very low frequency). As in the previous figure, Figure 3
shows the best, worst, and average performance over the SKP set. While we can get the
worst case property fraction included to drop to about 75% (at the 1% threshold) then
the coverage of triples has already dropped to below 70%.

Fig. 3. Performance of the triple fraction threshold (when set to between 0.05% and 1% of triples)

Finally, we explore a normalised threshold that turns out to perform best. We first
calculate the average number of triples per property (where the property set still con-
stitute all triples where the subject type is the main class), and then set a threshold as a
fraction of that average. With this threshold we, hence, both take into account the size
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of the triple set (as in the previous method), but also the number of properties used for
instances of the main class. In Figure 4 the performance of this threshold is shown. Note
that up until around 0.6 (meaning that properties are included if the size of their triple
set constitute at least 60% of the average size of a triple set for any property used for the
main class) the triple coverage stays really high, i.e. in the worst case still above 88%,
with a worst case fraction of included triples of 38%. Hence, this indicates that using
this threshold, we can probably discard at least 62% of all properties (usually more),
for any class in the DBpedia ontology, without reducing the amount of triples we can
still access to below 88% (on average we can even access 94% of the triples, or in the
best case 97%).

Fig. 4. Performance of the final threshold (when set to between 0.3% and 1.2% of the average
number of triples per property)

Although we expect this to be true also for other datasets, and for generating SKPs
over several interlinked datasets, we can of course not guarantee that this is the best
threshold in all cases. However, this experiment also shows how one can (completely
automatically) test a threshold calculation method, to select the best one. Hence, when
generating SKPs for other datasets, it is recommended to rerun these experiments, to
find the “optimal” threshold for those datasets.

Nevertheless, the 0.6 threshold has been used for the SKPs generated for the rest of
our experiments, and Table 1 shows the characteristics of the SKPs generated using this
threshold. The name of the SKP is equal to the name of the main class, as defined in
the DBpedia Ontology (our reference ontology). First we present some statistics on the
main class itself, i.e. the number of instances in DBpedia version 3.8, the total number
of triples with those instances in the subject position, and the total number of distinct
properties that can be found in that set of triples. Next, we present some statistics on
the SKP generated for that main class, i.e. the total number of properties included in the
SKP, the fraction of the total number of properties the select ones represent (criteria (1)
mentioned previously), and the fraction of the included properties that are not defined
in the reference ontology. The latter aspect gives a first indication of how much added
information about the main class our SKPs contain, compared to the DBpedia Ontology
itself. On average, 78% of the properties in our SKPs are not defined in the DBpedia
ontology. Finally, we present the ability of the SKP to cover the actual triples in the
DBpedia dataset, for the main class, through the number of triples covered and the
fraction of the total number of triples that the selected ones represent (criteria (2)).
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5.2 Using SKPs for Query Expansion

To evaluate the benefit of synonymous properties provided by the SKP we create a
query expansion experiment to study (i) the increase in recall (added data) with (ii) the
decrease in precision (introduced errors) by using the added properties. For each SKP
we consider the set Ront of all properties defined by a reference ontology - DBPedia in
this case, and we generate a query for each ri ∈ Ront such as “SELECT DISTINCT ?s
?o WHERE {?s a Main Concept of SKP . ?s ri ?o .}”. The set of values of ?o returned
from each query is considered the baseline value set for the property ri, denoted by Vri .
Then let S Ri be the set of synonymous properties to ri. For each ri ∈ Ront we generate
a query for each sr j

i ∈ S Ri in the same form as before to retrieve the set of values Vsr j
i
.

Then the total expanded value set (denoted by EVri) is the union of all Vsr j
i

for each

sr j
i . To determine the accuracy of values in EVri , we manually analyse each property

in each S Ri and annotate the property as either a correct synonymous property for ri or
not. Annotating property synonymity involved four computer scientists, and the Inter-

Table 1. Characteristics of the generated SKPs

SKP name no. of no. of no. of no. of fract. of fract. of non- no. of fract. of
(main class) instances triples properties properties properties ontology triples triples

in SKP included properties covered covered
Actor 2912 19833 246 88 0.36 0.77 18847 0.95
AdministrativeRegion 28229 20721 1235 436 0.35 0.90 18432 0.89
Agent 956476 18395 877 232 0.26 0.69 16197 0.88
Architect 1348 19540 169 38 0.22 0.74 18786 0.96
Bridge 2775 23446 351 94 0.27 0.68 21711 0.93
BritishRoyalty 6563 17918 250 66 0.26 0.79 17037 0.95
Cave 238 6100 105 31 0.30 0.87 5677 0.93
City 24423 27064 876 238 0.32 0.89 24210 0.89
Company 44516 17010 352 102 0.29 0.63 16037 0.94
Country 2710 22530 666 194 0.29 0.87 21286 0.94
Currency 333 6807 173 64 0.37 0.97 6072 0.89
Eukaryote 199085 15983 255 78 0.31 0.85 14853 0.93
FictionalCharacter 9878 19441 377 120 0.32 0.85 18352 0.94
Film 88503 17674 153 48 0.32 0.65 16847 0.95
Lake 10294 19915 412 51 0.12 0.63 19140 0.96
Language 6860 19357 149 35 0.23 0.89 17942 0.93
Magazine 3388 18986 252 41 0.16 0.78 18427 0.97
MilitaryConflict 10691 20904 187 32 0.17 0.66 20209 0.97
Model 1416 18576 257 63 0.25 0.84 17770 0.96
Mountain 13259 19895 359 65 0.18 0.82 18799 0.94
MountainRange 1691 26717 322 106 0.33 0.79 25089 0.94
Museum 3148 17631 290 44 0.15 0.80 16831 0.95
OfficeHolder 32373 21706 476 103 0.22 0.65 20039 0.92
Organisation 200789 23777 840 194 0.23 0.69 21434 0.90
Person 763644 17479 580 168 0.29 0.67 15649 0.90
Place 638879 25527 1126 280 0.25 0.86 22751 0.89
PoliticalParty 3311 20822 267 84 0.31 0.75 19903 0.96
Protein 12042 16513 178 48 0.27 0.75 16037 0.97
River 24267 18759 333 128 0.38 0.74 17382 0.93
Royalty 6563 17283 237 63 0.27 0.78 16315 0.94
SoccerClub 15727 30454 192 47 0.24 0.81 29485 0.97
Species 202339 16097 265 75 0.28 0.84 14933 0.93
TelevisionShow 23480 24595 292 95 0.33 0.65 23681 0.96
Website 2388 15555 295 48 0.16 0.85 14773 0.95
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Annotator-Agreement (IAA) based on a sample is 0.72. Then, all the corresponding
values returned by the respective query that uses this property are marked either correct
or wrong. The rationale is that we assume each individual triple on the Linked Data
to be semantically correct, or in other words, that data publishers have respected the
semantic meanings of predicates when releasing triple datasets. Although this is not
always true on the Linked Data, we believe this gives a reasonable approximation of
accuracy.

Using these annotations, we study the accuracy of the synonymity measure and also
the increase ratio in the retrievable data due to the inclusion of each synonymous prop-
erty. We create two sets of statistics for this purpose. First, given a reference property ri

and each of its synonymous property sr j
i , we compute an increase ratio as IR =

√
|V

sr
j
i
|

|Vri | .

We rank all pairs of 〈ri, sr j
i 〉 by descending order of their synonymity scores, and plot

IR for each pair (Figure 5). In total there are 561 pairs of relations for all SKPs.

Fig. 5. Increase Ratio (IR) for each 〈ri, sr j
i 〉 (marked as green � where the synonymous property

is correct and red × where it is wrong), ranked by synonymity scores (�) in descending order. IR
is aligned to the left y-axis and synonymity scores are aligned to the right.

As shown in Figure 5, the synonymity measure correctly predicts synonymous prop-
erties in most cases. In many cases, the increase ratio is significant, suggesting that data
retrieval can considerably boost recall by including SKP synonymous properties in the
query process. There appears to be an inverse correlation between the synonymity score
and the correctness of prediction. With high synonymity scores (e.g., > 1.4) the vast ma-
jority of synonymous properties discovered for the reference properties are found cor-
rect; however, when errors are made, the increase ratio is very low, meaning little noise
is added. This is a useful feature as, when necessary, we can apply higher threshold in
order to ensure high precision in retrieval. There is no correlation between the increase
ratio and the synonymity score. This is expected as on the one hand, synonymity de-
scribes the extent to which two properties are “interchangeable” while the increase ratio
addresses what they have “in difference”. Ideally, for the purpose of data retrieval, we
would like to have a re-ranking process to combine both synonymity and increase ratio
in order to promote properties that are highly synonymous, and can also potentially add
a lot information to each other. We will explore this in future.

While Figure 5 looks at individual pairs of properties independently, from the SKP
construction point of view we are more interested in the incremental performance as the
SKP is expanded by progressively adding synonymous properties and data instances.
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For this purpose, we simulate an ontology engineering process, where an engineer
expands the reference ontology by adding synonymous properties and also new data
instances retrieved by such properties. The engineer may rank each pair of reference
property with a synonymous property by their score, and progress by incrementally add
one property at a time. At each iteration itk, we study (i) the incremental increase ratio
(IIR) due to new data instances retrievable by correct synonymous properties added up
at itk and (ii) the incremental noise ratio (INR) due to new data instances retrievable by
incorrect synonymous properties added up at itk. Let V+

sr j
i

⊂ Vsr j
i

be the values added

by correct synonymous properties and V−
sr j

i

⊂ Vsr j
i

be the values added by incorrect syn-

onymous properties, the calculation of IIR and INR at each iteration k are calculated
as

IIRk =
| k⋃

i=1
V+

sr
j
i

|

| k⋃
i=1

(V
sr

j
i
∪V

r
j
i
)|

INRk =
| k⋃

i=1
V−

sr
j
i

|

| k⋃
i=1

(V
sr

j
i
∪V

r
j
i
|

Fig. 6. Incremental Increase Ratio (IIR) and Incremental Noise Ratio (INR) at decreasing
synonymity score

Figure 6 shows generally consistent patterns with Figure 5. A high synonymity score
rarely introduces errors and when it does, the noise added to the ontology is trivial. As
the score drops, noise becomes notable and possibly harms ontology construction.

Error Analysis. To understand the limitations of our method we manually analysed in-
correct predictions given by the synonymity measure. We categorise three main sources
of errors: (1) highly semantically related properties; (2) property range ambiguity and
(3) arguable human annotations.

For many highly semantically related properties, we found that often there is a high
degree of overlap in their object values. As a result, the synonymity measure makes
incorrect predictions based on the data. For example, cities may have the same average
temperatures across several months. As a result, our method may predict properties
such as “averageTemperatureJune” and “averageTemperatureJuly” to be synonymous.
For countries, the property that describes the largest city is considered synonymous with
property that describes the capital of the country.
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Another source of errors is property range ambiguity. We noticed that for some in-
correct synonymous property pairs, a common characteristic is that the ranges of the
properties derived from data (i.e., the types of the objects of the properties) are am-
biguous. Using the synonymous pair dbo:country and dbo:location for the concept
dbo:MountainRange as an example, we retrieve the most specific type (ignoring data
types) of the objects for each property respectively. We noticed that, dbo:country have
two distinct ranges in data and the most frequently used is dbo:Country, covering
96% of data; while dbo:location has 5 distinct ranges and the most frequently used
is dbo:Place, covering 46% of data, which suggests that the objects of this property is
highly inconsistent in terms of their types. Intuitively, if a property’s range is ambiguous
it would be difficult to assess its synonymity with other properties. We will incorporate
this information in our measure in future work.

We also noticed some examples of highly arguable human annotations. As an exam-
ple, dbo:successor and dbpp:after is predicted synonymous for the class dbo:Royalty.
However, our annotators considered this example to be incorrect. We manually checked
the data and discovered that among all object values (only those that have object types)
of dbpp:after, 92% belong to the type dbo:Royalty and describes a successor of a roy-
alty; and 98% (including dbo:Royalty) belong to a class representing a position or per-
son, in which case it describes a successor of certain kind. Thus arguably, although the
two properties appear insufficiently synonymous, the data provides additional strong
evidence for us to consider them as synonymous for the specific class dbo:Royalty.

6 Conclusion and Outlook

In this paper we have introduced the notion of Statistical Knowledge Patterns (SKPs),
for capturing the properties used with a certain concept in a bottom-up data-oriented
way. We have presented an unsupervised method for generating SKPs, and evaluated
it on the DBpedia dataset using the DBpedia ontology as a reference vocabulary. Our
evaluation shows that SKPs are able to significantly reduce the number of properties
we need to consider, while still maintaining a high coverage of the dataset, compared to
considering the complete set of properties present in data. We believe that SKPs are an
efficient way to avoid noise in the data, since this is most often present in the “long tail”
of property usage. Additionally, the evaluation shows that the clustering of properties,
into sets of synonymous properties, allows us to perform query expansion, using the
SKP, with high accuracy. Since the methods are completely automated, it is easy to
maintain an up-to-date set of SKPs for your dataset, or even across datasets, in order
to be able to efficiently query data with sufficiently high recall at any point in time.
The main benefits of SKPs include: (1) allowing for both accurate query expansion
(through the synonymy of properties) and restriction (through the range axioms); (2)
their context dependent nature, describing the usage and meaning of properties in the
context of a particular concept and even within a specific dataset; and (3) allowing SKPs
to be generated offline (but continuously updated), so that they can be used efficiently
at run time.

On an abstract level SKPs can be compared to context-sensitive linguistic resources,
such as linguistic frames. Previously, top-down approaches have been used to reengi-
neer linguistic frames, e.g. FrameNet, to KPs. An interesting line of future research is
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to integrate them with bottom-up approaches such as EKP and SKP generation. As fu-
ture work we also plan to focus on the second major feature of the SKPs, namely the
new range axioms that were introduced based on observations of data. Just as for the
properties themselves, the ranges are also concept-specific. We intend to experimentally
validate the range extraction method, and to evaluate the potential of using the range
axioms for restricting property selection in query formulation. Other improvements of
the method could include taking into account more features of the reference ontology
when performing the SKP extraction, e.g. the class hierarchy and additional axioms. We
will also generate SKPs for the complete DBpedia ontology7, and other major sources
of Linked Data. In particular, we intend to explore the construction of “cross-dataset”
SKPs that include synonymous properties from multiple linked datasets. We then intend
to use them in an Information Extraction scenario, for extracting seed data correspond-
ing to the natural language questions of a human user. In such a scenario, SKPs will be
an essential component, since they represent the actual properties that are used in data,
and since they help to break down the query formulation problem into manageable
pieces.

Acknowledgements. Part of this research has been sponsored by the EPSRC funded
project LODIE: Linked Open Data for Information Extraction, EP/J019488/1.

References

1. Augenstein, I., Gentile, A.L., Norton, B., Zhang, Z., Ciravegna, F.: Mapping Keywords to
Linked Data Resources for Automatic Query Expansion. In: Proc. of the 2nd International
Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (2013)

2. Basse, A., Gandon, F., Mirbel, I., Lo, M.: DFS-based frequent graph pattern extraction to
characterize the content of RDF Triple Stores. In: Proceedings of the WebSci 2010: Extend-
ing the Frontiers of Society On-Line, Raleigh, NC, US, April 26-27 (2010)

3. Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design pat-
terns. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 65–80. Springer, Heidelberg
(2009)

4. Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relat-
edness. Comput. Linguist. 32(1), 13–47 (2006)

5. Cabrio, E., Aprosio, A.P., Cojan, J., Magnini, B., Gandon, F., Lavelli, A.: QAKiS @ QALD-
2. In: Proceedings of the ESWC 2012 Workshop Interacting with Linked Data, Heraklion,
Greece (2012)

6. Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward, M.J.:
Instance-Based Matching of Large Ontologies Using Locality-Sensitive Hashing. In: Cudré-
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Abstract. In our previous work, we showed how a scalable OWL 2 RL
reasoner can be used to compute both lower and upper bound query an-
swers over very large datasets and arbitrary OWL 2 ontologies. However,
when these bounds do not coincide, there still remain a number of possi-
ble answer tuples whose status is not determined. In this paper, we show
how in the case of Horn ontologies one can exploit the lower and upper
bounds computed by the RL reasoner to efficiently identify a subset of
the data and ontology that is large enough to resolve the status of these
tuples, yet small enough so that the status can be computed using a fully-
fledged OWL 2 reasoner. The resulting hybrid approach has enabled us
to compute exact answers to queries over datasets and ontologies where
previously only approximate query answering was possible.

1 Introduction

An increasing number of applications rely on RDF and SPARQL for storing and
querying semistructured data. The functionality of many such applications is
enhanced by an OWL 2 ontology, which is used to (i) unambiguously specify the
meaning of data in the application, (ii) provide the vocabulary and background
knowledge needed for users to formulate accurate queries, and (iii) enrich query
answers with information not explicitly represented in the dataset.

However, the appealing benefits of using an OWL 2 ontology come at the
cost of scalability, since answering queries over OWL 2 ontologies is of very high
computational complexity. Despite intensive efforts at optimisation, fully-fledged
OWL 2 reasoners, such as HermiT [16], Pellet [23] and Racer [9], still fall far
short of meeting the scalability demands of applications that require efficient
management of large-scale RDF datasets.

To achieve more favourable scalability, a common approach is to delegate
reasoning and query answering tasks to a rule-based RDF triple store. State-
of-the-art triple stores such as OWLim [3], Oracle’s RDF Semantic Graph [26]
and RDFox1 provide robust and scalable query answering support for ontologies
in the OWL 2 RL profile [17] and datasets containing millions, or even billions,
of triples. However, such triple stores are intrinsically limited in their reasoning
capabilities, as they ignore (parts of) axioms in the application’s ontology that

1 http://www.cs.ox.ac.uk/isg/tools/RDFox/

H. Alani et al. (Eds.): ISWC 2013, Part I, LNCS 8218, pp. 720–736, 2013.
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aren’t captured by OWL 2 RL. As a result, they are incomplete: for some com-
binations of ontology, query and data, they will fail to return all query answers.

In this paper, we propose a novel approach to query answering that addresses
the scalability challenge for ontology languages beyond OWL 2 RL without giv-
ing up completeness of query answers. The key idea is to employ a hybrid tech-
nique that combines an OWL 2 RL reasoner based on a highly scalable RDF
triple store (RL reasoner for short) with a fully-fledged OWL 2 reasoner (OWL
reasoner for short) such that most of the computational workload can be del-
egated to the RL reasoner, and the OWL reasoner is used only as necessary
to ensure completeness. The difficulty in realising this approach is to efficiently
determine when and where fully-fledged reasoning is needed.

Our hybrid query answering technique builds on previous work [27], where
we showed how an RL reasoner can be exploited to efficiently compute lower
and upper bound query answers over very large datasets and arbitrary OWL 2
ontologies. When the two bounds coincide (which was often the case in the
experiments reported in [27]), the query has been fully answered. When the two
bounds do not coincide, however, there may still remain a significant number
of possible answer tuples whose status is undetermined. In theory, the status
of these tuples can be determined using an OWL reasoner, but for large-scale
datasets, even checking single tuples is often infeasible in practice.

The main contribution of this paper is a technique for identifying a (typically
small) subset of the dataset and ontology that is sufficient for determining the
status of a possible answer tuple. The basic idea is that, starting from a query
Q and a possible answer tuple �a, we use backward chaining with axioms from
the upper-bound ontology to identify those axioms and data triples from the
input ontology and dataset that might contribute to a proof that �a is an answer
to Q. An OWL reasoner is then used to check if the identified axioms and data
triples entail that �a is an answer to Q. Currently, our technique is only known
to be applicable to Horn ontologies (i.e., ontologies that can be translated to
first-order Horn clauses). However, many OWL 2 ontologies are Horn [6], as are
all the profiles. Moreover, we conjecture that the approach can be extended to
arbitrary OWL 2 ontologies; verifying this conjecture is left for future work.

Our new technique also addresses an important limitation with the approach
presented in [27]: if the upper-bound ontology and dataset is unsatisfiable, then it
is necessary to check the satisfiability of the input ontology and dataset, but this
was impractical with large datasets. Now, we can simply use our new technique
to compute the answer to the query owl:Nothing(x), with the ontology and
dataset being satisfiable iff the answer is empty.

We have developed a reasoner that integrates RDFox and the HermiT OWL
reasoner. A preliminary evaluation has shown very promising results. For in-
stance, we can compute in reasonable time the exact answers to a range of
queries over the LUBM(40) ontology and dataset—results that are far beyond
the capabilities of any other OWL reasoner known to us. Our technique appears
to be very effective in identifying small relevant subsets of the data and ontology:
for many queries, only 2% of the data and just a few axioms from the ontology
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were necessary to determine the status of all unverified answer tuples. Moreover,
the effectiveness of our technique is not restricted to LUBM: we have obtained
encouraging results with the Fly Anatomy ontology—a biomedical ontology con-
taining more than 7,000 classes and 140,000 axioms—and its associated dataset.

2 Preliminaries

We adopt standard notions from first-order logic with equality, such as variables,
constants, terms, atoms, formulas, sentences, substitutions, entailment (written
|=), and (un)satisfiability. The equality atom between terms t and t′ is denoted
as t ≈ t′; we use the abbreviation t �≈ t′ for ¬(t ≈ t′) (an inequality atom). The
falsum atom is denoted as ⊥ (equivalent to owl:Nothing), whereas the dual
universal truth atom is denoted as � (equivalent to owl:Thing).

OWL 2 Ontologies. We assume familiarity with the normative specifications
of OWL 2 and OWL 2 RL. We deviate slightly from the normative documents
only in that we make an explicit distinction between schema-level and data-level
axioms. We use ontology and dataset to refer to a set of schema-level and a set
of data-level axioms, respectively. W.l.o.g. we assume that data assertions are
given as facts (ground atoms), each of which corresponds to a single RDF triple.
Consider as our running example the following ontology Oex and dataset Dex.

Oex = {SubClassOf (Animal SomeValuesFrom(eats Thing)), (T1)

SubClassOf (Herbivore AllValuesFrom(eats Plant)), (T2)

DisjointClasses(Herbivore Carnivore), (T3)

SubClassOf (Carnivore MinCardinality (2 hasParent Thing)))} (T4)

Dex = {ClassAssertion(Animal lion), (A1)

ClassAssertion(Animal rabbit), (A2)

ClassAssertion(Herbivore rabbit), (A3)

ClassAssertion(Herbivore sheep), (A4)

PropertyAssertion(eats sheep grass), (A5)

ClassAssertion(Carnivore wolf)} (A6)

Queries.A conjunctive query (CQ) is a first-order formula in the form ofQ(�x) =
∃�y(ϕ(�x, �y)) with Q a distinguished query predicate and ϕ(�x, �y) a conjunction of
atoms without inequalities. The variables in �x are distinguished. The following
CQ with a distinguished variables x asks for all individuals that eat plants:

Qex(x) := ∃y(eats(x, y) ∧ Plant(y)).

A tuple of constants �a is a certain answer to Q(�x) w.r.t. a set of first-order
sentences F and a set of facts D if F ∪D |= Q(�a). The set of all certain answers
to Q(�x) w.r.t. F and D is denoted as cert(Q,F ,D). For example, the individuals
sheep and rabbit are certain answers to Qex w.r.t. Oex and Dex. We omit the
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distinguished variables ofQ(�x) and write just Q for brevity. SPARQL conjunctive
queries are CQs with only distinguished variables.2

Rule Languages. Rule languages are widely-used knowledge representation
formalisms that have strong connections with different fragments of OWL 2 [4].
Specifically, OWL 2 RL is strongly connected to datalog, whereas Horn ontologies
are related to datalog±—an extension of datalog with existential quantifiers
allowed in rule heads. For instance, our example ontology Oex is equivalent to
the following datalog± rules in which all free variables are universally quantified.

∃y(eats(x, y))← Animal(x) (P1)

Plant(y) ← eats(x, y) ∧ Herbivore(x) (P2)

⊥ ← Carnivore(x) ∧ Herbivore(x) (P3)

∃y1∃y2(hasParent(x, y1) ∧ hasParent(x, y2) ∧ y1 �≈ y2) ← Carnivore(x) (P4)

Formally, a datalog± rule is a first-order sentence of the following form [5]:

∀�x(∃�y(C1 ∧ · · · ∧ Cm)← B1 ∧ · · · ∧Bn), (1)

where each Bj is an atom with variables in �x that is neither ⊥ nor an inequality
atom, and either (i) m = 1 and C1 = ⊥, or (ii) m ≥ 1 and, for each 1 ≤ i ≤ m,
Ci is an atom different from ⊥ with free variables in �x ∪ �y. A datalog rule is a
rule of the form (1) with no existentially quantified variables.3 A datalog (resp.
datalog±) program is a set of datalog (resp. datalog±) rules.

Horn ontologies (i.e., ontologies that can be normalised as a set of first-order
Horn clauses) can also be represented by datalog± programs. Furthermore, each
OWL 2 RL ontology can be represented by a datalog program. Axioms T2 and
T3 in our running example are in OWL 2 RL and can be represented by the
datalog rules P2 and P3, respectively; in contrast, T1 is outside OWL 2 RL and,
as such, is only expressible by a datalog± rule (in our case P1).

Datalog rules allow for easy and efficient computation of the dataset DΣ con-
sisting of all facts entailed by a datalog programΣ and a datasetD. The setDΣ is
called the materialisation of Σ w.r.t. D. The set of certain answers cert(Q,Σ,D)
for an arbitrary query Q coincides with cert(Q, ∅,DΣ). Consider, for example,
the set ΣL comprising the datalog rules P2 and P3. The materialisation of ΣL

w.r.t. Dex extends Dex with the single fact ClassAssertion(Plant grass); clearly,
sheep is an answer to the query Qex w.r.t. ΣL and Dex, but rabbit is not.

3 Our Approach in a Nutshell

In this paper, we propose a hybrid reasoning technique that combines an RL
reasoner based on a highly scalable RDF triple store with a fully-fledged OWL

2 In general, a SPARQL query can include non-distinguished variables; however, the
semantics of SPARQL means that this is equivalent to treating all variables as dis-
tinguished and then applying a suitable projection.

3 Our definition of datalog is slightly non-standard as it allows conjunction in rule
heads; such rules can be equivalently split into multiple rules with atomic heads.
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reasoner. The key feature of our query answering technique is that it tries to
delegate most of the computational workload to the RL reasoner, thus minimis-
ing the use of the less scalable OWL reasoner. Given a Horn OWL 2 ontology
O, a dataset D, and a CQ Q, we compute the certain answers cert(Q,O,D) in
three steps, which we summarise next and schematically depict in Figure 1.

Step 1: Lower and Upper Bound Query Answers. Our first step is to
compute two OWL 2 RL ontologies OL (the lower bound ontology) and OU

(the upper bound ontology) satisfying the following property: cert(Q,OL,D) ⊆
cert(Q,O,D) ⊆ cert(Q,OU ,D). Since both OL and OU are OWL 2 RL ontolo-
gies, we can then use an RL reasoner to compute the lower bound cert(Q,OL,D)
and the upper bound cert(Q,OU ,D). If the setG = cert(Q,OU ,D)\cert(Q,OL,D)
of tuples in the “gap” between lower and upper bound is empty, then the set
of certain answers cert(Q,O,D) coincides with both lower and upper bounds, in
which case we don’t need to resort to the OWL reasoner. This step exploits the
techniques in our previous work [27], which we briefly recapitulate in Section 4.

Step 2: Computing Ontology and Dataset Fragments. In the second
step we exploit the lower and upper bound ontologies and query answers to
identify (small) fragments Of of O and Df of D satisfying: O ∪ D |= Q(�a) iff
Of ∪Df |= Q(�a) for each �a ∈ G. Thus, Of and Df are sufficient for determining
whether each tuple in G is indeed a certain answer to Q. The fragments Of and
Df depend on both the input query Q and the tuples in G. This novel technique
is the main contribution of our paper, and it is described in Section 5.

Step 3: Calling the OWL Reasoner. In the final step we resort to the OWL
reasoner to verify whether Of ∪ Df |= Q(�a) for each tuple �a ∈ G. We return
as certain answers the union of the lower bound and the verified tuples in G:
cert(Q,O,D) = cert(Q,OL,D) ∪ {�a ∈ G | Of ∪ Df |= Q(�a)}.

4 Lower and Upper Bound Query Answers

In our previous work [27] we showed how an RL reasoner can be used to efficiently
compute upper and lower bound query answers over arbitrary OWL 2 ontologies.
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In this section, we recapitulate the techniques proposed there. Our description
will be rather informal, and we refer the interested reader to [27] for details.

Lower Bound Answers. RL reasoners are flexible enough to process arbitrary
ontologies on a “best efforts” basis; that is, the reasoner ignores (parts of) the
axioms that are outside OWL 2 RL, thus effectively reasoning with a lower bound
ontologyOL. RL reasoners are guaranteed to be sound (i.e., O |= OL), and hence
all the tuples they compute are indeed certain answers; we can therefore compute
lower bound answers simply by running the RL reasoner as a “black box” on the
input Q, O, and D. For instance, when given our example ontology Oex, dataset
Dex, and query Qex, a typical RL reasoner will reduce Oex to the OWL 2 RL
ontology Oex

L = {T2,T3}, and will compute cert(Qex,Oex
L ,Dex) = {sheep}.

Upper Bound Answers.We transformO into an OWL 2 RL ontologyOU such
thatOU |= O. First, O is normalised into a datalog± programΣ± using a variant
of the structural transformation of first-order logic (see [16,27]). For instance, our
example ontology Oex can be normalised into the datalog± program consisting
of rules P1-P4. The crucial second step is the transformation of the resulting
datalog± program into a (stronger) datalog program ΣU satisfying ΣU |= O;
roughly speaking, ΣU is obtained by Skolemising all existential quantifiers into
fresh constants. For example, the datalog± rules P1 and P4 get transformed into
the rules D1, D4 and D5 to give the following datalog program:

Σex
U = {eats(x, c) ← Animal(x), (D1)

Plant(y) ← eats(x, y) ∧ Herbivore(x), (D2)

⊥ ← Carnivore(x) ∧ Herbivore(x), (D3)

hasParent(x, c1) ∧ hasParent(x, c2)← Carnivore(x), (D4)

⊥ ← c1 ≈ c2}. (D5)

Finally, the datalog programΣU is transformed into the upper bound OWL 2 RL
ontology OU , where OU |= ΣU ; roughly speaking, each rule in ΣU is transformed
into an OWL 2 RL axiom by “rolling up” the rule’s body and head into class
descriptions, while possibly introducing fresh predicates in order to satisfy the
syntactic restrictions of OWL 2 RL. For instance, the datalog rules D1–D5 in
our running example are transformed into the following OWL 2 RL axioms:

Oex
U = {SubClassOf (Animal HasValue(eats c)), (R1)

SubClassOf (Herbivore AllValuesFrom(eats Plant)), (R2)

DisjointClasses(Herbivore Carnivore), (R3)

SubClassOf (Carnivore HasValue(hasParent c1)), (R4.1)

SubClassOf (Carnivore HasValue(hasParent c2)), (R4.2)

DifferentFrom(c1 c2)}. (R4.3)

As a result, we obtain that OU |= O and hence cert(Q,O,D) ⊆ cert(Q,OU ,D).
Clearly, the transformation of O into the upper bound ontology OU will in gen-
eral introduce consequences that are not entailed by the original ontology O.
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To see this, consider again our running example. The axioms R1, R2, A1 and A2
entailObjectPropertyAssertion(eats rabbit c),ObjectPropertyAssertion(eats lion c)
and ClassAssertion(Plant c). We thus get that (in addition to sheep) rabbit and
lion are also answers to Qex, i.e. cert(Qex,Oex

U ,Dex) = {sheep, rabbit, lion}.
However, we have that lion /∈ cert(Qex,Oex,Dex).

The final transformation from ΣU into OU is only required if the RL reasoner
to be used only accepts OWL 2 RL ontologies; our RL reasoner RDFox can
handle datalog rules natively, and this transformation can be dispensed with.

Dealing with Unsatisfiability. An important limitation with the approach
presented in [27] is that, given an ontology O and a dataset D, if OL ∪ D
is satisfiable (i.e., cert(⊥(x),OL,D) = ∅) but OU ∪ D is unsatisfiable (i.e.,
cert(⊥(x),OU ,D) �= ∅), we must check if O ∪ D is satisfiable; if O ∪ D is satis-
fiable, we can still use the above procedure to compute upper bound answers,
but if O∪D is not satisfiable, then everything is entailed and the (upper bound)
answer to any query is trivially the set of all tuples of the appropriate arity that
can be formed from individuals in D. The difficulty is that, when D is large, it
may be impractical to check the satisfiability of O ∪D using an OWL reasoner.

We can now address this issue by using our new hybrid query answering
technique: if cert(⊥(x),OL,D) = ∅, but cert(⊥(x),OU ,D) �= ∅, then in Step 2
we will compute fragments Of and Df for ⊥(x), and in Step 3 we will use these
fragments with an OWL reasoner to compute cert(⊥(x),O,D). Clearly, O ∪ D
is satisfiable iff cert(⊥(x),O,D) = ∅.

5 Computing Ontology and Dataset Fragments

Given an input ontology O, a dataset D and a set of possible answer tuples G,
our goal is to compute small ontology Of ⊆ O and dataset Df ⊆ D such that
Of ∪ Df |= Q(�a) iff O ∪D |= Q(�a) for each tuple �a ∈ G.

5.1 Overview

In a nutshell, our technique for computing Of and Df works as follows.

1. We consider the upper bound datalog rules ΣU and, for each �a ∈ G, we
compute all (minimal) proofs of Q(�a) in ΣU ∪ D. Specifically, we consider
“backward chaining” proofs based on SLD-resolution.

2. We define Df (resp. Σf ) as the set of facts in D (resp. rules in ΣU ) that
have been used in some SLD-resolution proof for some �a ∈ G.

3. Finally, we “trace back” the rules in Σf ⊆ ΣU to the OWL 2 axioms Of ⊆ O
from which they were derived.

To illustrate this process, let us consider our example ontology Oex, data set
Dex and query Qex. In this case, we have {sheep} as the lower bound answer and
{sheep, rabbit, lion} as the upper bound answer; our goal is thus to determine
whether rabbit and lion are indeed certain answers. To this end, we consider
the upper bound datalog program Σex

U , and inspect all the “backward chaining”
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proofs for Qex(rabbit) and Qex(lion) in Σex
U ∪ Dex. Consider for example the

following proof of Qex(rabbit).

S0 := eats(rabbit, y) ∧ Plant(y)

S1 := Plant(c) ∧ Animal(rabbit) via D1

S2 := Animal(rabbit) ∧ eats(x, c) ∧ Herbivore(x) via D2

S3 := eats(x, c) ∧ Herbivore(x) via A2

S4 := Herbivore(x) ∧ Animal(x) via D1

S5 := Animal(rabbit) via A3

S6 := � via A2

Starting from the goal Qex(rabbit) = eats(rabbit, y)∧Plant(y), we can use D1
and the unifier {x �→ rabbit, y �→ c} to obtain the subgoal S1, which, together
with D1, entails S0. Then, we can use rule D2 and the unifier {y �→ c} to obtain
from S1 the new subgoal S2. The first conjunct in S2 can be eliminated using the
fact A2 in Dex to produce S3. From S3 we can use again rule D1 to produce S4.
The first conjunct in S4 can be eliminated using fact A3 in Dex and finally we can
obtain the empty goal by subsequently using fact A2 to eliminate the remaining
atom. We have now shown that {D1,D2,A2,A3} |= Qex(rabbit); therefore, facts
A2 and A3 must be included in Df , and axioms T1 and T2 from Oex, from
which rules D1 and D2 were (respectively) derived, must be included in Of .

To identify all the axioms and facts in O∪D that are relevant to Qex(rabbit)
and Qex(lion), we need to consider all their possible backward chaining proofs.
By doing so, we can show that only axioms T1 and T2, and facts A1, A2 and
A3 are (possibly) relevant to determining the status of rabbit and lion.

5.2 Technical Approach

We start by formalising backward chaining proofs based on SLD-resolution.

Definition 1. A goal is a conjunction of function-free atoms A1∧ . . .∧Am. The
SLD-resolution rule takes as premises a goal and a datalog rule, and it produces
a new goal as follows

A1 ∧ . . . ∧ Am, C1 ∧ . . . ∧ Cq ← B1 ∧ . . . ∧Bp

A2θ ∧ . . . ∧Amθ ∧B1θ ∧ . . . , Bpθ

where θ is the most general unifier of A1 and Cj for some 1 ≤ j ≤ q. The new
goal, together with the rule entail the original goal. An SLD-proof of a goal G0 in

a datalog program Γ is a sequence of goals G0
r1,θ1� G1 � . . . � Gn−1

rn,θn� Gn,
where Gn = � and each Gi+1 is obtained from Gi and rule ri+1 ∈ Γ by means
of a single SLD-resolution with substitution θi+1. Finally, we say that a rule r
is relevant for G0 in Γ if there exists an SLD-proof of G0 in Γ involving r.

SLD-resolution is sound and complete for datalog: for each datalog program Γ ,
CQ Q(�x) = ∃�y(ϕ(�x, �y)) and tuple of constants �a we have Γ |= Q(�a) iff there
exists an SLD-proof of the goal ϕ(�a, �y) in Γ .
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We are now ready to define the relevant fragments Of ⊆ O and Df ⊆ D that
we can use to verify the answers in G using an OWL reasoner.

Definition 2. Let Q, O and D be the input CQ, Horn ontology and dataset
respectively, let ΣU be the upper bound datalog program for O, and let Ξ(·) be
the function mapping each axiom in O into its corresponding set of rules in
ΣU . Finally, let G be the set of tuples between the lower and upper bounds.
The (Q,G)-relevant fragments Of of O and Df of D are defined as follows
Of = {α ∈ O | ∃�a ∈ G and ∃r ∈ Ξ(α) s.t. r is relevant for Q(�a) in ΣU ∪ D},
Df = {α ∈ D | ∃�a ∈ G s.t. α is relevant for Q(�a) in ΣU ∪ D}.

The correctness of our approach is established by the following theorem.

Theorem 1. Let Of and Df be the (Q,G)-relevant fragments of O and D,
respectively. Then, O ∪ D |= Q(�a) iff Of ∪ Df |= Q(�a) for each �a ∈ G.

The full proof of Theorem 1 can be found in our accompanying technical
report.4 The idea behind it is, however, quite straightforward. The ‘if’ direction
follows directly from the fact that Of ∪Df ⊆ O ∪D. For the ‘only if’ direction,
assume that O ∪ D |= Q(�a). From ΣU |= O it follows that ΣU ∪ D |= Q(�a).
By the completeness of SLD-resolution, there exists an SLD proof of Q(�a) in
ΣU ∪ D, and let R be the set of rules used in this proof. By construction, the
axioms in O and facts in D that correspond to rules in R are contained in Of

and Df respectively, and it can be further shown that these axioms entail Q(�a).

5.3 An Optimised Backward Chaining Algorithm

Computing all SLD-proofs for each answer in the gap between lower and upper
bounds can be infeasible in practice with a naive backward chaining algorithm.
Indeed, our problem is more challenging than typical backward chaining reason-
ing in datalog, where computing just a single proof suffices to verify the goal.

In this section, we describe an optimised algorithm for computing the set R�a

of all rules that appear in an SLD proof of Q(�a) in ΣU ∪ D, where the facts in
D are treated as rules with an empty body, i.e., of the form A(�a) ←. To ensure
termination of backward chaining, we apply the well-known tabling technique
[24,22]. To improve performance, we use an aggressive pruning technique that
exploits the upper and lower bound ontologies to detect irrelevant branches in
the backward chaining tree. In the remainder of this section, we describe the
specifics of our implementation of backward chaining.

Backward Chaining with Tabling. Our implementation of backward chain-
ing with tabling is based on the techniques described in [22]. We deviate from
[22] in that our algorithm only terminates once all SLD-proofs of the goal are
computed, and also in that we keep track of all rules used in such proofs.

We first describe our data structures. To keep track of all SLD proofs of a goal
Q(�a) and all rules that occur in them, we maintain a labelled tree tA for each

4 http://tinyurl.com/bl5unv6

http://tinyurl.com/bl5unv6
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encountered subgoal A consisting of a single atom; additionally, we maintain
a similar tree for the original goal Q(�a) (see Figure 2). The tree tA encodes all
proofs of A; each node of tA is labelled with a goal and each edge of tA is labelled
with a pair of a substitution and a datalog rule. The labels of each edge and
the nodes that it connects encode an SLD resolution step, and a branch in tA
encodes an SLD derivation. We associate with tA an answer table, which will
eventually map each grounding of the root goal that proves it to the list of all
relevant leaf nodes in tA for that grounding. We also maintain a global goal table
mapping each relevant subgoal to its corresponding tree (c.f. Figure 2). Finally,
we say that a node u with associated goal A1∧ . . .∧An is linked to a tree t if the
first atom A1 in the goal corresponds to the root of t (e.g. node D1 in Figure 2
is linked to Tree 2); we use the goal table to check whether u is linked to t.

The backward chaining algorithm is initialised with a tree tQ(�a) consisting
of just a root node labelled with the goal Q(�a); then, we add an entry in the
Goal table mapping Q(�a) to tQ(�a) and we associate with tQ(�a) an empty answer
table. After this initialisation step, we evaluate the root node of tQ(�a) using the
recursive procedure described below, which takes as input a node u in a tree t.

Case 1. If u is labelled with �, we have reached a proof of the goal A(�x) la-
belling the root of t. We take A(�a) to be the grounding of A(�x) using the
composition of the substitutions on the path between the root of t and the
node u. We add u to the list associated with A(�a) in the answer table of t.
We then try to resolve A(�a) with the goal of every node that is linked to t.
If we can resolve A(�a) with the goal of such a node v using a substitution θ,
we add a child node v′ to v, we label v with the resolvent, and we label the
edge between v and v′ with the pair 〈A(�a), θ〉. We then recursively evaluate
the node v′.

Case 2. If u is the root node of t, we resolve its goal with all possible rules, we
create a child node for each of the resolvents, label the new nodes and edges
accordingly, and recursively evaluate each of the child nodes.
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Case 3. Otherwise, let A1 ∧ . . . ∧ Am be the goal of u.
3.1. If A1 has not been tabled yet, i.e. it is not in the goal table, we initialise

a tree t′ with root node v, label v with A1, add an entry 〈A1, t
′〉 to the

goal table linking u to t, and recursively process v;
3.2. otherwise, we retrieve the available answers for A1 from its associated

tree, resolve u with those answers, create a child node for each of the
resolvents, and recursively compute each added node.

Pruning. To improve performance, we apply a pruning technique that exploits
the lower and upper bound ontologies. Let v be a node with associated goal
Qv := A1 ∧ . . . ∧ Am. Before recursively evaluating v, we proceed as follows.

– If cert(Qv,OU ,D) = ∅, we terminate the evaluation of the current node as
this branch cannot lead to a proof. This is due to the fact that the rules used
in the backward chaining algorithm are logically equivalent to OU ∪ D.

– If Qv contains no variables, and cert(Qv,OL,D) �= ∅, we create a child node
for v, label it with �, and we label the new edge with the empty substitution
and the set of atoms A1, . . . , Am. We recursively evaluate the new node, after
which we terminate the evaluation of v. We can do so because OL∪D |= Qv,
and we know that the current branch will lead to exactly one proof.

– Otherwise, if A1 contains no variable and cert(A1,OL,D) �= ∅, we create
a child node for v, we label it with the goal A2 ∧ . . . ∧ Am, label the new
edge with the empty substitution and the atom A1, and recursively evaluate
the new node, after which we terminate the evaluation of v. We can do so
because OL ∪ D |= A1, and because v has no other children.

Rule Extraction. The backward-chaining evaluation of the goal Q(�a) results
in a forest of trees encoding all possible proofs of Q(�a) in ΣU ∪ D. In addition
to all proofs of Q(�a), the forest also contains many superfluous derivations that
should be ignored. We now describe an algorithm that traverses the forest and
extracts the set R�a of all rules that participate in proofs of Q(�a). The algorithm
builds the set R�a by carrying out a bottom-up, breath-first search on the nodes
in the forest whose goals appear in proofs of Q(�a). It proceeds as follows.

Step 1 Initialise a set N with all solution nodes in the answer table of tQ(�a).
Step 2 While N is not empty, remove from N a node v with a goal A1∧· · ·∧Am.

If v has a parent, do the following:
2.1. Add the parent of v to N .
2.2. If v is a resolvent of its parent and a rule r ∈ ΣU ∪D, add r to R�a.
2.3. If v is a resolvent of its parent and an answer A from a tree t, retrieve

all solution nodes for A in t and add them to N .

6 Evaluation

We have developed a prototype reasoner to carry out a preliminary evaluation.
Our prototype integrates the RL reasoner RDFox5 and an OWL reasoner, which

5 http://www.cs.ox.ac.uk/isg/tools/RDFox/

http://www.cs.ox.ac.uk/isg/tools/RDFox/
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Table 1. Statistics for datasets

Data DL Horn Existential Classes Properties Axioms Individuals Dataset

LUBM(n) SHI Yes 8 43 32 93 1.7× 104n 105n

FLY SRI Yes 8,396 7,533 24 144,407 1,606 6,308

Table 2. Results for LUBM(40)

Query |V | n |G| tf |Of | |Df | tcheck ttotal
M1 2 3 39 36.4 6 29041 H: 23.3 H: 60.7

M2 3 4 1 37.1 6 29004 H: 4.0 H: 42.1

M3 4 6 16 38.2 6 29054 H: 8.4 H: 47.6

M4 2 3 30 36.0 6 29032 H: 23.3 H: 60.2

M5 3 4 4 39.4 6 29010 H: 24.0 H: 64.3

M6 4 6 29 2,845.8 10 87209 H: 483.0 H: 3339.4

M7 3 5 15 38.0 6 29033 H: 10.3 H: 49.3

M8 3 5 14 39.3 6 29038 H: 11.9 H: 52.2

M9 3 4 10 328.9 12 86785 H: 556.2 H: 886.7

S 1 2 39 310.0 12 86802
H: 1,780.0 H: 2,126.5
P: 16,592.1 P: 16,870.0

in our case can be either HermiT[16] or Pellet[23]. RDFox is used to compute
lower and upper bound query answers (c.f. Step 1 in Section 3), as well as to assist
with pruning during backward chaining (c.f. Section 5.3). The OWL reasoner is
used with the fragments computed by the backward chaining algorithm (c.f. Step
3 in Section 3) to determine the status of any tuples in the gap.

RDFox is a in-memory triple store that supports OWL 2 RL and datalog rea-
soning, and uses shared memory parallel reasoning for increased efficiency and
scalability. An important feature of RDFox is its rapid query response time—this
is particularly relevant during backward chaining, where queries are used in a
crucial pruning optimisation. HermiT and Pellet are well-established OWL rea-
soners that provide support for CQ answering. HermiT can answer tree-shaped
CQs with a single answer variable; Pellet supports SPARQL CQs.

In our experiments we have used LUBM and the Fly Anatomy ontology as
test sets; their key features are summarised in Table 1. All tests were performed
on a 14 core 3.30GHz Intel Xeon E5-2643 with 125GB of RAM, and running
Linux 2.6.32. All times are given in seconds.

Evaluation Results for LUBM. LUBM is a well-known benchmark ontology
that comes with a predefined dataset generator parameterised by the number of
universities. We tested our reasoner on LUBM(40), which contains in its dataset
over 4 million facts about 40 universities. We used the 14 standard LUBM queries
as well as 78 synthetic queries generated using SyGENiA [12].

Using RDFox, we were able to compute lower and upper bound answers for
all 92 queries in less than 20s (c.f. Step 1 in Section 3). As the focus of this paper
is on checking the tuples in the gap between the two bounds of a given query,
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Table 3. Results for FLY

Query |V | n |G| tf |Of | |Df | tcheck (H) ttotal tHermiT

Q1 2 3 803 108.9 224 4515 45.9 155.2 3,465.9

Q2 3 5 342 97.7 224 4054 16.0 114.0 3,179.0

Q3 1 1 28 91.0 217 3712 0.9 92.3 5,863.3

Q4 2 3 25 94.3 233 3762 4.7 99.2 2,944.3

Q5 2 2 518 100.3 222 3712 24.0 124.6 3,243.7

we concentrate our attention on those queries whose bounds do not coincide.
Only 6 queries show a non-empty gap (Q3, Q45, Q51, Q64, Q67, Q69)—all of them
SyGENiA generated—and, due to the relatively simple nature of the LUBM
ontology, it is inevitable that these queries look very similar. Since the generated
queries tend to produce unrealistically large answers, we added some additional
terms to those queries in order to make them more specific and thus return
smaller answers. The resulting 10 “non-trivial” queries, denoted by M1–M9 and
S, are all tree-shaped CQs, with S being the only SPARQL CQ.6 Performance
on these queries is summarised in Table 2, where |V |, n and |G| denote the
number of variables, the number of triple patterns and the number of gap tuples
for each query respectively; tf , |Of | and |Df | denote the time needed to compute
the relevant fragments Of and Df using backward chaining, and their respective
sizes; tcheck denotes the total time required for checking all the tuples in G using
the OWL reasoner (c.f. Step 3 in Section 3); and ttotal denotes the total time for
answering the query. We have presented timings for Hermit (H) on all queries,
and Pellet (P) on the single SPARQL CQ.

We can observe that backward chaining times were rather modest for all
queries but M6, for which the computed backward chaining tree had a very large
branching factor. We can also observe that for all queries the dataset fragment
Df contains only about 2% of the facts in LUBM(40), while Of contained just
a few schema-level axioms. This significant reduction in size made it possible
for HermiT to verify answer tuples in reasonable time; indeed, query answering
for LUBM(40) is far beyond the capabilities of HermiT or Pellet, and we were
unable to verify even a single answer tuple using either OWL reasoner over the
original ontology and dataset. A standard optimisation applied by RL reasoners
such as OWLim is to classify the original ontology first and add the entailed
subsumption axioms in OL. Although this optimisation closes the gap between
the lower and upper bounds for query S, allowing, for example, OWLim to
compute all answers for S, it has no effect on queries M1–M9.

To test the scalability of our reasoner, we have also evaluated queries M1,
M6, M9 and S against the datasets LUBM(1)–LUBM(40) (results for queries
M2–M5, M7 and M8 are similar to those for M1). The results of the evaluation
are summarised in Figure 3, which shows the timings and memory usage of our
reasoner for the different datasets.

6 All test queries are available at http://tinyurl.com/ccmwvc6.

http://tinyurl.com/ccmwvc6
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Evaluation Results for FLY. Fly Anatomy is a realistic and complex ontology
describing the anatomy of flies, which comes with a dataset containing more
than 6, 000 facts. We have tested our system using 5 realistic queries provided
by the domain experts who are developing the ontology; all are CQs with non-
distinguished variables, so we were only able to use HermiT in the evaluation.

RDFox was able to compute lower and upper bound answers for all 5 queries
in less than 15s, with the bounds being different in all cases. Our results are
summarised in Table 3; columns 1–9 are the same as in Table 2, and column
10 gives the time taken for HermiT to answer the query—in contrast to the
case of LUBM(40), HermiT is able to answer all these queries directly. In each
case, Of contained less than 0.2% of all the schema-level axioms; in contrast,
Df contained about 60% of the facts in the dataset. The reduction in number of
schema-level axioms had a significant effect on performance: our reasoner took
less than 200s per query, whereas HermiT required more than 3, 000s per query.

7 Related Work

In recent years there has been a growing interest in the problem of query an-
swering over ontologies and large-scale datasets. Some OWL 2 reasoners, such
as HermiT, Pellet and RACER, support query answering, but despite intensive
efforts at optimisation they can only deal with modestly-sized datasets [14,15,10].

The idea of using a rule-based engine for query answering over ontologies in the
description logic SHIQ was proposed by Hustadt et al. [11] and implemented
in the KAON2 system. The transformation of the ontology, however, results
in a disjunctive datalog program which is exponential in the worst case. An
alternative approach based on tableaux reasoning and data summarisation was
implemented in the reasoner SHER, which is complete for the description logic
SHIN , but (effectively) supports only SPARQL CQs [7].

Many specialised query answering techniques have been developed for on-
tologies in the QL and RL profiles of OWL 2. RL reasoners such as OWLim,
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Oracle’s and RDFox are based on forward-chaining reasoning. QL reasoners such
as QuOnto [1], Presto [21], and Quest [20] are based on query rewriting. These
reasoners are, however, incomplete for ontologies outside the relevant profile.
Query rewriting techniques have been extended to more expressive Horn Descrip-
tion Logics, and implemented in systems such as REQUIEM [19] and Clipper
[8].

The idea of combining a profile-specific reasoner with a fully-fledged OWL 2
reasoner was proposed in [2], but only for ontology classification. The idea of
transforming the ontology, data, and/or query to obtain upper bound query
answers has also received some attention in the Semantic Web literature. In
addition to our own previous work [27], approximations into OWL 2 QL [13,18]
and into Datalog [25] have also been explored; however, all these techniques are
worst case exponential, and the question of how to deal with cases where upper
and lower bounds do not coincide was not considered.

8 Conclusion

In this paper we have described a hybrid approach for complete query answering
over Horn OWL 2 ontologies. Our technique combines a scalable OWL 2 RL
reasoner with a fully-fledged OWL 2 reasoner s.t. most of the computational
workload is delegated to the RL reasoner, with the OWL 2 reasoner being used
only as necessary to ensure completeness. We have implemented a prototype rea-
soner that integrates the RL reasoner RDFox and the OWL 2 reasoner HermiT.
A preliminary evaluation of our prototype produced very promising results: we
managed to compute in reasonable time the exact answers to a range of queries
over LUBM(40)—results that are far beyond the capabilities of any other OWL
2 reasoner known to us. Our system also outperforms HermiT on the realistic
Fly ontology by at least an order of magnitude. We are currently working on an
extension to support query answering over arbitrary OWL 2 ontologies (and not
just Horn ontologies), as well as on several promising optimisations.

Acknowledgements. The research was supported by the EPSRC funded Ex-
ODA and Score! projects, the Royal Society, and the EU FP7 Optique project.
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