
An Improved Hardware Implementation
of the Quark Hash Function

Shohreh Sharif Mansouri(B) and Elena Dubrova

Department of Electronic Systems, Royal Institute of Technology,
Stockholm, Sweden

{shsm, dubrova}@kth.se

Abstract. We present an implementation of U-Quark, the lightest
instance of the Quark family of hash functions, which is optimized for
throughput. The throughput is increased by converting the Feedback
Shift Registers (FSRs) of Quarks permutation block from the original
Fibonacci configuration to the Galois configuration. In this way, the com-
plex feedback functions of the FSRs are decomposed into several simpler
feedback functions. As a result, the throughput of U-Quark is increased
by 34 % on average without any area penalty. The power consumption
of the hash function also improves by 19 %.

1 Introduction

The Quark family of cryptographic hash functions [1] is based on a sponge con-
struction, an architecture that minimizes memory requirements and targets the
implementation of cryptographic algorithms in highly-constrained environments
such as RFID systems [2]. As a sponge construction, Quark can be used for
message authentication, stream encryption or authenticated encryption.

The permutation block of Quark is based on shift registers and is inspired
by two low-weight ciphers: the stream cipher Grain [3–5] and the block cipher
KATAN [6].

Three Quark instances have been proposed [1]: U-Quark, which is the smallest
design and provides at least 64-bit security against crypto-attacks such as colli-
sions, multicollisions, distinguishers, etc.; D-Quark, which is the second lightest
instance of Quark and provides at least 80-bit security against the same attacks;
S-Quark, which is the heaviest instance and provides at least 112-bits security
against the attacks. For all three instances, the level of security against pre-image
attacks is double compared to the other attacks (i.e. it is 128 bits for U-Quark,
160 bits for D-Quark and 224 bits for S-Quark).

In this work we optimize the implementation of Quark in terms of through-
put. To do so, we modify Quark’s permutation block without changing its func-
tionality (and thus also without losing any of its security properties). We trans-
form the Non-Linear Feedback Shift Registers (NLFSRs) of the permutation
block, originally given in Fibonacci configuration, into Galois NLFSRs. Fibonacci
NLFSRs have feedback only on the input state bit while Galois NLFSRs have

M. Hutter and J.-M. Schmidt (Eds.): RFIDsec 2013, LNCS 8262, pp. 113–127, 2013.
DOI: 10.1007/978-3-642-41332-2 8,
c© Springer-Verlag Berlin Heidelberg 2013

114 S. S. Mansouri and E. Dubrova

several simpler feedbacks on different state bits: the latter are therefore nor-
mally characterized by better throughput. A Fibonacci-to-Galois transformation
for NLFSRs was described in [7]. Here we extend this original transformation so
that it allows dealing with external inputs, multiple outputs and parallel loading,
all features that are needed for U-Quark. Due to the characteristics of U-Quark,
we also need to modify the structure of the hash function for the transformation
to be successful. This modification does not modify the functionality of the hash
function but introduces a 9 cycles latency for the generation of the hash in case
the initial state of the hash function is not fixed and can change from run to
run.

We limit our analysis and our experiments to U-Quark. However, since all
three Quark instances have the same hardware structure, the presented technique
can be applied also to D-Quark and S-Quark.

The hash function throughput is increased by 34 %, without any area over-
head, while its power consumption is also reduced by 19 %.

2 The Quark Hash Function

2.1 General Structure

The operation of a sponge construction is shown in Fig. 1.
A sponge construction is characterized by different parameters: the output

length n, the rate (or block size) r and the capacity c [1,2].
The size of the internal state of a sponge construction is given by the width

b = r + c. The state bits are denoted as:

s0, s1, ..., sb−1

P
er

m
ut

at
io

n

P
er

m
ut

at
io

n

P
er

m
ut

at
io

n

P
er

m
ut

at
io

n

P
er

m
ut

at
io

n

P
er

m
ut

at
io

n

Initialized to a specific
fixed value

xo
r

xo
r

xo
r

xo
r

Fig. 1. Operation of a sponge construction

An Improved Hardware Implementation of the Quark Hash Function 115

clk

L−LFSRl10
clk clk

x0y0l0
X−NFSR

H
output bits

Y−NLFSR

r bits

G−feedback F−feedbackD−feedback

Fig. 2. Quark’s permutation block

A sponge construction goes through three phases:

– Initialization: The initial state of the hash function is set to a fixed value,
which is specific for every Quark instance; the message is padded by append-
ing a ‘1’ bit followed by the minimal number of ‘0’ bits, so that the length of
the message is a multiple of r.

– Absorbing phase: One r-bit message block is XORed with the last r bits of
the state (sb−r, ..., sb−1). Then, a permutation P is applied to all the state
bits. The process is repeated until all message bits have all been “absorbed”.

– Squeezing phase: the last r bits sb−r, ..., sb−1 of the state are returned as
output, then the permutation P is applied, and the process is repeated until
n bits have been “squeezed out”.

All instances of Quark are parametrized by different values of n, r and c. For all
instances of Quark, n is constrained to be equal to b = c + r.

The sponge construction can be implemented serially, with a single permu-
tation block. In alternative, to increase throughput, it can be parallelized by
introducing more than one permutation block. This last solution is not taken
into account in this work.

2.2 Permutation

Quark’s permutation block is inspired by Grain [3–5] and KATAN [6]. Its struc-
ture is shown in Fig. 2.

The permutation block contains two b/2 = m NLFSRs, called X-NLFSR and
Y-NLFSR, whose state bits are respectively denoted as:

x0, x1, ..., xm−1

and
y0, y1, ..., ym−1

It also contains a k = �log2 (4b)� LFSR, called L-LFSR, whose state bits are
denoted as:

l0, l1, ..., lk−1

Thus, the permutation block contains b + k state bits split between the three
feedback shift registers. These should not be confused with the b state bits
s0, s1, ..., sb−1 of Quark described in Sect. 2.1.

116 S. S. Mansouri and E. Dubrova

A permutation P takes 4b cycles to complete. The permutation is split be-
tween three phases (not to be confused with the sponge construction phases
described in Sect. 2.1):

– Initialization: The X-NLFSR is initialized with the b/2 lowest-grade state bits
of Quark (x0 = s0, ..., xm−1 = sm−1). The Y-NLFSR is initialized with the
b/2 second lowest-grade state bits (y0 = sm, ..., ym−1 = s2m−1). The L-LFSR
is initialized with all ones (l0 = 1, ..., lk−1 = 1).

– State Update: The permutation block is clocked for 4b cycles. For the X-
NLFSR, elements xi are updated to xi+1 for 0 ≤ i < m− 1; xm−1 is updated
to f(x, y) ⊕ h(x, y, l). For the Y-NLFSR, elements yi are updated to yi+1 for
0 ≤ i < m − 1; ym−1 is updated to g(y) ⊕ h(x, y, l). For the L-LFSR, li is
updated to li+1 for 0 ≤ i < k − 1; lk−1 is updated to d(l). The functions
f(x, y), g(y), d(l) and h(x, y, l) vary between the three Quark instances. U-
Quark’s functions are reported in Sect. 2.3.

– Output Write-Back : The updated state bits of Quark are read from the X-
NLFSR and the Y-NLFSR. The b/2 lowest-grade state bits are read from the
X-NLFSR (s0 = x0, ..., sm−1 = xm−1). The b/2 second lowest-grade state bits
are read from the Y-NLFSR (sm = y0, ..., s2m−1 = ym−1).

2.3 U-Quark

For U-Quark, r = 8, c = 128 and n = b = 136. The LFSR contains k =
�log2 (4b)� = 10 state bits. The functions f(x, y), g(y), d(l) and h(x, y, l) are
respectively equal to:

g(y) = y0 ⊕ y7 ⊕ y16 ⊕ y20 ⊕ y30 ⊕ y35 ⊕ y37 ⊕ y42 ⊕ y51 ⊕
y54 ⊕ y49 ⊕ y58y54 ⊕ y37y35 ⊕ y15y7 ⊕ y54y51y42 ⊕
y35y30y20 ⊕ y58y42y30y7 ⊕ y54y51y37y35 ⊕ y58y54y20y15 ⊕
y58y54y51y42y37 ⊕ y35y30y20y15y7 ⊕ y51y42y37y35y30y20

f(x, y) = y0 ⊕ x0 ⊕ x9 ⊕ x14 ⊕ x21 ⊕ x28 ⊕ x33 ⊕ x37 ⊕
x45 ⊕ x52 ⊕ x55 ⊕ x50 ⊕ x59x55 ⊕ x37x33 ⊕ x15x9 ⊕
x55x52x45 ⊕ x33x28x21 ⊕ x59x45x28x9 ⊕ x55x52x37x33 ⊕
x59x55x21x15 ⊕ x59x55x52x45x37 ⊕ x33x28x21x15x9 ⊕
x52x45x37x33x28x21

h(x, y, l) = l0 ⊕ x1 ⊕ y2 ⊕ x4 ⊕ y10 ⊕ x25 ⊕ x31 ⊕ y43 ⊕ x56 ⊕
y59 ⊕ y3x55 ⊕ x46x55 ⊕ x55y59 ⊕ y3x25x46 ⊕ y3x46x55 ⊕
y3x46y59 ⊕ l0x25x46y59 ⊕ l0x25

d(l) = l0 ⊕ l3

An Improved Hardware Implementation of the Quark Hash Function 117

3 Intuitive Idea

To improve the throughput of Quark’s hash function, we need to identify the
location of the critical path in the synthesized design, i.e. the longest combina-
tional propagation delay which determines the throughput of the system.

The longest combinational delays in U-Quark are all located within the NLF-
SRs in the permutation block, i.e. they are all paths starting from a flip-flop in
the Y-NLFSR or the X-NLFSR, passing through the f(x, y), the g(y) and the
h(x, y, l) functions and ending on a flip-flop of the X-NLFSR or the Y-NLFSR.
If these paths can be made faster, Quark’s performances will improve.

To speed up the paths, in Sect. 5 we transform the Fibonacci NLFSRs of
the hash function into Galois NLFSRs, while at the same time transforming
the h(x, y, l) function so that it has lower propagation delays compared to the
original function. We use an extended version of the Fibonacci-to-Galois FSR
transformation proposed in [8], which also supports external input signals, multi-
ple outputs and efficient parallel loading. We also modify the structure of Quark
(without any functional modification) due to the impossibility of retrieving the
highest-grade bits of the Y register in the Galois hash function. This transfor-
mation adds a 9 cycles overhead in the number of cycles required to calculate
the hash in case the initial state is not fixed and can change from run to run,
but does not modify the functionality of the system and thus does not have any
effect on its security properties.

4 NLFSR Preliminaries

In this paper we define as Feedback Shift Register (FSR) a register composed
of a sequence of n state bits xi (note that the notation used in this section has
no relation with the notation used in Sect. 2) that has certain properties. The
next value fi of every state bit in the FSR is calculated as a function of the
current FSR state (the sequence of all xi) and, possibly, some external inputs
yi. Functions fi are said to be update functions.

4.1 Fibonacci and Galois FSRs

FSRs can be categorized into Fibonacci FSRs and Galois FSRs.
In a Fibonacci FSR, all update functions have the form fi = xi−1 except the

first, for which fn−1 = g(x, y):

fn−1 = g(x, y)
fn−2 = xn−1

...

f1 = x2

f0 = x1

118 S. S. Mansouri and E. Dubrova

xn−1

xn−1

xn−3
... xxn−2 x2 x

x ... xxn−2 n−3 x2 x

1 0

1 0

A

B

Fig. 3. (A) A Fibonacci FSR; (B) A Galois FSR

A

B

Fig. 4. (A) LFSR; (B) NLFSR

In a Galois FSR the update functions are in the form:

fn−1 = gn−1(x, y)
fn−2 = xn−1 + gn−2(x, y)
...

f1 = x1

f0 = x0

Example Fibonacci and Galois FSRs are shown in Fig. 3. Fibonacci FSRs are
thus special cases of Galois FSRs.

4.2 LFSRs and NLFSRs

FSRs can be categorized into Linear FSRs (LFSRs) and Non-Linear FSRs (NLF-
SRs) [9].

In a linear FSR, all update functions are sums (XORs) of the state bits and
the external input bits.

In a Non-Linear Feedback Shift Registers (NLFSRs), the update functions
are sums of product terms, with the product terms being products (ANDs) of
state bits and external input bits.

Example LFSRs and NLFSRs are shown in Fig. 4.

An Improved Hardware Implementation of the Quark Hash Function 119

4.3 Equivalent FSRs

Two FSRs are said to be equivalent if the sequence of all their output bits are
always identical [7]. Often the only output bit of an FSR is bit x0, i.e. the last
bit in the FSR chain. However, when FSRs are used in cryptographic systems
such as stream ciphers or hash functions, often many of their state bits are used
as output bits, i.e. inputs for external functions.

5 NLFSRs Transformation

A Galois FSR has usually better timing compared to an equivalent Fibonacci
FSR, due to the fact that it has several simple update functions instead of a
single, complex one [7,8,10].

There exist standard and well-known techniques to transform a Fibonacci
LFSR into an equivalent Galois LFSR [7]. A transformation for NLFSRs has
been proposed in [7].

5.1 Transformation Overview

The transformation in [7] considers only FSRs in which the output corresponds
to the last state bit x0 only.

The transformation in [7] consists in “moving” a set of product terms P from
any update function fi to any update function fj with j < i. The transformation
is restricted to product terms containing only variables xi and no external inputs
yi. When moving a product term, the indexes of each variable xk in each product
term in P is changed to xk−i+j . The transformation can be applied multiple
times, i.e. it is possible to move some product terms from update function fi to
update function fj and then move some other products from update function fi
to update function fk.

To guarantee the equivalence of a Fibonacci NLFSR to a Galois NLFSR, it
is sufficient that no product term is shifted to an update function of grade lower
than the minimum terminal bit τmin, which is calculated as:

τmin = max
pi∈PT

(max index (pi) − min index (pi))

where PT is the set of all product terms; min index(pi) and max index(pi)
denote respectively the minimum and maximum index of the variables xk in
product term pi.

Note that an “implicit” constraint when moving the products is that no
product term pi can be moved to an update function of grade lower than n−1−
min index(pi) (which would result into at least one variable having a negative
index).

Proof of equivalence between the Fibonacci and the Galois FSRs can be found
in [7].

Figure 5 shows a Fibonacci FSR and an equivalent Galois FSR in which one
product term has been moved.

120 S. S. Mansouri and E. Dubrova

A

B

SAME OUTPUT STREAM

Fig. 5. (A) Original Fibonacci NLFSR; (B) Galois NLFSR

5.2 Multiple Outputs

If an FSR has multiple outputs, i.e. some of its internal state bits except the last
are used as inputs for some external functions, then the transformation proposed
in [7] cannot guarantee the equivalence between the original and the transformed
FSRs.

However, we note that the equivalence can be guaranteed as long as no prod-
uct term is moved to an update function having grade higher than Mo, where
Mo denotes the grade of the highest-grade state bit xMo used as an input for
an external block. In other words, the lowest-grade non-trivial update function
must have a higher grade than that of the highest-grade state bit which is an
output of the FSR.

Figure 6 shows a correct and an incorrect Fibonacci-to-Galois transformation.

5.3 Moving External Inputs

If an FSR receives as input some external bits yi which are part of another FSR
composed of a cascade of flip-flops, then we note that it is possible to move
product terms containing a combination of x and y bits from update function
i to update function j if, at the same time as the indexes of the x terms are
modified, the indexes of the yi bits are also decreased from yi to yi−j .

Figure 7 shows how a product term containing an input coming from an
external FSR can be moved.

5.4 Parallel Loading

For the original and the transformed FSRs to be equivalent (having the same
output stream), care must be taken to how the FSRs are loaded. If the FSRs
are loaded serially, then no modification is needed. If the FSRs are loaded in
parallel, then it is necessary to modify the initial value that is loaded in the
Galois FSR (the initial values of the Fibonacci and Galois FSRs must be different
for the output streams to be identical). This solution was described in [11]. The

An Improved Hardware Implementation of the Quark Hash Function 121

NOT CORRECT

CORRECT

CORRECT

CORRECT

A

B

C

Fig. 6. (A) Original Fibonacci FSR; (B) Incorrectly transformed FSR (a non-trivial
update function is righter than where the first output bit is taken); (C) Correctly
transformed FSR (the last non-trivial output function is lefter than where the first
output bit is taken)

computation is well-suited for fixed initialization values but is too costly in terms
of hardware to do on-the-fly for values that are unknown before run time.

We here note that it is possible to modify the structure of the Galois FSR
so that it can be loaded in parallel with the same value of the Fibonacci FSR,
while preserving the equivalence between the FSRs. The Fibonacci FSR and the
Galois FSR are loaded in parallel with the same value, but the update functions
of the Galois FSR are “turned on” one by one: in the first cycle, all update
functions except the highest-graded are forced to be trivial, in the second all
update function except the first two are forced to be trivial, and so on until all
update functions are turned on. The outputs of the two FSRs are then identical.

An example Fibonacci FSR and an equivalent parallel-loading Galois FSR are
shown in Fig. 8. The enable signals for the update functions are indicated in red.
The two FSRs are loaded with the same initial value. The update functions of
the Galois FSR are turned on one by one. The outputs of the FSRs are identical
as long as the transformation satisfies the other constraints given in this section.

5.5 Design Space Exploration

More than one Galois NLFSR equivalent to a given Fibonacci NLFSR can in
general be obtained. In general, the performances will vary between the different
solutions because some will have longer feedback functions while others will have
shorter ones. To explore the design space and find the best solution in terms of
throughput, we used a modified version of the heuristic algorithm developed

122 S. S. Mansouri and E. Dubrova

external FSR

external FSR

CORRECT

CORRECT

A

B

Fig. 7. FSR with external inputs: (A) Original Fibonacci FSR; (B) Transformed FSR

in [12]. The algorithm takes as input a Fibonacci FSR and a list of allowed
update functions, i.e. update functions where the products can be placed. In
output, the algorithm generates an efficient (high-throughput) Galois FSR. The
algorithm was modified so that it supports shifting external signals along with
internal ones.

The algorithm tries to place the product terms into the update functions in
an efficient way, trying to minimize a cost function, which is an approximation
of the critical path of the system.

6 U-Quark’s Transformation

6.1 Structural Modification

The operation of U-Quark can be described as follows: the permutation block
is initialized with the initial value and runs continuously. A counter counts con-
tinuously from 0 to 543 and then loops back to 0. When the counter value is 0
the L-LFSR state bits are resetted at the all-ones state. If the hash function is
in the absorbing phase, the update functions g67, ..., g60 of the Y-NLFSR state
bits y67, ..., y60 are substituted with the update functions g∗

67, ..., g
∗
60, where the

functions g∗
67, ..., g

∗
60 are obtained by XORing the values of g67, ..., g60 with the

next 8 message bits. The outputs are taken from the update functions g67, ..., g60
when the value of the counter is 0 and the message bits are finished (during the
squeezing phase).

We will show that the functions on which U-Quark’s Y-NLFSR product terms
can be moved have grade between 67 and 59 and preliminarily we decide to use

An Improved Hardware Implementation of the Quark Hash Function 123

b da c e f
b c d e

d
c
b

c
b
a

b
a

a
a

f+bc
e+ab f+bc

f+bc
f+bc

e+ab
e+ab

d+a(f+bc)
... d+a(f+bc)

...

cy
cl

e

5
4
3
2
1

cy
cl

e

5
4
3
2
1

A

B

c d e
dcb

b da e f
f
e

a
f

c
b
a

cbad e f+bc
bae+ab... d f+bc...

...

...

update function becomes active here

...

en
ab

le
 v

al
ue

s 1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0

1 1 1 1 1 1
1 1 1 1 1 1

same values

Fig. 8. (A) Original Fibonacci FSR; (B) Transformed parallel-loading FSR. In red
are indicated the enable signals for the update functions. In this example, the only
non-trivial update functions become active at cycles 1 and 3 respectively

all of the available feedback functions for product placements. This means that
the lowest-grade non-trivial feedback function of the Y-NLFSR will be g59 and
the original values of g67, ..., g60 are not available due to the considerations in
Sect. 5 (only the state bits having grade lower than 59 match in the original and
the transformed FSRs). However we observe that the values of g67, ..., g60 appear
on the values g58, ..., g51 with a 9-cycle delay.

If the initialization value is programmable and can change from run to run,
we transform U-Quark into the structure of Fig. 9: the hash function is initialized
with the same value as for the original hash and then the system is clocked for
9 cycles turning on the feedback functions one-by-one, as discussed in Sect. 5.
During the absorbing phase, when the counter value is 9, the update functions
g58, ..., g51 of the Y-NLFSR state bits y58, ..., y51 are substituted with the update
functions g∗

58, ..., g
∗
51, where the functions g∗

58, ..., g
∗
51 are obtained by XORing the

values of g58, ..., g51 with the next 8 message bits. During the squeezing phase,
the outputs are taken from the update functions g58, ..., g51 when the value of
the counter is 9. The L-LFSR is reset to the all-ones state when the value of the
counter is 0.

124 S. S. Mansouri and E. Dubrova

msg bits
available

Permutation
block

g
67

:g
60*

*

clk67 60
update

functions

g :g

msg bits
finished

clk

msg bits
available

Permutation
block

clk
msg bits
finished

clk

output bits

message
cnt=0

original system

counter

output bits

message

update
functions

g :g58 51

*
*

g:
g

85
15

cnt=9

transformed system

counter
0−543 0−543

Fig. 9. (left) Original U-Quark; (right) Transformed U-Quark

If the initialization value is fixed and does not change, as is usually the case
with low-weight hash functions, then we load the hash function with the initial
value, load the L-LFSR with all ones, and run U-Quark offline (in a simulator)
for 9 cycles, turning on the feedback functions one by one. The state of the
permutation block after the 9th cycle is stored as the initial value into the hash
function. The absorption of the new message bits and the squeezing of the digest
bits happen both on g58, ..., g51 when the value of the counter is 0. This solution
allows skipping the overhead of the block necessary to turn on the feedback
functions one by one and the 9-cycles latency, since the cipher is clocked offline,
in a simulator, for the first 9 cycles.

6.2 Updated X-NLFSR

For the X-NLFSR in U-Quark, the product term with the maximal difference
in variable indexes is x9x28x45x59, i.e. τmin = 50. Product terms cannot be
allocated to feedback functions xi of grade i < 56 because bit x56 is used as an
input in function h(x, y, l). We decide to reserve the first three feedback functions
for h(x, y, l). Therefore, except for the product term x0, which cannot be moved,
we allocate all other product terms to feedback functions xi of grade i ≤ 64.

The following Galois NLFSR is obtained by the algorithm developed in [12]
and described in Sect. 5.5 (for the values of h67, h66 and h65 see Sect. 6.4):

f67 = x0 ⊕ y0 ⊕ h67

f66 = x67 ⊕ h66

f65 = x66 ⊕ h65

f64 = x65 ⊕ x30x34 ⊕ x49 ⊕ x34 ⊕ x42 ⊕ x47

f63 = x64 ⊕ x51 ⊕ x55x51x17x11 ⊕ x17

f62 = x63 ⊕ x47x40x32x27x23x16

An Improved Hardware Implementation of the Quark Hash Function 125

f61 = x62 ⊕ x53x49x46x39x31

f60 = x61 ⊕ x30x26x45x48 ⊕ x38x45x48 ⊕ x2

f59 = x60 ⊕ x1x20x37x51 ⊕ x6 ⊕ x1x7

f58 = x59

f57 = x58 ⊕ x23x18x11 ⊕ x49x45

f56 = x57 ⊕ x22

6.3 Updated Y-NLFSR

For the Y-NLFSR, the product term with the maximal difference in variable
indexes is y7y30y42y58, i.e. τmin = 51. Product terms cannot be allocated to
feedback functions yi of grade i < 59 because bit y59 is used as a input in
function h(x, y, l). We decide to reserve the first three feedback functions for
h(x, y, l). Therefore, we allocate all other product terms to feedback functions
xi of grade i ≤ 64.

The following Galois NLFSR is obtained by the algorithm developed in [12]
and described in Sect. 5.5 (for the values of h67, h66 and h65 see Sect. 6.4):

g67 = y0 ⊕ h67

g66 = y67 ⊕ h66

g65 = y66 ⊕ h65

g64 = y65 ⊕ y27 ⊕ y32 ⊕ y34 ⊕ y39 ⊕ y48 ⊕ y51

g63 = y64 ⊕ y47y38y33y31y26y16 ⊕ y50y47y33y31

g62 = y63 ⊕ y2 ⊕ y11 ⊕ y53y49 ⊕ y32y30 ⊕ y10y2

g61 = y62 ⊕ y48y45y36 ⊕ y29y24y14 ⊕ y52y36y24y1

g60 = y61 ⊕ y51y47y13y8 ⊕ y51y47y44y35y30 ⊕ y28y23y13y8y0

g59 = y60 ⊕ y41 ⊕ y50y46y43y34y29 ⊕ y12

6.4 Updated h Function

We define the h(x, y, l) function as h67 because it is fed to state bits x67 and y67
of the two NLFSRs. The hx,y,l function is split into the three functions h67, h66

and h65:

h67(x, y, l) = l0 ⊕ x1 ⊕ y2 ⊕ y3x55 ⊕ l0x25x46y59 ⊕ l0x25

h66(x, y) = y2x45x54 ⊕ y2x44y58 ⊕ y2x21x45 ⊕ x3 ⊕ y58

h65(x, y) = x44x53 ⊕ x53y57 ⊕ y8 ⊕ x23 ⊕ x29 ⊕ y41 ⊕ x54

7 Implementation Results

Table 1 reports the maximal operating frequency of U-Quark after applying the
transformation described in Sect. 6, as well as area and power figures. The im-
provements over the original hash function are also reported.

126 S. S. Mansouri and E. Dubrova

Table 1. Implementation results

Frequency (GHz) Area (µm2) Power (µW)

Original 1.86 4956 14.8
Optimized 2.50 5029 12.0
Improvement 34 % 0 % 19 %

Results were obtained by designing the hash functions at Register Transfer
Level (RTL) in Verilog, and then synthesizing the code for best performances
using Cadence RTL Compiler for the TSMC 90 nm ASIC technology. Power re-
sults were obtained by running gate-level simulation on the obtained netlist,
using random test vectors and a 1 MHz operating frequency, and using the ob-
tained toggle values to estimate the power consumption through the synthesis
tool.

The transformed U-Quark has a 34 % higher throughput compared to the
original Quark and consumes 19 % less power. We think that the power im-
provement is due to the shorter combinational paths in the transformed hash
function, which allow the synthesis tool better optimization opportunities. The
area of the original and the transformed hash functions are very close. The only
drawback of the transformation is therefore the 9 cycles latency in the produc-
tion of the hash, in case the initial value of the cipher is not fixed and can change
from run to run.

8 Conclusion

In conclusion, we have shown that it is possible to considerably improve the
hardware timing figures of the Quark hash function by applying a Fibonacci-
to-Galois transformation of its feedback shift registers. We have extended the
NLFSR Fibonacci-to-Galois transformation described in [7] so that it can sup-
port U-Quark’s FSRs.

We could obtain a 34 % better throughput and a 19 % lower power con-
sumption, without any area overhead. The transformation is very easy to apply
because it only requires a modification of the feedback functions at RTL. If the
initial state of the hash function is programmable and can change from run to
run, a 9 cycles latency in the production of the hash is inserted. If the initial
state is fixed, then no additional latency is inserted.

Acknowledgment. This work was supported in part the research grant No 621-2010-
4388 from the Swedish Research Council and in part by the research grant No SM12-
0005 from the Swedish Foundation for Strategic Research.

References

1. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: quark: a lightweight
hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
1–15. Springer, Heidelberg (2010)

An Improved Hardware Implementation of the Quark Hash Function 127

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008)

3. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream
ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008)

4. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–
1618, July 2006

5. Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. Int. J. Wire. Mob. Comput. 5, 48–59 (2011)

6. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

7. Dubrova, E.: A transformation from the Fibonacci to the Galois NLFSRs. IEEE
Trans. Inf. Theory 55(11), 5263–5271 (2009)

8. Mansouri, S.S., Dubrova, E.: An improved hardware implementation of the Grain-
128a stream cipher. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 278–292. Springer, Heidelberg (2013)

9. Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)
10. Mansouri, S., Dubrova, E.: An improved hardware implementation of the Grain

stream cipher. In: 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools (DSD), pp. 433–440, September 2010

11. Dubrova, E.: Finding matching initial states for equivalent NLFSRs in the Fi-
bonacci to the Galois configurations. IEEE Trans. Inf. Theory 56(6), 2961–2967
(2010)

12. Chabloz, J.-M., Mansouri, S.S., Dubrova, E.: An algorithm for constructing a
fastest Galois NLFSR generating a given sequence. In: Carlet, C., Pott, A. (eds.)
SETA 2010. LNCS, vol. 6338, pp. 41–54. Springer, Heidelberg (2010)

	An Improved Hardware Implementation of the Quark Hash Function
	1 Introduction
	2 The Quark Hash Function
	2.1 General Structure
	2.2 Permutation
	2.3 U-Quark

	3 Intuitive Idea
	4 NLFSR Preliminaries
	4.1 Fibonacci and Galois FSRs
	4.2 LFSRs and NLFSRs
	4.3 Equivalent FSRs

	5 NLFSRs Transformation
	5.1 Transformation Overview
	5.2 Multiple Outputs
	5.3 Moving External Inputs
	5.4 Parallel Loading
	5.5 Design Space Exploration

	6 U-Quark's Transformation
	6.1 Structural Modification
	6.2 Updated X-NLFSR
	6.3 Updated Y-NLFSR
	6.4 Updated h Function

	7 Implementation Results
	8 Conclusion

