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Abstract. It is a popular challenge to design authentication protocols
that are both privacy-friendly and scalable. A large body of literature
in RFID is dedicated to that goal, and many inventive mechanisms have
been suggested to achieve it. However, to the best of our knowledge,
none of these protocols have been tested so far in practical scenarios.
In this paper, we present an implementation of the OSK protocol, a
scalable and privacy-friendly authentication protocol, using a variant by
Avoine and Oechslin that accommodates it to time-memory trade-offs.
We show that the OSK protocol is suited to certain real-life scenarios, in
particular when the authentication is performed by low-resource mobile
devices. The implementation, done on an NFC-compliant cellphone and
a ZC7.5 contactless tag, demonstrates the practicability and efficiency of
the OSK protocol and illustrates that privacy-by-design is achievable in
constrained environments.

Keywords: RFID authentication · Implementation · Time-memory
trade offs · Privacy

1 Introduction

A major research topic in RFID is the development of authentication protocols
that respect the privacy of the users, while still being efficient enough to be
applicable in large-scale systems. When the time needed by the authentication
process is not negligible, the user must hold the card steady in front of the reader
until reception of an audio or visual signal. Long authentication processes are
not practical in access control systems where delaying the customer flow is not
acceptable for example in mass transportation or cultural events. It is generally
agreed upon that approximately 200 ms can be dedicated to grant or deny the
access to a customer in a flow [10].

Classical challenge-response protocols such as ISO/IEC 9798-2.2 [14] can be
privacy-friendly if the tag (prover) does not send its identifier in the clear to
the reader (verifier). In such a case, the reader must find the tag identifier by
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performing an exhaustive search in its database. For example, in a system man-
aging 220 tags and a reader capable of performing 220 cryptographic operations
per second, the authentication of a tag takes half a second on average, which is
beyond the time threshold that can be allocated to the security operations.

Several protocols have been designed to provide privacy in the authentica-
tion. An additional property, named forward privacy, ensures that if a tag is
compromised at one point, an adversary is not able to trace it in the past (given
past communication traces). An example of such a protocol is the OSK protocol,
proposed by Ohkubo, Suzuki and Kinoshita in [20]. It may be regarded as one
of the most privacy-friendly protocol among the ones that allow for an efficient
authentication procedure based on symmetric-key cryptography [1].

An implementation of this protocol was previously done in [6]. It uses rain-
bow tables accommodated for OSK, as proposed by Avoine and Oechslin in [5].
However, we show in this paper that in the setting of [6], a faster and simpler
approach is viable, namely the full storage. Instead, we focus on systems with
low-resource mobile readers, such as PDA’s or NFC-compliant cellphones, and
adapt this implementation to that context. We show that such a protocol with
very good privacy properties is efficient enough to be used in practice, even in
such constrained environments.

The structure of the paper is as follows. We present the OSK protocol in
Sect. 2 and the adapted time-memory trade-off in Sect. 3. The method of Avoine
and Oechslin for accommodating OSK for time-memory trade-offs is described
in Sect. 4. We describe our implementation and discuss our results in Sect. 5. We
finally conclude in Sect. 6.

2 Ohkubo, Suzuki, and Kinoshita’s Protocol

2.1 Description

The OSK protocol is proposed by Ohkubo, Suzuki, and Kinoshita in [20]. It
is one of the most well-known RFID-devoted authentication protocols and is
the earliest one that achieves forward privacy.1 In the RFID context, forward
privacy is the property that guarantees the security of past interactions of a tag
even if it is compromised at a later stage. Namely, the secret information of a
tag Ti(1 ≤ i ≤ n) is corrupted by an adversary at time t, the adversary can not
associate any transaction with Ti at any time t′ < t.

In the OSK protocol, each tag Ti has an initial secret S0
i that is updated after

each authentication query. The update consists in hashing the current secret
with the one-way function H. Upon reception of the authentication query, the
tag answers by hashing the current secret with a different2 hash function, G.
Figure 1 shows the OSK protocol.
1 It is also known as backward untraceability and used interchangeably in some pa-

pers [16,18,21].
2 Note that although these two functions need to be different, only one algorithm may

be implemented on the tag, and an additional 1-bit input parameter used to select
the function.
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Fig. 1. OSK protocol

System Setup. Each tag Ti of the system is initialized with a randomly chosen
secret S0

i . The n initial secrets are stored in a database, sometimes called back-
end system. In some settings the back-end system and the reader are two different
devices, connected in a way that is considered secure. In some other settings the
back-end system is embedded in the readers.

Interrogation. When the tag is queried by a reader it answers with a response
using the current secret such that σ = G(Sj

i ) and also updates the secret imme-
diately using a different hash function: Sj+1

i = H(Sj
i ).

Search and Identification. When receiving an answer the database searches
for an initial secret S0

i that leads to σ. In other words, it checks whether there
exists i and j such that G(Hj(S0

i )) = σ. To do that, from each of the n initial
secrets S0

i , the reader computes the hash chains as shown in Fig. 2 until it finds
a value matching σ, or until it reaches a given maximum limit L (the “lifetime”
of a tag) on the chain length.

The value σ = G(Sj
i ) does not leak any information to an attacker on the

secret of Ti when G and H behave as pseudo-random functions. However, given
that the authentication process is bounded by L, the OSK protocol is prone
to desynchronization when an adversary queries the tag more than L times. In
such a case, the tag can no longer be authenticated and a privacy issue arises
for a certain type of adversary, capable of detecting the success status of an
authentication (see [15] for a discussion). Fortunately, the synchronization can
be retrieved by the back-end without exchanging the tag; for example, the holder
of a desynchronized tag can ask the system operator to recompute the chain of
his tag.

Fig. 2. OSK table: chains of hashes in the OSK protocol.
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Beside this desynchronization issue – and although the protocol is very effi-
cient when all the tags are synchronized [20] – the worst-case complexity of the
search procedure makes the protocol unsuitable for most practical applications.

2.2 Real-Life Applications

We now discuss the possibility of implementing OSK in real-life applications.
Throughout this article, we chose a system of n = 220 tags with a lifetime of
L = 27, which are reasonable parameters and in accordance with [3].

Online Search. A näıve approach for the server is to only keep the initial secrets
and recompute the n × L possibilities each time it receives a given σ. With a
server capable of 220 cryptographic hash operations per second, this takes 26 s
≈ 1 min on average for these parameters. This is far beyond our limit of 200 ms
for a reasonable identification time.

Full Storage. The other extreme solution consists in storing all the chains in a
table and letting the server perform a simple look-up whenever it receives σ. This
solution has the advantage of requiring no cryptographic operation during the
authentication, which makes the authentication very fast. Unfortunately, this
approach has two major drawbacks.

First of all, a large memory is needed to store the table: given our parame-
ters (n = 220 tags with a lifetime of L = 27, and a hash size of 128 bits), the
full storage approach requires 234 bits = 2GB.3 In a system where readers are
permanently connected to the back-end server, requiring such a memory (RAM)
for the server is not a major problem. However, in systems consisting of mo-
bile readers sporadically connected to the database, the authentication material
should be replicated in each of these low-resource devices. In such a scenario,
this amount of memory is very large for small devices such as PDA’s or handheld
RFID readers, which typically have a memory of 128 MB. It might, however, be
reasonable for more elaborate devices such as NFC-enabled smartphones, which
have several gigabytes of flash memory.

A second issue is that, every now and then, the table needs to be either
computed in a central server and uploaded on the smartphones, or computed by
the smartphones themselves after reception of the first column of the table. This
might take a significant time for both cases, and might be an issue in certain
situations.

In the context of [6] for instance, where a central server is used, the full
storage technique makes sense, and is more simple and efficient.

Time-Memory Trade-off . An intermediate solution is the time-memory trade-
off (TMTO). The idea is to use memory to reduce the authentication time,
making both memory and time suitable to our application. Note that the goal of
the TMTO is here to reach an authentication time that is below the acceptable
threshold of 200 ms. Once this requirement is fulfilled, still decreasing the time
3 If one wants to index the hashes with (i, j) couples, the memory increases by 25 %

(32 bits appended to each of the 128-bit hashes).
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Table 1. Comparison of exhaustive search and table look-up methods (Average case).

Exhaustive search Exhaustive storage

Precomputation 0 N
Online computation N/2 0
Memory (storage) 0 N

does not make sense because (i) this implies a memory cost (ii) the authentication
time would become a negligible factor in the whole communication time.

3 Background on Time-Memory Trade-offs

In this section, we briefly recall the required background on the Time-Memory
Trade-off (TMTO) method. We describe the TMTO technique but make no
attempt at providing a complete survey of it. For an advanced introduction
about this topic we recommend to read [4].

3.1 Introduction

A common search problem in cryptanalysis is finding the preimage of a given
output of a one-way function. The first näıve method is applying the function to
all possible inputs until finding the expected value. Such an exhaustive search
requires N operations in the worst case to find a preimage, where N is the total
size of the problem. This becomes impractical when N is large.

The other extreme is to first construct a look-up table including all the preim-
age values. Afterwards, finding a preimage is done via a table look-up operation
which requires a negligible amount of time. The precomputation process requires
an effort equal to an exhaustive search, but is to be performed only once. Al-
though this method is quite fast during the online search phase, it may require
extreme amounts of memory for large problems.

The comparison of exhaustive search and exhaustive storage methods is de-
picted in Table 1.

3.2 Description

The basic idea of the time-memory trade-off (TMTO) method is to find a com-
promise that has a lower online computation complexity than the exhaustive
key search, and a lower memory complexity than the exhaustive storage. Hell-
man introduced one such trade-off in 1980 [13]. Given a search space of size N ,
and given M words of memory used for the trade-off, the average number of
cryptographic operations T obeys the law N2 ∝ T × M2 [13]. The principle is
the following. During an initial phase, a point is chosen arbitrarily in the search
space, hashed (or ciphered, depending on the target function), and then reduced
to another point in the search space. This reduction is the output of a reduction
function, which is typically a modulo. This process is iterated a given number of
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times, forming a chain of hashes. This whole operation is itself repeated many
times and only the starting points and endpoints of the chains are kept and
stored in a table. Once this table is computed, it is used in the online phase to
accelerate the search. The method is probabilistic given that it is very unlikely
to fully cover the search space, but several tables can be used to obtain a success
probability very close to 1.

A major improvement over Hellman’s original TMTO method [13] was given
by Oechslin in [8]. The precomputed table called rainbow table for this method is
structurally different than Hellman’s TMTO in that it uses a different reduction
function in each column. By doing so, although it might seem to slow the search
process, chain fusions (events in the table construction and the search process
that degrade the efficiency) in the table are much less frequent and can be
detected very easily during their construction. Tables without fusion are said
perfect [9] and will be used in this paper.

We now give the most relevant results in the analysis of rainbow tables.

Theorem 1 The probability of success of a set of � rainbow tables of m rows of
t columns each, for a problem of size N is:

P = 1 −
(
1 − mt

N

)�t

.

Proof See [4].

Theorem 2 The maximum number of chains in a rainbow table of t columns,
for a problem of size N is:

mmax
t =

2N

t + 1
.

Proof See [4].

Theorem 3 The optimal parameters for a rainbow table, for a problem of size
N , given a memory of M and a desired probability of success P ∗ are:

� =
⌈

− log(1 − P ∗)
2

⌉
,

mt =
M

�
,

t =
log(1 − P ∗)

� log
(
1 − mt

N

) ≈ − N

M
log(1 − P ∗).

Proof See [4].

In the following, optimal parameters are implicitly used.
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4 OSK/AO

4.1 Description

Avoine and Oechslin propose in [5] to apply the time-memory trade-offs to the
search procedure of OSK, leading so to a variant known as OSK/AO. The com-
plexity of the search procedure varies from O(1) to O(N), depending on the
amount of memory we are willing to devote to the time-memory trade-off. For
example, they mention that a complexity of O(N2/3) can be reached with a
memory of size O(N2/3).

Avoine, Dysli, and Oechslin also suggest in [3] a variant of the OSK proto-
col that ensures strong authentication, as OSK is originally designed to ensure
identification only, without consequently considering replay attacks. To do so,
[3] suggests using nonces as follows: the reader sends a nonce r in the authentica-
tion request message and the tag answers G(Sj

i ⊕r) along with G(Sj
i ). The latter

value is used by the reader to identify the tag, and the former to authenticate it.
Another advantage of OSK/AO is that the search done in the identification

is intrinsically randomized, which makes timing attacks irrelevant [2].
Now we briefly describe the specific time-memory trade-off technique intro-

duced in [3,5].
In this technique there are two main functions namely a response generating

function F and a reduction function R. F takes two indices as an input (i.e.,
tag index and life time index) and outputs a tag response such that

F : (i, j) �→ G(Hj(S0
i )) = rj

i

The reduction function R is such that

R : rj
i �→ (i′, j′)

where 1 ≤ i, i′ ≤ n, and 0 ≤ j, j′ ≤ L.
The main specificity is that F requires j + 1 cryptographic operations to

be computed, which would drastically lower the efficiency of the search if it
were used directly. What is suggested instead is to use a second kind of-time-
memory trade-off, called the rapid-hash table, to compute F efficiently. This
trade-off table is rather straightforward: the secrets Sj

i of the tags are computed
from life-time values 0 to L, but only L

κ columns are stored. This is illustrated in
Fig. 3. As explained in Sect. 4.3, this means that an average of κ+1

2 cryptographic
operations are required per evaluation of F .

4.2 Analysis

As explained in Sect. 4.1, there are two things that need to be stored in memory:
the rainbow tables and the rapid-hash table. We discuss below the proportion
of memory that should be dedicated to each.

Let ρ denote the proportion of memory dedicated to the rainbow tables. The
trade-off efficiency follows the rule T = N2γ/M2

RT (see [4,13]), with γ being a
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Fig. 3. The rapid-hash table.

small factor depending on the probability of success of the trade-off, and MRT

the memory dedicated to the rainbow tables (that is ρM). As for the rapid-hash
table, we have:

κ =
⌈

N |hash|
MRH

⌉
,

with |hash| the size of a hash, and MRH the memory for the rapid-hash table
(that is (1 − ρ)M). Each operation in the rainbow tables requires an average of
κ+1
2 cryptographic operations in the rapid-hash table. Therefore:

T =
N2γ

M2
RT

κ + 1
2

≈ N2γ

ρ2M2

N |hash|
2(1 − ρ)M

.

The optimal value of ρ can be found easily by deriving:

∂T

∂ρ
= 0 ⇔ ∂

∂ρ

[
1

ρ2(1 − ρ)

]
=

3ρ − 2
(ρ − 1)2ρ3

= 0,

which yields ρopt = 2
3 . In the following, we will thus take the memory for the

rainbow tables to be two thirds of the total memory.4

4.3 Algorithms

We now describe the algorithms used in OSK/AO, namely (i) the algorithm
to compute the rapid-hash table (Algorithm 1), (ii) the algorithm to build the
TMTO tables (Algorithm 2), and (iii) the algorithm to identify the tag (Algo-
rithm 3). The material in this section mostly comes from [6]. The notations used
in the algorithms are given in Table 2.

First, the system randomly generates the initial secrets for all the tags such
that S0

i ∈R {0, 1}λ where 1 ≤ i ≤ n, and λ is the length of the secrets. The
4 Note that this result is compliant with the analysis done in [5]. The development

done in this section is somewhat simpler and matches the notations used in the rest
of this paper.
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Table 2. Notations used throughout the paper.

n Number of tags in the system
L Life time of a tag in the system (in terms of authentication execu-

tions)
� Number of TMTO tables
t Length of the chains of a rainbow table

Sj
i Secret of the ith tag used for the j + 1th authentication where 1 ≤

i ≤ n, and 0 ≤ j ≤ L
H, G Collision resistant one-way functions
rapidH(i, j) Function which computes the jth secret of the ith tag such that

Sj
i = Hj(S0

i ). This function uses a precomputed rapid hash (RH)
table to compute hashes faster. The construction of this function
is demonstrated in Algorithm 1

κ Length of the interval between hash indices. This parameter is needed
for computing rapid hashes

state[i][k] A pre-computed two-dimensional array which stores the k×κth hash
value of the ith tag’s initial secret (Hk×κ(S0

i )). For instance, let
κ = 6, i = 1 and k = 6, then state[1][6] stores S36

1 = H36(S0
1).

This array is used during the evaluation of rapidH(i, j)
F(i, j) The response generating function inputs two parameters, the tag in-

dex and the life time of the tag. This function uses the rapid-
hash function. It outputs a tag response such that F(i, j) =
G(rapidH(i, j))

Tablev The vth TMTO table which stores the starting and endpoints (in-
dices) of the TMTO table, where 1 ≤ v ≤ �

Rv
w(val) For wth column of the vth table, a simple reduction function which

maps input val into a output with smaller size, where 1 ≤ w ≤ t

system defines a κ parameter then computes the interval secret values of all the
tags. After that all the secrets are stored into a two dimensional array such that
state[i][k] := Hk×κ(S0

i ) where k = 0, 1, 2, . . . and 0 ≤ k × κ ≤ L.
Now, for a given secret of tag i, the jth rapid-hash computation of the secret

is presented in Algorithm 1. The algorithm requires only at most κ hashes by

Algorithm 1 Compute y = rapidH(i, j)
Require: 1 ≤ i ≤ n, 0 ≤ j ≤ L
Ensure: y = Sj

i

y ← state[i][
⌊

j
κ

⌋
]

a ← j mod κ
while a �= 0 do

y = H(y)
a ← a − 1

end while
return y
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the help of the precomputed RH table. Whenever κ decreases, the memory usage
increases but the on-line computation decreases.

Algorithm 2 shows the procedure to construct a single rainbow TMTO table.
For the construction, only two parameters are needed: the number of starting
points used in the precomputation phase (generally named m1 [4]) and the num-
ber of the table to be generated. The starting points of a TMTO table are fed
into the F function sequentially. The output is actually a response of a tag in the
system and is fed into the reduction function which outputs arbitrary indices.
For a single chain this process is repeated consecutively up to a pre-defined chain
size t, then the starting and endpoints are stored in the table. Finally, each gen-
erated ending point is compared in the table to detect fusions. When two chains
generate a fusion, one of them is discarded. This procedure eventually leads to
a perfect table.

Algorithm 2 Construction of Tablev (j, m1, v)
Require: 1 ≤ j, 1 ≤ m1 ≤ n × j , v ≥ 1

table ← {∅}
for i = 1 to

⌈
m1
j

⌉
do

for k = 0 to j do
nextResp ← F(i, k)
for w = 1 to t − 1 do

z[ ] ← Rv
w(nextResp)

nextResp = F(z[0], z[1])
end for
z[ ] ← Rv

t (nextResp)
if z �∈ table then

add the record {(i, k); (z[0], z[1])} into table
end if
if (i − 1) × j + k ≥ m1 then

break
end if

end for
end for
clean table
return table

Finally, Algorithm 3 shows the identification process of a tag by extracting
the pre-image of a given response using TMTO tables. This part of the system
runs during the authentication of a tag. First, TagResp (the answer of the tag)
is fed into the reduction function Rv

t and searched among the ending points
of the TMTO table. (i) If a match is found, the corresponding starting point
is iterated as explained in Algorithm 2 up to the (t − 1)th reduction function
Rv

t in order to get a candidate response. If the candidate response is equal to
TagResp then identification is completed. Otherwise (ii) TagResp fed into the
reduction function such that Rv

t−1(TagResp), then the resulting indices fed into
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F , and then the resulting response fed into Rv
t (TagRespnext) consecutively. As

previously done, the output value search among the endpoints of the TMTO
table and the similar process is carried as described above.

Algorithm 3 Identify (Tablev, TagResp)
Require: TagResp ∈ {0, 1}λ, v ≥ 1
Ensure: TagResp ← G(y)

for q = t down to 1 do
nextResp ←TagResp
for i = q to t − 1 do

z[ ] ← Rv
i (nextResp)

nextResp ← F(z[0], z[1])
end for
z[ ] ← Rv

t (nextResp)
if z ∈ Tablev then

{z′; z} ← Tablev(z)
nextResp ← F(z′[0], z′[1])
for w = 1 to q − 1 do

z̃[ ] ← Rv
w(nextResp)

nextResp ← F(z̃[0], z̃[1])
end for
if nextResp = TagResp then

return true
end if

end if
end for
return false

5 Experiments and Comparison

5.1 Environment

The precomputations are performed with a personal computer having Intel
2.8 GHz Core2 Duo processor, 4 GB RAM and Windows 7 - 64-bit operating
system. As an NFC enabled mobile phone we use LG OPTIMUS 4X HD hav-
ing 1.5 GHz processor and 1 GB RAM [17]. The cell phone has an open source
Linux-based operating system, Android. This OS has a large community of con-
tributors who develop applications primarily written in a customized version of
the Java programming language [22]. The phone supports both ISO/IEC 14443
and ISO/IEC 15693 standards which are the common standards in order to
read/write 13.56 MHz contactless smart cards.

For the tags, we work on professional version of ZeitControlers basic card
ZC7.5 (ZC − Basic) which is a programmable processor card as hardware envi-
ronment for protocol implementation [12]. It has a micro-controller with 32 kB
user EEPROM that holds its own operating system (OS) and it has 2.9 kB
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LG Optimus 4X P880
Android 4.1
NFC enabled phone
Processor: 1.5 GHz 
RAM: 1.0 GB

Basic card ZC 7.5
EEPROM: 32 kB
RAM: 2.9 kB

Tag

Processor: 2.8 GHz
RAM: 4 GB
Windows 7 – 64 bit
Programming Lang: Java

Fig. 4. Overview of the system

RAM for user tag’s data. It supports ISO/IEC 14443. The EEPROM contains
the user’s Basic code, compiled into a virtual machine language known as P-Code
(the Java programming language uses the same technology). The RAM contains
run-time data and the P-Code stack. The overview of the system is depicted in
Fig. 4.

5.2 Parameters and Functions

The parameters for the experiments are n = 220, L = 27 and the one-way func-
tions we selected are the following ones5:

– H(Sj
i ) : AESK(Sj

i ) ⊕ Sj
i = Sj+1

i ,
– G(Sj

i ) : AESK(Sj
i + 1) ⊕ (Sj

i + 1) = rj
i

where K is a 128-bit constant key. This is known as the Matyas-Meyer-Oseas
construction [19]. Its goal is to build a one-way function from a block cipher.

We use the AES algorithm in the construction because it is commonly im-
plemented on fewer gates than classical hash functions (see e.g. [11]), and, in
particular, is also available in the ZC7.5. This construction requires only one
key schedule during the initialization phase of the tags, which makes algorithm
faster.

To construct rainbow tables each column of each table uses a different re-
duction function. The function takes three parameters that are the table index
(v ∈ [0, 1, . . . , � − 1]), the column index (w ∈ [1, 2, . . . , t]) and the response
output as a byte array (val[.]). This function produces two output values; the
first one is for tag index (i = 0, . . . , n − 1), the second one is for lifetime index
(j = 0, . . . , L − 1). The i value is computed as i = (Int32(val[v, v + 3]) + w)

5 The parameters are the same than the ones in [3].
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mod n where the function Int32 converts a given input 4-byte array into an un-
signed 32-bit integer. The j value is computed as i = (Int32(val[v+1, v+4])+w)
mod L. The construction of our reduction functions are given in Algorithm 4.

Algorithm 4 Compute Rv
w(val[.])

Require: v ≥ 0, w ≥ 1
Ensure: i ∈ Zn, j ∈ ZL

i ← Int32(val[v, v + 3]) + w
j ← Int32(val[v + 1, v + 4]) + w
i = i mod n
j = j mod L
return {i, j}

5.3 Precomputation of the Tables

In order to use our implementation on low-resource devices (such as hand-held
readers, PDAs and NFC compliant cellphones) we build tables that can fit to
small RAMs.

For the total memory there are two parts: (i) the rapid hash table that stores
some intermediate values of the OSK table and (ii) the TMTO tables.6 We
use the optimal parameters, so we compute the κ and t such that the memory
consumption is as described in Sect. 4.2.

Another significant choice for the TMTO construction is the probability of
success. It should be high enough to avoid false negatives during the authenti-
cation process. In our scenario, using � = 4 rainbow tables of maximal size, the
probability to identify a tag is greater than 0.999 according to Theorem 1. Note
that trying to reach a higher success probability does not make sense given that
the probability of failure due to noise on the channel is even higher.

Finally, regarding the number of starting points m1, we use the same trick
as in [4] to reduce the precomputation effort. In our case, we obtain about 98 %
of the maximal number of ending points by starting with 50 times that number.

In total, the precomputation cost is � × m1 × t evaluations of F , which is
about 4 × 50 × mt × t = 400nL in our case (see Theorem 2). Since these are F
evaluations, this number is also multiplied by κ+1

2 hash operations. For instance,
if κ = 6 and on a server capable of 220 hash operations per second, the precom-
putation stage would take about 50 h. Some details about the precomputation
of rainbow tables seem to have been overlooked in [3,5], which would explain
their optimistic result. However, we can do much better than that if we build a
table containing the nL secrets, and use it during the precomputation instead
of the rapidH table. This table needs nL|hash| bits, that is 2 GB in our case,
and takes about 2 min to build on the server. In this case, there are actually no
hash operations during the building of the TMTO table, making this procedure
faster. In our case the whole precomputation process takes about an hour.
6 We used the prefix-suffix decomposition method, as described for instance in [7] in

order to reduce to some extent the size of the TMTO tables.
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Table 3. Results of experiments on an NFC compliant cellphone

Memory 253 MB 113 MB
Identification time 15.26 ms 117.54 ms

Length of the chains of the TMTO (t) 27 72
Number of chains of the TMTO (mt) 8968214 3566605
Rapid-hash parameter (κ) 22 43
Authentication rate 99.9 % 99.9 %

5.4 Experiments

We tested the performance in two settings by running Algorithm 3 (i.e., identifi-
cation process of OSK/AO with randomly chosen tags). Our mobile phone [17] is
able to compute about 187,750 hashes per second. For both settings, the exper-
iment is run 1,000,000 times. The experimental results are depicted in Table 3.

We also measure the time when we use our system with a real tag. There
are three phases on the tag’s side: receiving a query, computing the response
(two hash calculations), and sending the response. The total time is 70 ms on
average, including 50 ms for the calculation of the two hash values and 20 ms for
the communication.

It can be seen that the average identification time is below the 200 ms thresh-
old (if we include the 70 ms for the tag computation and the communication)
even for a memory below 128 MB. We thus show that one can achieve very fast
authentication even with limited memory.

6 Conclusion

We have implemented the OSK/AO [3] protocol on an NFC-compliant cellphone
and a ZC7.5 contactless tag. Our implementation is fully operational and is, to
the best of our knowledge, the first implementation of a privacy-friendly authen-
tication protocol based on symmetric-key cryptography. The implementation is
suited to large-scale applications, e.g. a million of tags, as this can be the case in
mass transportation systems, even on low-resource mobile devices such as hand
held readers, PDAs or NFC compliant cellphones. We have run several experi-
ments on the implemented RFID system and we show that the results obtained
match the theory and are favorable to a practical deployment.
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