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Abstract. In the problem of private outsourced computation, a client wishes to
delegate the evaluation of a function f on a private input x to an untrusted worker
without the latter learning anything about x and f(x). This problem occurs in
many applications and, most notably, in the setting of cloud computing.

In this work, we consider the problem of privately outsourcing computation
to a cluster of machines, which typically happens when the computation needs
to be performed over massive datasets, e.g., to analyze large social networks or
train machine learning algorithms on large corpora. At such scales, computation
is beyond the capabilities of any single machine so it is performed by large-scale
clusters of workers.

To address this problem, we consider parallel homomorphic encryption (PHE)
schemes, which are encryption schemes that support computation over encrypted
data through the use of an evaluation algorithm that can be efficiently executed in
parallel. More concretely, we focus on the MapReduce model of parallel computa-
tion and show how to construct PHE schemes that can support various MapReduce
operations on encrypted datasets including element testing and keyword search.
More generally, we construct schemes that can support the evaluation of functions
in NC0 with locality 1 and polylog(k) (where k is the security parameter).

Underlying our PHE schemes are two new constructions of (local) random-
ized reductions (Beaver and Feigenbaum, STACS ′90) for univariate and multi-
variate polynomials. Unlike previous constructions, our reductions are not based
on secret sharing and are fully-hiding in the sense that the privacy of the input is
guaranteed even if the adversary sees all the client’s queries.

Our randomized reduction for univariate polynomials is information-
theoretically secure and is based on permutation polynomials, whereas our
reduction for multivariate polynomials is computationally-secure under the
multi-dimensional noisy curve reconstruction assumption (Ishai, Kushilevitz,
Ostrovsky, Sahai, FOCS ’06).

1 Introduction

In the problem of private outsourced computation, a client wishes to delegate the eval-
uation of a function f on a private input x to an untrusted worker without the latter
learning anything about x and f(x). This problem occurs in many applications and,
most notably, in the setting of cloud computing, where a provider makes its computa-
tional resources available to clients “as a service”.

� Supported by NSF Grant No.1017660. Work done while at Microsoft Research.

A.A. Adam, M. Brenner, and M. Smith (Eds.): FC 2013, LNCS 7862, pp. 213–225, 2013.
c© International Financial Cryptography Association 2013



214 S. Kamara and M. Raykova

One approach to this problem is via the use of homomorphic encryption (HE). An
encryption scheme is homomorphic if it supports computation on encrypted data, i.e., in
addition to the standard encryption and decryption algorithms it also has an evaluation
algorithm that takes as input an encryption of some message x and a function f and
returns an encryption of f(x). If a HE scheme supports both addition and multiplication,
then it can evaluate any arithmetic circuit over encrypted data and we say that it is a fully
homomorphic encryption (FHE) scheme [10].

The problem of outsourced computation occurs in various forms. For instance, in
addition to the simple client/worker setting described above, clients often wish to out-
source their computation to clusters of workers. This typically occurs when the compu-
tation is to be performed over massive datasets, e.g., to analyze large social networks or
train machine learning algorithms on large corpora. At such scales, computation is be-
yond the capabilities of any single machine so it is performed on clusters of machines,
i.e., large-scale distributed systems often composed of low-cost unreliable commodity
hardware. For our purposes, we will view such a cluster as a system composed of w
workers and one controller. Given some input, the controller generates n jobs (where
typically n � w) which it distributes to the workers. Each worker executes its job in
parallel and returns some value to the controller who then decides whether to continue
the computation or halt.

In this work, we consider the problem of privately outsourcing computation to a clus-
ter of machines. To address this, we introduce parallel homomorphic encryption (PHE)
schemes, which are encryption schemes that support computation over encrypted data
through the use of an evaluation algorithm that can be efficiently executed in parallel.
Using a PHE scheme, a client can outsource the evaluation of a function f on some
private input x to a cluster of w machines as follows. The client encrypts x and sends
the ciphertext and f to the controller. Using the ciphertext, the controller generates n
jobs that it distributes to the workers and, as above, the workers execute their jobs in
parallel. When the entire computation is finished, the client receives a ciphertext which
it decrypts to recover f(x).

Applications of PHE. As discussed above, the most immediate application of PHE is
to the setting of outsourced computation where a weak computational device wishes to
make use of the resources of a more powerful cluster. Clearly, to be useful in this setting
it is crucial that either: (1) running the encryption and decryption operations of the PHE
scheme take less time than evaluating f on the input x directly; or (2) the PHE scheme
is multi-use in the sense that the evaluations of several (different) functions can be done
on a single ciphertext (this is also referred to as the online/offline setting). In this work
we focus on the latter and present several multi-use PHE schemes. Using our schemes
a client can encrypt a large database during an offline phase and then, have the workers
evaluate many different functions on its data during the online phase. In particular, at
the time of encryption, the client does not need to know the functions it will want to
evaluate during the online phase.

Parallel Computation. Most computations are not completely parallelizable and re-
quire some amount of communication between machines. The specifics of how the
computation and communication between processors are organized leads to particular
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architectures, each having unique characteristics in terms of computational and commu-
nication complexity. This has motivated the design of several architecture-independent
models of parallel computation, including NC circuits [5], the parallel RAM (PRAM)
[8,14], Valiant’s bulk synchronous parallel (BSP) model [18], LogP [6] and, more re-
cently, the MapReduce [7] and Dryad models [12]. It follows that an important consid-
eration in the design of PHE schemes is the parallel model in which the function will be
evaluated. In this work, we focus on the MapReduce model (which we describe below)
but note that our choice is due mainly to practical considerations (e.g., the emergence
of cloud-based MapReduce services such as Amazon’s Elastic MapReduce) and that
PHE can also be considered with respect to other models of parallel computation. As an
example, note that any FHE scheme yields an NC-parallel HE scheme for any function
f in NC.

1.1 Overview of Techniques

Designing PHE Schemes. We propose a general approach to designing PHE schemes.
Roughly speaking, our approach yields PHE schemes for any function f that can be
randomly reduced to another function g. A randomized reduction (RR) [2,3] from a
function f to a function g transforms an input x in the domain of f to a set of n inputs
S = (s1, . . . , sn) in the domain of g such that f(x) can be efficiently reconstructed
from (g(s1), . . . , g(sn)). In addition, a RR guarantees that no information about x or
f(x) can be recovered from any subset of t ≤ n elements of S.

A natural approach to constructing a PHE scheme (ignoring the particular model of
parallel computation) is therefore to encrypt x by using a RR to transform it into a set
(s1, . . . , sn) and have each worker i evaluate g on si independently. The results can then
be sent back to the client who can recover f(x) using the reduction’s reconstruction al-
gorithm. As long as at most t workers collude, the RR will guarantee the confidentiality
of x and f(x). Unfortunately, there are two problems with this approach. First, as far
as we know, the best hiding threshold achieved by any RR is t ≤ (n − 1)/q, which is
for univariate polynomials of degree q [2,3]. In the context of cloud computing, how-
ever, this is not a reasonable assumption as the cloud provider owns all the machines
in the cluster. 1 Another limitation is that the client has to run the RR’s reconstruction
algorithm which can represent a non-trivial amount of work depending on the particular
scheme and the parameters used.

We address these limitations in the following way. First, we show how to construct
fully-hiding RRs, i.e., reductions with a hiding threshold of t = n. Our first construction
is for the class of univariate polynomials while the second is for multivariate polynomi-
als with a “small” (i.e., poly-logarithmic in the security parameter) number of variables.
As far as we know, these are the first RRs to achieve a threshold of t = n. Towards han-
dling the second limitation, we observe that if the recovery algorithm of the RR can be
evaluated homomorphically, then the reconstruction step can also be outsourced to the
workers. Clearly, using FHE any recovery algorithm can be outsourced, but our goal
here is to avoid the use of FHE so as to have practical schemes. Our approach therefore

1 Of course one could use the above approach with more than one cloud providers if they do not
collude.
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will be to design RRs with recovery algorithms that are either (1) simple enough to be
evaluated without FHE; or (2) efficient enough to be run by the client. We note that
in cases where the reconstruction algorithm can be outsourced to the workers, we can
make use of RRs with reconstruction algorithms that are more expensive than evaluat-
ing f(x) directly.

Designing Fully-Hiding RRs. The best known RRs for polynomials [2,3] work roughly
as follows. Let Q be the polynomial of degree q that we wish to evaluate and x ∈ F

m

be the input. First, each element of x is shared into q · t+ 1 shares using Shamir secret
sharing with a sharing polynomial of degree t (i.e., the hiding threshold). This yields m
sets of shares (s1, . . . , sm), where si = (si[1], . . . , si[q·t+1]). Each worker j ∈ [q·t+1]
is then given (s1[j], . . . , sm[j]) and evaluates Q on his shares. Given the results of all
these evaluations, the client interpolates at 0 to recover Q(x). This approach yields a
hiding threshold of up to t = (n − 1)/q. Note that this construction works equally as
well for m = 1. As shown in [2,3], this can be improved to t = n · c log(m)/m for any
constant c > 0 and m > 1.

Due to their reliance on secret sharing, it is not clear how to extend the techniques
from [2,3] to achieve t = n and (informally) it seems hard to imagine using any tech-
nique based on secret sharing to achieve full hiding. Instead, we introduce two new
techniques for designing RRs. The first works for univariate polynomials and makes
use of permutation polynomials over finite fields (i.e., bijective families of polynomi-
als). The resulting RR is information-theoretically secure and very efficient. Our second
approach is only computationally-secure but works for multivariate polynomials. The
security of the RR is based on the multi-dimensional noisy curve reconstruction as-
sumption [13,17].

Resulting PHE Schemes. Using our fully-hiding RRs we get PHE schemes for uni-
variate and multi-variate polynomials (with a small number of variables). We stress,
however, that PHE schemes for univariate polynomials can be constructed without go-
ing through our RR-based approach. In fact, in the full version of this work we give an
example of such a construction based only on HE schemes that support addition and
a single multiplication [4,11]. This particular construction is very simple and slightly
more efficient (i.e., by a constant factor) with respect to client-side work than our PHE
scheme for univariate polynomials. We stress, however, that our RR-based approach
is more general and yields schemes for more than just univariate polynomials. Since
the focus of our work is on our RR-based approach to PHE, we only describe here the
construction that results from our RR for univariate polynomials and omit the “simple”
construction.

1.2 Our Contributions

While (sequential) homomorphic encryption constitutes an important step towards pri-
vate outsourced computation, an increasing fraction of the computations performed “in
the cloud” is on massive datasets and therefore requires the computation to be per-
formed on clusters of machines. To address this, we make the following contributions:

1. We initiate the study of PHE . In particular, we consider the MapReduce model
of parallel computation and formalize MapReduce-parallel HE schemes. Given the
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practical importance of the MapReduce model and the emergence of cloud-based
MapReduce clusters, we believe the study of MapReduce-parallel HE to be impor-
tant and well motivated.

2. We construct new RRs for univariate and multivariate polynomials with a small
number of variables (i.e., polylogarithmic in the security parameter). Our reduction
for univariate polynomials is information theoretically secure while our reduction
for multivariate polynomials is secure based on the multi-dimensional noisy curve
reconstruction assumption [13]. Both our constructions achieve a hiding threshold
of t = n and are, as far as we know, the first constructions to do so.

3. We give a general transformation from any RR to a MR-parallel HE scheme given
any public-key HE scheme that can evaluate the reductions’ recovery algorithm.
If the RR works for any function within a class C, then the resulting MR-parallel
scheme is C-homomorphic.

Due to space limitations, we are not able to include all our results. In the full ver-
sion of this work, we also consider and formalize the notion of delegated PHE (which
also hides the function being evaluated) and give a delegated construction for any func-
tion with output values that can be computed by evaluating a (fixed) univariate poly-
nomial over the input values. We also give optimized variants of our (non-delegated)
MR-parallel HE schemes for both univariate and multi-variate polynomials. Finally, we
show how, using techniques from [15] and [9], our MR-PHE schemes can be used to
perform various queries over encrypted databases like set membership testing,
disjunctions queries and keyword search.

2 Preliminaries and Notation

Polynomials. If p is a univariate polynomial of degree d over a field F, then it can be
written as p(x) =

∑
α∈S p(α) · Lα(x), where S is an arbitrary subset of F of size d+1

and Lα is the Lagrangian coefficient defined as Lα(x) =
∏

i∈S,i�=α(x − i)/(α − i).
A permutation polynomial p ∈ F[x] is a bijection over F. One class of permutation
polynomials which will make use of in this work are the Dickson polynomials (of the
first kind) which are a family of polynomials D = {Dd,β} over a finite field F indexed
by a degree d > 0 and a non-zero element β ∈ F. If |F|2 − 1 is relatively prime to d
and if β �= 0, then the Dicskon polynomial Dd,β defined as

Dd,β(x)
def
= Dd(x, β) =

�d/2�∑

λ=0

d

d− λ
·
(
d− λ

λ

)

· (−β)λxd−2λ,

is a permutation over F. For d = 2 and any β �= 0, we have D2,β(x) = x2 − 2β which
is a permutation over any F such that |F|2 − 1 is odd.

Homomorphic Encryption. Let F be a family of n-ary functions. A F -homomorphic
encryption scheme is a set of four polynomial-time algorithms HE = (Gen,Enc,Eval,
Dec) such that Gen is a probabilistic algorithm that takes as input a security parameter
k and outputs a secret key K; Enc is a probabilistic algorithm that takes as input a key
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K and an n-bit message m and outputs a ciphertext c; Eval is a (possibly probabilis-
tic) algorithm that takes as input a function f ∈ F and n encryptions (c1, . . . , cn) of
messages (m1, . . . ,mn) and outputs an encryption c of f(m1, . . . ,mn); and Dec is a
deterministic algorithm takes as input a key K and a ciphertext c and outputs a message
m. In this work, we make use of 2DNF-HE schemes which support an arbitrary num-
ber of additions and a single multiplication. Concrete instantiations of such schemes
include [4] and [11].

3 MapReduce-Parallel Homomorphic Encryption

In this section, we first give an overview of the MapReduce model of computation to-
gether with an example of a simple MapReduce algorithm. We refer the reader to [7,16]
for a more detailed exposition. After formalizing the MapReduce model, we define
MapReduce-parallel HE schemes and present our security definitions for standard and
delegated MR-parallel HE schemes.

3.1 The MapReduce Model of Computation

At a high level, MapReduce works by applying a map operation to the data which results
in a set of label/value pairs. The map operation is applied in parallel and the resulting
pairs are routed to a set of reducers. All pairs with the same label are routed to the same
reducer which is then tasked with applying a reduce operation that combines the values
into a single value for that label.

A MapReduce algorithm Π = (Parse,Map,Red,Merge) is executed on a cluster
of w workers and one controller as follows. The client provides a function f and an
input x to the controller who runs Parse on (f, x), resulting in a sequence of input
pairs (�i, vi)i. Each pair is then assigned by the controller to a worker that evaluates
the Map algorithm on it. This results in a sequence of intermediate pairs {(λj , γj)}j .
Note that since the Map algorithm is stateless, it can be executed in parallel. Typically
the number of input pairs is much larger than the number of workers so this stage may
require several rounds. When all the input pairs have been processed, the controller
partitions all the intermediate pairs and each set of the partition is then assigned to
a worker that applies the Red algorithm on it. Again, since Red is stateless it can be
executed in parallel (though it can be sequential on its own partition). The outputs of all
these Red executions are then processed using Merge and the final result is returned to
the client. At any time, a worker is either executing the Map algorithm (in which case
it is a mapper) or the Red algorithm (in which case it is a reducer).

An Example. A simple example of a MapReduce algorithm is to determine frequency
counts, i.e., the number times a keyword occurs in a document collection. The parse
algorithm takes the document collection (D1, . . . , Dn) as input and outputs a set of
input pairs (i,Di)i. Each mapper receives an input pair (i,Di) and outputs a set of
intermediate pairs (wj , 1)j for each word wj found in Di. All the intermediate pairs
are then partitioned by the partition operation into sets {Pl}, where Pl consists of all
the intermediate pairs with label wl. The reducers receive a set Pl of intermediate pairs
and sum the values of each pair. The result is a count of the number of times the word
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wl occurs in the document collection. The merge algorithm then concatenates all these
counts and returns the result.

3.2 Syntax and Security Definitions

An MR-parallel HE scheme is a HE whose evaluation operation can be computed using
a MapReduce algorithm.

Definition 1 (MR-parallel HE). A private-key MR-parallel F -homomorphic encryp-
tion scheme is a tuple of polynomial-time algorithms PHE = (Gen,Enc,Eval,Dec),
where (Gen,Enc,Dec) are as in a private-key encryption scheme and Eval = (Parse,
Map,Red,Merge) is a MapReduce algorithm. More precisely we have:

K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter
k and that returns a key K .
c ← Enc(K,x): is a probabilistic algorithm that takes as input a key K and an
input x from some message space X, and that returns a ciphertext c. We sometimes
write this as c← EncK(x).
(�i, vi)i ← Parse(f, c): is a deterministic algorithm that takes as input a function
f ∈ F and a ciphertext c, and that returns a sequence of input pairs.
(λj , γj)j ← Map(�, v): is a (possibly probabilistic) algorithm that takes an input
pair (�, v) and that returns a sequence of intermediate pairs.
(λ, z) ← Red(λ, P ): is a (possibly probabilistic) algorithm that takes a label λ
and a partition P of intermediate values and returns an output pair (λ, z).
c′ ← Merge

(
(λt, zt)t

)
: is a deterministic algorithm that takes as input a set of

output pairs and returns a ciphertext c′.
y ← Dec(K, c′): is a deterministic algorithm that takes a key K and a ciphertext
c′ and that returns an output y. We sometimes write this as y ← DecK(c′).

We say that PHE is correct if for all k ∈ N, for all f ∈ Fk, for all K output by Gen(1k),
for all x ∈ X, for all c output by EncK(x), DecK

(
Eval(f, c)

)
= f(x).

To be usable in the setting of private outsourced computation, a PHE scheme should
guarantee that its ciphertexts reveal no useful information about the input x or the output
f(x). We note that in this setting it is sufficient for this to hold with respect to a single
input. In the context of outsourced computation, as opposed that of secure communi-
cation, the cost of generating a new key per input is negligible. As such, our security
definitions only guarantee security for a single input (which could be, e.g., a massive
dataset).

Definition 2 (CPA1-security). Let PHE = (Gen,Enc,Parse,Map,Red,Merge,Dec)
be a MR-parallelF -homomorphic encryption scheme and consider the following prob-
abilistic experiments where A is an adversary and S is a simulator:

RealPHE,A(k): the challenger begins by running Gen(1k) to generate a key K . A
outputs an input x and receives a ciphertext c ← EncK(x) from the challenger.A
returns a bit b that is output by the experiment.
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IdealPHE,A,S(k): A outputs an input x. Given |x|, S generates and returns a cipher-
text c to A. A returns a bit b that is output by the experiment.

We say that PHE is secure against a single-message chosen-plaintext attack if for all
PPT adversaries A, there exists a PPT simulator S such that

|Pr [RealPHE,A(k) = 1 ]− Pr [ IdealPHE,A,S(k) = 1 ]| ≤ negl(k),

where the probabilities are over the coins of Enc, A and S.

4 Randomized Reductions for Polynomials

In this section, we formally define randomized reductions [1,2,3] and then present our
fully-hiding constructions for univariate and multivariate polynomials. Our definitions
follow closely the ones given by Beaver, Feigenbaum, Killian and Rogaway [3].

Let t, n ∈ N such that t ≤ n. A function f : X → Y is (t, n)-locally random
reducible to a function g : X̃ → Ỹ if there exists two polynomial-time algorithms
RR = (Scatter,Recon) that work as follows. Scatter is a probabilistic algorithm that
takes as input an element x ∈ X and a parameter n ∈ N, and returns a sequence
s ∈ X̃n and some state information st. Recon is a deterministic algorithm that takes as
input some state st and a sequence y ∈ Ỹ n and returns an element y ∈ Y . In addition,
we require that RR satisfy the following properties:

– (Correctness) for all x ∈ X ,

Pr
[
Recon

(
st, g(s1), . . . , g(sn)

)
= f(x) : (s, st)← Scatter(x, n)

] ≥ 3/4,

where the probability is over the coins of Scatter. We depart slightly from the
original definition [3] in that here Recon does not need to take x as input.

– (t-hiding) for all I ⊆ [n] such that |I| = t, and all x1 and x2 in X such that
|x1| = |x2|,
{

〈si〉i∈I : (s, st)← Scatter(x1, n)

}

≈
{

〈si〉i∈I : (s, st)← Scatter(x2, n)

}

where the distributions are over the coins of Scatter. If t = n, we sometimes say
that f is fully hiding. If the distributions are identically distributed we say that f is
perfectly hiding, and if the distributions are computationally indistinguishable we
say f is computationally hiding.

– (Efficiency) for all x ∈ X and all s and st output by Scatter(x, n), the time to
evaluate Recon(st, g(s1), . . . , g(sn)) is less than the time to evaluate f(x).

If g �= f then RR is a local random reduction (LRR). If g = f , then RR is a
randomized self reduction (RSR). Furthermore, if there exists a pair of algorithms
RSR = (Scatter,Recon), such that for every function f in some class C, RSR is a
random self reduction for f , then we say that RSR is a universal random self reduction
over C. All of our constructions are universal.

A Note on Efficiency. For our purposes, the efficiency requirement is not necessary.
This is because in our MR-PHE constructions, the Recon algorithm is not executed by
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the client but, instead, is executed homomorphically by the cluster. As such, a more
important requirement for us is that Recon to be “simple” enough so that it can be
evaluated homomorphically without making use of FHE.

4.1 A Perfect Randomized Self Reduction for Univariate Polynomials

In this section, we present a fully-hiding randomized reduction for univariate polyno-
mials. As far as we know, the best hiding threshold previously achieved by any RR for
univariate polynomials is t ≤ (n−1)/q which is achieved by the construction of Beaver,
Feigenbaum, Killian and Rogaway [2,3]. Like the construction presented in [2,3], our
randomized reduction is universal and self-reducing.

Let Q be a degree q univariate polynomial over a finite field F such that |F| ≥ 2q+1

and |F|2 − 1 ≡ 1 (mod 2), and let δ[Fn]
def
=

{
v ∈ F

n : vi �= vj for all i, j ∈
[n]

}
. Consider the random self reduction Poly1q = (Scatterq,Reconq) for Q defined as

follows:

– Scatterq(x): let n = 2q+1 and sample a vectorα uniformly at random from δ [Fn].
For all i ∈ [n], compute si := D2(αi,−x/2) = α2

i + x. Output (s1, . . . , sn) and
st = α.

– Reconq(st, y1, . . . , yn): output y =
∑n

i=1 yi · Lαi(0).

Theorem 1. Poly1q is a perfect and fully-hiding randomized self reduction.

Proof. Towards showing correctness, let Q̂(α)
def
= Q

(
D2(α,−x/2)

)
(for some x ∈ F)

and note that Q̂(0) = Q(x). We therefore have:

y=

2q+1∑

i=1

yi ·Lαi(0)=

2q+1∑

i=1

Q
(
D2(αi,−x/2)

)·Lαi(0)=

2q+1∑

i=1

Q̂(αi)·Lαi(0) = Q̂(0) = Q(x),

since deg(Q̂) = 2q. We now consider perfect hiding. Let n = 2q + 1 and note that for
fixed q ∈ N and x ∈ F, Scatter evaluates the vector-valued function fx,q : δ[Fn] →
δ[Fn] defined as

fx,q(α) =

(

D2

(
α1,−x/2

)
, ..., D2

(
αn,−x/2

)
)

,

for a random α. Note that fx,q is a permutation over δ[Fn] since D2(α, β) is a permu-
tation over F for any β (this follows from the fact that |F|2 − 1 ≡ 1 (mod 2)). Let U
be the uniform distribution over δ[Fn]. In the following, for visual clarity we drop the
subscript q and denote fx,q by fx. For all x1 and x2 in F,

SD
(
fx1(U), fx2(U)

)
= max

S⊂δ[Fn]
|Pr [ fx1(U) ∈ S ]− Pr [ fx2(U) ∈ S ]|

= max
S⊂δ[Fn]

∣
∣Pr

[U ∈ f−1
x1

(S)
]− Pr

[U ∈ f−1
x2

(S)
]∣
∣

≤ max
V,V ′⊂δ[Fn]

|Pr [U ∈ V ]− Pr [U ∈ V ′ ]|
= 0

where the last equality follows from the fact that |V | = |V ′| since fx1 and fx2 are
permutations over δ[Fn].
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4.2 A Computational Randomized Self Reduction for Multivariate Polynomials

We now present a fully-hiding RSR for multi-variate polynomials. The best known
hiding threshold previously achieved is from a construction of [2,3] which achieves
t ≤ n · c log(m)/m for c and m greater than 1. Our construction is universal and
self-reducing.

Let Q be a m-variate degree q polynomial over a finite field F such that |F| ≥ n+1,
for n ∈ N. Consider the randomized self reductionPolymq = (Scatterq,Reconq) defined
as follows:

– Scatterq(x): let n = 2q + 1 and sample m univariate polynomials (p1, . . . , pm) of

degree 2 such that pi(0) = xi for all i ∈ [m]. Let N = ω(n · (n/q)m) and α
$←

δ[Fn]. For all j ∈ [n], set zj :=
(
p1(αj), . . . , pm(αj)

)
and for all j ∈ [n+1, n+N ]

set zj
$← F

m. Let S = (s1, . . . , sn+N ) be the sequence that results from permuting
the elements of Z = (z1, . . . , zn+N ) at random and let Γ be the locations in S of
the elements in Z that were chosen at random in F

m. Output S and st = (π(α), Γ ),
where π denotes the (random) permutation used to permute Z.

– Reconm,q(st, y1, . . . , yn+N): parse st as (α, Γ ) and output y =
∑

i�∈Γ yi · Lαi (0).

The security of our randomized reduction is based on the multi-dimensional noisy
curve reconstruction assumption from Ishai, Kushilevitz, Ostrovsky and Sahai [13],
which extends the polynomial reconstruction (PR) assumption from Naor and Pinkas
[17].

Assumption 2 (Multi-dimensional noisy curve reconstruction [13,17]). The multi
dimensional noisy curve reconstruction (CR) assumption is defined in terms of the fol-
lowing experiment where x is a m-dimensional vector over a finite field F, d > 1, and
t = t(k) and z = z(k) are functions of k:

CurveRec(k,x, d, n,N,m): sample a vector α
$← F

n and a random subset of
N indices Γ chosen from [n + N ]. Choose m random univariate polynomials
(p1, . . . , pm) such that each pi is of degree at most d and that pi(0) = xi. For
all j ∈ [n], set zj = (p1(αj), . . . , pm(αj)) and for all j ∈ [n + 1, n + N ] set

zj
$← F

m. Let S = (s1, . . . , sn+N) be the sequence that results from permuting
the elements of Z = (z1, . . . , zn+N ) uniformly at random. The output of the exper-
iment is (s1, . . . , sn+N ).

We say that the CR assumption holds over F with parameters (d, n,N,m) if for all
x1 and x2 in F

m,

{

CurveRec(k,x1, d, n,N,m)

}
c≈
{

CurveRec(k,x2, d, n,N,m)

}

We note that the CR assumption is believed to hold when N is ω(n · (n/d)m) and
|F| = N [13].
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Remark. Setting n and N to be polynomial in k, the CR assumption is believed to hold
as long as m = polylog(k). We note, however, that the parameters provided in [13]
and used in this work are for the stronger “augmented CR” assumption which outputs,
in addition to the vectors (s1, . . . , sn+N), the evaluation points (α1, . . . , αn) together
with N random values. It is therefore plausible that the CR assumption could hold for
a wider range of parameters and, in particular, for m = poly(k).

In the following theorem, we show that Polymq is a fully-hiding and universal RSR for
the class of multivariate polynomials with a poly-logarithmic number of variables.

Theorem 3. Polymq is a computational and fully-hiding random self reduction.

The proof follows almost directly from Assumption 2, so due to space limitations, it is
deferred to the full version of this work.

5 MR-Parallel HE from Randomized Reductions

We now show how to construct a MR-parallel HE scheme from any F -homomorphic
encryption scheme and any fully-hiding RR between functions f and g whose recon-
struction algorithm is in F . At a high-level, the construction works as follows.

The RR’s scatter algorithm is applied to each element xi of the input x. This results
in a sequence si and a state sti. The latter is encrypted using the F -homomorphic en-
cryption scheme and each mapper receives a pair composed of a label � = i and a value
v of the form (si[j], ei) for i ∈ [#x] and j ∈ [n] and where ei is an F -homomorphic
encryption of sti. The mapper evaluates g on si[j] and returns an intermediate pair with
label λ = i and value γ =

(
g(si[j]), ei

)
. After the shuffle operation, each reducer

receives a pair composed of a label i and a partition

P =

(
(
yi,j, ei

)
, . . . ,

(
yi,n, ei

)
)

,

where yi,j = g(si[j]) for j ∈ [n]. Since Recon is in F , the reducer can evaluate
Recon(ei, yi,1, . . . , yi,n) homomorphically which results in an encryption of f(xi).

Theorem 4. If HE is CPA-secure and if RR is fully-hiding, then PHE as described in
Figure 1 is secure against single-message chosen-plaintext attacks.

We sketch a proof of Theorem 4 and leave a full proof to the full version of this work.
Consider the simulator S that simulates ciphertexts in an Ideal(k) experiment as fol-
lows. Given #x it generates (pk′, sk′) ← Gen(1k) and, for all i ∈ [#x], it computes
(s′i, st

′
i) ← Scatter(0) and e′i ← HE.Encpk′ (st′i). It outputs c′ = (pk′, s′1, . . . , s

′
#x,

e′1, . . . , e
′
#x). The fully-hiding property of RR guarantees that the s′i’s are indistinguish-

able from the si’s generated in a Real(k) experiment. Similarly, the CPA-security of
HE guarantees that the e′i’s are indistinguishable from the ei’s generated in a Real(k)
experiment.

Direct Constructions. By instantiating the RR and the HE scheme in our general con-
struction with our fully-hiding RSR for univariate polynomials (from section 4.1) and
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Let HE = (Gen,Enc,Eval,Dec) be a public-key F-homomorphic encryption
scheme and let RR = (Scatter,Recon) be a C-universal (t, n)-local random-
ized reduction from f to g such that Recon ∈ F . Consider the multi-use MR-
parallel C-homomorphic encryption scheme PHE = (Gen,Enc,Eval,Dec), where
PHE.Eval = (Parse,Map,Red,Merge), defined as follows:

– Gen(1k): compute (pk, sk)← HE.Gen(1k). Output K = (sk, pk).
– Enc(K,x): for all i ∈ [#x], compute (si, sti) ← Scatter(xi) and ei ←

HE.Encpk(sti). Output c = (pk, s1, . . . , s#x, e1, . . . , e#x).
– Parse(f, c): for all i ∈ [#x] and j ∈ [n], set �i,j := i and vi,j :=

(f, pk, si[j], ei). Output (�i,j , vi,j)i,j .
– Map(�, v): parse v as (f, s, e) and compute a ← HE.Encpk(g(s)). Output

λ := � and γ := (a, e).
– Red(λ, P ): parse P as (ar, er)r and compute z ← HE.Eval(Recon, er, (ar)r).

Output (λ, z).
– Merge

(
(λt, zt)t

)
: output c′ := (zt)t.

– Dec(K, c′): for all i ∈ [#c′], compute yi := HE.Decsk(zi). Output y =
(y1, . . . , y#c′).

Fig. 1. MR-parallel HE from RR and HE

an FHE scheme, we get a multi-use MR-parallel HE scheme for the class of functions
whose output values can be computed by evaluating a (fixed) univariate polynomial of
the inputs. In addition, the resulting construction can be made delegated by encrypting
the coefficients of the polynomial using the FHE scheme and having the mappers per-
form their computations homomorphically. Current FHE constructions, however, are
not yet practical enough for our purposes so, in the full version, we present a direct
construction based only on additively homomorphic encryption. The construction can
be made delegated if we use 2DNF-HE. The direct construction also has the advantage
that the input pairs sent to the mappers are smaller than what would result from our
general construction.

Similarly, if we instantiate our general construction with our RR for multi-variate
polynomials (from Section 4.2) and an FHE scheme, we get an MR-parallel HE scheme
for the class of functions whose output values can be computed by evaluating a (fixed)
multi-variate polynomial on the inputs (with small number of variables). To avoid the
use of FHE, however, we present in the full version of this work a direct construction
that only makes use of additively HE.
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