
On the Minimal Number of Bootstrappings

in Homomorphic Circuits

Tancrède Lepoint1,2 and Pascal Paillier1

1 CryptoExperts, France
2 École Normale Supérieure, France

{tancrede.lepoint,pascal.paillier}@cryptoexperts.com

Abstract. We propose a method to compute the exact minimal num-
ber of bootstrappings required to homomorphically evaluate any circuit.
Given a circuit (typically over F2 although our method readily extends to
circuits over any ring), the maximal noise level supported by the consid-
ered fully homomorphic encryption (FHE) scheme and the desired noise
level of circuit inputs and outputs, our algorithms return a minimal sub-
set of circuit variables such that boostrapping these variables is enough
to perform an evaluation of the whole circuit. We introduce a specific
algorithm for 2-level encryption (first generation of FHE schemes) and
an extended algorithm for �max-level encryption with arbitrary �max � 2
to cope with more recent FHE schemes. We successfully applied our
method to a range of real-world circuits that perform various operations
over plaintext bits. Practical results show that some of these circuits
benefit from significant improvements over the naive evaluation method
where all multiplication outputs are bootstrapped. In particular, we re-
port that a circuit for the AES S-box put forward by Boyar and Peralta
admits a solution in 17 bootstrappings instead of 32, thereby leading to a
88% faster homomorphic evaluation of AES for any 2-level FHE scheme.

Keywords: Fully Homomorphic Encryption, Bootstrapping, Boolean
Circuits, AES S-box.

1 Introduction

Fully homomorphic encryption (FHE) allows a worker to evaluate any circuit on
plaintext values while manipulating their encryption in a public fashion i.e. with
no knowledge of the decryption key. Gentry’s original proposal [13] introduced a
design principle that was later followed by a lot of FHE schemes [13,12,20,9,5,10,8].
Inherent to this design principle is the property that ciphertexts contain some
noise which grows with successive homomorphic multiplications; thus ciphertexts
need to be refreshed to maintain a low level of noise and allow subsequent homo-
morphic operations. In order to refresh ciphertexts, Gentry’s key idea, referred to
as bootstrapping, consists in homomorphically evaluating the decryption circuit of
the FHE scheme using the decryption key bits in encrypted form, thus resulting in
a different encryption of the same plaintext but with reduced noise. One ensures

A.A. Adam, M. Brenner, and M. Smith (Eds.): FC 2013, LNCS 7862, pp. 189–200, 2013.
c© International Financial Cryptography Association 2013

190 T. Lepoint and P. Paillier

that the scheme parameters are such that the refreshed ciphertexts can handle at
least one additional homomorphic multiplication. By repeating this procedure,
the number of homomorphic operations becomes unlimited, thereby yielding a
fully homomorphic encryption scheme.

Noise Levels. In all known FHE schemes, a ciphertext ci contains a noise ri
which grows along with homomorphic multiplications and decryption is ensured
as long as ri does not exceed a given bound, i.e. ri < rmax. Without loss of
generality, we can assume that the noise is lower-bounded by the noise after a
bootstrapping operation1. We adopt a simplified approach by associating with
each ciphertext ci a discretized noise level �i = 1, 2, . . . , where 1 is the noise
level of ciphertexts resulting from a bootstrapping operation. Let c1 (resp. c2)
be a ciphertext with noise level �1 (resp. �2). Gentry-like FHE schemes are such
that c3 = c1+ c2 has noise level �3 = max(�2, �1) and c3 = c1× c2 has noise level
�3 = �1 + �2, where + and × respectively denote homomorphic addition and
multiplication. Therefore in these schemes, the noise level grows exponentially
with the number of homomorphic multiplications: to evaluate a circuit with L
sequential layers of multiplications, one must impose the maximum noise level
�max to be larger than 2L. This is practically unacceptable even for small values
of L and one must resort to bootstrapping periodically as the circuit is being
evaluated.

Note that our definition of noise levels neglects the logarithmic increase of the
noise size after a homomorphic addition. This approximation is often considered
in the literature and remains valid as long as the proportion of additions does
not become overwhelming in the circuit. Clearly, our simplified model would
become invalid outside of this context.

Exponential vs. Linear FHE Schemes. For the purpose of this work, the
above schemes will be referred to as being exponential. Recently, Brakerski, Gen-
try and Vaikuntanathan described a different framework where the ciphertext
noise grows only linearly with the number of performed multiplications instead of
exponentially [4]. This framework was used in several subsequent works [15,18,16]
and even improved [3]. These FHE schemes are said to be linear throughout the
paper. In linear schemes, homomorphic addition still outputs ciphertexts of level
�3 = max(�1, �2). However, a homomorphic multiplication c3 = c1 × c2 now re-
sults in a noise level �3 = max(�1, �2) + 1. Thus, to evaluate a circuit with L
layers of multiplications, one only requires �max � L. However, when the depth
of the circuit is not known at key generation time, this improvement is not strong
enough to completely eliminate the need for intermediate bootstrappings.

1 Notice that in most FHE schemes, freshly generated ciphertexts have a smaller
noise than the noise obtained after a bootstrapping operation, allowing the circuit
evaluator to save several bootstrappings at the beginning of the circuit. However, it is
very likely that in real-world applications, data to be evaluated homomorphically will
have been pre-processed and will not contain the smallest possible noise anymore.

On the Minimal Number of Bootstrappings in Homomorphic Circuits 191

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

v11 v12

v13 v14

(a) With no bootstrap-
ping

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

v11 v12

v13 v14

(b) Bootstrapping after
each multiplication

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

v11 v12

v13 v14

(c) Minimal solution

Fig. 1. Different bootstrapping solutions in a FHE scheme with �max = 2. Plain lines
represent homomorphic multiplications while dashed lines represent homomorphic ad-
ditions. The red lines in (a) reveal that the ciphertext noise will exceed the noise limit.
Variables in a plain rectangle have a “large” noise (�i = �max = 2) and the ones in a
dashed blue rectangle are bootstrapped i.e. are re-encrypted to convert a “large” noise
(�i = 2) into a “small” noise (�i = 1).

Minimizing Bootstrappings. Overall, both exponential and linear FHE sche-
mes must resort to boostrapping in homomorphic circuit evaluation, either pe-
riodically or once in a while. However, the bootstrapping operation is reported
as being the most drastic computational bottleneck in all known FHE imple-
mentations [14,9,10,16,8]. Worse, most of them merely perform a bootstrapping
operation right after each multiplication, as suggested in [13,12]. It is easily seen
though, as shown by the toy example depicted on Fig. 1, that this simple ap-
proach is often not optimal and that fewer bootstrappings may be sufficient to
evaluate the whole circuit if positioned more judiciously.

Note that, even though finding a minimal solution is trivial and easily done by
hand in Fig. 1, this optimization problem seems to become far more difficult with
(even slightly) more complex circuits. Automated tools are therefore necessary to
identify (one of) the smallest possible set of circuit variables whose bootstrapping
will ensure a complete circuit evaluation in minimal time.

Contributions and Outline. We propose two efficient algorithms that au-
tomatically find an exact minimal solution for any given circuit i.e. output a
minimal list of circuit variables to which bootstrapping can be applied to eval-
uate the circuit. Section 2 introduces a first algorithm specific to the case of
FHE schemes with a maximum noise level set to �max = 2. This covers both
exponential and linear schemes since the two categories collide in this particular
case. In Section 3, we extend our algorithm to support exponential FHE schemes
handling up to �max � 3 noise levels. We show that the same extended algorithm
can also be used with linear schemes via a problem reformulation. Finally, Sec-
tion 4 reports a number of experimental results on a range of real-world circuits,
namely the benchmarking circuits for MPC and FHE proposed by Smart and
Tillich [19], as well as circuits implementing the AES S-box suggested by Boyar
and Peralta [2,1].

192 T. Lepoint and P. Paillier

2 Homomorphic Schemes with 2 Noise Levels

In this section, we consider a FHE scheme that can only handle two levels of
randomness in ciphertexts, i.e. level-1 ciphertexts can either be added (yielding
a level-1 ciphertext) or multiplied (yielding a level-2 ciphertext); however only
addition can be performed on ciphertexts with levels (1, 2), (2, 1) or (2, 2) since
the result of a multiplication would not be decryptable. As a result, the scheme
can only handle a single multiplication after each bootstrapping operation. This
framework was heavily considered [13,12,9,5,10,8] and implementations are avail-
able [11,7].

2.1 Stating the Problem

Let C = C(n1, n2) be a Boolean circuit made of AND, XOR and NOT gates which
takes as input n1 bits and outputs n2 bits. We denote by C† the same circuit as
C where gates are replaced with homomorphic additions and multiplications2.
Feeding C† with n1 encrypted bits (under the FHE scheme), it will then output
n2 encrypted bits corresponding to the outputs of C applied on the same input
bits in the clear. We denote by V = {vi : 1 � i � n} the set of all single-
assignment variables (ciphertexts) used in C† where v1, . . . , vn1 are the input
variables and vn−n2+1, . . . , vn the output variables. Now we assign a noise level
�i ∈ {1, 2, . . .} to each vi as follows: the noise levels �1, �2, . . . , �n1 ∈ {1, 2}
are already fixed by the input variables v1, . . . , vn1 . Using the two rules �i3 =
max(�i1 , �i2) when vi3 = vi1 + vi2 and �i3 = �i1 + �i2 when vi3 = vi1 × vi2 , we
let noise levels automatically propagate throughout the circuit down to some
output levels �n−n2+1, . . . , �n. Note that the noise levels of intermediate and
output variables are left totally unbounded during that initial propagation and
may therefore exceed by far the maximum level �max = 2 supported by the FHE
scheme, meaning that the corresponding variables are in fact not decryptable.
However, bootstrapping some variable vi resets �i to 1 and it is easily seen that
bootstrapping all variables v1, . . . , vn makes them all decryptable again: we then
say that C† is evaluatable. What we are after is a minimal subset I ⊆ {1, n}
such that bootstrapping vi for all i ∈ I has the same effect.

A Boolean Reformulation. To each vi ∈ V is assigned a Boolean value bi ∈
{True,False} that tells whether vi is to be bootstrapped or not when evaluating
C†. We also define a Boolean mapping B(vi) such that

B(vi) = True if and only if �i = 1 .

We see that if vi3 = vi1 + vi2 then

B(vi3) = bi3 ∨
(
B(vi1) ∧ B(vi2)

)
. (1)

2 XOR and NOT gates correspond to homomorphic additions and AND gates to
homomorphic multiplications.

On the Minimal Number of Bootstrappings in Homomorphic Circuits 193

This is because �i3 = 1 only if �i1 = �i2 = 1 or, as an alternate case, �i3 equals 2
when vi3 is computed but bootstrapping vi3 afterwards resets �i3 to 1. Moreover,
if vi3 = vi1 × vi2 then

B(vi3) = bi3 . (2)

Indeed as the result of a multiplication vi3 has level �i3 = 2. The only way to get
�i3 = 1 is therefore to bootstrap vi3 after computing it. We also see that B(vi)
is already determined for input variables since for i = 1, . . . , n1,

B(vi) =

{
True if �i = 1,
bi if �i �= 1.

(3)

Overall, we see that the Boolean predicate B can also be propagated (as a mul-
tivariate Boolean expression) across the circuit using the above rules (1)–(3).
This operation can be done statically given the description of the circuit and
will result in a list of formal Boolean expressions for B(v1), . . . ,B(vn) that only
involve the ”bootstrapping” variables b1, . . . , bn.

We now capture the fact that C† is evaluatable or not as a Boolean predicate
φ2
C. In order to ascertain the correctness of all variables of C†, one must just

ensure that all variables entering a multiplication have noise level 1. Hence

φ2
C =

∧

vk=vi×vj∈C†

(
B(vi) ∧ B(vj)

)
. (4)

Obviously, φ2
C is a predicate involving b1, . . . , bn (or a subset thereof) and can

be computed once B has been propagated throughout the circuit. All in all,
evaluating C† with a minimal number of bootstrappings is reformulated as a
Boolean satisfiability problem: φ2

C must be satisfied with a minimal number of
variables b1, . . . , bn set to True.

DNF and Monotone Predicates. We observe that the Boolean predicate
φ2
C = φ2

C(b1, . . . , bn) is monotone since no negated literal ¬bi appears in φ2
C. A

monotone predicate is trivially satisfiable by setting all its variables to True.
What we want, however, is to satisfy φ2

C with as few bi’s set to True as possible.
An exact solution to our problem would be to represent φ2

C in Disjunctive Normal
Form (DNF) i.e. as an OR of ANDs. Given a DNF representation of φ2

C, it is easy
to identify an AND involving a minimal number of variables, thus providing a
minimal bootstrapping configuration for C†. However, noting μ(φ2

C) ∈ [1, n] this
minimal number, even just deciding whether μ(φ2

C) � t for some t ∈ [1, n] is a
priori intractable:

Theorem 1 ([17], Th. 3.4). Let φ be an n-variate Boolean monotone predicate
and t ∈ [1, n]. Let μ(φ) be the size of its smallest prime implicant. Deciding
whether μ(φ) � t is NP-complete.

We therefore circumvent this obstacle by adopting a heuristic approach and
further validate its effectiveness experimentally as reported later in the paper.

194 T. Lepoint and P. Paillier

2.2 A Heuristic Solver

We observe that φ2
C is computed in Eq. 4 as an accumulated conjunction: thus

when propagating B across C†, we systematically put each B(vi) in minimal Con-
junctive Normal Form (min-CNF) i.e. as an AND of ORs with as few terms as
possible. Obviously B(vi) becomes more complex (involves more bi’s) as the vari-
able vi is taken deeper in the circuit. However, the complexity increase remains
incremental from B(vi1),B(vi2) to B(vi3) for vi3 = vi1 op vi2 and computing the
min-CNF of B(vi3) given the min-CNF of B(vi1),B(vi2) therefore requires a mod-
erate computational effort. φ2

C is then aggregated along the way as a min-CNF
of other min-CNFs, which is easy to program. Once we are done collecting parts
and putting together the multivariate predicate φ2

C, we apply heuristic transfor-
mations on its min-CNF until it becomes small enough to allow a conversion
to DNF using a standard algorithm. A minimal bootstrapping configuration is
then selected from one of the smallest conjunctive clauses in the resulting DNF.

We apply 3 independent transformations on the min-CNF of φ2
C:

1. Bootstrap required variables: if φ2
C = (· · ·) ∧ bi ∧ (· · ·) for some bi then

set bi = True and repeat the operation until no longer applicable;

2. Remove redundant variables: a variable bi is redundant w.r.t. a variable
bj if every occurrence of bi in a clause of φ2

C appears together with an oc-
currence of bj (but the converse might not be true). In other words, any
clause c containing bi is of the form c = (· · ·)∨ bi ∨ (· · ·)∨ bj ∨ (· · ·). Setting
bi = True would of course lead to c = True but this will only remove all such
clauses c from φ2

C, whereas setting bj = True instead might induce additional
simplifications in other clauses of φ2

C. Therefore, we set bi = False, propa-
gate simplifications in the CNF of φ2

C, repeat the operation until no longer
applicable and restart with Step 1;

3. Maintain minimal CNF: Eliminate any clause that is tautologically im-
plied by another clause of φ2

C; repeat the operation until no longer applicable
and restart with Step 1.

In practice, these transformations are reasonably efficient and allow us to reduce
the min-CNF of φ2

C in such proportions that converting it to DNF afterwards is
either immediate or unnecessary (depending on the circuit C, φ2

C sometimes re-
duces to True by itself along the way, which terminates our algorithm). Therefore,
even though our method is unproven, we validated its practical effectiveness. We
refer to Sections 4 and 4.2 for experimental results.

Remark 1. Note that one might may also want to ensure that some output
variables vn−n2+j for j ∈ J ⊆ [1, n2] have noise level 1 instead of 2. Now,
resolving φ2

C and bootstrapping these output variables might not yield a minimal
solution. To address this case, we simply accumulate the predicates B(vn−n2+j)
for j ∈ J into φ2

C and apply the exact same strategy as above.

On the Minimal Number of Bootstrappings in Homomorphic Circuits 195

3 Extension to FHE Schemes with Many Noise Levels

Assume we are now given a FHE scheme that can handle �max � 2 levels of
noise. Let c1, c2 and c3 be ciphertexts with noise levels �1, �2 and �3 respectively.
As discussed earlier, there exists essentially two different formulas for �3 when
c3 = c1 × c2:

– �3 = �1 + �2: this corresponds to the settings of exponential schemes
[13,12,9,10,5,3]. In these schemes, the modulus remains the same after a mul-
tiplication but the noise increase depends on the amount of initial noises in
the input ciphertexts3. At most log2(�max) layers of homomorphic
multiplications can be evaluated before resorting to bootstrapping;

– �3 = max(�1, �2)+1: this corresponds to linear FHE schemes found in [6,4,10].
The noise grows negligibly after a homomorphic multiplication, but the mod-
ulus is modified after each multiplication (therefore the relative amount of
noise increases). This technique is known as modulus switching, wherein �max

different moduli are used to evaluate �max layers of homomorphic multipli-
cations without bootstrapping. Moreover two ciphertexts can only be added
or multiplied when they have exactly the same noise level so that their un-
derlying rings become identical. In the following, we assume that the cost
of modulus switching for a variable vi, i.e. incrementing its noise level, is
negligible compared to the cost of a bootstrapping operation.

We generalize the method of Section 2 to FHE schemes with �max � 2 noise
levels: Section 3.1 focuses on a extended algorithm that works with exponential
schemes, and we show in Section 3.2 how to slightly modify C† in order to reuse
the very same algorithm as a black-box to address linear schemes.

We recall that our goal is to minimize the number of bootstrappings needed
to homomorphically evaluate the circuit C† on input (vi, �i)1�i�n1 . As above, we
associate to every circuit variable vi ∈ V a Boolean variable bi ∈ {True,False}
that tells whether vi is to be bootstrapped or not. Again, we construct a Boolean
predicate φ�max

C as a function of b1, . . . , bn, �1, . . . , �n1 that tells whether C† is
evaluatable. We then rely on our heuristic solver of Section 2 to issue a minimal
set I ⊆ [1, n] such that bi = True for all i ∈ I implies φ�max

C = True.

3.1 Extension to Exponential FHE Schemes

To any variable vi ∈ V, we now associate a vector B(vi) = (Bi,1, . . . ,Bi,�max−1)
with (�max−1) Boolean coefficients such that �i = j if and only if Bi,j is the first
coefficient set to True as j ranges from 1 to �max − 1, and �i = �max if none of
the coefficients is True. We make use of the Boolean vector B(vi) to encode the
noise level �i of vi and propagate it throughout the circuit as we did with B(vi)
in the binary case �max = 2. Let us describe in more detail how B(vi) evolves
when being propagated across the circuit:

3 Notice that the order of noise increase is quite different between [13,12,9,10,5] and [3],
but this does not change our high-level description.

196 T. Lepoint and P. Paillier

– for 1 � i � n1 i.e. for input variables, set

Bi,j = False for j �= �i and Bi,�i = True if �i < �max .

– when vk = vi + vj , set

B(vk) =

⎛
⎜⎝

bk ∨ (
Bi,1 ∧ Bj,1

)
(
Bi,1 ∧ Bj,2

) ∨ (
Bj,1 ∧ Bi,2

) ∨ (
Bi,2 ∧ Bj,2

)
...

⎞
⎟⎠ , (5)

Indeed, �k = 1 if and only if vk is bootstrapped or (�i, �j) = (1, 1), oth-
erwise �k = 2 if (�i, �j) ∈ {

(1, 2), (2, 1), (2, 2)
}
, etc. All vector coefficients

Bk,3, . . . ,Bk,�max−1 are formed in the same fashion.
– when vk = vi × vj , set

B(vk) =

⎛
⎜⎜⎜⎝

bk
Bi,1 ∧ Bj,1(

Bi,1 ∧ Bj,2

) ∨ (
Bj,1 ∧ Bi,2

)
...

⎞
⎟⎟⎟⎠ . (6)

This multiplication expresses the fact that �k = �i+ �j. Indeed, �k = 1 if and
only if vk is bootstrapped, �k = 2 if and only if �i = �j = 1, and so forth.

Remark 2. Before explaining how to construct the Boolean formula φ�max

C , let us
give a couple of remarks on our representation. First of all, this representation
does not imply that

(
Bi,j = True and Bi,m = False for m �= j

) ⇐⇒ �i = j, but
that (

Bi,j = True and Bi,m = False for 1 � m < j
) ⇐⇒ �i = j .

This allows us to simplify the formulas for homomorphic addition and multipli-
cation as we do not need to check whether Bi,m = False for m > �i (see Bk,2 in
Eq. (5) and Bk,3 in Eq. (6)). Secondly, when all the elements of B(vi) are False,
this means that vi is at the maximum level of noise �i = �max. Therefore this
representation nicely generalizes the one of Section 2.

We now construct the Boolean formula φ�max

C which tells whether the circuit
is evaluatable by setting

φ�max

C =
∧

vi∈V

(�i � �max) =
∧

vk=vi×vj∈C†

(∨

1�m��max

Bk,m

)
.

Note that the clauses of φ�max

C encode the fact that to properly evaluate a ho-
momorphic operation vk = vi op vj , one must just have �k � �max. This is
automatically guaranteed by induction for all additions; expressed on all mul-
tiplications, this constraint precisely gives the above expression. As before, we
use minimal CNF representation to propagate B(vi) throughout the circuit and
aggregate all the clauses of φ�max

C on the way. This results in a min-CNF for φ�max

C

to which we apply the same 3 simplifying transformations. We finally convert the
resulting predicate to DNF (if necessary) to identify a minimal configuration.

On the Minimal Number of Bootstrappings in Homomorphic Circuits 197

Remark 3. Notice that one might want to ensure that (a subset of) the output
variables have noise levels bounded by some � � �max. One then aggregates in
φ�max

C the clauses
∨

i�� Bn−n2+j,i for j ∈ [1, n2] before solving the system.

3.2 Extension to Linear FHE Schemes

In this section, we explain how to deal with the case where �3 = max(�1, �2) + 1
when c3 = c1 × c2. Instead of adapting the previous method, we apply it as a
black box to a modified version of the homomorphic circuit C†. The modified
circuit will no longer be consistent with its specification but can be treated
by our algorithm regardless. The key idea is to see that one can simulate the
linear framework in the exponential framework by replacing every homomorphic
multiplication c3 = c1 × c2 with a subcircuit c3 = (c1 + c2)× c1,2 where c1,2 is a
fixed ciphertext with noise level �1,2 = 1. Indeed, we get

�3 = max(�1, �2) + �1,2 = max(�1, �2) + 1,

which is the wanted value in linear schemes. As mentioned, the correctness of the
modified circuit as a homomorphic version of C is destroyed, but our extended
algorithm remains applicable to it and will compute a minimal bootstrapping
configuration in an oblivious fashion.

Note however that we need to slightly twitch the extended solver, otherwise
solutions might suggest to bootstrap the newly introduced variables vi,j . This
would not make any sense as these variables have no real existence and only
serve as helper variables in our simulation. We can easily circumvent this by
not assigning a Boolean bi,j (or equivalently by forcing it to be False in Bi,j) to
the variables vi,j . This eliminates the undesired collateral effect of seeing these

variables being bootstrapped when solving φ�max

C . We then successfully compute

a minimal bootstrapping configuration from φ�max

C as previously described.

4 Practical Experiments

In this section, we discuss practical results obtained by applying our algorithms
on several circuits (see Table 1). We implemented our basic and extended solvers
using Mathematica 9 running on a 2.6 GHz Intel Core i7 with 16 GB of RAM.
Although we did not specifically measure execution times, these range from a
few seconds to a few hours depending on the circuit size and �max (timings tend
to grow exponentially with �max). We focused on the benchmarking circuits for
MPC/FHE proposed by Smart and Tillich [19], and on circuits put forward by
Boyar and Peralta for the AES S-box [2,1]. For each circuit, we computed the
minimal number of bootstrappings needed to evaluate homomorphically that
circuit with an exponential FHE scheme supporting �max = 2 or �max = 4 noise
levels and with level-1 inputs and outputs i.e.

�1 = · · · = �n1 = 1 and �n−n2+1 = · · · = �n = 1.

Table 1 reports the results we obtained by applying our algorithms to the selected
circuits.

198 T. Lepoint and P. Paillier

Table 1. Minimal number of bootstrappings with level-1 inputs and outputs

Circuit C† �max Number of hom. Exact minimal number

multiplications in C† of bootstappings

Adder 32 bits [19] 2 127 127

Adder 32 bits [19] 4 127 64

Comparator 32 bits [19] 2 150 146

Comparator 32 bits [19] 4 150 74

DES (expanded key) [19] 2 18175 18041

DES (expanded key) [19] 4 18175 8997

AES S-box [2] 2 32 19

AES S-box [2] 4 32 12

AES S-box [1] 2 32 17

AES S-box [1] 4 32 12

4.1 MPC/FHE Benchmark Circuits

Our results show that circuits given as reference by [19] tend to be disappointing
when �max = 2 as we find that the minimal number of bootstrapping required
to evaluate them is nearly equal to the number of homomorphic multiplications,
thus being very close to the (trivial) upper bound. This can be explained by the
fact that these circuits are automatically generated from hardware components,
and clearly not optimized: they were not constructed to be small in terms of
gate count, or have a significantly smaller depth, etc. Their linear parts were
not optimized either [2]. Also note that setting �max = 4 instead of 2 divides the
number of required bootstrappings by a factor nearly two.

4.2 The Boyar-Peralta AES S-Box

To the best of our knowledge, the first real-life circuit evaluated by a fully homo-
morphic encryption scheme is a circuit for AES encryption proposed by Gentry,
Halevi and Smart [16]. However the authors decided to completely get rid of the
bootstrappings by choosing a FHE scheme with �max = 100 so that the entire
circuit can be evaluated at once. The drawback of this choice is that the public
key becomes prohibitively large and required a server with 256GB of RAM to run
the implementation and issue performance benchmarks. The authors suggested
that bootstrapping might certainly be used as an optimization, i.e. as a way to
balance the running time and the memory requirements.

The non-linear part of AES, computing the S-box, cannot be performed by
table lookups in an homomorphic implementation. We considered circuits for the
AES S-box already optimized by Boyar and Peralta with respect to gate count
or depth [2,1]. Our practical results are detailed on Table 1. Contrarily to the
circuits of [19], the Boyar-Peralta circuits were optimized and we found that their
minimal number of bootstrappings is nearly half the number of homomorphic
multiplications when �max = 2. As a result, homomorphically evaluating an AES
encryption with a 2-level FHE scheme can be boosted by a factor 1.88 by just

On the Minimal Number of Bootstrappings in Homomorphic Circuits 199

choosing the circuit from [1] and use our 17-bootstrapping optimal configuration
{t21, t22, t23, t24, t26, t29, t33, t36, t40, s0, s1, s2, s3, s4, s5, s6, s7} as described in [8].

However, when �max grows, the gain of minimal bootstrapping operations with
respect to the case �max = 2 is smaller than for the circuits of [19] (and even lower
bounded by 8) due to the structure of these circuits4. Since the output variables
are required to have a minimal noise level, the last reduction phase implies that
the minimal solution consists in bootstrapping these output variables.

5 Conclusion

We introduced a method that computes the exact minimal number of boot-
strappings required to homomorphically evaluate any circuit using any known
FHE scheme. When �max = 2, the number of homomorphic multiplications is a
strict upper bound on the minimal number of bootstrappings but significantly
better figures can be found using our approach as exemplified by the circuit
from [1]. We see, however, that most commonly used circuits are disappoint-
ingly unoptimized with respect to their ”bootstrapping complexity”. As an av-
enue for future research, we suggest to explore algorithmic strategies to build
bootstrapping-efficient circuits i.e. to decrease their boostrapping complexity by
a specific design effort. Finally, it would be interesting to refine our definition
of noise levels to take into account the additional logarithmic effects induced by
homomorphic operations, especially in the case of linear FHE schemes.

References

1. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. Journal of Cryptology 26(2), 280–312 (2013)

2. Boyar, J., Peralta, R.: A depth-16 circuit for the AES s-box. Cryptology ePrint
Archive, Report 2011/332 (2011), http://eprint.iacr.org/

3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) Innovations in Theoretical
Computer Science 2012, pp. 309–325. ACM (2012)

5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pp. 97–106. IEEE Computer Soci-
ety (2011)

6. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

7. Brenner, M., Perl, H., Smith, M.: Implementation of the fully homomorphic en-
cryption schemes of Gentry and Smart and Vercauteren, https://hcrypt.com/

4 Notice that these circuits are composed of three phases: top linear transformations,
shared non-linear component, and bottom linear transformations.

http://eprint.iacr.org/
https://hcrypt.com/

200 T. Lepoint and P. Paillier

8. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidel-
berg (2013)

9. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

10. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

11. Coron, J.-S., Tibouchi, M.: Implementation of the fully homomorphic en-
cryption scheme over the integers with compressed public keys in sage,
https://github.com/coron/fhe

12. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

13. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity (2009), http://crypto.stanford.edu/craig

14. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148.
Springer, Heidelberg (2011)

15. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

16. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

17. Goldsmith, J., Hagen, M., Mundhenk, M.: Complexity of DNF and isomorphism
of monotone formulas. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005.
LNCS, vol. 3618, pp. 410–421. Springer, Heidelberg (2005)

18. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, pp. 1219–1234.
ACM (2012)

19. Smart, N.P., Tillich, S.: Circuits of basic functions suitable for MPC and FHE,
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

20. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

https://github.com/coron/fhe
http://crypto.stanford.edu/craig
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

	On the Minimal Number of Bootstrappingsin Homomorphic Circuits
	1 Introduction
	2 Homomorphic Schemes with 2 Noise Levels
	2.1 Stating the Problem
	2.2 A Heuristic Solver

	3 Extension to FHE Schemes with Many Noise Levels
	3.1 Extension to Exponential FHE Schemes
	3.2 Extension to Linear FHE Schemes

	4 Practical Experiments
	4.1 MPC/FHE Benchmark Circuits
	4.2 The Boyar-Peralta AES S-Box

	5 Conclusion
	References

