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Abstract. Uncertainty is one basic feature in the information process-
ing, and the expressing and processing of uncertain information have
attracted more attentions. There are many theories introduced to pro-
cess the uncertain information, such as probability theory, random set,
evidence theory, fuzzy set theory, rough set theory, cloud model theory
and so on. They depict the uncertain information from different aspects.
This paper mainly discusses their differences and relations in expressing
and processing for uncertain information. The future development trend
is also discussed.
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1 Introduction

In the era of increasing popularity of computer and network, the manifesta-
tions of information are more diversified with the development of Internet and
multimedia technology, such as text, image, video, audio, etc. Human-computer
intersection is more frequent and closer. The expression and reasoning of uncer-
tainty as a fundamental feature of information have always been the important
issues of knowledge representation and reasoning [13].

There are many kinds of uncertainties, such as randomness, fuzziness, im-
precision, incompleteness, inconsistency, etc.. Correspondingly, there are many
theoretical models to study uncertain information. For example, the probability
theory and the random set theory mainly study the random uncertainty [17][30];
the evidence theory mainly expresses and processes the uncertainties of unascer-
tained information [7][24]; the fuzzy set theory [39] and their derivations, such
as the type-2 fuzzy set, the intuitionistic fuzzy set and the interval-valued fuzzy
set, study the fuzzy uncertainty of cognition; the rough set theory [19] and its
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corresponding expansion models discuss the ambiguity indiscernibility and im-
precision of information; the cloud model studies the randomness and fuzziness
and their relationships [13][14].

Generally speaking, when talking about uncertainty of information, the un-
certainty doesn’t mean only one kind of uncertainty, but is the coexistence of
multi kinds of uncertainty. In this paper, we will discuss the relations among
the probability theory, the evidence theory, the random set theory, the fuzzy set
theory and its derivations, the rough set theory and its extended models and the
cloud model theory.

2 Uncertainty Expression in Probability Theory

Probability, as a measurement of random event, has been already applied widely.
Probability and random variable are two important tools during the research of
random phenomena. The axiomatic definition of probability is as follows.

Definition 1. [30] Given a sample space Ω and an associated sigma algebra Σ,
For ∀A ∈Σ, the real-valued set function P (A) defined on Σ is called a probability
of the event A, when it satisfies: (1) 0≤P (A)≤1; (2) P (Ω)=1; (3) If the countable

infinite events A1, A2, · · · ∈ Σ, Ai∩Aj=∅, i �=j, then P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

For a given probability space (Ω,Σ, P ), random variable X is a real-valued
function on sample space Ω. Random variables and their probability distribu-
tions are two important concepts of studying stochastic system.

From Definition 1, we know that if the countable infinite events A1, A2, · · · ∈
Σ, Ai ∩ Aj=∅, i �=j, and

∞⋃
i=1

Ai=Ω, then P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)=1. However, in

actual applications, the random events Ai and Aj (i �=j) may not satisfy strictly
Ai∩Aj=∅ due to the uncertainty of random events. So, the countable additivity
of probability could not be satisfied. In 1967, Dempster gave a probability which
does not satisfy countable additivity, and he tried to use a range of probabilities
(upper and lower probabilities) rather than a single probability value to depict
the uncertainty so as to establish evidence theory, which is further expansion of
probability theory. Random set theory is also another expansion of probability
theory, in which the value of a random variable is a closed set rather than a
real number. Specific contents will be introduced in section 2.1 and section 2.2
respectively.

2.1 Evidence Theory

In evidence theory, belief function and plausibility function are two most funda-
mental and important notions. Let Ω be the frame of discernment representing
all possible states of a system under consideration. Evidence theory assigns a
belief mass to each element of the power set. Formally, the definition of a belief
mass function is as follows.
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Definition 2. [3] Let Ω be a frame of discernment, a function m(A): 2Ω →[0, 1],
is called a function of basic probability assignment, when it satisfies two proper-
ties: m(∅)=0 and

∑
A⊆Ω

m(A)=1.

From Definition 2, we know that the function of basic probability assignment
does not satisfy countable additivity due to

∑
A⊆Ω

m(A)=1, so it is different from

probability function.
Based on the function of basic probability assignment, the belief function Bel

and the plausibility function Pl are defined as:

Definition 3. [3] Let Ω be a frame of discernment, ∀A ⊆ Ω, a function Bel :
2Ω → [0, 1], is called a function of belief , when it satisfies: Bel(X)=

∑
A⊆X

m(A).

A function Pl : 2Ω → [0, 1], is called a function of plausibility, when it satisfies:
Pl(X)=

∑
A∩X �=∅

m(A).

From Definition 3, Bel(A) expresses the confident degree of the evidence sup-
porting the event A being true, while Pl(A) expresses the confident degree of the
event A being non-false, and Bel(A) ≤ Pl(A)(∀A ⊆ Ω). Bel(A) and Pl(A) are
called the lower limit and the upper limit of confidence degree for A, respectively.

Thus, another difference from the probability theory is that the evidence the-
ory uses a range [Bel(A), P l(A)] to depict the uncertainty. The interval-span
Pl(A)-Bel(A) describes the “unknown part” with respect to the event A. Dif-
ferent belief intervals represent different meanings, see Figure 1.

Obviously, the three intervals are relative to the three-way decisions [38].
That is, the support intervals and reject intervals mean the two-way immediate
decisions, and the uncertain interval means the third-way decision which also
called the deferred decision.

Fig. 1. Uncertainty expression of information

2.2 Random Set Theory

Random set is a set-valued function on sample space Ω, which is a generalization
of random variable concept. The strict mathematical definition is as follows.

Definition 4. [17] Let (Ω,Σ, P ) be a probability space, and (Ψ, σ(β)) be a mea-
surable space, where, β ⊆ 2Ψ , if mapping F : Ω → 2Ψ , is called random set, when
it satisfies: ∀Λ ∈ σ(β), {u ∈ Ω|F (u) ∈ Λ} ∈ Σ.
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From Definition 4, the difference between random variable and random set is
that the former is a random point function, while the latter is a random set-
valued function. Thus, random set theory is a generalization from point variable
statistics to set variable statistics.

3 Uncertainty Expression in Fuzzy Set Theory

Fuzzy set, which is proposed by Prof. Zadeh as an extension of Cantor set [39],
is used to describe the uncertainty of cognition, that is, the extension of concept
is not clear and we can not give definitive assessment standard. In Cantor set
theory, an element either belongs or does not belong to the set. By contrast,
fuzzy set permits the gradual assessment of the membership of elements in a set.

Definition 5. [39] Let U be a universe of discourse, and A be a fuzzy subset
on U , a map μA: U→[0, 1], x
→μA(x), is called membership function of A, and
μA(x) is called membership degree respect to A.

From Definition 5, μA(x) expresses the membership degree of an element x
belonging to a fuzzy subset A. Once μA(x) is determined, it will be a fixed
value. Thus, the operations between fuzzy sets based on membership degree
become certainty calculation. Considering the uncertainty of membership degree,
Zadeh proposed interval-valued fuzzy set (IVFS) and type-2 fuzzy set (T2FS)
as extension of fuzzy set (FS) [40].

Definition 6. [40] Let U be a universe of discourse, an interval-valued fuzzy set,
denoted AIV , is a map μAIV : U→Int[0, 1], where, Int[0, 1] expresses a collection
of all closed subintervals on [0, 1]; A type-2 fuzzy set, denoted Ã, is characterized
by a type-2 membership function μÃ(x, u), where ∀x ∈ U and u ∈ Jx ⊆ [0, 1], i.e.:

Ã={((x, u), μÃ(x, u))}, or Ã =
∫
x∈U

∫
u∈Jx

μÃ(x, u)/(x, u), where 0 ≤ μÃ(x, u) ≤
1,

∫∫
denotes union over all admissible x and u.

From Figure 2(a), the membership degree of IVFS AIV is μAIV (xi)=[ai−, ai+].
For T2FS, each membership degree μÃ(x, u) is a type-1 membership function
u ∈ Jx. Therefore, different x may have different membership function u, see
Figure 2(b).

On the other hand, in FS, the membership degree μA(x) is a degree of an
element x belonging to a fuzzy subset A, which implies that the non-membership
degree of x belonging to A is equal to 1-μA(x). Considering the hesitation degree
of an element x belonging to A, Atanassov proposed intuitionistic fuzzy set (IFS)
[1], and Gau and Buehrer proposed vague set [9] through membership degree and
non-membership degree respectively. Afterward, Bustince and Burillo proved
that intuitionistic fuzzy set and vague set are equivalent [4]. The definition of
IFS is as follows.

Definition 7. [1] Let U be a universe of discourse, an intuitionistic fuzzy set
A is an object of the form: A={ 〈x, μA(x), νA(x)〉|x ∈ U}, where μA: U→[0, 1]
and νA: U→[0, 1] are such that 0≤μA+νA≤1, and μA, νA ∈ [0, 1] denote degrees
of membership and non-membership of x belonging to A, respectively.
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Comparing the FS and IFS, we find that μA(x)+νA(x)=1 in FS, while in IFS,
μA(x)+νA(x)≤1. The IFS is shown in Figure 2(c).

Fig. 2. Uncertainty expression of information

4 Uncertainty Expression in Rough Set Theory

Rough set (RS), proposed by Prof. Pawlak, uses the certain knowledge to depict
the uncertain or imprecise knowledge from the perspective of knowledge classi-
fication [19], that is, it uses two certain sets (lower approximation set and upper
approximation set) to define an uncertain set based on an equivalence relation.
The definition of rough set is as follows.

Definition 8. [29] Let K=(U,R) be a knowledge base, the subset X ⊆ U and
the equivalence relation R ∈R (R is a family of equivalence relation on U), then
RX={x∈ U |[x]R ⊆ X}, RX={x∈ U |[x]R∩X �= ∅}, are called the R−lower ap-
proximation set and R−upper approximation set of X respectively. BNR(X)=RX
−RX is called the R−boundary region of X; PosR(X)=RX is called the posi-
tive region of X, and NegR(X)=U−RX is called the negative region of X. If
BNR(X)=∅, then X is definable, otherwise X is a rough set.

A limitation of Pawlak rough set model is that the classification which it
deals with must be totally correct or definite. Because the classification is based
on the equivalence classes, its results are accurate, that is, “include” or “not
include” certainly. To combat the question, some probabilistic rough set (PRS)
models are introduced such as the 0.5 probabilistic rough set (0.5-PRS) model
[20], the decision-theoretic rough set (DTRS) model [35], the variable precision
rough set (VPRS) model [45], the Bayesian rough set (BRS) model [26], the
Game-theoretic rough set (GTRS) model [10], and so on.

RS model is based on equivalence relations, and for each object, there is one
and only one equivalence class containing it, then this equivalence class can be
regarded as the neighborhood of this object, which constitutes the neighborhood
system of this object. In general neighborhood system, the object may have two
or more neighborhoods. Lin constructed rough set model based on neighborhood
system by means of interior point and closure in topology [32]. It is a more
generalized approximation set manifestation and also an extension of RS.
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In many cases, the information systems are not complete, such as default
attribute values. Thus, the rough set theory and method based on incomplete
information systems has been extensively studied and developed [12][33].

In short, we can describe the relations among the above models in Figure 3.

Fig. 3. The relationships between several uncertainty theories

In the foregoing discussion, probability theory, rough set theory and fuzzy set
theory are three main uncertainty theories represented with elliptical shape in
Figure 3. The random set theory and the evidence theory, IVFS, T2FS, IFS, 0.5-
PRS, DTRS, VPRS, BRS, GTRS, the neighborhood rough set and incomplete
system rough set are the extended models of probability theory, fuzzy set theory
and rough set theory respectively, and they are expressed by rectangle shape.
The probabilistic rough set, the rough-fuzzy set, the fuzzy-rough set and the
cloud model are obtained by the combination of different theories, and they are
expressed by rounded rectangle. The red dotted line expresses the connections
among different extended models. The associations and differences between these
models will be introduced and analyzed in detail in section 5.

5 Combination, Association and Difference between
Different Extended Models

5.1 Probabilistic Rough Set Model

Pawlak RS is based on completion of available information, but the incompletion
and statistical information of available information are ignored, so Pawlak RS
is often powerless when processing the rule acquisition of inconsistent decision
table. Some probabilistic rough set models were introduced to solve problems.
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The DTRS was proposed by Yao et al. [35][36], which provides a novel rough set
model for studying uncertain information system.

Definition 9. [35] Let U be a universe of discourse, and R be an equiv-
alence relation on U . A triple Ap=(U,R, P ) is a probabilistic approxi-
mation space, where a probability measure P defined on sigma algebra
of subsets of U . In terms of conditional probability, ∀X⊆U , the lower
and upper probabilistic approximations of X on parameters α, β(0≤β<α≤1)
are: Pα(X)={x∈U |P (X |[x]R) ≥α}, Pβ(X)={x∈U |P (X |[x]R)>β}. The cor-
responding positive region, boundary region and negative region are re-
spectively: Pos(X,α, β)=Pα(X); BN(X, α, β)={x∈ U |β<P (X |[x]R)<α};
Neg(X,α,β)={x∈U |P (X |[x]R)≤β}. If BN(X, α, β) �=∅, then X is called proba-
bilistic rough set on parameters α, β.

In this context, each subset of U representing a random event is called a “con-
cept”. The conditional probabilityP (X |[x]R) can be interpreted as the probability
that a randomly selected object with the description of concept [x]R belongs toX .

5.2 Fuzzy-Rough Set and Rough-Fuzzy Set Models

In the above mentioned various rough set models, the concepts and knowledge
are all clear, that is, all sets are classical. However, it is mostly fuzzy concept
and fuzzy knowledge that involve in people’s actual life. There are two types
reflected in rough set model, one is that knowledge of knowledge base is clear
while the approximated concept is fuzzy, another is that knowledge of knowledge
base and the approximated concept are all fuzzy. Based on this point, Dubois
and Prade proposed rough fuzzy sets (RFS) model and fuzzy rough sets (FRS)
model based on fuzzy set and rough set [8].

Definition 10. [8] Let U be a universe of discourse, and R be an equivalence re-
lation on U . If A is a fuzzy set on U , then ∀x ∈ U , μAR

(x)=inf{μA(y)|y ∈ [x]R}
and μAR

(x)=sup{μA(y)|y ∈ [x]R} are called the membership functions of lower

approximation fuzzy set AR and upper approximation fuzzy set AR respectively.
If AR=AR, then A is definable, otherwise A is a rough fuzzy set.

Definition 11. [8] Let U be a universe of discourse, and R be a fuzzy equiva-
lence relation on U . If A is a fuzzy set on U , then ∀y ∈ U , μAR

(x)=inf max{1-
μ[x]R(y), μA(y)}, μAR

(x)=supmin{μ[x]R(y), μA(y)} are called the membership
functions of lower approximation fuzzy set AR and upper approximation fuzzy
set AR respectively. If AR=AR, then A is definable, else A is a fuzzy rough set.

According to Definition 10, if A is a classical set, then AR and AR are two
classical sets. The difference between rough set and rough fuzzy set is whether
the approximated concept is a classical set or a fuzzy set. Thereupon, the rough
fuzzy set is natural generalization of rough set. From Definition 11, we can see
that fuzzy rough set is a further expansion of rough fuzzy set due to the equiva-
lence relation R transformed into fuzzy equivalence relation R. In addition, the
reference [23] also studied the fuzzy rough set.
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5.3 Cloud Model

Cloud model, proposed by Prof. Li, studies the randomness of sample data and
membership degree based on probability theory and fuzzy set theory [13], see
Figure 3. A formalized definition is as follows.

Definition 12. [13] Let U be a universal set described by precise numbers, and C
be a qualitative concept related to U . If there is a number x ∈ U , which randomly
realizes the concept C, and the membership degree μ of x for C is a random
number with a stabilization tendency, i.e., μ : U → [0, 1], ∀x ∈ U, x → μ(x), then
the distribution of x on U is defined as a cloud, and each x is a cloud drop.

From Definition 12, the membership degree μ(x) of each cloud drop x is
a random number, and all the cloud drops satisfy a certain distribution. The
density of cloud drops expresses uncertainty degree of a concept C. Generally,
a qualitative concept C is expressed by numerical characteristics (Ex,En,He),
wherein, Ex is the most expected value of concept; En is used to figure its
granularity scale; He is used to depict the uncertainty of concept’s granularity.
If the distribution of cloud drops is a normal distribution, then the corresponding
cloud model is called a normal cloud.

Definition 13. [13] Let U be a universal set described by precise numbers, and
C be a qualitative concept containing three numerical characters (Ex,En,He)
related to U . If there is a number x∈U , which is a random realization of the
concept C and satisfies x=RN (Ex, y), where y=RN (En,He), and the certainty

degree of x on U is μ(x)=exp{− (x−Ex)2

2y2 }, then the distribution of x on U is

a normal cloud. Where y=RN (En,He) denoted a normally distributed random
number with expectation En and variance He2.

10 15 20 25 30 35 40
0

0.2
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1

 x

 μ
 He

 Ex
3En

Fig. 4. Normal cloud

From Definition 13, we can depict an uncer-
tain concept concretely. For example, let (Ex=25,
En=3, He=0.3) express “Young”, where, Ex=25
represents the expected age of “Young”, and the
corresponding normal cloud map is shown in Fig-
ure 4. The generated cloud drops have random-
ness (horizontal axis), at the same time, for each
cloud drop x, the membership degree μ(x) also
has randomness (vertical axis). That is, different
people give different ages for “Young”, such as 18,
18.5, 19, 20, 22, 28, 30, · · ·, namely these ages have
stochastic to a certain extent, and each age may have different membership de-
gree of belonging to “Young”, take for 22 years example, μ(22) may equal to 0.3,
0.35, 0.4, 0.47, 0.51, · · ·. Thus, cloud model not only considers the randomness
of concept, but also involves the randomness of membership degree of object or
sample belonging to the concept.
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5.4 Association and Difference between Different Extended Models

From the above discussion, we know that probability theory, FS theory and RS
theory have some extended models respectively, see Figure 3. The associations
and differences of these extended models will be discussed.

(1) In FS theory, T2FS, IVFS and IFS are all the generalization of FS based
on membership function. The integration of T2FS, IVFS and IFS can obtain
some new models, such as interval-valued intuitionistic fuzzy set [2], interval-
valued type-2 fuzzy sets [18], type-2 intuitionistic fuzzy set [44], etc. In rough
set theory, VPRS and PRS loose the strict definition of approximate boundary.
Compared with RS, the positive region and negative region will become larger,
while the boundary region will be smaller in VPRS and PRS due to allowing
error classification rate to some extent. In this sense, VPRS and PRS have some
similar aspects [27]. In addition, the references [15][16][28] studied the variable
precision fuzzy rough set and variable precision rough fuzzy set on the basic
of VPRS, FRS and RFS, respectively. For the faults of FRS and VPRS, the
reference [43] set up a model named fuzzy VPRS by combing FRS and VPRS
with the goal of making FRS a special case. The reference [5] studied the vaguely
quantified rough set model which is closely related to VPRS. The references [6]
and [11] studied the ordered weighted average based FRS and robust FRS model
respectively because the classical model of FRS is sensitive to noisy information.
The reference [33] studied the rough set model and attribute reduction based
on neighborhood system in incomplete system, and the reference [34] proved
the VPRS and multi-granulation rough set model [21][22] are the special cases
of neighborhood system rough set model and the neighborhood system rough
set is a more generalized rough approach. According to the meanings of belief
function and plausibility function, they are similarities with the lower and upper
approximation of rough set. The references [25][37] discussed the relationship
between them. In incomplete information systems, considering all possible values
of the object attributes with incomplete information, then the values of some
attribute are no longer a single point value but a set value. Based on this, the
references [41][42] made the random set introduce into rough set theory and
studied the rough set models based on random sets. The reference [41] discussed
the relationships between random set, rough set and belief function. The above
relations are shown in Figure 3.

(2) The similarities between evident theory, RS and IFS on the representa-
tion of uncertain information: The evidence theory depicts the uncertainty of
information based on the belief function Bel and plausibility function Pl. IFS
uses the membership degree and non-membership degree to study the fuzziness
of information which is caused by the extension unclear. RS gives a characteri-
zation of uncertain information through lower approximation set RX and upper
approximation set RX based on a equivalence relation R, and uses the roughness
ρR(X)=1−|RX |/|RX | to measure the uncertainty. From the aspects of decision-
making, people usually perform three kinds of decision-making in our daily life
according to the given information [31][38]: determine decision-making including
acceptance decision and refusal decision, and delay decision (we can not make the
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acceptance or refusal decision based on the current information, and additional
information is required to make a decision). The evidence theory, RS and IFS are
all able to describe the three decisions. In evidence theory, Bel(A) expresses the
degree of acceptance decision, 1−Pl(A) expresses the degree of refusal decision,
and Pl(A)−Bel(A) describes the degree of delay decision. In RS, the positive
region PosR(X) and the negative region NegR(X) can be used to depict the ac-
ceptance decision and the refusal decision respectively, and the boundary region
BNR(X) depicts the delay decision. In IFS, membership function μA(x) and
non-membership function νA(x) describe the degrees of acceptance decision and
refusal decision respectively, and the hesitation degree πA(x)=1−(μA(x)+νA(x))
describes the degree of delay decision. From this point of view, the three theories
have common place in expressing of uncertainty information.

(3) The difference between cloud model and T2FS: T2FS discusses the fuzzi-
ness of membership degree using the type-1 fuzzy set. Once the membership
function is determined, then it will be fixed. While the membership degree of a
object belonging to uncertain concept is not a fixed value, but a random number
with a stabilization tendency in cloud model. Thus, they have difference. In ad-
dition, cloud model considers the randomness of research object. In this sense,
cloud model can well integrate the randomness and fuzziness of information.

6 Conclusions and Prospects

The paper summarizes the research on some uncertainty theory models and the
corresponding extended models and discusses the associations and differences
between them. But there are still some deficiencies, such as the countable addi-
tivity of probability may not be satisfied perfectly in practical applications due
to uncertainty; how to determine the values of mass function and membership
function objectively; the independence of evidence restricts the application range
of evidence theory; RS theory does not take into account the randomness of sam-
ple data, which makes the generalization ability of acquired knowledge and rules
be relatively low and so on. Thus, these problems will be further studied. In
addition, because cloud model can deal with randomness and fuzziness, it will
be a good issue, worth to study the combination of rough set and cloud model,
and the reasoning mechanism, the combination rule of many uncertain concept,
the automatically transformed method among multiple granularities based on
cloud model are also urgent problems in the future research.

In recent years, computer and network technology advance rapidly. Along
with the development of computer network and the widespread application of
the Web technology, the data in database is becoming increasingly complicated.
Incomplete information, inconsistent information, etc. are also getting more and
more general. However, computer can only perform logic and four arithmetic
operations essentially. If there are no good models and algorithms, it is still
difficult to get the desired results even if there exists highly efficient large-scale
computer. Thus, for the problem solving of large-scale complex systems, it needs
more methodological innovations. Granular computing, deep learning, quantum
coding and so on may be used to reduce system complexity.
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