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Abstract. In this paper we consider a generalization of the indiscerni-
bility relation, i.e., a relation R that is not necessarily reflexive, sym-
metric, or transitive. There exist 36 basic definitions of lower and upper
approximations based on such relation R. Additionally, there are six
probabilistic approximations, generalizations of 12 corresponding lower
and upper approximations. How to convert remaining 24 lower and up-
per approximations to 12 respective probabilistic approximations is an
open problem.

1 Introduction

Rough set theory is based on ideas of lower and upper approximations. For com-
pletely defined data sets such approximations are defined using an indiscerniblity
relation R [25, 26], an equivalence relation. A probabilistic approximation, a gen-
eralization of lower and upper approximations, was introduced in [36] and then
studied in many papers, e.g., [19, 27–29, 34, 40, 42–45]. Probabilistic approxi-
mations are defined using an additional parameter, interpreted as probability,
and denoted by α. Lower and upper approximations are special cases of the
probability approximation, if α = 1, the probabilistic approximation becomes
the lower approximation; if α is quite small, the probabilistic approximation is
equal to the upper approximation.

Some data sets, e.g., incomplete data sets, are described by relations that
are not equivalence relations [8, 9]. Lower and upper approximations for such
a relation R that does not need to be reflexive, symmetric or transitive were
studied in many papers as well. Corresponding definitions were summarized in
[14, 16], where also basic properties were studied. There exist 36 basic definitions
of lower and upper approximations based on such general relation R. These lower
and upper approximations were generalized to probabilistic approximations in
[11]. There are six such probabilistic approximations, generalizations of 12 corre-
sponding lower and upper approximations, since a probabilistic approximation,
with α between 0 and 1, represents the entire spectrum of approximations, in-
cluding lower and upper approximations. How to convert remaining 24 lower and
upper approximations to 12 respective probabilistic approximations is an open
problem.
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2 Equivalence Relations

First we will quote some definitions for complete data sets that are characterized
by an equivalence relation, namely, by the indiscernibility relation [25, 26].

2.1 Lower and Upper Approximations

The set of all cases of a data set is denoted by U . Independent variables are
called attributes and a dependent variable is called a decision and is denoted by
d. The set of all attributes will be denoted by A. For a case x, the value of an
attribute a will be denoted by a(x). If for any a ∈ A and x ∈ U the value a(x)
is specified, the data set is called completely specified, or complete.

Rough set theory, see, e.g., [25] and [26], is based on the idea of an indiscerni-
bility relation, defined for complete data sets. Let B be a nonempty subset of
the set A of all attributes. The indiscernibility relation IND(B) is a relation on
U defined for x, y ∈ U by

(x, y) ∈ IND(B) if and only if a(x) = a(y) for all a ∈ B.

A complete data set may be described by an (U,R) called an approximation
space, where R is an indiscernibility relation IND(B) on U .

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B .
For completely specified data sets lower and upper approximations are defined
on the basis of the indiscernibility relation. Any finite union of elementary sets,
associated with B, will be called a B-definable set. Let X be any subset of the
set U of all cases. The set X is called a concept and is usually defined as the
set of all cases defined by a specific value of the decision. In general, X is not
a B-definable set. However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X , denoted by BX and
defined by

{x ∈ U |[x]B ⊆ X}.

The second set is called a B-upper approximation of X, denoted by BX and
defined by

{x ∈ U |[x]B ∩X �= ∅}.

The above shown way of computing lower and upper approximations, by
constructing these approximations from singletons x, will be called the first
method. The B-lower approximation of X is the greatest B-definable set, con-
tained in X . The B-upper approximation of X is the smallest B-definable set
containing X .

As it was observed in [26], for complete data sets we may use a second method
to define the B-lower approximation of X , by the following formula
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∪{[x]B|x ∈ U, [x]B ⊆ X},
and the B-upper approximation of x may be defined, using the second
method, by

∪{[x]B |x ∈ U, [x]B ∩X �= ∅).

Note that for a binary relation R that is not an equivalence relation these two
methods lead, in general, to different results.

2.2 Probabilistic Approximations

Let (U,R) be an approximation space, where R is an equivalence relation on U .
A probabilistic approximation of the set X with the threshold α, 0 < α ≤ 1, is
denoted by apprα(X) and defined by

∪{[x] | x ∈ U, Pr(X |[x]) ≥ α},
where [x] is an elementary set of R and Pr(X |[x]) = |X∩[x]|

|[x]| is the conditional

probability of X given [x].
Obviously, for the set X , the probabilistic approximation of X computed for

the threshold equal to the smallest positive conditional probability Pr(X | [x])
is equal to the standard upper approximation of X . Additionally, the probabilis-
tic approximation of X computed for the threshold equal to 1 is equal to the
standard lower approximation of X .

3 Arbitrary Binary Relations

In this section we will discuss first lower and upper approximations and then
probabilistic approximations based on an arbitrary binary relation R.

3.1 Lower and Upper Approximations

First we will quote some definitions from [14, 16]. Let U be a finite nonempty
set, called the universe, let R be a binary relation on U , and let x be a member of
U . The relation R is a generalization of the indiscernibility relation. In general,
R does not need to be reflexive, symmetric, or transitive. Basic granules defined
by a relation R are called R-successor and R-predecessor sets.

An R-successor set of x, denoted by Rs(x), is defined by

Rs(x) = {y | xRy}.
An R-predecessor set of x, denoted by Rp(x), is defined by

Rp(x) = {y | yRx}.
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Let X be a subset of U . A set X is R-successor definable if and only if X = ∅
or X is a union of some R-successor sets.

A set X is R-predecessor definable if and only if X = ∅ or X is a union of
some R-predecessor sets.

Singleton, Subset and Concept Approximations. An R-singleton succes-
sor lower approximation of X , denoted by apprsingleton

s
(X), is defined by

{x ∈ U | Rs(x) ⊆ X}.

The singleton successor lower approximations were studied in many papers,
see, e.g., [8, 9, 20–23, 30–33, 35, 37–39, 41].

An R-singleton predecessor lower approximation of X , denoted by
apprsingleton

p
(X), is defined as follows

{x ∈ U | Rp(x) ⊆ X}.

The singleton predecessor lower approximations were studied in [30].
An R-singleton successor upper approximation of X , denoted by

apprsingletons (X), is defined as follows

{x ∈ U | Rs(x) ∩X �= ∅}.

The singleton successor upper approximations, like singleton successor lower
approximations, were also studied in many papers, e.g., [8, 9, 20, 21, 30–33, 35,
37–39, 41].

An R-singleton predecessor upper approximation of X , denoted by
apprsingletonp (X), is defined as follows

{x ∈ U | Rp(x) ∩X �= ∅}.

The singleton predecessor upper approximations were introduced in [30].
An R-subset successor lower approximation of X , denoted by apprsubset

s
(X),

is defined by

∪ {Rs(x) | x ∈ U and Rs(x) ⊆ X}.

The subset successor lower approximations were introduced in [8, 9].
An R-subset predecessor lower approximation of X , denoted by apprsubset

p
(X),

is defined by

∪ {Rp(x) | x ∈ U and Rp(x) ⊆ X}.
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The subset predecessor lower approximations were studied in [30].
An R-subset successor upper approximation of X , denoted by apprsubsets (X),

is defined by

∪ {Rs(x) | x ∈ U and Rs(x) ∩X �= ∅}.

The subset successor upper approximations were introduced in [8, 9].
An R-subset predecessor upper approximation of X , denoted by apprsubsetp (X),

is defined by

∪ {Rp(x) | x ∈ U and Rp(x) ∩X �= ∅}.

The subset predecessor upper approximations were studied in [30].
An R-concept successor lower approximation of X , denoted by

apprconcept
s

(X), is defined by

∪ {Rs(x) | x ∈ X and Rs(x) ⊆ X}.

The concept successor lower approximations were introduced in [8, 9].
An R-concept predecessor lower approximation of X , denoted by

apprconcept
p

(X), is defined by

∪ {Rp(x) | x ∈ X and Rp(x) ⊆ X}.

The concept predecessor lower approximations were introduced, for the first
time, in [13].

An R-concept successor upper approximation of X , denoted by
apprconcepts (X), is defined by

∪ {Rs(x) | x ∈ X and Rs(x) ∩X �= ∅}

The concept successor upper approximations were studied in [8, 9, 23].
An R-concept predecessor upper approximation of X , denoted by

apprconceptp (X), is defined by

∪ {Rp(x) | x ∈ X and Rp(x) ∩X �= ∅}

The concept predecessor upper approximations were studied in [30].

Sets apprsubset
s

(X), apprconcept
s

(X), apprsubsets (X), apprconcepts (X) and

apprsingletonp (X) are R-successor definable, while sets apprsubset
p

(X),

apprconcept
p

(X), apprsubsetp (X), apprconceptp (X) and apprsingletons (X) are R-pre-

decessor definable for any approximation space (U,R), see. e.g., [8, 10, 24].
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Modified Singleton Approximations. Definability and duality of lower and
upper approximations of a subset X of the universe U are basic properties of
rough approximations defined for the standard lower and upper approximations
[25, 26].

To avoid problems with inclusion for singleton approximations, the following
modification of the corresponding definitions were introduced in [14]:

An R-modified singleton successor lower approximation of X , denoted by
apprmodsingleton

s
(X), is defined by

{x ∈ U | Rs(x) ⊆ X and Rs(x) �= ∅}.
An R-modified singleton predecessor lower approximation of X , denoted by

apprmodsingleton
p

(X), is defined by

{x ∈ U | Rp(x) ⊆ X and Rp(x) �= ∅}.
An R-modified singleton successor upper approximation of X , denoted by

apprmodsingleton
s (X), is defined by

{x ∈ U | Rs(x) ∩X �= ∅ or Rs(x) = ∅}.
An R-modified singleton predecessor upper approximation of X , denoted by

apprmodsingleton
p (X), is defined by

{x ∈ U | Rp(x) ∩X �= ∅ or Rp(x) = ∅}.

Largest Lower and Smallest Upper Approximations. For any relation
R, the R-subset successor (predecessor) lower approximation of X is the largest
R-successor (predecessor) definable set contained in X . It follows directly from
the definition.

On the other hand, the smallest R-successor definable set containing X does
not need to be unique. It was observed, for the first time, in [13].

Any R-smallest successor upper approximation, denoted by apprsmallest
s (X),

is defined as a R-successor definable set with the smallest cardinality containing
X . An R-smallest successor upper approximation does not need to be unique.

An R-smallest predecessor upper approximation, denoted by apprsmallest
p (X),

is defined as an R-predecessor definable set with the smallest cardinality con-
taining X . Likewise, an R-smallest predecessor upper approximation does not
need to be unique.

Dual Approximations. As it was shown in [38], singleton approximations are
dual for any relation R. In [16] it was proved that modified singleton approxi-
mations are also dual. On the other hand it was shown in [38] that if R is not an
equivalence relation then subset approximations are not dual. Moreover, concept
approximations are not dual as well, unless R is reflexive and transitive [14].
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Two additional approximations were defined in [38]. The first approximation,
denoted by apprdualsubset

s
(X), was defined by

¬(apprsubsets (¬X))

while the second one, denoted by apprdualsubsets (X) was defined by

¬(apprsubset
s

(¬X)),

where ¬X denotes the complement of X .
These approximations are called an R-dual subset successor lower and R-dual

subset successor upper approximations, respectively. Obviously, we may define
as well an R-dual subset predecessor lower approximation

¬(apprsubsetp (¬X))

and an R-dual subset predecessor upper approximation

¬(apprsubset
p

(¬X)).

By analogy we may define dual concept approximations. Namely, an R-dual
concept successor lower approximation of X , denoted by apprdualconcept

s
(X) is

defined by

¬(apprconcepts (¬X)).

An R-dual concept successor upper approximation of X , denoted by
apprdualconcepts (X) is defined by

¬(apprconcept
s

(¬X)).

The set denoted by apprdualconcept
p

(X) and defined by the following formula

¬(apprconceptp (¬X))

will be called an R-dual concept predecessor lower approximation, while the set
apprdualconceptp (X) defined by the following formula

¬(apprconcept
p

(¬X))

will be called an R-dual concept predecessor upper approximation.

These four R-dual concept approximations were introduced in [14].

Again, by analogy we may define dual approximations for the smallest upper
approximations. The set, denoted by apprdualsmallest

s
(X) and defined by
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¬(apprsmallest
s (¬X)),

will be called an R-dual smallest successor lower approximation of X while the
set denoted by apprdualsmallest

p
(X) and defined by

¬(apprsmallest
p (¬X)).

will be called an R-dual smallest predecessor lower approximation of X .

These two approximations were introduced in [16].

Approximations with Mixed Idempotency. Smallest upper approxima-
tions, introduced in Section 3.1, and subset lower approximations are the
only approximations discussed so far that satisfy the Mixed Idempotency
Property, so

appr
s
(X) = apprs(apprs(X))(appr

p
(X) = apprp(appr

p
(X))), (1)

and

apprs(X) = appr
s
(apprs(X))(apprp(X) = appr

p
(apprp(X))). (2)

For the following approximations, defined sets satisfy the above two condi-
tions. The upper approximation, denoted by apprsubset-concepts (X) and
defined by

apprsubset
s

(X) ∪
⋃

{Rs(x) | x ∈ X − apprsubset
s

(X) and Rs(x) ∩X �= ∅}
will be called an R-subset-concept successor upper approximation of X .

The upper approximation, denoted by apprsubset-conceptp (X) and defined by

apprsubset
p

(X) ∪
⋃

{Rp(x) | x ∈ X − apprsubset
p

(X) and Rp(x) ∩X �= ∅}
will be called an R-subset-concept predecessor upper approximation of X . The
upper approximation, denoted by apprsubset-subsets (X) and defined by

apprsubset
s

(X) ∪
⋃

{Rs(x) | x ∈ U − apprsubset
s

(X) and Rs(x) ∩X �= ∅}
will be called an R-subset-subset successor upper approximation of X .

The upper approximation, denoted by apprsubset-subsetp (X) and defined by

apprsubset
p

(X) ∪
⋃

{Rp(x) | x ∈ U − apprsubset
p

(X) and Rp(x) ∩X �= ∅}
will be called an R-subset-subset predecessor upper approximation of X .

These four upper approximations, together with apprsubset
s

(or apprsubset
p

,

respectively), satisfy Mixed Idempotency Property.
Note that for these four upper approximations corresponding dual lower ap-

proximations may be defined as well. These definitions are skipped since they
are straightforward.
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3.2 Probabilistic Approximations

By analogy with standard approximations defined for arbitrary binary relations,
we will introduce three kinds of probabilistic approximations for such relations:
singleton, subset and concept. For simplicity, we restrict our attention only to
R-successor sets as the basic granules. Obviously, analogous three definitions
based on R-predecessor sets may be easily introduced as well.

A singleton probabilistic approximation of X with the threshold α, 0 < α ≤ 1,
denoted by apprsingletonα (X), is defined by

{x | x ∈ U, Pr(X |Rs(x)) ≥ α},

where Pr(X |Rs(x)) = |X∩Rs(x)|
|Rs(x)| is the conditional probability of X given Rs(x).

A subset probabilistic approximation of the set X with the threshold α, 0 <
α ≤ 1, denoted by apprsubsetα (X), is defined by

∪{Rs(x) | x ∈ U, Pr(X |Rs(x)) ≥ α}.

A concept probabilistic approximation of the set X with the threshold α, 0 <
α ≤ 1, denoted by apprconceptα (X), is defined by

∪{Rs(x) | x ∈ X, Pr(X |Rs(x)) ≥ α}.

Obviously, for the concept X , the probabilistic approximation of a given type
(singleton, subset or concept) of X computed for the threshold equal to the
smallest positive conditional probability Pr(X | Rs(x)) is equal to the standard
upper approximation of X of the same type. Additionally, the probabilistic ap-
proximation of a given type of X computed for the threshold equal to 1 is equal
to the standard lower approximation of X of the same type.

Results of many experiments on probabilistic approximations were published
in [1–7, 12, 17, 18].

4 Conclusions

We discussed 36 basic definitions of lower and upper approximations based on
a relation R that is not an equivalence relation. For such a relation R, there are
six probabilistic approximations, generalizations of 12 corresponding lower and
upper approximations. How to convert remaining 24 lower and upper approxi-
mations to 12 respective probabilistic approximations is an open problem.

Note that other definitions of approximations, called local, were discussed
in [6, 13, 15]. First, local lower and upper approximations were introduced in
[13, 15], then these approximations were generalized to probabilistic in a few
different ways in [6].
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