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Abstract. We continue our research on decision bireducts. For a deci-
sion system A = (U, A ∪ {d}), a decision bireduct is a pair (B, X), where
B ⊆ A is a subset of attributes discerning all pairs of objects in X ⊆ U
with different values on the decision attribute d, and where B and X
cannot be, respectively, reduced and extended. We report some new re-
sults related to NP-hardness of extraction of optimal decision bireducts,
heuristics aimed at searching for sub-optimal decision bireducts, and ap-
plications of decision bireducts to stream data mining.
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1 Introduction

Decision reducts have been found a number of applications in feature selection
and knowledge representation [1]. Notions analogous to decision reducts occur in
many areas of science, such as Markov boundaries in probabilistic modeling [2]
or signatures in bioinformatics [3]. As one of extensions, approximate decision
reducts are studied in order to search for irreducible subsets of attributes that
almost determine decisions in real-world, noisy data sets [4].

Bireducts were proposed as a new extension of decision reducts in [5] and
further developed in [6]. Their interpretation seems to be simpler than in the
case of most of types of approximate decision reducts known from the literature.
The emphasis here is on both a subset of attributes, which describes decisions,
and a subset of objects, for which such a description is valid.

This paper continues our research on bireducts, both with respect to their
comparison to classical and approximate decision reducts, and their applications
in new areas. In Section 2, we recall basics of decision bireducts. In Section 3, we
prove NP-hardness of one of possible optimization problems related to extraction
of decision reducts from data. In Section 3, we show some new interpretations
of decision bireducts, which are useful for their heuristic search. In Section 4, we
outline how to apply decision bireducts in data stream analysis. In Section 5, we
discuss some of future perspectives and conclude the paper.
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Table 1. System A = (U, A ∪ {d}) with 14 ob-
jects in U , four attributes in A, and d = Sport?

Outlook Temp. Humid. Wind Sport?
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Table 2. Several examples of
bireducts (B, X) for A in Table 1

(B, X)
({O},{1..5,7..8,10,12..13})

({O},{1..3 6..8 12..14})
({O},{3 6..7 9 11..14})

({O T},{1..4 6..10 12..13})
({O H},{1..3 6..9 11..14})

({O T W},{1..14})
({O H W},{1..14})

({O W},{2..7 9..10 12..14})
({T},{3..4 6 10..13})

({T H},{1..2 6 8 10..11 13..14})
({T W},{1..2 4..5 7 9..10 14})

({T W},{2..6 9..13})
({H W},{1 5..6 8..10 12..13})

({W},{2..6 9..10 13..14})

2 Basics of Decision Bireducts

First formulation of decision bireducts occurred in [5], where their Boolean char-
acteristics and simple permutation-based search algorithms were proposed in
analogy to classical reducts [7]. It was also discussed in what sense ensembles
of decision bireducts are better than ensembles of approximate reducts, which –
although quite useful in practice [8] – do not allow for explicit analysis whether
particular reducts repeat mistakes on the same cases.

We use a standard representation of tabular data in form of decision systems
[9]. A decision system is a tuple A = (U, A ∪ {d}), where U is a set of objects, A
is a set of attributes and d /∈ A is a decision attribute. For simplicity, we refer to
the elements of U using their ordinal numbers i = 1, ..., |U |, where |U | denotes
the cardinality of U . We treat all attributes a ∈ A∪{d} as functions a : U → Va,
Va denoting a’s domain. The values vd ∈ Vd correspond to decision classes that
we want to describe using the values of attributes in A.

Definition 1. [9] We say that B ⊆ A is a decision reduct for decision system
A = (U, A ∪ {d}), iff it is an irreducible subset of attributes such that each pair
i, j ∈ U satisfying inequality d(i) �= d(j) is discerned by B.

As an example, for A in Table 1, there are two reducts: {Outlook, Temp., Wind}
and {Outlook, Humid., Wind} (or {O, T, W} and {O, H, W} for short).

Definition 2. [5] Let A = (U, A ∪ {d}) be a decision system. A pair (B, X),
where B ⊆ A and X ⊆ U , is called a decision bireduct, iff the following holds:

– B discerns all pairs i, j ∈ X where d(i) �= d(j) (further denoted as B �X d);
– There is no C � B such that C �X d;
– There is no Y � X such that B �Y d.
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For the decision system A given in Table 1, some examples of decision bireducts
are presented in Table 2.

A decision bireduct (B, X) can be regarded as the basis for an inexact func-
tional dependency linking the subset of attributes B with the decision d in a
degree X , denoted as B �X d in Definition 2. Furthermore, the objects in U \X
can be treated as outliers of B �X d.

Further in this paper, we focus on bireducts and their corresponding inex-
act dependencies formulated in terms of standard discernibility, where B ⊆ A
discerns objects i, j ∈ U iff there is a ∈ B such that a(i) �= a(j). However, as
pointed out in Section 6, one can also consider some generalizations, such as e.g.
bireducts based on fuzzy discernibility [10].

3 Decision Bireduct Optimization

There are a number of NP-hardness results related to extracting optimal de-
cision reducts and approximate reducts from data [11]. In the case of decision
bireducts, one may think about quite different optimization criteria with respect
to a balance between the number of involved attributes and objects. The follow-
ing form of a constraint for decision bireducts is somewhat analogous to those
studied for frequent itemsets and patterns [12]. However, let us emphasize that
this is just one of many ways of interpreting optimal decision bireducts.

Definition 3. Let ε ∈ [0, 1) be given. We say that a pair (B, X), B ⊆ A and
X ⊆ U , is a ε-bireduct, if it is a bireduct and the following holds: |X | ≥ (1−ε)|U |.
Definition 4. Let ε ∈ [0, 1) be given. By the Minimal ε-Decision Bireduct
Problem (MεDBP ) we mean a task of finding for each given decision system
A = (U, A ∪ {d}) a ε-bireduct (B, X) with the lowest cardinality of B.

In order to prepare the ground for the major result in this section, let us recall
the following correspondence between decision bireducts and one of specific types
of approximate decision reducts.

Definition 5. [13] Let ε ∈ (0, 1] and a decision system A = (U, A ∪ {d}) be
given. For each B ⊆ A, consider the quantity MA(B) =

= 1
|U |

∣
∣
∣
∣

{

u ∈ U : d(u) = argmax
vd∈Vd

|{u′ ∈ U : ∀a∈B a(u′) = a(u) ∧ d(u′) = vd}|
}∣

∣
∣
∣

(1)
We say that B ⊆ A is an (M, ε)-approximate reduct, iff

MA(B) ≥ 1 − ε (2)

and there is no proper subset of B, which would hold an analogous inequality.

Original formulation of the above definition in [13] was a bit different, with
constraint MA(B) ≥ (1 − ε)MA(A) instead of MA(B) ≥ 1 − ε. Thus, formally,
we should refer to the above as to a modified (M, ε)-approximate reduct.
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A way of defining MA(B) is different as well, although mathematically equiv-
alent to that in [13]. We rewrite it in the above form in order to emphasize
that it is actually the ratio of objects in U that would be correctly classified by
if-then decision rules learned from A = (U, A ∪ {d}) with the attribute = value
conditions over B and decision = value consequences specified by identifying
decision values assuring the highest confidence for each of rules.

For a consistent decision system, i.e. A = (U, A ∪ {d}), where A enables
to fully discern all pairs of objects from different decision classes, there is
MA(A) = 1. In such a case, original and modified conditions for an (M, ε)-appro-
ximate reduct are equivalent. Also, but only in consistent decision tables, (M, ε)-
approximate reducts are equivalent to classical decision reducts for ε = 0.

In [6], a correspondence between decision bireducts and modified (M, ε)-
approximate reducts was noticed. Consider a family of all subsets X ⊆ U with
which a given subset B ⊆ A has a chance to form a bireduct:

XB = {X ⊆ U : ∀i,j∈X d(i) �= d(j) ⇒ ∃a∈B a(i) �= a(j)} (3)

Then the following equality holds:

MA(B) = max
X∈XB

|X |/|U | (4)

As a result, B ⊆ A may be a modified (M, ε)-approximate reduct only if there
is X ⊆ U such that the pair (B, X) is an ε-bireduct. Given the computational
complexity results reported in [13] for approximate decision reducts, we are now
ready to formulate an analogous result for ε-bireducts:

Theorem 1. Let ε ∈ [0, 1) be given. MεDBP is NP-hard.

Proof. In [13], it was shown that for each ε ∈ [0, 1) treated as a constant, the
problem of finding an (M, ε)-approximate reduct in an input decision system
with minimum number of attributes is NP-hard. (Actually, in [13] it was pre-
sented for a far wider class of approximate decision reducts.)

The proof was based on polynomial reduction of the Minimal α-Dominating
Set Problem (MαDSP ), aiming at finding minimal subsets of vertices that dom-
inate at least α×100% of all vertices in an input undirected graph. (NP-hardness
of this problem was studied in [13] and later in [2].) For each ε ∈ [0, 1), the for-
mula for α(ε) ∈ (0, 1] can be constructed in such a way that for each graph
G = (V, E) being an input to Mα(ε)DSP we can polynomially (with respect
to the cardinality of V ) construct a decision system with its minimal (M, ε)-
approximate reducts equivalent to the α(ε)-dominating sets in G.

Decision systems encoding graphs in the above reduction were consistent.
Thus, following our earlier observation on equivalence of MA(B) ≥ (1 − ε)MA(A)
and MA(B) ≥ 1 − ε in consistent decision systems, we can prove in the same
way that finding of modified (M, ε)-approximate reducts is NP-hard too. As a
result, by showing that the case of modified (M, ε)-approximate reducts can be
polynomially reduced to MεDBP we will be able to finish the proof.

Such reduction is simple, as minimal modified (M, ε)-approximate reducts
correspond to decision bireducts solving MεDBP . Assume that a pair (B, X) is
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an ε-bireduct with the lowest cardinality of B for a given A = (U, A ∪ {d}). Then
B needs to be a minimal (M, ε)-approximate reduct for A. This is because, first
of all, thanks to (4) we have that MA(B) ≥ |X |/|U | ≥ 1 − ε. Secondly, assume
that there is a subset B′ ⊆ A such that MA(B′) ≥ 1 − ε and |B′| < |B|. Then,
however, there would exist at least one ε-bireduct (B′, X ′) for some X ′ ⊆ U , so
(B, X) would not be a solution of MεDBP . �


4 Heuristic Search for Bireducts

There are a number of possible algorithmic approaches to searching for deci-
sion bireducts. One can, e.g., extend techniques introduced earlier for decision
reducts, like it was done for permutation-based algorithms in [5], where instead
of orderings on attributes the orderings on mixed codes of attributes and ob-
jects were considered. One can also translate some algorithms aiming at finding
approximate decision reducts onto the case of decision bireducts, basing on con-
nections between both those notions outlined in [6]. Finally, specifically for the
problem of searching for minimal ε-bireducts, one can adapt some mechanisms
known from other areas, such as association rules with a constraint for minimum
support [14], basing on representations developed for decision reducts [15].

Let us recall the above-mentioned algorithm proposed in [5], which is an ex-
tension of one of standard approaches to searching for decision reducts [7].

Proposition 1. [5] Let A = (U, A ∪ {d}) be given. Enumerate attributes and
objects as A = {a1, ..., an}, n = |A|, and U = {1, ..., m}, m = |U |, respectively.
Put B = A and X = ∅. Let permutation σ : {1, ..., n + m} → {1, ..., n + m} be
given. Consider the following procedure for each consecutive i = 1, ..., n + m:

1. If σ(i) ≤ n, then attempt to remove attribute aσ(i) from B subject to the
constraint B \ {aσ(i)} �X d;

2. Else, attempt to add σ(i)−n to X subject to the constraint B �X∪{σ(i)−n} d.

For each σ, the final outcome (B, X) is a decision bireduct. Moreover, for each
bireduct (B, X) there exists input σ for which the above steps lead to (B, X).

The above method follows an idea of mixing the processes of reducing attributes
and adding objects during the construction of bireducts. If we consider a special
case of permutations σ : {1, ..., n + m} → {1, ..., n + m} where all objects are
added to X prior to starting removing attributes from B, we will obtain the
permutation-based characteristics of standard decision reducts. In a general case,
the approximation threshold ε ∈ [0, 1) introduced in Definition 3 is not defined
explicitly but it is somehow expressed in a way permutations are generated. We
can define a parameter that controls probability of selecting an attribute in first
place rather than an object during the random generation of σ. When σ contains
relatively more attributes at its beginning, a bireduct having smaller number of
attributes but also higher number of outliers is likely to be obtained.

In the remainder of this section, we present two examples of algorithmic con-
structions enabling to harness various attribute reduction heuristics directly to
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Table 3. A∗ = (U, A ∪ A∗ ∪ {d}) corresponding to A = (U, A ∪ {d}) in Table 1

Outlook Temp. Humid. Wind a∗
1 a∗

2 a∗
3 a∗

4 a∗
5 a∗

6 a∗
7 a∗

8 a∗
9 a∗

10 a∗
11 a∗

12 a∗
13 a∗

14 Sport?
1 sunny hot high weak 1 0 0 0 0 0 0 0 0 0 0 0 0 0 no
2 sunny hot high strong 0 1 0 0 0 0 0 0 0 0 0 0 0 0 no
3 overcast hot high weak 0 0 1 0 0 0 0 0 0 0 0 0 0 0 yes
4 rain mild high weak 0 0 0 1 0 0 0 0 0 0 0 0 0 0 yes
5 rain cool normal weak 0 0 0 0 1 0 0 0 0 0 0 0 0 0 yes
6 rain cool normal strong 0 0 0 0 0 1 0 0 0 0 0 0 0 0 no
7 overcast cool normal strong 0 0 0 0 0 0 1 0 0 0 0 0 0 0 yes
8 sunny mild high weak 0 0 0 0 0 0 0 1 0 0 0 0 0 0 no
9 sunny cool normal weak 0 0 0 0 0 0 0 0 1 0 0 0 0 0 yes

10 rain mild normal weak 0 0 0 0 0 0 0 0 0 1 0 0 0 0 yes
11 sunny mild normal strong 0 0 0 0 0 0 0 0 0 0 1 0 0 0 yes
12 overcast mild high strong 0 0 0 0 0 0 0 0 0 0 0 1 0 0 yes
13 overcast hot normal weak 0 0 0 0 0 0 0 0 0 0 0 0 1 0 yes
14 rain mild high strong 0 0 0 0 0 0 0 0 0 0 0 0 0 1 no

the task of searching for decision bireducts, after reformulation of the input data.
The first of considered methods refers to the following representation:

Proposition 2. [5] Let A = (U, A ∪ {d}) be a decision system. Consider the
following Boolean formula with variables i, i = 1, ..., |U |, and a, a ∈ A:

τbi
A

=
∧

i,j: d(i) �=d(j)

(

i ∨ j ∨ ∨

a: a(i) �=a(j) a
)

. (5)

An arbitrary pair (B, X), B ⊆ A, X ⊆ U , is a decision bireduct, if and only if
the Boolean formula

∧

a∈B a ∧ ∧

i/∈X i is the prime implicant for τbi
A

.

The above result shows a way to utilize techniques known from Boolean reasoning
to search for decision bireducts as prime implicants [16]. It also illustrates that
attributes and objects are to some extent equally important while constructing
bireducts, analogously to some other approaches to deriving knowledge from
data [17]. This intuition has led us to the following observation:

Proposition 3. Let A = (U, A ∪ {d}) be a decision system. Consider a new sys-
tem A

∗ = (U, A ∪ A∗ ∪ {d}), where the number of objects in U as well as their
values for attributes from the original A remain unchanged, and where new at-
tributes in A∗ = {a∗

1, ..., a∗
m}, m = |U |, are defined as a∗

j (i) = 1 if i = j, and 0
otherwise. Then, the pair (B, X), B ⊆ A, X ⊆ U , is a decision bireduct in A,
iff B ∪ X∗, for X∗ = {a∗

i ∈ A∗ : i /∈ X}, is the decision reduct in A
∗.

Proof. The proof is straightforward and we omit it because of space limitations.

An illustrative example of the considered transformation can be seen in Table
3. Certainly, it should be treated just as a starting point for developing more
efficient algorithms, because decision systems of the form A

∗ = (U, A ∪ A∗ ∪ {d})
cannot be constructed explicitly for large data. An appropriate translation of
methods aiming at searching for decision reducts in systems with large amount
of attributes can be especially useful in this case [18].

Another way to employ standard reduct computations in order to search for
decision bireducts can be generally referred to sampling methods [19].
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Table 4. Indiscernibility
classes induced by randomly
selected attributes {T, H} for
decision system in Table 1

Temp. Humid. Sport?
1 hot high no
2 hot high no
3 hot high yes
13 hot normal yes
4 mild high yes
8 mild high no
12 mild high yes
14 mild high no
10 mild normal yes
11 mild normal yes
5 cool normal yes
6 cool normal no
7 cool normal yes
9 cool normal yes

Table 5. A
′ = (U ′, A′ ∪ {d}) for randomly se-

lected representatives U ′ = {1, 6, 8, 10, 13}.
Decision reduct {T, H} in A

′ corresponds to
bireduct ({T, H}, {1, 2, 6, 8, 10, 11, 13, 14}) in A.

Temp. Humid. Sport?
1 hot high no
6 cool normal no
8 mild high no
10 mild normal yes
13 hot normal yes

Table 6. The case of U ′ = {3, 6, 11, 12, 13}. De-
cision reduct {T } in A

′ corresponds to bireduct
({T }, {3, 4, 6, 10, 11, 12, 13}) in A.

Temp. Humid. Sport?
3 hot high yes
6 cool normal no
11 mild normal yes
12 mild high yes
13 hot normal yes

Proposition 4. For a given A = (U, A ∪ {d}), consider the three-step procedure:

1. Randomly select a subset of attributes A′ ⊆ A;
2. Choose a single object from each of partition blocks induced by A′ – all chosen

objects form a subset denoted by U ′ ⊆ U ;
3. Find a standard decision reduct B ⊆ A′ for the system A

′ = (U ′, A′ ∪ {d}).

Then the pair (B, X), where X =
{

u ∈ U : ∃x∈U ′∀a∈B∪{d} a(x) = a(u)
}

, is a
decision bireduct for A. Moreover, each decision bireduct for A can be obtained
as a result of the above steps, no matter what method is used in the third stage.

Proof. Again, we omit the proof because of space limitations.

We illustrate the above procedure by Tables 4, 5, 6. Let us note that the
reduced decision systems obtained in the third of above steps are compact rep-
resentations of if-then rules generated by attributes in B, with their supports
summing up to the overall support X ⊆ U of decision bireduct (B, X). How-
ever, consequences of those rules are not necessarily chosen in a way aiming at
maximizing |X |. Quite oppositely, when combined with appropriate mechanisms
of sampling, this process can lead to ensembles of decision bireducts based on
possibly diversified subsets of attributes and objects, with the underlying if-then
rules paying attention to the cases not covered by rules corresponding to other
bireducts rather than the cases that are easiest to describe.

The algorithm outlined in Proposition 4 could be also modeled within the
framework sketched in Proposition 1, by considering more specific permutations
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σ : {1, ..., n+m} → {1, ..., n+m} with some amount of attributes at their begin-
ning, an ordering of all objects in their middle, and the remainder of attributes
at their very end. Indeed, in such a case, all attributes at the very beginning of
σ will be removed; then, within each partition class induced by the remaining
attributes, objects corresponding to only one of possible decision values will be
added (precisely, it will be the decision value of the first element of a given parti-
tion class occurring in σ); and finally the algorithm will try to remove each of the
remaining attributes according to their ordering in σ, subject the discernibility
criteria with respect to the previously-added objects.

5 Bireducts in Data Streams

The main motivation for introducing decision bireducts in [5] was to establish a
simple framework for constructing rough-set-based classifier ensembles, as well
as to extend capabilities of decision reducts to model data dependencies. Going
further, in [10] it was noticed that algorithms for extracting meaningful bireducts
from data could be utilized to integrate the tasks of attribute and instance
selection. Such a potential is also illustrated by Proposition 4, where the objects
in U ′ actually define a classifier based on the resulting B ⊆ A.

Some areas of applications were also pointed out for other types of bireducts.
In [20], so called information bireducts were employed to model context-based
object similarities in multi-dimensional data sets. Information bireducts may
be also able to approximate data complexity analogously to some well-known
mathematical tools [21]. Indeed, by investigating cardinalities of minimal subsets
of attributes discerning maximal subsets of objects we can attempt to express a
potential of a data source to define different concepts of interest.

In this section, we study one more opportunity in front of bireducts. Let us
consider a stream of objects that is too large to be stored or represents data
collected on-line [22]. For our purposes, let us focus on a stream interpreted as
a decision system A = (U, A ∪ {d}), where there is no possibility to look at the
entire U at any moment of processing time. Instead, given a natural order over
U , we can access some buffered data intervals, i.e., the subsets of objects that
occur consecutively in a stream. The question is how to design and efficiently
conduct a process of attribute reduction in such a dynamic situation.

One of possibilities would be to fix the amount of objects in each data interval
and compare decision reducts obtained for such narrowed down decision systems,
in a kind of sliding window fashion. However, an arbitrary choice of the interval
length may significantly influence the results. Thus, it may be more reasonable to
adaptively adjust data intervals with respect to the currently observed attribute
dependencies. Moreover, if our goal is to search for stable subsets of attributes
that remain decision reducts for possibly wide areas of data, then we should tend
to maximizing data intervals in parallel to minimizing the amounts of attributes
necessary to determine decision classes within them.
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Definition 6. Let A = (U, A ∪ {d}) be given. Let U be naturally ordered with
its elements indexed by integers. Consider a pair (B, X), where B ⊆ A and
X = 〈first, last〉. We say that (B, X) is a temporal decision bireduct, iff:

– An inexact dependency B �X d holds;
– There is no C � B such that C �X d;
– B �Y d is not true for neither Y = 〈first−1, last〉 nor Y = 〈first, last+1〉.

The above modification of Definition 2 can serve as a background for producing
bireducts (B, X) with no holes in X with respect to a given data flow. Below
we sketch an example of heuristic extraction of such bireducts from data. From
a technical point of view, it resembles Proposition 4 with respect to a random
choice of a subset of attributes to be analyzed. From a more strategic perspec-
tive, let us note that our goal is now to save the identified temporal bireducts
analogously to micro-clusters [23] or data blocks [24] constructed within other
applications for the purposes of further steps of on-line or off-line analysis. This
way of data stream processing may open new opportunities for the task of scal-
able attribute subset selection. For instance, basing on frequent occurrence of a
given subset of attributes in the previously-found temporal bireducts, one can
reason about its ability to induce a robust decision model.

Proposition 5. Let A = (U, A ∪ {d}) be given. Let U be naturally ordered with
its elements indexed by integers. Select an arbitrary A′ ⊆ A and put B = X = ∅.
Consider the following steps for each consecutive i-th object in U :

1. If B �X∪{i} d, then add i to X;
2. Else, save (B, X), add i to X, and do the following:

(a) Put B = A′ and remove the oldest objects from X until there is B �X d;
(b) Heuristically reduce redundant attributes under the constraint B �X d.

Then, all pairs (B, X) saved during the above procedure are temporal bireducts
for A. Moreover, each temporal bireduct can be obtained as one of saved pairs
(B, X) for some A′ ⊆ A, no matter what method is used in the last step.

Proof. Consider a pair (B, X), where X = 〈first, last〉, which was saved in the
step 2. For such a case, we know that B �〈first,last〉 d and B ��〈first,last+1〉 d.
Also, there is B ��〈first−1,last〉 d because the oldest object in X is removed only
when the newly joined object cannot be handled together with some elements of
X even when using the whole A′. Therefore, X cannot be extended backwards
beyond object first. Also, because of reduction of redundant attributes, B is
irreducible for X . Hence, all saved pairs (B, X) are temporal bireducts.

Now, consider a temporal bireduct (B, 〈first, last〉) and put A′ = B. Con-
sider the first buffer including object first, i.e., 〈older, first〉, older ≤ first.
Each next entry until object last will be added with no need of removing first
(otherwise there would be no B �〈first,last〉 d). Moreover, when adding last, all
objects older than first (if any of them are still present) will be erased from
the buffer (otherwise there would be B �〈first−1,last〉 d). Finally, when adding
object last + 1 to 〈first, last〉, we will need to remove first (otherwise there
would be B �〈first,last+1〉 d), which results in saving (B, 〈first, last〉). �




Recent Advances in Decision Bireducts 209

# O T H d

1 sunny hot high no S1 = (∅, 〈1, 1〉)
2 sunny hot high no S2 = (∅, 〈1, 2〉)

[save S2]
3 overcast hot high yes S3 = ({O}, 〈1, 3〉)
4 rain mild high yes S4 = ({O}, 〈1, 4〉)
5 rain cool normal yes S5 = ({O}, 〈1, 5〉)

[save S5]
6 rain cool normal no S6 = (∅, 〈6, 6〉)

[save S6]
7 overcast cool normal yes S7 = ({O}, 〈6, 7〉)
8 sunny mild high no S8 = ({O}, 〈6, 8〉)

[save S8]
9 sunny cool normal yes S9 = ({O, T }, 〈6, 9〉)
10 rain mild normal yes S10 = ({O, T }, 〈6, 10〉)

[save S10]
11 sunny mild normal yes S11 = ({O, T, H}, 〈6, 11〉)
12 overcast mild high yes S12 = ({O, T, H}, 〈6, 12〉)
13 overcast hot normal yes S13 = ({O, T, H}, 〈6, 13〉)
14 rain mild high no S14 = ({O, T, H}, 〈6, 14〉)

# T H W d

1 hot high weak no S1 = (∅, 〈1, 1〉)
2 hot high strong no S2 = (∅, 〈1, 2〉)

[save S2]
3 hot high weak yes S3 = ({W }, 〈2, 3〉)
4 mild high weak yes S4 = ({W }, 〈2, 4〉)
5 cool normal weak yes S5 = ({W }, 〈2, 5〉)
6 cool normal strong no S6 = ({W }, 〈2, 6〉)

[save S6]
7 cool normal strong yes S7 = (∅, 〈7, 7〉)

[save S7]
8 mild high weak no S8 = ({W }, 〈7, 8〉)

[save S8]
9 cool normal weak yes S9 = ({H}, 〈7, 9〉)
10 mild normal weak yes S10 = ({H}, 〈7, 10〉)
11 mild normal strong yes S11 = ({H}, 〈7, 11〉)

[save S11]
12 mild high strong yes S12 = ({H, W }, 〈7, 12〉)
13 hot normal weak yes S13 = ({H, W }, 〈7, 13〉)

[save S13]
14 mild high strong no S14 = ({W }, 〈13, 14〉)

Fig. 1. Extraction of temporal bireducts from a data set in Table 1. The left- and right-
side sequences correspond to subsets A′ = {O, T, H} and A′ = {T, H, W }, respectively.

In Proposition 5, subsets X ⊆ U are treated as the buffers of objects that
appeared most recently in a data stream, within which a currently considered
B ⊆ A is sufficient to determine decision classes. As an illustration, consider
the decision system in Table 1 and assume that we receive objects from U =
{1, ..., 14} one after the other. Let the i-th state of the process be denoted by
Si = (Bi, Xi), where i is the number of objects already received from U and Bi

is a decision reduct for the current buffer content Xi.
Figure 1 presents two examples of randomly chosen subsets of attributes. Let

us concentrate on A′ = {T, H, W } and refer one more time to the permutation-
based characteristics of decision reducts outlined e.g. in [7]. Namely, in the step
2(b) in Proposition 5, we are going to reduce attributes along σ = 〈T, H, W 〉. In
general, when following the same σ : {1, ..., n′} → {1, ..., n′}, n′ = |A′|, from the
very beginning of a data stream, we can count on smoother evolution of subsets
Bi ⊆ A′ for consecutive buffers. Furthermore, by working with a larger family of
diversified subsets A′ ⊆ A, we have a chance to witness the most representative
changes of the observed temporal bireducts in time.

Let us now take a closer look at A′ = {T, H, W }. The first two objects share
the same decision. Thus, there is S2 = (∅, 〈1, 2〉). Further, ∅ �〈1,3〉 d is not
valid, so we save the temporal bireduct (∅, 〈1, 2〉) and proceed with the step 2 in
Proposition 5. As {T, H, W } is insufficient to discern objects 1 and 3, we limit
ourselves to 〈2, 3〉. Starting from B = A′ and given σ = 〈T, H, W 〉, we reduce T
and H , which results in the pair S3 = ({W }, 〈2, 3〉).
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The next three objects do not break the dependency between {W } and d.
However, object 7 forces all earlier entries to be deleted. A different situation
can be observed when adding the next two objects. In both cases, A′ determines
decision values, so we can keep buffers 〈7, 8〉 and then 〈7, 9〉. However, subsets
of attributes generated by using the same σ will differ from each other. {W }
is not able to determine d within 〈7, 9〉 although it was sufficient for 〈7, 8〉. As
a consequence, we need to restart from B = A′. We are allowed to remove T .
Then, H turns out to be irreducible because of a need of keeping discernibility
between objects 8 and 9. Finally, given the fact that H was not removed, W is
not important any more, resulting in S9 = ({H}, 〈7, 9〉).

6 Conclusions

In this paper, we attempted to establish better understanding of challenges and
possibilities of searching for meaningful decision bireducts in data. We also out-
lined some examples of practical usage of decision bireducts in a new scenario
of attribute subset selection in data streams. From this perspective, we need to
remember that although decision bireducts were originally introduced in order to
adopt some useful classifier ensemble principles, perhaps their major advantage
lays in simple and flexible data-based knowledge representation.

In the nearest future, we intend to work on an enhanced interactive visual-
ization of collections of decision bireducts, seeking for inspiration, e.g., in the
areas of formal concept analysis [17] and visual bi-clustering [25]. We will also
continue our studies on other types of bireducts, such as information bireducts
which have been already successfully applied in [20]. Last but not least, fol-
lowing the research reported in [10], we are going to attempt to reconsider the
discernibility-based bireduct construction criteria for the purposes of other rough
set approaches, such as e.g. the dominance rough set model [26].
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