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Abstract. Partial nature of real–life problems requires working out par-
tial approximation schemes. Partial approximation of sets is based on
classical set theory. Its generalization for multisets gives a plausible op-
portunity to introduce an abstract concept of “to be close enough to
a membrane” in membrane computing. The paper presents important
features of general (maybe partial) multiset approximation spaces, their
lattice theory properties, and shows how partial multiset approximation
spaces can be applied to membrane computing.
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1 Introduction

Studies of set approximations were originally invented by Pawlak in the early
1980’s [1, 2]. There are many different generalizations of classical Pawlakian
rough set theory, among others, for multisets. A possible approach may rely on
equivalence multiset relations [3], or general multirelations [4].

Partial nature of real–life problems, however, requires working out partial ap-
proximation schemes. The framework called the partial approximation of sets
[5, 6] is based on classical set theory similarly to rough set theory. It was gen-
eralized for multisets [7, 8] in connection with membrane computing introduced
by Păun in 2000 [9–11]. Membrane computing was motivated by biological and
chemical processes in which an object has to be close enough to a membrane in
order to be able to pass through it. Looking at regions as multisets, partial ap-
proximation of multisets gives a plausible opportunity to introduce the abstract,
not necessarily space–like, concept of “to be close enough to a membrane”. The
paper presents the most important features of partial multiset approximation
spaces, their lattice theory properties and applications to membrane computing.

The paper is organized as follows. Having reviewed the fundamental notions of
multiset theory, Section 3 presents the concept of general multiset approximation
space. Section 4 shows its generalized Pawlakian variant which is applied to
membrane computing in Section 5.
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2 Fundamental Notions of Multiset Theory

Let U be a finite nonempty set. A multiset M , or mset M for short, over U
is a mapping M : U → N ∪ {∞}, where N is the set of natural numbers. If
M(a) �= 0, it is said that a belongs to M , otherwise a does not belong to M .
The set M∗ = {a ∈ U | M(a) �= 0} is called the support of M .

The mset M is the empty mset, denoted by ∅ if M∗ = ∅. An mset M is finite
if M(a) < ∞ for all a ∈ M∗.

Let MS(U) denote the set of all msets over U .
Basic set–theoretical relations can be generalized for msets as follows.

Definition 1. Let M , M1, M2 be msets over U .

1. Multiplicity relation for an mset M over U is: a ∈ M (a ∈ U) if M(a) ≥ 1.
2. Let n ∈ N

+ be a positive integer. n–times multiplicity relation for an mset
M over U is the following: a ∈n M (a ∈ U) if M(a) = n.

3. M1 = M2 if M1(a) = M2(a) for all a ∈ U (mset equality relation).
4. M1 	 M2 if M1(a) ≤ M2(a) for all a ∈ U (mset inclusion relation).

The next definitions give the generalizations for msets of the basic set–
theoretical operations.

Definition 2. Let M,M1,M2 ∈ MS(U) be msets over U and M ⊆ MS(U) be
a set of msets over U .

1. (M1 �M2)(a) = min{M1(a),M2(a)} for all a ∈ U ( intersection).
2. (

�M)(a) = min{M(a) | M ∈ M} for all a ∈ U .
3. (M1 M2)(a) = max{M1(a),M2(a)} for all a ∈ U ( set–type union).
4. (

⊔M)(a) = sup{M(a) | M ∈ M} for all a ∈ U . By definition,
⊔ ∅ = ∅.

5. (M1 ⊕M2)(a) = M1(a) +M2(a) for all a ∈ U (mset addition).
6. For any n ∈ N, n-times addition of M , denoted by ⊕nM , is given by the

following inductive definition:

(a) ⊕0M = ∅;
(b) ⊕1M = M ;
(c) ⊕n+1M = ⊕nM ⊕M .

7. (M1 �M2)(a) = max{M1(a)−M2(a), 0} for all a ∈ U (mset subtraction).

By the n-times addition, the n-times inclusion relation (	n) can be defined.

Definition 3. Let M1 �= ∅,M2 be two msets over U .
For any n ∈ N, M1 	n M2 if ⊕nM1 	 M2 but ⊕n+1M1 �	 M2.

Corollary 1. Let M1 �= ∅,M2 be two msets over U and n ∈ N.

1. M1 	n M2 if and only if nM1(a) ≤ M2(a) for all a ∈ U and there is an
a′ ∈ U such that (n+ 1)M1(a

′) > M2(a
′).

2. M1 	0 M2 if and only if M1 �	 M2.
3. For all n ∈ N

+, M1 	n M2 if and only if ⊕nM1 	1 M2.



Partial Approximations of Multisets 101

3 Some Lattice Theory Properties of Set of Multisets

The next proposition is an immediate consequence of Definition 1 and 2 (for the
lattice theory notions, see, e.g., [12–14]).

Proposition 1. 〈MS(U),�,〉 is a complete lattice, that is

1. (a) operations  and � are idempotent, commutative and associative;
(b) operations  and � fulfill the absorption laws for all M1,M2 ∈ MS(U):

M1 � (M1 M2) = M1 and M1  (M1 �M2) = M1;

2.
⊔M and

�M exist for every M ⊆ MS(U).

In addition, 〈MS(U),	〉 is a partially ordered set in which M1 	 M2 if and
only if M1M2 = M2, or equivalently, M1�M2 = M1 for all M1,M2 ∈ MS(U).

A set M of finite msets over U is called a macroset M over U [15].
We define the following two fundamental macrosets:

1. MSn(U) (n ∈ N) is the set of all msets M over U such that M(a) ≤ n for
all a ∈ U , and

2. MS<∞(U) =
⋃∞

n=0 MSn(U).

Note that MS0(U) = ∅ and MSn(U) � MSn+1(U) (n = 0, 1, 2, . . . ). More-
over, MSn(U) (n ∈ N) is finite and MS<∞(U) is countably infinite.

M1  M2,M1 � M2 ∈ MSn(U) (M1,M2 ∈ MSn(U)) and the finiteness of
MSn(U) immediately imply that 〈MSn(U),,�〉 (n ∈ N

+) is a complete sub-
lattice of the lattice 〈MS(U),,�〉. Its top element is the mset M such that
M∗ = U , M(a) = n (a ∈ U), and its bottom element is the empty mset ∅.

〈MS<∞(U),,�〉 is also a sublattice of the lattice 〈MS(U),,�〉. However, it
is not a complete lattice since it lacks a top element. Nevertheless, 〈MS<∞(U),	
〉 is a meet-semilattice such that

�M exists in MS<∞(U) for every nonempty
M ⊆ MS<∞(U). Consequently,

⊔M exists in MS<∞(U) for every subset
M ⊆ MS<∞(U) which has an upper bound in MS<∞(U), and

⊔
M =

�
{M ′ ∈ MS<∞(U) | ∀M ∈ M(M 	 M ′)}.

4 General Multiset Approximation Spaces

A general mset approximation space has four components:

– a domain of the approximation space whose members are approximated;
– some distinguished members of the domain as the basis of approximations;
– definable msets deriving from base msets in some way as possible approxi-

mations of the members of the domain;
– an approximation pair determining the lower and upper approximations of

the msets of the domain using definable msets.
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Definable msets represent our available knowledge about the domain. They
can be thought of as tools, in particular, base msets as primary tools, definable
msets as derived tools. The way of getting derived tools from primary tools shows
how primary tools are used. An approximation pair prescribes the utilization of
primary and derived tools in a whole approximation process.

Definition 4. The ordered 5–tuple MAS(U) = 〈MS<∞(U),B,DB, l, u〉 is a
(general) mset approximation space over U with the domain MS<∞(U) if

1. B ⊆ MS<∞(U) and if B ∈ B, then B �= ∅ (in notation B = {Bγ | γ ∈ Γ});
B is called the base system, its members are called the base msets;

2. DB ⊆ MS<∞(U) is an extension of B satisfying the following minimal
requirement: if B ∈ B, then ⊕nB ∈ DB for all n ∈ N; members of DB are
called definable msets;

3. the functions l, u : MS<∞(U) → MS<∞(U) (called lower and upper
approximation functions) form a weak approximation pair 〈l, u〉 if

(C0) l(MS<∞(U)), u(MS<∞(U)) ⊆ DB (definability of l, u);
(C1) the functions l and u are monotone, i.e., for all M1,M2 ∈ MS<∞(U) if

M1 	 M2, then l(M1) 	 l(M2), u(M1) 	 u(M2) (monotonicity of l, u);
(C2) u(∅) = ∅ (normality of u);
(C3) if M ∈ MS<∞(U), then l(M) 	 u(M) (weak approximation property).

Corollary 2. l(∅) = ∅ (normality of l).

MAS(U) is total if for any M ∈ MS<∞(U) there is a definable mset D ∈ DB

such that M 	 D, and it is partial otherwise. If DB is the smallest set of msets
satisfying condition 2 in Definition 4, MAS(U) is total if and only if there is a
B ∈ B such that B(a) ≥ 1 for all a ∈ U .

There may be more than one msets with the same lower and upper approxi-
mations. If M ∈ MS<∞(U), the set

RM(M) = {M ′ ∈ MS<∞(U) | l(M) = l(M ′) and u(M) = u(M ′)}

is called the rough mset connected to M .
Of course, l and u are neither additive nor multiplicative in general.

Proposition 2. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U . Then, for any M1,M2 ∈ MS<∞(U),

1. l(M1)  l(M2) 	 l(M1 M2), l(M1 �M2) 	 l(M1) � l(M2),
2. u(M1)  u(M2) 	 u(M1 M2), u(M1 �M2) 	 u(M1) � u(M2),

i.e., lower and upper approximations are superadditive and submultiplicative.

Proof. M1,M2 	 M1M2 and M1�M2 	 M1,M2, and so, by the monotonicity
of l, l(M1), l(M2) 	 l(M1M2) and l(M1�M2) 	 l(M1), l(M2), and the statement
(1) immediately follows. Statement (2) can be proved similarly. �
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It is reasonable to assume that the base msets and their n-times additions are
exactly approximated from “lower side”. In certain cases, it is also required of
definable msets.

Definition 5. A weak approximation pair 〈l, u〉 is
(C4) granular if B ∈ B implies l(⊕nB) = ⊕nB (n ∈ N) (in other words, l is

granular),
(C5) standard if D ∈ DB implies l(D) = D (in other words, l is standard).

Of course, if l is standard, the granularity of l also holds. The next proposition
gives a necessary and sufficient condition that l is standard.

Proposition 3. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U .

l is standard if and only if l(MS<∞(U)) = DB and l is idempotent, i.e.,
∀M ∈ MS<∞(U) (l(l(M)) = l(M)).

Proof. (⇒) By (C0), l(MS<∞(U)) ⊆ DB. On the other hand, for any D ∈ DB,
l(D) = D ∈ l(MS<∞(U)), since l is standard, i.e., DB ⊆ l(MS<∞(U)). Thus,
l(MS<∞(U)) = DB.

Further, let M ∈ MS<∞(U). l(M) ∈ DB according to the condition (C0),
and so l(l(M)) = l(M), since l is standard.

(⇐) Let D ∈ DB. Since DB = l(MS<∞(U)), there exists at least one M ∈
l(MS<∞(U)) such that D = l(M). l is idempotent, and so

l(D) = l(l(M)) = l(M) = D,

that is, l is standard. �
An important question is how lower and upper approximations relate to the

approximated mset.

Definition 6. A weak approximation pair 〈l, u〉 is
(C6) lower semi–strong if l(M) 	 M (M ∈ MS<∞(U)) (l is contractive);
(C7) upper semi–strong if M 	 u(M) (M ∈ MS<∞(U)) (u is extensive);
(C8) strong if it is lower and upper semi–strong simultaneously, i.e., each subset

M ∈ MS<∞(U) is bounded by l(M) and u(M): l(M) 	 S 	 u(M).

Definition 7. The general mset approximation space MAS(U) is a weak/granu-
lar/standard/lower semi–strong/upper semi–strong/strong mset approximation
space if the approximation pair 〈l, u〉 is weak/granular/standard/lower semi–
strong/upper semi–strong/strong, respectively.

5 Generalized Pawlakian Multiset Approximation Spaces

It is a natural assumption that DB is obtained (derived) from B by some sorts
of set and/or mset type transformations (for the most important cases, see [8]).
In this case, an mset approximation space is surely partial if there exists at least
one object in U which does not belong to any base mset.

In order to build a generalized Pawlakian mset approximation space, first, we
define DB as follows.
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Definition 8. MAS(U) is a strictly set–union type mset approximation space
if DB is given by the following inductive definition:

1. ∅ ∈ DB;
2. B ⊆ DB;
3. if B⊕ = {⊕nB | B ∈ B, n = 1, 2, . . . } and B′ ⊆ B⊕, then

⊔
B′ ∈ DB.

In a general mset approximation space MAS(U),
⊔{D′ ∈ DB | D′ 	 D} 	 D.

On the other hand, D is definable, and so D ∈ {D′ ∈ DB | D′ 	 D}, i.e.,
D 	 ⊔{D′ ∈ DB | D′ 	 D} also holds. Thus,

D =
⊔

{D′ ∈ DB | D′ 	 D}.
This formula indicates set–union nature of definable sets which can be sharp-

ened in strictly set–union type mset approximation spaces as follows.

Proposition 4. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–union
type mset approximation space over U .

1. For any definable set D ∈ DB,

D =
⊔

{⊕nB | n ∈ N
+, B ∈ B, B 	n D}.

2. If MAS(U) is also granular and lower semi–strong, for any M ∈ MS<∞(U),

l(M) =
⊔

{⊕nB | n ∈ N
+, B ∈ B, B 	n M}.

Proof.

1. Since MAS(U) is strictly set–union type, by Definition 8, there exists
B′ ⊆ B⊕ for any D′ ∈ DB such that D′ =

⊔
B′. Hence,

D =
⊔

{D′ ∈ DB | D′ 	 D}
=

⊔
{⊕nB | n ∈ N

+, B ∈ B,⊕nB 	 D}
=

⊔
{⊕nB | n ∈ N

+, B ∈ B, B 	n D}.
2. By Corollary 1(3), B 	n M if and only if ⊕nB 	1 M (n ∈ N

+). Thus, for
any n ∈ N

+ and ⊕nB 	1 M (B ∈ B), the granularity and the monotone
property of l imply that ⊕nB = l(⊕nB) 	 l(M), therefore

⊔
{⊕nB | n ∈ N

+, B ∈ B, B 	n M} 	 l(M).

On the other hand, l(M) ∈ DB and so by Proposition 4(1), and since l is
contractive, we obtain

l(M) =
⊔

{⊕nB | n ∈ N
+, B ∈ B, B 	n l(M)}

	
⊔

{⊕nB | n ∈ N
+, B ∈ B, B 	n M}.

Thus, l(M) =
⊔{⊕nB | n ∈ N

+, B ∈ B, B 	n M}. �
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Next, we generalize the Pawlakian approximation pair for msets in strictly
set–union type mset approximation spaces.

Definition 9. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–union
type mset approximation space.

The functions l, u : MS<∞(U) → MS<∞(U) form a (generalized) Pawlakian
mset approximation pair 〈l, u〉 if for any mset M ∈ MS<∞(U),

1. l(M) =
⊔{⊕nB | n ∈ N

+, B ∈ B and B 	n M},
2. b(M) =

⊔{⊕nB | B ∈ B, B �	 M, B �M �= ∅ and B �M 	n M},
3. u(M) = l(M)  b(M),

where the function b gives the boundary of mset M .

It is easy to check the next proposition by Definition 9.

Proposition 5. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–union
type mset approximation space with a Pawlakian mset approximation pair.

Then MAS(U) is a lower semi–strong mset approximation space and l is gran-
ular. In other words, MAS(U) fulfills the conditions (C0)–(C3), (C4), (C6).

Definition 10. A strictly set–union type approximation space with a Pawlakian
mset approximation pair is called a Pawlakian mset approximation space.

Proposition 6. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a Pawlakian mset
approximation space. Then

u(M) = (l(M)⊕ b(M))� (l(M) � b(M)).

Proof. For all a ∈ U ,

u(M)(a) = ((l(M)⊕ b(M))� (l(M) � b(M)))(a)

= max{(l(M)⊕ b(M))(a)− (l(M) � b(M))(a), 0}
= max{l(M)(a) + b(M)(a)−min{l(M)(a), b(M)(a)}, 0}
=

{
max{l(M)(a), 0}, if l(M)(a) ≥ b(M)(a);
max{b(M)(a), 0}, if l(M)(a) < b(M)(a);

= max{l(M)(a), b(M)(a)}
= (l(M)  b(M))(a).

�

6 Applications in Membrane Computing

In the membrane application we focus on hierarchical membrane systems with
communication rules.

A membrane structure μ of degree m (m ∈ N
+) is a rooted tree with m nodes.

It can be represented by the set Rμ ⊆ {1, . . . ,m}× {1, . . . ,m} where 〈i, j〉 ∈ Rμ

means that there is an edge from i (parent) to j (child) of the tree μ which is
formulated by parent(j) = i.
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Let V be a finite alphabet. The tuple

Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉

is called a membrane system or P system if wi ∈ MS<∞(V ) is the region of Π ,
and Ri is a finite set of rules of the form symport and antiport (i = 1, 2, . . . ,m).
For the precise definition, see [8], Definition 6.

If the P system Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 is given, let
MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be a strictly set–union type mset approx-
imation space with a generalized Pawlakian approximation pair 〈l, u〉. MAS(Π)
is called a joint membrane approximation space.

Having given a membrane system Π and its joint membrane approximation
space MAS(Π), we can define the boundaries of the regions w1, w2, . . . , wm as
msets with the help of approximative function b specified in Definition 9.

Definition 11. Let Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 be a P system
and MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be its joint membrane approximation
space. If B ∈ B and i = 1, 2, . . . ,m, let

N(B, i) =

⎧
⎨

⎩

0, if B 	 wi or B � wi = ∅;
n, if i = 1 and B � w1 	n w1;
min{k, n | B � wi 	k wi, and B � wi 	n wparent(i)}, otherwise.

Then, for i = 1, . . . ,m,
bnd(wi) =

⊔{⊕N(B,i)B | B ∈ B};
bndout(wi) = bnd(wi)� wi;
bndin(wi) = bnd(wi)� bndout(wi).

The functions bnd(wi), bnd
out(wi), bnd

in(wi) give membrane boundaries, out-
side membrane boundaries and inside membrane boundaries, respectively.

The general notion of boundaries given in Definition 9 cannot be used here,
because membrane boundaries have to follow the given membrane structure μ.
The Pawlakian lower approximations l(wi) (i = 1, . . . ,m) surely obey the mem-
brane structure, and the Pawlakian upper approximation u(w1) and the bound-
ary b(w1) are completely within the environment of the membrane structure.

However, the Pawlakian upper approximation u(wi), therefore the boundary
b(wi) (i = 2, . . . ,m) do not obey the membrane structure in general. Thus, the
Pawlakian boundaries have to be adjusted to the membrane structure by the
function bnd. Of course, b(w1) = bnd(w1), but b(wi) �= bnd(wi) (i = 2, . . . ,m)
in general. Moreover, membrane boundaries bnd(wi) (i = 1, . . . ,m) are split into
two parts, inside and outside membrane boundaries.

As an illustrative example for the membrane boundary, let us take a membrane
structure with 1 node, and let the base system B consist of three base msets:
B1, B2, B3. In the figures below, they are represented by circle, triangle, and
square, respectively. For the sake of clarity, only a fragment of the whole mset
approximation space is depicted focusing on the membrane boundary solely.
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Fig. 1 shows the membrane boundary of the region w1.

region w1

1

environment

Fig. 1. A membrane boundary Fig. 2. The membrane boundary,

after the membrane computation

Using membrane boundaries, the following constraints for rule executions are
prescribed: a rule r ∈ Ri of a membrane i has to work only in the boundaries
of its region. It can be shown that the membrane computation actually works
in the membrane boundaries ([8], Theorem 1). Fig. 2 illustrates the membrane
boundary just after the membrane computation has halted.

In [8], the authors gave the pseudocode of the whole computation process as
well.

7 Conclusion

In the paper, the authors have defined general multiset approximation spaces
and have discussed their fundamental approximative properties. Their lattice
theory properties have been shown as well. These properties hold not only in
Pawlakian but also in general mset approximation spaces.

The importance of defined general multiset approximation spaces can be
found, for instance, in their applications in membrane computing. By using the
partial multiset approximation technique, the notion of “to be close enough to
a membrane”, even from inside and outside, has been specified in an abstract
way. Thus, by constraining the communication rule executions on these abstract
membrane boundaries, the membrane computation can be controlled.
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