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Preface

This volume comprises papers accepted for presentation at the 8th Rough Sets
and Knowledge Technology (RSKT) conference, which, along with the 14th in-
ternational conference Rough Sets, Fuzzy Sets, Data Mining and Granular Com-
puting (RSFDGrC), was held as a major part of Joint Rough Set Symposium
(JRS) during October 11–14, 2013 in Halifax, Canada. JRS was organized for the
first time in 2007 in Toronto, Canada, and was re-established in Chengdu, China
2012, as the major event assembling different rough-set-related conferences and
workshops. In addition to RSKT and RSFDGrC, JRS 2013 also hosted the 4th
Rough Set Theory Workshop (RST) and the Rough Set Applications Workshop
(RSA), both held on October 10, 2013.

The RSKT conference series is a meeting for academic researchers and in-
dustry practitioners interested in knowledge-related technologies. It primarily
aims at providing state-of-the-art scientific results, encouraging academic and
industrial interactions, and promoting collaborative research in rough set theory
and its applications to knowledge technology problems. The RSKT conference
has taken place annually since 2006, when the first conference was organized
in Chongqing, China. It has provided an important international forum for dis-
cussion of current research trends, exchange of ideas, original research results
and development experience so as to make further progress in the fields of data
mining, knowledge discovery, and knowledge-based systems.

JRS 2013 received 106 submissions which were carefully reviewed by two
or more Program Committee (PC) members or additional reviewers. After the
rigorous process finally 44 regular papers (acceptance rate 41.5%) and 25 short
papers were accepted for presentation at the symposium and publication in two
volumes of the JRS proceedings.

This volume contains the papers accepted for the conference RSKT 2013 and
the invited papers of historical character written by the leading researchers in
the field (including Hiroshi Sakai, Michinori Nakata, Yiyu Yao, JingTao Yao,
Jerzy Grzyma�la-Busse, Guoyin Wang, and Michael Wong). The proceedings are
enriched by a contribution from Marcin Szczuka, who gave one of the JRS tu-
torials. We would like to thank all the authors, both those whose papers were
accepted and those whose papers did not appear in the proceedings, for their
best efforts – it is their work that gives meaning to the conference.

It is a pleasure to thank all those people who helped this volume to come
into being and JRS 2013 to be a successful and exciting event. It would not be
possible to hold the symposium without the committees and the sponsors. We
deeply appreciate the work of the PC members who assured the high standards
of accepted papers. We hope that the resulting proceedings are evidence of the
high-quality and exciting RSKT 2013 program. This program also included two
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special/thematic sessions: History and Future of Rough Sets (invited papers),
and Three-Way Decisions and Probabilistic Rough Sets (regular papers).

We would like to express our gratitude to the special session chairs (Hong Yu,
Bing Zhou, Dun Liu, Fan Min, Xiuyi Jia, Huaxiong Li) and both RST and RSA
workshops’ chairs (JingTao Yao, Ahmad Taher Azar, Stan Matwin) for their
great work. We deeply acknowledge the conscientious help of all the JRS chairs
(Yiyu Yao, Dominik Śl ↪ezak, Guoyin Wang, Davide Ciucci, Yuhua Qian, Masahiro
Inuiguchi, Hai Wang, Andrzej Janusz) whose valuable suggestions and various
pieces of advice made the process of proceedings preparation and conference
organization much easier to cope with.

We also gratefully thank our sponsors: David Gauthier, Vice President - Aca-
demic and Research, Saint Mary’s University, Halifax, for sponsoring the recep-
tion; Kevin Vessey, Associate Vice President - Research, Saint Mary’s University,
Halifax, for sponsoring the data mining competition; Steven Smith, Dean of Sci-
ence, Saint Mary’s University, Halifax, for sponsoring the conference facilities;
Danny Silver, Director, Jodrey School of Computer Science, Acadia University,
Wolfville, for sponsoring the second day of the conference in the beautiful An-
napolis valley and Acadia University; Stan Matwin, Canada Research Chair and
Director, Institute for Big Data Analytics, Dalhousie University, Halifax, for
sponsoring RST and RSA workshops at Dalhousie University; finally, Infobright
Inc. for being the industry sponsor of the entire event.

Our immense gratitude goes once again to Davide Ciucci for his invaluable
help and support throughout the preparation of this volume and the conference
RSKT 2013.

We are very thankful to Alfred Hofmann and the excellent LNCS team at
Springer for their help and co-operation. We would also like to acknowledge the
use of EasyChair, a great conference management system.

Finally, let us express our hope that the reader will find all the papers in the
proceedings interesting and stimulating.

October 2013 Pawan Lingras
Marcin Wolski
Chris Cornelis

Sushmita Mitra
Piotr Wasilewski
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Fan Min
Pabitra Mitra
Sadaaki Miyamoto
Mikhail Moshkov
Tetsuya Murai
Kazumi Nakamatsu
Michinori Nakata
Amedeo Napoli
Kanlaya Naruedomkul
Hung Son Nguyen
Linh Anh Nguyen
Vilem Novak
Mariusz Nowostawski
Hannu Nurmi
Hala Own
Nizar Banu
Piero Pagliani
Krzysztof Pancerz
Piotr Paszek
Alberto Guillen Perales
Georg Peters
James F. Peters
Frederick Petry
Jonas Poelmans

Lech Polkowski
Henri Prade
Keyun Qin
Mohamed Quafafou
Anna Maria Radzikowska
Vijay V. Raghavan
Sheela Ramanna
Zbigniew Raś
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Domenico Talia
Shusaku Tsumoto
Gwo-Hshiung Tzeng
Nam Van Huynh
Changzhong Wang
Junhong Wang
Xin Wang
Junzo Watada
Ling Wei
Arkadiusz Wojna
Karl Erich Wolff
Micha�l Woźniak
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Tomasz Grześ, Maciej Kopczyński, and Jaros�law Stepaniuk

Fast Approximate Attribute Reduction with MapReduce . . . . . . . . . . . . . . 271
Ping Li, Jianyang Wu, and Lin Shang

Three-Way Decision Rough Sets

Three-Way Decision Based Overlapping Community Detection . . . . . . . . . 279
Youli Liu, Lei Pan, Xiuyi Jia, Chongjun Wang, and Junyuan Xie

Three-Way Decisions in Dynamic Decision-Theoretic Rough Sets . . . . . . . 291
Dun Liu, Tianrui Li, and Decui Liang

A Cluster Ensemble Framework Based on Three-Way Decisions . . . . . . . . 302
Hong Yu and Qingfeng Zhou

Multistage Email Spam Filtering Based on Three-Way Decisions . . . . . . . 313
Jianlin Li, Xiaofei Deng, and Yiyu Yao

Cost-Sensitive Three-Way Decision: A Sequential Strategy . . . . . . . . . . . . 325
Huaxiong Li, Xianzhong Zhou, Bing Huang, and Dun Liu

Two-Phase Classification Based on Three-Way Decisions . . . . . . . . . . . . . . 338
Weiwei Li, Zhiqiu Huang, and Xiuyi Jia

A Three-Way Decisions Model Based on Constructive Covering
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Yanping Zhang, Hang Xing, Huijin Zou, and Shu Zhao

Learning, Predicting, Modeling

A Hierarchical Statistical Framework for the Extraction of Semantically
Related Words in Textual Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Weijia Su, Djemel Ziou, and Nizar Bouguila

Anomaly Intrusion Detection Using Incremental Learning of an Infinite
Mixture Model with Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Wentao Fan, Nizar Bouguila, and Hassen Sallay

Hybridizing Meta-heuristics Approaches for Solving University Course
Timetabling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Khalid Shaker, Salwani Abdullah, Arwa Alqudsi, and Hamid Jalab



XIV Table of Contents

Weight Learning for Document Tolerance Rough Set Model . . . . . . . . . . . 385
Wojciech Świeboda, Micha�l Meina, and Hung Son Nguyen

A Divide-and-Conquer Method Based Ensemble Regression Model for
Water Quality Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Xuan Zou, Guoyin Wang, Guanglei Gou, and Hong Li

A Self-learning Audio Player That Uses a Rough Set and Neural Net
Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Hongming Zuo and Julia Johnson

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413



Using Domain Knowledge in Initial Stages
of Knowledge Discovery in Databases

Tutorial Description

Marcin Szczuka�

Institute of Mathematics, The University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

szczuka@mimuw.edu.pl

Abstract. In this tutorial the topic of data preparation for Knowledge
Discovery in Databases (KDD) is discussed on rather general level, with
just few detailed descriptions of particular data processing steps. The
general ideas are illustrated with application examples. Most of examples
are taken from real-life KDD projects.

Keywords: KDD, data cleansing, data quality, data mining.

1 Introduction

The process of Knowledge Discovery in Databases (KDD) is traditionally pre-
sented as a sequence of operations which, applied iteratively, lead from the raw
input data to high-level, interpretable and useful knowledge. The major steps in
KDD process are typically: Selection, Preprocessing, Transformation, Data Min-
ing (DM), and Iterpretation/evaluation. The tutorial is focused on first three of
these steps. The goal is to demonstrate how we can improve the entire KDD
process by using background (domain) knowledge in these phases.

During the selection and preprocessing phases of the KDD cycle the original
raw data is sampled, cleansed, normalized, formatted and stored in a conve-
nient way. The original, raw data is first turned into target data (selection) and
then converted into preprocessed, analytic data (preprocessing). At this point
we already have the data ready for mining and analysis, however, further trans-
formation may be required, if the data mining and analysis algorithms are to run
� The author is partially supported by the Polish National Science Centre - grants:

2011/01/B/ST6/03867 and 2012/05/B/ST6/03215; and by the Polish National Cen-
tre for Research and Development (NCBiR) - grants: O ROB/0010/03/001 under
Defence and Security Programmes and Projects: “Modern engineering tools for deci-
sion support for commanders of the State Fire Service of Poland during Fire&Rescue
operations in buildings” and SP/I/1/77065/10 in frame of the strategic scientific re-
search and experimental development program: “Interdisciplinary System for Inter-
active Scientific and Scientific-Technical Information”. The applications presented as
examples in the tutorial were developed as a part of implementation of the mentioned
research programmes.

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 1–6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Szczuka

efficiently. By utilizing various kinds (layers) of knowledge about the problem,
the nature and structure of data, the objective, and available computational
tools, we want to improve both the processing speed and the overall quality of
the KDD results. In general case, not much can be done to optimize the quality
of data mining step beforehand, since the knowledge needed to do that is not
discovered yet. However, in particular applications we can at least prepare the
transformed data for data mining algorithms in such a way that computational
effort needed to manage data and obtain results is decreased and the chance to
discover meaningful knowledge is increased.

In the tutorial the general task of data preparation for data mining is narrowed
down to cases that meet some additional criteria. We assume, that it is neces-
sary (required) to use data representation that involves creation and processing
(usage) of compound (complex) data objects. Such a complex data object can be
a structured text (document), a set of images, and so on. The main feature that
defines such object is the existence of internal, non-trivial structure that can be
used to preprocess and transform data entity for the purposes of data mining al-
gorithms. Another condition for the problem to fit our scheme is the complexity
of the problem as a whole. We want to address situations such that there is a
room for significant improvement. Therefore, we are mostly interested in using
knowledge to deal with data sets that are large and/or complicated. Last, but
not the least, we mostly (but not exclusively) deal with situations, when storage
and processing of data entities involves Relational Database Management Sys-
tem (RDBMS). The use of RDBMS imposes some additional constraints, but at
the same time provides more tools for data manipulation.

The tutorial describes experiences in constructing and using large data ware-
houses to form a set of hints (guidelines) for a practitioner who needs to deal
with tasks that require storing and processing of big data represented with use
of compound (complex) data objects. It provides some insights into the ways of
utilizing various kinds of knowledge about the data and the application domain
in the process of building a data-warehouse-based solution. Several examples of
practical projects are used to demonstrate what kind of knowledge and how,
can be utilized to improve data processing in KDD process when compound
data objects are involved. An explanation is provided about the kinds of com-
pound/complex objects one may encounter. One of major steps is the presenta-
tion of general approach (framework) used to characterize data processing tasks
by the way they handle such compound objects.

2 Organization of the Presentation

The tutorial is organized as follows. First, it is explained what constitutes a
complex data object, what kinds of operations we want to perform and what
improvements we want to achieve. Then, it is demonstrated how the knowledge
can used to improve (optimize) data processing at initial stages of KDD process.
Next, an illustration of the proposed approach using several examples of practical
projects (see [1–4]) is provided. The subsections below correspond to main parts
of the tutorial and provide few more details about the content.
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2.1 Compound/Complex Objects in KDD Process

Storage and processing of data entities representing compound objects, with
use of domain knowledge, needs to be considered in many aspects. To begin
with, by an object we understand any element of the real world that can be
stored as a data object (database entity) represented using a chosen, formal
ontology. We assume that the ontologies used to define (construct) objects are
given as a part of the domain knowledge. Now, a compound object is an object
that combines several (at least two) objects into an ontology-definable object.
Compound objects can be characterized by two crucial properties. Firstly, a
compound object can always be decomposed into at least two parts and each of
these parts is a proper ontology-definable object. Secondly, all components that
make the compound object are bound by relation(s) from ontology. In other
words, the compound object is something more than just a container, it has an
internal structure.

A compound object as a whole may posses certain properties that are specific
for a given domain (given context). It may also be related to other compound
objects, not necessarily from the same domain. Using these relations we may
construct more compound objects from existing ones. Properties and attribute
values of a compound object may also be derived by examining its structure
and sub-objects it contains in relation to other objects, e.g., by measuring the
amount of common sub-objects.

To select, store, preprocess and transform data that contains compound ob-
jects, so that they can be used in further steps of KDD process one has to
consider the most probable data processing scenarios that we will have to per-
form. Then, we have to design data structures and algorithms in such a way
that they are efficient and produce high quality output. At this point, using all
available domain knowledge may be crucial for the overall success of KDD. Since
we usually have to facilitate the storage and processing that includes both data
entities and relations the choice of RDBMS technology comes quite naturally.
Since at the same time we are aiming at really complex KDD tasks, that are
usually accompanied by large amounts of data, we rely on technologies that are
dedicated for use in large data warehouses.

2.2 Outline of the Framework for Domain Knowledge Incorporation

We claim that the use of domain knowledge in the process of designing and us-
ing data structures for compound objects may bring several benefits. In order
to advocate this claim we introduce a framework consisting of several overlap-
ping categories (non-disjoint layers) of domain knowledge. This construct, as
the tutorial aims to demonstrate, might be utilized for optimizing storage and
processing of complex objects.

Proposed layers of knowledge:

Layer 1. Knowledge about the underlying, general problem to be solved with
use of available resources and the collection of compound objects we have
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gathered. This kind of knowledge includes also such elements as: optimization
preferences (e.g., storage or computation time), number of end–users of the
system, availability of data, etc.

Layer 2. Knowledge about objects, their internal structure, importance of
attributes, orders on them, their types (including knowledge about measure-
ment errors), relations between objects as well as the knowledge about com-
putational methods used to process them. This type of knowledge includes
also knowledge of probable computation scenarios: typical queries and pro-
cessing methods, potential high-level bottlenecks, most frequent elementary
data operations.

Layer 3. Knowledge about the technologies, models, and data schemes that
are used to store the information about objects within database. One can
utilize high level knowledge – of general assets and shortcomings of particular
technologies as well as some low level aspects of knowledge specific to chosen
technology, e.g., about physical representation of objects inside database,
such as Infobright’s column-wise data packages.

It shall be emphasized that, while designing data-based process the optimiza-
tion steps, one needs to take into consideration all the levels mentioned above.
These levels are inter-connected and only by considering all of them we may
achieve significant improvements in terms of the speed (computational cost) and
accuracy of algorithms.

2.3 Examples

The general ideas are illustrated with examples taken from large, real-life
KDD&DM projects. This includes the following three applications:

Object Comparators in Identification of Contour Maps
This example shows practical implementation of comparator theory and its appli-
cation in the commercial project aimed at visualization of the results of the 2010
Polish local elections and 2011 Polish general elections (see [2]). It demonstrates
a path leading from identification of domain knowledge through its skillful use
leading to optimization of the implemented solution. Thanks to layer methodol-
ogy for knowledge incorporation described in the previous section it was possible
to significantly improve the overall performance of the system. The main cost
of this solution is associated with search and comparison of complex objects.
Through knowledge-driven optimization of the reference set it was possible to
reduce the computational effort and perform some steps concurrently, which led
to further speed-up.

Knowledge Driven Query Sharding
The SYNAT (www.synat.pl) project is a large, national R&D program of Polish
government. Within its framework our research group designs and implements a
solution allowing the user to search within repositories of scientific information

www.synat.pl
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using their semantic content. This sub-system – called SONCA1 (cf. [5]) – is also
meant to be a platform allowing search for new solutions in the field of semantic
measures. During the research, we tried to develop a new measure of semantic
similarity between documents used to group them into semantically coherent
clusters. For that purpose we had to incorporate a lot of domain knowledge in
the form of external ontologies and knowledge bases (e.g., MeSH 2). We also
had to perform several optimization steps in query processing that led to use
of domain knowledge in design of algorithms (methods) for data processing and
query answering in data warehouses.

Data Cleansing of Fire and Rescue Reporting System
In this example we describe how the domain knowledge makes it possible to per-
form data sampling and data cleansing. This example is associated with recently
started major R&D project aiming at creation of tools for decision support for
commanders of the State Fire Service of Poland during Fire&Rescue (F&R)
operations in buildings [6–8].

After every F&R action a report is created in EWID – the reporting system
of State Fire Service of Poland (PSP). The system currently contains nearly 6
million reports and around 1500 new entries are created every day. The concern is
that over the years this large corpus has been collected with limited validation of
the input. In the example we show a mostly automatic, iterative process of data
cleansing and interpretation, supervised by domain experts and incorporating
the domain (expert) knowledge.

3 Prerequisites and Target Audience

As the time allotted for the presentation of the tutorial is relatively short (90
min.), it is assumed that the audience is familiar with some basics. In order to
present the more advanced (and entertaining) topics it is necessary to assume
that the members of the audience have some experience in:

– Knowledge Discovery in Databases (KDD) at least at the level of under-
standing basic concepts and processes.

– Project management, in particular with DM projects. Ideally, the members
of the audience have participated in such project, but the general idea will
do as well.

– Underlying technologies, such as database management, data warehousing,
data quality assurance and so on.

The person with completely no background in information systems and com-
putational intelligence will probably feel lost.

1 Abbreviated: Search based on ONtologies and Compound Analytics.
2 Medical Subject Headings www.nlm.nih.gov/pubs/factsheets/mesh.html

www.nlm.nih.gov/pubs/factsheets/mesh.html
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4 Conclusion

Our approach to utilization of domain (background) knowledge in the initial stages
of KDD process, as presented during the tutorial, is not an answer to each and ev-
ery problem. The area of KDD is too diversified and complicated for any method-
ology to always work equally well. Our approach to selection, preprocessing and
transformation steps in KDD is an attempt to identify characteristic features that
may be used to select the right, knowledge-based tool for the task at hand. Some-
times the results of these attempts may be difficult to ascertain, as we only operate
on initial steps of KDD. It may be hard, if not impossible to know in advance if all
operations performed on initial stages of KDD will bring significant improvement
after data mining and result interpretation is concluded. It is, after all, a discovery
process, and we usually don’t know what exactly we shall expect to be discovered.

The series of examples presented in the paper illustrates both the variety
of issues that have to be addressed and the apparent existence of the overall
scheme behind. It supports the claim that, by properly identifying the level of
complication of the task and the kind of domain knowledge we posses, one can
achieve significant improvements in efficiency and quality of the solution. It has
to be stated that the knowledge-based methods shown in application examples
are demonstrating improvements on very diversified scale.
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Abstract. We have been coping with issues connected with non-deter-
ministic information in rough sets. Non-deterministic information is a
kind of incomplete information, and it defines a set in which the ac-
tual value exists, but we do not know which is the actual value. If the
defined set is equal to the domain of attribute values, we may see this
is corresponding to a missing value. We need to pick up the merits in
each information, and need to apply them to analyzing data sets. In
this paper, we describe our opinion on non-deterministic information as
well as incomplete information, some algorithms, software tools, and its
perspective in rough sets.

Keywords: Rough sets, Non-deterministic information, Incomplete
information, Survey, Information dilution, Privacy-preserving.

1 Introduction

In our previous research, we coped with rule generation in Non-deterministic
Information Systems (NISs) [12,17,19]. In contrast to Deterministic Infor-
mation Systems (DISs) [16,20], NISs were proposed by Pawlak [16], Orłowska
[13] and Lipski [9] in order to better handle information incompleteness in data.
In NISs, we have defined certain and possible rules, and recently we proved
an algorithm named NIS-Apriori is sound and complete for defined rules. We
have also implemented NIS-Apriori [18] and a web software getRNIA [24].
This paper describes the role of non-deterministic information and its survey
according to Figure 1. Since Figure 1 consists of five decades, we sequentially
survey important work in each decade.

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 7–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. A chart on non-deterministic information in rough sets

2 In 1970’s: Relational Databases and Query
Management

In 1970’s, relational algebra, normal forms, null values are investigated [3], and
Marek and Pawlak clarified mathematical foundations of information retrieval
[11]. We think that each research coped with query management, and it supports
current development of relational databases.

3 In 1980’s: Information Incompleteness, Query
Management and Rough Sets

In 1980’s, information incompleteness in databases was investigated by Lipski
[9,10]. Table 1 is an example of Lipski’s incomplete information database cited
from [9]. For Age whose domain is (0,∞), information about two persons x3 and
x5 is definite. Information on three persons x1, x2 and x4 is indefinite. For each of
these cases, information is given as an interval. For Dept#, each attribute value
is not an interval but a subset of a set of all department numbers. In Lipski’s
framework, we see the concept of non-deterministic information.

Table 2 is an example of nondeterministic information system cited from [13],
where each attribute value is given as a set of possible values. We see the keyword
nondeterministic information [13] by Orłowska and Pawlak, and many-valued
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Table 1. An example of Lipski’s Incomplete Information Database [9]. The age of x2

is either 52, 53, 54, 55 or 56 years old, which is non-deterministic information.

OB Age Dept# Hireyear Sal

x1 [60, 70] {1, · · · , 5} {70, · · · , 75} {10000}
x2 [52, 56] {2} {72, · · · , 76} (0, 20000]

x3 {30} {3} {70, 71} (0,∞)

x4 (0,∞) {2, 3} {70, · · · , 74} {22000}
x5 {32} {4} {75} (0,∞)

information [15] by Pawlak. We think that query management and mathemat-
ical logic in databases with incomplete information were investigated in each
research.

Table 2. A nondeterministic information system [13]. Each attribute value is given as
a set of possible values.

OB a1 a2
D1 {v1, v3} {u1, u2, u3}
D2 {v2, v5} {u1}
D3 {v1, v3, v4} {u1, u2}
D4 {v1} {u1, u2}
D5 {v1, v3} {u1}
D6 {v5} {u1}

Rough sets were proposed by Pawlak in [14], and we think that the topic was
moving from query management to knowledge discovery. Clearly, one of the roles
of rough sets is to define a framework of rule generation in databases. In query
management, the interpretation of a query (the conjunction of descriptors) was
investigated, and the equivalence classes defined by the conjunction of descriptors
have been employed in rough sets.

4 In 1990’s: Information Incompleteness and Rule
Generation

From 1990’s, rule generation has been very important topic, and the relation
between information incompleteness and rule generation has been investigated.
In [4], theoretical aspect including logic and the complexity on incomplete infor-
mation is described.

We also see other research, namely research for implementing real application
systems. In [6], LERS system was implemented by Grzymała-Busse, and this
system is applied to several area. We understand the overview of LERS system



10 H. Sakai et al.

as follows: At first, variations of the equivalence classes for handling missing
values are defined as blocks. Each block is connected with a conjunction of
descriptors ∧i[Ai, vali], respectively. For a target set T defined by the decision
attribute value (this will be defined by a descriptor [Dec, val]), LERS tries to
cover T by using blocks. For block B1, if B1 ⊆ T , we obtain a certain rule
∧i[Ai, vali] ⇒ [Dec, val]. For block B2, if block B2 �⊆ T and B2 ∩ T �= ∅, we
obtain a possible rule ∧i[Ai, vali] ⇒ [Dec, val].

In [8], rules are defined according to incomplete information systems by
Kryszkiewicz. In these two researches, missing values (∗ in Table 3) are employed
instead of non-deterministic information. According to the missing values, ex-
tended equivalence classes are defined, and the consistency of a rule is examined
by the variations of inclusion relation [x]CON ⊆ [x]DEC . Table 3 is an incomplete
information system, and Table 4 is a possible case of information system cited
from [8].

Table 3. An example of incom-
plete information system Φ [8]

OB a b c d

1 1 1 1 1

2 1 ∗ 1 1

3 2 1 1 1

4 1 2 ∗ 1

5 1 ∗ 1 2

6 2 2 2 2

7 1 1 1 2

Table 4. A possible information
system from Φ [8]

OB a b c d

1 1 1 1 1

2 1 1 1 1

3 2 1 1 1

4 1 2 1 1

5 1 1 1 2

6 2 2 2 2

7 1 1 1 2

5 In 2000’s: Variations of Rough Sets and Rough
Non-deterministic Information Analysis

In 2000’s or much earlier, we have several variations of rough sets, for example
dominance-based rough sets [5], decision-theoretic rough sets [25], generalized
rough approximation [2], covering-based rough sets [26], etc.

We understand the overview of dominance-based rough sets as follows: Each
domain of attribute values has a total order, and rules are implications which
are preserving the order of condition attribute values and the decision attribute
values. The criterion ‘consistency’ in [16] is replaced with ‘order-preserving’, and
the new framework is proposed.

We understand the overview of decision-theoretic rough sets as follows: This
is the combined framework of rough sets and decision theory. Therefore, some
possible choices with probability are given as well as a table, and the total
expected value is employed for deciding a choice. This will be an extension from
the typical decision theory and game theory.
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We understand the overview of generalized rough approximation as follows:
This work connects fuzzy sets with rough sets, and proposes the combination,
namely the notion of fuzzy rough set. We think the combined framework will be
more robust and general framework for approximation theory.

We understand the overview of covering-based rough sets as follows: This is
also the combined framework of rough sets and algebraic structure, and this
framework tries to include several types of data, i.e., Boolean-valued data, nu-
meric and mixed data.

We described our opinion to four variational works on rough sets. We think
that these four works cope with the theoretical aspects.

As for the implementation and real application, we see Infobright technology
[21] based on rough sets. Even though this technology handles deterministic
information, we are considering non-deterministic information on Infobright [22].

We also started the research named Rough Non-deterministic Information
Analysis (RNIA). Table 5 is an example of a NIS Ψ [19].

Table 5. An exemplary NIS Ψ for the suitcase data sets. Here, V ALColor=
{red, blue, green}, V ALSize={small,medium, large}, V ALWeight={light, heavy},
V ALPrice={high, low}.

Object Color Size Weight Price

x1 {red,blue,green} {small} {light,heavy} {low}
x2 {red} {small,medium} {light,heavy} {high}
x3 {red,blue} {small,medium} {light} {high}
x4 {red} {medium} {heavy} {low,high}
x5 {red} {small,medium,large} {heavy} {high}
x6 {blue,green} {large} {heavy} {low,high}

In Table 5, g(x1, Color)={red, blue, green} is equal to V ALColor, therefore we
may see g(x1, Color) is a missing value. However, g(x3, Color)={red, blue} is
different from V ALColor. It is impossible to express g(x3, Color) by using a
missing value. If Tom is a typical student in a graduate school, we will figure his
age will be 22, 23, 24 or 25 years old. We do not figure his age will be 10’s nor
50’s. Intuitively, non-deterministic information may be seen as a missing value
with the restricted domain.

We follow the way like Table 3 and Table 4, and we named a possible table
a derived DIS from a NIS Ψ , and let DD(Ψ) denote a set of all derived DIS
from Ψ . In a NIS, we need to pay attention to the number of derived DISs. For
example, there are 2304 (=28 × 32) derived DISs even in Table 5. The number
of derived DISs increases exponentially, therefore it will be hard to enumerate
each derived DIS sequentially. In Hepatitis and Mammographic data sets in UCI
machine learning repository [23], the number of derived DISs are more than 10
power 90 [18].
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We defined two rules, and proposed NIS-Apriori algorithm for handling rules
in the following: [17,19].

(Certain rule τ) support(τ) ≥ α and accuracy(τ) ≥ β hold in each φ ∈ DD(Ψ).
(Possible rule τ) support(τ) ≥ α and accuracy(τ) ≥ β hold in some φ ∈ DD(Ψ).

The definition of two rules depends upon |DD(Ψ)|, however the computational
complexity of NIS-Apriori does not depend upon |DD(Ψ)|, and its complexity
is almost the same as the original Apriori algorithm [1].

6 In 2010’s: Real Application, Perspective of
Non-deterministic Information

Recently, we have implemented a software getRNIA [24] in Figure 2 and 3. This
getRNIA employs NIS-Apriori for rule generation and granules for association

Fig. 2. An overview of the getRNIA
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rules as data structure. Since this software is open, anyone can access to this
site, and apply it to analyzing data sets.

Fig. 3. An example of the execution of getRNIA

Now, we consider the role of non-deterministic information as well as in-
complete information. In most of research on non-deterministic information and
incomplete information, we usually suppose a data set with information incom-
pleteness is given, and we coped with what conclusions are obtainable.

We think that the inverse of this research may be new topic, namely we
intentionally add noisy attribute values to a table with keeping some rough set-
based constraints. Let us consider Table 6, which is a simple table, and the
degree of data dependency age ⇒ sex is 1.0. We added some noise to Table 6,
and we generated Table 7. In Table 7, information of age is changed. The original

Table 6. An example of determin-
istic information system ψ

OB age sex

Tom 25 male

Mary 24 female

Table 7. A revised non-
deterministic information system
from Ψ

OB age sex

Tom {25, 26, 27} {male}
Mary {23, 24} {female}
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information is diluted, however the data dependency is still 1.0 in each derived
DIS.

By diluting each information, the original information is hidden. Such infor-
mation dilution may be applicable to keep the security of original data sets.
In data mining, we usually do not open the original data sets for keeping the
privacy-preserving. However, if we can dilute a DIS ψ to a NIS Ψ with keep-
ing the obtainable rules, we may open a data set Ψ . Because, some important
attribute values can be diluted for keeping the privacy-preserving. The actual
example of information dilution will be in the proceedings of JRS2013.

In rough sets, we have several work on reduction with keeping some con-
straints. Similarly to reduction, we will have several work on information dilution
with keeping some constraints. We may also say this inverse-reduction.

7 Concluding Remarks

We have briefly surveyed non-deterministic information and incomplete infor-
mation in rough sets. We have investigated what is concluded according to a
given table with information incompleteness, like query management and rule
generation. However, the inverse of the previous research, namely we intention-
ally dilute a DIS ψ to a NIS Ψ related to privacy-preserving, may be new topic
on rough sets. The inverse-reduction may also be a new topic.
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Abstract. Real-world decision making typically involves the three op-
tions of acceptance, rejection and non-commitment. Three-way decisions
can be motivated, interpreted and implemented based on the notion of
information granularity. With coarse-grained granules, it may only be
possible to make a definite decision of acceptance or rejection for some
objects. A lack of detailed information may make a definite decision im-
possible for some other objects, and hence the third non-commitment
option is used. Objects with a non-commitment decision may be further
investigated by using fine-grained granules. In this way, multiple levels
of granularity lead naturally to sequential three-way decisions.

1 Introduction

Two fundamental notions of rough set theory are knowledge granularity [15, 16]
and the approximation of a concept by a pair of lower and upper approxima-
tions [3, 4] or three regions. In this paper, I argue that the two notions play
an equally important role in a theory of three-way decisions [29]. Three-way
decisions can be motivated, interpreted and implemented based on the notion
of information and knowledge granularity. Three regions of rough sets [15], and
in particular probabilistic rough sets [3, 4, 24, 25], lead naturally to three-way
decisions [27, 28], which may produce better results in rule learning [5]. A theory
of three-way decisions may be viewed an extension of rough set theory, based
on the same philosophy but goes beyond. Three-way decisions focus on a more
general class of problems where a set of objects are divided into three pair-wise
disjoint regions [2, 29].

A two-way decision consists of either an acceptance or a rejection of an object
for a specific purpose. However, a two-way decision may not always be possible
in real life in the context of multiple levels of granularity and multiple levels of
approximations. At a higher level of granularity, one may have a more abstract
and compact representation of a decision problem by omitting details, leading to
a faster decision process but a less accurate result. On the other hand, at a lower
level of granularity, one may have a more concrete and elaborate representa-
tion, leading to a slower decision process but a more accurate result. Therefore,
� This work is partially supported by a discovery grant from NSERC Canada.
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making the right decision at the right level is a crucial issue. Three-way deci-
sions, consisting of acceptance, rejection, and non-commitment, are a practical
solution. When the available information is insufficient or the evidence is not
strong enough to support an acceptance or a rejection at a particular level of
granularity, a third option of non-commitment allows us to defer a decision to
the next level of granularity.

Three-way decisions may be related to a basic principle of granular computing.
By utilizing granular structures, granular computing [1, 17, 21, 22, 31] focuses on
a set of philosophy, methodology and paradigm for structured thinking, struc-
tured problem solving and structured information processing at multiple levels
of granularity [26]. Granular structures consist of many hierarchies for multiview
descriptions of a problem, with each hierarchy being composed of multiple levels
of abstraction [26]. In an earlier paper [23], I stated that a basic principle of
computing, guided by granular structures, is to

“· · · examine the problem at a finer granulation level with more detailed
information when there is a need or benefit for doing so.”

The objective of the present study is to introduce sequential three-way decisions
based on this principle. We want to make a decision “at a finer granulation level
with more detailed information when there is a need or benefit for doing so.”

There are two contributions from the study. One is to provide a granular com-
puting perspective on three-way decisions. I will demonstrate that three-way de-
cisions are superior and necessary in the context of multiple levels of information
granularity. That is, a decision problem is more appropriately formulated as a
sequence of three-way decisions, leading finally to two-way decisions. The other
is a demonstration of a basic principle of granular computing and, hence, makes
it easily understandable and applicable to a wide range of applications.

2 An Overview of Three-Way Decisions

By extending the three-way classification of rough set theory and synthesizing
results across many disciplines, I examined a theory of three-way decisions in an
earlier paper [29]. The main results are briefly reviewed in this section.

Suppose U is a finite nonempty set of objects and C is a finite set of conditions.
Depending on applications, a condition in C may be a criterion, an objective,
or a constraint. A decision task is to divide U into regions according to the
satisfiability of objects of the set of conditions C. Formally, the problem of
three-way decisions can be stated as follows:

The problem of three-way decisions is to divide U , based on the set of
conditions C, into three pair-wise disjoint regions, POS,NEG, and BND,
called the positive, negative, and boundary regions, respectively. The
positive region POS consists of those objects that we accept as satisfying
the conditions and the negative region NEG consists of those objects that
we reject as satisfying the conditions. For objects in the boundary region
BND, we neither accept nor reject, corresponding to a non-commitment.
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The satisfiability reflects a nature of the objects. It may be either qualitative or
quantitative; it may also be known, partially known, or unknown. For an object
x ∈ U , let s(x) denote the satisfiability of x of the set of conditions C and is
called the state of x. Depending on the set of all possible values of s(·), we may
have two-state and many-state decisions problems.

For the two-state case, if we know the true state s(x) for every object, we do
not really need three-way decisions, as we can simply classify objects into two
regions based on s(x). In many situations, we may not know the true state of
an object and may only construct a function v(x) to help us in probing the true
state s(x). The value v(x) is called the decision status value of x and may be
interpreted as the probability or possibility that x satisfies C. In this context,
three-way decisions seem to be appropriate. For the many-state case, even if
we know s(x), a three-way decision is still necessary. The results of three-way
decisions may be viewed as a three-valued approximation.

In the rest of this paper, I only consider a two-state three-way decisions model
that uses an evaluation v : U −→ L to estimate the states of objects in U , where
(L,) is a totally ordered set. By introducing a pair of thresholds (α, β), β ≺ α
(i.e., β  α and β �= α), on the evaluation v, we construct three regions as
follows:

POS(α,β)(v) = {x ∈ U | v(x) � α},
NEG(α,β)(v) = {x ∈ U | v(x)  β},
BND(α,β)(v) = {x ∈ U | β ≺ v(x) ≺ α}, (1)

where for a, b ∈ L, a � b ⇐⇒ b  a and a ≺ b ⇐⇒ (a  b, a �= b). Condition
β ≺ α implies that the three regions are pair-wise disjoint. Since some of the
regions may be empty, the three regions do not necessarily form a partition of
the universe U .

From the formulation, we must consider at least the following issues:

– Construction and interpretation of the totally ordered set (L,).
– Construction and interpretation of the evaluation v(·).
– Construction and interpretation of the pair of thresholds (α, β).

The value v(x) may be interpreted as the probability, possibility or degree to
which x satisfies C. The pair of threshold (α, β) can be related to the cost or
error of decisions. Those notions will be further discussed in the next section.

3 A Model of Sequential Three-Way Decisions

In this section, I propose a sequential three-way decision model for two-state
decision model and show its advantages over two-way decisions.

3.1 Simple Two-Way Decisions

For a two-state decision problem, we assume that each object x ∈ U is in one of
the two states: either satisfies the set of conditions C or does not. The state of
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an object is an inherent property of the object, independent of whether we have
sufficient information to determine it. Let a mapping s : U −→ {0, 1} denote the
states of all objects as follows:

s(x) =

{
1, x satisfies C,
0, x does not satisfy C.

(2)

We make a decision regarding the true state of an object based on a represen-
tation, a description of, or some information about x. In many situations, the
available information may be incomplete and uncertain, and the set of conditions
may not be formally and precisely stated. It is impossible to determine the state
of each object with certainty. We can construct an evaluation function to assist
in a decision-making process.

Let Des(x) denote a description of x and UD denote the set of all possible
descriptions. An evaluation, v : UD −→ L, is now given by a mapping from UD

to a totally ordered set (L,). The quantity v(Des(x)) is called the decision
status value of x. Intuitively, a larger value v(Des(x)) suggests that the object x
satisfies the conditions C to a higher degree. Based on the decision status values
and a threshold γ ∈ L, we can divide U into a positive region and a negative
region based on a strategy of two-way decisions:

POSγ(v) = {x ∈ U | v(Des(x)) � γ},
NEGγ(v) = {x ∈ U | v(Des(x)) ≺ γ}. (3)

The positive region consists of those objects that we accept as satisfying the
conditions in C and negative region consists of those objects that we reject as
satisfying the conditions in C.

3.2 Sequential Three-Way Decisions

In the simple two-way decisions, we use a single representation of an object. In
real-world decision making, we may consider a sequence of three-way decisions
that eventually leads to two-way decisions. At each stage, new and more infor-
mation is acquired. For example, in clinical decision making, based on available
information, a doctor may decide to treat or not to treat some patients; for some
other patients, the doctor may prescribe further tests and defer a decision to the
next stage [14]. The basic ideas of sequential three-way decisions appear in a
model of sequential three-way hypothesis testing introduced by Wald [20] and
a model of sequential three-way decisions with probabilistic rough sets [30]. Li
et al. [7] consider a sequential strategy for making cost-sensitive three-way deci-
sions. Sosnowski and Ślęzak [18] introduce a model of networks of comparators
for solving problems of object identification, in which a sequence of comparators
is used for decision-making. In this paper, I present another way to formally
formulate sequential three-way decisions through the notion of multiple levels of
granularity. The main components of the proposed model are discussed below.

Multiple Levels of Granularity. We assume that there are n + 1, n ≥ 1,
levels of granularity. For simplicity, we use the index set {0, 1, 2, . . . , n} to denote
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the n+ 1 levels, with 0 representing the finest granularity (i.e., the ground level)
and n the coarsest granularity. The simple two-way decisions can be viewed as
decision-making at the ground level 0. For sequential three-way decisions, we
assume that a three-way decision is made at levels n, n− 1, . . . , 1 and a two-way
decision is made at the ground level 0. That is, the final result of sequential
three-way decisions is a two-way decision. At each stage, only objects with a
non-commitment decision will be further explored in the next level.

Multiple Descriptions of Objects. With n+1 levels, we have n+1 distinct
representations and descriptions of the same object at different levels. Suppose

Des0(x)  Des1(x)  . . .  Desn(x), (4)

is a sequence of descriptions of object x ∈ U with respect to n + 1 levels of
granularity. The relation  denotes a “finer than” relationship between different
descriptions. A description at a coarser level is more abstract by removing some
details of description in a finer level. It may be commented that the languages
used to describe objects may be different at different levels. Consequently, the
processing methods and costs may also be different.

Multiple Evaluations of Objects. Due to different representations at dif-
ferent levels, we need to consider different evaluations too. Let vi, 0 ≤ i ≤ n,
denote an evaluation at level i whose values are from a totally ordered sets
(Li,i). In contrast to the strategy of simple two-way decision making, in a se-
quential three-way decision process the same object may be evaluated in several
levels. Therefore, we must consider the extra costs of the decision process at dif-
ferent levels. The costs may include, for example, the cost needed for obtaining
new information and the cost of computing the evaluation vi.

Three-Way Decisions at a Particular Level. Except the ground level 0,
we may make three-way decisions for objects with a non-commitment decision.
Suppose Ui+1 is the set of objects with a non-commitment decision from level
i + 1. For level n, we use the entire set U as the set of objects with a non-
commitment decision, i.e., Un+1 = U . For level i, 1 ≤ i ≤ n, we can choose a
pair of thresholds αi, βi ∈ Li with βi ≺i αi. Three-way decision making can be
expressed as:

POS(αi,βi)(vi) = {x ∈ Ui+1 | vi(Desi(x)) �i αi},
NEG(αi,βi)(vi) = {x ∈ Ui+1 | vi(Desi(x)) i βi},
BND(αi,βi)(vi) = {x ∈ Ui+1 | βi ≺i vi(Desi(x)) ≺i αi}. (5)

The boundary region gives the set of objects with a non-commitment decision,
namely, Ui = BND(αi,βi)(vi). For level 0, a two-way decision is made for the set
of objects U1 based on a single threshold γ0 ∈ L0.

Due to a lack of detailed information, one may prefer to a deferment decision
to increase the chance of making a correct acceptance or rejection decision when
more evidence and details are available at lower levels. This can be controlled
by setting proper thresholds at different levels. Typically, one may use a larger
threshold α and a smaller threshold β at a higher level of granularity [30].
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Algorithm 1. S3D (Sequential three-way decisions)
Input: A set of objects U , a family of descriptions for each object {Desi(x)}, a

set of evaluations {vi}, and a set of pairs of thresholds {(αi, βi)};
Output: Two regions POS and NEG;
begin

POS = ∅;
NEG = ∅;
i = n;
Un+1 = U ;
U1 = ∅;
while Ui+1 �= ∅ and i > 0 do

POS(αi,βi)(vi) = {x ∈ Ui+1 | vi(Desi(x)) �i αi};
NEG(αi,βi)(vi) = {x ∈ Ui+1 | vi(Desi(x)) �i βi};
BND(αi,βi)(vi) = {x ∈ Ui+1 | βi ≺i vi(Desi(x)) ≺i αi};
POS = POS ∪ POS(αi,βi)(vi);
NEG = NEG ∪NEG(αi,βi)(vi);
Ui = BND(αi,βi)(vi);
i = i− 1;

if U1 �= ∅ then
POSγ0(v0) = {x ∈ U | v0(Des0(x)) � γ0};
NEGγ0(v0) = {x ∈ U | v0(Des0(x)) ≺ γ0};
POS = POS ∪ POSγ0(v0);
NEG = NEG ∪NEGγ0(v0);

return POS, NEG;

Fig. 1. Algorithm of sequential three-way decisions

By summarizing the discussion, Figure 1 gives the algorithm S3D of sequential
three-way decisions. In the algorithm, the set U1 is initialized to the empty
set. It will remind to be empty if an empty boundary region is obtained before
reaching the ground level 0. In addition to the construction of the evaluation and
thresholds at each level, for sequential three-way decisions, one must consider the
construction and interpretation of a sequence of multiple levels of granularity.

4 Comparison of Simple Two-Way Decisions and
Sequential Three-way Decisions

In this section, I provide an analysis of costs associated with two-way and se-
quential three-way decisions to demonstrate that there may be advantages to
using a sequence of three-way decisions.

4.1 Total Cost of Decisions

Simple two-way decisions and sequential three-way decisions can be compared
from two aspects. One is quality of the decision result in terms of errors or costs
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caused by incorrect decisions and the other is cost of the decisions process for
arriving at a decision. Both types of cost have been well studied and widely used
in comparing different algorithms of two-way classification. In comparison, the
latter has received less attention, except for the case of decision-tree based clas-
sification methods [10–13, 19]. When classifying an object with a decision tree,
it is necessary to perform a sequence of tests of some internal nodes of the tree.
The cost of the decision process can be viewed as the total cost of all required
tests. The proposed sequential three-way decisions share some similarities with
decision-tree based methods, but focus more on multiple levels of granularity
and multiple representations of an objects. The cost of decision process becomes
an important factor [6, 8, 9].

Suppose COSTR and COSTP denote, respectively, the cost of the decision
result and the cost of the decision process. It is reasonable to assume that the
total cost of decisions is a function for pooling together the two costs, that is,

COST = F (COSTR, COSTP ). (6)

There are many choices of the function F . Two special forms of the function are
the simple linear combination and product:

COST ′ = wR ∗ COSTR + wP ∗COSTP ,

COST ′′ = (COSTR)a ∗ (COSTP )b, (7)

where the weights wR ≥ 0, wP ≥ 0 and wR + wP �= 0, and a ≥ 0, b ≥ 0
and a + b �= 0, represent respectively the relative importance of the two types
of costs. There seems to be an inverse relationship between the two types of
costs. A decision-making method may produce a high quality result but tends
to require a large processing cost. It may also happen that a decision-making
method may require a small processing cost but produces a low quality result.
In general, there is a trade-off between the two types of costs. Finding the right
balance holds the key to making effective decisions.

4.2 Cost of the Decision Result

The result of simple two-way decisions and the final result of sequential three-
way decisions are, respectively, a division of U into two regions POS and NEG.
Some of the decisions of acceptance and rejection for constructing the two regions
may, in fact, be incorrect. Let S1 = {x ∈ U | s(x) = 1} be the set of objects in
state 1 and S0 = {x ∈ U | s(x) = 0} be the set of objects in state 0. Table 1
summarizes the errors and costs of various decisions, where S = 1 and S = 0
denote the two states of objects and | · | denotes the cardinality of a set.

The rates of two types of error, i.e., incorrect acceptance error (IAE) and
incorrect rejection error (IRE), are given by:

IAE =
|POS ∩ S0|
|POS| ,

IRE =
|NEG ∩ S1|
|NEG| , (8)
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Table 1. Information of decision result

s(x) = 1 (P ) s(x) = 0 (N) total
aA: accept Correct acceptance Incorrect acceptance

|POS ∩ S1| |POS ∩ S0| |POS|
aR: reject Incorrect rejection Correct rejection

|NEG ∩ S1| |NEG ∩ S0| |NEG|
total |S1| |S0| |U |

(a) Errors of decision result

s(x) = 1 (P ) s(x) = 0 (N)
aA: accept λAP = λ(aA|S = 1) λAN = λ(aA|S = 0)
aR: reject λRP = λ(aR|S = 1) λRN = λ(aR|S = 0)

(b) Costs of decision result

where we assume that the positive and negative regions are nonempty, otherwise,
the corresponding rate of error is defined as 0. Let a(x) denote a decision made
for object x. The total cost of decision results of all objects is computed as,

COSTR =
∑
x∈U

λ(a(x)|S = s(x))

= |POS ∩ S1| ∗ λ(aA|S = 1) + |POS ∩ S0| ∗ λ(aA|S = 0) +

|NEG ∩ S1| ∗ λ(aR|S = 1) + |NEG ∩ S0| ∗ λ(aR|S = 0)

= |POS| ∗ ((1− IAE) ∗ λ(aA|S = 1) + IAE ∗ λ(aA|S = 0)) +

|NEG| ∗ (IRE ∗ λ(aR|S = 1) + (1− IRE) ∗ λ(aR|S = 0)). (9)

The total cost of decision result is related to the two types of decision error. The
rates of errors and total cost may be used to design an objective function for
finding an optimal threshold γ in simple two-way decisions.

Consider a special cost function defined by:

λAP = 0, λAN = 1;

λRP = 1, λRN = 0. (10)

There is a unit cost for an incorrect decision and zero cost for a correct decision.
By inserting this cost function in to Equation (9), we have

COSTR = |POS| ∗ IAE + |NEG| ∗ IRE

= |POS ∩ S0|+ |NEG ∩ S1|. (11)

The first expression suggests that the cost is a weighted sum of the two rates
of incorrect decisions. The cost based measure is more informative than rates of
incorrect decision, as the latter can be viewed as a special case of the former.
The second expression suggests that the cost is the number of objects with an
incorrect decision.
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4.3 Costs of the Decision Process

For simple two-way decisions, we assume that all decisions are made at the
ground level 0. The cost for processing each object is C0 and the cost of the
decision process is given by:

COST2P = |U | ∗ C0. (12)

When the cost C0 is very large, the cost of the decision process COST2P may be
very high. For many decision-making problem, we may not need to acquire all
information of the ground level 0. This suggests a strategy of sequential decisions
in which additional information is gradually acquired when it is necessary.

Let Ci denote the cost needed for evaluating an object at level i. It is reason-
able to assume,

C0 > Ci > 0, i = n, n− 1, . . . , 1. (13)

That is, the cost of the decision process at an abstract level is strictly less
than at the ground levels; otherwise, we will not have any advantages of using
the strategy of sequential three-way decision making. The magnitudes of Ci’s
depend on special applications. Consider a special case where Ci represents time
needed for computing the evaluation at level i. We can assume that

Cn < Cn−1 < . . . < C0. (14)

This is equivalent to saying that we can make a faster decision at a higher level
of granularity, as we do not have to consider minute details of the lower levels.

According to the condition C0 > Ci > 0, i = n, n− 1, . . . , 1, if we can make
a definite decision of an acceptance or a rejection at higher levels of granularity,
we may be able to avoid a higher cost at the ground level 0. Let l(x) denote
the level at which a decision of an acceptance or a rejection is made for x. The
object x is considered in all levels from level n down to level l(x). The processing
cost of x can be computed as:

COST3P (x) =

n∑
i=l(x)

Ci = Cn→l(x), (15)

where Cn→i denote the cost incurred from level n down to level i. The total
processing cost for all objects can be computed as follows:

COST3P =
∑
x∈U

COST3P (x)

=

n∑
i=0

(|POS(αi,βi)(vi)|+ |NEG(αi,βi)(vi)|) ∗ Cn→i. (16)

According to this equation, if the cost C0 is very large and we can make an
acceptance or a rejection decision for a majority of objects before reaching the
ground level 0, the advantages of sequential three-way decisions will be more pro-
nounced. On the other hand, if a definite decision of an acceptance or a rejection
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is made for the majority of objects at lower levels of granularity, sequential
three-way decisions would be inferior.

To gain more insights into sequential three-way decisions, let us consider a
special composition of the cost Ci:

Ci = CE
i + CA

i , (17)

where CE
i denotes the cost for computing the evaluation vi and CA

i denotes the
cost for acquiring additional information at level i. For this interpretation, we
have the following assumption:

CE
n ≤ CE

n−1 ≤ . . . ≤ CE
0 .

The assumption suggests that the cost for computing the evaluation function is
lower at a higher level granularity due to the omission of detailed information.
For simple two-way decisions at ground level 0, we must consider all information
acquired from levels n down to 1. For an object x, the costs of decision pro-
cesses of simple two-way decisions and sequential three-way decisions are given,
respectively, by:

COST2P (x) = CE
0 + CA

n→0,

COST3P (x) = CE
n→l(x) + CA

n→l(x). (18)

It follows that

COST2P (x)− COST3P (x) = CA
(l(x)−1)→0 − (CE

n→l(x) − CE
0 ). (19)

The first term represents the extra cost of simple two-way decisions for acquir-
ing extra information from level l(x) − 1 down to level 0, and the second term
represents the extra cost of sequential three-way decisions in computing evalu-
ations from level n down to level l(x). That is, sequential three-way decisions
reduce the cost of acquiring information at the expense of computing additional
evaluations. If the difference in Equation (19) is greater than 0, then sequential
three-way decisions have an advantage of a lower cost of the decision process.
In situations where the cost of acquiring new information is more than the cost
of computing evaluations, sequential three-way decisions are superior to sim-
ple two-way decisions at the ground level 0 with respect to the cost of decision
process. In addition, when simple two-way decisions and sequential three-way
decisions produce decision results of comparable quality, sequential three-way
decisions are a better choice.

In general, we want to have sequential three-way decisions that produce the
similar decision quality as simple two-way decisions but have a lower cost of
decision process. To achieve this goal, one needs study carefully the cost struc-
tures of sequential three-way decisions in order to determine the best number
of levels and best thresholds at each level. This implies that designing a se-
quential three-way decision procedure is more difficulty than designing a simple
two-way decision procedure. There are many challenging problems to be solved
for sequential three-way decisions.
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5 Conclusion

In this paper, I present a granular computing perspective on sequential three-way
decisions. Multiple levels of granularity lead to multiple representations of the
same object, which in turn leads to sequential three-way decisions. Sequential
decisions rely on a basic principle of granular computing, i.e., one only examines
lower levels of granularity if there is a benefit. By considering the cost of the
decision process, I show that a sequential three-way decision strategy may have
a lower cost of the decision process than a simple two-way decision strategy, as
the former may require less information and demand less time for computing
evaluations at higher levels of granularity. Sequential three-way decisions are
particularly useful for practical decision-making problems when information is
unavailable and is acquired on demands with associated cost.

Sequential three-way decisions are much more complicated than simple two-
way decisions. There are many challenging issues. One must construct multiple
levels of granularity and multiple representations of the same object. One must
consider more parameters, such as the number of levels, evaluations at different
levels, and the thresholds at each level. One must also study cost structures that
make sequential three-way decisions a better strategy.
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Abstract. Rough set theory has been attracting researchers and prac-
titioners over three decades. The theory and its applications experienced
unprecedented prosperity especially in the recent ten years. It is essential
to explore and review the progress made in the field of rough sets. Mainly
based on Web of Science database, we analyze the prolific authors, im-
pact authors, impact groups, and the most impact papers in the past
three decades. In addition, we also examine rough set development in
the recent five years. One of the goals of this article is to use scientomet-
rics approaches to study three decade research in rough sets. We review
the historic growth of rough sets and elaborate on recent development
status in this field.

1 Introduction

Rough set theory was proposed by Professor Zdzis�law Pawlak in the early 1980s
[30]. It is a mathematical approach to deal with inconsistent and uncertain data.
The fundamental concept of rough sets is the approximation of a concept (or a
crisp set) in terms of a pair of sets which give the lower and the upper approxi-
mation of the concept [30, 31].

Rough set theory has been being in a state of constant development over three
decades. The related research on rough sets has attracted much attention of re-
searchers and practitioners, who have contributed essentially to its development
and applications.

One may need to study various aspects of a research domain in order to
fully understand it, according to the basic principle of granular computing [59].
The research of rough sets should also be conducted in multi-aspects. There
are at least three approaches in rough set research: content based approach
which focuses on the content of rough set theory [61], method based approach
which focuses on the constructive and algebraic (axiomatic) methods of rough
sets [62], and scientometric approach which focuses on quantitatively analyzing
the content and citation of rough set publications [47].

According to the result of scientometrics study, more than 80% rough sets
related papers were published from 2004 to 2013. This shows that rough set
research gained more popularity in the recent ten years. It is essential to explore
and review the progress made in the field of rough sets.

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 28–40, 2013.
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We mainly use Web of Science database to conduct our research. We identify
the prolific authors, impact authors, impact groups, and the most impact papers
in the past three decades. We also examine the recent five years development of
rough sets. The current status and the development trends of rough set theory
could be identified based on the results. The research may help readers gain more
understanding of developments in rough sets.

2 Scientometrics Study and Web of Science

Much research has been done in identifying research areas, trends, relationships,
development and future direction [5, 46, 52]. One of representatives of such re-
search is scientometrics which is the science that measures and analyzes science.
Identification of research areas is a key theme of this area [46]. We gain more
understanding of a research domain by examining its publications [57, 58].

Research impact may be measured by citations. It is suggested that a highly
cited paper may have more impact than moderately cited papers [57]. This gives
a simple but arguable way to measure the quality and impact of research. A
study shows that of the 50 most-cited chemists, seven have been awarded the
Nobel Prize [13]. In other words, the citation index may be used to predict Nobel
Prize winners. According to a recent research, citation counts of the publications
corresponded well with authors’ own assessments of scientific contribution [2].
By analyzing citations, one may predict research influences [7]. Citation is also
used as a bibliometric indicator to predict research development [46, 57]. It is
suggested that the more recent or current highly cited papers in a research field,
the more likely the field will grow rapidly in the near future.

We examine rough set research by exploring Thomson Reuters’s Web of Sci-
ence. Web of Science (http://thomson-reuters.com/web-of-science/) is one of
Thomson Reuters’s key products in the information age. It collects bibliographic
information of research articles of high quality journals and selected international
conferences. The database collects not only bibliographic information but also
the information of citation relationship amongst research articles.

We start with Web of Science to locate rough set papers. The database is
updated on a weekly base. The data were collected on the week of June 24-29.
The data we examined were updated till June 21, 2013. Two basic measures,
number of papers and number of citations, are used for popularity and influence
of rough set research. A rough set paper is defined as a paper containing phrase
“rough sets” or “rough set” or “rough computing” or “rough computation”. We
use the Topic field in Web of Science which is defined as the words or phrases
within article titles, keywords, or abstracts. It should be noticed that not all
rough set publications are included in the search. For instance, not all papers
published in Transactions on Rough Sets are recorded.
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3 Three Decades of Rough Sets

Result of querying rough set papers shows 7,088 papers are indexed by Web
of Science. The total citation counts are 41,844 and h-index [4, 19] is 80. The
numbers of rough set papers published in every year are shown in Fig. 1.
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Fig. 1. Analyzing by publication years

The superficial declining of rough set publications may be affected by inclu-
sion of rough set papers in Web of Science database. For instance, two major
rough set conferences held in 2012, International Conference on Rough Sets and
Knowledge Technology 2012 (RSKT’12) and International Conference on Rough
Sets and Current Trends in Computing 2012 (RSCTC’12), were not included in
the database. In addition, most papers in Transactions on Rough Sets after 2007
were not recorded in the database.

Only 0.71% of 7,088 papers were published in the first 12 years (from 1982
to 1993). 15.39% of 7,088 papers were published in the second 10 years (from
1994 to 2003), which is 21 times of that were published in the first 12 years.
83.9% of 7,088 papers were published in the recent 10 years (from 2004 to 2013).
Among 7,088 papers, the number of international conference papers is more than
5,000, 80% of them were published in recent decade. This may show that rough
set research has gained popularity and drawn attention of more researchers.
Another evidence is that more international conferences were held in recent 10
years.

Web of Science provides a search feature for author and their affiliations. The
results of most prolific authors, their affiliations and countries are presented in
Tables 1 to 3.

Table 1 lists the most prolific authors in rough sets in term of the number
of rough set papers published. The top 30 prolific authors published at least 37
rough set papers. There are more than 500 authors who published at least 5
rough set papers each. Please note that all coauthors are counted.
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Table 1. Most prolific authors

Authors Papers Authors Papers Authors Papers

Slowinski R 92 Hu QH 58 Grzymala-busse JW 43

Skowron A 91 Pal SK 57 Ramanna S 43

Yao YY 83 Miao DQ 55 Wang J 42

Wang GY 74 Chen DG 52 Polkowski L 41

Peters JF 72 Slezak D 52 Suraj Z 41

Wu WZ 70 Qian YH 48 Zhu W 40

Zhang WX 68 Li TR 47 Pawlak Z 39

Tsumoto S 67 Yu DR 46 Shi KQ 39

Greco S 66 Lin TY 44 Cheng CH 38

Liang JY 59 Ziarko W 44 Jensen R 37

Table 2. Top 15 countries or territories

Countries Papers Countries Papers Countries Papers

P. R. China 3741 India 290 Wales 67

Poland 660 Taiwan 286 Iran 64

USA 440 Italy 120 South Korea 62

Canada 428 England 91 Germany 61

Japan 356 Malaysia 76 Spain 59

Table 2 shows top 15 countries or territories where authors are located. It is
observed that People Republic of China and Poland are top 2 countries. As a
matter of fact, 10 out of 20 prolific authors are from China, and top 2 are from
Poland.

The top 15 institutions of the authors affiliated are shown in Table 3. The
top institute is University of Regina and there were 177 papers published by
authors affiliated with the University of Regina. 9 out of top 15 institutions are
from China. This may explain why China is the top 1 country where authors are
located. 3 out of top 15 institutions are from Poland.

Table 3. Top 15 institutions

Organizations Papers Organizations Papers

Univ Regina 177 Zhejiang Univ 87

N China Elect Power Univ 154 Zhejiang Ocean Univ 80

Chinese Acad Sci 132 Shanghai Jiaotong Univ 74

Polish Acad Sci 117 Univ Manitoba 74

Harbin Inst Technol 116 Tongji Univ 73

Xian Jiaotong Univ 106 Indian Stat Inst 68

SW Jiaotong Univ 99 Polish Japanese Inst Infor Technol 68

Warsaw Univ 93
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Fig. 2. Citation each year

The second analysis based on Web of Science database is citation analysis.
There are 41,844 citations of 7,088 rough set papers. The average citation is 5.9
per paper. Fig. 2 shows the number of citations each year. We can see that the
citations are growing every year even though the number of published papers
decreased slightly since 2010. Please note that the figure showed here also in-
cludes citations from non-rough set papers. That means more papers from other
research areas cite rough set papers. So we can make a prediction that applying
rough set theory in other areas will be an important trend in the near future.

In order to understand more on rough set research, we identify top 20 cited
papers shown in Table 4.

We may have two ranks, the total citation ranking and average citation per
year. These two ranks are not always consistent. Top 5 average citations per year
are ranked at 1, 4, 9, 11 and 2. We can see, 7 out of top 20 cited papers were
published by Pawlak. 4 out of 7 are top 4 average citations per year. With a
detailed examination of the top 20 cited papers, we can see:

– Twelve papers are about basic rough set theory, they are [29], [30], [36], [37],
[38], [39], [40], [45], [61], [62], [63], [75];

– Two papers are about combining rough sets with other theories, they are [9],
[54]; and

– Six papers are about applications of rough sets, they are [15], [24], [25], [33],
[35], [48].

We further analyze the top 200 cited papers, and we find that applications of
rough sets and combination with other theories account for relatively large pro-
portions, which are 27% and 49.5%, respectively. The number of papers about
applications of rough sets in different areas are constantly increasing. The ap-
plication domains include data analysis, feature selection, decision making, in-
complete information system, multi-criteria decision analysis, and three-way
decision, to just name a few.



A Scientometrics Study of Rough Sets in Three Decades 33

Table 4. Top cited 20 papers

Paper Total Average Main Results
Citations per Year

1 Pawlak 1982 [30] 3694 115.44 Seminal paper, proposed RS

2 Ziarko 1993 [75] 659 31.38 Variable precision RS

3 Dubois+ 1990 [9] 565 23.54 Combining with fuzzy sets

4 Pawlak+ 2007 [37] 495 70.71 RS survey

5 Kryszkiewicz 1998 [24] 386 24.12 App - imcompete information table

6 Greco+ 2001 [15] 372 28.62 App - decision analysis

7 Pawlak+ 1995 [36] 352 18.53 Basic theory of RS

8 Slowinski+ 2000 [45] 323 23.07 Generalized RS

9 Pawlak+ 2007 [39] 315 45.00 RS survey

10 Mitra+ 2000 [29] 304 21.71 RS survey

11 Pawlak+ 2007 [38] 275 39.29 RS survey

12 Yao YY 1998 [62] 267 16.69 Research methods in RS

13 Kryszkiewicz 1999 [25] 249 16.60 App - imcompete information table

14 Yao YY 1998 [63] 236 14.75 Generalized RS using binary relation

15 Swiniarski+ 2003 [48] 231 21.00 App - feature selection

16 Pawlak 1998 [33] 231 14.40 App - data analysis

17 Yao YY 1996 [61] 219 12.17 Interpretation of RS

18 Wu+ 2003 [54] 205 18.64 Combining with fuzzy sets

19 Pawlak 2002 [35] 198 16.50 App - data analysis

20 Polkowski+ 1996 [40] 194 10.78 Basic theory of RS

We identified the most influential authors in the next step. We manually
counted the authors of top 100 cited papers that have at least 70 citations.
Table 5 lists the most impact authors whose rough set papers altogether received
citations more than 300 times, the column cts shows the number of papers in
top 100 cited papers.

Table 5. Impact authors

Authors Cites cts Authors Cites cts Authors Cites cts

Pawlak Z 5957 10 Kryszkiewicz M 749 3 Zhu W 474 4

Slowinski R 1689 8 Wu WZ 737 6 Grzymalabusse J 458 2

Skowron A 1510 5 Dubios D 641 2 Hu QH 407 3

Yao YY 1456 10 Prade H 641 2 Pal SK 392 4

Ziarko W 1088 3 Jensen R 548 5 Vanderpooten D 323 1

Zhang WX 798 6 Mi JS 545 4 Zopounidis C 312 2

Greco S 758 4 Shen Q 544 5 Yu DR 305 3

Matarazzo B 758 4 Mitra S 520 3 Hayashi Y 304 1
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Each of the top five authors has more than 1,000 citations. Pawlak is the in-
ventor and pioneer of rough set theory. Slowinski contributed mainly in rough set
based decision making and dominance rough sets. The dominance-based rough
set approach is the substitution of the indiscernibility relation by a dominance
relation, which permits the formalism to deal with inconsistencies typical in
consideration of criteria and preference-ordered decision classes [15]. Skowron’s
discernibility matrix led many research and algorithms on reduct construction.
Yao YY contributed mainly to generalized rough sets in general and probabilis-
tic rough sets and decision-theoretic rough sets in specific [61, 62, 65, 66]. The
decision-theoretic rough set model introduces a pair of threshold on probabili-
ties to define probabilistic regions and give a systematic method for interpreting
and determining the thresholds based on Bayesian decision theory [65]. A recent
proposal by Herbert and Yao [18] gives a new method for determining the thresh-
old based on game theory. Ziarko proposed variable precision rough sets which
improve on the traditional rough set approach and accept classification error by
using user provided the lower boundary and the upper boundary [23, 75].

4 Recent Development of Rough Sets

We observe the development of rough sets in recent 5 years in order to get a
deep understanding of rough set current status. Recent 5 years refer to 2008 to
2012 since most papers published in 2013 have not been recorded in databases.
Result of querying rough set papers setting Timespan as 2008 to 2012 shows
3,496 papers are indexed by Web of Science. The total citation counts are 7,777.
H-index is 33. The special h-index is called h5-index as defined by Google [14].
It is defined as the h-index for articles published in the last 5 complete years.

Table 6 shows the top 20 cited papers published during 2008 to 2012. With
a detailed examination of the top 20 cited papers published between 2008 and
2012, we found that:

– Eight papers are about basic rough set theory, they are [28], [41], [42], [49],
[56], [66], [73], [74];

– Five papers are about combining rough sets with other theories, they are [3],
[10], [11], [12], [53]; and

– Seven papers are about applications of rough sets, they are [20], [21], [22],
[26], [50], [55], [68].

It is noted that there are many new and young researchers, many of them from
China, contributed to the highly cited papers in recent five year. We may notice
that most of highly cited papers in last five years are extensions and applications
of existing research, compared with top cited papers in Table 4. There is a need
for new ideas and development. The theory of three-way decisions, motivated
by rough set three-regions but goes beyond rough sets, is a promising research
direction that may lead to new breakthrough.
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Table 6. Top 20 cited papers in recent 5 years

Paper Total Average Main Results
Citations per Year

1 Feng+ 2008 [10] 91 15.17 Soft sets

2 Yao YY+ 2008 [73] 81 13.50 Reduction in DTRS

3 Yao YY 2008 [66] 76 12.67 Probabilistic rough sets

4 Hu+ 2008 [20] 75 12.50 App - feature subset selection

5 Zhu 2009 [74] 69 13.80 Generalized RS

6 Hu+ 2008 [21] 65 10.83 App - neighborhood classifier

7 Jensen+ 2009 [22] 64 12.80 App - feature selection

8 Wu 2008 [53] 60 10.00 Attribute reduction

9 Qian+ 2010 [42] 55 13.75 Reduction accelerator

10 Wang+ 2008 [50] 52 8.67 App - rule induction

11 Thangavel+ 2009 [49] 48 9.60 Reduction (survey)

12 Liu 2008 [28] 48 8.00 Generalized RS

13 Qian+ 2008 [41] 48 8.00 Measures

14 Yang+ 2008 [56] 45 7.50 Dominance RS

15 Feng+ 2010 [11] 44 11.00 Soft sets

16 Yao YY 2010 [68] 41 10.25 Introduced three-way decision

17 Xiao+ 2009 [55] 41 8.20 App - forecasting

18 Bai+ 2010 [3] 38 9.50 Combining with grey system

19 Li+ 2008 [26] 38 6.33 App - prediction

20 Feng+ 2011 [12] 37 12.33 Soft sets

5 Concluding Remarks

We use scientometrics approach to examine the development of rough sets in
this article. Prolific authors, impact authors, as well as most impact papers were
identified based on Web of Science. It is observed that rough sets has been in a
state of constant development. We can see that applying rough sets to different
areas become more important. In order to broaden and deepen the study of
rough sets, combining rough sets with other theories should be emphasized. It
is hoped that readers may gain more understanding of the current status and
development of rough sets.

The original rough set theory was defined by an equivalent relation, or equiv-
alently a partition and Boolean algebra. Based on these definitions, rough set
theory is generalized as: binary relation based rough set theory, covering based
rough set theory, and subsystem based rough set theory [63, 70, 72]. These gen-
eralization increase our understanding of the theory.

Rough set theory can be considered as an independent discipline in its own
right [39]. Based on the original theory, rough set theory has achieved substan-
tial progress and applied to various application domains. Probabilistic rough sets
apply probabilistic approaches to rough set theory, which weaken the strict limi-
tations of Pawlak rough sets in order to increase the applicability of theory [66].
Probabilistic rough sets are considered as one of the important and prolific
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research extensions. Probabilistic approaches to rough sets appear in many forms,
such as decision-theoretic rough set model [65,71], Bayesian rough set model [44],
game-theoretic rough set model [18]. The game-theoretic rough set provides an
alternative way to determine effective probabilistic thresholds by formulating
competition or cooperation among multiple criteria [18]. In addition, parame-
terized rough set model determines three regions through the concurrent use of
two pairs of parameters [16, 17].

Moreover, rough set theory has been combined with other theories, such as
fuzzy sets [9,54], granular computing [59,64], and neural network [1], etc. Three-
way decision making is a new research proposed in 2009 [67, 69]. Three-way
decision making can be benefited with many theories and methods including
rough sets, shadowed sets, and approximation of fuzzy sets. Ciucci et al. [6]
adopted the square of opposition, cube of opposition and hexagon of opposition
to give a geometric view of relations between entities in rough sets. Yao argued
that the same framework can be used to study relationships between regions of
three-way decision [60].

The extent of rough set applications become much wider, including data anal-
ysis [31,33], feature selection [48,51], rules mining or decision making [27,32,34],
incomplete information system [24,25], multicriteria decision analysis [15], busi-
ness prediction [8], fault diagnosis [43], etc. It is expected that there will be more
exploration on combining rough set theory with other theories. Applications will
be remain as a trend in rough set research.

We have also conducted analyses with other databases, such as IEEE Digi-
tal Library, Google scholar, and Inspec. The results more or less confirm with
findings reported here. Further detailed analyses and studies on classification,
different school of thoughts, and other remaining research challenges will be
reported in sequence articles.
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Abstract. In this paper we consider a generalization of the indiscerni-
bility relation, i.e., a relation R that is not necessarily reflexive, sym-
metric, or transitive. There exist 36 basic definitions of lower and upper
approximations based on such relation R. Additionally, there are six
probabilistic approximations, generalizations of 12 corresponding lower
and upper approximations. How to convert remaining 24 lower and up-
per approximations to 12 respective probabilistic approximations is an
open problem.

1 Introduction

Rough set theory is based on ideas of lower and upper approximations. For com-
pletely defined data sets such approximations are defined using an indiscerniblity
relation R [25, 26], an equivalence relation. A probabilistic approximation, a gen-
eralization of lower and upper approximations, was introduced in [36] and then
studied in many papers, e.g., [19, 27–29, 34, 40, 42–45]. Probabilistic approxi-
mations are defined using an additional parameter, interpreted as probability,
and denoted by α. Lower and upper approximations are special cases of the
probability approximation, if α = 1, the probabilistic approximation becomes
the lower approximation; if α is quite small, the probabilistic approximation is
equal to the upper approximation.

Some data sets, e.g., incomplete data sets, are described by relations that
are not equivalence relations [8, 9]. Lower and upper approximations for such
a relation R that does not need to be reflexive, symmetric or transitive were
studied in many papers as well. Corresponding definitions were summarized in
[14, 16], where also basic properties were studied. There exist 36 basic definitions
of lower and upper approximations based on such general relation R. These lower
and upper approximations were generalized to probabilistic approximations in
[11]. There are six such probabilistic approximations, generalizations of 12 corre-
sponding lower and upper approximations, since a probabilistic approximation,
with α between 0 and 1, represents the entire spectrum of approximations, in-
cluding lower and upper approximations. How to convert remaining 24 lower and
upper approximations to 12 respective probabilistic approximations is an open
problem.
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2 Equivalence Relations

First we will quote some definitions for complete data sets that are characterized
by an equivalence relation, namely, by the indiscernibility relation [25, 26].

2.1 Lower and Upper Approximations

The set of all cases of a data set is denoted by U . Independent variables are
called attributes and a dependent variable is called a decision and is denoted by
d. The set of all attributes will be denoted by A. For a case x, the value of an
attribute a will be denoted by a(x). If for any a ∈ A and x ∈ U the value a(x)
is specified, the data set is called completely specified, or complete.

Rough set theory, see, e.g., [25] and [26], is based on the idea of an indiscerni-
bility relation, defined for complete data sets. Let B be a nonempty subset of
the set A of all attributes. The indiscernibility relation IND(B) is a relation on
U defined for x, y ∈ U by

(x, y) ∈ IND(B) if and only if a(x) = a(y) for all a ∈ B.

A complete data set may be described by an (U,R) called an approximation
space, where R is an indiscernibility relation IND(B) on U .

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B .
For completely specified data sets lower and upper approximations are defined
on the basis of the indiscernibility relation. Any finite union of elementary sets,
associated with B, will be called a B-definable set. Let X be any subset of the
set U of all cases. The set X is called a concept and is usually defined as the
set of all cases defined by a specific value of the decision. In general, X is not
a B-definable set. However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X , denoted by BX and
defined by

{x ∈ U |[x]B ⊆ X}.

The second set is called a B-upper approximation of X, denoted by BX and
defined by

{x ∈ U |[x]B ∩X �= ∅}.

The above shown way of computing lower and upper approximations, by
constructing these approximations from singletons x, will be called the first
method. The B-lower approximation of X is the greatest B-definable set, con-
tained in X . The B-upper approximation of X is the smallest B-definable set
containing X .

As it was observed in [26], for complete data sets we may use a second method
to define the B-lower approximation of X , by the following formula
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∪{[x]B|x ∈ U, [x]B ⊆ X},
and the B-upper approximation of x may be defined, using the second
method, by

∪{[x]B |x ∈ U, [x]B ∩X �= ∅).
Note that for a binary relation R that is not an equivalence relation these two

methods lead, in general, to different results.

2.2 Probabilistic Approximations

Let (U,R) be an approximation space, where R is an equivalence relation on U .
A probabilistic approximation of the set X with the threshold α, 0 < α ≤ 1, is
denoted by apprα(X) and defined by

∪{[x] | x ∈ U, Pr(X |[x]) ≥ α},
where [x] is an elementary set of R and Pr(X |[x]) = |X∩[x]|

|[x]| is the conditional

probability of X given [x].
Obviously, for the set X , the probabilistic approximation of X computed for

the threshold equal to the smallest positive conditional probability Pr(X | [x])
is equal to the standard upper approximation of X . Additionally, the probabilis-
tic approximation of X computed for the threshold equal to 1 is equal to the
standard lower approximation of X .

3 Arbitrary Binary Relations

In this section we will discuss first lower and upper approximations and then
probabilistic approximations based on an arbitrary binary relation R.

3.1 Lower and Upper Approximations

First we will quote some definitions from [14, 16]. Let U be a finite nonempty
set, called the universe, let R be a binary relation on U , and let x be a member of
U . The relation R is a generalization of the indiscernibility relation. In general,
R does not need to be reflexive, symmetric, or transitive. Basic granules defined
by a relation R are called R-successor and R-predecessor sets.

An R-successor set of x, denoted by Rs(x), is defined by

Rs(x) = {y | xRy}.
An R-predecessor set of x, denoted by Rp(x), is defined by

Rp(x) = {y | yRx}.
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Let X be a subset of U . A set X is R-successor definable if and only if X = ∅
or X is a union of some R-successor sets.

A set X is R-predecessor definable if and only if X = ∅ or X is a union of
some R-predecessor sets.

Singleton, Subset and Concept Approximations. An R-singleton succes-
sor lower approximation of X , denoted by apprsingleton

s
(X), is defined by

{x ∈ U | Rs(x) ⊆ X}.

The singleton successor lower approximations were studied in many papers,
see, e.g., [8, 9, 20–23, 30–33, 35, 37–39, 41].

An R-singleton predecessor lower approximation of X , denoted by
apprsingleton

p
(X), is defined as follows

{x ∈ U | Rp(x) ⊆ X}.

The singleton predecessor lower approximations were studied in [30].
An R-singleton successor upper approximation of X , denoted by

apprsingletons (X), is defined as follows

{x ∈ U | Rs(x) ∩X �= ∅}.

The singleton successor upper approximations, like singleton successor lower
approximations, were also studied in many papers, e.g., [8, 9, 20, 21, 30–33, 35,
37–39, 41].

An R-singleton predecessor upper approximation of X , denoted by
apprsingletonp (X), is defined as follows

{x ∈ U | Rp(x) ∩X �= ∅}.

The singleton predecessor upper approximations were introduced in [30].
An R-subset successor lower approximation of X , denoted by apprsubset

s
(X),

is defined by

∪ {Rs(x) | x ∈ U and Rs(x) ⊆ X}.

The subset successor lower approximations were introduced in [8, 9].
An R-subset predecessor lower approximation of X , denoted by apprsubset

p
(X),

is defined by

∪ {Rp(x) | x ∈ U and Rp(x) ⊆ X}.
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The subset predecessor lower approximations were studied in [30].
An R-subset successor upper approximation of X , denoted by apprsubsets (X),

is defined by

∪ {Rs(x) | x ∈ U and Rs(x) ∩X �= ∅}.

The subset successor upper approximations were introduced in [8, 9].
An R-subset predecessor upper approximation of X , denoted by apprsubsetp (X),

is defined by

∪ {Rp(x) | x ∈ U and Rp(x) ∩X �= ∅}.

The subset predecessor upper approximations were studied in [30].
An R-concept successor lower approximation of X , denoted by

apprconcept
s

(X), is defined by

∪ {Rs(x) | x ∈ X and Rs(x) ⊆ X}.

The concept successor lower approximations were introduced in [8, 9].
An R-concept predecessor lower approximation of X , denoted by

apprconcept
p

(X), is defined by

∪ {Rp(x) | x ∈ X and Rp(x) ⊆ X}.

The concept predecessor lower approximations were introduced, for the first
time, in [13].

An R-concept successor upper approximation of X , denoted by
apprconcepts (X), is defined by

∪ {Rs(x) | x ∈ X and Rs(x) ∩X �= ∅}

The concept successor upper approximations were studied in [8, 9, 23].
An R-concept predecessor upper approximation of X , denoted by

apprconceptp (X), is defined by

∪ {Rp(x) | x ∈ X and Rp(x) ∩X �= ∅}

The concept predecessor upper approximations were studied in [30].

Sets apprsubset
s

(X), apprconcept
s

(X), apprsubsets (X), apprconcepts (X) and

apprsingletonp (X) are R-successor definable, while sets apprsubset
p

(X),

apprconcept
p

(X), apprsubsetp (X), apprconceptp (X) and apprsingletons (X) are R-pre-

decessor definable for any approximation space (U,R), see. e.g., [8, 10, 24].
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Modified Singleton Approximations. Definability and duality of lower and
upper approximations of a subset X of the universe U are basic properties of
rough approximations defined for the standard lower and upper approximations
[25, 26].

To avoid problems with inclusion for singleton approximations, the following
modification of the corresponding definitions were introduced in [14]:

An R-modified singleton successor lower approximation of X , denoted by
apprmodsingleton

s
(X), is defined by

{x ∈ U | Rs(x) ⊆ X and Rs(x) �= ∅}.
An R-modified singleton predecessor lower approximation of X , denoted by

apprmodsingleton
p

(X), is defined by

{x ∈ U | Rp(x) ⊆ X and Rp(x) �= ∅}.
An R-modified singleton successor upper approximation of X , denoted by

apprmodsingleton
s (X), is defined by

{x ∈ U | Rs(x) ∩X �= ∅ or Rs(x) = ∅}.
An R-modified singleton predecessor upper approximation of X , denoted by

apprmodsingleton
p (X), is defined by

{x ∈ U | Rp(x) ∩X �= ∅ or Rp(x) = ∅}.

Largest Lower and Smallest Upper Approximations. For any relation
R, the R-subset successor (predecessor) lower approximation of X is the largest
R-successor (predecessor) definable set contained in X . It follows directly from
the definition.

On the other hand, the smallest R-successor definable set containing X does
not need to be unique. It was observed, for the first time, in [13].

Any R-smallest successor upper approximation, denoted by apprsmallest
s (X),

is defined as a R-successor definable set with the smallest cardinality containing
X . An R-smallest successor upper approximation does not need to be unique.

An R-smallest predecessor upper approximation, denoted by apprsmallest
p (X),

is defined as an R-predecessor definable set with the smallest cardinality con-
taining X . Likewise, an R-smallest predecessor upper approximation does not
need to be unique.

Dual Approximations. As it was shown in [38], singleton approximations are
dual for any relation R. In [16] it was proved that modified singleton approxi-
mations are also dual. On the other hand it was shown in [38] that if R is not an
equivalence relation then subset approximations are not dual. Moreover, concept
approximations are not dual as well, unless R is reflexive and transitive [14].
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Two additional approximations were defined in [38]. The first approximation,
denoted by apprdualsubset

s
(X), was defined by

¬(apprsubsets (¬X))

while the second one, denoted by apprdualsubsets (X) was defined by

¬(apprsubset
s

(¬X)),

where ¬X denotes the complement of X .
These approximations are called an R-dual subset successor lower and R-dual

subset successor upper approximations, respectively. Obviously, we may define
as well an R-dual subset predecessor lower approximation

¬(apprsubsetp (¬X))

and an R-dual subset predecessor upper approximation

¬(apprsubset
p

(¬X)).

By analogy we may define dual concept approximations. Namely, an R-dual
concept successor lower approximation of X , denoted by apprdualconcept

s
(X) is

defined by

¬(apprconcepts (¬X)).

An R-dual concept successor upper approximation of X , denoted by
apprdualconcepts (X) is defined by

¬(apprconcept
s

(¬X)).

The set denoted by apprdualconcept
p

(X) and defined by the following formula

¬(apprconceptp (¬X))

will be called an R-dual concept predecessor lower approximation, while the set
apprdualconceptp (X) defined by the following formula

¬(apprconcept
p

(¬X))

will be called an R-dual concept predecessor upper approximation.

These four R-dual concept approximations were introduced in [14].

Again, by analogy we may define dual approximations for the smallest upper
approximations. The set, denoted by apprdualsmallest

s
(X) and defined by
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¬(apprsmallest
s (¬X)),

will be called an R-dual smallest successor lower approximation of X while the
set denoted by apprdualsmallest

p
(X) and defined by

¬(apprsmallest
p (¬X)).

will be called an R-dual smallest predecessor lower approximation of X .

These two approximations were introduced in [16].

Approximations with Mixed Idempotency. Smallest upper approxima-
tions, introduced in Section 3.1, and subset lower approximations are the
only approximations discussed so far that satisfy the Mixed Idempotency
Property, so

appr
s
(X) = apprs(apprs(X))(appr

p
(X) = apprp(appr

p
(X))), (1)

and

apprs(X) = appr
s
(apprs(X))(apprp(X) = appr

p
(apprp(X))). (2)

For the following approximations, defined sets satisfy the above two condi-
tions. The upper approximation, denoted by apprsubset-concepts (X) and
defined by

apprsubset
s

(X) ∪
⋃
{Rs(x) | x ∈ X − apprsubset

s
(X) and Rs(x) ∩X �= ∅}

will be called an R-subset-concept successor upper approximation of X .
The upper approximation, denoted by apprsubset-conceptp (X) and defined by

apprsubset
p

(X) ∪
⋃
{Rp(x) | x ∈ X − apprsubset

p
(X) and Rp(x) ∩X �= ∅}

will be called an R-subset-concept predecessor upper approximation of X . The
upper approximation, denoted by apprsubset-subsets (X) and defined by

apprsubset
s

(X) ∪
⋃
{Rs(x) | x ∈ U − apprsubset

s
(X) and Rs(x) ∩X �= ∅}

will be called an R-subset-subset successor upper approximation of X .
The upper approximation, denoted by apprsubset-subsetp (X) and defined by

apprsubset
p

(X) ∪
⋃
{Rp(x) | x ∈ U − apprsubset

p
(X) and Rp(x) ∩X �= ∅}

will be called an R-subset-subset predecessor upper approximation of X .
These four upper approximations, together with apprsubset

s
(or apprsubset

p
,

respectively), satisfy Mixed Idempotency Property.
Note that for these four upper approximations corresponding dual lower ap-

proximations may be defined as well. These definitions are skipped since they
are straightforward.
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3.2 Probabilistic Approximations

By analogy with standard approximations defined for arbitrary binary relations,
we will introduce three kinds of probabilistic approximations for such relations:
singleton, subset and concept. For simplicity, we restrict our attention only to
R-successor sets as the basic granules. Obviously, analogous three definitions
based on R-predecessor sets may be easily introduced as well.

A singleton probabilistic approximation of X with the threshold α, 0 < α ≤ 1,
denoted by apprsingletonα (X), is defined by

{x | x ∈ U, Pr(X |Rs(x)) ≥ α},

where Pr(X |Rs(x)) = |X∩Rs(x)|
|Rs(x)| is the conditional probability of X given Rs(x).

A subset probabilistic approximation of the set X with the threshold α, 0 <
α ≤ 1, denoted by apprsubsetα (X), is defined by

∪{Rs(x) | x ∈ U, Pr(X |Rs(x)) ≥ α}.

A concept probabilistic approximation of the set X with the threshold α, 0 <
α ≤ 1, denoted by apprconceptα (X), is defined by

∪{Rs(x) | x ∈ X, Pr(X |Rs(x)) ≥ α}.

Obviously, for the concept X , the probabilistic approximation of a given type
(singleton, subset or concept) of X computed for the threshold equal to the
smallest positive conditional probability Pr(X | Rs(x)) is equal to the standard
upper approximation of X of the same type. Additionally, the probabilistic ap-
proximation of a given type of X computed for the threshold equal to 1 is equal
to the standard lower approximation of X of the same type.

Results of many experiments on probabilistic approximations were published
in [1–7, 12, 17, 18].

4 Conclusions

We discussed 36 basic definitions of lower and upper approximations based on
a relation R that is not an equivalence relation. For such a relation R, there are
six probabilistic approximations, generalizations of 12 corresponding lower and
upper approximations. How to convert remaining 24 lower and upper approxi-
mations to 12 respective probabilistic approximations is an open problem.

Note that other definitions of approximations, called local, were discussed
in [6, 13, 15]. First, local lower and upper approximations were introduced in
[13, 15], then these approximations were generalized to probabilistic in a few
different ways in [6].
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J., Yang, Y., S�lowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC
2012. LNCS, vol. 7413, pp. 46–55. Springer, Heidelberg (2012)

6. Clark, P.G., Grzymala-Busse, J.W., Kuehnhausen, M.: Local probabilistic approx-
imations for incomplete data. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.)
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Abstract. Uncertainty is one basic feature in the information process-
ing, and the expressing and processing of uncertain information have
attracted more attentions. There are many theories introduced to pro-
cess the uncertain information, such as probability theory, random set,
evidence theory, fuzzy set theory, rough set theory, cloud model theory
and so on. They depict the uncertain information from different aspects.
This paper mainly discusses their differences and relations in expressing
and processing for uncertain information. The future development trend
is also discussed.
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1 Introduction

In the era of increasing popularity of computer and network, the manifesta-
tions of information are more diversified with the development of Internet and
multimedia technology, such as text, image, video, audio, etc. Human-computer
intersection is more frequent and closer. The expression and reasoning of uncer-
tainty as a fundamental feature of information have always been the important
issues of knowledge representation and reasoning [13].

There are many kinds of uncertainties, such as randomness, fuzziness, im-
precision, incompleteness, inconsistency, etc.. Correspondingly, there are many
theoretical models to study uncertain information. For example, the probability
theory and the random set theory mainly study the random uncertainty [17][30];
the evidence theory mainly expresses and processes the uncertainties of unascer-
tained information [7][24]; the fuzzy set theory [39] and their derivations, such
as the type-2 fuzzy set, the intuitionistic fuzzy set and the interval-valued fuzzy
set, study the fuzzy uncertainty of cognition; the rough set theory [19] and its
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corresponding expansion models discuss the ambiguity indiscernibility and im-
precision of information; the cloud model studies the randomness and fuzziness
and their relationships [13][14].

Generally speaking, when talking about uncertainty of information, the un-
certainty doesn’t mean only one kind of uncertainty, but is the coexistence of
multi kinds of uncertainty. In this paper, we will discuss the relations among
the probability theory, the evidence theory, the random set theory, the fuzzy set
theory and its derivations, the rough set theory and its extended models and the
cloud model theory.

2 Uncertainty Expression in Probability Theory

Probability, as a measurement of random event, has been already applied widely.
Probability and random variable are two important tools during the research of
random phenomena. The axiomatic definition of probability is as follows.

Definition 1. [30] Given a sample space Ω and an associated sigma algebra Σ,
For ∀A ∈Σ, the real-valued set function P (A) defined on Σ is called a probability
of the event A, when it satisfies: (1) 0≤P (A)≤1; (2) P (Ω)=1; (3) If the countable

infinite events A1, A2, · · · ∈ Σ, Ai∩Aj=∅, i �=j, then P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

For a given probability space (Ω,Σ, P ), random variable X is a real-valued
function on sample space Ω. Random variables and their probability distribu-
tions are two important concepts of studying stochastic system.

From Definition 1, we know that if the countable infinite events A1, A2, · · · ∈
Σ, Ai ∩ Aj=∅, i �=j, and

∞⋃
i=1

Ai=Ω, then P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai)=1. However, in

actual applications, the random events Ai and Aj (i �=j) may not satisfy strictly
Ai∩Aj=∅ due to the uncertainty of random events. So, the countable additivity
of probability could not be satisfied. In 1967, Dempster gave a probability which
does not satisfy countable additivity, and he tried to use a range of probabilities
(upper and lower probabilities) rather than a single probability value to depict
the uncertainty so as to establish evidence theory, which is further expansion of
probability theory. Random set theory is also another expansion of probability
theory, in which the value of a random variable is a closed set rather than a
real number. Specific contents will be introduced in section 2.1 and section 2.2
respectively.

2.1 Evidence Theory

In evidence theory, belief function and plausibility function are two most funda-
mental and important notions. Let Ω be the frame of discernment representing
all possible states of a system under consideration. Evidence theory assigns a
belief mass to each element of the power set. Formally, the definition of a belief
mass function is as follows.
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Definition 2. [3] Let Ω be a frame of discernment, a function m(A): 2Ω →[0, 1],
is called a function of basic probability assignment, when it satisfies two proper-
ties: m(∅)=0 and

∑
A⊆Ω

m(A)=1.

From Definition 2, we know that the function of basic probability assignment
does not satisfy countable additivity due to

∑
A⊆Ω

m(A)=1, so it is different from

probability function.
Based on the function of basic probability assignment, the belief function Bel

and the plausibility function Pl are defined as:

Definition 3. [3] Let Ω be a frame of discernment, ∀A ⊆ Ω, a function Bel :
2Ω → [0, 1], is called a function of belief , when it satisfies: Bel(X)=

∑
A⊆X

m(A).

A function Pl : 2Ω → [0, 1], is called a function of plausibility, when it satisfies:
Pl(X)=

∑
A∩X 	=∅

m(A).

From Definition 3, Bel(A) expresses the confident degree of the evidence sup-
porting the event A being true, while Pl(A) expresses the confident degree of the
event A being non-false, and Bel(A) ≤ Pl(A)(∀A ⊆ Ω). Bel(A) and Pl(A) are
called the lower limit and the upper limit of confidence degree for A, respectively.

Thus, another difference from the probability theory is that the evidence the-
ory uses a range [Bel(A), P l(A)] to depict the uncertainty. The interval-span
Pl(A)-Bel(A) describes the “unknown part” with respect to the event A. Dif-
ferent belief intervals represent different meanings, see Figure 1.

Obviously, the three intervals are relative to the three-way decisions [38].
That is, the support intervals and reject intervals mean the two-way immediate
decisions, and the uncertain interval means the third-way decision which also
called the deferred decision.

Fig. 1. Uncertainty expression of information

2.2 Random Set Theory

Random set is a set-valued function on sample space Ω, which is a generalization
of random variable concept. The strict mathematical definition is as follows.

Definition 4. [17] Let (Ω,Σ, P ) be a probability space, and (Ψ, σ(β)) be a mea-
surable space, where, β ⊆ 2Ψ , if mapping F : Ω → 2Ψ , is called random set, when
it satisfies: ∀Λ ∈ σ(β), {u ∈ Ω|F (u) ∈ Λ} ∈ Σ.
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From Definition 4, the difference between random variable and random set is
that the former is a random point function, while the latter is a random set-
valued function. Thus, random set theory is a generalization from point variable
statistics to set variable statistics.

3 Uncertainty Expression in Fuzzy Set Theory

Fuzzy set, which is proposed by Prof. Zadeh as an extension of Cantor set [39],
is used to describe the uncertainty of cognition, that is, the extension of concept
is not clear and we can not give definitive assessment standard. In Cantor set
theory, an element either belongs or does not belong to the set. By contrast,
fuzzy set permits the gradual assessment of the membership of elements in a set.

Definition 5. [39] Let U be a universe of discourse, and A be a fuzzy subset
on U , a map μA: U→[0, 1], x�→μA(x), is called membership function of A, and
μA(x) is called membership degree respect to A.

From Definition 5, μA(x) expresses the membership degree of an element x
belonging to a fuzzy subset A. Once μA(x) is determined, it will be a fixed
value. Thus, the operations between fuzzy sets based on membership degree
become certainty calculation. Considering the uncertainty of membership degree,
Zadeh proposed interval-valued fuzzy set (IVFS) and type-2 fuzzy set (T2FS)
as extension of fuzzy set (FS) [40].

Definition 6. [40] Let U be a universe of discourse, an interval-valued fuzzy set,
denoted AIV , is a map μAIV : U→Int[0, 1], where, Int[0, 1] expresses a collection
of all closed subintervals on [0, 1]; A type-2 fuzzy set, denoted Ã, is characterized
by a type-2 membership function μÃ(x, u), where ∀x ∈ U and u ∈ Jx ⊆ [0, 1], i.e.:

Ã={((x, u), μÃ(x, u))}, or Ã =
∫
x∈U

∫
u∈Jx

μÃ(x, u)/(x, u), where 0 ≤ μÃ(x, u) ≤
1,
∫∫

denotes union over all admissible x and u.

From Figure 2(a), the membership degree of IVFS AIV is μAIV (xi)=[ai−, ai+].
For T2FS, each membership degree μÃ(x, u) is a type-1 membership function
u ∈ Jx. Therefore, different x may have different membership function u, see
Figure 2(b).

On the other hand, in FS, the membership degree μA(x) is a degree of an
element x belonging to a fuzzy subset A, which implies that the non-membership
degree of x belonging to A is equal to 1-μA(x). Considering the hesitation degree
of an element x belonging to A, Atanassov proposed intuitionistic fuzzy set (IFS)
[1], and Gau and Buehrer proposed vague set [9] through membership degree and
non-membership degree respectively. Afterward, Bustince and Burillo proved
that intuitionistic fuzzy set and vague set are equivalent [4]. The definition of
IFS is as follows.

Definition 7. [1] Let U be a universe of discourse, an intuitionistic fuzzy set
A is an object of the form: A={ 〈x, μA(x), νA(x)〉|x ∈ U}, where μA: U→[0, 1]
and νA: U→[0, 1] are such that 0≤μA+νA≤1, and μA, νA ∈ [0, 1] denote degrees
of membership and non-membership of x belonging to A, respectively.
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Comparing the FS and IFS, we find that μA(x)+νA(x)=1 in FS, while in IFS,
μA(x)+νA(x)≤1. The IFS is shown in Figure 2(c).

Fig. 2. Uncertainty expression of information

4 Uncertainty Expression in Rough Set Theory

Rough set (RS), proposed by Prof. Pawlak, uses the certain knowledge to depict
the uncertain or imprecise knowledge from the perspective of knowledge classi-
fication [19], that is, it uses two certain sets (lower approximation set and upper
approximation set) to define an uncertain set based on an equivalence relation.
The definition of rough set is as follows.

Definition 8. [29] Let K=(U,R) be a knowledge base, the subset X ⊆ U and
the equivalence relation R ∈R (R is a family of equivalence relation on U), then
RX={x∈ U |[x]R ⊆ X}, RX={x∈ U |[x]R∩X �= ∅}, are called the R−lower ap-
proximation set and R−upper approximation set of X respectively. BNR(X)=RX
−RX is called the R−boundary region of X; PosR(X)=RX is called the posi-
tive region of X, and NegR(X)=U−RX is called the negative region of X. If
BNR(X)=∅, then X is definable, otherwise X is a rough set.

A limitation of Pawlak rough set model is that the classification which it
deals with must be totally correct or definite. Because the classification is based
on the equivalence classes, its results are accurate, that is, “include” or “not
include” certainly. To combat the question, some probabilistic rough set (PRS)
models are introduced such as the 0.5 probabilistic rough set (0.5-PRS) model
[20], the decision-theoretic rough set (DTRS) model [35], the variable precision
rough set (VPRS) model [45], the Bayesian rough set (BRS) model [26], the
Game-theoretic rough set (GTRS) model [10], and so on.

RS model is based on equivalence relations, and for each object, there is one
and only one equivalence class containing it, then this equivalence class can be
regarded as the neighborhood of this object, which constitutes the neighborhood
system of this object. In general neighborhood system, the object may have two
or more neighborhoods. Lin constructed rough set model based on neighborhood
system by means of interior point and closure in topology [32]. It is a more
generalized approximation set manifestation and also an extension of RS.
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In many cases, the information systems are not complete, such as default
attribute values. Thus, the rough set theory and method based on incomplete
information systems has been extensively studied and developed [12][33].

In short, we can describe the relations among the above models in Figure 3.

Fig. 3. The relationships between several uncertainty theories

In the foregoing discussion, probability theory, rough set theory and fuzzy set
theory are three main uncertainty theories represented with elliptical shape in
Figure 3. The random set theory and the evidence theory, IVFS, T2FS, IFS, 0.5-
PRS, DTRS, VPRS, BRS, GTRS, the neighborhood rough set and incomplete
system rough set are the extended models of probability theory, fuzzy set theory
and rough set theory respectively, and they are expressed by rectangle shape.
The probabilistic rough set, the rough-fuzzy set, the fuzzy-rough set and the
cloud model are obtained by the combination of different theories, and they are
expressed by rounded rectangle. The red dotted line expresses the connections
among different extended models. The associations and differences between these
models will be introduced and analyzed in detail in section 5.

5 Combination, Association and Difference between
Different Extended Models

5.1 Probabilistic Rough Set Model

Pawlak RS is based on completion of available information, but the incompletion
and statistical information of available information are ignored, so Pawlak RS
is often powerless when processing the rule acquisition of inconsistent decision
table. Some probabilistic rough set models were introduced to solve problems.
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The DTRS was proposed by Yao et al. [35][36], which provides a novel rough set
model for studying uncertain information system.

Definition 9. [35] Let U be a universe of discourse, and R be an equiv-
alence relation on U . A triple Ap=(U,R, P ) is a probabilistic approxi-
mation space, where a probability measure P defined on sigma algebra
of subsets of U . In terms of conditional probability, ∀X⊆U , the lower
and upper probabilistic approximations of X on parameters α, β(0≤β<α≤1)
are: Pα(X)={x∈U |P (X |[x]R) ≥α}, Pβ(X)={x∈U |P (X |[x]R)>β}. The cor-
responding positive region, boundary region and negative region are re-
spectively: Pos(X,α, β)=Pα(X); BN(X, α, β)={x∈ U |β<P (X |[x]R)<α};
Neg(X,α,β)={x∈U |P (X |[x]R)≤β}. If BN(X, α, β) �=∅, then X is called proba-
bilistic rough set on parameters α, β.

In this context, each subset of U representing a random event is called a “con-
cept”. The conditional probabilityP (X |[x]R) can be interpreted as the probability
that a randomly selected object with the description of concept [x]R belongs to X .

5.2 Fuzzy-Rough Set and Rough-Fuzzy Set Models

In the above mentioned various rough set models, the concepts and knowledge
are all clear, that is, all sets are classical. However, it is mostly fuzzy concept
and fuzzy knowledge that involve in people’s actual life. There are two types
reflected in rough set model, one is that knowledge of knowledge base is clear
while the approximated concept is fuzzy, another is that knowledge of knowledge
base and the approximated concept are all fuzzy. Based on this point, Dubois
and Prade proposed rough fuzzy sets (RFS) model and fuzzy rough sets (FRS)
model based on fuzzy set and rough set [8].

Definition 10. [8] Let U be a universe of discourse, and R be an equivalence re-
lation on U . If A is a fuzzy set on U , then ∀x ∈ U , μAR

(x)=inf{μA(y)|y ∈ [x]R}
and μAR

(x)=sup{μA(y)|y ∈ [x]R} are called the membership functions of lower

approximation fuzzy set AR and upper approximation fuzzy set AR respectively.
If AR=AR, then A is definable, otherwise A is a rough fuzzy set.

Definition 11. [8] Let U be a universe of discourse, and R be a fuzzy equiva-
lence relation on U . If A is a fuzzy set on U , then ∀y ∈ U , μAR

(x)=inf max{1-
μ[x]R(y), μA(y)}, μAR

(x)=sup min{μ[x]R(y), μA(y)} are called the membership
functions of lower approximation fuzzy set AR and upper approximation fuzzy
set AR respectively. If AR=AR, then A is definable, else A is a fuzzy rough set.

According to Definition 10, if A is a classical set, then AR and AR are two
classical sets. The difference between rough set and rough fuzzy set is whether
the approximated concept is a classical set or a fuzzy set. Thereupon, the rough
fuzzy set is natural generalization of rough set. From Definition 11, we can see
that fuzzy rough set is a further expansion of rough fuzzy set due to the equiva-
lence relation R transformed into fuzzy equivalence relation R. In addition, the
reference [23] also studied the fuzzy rough set.
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5.3 Cloud Model

Cloud model, proposed by Prof. Li, studies the randomness of sample data and
membership degree based on probability theory and fuzzy set theory [13], see
Figure 3. A formalized definition is as follows.

Definition 12. [13] Let U be a universal set described by precise numbers, and C
be a qualitative concept related to U . If there is a number x ∈ U , which randomly
realizes the concept C, and the membership degree μ of x for C is a random
number with a stabilization tendency, i.e., μ : U → [0, 1], ∀x ∈ U, x→ μ(x), then
the distribution of x on U is defined as a cloud, and each x is a cloud drop.

From Definition 12, the membership degree μ(x) of each cloud drop x is
a random number, and all the cloud drops satisfy a certain distribution. The
density of cloud drops expresses uncertainty degree of a concept C. Generally,
a qualitative concept C is expressed by numerical characteristics (Ex,En,He),
wherein, Ex is the most expected value of concept; En is used to figure its
granularity scale; He is used to depict the uncertainty of concept’s granularity.
If the distribution of cloud drops is a normal distribution, then the corresponding
cloud model is called a normal cloud.

Definition 13. [13] Let U be a universal set described by precise numbers, and
C be a qualitative concept containing three numerical characters (Ex,En,He)
related to U . If there is a number x∈U , which is a random realization of the
concept C and satisfies x=RN (Ex, y), where y=RN (En,He), and the certainty

degree of x on U is μ(x)=exp{− (x−Ex)2

2y2 }, then the distribution of x on U is

a normal cloud. Where y=RN (En,He) denoted a normally distributed random
number with expectation En and variance He2.
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Fig. 4. Normal cloud

From Definition 13, we can depict an uncer-
tain concept concretely. For example, let (Ex=25,
En=3, He=0.3) express “Young”, where, Ex=25
represents the expected age of “Young”, and the
corresponding normal cloud map is shown in Fig-
ure 4. The generated cloud drops have random-
ness (horizontal axis), at the same time, for each
cloud drop x, the membership degree μ(x) also
has randomness (vertical axis). That is, different
people give different ages for “Young”, such as 18,
18.5, 19, 20, 22, 28, 30, · · ·, namely these ages have
stochastic to a certain extent, and each age may have different membership de-
gree of belonging to “Young”, take for 22 years example, μ(22) may equal to 0.3,
0.35, 0.4, 0.47, 0.51, · · ·. Thus, cloud model not only considers the randomness
of concept, but also involves the randomness of membership degree of object or
sample belonging to the concept.
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5.4 Association and Difference between Different Extended Models

From the above discussion, we know that probability theory, FS theory and RS
theory have some extended models respectively, see Figure 3. The associations
and differences of these extended models will be discussed.

(1) In FS theory, T2FS, IVFS and IFS are all the generalization of FS based
on membership function. The integration of T2FS, IVFS and IFS can obtain
some new models, such as interval-valued intuitionistic fuzzy set [2], interval-
valued type-2 fuzzy sets [18], type-2 intuitionistic fuzzy set [44], etc. In rough
set theory, VPRS and PRS loose the strict definition of approximate boundary.
Compared with RS, the positive region and negative region will become larger,
while the boundary region will be smaller in VPRS and PRS due to allowing
error classification rate to some extent. In this sense, VPRS and PRS have some
similar aspects [27]. In addition, the references [15][16][28] studied the variable
precision fuzzy rough set and variable precision rough fuzzy set on the basic
of VPRS, FRS and RFS, respectively. For the faults of FRS and VPRS, the
reference [43] set up a model named fuzzy VPRS by combing FRS and VPRS
with the goal of making FRS a special case. The reference [5] studied the vaguely
quantified rough set model which is closely related to VPRS. The references [6]
and [11] studied the ordered weighted average based FRS and robust FRS model
respectively because the classical model of FRS is sensitive to noisy information.
The reference [33] studied the rough set model and attribute reduction based
on neighborhood system in incomplete system, and the reference [34] proved
the VPRS and multi-granulation rough set model [21][22] are the special cases
of neighborhood system rough set model and the neighborhood system rough
set is a more generalized rough approach. According to the meanings of belief
function and plausibility function, they are similarities with the lower and upper
approximation of rough set. The references [25][37] discussed the relationship
between them. In incomplete information systems, considering all possible values
of the object attributes with incomplete information, then the values of some
attribute are no longer a single point value but a set value. Based on this, the
references [41][42] made the random set introduce into rough set theory and
studied the rough set models based on random sets. The reference [41] discussed
the relationships between random set, rough set and belief function. The above
relations are shown in Figure 3.

(2) The similarities between evident theory, RS and IFS on the representa-
tion of uncertain information: The evidence theory depicts the uncertainty of
information based on the belief function Bel and plausibility function Pl. IFS
uses the membership degree and non-membership degree to study the fuzziness
of information which is caused by the extension unclear. RS gives a characteri-
zation of uncertain information through lower approximation set RX and upper
approximation set RX based on a equivalence relation R, and uses the roughness
ρR(X)=1−|RX |/|RX | to measure the uncertainty. From the aspects of decision-
making, people usually perform three kinds of decision-making in our daily life
according to the given information [31][38]: determine decision-making including
acceptance decision and refusal decision, and delay decision (we can not make the
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acceptance or refusal decision based on the current information, and additional
information is required to make a decision). The evidence theory, RS and IFS are
all able to describe the three decisions. In evidence theory, Bel(A) expresses the
degree of acceptance decision, 1−Pl(A) expresses the degree of refusal decision,
and Pl(A)−Bel(A) describes the degree of delay decision. In RS, the positive
region PosR(X) and the negative region NegR(X) can be used to depict the ac-
ceptance decision and the refusal decision respectively, and the boundary region
BNR(X) depicts the delay decision. In IFS, membership function μA(x) and
non-membership function νA(x) describe the degrees of acceptance decision and
refusal decision respectively, and the hesitation degree πA(x)=1−(μA(x)+νA(x))
describes the degree of delay decision. From this point of view, the three theories
have common place in expressing of uncertainty information.

(3) The difference between cloud model and T2FS: T2FS discusses the fuzzi-
ness of membership degree using the type-1 fuzzy set. Once the membership
function is determined, then it will be fixed. While the membership degree of a
object belonging to uncertain concept is not a fixed value, but a random number
with a stabilization tendency in cloud model. Thus, they have difference. In ad-
dition, cloud model considers the randomness of research object. In this sense,
cloud model can well integrate the randomness and fuzziness of information.

6 Conclusions and Prospects

The paper summarizes the research on some uncertainty theory models and the
corresponding extended models and discusses the associations and differences
between them. But there are still some deficiencies, such as the countable addi-
tivity of probability may not be satisfied perfectly in practical applications due
to uncertainty; how to determine the values of mass function and membership
function objectively; the independence of evidence restricts the application range
of evidence theory; RS theory does not take into account the randomness of sam-
ple data, which makes the generalization ability of acquired knowledge and rules
be relatively low and so on. Thus, these problems will be further studied. In
addition, because cloud model can deal with randomness and fuzziness, it will
be a good issue, worth to study the combination of rough set and cloud model,
and the reasoning mechanism, the combination rule of many uncertain concept,
the automatically transformed method among multiple granularities based on
cloud model are also urgent problems in the future research.

In recent years, computer and network technology advance rapidly. Along
with the development of computer network and the widespread application of
the Web technology, the data in database is becoming increasingly complicated.
Incomplete information, inconsistent information, etc. are also getting more and
more general. However, computer can only perform logic and four arithmetic
operations essentially. If there are no good models and algorithms, it is still
difficult to get the desired results even if there exists highly efficient large-scale
computer. Thus, for the problem solving of large-scale complex systems, it needs
more methodological innovations. Granular computing, deep learning, quantum
coding and so on may be used to reduce system complexity.
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Early Development of Rough Sets - From a

Personal Perspective

S.K.M. Wong
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University of Regina
Regina Saskatchewan

Canada S4S 0A2

First I would like to thank Dr. Lingras and Dr. Yao for giving me the opportunity
to talk to you this morning and get acquainted again with many friends whom
I have not seen for quite a while.

I would like to share with you my own personal involvement in the early
development of Rough Sets proposed by Professor Pawlak [1,2]. My talk this
morning is definitely not meant to be a review of all the important work done
in Rough Sets since then. Another thing I want to emphasize is that I am not
an expert in this field at all, but it will become clear to you as the story unfolds
that somehow my connection with Rough Sets is not broken during these years.

Time goes by very quickly. I still remember quite vividly the day I first met
Professor Pawlak almost 30 years ago in Regina. I attended his seminar in which
for the first time I heard the term, Rough Sets. Of course, we did not realize then
that this term would have had so much impact on us. I am indeed fortunate to be
one of the early students learning the concepts of Rough Sets directly from Prof.
Pawlak himself. He visited Regina many times. Dr. Ziarko and I also joined him
on many occasions when he visited the University of North Carolina at Charlotte.
Not only that I learned a lot from Prof. Pawlak, but more importantly we became
friends. This period was indeed the heydays of my involvement with the research
of Rough Sets.

Dr. Ziarko and I wrote some trivial notes on Rough-Sets at that time. Nat-
urally, we had difficulty to publish them anywhere as one would expect. Who
would have heard of such a concept in those days? In order to lessen our frus-
tration, Prof. Pawlak himself recommended those short notes to be published
in the Bulletin of the Polish Academy of Sciences [3,4,5,6]. Now looking back at
these papers makes me feel quite embarrassed. Nevertheless, I think that they
do have some historical value.

We were quite delighted a short time later as we finally succeeded in publishing
our first Rough-Sets paper [7] in a real journal. In this paper, we demonstrated
that constructing decision rules by inductive learning based on Rough Sets is
comparable to (perhaps better than) a popular method of the time proposed by
Quinlan [8].

In subsequent years, after we had gained a better understanding of Rough
Sets, we began to search for appropriate applications of this new concept. Our
main objective was to demonstrate the usefulness of Rough Sets in decision
making, learning and classification problems. Soon we realized that it might be

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 66–74, 2013.
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necessary to incorporate some sort of probabilistic or numeric measure into the
algebraic structure of the Rough-Sets model.

Before we do that, let us re-visit the original ideas suggested by Pawlak [1].
Each rectangle in Figure 1 represents an equivalence class of the equivalence
relation (partition) induced by a set of attributes in the knowledge representation
system [1,2]. The objective is to approximate a concept set by these equivalence
classes. (Interestingly, such a procedure is very much analogous to the one used
for estimating the area of a two-dimensional figure drawn on a graph paper as
shown in Figure 2. In this case, we assume that the area of each square on the
graph paper is known. Similar to Rough Sets, we can define the lower and upper
bounds of the actual area of the figure of interest. Obviously, the accuracy of such
an approximation depends on the size of the individual squares (i.e., the level
of our knowledge). This is perhaps a good example in showing the usefulness of
granular computations.

Fig. 1. Approximate classification of
set A in the Rough-Sets structure
(S, P )

Fig. 2. Approximate computation of
the area of an irregular figure A - an il-
lustration of the concept of integration
in elementary Calculus

Although we are dealing with similar approximations in the two examples
shown in Figures 1 and 2, there are, however, major differences in their physical
interpretations. In the Rough-Sets model, a partition represents one’s knowl-
edge (incomplete knowledge). The concept represented by the irregular figure in
Figure 1 is what we want to learn (or to classify). On the other hand, Figure
2 demonstrates the concept of integration as a limit of summation in Calculus.
That is, the area of the figure will approach the true area (the limit) when the
size of the individual square approaches zero.

In practical applications, to treat each equivalence class in the boundary re-
gion equally may not be too satisfactory. For example, if certain equivalence
classes in the boundary region (in Figure 1) are ignored, then one obvious draw-
back is that some relevant (useful) information may be lost. Conversely, ex-
traneous information (noise) may be retained inadvertently. To alleviate these
problems, we suggested a simple way [9] to incorporate a probabilistic measure
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into the standard Rough-Sets model. The probabilistic lower and upper approx-
imations of a concept are defined as:

Ap =
⋃

p(A/Xi)>1/2

Xi, (1)

Āp =
⋃

p(A/Xi)≥1/2

Xi, (2)

where A (a subset of objects) represents a concept, [Xi] denotes the partition of
objects in a knowledge system, and p(A/Xi) is the probability of A conditioned
on [Xi]

We also introduced the notions of statistical Reduct and Core [9]. (Note that
we obtained some new results on attribute reduction [11].)

It is perhaps worth mentioning here that we suggested a decision theoretic
framework for approximating concepts [10]. In this paper, we explored the im-
plications of approximating a concept based on the Bayesian decision procedure.
We showed that if a given concept is approximated by two sets, we can de-
rive both the algebraic and probabilistic Rough-Sets approximations from our
approach [10].

In this period, a lot of activities happened as people became more aware of the
potential applications of Rough Sets. On the theoretical front, there were two
interesting and related developments, namely, Belief Functions and Modal Logic.
Actually, at the time, the study of Belief Functions proposed by Shafer [12] was
a hot but controversial research topic. Actually, some of the controversies remain
today.

As probability theory has long been accepted as the standard numerical mea-
sure of uncertainty, many questions were raised about Belief Functions. What
is a Belief Function for? How is it related to the Probabilistic Function? From
our vantage point, since rough approximation is also a measure of uncertainty
resulting from insufficient knowledge, a natural question was: is the notion of
Rough Sets in any way related to the Probability or Belief Functions? It turned
out that they all share a common algebraic structure. It is perhaps worthwhile
to give you (especially to those younger students) some insight of this intriguing
relationship among Rough Sets, Belief and Probability Functions.

For this purpose, let us first introduce Belief Functions in a form from which
one will see right away that Belief Functions and Rough-Sets actually share the
same algebraic structure. It will also become clear that the underlying structure
of Probability Functions is a special case of Belief-Functions.

Let S denote a set of possibilities (states, possible worlds, objects). A Belief
Function, Bel : 2S → [0, 1], over S is defined as follows, for any A ⊆ S,

Bel(A) =
∑
f⊆A

m(f), (3)

where F = {f} is a set of focal elements satisfying the conditions f ⊆ S and⋃
fεF f = S , and m is a probability assignment defined by:
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a) m(∅) = 0,
b)
∑

fεF m(f) = 1, m(f) > 0.

Note that in general the focal elements in F are not necessarily disjoint.

Fig. 3. Belief-Functions Structure (S, F ) defined by a Focal Set F = {f}.
f1, f2, f3, f4 ⊆ A, and Bel(A) = m(f1) +m(f2) +m(f3) +m(f4).

From Figure 3, one can conclude immediately that if all the focal elements
of the focal set are pairwise disjoint, the Rough-Sets and the Belief-Functions
Structures are indeed the same as we mentioned above (compare Figure 1 and
Figure 3).

Furthermore, the Belief-Functions Structure reduces to the Probability-Func-
tions Structure if every focal element is a singleton set. Note that in the standard
probability theory, no uncertainty is involved in characterizing (describing) the
concepts themselves as it is based on the Proposition Logic. (In contrast, the
theory of Rough Sets is based on the Modal Logic. We will discuss this important
difference in greater details later.) In Rough-Sets terms, we say that in the prob-
abilistic case, both the lower and upper approximations of any concept are the
same. It is assumed in this theory that one has sufficient knowledge to represent
(define) any concept unambiguously by a set of states. This means that given a
state, there are only two possibilities, namely, either the state (object) belongs
to a given concept set or it does not. Uncertainty is reflected only in the numer-
ical ordering of the concepts. (The numeric ordering is based on probabilities
assigned to the individual concepts).

I want to point out that the pairwise disjoint assumption in the Rough-Sets
model and in many other approaches is inherent in the knowledge system (see
the example in Table 1 and Figure 4) in which knowledge is represented by an
equivalence relation inferred from the values of the attributes [1,2] or from the
truth values of the primitive propositions [19].

I want to mention one more aspect about Belief Functions before introducing
a logical knowledge system below.
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Table 1. A Rough-Sets Knowledge System

Objects Color Classification

s1 red +
s2 red +
s3 green +
s4 green -
s5 blue -
s6 yellow -
s7 yellow -
s8 yellow -

Fig. 4. Partition P = [{s1, s2}, {s3, s4}, {s5}, {s6, s7, s8}] induced by the attribute
Colour

Belief Functions provide numeric orderings of subsets of possibilities (possible
worlds). The numeric ordering of a Belief Function induces a specific type of
(qualitative) ordering relation (referred to as the belief relation) on subsets of
the possible worlds. As in the standard probability theory [13], an important
question arose was: whether there is a finite set of axioms that must be satisfied
by the ordering relation such that there exists a Belief Function consistent with
such a qualitative ordering? The answer to this question will become crucial if
either qualitative or numeric ordering of concepts is required for making deci-
sions (choices) in some applications [14]. Our main result is summarized by the
following theorem [15].

Theorem 1. Let S be a set of possibilities (possible worlds) and � a prefer-
ence relation defined on 2S . There exists a Belief Function, Bel : 2S → [0, 1],
satisfying for A,B ∈ 2S,

A � B ⇐⇒ Bel(A) > Bel(B) (4)

if and only if the preference relation � satisfies the following axioms:

– (B1) (asymmetry) A � B ⇒ ¬(B � A),
– (B2) (negative transitivity) (¬(A � B), ¬(B � C)) ⇒ ¬(A � C),
– (B3) (dominance) A ⊆ B ⇒¬ (B � A),
– (B4) (partial monotonicity) (A ⊃ B,A ∩ C = ∅) ⇒ (A � B ⇒

A ∪ C � B ∪ C),
– (B5) (nontriviality) S � ∅.
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Another important development at this time was the study [16,17,18,19] of the
relationship between Rough Sets and Logic as I mentioned above. Indeed, there
exists a fundamental relationship among the three knowledge systems, Belief
Functions, Rough Sets and Modal Logic.

More recently, we suggested a unified structure (referred to as the Belief
Structure [21]) for both Belief Functions and Rough Sets within the framework
of Modal Logic [20]. An example of a Belief Structure (for n agents) is shown in
Figure 5. Note that the Kripke Structure in modal logic is in fact a special case
of the Belief Structure when knowledge is represented by equivalence relations.
The basic ideas are outlined as follows.

Fig. 5. Belief Structure for n agents. Ki is the knowledge operator, F i is the focal set
of agent i and Ai

ϕ = {s | (B, s) |= Kiϕ} is represented by the shaded area.

We first describe a language. Let Φ denote a set of primitive propositions.
These propositions stand for basic facts about the individual possible worlds
(states, objects, possibilities) in a universe S. Suppose there are n agents. We
augment the language by modal operators K1,K2, ...,Kn(one for each agent).
We start with the primitive propositions in Φ and form more complicated for-
mulas by closing off under negation(¬), conjunction(∧) and the modal operators
K1,K2, ...,Kn.

We have just described the syntax of the language. Next we need to define
the semantics which will enable us to determine if a formula is true or false in
a given structure. Here we assume that the knowledge of the agent i ≤ n is
represented by a focal set F i(a family of subsets of S),

F i = {f i
1, f

i
2, ..., f

i
l}, where f i ⊆ S,

⋃
fεF i

f = S. (5)
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Let us now define the Belief Structure B for n agents over the set of primitive
propositions Φ = {p} as a tuple:

B = (S, π, F 1, F 2, ..., Fn), (6)

where π(s) is a truth assignment to each s ε S,

π(s) : Φ→ {true, false}. (7)

To denote that a primitive proposition p ε Φ is true in the possible world s ε S
with respect to the Belief Structure B, we write:

(B, s) |= p iff π(s)(p) = true. (8)

This is the base case. By induction, the truth value of a general formula is
defined by:

(B, s) |= ϕ ∧ φ iff (B, s) |= ϕ and (B, s) |= φ, (9)

(B, s) |= ¬ϕ iff (B, s) �|= ϕ. (10)

Finally, we define the meaning of the formula Kiϕ . We say that the formula
Kiϕ is true in s if ϕ is true at all the possible worlds in some focal element
f ε F i containing s. Formally,

(B, s) |= Kiϕ iff ∃f ε F i such that s ε f and f ⊆ {s′ | (B, s
′
) |= ϕ}. (11)

In the above analysis one may interpret the formula ϕ as a subset of possible
worlds (objects), namely,

ϕ = {s | (B, s) |= ϕ}. (12)

Similarly we have
Kiϕ = {s | (B, s) |= Kiϕ}. (13)

One can immediately conclude that Kiϕ is the lower approximation of the
concept ϕ in the Rough-Sets model.

Thus we have established a unified framework for the Rough Sets, Belief
Functions and Kripke Structures. Our approach augmented by the power of
modal logic will broaden the applications of the Rough-Sets model to include
reasoning about knowledge[18].

Let me use a simple example to demonstrate reasoning in the logical approach.
Table 2 depicts a knowledge system of agents a, b and c, in which each state
(possible world) s in S = {s1, s2, s3, s4, s5, s6, s7, s8} is described by the truth
values of the primitive propositions pa, pb and pc:

pa (agent a has mud on forehead),

pb (agent b has mud on forehead),

pc (agent c has mud on forehead).
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Table 2. A ”Logical” Knowledge System

S pa pb pc

s1 0 0 0
s2 0 0 1
s3 0 1 0
s4 0 1 1
s5 1 0 0
s6 1 0 1
s7 1 1 0
s8 1 1 1

The knowledge relations of agents a, b and c are:

Ka = {(s1, s5), (s2, s6), (s3, s7), (s4, s8)},
Kb = {(s1, s3), (s2, s4), (s5, s7), (s6, s8)},
Kc = {(s1, s2), (s3, s4), (s5, s6), (s7, s8)}.

We can compute

Apa = {s | (B, s) |= pa} = {s5, s6, s7, s8} (agent a has mud on forehead),

Aa
pa

= {s | (B, s) |= Kapa} = ∅ (agent a does not know if he has mud on forehead),

Ab
pa

= {s | (B, s) |= Kbpa} = {s5, s6, s7, s8} (agent b knows agent a has mud on forehead),

A
c
pa

= {s | (B, s) |= Kcpa} = {s5, s6, s7, s8} (agent c knows agent a has mud on forehead).

Note that Aa
pa
, Ab

pa
and Ac

pa
are in fact the lower approximations of the concept

APa with respect to different partitions Ka,Kb and Kc.
I would like to conclude our discussion here. It has given me a lot of satisfaction

to see so many young and bright researchers in this meeting. I am sure that
Rough Sets are in good hands in the years to come. Thank you.

Acknowledgement. I would like to give special thanks to Dr. Dan Wu for his
generous assistance and suggestions in preparing this paper.
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Abstract. As an important technique for granular computing, rough sets deal
with vagueness and granularity in information systems. Rough sets are usually
used in attribute reduction, however, the corresponding algorithms are often
greedy ones. Matroids generalize the linear independence in vector spaces and
provide well-established platforms for greedy algorithms. In this paper, we ap-
ply contraction to a matroidal structure of rough sets. Firstly, for an equivalence
relation on a universe, a matroid is established through the lower approximation
operator. Secondly, three characteristics of the dual of the matroid, which are
useful for applying a new operation to the dual matroid, are investigated. Finally,
the operation named contraction is applied to the dual matroid. We study some
relationships between the contractions of the dual matroid to two subsets, which
are the complement of a single point set and the complement of the equivalence
class of this point. Moreover, these relationships are extended to general cases.
In a word, these results show an interesting view to investigate the combination
between rough sets and matroids.

Keywords: Approximation operator, Contraction, Matroid, Rough set.

1 Introduction

Rough set theory was proposed by Pawlak [16,17] in 1981 as a tool to conceptualize,
organize and analyze various types of data in data mining. Rough set theory has been
widely used to deal with many practical problems, such as attribute reduction [7,15],
feature selection [1,6], rule extraction [2,4], and knowledge discovery [11,24]. More-
over, through extending equivalence relations or partitions, rough set theory has been
extended to generalized rough sets based on relations [8,18] and covering-based rough
sets [21,25].

Matroid theory [9,12] is a generalization of linear algebra and graph theory. It has
been used in diverse fields, such as combinatorial optimization [10], algorithm de-
sign [5], information coding [19], cryptology [3], and so on. Recently, matroid theory
has been connected with other theories, such as rough set theory [20,26,27] and lattice
theory [13,14].

In this paper, we apply contraction to a matroidal structure of rough sets. Firstly, for
an equivalence relation on a universe, a matroid is induced by the lower approximation
operator through independent set axiom of matroids. Secondly, three characteristics
of the dual of the matroid, which are independent sets, bases and the rank function,
are investigated. These characteristics are useful for the following study. Finally, an
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operation named contraction is introduced, and the contraction of the dual matroid to a
subset is a new matroid. The contractions of the dual matroid to two subsets, which are
the complement of a single point set and the complement of the equivalence class of this
point, are obtained. That is to say, two matroids are obtained by applying contraction
to the dual matroid. We study some relationships between characteristics of these two
matroids, such as they have the same independent sets. Moreover, these relationships are
extended to general cases. The relationships between contractions of the dual matroid
to another two subsets, which are the complement of a subset and the complement of
the upper approximation of this subset, are investigated.

The rest of this paper is organized as follows. Section 2 reviews some fundamental
definitions about rough sets and matroids. In Section 3, a matroid is induced by the
lower approximation operator in rough sets, and the dual of the matroid is investigated.
In Section 4, we study some relationships between the contractions of the dual matroid
to two subsets, which are the complement of a single point set and the complement
of the equivalence class of this point. Then these relationships are extended to general
cases. Finally, Section 5 concludes this paper and indicates further works.

2 Basic Definitions

This section recalls some fundamental definitions related to Pawlak’s rough sets and
matroids.

2.1 Pawlak’s Rough Sets

The following definition shows that a universe together with an equivalence relation on
it forms an approximation space.

Definition 1. (Approximation space [22,23]) Let U be a nonempty and finite set called
universe and R an equivalence relation on U . The ordered pair (U,R) is called a
Pawlak’s approximation space.

In rough sets, a pair of approximation operators are used to describe an object. In the
following definition, we introduce the pair of approximation operators.

Definition 2. (Approximation operator [22,23]) Let R be an equivalence relation on
U . A pair of approximation operators R∗, R∗ : 2U → 2U , are defined as follows: for
all X ⊆ U ,

R∗(X) = {x ∈ U : RN(x) ⊆ X}, and
R∗(X) = {x ∈ U : RN(x)

⋂
X �= ∅},

where RN(x) = {y ∈ U : xRy}. They are called the lower and upper approximation
operators with respect to R, respectively.

In the above definition, we call RN(x) the equivalence class of x. Let ∅ be the empty
set and −X the complement of X in U . According to the definition of approximation
operators, we have the following conclusions.
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Proposition 1. ( [22,23]) The properties of the Pawlak’s rough sets are:
(1L) R∗(U) = U (1H) R∗(U) = U
(2L) R∗(φ) = φ (2H) R∗(φ) = φ
(3L) R∗(X) ⊆ X (3H) X ⊆ R∗(X)
(4L) R∗(X

⋂
Y ) = R∗(X)

⋂
R∗(Y ) (4H) R∗(X

⋃
Y ) = R∗(X)

⋃
R∗(Y )

(5L) R∗(R∗(X)) = R∗(X) (5H) R∗(R∗(X)) = R∗(X)
(6L) X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y ) (6H) X ⊆ Y ⇒ R∗(X) ⊆ R∗(Y )
(7L) R∗(−R∗(X)) = −R∗(X) (7H) R∗(−R∗(X)) = −R∗(X)
(8LH) R∗(−X) = −R∗(X)
(9LH) R∗(X) ⊆ R∗(X)

2.2 Matroids

Matroids generalize the linear independency in linear algebra and the cycle in graph
theory. In the following definition, one of the most valuable definitions of matroids is
presented from the viewpoint of independent sets.

Definition 3. (Matroid [9]) A matroid is an ordered pair M = (U, I) where U (the
ground set) is a finite set, and I (the independent sets) is a family of subsets of U with
the following properties:
(I1) ∅ ∈ I;
(I2) If I ∈ I, and I ′ ⊆ I , then I ′ ∈ I;
(I3) If I1, I2 ∈ I, and |I1| < |I2|, then there exists e ∈ I2 − I1 such that I1

⋃{e} ∈ I,
where |I| denotes the cardinality of I .

In order to show that linear algebra is an original source of matroid theory, we present
an example from the viewpoint of the linear independence in vector spaces.

Example 1. Let U = {a1, a2, a3} where a1 = [1 0]T , a2 = [0 1]T , a3 = [1 1]T ,
where aT is the transpose of a. Denote I = {X ⊆ U : X are linearly independent
}, i.e., I = {∅, {a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3}}. Then M = (U, I) is a
matroid.

In order to illustrate that graph theory is another original source of matroid theory,
an example is presented from the viewpoint of the cycle of a graph.

Example 2. Let G = (V,E) be the graph as shown in Fig. 1. Denote I = {X ⊆ E : X
does not contain a cycle of G}, i.e., I = {∅, {e1}, {e2}, {e3}, {e4}, {e1, e2}, {e1, e3},
{e1, e4}, {e2, e3}, {e3, e4}, {e1, e2, e3}, {e1, e3, e4}}. Then M = (E, I) is a matroid,
where E = {e1, e2, e3, e4}.

If a subset of the ground set is not an independent set of a matroid, then it is called a
dependent set of the matroid. Based on the dependent set, we introduce the circuit of a
matroid. For this purpose, two denotations are presented.

Definition 4. ([9]) Let A ⊆ 2U be a family of subsets of U . One can denote:
Max(A) = {X ∈ A : ∀Y ∈ A, X ⊆ Y ⇒ X = Y };
Min(A) = {X ∈ A : ∀Y ∈ A, Y ⊆ X ⇒ X = Y }.
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e1

e2

e3

e4

Fig. 1. A graph

The dependent set of a matroid generalizes the linear dependence in vector spaces
and the cycle in graphs. Any circuit of a matroid is a minimal dependent set.

Definition 5. (Circuit [9]) Let M = (U, I) be a matroid. A minimal dependent set in
M is called a circuit of M , and we denote the family of all circuits of M by C(M), i.e.,
C(M) = Min(−I), where −I = 2U − I.

In fact, e2 and e4 form a cycle of the graph as shown in Fig. 1. Therefore, C(M) =
{{e2, e4}} in Eaxmple 2. A base of a matroid is a maximal independent set.

Definition 6. (Base [9]) Let M = (U, I) be a matroid. A maximal independent set in
M is called a base of M , and we denote the family of all bases of M by B(M), i.e.,
B(M) = Max(I).

The dimension of a vector space and the rank of a matrix are useful concepts in linear
algebra. The rank function of a matroid is a generalization of these two concepts.

Definition 7. (Rank function [9]) Let M = (U, I) be a matroid. The rank function rM
of M is defined as rM (X) = max{|I| : I ⊆ X, I ∈ I} for all X ⊆ U . rM (X) is
called the rank of X in M .

Given a matroid, we can generate a new matroid through the following proposition.

Proposition 2. ([9]) Let M = (U, I) be a matroid and B∗ = {U − B : B ∈ B(M)}.
Then B∗ is the family of bases of a matroid on U .

The new matroid in the above proposition, whose ground set is U and whose family
of bases is B∗, is called the dual of M and denoted by M∗.

3 Matroidal Structure of Rough Sets

In this section, we establish a matroidal structure of rough sets through approximation
operators of rough sets.
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3.1 Matroid Induced by Lower Approximation Operator

This subsection induces a matroid through the lower approximation operator for any
Pawlak’s approximation space. In the following proposition, for an equivalence relation
on a universe, a family of subsets of the universe induced by the lower approximation
operator satisfies the independent set axiom of matroids.

Proposition 3. Let R be an equivalence relation on U . Then I(R) = {X ⊆ U :
R∗(X) = ∅} satisfies (I1), (I2) and (I3) of Definition 3.

Proof. (I1): According to Proposition 1, R∗(∅) = ∅. Then ∅ ∈ I(R).
(I2): Let I ∈ I(R), I ′ ⊆ I . Since I ∈ I(R), so R∗(I) = ∅. According to Proposition 1,
R∗(I ′) ⊆ R∗(I) = ∅. Therefore, R∗(I ′) = ∅, i.e., I ′ ∈ I(R).
(I3): Let the partition generated by R on U be U/R = {P1, P2, · · · , Pm}. Let I1, I2 ∈
I(R) and |I1| < |I2|. Since I1 = I1

⋂
U and I2 = I2

⋂
U , so I1 = I1

⋂
(
⋃m

i=1 Pi) =⋃m
i=1(I1

⋂
Pi) and I2 = I2

⋂
(
⋃m

i=1 Pi) =
⋃m

i=1(I2
⋂

Pi). Since I1, I2 ∈ I(R), so
R∗(I1) = ∅ and R∗(I2) = ∅. Thus, for all 1 ≤ i ≤ m, (I1

⋂
Pi) ⊂ Pi and (I2

⋂
Pi) ⊂

Pi. Since |I1| < |I2|, so |⋃m
i=1(I1

⋂
Pi)| < |⋃m

i=1(I2
⋂

Pi)|, i.e.,
∑m

i=1 |I1
⋂

Pi| <∑m
i=1 |I2

⋂
Pi|. Therefore, there exists 1 ≤ i ≤ m such that |I1

⋂
Pi| < |I2

⋂
Pi|

(In fact, if for all 1 ≤ i ≤ m such that |I1
⋂

Pi| ≥ |I2
⋂

Pi|, then
∑m

i=1 |I1
⋂

Pi| ≥∑m
i=1 |I2

⋂
Pi|, i.e., |I1| ≥ |I2|. It is contradictory with |I1| < |I2|). Thus, |I1

⋂
Pi| <

|I2
⋂

Pi| < |Pi|, and there exists e ∈ (I2
⋂

Pi) − (I1
⋂

Pi) ⊆ I2 − I1 such that
(I1
⋂

Pi)
⋃{e} ⊂ Pi, i.e., R∗(I1

⋃{e}) = ∅. Hence I1
⋃{e} ∈ I(R). This completes

the proof.

Therefore, there exists a matroid on U such that I(R) is the family of its independent
sets, and the matroid is denoted by M(R) = (U, I(R)).

Example 3. Let U = {a, b, c, d, e}, R be an equivalence relation on U and the partition
generated by R on U be U/R = {{a, b}, {c, d, e}}. According to Proposition 3, I(R)
= {∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e},
{d, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}}.Therefore, the matroid
induced by the lower approximation operator is M(R) = (U, I(R)).

The following proposition presents an equivalent formulation of the independent sets
of the matroid.

Proposition 4. Let R be an equivalence relation on U . Then I(R) = {X ⊆ U : ∀x ∈
U,RN(x) � X}.
Proof. We need to prove only {X ⊆ U : R∗(X) = ∅} = {X ⊆ U : ∀x ∈ U,RN(x)
� X}. For all Y ∈ {X ⊆ U : R∗(X) = ∅}, R∗(Y ) = {x ∈ U : RN(x) ⊆ Y } = ∅.
Therefore, for all x ∈ U , RN(x) � Y . Hence Y ∈ {X ⊆ U : ∀x ∈ U,RN(x) � X}.
Conversely, for all Y ∈ {X ⊆ U : ∀x ∈ U,RN(x) � X}, R∗(Y ) = {x ∈ U :
RN(x) ⊆ Y } = ∅. Hence Y ∈ {X ⊆ U : R∗(X) = ∅}. This completes the proof.

The following corollary presents the family of all bases of the matroid, which is
denoted by B(R).
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Corollary 1. Let R be an equivalence relation on U . Then B(R) = {X ⊆ U : ∀x ∈
U, |RN(x)

⋂
X | = |RN(x)| − 1}.

Example 4. (Continued from Example 3) B(R) = {{a, c, d}, {a, c, e}, {a, d, e}, {b, c,
d}, {b, c, e}, {b, d, e}}.

3.2 The Dual of the Matroid

This subsection investigates three characteristics of the dual of the matroid, which are
useful for the next section. The dual of the matroid can be obtained through the family
of all bases of the matroid. First of all, the dual of the matroid M(R) is denoted by
M∗(R), and the family of all bases of M∗(R) is denoted by B∗(R).

Proposition 5. Let R be an equivalence relation on U . Then B∗(R) = {X ⊆ U : ∀x ∈
U, |RN(x)

⋂
X | = 1}.

Proof. According to Corollary 1, B(R) = {X ⊆ U : ∀x ∈ U, |RN(x)
⋂

X | =
|RN(x)| − 1}. According to Proposition 2, B∗(R) = {U −X : X ∈ B(R)} = {X ⊆
U : ∀x ∈ U, |RN(x)

⋂
X | = 1}. This completes the proof.

Example 5. (Continued from Example 3) B∗(R) = {{a, c}, {a, d}, {a, e}, {b, c}, {b,
d}, {b, e}}.

Another two characteristics, which are independent sets and the rank function, are
investigated in Corollary 2 and Proposition 6. We denote the family of all independent
sets and the rank function of M∗(R) by I∗(R) and rM∗(R), respectively.

Corollary 2. Let R be an equivalence relation on U . Then I∗(R) = {X ⊆ U : ∀x ∈
U, |RN(x)

⋂
X | ≤ 1}.

Example 6. (Continued from Example 3) I∗(R) = {∅, {a}, {b}, {c}, {d}, {e}, {a, c},
{a, d}, {a, e}, {b, c}, {b, d}, {b, e}}.Hence, the dual of M(R) is M∗(R) = (U, I∗(R)).

Proposition 6. Let R be an equivalence relation on U . For all X ⊆ U , rM∗(R)(X) =
|{RN(x) : x ∈ U,RN(x)

⋂
X �= ∅}|.

Proof. According to Definition 7, rM∗(R)(X) = max{|I| : I ⊆ X, I ∈ I∗(R)}. We
need to prove only |{RN(x) : x ∈ U,RN(x)

⋂
X �= ∅}| = max{|I| : I ⊆ X, I ∈

I∗(R)} for all X ⊆ U . For all I ∈ I∗(R) = {X ⊆ U : ∀x ∈ U, |RN(x)
⋂

X | ≤ 1},
|I| = |{RN(x) : x ∈ U,RN(x)

⋂
I �= ∅}|. Therefore, max{|I| : I ⊆ X, I ∈

I∗(R)} = |{RN(x) : x ∈ U,RN(x)
⋂

X �= ∅}|. This completes the proof.

4 Contraction to the Dual of the Matroid

In this section, we apply contraction to the dual of the matroid. Different contractions
produce different matroids, but some characteristics of them may be same.
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4.1 Single Contraction to the Dual of the Matroid

This subsection mainly studies the relationships between the contractions of the dual
matroid to two subsets, which are the complement of a single point set and the comple-
ment of the equivalence class of this point. In other words, two matroids are obtained
by applying contraction to the dual matroid, and the relationships between these two
matroids are investigated. The following two definitions show that two new matroids
are obtained from a matroid by restriction and contraction, respectively.

Definition 8. (Restriction and deletion [9]) Let M = (U, I) be a matroid and X ⊆ U .
Then M |X = (X, IX) is a matroid called the restriction of M to X , where IX = {I ⊆
X : I ∈ I}. M\X = (U −X, IU−X) is called the deletion of U −X from M .

Definition 9. (Contraction [9]) Let M = (U, I) be a matroid, X ⊆ U and BX be a
base of M |X (i.e., BX ∈ B(M |X)). Then M/X = (U −X, I′) is a matroid called the
contraction of M to U −X , where I′ = {I ⊆ U −X : I

⋃
BX ∈ I} (The definition of

M/X has no relationship with the selection of BX ∈ B(M |X)).

The following proposition investigates the relationship between independent sets of
these two matroids obtained by applying contraction to the dual matroid.

Proposition 7. Let R be an equivalence relation on U . For all x ∈ U , I(M∗(R)/{x})
= I(M∗(R)/RN(x)).

Proof. According to Corollary 2 and Definition 8, I(M∗(R)|{x}) = {∅, {x}} and
I(M∗(R)|RN(x)) = {∅}⋃{{y} : y ∈ RN(x)}. According to Definition 6, {x} ∈
B(M∗(R)|{x}) and {x} ∈ B(M∗(R)|RN(x)). Thus I(M∗(R)/{x}) = {I ⊆ U −
{x} : I

⋃{x} ∈ I∗(R)}, I(M∗(R)/RN(x)) = {I ⊆ U −RN(x) : I
⋃{x} ∈ I∗(R)}.

For all Y ⊆ RN(x) − {x} and Y �= ∅, Y ⋃{x} /∈ I∗(R). Thus I(M∗(R)/{x}) =
{I ⊆ U − {x} : I

⋃{x} ∈ I∗(R)} = {I ⊆ U − RN(x) : I
⋃{x} ∈ I∗(R)}. Hence

I(M∗(R)/{x}) = I(M∗(R)/RN(x)). This completes the proof.

The following proposition shows the above relationship from the viewpoint of
deletion.

Proposition 8. Let R be an equivalence relation on U . For all x ∈ U , I(M∗(R)/{x})
= I(M∗(R)\RN(x)).

Proof. According to Proposition 7, we need to prove only I(M∗(R)\RN(x)) = I(M∗(
R)/RN(x)). According to Definition 8, I(M∗(R)\RN(x)) = {I ⊆ U − RN(x) :
I ∈ I∗(R)}. According to Definition 6, {x} ∈ B(M∗(R)|RN(x)). According to Def-
inition 9, I(M∗(R)/RN(x)) = {I ⊆ U − RN(x) : I

⋃{x} ∈ I∗(R)}. For any I ∈
I(M∗(R)\RN(x)), I

⋃{x} ∈ I∗(R). In fact, if there exists I ∈ I(M∗(R)\RN(x))
such that I

⋃{x} /∈ I∗(R), then there exists y ∈ I such that y ∈ RN(x), i.e.,
I
⋂

RN(x) �= ∅, which is contradictory with I ⊆ U−RN(x). Therefore, I(M∗(R)\R
N(x)) ⊆ I(M∗(R)/RN(x)). Conversely, according to (I2) of Definition 3, I(M∗(R)/
RN(x)) ⊆ I(M∗(R)\RN(x)). Hence I(M∗(R)\RN(x)) = I(M∗(R)/RN(x)).
This completes the proof.
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Note that M∗(R)/RN(x) = M∗(R)\RN(x) for all x ∈ U , because they have the
same ground and the same family of independent sets. Therefore, M∗(R)/RN(x) can
be replaced by M∗(R)\RN(x) in this subsection.

Example 7. (Continued from Example 6) Since RN(a) = {a, b}, so I(M∗(R)\
RN(a)) = {∅, {c}, {d}, {e}}. I(M∗(R)|{a}) = {∅, {a}} and I(M∗(R)|RN(a)) =
{∅, {a}, {b}}. Hence {a} ∈ B(M∗(R)|{a}) and {a} ∈ B(M∗(R)|RN(a)).
I(M∗(R)/{a}) = {I ⊆ U − {a} : I

⋃{a} ∈ I∗(R)} = {∅, {c}, {d}, {e}} and
I(M∗(R)/RN(a)) = {∅, {c}, {d}, {e}}, i.e., I(M∗(R)/{a}) = I(M∗(R)/RN(a)) =
I(M∗(R)\RN(a)).

The following corollary presents an equivalent formulation of Proposition 7.

Corollary 3. Let R be an equivalence relation on U . For all x ∈ U , I(M∗(R)/{x}) =
I(M∗(R)/R∗({x})).

Not that for any equivalence relation R on U , R∗({x}) = RN(x) for all x ∈ U .
Therefore,RN(x) can be replaced by R∗({x}) in this subsection. The following propo-
sition investigates the relationship between bases of these two matroids.

Proposition 9. Let R be an equivalence relation on U . For all x ∈ U , B(M∗(R)/{x})
= B(M∗(R)/RN(x)).

Proof. According to Definition 6, B(M∗(R)/{x}) = Max(I(M∗(R)/{x})), and B(
M∗(R)/RN(x)) = Max(I(M∗(R)/RN(x))). According to Proposition 7, I(M∗(
R)/{x}) = I(M∗(R)/RN(x)). Thus B(M∗(R)/{x}) = B(M∗(R)/RN(x)). This
completes the proof.

The following lemma shows a relationship between ranks of two subsets of a
universe.

Lemma 1. ([9]) Let M = (U, I) be a matroid. If X,Y ⊆ U such that for all y ∈
Y −X , rM (X) = rM (X

⋃{y}), then rM (X) = rM (X
⋃

Y ).

The following lemma shows a relationship between the rank functions of a matroid
and the contraction of the matroid.

Lemma 2. ([9]) Let M = (U, I) be a matroid and X ⊆ U . For all Y ⊆ U − X ,
rM/X(Y ) = rM (X

⋃
Y )− rM (X).

The following two propositions investigate the relationships between rank functions
of these two matroids, and between circuits of these two matroids, respectively.

Proposition 10. Let R be an equivalence relation on U . For all x ∈ U and X ⊆
U −RN(x), rM∗(R)/{x}(X) = rM∗(R)/RN(x)(X).

Proof. For all X ⊆ U−RN(x), X ⊆ U−{x}. According to Lemma 2, rM∗(R)/{x}(X)
= rM∗(R)(X

⋃{x})−rM∗(R)({x}) and rM∗(R)/RN(x)(X) = rM∗(R)(X
⋃

RN(x))−
rM∗(R)(RN(x)). According to Proposition 6, rM∗(R)({x}) = rM∗(R)(RN(x)) = 1.
So, we need to prove only rM∗(R)(X

⋃{x}) = rM∗(R)(X
⋃

RN(x)). For all y ∈
(X
⋃

RN(x))−(X
⋃{x}) = RN(x)−(X

⋃{x}) = RN(x)−{x}, rM∗(R)(X
⋃{x})

= rM∗(R)(X
⋃{x, y}). According to Lemma 1, rM∗(R)(X

⋃{x}) = rM∗(R)((X
⋃{

x})⋃(X
⋃

RN(x))) = rM∗(R)(X
⋃

RN(x)). This completes the proof.
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Proposition 11. Let R be an equivalence relation on U . For all x ∈ U , C(M∗(R)/
RN(x)) ⊆ C(M∗(R)/{x}).

Proof. According to Proposition 7, I(M∗(R)/{x}) = I(M∗(R)/RN(x)). According
to Definition 5, C(M∗(R)/{x}) = Min(−I(M∗(R)/{x})), where −I(M∗(R)/{x})
= 2U−{x}−I(M∗(R)/{x}), and C(M∗(R)/ RN(x)) = Min(−I(M∗(R)/RN(x))),
where−I(M∗(R) /RN(x)) = 2U−RN(x)− I(M∗(R)/RN(x)). Therefore, Min(−I(
M∗(R)/RN(x)))⊆Min(−I(M∗(R)/{x})), i.e., C(M∗(R)/RN(x)) ⊆ C(M∗(R)/
{x}). This completes the proof.

In the following proposition, we study a condition under which these two matroids
have the same circuits.

Proposition 12. Let R be an equivalence relation on U . For all x ∈ U , C(M∗(R)/
{x}\RN(x)) = C(M∗(R)/RN(x)).

Proof. According to Proposition 7, I(M∗(R)/{x}) = I(M∗(R)/RN(x)). Therefore,
for all I ∈ I(M∗(R)/{x}), I ⊆ U−RN(x). Hence I(M∗(R)/{x}) = I(M∗(R)/{x}\
RN(x)). According to Definition 5, C(M∗(R)/{x}\RN(x)) = Min(−I(M∗(R)/{x
}\RN(x))), where−I(M∗(R)/{x}\RN(x)) = 2U−RN(x)−I(M∗(R)/{x}\RN(x))
= 2U−RN(x) − I(M∗(R)/{x}), and C(M∗(R)/RN(x)) = Min(−I(M∗(R)/RN(x
))), where−I(M∗(R)/RN(x)) = 2U−RN(x)−I(M∗(R)/RN(x)). Hence, C(M∗(R)
/{x}\RN(x)) = C(M∗(R)/RN(x)). This completes the proof.

4.2 Complicated Contraction to the Dual of the Matroid

This subsection considers an issue when we apply a sequence of contractions to the
dual matroid like the above subsection, can we get the same relationships? In order to
solve this problem, the following lemma is presented.

Lemma 3. ([9]) Let M = (U, I) be a matroid, X1, X2 ⊆ U and X1

⋂
X2 = ∅. Then

(M/X1)/X2 = M/(X1

⋃
X2) = (M/X2)/X1.

Therefore, the above problem is the relationships between some characteristics of
M∗(R)/X and M∗(R)/R∗(X) for all X ⊆ U . First of all, M∗(R)/X and M∗(R)/R∗

(X) have the same family of independent sets.

Theorem 1. Let R be an equivalence relation on U . For all X ⊆ U , I(M∗(R)/X) =
I(M∗(R)/R∗(X)).

Proof. According to Corollary 2 and Definition 8, I(M∗(R)|X) = {I ⊆ X : ∀x ∈
X, |RN(x)

⋂
I| ≤ 1}. According to Definition 6, there exists BX ∈ B(M∗(R)|X)

such that for any x ∈ X , |BX

⋂
RN(x)| = 1. Therefore, BX ∈ B(M∗(R)|R∗(X)).

Thus I(M∗(R)/X) = {I ⊆ U − X : I
⋃

BX ∈ I∗(R)}, I(M∗(R)/R∗(X)) =
{I ⊆ U − R∗(X) : I

⋃
BX ∈ I∗(R)}. For all Y ⊆ R∗(X) − X and Y �= ∅,

Y
⋃

BX /∈ I∗(R). Thus I(M∗(R)/X) = {I ⊆ U −X : I
⋃

BX ∈ I∗(R)} = {I ⊆
U − R∗(X) : I

⋃
BX ∈ I∗(R)}. Hence I(M∗(R)/X) = I(M∗(R)/R∗(X)). This

completes the proof.
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The following theorem shows the above theorem from the viewpoint of deletion.

Theorem 2. Let R be an equivalence relation on U . For all X ⊆ U , I(M∗(R)/X) =
I(M∗(R)\R∗(X)).

Proof. According to Proposition 7, we need to prove only I(M∗(R)\R∗(X)) = I(M∗(
R)/R∗(X)). According to Definition 8, I(M∗(R)\R∗(X)) = {I ⊆ U −R∗(X) : I ∈
I∗(R)}. Suppose BX ∈ B(M∗(R)|R∗(X)), I(M∗(R)/R∗(X)) = {I ⊆ U −R∗(X) :
I
⋃

BX ∈ I∗(R)}. For any I ∈ I(M∗(R)\R∗(X)), I
⋃

BX ∈ I∗(R). In fact, if there
exists I ∈ I(M∗(R)\R∗(X)) such that I

⋃
BX /∈ I∗(R), then there exist x ∈ I ,

y ∈ BX and x �= y such that x ∈ RN(y), i.e., I
⋂

R∗(X) �= ∅, which is contradictory
with I ⊆ U − R∗(X). Therefore, I(M∗(R)\R∗(X)) ⊆ I(M∗(R)/R∗(X)). Con-
versely, according to (I2) of Definition 3, I(M∗(R)/R∗(X)) ⊆ I(M∗(R)\R∗(X)).
Hence I(M∗(R)\R∗(X)) = I(M∗(R)/R∗(X)). This completes the proof.

Note that M∗(R)/R∗(X) = M∗(R)\R∗(X) for all X ⊆ U . Therefore, M∗(R)/
R∗(X) can be replaced by M∗(R)\R∗(X) in this subsection. The relationships be-
tween another characteristics of M∗(R)/X and M∗(R)/R∗(X), which are bases, rank
functions and circuits, are investigated in Proposition 13, Theorem 3 and Theorem 4.

Proposition 13. Let R be an equivalence relation on U . For all X ⊆ U , B(M∗(R)/X)
= B(M∗(R)/R∗(X)).

Proof. According to Definition 6, B(M∗(R)/X) = Max(I(M∗(R)/X)), and B(M∗(
R)/R∗(X)) = Max(I(M∗(R)/R∗(X))). According to Theorem 1, I(M∗(R)/X) =
I(M∗(R)/R∗(X)). Thus B(M∗(R)/X) = B(M∗(R)/R∗(X)). This completes the
proof.

Theorem 3. Let R be an equivalence relation on U . For all X ⊆ U and Y ⊆ U −
R∗(X), rM∗(R)/X(Y ) = rM∗(R)/R∗(X)(Y ).

Proof. For all Y ⊆ U−R∗(X), Y ⊆ U−X . According to Lemma 2, rM∗(R)/X(Y ) =
rM∗(R)(X

⋃
Y ) − rM∗(R)(X) and rM∗(R)/R∗(X)(Y ) = rM∗(R)(R

∗(X)
⋃

Y )
− rM∗(R)(R

∗(X)). According to Proposition 6, rM∗(R)(X) = rM∗(R)(R
∗(X)). So,

we need to prove only rM∗(R)(X
⋃

Y ) = rM∗(R)(R
∗(X)

⋃
Y ). For all y ∈ (R∗(X)⋃

Y )− (X
⋃

Y ) = R∗(X)− (X
⋃

Y ) = R∗(X)−X , rM∗(R)(X
⋃

Y ) = rM∗(R)(X⋃
Y
⋃{y}). According to Lemma 1, rM∗(R)(X

⋃
Y ) = rM∗(R)((X

⋃
Y )
⋃

(R∗(X)⋃
Y )) = rM∗(R)(R

∗(X)
⋃

Y ). This completes the proof.

Theorem 4. Let R be an equivalence relation on U . For all X ∈ U , C(M∗(R)/
R∗(X)) ⊆ C(M∗(R)/X).

Proof. According to Theorem 1, I(M∗(R)/X) = I(M∗(R)/R∗(X)). According to
Definition 5, C(M∗(R)/X) = Min(−I(M∗(R)/X)), where−I(M∗(R)/X) = 2U−X

−I(M∗(R)/X), and C(M∗(R)/R∗(X)) = Min(−I(M∗(R)/R∗(X))), where −I(
M∗(R) /RN( x)) = 2U−(R∗(X))−I(R∗(X)). Therefore, Min(−I(M∗(R)/R∗(X)))
⊆ Min(−I(M∗(R)/X)), i.e., C(M∗(R)/R∗(X)) ⊆ C(M∗(R)/X). This completes
the proof.
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The following proposition presents a condition under which M∗(R)/R∗(X) and
M∗(R)/X have the same circuits.

Proposition 14. Let R be an equivalence relation on U . For allX ⊆ U , C(M∗(R)/X\
R∗(X)) = C(M∗(R)/R∗(X)).

Proof. According to Theorem 1, I(M∗(R)/X) = I(M∗(R)/R∗(X)). Therefore, for
all I ∈ I(M∗(R)/X), I ⊆ U−R∗(X). Hence I(M∗(R)/X) = I(M∗(R)/X\R∗(X)).
According to Definition 5, C(M∗(R)/X\R∗(X)) = Min(−I(M∗(R)/X\R∗(X))),
where−I(M∗(R)/X\R∗(X)) = 2U−R∗(X) − I(M∗(R)/X\R∗(X)) = 2U−R∗(X) −
I(M∗(R)/X), and C(M∗(R)/R∗(X)) = Min(−I(M∗(R)/R∗(X))), where −I(M∗

(R)/R∗(X)) = 2U−R∗(X) − I(M∗(R)/R∗(X)). Hence C(M∗(R)/X\R∗(X)) =
C(M∗(R)/R∗(X)). This completes the proof.

5 Conclusions

In this paper, we establish a matroid through the lower approximation operator for any
Pawlak’s approximation space. We investigate the dual of the matroid and its charac-
teristics which are independent sets, bases and the rank function. We study the rela-
tionships between the contractions of the dual matroid to two subsets, which are the
complement of a single point set and the complement of the equivalence class of this
point. Moreover, these relationships are extended to general cases. We will do more
works in combining rough sets and matroids.
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Abstract. When arbitrary sets are approximated by more structured sets, it may
not be possible to obtain an exact approximation that is equivalent to a given
set. A proposal is presented for a ‘metric’ approach to Rough Sets. This includes
a definition of the ‘optimal’ or best approximation with respect to a measure
of similarity, and an algorithm to find it using the Jaccard Index. A definition
of consistency also allows the algorithm to work for a larger class of similarity
measures. Several consequences of these definitions are also presented.

1 Introduction and Motivation

It appears that the concept of approximation has two different intuitions in pure math-
ematics and science in general. The first one stems from the fact that often, empirical
numerical data have errors, so in reality we seldom have the value x (unless the mea-
surements are expressible in integers) but usually some interval (x− ε,x + ε), i.e. the
lower and upper approximations. Rough Sets [1,2] exploit this idea for general sets.

The second intuition can be illustrated by the linear least squares approximation
of points in the two dimensional plane (credited to C. F. Gauss, 1795, c.f. [3]). Here
we know or assume that the points should be on a straight line and we are trying to
find the line that fits the data best. However, this is not the case of an upper, or lower
approximation in the sense of Rough Sets. Even if we replace a solution f (x) = ax + b
by two lines f1(x) = ax + b− δ and f2(x) = ax + b + δ, where δ is a standard error
(c.f. [3]), there is no guarantee that any point resides between f1(x) and f2(x). This
approach assumes that there is a well defined concept of similarity (or distance) and
some techniques for finding maximal similarity (minimal distance) between entities
and their approximations.

In this paper we will propose a ‘metric’ or standard of measurement for comparison
within the framework of Rough Sets [1]. We start with an introduction to terminology,
and then present axioms which should hold for any similarity function. We continue
by providing four similarity measures for arbitrary sets, and a generalized definition of
what it means for a set to be an optimal approximation (with respect to a given measure).
Later we show properties of the classical Jaccard similarity index [4] and provide an
efficient greedy algorithm using the index which yields an optimal approximation. We
also recognize that in some situations, different similarity functions will be equivalent
in showing which of two sets is a better approximation. If two indexes demonstrate
this equivalence in all cases we will call them consistent. Based on their consistency,
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we demonstrate that the algorithm we derive using the Jaccard similarity index, can be
used for the Dice-Sørenson similarity index as well [5,6].

2 Rough Sets and Borders

In this chapter we introduce, review, and also adapt for our purposes, some general ideas
that are crucial to our approach.

The principles of Rough Sets [1,2] can be formulated as follows.
Let U be a finite and non-empty universe of elements, and let E ⊆ U ×U be an

equivalence relation. Recall that for each E ⊆U ×U , [x]E will denote the equivalence
class of E containing x, and U/E will denote the set of all equivalence classes of E .

The elements of Comp = U/E are called elementary sets or components and they
are interpreted as basic observable, measurable, or definable sets. We will denote the
elements of Comp, i.e. equivalence classes of E , by bold symbols, and write for example
x ∈ B⊆ Comp.

The pair (U,E) is referred to as a Pawlak approximation space.
A non-empty set X ⊆U is approximated by two subsets of U ; A(X) and A(X), called

the lower and upper approximations of X respectively, and are defined as follows:

Definition 1 ([1,2]). For each X ⊆U,

1. A(X) =
⋃{x | x ∈ Comp∧x⊆ X},

2. A(X) =
⋃{x | x ∈ Comp∧x∩X �= /0}. �

Clearly A(X) ⊆ X ⊆ A(X). There are many versions and many extensions of this
basic model, see for example [7,8,9,10], as well as many various applications (cf.
[11,12,9,13]). Even robotic locomotion can utilize this notion to ensure it remains
within bounds, and could also use measures of similarity to move based on the best/opti-
mal available (representable) approximation of its surroundings [14].

A set A⊆U is definable (or exact) [2] if it is a union of some equivalence classes of
the equivalence relation E . Let D denote the family of all definable sets defined by the
space (U,E). Formally

A ∈ D ⇐⇒ ∃x1, . . . ,xn ⊆ Comp. A = x1∪ . . .∪xn.

We would like to point out the duality of Comp and D. Each set of components
C ⊆ Comp uniquely defines the definable set dset(C) ∈ D, as dset(C) =

⋃
x∈C x, and

each definable set A ∈ D uniquely defines the set of components comp(A)⊆ Comp, by
comp(A) = {x | x⊆ A}.

Moreover, for each set of components C ⊆ Comp we have comp(dset(C)) = C, and
for each definable set A ∈ D we have dset(comp(A)) = A.

Clearly every lower and upper approximation is a definable set, i.e. A(X) ∈ D and
A(X) ∈ D for every X ⊆U . Furthermore, all definable sets are equal to their lower and
upper approximations, as the below corollary shows.

Corollary 1. For every X ⊆U, X ∈D ⇐⇒ A(X) = A(X) = X . �
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Since the definable sets in the area between the upper and lower approximations will
play an important role in our model, we need to precisely define this area.

Definition 2. For every X ⊆U, we define the set of components B(X)⊆ Comp called
the border of X, and the set of border sets of X called B(X)⊆ D, as follows:

1. x ∈B(X) ⇐⇒ x ∈ comp(A(X))\ comp(A(X)),
2. A ∈ B(X) ⇐⇒ A⊆ A(X)\A(X)∧A ∈ D. �

The corollary below describes basic properties of borders and border sets.

Corollary 2. For every X ⊆U,

1. dset(B(X)) = A(X)\A(X) ∈ B(X) and B(X)⊆ B(X),
2. A ∈ B(X) ⇐⇒ ∃x1, . . . ,xn ⊆B(X). A = x1∪ . . .∪xn,
3. if A ∈ B(X) then A∩X �= /0 and A\X �= /0. �

3 Similarity Measures and Optimal Approximations

The model that will be proposed in this paper requires the concept of some measure
of similarity between two sets. It is important to point out that we need a similarity
measure between sets, but not between elements (as for instance in [13]), and that this
measure does not assume any specific interpretation of sets (as for instance in [12]).
Under the present context, we assume that all elements are of equal importance, and
their specific properties do not influence the similarity measure between sets.

Suppose that we have a (total) function sim : 2U×2U → [0,1] that measures similarity
between sets. We assume that the function sim satisfies the following five, intuitive
axioms. Namely, for all sets A,B, we have:

S1 : sim(A,B) = 1 ⇐⇒ A = B,
S2 : sim(A,B) = sim(B,A),
S3 : sim(A,B) = 0 ⇐⇒ A∩B = /0,
S4 : if a ∈ B\A then sim(A,B) < sim(A∪{a},B),
S5 : if a /∈ A∪B and A∩B �= /0 then sim(A,B) > sim(A∪{a},B)

Depending on the area of application, similarity functions may have various proper-
ties, however all known versions seem to satisfy the above five axioms, or their equiva-
lent formulation (c.f. [15,16]). The axioms S1–S3 are often expressed explicitly, some-
times enriched with additional axioms (c.f. [15]), while the axioms S4 and S5, although
satisfied in most versions, are probably formulated explicitly for the first time.

The first axiom ensures that if and only if a similarity measure returns one, the two
sets are equal. The second axiom is the reflexivity of similarity measures, meaning that
one set is the same distance from a second set, as the second set is from the first, and
the third axiom states that if two sets do not share any elements, their similarity is zero,
and vice versa.

The axioms S4 and S5 deal with changing sizes of sets. We will call them mono-
tonicity axioms. Axiom S4 dictates that if we add part of B to A, the result is closer to
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B than A alone, while axiom S5 reduces to the notion that if we add to A some new
element not in B, then the result is more distant from B than A alone. The axiom S5 is
only applicable when the sets being compared have at least one common element, i.e.
sim(A,B) > 0.

We will also say that a measure of similarity sim is metrical (i.e. it is a suitable tool
to evaluate distance between two sets), if the function diff (A,B) = 1− sim(A,B) is a
proper metric which holds for all pairs of rough sets in our universe [17].

The first similarity measure was proposed in 1901 by P. Jaccard [4]. It is still one of
the most popular, however the following similarity measures are also prominent in the
literature at this point in time:

– Jaccard index [4]: simJ(X ,Y ) = |X∩Y |
|X∪Y | ,

– Dice-Sørensen index [5,6]: simDS(X ,Y ) = 2|X∩Y |
|X |+|Y | ,

– Tversky index [16]: sima,b
T (X ,Y ) = |X∩Y |

|X∩Y |+a|X\Y |+b|Y\X | ,

where a,b ≥ 0 are parameters. Note that for a = b = 1, sima,b
T (X ,Y ) = simJ(X ,Y )

and for a = b = 0.5, sima,b
T (X ,Y ) = simDS(X ,Y ).

– Fuzzy Sets index [15]: simfs(X ,Y ) = |X∩Y |
max(|X |,|Y |) .

All the similarity indexes above have values between 0 and 1 and it can be shown that
they all satisfy the similarity axioms S1–S5. The advantage of the Jaccard index is that
it is metrical (i.e. diffJ(X ,Y ) = 1− simJ(X ,Y ) is a proper metric), which is not true for

the Dice-Sørensen and Fuzzy Sets indexes. Also note that diffJ(X ,Y ) = |(X\Y )∪(Y\X)|
|X∪Y | ,

which appears to have a natural interpretation, while diffDS(X ,Y ) and difffs(X ,Y ) look
rather artificial. The Tversky index looks quite flexible, however, this might make it
difficult in practice to provide specific values of a and b (different from 1 or 0.5) with
any justification. Other techniques could, however, be used to either determine them
outright, or optimize them, possibly through some learning process.

We can now provide our general definition of optimal approximation.

Definition 3. For every set X ⊆U, a definable set O ∈ D is an optimal approximation
of X (w.r.t. a given similarity measure sim) if and only if:

sim(X ,O) = max
A∈D

(sim(X ,A))

The set of all optimal approximations of X will be denoted by Optsim(X). �
A specific optimal approximation depends on the precise definition of the similarity

measure sim. If sim1 �= sim2 then clearly Optsim1
(X) might differ from Optsim2

(X) for
some X ⊆U .

Axioms S4 and S5 imply that all optimal approximations reside between lower and
upper approximations (inclusive), for all similarity measures satisfying axioms S1–S5.

Proposition 1. For every set X ⊆U, and every O ∈Optsim(X), we have

A(X)⊆ O⊆ A(X)
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Proof. Suppose that C = A(X) \O �= /0. Since C ⊆ X , then by axiom S4, sim(O,X) <
sim(O∪C,X), so O must not be optimal. Now suppose that C = O \A(X) �= /0. By
axiom S5, sim(O\C,X) > sim(O,X), so O must not be optimal again. �

One of the consequences of Proposition 1 is that any optimal approximation of X , is
the union of the lower approximation of X and some element A ∈ {B(X)∪ /0}.

Definition 4. Let X ⊆U, and O ∈ D. We say that O is an intermediate approximation
of X, if

A(X)⊆ O⊆ A(X)

The set of all intermediate approximations of X will be denoted by IAsim(X). �

From Proposition 1 we have:

Corollary 3. For each set X ⊆U, Optsim(X) ⊆ IAsim(X) and if O ∈ Optsim(X) then
there exist some A,B ∈ {B(X)∪ /0} such that O = A(X)∪A = A(X)\B. �

These are properties of optimal approximations. The set of them must be a portion
of the intermediate approximations. Any optimal approximation must be the union of
the lower approximation with some definable set which is in the upper but not the lower
approximation (or is the empty set itself). It must also be possible to represent any op-
timal approximation by the upper approximation with some border set removed from it
(or the empty set if the approximation is optimal).

The notion of optimal approximation also introduces some structure to the current
available field of similarity measures, as certain different similarity indexes may gener-
ate the same optimal approximations.

Definition 5. We say that two similarity indexes sim1 and sim2 are consistent if for all
sets A,B,C ⊆U,

sim1(A,B) < sim1(A,C) ⇐⇒ sim2(A,B) < sim2(A,C). �

This clearly leads to the following result.

Corollary 4. If sim1 and sim2 are consistent then for each X ⊆U,

1. Optsim1
(X) = Optsim2

(X).
2. sim1 satisfies the axioms S4 and S5 if and only if sim2 satisfies them. �

This concept will allow us to extend results and algorithms designed for specific sim-
ilarity indexes, to larger classes of consistent indexes.

So far we have not used any specific similarity measure. We only assumed that the
function sim satisfies the axioms S1–S5. However to show more specific and detailed
properties of optimal approximations, especially an efficient algorithm to find one, we
need to choose a specific similarity measure.
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4 Optimal Approximations with Jaccard Similarity Measure

In what follows we assume that similarity is defined as the Jaccard index, i.e.
simJ(X ,Y ) = |X∩Y |

|X∪Y | , which seems suitable since it is the only popular index which is
metrical. It may also seem more intuitive to use the size of the union of two sets–a stan-
dard set operator–than to use find the sum of the magnitudes of each set (thus counting
the elements in the intersection twice, as in the Dice-Sørensen index), or to take only
the larger set of the two (disregarding the size of the smaller set, as in the Fuzzy Set
index). Though, the difficulty of measurement and calculation for Dice-Sørensen index
is indeed identical since |X |+ |Y |= |X ∩Y |+ |X ∪Y |. Also note that in this section we
write just Opt(X) instead of OptsimJ

(X), and IA(X) instead of IAsimJ (X).

First we show that the Jaccard index really satisfies the axioms S1–S5, so the property
specified by Proposition 1 and Definition 4 is satisfied.

Proposition 2. The function simJ(X ,Y ) = |X∩Y |
|X∪Y | satisfies the axioms S1–S5.

Proof. Only S4 and S5 are not immediately obvious. If a∈B\A, then a /∈A∩B, so |(A∪
{a})∩B|= |A∩B|+1. On the other hand A∪B = (A∪{a})∪B, so simJ(A,B) = |A∩B|

|A∪B| <
|A∩B|+1
|A∪B| = simJ(A∪{a},B). Hence, S4 holds, and a similar process can be performed to

show S5 holds as well. �
Now, suppose that O ∈ IA(X) is an intermediate approximation of X , and x ∈B(X)

is an element of the border of X which has no common element with O, i.e. O∩x = /0.
To determine which definable set is a better approximation of X (more similar to X), O
or O∪x, we can use the lemma below.

Lemma 1. Let X ⊆U, O ∈ IA(X), A,B ∈ B(X), A∩O = /0, and B⊆O. Then

1. simJ(X ,O∪A)≥ simJ(X ,O) ⇐⇒ |A∩X |
|A\X | ≥ |X∩O|

|X∪O|
2. simJ(X ,O\B)≤ simJ(X ,O) ⇐⇒ |B∩X |

|B\X | ≥ |X∩O|
|X∪O|

Proof. (1) Let |X ∩O| = n, |X ∪O| = m, |A \X | = l, and |A∩X | = k. By Corollary
2(3), n,m, l,k are all bigger than zero.
We have simJ(X ,O) = |X∩O|

|X∪O| and simJ(X ,O∪A) = |X∩(O∪A)|
|X∪(O∪A)| . Because A∩O = /0,

|X ∩ (O∪A)|= |X ∩O|+ |X∩A|= n+k and |X ∪ (O∪A)|= |X ∪O|+ |A\X |= m+ l.

Hence, simJ(X ,O∪A)≥ simJ(X ,O) ⇐⇒ n+k
m+l ≥ n

m ⇐⇒ k
l ≥ n

m ⇐⇒ |A∩X |
|A\X | ≥ |X∩O|

|X∪O| .
(2) Let |X ∩O| = n, |X ∪O| = m, |B \X | = l, and |B∩X | = k. By Corollary 2(3),
n,m, l,k are all bigger than zero.
We have here simJ(X ,O) = |X∩O|

|X∪O| and simJ(X ,O\B) = |X∩(O\B)|
|X∪(O\B)| . Because B⊆ O,

|X ∩ (O\B)|= |X ∩O|− |X ∩B|= n− k and |X ∪ (O\B)|= |X ∪O|− |B\X |= m− l.

Thus, simJ(X ,O\B)≤ simJ(X ,O) ⇐⇒ n−k
m−l ≤ n

m ⇐⇒ k
l ≥ n

m ⇐⇒ |B∩X |
|B\X | ≥ |X∩O|

|X∪O| . �

Clearly the above lemma also holds for A = x ∈B(X). Intuitively, if more than half of
the elements of x also belong to X , or equivalently, if more elements of x belong to X
than do not, the rough set O∪x should approximate X better than O. The results below
support this intuition.
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Corollary 5 (‘Majority Rule’). Let X ⊆ U, O ∈ IA(X), x ∈ B(X), and x∩O = /0.

Then: |x∩X | ≥ |x \X | ⇐⇒ |x∩X |
|x| ≥ 1

2 =⇒ simJ(X ,O∪x)≥ simJ(X ,O).

Proof. Clearly |x∩X | ≥ |x \X | ⇐⇒ |x∩X
|x\X | ≥ 1. But |X∩O||X∪O| ≤ 1, so by Lemma 1,

simJ(X ,O∪x)≥ simJ(X ,O). �

However, the reciprocal of Corollary 5 does not hold. It may happen that |x∩X |
|x| < 1

2 ,
but the rough set O∪x still approximates X better than O.

We know from Proposition 1 that if O ∈ Opt(X), then either O = A(X), or O =
A(X)∪ x1 ∪ . . .∪ xk, for some k ≥ 1, where each xi ∈ B(X), i = 1, . . . ,k. Lemma 1
allows us to explicitly define these xi ∈B(X) components.

Theorem 1. For every X ⊆U, the following two statements are equivalent:

1. O ∈Opt(X)

2. O ∈ IA(X)∧
(
∀x ∈B(X). x⊆ O ⇐⇒ |x∩X |

|x\X | ≥ |X∩O|
|X∪O| = simJ(X ,O)

)
.

Proof. (1)⇒(2) By Proposition 1, O ∈ IA(X). Let x∈B(X) and x⊆O. Suppose that
|x∩X |
|x\X | <

|X∩O|
|X∪O| . Then by Lemma 1, simJ(X ,O\ x) > simJ(X ,O), so O is not optimal.

Let |x∩X |
|x\X | ≥ |X∩O|

|X∪O| . Suppose that x∈B(X) and x∩O= /0. By Corollary 2(3), |x∩X | �= 0,
so let a ∈ x∩X . Since x∩O = /0, then a ∈ X \O. Then by Proposition 2 and axiom S4,
simJ(X ,O∪ {a}) > simJ(X ,O), so O is not optimal. Note that Lemma 1 gives only
simJ(X ,O∪x)≥ simJ(X ,O) which is not strong enough.
(2)⇒(1) Suppose O satisfies (2) but O /∈ Opt(X). Let Q ∈ Opt(X). Hence, by the
proof (1)⇒(2), Q satisfies (2). We have to consider two cases Q\O �= /0 and O\Q �= /0.

(Case 1) Let Q \O �= /0 and let y ∈B(X) be such that y ⊆ Q \O. Since Q satis-
fies (2), we have |y∩X |

|y\X | ≥ |X∩Q|
|X∪Q| = simJ(X ,Q), and because Q ∈ Opt(X), simJ(X ,Q) ≥

simJ(X ,O). But this means that |y∩X |
|y\X | ≥ |X∩O|

|X∪O| . However O also satisfies (2) and y ∈
B(X), so by (2), y⊆ O, a contradiction. Hence Q\O = /0.

(Case 2) Let O \Q = {y1, . . . ,yp} ⊆ B(X). Let |X ∩O| = n, |X ∪O| = m, and
|yi \X | = li, |yi ∩X | = ki, for i = 1, . . . , p. Since O satisfies (2), for each i = 1, . . . , p,

we have |yi∩X |
|yi\X | ≥

|X∩O|
|X∪O| , or equivalently ki

li
≥ n

m . Hence (k1 + . . .+kp)m≥ (l1 + . . .+ lp)n.

On the other hand, simJ(X ,Q) = simJ(X ,O\(y1∪. . .∪yp))> simJ(X ,O), so by Lemma

1, |(y1∪...∪yp)∩X |
|(y1∪...∪yp)\X | <

|X∩O|
|X∪O| . Because yi are components, we have yi∩y j = /0 when i �= j.

Thus |(y1∪ . . .∪yp)∩X |= |y1∩X |+ . . .+ |yp∩X |= k1 + . . .+ kp, and

|(y1∪ . . .∪yp)\X |= |y1\X |+ . . .+ |yp\X |= l1 + . . .+ lp. This means |(y1∪...∪yp)∩X |
|(y1∪...∪yp)\X | <

|X∩O|
|X∪O| ⇐⇒

k1+...+kp
l1+...+lp

< n
m , which yields (k1 + . . .+ kp)m < (l1 + . . .+ lp)n, a contradic-

tion, i.e. O\Q = /0. Thus, Q\O = /0 and O\Q = /0, i.e., Q = O, so O ∈Opt(X). �

Theorem 1 gives the necessary and sufficient conditions for optimal approximations
(with respect to the Jaccard index) of X in terms of the elements of B(X). We will use
it to build an efficient algorithm for finding optimal approximations.

• Let X ⊆U . For every element x ∈B(X), we define an index α(x) = |x∩X |
|x\X | .
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By Theorem 1, the value of α(x) will indicate if x ∈ B(X) is a part of an optimal
approximation of X , or not. Since B(X) is finite, its elements can be enumerated by
natural numbers 1, . . . , |B(X)|.
• Assume that r = |B(X)|, B(X) = {x1, . . . ,xr} and also i≤ j ⇐⇒ α(xi)≥ α(x j).

In other words, we sort B(X) by decreasing values of α(x). We will use this sorting to
build a special sequence of intermediate approximations.

Let O0,O1, . . . ,Or ∈ IA(X) be the sequence of intermediate approximations of X
defined for i = 0, . . . ,r− 1 as follows: O0 = A(X) and

Oi+1 =

{
Oi∪xi+1 if simJ(X ,Oi∪xi+1)≥ simJ(X ,Oi)
Oi otherwise.

We claim that at least one of these Oi’s is an optimal approximation. The following
technical result is needed to prove this claim.

Lemma 2. Let k1, . . . ,kn and l1, . . . , ln be positive numbers such that k1
l1
≥ ki

li
for

i = 1, . . . ,n. Then k1
l1
≥ k1+...+kn

l1+...+ln
.

Proof. k1
l1
≥ ki

li
implies k1li ≥ kil1 for i = 1, . . . ,n. Hence k1l1 +k1l2 + . . .+k1ln ≥ k1l1 +

k2l1 + . . .+ knl1 ⇐⇒ k1
l1
≥ k1+...+kn

l1+...+ln
, which ends the proof. �

The essential properties of the sequenceO0,O1, . . . ,Or are provided by the following
theorem.

Theorem 2. For every X ⊆U, we set r = |B(X)|, and we have

1. simJ(X ,Oi+1)≥ simJ(X ,Oi), for i = 0, . . . ,r− 1.
2. If α(x1)≤ simJ(X ,A(X)) then A(X) ∈Opt(X).
3. If α(xr)≥ simJ(X ,A(X)) then A(X) ∈Opt(X).
4. If simJ(X ,Op)≤ α(xp) and simJ(X ,Op+1) > α(xp+1), then Op ∈Opt(X), for p =

1, . . . ,r− 1.
5. If Op ∈Opt(X), then Oi = Op for all i = p + 1, . . . ,r. In particular Or ∈Opt(X).
6. O ∈Opt(X) =⇒ O⊆ Op, where p is the smallest one from (5).

Proof. (1) Immediately from Lemma 1 and the definition of the sequence O0, . . . ,Or.
(2) From Proposition 1 we have that if O ∈ Opt(X), then either O = A(X) or O =
A(X)∪ xi1 ∪ . . .∪ xis for some i j ∈ {1, . . . ,r}. Since α(x1) ≥ α(xi j ) for j = 1, . . . ,s

by Lemma 2, α(x1) ≥ |(xi1∪...∪xis )∩X |
|(xi1∪...∪xis )\X | . Hence simJ(X ,A(X)) ≥ |(xi1∪...∪xis )∩X |

|(xi1∪...∪xis )\X | , so by

Lemma 1, simJ(X ,A(X))≥ simJ(X ,O), which means A(X) ∈Opt(X).
(3) Note that α(xr) ≥ simJ(X ,A(X)) implies α(xi) ≥ simJ(X ,A(X)) for all i = 1,
. . . ,r. Hence by Theorem 1, A(X) ∈Opt(X).
(4) and (5) Since simJ(X ,O0)≤ simJ(X ,O1)≤ . . .≤ simJ(X ,Or) and
α(x1) ≥ α(x2) ≥ . . . ≥ α(xr), then Oi = Op for all i = p + 1, . . . ,r. Moreover Op =
A(X)∪x1∪ . . .∪xp satisfies (2) of Theorem 1, so Op ∈Opt(X).
(6) We have to show that if O = A(X)∪A ∈ Opt(X), where A ∈ B(X), then A ⊆
x1∪ . . .∪ xp. Suppose x j ⊆ A and j > p. Then α(x j) < simJ(X ,Op) = simJ(X ,O), so
O does not satisfy (2) of Theorem 1. Hence A⊆ x1∪ . . .∪xp. �
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Point (1) of Theorem 2 states that Oi+1 is a better (or equal) approximation of X than
Oi, (2) and (3) characterize the case when either A(X) or A(X) are optimal approxima-
tions, while (4) shows conditions when some Op is an optimal approximation. Point (5)
states that once Op is found to be optimal, we may stop calculations as the remaining
Op+i are the same as Op, and the last point, (6) indicates that Op is the greatest optimal
approximation.

Algorithm 1 (Finding the Greatest Optimal Approximation) Let X ⊆U.

1. Construct A(X), A(X), and B(X). Assume r = |B(X)|.
2. For each x ∈B(X), calculate α(x) = |x∩X |

|x\X | .
3. Order α(x) in decreasing order and number the elements of B(X) by this order, so

B(X) = {x1, . . . ,xr} and i≤ j ⇐⇒ α(xi)≥ α(x j).
4. If α(x1)≤ simJ(X ,A(X)) then O = A(X).
5. If α(xr)≥ simJ(X ,A(X)) then O = A(X).
6. Calculate Oi from i = 0 until simJ(X ,Op+1) > α(xp+1), for p = 0, . . . ,r− 1, and

set O = Op.

From Theorem 2 we have that O is the greatest optimal approximation, i.e. O∈Opt(X),
and for all O′ ∈Opt(X), O′ ⊆ O. We also know that simJ(X ,O′) = simJ(X ,O) �

This greedy algorithm (because of the choice of α(x), c.f. [18]) has a complexity
of C + O(rlogr), where C is the complexity of constructing A(X), A(X), and B(X).
Algorithms with C = O(|U |2) can be found for example in [12].

The most crucial line of the algorithm, line (6), runs in O(r), but line (3) involves
sorting which has complexity O(rlogr). Since r < |U |, the total complexity is O(|U |2).

Algorithm 1 gives us the greatest optimal approximation O, however the whole set
Opt(X) can easily be derived from O just by subtracting appropriate elements of B(X).

Note that because of Corollary 4(1), Algorithm 1 is also effective for any similarity
measure sim that is consistent with the Jaccard index simJ .

Let us now consider a simple example.

Example 1. We define our universe of elements U = {h1, . . . ,h12} to be an assortment
of houses, each with a price or value associated with it, as shown in Table 1. Based on
its price, each house belongs to a representative equivalence class as demonstrated in
the second table. Our classes will be defined by each range of $20,000, starting from
$280,000 and ending with $400,000 (empty classes are excluded as /0 /∈ Comp). We
could say that all of the houses in each class are roughly equivalent in price.

Suppose we wish to select a subset which we are interested in. If houses H =
{h1,h3,h8,h9} meet our requirements we could say that we have the financing avail-
able for each of the equivalence classes those houses belong to. Clearly A(H) = e4 and
A(H) = e1∪e2∪e3∪e4. Moreover,B(H) = comp(A(H))\comp(A(H)) = {e1,e2,e3},
and IA(H) = {A(H),A1,A2,A3,A4,A5,A6,A(H)} where A1 = e1 ∪ e4, A2 = e2 ∪ e4,
A3 = e3 ∪ e4, A4 = e1∪ e2∪ e4, A5 = e1 ∪ e3∪ e4, and A6 = e2∪ e3∪ e4. We also have

simJ(H,A(H)) = |H∩A(H)|
|H∪A(H)| = 1

4 , simJ(H,A(H)) = |H∩A(H)|
|H∪A(H)| = 2

5 , and simJ(H,A1) = 2
5 ,
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Table 1. Pawlak’s space of houses and their prices

House Price ($) Equiv. class Class Elements Range ($)
h1 289,000 e1 e1 h1,h6 280-299,999
h2 389,000 e5 e2 h3,h10,h11,h12 300-319,999
h3 319,000 e2 e3 h4,h7,h8 320-339,999
h4 333,000 e3 e4 h9 340-359,999
h5 388,000 e5 360-379,999
h6 284,000 e1 e5 h2,h5 380-400,000
h7 339,000 e3
h8 336,000 e3
h9 345,000 e4
h10 311,000 e2
h11 319,000 e2
h12 312,000 e2

simJ(H,A2) = 2
7 , simJ(H,A3) = 1

3 , simJ(H,A4) = 3
8 , simJ(H,A5) = 3

7 , simJ(H,A6) = 2
7 .

From all these Jaccard indexes, 3
7 is the biggest number, so Opt(H) = {A5} = {e1 ∪

e3∪ e4}.
What about our algorithm? We have B(H) = {e1,e2,e3}, and α(e1) = 1, α(e2) = 1

3 ,
and α(e3) = 1

2 . Hence α(e1) > α(e3) > α(e2), so we rename the elements of B(H) as
e1 = x1, e3 = x2, e2 = x3. Clearly α(x1) = 1 > simJ(H,A(H)) = 1

4 and α(x3) = 1
3 <

simJ(H,A(H)) = 2
5 , so neither step (4) nor (5) hold, so we go to the step (6), which

is the most involved. We begin by setting O0 = A(H) = e4. Since simJ(H,O0) = 1
4 <

simJ(H,O0 ∪ x1) = 2
5 , we have O1 = O0 ∪ x1 = e1 ∪ e4, and since simJ(H,O1) = 2

5 <

simJ(H,O1 ∪ x2) = 3
7 , we have O2 = O1 ∪ x2 = e1 ∪ e3 ∪ e4. However simJ(H,O2) =

3
7 < α(x2) = 1

2 , so O1 /∈ Opt(H). Since simJ(H,O2) = 3
7 > simJ(H,O2 ∪ x3) = 2

5 , we
set O3 = O2. Now we have simJ(H,O3) = simJ(H,O2) = 3

7 > α(x3) = 1
3 , which means

that O2 = {h1,h4,h6,h7,h8,h9} ∈ Opt(H). Note also that O1 = A1, and O2 = A5, and
Opt(H) = {O2}. �

5 Optimal Approximations with Dice-Sørensen Similarity
Measure

The Jaccard measure is only one of many possible similarity measures. If it is found
for example, that the Jaccard index under-represents the common elements, the Dice-
Sørensen index can be used instead [5,6]. We will show that the Dice-Sørensen index
and the Jaccard index are consistent, so we can use Algorithm 1 for the former as well,
however we will start with a slightly more general result.

Lemma 3 (Partial consistency of Jaccard and Tversky indexes). If a = b > 0, then
for all A,B,C ⊆U,

simJ(A,B) < simJ(A,C) ⇐⇒ sima,b
T (A,B) < sima,b

T (A,C).
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Proof. If A = C then simJ(A,C) = sima,b
T (A,C) = 1, so the equivalence holds. Assume

A �= C. Since simJ(A,C) > 0, then A∩C �= /0. Moreover A\C �= /0 or C \A �= /0. Hence:

simJ(A,B) < simJ(A,C) ⇐⇒ |A∩B|
|A∪B| <

|A∩C|
|A∪C| ⇐⇒ |A∩B|

|A∩B|+|A\B|+|B\A| <
|A∩C|

|A∩C|+|A\C|+|C\A|
⇐⇒ |A∩B|(|A\C|+ |C\A|) < |A∩C|(|A\B|+ |B\A|) ⇐⇒ |A∩B|

|A∩C| <
|A\B|+|B\A|
|A\C|+|C\A| ⇐⇒

|A∩B|
|A∩C| <

a|A\B|+a|B\A|
a|A\C|+a|C\A| ⇐⇒ |A∩B|

|A∩B|+a|A\B|+a|B\A| <
|A∩C|

|A∩C|+a|A\C|+a|C\A| ⇐⇒ sima,a
T (A,B)<

sima,a
T (A,C). �

The above Lemma immediately implies that the Dice-Sørensen and Jaccard indexes
are consistent.

Corollary 6 (Consistency of Jaccard and Dice-Sørensen indexes). For all A,B,
C ⊆U,

simJ(A,B) < simJ(A,C) ⇐⇒ simDS(A,B) < simDS(A,C).

Proof. Since simDS(A,B) = sima,b
T (A,B) with a = b = 0.5. �

For the case from Example 1 we have OptsimJ
(H) = OptsimDS

(H) = {O2}, where
O2 = {h1,h4,h6,h7,h8,h9}, and simJ(H,O2) = 3

7 , while simDS(H,O2) = 3
5 .

We have used the Jaccard index as our base for the design of Algorithm 1, as we
found it more intuitive for a general, domain independent, case; however, since the
Dice-Sørensen index does not have |A∪B|, only |A|+ |B|, it might actually be easier to
use it for proving more sophisticated properties in future.

Neither the Fuzzy Sets index nor the Tversky index with a �= b are consistent with
the Jaccard index. To show that the Fuzzy Sets index and the Jaccard index are in-
consistent, consider the case of A = {a1,a2,a3,a4}, B = {a1,a2,a3,a5, ...,a21}, and
C = {a1,a4,a22, ...,a32}. We have here |A| = 4, |B| = 20, |C| = 13, |A∩ B| = 3 and
|A ∩C| = 2. Hence simJ(A,B) = 4

21 > simJ(A,C) = 2
15 , while simFS(A,B) = 3

20 <

simFS(A,C) = 2
13 .

For the Tversky index consider A = {a1,a2,a3,a4}, B = {a1,a2,a3,a4,a6, ...,a12},
and C = {a3,a4,a5}. In this case simJ(A,B) = 2

11 < simJ(A,C) = 1
5 , but for any a and

b such that a
b > 5

4 , we have sima,b
T (A,B) > sima,c

T (A,C). For example for a = 1.5 and

b = 1.0 we have sima,b
T (A,B) = 1

6 > sima,b
T (A,C) = 2

13 .

6 Final Comments

In the above we have proposed a novel approach to rough set approximation. In addition
to lower and upper approximations, we introduced and analyzed the concept of optimal
approximation, which required the concept of a similarity measure, and a notion of
border and border sets. We provided five simple similarity measure axioms, and then
referenced four measures of similarity which satisfy them. Only the Jaccard index [4]
however, can naturally be interpreted as a measure of distance as well, so with this in
mind, we used the index to design an algorithm which accepts a non-empty universe
of elements (with an equivalence relation) and a subset X ⊆U , and returns the optimal
approximation. The algorithm runs in O(rlogr) time where r is the number of elements
in the ‘border set’, and thus has total time complexity O(|U |2).
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We also introduced the concept of consistent similarity measures. Since consistent
similarity indexes have identical optimal approximations, many results obtained for one
index can be applied to all consistent indexes. As the Jaccard and the Dice-Sørensen
indexes are consistent, all results of this paper hold for both indexes.

It appears that most of the results of Section 4 could be generalized beyond the class
of similarity measures consistent with the Jaccard index, to some bigger class of generic
similarity measures satisfying some additional axioms (note that here one argument of
sim is always a definable set, i.e. a subset of D).

Other particular similarity indexes that are not consistent with the Jaccard index,
especially the Tversky index [16] are also worth analyzing in detail.
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Abstract. Partial nature of real–life problems requires working out par-
tial approximation schemes. Partial approximation of sets is based on
classical set theory. Its generalization for multisets gives a plausible op-
portunity to introduce an abstract concept of “to be close enough to
a membrane” in membrane computing. The paper presents important
features of general (maybe partial) multiset approximation spaces, their
lattice theory properties, and shows how partial multiset approximation
spaces can be applied to membrane computing.

Keywords: Rough set theory, multiset theory, partial approximation of
multisets, lattice theory, membrane computing.

1 Introduction

Studies of set approximations were originally invented by Pawlak in the early
1980’s [1, 2]. There are many different generalizations of classical Pawlakian
rough set theory, among others, for multisets. A possible approach may rely on
equivalence multiset relations [3], or general multirelations [4].

Partial nature of real–life problems, however, requires working out partial ap-
proximation schemes. The framework called the partial approximation of sets
[5, 6] is based on classical set theory similarly to rough set theory. It was gen-
eralized for multisets [7, 8] in connection with membrane computing introduced
by Păun in 2000 [9–11]. Membrane computing was motivated by biological and
chemical processes in which an object has to be close enough to a membrane in
order to be able to pass through it. Looking at regions as multisets, partial ap-
proximation of multisets gives a plausible opportunity to introduce the abstract,
not necessarily space–like, concept of “to be close enough to a membrane”. The
paper presents the most important features of partial multiset approximation
spaces, their lattice theory properties and applications to membrane computing.

The paper is organized as follows. Having reviewed the fundamental notions of
multiset theory, Section 3 presents the concept of general multiset approximation
space. Section 4 shows its generalized Pawlakian variant which is applied to
membrane computing in Section 5.
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2 Fundamental Notions of Multiset Theory

Let U be a finite nonempty set. A multiset M , or mset M for short, over U
is a mapping M : U → N ∪ {∞}, where N is the set of natural numbers. If
M(a) �= 0, it is said that a belongs to M , otherwise a does not belong to M .
The set M∗ = {a ∈ U |M(a) �= 0} is called the support of M .

The mset M is the empty mset, denoted by ∅ if M∗ = ∅. An mset M is finite
if M(a) <∞ for all a ∈M∗.

Let MS(U) denote the set of all msets over U .
Basic set–theoretical relations can be generalized for msets as follows.

Definition 1. Let M , M1, M2 be msets over U .

1. Multiplicity relation for an mset M over U is: a ∈M (a ∈ U) if M(a) ≥ 1.
2. Let n ∈ N+ be a positive integer. n–times multiplicity relation for an mset

M over U is the following: a ∈n M (a ∈ U) if M(a) = n.
3. M1 = M2 if M1(a) = M2(a) for all a ∈ U (mset equality relation).
4. M1 �M2 if M1(a) ≤M2(a) for all a ∈ U (mset inclusion relation).

The next definitions give the generalizations for msets of the basic set–
theoretical operations.

Definition 2. Let M,M1,M2 ∈ MS(U) be msets over U and M⊆MS(U) be
a set of msets over U .

1. (M1 �M2)(a) = min{M1(a),M2(a)} for all a ∈ U ( intersection).
2. (

�M)(a) = min{M(a) |M ∈M} for all a ∈ U .
3. (M1 �M2)(a) = max{M1(a),M2(a)} for all a ∈ U ( set–type union).
4. (
⊔M)(a) = sup{M(a) |M ∈ M} for all a ∈ U . By definition,

⊔ ∅ = ∅.
5. (M1 ⊕M2)(a) = M1(a) + M2(a) for all a ∈ U ( mset addition).
6. For any n ∈ N, n-times addition of M , denoted by ⊕nM , is given by the

following inductive definition:

(a) ⊕0M = ∅;
(b) ⊕1M = M ;
(c) ⊕n+1M = ⊕nM ⊕M .

7. (M1 !M2)(a) = max{M1(a)−M2(a), 0} for all a ∈ U ( mset subtraction).

By the n-times addition, the n-times inclusion relation (�n) can be defined.

Definition 3. Let M1 �= ∅,M2 be two msets over U .
For any n ∈ N, M1 �n M2 if ⊕nM1 �M2 but ⊕n+1M1 ��M2.

Corollary 1. Let M1 �= ∅,M2 be two msets over U and n ∈ N.

1. M1 �n M2 if and only if nM1(a) ≤ M2(a) for all a ∈ U and there is an
a′ ∈ U such that (n + 1)M1(a′) > M2(a′).

2. M1 �0 M2 if and only if M1 ��M2.
3. For all n ∈ N+, M1 �n M2 if and only if ⊕nM1 �1 M2.
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3 Some Lattice Theory Properties of Set of Multisets

The next proposition is an immediate consequence of Definition 1 and 2 (for the
lattice theory notions, see, e.g., [12–14]).

Proposition 1. 〈MS(U),�,�〉 is a complete lattice, that is

1. (a) operations � and � are idempotent, commutative and associative;
(b) operations � and � fulfill the absorption laws for all M1,M2 ∈ MS(U):

M1 � (M1 �M2) = M1 and M1 � (M1 �M2) = M1;

2.
⊔M and

�M exist for every M⊆MS(U).

In addition, 〈MS(U),�〉 is a partially ordered set in which M1 � M2 if and
only if M1�M2 = M2, or equivalently, M1�M2 = M1 for all M1,M2 ∈ MS(U).

A set M of finite msets over U is called a macroset M over U [15].
We define the following two fundamental macrosets:

1. MSn(U) (n ∈ N) is the set of all msets M over U such that M(a) ≤ n for
all a ∈ U , and

2. MS<∞(U) =
⋃∞

n=0MSn(U).

Note that MS0(U) = ∅ and MSn(U) �MSn+1(U) (n = 0, 1, 2, . . . ). More-
over, MSn(U) (n ∈ N) is finite and MS<∞(U) is countably infinite.

M1 �M2,M1 �M2 ∈ MSn(U) (M1,M2 ∈ MSn(U)) and the finiteness of
MSn(U) immediately imply that 〈MSn(U),�,�〉 (n ∈ N+) is a complete sub-
lattice of the lattice 〈MS(U),�,�〉. Its top element is the mset M such that
M∗ = U , M(a) = n (a ∈ U), and its bottom element is the empty mset ∅.
〈MS<∞(U),�,�〉 is also a sublattice of the lattice 〈MS(U),�,�〉. However, it

is not a complete lattice since it lacks a top element. Nevertheless, 〈MS<∞(U),�
〉 is a meet-semilattice such that

�M exists in MS<∞(U) for every nonempty
M ⊆ MS<∞(U). Consequently,

⊔M exists in MS<∞(U) for every subset
M⊆MS<∞(U) which has an upper bound in MS<∞(U), and⊔

M =
�
{M ′ ∈ MS<∞(U) | ∀M ∈ M(M �M ′)}.

4 General Multiset Approximation Spaces

A general mset approximation space has four components:

– a domain of the approximation space whose members are approximated;
– some distinguished members of the domain as the basis of approximations;
– definable msets deriving from base msets in some way as possible approxi-

mations of the members of the domain;
– an approximation pair determining the lower and upper approximations of

the msets of the domain using definable msets.
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Definable msets represent our available knowledge about the domain. They
can be thought of as tools, in particular, base msets as primary tools, definable
msets as derived tools. The way of getting derived tools from primary tools shows
how primary tools are used. An approximation pair prescribes the utilization of
primary and derived tools in a whole approximation process.

Definition 4. The ordered 5–tuple MAS(U) = 〈MS<∞(U),B,DB, l, u〉 is a
(general) mset approximation space over U with the domain MS<∞(U) if

1. B ⊆MS<∞(U) and if B ∈ B, then B �= ∅ (in notation B = {Bγ | γ ∈ Γ});
B is called the base system, its members are called the base msets;

2. DB ⊆ MS<∞(U) is an extension of B satisfying the following minimal
requirement: if B ∈ B, then ⊕nB ∈ DB for all n ∈ N; members of DB are
called definable msets;

3. the functions l, u : MS<∞(U) → MS<∞(U) (called lower and upper
approximation functions) form a weak approximation pair 〈l, u〉 if

(C0) l(MS<∞(U)), u(MS<∞(U)) ⊆ DB ( definability of l, u);
(C1) the functions l and u are monotone, i.e., for all M1,M2 ∈MS<∞(U) if

M1 �M2, then l(M1) � l(M2), u(M1) � u(M2) ( monotonicity of l, u);
(C2) u(∅) = ∅ ( normality of u);
(C3) if M ∈ MS<∞(U), then l(M) � u(M) ( weak approximation property).

Corollary 2. l(∅) = ∅ ( normality of l).

MAS(U) is total if for any M ∈MS<∞(U) there is a definable mset D ∈ DB

such that M � D, and it is partial otherwise. If DB is the smallest set of msets
satisfying condition 2 in Definition 4, MAS(U) is total if and only if there is a
B ∈ B such that B(a) ≥ 1 for all a ∈ U .

There may be more than one msets with the same lower and upper approxi-
mations. If M ∈MS<∞(U), the set

RM(M) = {M ′ ∈ MS<∞(U) | l(M) = l(M ′) and u(M) = u(M ′)}

is called the rough mset connected to M .
Of course, l and u are neither additive nor multiplicative in general.

Proposition 2. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U . Then, for any M1,M2 ∈MS<∞(U),

1. l(M1) � l(M2) � l(M1 �M2), l(M1 �M2) � l(M1) � l(M2),
2. u(M1) � u(M2) � u(M1 �M2), u(M1 �M2) � u(M1) � u(M2),

i.e., lower and upper approximations are superadditive and submultiplicative.

Proof. M1,M2 �M1�M2 and M1�M2 �M1,M2, and so, by the monotonicity
of l, l(M1), l(M2) � l(M1�M2) and l(M1�M2) � l(M1), l(M2), and the statement
(1) immediately follows. Statement (2) can be proved similarly. ��
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It is reasonable to assume that the base msets and their n-times additions are
exactly approximated from “lower side”. In certain cases, it is also required of
definable msets.

Definition 5. A weak approximation pair 〈l, u〉 is

(C4) granular if B ∈ B implies l(⊕nB) = ⊕nB (n ∈ N) (in other words, l is
granular),

(C5) standard if D ∈ DB implies l(D) = D (in other words, l is standard).

Of course, if l is standard, the granularity of l also holds. The next proposition
gives a necessary and sufficient condition that l is standard.

Proposition 3. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a general mset ap-
proximation space over U .

l is standard if and only if l(MS<∞(U)) = DB and l is idempotent, i.e.,
∀M ∈MS<∞(U) (l(l(M)) = l(M)).

Proof. (⇒) By (C0), l(MS<∞(U)) ⊆ DB. On the other hand, for any D ∈ DB,
l(D) = D ∈ l(MS<∞(U)), since l is standard, i.e., DB ⊆ l(MS<∞(U)). Thus,
l(MS<∞(U)) = DB.

Further, let M ∈ MS<∞(U). l(M) ∈ DB according to the condition (C0),
and so l(l(M)) = l(M), since l is standard.

(⇐) Let D ∈ DB. Since DB = l(MS<∞(U)), there exists at least one M ∈
l(MS<∞(U)) such that D = l(M). l is idempotent, and so

l(D) = l(l(M)) = l(M) = D,

that is, l is standard. ��
An important question is how lower and upper approximations relate to the

approximated mset.

Definition 6. A weak approximation pair 〈l, u〉 is

(C6) lower semi–strong if l(M) �M (M ∈ MS<∞(U)) (l is contractive);
(C7) upper semi–strong if M � u(M) (M ∈MS<∞(U)) (u is extensive);
(C8) strong if it is lower and upper semi–strong simultaneously, i.e., each subset

M ∈ MS<∞(U) is bounded by l(M) and u(M): l(M) � S � u(M).

Definition 7. The general mset approximation space MAS(U) is a weak/granu-
lar/standard/lower semi–strong/upper semi–strong/strong mset approximation
space if the approximation pair 〈l, u〉 is weak/granular/standard/lower semi–
strong/upper semi–strong/strong, respectively.

5 Generalized Pawlakian Multiset Approximation Spaces

It is a natural assumption that DB is obtained (derived) from B by some sorts
of set and/or mset type transformations (for the most important cases, see [8]).
In this case, an mset approximation space is surely partial if there exists at least
one object in U which does not belong to any base mset.

In order to build a generalized Pawlakian mset approximation space, first, we
define DB as follows.
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Definition 8. MAS(U) is a strictly set–union type mset approximation space
if DB is given by the following inductive definition:

1. ∅ ∈ DB;
2. B ⊆ DB;
3. if B⊕ = {⊕nB | B ∈ B, n = 1, 2, . . . } and B′ ⊆ B⊕, then

⊔
B′ ∈ DB.

In a general mset approximation space MAS(U),
⊔{D′ ∈ DB | D′ � D} � D.

On the other hand, D is definable, and so D ∈ {D′ ∈ DB | D′ � D}, i.e.,
D � ⊔{D′ ∈ DB | D′ � D} also holds. Thus,

D =
⊔
{D′ ∈ DB | D′ � D}.

This formula indicates set–union nature of definable sets which can be sharp-
ened in strictly set–union type mset approximation spaces as follows.

Proposition 4. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–union
type mset approximation space over U .

1. For any definable set D ∈ DB,

D =
⊔
{⊕nB | n ∈ N+, B ∈ B, B �n D}.

2. If MAS(U) is also granular and lower semi–strong, for any M ∈ MS<∞(U),

l(M) =
⊔
{⊕nB | n ∈ N+, B ∈ B, B �n M}.

Proof.

1. Since MAS(U) is strictly set–union type, by Definition 8, there exists
B′ ⊆B⊕ for any D′ ∈ DB such that D′ =

⊔
B′. Hence,

D =
⊔
{D′ ∈ DB | D′ � D}

=
⊔
{⊕nB | n ∈ N+, B ∈ B,⊕nB � D}

=
⊔
{⊕nB | n ∈ N+, B ∈ B, B �n D}.

2. By Corollary 1(3), B �n M if and only if ⊕nB �1 M (n ∈ N+). Thus, for
any n ∈ N+ and ⊕nB �1 M (B ∈ B), the granularity and the monotone
property of l imply that ⊕nB = l(⊕nB) � l(M), therefore⊔

{⊕nB | n ∈ N+, B ∈ B, B �n M} � l(M).

On the other hand, l(M) ∈ DB and so by Proposition 4(1), and since l is
contractive, we obtain

l(M) =
⊔
{⊕nB | n ∈ N+, B ∈ B, B �n l(M)}

�
⊔
{⊕nB | n ∈ N+, B ∈ B, B �n M}.

Thus, l(M) =
⊔{⊕nB | n ∈ N+, B ∈ B, B �n M}. ��
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Next, we generalize the Pawlakian approximation pair for msets in strictly
set–union type mset approximation spaces.

Definition 9. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–union
type mset approximation space.

The functions l, u : MS<∞(U) →MS<∞(U) form a (generalized) Pawlakian
mset approximation pair 〈l, u〉 if for any mset M ∈MS<∞(U),

1. l(M) =
⊔{⊕nB | n ∈ N+, B ∈ B and B �n M},

2. b(M) =
⊔{⊕nB | B ∈ B, B ��M, B �M �= ∅ and B �M �n M},

3. u(M) = l(M) � b(M),

where the function b gives the boundary of mset M .

It is easy to check the next proposition by Definition 9.

Proposition 5. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a strictly set–union
type mset approximation space with a Pawlakian mset approximation pair.

Then MAS(U) is a lower semi–strong mset approximation space and l is gran-
ular. In other words, MAS(U) fulfills the conditions (C0)–(C3), (C4), (C6).

Definition 10. A strictly set–union type approximation space with a Pawlakian
mset approximation pair is called a Pawlakian mset approximation space.

Proposition 6. Let MAS(U) = 〈MS<∞(U),B,DB, l, u〉 be a Pawlakian mset
approximation space. Then

u(M) = (l(M)⊕ b(M))! (l(M) � b(M)).

Proof. For all a ∈ U ,

u(M)(a) = ((l(M)⊕ b(M))! (l(M) � b(M)))(a)

= max{(l(M)⊕ b(M))(a)− (l(M) � b(M))(a), 0}
= max{l(M)(a) + b(M)(a)−min{l(M)(a), b(M)(a)}, 0}
=

{
max{l(M)(a), 0}, if l(M)(a) ≥ b(M)(a);
max{b(M)(a), 0}, if l(M)(a) < b(M)(a);

= max{l(M)(a), b(M)(a)}
= (l(M) � b(M))(a).

��

6 Applications in Membrane Computing

In the membrane application we focus on hierarchical membrane systems with
communication rules.

A membrane structure μ of degree m (m ∈ N+) is a rooted tree with m nodes.
It can be represented by the set Rμ ⊆ {1, . . . ,m}× {1, . . . ,m} where 〈i, j〉 ∈ Rμ

means that there is an edge from i (parent) to j (child) of the tree μ which is
formulated by parent(j) = i.
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Let V be a finite alphabet. The tuple

Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉

is called a membrane system or P system if wi ∈MS<∞(V ) is the region of Π ,
and Ri is a finite set of rules of the form symport and antiport (i = 1, 2, . . . ,m).
For the precise definition, see [8], Definition 6.

If the P system Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 is given, let
MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be a strictly set–union type mset approx-
imation space with a generalized Pawlakian approximation pair 〈l, u〉. MAS(Π)
is called a joint membrane approximation space.

Having given a membrane system Π and its joint membrane approximation
space MAS(Π), we can define the boundaries of the regions w1, w2, . . . , wm as
msets with the help of approximative function b specified in Definition 9.

Definition 11. Let Π = 〈V, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm〉 be a P system
and MAS(Π) = 〈MS<∞(V ),B,DB, l, u〉 be its joint membrane approximation
space. If B ∈ B and i = 1, 2, . . . ,m, let

N(B, i) =

⎧⎨⎩
0, if B � wi or B � wi = ∅;
n, if i = 1 and B � w1 �n w1;
min{k, n | B � wi �k wi, and B ! wi �n wparent(i)}, otherwise.

Then, for i = 1, . . . ,m,
bnd(wi) =

⊔{⊕N(B,i)B | B ∈ B};
bndout(wi) = bnd(wi)! wi;
bndin(wi) = bnd(wi)! bndout(wi).

The functions bnd(wi), bnd
out(wi), bnd

in(wi) give membrane boundaries, out-
side membrane boundaries and inside membrane boundaries, respectively.

The general notion of boundaries given in Definition 9 cannot be used here,
because membrane boundaries have to follow the given membrane structure μ.
The Pawlakian lower approximations l(wi) (i = 1, . . . ,m) surely obey the mem-
brane structure, and the Pawlakian upper approximation u(w1) and the bound-
ary b(w1) are completely within the environment of the membrane structure.

However, the Pawlakian upper approximation u(wi), therefore the boundary
b(wi) (i = 2, . . . ,m) do not obey the membrane structure in general. Thus, the
Pawlakian boundaries have to be adjusted to the membrane structure by the
function bnd. Of course, b(w1) = bnd(w1), but b(wi) �= bnd(wi) (i = 2, . . . ,m)
in general. Moreover, membrane boundaries bnd(wi) (i = 1, . . . ,m) are split into
two parts, inside and outside membrane boundaries.

As an illustrative example for the membrane boundary, let us take a membrane
structure with 1 node, and let the base system B consist of three base msets:
B1, B2, B3. In the figures below, they are represented by circle, triangle, and
square, respectively. For the sake of clarity, only a fragment of the whole mset
approximation space is depicted focusing on the membrane boundary solely.



Partial Approximations of Multisets 107

Fig. 1 shows the membrane boundary of the region w1.

region w1

1

environment

Fig. 1. A membrane boundary Fig. 2. The membrane boundary,

after the membrane computation

Using membrane boundaries, the following constraints for rule executions are
prescribed: a rule r ∈ Ri of a membrane i has to work only in the boundaries
of its region. It can be shown that the membrane computation actually works
in the membrane boundaries ([8], Theorem 1). Fig. 2 illustrates the membrane
boundary just after the membrane computation has halted.

In [8], the authors gave the pseudocode of the whole computation process as
well.

7 Conclusion

In the paper, the authors have defined general multiset approximation spaces
and have discussed their fundamental approximative properties. Their lattice
theory properties have been shown as well. These properties hold not only in
Pawlakian but also in general mset approximation spaces.

The importance of defined general multiset approximation spaces can be
found, for instance, in their applications in membrane computing. By using the
partial multiset approximation technique, the notion of “to be close enough to
a membrane”, even from inside and outside, has been specified in an abstract
way. Thus, by constraining the communication rule executions on these abstract
membrane boundaries, the membrane computation can be controlled.
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15. Kudlek, M., Mart́ın-Vide, C., Păun, G.: Toward a formal macroset theory. In:
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Abstract. Reduction is a core issue in Rough Set Theory. Current re-
ductions falls into 3 categories: tuple reduction, attribute reduction and
value reduction. From the reduced tables, decision rules can be derived.
For the purpose of storage and better understanding, minimization of the
rule set is desired, and it is NP-hard. To tackle this problem, a heuris-
tic approach to approximate minimal value reduct set is proposed based
on Formal Concept Analysis in this paper. Experiments show that our
approach is valid with a higher accuracy.

Keywords: value reduction, rule acquisition, rough set, formal concept
analysis, positive hypotheses.

1 Introduction

Pioneered by Pawlak [14, 16] in 1982, Rough Set Theory (RST) has become
a powerful mathematical tool for dealing with the vagueness and uncertainty
inherent in various practical problems. Among its various applications, data
mining catches most attentions. Reduction is a core issue in RST. It aims to re-
duce superfluous knowledge on the condition of maintaining the decision-making
ability. Currently reductions can complemented from three aspects: row (tuple)
reduction, column (attribute) reduction, and cell (value) reduction. Row reduc-
tion is simply to merge duplicate rows, attribute reduction is to find important
attributes, and value reduction is to simplify decision rules. Many attribute re-
duction algorithms have been proposed [18]. The main approaches to value re-
ductions falls into 4 categories: naive approaches [16, 17], heuristic approaches
[17], matrix approaches [17, 22, 23], and inductive approaches [17]. These algo-
rithms are mostly based on some attribute information.

In this paper, we propose an approach to attribute value reduction based on
the extensions (objects). To minimize the obtained rule set, finding the rules that
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can be supported by as many objects as possible is necessary, in other words,
finding the common value reduct shared by as many objects as possible is needed.
Formal Concept Analysis is a suitable tool to find the common attributes shared
by some objects.

Formal Concept Analysis (FCA), proposed by Wille in 1982 [4, 20], is used as
a knowledge representation mechanism and as a conceptual clustering method.
Recently, researchers have payed much attention to data reduction with combi-
nation methods of RST and FCA, for example [8, ?, 10, 11], but most of them
focus on attribute reduction, and some heuristic methods are mostly based on
the attribute information (for example, [8]), little research has been done on
value reduct. In this paper, we try to obtain the value reduct rule set with the
smallest size by using FCA. First, a decision table is transformed to a formal
context, then the context is divided into some sub-contexts according to the de-
cisions to obtain the maximal “consistent” concepts of every sub-context, i.e. the
concepts who do not conflict with the concepts of the other sub-contexts, whose
extents form a cover of the corresponding sub-universe. Then decision rules are
derived from the maximal “consistent” concepts.

The paper is organized as follows. Section 2 recalls some basic notions in RST
and FCA. From the point of value reduct, the relationship between the basic
concepts in RST and the concepts in FCA is surveyed in section 3, and then
a heuristic algorithm is proposed. Experiment results are shown in section 4 to
illustrate the validity of our algorithm. Conclusions are drawn in section 5.

2 Preliminaries

In this section, some basic notions and theorems in RST and FCA related to
this paper are recalled.

2.1 Rough Set Theory [14, 16]

In RST, a decision table is a 4-tuple as follows (U,A = C ∪ D,V, f), where U

is the universe, A is a set of attributes, with C being the conditional attribute
set and D, the decision attribute set, V =

⋃
a∈C∪D Va is the set of all attribute

values, and f : U × A → V assigns every object x in U with an attribute value
for each attribute, in some literature, a(x) is used instead of f(x, a).

Let S = (U,A = C ∪D,V, f) be a decision table, and every P ⊆ A generates an
indiscernibility relation Ind(P ) on U , with

Ind(P ) = {(x, y) ∈ U × U |f(x, a) = f(y, a),∀a ∈ P}. (1)

U/Ind(P ) = {[x]P |x ∈ U} is a partition of U by P , where [x]P = {y|(x, y) ∈
Ind(P )}. For simplicity, we use [x]a instead of [x]{a}.

Upper and lower approximations are use to depict “concepts” in RST.

Definition 1. Suppose P ⊆ A and X ⊆ U (a concept X), the P upper and lower
approximations of set X are defined as

PX = ∪{[x]P |[x]P ∩X �= ∅}, P (X) = ∪{[x]P |[x]P ⊆ X}. (2)
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Definition 2. Let P,Q ⊆ A. The P -positive region of Q is defined as

PosP (Q) =
⋃

X∈U/Ind(Q)

PX (3)

S is called a consistent decision table if PosP (Q) = U .

Definition 3. Let S be a decision table, and B ⊆ C. If (1) PosB(D) = PosC(D)

holds, (2) PosB1(D) = PosC(D) does not hold for any B1 ⊂ B, then B is called a
reduct of S.

Definition 4. In a decision table S, a decision rule R is depicted as

R : des([x]C) −→ des([x]D), (4)

where des([x]C) (des([x]D)) is the description of the equivalence class [x]C ([x]D).
In this case, object x satisfies rule R. If |[x]C∩[x]D|

|[x]C| = 1, then rule R is definite.

Definition 5. The support set of rule R is defined as

Supp(R) = {x ∈ U |x satisfies R}. (5)

Definition 6. Let S = (U,A, V, f) be a decision table, U/Ind(D) ={D1,D2,· · · ,
Dk}, [x]C ⊆ Di for some i, 1 ≤ i ≤ k, B ⊆ C. If (1) [x]B ⊆ Di holds, and (2) for
all B1 ⊂ B, [x]B1 �⊆ Di , then B is called an attribute value reduct of x.

Definition 6 is equivalent to the definition of value reduct in [16].
Every object may have more than one value reducts. Denote V R(x) = {vr| is

a value reduct of x}. For all x ∈ U , vrx ∈ V R(x), then {vrx|x ∈ U} is called a
value reduct set.

Example 1 is used to illustrate attribute reduction and attribute value
reduction.

Example 1. [16] Suppose we are given the following decision table S (Table 1),
where C = {a, b, c, d} and D = {e}. {a, b, d} is an attribute reduct. After attribute
reduction, Table 2 is obtained.

Table 1. A decision table S

a b c d e

1 1 0 0 1 1
2 1 0 0 0 1
3 0 0 0 0 0
4 1 1 0 1 0
5 1 1 0 2 2
6 2 1 0 2 2
7 2 1 0 2 2
8 2 2 2 2 2

Table 2. S after attribute reduction

a b d e

1 1 0 1 1
2 1 0 0 1
3 0 0 0 0
4 1 1 1 0
5 1 1 2 2
6 2 1 2 2
7 2 1 2 2
8 2 2 2 2
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Table 3. A decision table S

a b d e

1 1 0 1 1
2 1 0 0 1
3 0 0 0 0
4 1 1 1 0
5 1 1 2 2
6 2 1 2 2
7 2 2 2 2

Table 4. S after value reduction

a b d e

1 1 0 - 1
1′ - 0 1 1
2 1 0 - 1
2′ 1 - 0 1
3 0 - - 0
4 - 1 1 0
5 - - 2 2
6 2 - - 2
6′ - - 2 2
7 2 - - 2
7′ - 2 - 2
7′′ - - 2 2
- means ‘don’t care’

Then, reductant rows are deleted (Table 3). Besides, every rule (every row) in
Table 3 can be further simplified without conflict (Table 4). For example, rule 1
can be simplified as a = 1 ∧ b = 1 =⇒ e = 1.

From Table 4, we can see that, for objects 1 and 2 we have two value reducts
respectively. Decision objects 3, 4 and 5 have only one value reduct respectively.
The remaining objects 6 and 7 contain two and three value reducts respectively.
Thus there are 4× 2× 3 (not necessarily different) solutions.

2.2 Formal Concept Analysis [4, 20]

In FCA, a triplet (G,M, I) is called a (formal) context, if G is a non-empty set of
objects, M is a non-empty set of attributes, and I ⊆ G×M is a binary relation
from G to M , (g,m) ∈ I if object x has attribute a.

A Galois connection between (G,⊆) and (M,⊆) is defined as follows:

X ′ = {m ∈M | ∀ g ∈ X, (g,m) ∈ I}, B′ = {g ∈ G| ∀ m ∈M, (g,m) ∈ I}.
where X ⊆ G, B ⊆ M . We write X ′′ for (X ′)′ etc., and similarly, B′′ for (B′)′

etc., what’s more, {g}′ is denoted by g′ etc., and {m}′, by m′ for convenience.
A concept of (G,M, I) is a pair (X,B) with X ′ = B, and B′ = X. X is called

the extent and B, the intent of the concept (X,B).

Proposition 1. For any X,X1, X2 ⊆ G, B,B1, B2 ⊆M ,
(1) X ′

2 ⊇ X ′
1 if X1 ⊆ X2, B′

2 ⊇ B′
1 if B1 ⊆ B2;

(2) X ⊆ X ′′, B ⊆ B′′;
(3) X ′ = X ′′′, B′ = B′′′;
(4) X ⊆ B′ ⇐⇒ B ⊆ B′ ⇐⇒ X ×B ⊆ I;
(5) (

⋃
t∈T Xt)

′ =
⋂

t∈T X
′
t, (

⋃
t∈T Bt)

′ =
⋂

t∈T B
′
t, where T is an index set.

From Proposition 1 , for any X ⊆ G, B ⊆ M , (X ′′, X ′) and (B′, B′′) are both
concepts.
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The set of all concepts of (G,M, I) is denoted by B(G,M, I), and a partial
order ≤ on it is given by

(A1, B1) ≤ (A2, B2)⇐⇒ A1 ⊆ A2 (equivalently B2 ⊆ B1). (6)

Theorem 1. Let (G,M, I) be a context, and B(G,M, I) be the set of all concepts
of (G,M, I). (Xt, Bt) ∈ B(G,M, I), t ∈ T , then∧

t∈T

(Xt, Bt) = (
⋂
t∈T

Xt, (
⋃
t∈T

Bt)
′′),

∨
t∈T

(Xt, Bt) = ((
⋃
t∈T

Xt)
′′,

⋂
t∈T

Bt), (7)

are concepts. Thus, B(G,M, I) = (B(G,M, I),≤) is a complete lattice, which is
called a concept lattice.

In many cases, attributes may be many-valued (for example, “color”, “shape”,
etc.) in contrast to the one-valued attributes considered above. Correspondingly,
there are many-valued contexts.

Definition 7. A many-valued context (G,M,W, I) consists of sets G, M, W ,
and a ternary relation I between G, M and W (i.e., I ⊆ G×M ×W ) from which
it holds that (g,m,w) ∈ I and (g,m, v) ∈ I always imply w = v.

Sometimes, people write m(g) = w instead of (g,m,w) ∈ I [4]. In this way, a
decision table is actually a many-valued context with decisions.

To assign concepts to a many-valued context, Ganter and Wille [4] use scales
to transformed the many-valued contexts into one-valued contexts, and the con-
cepts of the derived contexts are interpreted as those of the many-valued context.

Definition 8. A scale for the attribute m of a many valued-context is a (one-
valued) context Sm = {Gm,Mm, Im} with m(G) ⊆ Gm.

Definition 9. If (G,M,W, I) is a many-valued context, and Sm, m ∈M are scale
contexts, then the context with respect to plain scaling is the context (G,N, J)

with N =
⋃

m∈M

.

Mm, and gJ(m,n)⇐⇒ m(g) = w and wImn⇐⇒ m(g)Imn, where
.

Mm= {m} ×M .

Nominal scale In = ({1, 2, · · · , n}, {1, 2, · · · , n},=) is the most common scale.

Example 2. The reduced decision table S in Table 3 can be converted into a
formal context (shown in Table 5) by using nominal scale.

3 FCA Based Approach to Minimal Value Reduct Set

In this paper, only definite rules are concerned.
A set of decision rules can be obtained from the decision table. They have

advantages in the situation that someone reads them and understands the mean-
ings. When considering a situation in which one reads rules, a rule set is desired
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Table 5. The derived formal context K of S

(a, 0) (a, 1) (a, 2) (b, 0) (b, 1) (b, 2) (d, 0) (d, 1) (d, 2)

1 0 1 0 1 0 0 0 1 0
2 0 1 0 1 0 0 1 0 0
3 1 0 0 1 0 0 1 0 0
4 0 1 0 0 1 0 0 1 0
5 0 1 0 0 1 0 0 0 1
6 0 0 1 0 1 0 0 0 1
7 0 0 1 0 0 1 0 0 1

to satisfy the following three conditions, possibly at the same time. 1) They
can explain most of possible situations as a rule set, 2) The size of a rule set is
small and thus memorable and manageable, 3) Description of each rule is simple
enough for understanding the meaning [13]. Both 2) and 3) can be tackled by
finding the minimal value reduct set.

In the sequel, a heuristic method based on FCA is proposed to find the ap-
proximate minimal value reduct set. First, some results with respect to the basic
concepts in RST and formal concepts in FCA are introduced.

3.1 Basic Concepts in RST and Concepts Extents in FCA

In RST, the antecedent of every definite rule in a consistent decision table is
obtained from a basic concept. Research have shown that there is a close relation
between RST and FCA [5, 21, 24] from the view of knowledge representation.

For a decision table (also called a many-valued context in FCA) S = (U,A =

C∪D, V, F ), its derived one-value context by means of nominal scale In (decision
attributes omitted) is (U,N, J), where N =

⋃
a∈C{a} × Va and (x, (a, va)) ∈ J ⇐⇒

f(x, a) = a(x) = va. Then the basic concepts of the former and the formal concepts
of the latter are essentially the same, which is formally described as follows.

Theorem 2. S = (U,A, V, F ) is a decision table, then σ(U/Ind(C)) =BG(U,N, J),
where σ(U/Ind(C)) is the σ-algebra generated by U/Ind(C).

Proof. (1) ∀C ∈ σ(U/Ind(C)), there must be an object x ∈ U , and an attribute
subset B ⊆ C such that C = [x]B =

⋂
a∈B[x]a.

On the one hand, ∀y ∈ [x]B, ∀a ∈ B, we have f(x, a) = f(y, a). Let f(x, a) = va,
then, in the derived one-value context (U,N, J), yJ(a, va), so y ∈ (a, va)

′, which
yields [x]a ⊆ (a, va)

′.
On the other hand, for all y ∈ (a, va)

′, yJ(a, va) ⇐⇒ a(y) = va ⇐⇒ f(y, a) =

va = f(x, a) =⇒ y ∈ [x]a, which yields [x]a ⊇ (a, va)
′. So [x]a = (a, va)

′ follows.
Now, we have, C = [x]B =

⋂
a∈B[x]a =

⋂
a∈B(a, f(x, a))

′ = N ′
1 with N1 =

{(a, f(x, a)|a ∈ B)}. So, C ∈ BG(U,N, J). σ(U/Ind(C)) ⊆ BG(U,N, J) follows.
(2) For all X ∈ BG(U,N, J), ∃N1 ⊆ N , such that X = N ′

1 =
⋂

(a,v)∈N1
(a, v)′.

v = f(x, a), ∃x ∈ X, from (1), we have (a, v)′ = [x]a, so X =
⋂

(a,v)∈N1
(a, v) ′ =⋂

(a,v)∈N1
[x]a =

⋂
a∈B[x]a= [x]B, with B = {a|(a, v) ∈ N1}, from which we can

conclude X ∈ σ(U/Ind(C)). Together with (1), the conclusion is reached.
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From Theorem 2, if a concept is “consistent” w.r.t. some decision class, then
a definite rule can be derived. However, not all concepts can derive definite rules.

Lemma 1. Let Ki = (Ui, N, Ji), i = 1, 2, · · · , k be a family of one-valued contexts,
with Ui ∩ Uj = ∅, for all i �= j, and K = (

⋃k
i=1 Ui, N,

⋃k
i=1 Ii). ∀ (X,B) ∈ B(K),

∃Bi ⊆ A, such that (X ∩ Ui, Bi) ∈ B(Ki).

Proof. Since ∀ (X,B) ∈ B(K), X = B′ =
⋃k

i=1B
′i, where B′i denotes the objects

who shares all attributes from B in Ki, X∩Ui = B′i ∈ BG(Ki). Denote Bi = (B′i)′,
(X ∩ Ui, Bi) ∈ B(Ki).

To get definite rules, we only need take the hypotheses into consideration.

Definition 10. [6, 7] Let U =
⋃k

i=1 Ui with Ui ∩ Uj = ∅, i �= j. If (X,B) ∈ B(Ki)

for some i, and B does not conflict with other intents of concepts in B(
⋃

j �=i Kj),
then (X,B) is referred to a positive hypothesis with respect to Ui.

For the positive hypothesis (X,B) w.r.t. Di, rules in the following form can be
obtained: B =⇒ des([x]D) where x ∈ X. To make sure the rules we get are those
derived from the value reducts, we need to get the shrunk intents.

Definition 11. Let K be a formal context, and (X,B) ∈ B(K), N1 ⊆ B. N1 is
called a shrunk intent of (X,B) iff N ′

1 = X, and ∀ a ∈ T , (N1 − {a})′ �= X.

From Definition 11, we can see the shrunk intents coincident with the ”proper
predictors” in [2].

Theorem 3. Let S = (U,A, V, F ) be a decision table, and K = (U,N, J) is its
derived one-valued context. Tx : S → K, Tx(B) = {(a, f(x, a)) ∈ N |a ∈ B}. For
X ∈ σ(U/Ind(C)), B ⊆ C, if B is an attribute value reduct for all Rx, x ∈ X ∈
σ(U/Ind(C)), and X = [x]B, then (X,X ′) is a positive hypothesis with respect to
Di ∈ U/Ind(D) for some i, and Tx(B) (∀x ∈ X) is the shrunk intent of (X,X ′) in
(U,N, J).

Proof. Since B is an attribute value reduct of x ∈ X, then X = [x]B ⊆ Di for
some i. It follows that (X,X ′) is a positive hypothesis with respect to Di.

From Definition 6, for all x ∈ X, B is an attribute value reduct, (X,X ′) =

([x]B , [x]
′
B)=(

⋂
a∈B[x]a, [x]

′
B)=(

⋂
a∈B(a, f(x, a))

′, [x]′B)=((Tx(B))′, [x]′B), (Tx(B))′ =

X. If Tx(B) is not a shrunk intent of (X,X ′), there must be an (a0, v0) ∈ Tx(B),

with v0 = f(x, a0) (denote N1 = (Tx(B)) − {(a0, v0)}) such that N ′
1 = X = [x]B,

then N ′
1 =

⋂
a∈B−{a0}(a, f(x, a))

′ = [x]B−{a0} = X ⊆ Di, so we deduce that B−{a0}
contains a value reduct of Rx, which contradicts to the premise that B is a value
reduct of Rx. So Tx(B) is a shrunk intent of (X,X ′).

Theorem 4. Let S = (U,A,V, F ) be a decision table, and K = (U,N, J) be its
derived one-valued context. Tx : S → K, Tx(B) = {(a, f(x, a)) ∈ N |a ∈ B}. If
(X,X ′) is a maximal element of all positive hypotheses with respect to Di for
some i, and N1 ⊆ N is the shrunk intent of (X,X ′) in (U,N, J), then T−1

x (N1) is
an attribute value reduct for all Rx, x ∈ X with X = [x]

T
−1
x (N1)

.
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Proof. (X,X ′) is a concept, from Theorem 2, then there must be an attribute
subset B ⊆ C such that X = [x]B, ∀x ∈ X, and for all B1 � B, X �= [x]B1 . We
have X ′ = Tx(B). This is because X = [x]B =

⋂
a∈B[x]a =

⋂
a∈B(a, f(x, a))

′ =

(
⋃

a∈B(a, f(x, a)))
′ = (Tx(B))′, which implies Tx(B) ⊆ X ′. If ∃(a0, v0) ∈ X ′−Tx(B),

then xJ(a0, v0) ∀x ∈ X with a0 �∈ B, so f(x, a0) = v0 ∀x ∈ X, from which we can
deduce that [x]B = X ⊆ [x]a0 , X = [x]B ∩ [x]a0 = [x]B∪{a0}, which contradicts to
the fact that for all B1 � B, X �= [x]B1 .

Since N1 is a shrunk intent of (X,X ′), N1 ⊆ Tx(B), T−1
x (N1) ⊆ B then for all

a ∈ T−1
x (N1), and ∀x, y ∈ X, f(x, a) = f(y, a). So X = N ′

1 =
⋂

(a,v)∈N1
(a, v)′ =⋂

(a,v)∈N1
(a, f(x, a))′ =

⋂
(a,v)∈N1

[x]a =
⋂

a∈T−1
x (N1)

[x]a = [x]
T−1
x (N1)

⊆ Di, ∀x ∈ X.

For all a ∈ T−1
x (N1), denote B2 = T−1

x (N1)− {a}. Then we have X = [x]
T−1
x (N1)

⊆
[x]B2 . This is because if X = [x]B2 , we can deduce that X = (Tx(B2))

′ = (T−1
x (N1)−

{a})′, which is contradict to the premise that N1 is a shrunk intent of (X,X ′) .
If X � [x]B2 , from the premise that (X,X ′) is a maximal element of all positive
hypotheses w.r.t. Di for some i, we can conclude that [x]B is not an extent of
a positive hypotheses w.r.t. Di, i.e., [x]B2 �⊆ Di, which yields T−1

x (N1) is a value
reduct for all Rx, x ∈ X.

Theorem 3 and Theorem 4 tell us that the shrunk intents of the maximal
positive hypotheses are value redcuts. On the other hand, the maximal positive
hypotheses are the ones whose intents are shared by as many objects as possible.
So we design a heuristic approach to minimal value reduct set. A most relative
topic has been discussed in [3] from the aspect of the overall feature set of a
decision class.

3.2 Heuristic Approach to Approximate Minimal Value Reduct Set
Based on FCA

The main steps of our approach is stated as follows. First, a decision table S is
transformed to its derived one-value context K by means of nominal scale In (de-
cision attributes are deleted), then K is divided into some sub-contexts according
to the decisions. For every sub-context, the extents of positive hypotheses are
found, then they are sorted according to Principles 1 and 2, and finally choose
the extents top ranked in the candidates to generate a rule.

Principle 1: For two concepts (Xi, Bi) , (Xj , Bj), if i > j and |Xi| < |Xj |, swap
(Xi, Bi) and (Xj , Bj);

Principle 2: For two concepts (Xi, Bi) , (Xj , Bj), with i > j and |Xi| = |Xj |,
and current object subset which is not covered by the extents of positive hy-
potheses being U ′, if |U ′ ∩Xi| > |U ′ ∩Xj |, then swap (Xi, Bi) and (Xj , Bj).

Example 3 illustrates how our method works.

Example 3. The decision table is shown in (Table 1), its reduct is a, b, d. it is
transformed into a formal context K (shown in Table 5).

Then K is divided into 3 sub-contexts according to the decisions: K0, K1 and
K2 (shown in Table 6, Table 7 and Table 8).

The concepts of K0 are CPT1 = ({3, 4}, ∅), CPT2 = ({3}, {(a, 0), (b, 0), (d, 0)}),
CPT3 = ({4}, {(a, 1), (b, 1), (d, 1)}) and CPT4 = (∅, A′). The extents of positive
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Algorithm 1. FCA Based Algorithm for Approximate Minimal Value Reduct
Rule Set
Require:

A decision table, S = (U,C ∪D, V, F );
An attribute reduct of S, red;

Ensure:
An approximate optimal minimal value reduct set, RULESET .

1: RULESET = ∅;
2: Transform the reduced decision table S1 = (U, red ∪ D, V1, F1) into its derived

context K = (U,N, J) ;
3: Divide K into sub-contexts Ki = (Ui, N, Ji) according to the decisions,RULEi = ∅,
cov = ∅; //RULEi stores the rules derived from B(Ki), cov stores the objects
covered by the extents of the positive concepts w.r.t. Di.

4: for each sub-context Ki do
5: uncov = Ui−cov; //uncov stores the objects that are not covered by the extents

of the positive concepts currently.
6: Generate all concepts of Ki, choose the positive hypotheses w.r.t. Di as candi-

dates;
7: if uncov �= ∅ then
8: Sort the concepts descending according to Principles 1 and 2. The sorted

positive hypotheses are stored in SC;
9: RULEi = RULEi

⋃{shrunk(X,B) → des([X]D)}, where (X,B) is the first
in SC; shrunk(X,B) is the shrunt intent of (X,B) in K.

10: cov=cov∪{X};
11: SC=SC-{X1|X1 ∈ SC, X1 ⊆ cov};
12: end if
13: Go to 5
14: end for
15: RULESET =

⋃
RULEi;

16: return RULESET ;

hypotheses w.r.t. D0 (e = 0) are CPT2 and CPT3, and {{3}, {4}} is a cover of
{3,4}. So we get two rules shrunk(CPT2) → e = 0, that is (a, 0) → e = 0 (or
equivalently a = 0 → e = 0) and shrunk(CPT3) → e = 0 (b, 1) ∧ (d, 1) → d = 0 (or
equivalently b = 1 ∧ d = 1→ d = 0).

Similarly , we obtain rule: (a, 1)∧ (b, 0)→ e = 1 from K1, and rule (d, 2)→ e = 2

from K2. The four rules we get corresponds to the minimal value reduct set of S.

4 Experiments

The effectiveness of the proposed algorithm is tested with five-fold cross vali-
dation method on a collection of nine benchmark data sets from UCI machine
learning repository [1]. Before employing RST and FCA, the real value data
must be discretized.

The detailed information of the benchmark data sets are summarized in
Table 9, where “Data Set” denotes data set name, |U | stands for the the number
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Table 6. K0

U0\A′ (a, 0) (a, 1) (a, 2) (b, 0) (b, 1) (b, 2) (d, 0) (d, 1) (d, 2)

3 1 0 0 1 0 0 1 0 0
4 0 1 0 0 1 0 0 1 0

Table 7. K1

U1\A′ (a, 0) (a, 1) (a, 2) (b, 0) (b, 1) (b, 2) (d, 0) (d, 1) (d, 2)

1 0 1 0 1 0 0 0 1 0
2 0 1 0 1 0 0 1 0 0

Table 8. K2

U2\A′ (a, 0) (a, 1) (a, 2) (b, 0) (b, 1) (b, 2) (d, 0) (d, 1) (d, 2)

5 0 1 0 0 1 0 0 0 1
6 0 0 1 0 1 0 0 0 1
7 0 0 1 0 0 1 0 0 1

Table 9. Benchmark data sets information

NO. Data Set |U | |C| |U/Ind(D)| |U/Ind(C)| MinD MaxD

1 Soybean 47 34 4 7 1 2
2 Zoo 101 16 7 22 1 7
3 Iris Data 150 4 3 19 2 9
4 Glass 214 9 6 145 5 50
5 Liver Disorder 345 6 7 315 129 186
6 Monks’ Problem 432 6 2 36 18 18
7 WDBC 569 30 2 401 113 268
8 Tic-Tac-Toe 958 9 2 958 332 636
9 Car Evaluation 1728 6 4 1728 65 1210

Table 10. Results of five alogrithms

Alg 1 Alg2 Alg3 Alg4 Alg5

NO. AR(%) RSS AR(%) RSS AR(%) RSS AR(%) RSS AR(%) RSS
1 100.00 5 100.00 5 100.00 5 100.00 5 100 5
2 92.00 12 94.00 13 92.00 14 94.00 12.2 94.00 12.4
3 96.67 8.6 97.33 9 97.33 9 96.67 8.8 98 9.2
4 65.24 47.8 67.44 92.6 62.79 85.8 65.12 71 70.23 69.4
5 66.86 117.4 52.75 173.6 43.19 175.2 57.97 137.4 59.71 131.6
6 100.00 22 100.00 22 100.00 22 100.00 22 100 22
7 93.51 62 89.30 92.6 84.21 219.6 91.75 68.8 91.23 56.4
8 83.35 163.6 69.74 352.6 81.36 473.8 75.18 196.4 74.45 171.4
9 89.86 189.8 83.75 247.4 68.88 207.6 78.49 194.6 71.69 213
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of objects, |C| (|D|)denotes the number of conditional (decision) attributes, and
|U/Ind(C)| (|U/Ind(D)|) represents the number of conditional (decision) equiv-
alence classes, MinD (MaxD) stands for the minimum (maximum) number of
condition equivalent classes in some decision classes.

The average performances of five-fold cross validation are shown in Table 10,
where Alg1 stands for the approach proposed in this paper, and Alg2-Alg5 denote
naive approach, heuristic approach, matrix approach, and inductive approach
respectively. “AR” means Accuracy Rate, and “RSS” is the abbreviation for
“Rule Set Size”. The last four approaches are implemented by RIDAS [19].

Form Table 9 and Table 10, we can conclude that, when the number of the
conditional equivalence classes is small (≤ 145 in our experiments), the maximum
number and minimum number of condition classes in decision classes are small
too, Alg1 performs as good as the other four, though it can obtain a rule set
with a smaller size. When the number of the condition equivalent classes is large
(≥ 315 in our experiments), the maximum number and minimum number of
condition classes in decision classes are relatively large, Alg1 has a much better
performance in both size of rule set and accuracy in most cases.

5 Conclusions

Reduction is a core issue in Rough Set Theory. Current reductions falls into 3
categories: attribute reduction, tuple reduction and value reduction. From the
reduced tables, decision rules can be derived. For the purpose of storage and
better understanding, minimization of the rule set is desired, and it is NP-hard.
To tackle this problem, a heuristic approach to minimal value reduct set based
on Formal Concept Analysis is proposed in this paper. Experiments show that
our approach is valid with a higher accuracy, especially when the number of the
condition equivalent classes are relatively large.
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Abstract. To generalize the classical rough set model, several propos-
als have been made by considering probabilistic information. Each of the
proposed probabilistic models uses three regions for approximating a con-
cept. Although the three regions are similar in form, they have different
semantics and therefore are appropriate for different applications. In this
paper, we present a comparative study of a decision-theoretic rough set
model and a confirmation-theoretic rough set model. We argue that the
former deals with drawing conclusions based on available evidence and
the latter concerns evaluating difference pieces of evidence. By consider-
ing both models, we can obtain a more comprehensive understanding of
probabilistic rough sets.

Keywords: rough sets, probabilistic approximations, Bayesian infer-
ence, decision-theoretic rough sets, confirmation-theoretic rough sets.

1 Introduction

Rough set theory was introduced by Pawlak [17] as a tool for analyzing data
represented in a tabular form. Two central notions of the theory are the indis-
cernibility of objects and the induced approximation of a set due to indiscerni-
bility. The approximation can be represented either as a pair of lower and upper
approximations or as three pair-wise disjoint positive, negative and boundary
regions. Approximations in the classical model are defined by using qualitative
relationships between two sets, namely, set inclusion and non-empty set intersec-
tion. To overcome limitations of such a qualitative model, probabilistic rough set
models have been proposed [7, 10, 11, 19, 20, 22–25, 31], in which probabilistic
relationships between the two sets are considered.

Yao et al. [30, 31] proposed a probabilistic model, called a decision-theoretic
rough set (DTRS) model, by introducing a pair of thresholds on the conditional
probabilities Pr(C|[x]) for defining probabilistic approximations, where C is the
set to be approximated and [x] is the equivalence class containing x. Based
on the well established Bayesian decision theory, the pair of thresholds can be

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 121–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



122 B. Zhou and Y. Yao

systematically calculated and interpreted in terms of more practically operable
notions such as cost, risk, benefit, and so on. Yao and Zhou [32] introduced a
naive Bayesian rough set (NBRS) model to give a practical method for estimat-
ing the required conditional probability of a probabilistic rough set model. The
variable precision rough set (VPRS) model [33] uses 1 − Pr(C|[x]) to quantify
classification error induced by [x], or inclusion degree of [x] in C, and can be
viewed as a special case of the decision-theoretic rough set model.

Greco et al. [7–9] proposed a parameterized rough set model by using a pair of
thresholds on a Bayesian confirmation measure, in addition to a pair of thresh-
olds on the conditional probabilities. The mixture of a Bayesian confirmation
measure and the conditional probabilities may deserve further investigations.
Ślȩzak and Ziarko [21, 22, 20] introducing a Bayesian rough set model by draw-
ing correspondence between the fundamental notions of rough sets and statistics.
One the one hand, their model is related to decision-theoretic rough set models
in the sense that the a priori probability Pr(C) is used as a threshold on the con-
ditional probabilities Pr(C|[x]). On the other hand, their model is also related
to parameterized model of Greco et al. In the sense that Pr(C|[x]) − Pr(C) is
a Bayesian confirmation measure, in this case, threshold 0 used on the measure
Pr(C|[x]) − Pr(C).

All these probabilistic rough set models share the same form of approxima-
tions. That is, they all use probabilistic lower and upper approximations or three
probabilistic regions. Different types of probabilistic three regions are obtained
from the different ways in which the conditional probabilities are used. Sev-
eral questions arrive naturally: what are the main differences between different
models? do we really need different models? when it is appropriate to apply
a particular model? We search for answers to these questions by examining of
semantics of various probabilistic rough set models [28].

Although three regions are similar in form, they have different semantics in-
terpretations and are therefore appropriate for different applications. From this
point of view, the main objective of the paper is to compare two particular mod-
els, namely, decision-theoretic rough set models and confirmation-theoretic rough
set models. It should be noted that our formulation of confirmation-theoretic
rough set models is obtained by separating the Bayesian confirmation part the
parameterized model of Greco et al. [7–9]. An in-depth understanding of the
semantics differences between the two models enables us to reveal two different
aspects of Bayesian reasoning with rough sets. Decision-theoretic rough sets can
be used for Bayesian classification and confirmation-theoretic rough sets can be
used for weighting or evaluating evidence. Their integration may lead to a better
and unified probabilistic rough set model that is capable of selecting equivalence
relations on the one hand and producing approximations on the other.

2 Pawlak and Probabilistic Models

This section summarize the main results of Pawlak rough sets and probabilistic
rough sets.
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2.1 Pawlak Rough Set Model

In Pawlak rough set model [17], information about a finite set of objects is
represented in an information table with a finite set of attributes. Formally, an
information table can be expressed as: S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),
where U is a finite nonempty set of objects called the universe, At is a finite
nonempty set of attributes, Va is a nonempty set of values for a ∈ At, and
Ia : U → Va is an information function. The information function Ia maps an
object in U to a value of Va for an attribute a ∈ At, that is, Ia(x) ∈ Va. For a
subset of attributes A ⊆ At, IA(x) denotes the values of x on A.

Rough sets are contracted based on equivalence relations induced subsets of
attributes. Given a subset of attributes A ⊆ At, an indiscernibility relation on
U , RA, or simply R, is defined as [17]:

xRy ⇐⇒ ∀a∈AIa(x) = Ia(y)

⇐⇒ IA(x) = IA(y).

The relation R is an equivalence relation, that is, R is reflexive, symmetric and
transitive. Two objects x and y in U are equivalent or indiscernible by the set
of attributes A if and only if they have the same values on all attributes in A.
The equivalence class containing x is given by:

[x] = {y ∈ U | xRy}.
The equivalence relation R induces a partition of U , denoted by U/R = {[x] |
x ∈ U}.

The equivalence classes in U/R are the building blocks to construct rough set
approximations. For a subset C ⊆ U , the lower and upper approximations of C
with respect to U/R are defined by [17]:

apr(C) = {x ∈ U | [x] ⊆ C}
=
⋃
{[x] ∈ U/R | [x] ⊆ C};

apr(C) = {x ∈ U | [x] ∩ C �= 0}
=
⋃
{[x] ∈ U/R | [x] ∩ C �= ∅}. (1)

The lower approximation is the union of equivalence classes that are included
in C, and the upper approximation is the union of equivalence classes that have
an non-empty overlap with C. Based on the rough set approximations of C, one
can divide the universe U into three pair-wise disjoint regions [17]:

POS(C) = apr(C),

NEG(C) = U − apr(C) = (apr(C))c,

BND(C) = apr(C) − apr(C), (2)

where (·)c is the set complement. The positive region POS(C) is the lower ap-
proximation, the negative region NEG(C) is the complement of the upper ap-
proximation, and the boundary region BND(C) is the difference between the
upper and lower approximations. It can be verified that NEG(C) = POS(Cc).
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2.2 Decision-Theoretic Rough Set Models

The positive and negative regions of a set in Pawlak rough sets must be com-
pletely certain. An equivalence class is in the positive region if and only if it is
fully contained in the set. An equivalence class is in the negative region if and
only if it has an empty intersection with the set. This may be too restrictive
to be practically useful in real applications. By allowing some level of uncer-
tainty in the positive and negative regions, decision-theoretic rough sets [30, 31]
use conditional probability Pr(X |[x]) to quantify the degree of overlap between
equivalence classes [x] and a set C. The conditional probability is the the prob-
ability that an object belongs to C given that the object is in [x]. Accordingly,
the Pawlak three regions can be equivalently defined by [25, 28]:

POS(C) = {x ∈ U | Pr(C|[x]) = 1},
BND(C) = {x ∈ U | 0 < Pr(C|[x]) < 1},
NEG(C) = {x ∈ U | Pr(C|[x]) = 0}. (3)

They are defined by using the two extreme values, 0 and 1, of probabilities. They
are of a qualitative nature; the magnitude of the value Pr(C|[x]) is not taken
into account.

The main result of decision-theoretic rough sets [30, 31] is the introduction of
a pair of parameters α and β to replace 1 and 0, respectively:

POS(α,β)(C) = {x ∈ U | Pr(C|[x]) ≥ α},
BND(α,β)(C) = {x ∈ U | β < Pr(C|[x]) < α},
NEG(α,β)(C) = {x ∈ U | Pr(C|[x]) ≤ β}, (4)

where the pair of thresholds satisfies the condition α > β, ensuring that the three
regions are pair-wise disjoint. The pair of thresholds (α, β) can be determined
and interpreted from the loss or cost of various decisions using Bayesian decision
theory.

Unlike the qualitative Pawlak approximations, probabilistic approximations
introduce certain levels of error in both the positive and boundary regions.
Pawlak regions and (α, β)-probabilistic regions are linked together by:

POS(C) ⊆ POS(α,β)(C),

BND(α,β)(C) ⊆ BND(C),

NEG(C) ⊆ NEG(α,β)(C). (5)

Probabilistic three regions may be interpreted in terms of costs of different types
of classification decisions [26, 27]. One obtains larger positive and negative re-
gions by introducing classification errors in trade of a smaller boundary region so
that the total classification cost is minimum. Considering the errors introduced,
the three regions are semantically interpreted as the following three-way deci-
sions [26, 27, 29]. We accept an object x to be a member of C if the conditional
probability is greater than or equal to α, with an understanding that it comes
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with an (1 − α)-level acceptance error and associated cost. We reject x to be a
member of C if the conditional probability is less than or equal to β, with an un-
derstanding that it comes with an β-level of rejection error and associated cost.
We neither accept nor reject x to be a member of C if the conditional probability
is between of α and β, instead, we make a decision of deferment. The boundary
region does not involve acceptance and rejection errors, but it is associated with
cost of deferment. The three probabilistic regions are obtained by considering a
trade-off between various classification costs.

2.3 Confirmation-Theoretic Rough Set Models

Greco et al. [7] introduced a parameterized rough set model by considering a
pair of thresholds on a Bayesian confirmation measure, in addition to a pair
of thresholds on probability. The Bayesian confirmation measure is denoted
by c([x], C) which indicates the degree to which an equivalence class [x] con-
firms the hypothesis C. Given a Bayesian confirmation measure c([x], C) and a
pair of thresholds (s, t) with t < s, three (α, β, s, t)-parameterized regions are
defined by:

PPOS(α,β,s,t)(C) = {x ∈ U | Pr(C|[x]) ≥ α ∧ c([x], C) ≥ s},
PBND(α,β,s,t)(C) = {x ∈ U | (Pr(C|[x]) > β ∨ c([x], C) > t) ∧

(Pr(C|[x]) < α ∨ c([x], C) < s)},
PNEG(α,β,s,t)(C) = {x ∈ U | Pr(C|[x]) ≤ β ∧ c([x], C) ≤ t}. (6)

There is no general agreement on a Bayesian confirmation measure. Choosing an
appropriate confirmation measure for a particular application may not be an easy
task. The ranges of the values of different confirmation measures are different.
This makes it an even more difficult task to interpret and set the thresholds
(s, t).

Although the use of two pairs of thresholds provides additional flexibility of
a probabilistic rough set model, there is still a lack of framework on how to
interpret the interactions and trade-off between the four thresholds. For this
reason, we consider a simple confirmation-theoretic model that produces the
following three regions:

CPOS(s,t)(C) = {[x] ∈ U/R | c([x], C) ≥ s},
CBND(s,t)(C) = {[x] ∈ U/R | t < c([x], C) < s)},
CNEG(s,t)(C) = {[x] ∈ U/R | c([x], C) ≤ t}. (7)

In contrast to Greco et al.’s model, we divide the partition U/R, instead of the
universe, into three regions. Each equivalence class may be viewed as a piece
of evidence. An equivalence class in the positive region supports C to a degree
at or above s, an equivalence class in the negative region supports to a degree
at or below t and may be viewed as against C, and an equivalence class in the
boundary region is interpreted as neutral towards C.
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2.4 Bayesian Rough Set Models

Instead of using arbitrary pairs of thresholds, Ślȩzak and Ziarko [21, 22] suggested
the use of the a priori probability Pr(C) as a threshold. They introduced a
Bayesian rough set (BRS) model that divides U into three regions as follows:

POSB(C) = {x ∈ U | Pr(C|[x]) > Pr(C)},
BNDB(C) = {x ∈ U | Pr(C|[x]) = Pr(C)},
NEGB(C) = {x ∈ U | Pr(C|[x]) < Pr(C)}. (8)

In this way, the Bayesian rough sets may be related to decision-theoretic rough
sets in which α = β = Pr(C). Alternatively, one may interpret Pr(C|[x])−Pr(C)
as a confirmation measure. In this case, by setting s = t = 0, one can establish
a connection to confirmation-theoretic rough sets.

When neither the a posteriori probability Pr(C|[x]) nor the a priori proba-
bility Pr(C) is derivable from data, one may compare two likelihood functions
Pr([x]|C) and Pr([x]|Cc) directly [21, 22]. That is,

POSB(C) = {x ∈ U | Pr([x]|C) > Pr([x]|Cc)},
BNDB(C) = {x ∈ U | Pr([x]|C) = Pr([x]|Cc)},
NEGB(C) = {x ∈ U | Pr([x]|C) < Pr([x]|Cc)}. (9)

Ślȩzak [20] further drew a natural correspondence between the fundamental no-
tions of rough sets and statistics. The set to be approximated corresponds to
a hypothesis and an equivalence class to a piece of evidence; the three proba-
bilistic regions correspond to the cases that the hypothesis is verified positively,
negatively, or undecided based on the evidence. Based on such a correspondence,
Ślȩzak introduced a rough Bayesian model [20], in which probabilistic approx-
imations are defined based on a pair of thresholds on the ratio of the a priori
and the a posteriori probabilities.

3 Interpreting Two Probabilistic Models

From the viewpoint of semantics, we examine differences between decision-
theoretic and confirmation-theoretic models and their corresponding
applications.

3.1 Semantics Issues of Probabilistic Rough Set Models

A key to unlocking the differences and scopes of various probabilistic rough set
models may be the semantics of these models. A probabilistic rough set model
must address at least the following three issues:

(i) Interpretation and computation of thresholds;
(ii) Estimation of conditional probability Pr(C|[x]);

(iii) Interpretation and applications of three regions in data analysis.
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Table 1. Comparison of probabilistic rough set models

RS models main features unsolved/partially solved
issues

Decision-theoretic RS model a pair of thresholds (ii)

Confirmation-theoretic RS model a pair of thresholds (i), (ii) & (iii)

Variable precision RS model one threshold or (i), (ii) & (iii)
a pair of thresholds

Parameterized RS model two pairs of thresholds (i), (ii) & (iii)

Bayesian RS model a priori probability (ii) & (iii)
as threshold

Table 1 lists the issues that have not been fully solved in each of the probabilistic
rough set models. The main results related to the three issues are summarized
below.

Issue (i): Interpretation and computation of thresholds. The origi-
nal decision-theoretic rough set model is the only model that fully considers
issue (i) by giving a sound theoretical and practical basis for interpreting and
computing the required three threshold. Several more recent attempts include a
game-theoretic framework [1, 12], a cost-sensitive model of decision makeing [14],
a model based on an optimization viewpoint [13], a method using probabilistic
model criteria [16], and an information-theoretic framework [4].

Issue (ii): Estimation of conditional probabilities. The required condi-
tional probability is commonly estimated as:

Pr(C|[x]) =
|C ∩ [x]|
|[x]| , (10)

where | · | denotes the cardinality of a set. The conditional probability defined
in this way is also known as a rough membership function [18]. This simple way
of estimation is of limited value due to the requirement of a large-sized sam-
ple. Dembczyński et al. [3] suggested a statistical model in which probabilities
are estimated based on the maximization of a likelihood function. In the naive
Bayesian rough set (NBRS) model introduced by Yao and Zhou [32], the esti-
mation of the a posteriori probability is translated into the estimation of the
likelihood function based on Bayes’ theorem and naive conditional independence
assumption. Liu et al. [15] used logistic regression method for estimating the
required conditional probability.

Issue (iii): Interpretation and application of three regions. Each of
the probabilistic models introduces three approximation regions. Although three
regions are similar in form, they have different semantics interpretations. More
specifically, the three regions defined, respectively, by Ślȩzak et al. [21, 22] and
Greco et al. [7–9] have a very different interpretation from those of the decision-
theoretic rough set models. It may not be appropriate to interpret the former as
probabilistic approximations of C. Rather, they are interpreted as classification
of pieces of evidence (i.e., equivalence classes).
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The interpretation and application of three regions for real world applica-
tions remain to be partially unsolved. A recently proposed theory of three-way
decisions [29] for interpreting three regions is a promising direction.

3.2 Applications of the Two Models

We discuss two applications of Bayesian inference with probabilistic rough set
models. Decision-theoretic rough set models [30, 31] concern drawing conclusions
based on available evidence. Confirmation-theoretic rough set models focus on
evaluating pieces of evidence.

Bayesian inference uses probability for quantifying uncertainty in inferences.
In Bayesian data analysis, the a priori probability of a hypothesis is updated
into the a posteriori probability after observing some evidence [2]. Bayesian
inference can be used to address two different issues and, hence, two types of
applications. First, we use the degree to which evidence supports a hypothesis
to classify objects based on their satisfiability of the hypothesis. That is, we
classify an object as satisfying or not satisfying the hypothesis if the object
positively supports or is against the hypothesis beyond a certain level. Second,
we can evaluate the quality of different pieces of evidence (i.e., how much the a
posteriori probability increases or reduces after observing the evidence). That is,
we can either weigh or select pieces of evidence according to their confirmations
of the hypothesis.

An understanding of the semantics differences behind these two applications
enables us to demonstrate two types of probabilistic rough set models. The main
ideas of the two applications of Bayesian inference are illustrated by examples.
Suppose we have a data table from a hospital historical database. In this table,
there are a set of patients and a set of attributes indicating patients’ symptoms
(e.g., cough) with regard to a certain disease (e.g., lung cancer).

The first application concerns the diagnosis. Given a patient with certain
symptoms (i.e., the evidence), what are the chances that the patient has lung
cancer (i.e., the hypothesis)?

In an ideal case, the information in the data table is complete, the probability
of the patient has lung cancer can be estimated by the number of patients who
have lung cancer and symptom cough divides the number of people who has
symptom cough. In many cases, we may only have limited information on hand.
Can we still predict the probability? Bayesian inference provides an answer to
this question. Suppose that we have some prior knowledge about lung cancer
(i.e., the probability of an arbitrary person having lung cancer). When the doctor
sees a new patient, he/she receives evidence (i.e., cough) about lung cancer. The
evidence is related to lung cancer by a conditional probability, called likelihood.
Bayes’ theorem, also called Bayes’ law or Bayes’ rule named after Thomas Bayes,
offered a solution for this problem. In Bayes’ theorem, the a posteriori probability
can be calculated from the a priori probability and the likelihood function,
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Pr(lung cancer|cough) =
Pr(cough|lung cancer) · Pr(lung cancer)

Pr(cough)
,

where Pr(lung cancer) is the a priori probability of an arbitrary people with
lung cancer. Pr(lung cancer | cough) is the a posteriori probability that a pa-
tient with lung cancer after observing evidence cough, and Pr(cough | lung
cancer) is the likelihood of evidence cough related to lung cancer.

Once we obtain the a posteriori probability, how do we make decisions based
on the value of the a posteriori probability? Rough set theory provides us a way
for three-way decision making [27]. When applying Bayesian inference to rough
sets, one may view the set C as a hypothesis that an object is in C and an equiva-
lence class as evidence that an object is in the equivalence class. This immediately
leads to the definition of three probabilistic regions defined in decision-theoretic
rough set models (equation (6)). They can be used to build a ternary classifier
for three-way decisions. The doctor can make a decisions of treatment when the
probability is greater than or equal to α, namely, Pr(lung cancer|cough) ≥ α,
and of not treatment when Pr(lung cancer|cough) ≤ β. In the case when the
probability lies in between α and β, the doctor can perform a medical test to
further examine the patient.

The second application concerns which symptoms or medical tests provide
more information when diagnosing a disease. A doctor may decide to perform
a particular test in order to revise the a priori probability in the process of
diagnosing and treating lung cancer.

For example, if the probability of a patient has lung cancer given that he/she
has cough increased from the a priori probability (i.e., the probability without
seeing any evidence), then cough is considered as supporting evidence for lung
cancer. If there are many possible tests that may be used, how do we decide which
one is more informative? Assume there are two tests that can be performed.
Consider a Bayesian confirmation measure defined by [5, 6] Pr(C|[x]) − Pr(C).
The three probabilistic regions are defined in confirmation-theoretic rough set
models as follows [9, 21, 22],

CPOS(s,t)(C) = {x ∈ U | Pr(C|[x]) − Pr(C) ≥ s},
CBND(s,t)(C) = {x ∈ U | t < Pr(C|[x]) − Pr(C) < s},
CNEG(s,t)(C) = {x ∈ U | Pr(C|[x]) − Pr(C) ≤ t},

where (s, t) is a pair of thresholds and s > t. The results of a Bayesian confir-
mation model also offer three-way decisions for evaluating symptoms or tests.
If Pr(C|[x]) − Pr(C) ≥ s, the symptoms of x support C or these tests should
be performed to confirm that x has lung cancer. If Pr(C|[x]) − Pr(C) ≤ t, the
symptoms of x are against C or these tests should be performed to rule out x
has lung cancer. If t < Pr(C|[x]) − Pr(C) < s, the symptoms of x are neutral
to C or these tests are not informative.

Alternatively, the value of a Bayesian confirmation measure can be used to
help the doctor to decide which medical test should be performed. Based on the
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historical data, the results of Test1 provide a better indication that a patient
has lung cancer than the results of Test2 if

Pr(lung cancer|Test1)− Pr(lung cancer) >

Pr(lung cancer|Test2)− Pr(lung cancer),

a doctor might want to perform Test1 instead of Test2.

4 Conclusions

Probabilistic rough set models can be categorized based on two types of appli-
cations. The first application is to classify objects based on their satisfiability
of the hypothesis. The second application is to evaluate the quality of different
pieces of evidence. Our comparison results show that although these two models
of probabilistic rough sets are similar in forms, they have very different semantics
interpretations and therefore lead to different applications. As future research,
we will investigate these two types of applications.

Acknowledgements. This work is partially supported by an NSERC Discovery
Grant.

References

1. Azam, N., Yao, J.T.: Multiple criteria decision analysis with game-theoretic rough
sets. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Has-
sanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 399–408. Springer,
Heidelberg (2012)

2. Bayes, T., Price, R.: An essay towards solving a problem in the doctrine of chance.
Philosophical Transactions of the Royal Society of London 53, 370–418 (1763)
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Abstract. In this paper, we characterize Variable Precision Dominance-
based Rough Set Approach (VP-DRSA) from the viewpoint of empirical
risk minimization. VP-DRSA is an extension of the Dominance-based
Rough Set Approach (DRSA) that admits some degree of misclassifi-
cation error. From a definable set, we derive a classification function,
which indicates assignment of an object to a decision class. Then, we
define an empirical risk associated with the classification function. It
is defined as mean hinge loss function. We prove that the classification
function minimizing the empirical risk function corresponds to the lower
approximation in VP-DRSA.

Keywords: rough sets, variable precision dominance-based rough set
approach, empirical risk minimization.

1 Introduction

Rough set theory [5] provides a framework for data analysis under partial incon-
sistency. An analysed data set has the form of a decision table, which consists of
objects described by condition attributes and classified into a finite number of de-
cision classes. When objects having the same description by condition attributes
are classified into different decision classes, the classification is considered as in-
consistent with respect to the condition attributes. The inconsistency is a key
issue in the definition of lower and upper (rough) approximations of a decision
class, which are consistent sets of certainly and possibly classified objects into
the decision class, respectively.

There are two important extensions of rough set theory. One is Variable Pre-
cision Rough Set Model (VP-RSM) [9], which admits some degree of misclassifi-
cation error in the definition of lower approximations. In VP-RSM, for a decision
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class and an object, a membership degree of the object to the decision class is
defined. It is called rough membership degree. The lower approximation of the
decision class is defined by the set of objects whose rough membership degrees
are not less than a given threshold. The other extension is the Dominance-based
Rough Set Approach (DRSA) [2]. In DRSA, the values of condition attributes
and the decision classes are totally ordered, and inconsistency with respect to
monotonicity between the ordered condition attributes and the decision classes is
captured. In DRSA, instead of single decision classes, lower and upper approx-
imations concern upward and downward unions of decision classes. Moreover,
there are two variable-precision-like extensions of DRSA: Variable Consistency
DRSA (VC-DRSA) [1] and Variable Precision DRSA (VP-DRSA) [4]. They are
based on different definitions of membership degrees.

Several authors [6–8] pointed out that the rough membership degree in VP-
RSM can be interpreted as conditional probability. This fact stimulated de-
velopment of Decision-Theoretic Rough Set Model (DTRSM) [8]. In DTRSM,
approximations are determined by Bayes risk minimization of statistical decision
theory. The membership degree in VC-DRSA can be also interpreted as condi-
tional probability [3]. However, in VP-DRSA, the membership degree, which has
some desirable properties, cannot be interpreted by conditional probability.

Defining approximations can be seen as a classification problem in statistical
learning theory. It consists in finding a classification function, which indicates
assignment of an object to a decision class. The best function is selected from
predefined category of functions by minimizing its empirical risk for a decision
table with respect to a specific loss function. In this paper, we characterize the
approximations of VP-DRSA from the viewpoint of empirical risk minimization.
We define classification functions corresponding to consistent sets of objects, and
define an empirical risk function for classification functions. We prove that the
classification function corresponding to the lower approximation minimizes the
empirical risk function.

This paper is organized as follows. In Section 2, VP-DRSA is briefly intro-
duced. The membership degree and the lower and upper approximations are
defined. In Section 3, we define the empirical risk function, and characterize
the lower approximation from the viewpoint of risk minimization. Concluding
remarks are given in Section 4.

2 Variable Precision Dominance-Based Rough Set
Approach

2.1 Decision Table and DRSA

Dominance-based Rough Set Approach (DRSA) [2] is an extension of rough set
approach which involves dominance relation instead of the usual indiscernibility
relation in the treatment of ordinal data organized in a decision table. Let us
recall briefly DRSA and related topics for the sake of introduction.

A decision table is defined by (U,AT = C ∪{d}, V ), where U = {u1, ..., un} is
a finite set of objects, C = {c1, ..., cm} is a finite set of condition attributes, d is a
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decision attribute, and V is a set of attribute values. For each u ∈ U and a ∈ AT ,
a(u) ∈ V is an attribute value of u with respect to a. We denote by Va ⊆ V a
set of attribute values with respect to a. For A ⊆ AT , let VA =

∏
a∈A Va. The

attribute set is divided into ATN and ATC . Attributes in ATC are called criteria.
For a criterion a ∈ ATC , we assume a total order ≥ on its value set Va. Moreover,
we assume that all attributes from ATC are of the gain-type, i.e., the greater
the better. The decision attribute assigns each object to one of totally ordered
decision classes specified by Vd: as such, it may be considered as a criterion.

For A ⊆ C, a dominance relation DA on U is defined by:

DA =

{
(u, u′) ∈ U2

∣∣∣∣ a(u) ≥ a(u′), ∀a ∈ ATC ∩ A
and a(u) = a(u′), ∀a ∈ ATN ∩A

}
. (1)

DA satisfies reflexivity and transitivity. For u ∈ U , its dominating set and its
dominated set are defined, respectively, by:

D+
A(u) = {u′ ∈ U | (u′, u) ∈ DA}, D−

A(u) = {u′ ∈ U | (u, u′) ∈ DA}. (2)

Let Vd = {1, 2, ..., p}, and assume a gain-type preference order in this value
set, as 1 < 2 < · · · < p. Decision attribute d partitions U into {X1, X2, . . . , Xp},
each of which is called a decision class, where Xi = {u ∈ U | d(u) = i}. Since
decision classes are ordered X1 < X2 < · · · < Xp, one can define an upward
union of decision classes X≥

i and a downward union of decision classes X≤
i with

respect to each class Xi, i = 1, 2, . . . , p, as follows:

X≥
i =

⋃
j≥i

Xj , X≤
i =

⋃
j≤i

Xj. (3)

For convenience, X≤
0 = X≥

p+1 = ∅. We have X≥
i = ¬X≤

i−1, where ¬X is the
complement set of X ⊆ U .

In DRSA, it is supposed that if an object u is better than or equal to another
object u′ with respect to all condition attributes, then the class of u should not
be worse than that of u′. This is called the dominance principle. Given a decision
table, the inconsistency with respect to the dominance principle is captured by
the difference between upper and lower approximations of the unions of decision
classes. Given a condition attribute set A ⊆ C, and i ∈ {1, 2, . . . , p}, the lower
approximation A(X≥

i ) of X≥
i and the upper approximation A(X≥

i ) of X≥
i are

defined, respectively, by:

A(X≥
i ) = {u ∈ U | D+

A(u) ⊆ X≥
i }, A(X≥

i ) = {u ∈ U | D−
A(u) ∩X≥

i �= ∅}. (4)

Similarly, the lower approximation A(X≤
i ) of X≤

i and upper approximation
A(X≤

i ) of X≤
i are defined, respectively, by:

A(X≤
i ) = {u ∈ U | D−

A(u) ⊆ X≤
i }, A(X≤

i ) = {u ∈ U | D+
A(u) ∩X≤

i �= ∅}. (5)
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2.2 VP-DRSA

For A ⊆ C, X≥
i , X≤

i , i ∈ {1, 2, . . . , p}, and u ∈ U , we define a membership
degree of x in X≥

i and in X≤
i with respect to A by:

μA
X≥

i

(u) =
|D−

A(u) ∩X≥
i |

|D−
A(u) ∩X≥

i |+ |D+
A(u) ∩X≤

i−1|
, (6)

μA

X≤
i

(u) =
|D+

A(u) ∩X≤
i |

|D+
A(u) ∩X≤

i |+ |D−
A(u) ∩X≥

i+1|
. (7)

These membership degrees have been used to define lower and upper approxi-
mations in the Variable Precision DRSA (VP-DRSA) [4]. For a complementary
pair X≥

i and X≤
i−1, it is clear that μA

X≥
i

(u) + μA
X≤

i−1

(u) = 1. When DA is sym-

metric, i.e., A ⊆ ATN , (6) and (7) are reduced to the rough membership degree
of the Variable Precision Rough Set Model (VP-RSM) [9]. Namely, in this case,

we have DA(u) = D+
A(u) = D−

A(u), and thus we obtain μA
X≥

i

(u) =
|DA(u)∩X≥

i |
|DA(u)| ,

μA
X≤

i

(u) =
|DA(u)∩X≤

i |
|DA(u)| .

The membership degrees are kinds of consistency measures. In [1], monotonic-
ity properties required for consistency measures were proposed. For A ⊆ C, X≥

i ,
X≤

i and u ∈ U , let fA
X≥

i

(u) and fA
X≤

i

(u) be gain type consistency measures. The
monotonicity properties are defined as follows.

(m1). Let X≥
i , X≤

i and u ∈ U be given. For B ⊆ A ⊆ C, it holds that
fB
X≥

i

(u) ≤ fA
X≥

i

(u) and fB
X≤

i

(u) ≤ fA
X≤

i

(u).

(m2). Let A ⊆ C, X≥
i , X≤

i and u ∈ U be given. If new objects ΔX≥
i are

assigned to X≥
i then fA

X≥
i

(u) ≤ fA
X≥

i ∪ΔX≥
i

(u). Contrarily, if new objects

ΔX≤
i are assigned to X≤

i then fA
X≤

i

(u) ≤ fA
X≤

i ∪ΔX≤
i

(u).

(m3). Let A ⊆ C and u ∈ U be given. For X≥
i , X≥

j , X≤
i , X≤

j such that i ≤ j,
it holds that fA

X≥
i

(u) ≥ fA
X≥

j

(u) and fA
X≤

i

(u) ≤ fA
X≤

j

(u).

(m4). Let A ⊆ C, X≥
i , X≤

i be given. For u, u′ such that uDAu
′, it holds that

fA
X≥

i

(u) ≥ fA
X≥

i

(u′) and fA
X≤

i

(u) ≤ fA
X≤

i

(u′).

The membership degrees μA
X≥

i

and μA
X≤

i

satisfy properties (m2), (m3) and (m4),

but not (m1).
Now, consider approximations of VP-DRSA. Let 0 ≤ β < α ≤ 1 be preci-

sion parameters. For an upward union of classes X≥
i , the lower approximation

A(X≥
i |α) and the upper approximation A(X≥

i |β) are defined, respectively, by:

A(X≥
i |α) = {u ∈ U | μA

X≥
i

(u) ≥ α}, (8)

A(X≥
i |β) = {u ∈ U | μA

X
≥
i

(u) > β}. (9)
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Similarly, the lower and upper approximations of downward union of classes X≤
i

are defined:

A(X≤
i |α) = {u ∈ U | μA

X≤
i

(u) ≥ α}, (10)

A(X≤
i |β) = {u ∈ U | μA

X
≤
i

(u) > β}. (11)

We can easily prove dual properties of the lower and upper approximations,
such that A(X≥

i |β) = ¬A(X≤
i−1|1 − β) and A(X≤

i |β) = ¬A(X≥
i+1|1 − β) when

β < 0.5. From monotonicity property (m4) of μA
X≥

i

and μA
X≥

i

, these approxima-

tions are upward and downward definable sets, respectively [3], where a set X
represented by a union of dominating (dominated) sets of u ∈ X is called an
upward (downward) definable set.

A(X≥
i |α) =

⋃
u∈A(X≥

i |α)
D+

A(u), A(X≥
i |β) =

⋃
u∈A(X≥

i |β)
D+

A(u), (12)

A(X≤
i |α) =

⋃
u∈A(X≤

i |α)
D−

A(u), A(X≤
i |β) =

⋃
u∈A(X≤

i |β)
D−

A(u). (13)

In the rest of this paper, we discuss only the two class case and a fixed condi-
tion attribute subset. Hence, we drop class index i and condition attribute subset
A from the previous notation. Let X≥ and X≤ be upward and downward classes.
Note that X≥ ∩ X≤ = ∅ and X≥ ∪ X≤ = U . The lower approximation of X≥

(resp. X≤) is denoted by X≥(α) (resp. X≤(α)), and called the positive (resp.
negative) region. Because the upper approximation of X≥ (resp. X≤) with β is
equal to the complement of the lower approximation of X≤ (resp. X≥), we can
only consider the lower approximations. Generalization of the rest discussion to
the multiclass case is straightforward.

3 Empirical Risk Minimization

We show a relation between the approximations in VP-DRSA and an empirical
risk minimization problem. We associate the lower approximations of upward
class X≥ and downward class X≤ with the classification problem where we find
an optimal classifier for X≥ and X≤ with respect to a risk function, which is
defined as an expected value of a supposed loss function. First, we only consider
X≥, and then we consider both, X≥ and X≤.

3.1 Classifiers, Inference Rules, and Loss Functions

Candidates of the optimal classifier are requested to be upward definable sets,
because the lower approximation of X≥ is a upward definable set. Therefore, the
classifier is restricted by a family WP of all upward definable sets, i.e.,

WP =

{
W ⊆ U

∣∣∣∣∣ W =
⋃

u∈W

D+(u)

}
. (14)
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An inference rule of a classifier WP ∈ WP is defined by:

u is classified to

{
X≥ if u ∈WP ,

X≤ if u �∈WP .
(15)

A loss function is defined for an object u and a classifier WP and represents a
cost of misclassification of u. The 0-1 loss function is a simple and usually used
loss function, which takes 0 if the classifier is correct and 1 otherwise. For u ∈ U
and WP ∈ Wp, the 0-1 loss L01(u,WP ) is defined by:

L01(u,WP ) =

{
0 (u ∈ X≥ and u ∈ WP ) or (u �∈ X≥ and u �∈ WP ),

1 otherwise.
(16)

However, in this paper, we use another loss function, called a hinge loss func-
tion, which is used for support vector machines. To introduce the hinge loss
function, we consider a real-valued classifier f−

WP
corresponding to WP ∈ WP :

f−
WP

(u) =

{
|D−(u) ∩WP | u ∈ WP ,

− |D+(u) ∩ ¬WP | u /∈ WP .
(17)

An inference rule of f−
WP

is defined by:

u is classified to

{
X≥ if f−

WP
(u) > 0,

X≤ if f−
WP

(u) < 0.
(18)

When f−
WP

(u) = 0, the classification is undecided or arbitrarily decided. Note
that for u ∈ U we have f−

WP
(u) ≥ 1 or f−

WP
(u) ≤ −1. Moreover, we introduce a

function y≥ to represent set X≥: for u ∈ U ,

y≥(u) =

{
1 u ∈ X≥,

−1 u �∈ X≥.
(19)

It is remarkable that when y≥(u) and f−
WP

(u) have the same sign, u is correctly
classified by f−

WP
(u). However, when y≥(u) and f−

WP
(u) have different signs, u is

misclassified by f−
WP

(u). A real-valued classifier f and class indicator y ∈ {−1, 1}
for classification problems are usually used in statistical learning methods such
as support vector machines or logistic regression.

Given parameters λ≤
P , λ≥

P c ≥ 0, for u and WP ∈ WP , the hinge loss function
is defined as follows:

L(y≥(u), f−
WP

(u)|λ≤
P , λ≥

P c) =

{
λ≤
P [−y≥(u)f−

WP
(u)]+ y≥(u) = −1,

λ≥
P c [−y≥(u)f−

WP
(u)]+ y≥(u) = 1,

(20)

where the notation [x]+ is max{x, 0}. If u is correctly classified by f−
WP

(u),
then L(y≥(u), f−

WP
(u)|λ≤

P , λ≥
P c) = 0. On the other hand, if u is misclassified by
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Fig. 1. A hinge loss function Fig. 2. WP and f−
WP

f−
WP

(u), it becomes positive. Parameters λ≤
P , λ≤

P c can be seen as costs for type 1
and type 2 errors, respectively. L is depicted in Figure 1 (when λ1 = λ2 = 1).

Value f−
WP

(u) shows the number of objects in WP supporting u ∈ WP .
Namely, f−

WP
(u) indicates to what extent the membership of u to WP is guaran-

teed. Figure 2 shows an illustration of WP and f−
WP

. In this example, there are
5 objects (3 circles and 2 squares), and set WP is composed of object located
above the line from top-left to bottom-right. f−

WP
of the top circle object ui is

3 because there are 3 objects dominated by ui and included in WP . Similarly,
f−
WP

of the bottom square object uj is −1.

3.2 Empirical Risk Minimization for Upward Class X≥

An empirical risk of WP ∈ WP is defined by the mean of hinge loss over U under
given λ≤

P and λ≥
P c , i.e.,

R(WP |λ≤
P , λ≥

P c) =
1

n

∑
u∈U

L(y≥(u), f−
WP

(u)|λ≤
P , λ≥

P c). (21)

We can prove the following theorem.

Theorem 1. Under given λ≤
P , λ≥

P c ≥ 0, W ∗
P ∈ WP minimizes the empirical risk

function R(·|λ≤
P , λ≥

P c) if and only if W ∗
P satisfies the following implications, for

all u ∈ U

λ≤
P

∣∣D+(u) ∩X≤∣∣ < λ≥
P c

∣∣D−(u) ∩X≥∣∣⇒ u ∈W ∗
P , (22)

λ≤
P

∣∣D+(u) ∩X≤∣∣ > λ≥
P c

∣∣D−(u) ∩X≥∣∣⇒ u �∈W ∗
P . (23)

First, we prove the following lemma.

Lemma 1. We have,

R(WP |λ≤
P , λ≥

P c) =
1

n

( ∑
u′∈WP

λ≤
P

∣∣D+(u′) ∩X≤∣∣+ ∑
u′∈¬WP

λ≥
P c

∣∣D−(u′) ∩X≥∣∣) .

(24)
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Proof.

nR(WP |λ≤
P , λ≥

P c)

=
∑

u∈WP∩X≤
λ≤
P

∣∣D−(u) ∩WP

∣∣+ ∑
u∈¬WP∩X≥

λ≥
P c

∣∣D+(u) ∩ ¬WP

∣∣ ,
= λ≤

P

∣∣{(u, u′) ∈ U2
∣∣ u ∈WP ∩X≤ and u′ ∈ D−(u) ∩WP

}∣∣
+ λ≥

P c

∣∣{(u, u′) ∈ U2
∣∣ u ∈ ¬WP ∩X≥ and u′ ∈ D+(u) ∩ ¬WP

}∣∣ ,
= λ≤

P

∣∣{(u, u′) ∈ U2
∣∣ u ∈ D+(u′) ∩WP ∩X≤ and u′ ∈WP

}∣∣
+ λ≥

P c

∣∣{(u, u′) ∈ U2
∣∣ u ∈ D−(u′) ∩ ¬WP ∩X≥ and u′ ∈ ¬WP

}∣∣ ,
=
∑

u′∈WP

λ≤
P

∣∣D+(u′) ∩X≤∣∣+ ∑
u′∈¬WP

λ≥
P c

∣∣D−(u′) ∩X≥∣∣ .
Proof (Theorem 1). We suppose that for WP ∈ WP there exists u ∈ U such
that λ≤

P

∣∣D+(u) ∩X≤∣∣ < λ≥
P c

∣∣D−(u) ∩X≥∣∣ and u �∈ WP . Then we show that
WP is not optimal. The statement that the optimality of W ∗

P implies (23) is also
proved in a similar way. Consider W ′

P = WP ∪ D+(u). We can easily see that
W ′

P ∈ WP by transitivity of D. The difference of empirical risks of WP and W ′
P

is obtained as follows.

n(R(WP |λ≤
P , λ

≥
P c)−R(W ′

P |λ≤
P , λ

≥
P c))

=
∑

x′∈WP

λ≤
P

∣∣∣D+(x′) ∩X≤
∣∣∣+ ∑

x′∈¬WP

λ≥
P c

∣∣∣D−(x′) ∩X≥
∣∣∣

−
⎛
⎝ ∑

x′∈WP∪D+(u)

λ≤
P

∣∣∣D+(x′) ∩X≤
∣∣∣+ ∑

x′∈¬(WP∪D+(u))

λ≥
P c

∣∣∣D−(x′) ∩X≥
∣∣∣
⎞
⎠ ,

= −
∑

x′∈¬WP∩D+(u)

λ≤
P

∣∣∣D+(x′) ∩X≤
∣∣∣+ ∑

x′∈¬WP∩D+(u)

λ≥
P c

∣∣∣D−(x′) ∩X≥
∣∣∣ ,

≥
∑

x′∈¬WP ∩D+(u)

(
λ≥
P c

∣∣∣D−(u) ∩X≥
∣∣∣− λ≤

P

∣∣∣D+(u) ∩X≤
∣∣∣) > 0.

This leads to the conclusion leads that WP is not optimal. Therefore, we have
that the optimality of W ∗

P implies (22).
Next, provide an arbitrary W ∗

P which satisfies (22) and (23). Consider two
sets,

W1 =
{
u ∈ U

∣∣∣ λ≤
P

∣∣D+(u) ∩X≤∣∣ < λ≥
P c

∣∣D−(u) ∩X≥∣∣} ,

W2 =
{
u ∈ U

∣∣∣ λ≤
P

∣∣D+(u) ∩X≤∣∣ > λ≥
P c

∣∣D−(u) ∩X≥∣∣} .
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The empirical risk of W ∗
P is obtained as follows.

nR(W ∗
P |λ≤

P , λ≥
P c)

=
∑

u′∈W1

λ≤
P

∣∣D+(u′) ∩X≤∣∣+ ∑
u′∈W∗

P∩¬W1∩¬W2

λ≤
P

∣∣D+(u′) ∩X≤∣∣
+
∑

u′∈W2

λ≥
P c

∣∣D−(u′) ∩X≥∣∣+ ∑
u′∈¬W∗

P∩¬W1∩¬W2

λ≥
P c

∣∣D−(u′) ∩X≥∣∣ ,
=
∑

u′∈W1

λ≤
P

∣∣D+(u′) ∩X≤∣∣+ ∑
u′∈W2

λ≥
P c

∣∣D−(u′) ∩X≥∣∣
+

∑
u′∈¬W1∩¬W2

λ≤
P

∣∣D+(u′) ∩X≤∣∣ .
The minimum empirical risk value of W ∗

P depends only on W1 and W2. Addi-
tionally, from the first part of this proof, we know that an optimal WP satisfies
(22) and (23). Therefore, any W ∗

P satisfying (22) and (23) is optimal.

Theorem 1 says that optimality of set WP (definable with dominating sets
D+), in the sense of minimizing the empirical risk function, is determined by
the implication rules (22) and (23), which is related to the conditions of the
approximations in VP-DRSA. This leads to the following corollary.

Corollary 1. Suppose λ≤
P > 0. X≥(

λ≤
P

λ≤
P +λ≥

Pc

) minimizes R(·|λ≤
P , λ≥

P c). More-

over, if λ≤
P

∣∣D+(u) ∩X≤∣∣ �= λ≥
P c

∣∣D−(u) ∩X≥∣∣ for every u ∈ U then it is the
unique optimal solution.

Thus, the lower approximation of the upward class is characterized by an optimal
solution of the empirical risk minimization.

3.3 Empirical Risk Minimization for Upward and Downward
Classes, X≥ and X≤

Now, let us extend the above results to the case of classification into upward
class X≥ or downward class X≤. Consider the following family of all downward
definable sets,

WN =

{
W ⊆ U

∣∣∣∣∣ W =
⋃

u∈W

D−(u)

}
. (25)

Let WP ∈ WP and WN ∈ WN . We introduce additional nonnegative costs of
type 1 and 2 errors for classifier WN : λ≥

N , λ≤
Nc ≥ 0. Then an empirical risk for

λ≤
P , λ≥

P c , λ
≥
N , λ≤

Nc and WP ,WN is defined as follows:

R̂(WP ,WN |λ≤
P , λ≥

P c , λ
≥
N , λ≤

Nc)

=
1

n

∑
u∈U

(
L(y≥(u), f−

WP
(u)|λ≤

P , λ≥
P c) + L(y≤(u), f+

WN
(u)|λ≥

N , λ≤
Nc)
)
, (26)
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where we define,

y≤(u) = −y≥(u), (27)

f+
WN

(u) =

{
|D+(u) ∩WN | u ∈ WN ,

−|D−(u) ∩ (U \WN )| u �∈ WN .
(28)

Similar to f−
WP

, f+
WN

is a real-valued classifier for X≤, namely, if f+
WN

(u) > 0

then u is classified to X≤, and if f+
WN

(u) < 0 then u is classified to X≥.

Theorem 2. Let λ≤
P , λ≥

P c , λ
≥
N , λ≤

Nc ≥ 0 be given, and let W ∗
P ∈ WP , W ∗

N ∈ WN .
Then (W ∗

P ,W ∗
N ) minimizes the empirical risk function R̂(·, ·|λ≤

P , λ≥
P c , λ

≥
N , λ≤

Nc)
if and only if W ∗

P and W ∗
N satisfy for all u ∈ U the following implications,

λ≤
P

∣∣D+(u) ∩X≤∣∣ < λ≥
P c

∣∣D−(u) ∩X≥∣∣⇒ u ∈W ∗
P , (29)

λ≤
P

∣∣D+(u) ∩X≤∣∣ > λ≥
P c

∣∣D−(u) ∩X≥∣∣⇒ u �∈W ∗
P , (30)

λ≥
N

∣∣D−(u) ∩X≥∣∣ < λ≤
Nc

∣∣D+(u) ∩X≤∣∣⇒ u ∈W ∗
N , (31)

λ≥
N

∣∣D−(u) ∩X≥∣∣ > λ≤
Nc

∣∣D+(u) ∩X≤∣∣⇒ u �∈W ∗
N . (32)

Moreover, if λ≤
Ncλ

≥
P c < λ≥

Nλ≤
P holds, then any optimal solution (W ∗

P ,W ∗
N ) satis-

fies W ∗
P ∩W ∗

N = ∅.
Corollary 2. Suppose λ≤

Ncλ
≥
P c < λ≥

Nλ≤
P . The pair (X≥(

λ≤
P

λ≤
P +λ≥

Pc

), X≤(
λ≥
N

λ≥
N+λ≤

Nc

))

minimizes R̂(·, ·|λ≤
P , λ≥

P c , λ
≥
N , λ≤

Nc). Moreover, if all of objects satisfy,

λ≤
P

∣∣D+(u) ∩X≤∣∣ �= λ≥
P c

∣∣D−(u) ∩X≥∣∣ and,

λ≥
N

∣∣D−(u) ∩X≥∣∣ �= λ≤
Nc

∣∣D+(u) ∩X≤∣∣ ,
then it is the unique optimal pair of classifiers.

It should be noticed that when λ≤
Ncλ

≥
P c < λ≥

Nλ≤
P , we have α =

λ≤
P

λ≤
P +λ≥

Pc

>

1− λ≥
N

λ≥
N+λ≤

Nc

= β and X≥(
λ≤
P

λ≤
P +λ≥

Pc

) ∩X≤(
λ≥
N

λ≥
N+λ≤

Nc

) = ∅.

3.4 Special Case When in the Set of Attributes There Is No
Criterion

If all condition attributes are nominal, i.e., ATC = ∅ and AT = ATN , D+(u) and
D−(u) boil down to an equivalence class D(u) = D+(u) = D−(u). The definable
sets WP , WN and the classification functions f−

WP
and f+

WN
also boil down to

the following definable set W and classification function fW , respectively:

W =

{
W ⊆ U

∣∣∣∣∣ W =
⋃

u∈W

D(u)

}
, (33)

fW =

{
|D(u)| u ∈W,

−|D(u)| u �∈W.
(34)
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For convenience, let us rename X≥, X≤, λ≤
P , λ≤

Nc , λ≥
N , λ≥

P c , y≥, and y≤ to X ,
Xc, λc

P , λc
Nc , λN , λP c , y, and yc, respectively. For WP ,WN ∈ W , the empirical

risk function R̂ is reformulated as:

R̂(WP ,WN |λc
P , λP c , λN , λc

Nc)

=
1

n

∑
u∈U

(L(y(u), fWP (u)|λc
P , λP c) + L(y(u), fWN (u)|λN , λc

Nc)),

=
1

n

∑
E∈{D(u)|u∈U}

( ∑
u′∈E∩Xc∩WP

λc
P |E|+

∑
u′∈E∩X∩¬WP

λP c |E|

+
∑

u′∈E∩X∩WN

λN |E|+
∑

u′∈E∩Xc∩¬WN

λc
Nc |E|

)
,

=
1

n

∑
E∈{D(u)|u∈U}

(λc
P |E ∩Xc ∩WP |+ λP c |E ∩X ∩ ¬WP |

+λN |E ∩X ∩WN |+ λc
Nc |E ∩Xc ∩ ¬WN |) |E|.

In order to see a relation to the Bayes risk, we introduce WP ∩WN = ∅.
R̂(WP ,WN |λc

P , λP c , λN , λc
Nc)

=
1

n

∑
E∈{D(u)|u∈U}

⎛⎝ ∑
E⊆WP

(λc
P + λc

Nc)|E ∩Xc|+
∑

E⊆WN

(λN + λP c)|E ∩X |

+
∑

E⊆¬(WP∪WN )

(λP c |E ∩X|+ λc
Nc |E ∩Xc|)

⎞⎠ |E|,
=

∑
E∈{D(u)|u∈U}

⎛⎝ ∑
E⊆WP

(λc
P + λc

Nc)
|E ∩Xc|
|E| +

∑
E⊆WN

(λN + λP c)
|E ∩X|
|E|

+
∑

E⊆¬(WP∪WN )

(λP c

|E ∩X|
|E| + λc

Nc

|E ∩Xc|
|E| )

⎞⎠( |E|
n

)2

n.

Representing |E∩Xc|
|E| , |E∩X|

|E| , and |E|
n by P (Xc|E), P (X |E), and P (E), respec-

tively, we obtain

R̂(WP ,WN |λc
P , λP c , λN , λc

Nc)/n

=
∑

E∈{D(u)|u∈U}

⎛⎝ ∑
E⊆WP

(λc
P + λc

Nc)P (Xc|E) +
∑

E⊆WN

(λN + λP c)P (X |E)

+
∑

E⊆¬(WP∪WN )

(λP cP (X |E) + λc
NcP (Xc|E)

⎞⎠P (E)2.
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Hence, R̂/n becomes similar to the Bayes risk which is defined by the last
formula with replacement of multiplier P (E)2 with P (E). Because for each E ∈
{D(u)|u ∈ U}, we can decide which region among WP , WN and ¬(WP ∪WN )
includes E, individually, the implications characterizing optimal W ∗

P and W ∗
N

becomes same as those obtained in DTRSM [8] when parameters λP and λc
N of

DTRSM are zeros.

4 Concluding Remarks

In this paper, we have shown the connection between VP-DRSA and the empir-
ical risk minimization. We have demonstrated that the empirical risk function
with the proposed hinge loss function serves as a foundation for VP-DRSA.
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Abstract. The determination of thresholds (α, β) has been considered as
a fundamental issue in probabilistic rough sets. The game-theoretic rough
set (GTRS) model determines the required thresholds based on a formu-
lated game between different properties related to rough sets approxima-
tions and classification. The game strategies in the GTRS model are
generally based on an initial threshold configuration that corresponds to
the Pawlak model. We study different approaches for formulating strate-
gies by considering different initial conditions. An example game is shown
for each case. The selection of a particular approach for a given problem
may be based on the quality of data and computing resources at hand.
The realization of these approaches in GTRS based methods may bring
new insights into effective determination of probabilistic thresholds.

1 Introduction

The probabilistic rough set model has been recognized as a major extension,
improvement and generalization of the Pawlak rough set model [10]. The model
utilizes a pair of probabilistic (α, β) thresholds to determine the division be-
tween probabilistic positive, negative and boundary regions [10]. A fundamen-
tal issue in probabilistic rough sets is the computation or determination of the
(α, β) threshold parameters [11]. Several attempts have been made recently in
this regard including decision-theoretic, game-theoretic, information-theoretic,
optimization based and risk based approaches [1, 3, 4, 5, 6, 7]. Despite these
attempts, it might still be premature at this point of time to come up with a
solution that is universally accepted and convince the majority (if not all) of the
audience for its superiority. For now, the need for further research remains in
order to obtain more interesting results.

The game-theoretic rough set (GTRS) model has recently provided an alter-
native way for determining the probabilistic thresholds [4]. It utilizes a game-
theoretic environment in determining these thresholds by analyzing and directing
towards the optimization of one or more characteristics of the rough set model.
Particularly, the thresholds are computed based on a game between different
properties related to rough sets based approximation, classification or decision
making in order to reach a suitable tradeoff.

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 145–153, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The strategies in GTRS are generally formulated based on an initial threshold
configuration (α, β) = (1, 0) which corresponds to the Pawlak model [1, 2]. This
only allows for the formulation of strategies in terms of decreasing levels for
threshold α and increasing levels for threshold β (considering 0 ≤ β < α ≤ 1
in the probabilistic rough set model). It seems that the motivation or rationale
behind this approach is to obtain a model that is at least better than the Pawlak
model based on some considered performance criteria. The approach is useful
for configuring the thresholds, it may not necessarily provide an overall better
model. We propose various approaches for formulating strategies by considering
different initial conditions. A game is implemented for each approach and the
threshold modification trend based on a repetitive game is examined. It is hoped
that these approaches may further improve and enhance the process of threshold
modification and the quality of obtained thresholds.

2 Problem Statement

A main result of probabilistic rough sets is that the rules for determining the
three regions are given by,

Positive: if P (C|[x]) ≥ α,

Negative: if P (C|[x]) ≤ β, and

Boundary: if β < P (C|[x]) < α. (1)

where P (C[x]) denotes the conditional probability of an object x to be in C given
that the object is in [x] and 0 ≤ β < α ≤ 1. The division between the three
regions is based on the probabilistic thresholds (α, β) [9]. The determination and
interpretation of thresholds are among the fundamental issues in probabilistic
rough sets [11]. There are at least three approaches to determine the thresholds
based on decision theory, game theory and information theory that lead us to
decision-theoretic rough set (DTRS) [9], game-theoretic rough set (GTRS) [2, 4]
and information theoretic rough set (ITRS) [3] models, respectively.

The GTRS model determines the threshold parameters based on a formulated
game. A typical game consists of a tuple {P, S, u}, where:

– P is a finite set of n players, indexed by i,
– S = S1 × ...× Sn, where Si is a finite set of strategies available to player i.
– u = (u1, ..., un) where ui : Si �−→ # is a real-valued utility or payoff function

for player i.

The GTRS model considers the players in the form of multiple criteria. Each
criterion represents a particular aspect of interest like accuracy or applicabil-
ity of decision rules. Suitable measures are selected to evaluate these criteria in
the context of rough sets based approximation and classification. Each criterion
is affected by considering different (α, β) threshold configurations. The strate-
gies are therefore formulated in terms of changes in probabilistic thresholds [1].
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The payoff functions represent possible gains, benefits or performance levels
achieved by considering different modification in threshold levels.

It is not generally suitable to look into the entire range of threshold values
within a single GTRS based game. A repetitive or iterative game is generally
used where at each iteration the game outcome is used in directing towards
optimal threshold values. In existing GTRS based approaches, the initial (α, β)
pair is considered as (1,0) that corresponds to the Pawlak model. We suggest
and investigate additional approaches for formulating strategies by considering
different initial conditions for determining effective threshold values.

3 Approaches for Formulating Strategies in GTRS

This section introduces four approaches for formulating strategies with GTRS.
The game structure and threshold modification trend is discussed for each case.

3.1 The Two Ends Approach

The generally used approach for formulating strategies in GTRS is to consider
suitable decreasing levels for threshold α and increasing levels for threshold β.
Examples of this approach can be found in [1, 2, 4]. The strategies formulated
in this way commonly consider an initial configuration of thresholds values, i.e.
(α, β) = (1, 0) that corresponds to the Pawlak model. We call this approach as
the two ends approach since the threshold values are being modified from the
two extreme ends.

Table 1. Game for two ends approach

P2

s1 = α↓ s2 = β↑ s3 = α↓β↑

P1

s1 = α↓ .... ..... .....

s2 = β↑ .... ..... .....

s3 = α↓β↑ .... ..... .....

An example game based on this approach is presented in the form of Table 1.
Each player in this game considers three strategies, namely s1 = α↓ (decrease
α), s2 = β↑ (increase β), and s3 = α↓β↑ (decrease α and increase β). The
increases or decreases may be set by the user or may be defined in terms of
the utilities attained by the players. The outcome of this game may be used to
repeat the game based on new values of the thresholds. As the game repeats, the
threshold α is continuously decreased while threshold β is increased. The amount
of an increase or decrease depends on the outcome of the implemented game.
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(a) The two ends Approach (b) The middle approach

(c) The random approach (d) The range approach

Fig. 1. The four approaches for threshold determination

Figure 1(a) shows the general threshold modification trend with this approach.
The modifications in the threshold values are not necessarily linear with respect
to iterations. The stop criteria with this approach should be defined to ensure
that the process stops before the threshold α becomes less than or equal to β.
This approach may be useful when the data are of high quality and the classes
or concepts are well defined. A minimum size for the boundary region may be
expected in this case. One can make certain decisions with high accuracy rate
while keeping the value of α close to 1.0 and β close to 0.0. This means that
an effective model may be obtained by considering some minor adjustments to
threshold values (α, β) = (1, 0).

3.2 The Middle Approach

An alternative approach for formulating strategies is to consider the threshold
modification from an initial threshold setting given by α = β that corresponds
to the two-way decision model. Considering the constraint β < α, a formulated
game based on this approach should consider strategies for increasing α and de-
creasing β. In some sense this approach can provide an opposite mechanism for
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Table 2. Game for middle start approach Table 3. Game for random start

P2 P2

s1 = α↑ s2 = β↓ s3 = α↑β↓ s1 = α↑ s2 = α↓

P1

s1 = α↑ .... ..... ....
P1

s1 = β↑ .... .....

s2 = β↓ .... ..... .... s2 = β↓ .... .....

s3 = α↑β↓ .... ..... ....

threshold configuration as compared to the two ends approach (where thresh-
old α keeps decreasing while β keeps increasing). As the thresholds are being
modified from a common or middle value, we name this approach as middle
approach.

An example game for this approach may be implemented as shown in Table 2.
The strategies may be interpreted as s1 = α↑ (increase α), s2 = β↓ (decrease β),
and s3 = α↑β↓ (increase α and decrease β). When this game is played repeatedly,
the threshold α is expected to increase and β is expected to decrease. Figure 1(b)
shows the expected development in the two threshold values based on the re-
peated game. The stop conditions in this approach should be carefully designed
such that the iterative process stops before the Pawlak model is reached. This
approach may be useful to compare the probabilistic two way decision model and
the probabilistic three-way decision model. Particularly, it can provide further
insights into the performance related issues associated with the two models.

This approach may be used when the data are of low quality and involve a
high level of uncertainty. In such cases we expect many objects in the boundary
region leading to its larger size. The number of available certain decisions are
very limited. The objective in such situations is to reduce the boundary size
to allow for some certain decisions at a cost of some decrease in the level of
accuracy. The middle start which starts from zero sized boundary can provide
useful configuration of thresholds under these conditions.

3.3 The Random Approach

We may consider a random point for starting the threshold configuration with
GTRS. It is assumed that we do not have any knowledge about the modification
direction that will provide effective threshold values. In other words, we are
not sure wether to increase or decrease a particular threshold. The formulated
strategies should therefore provide options for both increasing or decreasing a
particular threshold. This means that the strategies will allow us to investigate
effective threshold values in the neighborhood of the starting random point.

Table 3 presents an example game for this approach. Here the strategies for
the two players are different. Players 1 has the strategies s1 = β↑ (increase β)
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and s2 = β↓ (decrease β) and player 2 has the strategies s1 = α↑ (increase
α) and s2 = α↓ (decrease α). Such a game may be realized when player 1 is
considering some property of the negative region while player 2 is reflecting
the same or some other property of the positive region. Figure 1(c) presents the
general threshold modification trend. An implementation of this approach should
provide a configuration that is at least better than the initial random point.
However, an overall optimal configuration may be not be necessarily achieved.
Finally, this approach may be suited to applications that are associated with
an intermediate level of uncertainty where the effective threshold values can be
located anywhere in the threshold space.

3.4 The Range Approach

The strategies may also be formulated by considering a possible range of values
for the thresholds. It may not be feasible to evaluate and consider the entire set
of values contained in the range within a single game, however, some selected
values from the range may be represented as possible strategies. The game may
start from a wider range which is iteratively reduced to a finer range based on a
game outcome in a repeated game.

The game in Table 4 may be used to implement this approach. Considering an
initial range for threshold α as [0.5, 1.0], the strategies s1 = α1, s2 = α2, ..., sn =
αn are representing different values in the considered range. Realizing an order
among the strategies such as α1 < α2... < αn. The strategy α1 may represent
the lower value in the range, i.e. 0.5 and the αn may represent the upper value
in the range, i.e. 1.0. The other strategies may represent intermediate values
taken at some specified intervals within the range. Similar interpretation may
apply to strategies s1 = β1, s2 = β2, ..., sn = βn. The range may be reduced
repeatedly by some specified factor, e.g. the range [0.5,1.0] for α may be reduced
by a factor of 2 as (1.0− 0.5)/2 = 0.25. The new range may be centered around
the threshold values determined by the game outcome. Figure 1(d) presents the
general trend in modifying thresholds with this approach. The approach may be
useful when we are faced with tight computing constraint and quick convergence
or determination of thresholds is desired.

Table 4. Game for range based approach

P2

s1 = α1 ..... sn = αn

P1

s1 = β1 .... ..... ....

... .... ..... ....

sn = βn .... ..... ....
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4 Threshold Configuration with the Two Ends Approach

We provide an example for the two ends approach which can be used to construct
examples for the other approaches. The example is similar to those discussed
in [1, 2, 3]. Table 5 represents probabilistic information about a category or con-
cept C based on a partition consisting of 18 equivalence classes. An equivalence
class is represented as Xi, and its conditional probability with C as P (C|Xi).

Table 5. Probabilistic information of a concept C

X1 X2 X3 X4 X5 X6 X7 X8 X9

Pr(Xi) 0.034 0.099 0.132 0.017 0.068 0.017 0.056 0.049 0.049

Pr(C|Xi) 1.0 0.96 0.91 0.86 0.81 0.77 0.71 0.64 0.53

X10 X11 X12 X13 X14 X15 X16 X17 X18

Pr(Xi) 0.115 0.072 0.01 0.119 0.019 0.042 0.009 0.047 0.046

Pr(C|Xi) 0.49 0.43 0.38 0.31 0.27 0.22 0.15 0.09 0.02

Let us consider the game shown in Table 1 for implementing the two ends start
approach. Considering the players in the game as the properties of accuracy and
generality of the rough set model. For a group containing both positive and
negative regions we may define these measures as [2],

Accuracy(α, β) =
Correctly classified objects by POS(α,β) and NEG(α,β)

Total classified objects by POS(α,β) and NEG(α,β)
, (2)

Generality(α, β) =
Total classified objects by POS(α,β) and NEG(α,β)

Number of objects in U . (3)

where POS(α,β) and NEG(α,β) are the probabilistic positive and negative regions.
For each Xi, Xi ⊆ POS(α,β) if P (C|Xi) ≥ α and Xi ⊆ NEG(α,β) if P (C|Xi) ≤
β. This means that for (α, β) = (0.9, 0.1), we have, POS(0.9,0.1) =

⋃{X1, X2, X3}
and NEG(0.9,0.1) =

⋃{X17, X18}.
Considering U as the total number of objects, number of objects classified by

positive and negative regions can be calculated as [3],

Classified objects by POS(α,β) =
∑

P (C|Xi)≥α

P (Xi)× U, and

Classified objects by NEG(α,β) =
∑

P (C|Xi)≤β

P (Xi)× U. (4)

Moreover, the number of correctly classified objects can be determined as [3],

Correctly classified by POS(α,β) =
∑

P (C|Xi)≥α

P (C|Xi)× P (Xi)× U, and

Correctly classified by NEG(α,β) =
∑

P (C|Xi)≤β

(1− P (C|Xi))× P (Xi)× U.(5)
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Table 6. The example game for the two ends approach

Generality

s1 = α↓ s2 = β↑ s3 = α↓β↑

Accuracy

s1 = α↓ (0.941,0.265) (0.937,0.179) (0.946,0.311)

s2 = β↑ (0.973,0.179) (0.959,0.127) (0.959,0.226)

s3 = α↓β↑ (0.946,0.311) (0.959,0.226) (0.941,0.358)

For a threshold pair (α, β) = (0.9, 0.1), we can calculate the total number of
classified objects by POS(0.9,0.1) as (P (X1) + P (X2) + P (X3))×U = 0.265×U
and the number of classified objects by NEG(0.9,0.1) = (P (X17)+P (X18))×U =
0.093×U . Similarly, the number of correctly classified objects by POS(0.9,0.1) =
(P (C|X1)∗P (X1)+P (C|X2)∗P (X2)+P (C|X3)∗(P (X3))×U = 0.2492×U and
the number of correctly classified objects by NEG(0.9,0.1) = ((1 − P (C|X17)) ∗
P (X17) + (1− P (C|X18)) ∗ P (X18))× U = 0.0879× U . Putting these values in
Equations (2) - (3), we have

Accuracy(0.9, 0.1) =
(0.2492 + 0.0879)× U

(0.265 + 0.093)× U
=

0.3371

0.358
= 0.941,

Generality(0.9, 0.1) =
(0.265 + 0.093)× U

U
= 0.358. (6)

Focusing the game in Table 1, each player is allowed to choose from one of
the following strategies namely s1 = α↓ (decrease α), s2 = β↑ (increase β), and
s3 = α↓β↑ (decrease α and increase β). Let us consider a decrease or increase of
5%. Each cell in the Table 1 corresponds to a strategy profile. A threshold pair
corresponding to a strategy profile is calculated based on two rules, 1) If only
one player plays a strategy of modifying a particular threshold, the value will be
determined as an increase or decrease suggested by that player, 2) If both the
players play the strategies of modifying a particular threshold, the value will be
decided as the sum of the two changes.

Considering an initial threshold configuration of (α, β) = (1, 0), we may cal-
culate the threshold pairs corresponding to different strategy profiles. For in-
stance the profile (s1, s1) = (α↓, α↓) = (0.9, 0.0). The corresponding values for
the measures accuracy and generality can be calculated as mentioned above.
Table 6 shows the resulting game. The pair of values inside a particular cell
represents the utilities of the players. The cell with bold values represent the
solution of the game determined by the Nash equilibrium [8]. The corresponding
threshold values are given by (α, β) = (β↑, α↓β↑) = (0.95, 0.1). The determined
values may be used again to implement a game for the next round. Implement-
ing an iterative game in this fashion will result in the modification sequence of
1.0 → 0.95 → 0.90 → 0.85 for threshold α and 0.0 → 0.1 → 0.15 → 0.25 for β.
It is noted that these threshold modification trends are similar to those shown
in Figure 1(a).
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5 Conclusion

The game-theoretic rough set model has recently received some attention for de-
termining effective probabilistic thresholds defining the three probabilistic rough
set regions. The GTRS implements a game where the strategies are realized as
different levels for modifying the thresholds. In this article, we examine ad-
ditional approaches for formulating strategies based on different initial condi-
tions. The implementation of these approaches is realized by considering exam-
ple games corresponding to each approach. The iterative threshold modification
with these approaches based on a repetitive game is also discussed. It is argued
that some of these approaches may be more appropriate when different types of
data and applications are considered. A demonstrative example is included to
show the usability of the suggested approaches.
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Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI),
vol. 4481, pp. 1–12. Springer, Heidelberg (2007)

[10] Yao, Y.Y.: Probabilistic rough set approximations. International Journal of Ap-
proximate Reasoning 49(2), 255–271 (2008)

[11] Yao, Y.Y.: Two semantic issues in a probabilistic rough set model. Fundamenta
Informaticae 108(3-4), 249–265 (2011)

http://dx.doi.org/10.1016/j.ijar.2013.03.015
http://dx.doi.org/10.1016/j.ijar.2013.02.010


Sequential Optimization of Approximate

Inhibitory Rules Relative to the Length,
Coverage and Number of Misclassifications

Fawaz Alsolami1,2, Igor Chikalov1, and Mikhail Moshkov1

1 Computer, Electrical and Mathematical Sciences and Engineering Division
King Abdullah University of Science and Technology

Thuwal 23955-6900, Saudi Arabia
2 Computer Science Department, King Abdulaziz University, Saudi Arabia

Abstract. This paper is devoted to the study of algorithms for sequen-
tial optimization of approximate inhibitory rules relative to the length,
coverage and number of misclassifications. Theses algorithms are based
on extensions of dynamic programming approach. The results of exper-
iments for decision tables from UCI Machine Learning Repository are
discussed.

Keywords: inhibitory rules, length, coverage, number of misclassifica-
tions, dynamic programming.

1 Introduction

In this paper, we present algorithms for optimization of approximate inhibitory
rules based on a dynamic programming approach. Inhibitory rules have in the
consequent part a relation “attribute �= value” whereas decision (deterministic)
rules have “attribute = value”. In [1, 2] it was shown that, for some information
systems, decision rules cannot describe the whole information contained in the
system. However, inhibitory rules describe the whole information for every in-
formation system [3]. Moreover, classifiers based on inhibitory rules have often
better accuracy than classifiers based on decision rules [4–6].

In [3] greedy algorithms for inhibitory rules construction were studied. In [7, 8]
we presented a dynamic programming approach for construction and optimiza-
tion of exact inhibitory rules relative to the length and coverage. We considered
also sequential optimization of exact inhibitory rules relative to the length and
coverage, and presented some comparison of the length and coverage of inhibitory
rules constructed by the greedy algorithm and dynamic programming. Similar
approaches were used in [9] for sequential optimization of decision (deterministic)
rules.

In the present paper, we study algorithms for sequential optimization of in-
hibitory rules relative to the length, coverage and number of misclassifications.
We compare rules constructed by these algorithms with the rules constructed
by a greedy algorithm for decision tables from UCI Machine Learning Reposi-
tory [10].
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This paper consists of eight sections. Section 2 contains definitions of main
notions. In Section 3, we study a directed acyclic graph which allows to describe
the whole set of nonredundant γ-inhibitory rules. The procedures of optimization
of nonredundant γ-inhibitory rules relative to the length, coverage and number
of misclassifications are presented in Section 4 and sequential optimizations in
Section 5. Section 7 contains results of experiments with decision tables from
UCI Machine Learning Repository and finally Section 8 contains conclusions.

2 Main Notions

A decision table T is a rectangular table with n columns labeled with conditional
attributes f1, . . . , fn. Rows of this table are filled with nonnegative integers which
are interpreted as values of conditional attributes. Rows of T are pairwise dif-
ferent and each row is labeled with a nonnegative integer (decision) which is
interpreted as a value of the decision attribute d. We denote by D(T ) the set of
distinct decisions for the table T . We denote by N(T ) the number of rows in the
table T .

The least common decision for T is a decision from the set D(T ) attached to
the minimum number of rows in T . If we have a number of such decisions then
we choose the minimum one. By Nlcd(T ) we denote the number of rows in the
table T labeled with the least common decision for T .

Let T be nonempty, fi1 , . . . , fim ∈ {f1, . . . , fn} and v1, . . . , vm be nonnegative
integers. By T (fi1 , v1) . . . (fim , vm) we denote a subtable of the table T which
contains only rows that have values v1, . . . , vm at the intersection with columns
fi1 , . . . , fim . Such nonempty subtables (including the table T ) are called separable
subtables of T .

We denote by E(T ) the set of attributes from {f1, . . . , fn} which are not
constant on T . For any fi ∈ E(T ), we denote by E(T, fi) the set of values of the
attribute fi in T .

The expression
fi1 = v1 ∧ . . . ∧ fim = vm → d �= k (1)

is called an inhibitory rule over T if fi1 , . . . , fim ∈ {f1, . . . , fn}, v1, . . . vm are
nonnegative integers, and k ∈ D(T ). It is not impossible that m = 0. In this
case (1) is equal to the rule

→ d �= k. (2)

Let Θ be a subtable of T and r = (b1, . . . , bn) be a row of Θ. We say that the
rule (1) is realizable for r, if v1 = bi1 , . . . , vm = bim . The rule (2) is realizable for
any row from Θ.

Let γ be a nonnegative real number. We say that the rule (1) is γ-true for Θ if
k is the least common decision for Θ′ = Θ(fi1 , v1) . . . (fim , vm) and Nlcd(Θ′) ≤ γ.
If m = 0 then the rule (2) is γ-true for Θ if k is the least common decision for
Θ and Nlcd(Θ) ≤ γ.
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If the rule (1) is an inhibitory rule over T which is γ-true for Θ and realizable
for r, we say that (1) is a γ-inhibitory rule for Θ and r over T .

We say that the rule (1) with m > 0 is a nonredundant γ-inhibitory rule for
Θ and r over T if (1) is a γ-inhibitory rule for Θ and r over T and the following
conditions hold:

(i) fi1 ∈E(Θ), and if m>1 then fij ∈E(Θ(fi1 , v1) . . . (fij−1 , vj−1)) for j=2,. . . ,m;
(ii) Nlcd(Θ) > γ, and if m > 1 then Nlcd(Θ(fi1 , v1) . . . (fij , vj)) > γ for j =

1, . . . ,m− 1.

If m = 0 then the rule (2) is a nonredundant γ-inhibitory rule for Θ and r over
T if (2) is a γ-inhibitory rule for Θ and r over T , i.e., if k is the least common
decision for Θ and Nlcd(Θ) ≤ γ.

Let Θ be a subtable of T , τ be a rule over T and τ be equal to (1). The
number of misclassifications of τ relative to Θ is the number of rows in Θ for
which τ is realizable and which are labeled with the decision k. We denote it by
μ(τ, Θ). The number of misclassifications of the rule (2) relative to Θ is equal to
the number of rows in Θ which are labeled with the decision k.

The number m of conditions on the left-hand side of τ is called the length of
this rule and is denoted by l(τ). The length of inhibitory rule (2) is equal to 0.

The coverage of τ relative to Θ is the number of rows in Θ for which τ is
realizable and which are labeled with decisions other than k. We denote it by
c (τ, Θ). The coverage of inhibitory rule (2) relative to Θ is equal to the number
of rows in Θ which are labeled with decisions other than k.

3 Directed Acyclic Graph Λγ(T )

We consider an algorithm that constructs a directed acyclic graph Λγ(T ) which
will be used to describe the set of nonredundant γ-inhibitory rules for T and for
each row r of T over T . Nodes of the graph are separable subtables of the table
T . During each step, the algorithm processes one node and marks it with the
symbol *. At the first step, the algorithm constructs a graph containing a single
node T which is not marked with the symbol *.

Let us assume that the algorithm has already performed p steps. We describe
now the step (p+1). If all nodes are marked with the symbol * as processed, the
algorithm finishes its work and presents the resulting graph as Λγ(T ). Otherwise,
choose a node (table) Θ, which has not been processed yet.

Let k be the least common decision for Θ. If Nlcd(Θ) ≤ γ label the considered
node with the decision k, mark it with the symbol * and proceed to the step
(p + 2). If Nlcd(Θ) > γ, for each fi ∈ E(Θ), draw a bundle of edges from
the node Θ. Let E(Θ, fi) = {b1, . . . , bt}. Then draw t edges from Θ and label
these edges with pairs (fi, b1), . . . , (fi, bt) respectively. These edges enter to nodes
Θ(fi, b1), . . . , Θ(fi, bt). If some of nodes Θ(fi, b1), . . . , Θ(fi, bt) are absent in the
graph then add these nodes to the graph. We label each row r of Θ with the
set of attributes EΛγ (T )(Θ, r) = E(Θ). Mark the node Θ with the symbol * and
proceed to the step (p + 2).
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The graph Λγ(T ) is a directed acyclic graph. A node of this graph will be
called terminal if there are no edges leaving this node. Note that a node Θ of
Λγ(T ) is terminal if and only if Nlcd(Θ) ≤ γ.

Later, we describe the procedures of optimization of the graph Λγ(T ). As a
result we obtain a graph G with the same sets of nodes and edges as in Λγ(T ).
The only difference is that any row r of each nonterminal node Θ of G is labeled
with a nonempty set of attributes EG(Θ, r) ⊆ E(Θ).

For each node Θ of G and for each row r of Θ, we describe a set of γ-inhibitory
rules RulG(Θ, r) over T . We move from terminal nodes of G to the node T .

Let Θ be a terminal node of G and k be the least common decision for Θ.
Then

RulG(Θ, r) = {→ d �= k}.
Let now Θ be a nonterminal node of G such that for each child Θ′ of Θ

and for each row r′ of Θ′, a set of rules RulG(Θ′, r′) is already defined. Let
r = (b1, . . . , bn) be a row of Θ. For any fi ∈ EG(Θ, r), we define the set of rules
RulG(Θ, r, fi) as follows:

RulG(Θ, r, fi) = {fi = bi ∧ σ → d �= s : σ → d �= s ∈ RulG(Θ(fi, bi), r)}.
Then

RulG(Θ, r) =
⋃

fi∈EG(Θ,r)

RulG(Θ, r, fi).

Theorem 1. For each node Θ of Λγ(T ) and for each row r of Θ, the set
RulΛγ(T ) (Θ, r) is equal to the set of all nonredundant γ-inhibitory rules for Θ
and r over T .

Example 1. To illustrate the algorithm presented above, we consider an example
based on decision table T0 (see Fig.1). In the example we set γ = 1, so during
the construction of the graph Λ1(T0) we stop the partitioning of a subtable Θ of
T0 when Nlcd(Θ) ≤ 1 (see Fig.1). We denote G = Λ1(T0).

f1 f2 f3 d

r1 0 0 0 1
r2 0 1 1 1
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EG(T0, r2) = {f1, f2, f3}
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EG(T0, r5) = {f1, f2, f3}
EG(T0, r6) = {f1, f2, f3}

Fig. 1. Graph G = Λ1(T0)

For each node Θ of the graph G and for each row r of Θ we describe a set
RulG(Θ, r). We move from terminal nodes of G to the node T0. Terminal nodes
of the graph G are Θ1, Θ2, Θ3, Θ4, Θ5, Θ6. For these nodes we have:
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RulG(Θ1, r1) = RulG(Θ1, r2) = RulG(Θ1, r6) = {→ d �= 2},
RulG(Θ2, r3) = RulG(Θ2, r4) = RulG(Θ2, r5) = {→ d �= 1},
RulG(Θ3, r1) = RulG(Θ3, r4) = {→ d �= 3},
RulG(Θ4, r2) = RulG(Θ4, r3) = RulG(Θ4, r5) = RulG(Θ4, r6) = {→ d �= 1},
RulG(Θ5, r1) = RulG(Θ5, r4) = RulG(Θ5, r5) = RulG(Θ5, r6) = {→ d �= 1},
RulG(Θ6, r2) = RulG(Θ6, r3) = {→ d �= 3}.
Now we can describe the sets of rules corresponding to rows of T0. This is a
nonterminal node of G for which all children Θ1, Θ2, Θ3, Θ4, Θ5 and Θ6 are
already treated. We have:

RulG(T0, r1) = {f1 = 0 → d �= 2, f2 = 0 → d �= 3, f3 = 0 → d �= 1},
RulG(T0, r2) = {f1 = 0 → d �= 2, f2 = 1 → d �= 1, f3 = 1 → d �= 3},
RulG(T0, r3) = {f1 = 1 → d �= 1, f2 = 1 → d �= 1, f3 = 1 → d �= 3},
RulG(T0, r4) = {f1 = 1 → d �= 1, f2 = 0 → d �= 3, f3 = 0 → d �= 1},
RulG(T0, r5) = {f1 = 1 → d �= 1, f2 = 1 → d �= 1, f3 = 0 → d �= 1},
RulG(T0, r6) = {f1 = 0 → d �= 2, f2 = 1 → d �= 1, f3 = 0 → d �= 1}.

4 Procedures of Optimization Relative to Length,
Coverage and Number of Misclassifications

We start describing the procedure of optimization of the graph G relative to the
length l. For each node Θ in the graph G, this procedure corresponds to each row
r of Θ the set RullG(Θ, r) of γ-inhibitory rules with the minimum length from
RulG(Θ, r) and the number OptlG(Θ, r) – the minimum length of a γ-inhibitory
rule from RulG(Θ, r).

We traverse from the terminal nodes of the graph G to the node T . Then, we
assign to each row r of each table Θ the number OptlG(Θ, r) and we change the
set EG(Θ, r) attached to the row r in Θ if Θ is a nonterminal node of G. We
denote the obtained graph by G(l).

Let Θ be a terminal node of G. Then we correspond the number

OptlG(Θ, r) = 0

to each row r of Θ.
Let Θ be a nonterminal node of G and all children of Θ have already been

treated. Let r = (b1, . . . , bn) be a row of Θ. We correspond the number

OptlG(Θ, r) = min{OptlG(Θ(fi, bi), r) + 1 : fi ∈ EG(Θ, r)}
to the row r in the table Θ and we set

EG(l)(Θ, r) = {fi : fi ∈ EG(Θ, r), OptlG(Θ(fi, bi), r) + 1 = OptlG(Θ, r)}.

Theorem 2. For each node Θ of the graph G(l) and for each row r of Θ the
set RulG(l)(Θ, r) is equal to the set RullG(Θ, r) of all γ-inhibitory rules with the
minimum length from the set RulG(Θ, r).
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We consider now the procedure of optimization of the graph G relative to the
coverage c. For each node Θ in the graph G, this procedure corresponds to each
row r of Θ the set RulcG(Θ, r) of γ-inhibitory rules with maximum coverage
from RulG(Θ, r) and the number OptcG(Θ, r) – the maximum coverage of a γ-
inhibitory rule from RulG(Θ, r).

We move from the terminal nodes of the graph G to the node T . We assign
to each row r of each table Θ the number OptcG(Θ, r) which is the maximum
coverage of a γ-inhibitory rule from RulG(Θ, r) and change the set EG(Θ, r)
attached to the row r in Θ if Θ is a nonterminal node G. We denote the obtained
graph by G (c).

Let Θ be a terminal node of G. Then we assign the number

OptcG(Θ, r) = N(Θ) −Nlcd(Θ)

to each row r of Θ.
Let Θ be a nonterminal node of G and all children of Θ have already been

treated. Let r = (b1, . . . , bn) be a row of Θ. We assign the number

OptcG(Θ, r) = min{OptcG(Θ(fi, bi), r) : fi ∈ EG(Θ, r)}
to the row r in the table Θ and we set

EG(c)(Θ, r) = {fi : fi ∈ EG(Θ, r), OptcG(Θ(fi, bi), r) = OptcG(Θ, r)}.

Theorem 3. For each node Θ of the graph G(c) and for each row r of Θ the
set RulG(c)(Θ, r) is equal to the set RulcG(Θ, r) of all γ-inhibitory rules with the
maximum coverage from the set RulG(Θ, r).

We consider now the procedure of optimization of the graph G relative to the
number of misclassifications μ. For each node Θ in the graph G, this proce-
dure corresponds to each row r of Θ the set RulμG(Θ, r) of γ-inhibitory rules
with the minimum number of misclassifications from RulG(Θ, r) and the num-
ber OptμG(Θ, r) – the minimum number of misclassifications of a γ-inhibitory
rule from RulG(Θ, r).

We move from the terminal nodes of the graph G to the node T . We will
correspond to each row r of each table Θ the number OptμG(Θ, r) which is the
minimum number of misclassifications of a γ-inhibitory rule from RulG(Θ, r) and
we will change the set EG(Θ, r) attached to the row r in Θ if Θ is a nonterminal
node of G. We denote the obtained graph by G(μ).

Let Θ be a terminal node of G. Then we correspond to each row r of Θ the
number OptμG(Θ, r) which is equal to Nlcd(Θ).

Let Θ be a nonterminal node of G and all children of Θ have already been
treated. Let r = (b1, . . . , bn) be a row of Θ. We correspond the number

OptμG(Θ, r) = min{OptμG(Θ(fi, bi), r) : fi ∈ EG(Θ, r)}
to the row r in the table Θ, and we set

EG(μ)(Θ, r) = {fi : fi ∈ EG(Θ, r), OptG(μ)(Θ(fi, bi), r) = OptG(μ)(Θ, r)}.
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Theorem 4. For each node Θ of the graph G(μ) and for each row r of Θ, the
set RulG(μ)(Θ, r) is equal to the set RulG(μ)(Θ, r) of all γ-inhibitory rules with
the minimum number of misclassifications from the set RulG(Θ, r).

Example 2. Figure 2 presents the directed acyclic graph G(μ) obtained from the
graph G (see Fig. 1) by the procedure of optimization relative to the number
of misclassifications. Using the graph G(μ) we can describe for each row ri,
i = 1, . . . , 6, of the table T0 the set RulμG(T0, ri) of all nonredundant 1-inhibitory
rules for T0 and ri over T0 with the minimum number of misclassifications.
We give also the value OptμG(T0, ri) which is equal to the minimum number of
misclassifications of a nonredundant 1-inhibitory rule for T0 and ri over T0. This
value was obtained during the procedure of optimization of the graph G relative
to the number of misclassifications. We have:

RulGμ(T0, r1) = {f1 = 0 →�= 2, f2 = 0 → d �= 3}, OptμG(T0, r1) = 0,
RulGμ(T0, r2) = {f1 = 0 →�= 2, f3 = 1 → d �= 3}, OptμG(T0, r2) = 0,
RulGμ(T0, r3) = {f1 = 1 →�= 1, f3 = 1 → d �= 3}, OptμG(T0, r3) = 0,
RulGμ(T0, r4) = {f1 = 1 →�= 1, f2 = 0 → d �= 3}, OptμG(T0, r4) = 0,
RulGμ(T0, r5) = {f1 = 1 → d �= 1}, OptμG(T0, r5) = 0,
RulGμ(T0, r6) = {f1 = 0 → d �= 2}, OptμG(T0, r6) = 0.
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EG(T0, r6) = {f1}

Fig. 2. Graph G(μ)

5 Sequential Optimization

Theorems 2-4 show that we can make sequential optimization relative to the
length, coverage and number of misclassifications. We can find all nonredundant
γ-inhibitory rules with maximum coverage and after that among these rules find
all rules with minimum length. We can continue and find among the obtained
rules all rules with minimum number of misclassifications. The order of opti-
mization can be changed.

Sequential optimization relative to the three cost functions allows us to dis-
cover the existence of so-called totally optimal nonredundant γ-inhibitory rules
for a given table T and its row r. A nonredundant γ-inhibitory rule τ for T and r
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is called totally optimal if τ has simultaneously the minimum length, the maxi-
mum coverage and the minimum number of misclassifications among all possible
nonredundant γ-inhibitory rules for T and r. Note that the results of sequential
optimization of rules for T and r relative to length, coverage and number of
misclassifications do not depend on the order of optimization if and only if there
is a totally optimal nonredundant γ-inhibitory rule for T and r.

Example 3. Figure 3 shows the result of the work of sequential optimization
procedures relative to the number of misclassifications, length and coverage re-
spectivley. The graph G(μlc) is obtained from the graph G(μ) when sequential
procedures relative to length and coverage are applied on the graph Gμ. Based
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Fig. 3. Graph G(μlc)

on the graph G(μlc), we correspond to row ri, i = 1, . . . , 6, of the table T0 the
set RulGμlc(T0, ri) of all nonredundant 1-inhibitory rules for T0 and ri which
have the maximum coverage among all nonredundant 1-inhibitory rules for T0

and ri with the minimum length. So, we have:

RulGμlc(T0, r1) = {f1 = 0 → d �= 2},
RulGμlc(T0, r2) = {f1 = 0 → d �= 2},
RulGμlc(T0, r3) = {f1 = 1 → d �= 1},
RulGμlc(T0, r4) = {f1 = 1 → d �= 1},
RulGμlc(T0, r5) = {f1 = 1 → d �= 1},
RulGμlc(T0, r6) = {f1 = 0 → d �= 2}.
As a result, we have for each row ri, i = 1, . . . , 6, a totally optimal nonredundant
1-inhibitory rule relative to number of misclassification, the length and coverage.

6 Greedy Algorithm

Let T be a decision table with n columns labeled with conditional attributes
f1, . . . , fn and a decision attribute d, and r = (b1, . . . , bn) be a row of T . We now
describe a greedy algorithm which constructs a γ-inhibitory rule for T and r.

If Nlcd(T ) ≤ γ then the output of the algorithm is the rule→ d �= k where k is
the least common decision for T . Let now Nlcd(T )>γ and let us assume that the
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greedy algorithm has already chosen the attributes fi1 , . . . , fim . If Nlcd(T ′) ≤ γ
where T ′ = T (fi1 , bi1) . . . (fim , bim) then the output of the algorithm is the rule

fi1 = bi1 ∧ . . . ∧ fim = bim → d �= k

where k is the least common decision for T ′. Otherwise, the algorithm will choose
an attribute fim for which the value of Nlcd

(
T ′ (fim+1 , bim+1

))
is minimum, etc.

7 Experimental Results

For experiments we use decision tables from the UCI Machine Learning Repos-
itory [10]. We preprocess the decision tables by eliminating attributes which,
each row, take unique value such as ID number, merging identical rows into
a single row with the most common decision for the group of identical rows,
and imputing missing values with the most common value of the corresponding
attribute.

Let T be one of these decision tables. We consider for this table the value
of Nlcd(T ) and values of γ from the set Γ (T ) = {$Nlcd(T ) × 0.2%, $Nlcd(T ) ×
0.3%, $Nlcd(T ) × 0.5%}. These parameters can be found in Table 1, where (i)
column “Rows” contains the number of rows, (ii) column “Attributes” contains
the number of conditional attributes, (iii) column “Nlcd(T )” contains the number
of rows with the least common decision for T , and (iv) column “γ ∈ Γ (T )”
contains values from Γ (T ). Table 2 allows us to compare the number of rows in

Table 1. Parameters of decision tables and values of γ

Decision table Rows Attributes Nlcd (T ) γ ∈ Γ (T )
�Nlcd (T ) × 0.2� �Nlcd (T ) × 0.3� �Nlcd (T ) × 0.5�

Balance-scale 625 4 49 9 14 24
Breast-cancer 266 9 76 15 22 38

Cars 1728 6 65 13 19 32
Hayes-roth 69 4 18 3 5 9

Shuttle-landing 15 6 6 1 1 3
Soybean-small 47 35 10 2 3 5

Zoo 59 16 4 0 1 2
Tic-tac-toe 959 9 332 66 99 166

decision table T (column “Rows”) with the number of rows with totally optimal
nonredundant γ-inhibitory rules (columns “t-o-rows”). Also this table contains
information about minimum, average and maximum number of totally optimal
nonredundant γ-inhibitory rules for rows. It is interesting to note that, with the
growth of γ, the number of rows with totally optimal nonredundant γ-inhibitory
rules can (i) decrease, (ii) increase, (iii) fluctuate, and (iv) be stable.

Tables 3, 4 and 5 shows the behaviour of complexity parameters (average
length, coverage, and number of misclassifications of rules) depending on the
order of optimization. When there is at least one totally optimal rule for each
row of a given decision table, the outputs of procedures of optimization are the
same for different orders.
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Table 2. Number of rows with totally optimal nonredundant γ-inhibitory rules

Decision Rows �Nlcd × 0.2� �Nlcd × 0.3� �Nlcd × 0.5�
table t-o-rows t-opt rules t-o-rows t-opt rules t-o-rows t-opt rules

min avg max min avg max min avg max
Balance-scale 625 97 0 0.61 8 625 1 1.95 4 625 1 1.95 4
Breast-cancer 266 0 0 0 0 0 0 0 0 0 0 0 0
Cars 1728 1688 0 1.51 3 1664 0 1.48 3 1472 0 1.33 3
Hayes-roth 69 37 0 0.72 2 0 0 0 0 33 0 0.65 2
Shuttle-landing 15 7 0 0.6 2 7 0 0.6 2 0 0 0 0
Soybean-small 47 47 1 2.36 3 47 1 2.36 3 47 1 2.36 3
Zoo 59 59 1 1.05 2 59 1 1.05 2 59 1 1.05 2
Tic-tac-toe 958 0 0 0 0 0 0 0 0 50 0 0.05 1

Table 3. Sequential optimization for γ = �Nlcd × 0.2�

Decision table γ ∈ Γ (T )
l + c+ μ c+ l + μ μ+ l + c

l c μ c l μ μ l c

Balance-scale 1.13 104.08 7.96 104.08 1.13 7.96 0.92 1.97 26.64

Breast-cancer 1.07 33.77 10.45 70.37 2.29 14.47 0.71 2.45 9.83

Cars 1.03 547.78 0.22 547.78 1.03 0.22 0.0 1.05 543.70

Hayes-roth 1.57 9.97 0.61 9.97 1.57 0.61 0.10 1.57 8.19

Shuttle-landing 1.13 2.0 0.27 3.0 2.40 0.60 0.07 1.33 1.93

Soybean-small 1.0 37.0 0.0 37.0 1.0 0.0 0.0 1.0 37.0

Zoo 1.0 50.46 0.0 50.46 1.0 0.0 0.0 1.0 50.46

Tic-tac-toe 1.29 138.80 54.58 140.78 1.60 46.30 10.52 2.61 34.73

Table 4. Sequential optimization for γ = �Nlcd × 0.3�

Decision table γ ∈ Γ (T )
l + c+ μ c+ l + μ μ+ l + c

l c μ c l μ μ l c

Balance-scale 1 115.87 9.13 115.87 1 9.13 9.13 1 115.87

Breast-cancer 1.0 45.83 15.67 79.62 1.97 19.49 1.31 2.03 10.74

Cars 1.0 554.10 0.56 554.10 1.0 0.56 0.0 1.05 543.70

Hayes-roth 1.0 17.74 4.26 17.74 1.0 4.26 0.54 1.57 8.88

Shuttle-landing 1.13 2.0 0.27 3.0 2.40 0.60 0.07 1.33 1.93

Soybean-small 1.0 37.0 0.0 37.0 1.0 0.0 0.0 1.0 37.0

Zoo 1.0 50.46 0.0 50.46 1.0 0.0 0.0 1.0 50.46

Tic-tac-toe 1.03 259.62 81.86 259.90 1.04 81.92 16.59 2.0 64.55

Table 5. Sequential optimization for γ = �Nlcd × 0.5�
Decision table γ ∈ Γ (T )

l + c+ μ c + l + μ μ + l + c
l c μ c l μ μ l c

Balance-scale 1 115.87 9.13 115.87 1 9.13 9.13 1 115.87
Breast-cancer 1.0 138.30 35.38 140.39 1.05 35.40 3.20 1.92 13.87

Cars 1.0 572.44 3.56 572.44 1.0 3.56 0.37 1.03 545.96
Hayes-roth 1.0 17.74 4.26 17.74 1.0 4.26 2.26 1.0 14.61

Shuttle-landing 1.07 2.20 0.40 6.67 2.67 3.0 0.20 1.20 1.93
Soybean-small 1.0 37.0 0.0 37.0 1.0 0.0 0.0 1.0 37.0

Zoo 1.0 50.46 0.0 50.46 1.0 0.0 0.0 1.0 50.46
Tic-tac-toe 1.0 327.79 108.46 327.79 1.0 108.46 66.28 1.0 157.55
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Table 6 shows the average results for the system of rules constructed by the
greedy algorithm, for γ ∈ Γ (T ), in terms of length, coverage and number of
misclassifications, where the algorithm corresponds a γ-inhibitory rule for each
row of a given decision table.

We compare the results obtained by the greedy algorithm with optimal results
by computing relative differences ((lgreedy − lopt)/lopt,(copt − cgreedy)/copt,

(μgreedy − μopt)/μopt)) as shown in Table 7. If μopt = 0 then we write

“μgreedy/0”.

Table 6. Results of greedy algorithm work

Decision Table γ ∈ Γ (T )
�Nlcd (T ) × 0.2� �Nlcd (T ) × 0.3� �Nlcd (T ) × 0.5�
l c u l c u l c u

Balance-scale 1.13 104.05 7.99 1.12 115.87 9.13 1.12 115.87 9.13
Breast-cancer 1.07 20.44 6.87 1.0 22.02 7.71 1.0 22.19 7.83

Cars 1.03 453.83 0.25 1.46 462.10 0.56 1.46 462.10 0.56
Hayes-roth 1.57 7.93 0.25 1 13.83 2.26 1 13.83 2.26

Shuttle-landing 1.13 2 0.27 1.33 2 0.27 1.07 2 0.33
Soybean-small 1 9.93 0 1 9.93 0 1 9.93 0

Zoo 1 30.63 0 1 30.63 0 1 30.63 0
Tic-tac-toe 1.29 119.44 48.04 1.03 152.56 63.86 1 157.55 66.28

Table 7. Relative difference between results of greedy algorithm and optimal results

Decision Table γ ∈ Γ (T )
�Nlcd (T ) × 0.2� �Nlcd (T ) × 0.3� �Nlcd (T ) × 0.5�
l c u l c u l c u

Balance-scale 0 0.0 7.68 0.12 0 0 0.12 0 0
Breast-cancer 0 0.71 8.68 0 0.72 4.89 0 0.84 1.45

Cars 0 0.17 0.25/0 0.46 0.17 0.56/0 0.46 0.19 0.51
Hayes-roth-data 0 0.21 1.5 0 0.22 3.19 0 0.22 0
Shuttle-landing 0 0.33 2.86 0.178 0.33 2.86 0 0.7 0.65
Soybean-small 0 0.73 0/0 0 0.73 0/0 0 0.73 0/0

Zoo 0 0.39 0/0 0 0.39 0/0 0 0.39 0/0
Tic-tac-toe 0 0.15 3.57 0 0.41 2.85 0 0.52 0

The obtained results show that the greedy algorithm is more suitable for the
minimization of length than for maximization of coverage or minimization of the
number of misclassifications.

8 Conclusions

The paper considered (from theoretical and experimental points of view) sequen-
tial optimization of approximate inhibitory rules relative to three cost functions.
It included also a comparison of dynamic programming algorithms with a greedy
algorithm. The proposed algorithms can be useful for knowledge extraction and
representation.
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Robustness Measure of Decision Rules
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Abstract. Rough set approaches provide useful tools to find minimal
decision rules. The obtained minimal decision rules are used to classify
unseen objects. On the other hand, the condition parts of the minimal
decision rules are sometimes used to design new objects which will be
classified into the target decision class. While we are interested in the
goodness of the set of obtained minimal decision rules in the former case,
we are interested in the goodness of an individual minimal decision rule
in the latter case. In this paper, we propose robustness measure as a new
type of evaluation index for decision rules. The measure evaluates to what
extent the decision rule maintains the goodness of classification against
the partially-matched data. Numerical experiments are conducted to ex-
amine the effectiveness of robustness measure.

Keywords: rough set, decision rule, interestingness measure, robustness.

1 Introduction

Rough set approaches originated by Pawlak [1] provide useful tools to find min-
imal decision rules and applied to various fields such as medicine, engineering,
management, economy and so on. The obtained minimal decision rules are used
to classify unseen objects. On the other hand, the conditions of the minimal
decision rules are sometimes used to design new objects which will be classified
into the target decision class. For example, in Kansei engineering, the minimal
decision rules inferring popular items are regarded as the design knowledge and
new items satisfying their conditions are designed to attract more customers and
to enhance customer satisfaction [2]. While we are interested in the goodness of
the set of obtained minimal decision rules with which we build a classifier system
in the former case, we are interested in the goodness of individual minimal de-
cision rule useful as design knowledge in the latter case. A good classifier could
be produced from a set of good decision rules. In this sense, the study of good
decision rules may serve as a foundation for building a good classifier as well as
for obtaining good design knowledge.

In this paper, we investigate the evaluation of decision rules rather than the
evaluation of the set of decision rules. With regard to this issue, various quan-
titative measures of rule interestingness (attractiveness), called interestingness
measures, have been proposed [3–6]. An interestingness measure is useful as an
index evaluating the usefulness and effectiveness of decision rules which are not

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 166–177, 2013.
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always 100% confident even for the given decision table. Interestingness measures
evaluate the strongness of relationship between the whole body of conditions and
the conclusion of a decision rule and never evaluate the strongness of relationship
between a part of conditions and the conclusion. Considering the possibility of
partially-matched data in unseen objects, we could give a good evaluation to the
decision rule maintaining the confidence of its conclusion against the partially-
matched data. Such a decision rule would be also good for design knowledge
because the new designed items may fail to satisfy a few conditions of the de-
cision rule despite the designer’s intention. From this point of view, we propose
robustness measures as a new type of evaluation index for decision rules. The ro-
bustness measures of a decision rule evaluate to what extent the interestingness
is preserved from the removal of a part of condition.

This paper is organized as follows. A brief survey of the interestingness mea-
sure is given in next section. After an example illustrating the necessity of ro-
bustness measure is given, several concepts of robustness are described in Section
3. Then the robustness measures are defined also in Section 3. In Section 4, we
conduct three numerical experiments. By those experiments, we confirm the
usefulness and effectiveness of decision rules with high robusteness scores as the
design knowledge, in the classification of unseen objects and in the classification
of objects with missing values.

2 Interestingness and the Idea of Robustness

Interestingness measures have been developed to build a good classification sys-
tem composed of association rules [3–6]. The support and confidence are the most
used interestingness measures. Let supp(E) be the support of statement E, i.e.,
the number of objects in the data-set for which E is true. Then the support of
rule E → H is defined by supp(E → H) = supp(E∧H). On the other hand, the
confidence of rule E → H is defined by conf(E → H) = supp(E ∧H)/supp(E).
As a counterpart of the confidence, the recall of rule E → H is defined by
rec(E → H) = supp(E∧H)/supp(H). Other than those, there are a lot of inter-
estingness measures have been proposed in the literature [3–6]. Those measures
are different in their characteristics such as generality, conciseness, reliability,
novelty, surprisingness, utility, actionability, and so on (see [4]).

In rough set approaches to rule induction, except variable-precision and
variable-consistency models, only 100% confident rules E → H with minimal
condition E called decision rules are induced. Namely, for such a rule E → H ,
we have conf(E → H) = 1 and we cannot find any other rule E′ → H such that
conf(E′ → H) = 1 and conf(E′ → E) = 1. Therefore, the confidence does not
work well and the support supp(E → H) and the recall rec(E → H) are often
used for evaluation of rules. Here we note that, unlike association rules, a deci-
sion rule has its premise E described by the minimal condition attributes and
its conclusion H described by decision attributes. In rough set approaches, the
confidence and the recall are called the accuracy and the coverage, respectively.

The condition E of a rule E → H is composed of several elementary
conditions ei, i = 1, 2, . . . , p. Namely, it is expressed as the conjunction of
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elementary conditions ei, i = 1, 2, . . . , p, i.e., E = e1 ∧ e2 ∧ · · · ∧ ep. For the
sake of simplicity, E = e1 ∧ e2 ∧ · · · ∧ ep is written as E = {e1, e2, . . . , ep}. Then
B = {b1, b2, . . . , bq} ⊆ E means a relaxed condition B = b1 ∧ b2 ∧ · · · ∧ bq of E
and rule B → H becomes a coarser rule of E → H . For convenience, we define
supp(∅) = |U |, where U is the set of objects in the given data-set.

When we evaluate a rule E → H by an interestingness measure, we do not
take into consideration the evaluations of any coarser rules B → H with relaxed
conditions B ⊂ E. Under static, noise-free and error-free environment, this eval-
uation would work very well. However, when decision rules may change with
situation and when observed data may include noise and error, the evaluation
of decision rules without considerations of its coarser rules would not be always
sufficient.

For example, when an induced rule E → H shows the condition (E) of popular
goods (H), a designer may design a new product satisfying the condition E =
e1 ∧ e2 ∧ · · · ∧ ep. If the designer’s understanding of an elementary condition ei
of E is different from the customers’ understandings, he/she may fail to sell the
new product by this mismatch. Moreover, when a given data-set is not sufficient
to express all cases, the induced decision rules are not perfect. Then we may
come across partially matched new data to the induced decision rules. It would
be useful if the matched part B of condition E may work sufficiently to conclude
H even with some errors.

From this point of view, we propose robustness measures to evaluate rules
E → H induced by rough set approaches. In the robustness measures, we take
into consideration the evaluation of coarser rules to evaluate the induced decision
rules. In the references [7, 8], another kind of robustness measure is defined for
association rules. While this robustness measure evaluates the fragility of an
association rule against noise in the given data-set, the proposing robustness
measure evaluates the usefulness of a decision rule against partially matched
data.

3 Robustness Measure

We propose robustness measures to evaluate decision rules induced by rough set
approaches including variable-precision and variable-consistency models. To il-
lustrate the concept of the proposing robustness measure, we consider a decision
table shown in Table 1. In this decision table, the frequency (fr) of each pattern
(pat) is shown in the last column. The lower approximations of decision classes
in the classical rough set approach are small and thus the application of variable-
precision rough set approach would be adequate. By variable-precision rough set
approach, we may induce rules r1: (a1 = 1)∧ (a2 = 1)∧ (a3 = 1) → (d = 1) with
confidence 0.863636 and r2: (a2 = 1) ∧ (a3 = 1) ∧ (a5 = 1) → (d = 1) with con-
fidence 0.785714. For those rules, let us consider the confidence of their coarser
rules with more relaxed conditions. The values of the confidence and support of
those coarser rules are shown in Table 2. Comparing confidence values of coarser
rules of r1 and r2 having the same number of dropped elementary conditions in
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Table 1. An illustrative decision table

pat a1 a2 a3 a4 a5 d fr pat a1 a2 a3 a4 a5 d fr pat a1 a2 a3 a4 a5 d fr

p1 1 1 1 0 0 1 32 p7 0 1 1 0 1 1 22 p12 1 1 1 1 0 1 6
p2 1 1 1 0 0 0 2 p8 0 1 1 0 1 0 5 p13 1 1 0 0 1 0 4
p3 1 1 0 1 0 0 20 p9 0 1 1 1 1 1 8 p14 1 1 1 1 0 0 2
p4 1 0 1 0 0 0 18 p10 0 1 1 1 1 0 4 p15 1 0 1 0 1 1 2
p5 0 1 1 1 0 0 10 p11 0 1 1 1 1 1 3 p16 1 0 1 0 1 0 2
p6 1 1 1 1 0 0 2

Table 2. The values of confidence of coarser rules

name rule confidence support

r1 (a1 = 1) ∧ (a2 = 1) ∧ (a3 = 1)→ (d = 1) 0.863636 38

r1(a3) (a1 = 1) ∧ (a2 = 1)→ (d = 1) 0.558824 38
r1(a2) (a1 = 1) ∧ (a3 = 1)→ (d = 1) 0.606061 40
r1(a1) (a2 = 1) ∧ (a3 = 1)→ (d = 1) 0.739583 71

r1(a2a3) (a1 = 1)→ (d = 1) 0.444444 40
r1(a1a3) (a2 = 1)→ (d = 1) 0.591667 71
r1(a1a2) (a3 = 1)→ (d = 1) 0.618644 73

r2 (a2 = 1) ∧ (a3 = 1) ∧ (a5 = 1)→ (d = 1) 0.785714 33

r2(a5) (a2 = 1) ∧ (a3 = 1)→ (d = 1) 0.739583 71
r2(a3) (a2 = 1) ∧ (a5 = 1)→ (d = 1) 0.717391 33
r2(a2) (a3 = 1) ∧ (a5 = 1)→ (d = 1) 0.760870 35

r2(a3a5) (a2 = 1)→ (d = 1) 0.591667 71
r2(a2a5) (a3 = 1)→ (d = 1) 0.618644 73
r2(a2a3) (a5 = 1)→ (d = 1) 0.7 35

Table 2, we observe that the coarser rules of r2 take higher confidence values
than those of r1 while r2 takes lower confidence value than r1. When we con-
sider only confidence values of rules, we evaluate r1 is more interesting than r2.
However, considering that the induced rule may be used for partially-matched
data, r2 would be more interesting. As shown in Table 2, we cannot find such
an advantage of r2 over r1 even if we add the evaluation by support.

From this point of view, we propose robustness measures. As is seen in the
previous example, robustness measures are defined by using some interestingness
measure f(E → H). To formulate robustness measures, we assume the following
two settings:

S1. The larger f(B → H), the more interesting rule B → H . (Gain property)

S2. f(B → H) < f(E → H), ∀B ⊂ E. (minimality of E)

S1 means that f shows the favorability rather than inadvisability. S2 means
that the interestingness decreases by the strict relaxation of the condition of
rule E → H . This implies that E is a minimal description such that the inter-
estingness is not less than f(E → H). Interestingness measures such as support,
recall, relative risk and so on cannot satisfy S2. On the contrary, interestingness
measures such as confidence, lift (lift(E → H) = |U |conf(E → H)/supp(H)),
and so on may satisfy S2. Moreover, S2 implies that only such minimal rule
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E → H is considered. For a while we assume this strong setting S2 but once the
robustness measures are formulated, they are useful for any rule.

Using an adequate interestingness measure f , the preserved f -value from the
lack of all conditional attributes in L under rule E → H is defined by

presf (E → H ;L) = f(E−L → H), (1)

where L ⊆ C and C is the set of all condition attributes. E−L is the subset
of elementary conditions of E which does not specify the value of condition
attribute in L. When E−L = E, presf takes its maximum (= f(E → H)) under
setting S2.

We note that when E−L = ∅, presf does not always take the minimum. More-
over, for some L such that E−L �= E, we may have presf (E → H ;L) = f(E−L →
H) < f(∅ → H). This inequality implies that rule E−L → H is less interesting
than rule saying “everything satisfies H” in the sense of interestingness measure
of f . If this inequality holds for some L, rule E−L → H may deteriorate the
reasoning. For example, in Table 1, confidence of r1(a2a3), 0.444444 is less than
the probability of (d = 1), 0.514085.

Then we define the following concepts of robustness of rule E → H :

Genuine Robustness: rule E → H is said to be robust with respect to f iff

presf (E → H ;L) ≥ f(∅ → H), ∀L ⊆ C. (2)

Especially, the rule is said to be strongly robust with respect to f iff (2) is satisfied
with strong inequality.

ε-Robustness: rule E → H is said to be ε-robust iff

presf (E → H ;L) ≥ f(∅ → H)− ε, ∀L ⊆ C. (3)

kth-order Robustness: rule E → H is said to be kth-order robust iff

presf (E → H ;L) ≥ f(∅ → H), ∀L ⊆ C such that |L| ≤ k. (4)

kth-order ε-Robustness: rule E → H is said to be kth-order ε-robust iff

presf (E → H ;L) ≥ f(∅ → H)− ε, ∀L ⊆ C such that |L| ≤ k. (5)

Expectation-based Robustness: rule E → H is said to be expectantly robust
with respect to f iff

Ex(presf (E → H ;L)) =
∑
L⊆C

P (L) · presf (E → H ;L) ≥ f(∅ → H), (6)

where Ex(·) is an expectation operator and P (L) ≥ 0 is the probability that
values of all condition attributes in L are missing in the given unseen object. We
assume

∑
L⊆C P (L) = 1.

Median-based Robustness: rule E → H is said to be 50%-robust with respect
to f iff

Median(presf(E → H ;L)) ≥ f(∅ → H), (7)
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where Median(·) is the median operator with respect to P (L) described above.
α-Quantile-based Robustness: rule E → H is said to be 100α%-robust with
respect to f iff

α-Quantile(presf (E → H ;L)) ≥ f(∅ → H), (8)

where α ∈ (0, 1] and α-Quantile(·) is the α-quantile operator with respect to
P (L) described above.

We note that the median-based robustness is the special case of the α-quantile-
based robustness, i.e., it is 0.5-quantile based robustness. The concepts of ε-
robustness and kth-order robustness can be applied to the expectation-based,
median-based and α-quantile-based robustness. For example, kth-order
expectation-based ε-robust rule is a rule E → H satisfying

Ex(presf (E → H ;L)) =
∑
L⊆C

P (L||L| ≤ k) · presf (E → H ;L) ≥ f(∅ → H)− ε,

(9)
where P (L||L| ≤ k) ≥ 0 is the conditional probability when |L| is at most k and
it satisfies

∑
L⊆C:|L|≤k P (L||L| ≤ k) = 1.

The estimation of P (L) is not an easy task. However, we may specify it in
a way with some appropriate assumption. Even if this estimation is not very
correct, the proposing robustness measures can work to evaluate the maintenance
of the rule interestingness against the partially matched data.

Corresponding to each concept of robustness, we define robustness measure
with respect to an interestingness measure f satisfying S1 and S2 for some E. The
robustness measures corresponding to the concepts above are shown as follows:

Genuine Robustness Measure:

rbst(E → H) = min
L⊆C

presf (E → H ;L), (10)

kth-order Robustness Measure:

rbstk(E → H) = min
L⊆C: |L|≤k

presf (E → H ;L), (11)

Expectation-based Robustness Measure:

Ex-rbst(E → H) =
∑
L⊆C

P (L) · presf (E → H ;L), (12)

α-Quantile-based Robustness Measure:

α-rbst(E → H) = α-Quantile(presf (E → H ;L)), (13)

We can also define the kth-order expectation-based robustness measure and
the kth-order α-quantile-based robustness measure corresponding to the kth-
order expectation-based robustness and the kth-order α-quantile-based robust-
ness, respectively. Comparing the above robustness measures with f(∅ → H), we
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Table 3. Eight data-sets

Data-set |U | |C| |Vd| Data-set |U | |C| |Vd| Data-set |U | |C| |Vd|
car 1728 6 4 iris 150 4 3 wine 178 13 3
ecoli 336 7 8 nursery 12960 8 5 zoo 101 16 7
glass 214 9 7 soybean 562 35 15

find the robustness and ε-robustness defined above. Namely, we prefer a rule with
larger robustness measure to a rule with smaller robustness measure because it
is safer against the information loss.

When E is a minimal condition satisfying S2, those measures take values
smaller than f(E → H). However, we can use those measures for any rules
E → H including non-minimal rules. Therefore, those measures may take larger
values than f(E → H). For example, when E → H is a minimal rule with 100%
confidence, a 100% confident rule E ∪ K → H never takes a smaller value of
robustness measure than E → H but may take a greater value, where K is a set
of elementary conditions. In this sense, the robustness criterion is contrasting
with the minimal description criterion and also with the recall criterion.

4 Numerical Experiments

4.1 Common Settings of Experiments

We conduct three experiments with different purposes. By the first experiment,
we confirm the usefulness of the decision rules with high robustness scores as the
design knowledge. By the second experiment, we examine whether the classifier
based on decision rules with higher robustness scores classifies unseen objects
more accurately. Finally, by the third experiment, we examine whether the clas-
sifier based on decision rules with higher robustness scores performs better in
the classification of objects with missing values.

The eight data-sets listed in Table 3 are used for these experiments. They are
obtained from UCI Machine Learning Repository [10]. In Table 3, |U |, |C| and
|Vd| show the number of objects, the number of condition attributes and the
number of decision classes, respectively.

We run the 10 fold cross validation 10 times. At each validation stage, we first
induce a set of rules by MLEM2 algorithm [9] from training data, which is a
minimal set of minimal rules with 100% confidence. Let Nrule be the number of
induced rules by MLEM2 algorithm and β ∈ (0, 1). Then we select βNrule rules
from those induced rules according to robustness measure Ex-rbst(E → H).
Namely, we obtain two subsets of induced rules: one called Top is composed of
βNrule rules with top βNrule robustness scores and the other called Bottom is
composed of βNrule rules with bottom βNrule robustness scores. For comparison,
we prepare the third subset Random of induced rules composed of randomly
chosen βNrule rules. The performances of those three subsets of induced rules in
checking data are compared. Here βNrule is assumed to be rounded to the nearest
integer. To define the expectation-based robustness measure, assuming that we
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Table 4. The average robustness scores of sampled rules (continue)

β
car (Tr: N̄rule = 57.12) car (Ch: N̄match = 49.60)

Top Bottom Random Top′ Bottom′ Random′

50% 0.842±0.110 0.605±0.074 0.724±0.153 0.833±0.137 0.639±0.178 0.739±0.185

30% 0.919±0.069 0.560±0.057 0.724±0.151 0.907±0.105 0.607±0.187 0.738±0.191

10% 0.955±0.003 0.503±0.054 0.724±0.156 0.952±0.025 0.585±0.238 0.737±0.198

β
ecoli (Tr: N̄rule = 34.38) ecoli(Ch: N̄match = 21.34)

Top Bottom Random Top′ Bottom′ Random′

50% 0.883±0.043 0.752±0.069 0.817±0.089 0.790±0.227 0.462±0.367 0.625±0.349

30% 0.909±0.032 0.719±0.067 0.817±0.086 0.841±0.179 0.401±0.370 0.635±0.331

10% 0.939±0.016 0.663±0.068 0.821±0.083 0.907±0.105 0.291±0.360 0.629±0.342

β
glass (Tr: N̄rule = 21.96) glass (Ch: N̄match = 15.13)

Top Bottom Random Top′ Bottom′ Random′

50% 0.888±0.026 0.798±0.044 0.840±0.058 0.668±0.325 0.514±0.376 0.601±0.356

30% 0.902±0.018 0.776±0.038 0.843±0.058 0.687±0.318 0.483±0.385 0.588±0.364

10% 0.917±0.012 0.745±0.035 0.834±0.061 0.725±0.293 0.424±0.391 0.544±0.372

β
iris (Tr: N̄rule = 7.6) iris (Ch: N̄match = 5.10)

Top Bottom Random Top′ Bottom′ Random′

50% 0.912±0.049 0.763±0.127 0.841±0.124 0.866±0.164 0.620±0.333 0.755±0.289

30% 0.930±0.042 0.735±0.135 0.830±0.125 0.889±0.141 0.574±0.349 0.727±0.310

10% 0.965±0.024 0.666±0.153 0.832±0.132 0.952±0.087 0.468±0.380 0.705±0.328

know one of condition attribute is missing but we do not know which condition
attribute is missing, we use the following probability distribution: P (L) = 1/|C|
if |L| = 1 and P (L) = 0 otherwise.

4.2 The Usefulness as Design Knowledge

To confirm the usefulness of the decision rules with high robustness scores as the
design knowledge, we calculate the average robustness scores in the checking data
for subsets of induced rules. In this calculation, we use rule sets Top′, Bottom′

and Random′ instead of rule sets Top, Bottom and Random, respectively. We
define rule sets Top′, Bottom′ and Random′ by replacing Nrule in the definitions
of rule sets Top, Bottom and Random with Nmatch showing the number of rules
whose conditions are satisfied by at least one of checking data. This replacement
is caused by the fact that robustness scores cannot be obtained properly for
unfired rules. The results for β = 50%, 30% and 10% are shown in the right half
of Tables 4 and 5. The average robustness scores in the training data are also
shown in the left half of those tables. N̄rule and N̄match are the average values of
Nrule and Nmatch, respectively.

As shown in those tables, the average values are gradually decreases (resp. in-
creases) as β increases in Top′ (resp. Bottom′). This implies that the order of
robustness scores in the training data is mostly preserved in the checking data.
Moreover, the average robustness scores of Top′ are larger than those of Bottom′

and Random′ when β is sufficiently small. From those results, we conclude that
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Table 5. The average robustness scores of sampled rules (continuation)

β
nursery (Tr: N̄rule = 533.43) nursey (Ch: N̄match = 389.46)
Top Bottom Random Top′ Bottom′ Random′

50% 0.877±0.022 0.760±0.093 0.818±0.090 0.875±0.044 0.773±0.197 0.826±0.152

30% 0.890±0.018 0.712±0.094 0.818±0.090 0.887±0.038 0.731±0.238 0.821±0.159

10% 0.909±0.015 0.599±0.066 0.818±0.090 0.906±0.030 0.602±0.329 0.832±0.152

β
soybean (Tr: N̄rule = 55.74) soybean (Ch: N̄match = 33.33)
Top Bottom Random Top′ Bottom′ Random′

50% 0.969±0.007 0.935±0.020 0.952±0.022 0.928±0.157 0.601±0.424 0.761±0.362

30% 0.973±0.003 0.924±0.017 0.951±0.023 0.949±0.112 0.494±0.435 0.763±0.361

10% 0.976±0.003 0.907±0.014 0.952±0.022 0.959±0.086 0.426±0.439 0.768±0.361

β
wine (Tr: N̄rule = 4.58) wine (Ch: N̄match = 4.26)

Top Bottom Random Top′ Bottom′ Random′

50% 0.963±0.010 0.940±0.018 0.951±0.018 0.893±0.135 0.871±0.158 0.887±0.147

30% 0.965±0.010 0.939±0.019 0.951±0.020 0.891±0.129 0.866±0.156 0.886±0.123

10% 0.972±0.006 0.933±0.025 0.951±0.023 0.911±0.113 0.859±0.183 0.884±0.155

β
zoo (Tr: N̄rule = 9.63) zoo (Ch: N̄match = 5.04)

Top Bottom Random Top′ Bottom′ Random′

50% 0.949±0.013 0.898±0.051 0.924±0.046 0.947±0.070 0.863±0.254 0.899±0.206

30% 0.955±0.009 0.885±0.054 0.922±0.048 0.953±0.047 0.834±0.287 0.894±0.217

10% 0.963±0.001 0.861±0.058 0.933±0.038 0.963±0.009 0.783±0.335 0.930±0.135

the rules with high robustness scores in the training data can take high robust-
ness scores in a set of unseen objects. Thus, the rules with high robustness scores
in the training data could be useful as design knowledge.

4.3 The Usefulness in Classification of Unseen Objects

Unseen objects will not match to the rules totally but partially. From this point
of view, rules with high robustness can contribute well to the classification of
unseen objects. To examine this conjecture, we compare classification accuracies
of classifiers based on Top, Bottom and Random by 10 times run of 10 fold cross
validation.

For the classification of unseen objects, we apply the classification system of
LERS [9] described below. Let R be a subset of induced decision rules and u
an object to be classified. We define R(Di) as a set of all decision rules in R
inferring the belongingness to a class Di, Mat(u,R) as a set of decision rules in
R whose conditions are satisfied with object u, and PM(u,R) as a set of decision
rules in R some of whose conditions for condition attributes are satisfied with
object u. When conditions of decision rules in R are satisfied with object u, i.e.,
Mat(u,R) �= ∅, the following measure Supp(Di) is calculated:

Supp(Di) =
∑

r∈R(Di)∩Mat(u,R)

Strength(r) × Specificity(r), (14)

where r is a decision rule, Strength(r) is the total number of objects in given
decision table correctly classified by rule r and Specificity(r) is the total
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Table 6. The result in data without missing values

β
car ecoli

Top Bottom Random Top Bottom Random

90 0.974±0.012
∗∗ 0.961±0.050 0.965±0.032 0.782±0.067

∗∗ 0.675±0.126 0.763±0.076

80 0.956±0.015
∗∗ 0.440±0.077 0.937±0.047 0.779±0.065

∗∗ 0.438±0.117 0.738±0.080

70 0.932±0.020
∗∗ 0.292±0.033 0.907±0.057 0.771±0.068

∗∗ 0.378±0.084 0.712±0.090

60 0.901±0.023
∗∗ 0.292±0.033 0.860±0.095 0.753±0.074

∗∗ 0.323±0.085 0.672±0.104

50 0.863±0.027
∗∗ 0.261±0.046 0.833±0.089 0.733±0.078

∗∗ 0.254±0.086 0.640±0.106

β
glass iris

Top Bottom Random Top Bottom Random

90 0.668±0.109
∗∗ 0.635±0.122 0.648±0.123 0.930±0.066

∗∗ 0.930±0.066 0.930±0.066

80 0.644±0.115
∗∗ 0.597±0.111 0.621±0.131 0.930±0.066

∗∗ 0.825±0.140 0.848±0.151

70 0.614±0.121
∗∗ 0.564±0.114 0.588±0.111 0.929±0.066

∗∗ 0.715±0.124 0.798±0.181

60 0.592±0.119
∗∗ 0.494±0.110 0.560±0.130 0.925±0.074

∗∗ 0.603±0.185 0.705±0.197

50 0.569±0.128
∗∗ 0.426±0.129 0.514±0.127 0.867±0.159

∗∗ 0.409±0.192 0.619±0.217

β
nursery soybean

Top Bottom Random Top Bottom Random

90 0.977±0.004
∗∗ 0.642±0.014 0.948±0.082 0.871±0.043

∗∗ 0.700±0.067 0.815±0.065

80 0.965±0.005
∗∗ 0.508±0.015 0.886±0.128 0.869±0.042

∗∗ 0.536±0.078 0.745±0.085

70 0.946±0.006
∗∗ 0.435±0.015 0.820±0.158 0.862±0.042

∗∗ 0.467±0.075 0.684±0.089

60 0.924±0.011
∗∗ 0.398±0.014 0.760±0.163 0.857±0.044

∗∗ 0.338±0.078 0.618±0.094

50 0.879±0.011
∗∗ 0.386±0.013 0.740±0.164 0.833±0.048

∗∗ 0.254±0.062 0.532±0.102

β
wine zoo

Top Bottom Random Top Bottom Random

90 0.925±0.064 0.925±0.064 0.925±0.064 0.960±0.068
∗∗ 0.676±0.191 0.906±0.119

80 0.780±0.172
∗∗ 0.858±0.106 0.842±0.140 0.918±0.079

∗∗ 0.422±0.157 0.810±0.166

70 0.700±0.147
∗∗ 0.812±0.123 0.783±0.148 0.908±0.089

∗∗ 0.317±0.137 0.692±0.205

60 0.563±0.221
∗∗ 0.739±0.152 0.694±0.157 0.893±0.098

∗∗ 0.243±0.132 0.561±0.233

50 0.455±0.167
∗∗ 0.628±0.147 0.583±0.144 0.854±0.130

∗∗ 0.156±0.125 0.483±0.235

number of condition attributes in the condition of rule r. For convenience, when
Mat(u,R) = ∅, we define Supp(Di) = 0. When no conditions of rules in R are
satisfied with object u, i.e., when Mat(u,R) = ∅, the following measure M(Di)
is calculated:

M(Di) =
∑

r∈R(Di)∩PM(u,R)

Match factor(r) × Strength(r)× Specificity(r),

(15)
where Match factor(r) is the ratio of the number of matched conditions for
condition attributes of rule r to the total number of condition attributes used
in rule r. The classification is performed as follows: if there exists Dj such that
Supp(Dj) > 0, the class Di with the largest Supp(Di) is selected. Otherwise,
the class Di with the largest M(Di) is selected.

The results of this experiment for β = 50%, 60%, 70%, 80% and 90% are
shown in Table 6. In Table 6, marks ∗ and ∗∗ mean the average classification
accuracy of top βR rules is significantly different from that of random βR rules
by the paired t-test with significance level α = 0.05 and 0.01. As shown in
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Table 7. The results in data with missing values

β
car ecoli

Top Bottom Random Top Bottom Random

90% 0.796±0.020
∗∗ 0.785±0.036 0.788±0.027 0.684±0.065

∗∗ 0.595±0.114 0.677±0.064

80% 0.797±0.021
∗∗ 0.331±0.050 0.782±0.029 0.681±0.064

∗∗ 0.373±0.098 0.652±0.077

70% 0.794±0.023
∗∗ 0.224±0.027 0.759±0.039 0.674±0.065

∗∗ 0.323±0.073 0.627±0.098

60% 0.788±0.024
∗∗ 0.224±0.027 0.741±0.056 0.661±0.067

∗∗ 0.284±0.072 0.611±0.089

50% 0.773±0.026
∗∗ 0.202±0.034 0.729±0.072 0.646±0.072

∗∗ 0.226±0.074 0.554±0.122

β
glass iris

Top Bottom Random Top Bottom Random

90% 0.582±0.082
∗ 0.550±0.118 0.560±0.088 0.764±0.066 0.764±0.139 0.764±0.066

80% 0.565±0.089
∗∗ 0.525±0.107 0.536±0.091 0.765±0.066

∗∗ 0.708±0.152 0.702±0.112

70% 0.547±0.096
∗∗ 0.498±0.103 0.517±0.097 0.758±0.068

∗∗ 0.625±0.127 0.653±0.129

60% 0.531±0.098
∗∗ 0.442±0.110 0.491±0.098 0.752±0.075

∗∗ 0.553±0.130 0.586±0.153

50% 0.512±0.106
∗∗ 0.384±0.106 0.452±0.102 0.707±0.118

∗∗ 0.398±0.118 0.568±0.155

β
nursery soybean

Top Bottom Random Top Bottom Random

90% 0.816±0.006
∗∗ 0.542±0.011 0.779±0.084 0.834±0.038

∗∗ 0.667±0.062 0.778±0.063

80% 0.813±0.007
∗∗ 0.436±0.014 0.737±0.116 0.831±0.039

∗∗ 0.505±0.073 0.723±0.075

70% 0.800±0.008
∗∗ 0.375±0.012 0.694±0.138 0.823±0.039

∗∗ 0.438±0.069 0.655±0.084

60% 0.783±0.011
∗∗ 0.356±0.013 0.619±0.148 0.817±0.041

∗∗ 0.321±0.072 0.595±0.095

50% 0.747±0.011
∗∗ 0.353±0.012 0.607±0.153 0.794±0.045

∗∗ 0.246±0.059 0.521±0.086

β
wine zoo

Top Bottom Random Top Bottom Random

90% 0.784±0.063 0.784±0.063 0.784±0.063 0.866±0.064
∗∗ 0.610±0.179 0.823±0.128

80% 0.690±0.141
∗∗ 0.744±0.093 0.737±0.118 0.854±0.072

∗∗ 0.373±0.141 0.761±0.157

70% 0.644±0.130
∗∗ 0.715±0.112 0.667±0.117 0.847±0.082

∗∗ 0.277±0.121 0.641±0.244

60% 0.537±0.198
∗∗ 0.651±0.139 0.656±0.142 0.835±0.090

∗∗ 0.212±0.116 0.559±0.206

50% 0.446±0.155
∗∗ 0.550±0.125 0.579±0.134 0.803±0.118

∗∗ 0.135±0.110 0.437±0.233

Table 6, Top is better than Random and Bottom except for data-set “wine”.
Then we observe that the classifier based on rules with high robustness scores
performs well in the classification of unseen objects. In data-set “wine”, rules
with high recall scores take low robustness scores and the variation of the ro-
bustness scores is rather small as shown in Table 5. The 100% confident rules
with high recall scores often perform well in the classification. This explains why
Bottom becomes better than Top in data-set “wine”.

4.4 The Usefulness in Classification of Objects with Missing Values

In the previous experiments, we observed that rules with high robustness scores
in the training data take high scores in a set of unseen objects and that the
classifier based on such rules performs well in the classification of unseen objects.
From those observations, we guess that the classifier based on rules with high
robustness scores can stably perform well in the classification against loss of
attribute data.
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To confirm this by a numerical experiment, we delete all data of a condition
attribute from the checking data at validation stage of 10 fold cross validation.
There are |C| condition attributes. The deletion is applied to each condition
attribute so that we obtain |C|Ch checking data with missing values, where
Ch is the number of checking data. Then the average classification accuracy is
calculated at each validation stage.

The results of this experiment for β = 50%, 60%, 70%, 80% and 90% are
shown in Table 7. In Table 7, marks ∗ and ∗∗ mean the average classification
accuracy of top βR rules is significantly different from that of random βR rules
by the paired t-test with significance level α = 0.05 and 0.01. As shown in Table
7, Top is better than Random and Bottom except for data-set “wine”. We
observe that the classifier based on rule with high robustness scores maintains
the classification accuracy against the missing value of a condition attribute.
The reason why similar result cannot be obtained for “wine” data is the same
as the previous experiment.

By the experiments, we observed the usefulness of a robustness measure. Be-
cause the robustness measure reflects a different aspect from the recall, we will
investigate the relation between the robustness measure and the recall in our
future work. Moreover, we will study the application of robustness measures to
rule induction algorithms.
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Abstract. How to effectively combine the outputs of base classifiers
is one of the key issues in ensemble learning. A new dynamic ensemble
selection algorithm is proposed in this paper. In order to predict a sample,
the base classifiers whose classification confidences on this sample are
greater than or equal to specified threshold value are selected. Since
margin is an important factor to the generalization performance of voting
classifiers, thus the threshold value is estimated via the minimization of
margin loss. We analyze the proposed algorithm in detail and compare it
with some other multiple classifiers fusion algorithms. The experimental
results validate the effectiveness of our algorithm.

Keywords: dynamic ensemble selection, threshold value, classification
confidence, margin.

1 Introduction

Ensemble learning is an effective method to develop accurate classification sys-
tems [1,23]. Typically, there are two steps to construct an ensemble system:
learning a set of base classifiers and combining them with a certain strategy.
For learning strategies, the key is to obtain both diverse and accurate base clas-
sifiers. So far various algorithms have been invented and they can be roughly
categorized into two schemes. One is to learn the base classifiers in parallel, such
as, Bagging [1], Rotation Forest [13]. The other is sequential, that is, the base
classifiers are trained one by one, including AdaBoost [4], LogitBoost [5] and
so on.

As to fusion strategies, there are also two main schemes. One uses the fixed set
of base classifiers which can be all the base classifiers or only a subset of them.
It requires large memory store and takes much computation time for prediction
when using all the base classifiers [10]. In order to alleviate these drawbacks,
ensemble pruning was proposed and it selects a fraction of base classifiers for
fusion. If there are L base classifiers, we have 2L-1 nonempty sub-ensembles.
Therefore, it is intractable to search the optimal solution via exhaustive search
for a moderate ensemble size. In order to alleviate this difficulty, several strate-
gies have been utilized in ensemble pruning to obtain sub-optimal subset, such
as, genetic algorithm [22], ordered aggregation technique [10,11] and so on. It
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has been demonstrated that ensemble pruning is more effective in terms of clas-
sification performance than using all the base classifiers.

However there is a drawback with ensemble pruning. That is, the selected
base classifiers on the validation set may not be well adapted for predicting
the test set due to the differences among samples. Intuitively, the classification
performance of adopting different base classifiers for different samples may be
better than that of using the fixed base classifiers. Thus the dynamic scheme was
proposed, including dynamic classifier selection [6,8,18] and dynamic ensemble
selection [9,15,21]. For dynamic classifier selection, it selects one base classifier to
predict a sample every time and the selected classifier for the sample is thought
to most likely classify it correctly. These algorithms include dynamic classifier
selection based on classifier’s local accuracy [18], dynamic classifier selection
based on multiple classifier behaviour [8] and so on. Since only one base classifier
is selected, thus if the selected base classifier is not able to classify the sample
correctly, there is no way to avoid the misclassification [16].

In order to overcome this drawback, dynamic ensemble selection was intro-
duced. Rather than selecting a single base classifier, it selects one subset of base
classifiers to predict a sample every time. In [15], DCS-based DCES method was
proposed. It considers both accuracy and diversity and contains two versions:
cluster and select version, and K-NN and selection version. Then in [9], dy-
namic classifier ensemble selection by K-nearest-oracles was proposed. Given a
test sample, it selects a subset of base classifiers which can correctly classify those
K neighbors on the validation set. Recently, GDES-AD was proposed and it is
robust to noise [21]. In this paper, a new dynamic ensemble selection algorithm
is proposed. In order to predict a sample, the base classifiers whose classification
confidences on this sample are greater than or equal to specified threshold value
are selected and the threshold value is estimated via the minimization of margin
loss.

The rest of the paper is organized as follows. The new algorithm is introduced
in Section 2. Then we analyze it in detail and compare it with other fusion
methods on some UCI classification tasks in Section 3. Finally, Section 4 offers
the conclusions and future work.

2 The Proposed Algorithm

In the framework of dynamic ensemble selection, we are generally given a set of
base classifiers {h1, · · · , hL} and the main goal is to dynamically select a subset
for prediction. Intuitively, the higher the classification confidence provided by
the classifier, the higher the probability that the classifier has correctly classified
this sample. Thus, for the proposed method, a sample is classified by a subset of
base classifiers whose classification confidences on this sample are greater than
or equal to specified threshold value. Naturally, how to estimate an appropriate
threshold value becomes the key issue.

Margin is an important factor to the generalization performance of voting
classifier [14,20]. It has been reported that if the voting classifier can generate
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good margin distribution, then its generalization error will be small. Motivated
by this observation, the threshold value is estimated via the minimization of
margin loss in this paper.

Classification confidence is utilized in the new algorithm, thus every classifier
hj assigns classification confidence rij for its classification decision hij on sample
xi. For example, consider a linear real valued classifier h(x) = u · x − b, a
sample x is given classification decision 1 if h(x) ≥ 0 and -1 otherwise. Then
the value |h(x)| can be seen as its classification confidence. In [17] the bound on
generalization errors of h(x) is given and it shows that classification confidence is
an important factor to its classification performance. On the other hand, in [14],
the margin of sample xi ∈ X is defined as the difference between the number of
correct votes and the maximum number of votes received by any wrong label.
It only considers the classification decision. Inspired by the conclusion in [17],
classification confidence is added into margin as follows.

Definition 1. For xi ∈ X(i = 1, 2 · · · , n), let ω = {ω1, · · · , ωc} be class labels
set, H = {hij |hij ∈ ω} and R = {rij |rij ∈ [0, 1]} be classification decision and
classification confidence of xi by the classifier hj(j = 1, 2 · · · , L), respectively.
The margin of sample xi based on classification confidence is denoted by

M(xi) = S(ωi)−max{S(ωj)|i �= j} (1)

where S(ωi) means the sum of classification confidences in R whose correspond-
ing classification decision is ωi which is the true label of xi.

The detail process of the proposed method is given as Algorithm 1. Here, for
sample xi, least squares loss function and logistic loss function are respectively
utilized to compute its margin loss.

Definition 2. For xi ∈ X, the margin loss of xi based on two different loss
functions are respectively denoted as

l1(xi) = [1−M(xi)]
2 (2)

l2(xi) = log(1 + exp(−M(xi))) (3)

Algorithm 1. ( DES-Margin )
Input:
•X = {(xi, yi), i = 1, 2, · · · , n}: the validation set;
•x: the test sample;
•hj(j = 1, 2, · · · , L): the base classifiers
Output: the label of x;
1. Apply hj(j = 1, 2, · · · , L) on xi ∈ X(i = 1, 2, · · · , n) to get classification

decision hij and corresponding classification confidence rij
2. Compute the difference between the maximum classification confidence and

the minimum classification confidence on sample xi and denote it by d(i) =
max{rij |j = 1, 2, · · · , L} −min{rij |j = 1, 2, · · · , L}



Exploring Margin for Dynamic Ensemble Selection 181

3. For t = 1, 2, · · · , L + 1
4. The base classifiers whose classification confidences on xi are greater

than or equal to min{rij |j = 1, 2, · · · , L}+(t−1)∗d(i)/L are selected to compute
its margin Mit and corresponding margin loss lit as Definitions 1 and 2.

5. The sum of margin loss lit(i = 1, · · · , n) on X is denoted by S(t)
6.End for
7. Estimate T as S(T ) = min{S(t)|t = 1, 2, · · · , L + 1}
8. Apply hj(j = 1, 2, · · · , L) on test sample x to get its classification decision

hxj and corresponding classification confidence rxj
9. The base classifiers whose classification confidences on x are greater than

or equal to min{rxj|j = 1, 2, · · · , L}+ (T − 1) ∗ d(x)/L are selected to classify x
with weighted voting and the weight is corresponding classification confidence.

It should be noted that, since the classification confidences of base classifiers
on different samples are usually different, the selected base classifiers subsets for
different samples are usually different. Besides, for a test sample, the threshold
value is determined by its minimum classification confidence, the value of T and
the difference between its maximum classification confidence and its minimum
classification confidence, thus the threshold values for different samples can also
be different.

In what follows, the base classifiers learning strategy is given for the complete-
ness of these experiments conducted in this paper. Here the nearest-neighbor
algorithm is utilized to learn the base classifiers and the classification confidence
of sample x ∈ X is computed as |f(x2, x)− f(x1, x)|/2 where f is Euclidean dis-
tance function, x1 is the nearest sample of x in X and x2 is the nearest sample
of x in X out of the class of x1 [7]. If there are mixed numerical and categorical
features, Heterogeneous Euclidean-Overlap Metric function can be introduced
[19]. Besides, inspired by the idea of multimodal perturbation [23], bootstrap
sampling and random feature selection are combined to perturb the training set.

3 Algorithm Analysis and Experimental Evaluation

From Algorithm 1, it can be seen that the base classifiers with larger classifica-
tion confidence tend to be selected. Then whether larger classification confidence
means better classification performance? Some experiments were conducted on
UCI data sets [2] to answer this question. Table 1 describes the 15 data sets
used in this work. In these experiments, the ratio of bootstrap sampling and
random feature selection was set as 0.75 and the base classifiers number L was
100. The relationship between classification accuracy and classification confi-
dence was shown as Figure 1. Specifically, on the x-axis, “1” means every test
sample is classified by the classification decision with the minimum classification
confidence and “100” means every test sample is classified by the classification
decision with the maximal classification confidence.

From Figure 1, we can see the trend that the higher the classification con-
fidence, the better the classification performance. It empirically interprets the
reason of selecting the base classifiers with large classification confidence for
fusion.
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Table 1. Description of 15 data sets used in this study

Data set Instances Features Classes

australian 690 14 2

bupa 345 6 2

crx 690 15 2

german 1000 20 2

hepatitis 155 19 2

liver 345 6 2

lymphography 148 18 4

movement 360 90 15

pima 768 8 2

rice 104 5 2

spectf 269 44 2

wdbc 569 30 2

wpbc 198 33 2

vehicl 846 18 4

yeast 1484 7 2
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Fig. 1. Variation of classification accuracies with the ranking of classification confidence

Then whether the best classification performance can be obtained when only
the base classifiers with the largest classification confidence are selected? In what
follows, we explore this question and show the relationship between the classi-
fication accuracies and different threshold values as Figure 2. The experimental
settings were given as the above experiment. The threshold values for sample x
is computed as min{rxj |j = 1, 2, · · · , 100}+ (t− 1) ∗ d(x)/100 and 1 ≤ t ≤ 101.
Here different t correspond to different threshold values. On the x-axis, “1”
means the threshold value for sample x is min{rxj |j = 1, 2, · · · , L} + (1 − 1) ∗
d(x)/100 = min{rxj|j = 1, 2, · · · , L} and all the base classifiers are selected to
predict it with weighted voting; “101” means the threshold value for sample x
is min{rxj |j = 1, 2, · · · , L} + (101 − 1) ∗ d(x)/100 = max{rxj |j = 1, 2, · · · , L}
and only the base classifiers with the largest classification confidence on sample
x are selected to classify this sample.
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Fig. 2. Variation of classification accuracies with different threshold values

From Figure 2, it can be seen that selecting the base classifiers with the largest
classification confidence does not mean the best classification performance and
an appropriate threshold value is needed. The reason lies in the number of base
classifiers with the largest classification confidence is small. In fact, a tradeoff
between the threshold value and the number of selected base classifiers should
be made. For DES-Margin, the threshold value is estimated based on the mini-
mization of margin loss.

In Algorithm 1, least squares loss function and logistic loss function are re-
spectively utilized to compute margin loss. Then which loss function can obtain
better classification performance? In the experiments, each data set is split into
10 folds: 8 folds were used for training 100 base classifiers, 1 fold to estimate the
threshold value and 1 fold for evaluating the classification performance. Table 2
shows the classification results of DES-Margin with the two loss functions. The
bold accuracy is the the highest one. From Table 2, it can be seen that the clas-
sification performances of DES-Margin with the two loss functions are similar.
Thus, in what follows, we only use least squares loss function in DES-Margin
and compare it with other methods, including: the simple voting using all the
classifiers, the single classifier, Reduce-Error Pruning (RE) [11], DCS-LA [18]
and KNORA-UNION [9].

Reduce-Error Pruning is an ensemble pruning algorithm based on ordered
aggregation technique. The base classifier with the lowest classification error
on validation set is firstly selected into an empty initial sub-ensemble and then
the remaining classifiers are sequentially added into the sub-ensemble to make
classification error of the new sub-ensemble as low as possible. Finally the sub-
ensemble with the best performance is selected as the pruned ensemble.

For DCS-LA, it is a dynamic classifier selection method based on local accu-
racy. In order to classify a test sample, the local accuracy of each classifier is
estimated in a local region which is defined as K-nearest neighbors of the test
sample. Then the classifier with the best classification performance in this local
region is selected to classify the test sample.

As to dynamic ensemble selection algorithm KNORA-UNION, for each test
sample, its K-nearest neighbors are estimated and the base classifiers which can
correctly classify any of the K-nearest neighbors are selected to classify the test
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Table 2. Classification performance of DES-Margin with different loss functions

Data set least squares loss logistic loss

australian 84.20 ±4.47 84.78 ±4.27

bupa 62.29±8.81 63.44± 7.90

crx 83.03±15.49 82.45 ±15.94

german 73.50 ±3.14 73.40± 4.43

hepatitis 85.50±9.10 86.17± 8.89

liver 61.56± 9.00 60.30± 7.22

lymphography 78.05±11.51 78.05±11.51

movement 78.78± 18.99 77.44± 18.97

pima 73.05±5.89 73.82 ±5.06

rice 82.18±9.90 82.18 ± 9.90

spectf 74.69±5.65 75.44± 3.65

vehicl 72.56±2.78 72.45± 3.71

wdbc 97.03±2.46 97.37± 2.06

wpbc 75.21±5.72 75.21± 5.72

yeast 73.12 ±5.23 72.31 ±5.52

Table 3. Classification performance of DES-Margin and other fusion methods

Data set DES-Margin SV NN RE DCS-LA KNORA-UNION

australian 84.20 ±4.47 82.74 ±3.00 78.85 ±4.69 83.05 ±3.40 80.29 ±4.28 83.04 ±3.38

bupa 62.29±8.81 59.95 ±9.46 60.24 ±6.24 60.85 ±9.38 62.55 ±12.97 58.50 ±11.24

crx 83.03±15.49 81.30 ±13.28 78.98 ±11.72 81.28 ±11.93 80.72 ±12.97 82.16 ±13.78

german 73.50 ±3.14 73.10 ±3.70 68.10 ±3.87 72.90 ±2.47 70.00 ±3.09 73.20 ±3.99

hepatitis 85.50±9.10 84.67 ±6.32 80.50 ±8.32 83.50 ±8.26 84.33 ±7.71 84.67 ±6.32

liver 61.56± 9.00 60.50 ±9.89 60.24 ±6.24 59.65 ±10.74 61.38 ±11.24 59.07 ±9.51

lymphography 78.05±11.51 77.34 ±11.20 70.91 ±12.12 71.36 ±10.70 70.19 ±11.83 76.62 ±10.83

movement 78.78± 18.99 77.89 ±18.88 77.67 ±18.46 77.89 ±18.88 76.56 ±19.63 77.89 ±18.88

pima 73.05±5.89 71.48 ±5.45 69.53 ±3.78 70.31 ±2.72 68.23 ±2.00 71.74 ±5.08

rice 82.18±9.90 78.25 ±9.30 76.23 ±10.40 83.87 ±10.73 86.80 ±7.70 78.25 ±9.30

spectf 74.69±5.65 72.37 ±6.94 70.93 ±8.48 70.89 ±12.09 74.28 ±7.47 72.37 ±6.94

vehicl 72.56±2.78 71.74 ±2.55 69.61 ±2.93 73.63 ±3.48 71.98 ±2.86 71.74 ±2.45

wdbc 97.03±2.46 96.15 ±2.83 95.09 ±3.05 96.13 ±2.96 94.56 ±2.54 96.15 ±2.83

wpbc 75.21±5.72 72.21 ±5.94 68.08 ±7.68 70.71 ±7.43 72.74 ±9.47 72.21 ±5.94

yeast 73.12 ±5.23 72.38 ±5.09 70.36 ±5.97 71.57 ±4.34 69.88 ±2.52 72.65 ±5.03

sample with simple voting. Here a base classifier can have more than one vote
if it correctly classifies more than one neighbor, that is, the more neighbors a
classifier classifies correctly, the more votes this classifier will have for the test
sample.

Table 3 shows the classification results for each algorithm. A rank sum test
called Nemenyi test [12] is performed to compare DES-Margin with other meth-
ods from the statistical viewpoint and the significance level α was set as 0.05.
In Nemenyi test, the critical difference [3] for 6 algorithms and 15 data sets at
significance level α = 0.05 is
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Table 4. Classification performance using different selection and voting strategies

Data set SV SDES-Margin WV DES-Margin

australian 82.74 ±3.00 82.46 ±2.94 84.34±4.45 84.20 ±4.47

bupa 59.95 ±9.46 62.58 ±7.11 61.71±9.11 62.29±8.81

crx 81.30 ±13.28 82.01 ±14.49 83.61±14.67 83.03±15.49

german 73.10 ±3.70 73.10 ±3.70 73.50±3.14 73.50 ±3.14

hepatitis 84.67 ±6.32 85.50 ±9.10 84.33±8.90 85.50±9.10

liver 60.50 ±9.89 59.93 ±11.06 60.55±9.12 61.56± 9.00

lymphography 77.34 ±11.20 77.34 ±11.20 78.77±11.28 78.05±11.51

movement 77.89 ±18.88 78.44 ±18.80 78.44±19.61 78.78± 18.99

pima 71.48 ±5.45 71.74 ±5.37 72.53±5.84 73.05±5.89

rice 78.25 ±9.30 81.18 ±9.53 78.25±9.30 82.18±9.90

spectf 72.37 ±6.94 73.54 ±7.70 74.28±5.43 74.69±5.65

vehicl 71.74 ±2.55 72.57 ±2.07 72.44±2.84 72.56±2.78

wdbc 96.15 ±2.83 96.85 ±2.43 96.67±2.24 97.03±2.46

wpbc 72.21 ±5.94 75.21 ±5.72 74.71±6.40 75.21±5.72

yeast 72.38 ±5.09 72.85 ±4.47 73.05±5.33 73.12 ±5.23

CD = q0.05

√
k(k + 1)

6N
= 2.850×

√
6× (6 + 1)

6× 15
= 1.947 (4)

where q0.05 is the critical values, k is the number of algorithms and N is the
number of data sets.

The average ranks for DES-Margin, SV, NN, RE, DCS-LA and KNORA-
UNION are (1.267, 3.333, 5.333, 3.733, 4.000, 3.333). The average rank differ-
ences between DES-Margin and the other methods are (3.333− 1.267 = 2.066 >
1.947, 5.333 − 1.267 = 4.066 > 1.947, 3.733 − 1.267 = 2.466 > 1.947, 4.000 −
1.267 = 2.733 > 1.947, 3.333− 1.267 = 2.066 > 1.947), thus DES-Margin per-
forms significantly better than SV, NN, RE, DCS-LA and KNORA-UNION.
These experiments validate the effectiveness of DES-Margin.

Besides, it can be seen that there are mainly two parts in DES-Margin: dy-
namic ensemble selection for different test samples and weighted voting based
on classification confidence. Then whether they are helpful for improving fusion
performance? Here four solutions are considered: simple voting using all the clas-
sifiers (SV), simple voting based on dynamic ensemble selection (SDES-Margin),
weighted voting using all the classifiers (WV) and weighted voting based on dy-
namic ensemble selection (DES-Margin). The experimental results in Table 4
indicate that dynamic ensemble selection and weighted voting based on classifi-
cation confidence are necessary for improving classification performance.

4 Conclusions and Future Work

In this paper, a new dynamic ensemble selection algorithm DES-Margin is pro-
posed. In order to predict a sample, the base classifiers whose classification con-
fidences on this sample are greater than or equal to specified threshold value are
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selected and the threshold value is estimated via the minimization of margin loss.
This algorithm is analyzed systematically and the experimental results validate
its effectiveness. Future works include, but are not limited to:

1) Exploring the internal relationship between generalization performance of
voting classifier and margin based on classification confidence.

2) In this work, the threshold value is estimated via margin loss minimization.
In the future, we will consider other estimation methods and apply them in
dynamic ensemble selection.
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Abstract. This paper proposes a new framework for evaluation of set-
based indices based on incremental sampling. Since these indices are
defined by the relations between conditional attributes (R) and decision
attribute(D), incremental sampling gives four possible cases according to
the increment of sets for R or D. Using this classification, the behavior
of indices can be evaluated for four cases. We applied this technique to
several set-based indices. The results show that the evaluation framework
gives a powerful tool for evaluation of set-based indices. Especially, it is
found that the behavior of indices can be determined by a firstly given
dataset..

Keywords: incremental rule induction, incremental sampling scheme,
subrule layer, rule induction index, bayesian confirmation measure.

1 Introduction

There have been proposed several symbolic inductive learning methods, such as
induction of decision trees [1–3], and AQ family [4, 5]. These methods are applied
to discover meaningful knowledge from large databases, and their usefulness is
in some aspects ensured. However, most of the approaches induces rules from all
the data in databases, and cannot induce incrementally when new samples are
derived. Thus, we have to apply rule induction methods again to the databases
when such new samples are given, which causes the computational complexity
to be expensive even if the complexity is n2.

Thus, it is important to develop incremental learning systems in order to man-
age large databases [6, 7]. However, most of the previously introduced learning
systems have the following two problems: first, those systems do not outperform
ordinary learning systems, such as AQ15 [5], C4.5 [3] and CN2 [4]. Secondly,
those incremental learning systems mainly induce deterministic rules. There-
fore, it is indispensable to develop incremental learning systems which induce
probabilistic rules to solve the above two problems.

Tsumoto and Hirano proposed a incremental rule induction method by using
a new framework of incremental sampling [8]. Since accuracy and coverage [9]
are defined by the relations between conditional attributes (R) and decision
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attribute(D), incremental sampling gives four possible cases according to the
update of accuracy coverage as shown in Table 1. Using this classification, the
behavior of these indices can be evaluated for four cases. Furthermore, they con-
ducted experimental evaluation of rule induction method based on this frame-
work, which gave comparable results compared with conventional approaches.

Table 1. Incremental Sampling Scheme

R D R ∧D
1. 0 0 0
2. 0 +1 0
3. +1 0 0
4. +1 +1 +1

In this paper, we extend this scheme by including the negations of R and D to
evaluate the set-based indices where the negated terms are used. The results show
that the evaluation framework gives a powerful tool for evaluation of set-based
indices. Especially, it is found that the behavior of indices can be determined by
a firstly given dataset.

The paper is organized as follows: Section 2 makes a brief description about
rough set theory and the definition of probabilistic rules based on this theory.
Section 3 discusses a former framework for incremental rule induction methods.
Then, Section 4 extends the existing framework and applies it to evaluation of
other indices. Finally, Section 5 concludes this paper.

2 Rough Sets and Probabilistic Rules

2.1 Rough Set Theory

Rough set theory clarifies set-theoretic characteristics of the classes over combi-
natorial patterns of the attributes, which are precisely discussed by Pawlak [10,
11]. This theory can be used to acquire some sets of attributes for classification
and can also evaluate how precisely the attributes of database are able to classify
data. One of the main features of rough set theory is to evaluate the relation-
ship between the conditional attributes and the decision attributes by using the
hidden set-based relations. Let a conditional attribute or conjunctive formula of
attributes a decision attribute be denoted by R and D. Then, a relation between
R and D can be evaluated by each supporting sets ([x]R and [x]D) and their
overlapped region denoted by R∧D ([x]R∩ [x]D). If [x]R ⊂ [x]D, then a proposi-
tion R→ D will hold and R will be a part of lower approximation of D. Dually,
D can be called a upper approximation of R. In this way, we can define the
characteristics of classification in the set-theoretic framework. Let nR, nD and
nRD denote the cardinality of [x]R, [x]D and [x]R ∩ [x]D, respectively. Accuracy
(true predictive value) and coverage (true positive rate) can be defined as:

αR(D) =
nRD

nR
and κR(D) =

nRD

nD
, (1)
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It is notable that αR(D) measures the degree of the sufficiency of a proposition,
R → D, and that κR(D) measures the degree of its necessity. For example, if
αR(D) is equal to 1.0, then R→ D is true. On the other hand, if κR(D) is equal
to 1.0, then D → R is true. Thus, if both measures are 1.0, then R↔ D.

For further information on rough set theory, readers could refer to [9–11].

2.2 Probabilistic Rules

The simplest probabilistic model is that which only uses classification rules which
have high accuracy and high coverage. 1 This model is applicable when rules of
high accuracy can be derived. Such rules can be defined as:

R
α,κ→ d s.t. R = ∨iRi = ∨ ∧j [aj = vk],

αRi(D) > δα and κRi(D) > δκ,

where δα and δκ denote given thresholds for accuracy and coverage, respectively.
where |A| denotes the cardinality of a set A, αR(D) denotes an accuracy of R
as to classification of D, and κR(D) denotes a coverage, or a true positive rate
of R to D, respectively. We call these two inequalities rule selection inequalities.

3 Incremental Rule Induction

From the definition of accuracy and coverage, Equations(1) accuracy and cov-
erage may nonmonotonically change. Since the above classification gives four
additional patterns, we will consider accuracy and coverage for each case as
shown in Table 2. in which |[x]R(t)|, |D(t)| and |[x]R ∩ D(t)| are denoted by
nR, nD andnRD. As shown in [8], Table 3 gives the classification of four cases

Table 2. Four patterns for an additional Example

t: [x]R(t) D(t) [x]R ∩D(t)

nR nD nRD

t+1 [x]R(t+ 1) D(t+ 1) [x]R ∩D(t+ 1)

nR + 1 nD + 1 nRD + 1
nR + 1 nD nRD

nR nD + 1 nRD

nR nD nRD

of an additional example. These updates can be visualized in a simplified form
as shown in Table 4, where →, ↑ and ↓ denotes stable, increase and decrese in
sample or indices. It is notable that updates of accuracy and coverage are com-
plementary: that is, each pattern of change of values of accuracy and coverage
corresponds to each pattern of four possiblities for incremental sampling.

1 In this model, we assume that accuracy is dominant over coverage.
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Table 3. Summary of Change of Accuracy and Coverage

α(t+ 1) κ(t+ 1)

1. nR nD nRD α(t) κ(t)

2. nR nD + 1 nRD α(t) κ(t)nD
nD+1

3. nR + 1 nD nRD
α(t)nR
nR+1

κ(t)

4. nR + 1 nD + 1 nRD + 1 α(t)nR+1
nR+1

κ(t)nD+1
nD+1

Table 4. Incremental Sampling Scheme for Accuracy and Coverage

R D R ∧D αR(D) κR(D)

1.→ → → → →
2.→ ↑ → ↓ →
3. ↑ → → → ↓
4. ↑ ↑ → ↑ ↑

3.1 Updates of Accuracy and Coverage

From Table 3, updates of Accuracy and Coverage can be calculated from the
original datasets for each possible case. Since rules is defined as a probabilistic
proposition with two inequalities, supporting sets should satisfy the following
constraints:

α(t + 1) > δα , κ(t + 1) > δκ (2)

Then, the conditions for updating can be calculated from the original datasets:
when accuracy or coverage does not satisfy the constraint, the corresponding
formula should be removed from the candidates. On the other hand, both accu-
racy and coverage satisfy both constraints, the formula should be included into
the candidates. Thus, the following inequalities are important for inclusion of R
into the conditions of rules for D:

α(t + 1) =
α(t)nR + 1

nR + 1
> δα, , κ(t + 1) =

κ(t)nD + 1

nD + 1
> δκ.

For its exclusion, the following inequalities are important:

α(t + 1) =
α(t)nR

nR + 1
< δα,

κ(t + 1) =
κ(t)nD

nD + 1
< δκ.

Thus, the following inequalities are obtained for accuracy and coverage.

Theorem 1. If accuracy and coverage of a formula R to d satisfies one of the
following inequalities, then R may include into the candidates of formulae for
probabilistic rules.

δα(nR + 1)− 1

nR
< αR(D)(t) ≤ δα, (3)



192 S. Tsumoto and S. Hirano

δκ(nD + 1)− 1

nD
< κR(D)(t) ≤ δκ. (4)

A set of R which satisfies the above two constraints is called in subrule layer.

Theorem 2. If accuracy and coverage of a formula R to d satisfies one of the
following inequalities, then R may exclude from the candidates of formulae for
probabilistic rules.

δα < αR(D)(t) <
δα(nR + 1)

nR
, (5)

δκ < κR(D)(t) <
δκ(nD + 1)

nD
. (6)

A set of R which satisfies the above two constraints is called out subrule layer.

It is notable that the lower and upper bounds can be calculated from the
original datasets.

Select all the formulae whose accuracy and coverage satisfy the above inequal-
ities They will be a candidate for updates. A set of formulae which satisfies the
rule selection inequalities for probabilistic rules is called a rule layer and a set of
formulae which satisfies Eqn (3) and (4) is called a subrule layer (in). For more
detail, please refer to [8].

3.2 Lift

Next, let us take a lift measure, denoted by lR(D), which is defined as:

lR(D) =
nRD

nRnD
,

which can be viewed as an index for degree of statistical independence. By using
the definition of accuracy and coverage, the lift can be reformulate as:

lR(D) =
αR(D)

nD
=

κR(D)

nR

Then, updates of lR(D) can be illustrated as in Table 5. An interesting case is
the fourth class where accuracy and coverage will increase. Since nD and nR

also increase, the updates of lift will be dependent on the value of nD and nR.
When these numbers are small, the lift may decrease, but when these numbers
are sufficiently large, the value will increase, but the degree of increase will be
smaller.

The similar technique in the above section can be applied, and summary of
change of lift can be derived as in Table 6.

For both R and d positive, more direct calculation can be obtained as follows.
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Table 5. Incremental Sampling Scheme for Lift

R D R ∧D αR(D) κR(D) lR(D)

1.→ → → → → →
2.→ ↑ → ↓ → ↓
3. ↑ → → → ↓ ↓
4. ↑ ↑ → ↑ ↑ ?

Table 6. Summary of Change of Lift

α(t+ 1) l(t+ 1)

nR nD nRD α(t) l(t)

nR + 1 nD nRD
α(t)nR
nR+1

α(t)nR
nD(nR+1)

nR nD + 1 nRD α(t) α(t)
nD+1

nR + 1 nD + 1 nRD + 1 α(t)nR+1
nR+1

α(t)nR+1
(nD+1)(nR+1)

3.3 R and d: Positive

Finally, the fourthcase is when an additional example satisfies R and belongs
to d.

Δ4lR(D)(t + 1) = lR(D)(t + 1)− lR(D)(t)

=
nRD + 1

(nD + 1)(nR + 1)
− nRD

nRnD

=
nDnR − nRD(nR + nD + 1)

nDnR(nR + 1)(nD + 1)

=
1− l(t)(nR + nD + 1)

(nR + 1)(nD + 1)

Thus, when

lR(D)(t) <
1

nR + nD + 1
,

the difference ΔlR(D)(t + 1) will be positive. Thus, the table will be shown in
Table 7 if the number of sample is sufficiently large.

Usually, lift is used in the context where the value is larger than 1, the dif-
ference is negative. Therefore, the change of the lift measure is monotonically
negative, whose behavior is very different from accuracy and coverage. This
shows that we do not have to consider the subrule layer for in when we use only
lift for rule selection inequality.

3.4 Threshold for Lift

Since the lift will be monotonically decreasing, the update scheme is very different
from the pair of accuracy and coverage. If the inequality of lift is given as lR(D) >
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Table 7. Incremental Sampling Scheme for Lift

R D R ∧D αR(D) κR(D) lR(D)

1.→ → → → → →
2.→ ↑ → ↓ → ↓
3. ↑ → → → ↓ ↓
4. ↑ ↑ → ↑ ↑ ↓

δl, where δl denotes the threshold of l, then four cases will give the following
constraints:

l(t)− nRD

(nR + 1)nRnD
> δl

l(t)− nRD

(nD + 1)nRnD
> δl

l(t)− 1− l(t)(nR + nD + 1)

(nR + 1)(nD + 1)
> δl

Therefore, the value of lift measure should satisfy the following constraints:

l(t) > δl(nR+1)nD

nRnD
,

l(t) > δl(nD+1)nR

nRnD
,

l(t) > δl(nD+1)(nR+1)−1
nRnD

which are already sufficiently complex. However, these inequality shows that
the update of l(t) and its constraints are determined by the values given in an
original dataset.

Thus,

Theorem 3. If accuracy and coverage of a formula R to d satisfies one of the
following inequalities, then R may exclude from the candidates of formulae for
probabilistic rules.

l(t) > max{ δl(nR+1)nD

nRnD
,

δl(nD+1)nR

nRnD
,

δl(nD+1)(nR+1)−1
nRnD

}

A set of R which satisfies the above two constraints is called out subrule layer.
��

From the viewpoint of classification of four possibilities, the usage of lift is
not enough and another indice should be added. For example, coverage can be
used for this purpose as shown in Table 7
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4 Extension of Incremental Sampling Scheme

For definition of a set-based index, the negation of R and D, denoted by ¬R and
¬D may be needed. For example, specificity, specR(D) is defined as:

specR(D) =
n¬R¬D

n¬D
= κ¬R(¬D)

This value is used with sensitivity, denoted by senR(D) , whose definition is
equal to coverage in the context of decision theory:

senR(D) = κR(D).

In this case, a table of incremental sampling scheme need to be extended. Table
8 shows the extension of incremental sampling scheme. From this table, we can

Table 8. Extended Incremental Sampling Scheme

R D ¬R ¬D R ∧D ¬R ∧D R ∧ ¬D ¬R ∧ ¬D
1. 0 0 +1 +1 0 0 0 +1
2. 0 +1 +1 0 0 +1 0 0
3. +1 0 0 +1 0 0 +1 0
4. +1 +1 0 0 +1 0 0 0

construct extended sampling scheme for accuracy and coverage as shown in Ta-
ble 9. Table 9 gives the incremental update of sensitvitiy and specifity as shown

Table 9. Extended Incremental Sampling Scheme for Accuracy and Coverage

αR(D) κR(D) αR(¬D) κR(¬D) α¬R(D) κ¬R(D) α¬R(¬D) κ¬R(¬D)

1. → → → ↓ ↓ → ↑ ↑
2. → ↓ → → ↑ ↑ ↓ →
3. ↓ → ↑ ↑ → → → ↓
4. ↑ ↑ ↓ → → ↓ → →

in Table 10, which shows the behavior of one index is complementary to that of
the other index.

Although we have uncertainty in dR(D) in general, the value will increase if
the number of sample will be sufficiently large.
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Table 10. Incremental Sampling Scheme for Sensitivity and Specificity

R D sensR(D) specR(D)

1. → → → ↑
2. → ↑ → ↓
3. ↑ → ↓ →
4. ↑ ↑ ↑ →

4.1 Bayesian Confirmation Measure

Greco, Matarazzo and Slowinski proposed two bayesian confirmation measure
for rule induction [12, 13]:

dR(D) = P (D|R)− P (D)

rR(D) = log
P (D|R)

P (D)

l2R(D) = log
P (R|D)

P (R|¬D)

fR(D) =
P (R|D)− P (R|¬D)

P (R|D) + P (R|¬D)

sR(D) = P (D|R)− P (D|¬R).

bR(D) = P (R,D)− P (R)P (D)

Originally, l2R(D) is defined as l in [13] . However, we have already used lR(D) for
lift, so we denote it by l2R(D). In our notation, these values can be reformulated
as follows.

dR(D) = αR(D)− nD

U
rD(D) = logαR(D)nD

l2R(D) = log
κR(D)

κR(¬D)

fR(D) =
κR(D)− κR(¬D)

κR(D) + κR(¬D)

sR(D) = αR(D)− α¬R(D)

bR(D) = nRnD(lR(D)− 1)

For example, using Table 9, the behavior of f and s is given as Table 11. Since
f -measure is defined as a ratio, simple qualitative estimation cannot give their
behavior, we have to calculate the difference by using ordinary calculation.
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Table 11. Incremental Sampling Scheme for Bayesian Confirmation Measures f and s

R D sR(D) fR(D)

1. → → ↑ ↑
2. → ↑ ↓ ↓
3. ↑ → ↓ ?
4. ↑ ↑ ↑ ?

R:Positive. Since κR(D)(t+1) = κR(D)(t) and κR(¬D)(t+1) = κR(¬D)(t)+
Δ3κR(¬D))(t),

f3(t + 1) =
κR(D)(t) − (κR(¬D)(t) + Δ3κR(¬D))(t))

κR(D)(t) + (κR(¬D)(t) + Δ3κR(¬D))(t))
.

Thus,

Δ3f(t + 1) = f(t + 1)− f(t)

=
−2Δ3κR(¬D)(t)κR(D)(t)

Denf3(t + 1)f(t)
< 0, (7)

where Denf(t + 1)f(t) denotes the denominator of f(t + 1)f(t).

R and d :Positive. Since κR(¬D)(t + 1) = κR(¬D)(t) and κR(D)(t + 1) =
κR(D)(t) + Δ4κR(D))(t),

f4(t + 1) =
κR(D)(t) + Δ4κR(D)(t) − κR(¬D)(t)

κR(D)(t) + Δ4κR(D)(t) + κR(D)(t).

Thus,

Δ4f(t + 1) = f(t + 1)− f(t)

=
+2Δ4κR(D)(t)κR(¬D)(t)

Denf4(t + 1)f(t)
> 0, (8)

where Denf(t+ 1)f(t) denotes the denominator of f(t + 1)f(t). Thus, Table 11
is obtained as shown in Table 12.

In the same way, the qualitative behavior of other measures is obtained as
shown in Table 13. Thus, qualitative behavior of these confirmation measures
is the same as the sum of sensitivity and specificity, which shows that qualita-
tive behavior of sentitivity and one of specificity are components of Bayesian
confirmation measures.

5 Conclusion

This paper proposes a new framework for evaluation of set-based indices based
on incremental sampling. Since these indices are defined by the relations between
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Table 12. Incremental Sampling Scheme for Bayesian Confirmation Measures (2)

R D sR(D) fR(D)

1. → → ↑ ↑
2. → ↑ ↓ ↓
3. ↑ → ↓ ↓
4. ↑ ↑ ↑ ↑

Table 13. Incremental Sampling Scheme for Other Bayesian Measures

R D dR(D) rR(D) l2R(D) bR(D)

1.→ → → → ↑ →
2.→ ↑ ↓ ↑ ↓ ↓
3. ↑ → ↓ → → ↓
4. ↑ ↑ ? ↑ ↑ ↓

conditional attributes (R) and decision attribute(D), incremental sampling gives
four possible cases according to the increment of sets for R or D. Using this
classification, the behavior of indices can be evaluated for four cases. In this
paper, the updates of accuracy, coverage and lift are shown. Interestingly, the
lift measure is monotonically decreasing for large sample. We also introduce a
table for qualitative behavior of an index.

This scheme is extended by including the negations of R and D to evaluate the
set-based indices where the negated terms are used. We applied this scheme to
examining the behavior of sensitivity, specificity and two Bayesian confirmation
measures. The results show that the evaluation framework gives a powerful tool
for evaluation of set-based indices. Especially, it is found that the behavior of
indices can be determined by a firstly given dataset..

This is a preliminary work on incremental learning based on rough set the-
ory and it is our future work to conduct further empirical validatioons and to
establish a theoretical basis of this method.

Acknowledgements. This research is supported by Grant-in-Aid for Scientific
Research (B) 24300058 from Japan Society for the Promotion of Science(JSPS).
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Abstract. We continue our research on decision bireducts. For a deci-
sion system A = (U, A ∪ {d}), a decision bireduct is a pair (B, X), where
B ⊆ A is a subset of attributes discerning all pairs of objects in X ⊆ U
with different values on the decision attribute d, and where B and X
cannot be, respectively, reduced and extended. We report some new re-
sults related to NP-hardness of extraction of optimal decision bireducts,
heuristics aimed at searching for sub-optimal decision bireducts, and ap-
plications of decision bireducts to stream data mining.

Keywords: Bireducts, NP-hardness, Heuristic Search, Data Streams.

1 Introduction

Decision reducts have been found a number of applications in feature selection
and knowledge representation [1]. Notions analogous to decision reducts occur in
many areas of science, such as Markov boundaries in probabilistic modeling [2]
or signatures in bioinformatics [3]. As one of extensions, approximate decision
reducts are studied in order to search for irreducible subsets of attributes that
almost determine decisions in real-world, noisy data sets [4].

Bireducts were proposed as a new extension of decision reducts in [5] and
further developed in [6]. Their interpretation seems to be simpler than in the
case of most of types of approximate decision reducts known from the literature.
The emphasis here is on both a subset of attributes, which describes decisions,
and a subset of objects, for which such a description is valid.

This paper continues our research on bireducts, both with respect to their
comparison to classical and approximate decision reducts, and their applications
in new areas. In Section 2, we recall basics of decision bireducts. In Section 3, we
prove NP-hardness of one of possible optimization problems related to extraction
of decision reducts from data. In Section 3, we show some new interpretations
of decision bireducts, which are useful for their heuristic search. In Section 4, we
outline how to apply decision bireducts in data stream analysis. In Section 5, we
discuss some of future perspectives and conclude the paper.
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Table 1. System A = (U, A ∪ {d}) with 14 ob-
jects in U , four attributes in A, and d = Sport?

Outlook Temp. Humid. Wind Sport?
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rain mild high weak yes
5 rain cool normal weak yes
6 rain cool normal strong no
7 overcast cool normal strong yes
8 sunny mild high weak no
9 sunny cool normal weak yes
10 rain mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rain mild high strong no

Table 2. Several examples of
bireducts (B, X) for A in Table 1

(B, X)
({O},{1..5,7..8,10,12..13})

({O},{1..3 6..8 12..14})
({O},{3 6..7 9 11..14})

({O T},{1..4 6..10 12..13})
({O H},{1..3 6..9 11..14})

({O T W},{1..14})
({O H W},{1..14})

({O W},{2..7 9..10 12..14})
({T},{3..4 6 10..13})

({T H},{1..2 6 8 10..11 13..14})
({T W},{1..2 4..5 7 9..10 14})

({T W},{2..6 9..13})
({H W},{1 5..6 8..10 12..13})

({W},{2..6 9..10 13..14})

2 Basics of Decision Bireducts

First formulation of decision bireducts occurred in [5], where their Boolean char-
acteristics and simple permutation-based search algorithms were proposed in
analogy to classical reducts [7]. It was also discussed in what sense ensembles
of decision bireducts are better than ensembles of approximate reducts, which –
although quite useful in practice [8] – do not allow for explicit analysis whether
particular reducts repeat mistakes on the same cases.

We use a standard representation of tabular data in form of decision systems
[9]. A decision system is a tuple A = (U, A ∪ {d}), where U is a set of objects, A
is a set of attributes and d /∈ A is a decision attribute. For simplicity, we refer to
the elements of U using their ordinal numbers i = 1, ..., |U |, where |U | denotes
the cardinality of U . We treat all attributes a ∈ A∪{d} as functions a : U → Va,
Va denoting a’s domain. The values vd ∈ Vd correspond to decision classes that
we want to describe using the values of attributes in A.

Definition 1. [9] We say that B ⊆ A is a decision reduct for decision system
A = (U, A ∪ {d}), iff it is an irreducible subset of attributes such that each pair
i, j ∈ U satisfying inequality d(i) �= d(j) is discerned by B.

As an example, for A in Table 1, there are two reducts: {Outlook, Temp., Wind}
and {Outlook, Humid., Wind} (or {O, T, W} and {O, H, W} for short).

Definition 2. [5] Let A = (U, A ∪ {d}) be a decision system. A pair (B, X),
where B ⊆ A and X ⊆ U , is called a decision bireduct, iff the following holds:

– B discerns all pairs i, j ∈ X where d(i) �= d(j) (further denoted as B �X d);
– There is no C � B such that C �X d;
– There is no Y � X such that B �Y d.
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For the decision system A given in Table 1, some examples of decision bireducts
are presented in Table 2.

A decision bireduct (B, X) can be regarded as the basis for an inexact func-
tional dependency linking the subset of attributes B with the decision d in a
degree X , denoted as B �X d in Definition 2. Furthermore, the objects in U \X
can be treated as outliers of B �X d.

Further in this paper, we focus on bireducts and their corresponding inex-
act dependencies formulated in terms of standard discernibility, where B ⊆ A
discerns objects i, j ∈ U iff there is a ∈ B such that a(i) �= a(j). However, as
pointed out in Section 6, one can also consider some generalizations, such as e.g.
bireducts based on fuzzy discernibility [10].

3 Decision Bireduct Optimization

There are a number of NP-hardness results related to extracting optimal de-
cision reducts and approximate reducts from data [11]. In the case of decision
bireducts, one may think about quite different optimization criteria with respect
to a balance between the number of involved attributes and objects. The follow-
ing form of a constraint for decision bireducts is somewhat analogous to those
studied for frequent itemsets and patterns [12]. However, let us emphasize that
this is just one of many ways of interpreting optimal decision bireducts.

Definition 3. Let ε ∈ [0, 1) be given. We say that a pair (B, X), B ⊆ A and
X ⊆ U , is a ε-bireduct, if it is a bireduct and the following holds: |X | ≥ (1−ε)|U |.
Definition 4. Let ε ∈ [0, 1) be given. By the Minimal ε-Decision Bireduct
Problem (MεDBP ) we mean a task of finding for each given decision system
A = (U, A ∪ {d}) a ε-bireduct (B, X) with the lowest cardinality of B.

In order to prepare the ground for the major result in this section, let us recall
the following correspondence between decision bireducts and one of specific types
of approximate decision reducts.

Definition 5. [13] Let ε ∈ (0, 1] and a decision system A = (U, A ∪ {d}) be
given. For each B ⊆ A, consider the quantity MA(B) =

= 1
|U |

∣
∣
∣
∣

{

u ∈ U : d(u) = argmax
vd∈Vd

|{u′ ∈ U : ∀a∈B a(u′) = a(u) ∧ d(u′) = vd}|
}∣

∣
∣
∣

(1)
We say that B ⊆ A is an (M, ε)-approximate reduct, iff

MA(B) ≥ 1 − ε (2)

and there is no proper subset of B, which would hold an analogous inequality.

Original formulation of the above definition in [13] was a bit different, with
constraint MA(B) ≥ (1 − ε)MA(A) instead of MA(B) ≥ 1 − ε. Thus, formally,
we should refer to the above as to a modified (M, ε)-approximate reduct.
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A way of defining MA(B) is different as well, although mathematically equiv-
alent to that in [13]. We rewrite it in the above form in order to emphasize
that it is actually the ratio of objects in U that would be correctly classified by
if-then decision rules learned from A = (U, A ∪ {d}) with the attribute = value
conditions over B and decision = value consequences specified by identifying
decision values assuring the highest confidence for each of rules.

For a consistent decision system, i.e. A = (U, A ∪ {d}), where A enables
to fully discern all pairs of objects from different decision classes, there is
MA(A) = 1. In such a case, original and modified conditions for an (M, ε)-appro-
ximate reduct are equivalent. Also, but only in consistent decision tables, (M, ε)-
approximate reducts are equivalent to classical decision reducts for ε = 0.

In [6], a correspondence between decision bireducts and modified (M, ε)-
approximate reducts was noticed. Consider a family of all subsets X ⊆ U with
which a given subset B ⊆ A has a chance to form a bireduct:

XB = {X ⊆ U : ∀i,j∈X d(i) �= d(j) ⇒ ∃a∈B a(i) �= a(j)} (3)

Then the following equality holds:

MA(B) = max
X∈XB

|X |/|U | (4)

As a result, B ⊆ A may be a modified (M, ε)-approximate reduct only if there
is X ⊆ U such that the pair (B, X) is an ε-bireduct. Given the computational
complexity results reported in [13] for approximate decision reducts, we are now
ready to formulate an analogous result for ε-bireducts:

Theorem 1. Let ε ∈ [0, 1) be given. MεDBP is NP-hard.

Proof. In [13], it was shown that for each ε ∈ [0, 1) treated as a constant, the
problem of finding an (M, ε)-approximate reduct in an input decision system
with minimum number of attributes is NP-hard. (Actually, in [13] it was pre-
sented for a far wider class of approximate decision reducts.)

The proof was based on polynomial reduction of the Minimal α-Dominating
Set Problem (MαDSP ), aiming at finding minimal subsets of vertices that dom-
inate at least α×100% of all vertices in an input undirected graph. (NP-hardness
of this problem was studied in [13] and later in [2].) For each ε ∈ [0, 1), the for-
mula for α(ε) ∈ (0, 1] can be constructed in such a way that for each graph
G = (V, E) being an input to Mα(ε)DSP we can polynomially (with respect
to the cardinality of V ) construct a decision system with its minimal (M, ε)-
approximate reducts equivalent to the α(ε)-dominating sets in G.

Decision systems encoding graphs in the above reduction were consistent.
Thus, following our earlier observation on equivalence of MA(B) ≥ (1 − ε)MA(A)
and MA(B) ≥ 1 − ε in consistent decision systems, we can prove in the same
way that finding of modified (M, ε)-approximate reducts is NP-hard too. As a
result, by showing that the case of modified (M, ε)-approximate reducts can be
polynomially reduced to MεDBP we will be able to finish the proof.

Such reduction is simple, as minimal modified (M, ε)-approximate reducts
correspond to decision bireducts solving MεDBP . Assume that a pair (B, X) is



204 S. Stawicki and D. Ślęzak

an ε-bireduct with the lowest cardinality of B for a given A = (U, A ∪ {d}). Then
B needs to be a minimal (M, ε)-approximate reduct for A. This is because, first
of all, thanks to (4) we have that MA(B) ≥ |X |/|U | ≥ 1 − ε. Secondly, assume
that there is a subset B′ ⊆ A such that MA(B′) ≥ 1 − ε and |B′| < |B|. Then,
however, there would exist at least one ε-bireduct (B′, X ′) for some X ′ ⊆ U , so
(B, X) would not be a solution of MεDBP . �

4 Heuristic Search for Bireducts

There are a number of possible algorithmic approaches to searching for deci-
sion bireducts. One can, e.g., extend techniques introduced earlier for decision
reducts, like it was done for permutation-based algorithms in [5], where instead
of orderings on attributes the orderings on mixed codes of attributes and ob-
jects were considered. One can also translate some algorithms aiming at finding
approximate decision reducts onto the case of decision bireducts, basing on con-
nections between both those notions outlined in [6]. Finally, specifically for the
problem of searching for minimal ε-bireducts, one can adapt some mechanisms
known from other areas, such as association rules with a constraint for minimum
support [14], basing on representations developed for decision reducts [15].

Let us recall the above-mentioned algorithm proposed in [5], which is an ex-
tension of one of standard approaches to searching for decision reducts [7].

Proposition 1. [5] Let A = (U, A ∪ {d}) be given. Enumerate attributes and
objects as A = {a1, ..., an}, n = |A|, and U = {1, ..., m}, m = |U |, respectively.
Put B = A and X = ∅. Let permutation σ : {1, ..., n + m} → {1, ..., n + m} be
given. Consider the following procedure for each consecutive i = 1, ..., n + m:

1. If σ(i) ≤ n, then attempt to remove attribute aσ(i) from B subject to the
constraint B \ {aσ(i)} �X d;

2. Else, attempt to add σ(i)−n to X subject to the constraint B �X∪{σ(i)−n} d.

For each σ, the final outcome (B, X) is a decision bireduct. Moreover, for each
bireduct (B, X) there exists input σ for which the above steps lead to (B, X).

The above method follows an idea of mixing the processes of reducing attributes
and adding objects during the construction of bireducts. If we consider a special
case of permutations σ : {1, ..., n + m} → {1, ..., n + m} where all objects are
added to X prior to starting removing attributes from B, we will obtain the
permutation-based characteristics of standard decision reducts. In a general case,
the approximation threshold ε ∈ [0, 1) introduced in Definition 3 is not defined
explicitly but it is somehow expressed in a way permutations are generated. We
can define a parameter that controls probability of selecting an attribute in first
place rather than an object during the random generation of σ. When σ contains
relatively more attributes at its beginning, a bireduct having smaller number of
attributes but also higher number of outliers is likely to be obtained.

In the remainder of this section, we present two examples of algorithmic con-
structions enabling to harness various attribute reduction heuristics directly to
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Table 3. A∗ = (U, A ∪ A∗ ∪ {d}) corresponding to A = (U, A ∪ {d}) in Table 1

Outlook Temp. Humid. Wind a∗
1 a∗

2 a∗
3 a∗

4 a∗
5 a∗

6 a∗
7 a∗

8 a∗
9 a∗

10 a∗
11 a∗

12 a∗
13 a∗

14 Sport?
1 sunny hot high weak 1 0 0 0 0 0 0 0 0 0 0 0 0 0 no
2 sunny hot high strong 0 1 0 0 0 0 0 0 0 0 0 0 0 0 no
3 overcast hot high weak 0 0 1 0 0 0 0 0 0 0 0 0 0 0 yes
4 rain mild high weak 0 0 0 1 0 0 0 0 0 0 0 0 0 0 yes
5 rain cool normal weak 0 0 0 0 1 0 0 0 0 0 0 0 0 0 yes
6 rain cool normal strong 0 0 0 0 0 1 0 0 0 0 0 0 0 0 no
7 overcast cool normal strong 0 0 0 0 0 0 1 0 0 0 0 0 0 0 yes
8 sunny mild high weak 0 0 0 0 0 0 0 1 0 0 0 0 0 0 no
9 sunny cool normal weak 0 0 0 0 0 0 0 0 1 0 0 0 0 0 yes

10 rain mild normal weak 0 0 0 0 0 0 0 0 0 1 0 0 0 0 yes
11 sunny mild normal strong 0 0 0 0 0 0 0 0 0 0 1 0 0 0 yes
12 overcast mild high strong 0 0 0 0 0 0 0 0 0 0 0 1 0 0 yes
13 overcast hot normal weak 0 0 0 0 0 0 0 0 0 0 0 0 1 0 yes
14 rain mild high strong 0 0 0 0 0 0 0 0 0 0 0 0 0 1 no

the task of searching for decision bireducts, after reformulation of the input data.
The first of considered methods refers to the following representation:

Proposition 2. [5] Let A = (U, A ∪ {d}) be a decision system. Consider the
following Boolean formula with variables i, i = 1, ..., |U |, and a, a ∈ A:

τbi
A

=
∧

i,j: d(i) �=d(j)

(

i ∨ j ∨ ∨

a: a(i) �=a(j) a
)

. (5)

An arbitrary pair (B, X), B ⊆ A, X ⊆ U , is a decision bireduct, if and only if
the Boolean formula

∧

a∈B a ∧ ∧

i/∈X i is the prime implicant for τbi
A

.

The above result shows a way to utilize techniques known from Boolean reasoning
to search for decision bireducts as prime implicants [16]. It also illustrates that
attributes and objects are to some extent equally important while constructing
bireducts, analogously to some other approaches to deriving knowledge from
data [17]. This intuition has led us to the following observation:

Proposition 3. Let A = (U, A ∪ {d}) be a decision system. Consider a new sys-
tem A∗ = (U, A ∪ A∗ ∪ {d}), where the number of objects in U as well as their
values for attributes from the original A remain unchanged, and where new at-
tributes in A∗ = {a∗

1, ..., a∗
m}, m = |U |, are defined as a∗

j (i) = 1 if i = j, and 0
otherwise. Then, the pair (B, X), B ⊆ A, X ⊆ U , is a decision bireduct in A,
iff B ∪ X∗, for X∗ = {a∗

i ∈ A∗ : i /∈ X}, is the decision reduct in A∗.

Proof. The proof is straightforward and we omit it because of space limitations.

An illustrative example of the considered transformation can be seen in Table
3. Certainly, it should be treated just as a starting point for developing more
efficient algorithms, because decision systems of the form A∗ = (U, A ∪ A∗ ∪ {d})
cannot be constructed explicitly for large data. An appropriate translation of
methods aiming at searching for decision reducts in systems with large amount
of attributes can be especially useful in this case [18].

Another way to employ standard reduct computations in order to search for
decision bireducts can be generally referred to sampling methods [19].
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Table 4. Indiscernibility
classes induced by randomly
selected attributes {T, H} for
decision system in Table 1

Temp. Humid. Sport?
1 hot high no
2 hot high no
3 hot high yes
13 hot normal yes
4 mild high yes
8 mild high no
12 mild high yes
14 mild high no
10 mild normal yes
11 mild normal yes
5 cool normal yes
6 cool normal no
7 cool normal yes
9 cool normal yes

Table 5. A′ = (U ′, A′ ∪ {d}) for randomly se-
lected representatives U ′ = {1, 6, 8, 10, 13}.
Decision reduct {T, H} in A′ corresponds to
bireduct ({T, H}, {1, 2, 6, 8, 10, 11, 13, 14}) in A.

Temp. Humid. Sport?
1 hot high no
6 cool normal no
8 mild high no
10 mild normal yes
13 hot normal yes

Table 6. The case of U ′ = {3, 6, 11, 12, 13}. De-
cision reduct {T } in A′ corresponds to bireduct
({T }, {3, 4, 6, 10, 11, 12, 13}) in A.

Temp. Humid. Sport?
3 hot high yes
6 cool normal no
11 mild normal yes
12 mild high yes
13 hot normal yes

Proposition 4. For a given A = (U, A ∪ {d}), consider the three-step procedure:

1. Randomly select a subset of attributes A′ ⊆ A;
2. Choose a single object from each of partition blocks induced by A′ – all chosen

objects form a subset denoted by U ′ ⊆ U ;
3. Find a standard decision reduct B ⊆ A′ for the system A′ = (U ′, A′ ∪ {d}).

Then the pair (B, X), where X =
{

u ∈ U : ∃x∈U ′∀a∈B∪{d} a(x) = a(u)
}

, is a
decision bireduct for A. Moreover, each decision bireduct for A can be obtained
as a result of the above steps, no matter what method is used in the third stage.

Proof. Again, we omit the proof because of space limitations.

We illustrate the above procedure by Tables 4, 5, 6. Let us note that the
reduced decision systems obtained in the third of above steps are compact rep-
resentations of if-then rules generated by attributes in B, with their supports
summing up to the overall support X ⊆ U of decision bireduct (B, X). How-
ever, consequences of those rules are not necessarily chosen in a way aiming at
maximizing |X |. Quite oppositely, when combined with appropriate mechanisms
of sampling, this process can lead to ensembles of decision bireducts based on
possibly diversified subsets of attributes and objects, with the underlying if-then
rules paying attention to the cases not covered by rules corresponding to other
bireducts rather than the cases that are easiest to describe.

The algorithm outlined in Proposition 4 could be also modeled within the
framework sketched in Proposition 1, by considering more specific permutations
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σ : {1, ..., n+m} → {1, ..., n+m} with some amount of attributes at their begin-
ning, an ordering of all objects in their middle, and the remainder of attributes
at their very end. Indeed, in such a case, all attributes at the very beginning of
σ will be removed; then, within each partition class induced by the remaining
attributes, objects corresponding to only one of possible decision values will be
added (precisely, it will be the decision value of the first element of a given parti-
tion class occurring in σ); and finally the algorithm will try to remove each of the
remaining attributes according to their ordering in σ, subject the discernibility
criteria with respect to the previously-added objects.

5 Bireducts in Data Streams

The main motivation for introducing decision bireducts in [5] was to establish a
simple framework for constructing rough-set-based classifier ensembles, as well
as to extend capabilities of decision reducts to model data dependencies. Going
further, in [10] it was noticed that algorithms for extracting meaningful bireducts
from data could be utilized to integrate the tasks of attribute and instance
selection. Such a potential is also illustrated by Proposition 4, where the objects
in U ′ actually define a classifier based on the resulting B ⊆ A.

Some areas of applications were also pointed out for other types of bireducts.
In [20], so called information bireducts were employed to model context-based
object similarities in multi-dimensional data sets. Information bireducts may
be also able to approximate data complexity analogously to some well-known
mathematical tools [21]. Indeed, by investigating cardinalities of minimal subsets
of attributes discerning maximal subsets of objects we can attempt to express a
potential of a data source to define different concepts of interest.

In this section, we study one more opportunity in front of bireducts. Let us
consider a stream of objects that is too large to be stored or represents data
collected on-line [22]. For our purposes, let us focus on a stream interpreted as
a decision system A = (U, A ∪ {d}), where there is no possibility to look at the
entire U at any moment of processing time. Instead, given a natural order over
U , we can access some buffered data intervals, i.e., the subsets of objects that
occur consecutively in a stream. The question is how to design and efficiently
conduct a process of attribute reduction in such a dynamic situation.

One of possibilities would be to fix the amount of objects in each data interval
and compare decision reducts obtained for such narrowed down decision systems,
in a kind of sliding window fashion. However, an arbitrary choice of the interval
length may significantly influence the results. Thus, it may be more reasonable to
adaptively adjust data intervals with respect to the currently observed attribute
dependencies. Moreover, if our goal is to search for stable subsets of attributes
that remain decision reducts for possibly wide areas of data, then we should tend
to maximizing data intervals in parallel to minimizing the amounts of attributes
necessary to determine decision classes within them.
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Definition 6. Let A = (U, A ∪ {d}) be given. Let U be naturally ordered with
its elements indexed by integers. Consider a pair (B, X), where B ⊆ A and
X = 〈first, last〉. We say that (B, X) is a temporal decision bireduct, iff:

– An inexact dependency B �X d holds;
– There is no C � B such that C �X d;
– B �Y d is not true for neither Y = 〈first−1, last〉 nor Y = 〈first, last+1〉.

The above modification of Definition 2 can serve as a background for producing
bireducts (B, X) with no holes in X with respect to a given data flow. Below
we sketch an example of heuristic extraction of such bireducts from data. From
a technical point of view, it resembles Proposition 4 with respect to a random
choice of a subset of attributes to be analyzed. From a more strategic perspec-
tive, let us note that our goal is now to save the identified temporal bireducts
analogously to micro-clusters [23] or data blocks [24] constructed within other
applications for the purposes of further steps of on-line or off-line analysis. This
way of data stream processing may open new opportunities for the task of scal-
able attribute subset selection. For instance, basing on frequent occurrence of a
given subset of attributes in the previously-found temporal bireducts, one can
reason about its ability to induce a robust decision model.

Proposition 5. Let A = (U, A ∪ {d}) be given. Let U be naturally ordered with
its elements indexed by integers. Select an arbitrary A′ ⊆ A and put B = X = ∅.
Consider the following steps for each consecutive i-th object in U :

1. If B �X∪{i} d, then add i to X;
2. Else, save (B, X), add i to X, and do the following:

(a) Put B = A′ and remove the oldest objects from X until there is B �X d;
(b) Heuristically reduce redundant attributes under the constraint B �X d.

Then, all pairs (B, X) saved during the above procedure are temporal bireducts
for A. Moreover, each temporal bireduct can be obtained as one of saved pairs
(B, X) for some A′ ⊆ A, no matter what method is used in the last step.

Proof. Consider a pair (B, X), where X = 〈first, last〉, which was saved in the
step 2. For such a case, we know that B �〈first,last〉 d and B ��〈first,last+1〉 d.
Also, there is B ��〈first−1,last〉 d because the oldest object in X is removed only
when the newly joined object cannot be handled together with some elements of
X even when using the whole A′. Therefore, X cannot be extended backwards
beyond object first. Also, because of reduction of redundant attributes, B is
irreducible for X . Hence, all saved pairs (B, X) are temporal bireducts.

Now, consider a temporal bireduct (B, 〈first, last〉) and put A′ = B. Con-
sider the first buffer including object first, i.e., 〈older, first〉, older ≤ first.
Each next entry until object last will be added with no need of removing first
(otherwise there would be no B �〈first,last〉 d). Moreover, when adding last, all
objects older than first (if any of them are still present) will be erased from
the buffer (otherwise there would be B �〈first−1,last〉 d). Finally, when adding
object last + 1 to 〈first, last〉, we will need to remove first (otherwise there
would be B �〈first,last+1〉 d), which results in saving (B, 〈first, last〉). �
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# O T H d

1 sunny hot high no S1 = (∅, 〈1, 1〉)
2 sunny hot high no S2 = (∅, 〈1, 2〉)

[save S2]
3 overcast hot high yes S3 = ({O}, 〈1, 3〉)
4 rain mild high yes S4 = ({O}, 〈1, 4〉)
5 rain cool normal yes S5 = ({O}, 〈1, 5〉)

[save S5]
6 rain cool normal no S6 = (∅, 〈6, 6〉)

[save S6]
7 overcast cool normal yes S7 = ({O}, 〈6, 7〉)
8 sunny mild high no S8 = ({O}, 〈6, 8〉)

[save S8]
9 sunny cool normal yes S9 = ({O, T }, 〈6, 9〉)
10 rain mild normal yes S10 = ({O, T }, 〈6, 10〉)

[save S10]
11 sunny mild normal yes S11 = ({O, T, H}, 〈6, 11〉)
12 overcast mild high yes S12 = ({O, T, H}, 〈6, 12〉)
13 overcast hot normal yes S13 = ({O, T, H}, 〈6, 13〉)
14 rain mild high no S14 = ({O, T, H}, 〈6, 14〉)

# T H W d

1 hot high weak no S1 = (∅, 〈1, 1〉)
2 hot high strong no S2 = (∅, 〈1, 2〉)

[save S2]
3 hot high weak yes S3 = ({W }, 〈2, 3〉)
4 mild high weak yes S4 = ({W }, 〈2, 4〉)
5 cool normal weak yes S5 = ({W }, 〈2, 5〉)
6 cool normal strong no S6 = ({W }, 〈2, 6〉)

[save S6]
7 cool normal strong yes S7 = (∅, 〈7, 7〉)

[save S7]
8 mild high weak no S8 = ({W }, 〈7, 8〉)

[save S8]
9 cool normal weak yes S9 = ({H}, 〈7, 9〉)
10 mild normal weak yes S10 = ({H}, 〈7, 10〉)
11 mild normal strong yes S11 = ({H}, 〈7, 11〉)

[save S11]
12 mild high strong yes S12 = ({H, W }, 〈7, 12〉)
13 hot normal weak yes S13 = ({H, W }, 〈7, 13〉)

[save S13]
14 mild high strong no S14 = ({W }, 〈13, 14〉)

Fig. 1. Extraction of temporal bireducts from a data set in Table 1. The left- and right-
side sequences correspond to subsets A′ = {O, T, H} and A′ = {T, H, W }, respectively.

In Proposition 5, subsets X ⊆ U are treated as the buffers of objects that
appeared most recently in a data stream, within which a currently considered
B ⊆ A is sufficient to determine decision classes. As an illustration, consider
the decision system in Table 1 and assume that we receive objects from U =
{1, ..., 14} one after the other. Let the i-th state of the process be denoted by
Si = (Bi, Xi), where i is the number of objects already received from U and Bi

is a decision reduct for the current buffer content Xi.
Figure 1 presents two examples of randomly chosen subsets of attributes. Let

us concentrate on A′ = {T, H, W } and refer one more time to the permutation-
based characteristics of decision reducts outlined e.g. in [7]. Namely, in the step
2(b) in Proposition 5, we are going to reduce attributes along σ = 〈T, H, W 〉. In
general, when following the same σ : {1, ..., n′} → {1, ..., n′}, n′ = |A′|, from the
very beginning of a data stream, we can count on smoother evolution of subsets
Bi ⊆ A′ for consecutive buffers. Furthermore, by working with a larger family of
diversified subsets A′ ⊆ A, we have a chance to witness the most representative
changes of the observed temporal bireducts in time.

Let us now take a closer look at A′ = {T, H, W }. The first two objects share
the same decision. Thus, there is S2 = (∅, 〈1, 2〉). Further, ∅ �〈1,3〉 d is not
valid, so we save the temporal bireduct (∅, 〈1, 2〉) and proceed with the step 2 in
Proposition 5. As {T, H, W } is insufficient to discern objects 1 and 3, we limit
ourselves to 〈2, 3〉. Starting from B = A′ and given σ = 〈T, H, W 〉, we reduce T
and H , which results in the pair S3 = ({W }, 〈2, 3〉).
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The next three objects do not break the dependency between {W } and d.
However, object 7 forces all earlier entries to be deleted. A different situation
can be observed when adding the next two objects. In both cases, A′ determines
decision values, so we can keep buffers 〈7, 8〉 and then 〈7, 9〉. However, subsets
of attributes generated by using the same σ will differ from each other. {W }
is not able to determine d within 〈7, 9〉 although it was sufficient for 〈7, 8〉. As
a consequence, we need to restart from B = A′. We are allowed to remove T .
Then, H turns out to be irreducible because of a need of keeping discernibility
between objects 8 and 9. Finally, given the fact that H was not removed, W is
not important any more, resulting in S9 = ({H}, 〈7, 9〉).

6 Conclusions

In this paper, we attempted to establish better understanding of challenges and
possibilities of searching for meaningful decision bireducts in data. We also out-
lined some examples of practical usage of decision bireducts in a new scenario
of attribute subset selection in data streams. From this perspective, we need to
remember that although decision bireducts were originally introduced in order to
adopt some useful classifier ensemble principles, perhaps their major advantage
lays in simple and flexible data-based knowledge representation.

In the nearest future, we intend to work on an enhanced interactive visual-
ization of collections of decision bireducts, seeking for inspiration, e.g., in the
areas of formal concept analysis [17] and visual bi-clustering [25]. We will also
continue our studies on other types of bireducts, such as information bireducts
which have been already successfully applied in [20]. Last but not least, fol-
lowing the research reported in [10], we are going to attempt to reconsider the
discernibility-based bireduct construction criteria for the purposes of other rough
set approaches, such as e.g. the dominance rough set model [26].
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Abstract. STRIM (Statistical Test Rule Induction Method) has been
proposed as a method to effectively induct if-then rules from the decision
table which is considered as a sample set obtained from the population
of interest. Its usefulness has been confirmed by a simulation experiment
specifying rules in advance, and by comparison with the conventional
methods. However, there remains scope for future studies. One aspect
which needs examination is determination of the size of the dataset
needed for inducting true rules by simulation experiments, since find-
ing statistically significant rules is the core of the method. This paper
examines the theoretical necessary size of the dataset that STRIM needs
to induct true rules with probability w [%] in connection with the rule
length, and confirms the validity of this study by a simulation experiment
at the rule length 2. The results provide useful guidelines for analyzing
real-world datasets.

1 Introduction

Rough Sets theory as introduced by Pawlak [1] provides a database called the de-
cision table, with various methods of inducting if-then rules and determining the
structure of rating and/or knowledge in the database. Such rule induction meth-
ods are needed for disease diagnosis systems, discrimination problems, decision
problems, and other aspects, and consequently many effective algorithms for rule
induction by rough sets have been reported [2–7]. However, these methods and
algorithms have paid little attention to mechanisms of generating the database,
and have generally focused on logical analysis of the given database. This seems
to narrow the scope of the analysis. In a previous study [8] we devised a model
of data generation for the database, and proposed a statistical rule induction
method and an algorithm named STRIM. In a simulation experiment based on
the model of the data generation with if-then rules specified in advance, STRIM
successfully inducted the specified true rules from different databases generated
from the same specified rules [8]. In contrast, when conventional methods [4],
[6], [7] were used, significant rules could barely be inducted.
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Table 1. An example of a decision table

U C(1) C(2) C(3) C(4) C(5) C(6) D
1 3 5 2 5 1 3 6
2 6 2 3 6 5 6 5
3 6 3 3 3 4 4 3
4 4 4 2 2 4 1 2
5 2 4 5 5 5 4 5

· · · · · · · · · · · · · · · · · · · · · · · ·
N − 1 2 4 2 6 1 2 4
N 4 4 5 1 3 1 4

Rule Box &
Hypothesis

Input:

u (i)

Output:

u (i)C D

Observer
NoiseC NoiseD

Fig. 1. Rough Sets system contaminated with noise: Input is a tuple of the condition
attributes’ value and its output is the decision attribute’s value

Although the previous study [8] proposed a very effective and efficient method,
several aspects required further studies. The first of these was to examine how
many samples are needed for inducting true rules with high precision, depending
on the rule induction problems, since the core point of STRIM was to find
the rules of being statistically significant. This paper first summarizes the rule
induction method by STRIM, and then focuses on the problem of the size of the
dataset needed for STRIM to induct statistically significant rules. Specifically,
this study derives an expression of evaluating the size of a dataset from STRIM.
The expression can be used in two ways: the first is used for estimating how much
probability w [%] STRIM can induct true rules for the size of a given dataset.
The second is used for predicting the size of the dataset STRIM needs to induct
true rules in the frame of a given decision table.

The validity of the expression is confirmed by a simulation experiment at
the rule length 2. This study yields useful information for analyzing real-world
datasets, since the conventional method can give no such guiding principle.

2 Data Generation Model and a Decision Table

Rough Sets theory is used for inducting if-then rules hidden in the decision table
S. S is conventionally denoted S = (U,A = C∪{D}, V, ρ). Here, U = {u(i)|i = 1,
..., |U | = N} is a sample set, A is an attribute set, C = {C(j)|j = 1, ..., |C|} is
a condition attribute set, C(j) is a member of C and a condition attribute, and
D is a decision attribute. V is a set of attribute values denoted by V =

⋃
a∈A Va

and is characterized by an information function ρ: U × A → V . Table 1 shows
an example where |C| = 6, |Va=C(j)|=MC(j) = 6, |Va=D|=MD = 6, ρ(x = u(1),
a = C(1)) = 3, ρ(x = u(2), a = C(2)) = 2 and so on.
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Table 2. Hypothesis with regard to the decision attribute value

Hypothesis 1 uC(i) coincides with R(d), and uD(i) is uniquely determined as D = d
(uniquely determined data).

Hypothesis 2 uC(i) does not coincide with any R(d), and uD(i) can only be determined
randomly (indifferent data).

Hypothesis 3 uC(i) coincides with several R(d) (d = d1, d2, ...), and their outputs of uC(i)

conflict with each other. Accordingly, the output of uC(i) must be randomly
determined from the conflicted outputs (conflicted data).

STRIM considers the decision table to be a sample dataset obtained from an
input-output system including a rule box, as shown in Fig. 1, and a hypothesis
regarding the decision attribute values, as shown in Table 2. A sample u(i)
consists of its condition attributes values of |C|-tuple uC(i) and its decision
attribute uD(i). uC(i) is the input into the rule box, and is transformed into the
output uD(i) using the rules contained in the rule box and the hypothesis. For
example, specify the following rules in the rule box:

R(d): if Rd then D = d, (d = 1, ..., MD = 6),

where Rd is a formula of the form Rd = (C(1) = d) ∧ (C(2) = d) ∨ (C(3) = d)
∧ (C(4) = d). Generate uC(i) = (vC(1)(i), vC(2)(i), ..., vC(|C|)(i)) of u(i) by use
of random numbers with a uniform distribution, and then uD(i) is determined
using the rules specified in the rule box and the hypothesis.

In contrast, u(i) = (uC(i), uD(i)) is measured by an observer, as shown in
Fig. 1. Existence of NoiseC and NoiseD makes missing values in uC(i), and
changes uD(i) to create other values of uD(i), respectively. This model is closer
to the real-world system. However, Table 1 shows an example generated by this
specification without both noises for a plain explanation of the system. Inducting
if-then rules from the decision table then identifies the rules in the rule box, by
use of the observed inputs-output set {(uC(i), uD(i))|i = 1, ..., |U | = N}.

3 Summaries of Rule Induction Procedures by STRIM

STRIM inducts if-then rules from the decision table through two processes, in
separate stages. The first stage process is that of statistically discriminating and
separating the set of indifferent data from the set of uniquely determined or
conflicted data in the decision table (See Table 2). Specifically, assume CP (k)
=
∧

j ( C(jk) = vj ) as the condition part of the if-then rule, and derive the set

U(CP (k)) = {u(i)|uC(i) satisfies CP (k) }. Also derive U(m) = {u(i)|uD(i) = m}
(m = 1, ..., MD). For a set U(CP (k)), let us call distribution of decisions a tuple
f = (n1, n2, ..., nMD ), where nm = |U(CP (k))∩U(m)| for m = 1, ..., MD. If the
assumed CP (k) does not satisfy the condition U(Rd) ⊇ U(CP (k)) (sufficient
condition of specified rule Rd) or U(CP (k)) ⊇ U(Rd) (necessary condition),
CP (k) only generates the indifferent dataset based on Hypothesis 2 in Table 2,
and the distribution f does not have partiality of the distribution of decisions.
Conversely, if CP (k) satisfies either condition, f has partiality of the distribu-
tion, since uD(i) is determined by Hypothesis 1 or 3. Accordingly, whether f
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Table 3. An example of a condition part and corresponding frequency of their decision
attribute values

trying
CP (k) C(1) C(2) C(3) C(4) C(5) C(6) (n1, n2, ..., n6) z

1 1 0 0 0 0 0 (474, 246, 229, 246, 250, 238) 12.69
2 2 0 0 0 0 0 (247, 459, 213, 220, 223, 237) 12.95
3 0 0 0 0 0 5 (277, 268, 294, 258, 265, 261) 1.60
4 1 1 0 0 0 0 (240, 6, 4, 11, 6, 6) 31.67
5 1 2 0 0 0 0 ( 50, 48, 44, 51, 46, 49) 0.55
6 2 1 0 0 0 0 ( 45, 53, 51, 50, 34, 51) 0.98
7 2 2 0 0 0 0 ( 8, 260, 4, 7, 5, 6) 33.43
8 1 1 0 4 0 0 ( 52, 1, 1, 2, 1, 2) 14.90
9 1 1 0 5 0 0 ( 41, 1, 0, 0, 0, 1) 14.05
10 2 1 0 0 0 6 ( 8, 6, 5, 8, 8, 11) 1.52
11 2 2 1 0 0 0 ( 2, 51, 1, 1, 0, 0) 15.31
12 2 2 2 0 0 0 ( 0, 49, 0, 0, 0, 0) 15.84
13 3 3 0 6 0 0 ( 2, 0, 43, 2, 3, 2) 12.96
14 0 0 4 5 5 0 ( 12, 4, 11, 10, 5, 7) 1.66
15 0 0 4 5 0 1 ( 9, 6, 3, 9, 9, 11) 1.44
16 0 0 4 5 0 3 ( 7, 6, 8, 10, 9, 10) 0.82
17 0 0 4 5 0 6 ( 7, 11, 16, 10, 3, 10) 2.49
18 0 0 4 6 3 0 ( 9, 10, 8, 7, 6, 4) 1.28
19 0 0 4 6 4 0 ( 7, 5, 10, 6, 7, 12) 1.83
20 0 0 4 6 6 0 ( 7, 8, 5, 9, 8, 8) 0.80
21 0 0 0 6 6 3 ( 5, 9, 9, 7, 3, 12) 2.00

has the partiality or not determines whether the assumed CP (k) is neither a
necessary nor sufficient condition. Whether f has the partiality or not can be
determined objectively by statistical test of the following null hypothesis H0 and
its alternative hypothesis H1:

H0: f does not have partiality of the distribution of decisions. H1: f has par-
tiality of the distribution of decisions.

Table 3 shows the number of examples of CP (k), (n1, n2, ..., nMD ) and an
index of the partiality by z derived from Table 1 with N = 10000, in order
to illustrate this concept. For example, the first row means: 100000 denotes
CP (k = 1) = (C(1) = 1) (the rule length is RL = 1) and its corresponding f =
(474, 246, 229, 246, 250, 238) and z = 12.69, where

z =
nd + 0.5− npd

(npd(1− pd))0.5
, (1)

nd = max(n1, n2, ..., nMD ), (d ∈ {1, 2, ..., MD = 6}), pd = P (D = d), n =
MD∑
m=1

nm = |CP (k)|. In principle, (n1, n2, ..., nMD ) under H0 obeys a multi-

nomial distribution which is sufficiently approximated by the standard normal
distribution by use of nd under the testing condition: pdn ≥ 5 and n(1− pd) ≥ 5
[9]. In the same way, the fourth row 110000 denotes CP (k = 4) = (C(1) = 1) ∧
(C(2) = 1) (RL = 2), the eighth 110400 is (C(1) = 1) ∧ (C(2) = 1) ∧ (C(4) = 4)
(RL = 3), and so on. Here, if we specify a standard of the significance level such
as z ≥ zα = 3.0 and reject H0, then the assumed CP (k) becomes a candidate
for the rules in the rule box.
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int main(void) {
int rule[|C|]={0,...,0}; //initialize trying rules
int tail=-1; //initial value set
input data; // set decision table
rule check(tail,rule); // Stage 1
make Pyramid(l) (l=1,2,...) so that every r(k) belongs to one Pyramid at least;
// Stage 2, r(k): rule candidate
make rePyramid(l) (l=1,2,...); // Stage 2
reduce rePyramid; // Stage 2

} // end of main

int rule check(int tail,int rule[|C|]) { // Stage 1
for (ci=tail+1; cj<|C|; ci++) {
for (cj=1; cj<=|C[ci]|; cj++) {
rule[ci]=cj; // a trying rule sets for test
count frequency of the trying rule; // count n1, n2, ...
if (frequency>=N0) { //sufficient frequency ?
if (|z|>3.0) { //sufficient evidence ?
store necessary data such as rule, frequency of n1 and n2, and z

} // end of if |z|
rule check(ci,rule);

} // end of if frequency
} // end of for cj
rule[ci]=0; // trying rules reset

} // end of for ci
} // end of rule check

Fig. 2. An algorithm for STRIM (Statistical Test Rule Induction Method)

The second stage process is that of arranging the set of rule candidates derived
from the first process, and finally estimating the rules in the rule box, since
some candidates may satisfy the relationship: CP (ki) ⊆ CP (kj) ⊆ CP (kl) · · · .
For example, in the case 100000 ⊃ 110000 ⊃ 110400 (see Table 3). The basic
concept is to represent the CP (k) of the maximum z, that is, the maximum
partiality. In the above example, STRIM selects the CP (k) of 110000, which by
chance coincides with the rule specified in advance. Figure 2 shows the STRIM
algorithm [8].

Table 4 shows the estimated results for Table 1 with N = 10000. STRIM inducts
all of twelve rules specified in advance, and also twenty-two extra rules (R(i) (i =
13, ..., 34); R(i) (i = 16, ..., 32) are omitted due to limited space). However, there
are clear differences between them in the indexes of accuracy and coverage.

4 Remarks on Testing Conditions

As described in Section 3, the dataset applicable to STRIM must satisfy the
testing condition: pdn ≥ 5 and n(1 − pd) ≥ 5. The least number satisfying the
condition is denoted with N0, and then consider the following event with a given
probability w:

P (n ≥ N0) = P (z ≥ z0) = w (2)

Here, z =
n + 0.5−Npc√

Npc(1− pc)
, z0 =

N0 + 0.5−Npc√
Npc(1 − pc)

. pc = P (C = CP (k)) =∏
j

P (C(jk) = vk) is the outcome probability of CP (k) in the decision table.
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Table 4. Results of estimated rules for the decision table in Table 1 (without noise)
by STRIM

esti-
mated
R(i) C(1) C(2) C(3) C(4) C(5) C(6) D (n1, ..., n6) p-value (z) accuracy coverage
1 5 5 0 0 0 0 5 ( 7, 6, 2, 5, 258, 3) 0(33.88) 0.918 0.156
2 0 0 2 2 0 0 2 ( 6, 274, 7, 10, 8, 6) 0(38.88) 0.881 0.162
3 0 0 4 4 0 0 4 ( 7, 3, 4, 259, 6, 8) 0(33.53) 0.902 0.153
4 2 2 0 0 0 0 2 ( 8, 260, 4, 7, 5, 6) 0(33.43) 0.897 0.154
5 6 6 0 0 0 0 6 ( 4, 2, 3, 6, 8, 251) 0(33.37) 0.916 0.150
6 0 0 1 1 0 0 1 (240, 5, 3, 4, 6, 2) 0(32.81) 0.923 0.144
7 3 3 0 0 0 0 3 ( 5, 7, 250, 7, 7, 5) 0(32.60) 0.890 0.153
8 5 5 0 0 0 0 5 ( 11, 3, 3, 10, 246, 5) 0(32.21) 0.885 0.149
9 4 4 0 0 0 0 4 ( 10, 8, 5, 242, 5, 5) 0(31.82) 0.880 0.144
10 0 0 3 3 0 0 3 ( 5, 4, 238, 9, 6, 6) 0(31.77) 0.888 0.146
11 1 1 0 0 0 0 1 (240, 6, 4, 11, 6, 6) 0(31.67) 0.879 0.144
12 0 0 6 6 0 0 6 ( 12, 3, 5, 8, 8, 239) 0(31.34) 0.869 0.144
13 0 0 5 4 6 0 1 ( 15, 2, 8, 5, 4, 4) 3.3e-5(3.99) 0.395 0.009
14 3 5 0 0 1 0 4 ( 3, 5, 5, 15, 3, 10) 1.41e-4(3.63) 0.366 0.009
15 3 1 0 0 0 2 4 ( 9, 9, 5, 17, 5, 4) 1.72e-4(3.58) 0.347 0.010
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
33 0 0 1 4 0 5 3 ( 5, 6, 14, 7, 3, 8) 1.35e-3(3.00) 0.326 0.009
34 0 0 5 4 1 0 3 ( 8, 4, 15, 9, 8, 3) 1.35e-3(3.00) 0.319 0.009

Fig. 3. Theoretical N(w,RL) evaluated by (3) at w = 0.1 [%] (z0 = 3.0), = 2.3 [%]
(z0 = 2.0), ..., = 99.9 [%] (z0 = −3.0) (�: RL = 1, �: RL = 2, �: RL = 3)

For example, if CP (K) = (C(1) = 1) ∧ (C(2) = 1) (RL = 2) then pc =
P (C(1) = 1) · P (C(2) = 1). Assuming that z obeys the standard normal distri-
bution, z0 is explicitly determined, and the least N denoted with Nlst satisfying
(2) is given by:

Nlst =
−b±√b2 − 4ac

2a
(3)

where +: z0 ≤ 0, −: z0 > 0, a = p2c , b = −{(2pc(N0 + 0.5) + z20pc(1 − pc)} and
c = (N0 + 0.5)2.

Accordingly, Nlst in (3) is mainly determined by parameters w and RL. So
let us denote Nlst in (3) with Nlst(w,RL).

Figure 3 shows N(w,RL) evaluated by (3) at w = 0.1 [%] (z0 = 3.0), = 2.3
[%] (z0 = 2.0), = 15.9 [%] (z0 = 1.0), = 50.0 [%] (z0 = 0.0), = 84.1 [%] (z0 =
−1.0), = 97.7 [%] (z0 = −2.0), = 99.9 [%] (z0 = −3.0) every RL = 1, 2 and 3
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Fig. 4. Comparison of N(w,RL = 2) between theoretical and experimental values at w
= 0.1 [%] (z0 = 3.0), = 2.3 [%] (z0 = 2.0), ..., = 99.9 [%] (z0 = −3.0)) (�: experimental
value, •: theoretical value)

in the specification of Section 2. where P (C(j) = vk) = 1/6 ( for each j = 1, ...,
|C| = 6 ). For example, Fig. 3 yields the following useful information:

1) Supposing RL = 2, N = 1865 at least is needed to induct true rules with
the probability of almost w = 100 [%]. This meaning is denoted with 1865
= Nlst (w = 100 [%], RL = 2).

2) If a dataset of N = 1000 is given, then the probability of inducting the true
rules with RL = 2 is estimated to be about w = 30 [%]. This meaning is
denoted with 30 [%] = w = N−1

lst (Ngvn = 1000, RL = 2).

To confirm the consideration outlined in this section, a simulation experiment
was conducted using the decision table in Section 2, and the following procedures:

Step 1: Randomly select samples by N(w,RL = 2) from the decision table (N
= 10000) in Section 2, and make a new decision table.

Step 2: Apply STRIM to the new table, and count the number of inducted true
rules specified in advance.

Step 3: Repeat Step 1 and Step 2 Nr times.
Step 4: Calculate the rate of true rules inducted out of Nr trials.

Figure 4 shows the comparison of N(w,RL = 2) (w = 0.1 [%] (z0 = 3.0), = 2.3
[%] (z0 = 2.0), ..., = 99.9 [%] (z0 = −3.0)) between theoretical values studied in
this section, and the experimental values obtained from the above procedures by
Nr = 100. The experimental value adequately represents the theoretical value,
and confirms the validity of the theoretical considerations.

5 Conclusions

The basic concept of STRIM is that rules make partiality, and finding the par-
tiality leads to finding the rule. After specifically summarizing the basic notion
of STRIM, this paper focused on the problem of the size of the dataset needed
for STRIM to statistically determine the partiality, i.e., to statistically induct
true rules. This problem was previously identified as needing future work [8]. We
then theoretically derived the dataset size as N(w,RL), which directly depends



220 Y. Kato, T. Saeki, and S. Mizuno

on the outcome probability of the condition part of the rule candidate; the va-
lidity was confirmed by a simulation experiment. The notion N(w,RL) is highly
though-provoking, since it can be used as Nlst(w,RL) and/or N−1

lst (Ngvn, RL).
Accordingly, N(w,RL) seems to be useful when analyzing real-world datasets.
This is one of the major advantages of STRIM. In future studies for analyzing
real-world datasets based on N(w,RL), STRIM should be applied to missing
data sets such as the studies in reference [10], and/or to datasets including the
type of noise shown in Fig. 1. The capacity of STRIM for rule induction must
also be investigated in simulation experiments.
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Abstract. Synthetic minority over-sampling technique (SMOTE) is an effective 
over-sampling technique and specifically designed for learning from imbalanced 
data sets. However, in the process of synthetic sample generation, SMOTE is of 
some blindness. This paper proposes a novel approach for imbalanced problem, 
based on a combination of the Threshold SMOTE (TSMOTE) and the Attribute 
Bagging (AB) algorithms. TSMOTE takes full advantage of majority samples to 
adjust the neighbor selective strategy of SMOTE in order to control the quality of 
the new sample. Attribute Bagging, a famous ensemble learning algorithm, is 
also used to improve the predictive power of the classifier. A comprehensive 
suite of experiments tested on 7 imbalanced data sets collected from UCI 
machine learning repository is conducted. Experimental results show that 
TSMOTE-AB outperforms the SMOTE and other previously known algorithms. 

Keywords: Imbalanced classification, SMOTE, Threshold SMOTE, Attribute 
Bagging, Ensemble learning, Over-sampling. 

1 Introduction 

There are many real-world applications where the data sets are highly imbalanced, such 
as credit card fraud detection [1], oil spill detection from satellite images [2], medical 
diagnosis [3], or face detection [4], et al. In these data sets, there are many examples of 
the negative (majority) class, and very few examples of the positive (minority) class. 
But often it is the rare occurrence, the positive (minority) class, that is our interest and 
of great importance. In data mining, most traditional learning systems are designed to 
work on balanced data sets and focusing on improving overall performance, but usually 
perform poorly on the minority class.  

In recent years, a large amount of techniques have been developed trying to address 
the problem. These proposals can be categorized into two groups, the algorithm level 
approaches [5][6] and the data level techniques [7-9]. In general, data level learning 
approaches are more versatile than algorithm level approaches. Synthetic minority 
over-sampling technique (SMOTE) [8], which inserts synthetic data into the original 
data set to increase the number of minority examples, is one well-known technique in 
data level.  
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In addition to those two level approaches, another group of techniques emerges 
when the use of ensemble of classifier is considered. Ensemble methods [10][11] are 
well known in machine learning area. Boosting [12] and Bagging [13] are the most 
common ensemble learning algorithms among the ensemble methods. There are many 
variants and other different approaches [14].  

In this paper, we propose a novel approach---Threshold SMOTE with Attribute 
Bagging (TSMOTE-AB), improving the selection of examples in SMOTE and 
combined with Attribute Bagging [15] ensemble algorithm to improve the results of 
classification performance.  

The paper is organized as follows: Section 2 discusses related work of SMOTE and 
Bagging in imbalanced data sets problem. Section 3 describes our improved algorithm 
– TSMOTE-AB. Section 4 gives observations from experiments and analyzes 
experimental results. Finally, section 5 presents the conclusions. 

2 Related Work 

2.1 SMOTE 

SMOTE algorithm is proposed by Chawla et al. [8]. The main idea in SMOTE is to 
generate new synthetic minority examples by interpolating between a minority sample 
and its near neighbors. Synthetic examples are introduced along the line segment 
between each minority class example and one of its k-minority nearest neighbors. Let 
the training set S contain examples from the minority class P and the majority class N. 
For each sample x∈P, search its k-nearest neighbors in P, and choose one of them 
randomly as x1. Then, multiply the difference between the two vectors by a random 
number and add it to x, a liner interpolation is fulfilled randomly to produce a new 
sample called y. The formula is shown as follows: 

                  x)(xrand(0,1)xy 1 −×+=                          

Where the rand(0,1) means a random number between 0 and 1.  

Although SMOTE has been proved to be successful it also has an obviously 
shortcoming. The over-generalization problem as it blindly generalizes the regions of 
the minority class without regard to the majority class. This strategy is particularly 
problematic in the case of skewed class distribution where the minority class is very 
sparse with respect to the majority class. In this condition, SMOTE generation of 
synthetic examples may increase the occurrence of overlapping between classes [16].  

2.2 Attribute Bagging 

Attribute Bagging (AB) algorithm is proposed by Robert Bryll et al [15] based on 
Bagging [13]. It establishes an appropriate size of the attribute subsets with a wrapper 
method and then randomly selects subsets of features, creating projections of the 
training set on which the ensemble classifiers are built. The induced classifiers are then 
used for voting. This method was used for handling configuration recognition, and it 
was found that bagging the attributes of strong generalization power improved the 
performance of the resulting ensemble. 
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Attribute Bagging is a wrapper method that can be used with any learning algorithm. 
It can improve the performance of prediction by using different attribute subsets to 
classify. The experiment in [15] shows that AB can gives consistently better results than 
Bagging, both in accuracy and stability. 

3 Threshold SMOTE with Attribute Bagging 

3.1 TSMOTE 

In Fig. 1, we use SMOTE to generate the new sample for sample x1. Firstly, we find 
K-nearest neighbors (K=5) of sample x1∈P by comparing the distance between samples 
also in P, which is calculated with the Euclidean distance metric for numerical features. 
Unlike negative samples, the distribution of the positive samples is very sparse, so there 
is a far distance between x1 and {x4~x6}. If we use these three samples as the neighbor to 
generate the new samples as A, B and C, they will not only reduce the classification 
accuracy, but also confuse the classification of the positive samples because they are 
mixed with the negative samples. 

 

positive sample 

negative sample 

synthetic sample 

 

 

Fig. 1. Influence of incorrect neighbor on SMOTE algorithm 

For the above reason, we use the Threshold SMOTE algorithm to generate the new 
samples. In training set S= (xi, yi), i=1, 2, , M, where xi is a vector of attributes and 
yi∈{-1,1} is the associated observed class label. For each sample xi∈P, its K-positive 
nearest neighbors (K=5) set and K-negative nearest neighbors (K=5) set are: 

 

its candidate neighbor set is CANDi, which set samples in will synthesize samples with 
xi; d(i, k) denotes the distance between xi and ne_pik The detail steps as follow: 

(1). Randomly choose a sample xi∈P, find its NE_Pi and NE_Ni. 

(2). Calculated
NK

N
1i

K
1k k)d(i,

threshold
×

 =  == , where N is the number of positive 

samples, K is the number of neighbors. 

(3). Sequentially select a ne_pik or ne_nik as candik according to followed formula.  

 

                                                    

(4). Repeat the steps (2) and (3) until the CANDi is full (its capacity is K). 
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(5). Generate synthetic samples xik and add them into P until the number of P equals 
the number of N.  





∈−×+
∈−×+

=
iikiiki

iikiiki
ik NE_Ncand  ),x(cand)rand(0,0.5x

NE_Pcand  ),x(candrand(0,1)x
x  

These synthetic samples would not be used for generate new samples. 

 

positive sample 

negative sample 

synthetic sample 

 

 

Fig. 2. Fundamental of ASMOTE algorithm 

When these five steps process over, we gain a new training set and then use this new 
set to train the weak learner. Fig.2. shows the fundamental of TSMOTE algorithm. As 
we can see, when the K nearest neighbors {x2~x6} of x1 are found, the nearer negative 
samples {n1~ n3} were chosen to replace the far positive samples {x4~x6} to generate 
synthetic samples. In this way, TSOMTE avoid the confusion by mixing samples and 
take the advantage of the class information in data set which improves the quality of 
synthetic samples. 

3.2 Attribute Bagging 

Algorithm Attribute Bagging
1. Input:  S’ : Training data set; T:  Number of iterations; 

        I: Weak learner (KNN); M: Attribute set of data 
2. Output: Attribute bagged classifier:  














= 

=

T

1t

t (x)hsignH(x) , where [ ]11,-∈th are the induced 

classifiers. 
3. For i=0:T  repeat  

a) Randomly select j features in M as a feature subset Mt. 
The features in subset can be repetitively selected. 

b) For each sample in S’, only select the features in Mt to 
get the new training sets '

tS  

c) Use '
tS  for KNN algorithm to gain a classifier th  

End For 
 
After processing TSMOTE algorithm on original training set, a new training set S’ is 

obtained. Then the weak classifiers are trained with S’ by using attribute bagging. 
Breiman pointed out that the stability was the key factor to improve the accuracy of 

x1

x2
x3

x4

x5

n1
n2 x6

n3
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prediction. If there is a little change on data set which can cause an obvious difference 
on the classification result, that is called instability. For instable learning algorithms, 
the accuracy of prediction will be improved by using bagging, while the effect will not 
be obvious for stable learning algorithms, sometimes even decrease it. Langley’s 
research shows that the property of KNN classifier is sensitive to the number of features 
[17], so KNN is unstable for attribute sampling. Therefore, we can use attributes 
resampling to get different training samples and the KNN as the weak learner, so as to 
enhance the performance of KNN. The detail of attribute bagging is shown as above. 

We set the number of iterations T=10. An important key to this algorithm is j, the 
number of the selected features. An appropriate attribute subset size is found by testing 
classification accuracy of variously sized random subsets of attributes. 

4 Experiments and Results 

4.1 Performance Evaluation 

In this paper, we focus on two-class imbalanced data sets. A confusion matrix, as a key 
factor in the assessment, shown in Table 1, is used to formulate the representation of 
classification performance.  

Table 1. Confusion Matrix 

 Positive prediction Negative prediction

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

 

From Table 1., a few kinds of new evaluations for imbalanced problem, recall [18], 
precision [19], F-value [6] and G-mean [20] defined as follow: 

FP)TP/(TPprecision +=  FN)TP/(TPrecall +=  

recallprecision

recallprecision

+
××= 2

Value-F
       

recallprecision ×=Mean-G  

Besides, the AUC-ROC [21] can also be used to indicate the performance of the 
learning algorithm on the minority class.  In this paper, we used F-Value, G-Mean and 
AUC-ROC to judge the performance. 

4.2 Data Sets and Results 

Seven data sets of UCI are used in our empirical studies. As shown in Table 2, all of 
them are highly imbalanced. For all the seven data sets, 10-fold cross validation is used. 
We compared SMOTE with our TSMOTE algorithm and the averaged results of 50 runs 
are shown in Table 3. The weak learner in all experiments is KNN (k=5) classifier. 

After used the TSMOTE in all the datasets, we then use the AB algorithm for 
ensemble. The number of the selected features j must adjust by different datasets. We set 
j = 50%~100% of features number in each dataset and the result is shown in Fig.3. 
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Table 2. Characteristics of Data Sets 

Dataset Samples Positive Samples Features Validation Method 

Abalone(9 vs. 18) 731 42(5.75%) 8 10-fold CV 

Ionosphere(bad vs. good) 351 126(35.9%) 33 10-fold CV 

Vehicle(van vs. all) 846 212(25.1%) 18 10-fold CV 

Satimage(4 vs. all) 6435 626(9.73%) 36 10-fold CV 

Phoneme(1 vs. 0) 5404 1586(29.3) 5 10-fold CV 

German(bad vs. good) 1000 300(30%) 24 10-fold CV 

Yeast(CYT vs. POX) 483 20(4.14%) 8 10-fold CV 

Table 3. The result of TSMOTE and SMOTE 

Dataset 
TSMOTE SMOTE

F-Value G-Mean AUC-ROC F-Value G-Mean AUC-ROC 

Abalone 0.583 0.74 0.926 0.541 0.717 0.628 

Ionosphere 0.813 0.866 0.897 0.711 0.764 0.821 

Vehicle 0.928 0.953 0.994 0.913 0.951 0.919 

Satimage 0.613 0.762 0.915 0.533 0.747 0.897 

Phoneme 0.801 0.807 0.883 0.79 0.79 0.872 

German 0.531 0.648 0.723 0.519 0.642 0.714 

Yeast 0.591 0.762 0.825 0.576 0.703 0.834 

 
 

 

Fig. 3. Result of different number of the selected features j 

And we also compared the AUC result of TSMOTE-AB with some other algorithms. 
The results are shown in Table 4., and the best result is marked with bold. From Table 3., 
we can find that TSMOTE achieved an obviously higher prediction then the original 
SMOTE in all the data sets. Table 4. shows that TSOMTE results are generally better 
than other algorithms. 
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Table 4. The AUC of TSMOTE and other algorithms 

Dataset TSMOTE-
AB Bagging SMOTE- 

Bagging 
AdaBaggi

ng 
MSMOTE

Bagging AdaCost SMOTE- 
Boost 

RAMO- 
Boost 

Abalone 0.95 0.605 0.753 0.634 0.716 0.924 0.766 0.976 

Ionosphere 0.904 0.864 0.885 0.891 0.886 0.882 0.889 0.901 

Vehicle 0.995 0.955 0.965 0.951 0.949 0.995 0.965 0.995 

Satimage 0.962 0.946 0.948 0.939 0.936 0.933 0.947 0.949 

Phoneme 0.917 0.881 0.889 0.903 0.897 0.894 0.894 0.906 

German 0.739 0.716 0.724 0.731 0.737 0.713 0.734 0.741 

Yeast 0.837 0.525 0.788 0.699 0.774 0.816 0.740 0.745 

5 Conclusion 

A TSMOTE-AB based scheme is proposed for learning from imbalanced data sets. 
Experimental result on seven UCI data sets shows that the proposed method can 
improve predictive performance of the learned classifier. The TSMOTE increases the 
number of the positive randomly by using both positive and negative samples to 
generate the synthetic samples through a threshold to overcome the shortcomings of 
original SMOTE which only uses positive samples and ignores the real distribution of 
data sets.  
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Abstract. A hashing approach in parallel reducts is clearly presented
in this paper. With the help of this new approach, time-consuming com-
parison operations reduce significantly, therefore, matrix of attribute
significance can be calculated more efficiently. Experiments show that
our method has advantage over PRMAS, our classical parallel reducts
method.

Keywords: Rough sets, Hashing approach, Parallel reducts. Matrix of
attribute significance.

1 Introduction

Rough set[1, 2] theory is an effective mathematical tool, dealing with imprecise,
vague and incomplete information. It has been widely used in classification and
feature selection(also called attribute reducts) in data mining. Concrete ways
to obtain attribute reducts include discernibility matrix and function[3–5], in-
formation entropy [6, 7] and attribute significance etc. The method of attribute
significance is an efficient approach to obtain condition attribute reducts.

To deal with incremental data, dynamic data and tremendously large data,
various models of attribute reducts are constructed, such as dynamic reducts[8, 9]
and parallel reducts[10–15].

The problem to obtain dynamic reducts is NP-hard, and the ways to ob-
tain dynamic reducts are incomplete because the intersection of all the Pawlak
reducts in a series of decision subsystems may be empty.

Parallel reducts[10–15] extend Pawlak reducts and dynamic reducts. They
have all the advantages of dynamic reducts, and have excellent performance
enough to match that of the best algorithm for Pawlak reducts. In [14] a matrix
of attribute significance is proposed, and it could obtain both parallel reducts
and dynamic reducts.

In parallel reducts, classification takes a great deal of time. Meanwhile, com-
parison operations dominate classification process. We here present a hashing
approach to improve classification. D. E. Knuth[16] credited H. P. Luhn (1953)
for inventing hash tables, along with the chaining method for resolving collisions.
P. C. Wang[17] employed hash method to generate approximate decision rules.
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Now, we continue to review several basic concepts in parallel reducts and F -
attribute significance. Next we propose an algorithm to obtain parallel reducts
in a hashing approach. Experimental results show that our new approach has a
significant performance boost in attribute reducts.

2 Rough Sets

Readers are assumed to be familiar with rough set theory. So we only introduce
some primary knowledge of rough sets briefly.

Let DS = (U,A, d) be a decision system, where {d} ∩ A = ∅, the decision
attribute d divides the universe U into parts, denoted by U/d = {Y1, Y2, ...Yp},
where Yi is an equivalence class. The positive region is defined as

POSA(d) =
⋃

Yi∈U/d

POSA(Yi) (1)

Sometimes the positive region POSA(d) is also denoted by POSA(DS, d). In
rough set theory, the most popular definition of reduct is Pawlak reduct(reduct
in short) in a decision system. It could be shown as below:

Definition 1. Let DS = (U,A, d) be a decision system, B ⊆ A is called a reduct
of the decision system DS iff B satisfies two conditions:

1. POSB(d) = POSA(d),
2. For any S ⊂ B,POSS(d) �= POSA(d)

All reducts of a decision system DS is denoted by RED(DS).

Definition 2. In a decision system DS = (U,A, d) we will say d depends on A
to a degree h(0 ≤ h ≤ 1), if

h = γ(A, d) =
|POSA(d)|

|U | (2)

Where |.| denotes the cardinality of a set.

Definition 3. The significance of an attribute a in a decision system DS =
(U,A, d) is defined by

σ(a) =
γ(A, d)− γ(A− {a}, d)

γ(A, d)
= 1− γ(A− {a}, d))

γ(A, d)
(3)

3 Parallel Reducts

DS = (U,A, d) denotes a decision system. P (DS) is the set of all subsystems of
DS. The symbol F is a nonempty subset of P (DS), which excludes the empty
element φ, i.e. φ /∈ F .
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Definition 4. [14] Let DS = (U,A, d) be a decision system, and P(DS) be the
set of all subsystems of DS, F ⊆ P (DS). B ⊆ A is called a parallel reduct of F
iff B satisfies the following two conditions:

1. For any subsystem DT ∈ F it satisfies γ(B, d) = γ(A, d).

2. For any S ⊂ B, there exists at least a subsystem DT ∈ F such that γ(S, d) �=
γ(A, d).

4 Matrix of Attribute Significance

In this section we review the matrix of attribute significance[14].

Definition 5. Let DS = (U,A, d) be a decision system, and P (DS) be the set of
all subsystems of DS, F ⊆ P (DS), B ⊆ A, the matrix of attribute significance
B relative to F is defined as:

M(B,F ) =

⎡⎢⎢⎣
σ11 σ12 · · · σ1m

σ21 σ22 · · · σ2m

· · · · · · · · · · · ·
σn1 σn2 · · · σnm

⎤⎥⎥⎦ . (4)

Where σij = γi(B, d) − γi(B − {aj}, d), aj ∈ B, (Ui, A, d) ∈ F , γi(B, d) =
|POSB(DTi,d)|

|Ui| , n denotes the number of decision tables in F , m denotes the num-

ber of conditional attributes in B.

Proposition 1. The core of F -parallel reducts in the subsystems F ⊆ P (DS)
is the set of attributes whose attribute significance in corresponding column are
all positive for every DT ∈ F .

Definition 6. Let DS = (U,A, d) be a decision system, and P (DS) be the set
of all subsystems of DS, F ⊆ P (DS), B ⊆ A, the modified matrix of attribute
significance B relative to F is defined as:

M ′(B,F ) =

⎡⎢⎢⎣
σ′
11 σ′

12 · · · σ′
1m

σ′
21 σ′

22 · · · σ′
2m

· · · · · · · · · · · ·
σ′
n1 σ′

n2 · · · σ′
nm

⎤⎥⎥⎦ . (5)

Where σ′
ij = γi(B ∪ {aj}, d) − γi(B, d), aj ∈ A, (Ui, A, d) ∈ F , γi(B, d) =

|POSB(DTi,d)|
|Ui| , n denotes the number of decision tables in F , m denotes the num-

ber of conditional attributes in DS.

It is easy to know that if aj ∈ B, the element σij in the matrix M ′(B,F )
is 0.
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5 Parallel Reducts Based on the Matrix of Attribute
Significance

We illustrate parallel reducts with attribute significance algorithm[14] in this
section.Core of parallel reducts can be got through the matrix of attribute sig-
nificance at first. We obtain the rest of parallel reducts through the modified
matrix of attribute significance. Elaborate algorithm is shown below.

Algorithm 1. Parallel reducts based on the matrix of attribute signifi-
cance(PRMAS).

Input: A series of subsystems F ⊆ P (DS).
Output: A parallel reduct.
Step 1. Establish matrix of attribute significance with subtract policy

M(A,F );
Step 2. C =

⋃m
j=1{aj : ∃σkj(σkj ∈M(A,F ) ∧ σkj �= 0)};

B=A-C;
// Build core attributes which has at least one positive value in
// corresponding column in matrix M(A,F ).

Step 3. Do the following steps.
(1)rebuild matrix M ′(B,F ) with addition policy;

if M ′(B,F ) = 0 break;
(2)For j = 1 to m do

For k = 1 to n do
If σkj �= 0 then tj = tj + 1;

// count the number of σkj �= 0 in a column.
(3)C = C

⋃{aj : ∃tj(tj �= 0 ∧ ∀tp(tj ≥ tp))};
B = B − aj
// add the attribute, which is supported by maximum sub-tables,
// to the set of reduct C.

(4)goto step (1)
Step 4. Output the reduct C.
According to [14], the time complexity of this algorithm is O(nm3|U ′|log|U ′|)

in the worst case, where |U ′| denotes the number of instances in one decision
table which has the largest cardinality in F , n denotes the number of sub-tables,
and m denotes the number of conditional attributes.

6 Hashing Classification

Classification takes a great deal of time in parallel reducts. Meanwhile, compar-
ison operations dominate classification process. Early parallel reducts programs,
adopting brute force strategy, need a lot of time to do comparison operations in
classification. This can’t be accepted in reducing large decision tables. Hashing
approach can solve classification problem in an elegant and efficient manner es-
pecially in reducing comparison operations. Each instance can map into a unique
value by means of hash function, which reduces comparison operations sharply.
After hashing, any instances belonging to the same equivalence class must get the
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same hash value, though, some instances not belonging to the same equivalence
class can get the same hash value, either.

A good hash function must be found for classification purpose, and it should
satisfy at least two conditions: easily calculating and enough discriminatory
power. A trivial choice is to just add all the condition attribute value in one in-
stance. However, this trivial hash function doesn’t work well under many cases.
An improved hash function is adopted in this paper: Every four conditional at-
tribute values in one instance are sampled simply their least significant byte into
a complete 32-bit integer, which is processed into the last hash value for the
corresponding instance.

The complete classification procedure is as follows: A hash jump table and
a conditional equivalence classes buffer are constructed firstly; secondly all the
instances are mapped into corresponding hash slots in the jump table; thirdly
each instance can find where they should store in the buffer exactly from cor-
responding jump table pointer; finally some inevitable comparison operations
must be processed properly. Elaborate algorithm is shown below.

Algorithm 2. Quick partition equivalence class(QPEC).
Input: A decision table.
Output: Conditional equivalence classes of the decision table.
Step 1. Reserve memory for pointer table, initialized zero;

//pointer table has a fixed number of slots, whose index number
//is a hash value
Reserve memory for equivalence classes, initialized zero;
//a corresponding slot in pointer table points to an
//equivalence class cell

Step 2. Do the following steps for each instance of the decision table.
(1)r = hash(instance);
//bit operation is employed in obtaining a hash value
(2)if (r is a new hash value in pointer table){

let corresponding slot in pointer table point to
its equivalence class;
store instance to corresponding equivalence class;
//even the two instances have the same hash value,
//one comparison operation is taken to insure
//they belong to the same equivalence class

}
else{

directly store instance to corresponding equivalence class;
or
some comparison steps to store instance to equivalence class;
//actually speaking, equivalence class memory region is
//a linked list, all the cells with the same hash value
//are linked together

}
Step 3. Output the conditional equivalence classes.
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Figures 1,2 and 3 show that our hash function provides good discriminatory
power for equivalence class partitioning. The left part of each figure shows how
many instances in an equivalence class through hashing classification; the right
part of each figure depicts how many instances in an equivalence class of its
own. Abalone is an excellent example to demonstrate classification power of
hashing approach, where the number of hashing slots is almost identical to the
number of real equivalence classes. In Poker Hand, we can confirm that almost
all the equivalence classes have no more than 100 instances, even below 10 for the
majority of cases. In Forest CoverType, 581,012 instances are partitioned into
237,925 equivalences classes, where each equivalence class includes on average
2.44 instances. It is because of this improvement can we decrease comparison
operations dramatically.
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Fig. 1. Abalone
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Fig. 2. Poker Hand

By the way, all the data in figures list above are sorted with ascending order.
There is a simple cause here: One can draw a falsity conclusion with original
Fig.4 just because there is too much data in the original excel chart! That is to
say, one may have an illusion that any equivalence class in Poker Hand has at
least 10 instances, but not below 8 in the majority of cases.
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Fig. 3. Forest CoverType
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Fig. 4. Original hashing classification(upside Poker Hand, downside Forest CoverType)

7 Performance Analysis of Parallel Reducts with Hashing
Approach

We come to analyze the algorithm performance of Parallel reducts with hashing
approach(PRH). Its running time is mainly consumed in partitioning equivalence
classes and comparison operations dominate the algorithm. So comparison op-
eration is chosen as algorithm measuring benchmark in the following algorithm
complexity analysis.

In our experiment, Poker Hand test needs 323 783 573 times comparison op-
erations in all. This test needs 4 loops, in which there are 10 sub tables involved.
Each sub table needs at least 11 loops of calculation. That is to say, each ob-
ject needs about 1 comparison operation to complete equivalence class partition.
Forest CoverType needs 2 330 252 207 times comparison operations in all. This
test needs 7 loops, in which there are 10 sub tables involved. Each sub table
needs at least 11 loops of calculation. That is to say, each object needs about 5
comparison operations to complete equivalence class partition.

Under general circumstances, hashing classification can partition a decision
table into quite a lot of small equivalence classes, each having about the same size
and containing elements less than 50 or even 20. In this case, the decision table
is scanned once and partition is done. Assuming that each equivalence class
contains 100 instances, we need about |A|(|U |/100) × 1002 times comparison
operations. According to our experimental statistics, the number of instances in
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a small equivalence class rarely reaches 100, and it is often less than 50. So the
average complexity of our reducts algorithm is O(|A||U |), where |U | denotes the
number of instances in decision table, |A| is the number of conditional attributes.
In the worst case, where every two instances need to compare with each other,
performance of our algorithm degenerates to O(|A||U |2). Fortunately, the worst
case seldom occurs in our experiment.

Finally we come to analyze the algorithm space efficiency. Our hashing al-
gorithm needs to load the whole decision table into memory. At running time
it needs to allocate more memory for jump table and conditional equivalence
class buffer in which each record needs 140 bytes. Take Forest CoverType for
example, the decision table needs to allocate about 125MB memory on the main
thread heap, 38MB for the equivalence classes buffer, about 300KB for the jump
table. So 168.3MB is required in all in Forest CoverType test process. They are
all proportionate to the number of instances and the number of attribute. Now
we get a conclusion that our algorithm space complexity is O(|A||U |).

8 Experiments

UCI repository of machine learning databases is employed in our experiments.
We use RIDAS system(developed by Chongqing University of Posts and Telecom-
munications) to normalize the data. 10 sub-tables are created from original data
set. The first sub-table has 10% data of the complete data from the decision
table, the second 20%, the third 30%, and so on.

We run the experiment on a Dell 14R Turbo laptop computer. The machine
has an Intel(R) Core(TM) i7 3632QM 2.2GHz CPU, 8GB DDR3 memory and
1TB hard disk. Microsoft Visual Studio 2012 Express, running on Microsoft
Windows 8 China edition, is employed as our development software.

In Table 1, the symbol ’10(9)’ denotes that there is 10 condition attributes in
the original database, and there is a useless attribute for reducts.

In Table 2 Column 2 denotes the corresponding decision table attribute reducts
result. Take ”000 000 11” as example, the first six ’0’ symbols denote that at-
tributes from column 1 to column 6 are exactly a parallel reduct for Abalone, the

Table 1. Data sets description

No. Data Features Instances

1 Abalone 8 4177
2 Breast-cancer-Wisconsin 10(9) 699
3 Mushroom 22 8124
4 Letter Recognition 16 20000
5 Adult 14 48842
6 Chess (King-Rook vs. King) 6 28056
7 Shuttle 9 43500
8 Poker Hand 10 1025010
9 Forest CoverType 54 581012
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Table 2. PRH reducts results

No. Reduct Results

1 000 000 11
2 000 010 111
3 100 000 111 011 000 011 110 0
4 100 000 000 000 000 0
5 000 010 000 000 00
6 000 000
7 000 001 111
8 000 010 101 0
9 000 001 111 111 111 111 111 111 111 111 111 111 111 111

111 111 111 111

Table 3. Performance comparison between PRMAS and PRH

No. Data set PRMAS(s) PRH(s)

1 Abalone 11.313000 0.078000
2 Breast-cancer-Wisconsin 0.219000 0.016000
3 Mushroom 62.507000 0.157000
4 Letter Recognition 100.167999 0.140000
5 Adult 469.014008 0.454000
6 Chess (King-Rook vs. King) 75.082001 0.078000
7 Shuttle 405.941986 0.516000
8 Poker Hand time consuming 13.563000
9 Forest CoverType time consuming 120.990997

last two ’1’ symbols denote that attributes from column 7 to column 8 are redun-
dant attributes. Of course, each reduct result is identical with the corresponding
result in PRMAS.

Table 3 demonstrates our parallel reducts results from the different size de-
cision tables. The number of decision table instances less than 50,000, such as
Adult, takes 0.454 second(s) to complete its attribute reduct. Even the large
table like Poker Hand takes only 13.563 seconds to complete attribute reduct
entirely, which is definitely an inspiring result comparing to the corresponding
result in PRMAS.

Table 3 also presents the detailed comparison between PRH and PRMAS. Our
hashing approach has significant advantage over the original approach. PRH has
more than 100 times performance boost compared with PRMAS.

Our experiment also demonstrates that cache miss can influence program
performance significantly, which can be confirmed from Table 4. Take Adult as
example, the default configuration takes more than about 53% running time than
the optimized performance. It is simply because each equivalence class needs to
consume 140 bytes in default configuration, while a cache block size in 3632QM
is 64 bytes, meaning that cache miss is likely to occur frequntly. On the other
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Table 4. Cache miss rate impact on PRH reducts

No. Data set Default(s) Optimized(s)

1 Abalone 0.078000 0.063000
2 Breast-cancer-Wisconsin 0.016000 0.015000
3 Mushroom 0.157000 0.109000
4 Letter Recognition 0.140000 0.110000
5 Adult 0.454000 0.296000
6 Chess (King-Rook vs. King) 0.078000 0.047000
7 Shuttle 0.516000 0.343000
8 Poker Hand 13.563000 12.813000
9 Forest CoverType 120.990997 115.693000

hand, we decrease equivalence class size to 16 bytes in some test data, which
of course increases cache hit rate. Finally, large table like Forest CoverType,
however, is almost no influenced by cache miss.

9 Conclusion

In this paper, we present a parallel reducts algorithm with hashing approach in
matrix of attribute significance algorithm framework. For a family of decision
subsystems, we define F -attribute significance and apply it to obtain parallel
reducts. Experimental results show that our approach has evident advantages
over the original reducts algorithms. The choice of heuristic information and
design of hash function have an influence on the experimental results. Both of
them can be further improved to enhance efficiency.
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Abstract. In information systems, there may exist multiple different
types of attributes like categorical attributes, numerical attributes, set-
valued attributes, interval-valued attributes, missing attributes, etc. Such
information systems are called as composite information systems. To pro-
cess such attributes with rough set theory, composite rough set model
and corresponding matrix methods were introduced in our previous re-
search. Rough set approximations of a concept are the basis for rule
acquisition and attribute reduction in rough set based methods. To ac-
celerate the computation process of rough set approximations, this paper
first presents the boolean matrix representation of the lower and upper
approximations in the composite information system, then designs a par-
allel method based on matrix, and implements it on GPUs. The exper-
iments on data sets from UCI and user-defined data sets show that the
proposed method can accelerate the computation process efficiently.

Keywords: Composite Rough Sets, Boolean Matrix, GPU, CUDA.

1 Introduction

The rough set (RS) theory is a powerful mathematical tool to describe the de-
pendencies among attributes, evaluate the significance of attributes, and derive
decision rules [15]. It plays an important role in the fields of data mining and
machine learning [7,18,21,22]. Different attributes can be processed by different
rough set models. For example, Hu et al. generalized classical rough set model
with neighborhood relations to deal with numerical attributes [7]. Guan et al.
defined the tolerance relation and used it to deal with set-valued attributes [5].
Grzyma�la-Busse integrated the tolerance relation [8] and the similarity relation
[19], and proposed the characteristic relation [4] for missing attributes in in-
complete information systems. In real-applications, there are multiple different
types of attributes in information systems like categorical attributes, numerical
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attributes, set-valued attributes, and missing attributes. Such information sys-
tems are called as composite information systems. Most of rough set models fail
to deal with more than two types of attributes. To solve this problem, we gave
the composite rough set model, defined a composite relation and used compos-
ite classes to drive approximations from composite information systems in our
previous work [23]. Table 1 shows these rough set models for different types of
attributes.

Table 1. Rough Set Models

Model Relation
Data Types

C N S M

Classical RS Equivalence [15]
√ × × ×

Neighborhood RS Neighborhood [7]
√ √ × ×

Set-valued RS Tolerance [5]
√ × √ ×

Characteristic RS Characteristic [3]
√ × × √

Composite RS Composite [23]
√ √ √ √

C: Categorical, N: Numerical, S: Set-valued, M: Missing

Rough set approximations of a concept are the basis for rule acquisition and
attribute reduction in rough set based methods. The efficient calculation of rough
set approximations can accelerate the process of knowledge discovery effectively.
Parallelization of algorithms is a good way to speed up the computational pro-
cess. In our previous work, we proposed a parallel algorithm for computing rough
set approximation [21], however, it can only process categorical attributes. In
this paper, to deal with composite attributes and compute rough set approxi-
mations from composite information systems, we give a boolean-based method
for computing rough set approximations. It means that the calculation of rough
set approximations can be processed as boolean matrix operations. We design
the parallel matrix-based method and parallelize it on GPUs, which have re-
cently been utilized in various domains, including high-performance computing
[14]. NVIDIA GPUs [1] power millions of desktops, notebooks, workstations
and supercomputers around the world, and accelerate computationally-intensive
tasks for professionals, scientists, researchers, etc. NVIDIA CUDA [2] is a Gen-
eral Purpose Computation on GPUs (GPGPUs) framework, which uses a C-like
programming language and does not require re-mapping algorithms to graphics
concepts. These features help users develop correct and efficient GPU programs
easily.

The remainder of the paper is organized as follows. Section 2 introduces some
rough set models. Section 3 proposes the boolean matrix-based method. Sec-
tion 4 designs the parallel method for computing composite rough set (CRS)
approximations. Section 5 gives the experimental analysis. The paper ends with
conclusions and future work in Section 6.



242 J. Zhang et al.

2 Rough Set Model

In this section, we first briefly review the concepts of rough set model as well as
their extensions [5,7,10,15,16,23].

2.1 Classical Rough Set Model

Given a pair K = (U,R), where U is a finite and non-empty set called the
universe, and R ⊆ U×U is an indiscernibility relation on U . The pair K = (U,R)
is called an approximation space. K = (U,R) is characterized by an information
system IS = (U,A, V, f), where U is a non-empty finite set of objects; A is a
non-empty finite set of attributes; V =

⋃
a∈A Va and Va is a domain of attribute

a; f : U × A → V is an information function such that f(x, a) ∈ Va for every
x ∈ U , a ∈ A. In the classical rough set model, R is the equivalence relation.
Let B ⊆ A and [x]RB denote an equivalence class of an element x ∈ U under
the indiscernibility relation RB, where [x]RB = {y ∈ U |xRBy}.

Classical rough set model is based on the equivalence relation. The elements
in an equivalence class satisfy reflexive, symmetric and transitive. It also can-
not deal with the non-categorical attributes like numerical attributes, set-valued
attributes, etc. However, non-categorical attributes appear frequently in real
applications [3,6,8,17]. Therefore, it is necessary to investigate the situation of
non-categorical attributes in information systems. In what follows, we just in-
troduce two rough set models [5,7], which will be used in our examples. More
rough set models for dealing with non-categorical attributes are available in the
literatures [3,6,8,9,12,17,20].

2.2 Composite Rough Set (CRS) Model

In many practical issues, there are multiple different types of attributes in infor-
mation systems, called composite information systems. A composite information
system can be written as CIS = (U,A, V, f), where
(i) U is a non-empty finite set of objects;
(ii) A =

⋃
Ak is a union of attribute sets, and Ak is an attribute set with the

same type of attributes;
(iii) V =

⋃
Ak⊆A VAk

, VAk
=
⋃

a∈Ak
Va, Va is a domain of attribute a;

(iv) f : U × A → V , namely, U × ⋃Ak →
⋃

VAk
, and U × Ak → VAk

is an
information function, f(x, a) denotes the value of object x on attribute a.

Definition 1. [23] Given x, y ∈ U and B =
⋃

Bk ⊆ A, Bk ⊆ Ak, the composite
relation CRB is defined as

CRB = {(x, y)|(x, y) ∈
⋂

Bk⊆B

RBk
} (1)

where RBk
⊆ U ×U is an indiscernibility relation defined by an attribute subset

Bk on U [16].
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When (x, y) ∈ CRB, we call x and y are indiscernible w.r.t. B. Let CRB(x) =
{y|y ∈ U, ∀Bk ∈ B, yRBk

x}, we call CRB(x) the composite class for x w.r.t.
CRB.

Definition 2. [23] Given a composite information system CIS = (U,A, V, f),
∀X ⊆ U , B ⊆ A, the lower and upper approximations of X in terms of composite
relation CRB are defined as

CRB(X) = {x ∈ U |CRB(x) ⊆ X} (2)

CRB(X) = {x ∈ U |CRB(x) ∩X �= ∅} (3)

3 Boolean Matrix-Based Method

In this section, we present the boolean matrix representation of the lower and
upper approximations in the composite information system. Before this, we re-
view the matrix-based approaches in rough set model. A set of axioms were
constructed to characterize classical rough set upper approximation from the
matrix point of view by Liu [11]. Zhang et al. defined a basic vector H(X),
which was induced from the relation matrix. And four cut matrices of H(X),
denoted by H [μ,ν](X), H(μ,ν](X), H [μ,ν)(X) and H(μ,ν)(X), were derived for
the computation of approximations, positive, boundary and negative regions in-
tuitively in set-valued information systems [24]. Furthermore, Zhang et al. gave
the matrix-based methods for computing rough set approximations in composite
information systems [23]. Here, we follow their work and give a novel boolean
matrix-based method to process composite data.

3.1 Boolean Matrix-Based Method in the Composite Information
System

Definition 3. [11] Let U = {x1, x2, . . . , xn}, and X be a subset of U . The char-
acteristic function G(X) = (g1, g2, . . . , gn)T (T denotes the transpose operation)
is defined as

gi =

{
1, xi ∈ X
0, xi /∈ X

(4)

where G(X) assigns 1 to an element that belongs to X and 0 to an element that
does not belong to X.

Definition 4. Given a composite information system CIS = (U,A, V, f). Let
B ⊆ A and CRB be a composite relation on U , MCRB

n×n = (mij)n×n be an n× n
matrix representing CRB , called the relation matrix w.r.t. B. Then

mij =

{
1, (xi, xj) ∈ CRB

0, (xi, xj) �∈ CRB
(5)
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Corollary 1. Let MCRB
n×n = (mij)n×n and CRB be a composite relation on U .

Then mii = 1, 1 ≤ i ≤ n.

Next, we discuss about boolean methods to derive lower and upper approxi-
mation in composite rough sets.

Lemma 1. Given X ⊆ U in a composite information system CIS =
(U,A, V, f), where U = {x1, x2, . . . , xn}. B ⊆ A and CRB is a composite re-
lation on U . Then the lower and upper approximations of X in the composite
information system can be computed as follows.
(1) The n-column boolean vector G(CRB(X)) of the upper approximation
CRB(X):

G(CRB(X)) = MCRB
n×n ⊗G(X) (6)

where ⊗ is the Boolean product of matrices.
(2) The n-column boolean vector G(CRB(X)) of the lower approximation
CRB(X):

G(CRB(X)) = −(MCRB
n×n ⊗G(−X)) (7)

where −X denotes the complementary set to X.

Proof. Suppose MCRB
n×n = (mik)n×n, G(X) = (g1, g2, · · · , gn)T and

G(CRB(X)) = (u1, u2, · · · , un)T . ∧,∨ denote minimum and maximum opera-
tors, respectively.

(1) “⇒”: ∀i ∈ {1, 2, · · · , n}, if ui = 1, then xi ∈ CRB(X), CRB(xi) ∩X �= ∅,
and ∃xj ∈ CRB(xi), xj ∈ X , that is to say (xi, xj) ∈ CRB . Thus, mij = 1

and gj = 1, and
n∨

k=1

(mik ∧ gk) = mij ∧ gj = 1. Hence, ∀i ∈ {1, 2, · · · , n},

ui ≤
n∨

k=1

(mik ∧ gk).

“⇐”: ∀i ∈ {1, 2, · · · , n}, if
n∨

k=1

(mik ∧ gk) = 1, then ∃j ∈ {1, 2, · · · , n}, mij = 1

and gj = 1. Thus, xj ∈ CRB(xi) and xj ∈ X . Then, CRB(xi) ∩X �= ∅, namely,

xi ∈ CRB(X) and ui = 1. Therefore, ∀i ∈ {1, 2, · · · , n}, ui ≥
n∨

k=1

(mik ∧ gk).

Thus, ∀i ∈ {1, 2, · · · , n}, ui =
n∨

k=1

(mik ∧ gk), namely, G(CRB(X)) = MCRB
n×n ⊗

G(X).
(2) The proof is similar to that of (1).

Corollary 2. Let MCRB
n×n = (mik)n×n and G(X) = (g1, g2, · · · , gn)T . Suppose

G(CRB(X)) = (u1, u2, · · · , un)T and G(CRB(X)) = (l1, l2, · · · , ln)T , ∀i ∈ {1, 2,
· · · , n}, we have ⎧⎪⎪⎨⎪⎪⎩

ui =
n∨

k=1

(mik ∧ gk)

li =
n∧

k=1

(mik , gk)
(8)

where , is the logical operation NXOR (not exclusive or).
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3.2 Boolean Matrix-Based Method in the Composite Decision
Table

Definition 5. Given a composite decision table CDT = (U,A∪D,V, f), B ⊆ A,
let U/D = {D1, D2, · · · , Dr} be a partition over the decision D. ∀Dj ∈ U/D,
G(Dj) = (dj1, dj2, · · · , djn)T is an n-column boolean vector of Dj. Let G(D) =
(G(D1), G(D2), · · · , G(Dr)) = (dkj)n×r and G(−D) = (G(−D1), G(−D2), · · · ,
G(−Dr)) = (−dkj)n×r be n × r boolean matrices, called decision matrix and
decision complementary matrix.

Lemma 2. Given a composite decision table CDT = (U,A ∪D,V, f), B ⊆ A.
Let U/D = {D1, D2, · · · , Dr} be a partition over the decision D. ∀j = 1, 2, · · · , r,
the upper and lower approximations of the decision D in the composite informa-
tion system can be computed as follows.

(1) The n × r boolean matrices G(CRB(D)) of the upper approximations of
the decision D:

G(CRB(D)) = MCRB
n×n ⊗G(D) (9)

(2) The n× r boolean matrices G(CRB(D)) of the lower approximation of the
decision D:

G(CRB(D)) = −(MCRB
n×n ⊗G(−D)) (10)

Proof. The proof is similar to that of Lemma 1.

Corollary 3. Let MCRB
n×n = (mik)n×n and G(D) = (dkj)n×r. Suppose

G(CRB(D)) = (uij)n×r and G(CRB(D)) = (lij)n×r, ∀i ∈ {1, 2, · · · , n}, j ∈
{1, 2, · · · , r}, we have ⎧⎪⎪⎨⎪⎪⎩

uij =
n∨

k=1

(mik ∧ dkj)

lij =
n∧

k=1

(mik , dkj)
(11)

4 Parallel Method for Computing CRS Approximations

4.1 Parallel Matrix-Based Method

According to the above matrix method, we first give the sequential algorithm for
computing rough set approximations in the composite decision table, which is
outlined in Algorithm 1. Step 2 is to construct the relation matrix and its time
complexity is O(n2|B|); Step 3 is to construct the decision matrix and its time
complexity is O(n log r+n); Step 4 is to compute the upper approximation matrix
and its time complexity is O(n2r); Step 5 is to compute the lower approximation
matrix and its time complexity is O(n2r); Hence, the total time complexity is
O(n2|B|+ n log r + n + n2r + n2r) = O(n2(|B|+ r)).

According to the above analysis, the most intensive computation to occur is
the construction of the relation matrix and the computation of the upper and
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Algorithm 1. The sequential algorithm for computing rough set approxi-
mations
Input: A composite decision table CDT = (U,A ∪D,V, f), and attribute subset

B ⊆ A.
Output: The rough set approximations of the decision D.

1 begin

2 Construct the relation matrix: M
CRB
n×n = (mij)n×n. // According to Definition 4

3 Construct the decision matrix: G(D) = (djk)n×r . // According to Definition 5

4 Compute the upper approximation matrix: G(CRB(D)) = M
CRB
n×n ⊗G(D). //

According to Corollary 2

5 Compute the lower approximation matrix: G(CRB(D)) = −M
CRB
n×n ⊗G(−D). //

According to Corollary 2
6 Output the rough set approximations.
7 end

Algorithm 2. The parallel algorithm for computing rough set approxima-
tions
Input: A composite decision table CDT = (U,A ∪D,V, f), and attribute subset

B ⊆ A.
Output: The rough set approximations of the decision D.

1 begin

2 [In Parallel ] Construct the relation matrix: M
CRB
n×n = (mij )n×n.

3 [In Sequential] Construct the decision matrix: G(D) = (djk)n×r .
4 [In Parallel ] Compute the upper approximation matrix:

G(CRB(D)) = M
CRB
n×n ⊗G(D).

5 [In Parallel ] Compute the lower approximation matrix:

G(CRB(D)) = −M
CRB
n×n ⊗G(−D).

6 [In Sequential] Output the rough set approximations.
7 end

lower approximation matrices. Obviously, we can accelerate the computational
process through the parallelization of these steps, as shown in Algorithm 2.

There are n objects and |B| attributes in raw data. It can be seen as the matrix
data with n rows and |B| columns denoted by V = (ν)n×|B|. In Figure 1(a),
suppose xi = (cik)1×|B| and xT

j = (ckj)|B|×1, then mij is the result of composite

operation of two vectors xi and xT
j . If (xi, xj) ∈ CRB, mij = 1; otherwise,

mij = 0. Hence, each mij can be computed independently and in parallel.

Similarly, after constructing relation matrix MCRB
n×n = (mik)n×n and deci-

sion matrix G(D) = (dkj)n×r, we suppose the upper approximation matrix
G(CRB(D)) = (uij)n×r. According to Corollary 2, we have G(CRB(D)) =

MCRB
n×n ⊗ G(D). Hence, suppose mi = (mik)1×n and dj = (dkj)n×1, then uij =

n∨
k=1

(mik ∧ dkj) according to the Boolean operation, as shown in Figure 1(b).

Hence, each uij can be computed independently and in parallel. Similarly, we
can also compute lower approximation.
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Fig. 1. Computing relation matrix and upper approximation matrix in parallel

Algorithm 3. CUDA Computing CRS Approximations

Input: A composite decision table CDT = (U,A ∪D,V, f), and attribute subset
B ⊆ A.

Output: The rough set approximations of the decision D.
1 begin
2 (a) Construct the relation matrix:

3 for each mij ∈ M
CRB
n×n do

4 mij =

{
1, (xi, xj) ∈ CRB
0, (xi, xj) �∈ CRB

5 end
6 (b) Construct the decision matrix: G(D) = (djk)n×r .
7 (c) Compute the upper approximation matrix:

8 for each uij ∈ G(CRB(D)) do

9 uij =
n∨

k=1
(mik ∧ dkj)

10 end
11 (d) Compute the lower approximation matrix:
12 for each lij ∈ G(CRB(D)) do

13 lij =
n∧

k=1

(mik 	 dkj)

14 end
15 Output the rough set approximations.
16 end
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4.2 CUDA Implementation

Algorithm 3 shows the CUDA algorithm of computing CRS approximations. The
Stages (a), (c), (d) can be computed in parallel with CUDA. The time complex-
ities of Stages (a), (c), (d) are O(n2|B|/p), O(n2r/p), O(n2r/p), respectively,
where p is the total number of threads in kernel function with CUDA. The time
complexity of Stage (b) is O(n log r+n). Hence, the total time complexity of the
CUDA algorithm is O(n2|B|/p+n2r/p+n2r/p+n log r+n) = O(n2(|B|+r)/p).

5 Experimental Analysis

Our test system consists of a Inter(R) Core(TM)i7-2670QM @2.20GHz (4 cores,
8 threads in all) and an NVIDIA GeForce GT 555M. We have implemented a
GPU version with CUDA C [2], and a CPU version with C/C++. Then, we give
a performance comparison between these two versions.

To test the performance of the parallel algorithm, we download the data set
Connect from the machine learning data repository, University of California
at Irvine [13]. The data set Connect consists of tens of thousands of samples.
Each sample consists of 42 condition attributes and 1 decision attribute. In
our experiment, we extract the data from the data set Connect with different
numbers of samples randomly, i.e., 8000, 12000, 16000, 20000, 24000, 28000,
and 32000. Besides, user-defined data sets are used in our experiments, which
are generated randomly with different sizes of samples and features.

Table 2 shows the information of data sets with the computational time and
speedup. From the result of the data set Connect, it is easy to know that the
computational time of CPU and GPU implementations increases with the in-
crease of the size of data, and the GPU implementation achieves 1.6-2.2x over
the CPU implementation on this data set. From the result of used-defined data
sets, we also find that the computational time of CPU and GPU implementations
increases with the increase of the size of data. Moreover, the GPU implementa-
tion performs better, achieves 3.1-4.4x speedup over the CPU implementation
on used-defined data sets.

6 Conclusions

In this paper, we presented the boolean matrix representation of the lower and
upper approximations in the composite information system. According to char-
acteristic of matrix operations, we proposed a parallel method based on matrix
for computing approximations. By time complexity analysis, the key steps are to
construct the relation matrix and to compute the boolean matrices of the lower
and upper approximations. Therefore, we used GPUs to parallelize and accel-
erate these steps. The performance comparison between these GPU implemen-
tation and CPU implementation was given, which showed our implementation
could accelerate the process of computing rough set approximations. We will
optimize the GPU implementation and design the composite rough set based
feature selection on GPUs in future.



A Parallel Implementation of Computing CRS Approximations on GPUs 249

Table 2. Comparison of GPU and CPU

Data Set Samples×Features(Classes) Computational time (s)
Speedup

CPU GPU

Connect

8000× 42(3) 0.641315 0.377427 1.699176
12000 × 42(3) 1.424260 0.860306 1.655527
16000 × 42(3) 2.624810 1.462150 1.795171
20000 × 42(3) 4.029880 2.253230 1.788490
24000 × 42(3) 6.022810 3.301330 1.824358
28000 × 42(3) 8.470160 4.541230 1.865168
32000 × 42(3) 13.08390 5.910770 2.213569

User-defined

640× 64(8) 0.006069 0.001801 3.369794
1280× 128(8) 0.026063 0.007054 3.694783
2560× 256(16) 0.159052 0.038413 4.140577
3840× 384(16) 0.366586 0.085946 4.265306
5120× 512(32) 1.217970 0.277423 4.390299
10240 × 1024(32) 4.972580 1.114920 4.460033
15360 × 1536(64) 18.809700 5.913800 3.180645
20480 × 2048(64) 33.803200 10.527700 3.210881
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Abstract. This paper presents a parallel version of the Maximal Clique
Enumeration (MCE) approach for discovering tolerance classes. Finding
such classes is a computationally complex problem, especially in the case
of large data sets or in content-based retrieval applications(CBIR). The
GPU implementation is an extension of earlier work by the authors on
finding efficient methods for computing tolerance classes in images. The
experimental results demonstrate that the GPU-based MCE algorithm
is faster than the serial MCE implementation and can perform compu-
tations with higher values of tolerance ε.

Keywords: CBIR, GPU, maximal clique enumeration, near sets, near-
ness measure, pre-class, tolerance near sets, tolerance space, tolerance
relation.

1 Introduction

The focus of this article is on an efficient method for finding all tolerance classes
on a set of objects using a parallel version of Maximal Clique Enumeration [5,2].
Tolerance classes are sets where all the pairs of objects within a set must satisfy
the tolerance relation and the set is maximal with respect to inclusion [6,22,19].
Finding such classes is a computationally complex problem, especially in content-
based image retrieval (CBIR) [25] involving sets of objects with similar features.
In the proposed application to content-based image retrieval (CBIR), classes
in image covers determined by a tolerance relation provide the content used in
CBIR.

Tolerance near sets are near sets defined by a description-based tolerance
relation [17,19]. In [6], a serial version for finding most tolerance classes us-
ing the Fast Library for Approximate Nearest Neighbours (FLANN) was used
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in the tolerance nearness measure (tNM) based on near set theory. In [11], a
signature-based tNM was compared with the Earth Movers Distance (EMD) [23]
and the Integrated Region Matching (IRM) [28]. Serial and parallel computing
approaches for finding all tolerance classes using NVIDIA’s Compute Unified
Device Architecture (CUDA) Graphics Processing Unit (GPU) were reported
in [9]. In [10], a new solution to the problem of finding tolerance classes was pro-
posed. The solution was based on the observation that the problem of discovery
of all tolerance classes can be mapped to the graph theory-based Maximal Clique
Enumeration (MCE) problem. The experimental results demonstrated that the
MCE algorithm has reduced complexity and is 10 times faster than the serial
FLANN algorithm. In [8], the serial MCE approach was compared with the
EMD and IRM approaches. The contributions of this article are i) a more ef-
fective GPU-based MCE algorithm for computing tolerance classes ii) ability to
conduct experiments with higher values for ε.

The article is organized as follows: Section 2 introduces the foundations for
this work namely: tolerance classes and nearness measure are used in this article.
Section 5 provides a brief review MCE approach. Finally, Section 6 presents the
results and discussion.

2 Foundation: Tolerance Classes and Nearness Measure

2.1 Tolerance Classes

Tolerance relations provide a view of the world without transitivity [26]. Con-
sequently, tolerance near sets provide a formal foundation for almost solutions,
solutions that are valid within some approximation, which is required for real
world problems and applications [26]. The basic structure which underlies near
set theory is a perceptual system [21]. A perceptual system is a specialised form
of information system consisting of a set of objects equipped with a family of
probe functions. The probe functions give rise to a number of perceptual rela-
tions between objects of a perceptual system [20,29].

A perceptual system 〈O,F〉 consists of a non-empty set O of sample perceptual
objects and a non-empty set F of real-valued functions φ ∈ F such that φ :
O → R [21]. Let B ⊆ F be a set of probe functions. Then, the description of a
perceptual object x ∈ O is a feature vector given by

φB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the vector φB, and each φi(x) in φB(x) is a probe
function value that is part of the description of the object x ∈ O. Formally, a
tolerance space can be defined as follows [30,26,22]. Let O be a set of sample
perceptual objects, and let ξ be a binary relation (called a tolerance relation)
on X (ξ ⊂ X ×X) that is reflexive (for all x ∈ X , xξx) and symmetric (for all
x, y ∈ X , if xξy, then yξx) but transitivity of ξ is not required. Then a tolerance
space is defined as 〈X, ξ〉. Let 〈O,F〉 be a perceptual system and let ε ∈ R+

0 . For
every B ⊆ F, the perceptual tolerance relation ∼=B,ε is defined by:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x)− φ(y) ‖2≤ ε},
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where ‖ · ‖
2

is the L2 norm. Finally, the algorithms presented in this paper are
based on the concepts of neighbourhoods and tolerance classes. Formally, these
concepts are defined as follows. Let 〈O,F〉 be a perceptual system and let x ∈ O.
For a set B ⊆ F and ε ∈ R+

0 , a neighbourhood is defined as

N(x) = {y ∈ O : x ∼=B,ε y}.

Note, all objects satisfy the tolerance relation with a single object in a neigh-
bourhood. In contrast, all the pairs of objects within a pre-class must satisfy
the tolerance relation. Thus, let 〈O,F〉 be a perceptual system. For B ⊆ F and
ε ∈ R+

0 , a set X ⊆ O is a pre-class iff x ∼=B,ε y for any pair x, y ∈ X . Similarly,
a maximal pre-class with respect to inclusion is called a tolerance class.

2.2 Nearness Measure

The following two definitions enunciate the fundamental notion of nearness be-
tween two sets and provide the foundation for applying near set theory to the
problem of CBIR.

Definition 1. Tolerance Nearness Relation [18,19]. Let 〈O,F〉 be a percep-
tual system and let X,Y ⊆ O, ε ∈ R+

0 . A set X is near to a set Y within the
perceptual system 〈O,F〉 (X��

F
Y ) iff there exists x ∈ X and y ∈ Y and there is

B ⊆ F such that x ∼=B,ε y.

Definition 2. Tolerance Near Sets [18,19]. Let 〈O,F〉 be a perceptual sys-
tem and let ε ∈ R+

0 ,B ⊆ F. Further, let X,Y ⊆ O, denote disjoint sets with
coverings determined by the tolerance relation ∼=B,ε, and let H∼=B,ε

(X), H∼=B,ε
(Y )

denote the set of tolerance classes for X,Y , respectively. Sets X,Y are tolerance
near sets iff there are tolerance classes A ∈ H∼=B,ε(X), B ∈ H∼=B,ε(Y ) such that
A��

F
B.

Observe that two sets X,Y ⊆ O are tolerance near sets, if they satisfy the
tolerance nearness relation. The tolerance nearness measure between two sets
X,Y is based on the idea that tolerance classes formed from objects in the
union Z = X ∪ Y should be evenly divided among X and Y if these sets are
similar, where similarity is always determined with respect to the selected probe
functions. The tolerance nearness measure is defined as follows. Let 〈O,F〉 be a
perceptual system, with ε ∈ R+

0 , and B ⊆ F. Furthermore, let X and Y be two
disjoint sets and let Z = X∪Y . Then a tolerance nearness measure between two
sets is given by

tNM∼=B,ε
(X,Y ) =

1 −
( ∑

C∈H∼=B,ε
(Z)

|C|
)−1

·
∑

C∈H∼=B,ε
(Z)

|C|min(|C ∩X |, |[C ∩ Y |)
max(|C ∩X |, |C ∩ Y |) . (1)



254 T. Alusaifeer et al.

3 Maximal Clique Enumeration

Maximal Clique Enumeration (MCE) consists of finding all maximal cliques
among an undirected graph, and is a well studied problem [2,4]. Briefly, let
G = (V,E) denote an undirected graph, where V is a set of vertices and E is
set of edges that connect pairs of distinct vertices from V . A clique is a set of
vertices where each pair of vertices in the clique is connected by an edge in E.
A maximal clique in G is a clique whose vertices are not all contained in some
larger clique, i.e. there is no other vertex that is connected to all the vertices in
the clique by edges in E.

The first serial algorithm for MCE was developed by Harary and Ross [5,2].
Since then, two main approaches have been established to solve the MCE prob-
lem [4], namely the greedy approach reported by Bron-Kerbosh [3] (and con-
current discovery by E. Akkoyunlu [1]), and output-sensitive approaches such
as those in [27,16]. Both implementations of the MCE algorithm in this paper
are a modification of the Bron-Kerbosh approach. The CPU-based approach is
a single system implementation of the algorithm reported in [24] (see [10] for
further details), while the GPU version is a port of the approach reported by
Bron-Kerbosh. Note, Jenkins et al. [12] explore the backtracking paradigm (i.e.
depth-first search methods) for GPU architectures, and use the MCE problem as
a case study. They report backtracking GPU algorithms are limited to 1.4-2.25
times a single CPU core. However, their results are for the general case, and
the solution here is tailored to a specific CBIR problem. A discussion on the
comparison of the GPU runtime versus a single CPU core is outside the scope
of this paper.

The Bron-Kerbosh approach is given in Algorithm 1, where the general idea
is to find maximal cliques through a depth-first search. Branches are formed
based on candidate cliques, and backtracking occurs once a maximal clique has
been discovered. Both algorithms mark new nodes and processes them, either
sequentially or in parallel, where processing nodes consists of either identifying
child nodes, or recording a maximal clique if a terminal node is discovered. Child
nodes are identified through the use of three disjoint sets and a pivot vertex, vp.
In particular, pivot vertices are used to prune equivalent sub-trees appearing in
different branches [4,14]; R is a set of vertices consisting of the (non-maximal)
clique formed up to the currently selected pivot; P is a set of potential vertices
that are connected to every vertex in R; and X is a set of vertices that are
connected to every vertex in R, but, if selected as a pivot, would constitute
a repeated maximal clique. Since our problem consists of a maximum of 456
vertices, these sets are represented as a series of 16 (4-byte) integers, where bit
i indicates where vi ∈ V belongs to the set.

4 CPU-Based Approach

The CPU-based approach used for comparison is a single system implementation
of the MCE algorithm reported in [24]. To simplify their implementation, our
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Algorithm 1. The BK algorithm

Input : A graph G with vertex V and edge set E
Output: MCE for graph G

1 R← {};
2 P ← V ;
3 X ← {};
4 CliqueEnumerate(R, P , X);

Procedure CliqueEnumerate(R, P , X)

1 if P = {} then
2 if X = {} then
3 Output R

4 else
5 vp ← The vertex in P that is connected to the greatest number of other

vertices in P ;
6 cur v ← vp;
7 while cur v �= NULL do
8 X ′ ← All vertices in X that are connected to cur v ;
9 P ′ ← All vertices in P that are connected to cur v ;

10 R′ ← R ∪ cur v ;
11 CliqueEnumerate(R′, P ′, X ′);
12 X ← X ∪ cur v ;
13 P ← P \ cur v ;
14 if there is a vertex v in P that is not connected to vp then
15 cur v ← v;

16 else
17 cur v ← NULL;

results were generated using a single process with multiple threads. The MCE
algorithm uses a stack of structure, which contains the nodes in the tree and each
thread process a single node at a time. The modified version of the algorithm
in [24] is given in Algorithm 2.

Algorithm 2. The Multi-threaded BK algorithm

Input : A graph G with vertex V and edge set E
Output: MCE for graph G

1 for i = 0; i < num threads; i++ do
2 Spawn thread Ti;
3 Have Ti run MCliqueEnumerate();

4 Wait for threads to finish processing;
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Procedure MCliqueEnumerate

1 foreach vertex vi assigned to the thread do
2 cp ← New candidate path node structure for vi;
3 for vj ∈ V do
4 if connected(vi, vj) then
5 if i < j then
6 Vertex vj is in cp’s P set;

7 else
8 Vertex vj is in cp’s X set;

9 Push cp onto shared stack;

10 while shared stack is not empty do
11 cur ← Pop a candidate path node structure from stack;
12 if cur ’s P and X lists are empty then
13 Output cur ’s compsub

14 else
15 Generate all cur ’s children (create child nodes and push onto stack);

5 Parallel MCE Implementation

This section presents the parallel GPU MCE Implementation. A GPU consists of
many of cores, ranging from several hundred to several thousand. For instance,
the GeForce GTX 460 used to generate the results in this paper consists of 336
CUDA cores, whereas a Tesla K20 contains 2496 cores. Under the Compute Uni-
fied Device Architecture (CUDA), these cores are organized into groups called
Streaming Multiprocessors (SM). The code that is executed on these cores is
called a kernel, and the abstraction that executes this code is called a thread.
CPUs are designed to minimize thread latency through the use of a memory
hierarchy based on caching data sets, while GPUs seek to maximize throughput
of parallel applications by hiding latency using many more threads. In fact, for
a GPU to be efficient, one must generate 1000s of threads for execution [13].
Threads are arranged into groups called blocks, and blocks are allocated to SM
for execution. Threads and blocks1 can be organized into 1, 2, or 3 dimensions.

Our approach consists of the six stages (Steps 1-7, excluding 3) given in Al-
gorithm 3, where each stage consists of one or more kernel calls. Notice, the
kernel calls within the loop at Step 3 are executed iteratively to avoid the irreg-
ular data access and load balancing problems reported in [12]. Specifically, for a
given iteration, nodes on the stack2 are processed by a series of GPU kernel calls
located in the body of a loop. The result is that the number of thread blocks

1 Note, only devices with computer capability greater than 2.0 can support 3 dimen-
sional block organization.

2 The data structure containing the nodes is called a stack, but nodes are processed
in parallel.
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is dynamic. Also, in Step 4, stack nodes are grouped into contiguous memory
locations to ensure memory accesses are coalesced. Lastly, for most of the kernel
calls, each block of threads processes one node; each row of threads in a block
processes one vertex in a set (for example, one vertex in P for the case of finding
the pivot); and each thread in a row processes a byte from a set.

The specifics of each step in Algorithm 3 are as follows. Step 1, is a parallel
kernel for finding neighbourhoods, and is based on the matrix multiplication
example from the CUDA SDK, where the main calculation is replaced by Eu-
clidean distance (without the square root operator). A more detailed explanation
of this procedure can be found in [9]. The output is a 456 × 456 boolean adja-
cency matrix where a 1 in row ri of column cj means object j belongs to the
neighbourhood of object i. Next, as mentioned above, each set will have a max-
imum of 456 objects, thus the adjacency matrix can be represented as an array
of length 4 × 5123, where each series of four integers represents the neighbour-
hood of one object. This array is created in Step 2, and will be used to select
pivots in each iteration in Step 4. Note, this choice of representation also enables
coalesced access to the GPU global memory and allows for a higher compute to
global memory access ratio due to the reduction in storage (over representing
sets as, for example, a series of integers). Also, the stack is initialized in Step 2.

Step 4 consists of three kernel calls. First, for each node on the stack, vp is
identified as the node in P that is connected to the greatest number other vertices
in P . These results are stored temporarily in global memory. Second, all nodes
that generated a vp (i.e. P �= ∅) are identified. Third, based on this information,
the nodes in the stack are reordered to ensure nodes to be processed in Step 6
are contiguous in global memory. Next, Step 5 is used to allocate memory for
the stack size in the next iteration of the loop, with a maximum stack size of
512 (since the nature of MCE does not allow prediction of the search tree size).
Then, Step 6 visits each node and generates new nodes (with new R,P , and X
sets) using the vp identified in Step 4. Finally, Step 7 outputs the set R as a
tolerance class for any node where P = ∅ and X = ∅, and discards any nodes
where P = ∅ and |X | > 0.

Algorithm 3. Main Loop Iteration for Parallel Algorithm

Input : O and φB(x)∀x ∈ O
Output: Set of tolerance classes H∼=B,ε(O)

1 Generate neighbourhood matrix;
2 Reduce neighbourhood matrix to integers;
3 while nodes in stack do
4 Find vp for each node on stack;
5 Calculate the number of output nodes for each node on stack;
6 Generate the new nodes resulting from choice of vp;
7 Detect terminal nodes to extract maximal cliques;

3 512 is the next power of 2 larger than 456.
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6 Results and Discussion

The algorithm presented here is compared using CBIR, where the goal is to
retrieve images from databases based on the content of an image rather than
on some semantic string or keywords associated with the image. The content of
the image is determined by functions that characterize features such as colour,
texture, shape of objects, and edges. In our approach to CBIR, a search entails
analysis of content, based on the tNM nearness measure (see, e.g. [6]) between a
query image and test image. Moreover, the nearness measure on tolerance classes
of objects derived from two perspective images provides a quantitative approach
for accessing the similarity of images. To generate our results, the SIMPLIcity
image database [15], a database of images containing 10 categories with 100
images in each category, was used, where the dimensions of each image is either
384× 256, or vice versa. To perform the experiment, each image in the database
is compared to the 1000 images in the database, and ranked using the tNM
nearness measure. Then, precision and recall values can be calculated based on
this ranking and the category of each image in the ranked list.

Notice, results obtained using the tNM are dependent on the selection of ε
used in the perceptual tolerance relation, which determines the covering for a
set of objects (obtained from the images being compared). Recall, in any given
application (regardless of the distance metric), there is always an optimal ε when
performing experiments using the perceptual tolerance relation [6]. For instance,
a value of ε = 0 produces little or no pairs of objects that satisfy the perceptual
tolerance relation, and a value of ε =

√
l, means that all pairs of objects satisfy

the tolerance relation4. Consequently, ε should be selected such that the objects
that are relatively5 close in feature space satisfy the tolerance relation, and the
rest of the pairs of objects do not. The selection of ε is straightforward when a
metric is available for measuring the success of the experiment. Thus, if runtime
were not an issue, the value of ε should be selected based on the best result of
the evaluation metric, which, in the context of CBIR, is the best results in terms
of precision vs. recall.

The results were generated by partitioning the images into 228 subimages
(using a size of 20 × 20 pixels), where each subimage was considered as an object
in the near set sense, i.e. each subimage is a perceptual object, and each object
description consists of the values obtained from image processing techniques on
the subimage. This technique of partitioning an image, and assigning feature
vectors to each subimage is an approach that has also been traditionally used in
CBIR. Formally, an RGB image is defined as f = {p1,p2, . . . ,pT }, where pi =
(c, r, R,G, B)T, c ∈ [1,M ], r ∈ [1, N ], R,G,B ∈ [0, 255], and M,N respectively
denote the width and height of the image and M × N = T . Further, define a
square subimage as fi ⊂ f such that fi∩fj = {} for i �= j and f1∪f2 . . .∪fs = f,

4 For normalized feature values, the largest distance between two objects occurs in
the interval [0,

√
l], where l is the length of the feature vectors.

5 Here, distance of objects that are relatively close will be determined by the
application.
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where s is the number of subimages in f . Next, O can be defined as the set of all
subimages, i.e., O = {f1, . . . , fs}, and F is a set of image processing descriptors
or functions that operate on images. Then, the nearness of two images can be
discovered by partitioning each of the images into subimages and letting these
represent objects in a perceptual system, i.e, let the sets X and Y represent the
two images to be compared where each set consists of the subimages obtained
by partitioning the images. Then, the set of all objects in this perceptual system
is given by Z = X ∪ Y .

In the ideal case, all images from the same category would be retrieved before
any images from other categories. In this case, precision would be 100% until
recall reached 100%, at which point precision would drop to # of images in query
category / # of images in the database. As a result, our final value of precision
will be ∼11% since we used 9 categories each containing 100 images. Note, only
9 categories were used since category 4 is easy to classify since it consists of
drawn dinasours, while the rest are natural images.

The results are presented in Table 1 and Fig. 1, where the average runtime
to compare two images is given in Table 1, and the average precision vs. recall
plots are given in Fig. 1. The results were generated using a system containing
an Intel CORE i7-930 CPU, 6 GB of RAM, and a GeForce GTX 460 GPU
containing 768 MB of RAM. First, notice the GPU MCE algorithm outperforms
the CPU MCE implementation for all values of ε. Moreover, the CPU runtime
is already prohibitively long using ε = 0.3. Recall, each CBIR test consists
of 900 × 901/2 = 405450 comparisons. Thus, the total runtime for the CPU
algorithm at ε = 0.3 is approximately 11.5 days (which can be reduced using
multithreading and multiple CPU cores). Also, precision vs. recall results are
not reported for ε = 0.3 for images from category 7 (see, e.g. Fig. 1(h)), since
the runtime was too large for some of the images in this category. For instance,
some image pairs produced in excess of 700,000 tolerance classes (on only 456
objects) and had run times of over 2 hours. Lastly, the run times for the CPU
approach are almost the same for ε = 0.1 and ε = 0.2, which can be attributed to
the overhead limiting the minimum runtime. This can be verified by considering
the number of non-zero tNM values for a particular image query. For instance,
image 704 produces 37 non-zero values for ε = 0.1, and 285 for ε = 0.2.

Next, Fig. 1 presents a comparison of the precision vs. recall for both ap-
proaches. Notice, the plots are the same, indicating that both approaches pro-
duce the same results for a given value of ε. Consequently, for equivalent run
times, the GPU algorithm can produce results using a larger value of epsilon,
which, as reported in [7] leads to improvement in CBIR results. In the case of
the CPU implementation, results for ε = 0.4 are not given due to prohibitive
run times.

Next, the following presents some observations of the reported results. First,
notice that some of the curves have a sharp point of inflection (see, e.g., ε = 0.1
close to 20% recall in Fig. 1(b)). These points represent the location at which
the remaining tNM values for all query images in the category produce a tNM
value of zero. In order to provide this clear demarcation, any images from the
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Fig. 1. Average precision versus recall plots grouped into four columns. From left to
right: Col. 1 GPU results (Cat. 0-5), Col. 2 CPU results (Cat. 0-5), Col. 3 GPU results
(Cat. 6-9), and Col. 4 CPU results (Cat. 6-9).

Table 1. Algorithm Runtimes

ε CPU MCE (sec.) GPU MCE (sec.)
0.1 0.85 0.10
0.2 0.84 0.06
0.3 2.45 1.42
0.4 28.71 3.39

same category as the query image that produced a tNM value of zero were
ranked last in the search. Finally, the precision vs. recall results for ε = 0.3 are
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better than ε = 0.4. These results suggest that the optimal value of ε is in the
interval [0.3, 0.4) for this application.

7 Conclusion

This article presents results in the context of CBIR, where perceptual informa-
tion within the framework of near set theory is used to discern affinities between
pairs of images. Specifically, perceptually relevant information was extracted
from a set objects formed from pairs of images, where each object has an associ-
ated object description. It is the information contained in these feature vectors
that is used to extract perceptual information represented by the discovered tol-
erance classes. The experimental results demonstrate that the GPU-based MCE
algorithm is faster than the serial MCE implementation and is also able to per-
form computations with higher values of tolerance ε which in turn leads to better
retrieval results.

References

1. Akkoyunlu, E.A.: The enumeration of maximal cliques of large graphs. SIAM Jour-
nal on Computing 2(1), 1–6 (1973)

2. Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem. In:
Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. 4.
Kluwer (1999)

3. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM 16(9), 575–577 (1973)

4. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theoretical Computer Science 407(1), 564–568 (2008)

5. Harary, F., Ross, I.C.: A procedure for clique detection using the group matrix.
Sociometry 20(3), 205–215 (1957)

6. Henry, C.J.: Near Sets: Theory and Applications. Ph.D. thesis (2010)
7. Henry, C.J.: Perceptual indiscernibility, rough sets, descriptively near sets, and

image analysis. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets
XV. LNCS, vol. 7255, pp. 41–121. Springer, Heidelberg (2012)

8. Henry, C.J., Ramanna, S.: Signature-based perceptual nearness. Application of
near sets to image retrieval. Mathematics in Computer Science, 71–85

9. Henry, C.J., Ramanna, S.: Parallel computation in finding near neighbourhoods.
In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954,
pp. 523–532. Springer, Heidelberg (2011)

10. Henry, C.J., Ramanna, S.: Maximal clique enumeration in finding near neighbour-
hoods. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.)
Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 103–124. Springer, Heidel-
berg (2013)

11. Henry, C.J., Ramanna, S., Levi, D.: Qantifying nearness in visual spaces. Cyber-
netics and Systems 44(1), 38–56 (2013)

12. Jenkins, J., Arkatkar, I., Owens, J.D., Choudhary, A., Samatova, N.F.: Lessons
learned from exploring the backtracking paradigm on the GPU. In: Proceedings
of the 17th International Conference on Parallel Processing, vol. II, pp. 425–437
(2011)



262 T. Alusaifeer et al.

13. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann, Waltham (2013)

14. Koch, I.: Fundamental study: Enumerating all connected maximal common sug-
raphs in two graphs. Theoretical Computer Science 250(1-2), 1–30 (2001)

15. Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical
modeling approach. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 25(9), 1075–1088 (2003)

16. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004)

17. Peters, J.F.: Near sets. General theory about nearness of objects. Applied Mathe-
matical Sciences 1(53), 2609–2629 (2007)

18. Peters, J.F.: Tolerance near sets and image correspondence. International Journal
of Bio-Inspired Computation 1(4), 239–245 (2009)

19. Peters, J.F.: Corrigenda and addenda: Tolerance near sets and image correspon-
dence. International Journal of Bio-Inspired Computation 2(5), 310–318 (2010)

20. Peters, J.F., Naimpally, S.: Applications of near sets. Amer. Math. Soc. No-
tices 59(4), 536–542 (2012)

21. Peters, J.F., Wasilewski, P.: Foundations of near sets. Information Sciences 179(18),
3091–3109 (2009)

22. Peters, J.F., Wasilewski, P.: Tolerance spaces: Origins, theoretical aspects and ap-
plications. Information Sciences 195, 211–225 (2012)

23. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications
to image databases. In: Proceedings of the 1998 IEEE International Conference on
Computer Vision, pp. 59–66 (1998)

24. Schmidt, M.C., Samatova, N.F., Thomas, K., Byung-Hoon, P.: A scalable, parallel
algorithm for maximal clique enumeration. Journal of Parallel and Distributed
Computing 69, 417–428 (2009)

25. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based
image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22(12), 1349–1380 (2000)

26. Sossinsky, A.B.: Tolerance space theory and some applications. Acta Applicandae
Mathematicae: An International Survey Journal on Applying Mathematics and
Mathematical Applications 5(2), 137–167 (1986)

27. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing 6, 505–517 (1977)

28. Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23(9), 947–963 (2001)

29. Wolski, M.: Granular computing: Topological and categorical aspects of near and
rough set approaches to granulation of knowledge. In: Peters, J.F., Skowron, A.,
Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS,
vol. 7736, pp. 34–52. Springer, Heidelberg (2013)

30. Zeeman, E.C.: The topology of the brain and the visual perception, pp. 240–256.
Prentice Hall, New Jersey (1965)



FPGA in Rough Set Based Core

and Reduct Computation
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Abstract. In this paper we propose a combination of capabilities of the
FPGA based device and PC computer for data processing using rough
set methods. Presented architecture has been tested on a random data.
Obtained results confirm the significant acceleration of the computation
time using hardware supporting rough sets operations in comparison to
software implementation.
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1 Introduction

The theory of rough sets has been developed in the eighties of the twentieth
century by Prof. Z. Pawlak. Rough sets are used as a tool for data analysis
and classification as well as for the extraction of important characteristics that
describe the objects. Rough sets allow dealing with uncertain and incomplete
data, and due to its versatility, are widely used in various areas of life, including
medicine, pharmacology, banking, market and stock research, process control,
image and audio processing and exploration of the web.

There exist many software implementations of rough set methods and algo-
rithms. However, they require significant amount of resources of a computer
system and a lot of time for algorithms to complete, especially during processing
large amount of data. This is an important obstacle to use rough set methods
in the data analysis in computer systems because of time needed for operation
to complete. This type of problem also exists in embedded systems with limited
resources in terms of processor core’s and memory clock frequency.

Field Programmable Gate Arrays (FPGAs) are a group of integrated circuits,
whose functionality is not defined by the manufacturer, but by the user. The user
can implement his own project of the specialized digital system in the FPGA
structure. Significant facilitation in the project creation is the possibility of using
a hardware description language, such as VHDL (Very High Speed Integrated
Circuits Hardware Description Language), which allows and speeds up describing
architecture and the functional properties of the digital system. All these features
makes a hardware implementation of rough set method in FPGAs possible, and
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thanks to that they can be easily used in embedded systems, as well as in desktop
systems to process huge amounts of data.

At the moment there is no comprehensive hardware implementation of rough
set methods. In the literature one can find descriptions of concepts or partial
rough set methods hardware implementations. The idea of sample processor gen-
erating decision rules from decision tables was described by Pawlak in [7]. Lewis,
Perkowski and Jozwiak in [5] presented architecture of rough sets processor based
on cellur networks described in [6]. Kanasugi and Yokoyama [2] developed a con-
cept of hardware device capable of minimizing the large logic functions created
on the basis of discernibility matrix. Tiwari, Kothari and Keskar [10] has pre-
sented the design for generating reduct from binary discernibility matrix. More
detailed summary of the existing ideas and hardware implementations of rough
set methods can be found in [3,4].

Solution proposed in this article is a combination of capabilities of the FPGA
based device and PC computer for data processing using rough sets. Presented
architecture has been tested on a random data. Obtained results confirm the sig-
nificant acceleration of the computation time using hardware supporting rough
set operations in comparison to software implementation.

The paper is organized as follows. In Section 2 we present some selected
information about core and reduct calculation using discernibility matrix. The
Section 3 is devoted to our system architecture. The Section 4 contains results
of experiments.

2 Discernibility Matrix in Core and Reduct Computation

The notion of a discernibility matrix was introduced by Prof. A. Skowron. For
a formal definition of the discernibility matrix see e.g. [8,9]. Both the rows and
columns of the discernibility matrix are labeled by the objects. An entry of
the discernibility matrix is the set that consists of all condition attributes on
which the corresponding two objects have distinct values. If an entry consists
of only one attribute, the unique attribute must be a member of core (for a
formal definition of the core see e.g. [8,9]). It is possible for the core to be
empty. This means that there is no indispensable attribute. Therefore, any single
condition attribute in such a decision table (for a formal definition see e.g. [9])
can be deleted without altering the quality of approximation of classification.
Core can be used as the starting point of reduct computation. Some attributes
can be removed from the set of condition attributes but the information which
we need from the decision table is not lost. We can compute some reduct based
on discernibility matrix using the following observation: If a condition attribute
appears more times in the discernibility matrix, then the more important the
attribute might be.

Sketch of the algorithm
Input: a discernibility matrix
Output: Core and short reduct
Method:
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1. Set: Core = ∅ and Reduct = ∅.
2. Step Core: For each attribute a ∈ A if a is a singleton in some entry of

discernibility matrix, then Core = Core ∪ {a}. In a hardware every entry
of discernibility matrix is tested if it is a singleton and for such entries is
calculated bitwise OR to obtain a core.

3. Step Superreduct: Calculate the number of occurrences of each attribute
in the discernibility matrix and choose the most frequent attribute e.g. b,
Reduct = {b}. Now we are taking under consideration only those cells of
discernibility matrix that are not containing b and find the most frequent
attribute. We repeat this step until in every cell of discernibility matrix
appears some attribute from Reduct. In a hardware a temporary reduct
register bit is set at the position representing the most frequent attribute.
For further calculations the entries from discernibility matrix where the bits
are set at the same positions as in temporary reduct register are not taken.

4. Step Elimination: For each attribute a ∈ Reduct if discernibility with respect
to Reduct \ {a} is the same as for Reduct, then Reduct = Reduct \ {a}.

Example 1. Let the set of objects U = {x1, x2, x3, x4, x5, x6, x7} and the set of
condition attributes A = {a1, a2, a3, a4, a5, a6, a7}, see an illustrative decision
table in Table 1.

Table 1. Illustrative decision table

U/A ∪ {d} a1 a2 a3 a4 a5 a6 a7 d
x1 0 0 0 0 0 0 0 0

x2 1 1 0 0 0 0 0 1

x3 1 0 1 0 0 0 0 1

x4 1 0 0 1 0 0 0 1

x5 0 1 0 0 1 0 0 1

x6 0 0 1 0 0 1 0 1

x7 0 0 0 1 0 0 1 1

In Table 2 we present a discernibility matrix for the illustrative decision table
from Table 1.

Table 2. Discernibility matrix for illustrative decision table

U/U x1 x2 x3 x4 x5 x6 x7

x1 ∅ {a1, a2} {a1, a3} {a1, a4} {a2, a5} {a3, a6} {a4, a7}
x2 {a1, a2} ∅ ∅ ∅ ∅ ∅ ∅
x3 {a1, a3} ∅ ∅ ∅ ∅ ∅ ∅
x4 {a1, a4} ∅ ∅ ∅ ∅ ∅ ∅
x5 {a2, a5} ∅ ∅ ∅ ∅ ∅ ∅
x6 {a3, a6} ∅ ∅ ∅ ∅ ∅ ∅
x7 {a4, a7} ∅ ∅ ∅ ∅ ∅ ∅
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Using ”Step Core” we obtain Core = ∅ and using ”Step Superreduct” we
obtain one superreduct Reduct = {a1, a2, a3, a4}. But, we can obtain shorter
reducts, e.g. Reduct = {a2, a3, a4}. This example shows, that ”Step Elimination”
is necessary for reduct calculations.

3 Hardware Solution Architecture

The hardware system was written in VHDL (Very high speed integrated circuits
Hardware Description Language). The solution can be used for binary decision
tables (tables with binary attributes only). The method of calculation of the
discernibility matrix is implemented in Discernibility Matrix Comparator Block.
This block also contains implementation of the core calculation method. Calcu-
lation of single reduct is implemented in Reduct Evaluation Block.
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3.1 Discernibility Matrix Comparator Block

The system design of the Discernibility Matrix Comparator Block (DMCB) is
shown on Fig. 1. DMCB consists of Discernibility Comparator Block (DCB)
and Core Comparator Block (CCB). DCB is designed to compare values of two
objects from a decision table. CCB is designed to find the singletons from the
discernibility matrix.

Decision table is passed to the DMCB through the DATa Register DATR
and the results are stored in two registers:

– Discernibility Matrix Register (DMR) - a register for storing the discerni-

bility matrix; size of this register is equal to n(n−1)
2 elements, where n is

the number of objects in the decision table (in Example 1 size is equal to
7·(7−1)

2 = 21 elements) and the size of each element (in bits) is equal to the
number of the attributes,

– COre REgister (CORE) - a register that stores result of core calculation.
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DMCB is designed as a combinational circuit and thus do not need a clock
signal for proper work. Its functionality is basing on principles described in
Section 2 (for Example 1 CORE register contains value 0). Amount of time
needed to obtain correct results depends only on propagation time of logic blocks
inside the FPGA. This property allows to significantly increase the speed of
calculations because the time of propagation in contemporary FPGAs usually
do not exceed 10 ns.

3.2 Reduct Evaluation Block

The system design of the Reduct Evaluation Block (REB) is shown on Fig. 2.
REB consists of multiplexer R-MUX (for selecting appropriate attribute), Ones
Counter (for counting the number of occurrences of an attribute), Maximum (for
choosing the most common attribute, in Example 1 in first step the attribute a1
is choosen) and Control Logic.

REB is connected to DMR register and has one output register - the REDuct
register (RED), that stores calculated value of reduct.

REB is designed as sequential circuit (finite state machine) and its function-
ality is basing on principles described in Section 2.

4 Experimental Results

For the research purpose some of the rough set methods were implemented in
C language. The main reason for choosing such language was deterministic pro-
gram execution time, huge flexibility in the software creation, easiness of low-level
communication implementation and the future plans of moving control program
to the microprocessor independent from PC. The role of the microprocessor
would be controlling operation of rough set hardware implementation modules.
Microcontroller, due to the limited memory and computational resources in com-
parision to the PC, should not use additional runtime environments required by
e.g. Java.

The results of the software implementation were obtained using a PC equipped
with an Intel Core 2 Duo T9400 with 2.53 GHz clock speed running Windows
XP Professional SP3. The source code of application was compiled using the
GNU GCC 4.6.2 compiler. Given times are averaged for 10 000 of the algorithm
runs with the same set of data.

The hardware implementation used single execution unit module covering the
entire decision table. VHDL simulator and the development board equipped with
an Altera FPGA were used during the research.

Table 3 presents the results of the time elapsed for software and hardware
solutions for the calculating core and single reduct using exemplary randomly
generated binary data sets. The core and reduct calculations were performed
on discernibility matrix basis. k in the table denotes number of conditional at-
tributes and n is the number of objects in decision table (in Example 1 k = 7
and n = 7).
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Table 3. Comparision of execution time for calculating core and single reduct

Data size Software - tS Hardware - tH
tS
tH

(k + 1)× n Core Reduct Core Reduct Core Reduct
[μs] [μs] [μs] [μs] — —

8× 8 53 75 3.05 4.75 17 16
9× 9 77 105 3.43 5.54 22 19

10× 10 103 144 3.81 6.38 27 23
11× 11 148 202 4.19 4.19 35 28
12× 12 197 263 4.57 4.57 43 32
13× 13 245 325 4.95 9.15 50 36
14× 14 341 452 5.33 10.16 64 44
15× 15 423 563 5.72 11.22 74 50
16× 16 525 698 6.10 12.32 86 57
32× 32 5 234 7 484 12.19 64.58 429 116
40× 48 16 875 24 531 18.29 100.06 923 245
48× 64 38 750 56 719 24.38 141.95 1 589 400
64× 64 56 250 87 500 31.25 198.54 1 800 441

128× 128 467 187 996 875 48.77 872.70 9 580 1 142

Fig. 3 and Fig. 4 contains a graphs showing the relationship between the size
of data (number of objects times the number of attributes) and execution time of
calculating the core and single reduct in given data set in software and hardware
implementation respectively. Data size axis has the logarithmic scale on both
graphs.

Fig. 3. Comparison of execution time for calculating core and single reduct in software

Results show a significant increase in the speed of data processing. Hardware
module execution time compared to the software implementation is at least 1
order of magnitude shorter what is shown in Table 3 in columns tS

tH
and is

increasing with larger data sets. Let comparison of objects’ attribute value in
the decision table or getting an attribute from the data container (e.g. linked list)
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Fig. 4. Comparison of execution time for calculating core and single reduct in hardware

be an elementary operation. Let assume that hardware module is big enough to
store the entire decision table.

First step of implemented algorithms is creating discernibility matrix. Using
this matrix, the core and single reduct are calculated. Computational complexity
of software implementation for the creating discernibility matrix is Θ(n2k) and
using hardware implementation, complexity is Θ(n), where k is the number of
conditional attributes and n is the number of objects in decision table. Compu-
tational complexity of software implementation for the core calculation is Θ(n2),
while determining the single reduct, the complexity is Θ(n2k2). Using hardware
implementation, complexity of core calculation is Θ(1), while complexity of sin-
gle reduct calculation is Θ(k2).

Of course, for most real data sets it will be impossible to create a single
hardware structure capacious enough to store the entire data set. In this case,
the input data set must be divided into a number of subsets, where each of
them will be separately processed by a single hardware unit. The decomposition
must be done in terms of objects and attributes. In such case, the computational
complexity of software and hardware implementation will be similar, but in terms
of time needed for data processing, hardware implementation will be still much
faster than software implementation and increasing with larger data sets.

5 Conclusions and Future Research

The hardware implementation is the main direction of using scalable rough set
methods in real time solutions. Software implementations are universal, but
rather slow. Hardware realizations are deprived of this universality, however,
allow us performing specific calculations in substantially shorter time.

As it was presented, performing calculations using hardware implementations
of elementary rough sets methods - calculating discernibility matrix and deter-
mining cores and reducts, gives us a huge acceleration in comparison to software
solution.

The system with hardware implementation of rough sets methods can be used
in embedded systems such as industrial controllers or as an alternative and very
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fast method of process control and data classification. The field of potential
usage of the system can be very wide due to its versatility.

Further research will focus on developing methods for efficient storing dis-
cernibility matrices for larger data sets. The effort will be put also towards the
hardware implementation of other elementary rough set methods. It is also re-
quired to improve the software control part of the entire system.
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Fast Approximate Attribute Reduction

with MapReduce

Ping Li, Jianyang Wu, and Lin Shang

Department of Computer Science and Technology,
Nanjing University, Nanjing 210023, China

Abstract. Massive data processing is a challenging problem in the age
of big data. Traditional attribute reduction algorithms are generally
time-consuming when facing massive data. For fast processing, we in-
troduce a parallel fast approximate attribute reduction algorithm with
MapReduce. We divide the original data into many small blocks, and use
reduction algorithm for each block. The reduction algorithm is based on
attribute significance. We compute the dependency of each reduction on
testing data in order to select the best reduction. Data with different sizes
are experimented. The experimental results show that our proposed al-
gorithm can efficiently process large-scale data on Hadoop platform. In
particular, on high dimensional data, the algorithm runs significantly
faster than other latest parallel reduction methods.

Keywords: attribute reduction, MapReduce, rough set.

1 Introduction

Pawlak proposed rough set theory in 1982 [1]. It is a useful mathematical tool
in uncertainty study. Attribute reduction is one of the most important issues in
rough set theory, which removes redundant condition attributes and ensures the
same classification ability. Varieties of attribute reduction algorithms based on
rough sets have been proposed [2-7]. They are based on attribute significance [2-
3], discernibility matrix [4-5], entropy [6-7], and etc.., among which the attribute
significance-based method is efficient and easy to understand.

Internet companies analyze massive data sets coming from a variety of web ap-
plications every day. Analysis of massive data is becoming increasingly valuable
for businesses. By analyzing data, companies can improve their service quality
and detect changes in patterns over time according to the worked-out results.
Due to the size of massive data, the complexity of data processing has also been
increased. Traditional centralized data mining algorithms [8] were not able to
process massive data efficiently. Parallel computing is one way to deal with large-
scale data. There are many parallel computing technologies, such as OpenMP
[9], MPI[10], and etc.. However low-level details must be considered when using
these technologies. In this background, Google has distributed file system GFS
[11] and parallel programming mode MapReduce [12]. MapReduce is a software
programming framework and high-performance parallel computing platform for
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the large-scale data processing. The main idea is to divide and conquer. The
task is divided into many sub-tasks for parallel computing. Then the system
aggregates results which come from each sub-task.

Classic attribute reduction algorithm loads all the data into main memory
to obtain reduction, which is not suitable for massive data processing. Many
researchers have done a lot of work on large-scale data reduction. Most of them
use parallel technology. Xiao et al.[13] have taken advantage of parallel comput-
ing. They divided the big task into many small tasks. Those small tasks were
assigned to multiple processors at the same time, which significantly improved
the efficiency. Liang et al.[14] have proposed a rough feature selection algorithm
with a multi-granulation view. The algorithm first divided the large-scale data
into different small granularities and then computed the reduction of each small
granularity. Investigating all of the estimates on small granularities together, the
algorithm could obtain an approximate reduction. However the algorithm must
work with additional code to divide data. Qian et al.[15] have proposed a parallel
algorithm, which used MapReduce to divide data automatically. In their algo-
rithm, the calculating of equivalence classes was parallelized with MapReduce.
Four reduction algorithms were tested and compared in the aspect of running
time. One of four algorithms is based on positive region, which had the disad-
vantage of time-consuming for high dimensional data.

Aiming to solve the time-consuming problem, we will put forward a parallel
fast approximate attribute reduction algorithm with MapReduce framework. We
divide the original data into many small blocks, then use reduction algorithm
for each block. At last, we calculate the dependency of each reduction on testing
data in order to select the best reduction. Dependency of attribute sets is defined
in Definition 7. Experiments show that our algorithm runs significantly faster
than the newly proposed algorithm by Qian[15] on high dimensional data.

The paper is organized as follows: In section 2, we introduce the basic theory
of rough sets. In section 3, we introduce the parallel fast approximate reduction
algorithm in detail. In section 4, we use twelve data sets to illustrate the feasibil-
ity and efficiency of our proposed algorithm. In the last, we draw a conclusion.

2 Preliminaries

In this Section, we will present some basic knowledge about rough sets [16].
Definition 1. A decision table is defined as S = 〈U,C,D, f〉, where U is the
domain. A = C∪D is the attribute set, among which C is the condition attribute
set and D is the decision attribute set, at the same time, C∩D = φ. V =

⋃
α∈U Vα

is the set of attribute values. f : U × (C ∪ D) → V is a function, which gives
attribute a its value.

Definition 2. For decision table S = 〈U,C,D, f〉, attribute subset P ⊆ (C ∪
D) determines an indiscernibility relation in the following way:

IND(P ) = {(x, y) ∈ U × U |∀a ∈ P, f(x, a) = f(y, a)}. (1)

Definition 3. Suppose S = 〈U,C,D, f〉 is a decision table, P ⊆ (C ∪ D),
Q ⊆ (C ∪D), we define
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POSP (Q) =
⋃

X∈U/Q

P (X). (2)

POSP (Q), called a positive region of the partition U/Q with respect to P , is the
set of all elements of U that can be uniquely classified into partitions of U/Q,
by means of P . P (X) = {x ∈ U : [x]P ⊆ X} called P -lower approximation. [x]p
is an equivalence class of x concerning P .

Definition 4. According to the understanding of the definition of the positive
region, Liu gives an equivalent definition of the positive region[17]:

POSP (Q) =
⋃

Y ∈U/P,|Y/Q|=1

Y . (3)

U/P = {Y1, Y2, ...Yn}. For Yi, (i = 1, 2, ...n), calculate |Yi/Q|, if |Yi/Q| = 1,
add Yi into POSP (Q). In our reduction algorithm, we use this definition and
approach to calculate the positive region.

We can say that attribute a ∈ C is D-dispensable in C, if POSC(D) =
POS(C−{a})(D), otherwise the attribute a is D-indispensable in C. If all at-
tributes a ∈ C are C-indispensable in C, then C will be called D-independent.

Definition 5. Subset C′ ⊆ C is a D-reduct of C, iff C′ is D-independent and

POSC(D) = POSC′(D). (4)

Definition 6. The significance of attribute a, a ∈ C, is defined by

Siga =
|POS{a}(Q)|

|U | , (5)

where Q ⊆ D, U is the domain.
Definition 7. The dependency of attributes P , P ⊆ C, is defined by

γ(P,Q) =
|POS{P}(Q)|

|U | , (6)

where Q ⊆ D, U is the domain.

3 A Fast Approximate Attribute Reduction Algorithm
with MapReduce

With MapReduce, we can divide the huge amounts of data into small blocks,
and assign each small block to the Mapper node. In each Mapper node, it re-
duces the attributes using the reduction algorithm based on attribute signifi-
cance. In each Reducer node which accepts the reduction results from Mapper
nodes, we calculate the dependency of reductions on testing data in order to
estimate which is better. Reducer nodes output the final results in the form like
〈reduction, dependecy〉, where reduction is the reduction result from mapper
node and dependency is the dependency of each reduction on testing data.
In Algorithm 1, we describe attribute reduction algorithm based on the attribute
significance.
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Algorithm 1. Attribute reduction algorithm based on the attribute significance.

Input:
Decision table S = (U,C,D, V, f).

Output:
Reduction.

1: Compute significance of all the condition attributes according to Definition 6 and
store them in an array.

2: Sort the attributes according to the significance.
3: Given red = φ. Left = sortedArray.

Calculate the dependency of condition attributes C on decision attributes D, de-
noted by k.

4: Calculate the dependency of decision attributes D on red, denoted by ktemp.
if ktemp == k goto 5,
otherwise Select the attribute a which has the greatest significance from Left sets,
red = red ∪ {a}. Left = Left− {a}.
Repeat 4.

5: Output reduction results.

Based on the formula of attribute significance defined in Definition 6, we select
one attribute which has the greatest significance to put into reduction set each
time until the dependency of all the condition attributes on decision attribute
equals the dependency of reduction on decision attribute.
We describe the parallel reduction algorithm in detail. Algorithm 2 illustrates
function Map and Algorithm 3 illustrates function Reduce.

Algorithm 2. map()

Input:
〈Null, Si〉 where the key is Null, the value is Si = (Ui, C,D, V, f).

Output:
〈redi, 1〉 where the key is redi which is the reduction of Si, the value is 1.

1: calculate reduction redi for Si according to algorithm 1.
2: output 〈redi, 1〉.

Algorithm 3. reduce()

Input:
〈red,< 1, 1, 1, ..., 1 >〉 where the key is red which is the reduction result from
Mapper nodes, the value is the list of values that have same reduction.

Output:
〈red, dependency〉 where the key is red, the value is dependency.

1: according to Definition 7, calculate the dependency of red on testing data.
2: output 〈red, dependency〉

Fig 1 shows how our parallel algorithm works with MapReduce framework.
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Fig. 1. The flow of parallel algorithm with MapReduce

4 Experiments

4.1 Experiments Setup

Our experimental environment is as follows: Hardware environment: Inter(R)
Core(TM) 2 Duo, 2.4GHz, 4GB memory; Software environment: the operation
system is Ubuntu 11.04; Hadoop cluster configuration: the version of Hadoop is
1.0.4 with 1 master node and 8 slave nodes.

The experiments have 3 steps. Experiment 1 aims to investigate the rela-
tionship between number of samples and running time. Experiment 2 aims to
investigate the relationship between number of condition attributes and running
time. Experiment 3 aims to investigate the relationship between number of slave
nodes and running time.

4.2 Data Sets

We carried out three groups of experiments. In experiment 1, node sizes and
condition attribute sizes are unchanged while sample sizes are increased; In ex-
periment 2, node sizes and sample sizes are unchanged while condition attribute
sizes are increased; In experiment 3, sample sizes and condition attribute sizes
are unchanged while node sizes are increased. We use artificial data sets to test
the performance of our parallel algorithm, and use twelve data sets to test each
experiment. Data sets are as follows:
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Table 1. Data Sets and Nodes Configuration Table For Experiments

Data Set Sample Size Attribute size Node Size Data Size Experiments

DS1 200 2000 8 2.45MB 1

DS2 2000 2000 8 24.5MB 1

DS3 20000 2000 8 245MB 1

DS4 200000 2000 8 2.45GB 1

DS5 2000 200 8 2.08MB 2

DS6 2000 2000 8 24.5MB 2

DS7 2000 20000 8 403MB 2

DS8 2000 200000 8 3.14GB 2

DS9 20000 20000 1 2.77GB 3

DS10 20000 20000 2 2.77GB 3

DS11 20000 20000 4 2.77GB 3

DS12 20000 20000 8 2.77GB 3

4.3 Experiment Results

Our experimental results are as follows. From the results of experiments, we
can see that the numbers of attributes after reduction are about 5 to 9 and the
classification accuracy of Algorithm 1 is almost close to 1. That is partly for the
reason of the generated random data.

Fig. 2. Result with Increasing Sample Size

In Figure 2, when the number of samples is less than 20000, the running time
is less than 200s. When the number increases to 200000, with the total data size
about 2.45GB, running time is about 700s, which is still acceptable.

From Figure 3, we can see that when number of condition attributes is 20000,
the running time is about 100 seconds. However in [15], when the number of con-
dition attributes is 5000, the running time of algorithm based on positive region
is over 5 hours. The speed-up effect of our parallel fast approximate reduction al-
gorithm can be seen significantly. When number of condition attributes increases
to 200000, the running time is about 700 seconds, which is very encouraging.
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Fig. 3. Result with Increasing Attribute Size

Fig. 4. Result with Increasing Nodes Size

From Figure 4, we know that with the the number of nodes increasing twice,
running time reduces almost close to twice. This is because of the network delay
and data loading time. We can not improve speed-up times to catch up with
increasing times of nodes. However we have already reduced the running time
to about 4 minutes for DS9 which contains about 2.77GB Data on 8 nodes.
From our experiments results, it is seen that our proposed method can work on
large-scale data efficiently. Especially on high-dimensional data, our method has
outstanding performance.

5 Conclusion

This paper has presented a parallel fast approximate attribute reduction algo-
rithm using MapReduce. Traditional stand-alone algorithm has not been suit-
able for processing massive data. We take advantage of MapReduce to obtain
reduct. The algorithm is based on attribute significance. We propose a parallel
algorithm based on MapReduce. Experimental results show that the parallel
algorithm is effective and more efficient on large-scale data.

Acknowledgements. This work is supported by the National Science Founda-
tion of China (NSFC No. 61170180, NSFC No. 61035003).
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Abstract. The three-way decision based overlapping community detection al-
gorithm (OCDBTWD) divides the vesting relationship between communities 
into three types: completely belong relation, completely not belong relation and 
incompletely belong relation, and it uses the positive domain, negative domain 
and boundary domain to describe those vesting relationships respectively. 
OCDBTWD defines the similarity between communities to quantify the condi-
tional probability when two communities have the vesting relationship, and uses 
the increment values of extended modularity to reflect the inclusion ratio  
thresholds. OCDBTWD uses the three-way decision to decide the vesting rela-
tionship between communities to guide the merger of them. When the vesting 
relationship between communities is incompletely belong relation, then the 
overlapping vertex detection algorithm (OVDA) is proposed to detect overlap-
ping vertices. OCDBTWD has been tested on both synthetic and real world 
networks and also compared with other algorithms. The experiments demon-
strate its feasibility and efficiency. 

Keywords: overlapping community detection, three-way decision, social  
network. 

1 Introduction 

In the real world, a lot of things are presented in the form of social networks. Such as 
the World Wide Web network, metabolic network, genetic network, criminal network 
and proteins interaction network. A large number of studies shown that social net-
works have the properties of small world [1], scale-free [2] and community structure 
[3]. The community is a “cluster” which formed by a group of nodes. The internal 
connections of “cluster” are intensive while the external connections are extensive. 
Community detection has great theoretical significance and practical application val-
ue, such as proteins which have the same function are easy to form protein groups in 
proteins interaction networks [4-6], the financial crimes [7] and outliers [8] can be 
identified based on community structure. 
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How to use computer to effectively imitate human intelligence is an important 
problem and many researches have done a lot of works on that. Yao extended the 
algebraic inclusion relation in Pawlak algebraic rough sets model [15] into probability 
inclusion relation and proposed the decision-theoretic rough set (DTRS) model [16]. 
The three-way decision is the core of DTRS, and it divides the whole domain of dis-
course into three parts: positive domain, negative domain and boundary domain. It 
effectively resolved the completeness of the general decision class. 

In the real social networks, some vertices belong to more than one communities. 
Such as a person not only belongs to the community formed by his family members, 
but also belongs to the community formed by his colleagues. Because of the existence 
of the overlapping vertices in social networks, the vesting relationship between com-
munities can be divided into three types: completely belong relation, completely not 
belong relation and incompletely belong relation. The positive domain, negative do-
main and boundary domain of three-way decision can clearly describe those vesting 
relationship. So we use the positive domain, negative domain and boundary domain to 
reflect the completely belong relation, completely not belong relation and incomplete-
ly belong relation respectively. When the vesting relationship between two communi-
ties is completely belong relation, then merge them; when the vesting relationship is 
completely not belong relation, then do nothing; when the vesting relationship is in-
completely belong relation, that means there are overlapping vertices. This paper 
proposes the three-way decision based overlapping community algorithm 
(OCDBTWD) to detect overlapping communities in social networks. OCDBTWD 
initializes every vertex to a community firstly, then uses the three-way decision to 
decide the vesting relationship between two communities to guide communities 
merged. When overlapping vertices existed, we propose the overlapping vertex detec-
tion algorithm (OVDA) to detect overlapping vertices, and thus detects overlapping 
communities in social networks finally. 

This paper is organized as follows. Section 2 presents the related work. Section 3 
introduces the three-way decision. Section 4 describes some definitions, the 
OCDBTWD and OVDA. Section 2 conducts experiments on synthetic and real world 
networks, and analyst the experiments’ results. Finally, Section 6 concludes the paper. 

2 Related Work 

Many researchers have proposed algorithms to detect community structure in social 
networks. Newman and Girvan proposed the modularity function (  function) to 
evaluate the community structure, and the GN algorithm [9] and FN algorithm [10] 
are all based on it. In order to detect overlapping communities, Palla et al. proposed 
the clique percolation theory and CPM algorithm [11]. A series of overlapping com-
munity detection algorithms have been proposed based on Palla clique percolation 
theory, such as GEC [12], EAGLE [13], LFM [14] and so on. 

Yao proposed the Decision-Theoretic Rough Sets (DTRS) model [16]. After this, 
many researchers have done further research on it. Yao and Zhao pointed out some 
characteristic which needs to stay the same in attribute reductions of DTRS and  
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proposed the attribute reductions theory [17]; Yao, Liu and Li et al. researched on the 
three-way decision semantic in DTRS and proposed the three-way decision rough set 
model [18-20, 23]. The three-way decision excellently simulates the thinking mode of 
human intelligence to resolve the practical problems and was widely used in the real 
life. Such as the risk preferences of decision-making [21, 22], oil exploration decision 
[23], text classification [24], automatic clustering [25-27]. 

We uses the positive domain, negative domain and boundary domain in the three-
way decision to quantify the vesting relationship between two communities when they 
are in the certain state. We define the similarity between communities to reflect the 
conditional probability when they are in the state and use the increment values of 
extended modularity to reflect inclusion ratio thresholds. And then the three-way 
decision is used to decide the vesting relationship between communities to guide the 
merger of them, and detect the overlapping communities in social networks. 

3 Three-Way Decision 

In the three-way decision [18-20], the state set is , , where  and  are 
complementary. The actions set is , , , where , ,   represent the 
actions which decide the object to ,  and  respectively, 
where ,  and  represent positive domain, negative domain 
and boundary domain respectively. , , , , , represent the loss 
function values when the decision actions are  , ,   and the object is in state 
of  and   respectively. |  and |  represent the conditional probability 
when the object  is in state of    and  respectively. The expectation risk  
loss values of the actions , ,   are shown respectively as formulas (1) to (3) 
below: 

                   | |              (1) 

                   | |              (2) 

                 | |              (3) 

Where | , | , |  denote the expectation risk loss values of the 
actions , ,   respectively. According to the Bayesian decision procedure, the 
minimum-risk decision rules are shown as formulas (4) to (6) below: 

If ( | |  and | | ) then decide ; (4) 

If ( | |  and | | ) then decide ; (5) 

If ( | |  and | | ) then decide . (6) 

According to the loss function means in real life, we can obtain those 
tions: , . And | 1 can be ob-
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tained because of the complementation of   and . According to those formulas, the 
decision rules are shown respectively as formulas (7) to (9) below: 

If ( |  and | ) then decide ;            (7) 

If ( |  and | ) then decide ;            (8) 

If ( |  and | ) then decide .            (9) 

Where , ,  are the inclusion ratio thresholds, the method to calculate them as 
follows: 

 , , . 
Assume that  , thus  . 

Then the  can be derived from it. Thus the variations of decision rules are 
shown as formulas (10) to (12) below: 

If ( | ) then decide ;                          (10) 

If ( | ) then decide ;                         (11) 

If ( | ) then decide .                     (12) 

4 Algorithm 

4.1 Related Definitions 

Given a network  ,  , where  denotes the vertex set,  denotes the edge 
set. Assume that the community set is , , … , , where …

, and ,  such that . The purpose of overlapping community detection 
is to detect the community set . In order to describe this problem better, we give the 
following definitions. 

Definition 1 (The vesting relationship between communities). Assume that ,  are the communities in social network, then there are three types of vesting 
relations between  and  and they are defined as follows: 

1. When , then the vesting relationship between   and  is called com-
pletely belong relation, and we use the positive  domain to depicts it; 

2. When , then the vesting relationship between   and  is called com-
pletely not belong relation, and we use the negative domain to depicts it; 

3. When ,  and  , then the vesting relationship be-
tween   and  is called incompletely belong relation, and we use the boundary 
domain to depicts it. 
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Definition 2 (The similarity between vertices). ,  denote the neigh-
borhoods of the vertiecs  and  ,  ,  denotes the similarity between  
and , then ,  is defined as: 

             , | || | .                    (13) 

Definition 3 (The similarity between communities). Assume that  and  de-
note two communities, ,  denotes the similarity between  and , 
then ,  is defined as: 

                 , ∑ ,, | || | .                (14) 

Where | | and | | are the total number of vertices in  and  respectively. 
The similarity between communities reflects the compactness of two communities. 
The bigger the value of ,  is, the more compact  and  are. 

Definition 4 (The membership ratio between vertex and community). Assume 
that denotes a community in social network,  denotes a vertex, ,  
denotes the membership ratio between  and , then , is defined as: , ∑ ,| | .                    (15) 

The membership ratio between vertex and community depicts the ratio of one ver-
tex belonging to the community from the numerical point. And its value is the average 
of the similarity between the vertex and the all vertices in the community. 

4.2 Objective Function 

The modularity function (  function) proposed by Newman and Girvan [9] is an 
effective method to quantify the strength of community structure in social networks. 
Though  function is very popular in community detection, it is unsuited to overlap-
ping community detection. Shen et al. proposed the extended modularity (  func-
tion) which based on  function to quantify the strength of overlapping community 
[13].  function is defined as: ∑ ∑ , .          (16) 

Where  and  are two arbitrary vertices,  and  are the total numbers of 
communities which   and  belong to respectively,  is the adjacency matrix,  
is the total number of edges.  is the degree of vertex  and ∑ .  
function quantifies the strength of overlapping community structure in social net-
works. A higher value of  indicates a significant overlapping community struc-
ture. We use the  function as the objective function when using the three-way 
decision to decide the vesting relationship between communities in this paper. 
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4.3 The Method to Calculate the Conditional Probability and Inclusion Ratio 
Thresholds 

In Section 3, we have provided the decision rules of three-way decision (seen as for-
mula (10) to (12)). The conditional probability |  and the inclusion ratio  
thresholds  and  are the keys to decide the vesting relationship between com-
munities. The similarity between communities corresponds to the closeness of two 
communities. The bigger the value is, the closer two communities are. The vesting 
relationship between communities also reflects the closeness of two communities. So 
we use the similarity between communities to quantify the | , that is, when 
communities  and  in the state , |  is expressed by the similarity be-
tween  and . There the object  represents the community and  represents the 
vesting relationship between communities. 

The inclusion ratio thresholds  and   are the boundary of decision. Usually 
the loss function values are obtained from prior knowledge or the experience of ex-
perts and the values of  and  can be calculated by those loss function values. In 
this paper, we use the  function reflecting the strength of community structure as 
the objective function. If the value of  function increases after the merge of two 
communities, it indicates that the merger enhances the strength of community in so-
cial network. When two communities are very similar, then the connection between 
two communities is very close. If they are merged, their connection will become the 
internal connections, and the value of  function also will increase with it. We use 
the increments of   function to reflect the inclusion ratio thresholds   and . 
That is,  is the maximum value of the increments of   function, and  is the 
minimum value of the increments of  function. Thus we can get values of  
and  automatically. 

4.4 Algorithm Description 

The three-way decision based overlapping community detection algorithm 
(OCDBTWD) uses the positive domain, negative domain and boundary domain to 
depict the vesting relationship between communities and uses increments of extended 
modularity to reflect the inclusion ratio thresholds. OCDBTWD initializes every ver-
tex to a community firstly, and then uses the three-way decision to decide the vesting 
relationship between communities to guide their merger until the value of extended 
modularity doesn’t increase. The detail of OCDBTWD is described as follows: 

Algorithm 1. OCDBTWD. 
Input: ,  
Output: , , … ,  , , … , | |  //initialization, | | is number of vertices 
while(true) do 

         //  is set of increments of  function 
calculate the exended modularity 
             // to find increments of  function 
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for all ,  in  do 
      if  ,  are connected 
           ,delete  from  
           calculate the exended modularity 
           if ( )  
                 
           end if 
      end if 
end for 
if (  break 

maximum value in  
minimum value in  

for all ,  in  do 
      if  ,  are connected 
             if ( , )         //completely belong 
                  , delete  from // merge the ,  

             else if( , )//incompletely belong 
                    OVDA ,            // Algorithm 2 
                    ,    
             end if               //completely not belong 
      end if 
end for 
end while 
output  

When the similarity between communities  and   satisfies that , , the vesting relationship between  and is incompletely belong 
relation,  and  are overlapping communities. So we propose the overlapping 
vertex detection algorithm (OVDA) to detect overlapping vertices. The idea of 
OVDA is that: assume that communities  and   are overlapping, and vertex  
is belong to . If the , , , then  is an overlapping vertex. 
The details of OCDBTWD are described as follows: 

Algorithm 2. OVDA. 
Input: communities ,   
Output: overlapping vertices set  

          // initialization 
for all  in  do 
      if ( , , ) 

            
      end if 
end for 
for all  in  do 
      if ( , , ) 
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      end if 
end for 
output  

5 Experiments 

We test OCDBTWD on computer-generated networks and real world networks re-
spectively. And we compare it with CPM. Our experiment environment is that: AMD 
Athlon X2 QL-64 CPU with 2.1GHz, 2G bytes memory, 250G bytes hard disk, Win-
dows7 OS, programming language is Java6.0. 

5.1 Computer-Generated Networks 

We use the LFR-benchmark model [28] to generate networks and use the NMI (Nor-
malized Mutual Information) [14] to verify accuracy of the algorithm. The definition 
of NMI is: ,

 

Where   , ∑ ∑ ,| || |  , / , ∑| |  ，∑| |  .  and  are the community sets of networks ,  re-

spectively. ,  are the number of vertices in the ,  community of ,  
respectively.  is the number of vertices in network, ,  is the number of vertices 
both in the  community of   and the  community of . And the value of 
NMI is close to 1, which indicates that the two communities match well. 

This paper uses the LFR-benchmark model to generate 4 networks (G1 to G4), the 
parameters setting are shown in Table 1. The  results are shown on Fig 1. 

Table 1. LFR-benchmark model parameters setting 

Description G1 G2 G3 G4 

number of vertices( ) 1000 1000 1000 1000 
degree exponent( ) 2 2 2 2 
community exponent( ) 1 1 1 1 
max degree( ) 40 40 40 40 
average degress( ) 20 20 20 20 
mixing parameter( ) 0.1 0.3 0.1-0.3 0.1 
num of overlap vertices( ) 50-300 50-300 100 50-300 
vertex per community( ) 2 2 2 2 
max comm size( ) 100 100 100 50 
min comm size( ) 30 30 30 30 
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              (a)                                  (b) 

     

(c)                                (d) 

Fig. 1. Comparison OCDBTWD with CPM: (a) On G1 with small mixing parameter. (b) On 
G2 with big mixing parameter. (c) On G3. (d) On G4 with small maximum community size. 

In Fig.1(a), the mixing parameter =0.1 (The bigger the value of  is, the less 
obvious the community structure is). When the overlapping nodes are little (the frac-
tion of overlapping nodes is 0.05), CPM is better than OCDBTWD, but when the 
overlapping nodes are more (the fraction of overlapping nodes is from 0.1 to 0.3), 
OCDBTWD is better than CPM. In Fig.1(b) the mixing parameter =0.3, the 
OCDBTWD is much better than CPM. We can find that the OCDBTWD and CPM 
will become poor with the increment of mixing parameter  from Fig.1(a) and 
Fig.1(b), but the OCDBTWD descends slowly, that means OCDBTWD is more stable 
than CPM. This can also be found out from Fig.1(c). In Fig.1(d) the maximum com-
munity size is 50, when the fraction of overlapping nodes is 0.05, CPM is close to 
OCDBTWD, but when the fraction of overlapping nodes is from 0.1 to 0.3, 
OCDBTWD is much better than CPM. Combined with Fig.1(a) and Fig.1(d), we can 
find that OCDBTWD is better than CPM, no matter the community size is big or 
small (In Fig.1(a) the maximum community size is 100, while in Fig.1(b) the maxi-
mum community size is 50). Therefore, the results of computer-generated networks 
shows that OCDBTWD is feasible and stable. 

5.2 Real-World Networks 

In real-world networks, the communities are formed by some certain relationship. 
Their topology structures are different from those generated by computers. Here, we 
use Zachary’s karate club network [29], American college football league network 
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[3], Dolphins’ network [30] and Renren friends’ relationship network to test 
OCDBTWD.  

Zachary’s karate club network has 34 vertices denoted the members in club and 78 
edges denoted relationship between members. There are two communities centered on 
the administrator and the teacher. American college football league network has 115 
vertices denoted the football teams and 616 edges denoted games between two teams. 
Usually, 8 to 12 teams to form a federation in network and each federation is a com-
munity. Dolphins’ network has 62 vertices denoted the dolphins and 160 edges de-
noted the frequent association between dolphins. The network divides into to two 
subgroups because of the leaving of an important dolphin. Renren friends’ relation-
ship network is form by the friends of the author of this paper in Renren website. 
There are 109 vertices denoted the friends and 868 edges denoted the relationship 
between friends. The friends are the classmates in the stages of middle school, high 
school, undergraduate college and postgraduate. The classmates in each stage form a 
community. And we use those real world networks to test OCDBTWD and the NMI 
results are shown in Table 2.  

Table 2. Real world netwroks result 

Real world networks OCDBTWD CPM(k=3) 
karate network 0.37 0.17 
US college football team network 0.61 0.24 
dolphins network 0.37 0.33 
Renren friends’ relationship network 0.67 0.88 

 
From Table 2, we can know that the OCDBTWD is better than CPM in karate, US 

college football team and dolphins networks. In Renren friends’ network, CPM is 
better than OCDBTWD, and the reason is that the every stage classmates’ subgraph is 
mostly a complete subgraph, so this is very beneficial for CPM. The result of real 
world networks also show that OCDBTWD is feasible and it effectively detects the 
overlapping community structures 

6 Conclusion 

In this paper, we divide the vesting relatioship between communities into three types: 
completely belong relation, completely not belong relation and incompletely belong 
relation. We use the positive domain, negative domain, and boundary domain in 
three-way decision to reflect these vesting relationships. The OCDBTWD defines the 
similarity between vertices, the similarity between communities, and membership 
ratio between vertex and community, and it uses the increment values of extended 
modularity to reflect the inclusion ratio thresholds, and then it uses three-way decision 
to decide the vesting relationship between communities. When the vesting relation-
ship between two communities is completely belong relation, then merge them; when 
the vesting relationship is completely not belong relation, then do nothing; when the 
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vesting relationship is incompletely belong relation, then using the OVDA to detect 
the overlapping vertices. The OCDBTWD has been tested on computer-generated 
networks and real world networks, and compared with other overlapping community 
detection algorithms. The experiments show that the OCDBTWD is feasible and ef-
fectively detect the overlapping community structures. 

However, there are still some problems to be solved, such as: in real world, the 
large-scale social networks like Facebook, Sina Weibo and Twitter have lots of ver-
tices and edges, and how to use local information to improve the efficiency of 
OCDBTWD  for large-scale social networks. This will be discussed in our future 
work. 
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Abstract. In the previous decision-theoretic rough sets (DTRS), its loss
function values are constant. This paper extends the constant values of
loss functions to a more realistic dynamic environment. Considering the
dynamic change of loss functions in DTRS with the time, an extension
of DTRS, dynamic decision-theoretic rough sets (DDTRS) is proposed
in this paper. An empirical study of climate policy making validates the
reasonability and effectiveness of the proposed model.
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1 Introduction

In some decision problems, one may make a decision with two choices of ac-
ceptance or rejection, especially one has sufficient confidence to do it. However,
in many real scenarios, one can not make a decision immediately because of
insufficient information, uncontrolled risks or lack of recognition. In this case,
a third choice, deferment, is used to deal with these things which one do not
have full understanding. The three types of choices of acceptance, rejection and
deferment, denoted as three-way decisions [1, 2], have been used in many studies
such as interval sets, three-valued logic, rough sets, fuzzy sets, shadowed sets,
and others [3–6]. They have been applied in many disciplines, including medi-
cal clinic [7], email spam filtering [8], investment management [9], web support
systems [10], products inspecting process [11], policy making [12], etc.

With respect to the three-way decisions using rough sets, the three regions
generated by lower and upper approximations lead to three-way decision rules.
Rules from the positive region are used for making a decision of acceptance, rules
from the negative region for making a decision of rejection, and rules from the
boundary region for making a decision of non-commitment or deferment [1, 2]. In

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 291–301, 2013.
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classical rough sets, decisions of acceptance and rejection must be made without
any error; in probabilistic rough sets, acceptance and rejection are associated
with some tolerance levels of errors by using two parameters α and β [13–15].
Obviously, the three-way decisions of classical rough sets are of qualitative nature
and called qualitative three-way decisions. Different from qualitative three-way
decisions, quantitative three-way decisions require a semantic interpretation and
computation of parameters α and β. Observed by this issue, Yao introduced loss
functions to PRS and proposed decision-theoretic rough sets model (DTRS) with
Bayesian decision procedures [16]. In DTRS, the two parameters α and β can be
automatically computed by minimizing the expected overall risk function, and
it gives a brief semantic explanation with minimum decision risks.

However, the loss functions in DTRS are precise and constant. The decision
makers may hardly estimate the loss function values, especially when the deci-
sion procedure is complex and dynamic. As for the limitations of precise values,
Liu et al. suggested to use some uncertain information (i.e. stochastic, vague or
rough information) instead of precise ones in real decision procedure, and they
further proposed stochastic decision-theoretic rough sets (SDTRS) [6], interval-
valued decision-theoretic rough sets (IVDTRS) [4] and fuzzy decision-theoretic
rough sets (FDTRS) [5], respectively. Liang et al. generalized a concept of the
precise value of loss function to triangular fuzzy number, and proposed trian-
gular fuzzy decision-theoretic rough sets (TFDTRS) [3]. Liu et al. introduced
the fuzzy interval number to DTRS, and proposed a novel three-way decision
model of fuzzy interval decision-theoretic rough sets (FIDTRS) [17]. Yao and
Deng discussed the sequential three-way decisions with probabilistic rough sets,
in which the cost of obtaining required evidence or information is considered [18].
Yao further presented a granular computing perspective on sequential three-way
decisions in [19]. Li et al. investigated the cost-sensitive three-way decision with
the sequential strategy [20]. In this paper, we mainly focus on investigating the
situation that loss functions are dynamically varying under the dynamic decision
environment, and a novel extended model of DTRS, dynamic decision-theoretic
rough sets (DDTRS), is proposed.

The remainder of this paper is organized as follows: Section 2 provides the
basic concepts of PRS and DTRS. DTRS model with dynamic loss function is
proposed and its properties are analyzed in Section 3. Then, a case study of
climate policy making problem is given to illustrate our approach in Section 4.
Section 5 concludes the paper and outlines the future work.

2 Preliminaries

Basic concepts, notations and results of the PRS and DTRS are briefly reviewed
in this section [1, 2, 13–16, 21–27].

Definition 1. Let S = (U,A, V, f) be an information system. ∀x ∈ U,X ⊆ U ,

let: μX(x) = Pr(X |[x]) = |[x]⋂X|
|[x]| be a rough membership function, where, | · |

stands for the cardinality of a set, Pr(X |[x]) is is the conditional probability of
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an object in X given that the object is in [x], estimated by using the cardinalities
of sets.

A main result in PRS is parameterized probabilistic approximations, which
is similar to the notion of α-cuts of fuzzy sets. This can be done by pair of
parameters α and β with α > β.

Definition 2. Let S = (U,A, V, f) be an information system. ∀X ⊆ U and
0 ≤ β < α ≤ 1, the (α, β)-lower approximation, (α, β)-upper approximation are
defined as follows:

apr
(α,β)

(X) = {x ∈ U |Pr(X |[x]) ≥ α};
apr(α,β)(X) = {x ∈ U |Pr(X |[x]) > β}. (1)

From the (α, β)-probabilistic lower and upper approximations, we can obtain
the (α, β)-probabilistic positive, boundary and negative regions:

POS(α,β)(X) = {x ∈ U | Pr(X |[x]) ≥ α},
BND(α,β)(X) = {x ∈ U | β < Pr(X |[x]) < α},
NEG(α,β)(X) = {x ∈ U | Pr(X |[x]) ≤ β}. (2)

To acquire the values of the two parameters α and β, Yao et al. introduced
Bayesian decision procedure into RST and proposed DTRS [16]. The DTRS
model is composed of 2 states and 3 actions. The set of states is given by Ω =
{X,¬X} indicating that an object is in X and not in X , respectively. The set
of actions is given by A = {aP , aB, aN}, where aP , aB, and aN represent the
three actions in classifying an object x, namely, deciding x ∈ POS(X), deciding
x should be further investigated x ∈ BND(X), and deciding x ∈ NEG(X),
respectively. The loss function λ regarding the risk or cost of actions in different
states is given by the 3 × 2 matrix:

X (P ) ¬X (N)
aP λPP λPN

aB λBP λBN

aN λNP λNN

In the matrix, λPP , λBP and λNP denote the losses incurred for taking actions
of aP , aB and aN , respectively, when an object belongs to X . Similarly, λPN ,
λBN and λNN denote the losses incurred for taking the same actions when the
object belongs to ¬X . Pr(X |[x]) is the conditional probability of an object x
belonging to X given that the object is described by its equivalence class [x].
For an object x, the expected loss R(ai|[x]) associated with taking the individual
actions can be expressed as:

R(aP |[x]) = λPPPr(X |[x]) + λPNPr(¬X |[x]),

R(aB|[x]) = λBPPr(X |[x]) + λBNPr(¬X |[x]),

R(aN |[x]) = λNPPr(X |[x]) + λNNPr(¬X |[x]).
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The Bayesian decision procedure suggests the following minimum-cost deci-
sion rules:

(P) If R(aP |[x]) ≤ R(aB|[x]) and R(aP |[x]) ≤ R(aN |[x]), decide x ∈ POS(X);

(B) If R(aB|[x]) ≤ R(aP |[x]) and R(aB|[x]) ≤ R(aN |[x]), decide x ∈ BND(X);

(N) If R(aN |[x]) ≤ R(aP |[x]) and R(aN |[x]) ≤ R(aB|[x]), decide x ∈ NEG(X).

Since Pr(X |[x]) + Pr(¬X |[x]) = 1, we simplify the rules based only on the
probability Pr(X |[x]) and the loss function. By considering a reasonable kind
of loss functions with λPP ≤ λBP < λNP and λNN ≤ λBN < λPN , the decision
rules (P)-(N) can be expressed concisely as:

(P) If Pr(X |[x]) ≥ α and Pr(X |[x]) ≥ γ, decide x ∈ POS(X);

(B) If Pr(X |[x]) ≤ α and Pr(X |[x]) ≥ β, decide x ∈ BND(X);

(N) If Pr(X |[x]) ≤ β and Pr(X |[x]) ≤ γ, decide x ∈ NEG(X).

The thresholds values α, β, γ are given by:

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
;

β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
;

γ =
(λPN − λNN )

(λPN − λNN ) + (λNP − λPP )
. (3)

In addition, as a well-defined boundary region, the conditions of rule (B) sug-

gest that α > β, that is, (λBP−λPP )
(λPN−λBN ) < (λNP−λBP )

(λBN−λNN ) . It implies 0 ≤ β < γ < α ≤ 1.

To sum up, DTRS not only introduces the probabilistic rough set approximation
of equation (2), but also provides semantical interpretation of the thresholds.

3 Dynamic Decision-Theoretic Rough Set Model

Our following discussions are motivated by an example of Savage’s Omelet [28,
29]. In this example, Savage described a decision situation as follows: your wife
has just broken five good eggs into a bowl when you come in and volunteer to
finish making the omelet. The sixth egg, which for some reason must either be
used for the omelet or wasted altogether, lies unbroken beside the bowl. You
need decide what to do with this unbroken egg. Perhaps it is not too great an
oversimplification to say that you must decide among three acts only, namely,
to break it into the bowl containing the other five, to break it into a saucer for
inspection, or to throw it away without inspection. Table 1 outlines the acts and
states of this example.

In Table 1, the states of this problem is simply specified whether the sixth
egg is good, and the three possible acts for you are discredited as “break the
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Table 1. Savage’s example illustrating acts and states [29]

Act
State

Good Rotten

Break into bowl six-egg omelet no omelet, and five good eggs
destroyed

Break into saucer six-egg omelet, and a saucer
to wash

five-egg omelet, and a saucer
to wash

Throw away five-egg omelet, and one good
egg destroyed

five-egg omelet

egg into the bowl”, “break the egg into the saucer” and “throw the egg away”.
Suppose that each good egg is no cost, a saucer to wash costs you 1 point and
that each good egg destroyed costs you 2 points because of the reproaches of
your wife [28]. The losses of Table 1 can be rewritten as:

Good Rotten
Break into bowl 0 10
Break into saucer 1 1
Throw away 2 0

Note that, the losses of the above matrix are constantly changing during the
sequential decision process, e.g., one should make continuous decisions from the
first egg to the sixth egg. Observed by this issue, we consider the case where loss
functions in DTRS are changing with time, and develop a dynamic decision-
theoretic rough set model as follows.

In DDTRS, we also considers 2 states Ω = {X,¬X} and 3 actions A =
{aP , aB, aN}. Suppose λt

PP , λt
BP and λt

NP denote the losses incurred for taking
actions of aP , aB and aN at time t, when an object belongs to X . Similarly, λt

PN ,
λt
BN and λt

NN denote the losses incurred for taking the same actions at time t,
when the object belongs to ¬X . We can rewrite the 3 × 2 matrix at time t as:

X (P ) ¬X (N)
aP λt

PP λt
PN

aB λt
BP λt

BN

aN λt
NP λt

NN

In the matrix, for each time t (t = 1, 2, · · · , n), we consider the following two
factors. First, suppose t is a dependent variable, and λt

•• (• = P,B,N) is directly
depended on the variation of time t, e.g., λt•• = 2t+1. Second, suppose λt•• is af-
fected by its former status, that is, λt

•• is decided by λt−1
•• , λt−2

•• , · · ·λt−m
•• , m ≤ t,

e.g., λt
•• = 3λt−1

•• + 2λt−2
•• . Obviously, by considering both combinations and

semantics of λt••, there exist four scenarios: (1). consider two factors simultane-
ously; (2). only consider the first factor; (3). only consider the second factor; (4).
neither consider the two factors, respectively.

Scenario 1: λt
•• (• = P,B,N) is depended on two types of factors.
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For simplicity, we only consider λt
•• is depended on λt−1

•• and the variation of
time t. One form of the loss function λt

•• can be expressed as: λt
•• = f(λt−1

•• , t) =
a•• · λt−1•• + f(t), a•• �= 0. a•• is the coefficient of λt••, and f(t) is corresponding
with the time t.

In this scenario, the relations between λt
•• and λ1

•• can be calculated as:

λt
•• = a•• · λt−1

•• + f(t)

= a•• · (a•• · λt−2
•• + f(t− 1)) + f(t)

= a•• · (a•• · (a•• · (λt−3
•• + f(t− 2)) + f(t− 1))) + f(t)

· · ·

= at−1
•• λ1

•• +
t∑

i=2

at−i
•• f(i)

Therefore, λt
•• can be represented as:

λt
•• =

{
λ1
•• t = 1

at−1λ1•• +
∑t

i=2 a
t−i•• f(i) t > 1

On the basis of conditions in DTRS, it also requires the loss functions in each
time t (t = 1, 2, · · · , n) satisfy λt

PP ≤ λt
BP < λt

NP and λt
NN ≤ λt

BN < λt
PN . Under

the conditions, we can easily calculate the three thresholds values α, β, γ at time
t as:

αt =
(λt

PN − λt
BN )

(λt
PN − λt

BN ) + (λt
BP − λt

PP )
;

βt =
(λt

BN − λt
NN )

(λt
BN − λt

NN) + (λt
NP − λt

BP )
;

γt =
(λt

PN − λt
NN )

(λt
PN − λt

NN ) + (λt
NP − λt

PP )
. (4)

where, λt
PP = at−1

PP λ1
PP +

∑t
i=2 a

t−i
PP f(i), λt

BP = at−1
BP λ1

BP +
∑t

i=2 a
t−i
BP f(i),

λt
NP = at−1

NPλ1
NP +

∑t
i=2 a

t−i
NP f(i); λt

NN = at−1
NNλ1

NN +
∑t

i=2 a
t−i
NNf(i), λt

BN =

at−1
BNλ1

BN +
∑t

i=2 a
t−i
BNf(i), λt

PN = at−1
PNλ1

PN +
∑t

i=2 a
t−i
PNf(i).

Scenario 2: λt•• (• = P,B,N) is depended on the first factor.
In this scenario, one form of the loss function can be expressed as: λt

•• = f(t) =
b•• ·t+c••, b•• �= 0. b•• is the coefficient of f(t), and c•• is a constant. Therefore,
λt
•• can be represented as: b•• · t + c••. Specially, when t = 1, λ1

•• = b•• + c••.
Similarly, under the basic conditions λt

PP ≤ λt
BP < λt

NP and
λt
NN ≤ λt

BN < λt
PN (t = 1, 2, · · · , n), we can get the three thresholds αt,

βt and γt as: αt =
(λt

PN−λt
BN )

(λt
PN−λt

BN )+(λt
BP−λt

PP )
, βt =

(λt
BN−λt

NN )
(λt

BN−λt
NN )+(λt

NP−λt
BP )

and

γt =
(λt

PN−λt
NN )

(λt
PN−λt

NN )+(λt
NP−λt

PP ) . where, λt
PP = bPP · t + cPP , λt

BP = bBP · t + cBP ,
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λt
NP = bNP · t + cNP ; λt

NN = bNN · t + cNN , λt
BN = bBN · t + cBN ,

λt
PN = bPN · t + cPN .

Scenario 3: λt
•• (• = P,B,N) is depended on the second factor.

In this scenario, one form of the loss function can be expressed as: λt
•• =

f(λt−1
•• ) = a · λt−1

•• + c••, a•• �= 0. a•• is the coefficient of λt−1
•• , and c•• is a

constant. The relations between λt
•• and λ1

•• can be calculated as:

λt
•• = a · λt−1

•• + c••
= a · (a · λt−2

•• + c••) + c••
= a · (a · (a · λt−3

•• + c••) + c••) + c••
· · ·

= at−1
•• · λ1

•• +
c•• · (1− at−1

•• )

1− a••
.

Therefore, λt
•• can be represented as:

λt
•• =

{
λ1
•• t = 1

at−1
•• · λ1

•• +
c••·(1−at−1

•• )

1−a•• t > 1

Similarly, under the basic conditions λt
PP ≤ λt

BP < λt
NP and

λt
NN ≤ λt

BN < λt
PN (t = 1, 2, · · · , n), we can get the three thresholds

αt, βt and γt as: αt =
(λt

PN−λt
BN )

(λt
PN−λt

BN )+(λt
BP−λt

PP )
, βt =

(λt
BN−λt

NN )
(λt

BN−λt
NN )+(λt

NP−λt
BP )

and γt =
(λt

PN−λt
NN )

(λt
PN−λt

NN )+(λt
NP−λt

PP )
. where, λt

PP = at−1
PP · λ1

PP +
cPP ·(1−at−1

PP )

1−aPP
,

λt
BP = at−1

BP · λ1
BP +

cBP ·(1−at−1
BP )

1−aBP
, λt

NP = at−1
NP · λ1

NP +
cNP ·(1−at−1

NP )

1−aNP
;

λt
NN = at−1

NN · λ1
NN +

cNN ·(1−at−1
NN)

1−aNN
, λt

BN = at−1
BN · λ1

BN +
cBN ·(1−at−1

BN )

1−aBN
,

λt
PN = at−1

PN · λ1
PN +

cPN ·(1−at−1
PN )

1−aPN
.

Scenario 4: λt
•• (• = P,B,N) is not depended on two factors

In this scenario, the value of λt•• is constant and don’t change with the vari-
ation of t, and λt

•• = λt−1
•• = · · · = λ1

•• = c••.
Under the basic conditions λt

PP ≤ λt
BP < λt

NP and λt
NN ≤ λt

BN < λt
PN for (t =

1, 2, · · · , n), we can calculate the three thresholds α, β and γ at time t as: αt =
(cPN−cBN )

(cPN−cBN )+(cBP−cPP ) , β
t = (cBN−cNN )

(cBN−cNN )+(cNP−cBP ) , γ
t = (cPN−cNN)

(cPN−cNN )+(cNP−cPP ) .

Obviously, the three parameters have the same presentations with (3) in Sec-
tion 2, and the DDTRS model converts to the classical DTRS model under the
conditions in scenario 4.

4 An Illustration

In this section, we illustrate the extended model by an example of decision in
climate policy. The debate over a policy response to global climate change has
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been and continues to be deadlocked by two aspects: (1). The view that the im-
pacts of climate change are too uncertain and the response to the policy should
be delayed until we learn more. (2). We cannot wait to resolve the uncertainty
because climate change is irreversible so we must take precautionary measure
now [30]. By considering the change of global climate are depended on some
uncertain characteristics: a long time horizon, large uncertainties in both the
scientific basis and the potential economic costs of addressed it, uneven distri-
bution of costs and damages, possible irreversible effects, and collective action
required for an effective response [30]. The respond to climate change is not a
decision that must be made now and set in stone for all time.

In our following discussions, we suppose the process of climate change last
three periods, from time t = 1 to time t = 3. With insightful gain from DTRS,
the climate policy making procedure may lead to three kinds of actions: executed,
need further investigated and do not executed, respectively. As well, the states of
a climate policy are described as {good policy, bad policy} according to a series of
carefully explorations and appraisal with the characteristics of the global climate
change issue. The two states are given by Ω = {X,¬X} and the three actions of
the decisions are given by A = {aP , aB, aN}. Suppose λt

PP , λt
BP and λt

NP denote
the loss incurred for taking actions of executing, need further investigated and
non-execute, respectively, when the climate policy is good at time t; whereas,
λt
PN , λt

BN and λt
NN denote the loss incurred for taking actions of executing,

need further investigated and non-execute, respectively, when the climate policy
is bad at time t. For simplicity, we consider 4 types of climate policies PO =
{po1, po2, po3, po4} , the loss functions for 4 types of climate policies are outlined
in Table 2.

Table 2. The loss functions of 4 types of climate policies

PO λt
PP λt

BP λt
NP λt

PN λt
BN λt

NN

po1 λ
t−1
PP +t+1 2λt−1

BP +2t+2 4λt−1
NP +3t+3 5λt−1

PN +5t+2 3λt−1
BN +3t+1.5 2λt−1

NN +2t+0.5
po2 t+1 2t+2 4t+3 5t+2 3t+1.5 2t+0.5
po3 λt−1

PP +1 2λt−1
BP +2 4λt−1

NP +3 5λt−1
PN +2 3λt−1

BN +1.5 2λt−1
NN +0.5

po4 1 2 4 5 3 2

where, λ0
PP = λ0

BP = λ0
NP = λ0

PN = λ0
BN = λ0

NN = 1.

In Table 2, po1 corresponds to the scenario 1, po2 corresponds to the scenario 2,
po3 corresponds to the scenario 3, po4 corresponds to the scenario 4. According
to our analysis in Section 3, the loss values for {po1, po2, po3, po4} and their
corresponding αt, βt and γt (t = 1, 2, 3) are calculated in Table 3.

In Table 3, the three parameters αt, βt and γt are changing with the increasing
of t for po1, po2 and po3. For simplicity, we set Prt(X |poi) = 0.76 (t=1,2,3;
i=1,2,3,4). With the decision criteria of (P), (B) and (N), we can obtain the
decision regions for 4 types of climate policies in different periods by comparing
the thresholds in Table 3 and Pr(X |poi), which are listed in Table 4.
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Table 3. The loss values and three parameters for 4 types of climate policies

PO λ1
PP λ1

BP λ1
NP λ1

PN λ1
BN λ1

NN α1 β1 γ1

po1 3 6 11 12 7.5 4.5 0.6000 0.3750 0.4839
po2 2 4 7 7 4.5 2.5 0.5556 0.4000 0.4737
po3 2 4 7 7 4.5 2.5 0.5556 0.4000 0.4737
po4 1 2 4 5 3 2 0.6667 0.3333 0.5000

PO λ2
PP λ2

BP λ2
NP λ2

PN λ2
BN λ2

NN α2 β2 γ2

po1 6 18 55 72 30 13.5 0.7778 0.3084 0.5442
po2 3 6 11 12 7.5 4.5 0.6000 0.3750 0.4839
po3 3 10 31 37 15 5.5 0.7586 0.3115 0.5294
po4 1 2 4 5 3 2 0.6667 0.3333 0.5000

PO λ3
PP λ3

BP λ3
NP λ3

PN λ3
BN λ3

NN α3 β3 γ3

po1 10 44 235 377 100.5 33.5 0.8905 0.2597 0.6042
po2 4 8 15 17 10.5 6.5 0.6190 0.3636 0.4884
po3 4 22 127 187 46.5 11.5 0.8864 0.2500 0.5879
po4 1 2 4 5 3 2 0.6667 0.3333 0.5000

Table 4. The decision regions for the 4 types of climate policies in different periods

T ime (α, β) POS(X) BND(X) NEG(X)

t = 1 (α1, β1) {po1, po2, po3, po4} Ø Ø
t = 2 (α2, β2) {po2, po3, po4} {po1} Ø
t = 3 (α3, β3) {po2, po4} {po1, po3} Ø

In Table 4, the decision regions for the 4 climate policies are changing with
different time t, e.g., po1 should be executed at t = 1, and need further inves-
tigated at t = 2 and t = 3; po3 should be executed at t = 1 and t = 2, and
need further investigated at t = 3. These variations in Table 4 indicate that one
should adjust his/her decisions timely with the variations of external decision
environment, that is, one policy suits for today, may not makes sense for to-
morrow. In a short, one can directly make a decision by comparing the relation
between (αt, βt) and Prt(X |poi) at one time t, and our proposed model brings
an intuitive way to achieve the goal.

5 Conclusions

As an extension of constant numerical values, we introduce dynamic loss function
into DTRS to deal with the variations of decisions in practical decision proce-
dure. With respect to the minimum Bayesian expected risk, a model of DDTRS
is built. We carefully investigated four scenarios of DDTRS. Furthermore, the
corresponding decision criteria of DDTRS under four scenarios are discussed.
An example of climate policy making is given to illustrate the proposed model
in applications. However, this paper only presents some preliminary ideas on
dynamic three-way decision and focuses on the linear cases. By considering the
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action in DDTRS would depend on the actions in the previous times and the
current situation, the general case of DDTRS need further investigated. Our fu-
ture research work will focus on developing the DTRS models under sequential
decision process and Markov decision process. The attribute reduction based on
the DDTRS will be another future work.
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Abstract. Cluster ensembles can combine the outcomes of several clus-
terings to a single clustering that agrees as much as possible with the
input clusterings. However, little attention has been paid to the develop-
ment of approaches to deal with consolidating the outcomes of both soft
and hard clustering systems into a single final partition. For this reason,
this paper proposes a cluster ensemble framework based on three-way
decisions, and the interval sets used here to represent the cluster which
is described by three regions according to the lower and upper bound of
the cluster. In addition, this paper also devises a plurality voting-based
consensus function which can consolidate the outcomes of multiple clus-
tering systems whatever the systems are soft clustering systems or hard
clustering systems. The proposed consensus function has been evaluated
both in the quality of consensus partitions and in the running time.

Keywords: cluster ensemble, three-way decisions, voting-based
consensus, interval sets.

1 Introduction

As one of the important branches of multiple classifier systems, the cluster en-
semble approach has a strong capability to integrate multiple partitions from
different data sources, which has been widely used as a powerful tool to re-
veal underlying patterns in many areas such as data mining, web mining, geo-
graphical data processing, medicine and so on [1]. Compared to single clustering
approaches, the cluster ensemble approach has advantages such as robustness,
novelty, stability and parallelism.

A recent trend in the field of unsupervised classification is the combination of
the outcomes of multiple clustering systems into a single consolidated partition,
known as consensus functions [2]. Fred et al. [1] proposed a new clustering al-
gorithm - voting-k-means which can find consistent clusters in data partitions.
Zhou and Tang [3] proposed four weighted-voting methods to build ensembles
of k-means clusters. Wang et al. [4] proposed a nonparametric Bayesian clus-
tering ensemble (NBCE) method, which can discover the number of clusters in
the consensus clustering. Zhou et al. [5] proposed a spectral clustering ensemble

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 302–312, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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method which not only made use of the advantages of spectral clustering dealing
with arbitrary distribution data set, but also utilized the good robustness and
generalization ability of cluster ensemble.

Despite there are lots of achievements on cluster ensembles, there exist rela-
tively few approaches to consensus clustering specifically oriented to combine the
outcomes of multiple soft unsupervised classifiers into a single of consensus par-
tition. Anyway, there are also some scholars who have studied on it using fuzzy
sets theory. For example, Sevillano et al. [6] proposed a set of of fuzzy consensus
functions using positional and confidence voting techniques, which can combine
multiple soft clustering results into a final soft clustering result represented by
the membership matrix. Punera and Ghosh [7] proposed a several consensus al-
gorithms that can be applied to soft clusterings by extending the relatively hard
clustering methods. Avogadri and Valentini [8] proposed an unsupervised fuzzy
ensemble clustering approach, where the fuzzy-set theory was used to express the
uncertainty of the data ownership, and other fuzzy tools was used to transform
the soft clusterings into hard clusterings. Soft clustering techniques are widely
needed in a variety of important applications such as network structure anal-
ysis, wireless sensor networks and biological information. The objective of this
paper is to propose a cluster ensemble approach that allows to obtain the final
consensus clustering result both in hard and soft formats.

On the other hand, a theory of three-way decisions is constructed on the
notions of acceptance, rejection and noncommitment. It is an extension of the
commonly used binary-decision model with an added third option. Three-way
decisions play a key role in everyday decision-making and have been widely used
in many fields and disciplines [9]. In fact, considering the relation between an
object and a cluster, the object does belong to the cluster certainly, the object
does not belong to the cluster certainly, and the object might belong to the
cluster. Obviously, it is a typical three-way decisions processing to decide the
relation between an object and a cluster. This inspires us to solve clustering using
three-way decisions. Furthermore, we had proposed a three-way decision strategy
for overlapping clustering based on the decision-theoretic rough set model in [10],
where each cluster is described by an interval set that is defined by a pair of sets
called the lower and upper bounds, and the clustering method is effective to
overlapping clustering.

In many data mining applications, using interval sets to represent clusters can
be more appropriate than using crisp representations. Objects in a lower bound
are definitely part of the cluster, and objects in a upper bound are possibly
part of that cluster and potentially belong to another clusters. The interval sets
make it possible to describe ambiguity in categorizing some of the objects. Thus,
Lingras and Yan [11] introduced interval sets to represent clusters. Lingras and
West [12] proposed an interval set clustering method with Rough K-Means for
mining clusters of web visitors. Yao et al. [13] had represented each cluster by
an interval set instead of a single set as the representation of a cluster. Chen and
Miao [14] studied the clustering method represented as interval sets, wherein the
rough k-means clustering method was combined.
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In order to obtain a single“consensus”clustering solution from the outcomes of
multiple unsupervised classifiers, this paper proposes a cluster ensemble frame-
work based on three-way decisions, which can lead to a final consensus clustering
result both in hard and soft formats since the interval sets are used to represent
clusters. Furthermore, a voting-based consensus function is proposed, where one
object is decided to belong to the positive region of a cluster or belong to a
boundary region by traversing the voting matrix first, according to consensus
rules designed in this paper.

2 Define Clustering Using Interval Sets

The goal of cluster analysis is to group objects in a universe so that objects in
the same cluster are more similar to each other and objects in different clusters
are dissimilar.

To define our framework, let a universe be U = {x1, · · · ,xn, · · · ,xN}, and
the clustering result is C = {C1, · · · , Ck, · · · , CK}, which is a family of clusters
of the universe. The xn is an object which has D attributes, namely, xn =
(x1

n, · · · , xd
n, · · · , xD

n ). The xd
n denotes the value of the d attribute of the object

xn, where n ∈ {1, · · · , N}, and d ∈ {1, · · · , D}.
As we have discussed, using interval sets to represent clusters can be more ap-

propriate than crisp representations, which directly leads to an interpretation in
three-way decisions for clustering. Let’s review some basic concepts of clustering
using interval sets [10].

Use an interval set to represent a cluster in C, namely, Ck is represented by
an interval set [A(Ck), A(Ck)], where A(Ck) is the lower bound of the cluster
Ck, A(Ck) is the upper bound of the cluster Ck, and A(Ck) ⊆ A(Ck).

The objects in A(Ck) may represent typical objects of the cluster Ck, objects
in A(Ck)−A(Ck) may represent fringe objects, and objects in U −A(Ck) may
represent the negative objects. In other words, the sets A(Ck), A(Ck)− A(Ck)
and U −A(Ck) are equivalent to the three regions of the cluster Ck as positive
region, boundary region and negative region, respectively, which are described
as follows.

POS(Ck) = A(Ck)
BND(Ck) = A(Ck)−A(Ck)

NEG(Ck) = U −A(Ck)
(1)

With respect to the family of clusters C = {C1, · · · , Ck, · · · , CK}, we have
the following family of clusters formulated by interval sets:

C = {[A(C1), A(C1)], . . . , [A(Ck), A(Ck)], . . . , [A(CK), A(CK)]} (2)

We adopt the following properties for a cluster in the form of interval set:

(i) A(Ck) �= ∅, 0 ≤ k ≤ K; (ii)
⋃

A(Ck) = U.
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Property (i) implies each cluster cannot be empty. In order to make sure
that a cluster is physically meaningful, Property (ii) states that any object of U
belongs to the upper bound of a cluster, which ensures that every object belongs
to at least one cluster.

According to Eq.(1), the family of clusters C give a three-way decision clus-
tering result. Namely, objects in POS(Ck) belong to the cluster Ck definitely,
objects in NEG(Ck) don’t belong to the cluster Ck definitely, and objects in
the region BND(Ck) might belong to the cluster or not. The BND(Ck) �= ∅
means we need more information to help making decisions.

When k �= t, if A(Ck)∩A(Ct) �= ∅, or BND(Ck)∩BND(Ct) �= ∅, that means
there exists at least one object belonging to more than one cluster and it is a
soft clustering. Otherwise, it is a hard clustering.

3 The Cluster Ensemble Framework

In this section, we propose a cluster ensemble framework based on three-way
decisions. Figure 1 shows the basic setup of the cluster ensemble.

Let U = {x1, · · · ,xn, · · · ,xN} denote a set of objects/samples/points. In order
to increase diversity of ensemble clusterings, we use sampling method on the data
set U firstly. Then, H samples are obtained, and let U ′ be the family of samples,
namely, U ′ = {U1, U2, · · · , Uh, · · · , UH}, and Uh ⊆ U , and h ∈ {1, · · · , H}.

Fig. 1. The framework of the cluster ensemble
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Let Φ be a clusterer selection function from a sample to a clusterer. Usu-
ally, the Φ is composed by a set of clustering algorithms and denoted as Φ =
{Φ1, · · · , Φl, · · · , ΦL}, and a clusterer Φl is selected randomly or according to a
priori knowledge of the data set.

Then, the clustering result of a clusterer Φl is called a clustering, also called an
ensemble member, denoted by Ph. Let P = {Ph|Φl(Uh) → Ph} be the set of clus-
terings, where h ∈ {1, · · · , H}, l ∈ {1, · · · , L}. Assume Kh is the number of clus-

ters of the clustering Ph, the Ph is described as: Ph = {C1
h, · · · , Ck

h , · · · , CKh

h } =

{[A(C1
h), A(C1

h)], · · · , [A(Ck
h), A(Ck

h)], · · · , [A(CKh

h ), A(CKh

h )]}.
Finally, the labeling clusterings are combined into a single labeling clustering

P ∗ using a consensus function F : F (P1, P2, · · · , PH′ ) → P ∗. Here, H ′ ≤ H ,
because when combining clusterings into a final clustering, we may combine all
ensemble members or some of ensemble members. P ∗ is represented as: P ∗ =
{C1, · · · , Ck, · · · , CK∗} = {[A(C1), A(C1)], · · · , [A(Ck), A(Ck)], · · · , [A(CK∗

),
A(CK∗

)]}.
Obviously, the lower bounds and upper bounds of the clustering satisfy Prop-

erty (i) and (ii). In other words, the framework of cluster ensemble based on
three-way decisions not only can represent the soft clustering, but also can rep-
resent the hard clustering.

4 Voting-Based Consensus Function

This section introduces a consensus function which combines the outcomes of
multiple clustering systems into a single consolidated partition. The advantage of
the proposed consensus function is that it can consolidate the ensemble members
whenever the members are soft or hard clusterings since the cluster is defined
by an interval set.

The consensus function decides an object to a cluster based on the plurality
voting system. The process of partitioning is regarded as an election. Each of the
clusterers is a voter and casts a vote for an object to a cluster when the object is
assigned to the cluster. Therefore, if an object is assigned into the same cluster by
most of the voters, the consensus clustering process should respect that decision;
that is, the object is decided to belong to the cluster by the consensus function.
Obviously, consensus functions based on voting strategies must include a cluster
disambiguation process prior to voting proper, and the cluster disambiguation
process is conducted by using the method in reference [15] in our experiments.

Thus, the input of the consensus function is the set of ensemble members P ,
and the output is the final clustering result P ∗. Now we consider a specious
case, the number of clusters of all ensemble members and the final clustering is
K, which is the real number of clusters of the data set. Every ensemble member
includes K clusters and every cluster consists of three regions: the positive region,
the boundary region and the negative region. When an object is partitioned into
one region of a cluster in an ensemble member system, the object gets a vote
from the ensemble member system to the region of the cluster. Thus, the H
ensemble members give expression to all votes in the K clusters for all objects.
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In order to express the votes, two matrixes are used here such as: the positive
voting matrix V PosN×K and the boundary voting matrix V BndN×K , where
k ∈ {1, 2, · · · ,K}, n ∈ {1, 2, · · · , N}. The value V Poskn of matrix V Pos means
the votes for the object xn in the positive region of cluster Ck; the value V Bndkn
of matrix V Bnd means the votes for the object xn in the boundary region of
cluster Ck. Set Z = {Z1, · · · , Zn, · · · , ZN} be the total votes for all objects,
namely, the value Zn means how many ensemble members (or voters) cast their
votes for the object xn.

We can scan the H ensemble members and get votes for all objects in the
K clusters, then the positive voting matrix V Pos, the boundary voting matrix
V Bnd and the total votes vector Z are constructed. The next, the consensus
function can make decisions for building the final clustering P ∗. The basic idea is
that to scan every object in voting matrixes and assign it to corresponding region
(positive or boundary) of a cluster according to the votes in the K clusters.

For every object xn, the specific decision rules are described as follows.
Case 1: if ∃k(V Poskn > Zn/2), then decide xn ∈ Pos(Ck);
When votes for xn in the positive region of a cluster are greater than a half

of its total votes, that means there is at most one cluster which xn can belong
to, then we decide the xn to belong to the positive region of the cluster.

Case 2: if ∃k(V Poskn = Zn/2)
When votes for xn in the positive region of clusters are equal to a half of

its total votes, there are at most two clusters which xn can belong to, so we
randomly select one cluster to consider. Now there are two other cases:

1) if (V Poskn > V Bndkn and V Bndkn �= 0), then xn ∈ Pos(Ck);
When votes for xn in the positive region of cluster are greater than its votes in

the boundary region of the cluster and its votes in the boundary region of cluster
is not 0, we decide that the xn belongs to the positive region of the cluster.

2) if (V Poskn = V Bndkn or V Bndkn = 0), then xn ∈ Bnd(Ck);
When votes for xn in the positive region of cluster are equal to its votes in

the boundary region of cluster or its votes in the boundary region of cluster is
0, we decide that the xn belongs to the boundary region of the cluster.

Case 3: if ∀k(V Poskn < Zn/2) and A �= ∅,
then decide xn to belong to the boundary of clusters in the set A;

Set A = {Cl|V Bndln ≥ Zn/2, l ∈ {1, 2, · · · ,K}}, which is a set of clusters,
where the votes for xn, in the boundary region of cluster in A, are no less than
a half of its total votes. When votes for xn in the positive region of the cluster
are less than a half of its total votes, and there exists an A, then we decide that
xn belongs to the boundary of clusters in the set A.

Case 4: if ∀k(V Poskn < Zn/2) and ∀k(V Bndkn < Zn/2)
Set B = {Cl|xn ∈ Bnd(Cl), l ∈ {1, 2, · · · ,K}} be a set of clusters where

xn belongs to the boundary region of these clusters. When votes for xn in the
positive region of every cluster are less than a half of its total votes, and votes
for xn in the boundary region of every cluster are also less than a half of its total
votes, there are also two other cases:

1) if (V Poskn ≥ Zn/4), then xn ∈ Bnd(Ck);
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When votes for xn in the positive regions of clusters reach a certain number,
Zn/4 used in experiments, we decide that the xn belongs to the boundary region
of clusters in the set B.

2) if(V Posn < Zn/4)), then xn belongs to the boundary of clusters in the B;
When votes for xn in the positive region of clusters do not reach a certain

number, Zn/4 used in experiments, we decide that the xn belongs to the bound-
ary region of clusters in the set B.

Through the study of the four cases, the voting-based consensus function can
combine multiple clusterings to a final clustering which may be a hard clustering
or a soft clustering.

5 Experiments

This section will describe some experimental results to show the performance of
the proposed plurality voting-based consensus function. The accuracy is used to
evaluate the clusterings in the experiments, and we only conclude objects in the
positive region of clusters when calculating the accuracy of clusterings because
there might be some objects in the boundaries of clusters. We considered a special
case that all samples were equal to the original data set, namely we don’t use
any sampling methods in our experiments.

Experiment 1. The first experiment is on a synthetic data set to show the
main idea of the method, which can process the fuzzy boundaries of clusters.
The data set MD1 is illustrated in Figure 2, which consists of 323 objects and
three clusters where there are some indistinct objects between the two clusters.

The RK-Means algorithm [12] is used as clusterers in the experiment, the
number of ensemble members are 20 and the threshold used by the RK-Means
algorithm is 1.0. Figure 3 depicts the final clustering of the MD1, where each
cluster is described by two regions as the positive and the boundary. Obviously,
the nine objects on the boundary of C1 and C3 are found out and assigned into
the boundary objects for the two clusters by the method, which accords with
the fact.

In order to further explain the performance of the consensus function, we
observe the every ensemble members and find that the accuracy of the best

Fig. 2. The original data set MD1 Fig. 3. The final clustering of the MD1
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ensemble member clustering is equal to the final clustering. In additional, Figure
4 and Figure 5 show the results of two ensemble members. The two ensemble
members partition objects in the upper part of the original MD1 into one cluster
and in the lower part of MD1 into two clusters. Observe the results in Figure
4, the original C3 is divided into two clusters. The boundaries of C1 and C3 in
Figure 5 are big and are the same region. Fortunately, we obtain a good final
clustering result after consensus combining in Figure 3.

Fig. 4. The results of one ensemble member
on the MD1

Fig. 5. The results of another ensemble
member on the MD1

Experiment 2 The experiments have been conducted on 13 publicly available
data collections obtained from the UCI Machine Learning Repository [16] which
are commonly employed as benchmarks in the pattern recognition and machine
learning fields. The detail description of UCI data sets shows in Table 2. The
Pendigits1234 and PenDigits1469 data set are subsets of the Pendigits data set.
They both consist of 4 clusters, where the former contains digits 1 to 4 and the
latter contains digits 1, 4, 6 and 9.

Table 1. Different Clusterers Φ

Clusterers Φ Algorithms in the Clusterers

Φ1 {K-means}
Φ2 {K-means, K-medoids, Ward}
Φ3 {RK-means, K-means, K-medoids, Complete Link}
Φ4 {K-means, K-medoids, Average Link}
Φ5 {K-means, K-medoids, Single Link}
Φ6 {K-means, K-medoids}

We use soft clustering algorithms and hard clustering algorithms as clusterers
in our experiments. That is, the RK-Means algorithm [12], K-means algorithm,
K-medoids algorithm, and some hierarchical clustering algorithms such as Single
Link method, Average Link method, Complete Link method and Ward method
[17], are used as clusterers in experiments. We can choose some of the clustering
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algorithms as clusterers randomly, or just choose appropriate clustering algo-
rithms according to the prior knowledge. In this paper, the random selection
method is used, and the ten-fold cross validation method is also used in each
test where there are 60 ensemble members generated.

Table 1 shows the different clustering algorithms used in the different cluster-
ers Φ. The results are shown in Table 2. The column Φ describes the clusterers
used in each test for the data set. N , D and K denotes the number of objects
in the data set, the number of attributes and the number of clusters of the data
set, respectively. AV G(Accuracy(P ∗)) denotes the average of the accuracies of
the final clustering P ∗ for all tests, and AV G(Accuracy(P )) denotes the aver-
age of the accuracies of all ensemble members P , where ± means the standard
deviations. The time(s) denotes the running time of the consensus function and
the second is a unit of time.

Observe the results, for all data sets except for the first and tenth data sets,
the accuracy of the final clustering P ∗ obtained by the proposed consensus func-
tion is higher than or equal to the accuracy of corresponding ensemble members
P . For the first data set, the accuracy of the final clustering P ∗ obtained by
the proposed consensus function is higher than the accuracy of corresponding

Table 2. Results of the consensus function on the UCI data sets

NO. Dataset N D K Φ AV G(Accuracy(P ∗)) AVG(Accuracy(P )) time(s)

1 Zoo 101 17 7
Φ1 0.75 ± 0.06 0.70 ± 0.01 0.00 ± 0.01
Φ2 0.61 ± 0.06 0.63 ± 0.01 0.00 ± 0.01

2 Wine 178 13 3
Φ1 0.70 ± 0.00 0.66 ± 0.01 0.00 ± 0.00
Φ2 0.70 ± 0.01 0.68 ± 0.01 0.00 ± 0.01

3 IRIS 150 4 3
Φ1 0.89 ± 0.00 0.80 ± 0.03 0.00 ± 0.01
Φ2 0.87 ± 0.04 0.81 ± 0.01 0.00 ± 0.01
Φ3 0.88 ± 0.03 0.83 ± 0.01 0.01 ± 0.01

4 LiverDisorders 345 6 2
Φ1 0.55 ± 0.00 0.55 ± 0.00 0.01 ± 0.01
Φ4 0.55 ± 0.01 0.55 ± 0.00 0.00 ± 0.00

5 Ionoshpere 351 34 2
Φ1 0.71 ± 0.00 0.71 ± 0.00 0.00 ± 0.01
Φ4 0.70 ± 0.03 0.67 ± 0.01 0.00 ± 0.00

6 WDBC 569 30 2
Φ1 0.85 ± 0.00 0.85 ± 0.00 0.00 ± 0.00
Φ5 0.85 ± 0.00 0.78 ± 0.00 0.00 ± 0.01

7
Image

2310 19 7
Φ1 0.61 ± 0.02 0.52 ± 0.00 0.00 ± 0.01

Segmentation Φ6 0.60 ± 0.04 0.52 ± 0.01 0.00 ± 0.01

8 PenDigits1469 4398 16 4
Φ1 0.83 ± 0.07 0.83 ± 0.01 0.01 ± 0.01
Φ6 0.87 ± 0.05 0.79 ± 0.02 0.01 ± 0.01

9 PenDigits1234 4486 16 4
Φ1 0.87 ± 0.00 0.80 ± 0.01 0.01 ± 0.01
Φ6 0.86 ± 0.03 0.79 ± 0.01 0.00 ± 0.01

10 Waveform-21 5000 21 3
Φ1 0.39 ± 0.00 0.40 ± 0.01 0.01 ± 0.01
Φ6 0.70 ± 0.01 0.68 ± 0.01 0.00 ± 0.01

11 PageBlocks 5473 10 5
Φ1 0.73 ± 0.00 0.73 ± 0.00 0.01 ± 0.01
Φ6 0.69 ± 0.07 0.56 ± 0.03 0.01 ± 0.01

12 Landsat 6435 36 6 Φ1 0.68 ± 0.00 0.64 ± 0.01 0.01 ± 0.01

13 PenDigits 11092 16 10 Φ1 0.79 ± 0.03 0.69 ± 0.01 0.02 ± 0.00
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ensemble members P in the first experiment.However the accuracy of the fi-
nal clustering P ∗ was slightly worse to the accuracy of corresponding ensemble
members P in the second experiment. Besides, for the tenth data set, the accu-
racy of the final clustering P ∗ obtained by the proposed consensus function is
higher than the accuracy of corresponding ensemble members P in the second
experiment. And the accuracy of the final clustering P ∗ was slightly worse to
the accuracy of corresponding ensemble members P in the first experiment. In
addition, the accuracy of the second experiment was higher than the first exper-
iment. Selecting different clusterers was more effective in the second experiment
of the tenth data set. In sum, the results after combining by consensus function
is much better than the single clustering. Furthermore, computing consensus
function spend little time, which is helpful to cluster on big data sets.

6 Conclusion

Cluster ensembles can combine the outcomes of several clusterings to a single
clustering. In order to develop an approach to deal with consolidating the out-
comes of both soft and hard clustering systems into a single final partition, this
paper proposes a cluster ensemble framework based on three-way decisions, and
the interval sets used here to represent the cluster have advantages to describe
both hard clustering and soft clustering. According to the lower and upper bound
of the cluster, a cluster is described by three regions: objects in the positive re-
gion belong to the cluster certainly, objects in the negative region do not belong
to the cluster certainly, and objects in the boundary region defer decisions since
the information is not sufficient. Besides, this paper also proposes a plurality
voting-based consensus function, which can consolidate the outcomes of clus-
ter ensemble systems, and the systems contain only soft clustering systems or
only hard clustering systems or both soft and hard clustering systems. The ex-
perimental results show that the method is effective both in the quality of the
consensus partitions and in the running time. However, how to determine the
number of ensemble members, how to delete the “bad” votes in ensemble mem-
bers, and how to improve the time complexity of the consensus function to be
available to big data sets are still problems needed to study in the further work.
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17. DeSá, J.P.M.: Pattern Recognition: Concepts, Methods, and Applications.

Springer, Heidelberg (2001)

http://archive.ics.uci.edu/ml


Multistage Email Spam Filtering

Based on Three-Way Decisions

Jianlin Li1, Xiaofei Deng2, and Yiyu Yao2

1 School of Computer and Software
Nanjing College of Information Technology

Nanjing, China, 210023
lijl@njcit.cn

2 Department of Computer Science, University of Regina
Regina, Saskatchewan, Canada, S4S 0A2
{deng200x,yyao}@cs.uregina.ca

Abstract. A ternary, three-way decision strategy to email spam filtering
divides incoming emails into three folders, namely, a mail folder consist-
ing of emails that we accept as being legitimate, a spam folder consisting
of emails that we reject as being legitimate, and a third folder consist-
ing of emails that we cannot accept nor reject based on available infor-
mation. The introduction of the third folder enables us to reduce both
acceptance and rejection errors. Many existing ternary approaches are
essentially a single-stage process. In this paper, we propose a model of
multistage three-way email spam filtering based on principles of granular
computing and rough sets.

1 Introduction

An email spam filtering system automatically processes incoming emails accord-
ing to certain criteria and classifies and organizes emails into several folders.
Many studies [1, 3, 12, 15, 16] treat spam filtering as a binary, two-way deci-
sion/classification so that approaches from machine learning can be conveniently
applied. For a two-way decision, one can either accept a message as being legit-
imate, or reject the message as being legitimate (i.e., spam) by using a single
threshold. A trade-off between incorrect acceptance and incorrect rejection is
introduced by the single threshold. For example, a larger threshold on the prob-
ability of legitimacy of emails typically leads to a lower rate of incorrect accep-
tance but a higher rate of incorrect rejection; the reverse is true for a smaller
threshold. As discussed in [4], for two-way decisions one can not decrease in-
correct acceptance and incorrect rejection errors simultaneously. Therefore, the
idea of ternary, three-way decision/classification arises and attracts attention
from many authors [2, 7–11, 14, 22–25].

Existing three-way decision approaches to email spam filtering are a single-
stage process and mainly focus on two fundamental issues, namely, constructing
a function that estimates the legitimacy of emails [25] and determining an opti-
mal pair of thresholds. Based on a framework of sequential three-way decisions
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[20, 21], this paper introduces a multistage three-way email spam filtering model
by taking advantages of multiple levels of granularity existed in emails.

Human beings usually make effective decisions based on available information
and search for more evidence when it is impossible to make a decision. This
observation implies that we make decisions in multiple steps/stages. To formally
describe such a decision-making process, a sequential three-way decision model,
an extension of probabilistic rough sets, is proposed and studied [20, 21]. The
multistage three-way email spam filtering method of this paper is an application
of the model of sequential three-way decisions. We construct multiple represen-
tations of the same email at different levels of granularity by adding additional
information, starting from sender and moving to subject, to main text, and to
attachments. We can make either an acceptance or a rejection decision at an
abstract higher level with a coarser granulation when we are confident enough;
otherwise, we make a non-commitment decision and move to a lower level with
more detailed information.

The rest of the paper is organized as follows. Section 2 examines and analyzes
existing single-stage two-way and three-way decision approaches. Section 3 pro-
poses a multistage three-way decision model. Section 4 introduces an approach to
construct multilevel granulations in support of the multistage three-way decision-
making.

2 Single-Stage Email Spam Filtering

Email spam filtering can be formulated as a classification problem. Suppose U
is a finite non-empty set of objects, called the universe, and each object in U
represents an email message. We can use a feature vector x = {x1, x2, · · · , xn} to
describe an object x ∈ U , where xi with 1 ≤ xi ≤ n is the i-th feature or attribute
of an email. For example, x1 represents the sender of a message, x2 represents
the subject of the message. According to [19], we assume each object x has two
states, legitimate, represented by x ∈ C, or spam, represented by x ∈ Cc. A
classifier predicts state of objects by using either a discriminate function [25] or
an estimation function [19], denoted as v(C|x). This section introduces binary,
two-way decisions and ternary, three-way decisions to email spam filtering.

2.1 Email Spam Filtering as a Binary, Two-Way Decision

By introducing a single threshold 0 ≤ γ ≤ 1, we can formulate two-way decision
regions as follows:

POSγ(C) = {x ∈ U | v(C|x) ≥ γ},
NEGγ(C) = {x ∈ U | v(C|x) < γ}. (1)

The positive region POSγ(C) can be considered as the folder consisting of emails
that we accept as being legitimate, while the negative region NEGγ(C) can
be considered as another folder consisting of emails that we reject as being
legitimate (i.e., being treated as a spam).

For each object x ∈ U , we can use the following two-way decision rules:
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Acceptance: If v(C|x) ≥ γ, accept x as being legitimate, i.e., x ∈ C;

Rejection: If v(C|x) < γ, reject x as being legitimate, i.e., x ∈ Cc.

Tie-breaking rules can be applied to these two rules. A normalized function
v(C|x) provides an estimated value for the two-way decisions. According to dif-
ferent applications, one may interpret and construct different estimation or dis-
criminate functions. For example, a SVM classifier [3] uses a measure of distance
between the given email and the decision hyperplane, while a naive Bayes clas-
sifier [12, 15] uses probabilistic classification techniques.

2.2 Email Spam Filtering as a Ternary, Three-Way Decision

The three-way decisions [19] allow an additional decision option, namely, non-
commitment, when the support information is insufficient for either an accep-
tance nor a rejection decision. By introducing a pair of thresholds (α, β) with
0 ≤ β < α ≤ 1, we can define the positive, negative and boundary three-way
decision regions as follows:

POS(α,·)(C) = {x ∈ U | v(C|x) ≥ α},
NEG(·,β)(C) = {x ∈ U | v(C|x) ≤ β},

BND(α,β)(C) = {x ∈ U | β < v(C|x) < α}, (2)

where we use an ‘·’ to represent an irrelevant threshold and v(C|x) is a normalized
estimation function. For objects in the boundary region BND(α,β)(C), we need
to obtain more evidence to make a definite decision, i.e., either an acceptance
or a rejection. The cardinality of the boundary region depends on the pair of
thresholds (α, β), while the positive and negative regions depend on α and β,
respectively.

For each object x ∈ U , we use the following three-way decision rules:

Acceptance: If v(C|x) ≥ α, accept x as being legitimate, i.e., x ∈ C;

Rejection: If v(C|x) ≤ β, reject x as being legitimate, i.e., x ∈ Cc;

Non-commitment: If β < v(C|x) < α, neither accept nor reject x as
being legitimate, instead, opt for a non-commitment decision.

The decision of an email depends on the acceptable level of confidence. For
example, an email x ∈ U is accepted as being legitimate if its estimated value
v(C|x) is at or above α level, rejected if the value is at or below the β level, and
neither accepted nor rejected if the evidence is insufficient, i.e., β < v(C|x) < α.

Ternary, three-way decision approach to email spam filtering receives atten-
tion from many researchers. For example, Robinson [14] proposes a measure of
spamminess and construct an estimation function of each email based on prob-
ability and spamminess. A ternary classifier is used to classify an email as spam
if the estimated value is near 1, is classified as legitimate if it is near 0 and is
classified as uncertain if it is near 0.5. Zhao and Zhang [24] propose a three-way
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decision approach using the genetic algorithm and rough set theory. They classify
incoming emails into three categories, namely, spam, non-spam and suspicious.
Zhou et al. [25] propose a cost-sensitive three-way decision approach based on
the well-established Bayesian decision theory.

2.3 Motivation of the Multistage Email Spam Filtering

In order to illustrate the purpose of introducing the multistage three-way de-
cisions, we discuss several issues of the single-stage decision-makings in terms
of a special case of three-way decisions, i.e., probabilistic rough sets [17]. The
following discussion draws from our earlier work [4].

Suppose C is the legitimate email class and v(C|x) = Pr(C|x) is the condi-
tional probability of C given x. We use Pr(C|x) as the estimation function for
single-stage decision-makings. Based on Equation (1), the incorrect classifica-
tion errors of acceptance and rejection for two-way decisions can be respectively
defined by: for 0 ≤ γ ≤ 1,⎧⎪⎨⎪⎩

Incorrect-Acceptance Error : IAE(C,POSγ(C)) =
|Cc ∩ POSγ(C)|

|POSγ(C)| ,

Incorrect-Rejection Error : IRE(C,NEGγ(C)) =
|C ∩ NEGγ(C)|

|NEGγ(C)| .

(3)

Intuitively, we tend to make a binary decision with minimum errors. That is, we
should decrease both IAE(C,POSγ(C)) and IRE(C,NEGγ(C)). Unfortunately,
this is not always possible due to the following monotonicity for binary, two-way
classifications [4]: for γ1, γ2 ∈ [0, 1],

(M1) γ1 ≥ γ2 =⇒ IAE(C,POSγ1(C)) ≤ IAE(C,POSγ2(C));

(M2) γ1 ≥ γ2 =⇒ IRE(C,NEGγ1(C)) ≥ IRE(C,NEGγ2(C)).

Properties (M1) and (M2) confirm that we can not reduce the incorrect classifi-
cation errors of the acceptance and rejection simultaneously.

Three-way decisions solve this issue by providing a non-commitment option.
The following monotonic properties hold [4]: for 0 ≤ β < α ≤ 1,

(M3) α1 ≥ α2 =⇒ IAE(C,POS(α1,·)(C)) ≤ IAE(C,POS(α2,·)(C)),

(M4) β1 ≥ β2 =⇒ IRE(C,NEG(·,β1)(C)) ≥ IRE(C,NEGC,(·,β2)(C));

According to properties (M3) and (M4), one can reduce the incorrect classifi-
cation errors of acceptance and rejection by adjusting the α and β thresholds
at the same time. However, the non-commitment decision leaves the issue of
classifying uncertain emails to the boundary region. Whenever we are not sure
about the email, we put it into the boundary region. An email filtering system
needs to explore sufficient information and finally make either an acceptance or
a rejection for those emails. A single-stage three-way decision model does not
provide any solution for this issue, as a result, we need a model of multistage
three-way decisions.
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3 A Model of Multistage Email Spam Filtering

Using the framework of sequential three-way decisions [20], we introduce a model
of multistage three-way decisions for email spam filtering.

3.1 Email Spam Filtering Based on a Sequence of Attributes

We assume an email message contains the following set of attributes:

AT = { sender, receiver, subject, date of sending, date of receiving,

length, body (content), attachment . . .}. (4)

By selecting different subsets of attributes from AT , we can make a sequence of
subsets of attributes as follow:

P1 ⊂ P2 ⊂ · · · ⊂ Pm ⊆ AT, (5)

where, for example, we have:

P1 = {sender},
P2 = {sender, subject},
P3 = {sender, subject, length},
P4 = {sender, subject, length, date of sending},
· · ·

Pm = {sender, subject, length, date of sending, · · · , body}. (6)

Based on Equation (5), one can make a sequence of descriptions of x ∈ U
satisfying the following condition:

Na(DesP1(x)) ≤ Na(DesP2(x)) ≤ · · · ≤ Na(DesPm(x)), (7)

where DesPi(x) is a description of x based on Pi ⊆ AT , Na(·) is the number of
attributes used in DesPi(x). The more attributes we use, the more evidence the
description provides. Thus, we can form multiple levels of information granular-
ity. At a higher level we have more abstract information, while at a lower level
we use more detailed information.

3.2 Non-monotonicity of Estimations

An exploration of an estimation function may help to make appropriate deci-
sions. Intuitively, the distribution of objects and the legitimate class C deter-
mine whether a new piece evidence is valuable. Decision monotonicity probably
does not hold for estimation functions at different levels. In [21], we discuss
the non-monotonicity of estimations in terms of conditional probabilities. As a
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generalization of the conditional probability, the following three scenarios may
happen to an estimation function v(DesP (x)): if P1 ⊂ P2 ⊆ AT ,

v(DesP2(x)) > v(DesP1(x))

v(DesP2(x)) = v(DesP1(x))

v(DesP2(x)) < v(DesP1(x)). (8)

The new evidence may support, be neutral, and refutes C, although P2 contains
more attributes than P1. The observation reveals that we may make incorrect
decisions at a higher level, and need to revise our decisions at a lower level.

We prefer to avoid revisions made at a higher level and only allows small
chances of revisions at lower levels. Since the three-way decision-makings are
based on acceptable levels of incorrect classification errors, one can adjust thresh-
olds at higher levels and only allow low rates of incorrect classification errors.
Therefore, we suggest the following conditions of thresholds:

0 ≤ βi < αi ≤ 1, 1 ≤ i ≤ m,

β1 ≤ β2 ≤ . . . ≤ βm < αm ≤ . . . ≤ α2 ≤ α1. (9)

With high α and low β values, decisions made at higher levels are biased towards
the non-commitment option; while, at lower levels, we can make more accurate
decisions with the support of more evidence. One can use the decision-theoretic
approach [19, 20] to determine the optimal pair of thresholds (αi, βi) at each
decision stage. There are many discussions on this topic, for example, see [2, 4,
7, 9, 19, 20].

3.3 Multistage Three-Way Decisions

Given a sequence of descriptions {DesPi(x)} and a sequence of thresholds
{(αi, βi)}, the multistage three-way decision regions can be recursively defined
by:

1. The initialization:

MPOS0(C) = ∅, MNEG0(C) = ∅, MBND0(C) = U (10)

2. Decision stages: suppose (αi, βi) for the i-th stage,

MPOSi(C) = MPOSi−1(C) ∪ {x ∈ MBNDi−1(C) | v(DesPi(x)) ≥ αi},
MNEGi(C) = MNEGi−1(C) ∪ {x ∈ MBNDi−1(C) | v(DesPi(x)) ≤ βi},
MBNDi(C) = {x ∈ MBNDi−1(C) | βi < v(DesPi(x)) < αi}, (11)

where MBNDi−1(C) denotes the boundary region at the (i− 1)-th stage. At the
final stage, if there are emails in the boundary region, we can either use a binary
classification [20] or leave the job to the user. The workflow of multistage email
spam filtering is explained by Figure 1.

As shown in Figure 1, we would like to make acceptance and rejection decisions
at a higher level and proceed into a lower level (i.e., the next three-way decision
stage) if more information is required. For each stage, for an object we make an
acceptance, a rejection or an non-commitment decision. At the final stage, we
would like to use either a binary, two-way decision or leave the job to users.
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Incoming
emails

Stage 1: three-
way decisions
with (α1, β1)

· · · · · ·
Stage i: three-
way decisions
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· · · · · ·
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with (αm, βm)
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Classified
emails in
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way with
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Non-
commitment
x ∈ BNDi(C)

Accept as
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x ∈ NEGi(C)

βi < v(DesPi(x)) < αi

v(DesPi(x)) ≥ αi v(DesPi(x)) ≤ βi

At multiple stages At the i-th stage

Fig. 1. Workflow of multistage three-way email spam filtering

3.4 A Multistage Three-Way Email Spam Filtering Algorithm

Given a sequence of descriptions of objects, one can make multistage three-way
decisions. Since descriptions of objects are defined by using subsets of attributes,
one can use a fitness function to select appropriate subsets of attributes. The
algorithm in Figure 2 illustrates this approach to multistage three-way decisions
in detail.

The algorithm stops and completes the ternary classification when the bound-
ary region is empty, i.e., MBNDi−1(C) = ∅, or when all available information
is used, i.e., Pi−1 = AT . The results of multistage three-way decisions are the
three decision regions, i.e., MPOS(C), MNEG(C) and MBND(C). We can either
do a binary classification or let the user make the decision when MBND(C) �= ∅.

4 Constructing Multilevel Granular Structures

A fundamental issue of multistage three-way decisions is the construction of the
sequence of different levels of representations of the same email. Based on the
theory of rough sets and granular computing [13], we formulate and construct
such a sequence of multilevel granular structures by adding new information at
different levels.
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Input: A set of emails U described by a set of attributes AT ;
A set of legitimate emails C ⊆ U ;
A sequence of thresholds {(αi, βi)} satisfying conditions in (9);
A fitness function δ;

Output: MPOS(C), MNEG(C) and MBND(C);
begin

MPOS0(C) = ∅,MNEG0(C) = ∅,MBND0(C) = U ;
i = 1, P0 = ∅;
while (Pi−1 ⊂ AT ) ∧ (BNDi−1(C) �= ∅) do

Use the finiteness function δ to select a subset of attributes Pi;
Produce the description DesPi(x) for stage i;
MPOSi(C) = MPOSi−1(C) ∪ {x ∈ MBNDi−1(C) | v(DesPi(x)) ≥ αi} ;
MNEGi(C) = MNEGi−1(C) ∪ {x ∈MBNDi−1(C) | v(DesPi(x)) ≤ βi};
MBNDi−1(C) = {x ∈ MBNDi−1(C) | βi < v(DesPi(x)) < αi};
i = i+ 1;

end
return MPOS(C) = MPOSi(C), MNEG(C) = MNEGi(C),

MBND(C) = MBNDi(C);

end

Fig. 2. Multistage three-way decisions to email spam filtering

4.1 An Information Table

In order to organize and express meaningful information of emails, we adopt the
notion of an information table.

Let S = (U,AT, {Va | a ∈ AT }, {Ia | a ∈ AT }) denote an information
table, where U is a finite non-empty set of objects called the universe, AT is
a finite non-empty set of attributes, Va is the domain of attribute a ∈ AT and
Ia : U −→ Va is an information function that maps an object x ∈ U to a
particular value v ∈ Va. We can define a binary relation based on S, called the
equivalence relation E ⊆ U × U , which is reflexive (∀x ∈ U, xEx), symmetric
(∀x, y ∈ U, xEy =⇒ yEx) and transitive (∀x, y, z ∈ U, xEy ∧ yEz =⇒ xEz).
In an information table S, we can define an equivalence relation EP by using a
subset of attributes P ⊆ AT ,

xEP y ⇐⇒ ∀a ∈ P (Ia(x) = Ia(y)). (12)

Equivalence classes of EP containing x ∈ U is given by [x]EP = [x]P = [x] =
{y ∈ U | xEP y}. Objects in [x]P share the same description denoted by DesP (x).
A family of all equivalence classes forms a partition of the universe, called the
quotient set, denoted by U/EP = U/P = {[x]EP | x ∈ U}. In order to pre-
cisely define the description DesP (x), we can define a decision logic based on the
information table.

4.2 Describing Objects by a Decision Logic Language

A decision logic language can be recursively defined as follows:
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1. Atomic formula: for a ∈ AT , v ∈ Va, the pair (a = v) is an atomic formula;
2. Composite formula: if φ1 and φ2 are formulas, φ1 ∧ φ2 is a formula,

where a is an attribute in AT , v is a value of a in the domain Va and (a = v)
is an attribute-value pair [5]. In this language, we only discuss the conjunction
operator ∧, therefore, an object x ∈ U can be described as a conjunction of
atomic formulas with respect to a subset of attributes P ⊆ AT ,

DesP (x) =
∧
a∈P

(Ia(x) = v), (13)

where a is an attribute in the subset P .
Suppose DL is the set of all formulas of the decision logic language. The

meaning of a formula φ ∈ DL is a subset of objects that can be recursively
defined by:

1. Atomic formula: if φ = (a = v), then m(a = v) = {x ∈ U | Ia(x) = v},
2. Composite formula: if φ = φ1 ∧ φ2, then m(φ1 ∧ φ2) = m(φ1) ∩m(φ2).

Grzymala-Busse [5, 6] refers to the meaning of a formula as a block. We can use
the pair (DesP (x),m(DesP (x)) = [x]P ) to describe the equivalence class induced
by x [18].

4.3 Formulating Multilevel Granulations

Based on the notions of information table and decision logic language, we can
formulate the sequence of multiple representations of the same email. Using
the terminology of granular computing, a set of objects can be considered as a
granule and a family of granules as a granulation.

A granule g can be defined as a pair [18]:

(Des(g),m(g)), (14)

where g is the name of a granule, Des(g) is the description of g and m(g) is the
meaning set of the description. We can form granules based on an information
table. For an object x ∈ U , the equivalence class containing x can be defined as
a granule:

(DesP (x), [x]P ). (15)

Consider two subsets of attributes P1, P2 ⊆ AT with P1 ⊂ P2 ⊆ AT . For an
object x ∈ U , two granules (DesP1(x), [x]P1 ) and (DesP2(x), [x]P2 ) satisfy the
following properties:

(C1) Na(DesP2(x)) ≥ Na(DesP1(x)),

(C2) [x]P2 ⊆ [x]P1 ,

where Na(·) denotes the number of attributes used in a description. Intuitively,
values on additional attributes P2−P1 can be viewed as new evidence or support
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information [21]. For example, in medical diagnosis, P2 − P1 represents a new
set of medical tests. Property (C1) shows that we change a coarser description
DesP1(x) into a finer description DesP2(x) by adding new pieces of information:

DesP2−P1(x) =
∧

a∈P2−P1

(a = Ia(x)). (16)

It is obvious that DesP1(x) = DesP1(x)∧DesP2−P1(x). In terms of meaning sets,
more details or support information results in a finer granule, i.e., [x]P2 ⊆ [x]P1 ,
as shown by Property (C2).

A family of granules forms a granulation which can be defined by:

G = {g1, g2, · · · , gk}, (17)

where gi with 1 ≤ i ≤ k is a granule in G. For two granulations G1 and G2, a
refinement-coarsening relation  can be established by:

G1  G2 ⇐⇒ ∀gi ∈ G1∃gj ∈ G2 (m(gi) ⊆ m(gj)). (18)

That is, for each granule gi in G1, if we can find a granule gj in G2 such that
m(gi) ⊆ m(gj), then the granulation G1 is finer than G2 and G2 is coarser than
G1. A quotient set U/P defined using an information table is a typical example
of granulations, which can be re-expressed in terms of granules:

U/P = {(DesP (x), [x]P ) | x ∈ U}. (19)

For two subsets of attributes P1 ⊂ P2 ⊆ AT , we have the following property: if
P1 ⊂ P2 ⊆ AT ,

(C3) U/P2  U/P1.

This can be easily verified by the definition of refinement-coarsening relation.
According to Property (C3), we can construct a sequence of different levels of

granulations by using a nested sequence of subsets of attributes:

U/Pm  U/Pm−1  . . .  U/P2  U/P1. (20)

A finer granulation contains smaller granules with more detailed descriptions,
and vice-versa. For multistage three-way decisions, we use a coarser granulation
at a higher level of decision stage, while use a finer granulation at a lower level.

5 Conclusion

An analysis of existing single-stage two-way and three-way decision approaches
to email spam filtering points out the trade-off between correct and incorrect
classifications in two-way decisions and the problem of three-way decisions with
insufficient information. In order to solve these issues, we introduce a multistage
three-way decision model to email spam filtering by extending the framework of
sequential three-way decisions, and propose an approach to construct multilevel



Multistage Email Spam Filtering Based on Three-Way Decisions 323

granular structure to represent the same email at different levels of granularity.
We have performed some preliminary experiments by using a small data set and
the results were very encouraging. As future work, we will focus on the inter-
pretation and construction of the sequence of pairs of thresholds for multistage
three-way decision-makings and fully evaluate our model by using more data
sets.

Acknowledgements. This work is partially supported by a Discovery Grant
from NSERC Canada.
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Abstract. Three-way decision model is an extension of two-way deci-
sion model, in which boundary region decision is regarded as a new fea-
sible decision choice when precise decision can not be immediately made
due to lack of available information. In this paper, a cost-sensitive se-
quential three-way decision model is presented, which simulate a gradual
decision process from rough granule to precise granule. At the beginning
of the sequential decision process, the decision results have a high de-
cision cost and many instances are decided as boundary region due to
lack of information. With the increasing of the decision steps, the deci-
sion cost decrease and more instances are precisely decided. Eventually
the decision cost achieve at a satisfying value and the boundary region
disappears. The paper presents both theoretic analysis and experimental
validation on this proposed model.

Keywords: three-way decision, cost-sensitive, sequential decision,
decision-theoretic rough sets.

1 Introduction

Three-way decision theory, proposed by Yao in [19], is an extension decision the-
ory of two-way decision theory, in which the positive decision, negative decision
and boundary decision are considered as three optional actions in the process
of decision [18,20]. In traditional two-way decision theory, there are basically
two choices for the decision: one is positive decision, and the other is negative
decision, which requires the decision makers to make immediately decision ac-
tions. The two-way decision strategy many result in wrong decisions when the
information used for decisions is limited while the decision result should be im-
mediately made. In this situation, it is a reasonable choice to take three-way
decision strategy [18]. The main superiority of three-way decision compared to
two-way decision is the utility of the boundary decision. In three-way decision
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theory, the boundary decision is regarded as a feasible choice of decision when the
available information for decision is too limited to make a proper decision, which
is similar to the human decision strategy in the practical decision problems.

Three-way decision theory originates from the researches on decision-theoretic
rough set model (DTRS) [17,22,23], which presents a semantics explanation on
how to classify an instance into positive, negative and boundary region based on
cost-sensitive classification strategy. In recent years, three-way decision theory
and DTRS have received more and more attention, and many examples of theo-
retical research and applications of the three-way decision DTRS are frequently
mentioned in literatures [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,24,25]. Previous
three-way decision and DTRS researches mainly focus on a static minimum risk
decision result induced from a certain static known information. For example, we
can make three-way decision based on the entire attribute set of a decision table,
and we can also make three-way decision based on a reduced test attribute set,
i.e., reduct of the attribute set. The three-way decision is determined when the
test attribute set is given. However, in real world decision problem, the available
information for decision is always limited, and there will be some costs in the
process of acquiring the attribute values. In this case, we may take a sequen-
tial decision strategy: the three-way decisions are sequentially made according
to gradually acquired information which takes some certain test cost, until the
decision results are satisfied. Recently, Yao. et al. proposes a framework of se-
quential three-way decisions with probabilistic rough sets [21]. In this paper, we
will further discuss this kind of sequential three-way decision strategy in detail
and present a new cost-sensitive sequential three-way decision model.

2 Cost-Sensitive Three-Way Decision

In this section, we will review some basic notions of cost-sensitive three-way
decision [17,18,19,20,22,23], which forms a theoretical basis for the proposed
cost-sensitive sequential three-way decision model.

Let us consider on a binary decision or classification problem. The set of
actual states is given by Ω = {X,¬X} = {XP , XN} indicating that the actual
state of each instance for decision is either labeled by X (XP ) or labeled by
¬X (XN ). If we take two-way decision strategy, the decision actions include
only two choices: deciding X or ¬X . Considering a dilemma situation when
the available information to make a precise decision is limited, we should add
a third choice for decision, i.e., delay decision, which means we need to collect
more information for further precise decision. The three-way decision presents
such a dilemma decision action. In three-way decision model, decision actions
are given by A = {aP , aN , aB}, representing POS(X), NEG(X) and BND(X)
decisions respectively. Table 1 presents all costs for three-way decisions. The cost
λij forms a matrix denoted as (λij)2×3, where i ∈ {P,B,N}, and j ∈ {P,N}.

Normally, the costs of right decision are less than that of wrong decision, and
we have λPP ≤ λBP ≤ λNP and λNN ≤ λBN ≤ λPN . Moreover, a reasonable
assumption is that the costs of right decision are equal to zero, then we get a sim-
plified decision cost matrix with only four parameters including λPN , λNP , λBP
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Table 1. Decision cost matrix

Actual States Decide POS(X) Decide BND(X) Decide NEG(X)

X (XP ) λPP λBP λNP

¬X (XN ) λPN λBN λNN

and λBN . By introducing the cost-sensitive classification and learning methods,
we compare all decision costs of A = {aP , aN , aB} and select out the optimal ac-
tion which has the minimum expected decision cost. We denote the data set as a
decision information table [23]: S = (U,At = C∪D, {Va | a ∈ At}, {Ia | a ∈ At}).
Given a set of attributes C̃ ⊆ C, the expected decision cost R(ai|[x]C̃) for taking
the each action can be expressed as follows:

R(aP |[x]C̃) =
∑

j∈{P,N}
λPjP (Xj |[x]C̃) = λPNP (XN |[x]C̃),

R(aN |[x]C̃) =
∑

j∈{P,N}
λNjP (Xj |[x]C̃) = λNPP (XP |[x]C̃), (1)

R(aB|[x]C̃) =
∑

j∈{P,N}
λBjP (Xj |[x]C̃) = λBPP (XP |[x]C̃) + λBNP (XN |[x]C̃),

where [x]C̃ denotes the equivalence class of x under relation C̃. Based on cost-
sensitive classification strategy, we compute all three decision cost R(aP |[x]C̃),
R(aN |[x]C̃) and R(aB|[x]C̃) to find out the minimum decision cost, then the
optimal three-way decision φ∗([x]C̃) will be made, which is presented as follows:

φ∗([x]C̃) = argmin
D∈{aP ,aN ,aB}

R(D|[x]C̃). (2)

Based on the properties of DTRS, the optimal three-way decision results can
be enumerated as formula (3) under the condition that λPP ≤ λBP ≤ λNP ,
λNN ≤ λBN ≤ λPN and (λPN −λBN )(λNP −λBP ) > (λBP −λPP )(λBN −λNN)
[17]:

φ∗([x]B) =

⎧⎨⎩
aP , , if P (X |[x]C̃) ≥ α,
aN , , if P (X |[x]C̃) ≤ β,
aB, , if β < P (X |[x]C̃) < α,

(3)

where

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
,

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
, (4)

are thresholds determined by cost matrix (λij)2×3.
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3 Sequential Three-Way Decision Model

In real world decision problems, the available information used for decision is
usually limited, and there will be some costs when acquiring the available in-
formation. For example in medical diagnose decision problem, it costs money to
make physical examinations including X-rays tests, gastroscopy test, and mag-
netic resonance imaging test. Some tests may be very expensive, therefore, doc-
tors will sequentially make the test. Initially, some cheaper tests will be taken and
the diagnose is made based on these available information. The final decision will
be made if currently collected information is sufficient for precise decision. How-
ever, if currently collected information is too limited to make a precise decision,
then the doctor may delay the decision, and take next step test to collect more
information for further decision. Such decision strategies are frequently used in
human decision process, which form a sequential three-way decision model. In
this section, we will discuss this decision model in detail.

Definition 1. Let S = (U,At = C ∪ D, {Va | a ∈ At}, {Ia | a ∈ At}) be a
decision table, where U denotes the set of objects, and At is a set of attributes
including a condition attributes set C and a decision attributes set D. Va is a
set of values of a ∈ At, and Ia : U → Va is an information function. x is an
instance for decision. M = {λij}3×2 (i ∈ {P,N,B}, j ∈ {P,N}) is a decision
cost matrix, and |C| = m. A sequential three-way decision series is defined as:

SD = (SD1, SD2, SD3, · · · , SDm) (5)

= (φ∗([x]{ci1}), φ∗([x]{ci1 ,ci2}), φ∗([x]{ci1 ,ci2 ,ci3}), · · · , φ∗([x]{ci1 ,ci2 ,··· ,cim}),

where φ∗([x]{ci1 ,ci2 ,··· ,cik}) is the optimal three-way decision presented in formula

(2), i.e., φ∗([x]{ci1 ,ci2 ,··· ,cik}) = arg minD∈{aP ,aN ,aB}R(D|[x]{ci1 ,ci2 ,··· ,cik}). The

attributes series for SD is denoted as: SAm = (ci1 , ci2 , · · · , cim).

Considering a single k-th step decision SDk in SD, we compute the decision
cost of SDk based on formula (2), then we have:

Cost(x, SDk) = min
i∈{P,N,B}

(
∑

j∈{P,N}
λiPP (Xj |[x]{ci1 ,ci2 ,··· ,cik})). (6)

With the increasing of the decision steps, one may intuitively conclude that
the decision cost decreases since the decision precision are gradually improved.
Such conclusion is correct in most cases but it is not always true. We present
two theorems for explanation.

Theorem 1. Let SD = (SD1, SD2, SD3, · · · , SDm) be a sequential three-way
decision series presented in Definition 1, and SDk be the k-th decision series
(1 ≤ k ≤ m). Suppose SDl is a successive decision of SDk, i.e., l > k, and
P (XP |[x]Ck

) ≥ α, where α is determined by formula (4), then the following
proposition holds:

If P (XP |[x]Cl
) ≥ P (XP |[x]Ck

), then Cost(x, SDl) ≤ Cost(x, SDk);

If α ≤ P (XP |[x]Cl
) < P (XP |[x]Ck

), then Cost(x, SDl) ≥ Cost(x, SDk).
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Proof: Suppose the attribute set associated with SDk is {ci1 , ci2 , · · · , cik}, then
we have SDk = φ∗([x]{ci1 ,ci2 ,··· ,cik}). According to formula (6), we compute the

Cost(x, SDk) as follows:

Cost(x, SDk) = min
i∈{P,N,B}

(
∑

j∈{P,N}
λiPP (Xj |[x]{ci1 ,ci2 ,··· ,cik}))

=

⎧⎨⎩
λPNP (XN |[x]Ck

), , if P (X |[x]Ck
) ≥ α,

λNPP (XP |[x]Ck
), , if P (X |[x]Ck

) ≤ β,
λBPP (XP |[x]Ck

) + λBNP (XN |[x]Ck
), , if β < P (X |[x]Ck

) < α,
(7)

Firstly, if P (XP |[x]Cl
) ≥ P (XP |[x]Ck

), then we have P (XP |[x]Cl
) ≥ P (XP |[x]Ck

)
≥ α. According to formula (7), Cost(x, SDk) = λPNP (XN |[x]Ck

) = λPN −
λPNP (XP |[x]Ck

) and Cost(x, SDl) = λPNP (XN |[x]Cl
) = λPN (1−P (XP |[x]Cl

))
= λPN − λPNP (XP |[x]Cl

) ≤ λPN − λPNP (XP |[x]Ck
) = Cost(x, SDk), thus

Cost(x, SDl) ≤ Cost(x, SDk). Secondly, if α ≤ P (XP |[x]Cl
) < P (XP |[x]Ck

),
then according to formula (3) and (7) we have φ∗([x]Cl

) = aP , andCost(x, SDl) =
λPNP (XN |[x]Cl

) = λPN −λPNP (X |[x]Cl
) ≥ λPN −λPNP (X |[x]Ck

) = Cost(x,
SDk), thus Cost(x, SDl) ≥ Cost(x, SDk). �

Remark:It can be similarly proved that the decision cost may increase
or decrease with the increase of the decision steps under the condition β <
P (XP |[x]Ck

) < α or the condition P (XP |[x]Ck
) ≤ β. Moreover, according

to literatures [6] and [8], P (XP |[x]Cl
) > P (XP |[x]Ck

) and P (XP |[x]Cl
) <

P (XP |[x]Ck
) are two possible cases when l > k. It implies that the decision cost

is non-monotonic with regard to the decision step, which is inconsistent with our
intuitions. However, if we take a global view, we may find that the global trend
of the decision cost will decrease with the increasing of the decision steps.

Definition 2. Let S = (U,At = C ∪ D, {Va | a ∈ At}, {Ia | a ∈ At}) be a
decision table. S is called a consistent decision table if and only if POSC(D) =
U , where POSC(D) =

⋃
X∈U/D

apr
C

(X), and apr
C

(X) = {x|[x]C ⊆ X}.

In general, decision consistency assumption is mostly true in real decision
problem. For example in medical diagnose problems, patients who have all same
symptoms should be diagnosed as the same illness, otherwise we may think that
the medical examination is wrong or the related medical data is not sufficient.
Under the decision consistency assumption, we have following Theorem 2.

Theorem 2. Let S = (U,At = C ∪ D, {Va | a ∈ At}, {Ia | a ∈ At}) be
a consistent decision table, x ∈ U is an instance for decision, and SD =
(SD1, SD2, SD3, · · · , SDm)(m = |C|) be a sequential three-way decision series
presented in Definition 1. It concludes that there exist a step k(1 ≤ k ≤ m)
satisfying Cost(x, SDk) = 0.

Proof: S is a consistent decision table, therefore POSC(D) = U . For x ∈
U , we have [x]C ⊆ XP or [x]C ⊆ XN since U/D = XP , XN . If [x]C ⊆ XP ,
then for any 0 ≤ α ≤ 1, P (XP |[x]C) = 1 ≥ α. According to formula (7),
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Cost(x, SDm) = λPN − λPNP (XP |[x]C)=0, therefore we have the worse case
that Cost(x, SDk) = 0 holds when k reach the maximum value m. Similarly,
if [x]C ⊆ XN , then for any 0 ≤ β ≤ 1, P (XP |[x]C) = 0 ≤ β, According to
formula (7), Cost(x, SDm) = λPN − λPNP (XP |[x]C)=0, therefore we have the
worse case that Cost(x, SDk) = 0 holds when k reach the maximum value m.
Thus in both cases [x]C ⊆ XP and [x]C ⊆ XN , we can find the worse case of
k = m satisfying Cost(x, SDk) = 0. Normally in practice, we may usually find
that there exist a k < m decision step which reduces the decision cost to zero.
The reason is that [x]{ci1} ⊇ [x]{ci1 ,ci2} ⊇ [x]{ci1 ,ci2 ,ci3} ⊇ · · · ⊇ [x]{ci1 ,ci2 ,··· ,cik}.
With the increasing of decision steps, the equivalence class of x reduces and it
has higher possibility to be precisely decided as XP or XN , and the decision cost
will reduce to zero when the instance x is precisely decided. �

Remark: Theorem 1 and Theorem 2 present two views on the trend of deci-
sion cost when decision steps increase. Theorem 1 takes a local view: the decision
cost may locally increase even the decision steps increase, while Theorem 2 takes
a global view: the decision cost will eventually reduce to zero regardless of the
local changes of the decision cost in the series decision process.

Another property should be concerned on cost-sensitive sequential three-way
decision model is the variation trend of the boundary region. The following
Theorem 3 presents a theoretic result on this issue.

Theorem 3. Let S = (U,At = C ∪D, {Va | a ∈ At}, {Ia | a ∈ At}) be a consis-
tent decision table, U/D = {XP , XN}, and x ∈ U is an instance for decision.
SD = (SD1, SD2, SD3, · · · , SDm) = (φ∗([x]{ci1}), φ∗([x]{ci1 ,ci2}), · · · ,
φ∗([x]{ci1 ,ci2 ,··· ,cim})(m = |C|) is a sequential three-way decision series pre-
sented in Definition 1. For a single decision step 1 ≤ k ≤ m, the positive
region, negative region and boundary region with regard to a pair of thresh-
old (α, β) are denoted as POSα

{ci1 ,ci2 ,··· ,cik}(XP ), NEGβ
{ci1 ,ci2 ,··· ,cik}

(XP ) and

BND
(α,β)
{ci1 ,ci2 ,··· ,cik}

(XP ) respectively. It concludes that there exist a step k(1 ≤
k ≤ m) satisfying BND

(α,β)
{ci1 ,ci2 ,··· ,cik}

(XP ) = ∅.
Proof: It can be proved that the boundary region will reduce to empty set
when the decision step k reach m at most. In the worse case k = m, according
to the decision consistent assumption, POSC(D) = U . For any x ∈ U , we
have [x]C ⊆ XP or [x]C ⊆ XN since U/D = XP , XN . If [x]C ⊆ XP , then
P (XP |[x]C) = 1 ≥ α, i.e., x is decided as positive region. Otherwise, [x]C ⊆ XN ,
then P (XN |[x]C) = 1, P (XP |[x]C) = 1− P (XN |[x]C) = 0 ≤ β, i.e., x is decided
as in negative region. Therefore, for any x ∈ U , in the worse case k = m, it
is decided as either in positive region or in negative region, and it will not be

decided as boundary region, i.e., for any x ∈ U , x /∈ BND
(α,β)
{ci1 ,ci2 ,··· ,cik}

(XP ),

thus BND
(α,β)
{ci1 ,ci2 ,··· ,cik}

(XP ) = ∅. �
According to Theorems 1 to 3, we may conclude that the global variation

trend of both decision cost and boundary region are decreased in the sequential
decision process. Therefore, a series of decisions with more steps will have lower
decision cost and more accurate decision results. However, there will be some test



Cost-Sensitive Three-Way Decision 331

costs to acquire the unknown attribute values in the sequential decision process.
The more steps will lead to a higher test cost. Therefore, we should balance the
decision cost and test cost. A feasible choice is to set a upper bound of decision
cost in the sequential decision process, and gradually increase decision steps until
the decision cost are under the designated upper bound of decision cost. First,
we introduce how to set the test costs of the attributes for a decision table.

In real world database, some data sets are naturally associated with test costs
on attributes. However, many data sets have not been naturally associated with
test costs. In this case, we assume that the test cost of an attribute is propor-
tional to the classification ability of the attribute. For example, nuclear magnetic
resonance test has higher diagnose efficiency than X-rays test, therefore, the for-
mer has a higher test cost than the latter. An appropriate measure for evaluate
the classification ability of an attribute is the conditional entropy. We present a
conditional-entropy-based method to evaluate the test cost.

Definition 3. Let S = (U,At = C ∪ D, {Va | a ∈ At}, {Ia | a ∈ At}) be a de-
cision table. For a single attribute cl ∈ C, denote U/{cl} = {X1, X2, · · · , XÑ},
U/D = {Y1, Y2, · · · , YM̃}, then the test cost of cl is defined as: T (cl) = 1 −
H(D|{cl}) = 1 +

Ñ∑
i=1

P (Xi)
M̃∑
i=1

P (Yj |Xi) log P (Yj |Xi)/ log(M̃). For a l-step se-

quential decision SDl, the attributes series set is denoted as SAl = (ci1 , ci2 , · · · ,
cil), and the test cost of SAl is defined as the summation of the test costs of cij :

Test(SAl) =
l∑

j=1

T (cij ).

Remark: The conditional entropy H(D|{cl}) represents the correlation de-
gree between {cl} and D. If H(D|{cl}) equals to a lower value, then {cl} has
a higher correlation with D, which indicates that {cl} has a higher ability for
classification w.r.t. D. It can be proved that 0 ≤ H(D|{cl}) ≤ 1, then we take
1−H(D|{cl}) as the test cost of a single attribute cl. The test cost of an attribute
set is defined as the summation of all test costs of attributes in the set.

Based on the Theorems 1-3 and the definition of the test cost, we present
a cost-sensitive sequential three-way decision algorithm to simulate the human
sequential decision process: a sequential decision process from rough granule to
precise granule. In the beginning, a part of attributes are used, which leads to
a high decision cost and a rough granule decision, and many instances are de-
cided as boundary region. Then some new attributes are selected for decision
according to some certain order and strategy, so that the available information
increase and the decision cost decrease. Besides, some instances previously de-
cided as boundary are transferred to positive or negative region, thus the rough
granule decision result transfers to a precise decision result. The Cost-Sensitive
Sequential Decision (CSSD) algorithm is presented in Figure 1.

In the proposed algorithm, the order to add attributes includes two strategies.
One is the Test Cost ascend strategy (TCA), and the other is the Test Cost
Descend strategy (TCD). The former adds the attributes from low test cost to
high test cost, and the latter adds the attributes from high test cost to low cost.
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ALGORITHM: Cost-Sensitive Sequential Decision (TCA/TCD)
INPUT: A consistent decision table S = (U,C ∪ D}, a decision cost matrix M = {λij},

an instance x for classification, a decision cost threshold Cost∗;
OUTPUT: A sequential decision SD = (SD1, SD2, · · · , SDk),

A sequential decision attribute series SAk = (ci1 , ci2 , · · · , cik
).

Decision cost Cost; Test cost Tcost.
PROCESS:

Compute the partition of U by D: U/D = {Y1, Y2, · · · , Y
M̃

};
For any cl ∈ C

U/{cl} = {X1, X2, · · · ,X
Ñ

};

T (cl) = 1 +
Ñ∑

i=1
P (Xi)

M̃∑
i=1

P (Yj |Xi) logP (Yj |Xi)/ log(M̃);

End of For

C′ ←Sorted cl ∈ C in ascending(TCA)/descending(TCD) order of T (cl);
Set decision attribute series SA ← ∅, Set candidate attribute set B ← C′;
k = 1; b ← B1 (the first attribute in B); SA ← (b);
SDk ← φ∗([x]b) = argminD∈{aP ,aN ,aB} R(D|[x]b);
Cost(x, SDk) = mini∈{P,N,B}(

∑
j∈{P,N} λiPP (Xj |[x]SA);

Cost ← Cost(x, SDk);Tcost ← T (b);
While Cost > Cost∗ Do

k ← k + 1; b ← B1;SA ← SA ∪ {b};B ← B − {b};
SDk ← φ∗([x]SA) = argminD∈{aP ,aN ,aB} R(D|[x]SA);
Cost(x, SDk) = mini∈{P,N,B}(

∑
j∈{P,N} λiP P (Xj |[x]SA);

Update Cost ← Cost(x, SDk); Tcost ← Tcost + T (b);
End of While

SD ← (SD1, SD2, · · · , SDk); SAk ← (ci1 , ci2 , · · · , cik
);

OUTPUT: SD; SAk; Cost; Tcost.

Fig. 1. The Cost-Sensitive Sequential Decision Algorithm (CSSD)

These two strategies are consistent with human decision process in reality. For
example in medical diagnose problem, some patients prefer low test cost rather
than low decision cost due to lack of money. Initially, they may take some low cost
tests for diagnoses decision. The tests will terminated if the available information
is sufficient for diagnoses. Otherwise, they may concern some more low cost
tests. They do not select high cost tests unless all low cost tests information
are not sufficient for a reliable diagnoses decision. Therefore, they take the Test
Cost Ascend strategy. On the other hand, some patients prefer low decision cost
rather than low test cost. They prefer tests that may support a precise diagnoses,
regardless of test cost. Therefore, they take the Test Cost Descend strategy.

4 Experimental Analysis

In this section, we presents an experimental analysis on the proposed cost-
sensitive sequential three-way decision strategy. Experiments are performed on
four UCI data sets listed in Table 2. In the four data sets, Mushroom, Breast-
cancer-wisconsin, and Hepatitis contain missing values, and we delete those in-
stances with missing values in data sets Mushroom, Breast-cancer-wisconsin, and
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fill in missing values with most common values for data set Hepatitis. Consid-
ering that the proposed algorithm is designed to deal with binary classification
problem, we convert the four classes in the data set Car to two classes by merg-
ing the class labeled with “good” and “vgood” into the class labeled with “acc”.
Among the four data sets, there are three decision consistent data (Mushroom,
Breast and Car) and one decision inconsistent data (Hepatitis). The decision
cost matrix is set as: λPN = 16, λNP = 20, λBP = 5, and λBN = 4.

Table 2. Experimental data sets from UCI machine learning repository

ID Data Classes Attributes Raw size New size

1 Mushroom 2 22 8124 5644
2 Breast-cancer-wisconsin 2 9 699 683
3 Hepatitis 2 12 155 155
4 Car 2 6 1728 1728

Firstly, we test the variation trends of decision cost based on the proposed
algorithm CSSD, which are analyzed in Theorem 1 and Theorem 2. Based on
the CSSD, we compute the average decision costs of two sets of instances with
regard to the decision steps k. One set is the entire set of instances, and the
other is a part of instances from each data set (we take the first 5 instances
here). The former is used to validate the global trend of decision cost (described
in Theorem 2), and the latter is used to validate the local trend of decision
cost (described in Theorem 1). The order to add attributes includes both TCA
and TCD strategies. The experiment results are presented in Fig. 2 to Fig. 9,
where Fig. 2,4,6, and 8 take the TCA strategy, and Fig. 3,5,7, and 9 take the
TCD strategy. From Fig. 2-9, we can obtain the following conclusions: (1) The
decision cost is non-monotonic with regard to the decision steps. Decision cost
may not decrease when decision steps increase. In some situations, decision cost
will abnormally rise even the decision steps increase, which are reflected in the
hollow circle curves of Fig. 2,3,5 and 8. (2) For a consistent decision data, the
global trend of decision cost is monotonic with regard to the decision steps, and
the decision cost will eventually reduce to zero (see the solid circle curves of Fig.
4-9). For an inconsistent decision data, the conclusion is almost the same, but
the decision cost may not reduce to zero due to inconsistency of the decision in
the data (see the solid circle curves of Fig. 2-3). (3) Compared to TCA, the TCD
strategy presents a faster process to decrease the decision cost in most cases, but
it is associated with a higher test cost in the sequential decision process.

Secondly, we test the changes of the boundary region when decision steps
increase based on CSSD algorithm. In the experiments, we take mushroom data
set as an example to test the global trend of the boundary region. The Fig.
10 presents the global trend of instances numbers of positive, boundary and
negative regions based on CSSD algorithm with TCA strategy. We can conclude
that the boundary region will globally decrease during the sequential decision
process. Eventually, the boundary region disappear due to the sufficient available
information for precise decision.
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Fig. 2. Decision cost – Hepatitis (TCA)
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Fig. 3. Decision cost – Hepatitis (TCD)
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Fig. 4. Decision cost – Breast (TCA)
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Fig. 5. Decision cost – Breast (TCD)
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Fig. 6. Decision cost – Car (TCA)
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Fig. 7. Decision cost – Car (TCD)
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Fig. 8. Decision cost – Mushroom (TCA)
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Fig. 9. Decision cost – Mushroom (TCD)
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Fig. 10. Variation trends of positive, boundary, negative regions ( Mushroom)

5 Conclusion

The objective of this paper is to simulate a sequential decision process which
takes the strategy from rough granule to precise granule. A cost-sensitive se-
quential three-way decision model is presented in the paper. In the beginning,
only a few available information can be used for decision, and the decision re-
sults have a higher decision cost with a rough granule view. With the increasing
of the decision steps, the decision cost decreases and the boundary region re-
duces globally. Eventually, the decision cost reach a satisfying threshold and all
instances are precisely decided. The theoretic analysis on the proposed decision
model are presented and the experimental analysis validate the related proposi-
tions. In future work, we will further investigate the attribute selection methods
which represent different sequential decision strategies.
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Abstract. A two-phase classification method is proposed based on
three-way decisions. In the first phase, all objects are classified into three
different regions by three-way decisions. A positive rule makes a deci-
sion of acceptance, a negative rule makes a decision of rejection, and a
boundary rule makes a decision of abstaining. The positive region con-
tains those objects that have been assigned a class label with a high
level of confidence. The boundary and negative regions contain those
objects that have not been assigned class labels. In the second phase, a
simple ensemble learning approach to determine the class labels of ob-
jects in the boundary or negative regions. Experiments are performed to
compare the proposed two-phase classification approach and a classical
classification approach. The results show that our method can produce
a better classification accuracy than the classical model.

Keywords: Two-phase classification, decision-theoretic rough set
model, ensemble learning, three-way decisions.

1 Introduction

In the last few years, many researchers [3, 5, 6] have concentrated on the study
of decision-theoretic rough set model. Decision-theoretic rough set model [12]
makes two main contributions to rough set theory. One is to provide a sound
theoretic framework for calculating the thresholds required in probabilistic rough
set models. It can derive several probabilistic rough set models when proper
cost functions are used, such as Pawlak rough set model [8], 0.5 probabilistic
rough set model [9], variable precision rough set model [18] and Bayesian rough
set model [10]. The other is to give the semantic interpretation of the positive
boundary and negative regions which are commonly used in all rough set models.
The notion of three-way decisions, consisting of positive, boundary and negative
rules, comes closer to the philosophy of the rough set theory, namely, representing
a concept by using three regions [9].
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Yao [13–15] analyzed the superiority of three-way decisions in probabilistic
rough set models from a theoretic perspective. Several researchers [4, 17] applied
three-way decisions in spam filtering. Liu et al. [7] proposed a framework for
three-way investment decisions with decision-theoretic rough set model. Li et
al. [5] proposed a hierarchical framework for text classification based on decision-
theoretic rough set model. Li et al. [6] combined misclassification cost and test
cost to determine the classification result based on decision-theoretic rough set
model.

For classification problem, an advantage of using three-way decisions over
two-way decisions is that three-way decisions can classify some potentially mis-
classified objects into the boundary region for a further-exam, which may lead
to lower misclassification error and lower misclassification cost. In the frame-
work of three-way decisions, it is better to defer assigning a definite class label
to objects in the boundary region. An intuitive and reasonable interpretation is
that available information is not enough to classify these objects. For a binary
classification problem or a multiple classification problem, the negative region of
the decision table also contains objects that cannot be assigned a definite class
label. For many applications, users want to get a definite result without requir-
ing any additional information, which requires us to give a definite mechanism
to handle the boundary region and the negative region. By reviewing current
research, we found that not many studies focus on making further classification
on objects needing further examination.

In this paper, we study how to apply three-way decisions to classical clas-
sification problem. We propose a two-phase classification scheme. In the first
phase, a specific classifier will be chosen as the base classifier to compute the
probability distribution of each object. After comparing to the thresholds, all
objects will be classified into three regions. For all objects in the positive region,
they will be assigned the corresponding class labels. In the second phase, for the
remaining objects, several classifiers will be combined to vote for the final class
labels. The experimental results show that the two-phase method can produce
a higher classification accuracy than the classical method.

2 Three-Way Decisions with Decision-Theoretic Rough
Sets

Decision-theoretic rough set model was proposed by Yao et al. [12] based on
Bayesian decision theory. The basic ideas of the theory [13] are reviewed in this
section.

A decision table is the following tuple:

S = (U,At = C ∪D, {Va|a ∈ At}, {Ia|a ∈ At}), (1)

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, C is a set of condition attributes describing the objects, and D is a
set of decision attributes that indicates the classes of objects. Va is a nonempty
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set of values of a ∈ At, and Ia : U → Va is an information function that maps
an object in U to exactly one value in Va.

In rough set theory [8], a set X is approximated by three regions. The positive
region POS(X) contains objects that surely belong to X , the boundary region
BND(X) contains objects that possibly belong to X and Xc at the same time,
and the negative region NEG(X) contains objects that do not belong to X .

With respect to these three regions, the set of state is given by Ω = {X,Xc},
and the set of actions is given by A = {aP , aB, aN}, where aP , aB and aN
represent the three actions in classifying an object x, namely, deciding x ∈
POS(X), deciding x ∈ BND(X), and deciding x ∈ NEG(X). Let λPP , λBP and
λNP denote the costs incurred for taking actions aP , aB, aN , respectively, when
an object belongs to X , and let λPN , λBN and λNN denote the costs incurred
for taking these actions when the object does not belong to X . Let p(X |x) be
the conditional probability of an object x being in state X .

The Bayesian decision procedure suggests the following minimum-cost deci-
sion rules [13]:

(P) If p(X |x) ≥ α and p(X |x) ≥ γ, decide x ∈ POS(X),
(B) If p(X |x) ≤ α and p(X |x) ≥ β, decide x ∈ BND(X),
(N) If p(X |x) ≤ β and p(X |x) ≤ γ, decide x ∈ NEG(X),

where

α =
(λPN − λBN )

(λPN − λBN ) + (λBP − λPP )
,

β =
(λBN − λNN )

(λBN − λNN ) + (λNP − λBP )
,

γ =
(λPN − λNN )

(λPN − λNN ) + (λNP − λPP )
. (2)

Each rule is defined by two out of the three parameters. The conditions of rule
(B) suggest that α > β may be a reasonable constraint; it will ensure a well-
defined boundary region. If the cost functions satisfy the following condition [13]:

(λNP − λBP )

(λBN − λNN )
>

λBP − λPP

(λPN − λBN )
, (3)

then 0 ≤ β < γ < α ≤ 1. In this case, after tie-breaking, the following simplified
rules are obtained:

(P1) If p(X |x) > α, decide x ∈ POS(X);
(B1) If β ≤ p(X |x) ≤ α, decide x ∈ BND(X);
(N1) If p(X |x) < β, decide x ∈ NEG(X).

The threshold parameters are systematically calculated from cost functions based
on the Bayesian decision theory.

3 Two-Phase Classification Mechanism

Based on Bayesian decision theory, decision-theoretic rough set model provides
a three-way decisions scheme for the classification problem. Compared to a
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two-way decisions method, the classification result given by a three-way decisions
method may have a smaller classification cost. For most situations, a three-way
decisions method also has a lower misclassification error rate. However, a lower
misclassification error rate does not follow by a higher classification accuracy
because their sum may not be 1 in a three-way decisions method. Usually, rejec-
tion rate can be defined to evaluate the size of the boundary region in three-way
decisions. By introducing rejection rate, both misclassification error rate and
classification accuracy decrease in most cases.

In classical classification problem, a desirable result is a high classification
accuracy and a low misclassification error rate with no unclassified objects. To
reach this goal, how to deal with the boundary and negative regions of the
decision table will be crucial. We will introduce a two-phase classification method
and adopt an ensemble strategy to deal with the boundary and negative regions.

First, a classifier is selected as the base classifier and train it using WEKA [2].
Then the trained classifier can provide the probability distribution p(Di|x) for
each object x. Given by experts, all cost functions can be used to compute the
thresholds (α, β). Then, an object x will be classified into one of three regions
based on the thresholds and its probability:

POSα,β(πD) = {x ∈ U |p(Dmax(x)|x) > α},
BNDα,β(πD) = {x ∈ U |β ≤ p(Dmax(x)|x) ≤ α},
NEGα,β(πD) = {x ∈ U |p(Dmax(x)|x) < β}, (4)

where Dmax(x) is a dominant decision class of the object x, i.e., Dmax(x) =
arg maxDi{p(Di|x)}. By introducing the probability of the dominant decision
class, we can deal with multi-class classification problem directly. In this stage,
all objects in the positive region will be assigned a class label Dmax(x). For
objects in the boundary and negative regions, we cannot give them labels as
their probabilities are less than the threshold α.

In the second phase, we will focus on classifying the objects from the bound-
ary and negative regions. In decision-theoretic rough set model, assigning these
objects with labels will bring more misclassification cost as they are classified
indistinctly under current thresholds. It can be understood that the base classi-
fier is a kind of weak learner or weak classifier. We need some strong learners to
overcome the weakness of the weak learner on the objects in the boundary and
negative regions. Ensemble learning will be an intuitive and reasonable approach
because the generalization ability of an ensemble is usually much stronger than
that of a single learner [16]. We use multiple classifiers to vote for the final class
labels, and it can be seen as a typical implementation of Stacking algorithm [11].
In the voting stage, the most frequent class label appeared will be the final re-
sult. If there exists a tie situation, for example, each class label appeared once,
select one randomly as the final result. The detail of the two-phase classification
algorithm is presented in Fig. 1.
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INPUT: Training data set D;
A cost matrix λij ;
Multiple classifiers C1, C2, . . . , CT ;
An object x.

OUTPUT: predicted class label H(x).
Begin:

Compute α, β from λij ;
For t = 1, . . . , T :

ht = Ct(D); % Train a learner ht by applying Ct to training data D
End For;
pb(Dmax(x)|x) = p(hb(x)); % Use hb as the base learner to get the probability

% of the dominant decision class
If pb(Dmax(x)|x) > α Then

H(x) = Dmax(x); %Get the class label
Else

For t = 1, . . . , T :
Lt = ht(x); % Using each learner to compute the class label Lt

End For;
H(x) = vote{L1, L2, . . . , LT }; % Select the most frequently class label,

% pick one randomly if tie situation exists
End If

End Begin

Fig. 1. The two-phase classification algorithm

4 Experiments

Experimental results are reported and analyzed to support the effectiveness of
the two-phase classification algorithm.

4.1 Experiments’ Settings

Five classical classifiers are selected as the multiple classifiers in experiments,
which are NB (Naive Bayesian), C4.5, KNN, SVM and RBF [1]. All classifiers
are implemented in WEKA (version 3.5) [2], and default values are used for all
parameters in these classifiers. Several data sets from UCI [19] containing two
classes data and multiple classes data are used in experiments. The details of all
data sets are summarized in Table 1.

In the experiments, 10-fold cross validation is employed, and average results
are recorded. In our experiments, we assume λPN = 10, λBP = 2, λBN =
4, λNP = 100, then α = 0.75, β = 0.039 is gotten and will be used in our
experiments.

Two classification approaches are compared in our experiments. One is two-
phase classification algorithm, denoted by TPC. The other one is a classical
single classifier approach, denoted by SC.
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Table 1. Data sets from UCI machine learning repository

Data Database description Instances Classes

wdbc Breast Cancer Wisconsin (Prognostic) 569 2
wpbc Breast Cancer Wisconsin (Diagnostic) 198 2
crx Credit Approval 690 2
hepatitis Hepatitis 155 2
house-votes-84 Congressional Voting Records 435 2
clean1 Musk (Version 1) 476 2
transfusion Blood Transfusion Service Center 748 2
ionosphere Ionosphere 351 2
bands Cylinder Bands 541 2
hayes-roth Hayes-Roth 160 3
iris Iris 150 3
glass Glass Identification 214 7
breastTissue Breast Tissue 106 6
movement libras Libras Movement 360 15
CTG Cardiotocography 2126 3
car Car Evaluation 1728 4
anneal Annealing 798 6
balance-scale Balance-Scale 625 3

4.2 Experimental Results

The experimental results are presented in Table 2, Table 3 and Table 4. Table 2
gives the average classification accuracy of applying each classifier as the base
classifier on different data sets. Table 3 shows the detailed accuracy values on
data set crx. Table 4 shows the average classification accuracy of all classifiers
on all data sets with respect to different values of threshold α.

From the results, we can see that TPC can get a better accuracy on all data
sets except iris. The following conclusions can be drawn from the experimental
results:

– Two-phase classification method is a feasible classification approach, which
provides an effective mechanism for dealing with objects that need further
examination in a three-way decision-theoretic rough set model.

– Two-phase classification method is independent of any classifier. From the
average result shown in Table 2 and one detailed result shown in Table 3,
we find that our method can produce a better accuracy no matter which
classifier is used.

– We also test some other values of threshold α in our experiments. As the
threshold α determines the positive region directly, α > 0.5 is a rational
constraint to avoid an object be classified into two different positive regions.
In our experiment, five different values are tested and the experimental re-
sults are shown in Table 4. Our method can have a higher accuracy based on
these threshold values. The accuracy is improved by the increase of value of α.
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Table 2. Average classification accu-
racy on different data sets

Data SC TPC

wdbc 0.9371 0.9389
wpbc 0.7048 0.7199
crx 0.8443 0.8542
hepatitis 0.8283 0.8293
house-votes-84 0.9370 0.9409
clean1 0.8850 0.8892
transfusion 0.7676 0.7687
ionosphere 0.8928 0.8997
bands 0.7362 0.7743
hayes-roth 0.6771 0.7413
iris 0.9560 0.9533
glass 0.6259 0.6924
breastTissue 0.6500 0.6842
movement libras 0.7239 0.7533
CTG 0.9467 0.9603
car 0.9068 0.9335
anneal 0.8040 0.8670
balance-scale 0.8576 0.8742

average 0.8156 0.8375

Table 3. Classification accuracy on crx

base classifier SC TPC

NB 0.8449 0.8638
C4.5 0.8478 0.8507
KNN 0.8246 0.8449
SVM 0.8522 0.8522
RBF 0.8522 0.8594

Table 4. Average classification accu-
racy on all data sets based on different α

α SC TPC

0.55 0.8156 0.8257
0.65 0.8156 0.8317
0.75 0.8156 0.8375
0.85 0.8156 0.8415
0.95 0.8156 0.8470

Two-phase classification method can get a better accuracy on reasonable
thresholds than classical classification method.

5 Conclusions

How to deal with objects in the boundary and negative regions in three-way
decision-theoretic rough sets is still an open problem. We introduced a two-phase
classification mechanism based on three-way decisions to deal with this problem.
In the first phase, objects in the positive region of the decision table are assigned
the corresponding class labels. In the second phase, for the unlabelled objects
which are classified into the boundary and negative regions, ensemble learning
is applied to vote for the final class label. We tested five classifiers and different
values of threshold α on several data sets, the experimental results show that the
two-phase classification method can have a better classification accuracy than
the classical classification method.
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Abstract. The three-way decisions model divides the universe into
three regions, i.e., positive region (POS), boundary region (BND) and
negative region (NEG) according to two thresholds. A challenge of the
three-way decisions model is how to compute the thresholds that gen-
erally rely on the experience of experts. In this paper, we propose a
novel three-way decisions model based on Constructive Covering Algo-
rithm(CCA). The new model produces three regions automatically ac-
cording to the samples and does not need any given parameters. We give
a method for constructing coverings from which the three regions are
formed. We can classify samples based on the three regions. The experi-
mental results show that the proposed model has great advantage on the
classification efficiency and provides a new method to form three regions
automatically for the theory of three-way decisions.

Keywords: Constructive Covering Algorithm, three-way decisions,
DTRSM, three regions, parameters.

1 Introduction

The theory of three-way decisions is proposed by Yao to interpret the sematic of
three regions in rough set [1][2]. The three-way decisions model plays a key role
in everyday decision-making and has been widely used in many fields and disci-
plines. Nowdays, the three-way decisions model is mainly based on rough set, i.e.,
Decision Theoretic of Rough Set Model (DTRSM). DTRSM is a typical proba-
bilistic rough set model [3], in which two thresholds can be directly calculated
from given loss functions based on the experience of experts. It divides the uni-
verse into three regions, i.e., positive region (POS), boundary region (BND) and
negative region (NEG) based on the two thresholds. DTRSM is applied to many
studies and applications [4][5]. In most applications, the thresholds are computed
according to the given loss functions, i.e., the experience of experts. For example,
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Zhou and Li proposed a multi-view decision model based on DTRSM [6][7], in
which optimistic decision, pessimistic decision and rational decision are proposed
based on the cost of misclassification, namely, loss function. The parameters are
according to the decision-maker. Li and Miao studied a rough decision theoretic
framework for text classification [8]. Yu, Yang and Chu studied clustering algo-
rithms based on DTRS [9][10]. Yao and Herbert studied Web-based support with
rough set analysis [11]. However, loss functions are subjective and unreliable in
some cases. It is difficult to give the loss functions precisely.

It is a challenge to calculate the thresholds, i.e., how to form the three regions.
Some researchers have studied on this. Herbert and Yao used game-theoretic
approach to calculate the two thresholds [12], in which tolerance values are
provided to ensure correct approximation region size. Jia and Li proposed an
adaptive learning parameters algorithm in three-way-decision-theoretic rough
set [13], in which a pair of optimum parameters are calculated.

In this paper, we propose a three-way decisions model based on constructive
covering algorithm (CCA). The formation of the three regions in the proposed
model is based on CCA. CCA produces three regions automatically according
to the distribution of samples and dose not need any parameters. We introduce
to form the covers. Three regions are formed according to these covers and
we can classify samples based on the three regions. We introduce CCA to the
three-way decisions procedure. The proposed model can produce three regions
automatically and does not need any parameters.

The rest of this paper is organized as follows. In section 2, we describe CCA
briefly. In section 3, we present a new model based on CCA. Section 4 gives the
experimental results. Finally, section 5 concludes the paper with a brief summary
and further study.

2 Brief Description of CCA

Given a training samples set X ={(x 1, y1), (x 2, y2),. . . ,(x p, yp)}, where x i

=(x1i ,x2i ,. . . ,xni ) (i=1,2,. . . ,p) represents n-dimensional characteristic attribute
of the ith sample. x i can be regarded as an input vector, and yi is the decision
attribute, i.e., category [14][15].

2.1 Formation of Covers

The formation of the three regions is according to the covers. Firstly, we describe
the formation of the covers as Algorithm 1.

Algorithm 1: formation of the covers.
Step 1: Map X to (n+1)-dimensional sphere Sn+1 according to following

formula:

T : X → Sn+1, T (x ) = (x ,
√

R2 − |x |2) (1)

where R� max{|x |, x ∈ X }. Assume that the domain of input vectors X is a
bounded set D of n-dimensional space. In most cases, the length of each sample
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is not equal. As described in paper [16], we project them to an n+1 -dimensional
sphere, and make the length of each sample equal.

Step 2: Select a sample xk as the center of a cover randomly.
Step 3: Compute the cover radius θ. Please see section 2.2 for details.
Step 4: Form a cover. Based on the center and the radius,we get a cover on

Sn+1.
Step 5: Go back to Step 2 until all samples are covered.
To the end, we get a set of covers C={C1

1 ,C2
1 ,. . . ,Cn1

1 ,C1
2 ,C2

2 ,. . . ,Cn2
2 ,. .

. ,C1
m,. . . , Cnm

m }, where Cj
i represents the j th cover of the ith category. We

assume Ci=
⋃

Cj
i , j =1,2,. . . ni. Ci represents all covers of the ith category

samples.

2.2 Compute the Radius θ

The paper proposes a method to obtain cover radius θ. We compute θ described
as the following three steps.

Step 1: Compute minimum radius θ1

d1(k) = min dist(xk, x i), yk �= yi, i ∈ {1, 2, ...p} (2)

d2(k) = max{dist(xk, x i)|dist(x k, x i) < d1(k)}, yk = yi, i ∈ {1, 2, ...p} (3)

θ1 = d2(k) (4)

The minimum radius regards the max distance between the center and the similar
points as the radius where the boundary does not have any dissimilar points as
shown in Fig. 1.

Step 2: Compute maximum radius θ2

d1(k) = min dist(xk, x i), yk �= yi, i ∈ {1, 2, ...p} (5)

θ2 = d1(k) (6)

The maximum radius regards the minimum distance between dissimilar points
and the center as the radius as shown in Fig. 2.

Fig. 1. Minimum radius θ1 Fig. 2. Maximum radius θ2

Step 3: Compute radius θ

θ = (θ1 + θ2)/2 (7)
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3 New Three-Way Decisions Model Based on CCA

3.1 Definition of Three Regions Based on CCA

According to Algorithm 1, we give the definition of three regions. Because of
finite samples, the covers cannot cover the space totally. In other words, there
are some blank space which is not covered by the obtained covers. Moreover,
the selection of radius can also result in overlap of covers. We call these regions
boundary region (BND). In this paper, we only talk the first kind of BND. The
definition of three regions is as follows.

Definition of three regions: For convenience in discussion, we assume only two
categories C1 and C2. The covers of C1 and C2 are (C1

1 ,C2
1 ,. . . ,Cm

1 ) and (C1
2 ,C2

2 ,.
. .,Cn

2 ), respectively, i.e., C1=(C1
1 ,C2

1 ,. . . ,Cm
1 ), C2=(C1

2 ,C2
2 ,. . . ,Cn

2 ). Each
category has at least a cover. Assume Ci=

⋃
Cj

i and each Ci represents all
covers of the i th category samples. We define POS of C1, namely, POS(C1) by
the difference of unions

⋃
Ci

1-
⋃

Cj
2 , NEG(C1) by

⋃
Cj

2 -
⋃

Ci
1 and BND(C1) by

the rest, where i=1,2,. . . ,m, j =1,2,. . . ,n. That is to say, POS(C1) is equal to
NEG(C2); POS(C2) is equal to NEG(C1); BND(C1) is equal to BND(C2).

3.2 A New Three-Way Decisions Model

According to the three formed regions, we can make three-way decisions on a
test sample x, i.e., the decision rules of x. We assume θi1 is the radius of Ci

1, θi2 is
the radius of Ci

2, ci1 is the center of Ci
1, and ci2 is the center of Ci

2. The three-way
decisions rules of x are shown as follows.

x ∈POS(C1), if dist(x,ci1)≤ θi1 and dist(x,cj2)>θj2, for all i=1. . . m,j =1. . . n;

x ∈NEG(C1), if dist(x,ci1)>θi1 and dist(x,cj2)≤θj2, for at least one pair of (i,j )
where i=1. . . m, j =1. . . n;

x ∈BND(C1), otherwise.
When x falls into a cover of C1, x belongs to POS(C1), which is equal to

NEG(C2). When x falls into a cover of C2, x belongs to POS(C2), which is equal
to NEG(C1). When x does not fall into any covers or falls into overlap of two
covers which are different categories, x belongs to BND(C1) (also BND(C2)).

In the new model, the three regions are formed automatically based on dis-
tribution of the samples, and we do not need any parameters to form the three
regions. We can use the decision rules to classify test samples.

4 Experimental Result

The experimental data used in this paper is from UCI Machine Learning Repos-
itory (http://www.ics.uci.edu/mlearn/MLRepository.html). Table 1 shows
the datasets information as follows.

There are two parts in this section. The first part compares the proposed
model with DTRSM using dataset Spambase and Chess on two categories. The
second part compares the two models using datasets Iris and Wine on multi-
categories.

http://www. ics. uci. edu/mlearn/MLRepository. html
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Table 1. Benchmark datasets information used in the experiment

name instances attributes

Iris 150 5
Wine 178 14

Spambase 4601 58
Chess 3196 36

4.1 The Case of Two Categories

Firstly, we define three evaluation criteria.

Acc = CCI/T I (8)

Err = ECI/T I (9)

Bnd = BI/TI (10)

where, CCI represents the number of correctly classified instances; ECI repre-
sents the number of mistakenly classified instances; BI represents the number of
instances classified to the boundary; TI represents total instances. We compare
the proposed model with DTRSM. In this paper, the implementation of DTRSM
is based on [17]. We adopt 10-fold cross-validation in the experiments. α, β are
the two thresholds. We select eleven pairs of thresholds. Table 2 and Table 3
shows the result of comparison.

Table 2. The comparison of two models on dataset Spambase

Model CCI ECI BI Acc(%) Err(%) Bnd(%)

DTRSM(0.8,0.2) 332 20 109 72.02 4.34 23.64

DTRSM(0.9,0.2) 313 16 128 68.49 3.5 28.01

DTRSM(0.9,0.3) 316 18 123 69.15 3.94 26.91

DTRSM(0.8,0.3) 333 21 104 72.71 4.59 22.7

DTRSM(0.8,0.4) 335 22 101 73.14 4.8 22.06

DTRSM(0.8,0.5) 338 23 97 73.8 5.02 21.18

DTRSM(0.7,0.2) 345 22 91 75.33 4.8 19.87

DTRSM(0.6,0.2) 378 27 52 82.71 5.91 11.38

DTRSM(0.6,0.1) 371 24 63 81 5.24 13.76

DTRSM(0.5,0.2) 409 38 10 89.49 8.32 2.19

DTRSM(0.5,0.1) 402 35 20 87.96 7.66 4.38

Proposed model 395 25 39 86.06 5.45 8.49

From Table 2 and Table 3, we can see that the thresholds have great influence
on the result of classification accuracy in DTRSM. The thresholds are given by
the experts, and it is difficult to obtain appropriate thresholds. From Table 2,
we can see that the Acc of the proposed model is higher than that of DTRSM
in most cases. And from Table 3, the Acc of proposed model is higher than that
of DTRSM. Above all, the proposed model does not need any parameters and
the classification effect is rather good while DTRSM needs given parameters and
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the thresholds have great influence on the effect of classification. It is difficult
to set appropriate thresholds. The advantage of the proposed model is that it
can form three regions automatically. We can classify the samples based on the
regions, and the classification effect of the proposed model is rather good.

Table 3. The comparison of two models on dataset Chess

Model CCI ECI BI Acc(%) Err(%) Bnd(%)

DTRSM(0.8,0.2) 148 10 157 46.69 3.15 50.16

DTRSM(0.9,0.2) 117 8 191 37.03 2.53 60.44

DTRSM(0.9,0.3) 136 16 164 43.04 5.06 51.9

DTRSM(0.8,0.3) 168 18 130 53.16 5.69 41.15

DTRSM(0.8,0.4) 183 27 106 57.91 8.54 33.55

DTRSM(0.8,0.5) 197 39 80 62.34 12.34 25.32

DTRSM(0.7,0.2) 175 14 127 55.38 4.43 40.19

DTRSM(0.6,0.2) 195 20 101 61.52 6.3 32.19

DTRSM(0.6,0.1) 168 16 131 53.33 5.08 41.59

DTRSM(0.5,0.2) 211 30 76 66.56 8.08 25.36

DTRSM(0.5,0.1) 184 26 107 58.04 8.2 33.76

Proposed model 237 42 37 75 13.29 11.71

4.2 The Case of Multi-categories

The DTRSM can classify multi-categories datasets. We describe the process in
detail as follows.

To discuss conveniently, we assume only three categories C1, C2, C3. Firstly,
we regard C2 and C3 as one category, and the number of category becomes two.
Then we use DTRSM. Secondly, we regard C1 and C3 as one category, then we use
DTRSM. Thirdly, we regard C1 and C2 as one category, then we use DTRSM.

In this part, we compare the proposed model with DTRSM using two datasets
Iris and Wine. We use 10-fold cross-validation in the experiments. We select four
best pairs of thresholds according to the classification efficiency and compare
the proposed model with DTRSM. Table 4 shows the result of Iris dataset and
Table 5 shows the result of Wine dataset.

Table 4. The result of comparison using dataset Iris

Model CCI ECI BI Acc(%) Err(%) Bnd(%)

DTRSM(0.6,0.2) 8.1 0.6 6.3 54 4 42

DTRSM(0.5,0.2) 8.6 0.6 5.8 57.3 4 38.67

DTRSM(0.4,0.2) 10.1 0.6 4.3 67.33 4 28.67

DTRSM(0.3,0.2) 13.9 0.6 0.5 92.67 4 3.33

Proposed model 14 0.4 0.6 93.33 2.67 4

From Table 4, we can see that the proposed model has great advantages on
Acc, Err and Bnd. From Table 5, we can see that the Err of the proposed model
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Table 5. The result of comparison using dataset Wine

Model CCI ECI BI Acc(%) Err(%) Bnd(%)

DTRSM(0.6,0.2) 14.4 1 1.2 86.75 6.02 7.23

DTRSM(0.5,0.2) 14.6 1 1 87.95 6.02 6.03

DTRSM(0.4,0.2) 15.1 1 0.5 90.96 6.02 3.02

DTRSM(0.3,0.2) 15.1 1 0.5 90.96 6.02 3.02

Proposed model 15 0.6 1.4 88.23 3.53 8.24

is lower than that of DTRSM. The proposed model is easier to process multi-
categories classification. A few of Acc in DTRSM is better than that of the
proposed model. The reason is that the Bnd of the proposed model is higher
than that of DTRSM and the Err of the proposed model is lower than that of
DTRSM. We will discuss how to deal with samples in BND in next paper. The
proposed model does not need any parameters while the DTRSM need given
parameters and the parameters have great influence on Acc, Err and Bnd. The
proposed model has advantages on multi-categories instances classification.

5 Conclusions

In this paper, we introduced CCA to three-way decisions procedure and proposed
a new three-way decisions model based on CCA. According to the samples, we
get POS, NEG and BND automatically. The new model does not need any given
parameters to form the regions.

The paper compares proposed model with DTRSM in two categories classi-
fication and multi-categories classification. DTRSM is a good method to deal
with problem of three-way decisions. However, it needs loss functions for calcu-
lating the required thresholds. The proposed model makes up for the problem.
It does not need any parameters and can form three regions automatically. The
proposed model has three advantages: (1) it is easier to process multi-categories
classification; (2) it can process discrete type data and continuous type data
directly; (3) the most important one is that it provides a new method to form
three regions automatically for three-way decisions. The experimental results
show that the proposed model is superior in classification efficiency. A few of
Acc in DTRSM is better than that of the proposed model. The reason is that
the Bnd of the proposed model is higher than that of DTRSM and the Err of
the proposed model is lower than that of DTRSM. Therefore, how to deal with
samples in BND is our future research.
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Abstract. Nowadays there exist a lot of documents in electronic format
on the Internet, such as daily news and blog articles. Most of them are
related, organized and archived into categories according to their themes.
In this paper, we propose a statistical technique to analyze collections
of documents, characterized by a hierarchical structure, to extract in-
formation hidden into them. Our approach is based on an extension of
the log-bilinear model. Experimental results on real data illustrate the
merits of the proposed statistical hierarchical model and its efficiency.

Keywords: Log-bilinear model, hierarchical modeling, semantically
related words.

1 Introduction

More and more textual data are digitized and stored online. These data bring us
both valuable information and management challenges. Thus, many researches
have focused on language modeling using statistical methods to extract useful
knowledge from these data. By describing texts in mathematical ways, hidden
structures and properties within texts and correlations between them can be dis-
covered, which can help practitioners to organize and manage them more easily.
A good organization has many applications. For instance, several studies [1–3]
have shown that cyber criminals generally exchange their experiences and knowl-
edge via media such as forums and blogs. These exchanged data, if well extracted
and modeled, can provide significant clues to agencies operating in the security
field. According to the method used to represent words in documents, model-
ing approaches can be grouped into two categories: probabilistic topic models
and vector space models. Probabilistic topic models such as probabilistic latent
semantic indexing (PLSI) [4] and latent Dirichlet allocation (LDA) [5], model
a text document as a finite mixture of specific distributions over topics. Each
topic is represented as a distribution of words in a given defined vocabulary set.
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They have been applied in various applications to extract semantic properties
(e.g. topics, authors’ influence, citations relations, etc.) within a document [6–
8]. Vector space model (VSM) [9] represents documents as vectors where each
vector can be viewed as a point in a multi-dimensional space. The basic idea
behind VSM is that in space, the closer the two points are, the more semantic
similarity they are sharing and vice versa. VSM approach has shown excellent
performance in many real world tasks related to the measurement of semantic
similarities between documents, sentences, and words [10–13].
All the methods mentioned above have focused on modeling documents indi-
vidually, while in real world most documents are related, and organized into
hierarchical categories according to their themes. Thus, it is crucial to develop
models that take into account these aspects [14–16]. In this paper, we propose
a hierarchical statistical model to analyze documents. The proposed model is
part of a large cyber security forensics system that we are designing to discover
and capture potential security threats by retrieving and analyzing data gathered
from the Web. In our method, each node in the structure is modeled using prob-
abilities. A log-bilinear model is adopted to describe words in vector space in
such a way that their correlations can be discovered and derived, from their rep-
resentations, at each level of the hierarchical structure. The rest of this paper is
organized as follows. In Section 2, we present the hierarchical statistical model
in details, and we present the complete algorithm to estimate its parameters.
The experimental results of applying our approach on real data are presented in
Section 3. Finally, Section 4 gives the conclusion.

2 Hierarchical Statistical Document Model

The improvement of the state of the art concerning document modeling has
been based on three main groups of approaches [17]. The first group has been
concerned with the improvement of current learning techniques. The second one
has been based on the development of better features. The third one focused on
the integration of prior information about the relationship between document
classes. The technique that we shall propose in this section belongs to the third
group, since our main goal here is take advantage of the hierarchical relationship
usually present between classes. Indeed, the automatic extraction of a given
document topic and semantic information about a given word meaning generally
involves a hierarchy of a large number of classes. The hierarchy encodes crucial
information that should be exploited when learning a given model. Thus, we
propose here the extension of the log-bilinear model to incorporate the fact that
document classes are generally hierarchical. In this section, we start by reviewing
the basic log-bilinear model and then we generalize it to encode hierarchies.

2.1 Log-Bilinear Document Model

A log-bilinear model which learns the semantic word vectors from term-document
data was introduced in [18]. In this model, a document is represented as a
distribution of conditionally independent words given a parameter θ:
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p(d) =

∫
p(d, θ) =

∫
p(θ)

N∏
i=1

p(wi|θ)dθ (1)

where d is a document, N is the total number of words in d and wi represents
each word in d. A Gaussian prior is considered for θ.
The model uses bag-of-words representation to describe a document in which
words sequences appear in an exchangeable way. The fixed vocabulary set is
denoted as V and has a size of |V |. Each word is represented by a |V |- dimensional
vector where only one element is equal to 1 and all the others are equal to 0 (i.e.
one-hot vector). The word conditional distribution p(w|θ) in the document is
defined by a log-linear model with parameters R and b. The word representation
matrix is R ∈ #β×|V | and contains the β-dimensional vector representation
φw = Rw of each word in the vocabulary set. Therefore, the representation,
φw, of each word is the corresponding column in R. Also, θ is a β-dimensional
vector which works as a weighting component for the word vector representation.
Moreover, the word frequency differences are captured via a parameter bw. Given
all these parameters, the log-bilinear energy assigned to each word is:

E(w; θ, φw , bw) = −θTφw − bw (2)

Therefore, the word distribution using softmax is given by:

p(w|θ;R, b) =
exp(−E(w; θ, φw , bw))∑

w′∈V exp(−E(w′; θ, φw′ , bw′))
=

exp(θTφw + bw)∑
w′∈V exp(θTφw′ + bw′)

(3)
Note that this model can only find semantic information at the document level.

2.2 Hierarchical Statistical Document Model

In real-world applications, online texts are often classified into categories with
respect to their themes. Thus, these texts usually have a hierarchical structure.
Moreover, words are hierarchical by nature, since they may be related to different
other words at different categories. In this subsection, we extend the log-bilinear
document model to take hierarchical structures into account. The main goal is
to discover semantic information such as word relations at each level of the hi-
erarchical structure. Modeling a collection of documents into different levels can
be achieved by building a probabilistic model for each node in the hierarchical
structure. Suppose that we have a node m, which has a total number of Nk chil-
dren denoted as mk. Each child node is considered to be a documents collection
composed of Ntk documents which supposed to be conditionally independent
given a variable θjk. Thus, the probability of node m can be written as:

p(m) =

Nk∏
k=1

Ntk∏
j=1

∫
p(θjk)p(djk|θjk)dθjk (4)
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where djk denotes the jth document in the child node mk, θjk is a mixing variable
corresponding to document djk, and p(θjk) is a gaussian prior. Each document
consists of conditionally independent distributed words:

p(djk|θjk) =

Nwtk∏
i=1

p(wijk |θjk) (5)

where Nwtk is the total number of words in document djk, which actually belongs
to mk, and wijk denotes the words inside the documents. By combining equations
4 and 5, we obtain the distribution of the node m:

p(m) =

Nk∏
k=1

Ntk∏
j=1

∫
p(θjk)

Nwtk∏
i=1

p(wijk|θjk)dθjk (6)

In the equation above, the p.d.f for each word, p(wijk |θjk), is defined by Equation
3 in the previous section. It is worth mentioning that the model can also be
applied to classify nodes which are at the same level of the hierarchical collection.
This can be achieved by treating each node as an individual document containing
words from all the documents it consists of. Therefore, the model can be trained
to use parameter θ to distinguish each node from its siblings.

2.3 Model Learning

The model can be learned by maximizing the probability of observed data at
each node. The parameters are learned by iteratively maximizing p(m) with
respect to θ, word representation R, and word frequency bias b:

θ̂, R̂, b̂ = max
θ,R,b

Nk∏
k=1

Ntk∏
j=1

∫
p(θjk)

Nwtk∏
i=1

p(wijk |θjk)dθjk (7)

Therefore, the log-likelihoods for θjk, and for R and b are:

L(θjk) =

Ntk∑
j=1

(

Nwtk∑
i=1

log(p(wijk |θjk))− λθ2jk) (8)

L(R, b) =

Nk∑
k=1

Ntk∑
j=1

log(p(θjk))

Nwtk∑
i=1

log(p(wijk |θjk)) (9)

where λ is the scale parameter of the Gaussian. We take partial derivative with
respect to θjk in Equation 8, to get the gradient:

∇θjk =
∂L(θjk)

∂θjk
=

Nwtk∑
i=1

(φwijk
−
∑
w′∈V

p(w′|θjk)φw′)− 2λθjk (10)
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Then, we take partial derivative with respect to R and b in Equation 9. For each
column Rv of the representation matrix, the gradient ∇Rv is:

∇Rv =
∂L(R, b)

∂Rv
=

Nk∑
k=1

Ntk∑
j=1

Nwtk∑
i=1

(Nwvθjk −Nwtkp(wv|θjk)θjk) (11)

And the gradient for b is:

∇bv =
∂L(R, b)

∂bv
=

Nk∑
k=1

Ntk∑
j=1

Nwtk∑
i=1

(Nwv −Nwtkp(wv|θjk)) (12)

Therefore, at each step of the iteration, θ, R and b are updated as:

θt+1
jk = θtjk + α∇θjk (13)

Rt+1
v = Rt

v + α∇Rv bt+1
v = btv + α∇bv (14)

Thus, the parameters are optimized by moving in the direction of the gradient.
The step size of the movement is indicated by α. The procedure of estimating
the model’s parameters is based on iteratively optimizing the values of θ, R, and
b using Newton’s method. It first optimizes θ for each collection child with R and
b fixed. Afterwards, we optimize word representation R and bias b with θ fixed.
We repeat these two steps until convergence. The complete learning procedure
is shown in Algorithm 1. In the proposed model, the related words are found by

Algorithm 1. Model Learning Algorithm

1: Initialize the values of parameters θ , R, and b with randomly generated numbers,
set the step size (α = 1e−4) and iteration convergence criteria (maximum iteration
number MaxIter = 1000 and evaluation termination value TermV al = 1e− 7).

2: Repeat
3: Estimate θjk at each node using Eq. 13.
4: Optimize R and b using Equations in 14.
5: Until one of the convergence criteria is reached (The iteration exceeds MaxIter or

the change of the parameters values is less than TermV al)

calculating the cosine similarities between words from the word representation
vectors φ, which are derived from the representation matrix R. Therefore, for
words w1 and w2, with representation vectors φ1 and φ2, the similarity is:

Similarity(w1, w2) =
Rw1 ·Rw2

||Rw1||||Rw2|| =
φ1 · φ2

||φ1||||φ2|| (15)
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3 Experiments

In this section, we investigate our proposed hierarchical statistical document
model using two challenging tasks. The first one is to find semantically related
words for a query word at each level of a collection of documents characterized by
a hierarchical structure. The second task is to show the model’s performance on
words classification. Our experiments have been performed on a 2.70GHz Intel
i7 machine (4GB RAM, 64-bit operating system) using Matlab version R2010b.

3.1 Finding Semantically Related Words

The data set in this first experiment is composed of web pages gathered from
Wikipedia. The data is obtained via “Wikipedia Export”, which allows to re-
trieve web pages from the database in specific categories. Then, the plain text
of each web page is extracted. Afterwards, data are pre-processed by consult-
ing each word property with WordNet to filter stop words (e.g. “the”, “and”,
“or”, etc.) and non english words. Only nouns, verbs, adjectives and adverbs are
kept. Furthermore, the nouns and verbs are converted to their roots, for example
“ate” is changed to “eat”, and “cats” is transformed to “cat”. This can help us
to eliminate the redundancy of a root word presented in multiple formats. The
similarity scores between words are derived using the cosine measure.
Here, we report our experimental results on words learned under the “crime”
category in Wikipedia. The structure of this collection of documents is displayed
in figure 1. As we can see from this figure, the root node is “Crime”, which con-

Fig. 1. The hierarchical structure of “Crime” category

tains 5372 documents and has “Fraud” and “Murder” categories as children.
The node “Fraud” contains 4341 documents and the node “Murder” contains
1391 documents. Both of them have 14 nodes as children. We report the results
found by our model at these three nodes. The most frequently used 2500 words
in our nodes are selected to build the vocabulary set. Tables 1, 2 and 3 show
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part of the most frequent words as well as their semantically related words when
using cosine similarity scores computed at these three nodes. The results in these
tables show clearly that our model has a good performance in finding different
related words.

Table 1. Semantically related words at node “Crime”

Word shoot score attack score murder score bury score

kill 0.881 wound 0.738 kill 0.830 cremate 0.820
Similar ambush 0.810 bomb 0.724 mutilate 0.757 die 0.760
Words gun 0.762 overpower 0.706 confess 0.739 burn 0.712

fire 0.761 assassinate 0.732 exhume 0.708
wound 0.750 stab 0.732 survive 0.706

Word invest score disappear score marry score lie score

trade 0.818 vanish 0.840 move 0.848 hear 0.727
Similar promise 0.759 miss 0.704 bear 0.789 tell 0.718
Words buy 0.742 die 0.781

emigrate 0.759
divorce 0.725

Table 2. Semantically related words at node “Murder”

Word shoot score attack score murder score disappear score

kill 0.906 injure 0.870 kill 0.906 force 0.813
Similar die 0.878 wound 0.843 try 0.863 kidnap 0.806
Words fire 0.820 stop 0.765 commit 0.750 detain 0.774

attempt 0.807 coordinate 0.708 die 0.845 miss 0.770
murder 0.737 shoot 0.737 confirm 0.711

Word assassinate score fire score injure score investigate score

condemn 0.814 wound 0.838 wound 0.904 conclude 0.767
Similar oppose 0.807 shoot 0.821 attack 0.870 solve 0.763
Words execute 0.712 injure 0.773 fire 0.773 examine 0.709

fail 0.710 occur 0.748 occur 0.752 indicate 0.705
escape 0.704 surrender 0.723 explode 0.708 file 0.704

3.2 Word Classification

In this subsection, we investigate the performance of our model on word classi-
fication problem. The data set used in this experiment is collected from “The-
saurus” web site. In this web site, words are classified into 6 categories: 1) words
expressing abstract relations, 2) words related to space, 3) words related to mat-
ter, 4) words related to intellectual faculties, formation and communication of
ideas, 5) words related to voluntary powers, to individual and inter-social voli-
tion, and 6) words related to sentimental and moral powers. Each category has
many sub classes. The data that we use in our experiment here are from the
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Table 3. Semantically related words at node “Fraud”

Word invest score disappear score marry score lie score

resell 0.782 convince 0.738 divorce 0.981 reveal 0.812
Similar own 0.773 vanish 0.734 bear 0.933 discover 0.809
Words collapse 0.762 pose 0.731 widow 0.847 admit 0.745

trade 0.739 notice 0.723 inherit 0.756 tell 0.724
promise 0.718 try 0.718 emigrate 0.726 confess 0.701

Word bury score identify score examine score divorce score

marry 0.774 indicate 0.815 prove 0.745 widow 0.842
Similar burn 0.728 provide 0.758 conclude 0.734 marry 0.826
Words die 0.715 employ 0.752 verify 0.731 graduate 0.772

inherit 0.713 report 0.732 remarry 0.742
survive 0.702 demonstrate 0.709

Fig. 2. Hierarchical structure of the “Words related to space” category

Fig. 3. Hierarchical structure of the “Words related to matter” category

second and third categories which contain 137 and 136 documents, respectively.
The hierarchical structures of the data in both categories are shown in figures 2
and 3. 10-fold cross validation is performed on these two categories by randomly
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splitting into 10 groups the 9749 and the 7617 words in the vocabularies of the
second and third categories, respectively. For each word, we try to find the cor-
rect corresponding document to which it belongs using the parameter θ. The
probability threshold is set to 0.7. The classification results in terms of accuracy,
of our model and the original flat model, are shown in table 4. From this table,
we can see that the accuracy scores of the original flat model are 77.23 and
78.04 while for our model, they are 81.76 and 82.17. The improvement is due
to the property of our hierarchical model, since we describe the data as a tree
structure where the number of classes is reduced at each estimation. Moreover,
we performed a significance student t-test, with a confidence level of 95% , on
the obtained scores at each cross validation. The results are shown in table 5.
According to these results, we can say that the difference in accuracy between
our model and the flat one is statistically significant.

Table 4. Results obtained for the word classification task

Accuracy (%)

Data category “words related to space” category “words related to matter”

Flat Model 77.23 78.04

Our Model 81.76 82.17

Table 5. Statistical significance tests on the accuracy scores

flat model our model t-value critical t-value (α = 0.05)

data mean σ mean σ

“words related to space” 77.23 3.67 81.76 2.10 3.39 2.1009

“words related to matter” 78.04 3.28 82.17 2.57 3.13 2.1009

4 Conclusion

We have presented a statistical document model to analyze collections of docu-
ments having hierarchical structures. Our model can be viewed as an extension of
the flat log-bilinear approach. It has been validated by conducting experiments
involving real data gathered from different Web sites. Two main tasks have been
considered namely semantically related words extraction and word classification.
The obtained results are promising and demonstrate that our model performs
well on both tasks. Future potential research works could be devoted to the ex-
tension of the model to online settings (e.g. adding, fusing, or deleting nodes) to
take into account the dynamic nature of the Web (i.e. new documents are added
and others are deleted regularly on the Web). Another promising future work
could be dedicated to the consideration of other languages (e.g. French, Arabic,
Spanish, Chinese, etc.) for validation purposes.
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Abstract. We propose an incremental nonparametric Bayesian
approach for clustering. Our approach is based on a Dirichlet process
mixture of generalized Dirichlet (GD) distributions. Unlike classic clus-
tering approaches, our model does not require the number of clusters
to be pre-defined. Moreover, an unsupervised feature selection scheme
is integrated into the proposed nonparametric framework to improve
clustering performance. By learning the proposed model using an in-
cremental variational framework, the number of clusters as well as the
features weights can be automatically and simultaneously computed. The
effectiveness and merits of the proposed approach are investigated on a
challenging application namely anomaly intrusion detection.

Keywords: Mixture models, clustering, Dirichlet process, generalized
Dirichlet, feature selection, variational inference, intrusion detection.

1 Introduction

Huge volumes of data are routinely generated by organizations, scientific activ-
ities, internet traffic and so on. An important problem is to model these data
to improve the process of making automatic decisions [12]. A widely used ap-
proach for data modeling and knowledge discovery is clustering. Clustering can
be defined as the task of partitioning a given data set X = {X1, . . . ,XN} con-
taining N vectors into M homogenous clusters C1, . . . , CM such that Cj ∩Cl = ∅,
and ∪M

j=1Cj = X . Finite mixture models have been widely applied for clustering
during the last two decades [11]. Within finite mixture modeling, selecting the
number of components that best describes the underlying data without over-
or under-fitting is one of the most challenging problems. This obstacle can be
removed by extending finite mixtures to the infinite case through Dirichlet pro-
cesses [13]. Infinite mixtures allow a natural approach for data clustering. Unlike
finite mixtures, the number of clusters does not need to be specified by the prac-
titioner in advance and can be automatically inferred from the dataset. Several
approaches have been proposed to learn mixture models. In particular, vari-
ational inference has received a lot of attention recently [5,4,1,6]. Variational

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 364–373, 2013.
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inference is a deterministic approximation learning technique that only requires
a modest amount of computational power in contrast to other well-developed
approaches such as Markov chain Monte Carlo (MCMC) techniques, and has
a tractable learning process as well. Generally real-world problems involve dy-
namic data sets where the volume of data continuously grows. Thus, it is crucial
to adopt an incremental way to learn the statistical model used for clustering.

In this paper, we adopt an incremental version of variational inference pro-
posed by [7] to learn infinite generalized Dirichlet (GD) mixtures with unsu-
pervised feature selection. The employment of the GD as the basic distribution
in our mixture model is motivated by its favorable performance when dealing
with non-Gaussian data [2,3]. The advantages of our framework are summarized
as following: First, the difficulty of choosing the appropriate number of compo-
nents is avoided by assuming that there is an infinite number of components.
Second, thanks to its incremental nature, it is very efficient when dealing with
sequentially arriving data, which is an important factor for real-time applica-
tions. Third, within the proposed framework, the model parameters and features
saliencies can be estimated simultaneously and automatically. The effectiveness
of our approach is illustrated through a challenging task namely anomaly intor-
sion detection. The rest of this paper is organized as follows. Section 2 reviews
briefly the infinite GD mixture model with unsupervised feature selection. In
Section 3, we develop an incremental variational inference framework for model
learning. Section 4 is devoted to the experimental results. Finally, conclusion
follows in Section 5.

2 Infinite GD Mixture Model with Feature Selection

In this section, we review briefly the infinite generalized Dirichlet (GD) mixture
model with feature selection, which is constructed using a stick-breaking Dirich-
let process framework. If a D-dimensional random vector Y = (Y1, . . . , YD) is
sampled from a mixture of GD distributions with infinite number of components:

p(Y |π,α,β) =

∞∑
j=1

πjGD(Y |αj ,βj) (1)

where π represents the mixing coefficients with the constraints that are positive
and sum to one. Here we adopt the Dirichlet process framework with a stick-
breaking representation [15], where the mixing coefficients {πj} are constructed
by recursively breaking a unit length stick into an infinite number of pieces as
πj = λj

∏j−1
k=1(1 − λk). The stick breaking variable λj is distributed according

to λj ∼ Beta(1, ζ), where ζ is a positive real number and is the concentration
parameter of the Dirichlet process. In Eq. (1), αj = (αj1, . . . , αjD) and βj =
(βj1, . . . , βjD) are the positive parameters of the GD distribution GD(Y |αj ,β)
associated with component j, where GD(X|αj ,βj) is given by

GD(Y |αj ,βj) =

D∏
l=1

Γ (αjl + βjl)

Γ (αjl)Γ (βjl)
Y

αjl−1
l

(
1−

l∑
k=1

Yk

)γjl

(2)
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where
∑D

l=1 Yl < 1 and 0 < yl < 1 for l = 1, . . . , D, γjl = βjl − αjl+1 − βjl+1

for l = 1, . . . , D − 1, and γjD = βjD − 1. Γ (·) is the gamma function defined
by Γ (x) =

∫∞
0 ux−1e−udu. It is noteworthy that, in practice the features {Yl}

are generally not equally significant for the clustering task since some features
may be“noise” and do not contribute to clustering process. Therefore, feature
selection may act as a crucial role to improve the learning performance. Before
incorporating feature selection into our framework, we leverage a handy mathe-
matical property of the GD distribution which is introduced in [3], to transform
the original data points into another D-dimensional space with independent fea-
tures. Then, we can rewrite the infinite GD mixture model as

p(X|π,α,β) =

∞∑
j=1

πj

D∏
l=1

Beta(Xl|αjl, βjl) (3)

where Xl = Yl and Xl = Yl/(1 −∑l−1
k=1 Yk) for l > 1. Beta(Xl|αjl, βjl) is a

Beta distribution parameterized with (αjl, βjl). Accordingly, the independence
between the features in the new space becomes a fact rather than an assumption
as considered in previous approaches [8,4]. In this work, we adopt an unsuper-
vised feature selection scheme suggested in [8]: the lth feature is irrelevant if its
distribution is independent of the class labels, that is, if it follows a common
density. Thus, we can rewrite the mixture density in Eq. (3) as

p(X|π,α,β,φ,σ, τ ) =
∞∑
j=1

D∏
l=1

[
Beta(Xl|αjl, βjl)

]φl
[
Beta(Xl|σl, τl)

]1−φl (4)

where φ = (φ1, . . . , φD) is a set of binary parameters and known as the feature
relevance indicator, such that φl = 0 if feature l is irrelevant (i.e. noise) and
follows a Beta distribution: Beta(Xl|σl, τl). The prior of φ is defined as:

p(φ|ε) =
D∏
l=1

εφl

l1
ε1−φl

l2
(5)

where each φl is a Bernoulli variable such that p(φl = 1) = εl1 and p(φl = 0) =
εl2 . Here the vector ε denotes the features saliencies (i.e. the probabilities that
the features are relevant) where εl = (εl1 , εl2) and εl1 + εl2 = 1. Furthermore,
we place a Dirichlet prior Dir(·) over ε with positive parameter ϕ as: p(ε) =∏D

l=1 Dir(εl|ϕ). In mixture modeling, it is convenient to introduce a variable Z =
(Z1, . . . , ZN) for an observed dataset (X1, . . . ,XN ), where Zi is an assignment
variable of the mixture component with which the data point Xi is associated.
The marginal distribution over Z is given by

p(Z|λ) =

N∏
i=1

∞∏
j=1

[
λj

j−1∏
k=1

(1− λk)

]1[Zi=j]

(6)

where 1[·] is an indicator function which has the value of 1 when Zi = j and 0
otherwise. Next, we need to introduce prior distributions over unknown random
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variables. In this work, the Gamma distribution G(·) is adopted to approximate
a conjugate prior over parameters α,β,σ and τ , by assuming that these Beta
parameters are statistically independent: p(α) = G(α|u,v), p(β) = G(β|p, q),
p(σ) = G(σ|g,h), p(τ ) = G(τ |s, t).

3 Incremental Variational Model Learning

In this work, we adopt a variational incremental learning approach introduced in
[7] to learn the proposed model. According to this approach, data instances can
be sequentially processed in small batches where each one may contain one or
more data points. There are two phases involved: a model building phase and a
compression phase. In the model building phase, the current model with observed
data points is optimized. The goal of the compression phase is to determine which
mixture component that groups of data points should be assigned to.

3.1 Model Building Phase

Given an observed dataset X = (X1, . . . ,XN ), let Θ = {Z,α,β,σ, τ ,φ, ε,λ}
be the set of random variables. In variational learning, the main goal is to de-
termine a proper approximation q(Θ) for the real posterior distribution p(Θ|X )
by maximizing the free energy F(X , q):

F(X , q) =

∫
q(Θ) ln[p(X , Θ)/q(Θ)]dΘ (7)

In our framework, motivated by [1], we truncate the variational distribution q(Θ)

at a value of M , such that λM = 1, πj = 0 when j > M , and
∑M

j=1 πj = 1.
It is noteworthy that the truncation level M is a variational parameter which
can be freely initialized and will be optimized automatically during the learning
process [1]. Next, we adopt a factorization assumption to factorize q(Θ) into
disjoint tractable factors as: q(Θ) = q(Z)q(α)q(β)q(σ)q(τ )q(φ)q(ε)q(λ). Then,
we can obtain the following update equations for these factors by maximizing
the free energy F(X , q) with respect to each of them:

q(Z) =
N∏
i=1

M∏
j=1

r
1[Zi=j]
ij , q(λ) =

M∏
j=1

Beta(λj |aj , bj) (8)

q(α) =
M∏
j=1

D∏
l=1

G(αjl|u∗
jl, v

∗
jl), q(β) =

M∏
j=1

D∏
l=1

G(βjl|c∗jl, d∗jl) (9)

q(σ) =
D∏
l=1

G(σl|g∗l , h∗
l ), q(τ ) =

D∏
l=1

G(τl|s∗l , t∗l ) (10)

q(φ) =

N∏
i=1

D∏
l=1

fφil

il (1− fil)
(1−φil), q(ε) =

D∏
l=1

Dir(εl|ϕ∗
l ) (11)
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where we have calculated

rij =
exp(ρij)∑M
j=1 exp(ρij)

, ϕ∗
l1 = ϕl1 +

N∑
i=1

〈φil〉, ϕ∗
l2 = ϕl2 +

N∑
i=1

〈1− φil〉 (12)

ρij =
D∑
l=1

〈φil〉[R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)] +
〈
lnλj

〉
+

j−1∑
k=1

〈
ln(1− λk)

〉

fil =
exp(f̃il)

exp(f̃il) + exp(f̂il)
, aj = 1 +

N∑
i=1

〈Zi = j〉, bj = ζj +
N∑
i=1

M∑
k=j+1

〈Zi = k〉

f̃il =

M∑
j=1

〈
Zi = j

〉[R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)
]
+ 〈ln εl1〉

f̂il = F̃l + (σ̄l − 1) lnXil + (τ̄l − 1) ln(1−Xil) + 〈ln εl2〉

u∗
jl = ujl +

N∑
i=1

rij〈φil〉ᾱjl

[
ψ(ᾱjl + β̄jl)− ψ(ᾱjl) + β̄jlψ

′(ᾱjl + β̄jl)(〈lnβjl〉 − ln β̄jl)
]

c∗jl = cjl +
N∑
i=1

rij〈φil〉β̄jl[ψ(ᾱjl + β̄jl)− ψ(β̄jl) + ᾱjlψ
′(ᾱjl + β̄jl)(

〈
lnαjl

〉− ln ᾱjl)]

v∗jl = vjl −
N∑
i=1

〈
Zi = j

〉〈
φil

〉
lnXil, d∗jl = djl −

N∑
i=1

〈
Zi = j〉〈φil〉 ln(1−Xil)

In the above equations, ψ(·) is the digamma function, and 〈·〉 is the expec-

tation evaluation. R̃ and F̃ are the lower bounds of R =
〈
ln Γ (α+β)

Γ (α)Γ (β)

〉
and

F =
〈
ln Γ (σ+τ)

Γ (σ)Γ (τ)

〉
, respectively. Since these expectations are intractable, we

use the second-order Taylor series expansion to find their lower bounds. The
hyperparameters of σ and τ are calculated in a similar way as for the hyper-
parameters of α and β. The expected values in the above formulas are given
by 〈Zi = j〉 = rij , 〈φil〉 = fil, ᾱjl = 〈αjl〉 = u∗

jl/v
∗
jl, β̄jl = c∗jl/d

∗
jl,
〈
lnλj

〉
=

Ψ(aj)−Ψ(aj+bj),
〈
ln(1−λj)

〉
= Ψ(bj)−Ψ(aj+bj), 〈ln εl1〉 = ψ(ϕ∗

1)−ψ(ϕ∗
1+ϕ∗

2),〈
lnαjl

〉
= Ψ(u∗

jl)− ln v∗jl, and
〈
lnβjl

〉
= Ψ(c∗jl)− ln d∗jl.

After convergence, the observed data points are clustered into M groups ac-
cording to corresponding responsibilities rij . Following [7], these newly formed
groups of data points are denoted as “clumps”, and these clumps are sub-
ject to the constraint that all data points Xi in the clump m share the same
q(Zi) ≡ q(Zm) which is a key factor in the following compression phase.

3.2 Compression Phase

In the compression phase, we attempt to determine clumps that possibly belong
to the same mixture component while taking into account future arriving data.
Suppose that we have already observed N data points, and our goal is to make
an inference at some target time T where T ≥ N . This is fulfilled by scaling
the current observed data to the target size T , which is equivalent to using the
variational posterior distribution of the observed data N as a predictive model
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of the future data [7]. Therefore, we can obtain the modified free energy for the
compression phase as the following

F =
M∑
j=1

D∑
l=1

[〈
ln
p(αjl)

q(αjl)

〉
+

〈
ln
p(βjl)

q(βjl)

〉]
+

D∑
l=1

[〈
ln
p(σl)

q(σl)

〉
+

〈
ln
p(τl)

q(τl)

〉
+

〈
ln
p(εl)

q(εl)

〉]

+

M∑
j=1

〈
ln
p(λj)

q(λj)

〉
+
T

N

∑
m

|nm|
[
ln

M∑
j=1

exp(ρmj) + ln

D∑
l=1

exp(fml)
]

(13)

where T
N is the data magnification factor and |nm| represents the number of data

points in clump m. The corresponding update equations for maximizing this free
energy function are

rmj =
exp(ρmj)∑

M
j=1 exp(ρmj)

, fml =
exp(f̃ml)

exp(f̃ml) + exp(f̂ml)
, ϑ =

T

N

∑
m

|nm| (14)

ϕ∗
l1

= ϕl1
+

T

N

∑
m

|nm|〈φml〉, ϕ∗
l2

= ϕl2
+

T

N

∑
m

|nm|〈1 − φml〉

ρmj =

D∑
l=1

fml[R̃jl + (ᾱjl − 1) lnXml + (β̄jl − 1) ln(1 − Xml)] + 〈lnλj〉 +
j−1∑
k=1

〈ln(1 − λk)〉

aj = 1 + ϑ〈Zm = j〉, bj = ζj + ϑ
M∑

k=j+1

〈Zm = k〉

f̃ml =

M∑
j=1

〈
Zm = j

〉[R̃jl + (ᾱjl − 1) lnXml + (β̄jl − 1) ln(1 − Xml)
]
+ 〈ln εl1〉

f̂ml = F̃l + (σ̄l − 1) lnXml + (τ̄l − 1) ln(1 − Xml) + 〈ln εl2〉
u
∗
jl = ujl + ϑrmj〈φml〉ᾱjl

[
ψ(ᾱjl + β̄jl) − ψ(ᾱjl) + β̄jlψ

′
(ᾱjl + β̄jl)(〈ln βjl〉 − ln β̄jl)

]

c
∗
jl = cjl + ϑrmj〈φml〉β̄jl[ψ(ᾱjl + β̄jl) − ψ(β̄jl) + ᾱjlψ

′
(ᾱjl + β̄jl)(

〈
lnαjl

〉 − ln ᾱjl)]

v∗
jl = vjl − ϑrmj

〈
φml

〉
lnXml, d∗

jl = djl − ϑrmj

〈
φml〉 ln(1 − Xml)

where 〈Xml〉 represents the average over all data points contained in clump m.
In the compression phase, the first step is to hard assign each clump or data
point to the component with the highest responsibility rmj obtained from the
model building phase as

Im = arg max
j

rmj (15)

where {Im} represent which component the clump (or data point) m belongs
to in the compression phase. Next, we cycle through each component and split
it into two subcomponents along its principal component. This splitting process
can be refined by updating Eqs. (14). After convergence criterion is reached
for refining the split, the clumps are then assigned to one of the two candidate
components. Among all the potential splits, we choose the one that results in the
largest change in the free energy (Eq. (13)). We iterate this splitting process until
a stopping criterion is satisfied. Based on [7], a stoping criterion for the splitting
process can be expressed as a limit on the amount of memory required to store the
components. In our case, the memory cost for the mixture model isMC = 5DNc,
where 5D is the number of parameters contained in a D-variate GD component
with feature selection, while Nm denotes the number of components. Thus, We
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Algorithm 1

1: Choose the initial truncation level M .
2: Initialize hyper-parameters: ujl, vjl, cjl, djl, gl, hl, sl, tl, ζj , ϕl1 and ϕl2 .
3: Initialize the values of rij by K-Means algorithm.
4: while More data to be observed do
5: Perform the model building phase through Eqs. (8)∼(11).
6: Initialize the compression phase using Eq. (15).
7: while MC ≥ C do
8: for j = 1 to M do
9: if evaluated(j) = false then
10: Split component j and refine this split using Eqs (14).
11: ΔF(j) = change in Eq. (13).
12: evaluated(j) = true.
13: end if
14: end for
15: Split component j with the largest value of ΔF(j).
16: M =M + 1.
17: end while
18: Discard the currently observed data points.
19: Save the resultant components for next learning round.
20: end while

can define an upper limit on the component memory cost C, and the compression
phase stops when MC ≥ C. As a result, the computational time and the space
requirement is bounded in each learning round. After the compression phase,
the currently observed data points are discarded while the resultant components
are treated in the same way as data points in the next round of leaning. The
proposed incremental variational inference algorithm for infinite GD mixture
model with feature selection is summarized in Algorithm 1.

4 Anomaly Intrusion Detection

The construction of intrusion detection models has been the topic of exten-
sive research in the past. The main goal is to protect networks against crim-
inals. Indeed, the target of Intrusion Detection Systems (IDSs) is to discover
inappropriate, incorrect, or anomalous activities within computers or networks
and this can be considered as classification problem in the context of machine
learning (see, [9], for instance and references therein). In general, IDSs can be
broadly divided into two main categories: misuse detection and anomaly de-
tection systems [14]. In contrast to the signature-based misuse detection, the
anomaly detection has the superiority of being able to detect new or unknown
attacks. In this experiment, we evaluate the effectiveness of the proposed incre-
mental infinite GD mixture model with feature selection (referred as InGD-Fs)
by applying it to tackle the problem of anomaly intrusion detection. In our
case, the truncation level M is initialized as 20. Our specific choice for the ini-



Anomaly Intrusion Detection Using Incremental Learning 371

tial values of the hyperparameters is: (ujl, vjl, cjl, djl, gl, hl, sl, tl, ζj , ϕl1 , ϕl2) =
(1, 0.01, 1, 0.01, 1, 0.01, 1, 0.01, 0.1, 0.1, 0.1).

4.1 Databases and Experimental Design

We investigate our approach on two challenging publicly available databases
known as the KDD Cup 1999 Data1 and the Kyoto traffic Data2. In our case, a
10 percent subset of the KDD database is adopted. Specifically, the training set
consists of 494,020 data instances of which 97,277 are normal and 396,743 are
attacks, while the testing set contains 292,393 data instances of which 60,593 are
normal and 231,800 are attacks. Each instance in this data set is composed of 41
features. This database has five categories in total including one ‘Normal’ and
four attack classes namely: DOS, R2L, U2R and Probing. The Kyoto database
consists of real traffic data obtained from several types of honeypots by the
Kyoto University. In our experiment, the Kyoto database contains 784,000 21-
dimensional instances where 395,368 are normal sessions and 388,632 are attacks.
In this application, the training data are used to learn the current model, where
the testing data instances are supposed to be obtained sequentially in an online
fashion. It is noteworthy that the features in the two original databases are on
quite different scales, we therefore require to normalize the databases so that one
feature would not dominate the others. By finding the maximum and minimum
values of a given feature Xl in a data instance X , we can transform the feature

into the range [0, 1] by Xl = Xl−min(Xl)
max(Xl)−min(Xl)

, where Xl is set to a smallest value

if the maximum is equal to the minimum.

4.2 Experimental Results

We run the the proposed InGD-Fs 20 times to investigate its performance. For
comparison, we have also applied three other mixture-modeling approaches: the
infinite GD mixture model without feature selection (InGD), the finite GD mix-
ture model without feature selection(FiGD) and the infinite Gaussian mixture
model with feature selection (InGM-Fs). In order to provide a fair comparison,
all of these tested approaches are learned through the incremental variational
inference. The results of applying different approaches on the KDD99 database
and Kyoto database are shown in Table 1, in terms of the average classifica-
tion accuracy rate (Accuracy) and the false positive (FP) rate. According to
this table, it is obvious that our approach (InGD-Fs) has the best performance
among all the tested approaches by providing the highest accuracy rate and
the lowest FP rate for both databases. There are several important conclusions
which can be drawn from this table: First, the fact that InGD-Fs outperforms
InGD proves that feature selection is a significant factor for improving clustering
performance; Second, InGD has better results than FiGD, which demonstrates

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2 http://www.takakura.com/Kyoto_data/

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.takakura.com/Kyoto_data/
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the advantage of using infinite mixture models over finite ones. Third, InGM-
Fs provides the worst performance among all tested approaches which verifies
that the GD mixture model has better modeling capability than the Gaussian
for compactly supported data. In addition, the saliencies of the 41 features in
the KDD 99 database and 21 features in the Kyoto database calculated by the
InGD-Fs over 20 runs are illustrated in Fig. 1. As shown in this figure, it is clear
that the different features do not contribute equally in the classification, since
they have different relevance degrees.

Table 1. Average classification accuracy rate (Accuracy) and false positive (FP) rate
computed using different approaches

KDD data Kyoto data

Accuracy (%) FP (%) Accuracy (%) FP (%)

InGD-Fs 86.73 6.27 81.34 11.78

InGD 84.18 7.14 78.61 13.52

FiGD 82.52 9.63 76.59 16.37

InGM-Fs 79.45 13.91 75.01 18.23
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Fig. 1. Features saliencies obtained using the proposed InGD-Fs approach

5 Conclusion

In this paper, we have proposed an incremental clustering algorithm that allows
the simultaneous computation of the number of clusters and features weights
during execution. Our approach is based on an incremental variational learning
of the infinite GD mixture model with unsupervised feature selection. The ef-
fectiveness of the proposed approach has been evaluated on a challenging real
application namely anomaly intrusion detection. Future works could be devoted
to the inclusion of a localized feature selection scheme, such as the one proposed
in [10], to improve further the generalization capabilities of our framework.
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Abstract. In this paper we have presented a combination of two meta-
heuristics, namely great deluge and tabu search, for solving the university 
course timetabling problem. This problem occurs during the assignment of a set 
of courses to specific timeslots and rooms within a working week and subject to 
a variety of hard and soft constraints. Essentially a set of hard constraints must 
be satisfied in order to obtain a feasible solution and satisfying as many as of 
the soft constraints as possible. The algorithm is tested over two databases: 
eleven enrolment-based benchmark datasets (representing one large, five 
medium and five small problems) and curriculum-based datasets used and 
developed from the International Timetabling Competition, ITC2007 (UD2 
problems). A new strategy has been introduced to control the application of a 
set of neighbourhood structures using the tabu search and great deluge. The 
results demonstrate that our approach is able to produce solutions that have 
lower penalties on all the small and medium problems in eleven enrolment-
based datasets and can produce solutions with comparable results on the 
curriculum-based datasets (with lower penalties on several data instances) when 
compared against other techniques from the literature. 

Keywords: Great Deluge, Tabu Search, Course Timetabling. 

1 Introduction 

In the timetabling literature, significant attention has been paid to the problem of 
constructing university course timetables. Various techniques have been applied to 
this complex and difficult problem. However, optimum solutions are only possible for 
problems of a limited size [6]. In this paper, a combination of two meta-heuristic 
based techniques i.e. great deluge and tabu search are applied to the university course 
timetabling problem. The approach is tested over eleven benchmark datasets that were 
introduced by [17] and twenty eight ITC2007 datasets as described in the 2nd 
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International Timetabling Competition (ITC2007), [10]. The results demonstrate that 
our approach is capable of producing high quality solutions when compared to other 
techniques in the literature.  

2 Problems Descriptions  

2.1 Enrolment-Based Course Timetabling Problem  

In university course timetabling, a set of courses are scheduled into a given number of 
rooms and timeslots across a period of time. This usually takes place within a week 
and the resultant timetable replicated for as many weeks as the courses run. Also, 
students and teachers are assigned to courses so that the teaching delivery activities 
can take place. The course timetabling problem is subject to a variety of hard and soft 
constraints. Hard constraints need to be satisfied in order to produce a feasible 
solution. In this paper, the 1st experiment is testing our approach on the problem 
instances introduced by [17] who present the following hard constraints: No student 
can be assigned to more than one course at the same time (Hard1). The room should 
satisfy the features required by the course (Hard2). The number of students attending 
the course should be less than or equal to the capacity of the room (Hard3).  Not 
more than one course is allowed to be assigned to a timeslot in each room (Hard4). 

[17] also present the following soft constraints that are equally penalized: A student 
has a course scheduled in the last timeslot of the day (Soft1). A student has more than 
2 consecutive courses (Soft2). A student has a single course on a day (Soft3). 

The problem has: 
• A set of n courses, E = {e0, e1,…,en-1}, 45 timeslots, T = {t0, t1,…,t44}, A set 

of m rooms, R = {r0, r1,…,rm-1}, A set of q room features, F = {f0,…, fq-1} 
and A set of v students S = {s0, s1,…,sv-1}. 

The objective of this problem is to satisfy the hard constraints and to minimise the 
violation of the soft constraints. The formula represents the objective function for this 
problem given as below: 

 

We have evaluated our results on the instances taken from [17], (available at 
http://iridia.ulb.ac.be/~msampels/tt.data/). They are divided into three categories: 
small, medium and large. We deal with 11 instances: 5 small, 5 medium and 1 large.  

2.2 Curriculum-Based Course Timetabling Problem 

In the Curriculum-based timetabling problem real datasets will be used from the 
University of Udine, Italy. The problem consists of the weekly scheduling of lectures 
for several university courses within a given number of rooms and time periods, 
where conflicts between courses are set according to the curricula of the university. 
All the details, updates and news about the problem can be obtained via the website 
(http://tabu.diegm.uniud.it/ctt/index.php).The following hard and soft constraints, are 
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presented: Hard constraints; (1) Lectures. All lectures of a course must be 
scheduled, and they must be assigned to distinct periods. (2) Conflicts. Lectures of 
courses in the same curriculum or taught by the same teacher must all be scheduled in 
different periods. (3) Room Occupancy. Two lectures cannot take place in the same 
room in the same period. (4) Availability. The teacher of the course must be available 
to teach that course at a given period; otherwise no lecture of the course can be 
scheduled at that period. 

Soft constraints: (1) Room Capacity. The number of students attending the course 
should be less than or equal to the capacity of the room. (2) Minimum Working Days. 
The lectures of each course must be spread into the given minimum number of days. 
(3) Isolated Lectures. Lectures belonging to a curriculum should be in consecutive 
periods. (4) Room Stability. All lectures of a course should be given in the same 
room. 

The main contribution of this work consists of a combination of the Great Deluge 
algorithm with a Tabu Search approach in solving the university course timetabling  
problem through fully satisfying the hard constraints and minimising as much as 
possible the violation of the soft constraints.  

Several university course timetabling papers have appeared in the literature in the 
last few years which tackle various benchmark course timetabling problems. [17] 
employed a local search and ant based algorithms, tested on the eleven problems 
produced by Paechter’s1 course timetabling test instance generator (note that these 
instances are used to evaluate the method described in this paper). [3] employed a 
genetic and local search approach on the eleven benchmark course data sets. [14] 
employed a nonlinear great deluge on the same instances. In addition, [19] apply a 
nonlinear great deluge hyper-heuristic on the same eleven datasets and approved that 
the algorithm is able to obtain good results. On the other hand, a great deluge with 
kempe chain neighbourhood structure was employed by [2] to solve university course 
timetabling.  

[22] applied a constraint-based solver approach to the curriculum-based course 
timetabling problems in the 2nd International Timetabling Competition (Track 1 and 
Track 3) as introduced by [10] and achieved first place in this competition. [15] 
applied a hybrid heuristic algorithm called adaptive tabu search to the same instances. 
[7] introduced a new solver based on a hybrid meta-heuristic to tackle scheduling 
problems. They applied it first on Udine data sets (based on Track 2 of ICT2007), 
achieving good solutions within a practical timeframe. [5] proposed a hybrid local 
search algorithm to solve curriculum-based course timetabling problems (ITC2007-
Track 3). On the other hand, [23] proposed a branch-and-cut procedure. An integer 
programming is used in order to model the problem which to choose decision 
variables.  

3 The Algorithm 

The algorithm presented here is divided into two parts: construction and improvement 
algorithms. Within the latter stage, four neighbourhood structures have been employed. 

                                                           
1 http://www.dcs.napier.ac.uk/~benp/ 
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3.1 Neighbourhood Structures 

The different neighbourhood structures and their explanation are outlined as follows:  

N1: Choose a single course/lecture at random and move to a feasible timeslot 
that can generate the lowest penalty cost. 

N2: Select two courses/lectures at random from the same room (the room is 
randomly selected) and swap timeslots. 

N3: Move the highest penalty course from a random 10% selection of the 
courses to a new feasible timeslot which can generate the lowest penalty 
cost. 

N4: Move the highest penalty course to a random feasible timeslot (both 
courses are in the same room). 

3.2 Constructive Heuristic 

The first part of our algorithm generates a feasible initial solution satisfying all the 
hard constraints. A saturation degree heuristic and largest degree heuristic are used to 
generate initial solutions for enrolment-based and curriculum-based course 
timetabling problems, respectively.  

3.2.1 Enrolment-Based Course Timetabling Problem 

Before applying the improvement algorithm a least saturation degree heuristic is used 
to generate initial solutions starting with an empty timetable [16]. The events with 
fewer rooms available and more likely difficult to be scheduled will be attempted to 
be scheduled first, without taking into consideration the violation of any soft 
constraints. This process is carried out in the first phase. If a feasible solution is found 
the algorithm terminates, otherwise phase 2 is executed. In the second phase, 
neighbourhood moves (N1 and/or N2) are applied with the goal of achieving 
feasibility. N1 is applied for a certain number of iterations (set to 500, from 
experimentation). If a feasible solution is met, then the algorithm stops. Otherwise the 
algorithm continues by applying a N2 neighbourhood structure for a certain number of 
iterations. Across all instances tested, solutions were made feasible before the 
improvement algorithm was applied.  

3.2.2 Curriculum-Based Course Timetabling Problem 

A feasible timetable is achieved by employing a largest degree heuristic, again 
starting with an empty timetable (Gaspero & Schaerf, 2003).  The degree of an event 
is a count of the number of other events which conflict, in the sense that students are 
enrolled in both events. This heuristic orders events in terms of those with the highest 
degree first [14]. The events with highest degree of conflict will be attempted first 
without taking into consideration the violation of any soft constraints, until the hard 
constraints are met. All events are scheduled by randomly selecting the timeslot and 
the room that satisfies the hard constraints. Some events cannot be scheduled to a 
specific room; in this case they will be inserted in any randomly selected room. If all 
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the hard constraints are met the feasible solution is found and the algorithm 
terminates. Otherwise, phase 2 is executed. In phase 2, the process is carried out in a 
similar manner to the process in phase 2 in subsection 3.2.1. However, in this 
experiment the solutions were made feasible before the improvement algorithm is 
applied (such as in subsection 3.2.1).   

3.3 Improvement Algorithm 

An improvement algorithm is only applied on feasible solutions obtained from the 
constructive heuristic for both problems. During the improvement stage a set of the 
neighbourhood structures as outlined in subsection 3.1 are applied. The hard 
constraints are never violated during the timetabling process.  

At the beginning of the search, four candidate solutions represented as Sol* are 
generated by applying a set of neighbourhood structures (N1, N2, N3, and N4) within a 
Great Deluge algorithm andanother two candidate solutions are generated by applying 
two neighbourhood structures (i.e. N1 and N2) within a Tabu Search algorithm. The 
pseudo code for the algorithm implemented in this paper is given in fig. 1.  

There are 3 steps involved in the improvement algorithm. In Step 1, the great 
deluge (see [11]) algorithm is employed followed by a Tabu Search (see [13]) in Step 
2. Step 3 deal with accepting best solution obtained from Step1 and Step2. 

 
 

 

 

 

 
 

Fig. 1. The pseudo code for the improvement algorithm 

Step 1: Great Deluge 

At the start, the current solution, SolGD and best solution, SolbestGD is set to be Sol 
(obtained from the constructive algorithm). The quality measure of the solution 
SolGD and SolbestGD is given by f(SolGD) and f(SolbestGD), respectively. Let K be 
the total number of neighbourhood structures to be used in the search (K is set to be 4, 
applied in the preliminary experiments outlined in subsection 4.1.1 and it is set to be 
2, applied in subsection 4.1.2). Note that, the number of neighbourhood structures 
employed in subsection 4.2 is due to the results obtained from our first experiment on 
enrolment based course timetabling problem in subsection 4.1. 

In a do-while loop, a set of neighbourhoods i where i∈ {1,…,K} is applied to 
SolGD to obtain TempSolGDi. The best solution among TempSolGDi is identified, 
called, SolGD*. The cost f(SolGD*) is compared to that with f(SolbestGD). If it is 
better, then the current and best solutions are updated. Otherwise f(SolGD*) will be 
compared against the boundary level. If the quality of SolGD* is less than or equal to 

 

Set the initial solution, Sol by employing a constructive heuristic; 
    Calculate initial cost function f(Sol); 
    Set best solution Solbest← Sol; 
do while (not termination criteria) 
     Step 1: Great Deluge  
     Step 2: Tabu Search  
     Step 3: Accepting Solution 

end do 
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the level, the current solution, SolGD will be updated as SolGD*. Otherwise, the level 
will be increased with a random generated number (we set between 1 and 3) in order 
to allow some flexibility in accepting a worse solution. The process is repeated until 
the termination criterion is met.  

Indeed, on the curriculum-based course timetabling problem (ITC2007 datasets), 
the time limit as in the competition is set as a termination criterion, thus we only 
employed two neighbourhood structures (i.e. N1 and N2) as generally the 
implementation of these neighbourhood structures is less time consuming. 

 

Step 2: Tabu Search 

A similar process as in Step 1 is applied, whereby a tabu search approach is employed 
on a different set of neighbourhood structures. In this experiment two neighbourhood 
structures are used to obtain TempSolTSi where i∈ {1,2}. The best solution among 
TempSolTSi is identified, called SolTS*. The f(SolTS*) is compared to the 
f(SolbestTS). If it is better, then the current and best solutions are updated. Our tabu 
search algorithm uses only a short term memory. We add any moves that generate 
SolTS* to the tabu list (if currently not in the tabu list) denoted as TL. These moves 
are not allowed to be part of any search process for a certain number of iterations (the 
tabu tenure). The tabu tenure is decreased after each of the iteration until it reaches 
zero. All tabu moves will change to non-tabu status when the tabu tenure is zero. In 
these experiments, we set the tabu tenure to be 10. The determination of these values 
was based on experimentation. The process is repeated until the termination criterion 
is met. In this step, the termination criterion is based on the number of iterations or 
when the optimal value (OptimalValue) is reached.  

Note that the OptimalValue is set to 0/50/500 for small/medium/large datasets for 
the enrolment-based course timetabling problem, and for the curriculum-based course 
timetabling problem the OptimalValue is set to 0 for all datasets (i.e. lower than the 
best known results so far). In this experiment, we used two neighbourhood structures 
(i.e N1 and N2), for enrolment-based course timetabling problems one neighbourhood 
structure (i.e N1) is employed. This is due to the fact that we are using the same time 
limit as in the ITC2007 competition. Step 3 involves accepting a solution to be used 
in the search process in the next iteration where the best solution from Step 1 (i.e. 
SolbestGD) and Step 2 (i.e. SolbestTS) is chosen (called Sol*) and compared with the 
best solution so far (called Solbest). If the quality of the Sol* is better than the quality 
of the Solbest, then the current solution (Sol) and best solution (Solbest.) will be updated 
with Sol* as shown in Fig. 2.  

 
    
 

 
 
 
 
 
 

Fig. 2. The pseudo code for Step 3 (in Fig. 1) 

 
    Choose the best between SolbestGD and SolbestTS, called Sol* 
    if (f(Sol*) < f(Solbest)) 

      Sol ← Sol*; 
Solbest← Sol* 

     end if 
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Note that the process is repeated and stops when the termination criterion is met. 
Note that the termination criteria for the enrolment-based and curriculum-based 
course timetabling problems are number of iterations and time limit, respectively.                       

4 Experimental Results 

The algorithm is coded using Matlab under Windows XP and performed on the Intel 
Core 2 CPU 1.86 GHz computer, tested on eleven enrolment-based benchmark 
datasets and on Track 3 (UD2 datasets) from curriculum-based course timetabling 
problems. 

4.1 First Experiment: Enrolment-Based Course Timetabling Problem 

In this experiment, we have evaluated the search potential of our algorithm with a 
relaxed stop condition. For this purpose, we ran our algorithm for 200000 iterations 
(which took approximately twelve hours) with a different set of moves as presented in 
our preliminary experiment. The best results out of 11 runs obtained are presented. 
Table 1 shows the comparison of the approach in this paper with other available 
approaches in the literature on all instances, i.e. [M1] genetic algorithm and local 
search by [3], [M2] hybrid harmony search algorithm by [4], [M3] nonlinear great 
deluge hyper heuristic by [19], [M4] Ant Colony system with Simulated Annealing by 
[21], [M5] Ant Colony system with Tabu Search by [21], [M6] extended great deluge 
by [16], [M7] nonlinear great deluge by [14], [M8] harmony search by [20], [M9] 
dual simulated annealing by [1] and [M10] electromagnetic-like mechanism with 
great deluge by [18]. Note that the best results are presented in bold. The best results 
out of 11 runs obtained are presented. It can be seen our approach has better results on 
medium1 and medium2 datasets. 

Table 1.   Best results and comparison with other algorithms under relaxed stop condition 

Dataset Our method M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 
 small1 0 0 0 0 0  0 0   3 0 0 0 
 small2 0 0 0 0 0  0 0   4 0 0 0 
 small3 0 0 0 0 0  0 0   6 0 0 0 
 small4 0 0 0 0 0  0 0   6 0 0 0 
 small5 0 0 0 0 0  0 0   0 0 0 0 
 medium1 78 175 99 88 117 150 80 140 168 93 96 
 medium2 92 197  73 88 121 179 105 130 160 98 96 
 medium3 135 216 130 112 158 183 139 189 176 149 135 
 medium4 75 149 105 84 124 140 88 112 144 103 79 
 medium5 68 190 53 103 134 152 88 141  71 98 87 
 Large 556 912 385 915 645 750 730    876 417 680 683 

Fig. 3 (a), (b) and (c) show the box plots of the cost when solving small, medium 
and large instances, respectively. The results for the large dataset are less dispersed 
compared to medium and small (worse dispersed case in these experiments). We 
believe that the neighbourhood structures (N1 and N2) applied to the large dataset are 
able to force the search algorithm to diversify its exploration of the solution space by 
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moving from one neighbourhood structure to another even though there may be fewer 
and more sparsely distributed solution points in the solutions space since too many 
courses are conflicting with each other.  

 
 

 

Fig. 3.  (a), (b) and (c). Box plots of the penalty costs for small, medium and large datasets 
respectively 

The comparisons between small and medium datasets in Fig. 3 (b) shows less 
dispersion of solution points compared to Fig. 3 (a). Again, applying the same 
neighbourhood structures (N2 and N3) for both instances most likely does not result in 
similar behaviour of the search algorithm. This is supported by Fig. 3 (a) where the 
dispersion of solution points for small datasets is not consistent from one to another. 
For example small2 in Fig. 3 (a) shows worse dispersion compared to small4. From 
these experiments, we believe that the size of the search space may not be dependent 
on the problem size due to the fact that the dispersion of solution points are 
significantly different from one to another, even though the problems are from the 
same group of datasets with the same parameter values. 

4.2 Second Experiment: Curriculum-Based Course Timetabling Problem 

Here only two neighbourhood structures (N1 and N2) are applied on the twenty eight 
datasets (comp01-comp02 and DDS1-DDS7). In the beginning of the Great Deluge 
procedure a new strategy is used to control the application of the two neighbourhood 
structures on SolGD to obtain TempSolGD. When Ni is selected at random the other 
neighbourhood is marked as ‘used’, keeping Ni as “unused” in an attempt to keep 
using Ni in subsequent iterations while it continues to provide an improved solution. 
Ni is applied continually until a certain number of non-improvements (worse 
solutions) are observed, currently set to 5. Ni is then marked as “used” and other  
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neighbourhoods then marked as “unused”, to allow a differing neighbourhood 
selection in the next iteration. The process is repeated until the termination criterion is 
met (in this case the time limit imposed by the ITC2007 competition rules). 

Table 2 shows the comparison between the best results obtained by our algorithm 
with the best known results obtained from other approaches available in the literature 
for each instance, i.e. A hybrid approach by [22], a dynamic tabu search algorithm by 
[9], Adaptive Tabu Search by [15], repair-based heuristic by [8], and local search 
approach based on threshold acceptance by [12]. We have also compared our results 
with the best uploaded results in Curriculum-Based Course Timetabling, web site2. 
Note that the best results are presented in bold. The best results obtained by our 
approach are competitive to the previously best known results and has obtained a 
better result on the DDS4 dataset. 

Table 2.  Best results and comparison with other algorithms 

 
Dataset 

Our 
Method 

Best 
Known 

Best uploaded 
to CBCTT 

[22] [9] [15] [8] [12] 

comp01 5 5 5 5 5 5 9 5 
comp02 39 43 24 43 75 34 103 108 
comp03 73 72 66 72 93 70 101 115 
comp04 36 35 35 35 45 38 55 67 
comp05 309 298 292 298 326 298 370 408 
comp06 43 41 28 41 62 47 112 94 
comp07 17 14 6 14 38 19 97 56 
comp08 40 39 37 39 50 43 72 75 
comp09 104 102 96 103 119 99 132 153 
comp10 12 9 4 9 27 16 74 66 
comp11 0 0 0 0 0 0 1 0 
comp12 334 331 310 331 358 320 393 430 
comp13 67 66 59 66 77 65 97 101 
comp14 54 53 51 53 59 52 87 88 
comp15 88 87 66 84 87 69 119 128 
comp16 52 47 22 34 47 38 84 81 
comp17 88 86 60 83 86 80 152 124 
comp18 84 71 65 83 71 67 110 116 
comp19 71 74 57 62 74 59 111 107 
comp20 34 54 4 27 54 35 144 88 
comp21 98 117 86 103 117 105 169 174 
DDS1 132 - 83 - 1024 - - - 
DDS2 0 - 0 - 0 - - - 
DDS3 0 - 0 - 0 - - - 
DDS4 24 - 30 - 233 - - - 
DDS5 0 - 0 - 0 - - - 
DDS6 7 - 0 - 11 - - - 
DDS7 0 - 0 - 0 - - - 

 
Fig. 4 shows the box plot of the penalty cost on some of the instances in the UD2 

problem considered in this experiment. The results from the figures show less 
dispersions of solution points. 

 

                                                           
2 http://tabu.diegm.uniud.it/ctt/ 
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Fig. 4.   Box plots of the penalty costs for comp01, comp04, comp11, DDS3, DDS4 and DDS5. 

5 Conclusions and Future Work 

This paper has focused on investigating the combination of great deluge and tabu 
search algorithms with a set of neighbourhood structures. A new strategy had been 
employed to control the application of a set of candidate neighbourhood structures. 
Preliminary comparisons indicate that this algorithm is competitive with other 
approaches in the literature, obtaining best results to those published to date on the 
original eleven enrolment-based course timetabling benchmark datasets, and several 
best results from the curriculum-based course timetabling benchmark data sets from 
the last ITC2007 competition. From analyzing and comparing the results obtained 
from UD2 datasets, it can be seen that a big number of soft constraints contributes to 
an increasing complexity of the problem. This can lead to increased difficulty in 
obtaining good solutions, although our approach is able to produce high quality 
solutions. Furthermore, from the results we can conclude that our approach is able to 
obtain some of best known results, whereby showing that this is a robust algorithm for 
a given different nature of the problems. The computational results and comparisons 
shown in this paper demonstrate the efficiency of our approach. In future, our 
approach would be applied to other similar problems, including Track 1 and Track 2 
problems as described in the 2nd International Timetabling Competition (ITC2007). 
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Abstract. Creating a document model for efficient keyword search is a
long studied problem in Information Retrieval. In this paper we explore
the application of Tolerance Rough Set Model for Documents (TRSM)
for this problem. We further provide an extension of TRSM with a weight
learning procedure (TRSM-WL) and compare performance of these two
algorithms in keyword search. We further provide a generalization of
TRSM-WL that imposes additional constraints on the underlying model
structure and compare it to a supervised variant of Explicit Semantic
Analysis.

1 Introduction

Current Information Retrieval (IR) systems share a standard interaction sce-
nario: a user formulates a query and then the system provides results based on
query-to-document relevance. Retrieval efficiency is dependent upon the number
of terms that overlap between the query and a document. The main issue in IR is
known as vocabulary problem, which is a common mismatch in choosing the same
terms by a user and by an indexer. One of the first evaluations of an IR system
[1] concludes that formulating a proper keyword for search query demands from
the user predicting existence of possible words in a document. Such prediction
can be challenging and eventually can lead to scalability issues for IR systems.
In addition, users may not agree with the choice of keywords while searching for
the same objects. Furnas et. al [2] reports that in spontaneous word choice for
objects in five domains, two people favored same term with less than 20 per-
cent frequency. Therefore, two main techniques were developed to overcome this
issue: (1) Query Expansion and (2) Document Expansion.

Query Expansion (QE) is on-line process of adding additional words to the
query that best describe the user’s intent in searching. Document Expansion
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(DE), on the other hand, is a process of document vocabulary augmentation
at indexing time, predicting possible queries for each document. QE is a long
studied problem in Information Retrieval (see exhaustive survey [3]), but the
approach of extending documents at indexing time do not get such attention.
Lack of transaction constraints (as in QE) should be considered as a promise in
more effective model design. On the other hand DE involves enlarging the size of
the index which can lead to problems with maintaining it. In this paper we will
also investigate trade-off between retrieval effectiveness and index size problems.

Many approaches have been studied for solving the vocabulary problem both
in QE and DE. Straightforward methods are based examination of word co-
occurrence statistics in the corpus [4] outputting possible extension words. Then
those words are enclosed into index or used in on-line query processing. Cluster-
based Information Retrieval assumes that belonging of two documents to the
same cluster carry some information about their correspondence therefore this
information can be used in search process. Variety of cluster-based search meth-
ods and clustering algorithms was introduced and tested [5,6]. Different category
of techniques exploits semantic information from external sources. Expanding
term by theirs synonyms after word sense disambiguation using WordNet On-
tology (along with other relation) [7] reports good performance boost. Although
we see major differences between all of the techniques the common feature of
term correspondence is exploited in the final extension. In this paper we present a
document extension method which may encapsulate different tolerance relations
between terms. The method is a variant of a Tolerance Rough Set Model for
Documents [8,9] (TRSM). We supplement TRSM by a weight learning method
in an unsupervised setting and apply the model to the problem of extending
search results. We also introduce a method for a supervised multilabel classifi-
cation problem and briefly compare it to an algorithm described in [10], which
is based on Explicit Semantic Analysis [11].

The outline is as follows: We begin this paper by reviewing the Vector Space
Model (a basic model widely used in Information Retrieval), and fundamentals of
Rough Set Theory based both on indiscernibility relation and based on tolerance
relation. Afterwards, we review TRSM model and introduce a weight learning
scheme which we validate in the context of document retrieval. We further discuss
an extension of the model and show its connection to a multilabel classifier based
on Explicit Semantic Analysis [11].

2 Basic Notions

Rough Set Theory, developed by Pawlak[12] is a model of approximation of sets.
An Information System I is a pair I = (U,A). U is called the Universe of objects
and is the domain whose subsets we wish to represent or approximate using
attributes, i.e. elements of A. Each attribute ai ∈ A is a function a : U → Va,
where Va is called the value set of attribute a.
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For a subset of attributes B ⊆ A we define a B-indiscernibility relation
IND(B) ⊆ U × U as follows:

(x, y) ∈ IND(B) ⇐⇒ ∀a∈Aa(x) = a(y) (1)

IND(B) is an equivalence relation and defines a partitioning of U into equiv-
alence classes which we denote by [x]B (x ∈ U). B-Lower and B-upper approxi-
mations of a concept X ⊆ U are defined as follows:

L(X) = {x ∈ U : [x]B ⊆ X} (2)

U(X) = {x ∈ U : [x]B ∩X �= ∅} (3)

2.1 Tolerance Approximation Spaces

Indiscernibility relation in standard Rough Set Model is an equivalence relation.
This requirement is known to be too strict in various applications. Skowron et al.
[13] introduced Tolerance Approximation Spaces (and Generalized Approxima-
tion Spaces), relaxing conditions on the underlying relation. In this framework,
indiscernibility of objects is defined by a tolerance relation.

An Approximation Space is defined as a tuple R = (U, I, ν, P ), where:

– U is a non-empty universe of objects,
– An uncertainty function I : U → P(U) is any function such that the following

conditions are satisfied:
• x ∈ I(x) for x ∈ U ,
• y ∈ I(x) iff x ∈ I(y).

– A vague inclusion function ν : P(U)× P(U) → [0, 1], such that ν(X, ·) is a
monotone set function for each X ∈ P (U).

– A structurality function P : I(U) → {0, 1}, where I(U) = {I(x) : x ∈ U}.
A vague membership function μ(I, ν) : U ×P(U) is defined as μ(I, ν)(x,X) =

ν(I(x), X) and lower and upper approximations of X ⊆ U are defined as:

LA(X) = {x ∈ U : P (I(x)) = 1 ∧ μ(I, ν)(x,X) = 1} (4)

UA(X) = {x ∈ U : P (I(x)) = 1 ∧ μ(I, ν)(x,X) > 1} (5)

We will further refer to I as to the tolerance relation and to I(u) as to the
tolerance class.

2.2 Tolerance Rough Set Model for Documents

An approximation space that has been applied to represent documents is Toler-
ance Rough Set Model introduced in [8,9].

Let D = {d1, . . . , dN} denote the set of documents and T = {t1, . . . , tM}
denote the set of index terms. Each document di may be thus represented as a
bag-of-words or (in a vector space model) as a vector 〈wi,1, . . . , wi,M 〉.

TRSM model is a tolerance approximation space R = (T, Iθ, ν, P ), defined as
follows:
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– Universe is the set of terms T ,
– Uncertainty function Iθ(ti) = {tj : fD(ti, tj) ≥ θ} ∪ {ti}, where fD(ti, tj) is

the number of documents in D containing both term ti and term tj ,

– Vague inclusion function ν(X,Y ) = |X∩Y |
|X| ,

– Structurality function: P (Iθ(ti)) = 1 for ti ∈ T .

It is worth stressing that the trivial choice of structurality function guarantees
that di ⊆ UR(di).

The tolerance class Iθ(tj) of a term tj in this model is the set of terms fre-
quently co-occurring with tj . For the sake of illustration let us call such terms
similar to tj . Lower and upper approximations of a set is defined for an arbitrary
subset of T and thus for any document di ∈ D. While lower approximations are
not used in applications of this model, the upper approximation of a document
di is the set of all such terms that are similar to any term tj ∈ d.

If we consider the upper approximation of a document di ∈ D for varying
values of parameter θ in TRSM, we notice that as θ gets larger, it imposes
further restriction on tolerance classes and thus shrinks the extension.

2.3 Extended Document Representation

In applications of TRSM one typically uses upper approximations of documents
as a means of enriching document representations. While Bag-of-Words docu-
ment representation can be extended directly using the model defined above, au-
thors of TRSM [8,9] have also introduced a scheme for assigning term-document
weights w∗

ij in Vector Space Model for terms tj from the upper approximation of
a document di. The extended weighting scheme is derived from standard TF-IDF
weights wij as follows:

w∗
ij =

⎧⎪⎪⎨⎪⎪⎩
(1 + log fdi(tj)) log N

fD(tj)
if tj ∈ di

0 if tj /∈ UR(di)

mintk∈di wik

log N
fD(tj )

1+log N
fD(tj )

otherwise

(6)

where fD(t) denotes the number of documents containing term t.
It is worth stressing that for a document dj and a pair of terms tk ∈ dj ,

tj /∈ dj , wij < wkj , i.e. weights of extension terms of a document never exceed
weights of terms that are in the original document.

The typical application of TRSM is document clustering [14,15,16,17,18],
though see also [19] for discussion of other problems.

3 TRSM with Weight Learning

The purpose of our research is to explore an alternative framework for weight
assignment in TRSM model. We define the underlying term-document structure
in the (extended) Vector Space Model using TRSM – in other words, we assume
that w∗

ij = 0 for tj /∈ UR(di). We will speak of the model structure, the set of
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permitted (i.e., nonzero) weights and the set of tolerance classes interchangeably.
We further propose an alternative method of determining wij for tj ∈ UR(di).

d1

d2

d3

t1

t2

t3

t4

t5

t6

(a) Bag-of-words document repre-
sentation of a simple corpus with
three documents and six terms.

t1

t2

t3

t4

t5

t6

t1

t2

t3

t4

t5

t6

(b) Structural part of TRSM
model for parameter θ = 2. Ar-
rows describe tolerance classes
of terms. .

Fig. 1. Bag-of-words document representation

The model that we propose aims to approximate original TF-IDF weights
by a conical combination of TF-IDF weights of related terms. The set of terms
related to ti is the tolerance class of ti in TRSM model (excluding ti itself). In
other words:

w∗
ij =

N∑
k=1

δ(i, k, j)βkjwik (7)

where

δ(i, k, j) =

{
1 for tk ∈ di ∧ tj ∈ Iθ(tk)
0 otherwise

(8)

We will further demand that βkj > 0 to stress the fact that tolerance classes
in TRSM aim to capture similarities rather than dissimilarities between terms.
We can thus rewrite equation 7 as follows:

w∗
ij =

N∑
k=1

δ(i, k, j)eαkjwik (9)

In what follows, we propose a framework for determining weights αkj . The
underlying idea is to train a set of linear neurons (with trivial transfer functions)
whose inputs are determined by TRSM. One can think of the problem as of
“document recovery” and wish to approximate hidden wij by w∗

ij , i.e. try to

assign weights w∗
ij so as to minimize error E =

∑N
i=1

∑M
j=1 L(wij , w

∗
ij) for a

convenient loss function L. For simplicity, we pick the square loss function. Since
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the choice of a weights αkj has no bearing on L(wij , w
∗
ij) for tj /∈ UR(di), we

can further restrict the summation to i = 1, . . . , N and j such that tj ∈ UR(di).
A natural additive update (proportional to negative gradient) is:

Δαkj ∝
N∑
i=1

(wij − w∗
ij)δ(i, k, j)eαkjwik (10)

A commonly used mode of training is on-line learning, where the algorithm
iterates the corpus document-by-document. In this approach, the corresponding
updates during processing of document i are: Δαkj ∝ (wij−w∗

ij)δ(i, k, j)eαkjwik

Please note that as soon as the model structure is determined, perceptron
weights are updated independently of each other. However, typically the model
itself (whose size is determined by the set of nonzero weights) can be stored
in computer memory, whereas the document corpus needs to be accessed from
a hard drive. Processing the corpus sequentially document-by-document and
updating all relevant weights is beneficial for technical purposes due to a smaller
(and sequential) number of reads from a hard disk. Thus, training all perceptrons
simultaneously is beneficial (strictly) for technical reasons.

Let us further call this model TRSM-WL (TRSM with weight learning). In
principle it is an unsupervised learning method. The learned model can be ap-
plied to new documents and thus is inferential in nature.

Algorithm 1. Weight update procedure in TRSM-WL.

Input: W = (wik)i,k (the document-term matrix), Tol : T → T (tolerance class
mapped to each term).

Output: α = (αkj)k,j .
1 for k, j such that tj ∈ Iθ(tk) do

/* The initializing distribution of αkj (implicitly - of

βkj = eαkj) is a modeling choice. */

2 αk,j = RandNorm(μ = 0, σ2 = 1)

3 for i in 1, . . . , |D| do
/* d̃: the set of terms in the extension of document d. */

4 d̃ = d ∪⋃
tk∈di

Iθ(tk);

/* Determine weights w∗
ij for tj ∈ d̃i. */

5 for j in 1, . . . , |d̃i| do
6 w∗

ij =
∑

k:tk∈di
eαkjwik

7 for j in 1, . . . , |d̃i| do
8 for k in 1, . . . , |di| do

/* Apply updates to weights α. η(i) is a damping factor

which determines the proportionality ratio of

consequent updates. */

9 αkj = αkj + η(i)(wij − w∗
ij)e

αkjwik
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Algorithm 1. shows pseudo-code for the weight update procedure. For sim-
plicity, we assume that we iterate only once over each document (document di is
processed in step i). In practice (and in experiments that follow) we iterated over
the document corpus several times. The damping factor η(i) used in experiments
was picked inversely proportional i.

4 Experimental Results

We conducted experiments on the ApteMod version of Reuters-21578 corpus.
This corpus consists of 10,788 documents from Reuters financial service. Each
document is annotated by one or more categories. The distribution of categories
is skewed with 36.7% of the documents in the most common category and only
0.0185% (2 documents) in each of the five least common categories.

We applied stemming and stop word removal in order to prepare a bag-of
word representation of documents. Test queries were chosen among all words in
corpus using Mutual Information (MI) coefficient:

I(C, T ) =
∑

c∈{0,1}

∑
t∈{0,1}

p(C = c, T = t) log2

(
p (C = c, T = t)

p (C = c) p (T = t)

)
, (11)

where p(c = 0) represents the probability that randomly selected document is a
member of particular category and p(c = 1) represents probability that it isn’t.
Similarly, p(t = 1) represents the probability that a randomly selected document
contains a given term, and p(T = 0) represents the probability that it doesn’t.
Next for each category 5 terms with highest MI was taken and used as query.

4.1 Model Convergence

Fig. 2. Model convergence

Fig. 2 shows the squared loss for each document in the training set when the
algorithm is executed. The y axis on the plot shows the contribution of each
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document i to error E, i.e. Ei =
∑M

j=1(wij − w∗
ij)

2. Each block corresponds to
a single iteration over the entire document repository, and thus the error corre-
sponding to each document appears several times, once in each alternating block.
The graph shows that the first two iterations provide the biggest contribution
to overall model fit.

4.2 Searching Using Extended Document Representation

In order to measure effectiveness of search we prepared Information Retrieval
systems based on TF-IDF, TRSM and our TRSM-WL weighting schemes (the
methodology is described in section 2). We considered two test cases by dividing
the query set into two subsets Q1 and Q2 taking into account size of expected
result list, eg. number of documents in category. First one describes small cate-
gories (n < 100) and second large ones (n ≥ 100).

Query-Set TF-IDF TRSM / TRSM-WL

All 0.457 ± 0.317 0.764 ± 0.335
Q1 0.329 ± 0.252 0.733 ± 0.364
Q2 0.325 ± 0.200 0.993 ± 0.006

Fig. 3. Recall of document search based on TF-IDF and TRSM Extended Document
Representations.

As we see on Fig. 3 TRSM and TRSM-WL resulted in significant better re-
call comparing to standard TF-IDF. Both models with extended representation
outputs the same recall score since TRSM-WL reassigns weight for the same
co-located terms. It’s worth stressing out that extended representation for low φ
parameters tends to be very large in most cases. Moreover size of the extended
representation correlates positively with corpora size with makes the model un-
usable for larger documents collection. Therefore our weighting schemata for
TRSM discards some terms (by assigning low weights) that are insignificant for
retrieval performance.
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Fig. 4. Mean Average Precision at k cut-off rank. TRSM and TRSM-WL with param-
eter φ = 10
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In order to examine top-k queries we present Mean Average Precision on
Fig. 4. TF-IDF is treated as a baseline document r model in search task. It is
noticeable that in two test cases classic TRSM is worse that baseline method.
Our weighting schemata for TRSM makes our model batter or on the same level
that the baseline. In second test run (Q2) after significant drop after k = 30
represents the “vocabulary problem”. Simply there are no terms in documents
to match with the query and our model tries to match additional ones on the
same level of precision baseline method.

5 Concluding Remarks and Future Work

While this section is not covered in experiments (experimental section focuses
on document extension for Information Retrieval), we nevertheless stress that
the outlined method is much more universal. In this section we provide a gen-
eralization of TRSM-WL and compare it with a variant of Explicit Semantic
Analysis used for multilabel classification.

Explicit Semantic Analysis (ESA) introduced in [11] is a model of semantic
relatedness which represents documents as a weighted vector of ontology-based
concepts. The ontology applied in the original paper was Wikipedia. A weight
update procedure which preserves the underlying model structure was introduced
in [10]. For convenience, let us call this algorithm ESA-WL, by analogy to TRSM-
WL introduced earlier.

In this model the structure is determined by the content of ontology: a term
tj is considered relevant to concept ci ∈ C iff tj appears in the accompanying de-
scription of ci. The input for the weight updating algorithm is a set of documents
that share the same dictionary as the set of concept descriptions. Furthermore,
these documents are labeled using concepts from C.

In experiments described in [10], the ontology used was MeSH dictionary
[20], while inputs used for weight updating algorithm were documents from
PubMed Central Open Access Subset[21] along with their document-concept as-
signments. For convenience (we introduce a slightly different notation) we may
assume that documents are represented as vectors in Vector Space Model using
an extended set of terms T ′ = T ∪̇C. Weights corresponding to terms in T are
TF-IDF weights, whereas weights corresponding to concepts are binary.

In this section we introduce a generalization of the model we have defined
earlier in our paper, which encompasses ESA-WL with a slightly modified weight
update procedure.

In this model only term-concept relations and weights are relevant, whereas
TRSM (along with weight updating) introduced so far also models term-term
and concept-concept relations and weights. Structurality function P in tolerance
approximation spaces was designed to be the mechanism for filtering tolerance
classes which are actual building blocks of lower and upper approximations.
Therefore, for the purpose of this particular model, we propose a slightly different
definition of a tolerance approximation space. Instead of structurality function
P as in the original definition we propose to introduce:
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(a) Bag-of-words document rep-
resentation of our corpus. Docu-
ments are now additionally tagged
with concepts c1 and c2.
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(b) Structural part of ESA model
(solid lines) coincides with term-
concept edges in the approxima-
tion space of TRSM model with
parameter θ = 1.

Fig. 5. For a fixed parameter θ, bag-of-words document representation on Figure (a)
determines the structural part of ESA model on Figure (b).

P ∗ : U → P(U) such that ∀u∈UP ∗(u) ⊆ Iθ(u) (12)

Rather than a binary indicator whether a tolerance class can be used as a build-
ing block for approximations, now structurality function enables us to filter
model structure in arbitrary manner. In this approach, the tolerance relation
itself is used for modeling domain knowledge, whereas structurality function
imposes constraints on the resulting model. Such formulation easily leads to
additional extensions and potential applications.

Traditionally in TRSM we write T (for terms) rather than U to denote the
Universe. Since our focus now is on ESA-WL, the Universe now consists of the
extended set of terms T ′ = T ∪̇C. The index θ in Iθ is often omitted when the
approximation space is not explicitly parametrized, i.e. when one analyzes a
single model rather than a model family. Thus, our definition of structurality
function P ∗ can be rewritten as follows:

P ∗ : T ′ → P(T ′) is such that ∀t′∈TP
∗(t′) ⊆ I(t′) (13)

We now aim to define structurality function P ∗ which is appropriate to the
model at hand. In order to define the same structure as ESA we simply pick
θ = 1 and define:

P ∗(t′) =

{
I1(t′) ∩C if t′ ∈ T
∅ if t′ ∈ C

(14)

The definition of δ(i, k, j) also requires a minor modification:

δ(i, k, j) =

{
1 for tk ∈ di ∧ tj ∈ P ∗(tk)
0 otherwise

(15)
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Our weight update procedure provides an alternative to the algorithm described
in [10]. While TRSM-WL is in essence an unsupervised learning method, by
dividing the set of terms T ′ = T ∪̇C into conditions T and decisions C, and
by imposing constraints (by our choice of P ∗), we have thus transformed it
into a supervised learning method (a multilabel classifier). In this example, the
structural part of TRSM-WL and ESA-WL[10] models is essentially the same,
with slightly different weight update procedures.

Below we present future plans concerning the model discussed in this paper:

– In this paper we have assumed that the tolerance relation is defined simply by
co-occurrences. Furthermore, we assumed that it is known beforehand (only
weight updates were determined in an online manner). The model structure
can also be incrementally refined (approximated) online while following user
queries.

– Other definitions of tolerance relations (uncertainty functions) may be ap-
plied to define the underlying structure, e.g. using term similarity induced
by WordNet ontology[22] or similar.

– One could add a regularizing factor to guarantee uniqueness of the global
optimum. While uniqueness is desirable, for simplicity we have omitted reg-
ularization in the current formulation.

– Model analysis: extended and un-extended document representations.
Let W be the document-matrix of the text corpus and W ∗ be the matrix of
extended TF-IDF weights (i.e., inferred by the algorithm). We plan evaluate
the effect of α in a model defined as

W̃ = αW + (1− α)W ∗

for α ∈ [0, 1].
– Similarly, we plan to evaluate the effect of parameter θ on the size of the

model
∑

j:tj∈T |Iθ(tj)|, on the density of W ∗ and on information content

(inferential value) of the model.
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Abstract. This paper proposes a novel ensemble regression model to predict 
time series data of water quality. The proposed model consists of multiple re-
gressors and a classifier. The model transforms the original time series data into 
subsequences by sliding window and divides it into several parts according to 
the fitness of regressor so that each regressor has advantages in a specific part. 
The classifier decides which part the new data should belong to so that the 
model could divide the whole prediction problem into small parts and conquer 
it after computing on only one part. The ensemble regression model, with a 
combination of Support Vector Machine, RBF Neural Network and Grey Mod-
el, is tested using 450-week observations of CODMn data provided by Ministry 
of Environmental Protection of the People’s Republic of China during 2004 and 
2012. The results show that the model could approximately convert the problem 
of prediction into a problem of classification and provide better accuracy over 
each single model it has combined. 

Keywords: Water quality prediction, ensemble regression, divide-and-conquer 
method, time series data mining. 

1 Introduction 

Water quality prediction plays an important role in water resource management. Accu-
rate predictions could provide supports to early warning of water pollution and save 
time for decision-making. So far, two kinds of approaches have been proposed for water 
quality prediction. One kind is the models based on the mechanism of movement, phys-
ical, chemical and other factors in the water and has been widely employed in different 
basins, e.g. QUASAR [1], WASP [2]. But the mechanistic models usually need com-
plete observed data and mechanism knowledge, of which are difficult to get. Another 
kind is the models based on statistics and artificial intelligence. The rapid development 
of artificial intelligence provides us with more approaches for regression and better 
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accuracy under varies situations. The Grey Model (GM) [3-5], Artificial Neural Net-
work (ANN) [6-8] and Support Vector Machine (SVM) [9-10] have been widely used 
for prediction and forecasting in water resources and environmental engineering. 

Apart from the ones with single model, approaches with multiple models are ex-
plored. Due to the chaotic nature of environment, single model may counter difficul-
ties when making precise predictions, while an ensemble model could combine and 
enhance multiple predictors and make predictions based on different approaches. 
Recently multi-model approach is a popular research topic in solving water quality 
prediction problem [11-13].  

Usually, as the work above, ensemble models need to train and test for every com-
ponent, of which is time consuming. And the key factors are the differences between 
sub-models and assignment the weights of them, for they are trained to solve the same 
problem. In the same time, the divide-and-conquer method could divide the whole 
problem into minor problems and save time by training different sub-models for dif-
ferent tasks. The key factor of divide-and-conquer method is the division algorithm 
for the original problem. 

As for the predictions in complicated environment, the number of tasks being di-
vided may vary and is difficult to determine. So a self-adapted division algorithm is 
needed. The parallel neural network architecture based on NARA model and sieving 
method (PNN) could make division and automatically determine the number of tasks 
according to the feature of data [14]. Based on the fitting of each neural network, 
PNN divides the classification problem into small spaces and behaves well on the 
“Two-Spiral” problem, confirming that the division algorithm based on fitness of 
components could be an effective way. 

In this paper, we propose an ensemble regression model based on the division algo-
rithm of PNN. In section 2.1 we will introduce the division algorithm of PNN, and in 
section 2.2 we will explain the details of our model. In section 2, the prediction using 
water quality data will be employed to test our model and the results will be analyzed. 
And in the last section we will draw the conclusion. 

2 Materials and Methods 

2.1 The Parallel Neural Network Architecture Based on NARA Model and 
Sieving Method 

PNN is composed of the control network CN, recognize network ( 1,2, , )iRN i p= …  

and logic switch iLS .  

The function of control network is the rough division of problem space. The con-
trol network outputs the subspace iQ  that the input vector X should belongs to and 

close the respect logic switch iLS so that only the output of recognize network iRN  

would be chosen and the outputs of other recognize networks ( )jRN j i≠ would be 

ignored. The recognize network iRN  could correctly deal the problem in subspace iQ

while for the problems in other subspace, the correctness of iRN  could not be  
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guaranteed. The function of logic switch iLS  is to make sure the result of iRN  would 

be the effective output of the system ( 1iLS = , the switch is closed) or be ignored  

( 0iLS = , the switch is open). 

2.2 The Divide-and-Conquer Method Based Ensemble Regression Model 
(DM-ERM) 

Based on the divide-and-conquer method, DM-ERM improves the division algorithm 
of PNN so that it would have the capacity of dealing problem of regression instead of 
classification, and introduces the variable threshold to enhance the convergence even 
in the worst situations. The process of DM-ERM consists of three parts: data prepro-
cessing, model training and output. After the details are expressed, we will analyze 
the feature of DM-ERM. 

Data Preprocess. We use the sliding window algorithm to extract subsequences 
from the original data. After removing the unavailable values, we place a fixed-size 
window in the start of the original time series data T . The data inside the window 
would be picked up as a whole to form a subsequence 1C . And then the window slides 

one data forward, with the data inside it forming a new subsequence 2C . The process 

is made repeatedly till the window reaches the end of the original data. In the case the 
length of original data is m  and the length of sliding window is w , the quantity of 
subsequences is 1m w− + . For the x steps prediction, each subsequence is split  
into two vectors ( , )i iX Y , with the first w x− data of iC compose the input vector  

iX  and the last x data compose the output vector iY . The set 

{ }( , ) | 1,2, , - 1i iS X Y i m w= = … +
 

would be the training set of DM-ERM. 

Model Training. Based on the division algorithm of PNN, DM-ERM has the simi-
lar structure of it. DM-ERM is made up of the regression layer and the control layer. 
The regression layer consists of one or more regressors iRL  while the control layer 

consists of one classifier CL  . 
Each time a regressor is trained and added into regression layer. The first regressor

1RL  would be trained by the initial training set S. For the next regressor iRL , the 

training set is determined by the fitting result of 1iRL −  and the value of variable thre-

shold α. In the training process, DM-ERM needs an extra set RLC . 

Initially, the training set 1S  is equal to S , α is the initial value assigned by user 

(range from 0 to 1), and the set RLC is empty. 

For the training set iS  , the fitting result of iRL  is stored in set iP : 

 { }ˆ( , ) |i j j j iP X Y X S= ∈  (1) 

Where ˆ
jY  is the output of  iRL  corresponding to the input jX . 

And then we measure the fitting effect of each output vector ˆ jY  by mean relative 
error (MRE): 
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Where j iY S∈  and | |ˆ
j jYn Y= = . After the MRE is calculated, we get the recog-

nizing set iRCG : 

 ( ){ }, |i j j jRCG X Y MRE α= <  (3) 

If jRCG ≠ ∅ , then we could update the set RLC  and training set 1iS + : 

 1i i iS S RCG+ = −  (4)  

 ( ){ }, |RL RL i i iC C X j X RCG= ∈∪  (5) 

Else, the value of a is decreased and RCG  is re-calculated till jRCG ≠ ∅ . 

After RLC  and 1iS +  have been updated, the new regressor is added as above till

1iS + = ∅ . 

At last, RLC is used to train the classifier CL . 

Output. If the regression layer has n  regressors, the final output f  would be: 

 
1

n

i i
i

f w f
=

=  (6) 

Where iw  is the weight of iRL and if  is its prediction value. 

The weight could be calculated as follows: 
 

 
0, ( )

1, ( )i

i j
w

i j

≠=  =
 (7) 

Where j  is the classification result of CL on the testing data. Thus, after the clas-

sification of CL , only the regression results of jRL  needs to be computed. 

Model Analyze. After the variable threshold α is introduced, the convergence is 
improved. In the division algorithm in PNN, when a network could not recognize any 
data, it would be trained repeatedly until some data are recognized. When in the worst 
situation that the data are too hard to recognize, α in DM-ERM would gradually 
decrease to zero and the model would converge in finite steps, while the training time 
of network in PNN is uncertain. 

The initial value ofα would affect the performance of DM-ERM. If the initial val-
ue of α is too big, DM-ERM would contain too many regressors whose training data 
would be in small size, making the final result unstable. If α  is too small, the first 
regressor would overwhelm other regressors, resulting that the performance of DM-
ERM would be mainly based on the first regressor and have little improvement com-
pared with it. 

In the situation that DM-ERM combines different submodels, the order of training 
would also affect DM-ERM's performance. The desampling process in DM-ERM 
would bring the whole training set to the first regressor, with the regressors after it 
would be trained by less data so that different submodels would deal with problems in 
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different data size. Usually, the first regressor would influence the result most, for it is 
the only one who has learned the whole problem. 

The process of desampling also grants the ability of converting the regression prob-
lem into classification problem to DM-ERM. After the training of DM-ERM, we 
could know the division of problems, but we are not certain about the numerical rela-
tionship between different problems. So, as for DM-ERM, a classifier would behave 
better than linear weights assigned on the output of submodels. 

3 Experiments and Discussions 

3.1 Model Establishing of DM-ERM 

Data Preprocess  
The Three Gorge Reservoir is the biggest inundated area in the world, with the water 
level changing from 145m to 175m. The increasing of water level brings a bigger 
body of water, a lower flow velocity, a weaker self-purification capacity and a more 
complicated hydrological variation. Thus, the accurate prediction of water quality is 
of vital important. The Ministry of Environmental Protection of the People’s Republic 
of China has provided the water quality time series data in Panzhihua1 which is si-
tuated at the upper reaches of the Three Gorge Reservoir. Ranging from the first week 
in 2004 to the39th week in 2012, the data set contains 450-week observations on the 
four main water quality index (pH,  DO, CODMn, NH3-N). In the dataset, the water 
quality of Panzhihua has reached level 3 or higher for 26 times, with 22 times are 
caused by CODMn. So we choose CODMn as the aim of prediction. 

In the 450 observations, two are unavailable due to the cut-out of the basin and re-
moved. And then we employ the sliding window with a length of six to convert the 
original streaming time series data into 443 short time series subsequences. Each sub-
sequence consists of six data, of which the first five history data regarded as the input, 
while the last regarded as the output of one-step prediction. Considering that leaving 
out one subsequence does not remove all the associated information due to the corre-
lations with the subsequences after it, we choose to divide the subsequences according 
to their order in time series instead of cross-validation. The first 300 subsequences are 
chosen as the training set, while the rest as the testing set.  

Model Training 
DM-ERM could be composed of any regression models. We choose Genetic Algo-
rithm optimized SVM (GA-SVM) [15], RBF Neural Network (RBF-NN) [16] and 
GM(1,1) as optional components. As is mentioned in section 2.2, when uniting hete-
rogeneous models, the order of training in each model may affect the result of DM-
ERM. Considering that GA-SVM has the best result in the three models, RBF-NN 
needs a relative huge dataset for training and GM(1,1) behaves well in small dataset, 
we choose to train GA-SVM first, RBF-NN second and GM(1,1) last. We choose  
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k-Nearest Neighbor algorithm (kNN) [17] as the classifier. Along with 0.9 as the ini-
tial value of a , a DM-ERM with heterogeneous models is built and tested.  

Evaluation Criteria of Model Performance 
We choose mean relative error (MRE), quadratic loss function (QLF), Pearson prod-
uct-moment correlation coefficient (R) and mean square error (MSE) as the evalua-
tion measures. 

3.2 Results and Analyzes 

After training, DM-ERM is made up of four submodels, that is, a GA-SVM, two 
RBF-NNs and a GM(1,1). The details of submodels in the process of training are 
shown in Table 1. Meanwhile, we choose the best predictions of the four submodels 
for each observation in testing set to be displayed in Fig.1, for they could represent 
the limit of DM-ERM’s accuracy.  

For further contrast, the bagging regression[18] of GA-SVM and bagging regres-
sion of RBF-NN are made under the same training set and testing set.  Each bagging 
contains 20 homogeneous individuals and the results of individuals’ prediction are 
averaged as the result of bagging. The results of all models mentioned above are 
compared in Table 2. The best value of each criteria is made bold in the table. 

Table 1. The details of submodels in DM-ERM 

Submodel 
Training 
order 

Number of training 
data 

Number of recognized 
data 

GA-SVM 1 300 198 
RBF-NN(1) 2 102 45 
RBF-NN(2) 3 57 34 

GM(1,1) 4 23 23 

 

Fig. 1. The accuracy limit of DM-ERM 
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Table 2. Performance of these algorithms 

Criteria MRE QLF R MSE 

DM-ERM 0.2447 0.1019 0.8955 0.1472 
GA-SVM 0.2659 0.1241 0.8794 0.1622 
RBF-NN 0.2938 0.1797 0.88 0.1632 
GM(1,1) 0.3156 0.1587 0.8525 0.2761 

Bagging GA-SVM 0.2870 0.1494 0.8477 0.2071 
Bagging RBF-NN 0.3216 0.1663 0.8856 0.1566 

 
As shown in Fig.1, the combination of best predictions of submodels in DM-ERM 

have little loss compared with the observed data (with its MSE is 0.0441 and R is 
0.9712), indicating that DM-ERM has the ability of converting the problem of regres-
sion into the problem of classification approximately. According to Table 2, the predic-
tion of DM-ERM is superior to the one of every other model in all evaluation criteria. 

4 Conclusion 

The divide-and-conquer method could solve the problem of ensemble regression in 
time consuming and weights assigning. The key of divide-and-conquer method is the 
division algorithm. We improved the division algorithm in PNN to enhance its con-
vergence and ability of solving regression problems, and proposed the divide-and-
conquer method based ensemble regression model (DM-ERM) based on it. The expe-
riment shows that: (1) DM-ERM could combine same or different models and transfer 
the problem of regression into the problem of classification. (2) The prediction made 
by DM-ERM is superior to the one made by its component. 
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Abstract. A self-learning Audio Player was built to learn a users habits
by analyzing operations the user does when listening to music. The self-
learning component is intended to provide a better music experience for
the user by generating a special playlist based on the prediction of a users
favorite songs. The rough set core characteristics are used throughout the
learning process to capture the dynamics of changing user interactions
with the audio player. The engine is evaluated by simulation data. The
simulation process ensures the data contain specific predetermined pat-
terns. Evaluation results show the predictive power and stability of the
hybrid engine for learning a users habits and the increased intelligence
achieved by combining rough sets and NN when compared with using
NN by itself.

Keywords: Artificial Neural Network, Rough Set, self-learning,
hybridization.

1 Introduction

An audio player is popular software in every day life. Most people are using it
to enjoy music when they are jogging, reading, resting and so on. There are a
lot of different types of audio players, for example, Windows Media Player and
iTunes. Most of them have just a basic function, like playing songs or shuffling
song lists. The objective of this reasearch is to develop a RS and NN hybrid
system that learns users preferences in a music player.

1.1 Background

When we will use the short form APP, we are referring specifically to a digital
iPhone application though apps are used for all sorts of platforms other than
digital iPhone applications, and we will use iOS to mean iPhone operating sys-
tem.The Apple App store is a digital application distribution platform for iOS,
developed and maintained by Apple Inc. People can develop their own applica-
tions, and publish them in the APP store. As of February 10, 2012, there are
more than 700,000 third-party apps officially available on the APP store. As
in May 15, 2013, downloads from the APP store reached 50 billion. Compared

P. Lingras et al. (Eds.): RSKT 2013, LNAI 8171, pp. 405–412, 2013.
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with the other digital platforms, the iOS APP store is the most popular digital
application store.

iTunes is a product developed by Apple Company to play music. iTunes has
a inventive function called Genius. This function can recommend playlists (a
list of songs), provide a mixture of songs that go great together chosen from
different libraries, and suggest songs that the user may like. The mechanism by
which iTunes Genius works is proprietary to Apple. Researchers are studying
Genius,trying out Genius on a test collection of music, and analyzing how it
may be working. Their conclusion[1] is, first of all that Genius performs well
at detecting acoustically similar songs, and secondly that its recommendation is
derived from a purely content-based system. By content-based system, they mean
that the songs are compared by descriptors developed by musicologists to judge
whether two songs sounds similar. Those researchers contrast the content-based
approaches with the meta- data approaches by which they mean the information
about music such as artist, album and genre.

iTunes records the detailed information about songs the user has played in-
cluding how many times the song has been played. It seems as though iTunes
Genius[1] [2] recommends the playlist by analyzing such detailed information
that reflect the habits of users, like which genre of music the user usually listens
to, which artist is the users favorite and which album the user tends to play. It
is a very interesting area in AI to build software that can learn user habits and
try to make a better solution for the user.

1.2 Objectives and Novelty

The main objective of this project is to analyze music with respect to the users
operation on it such as how many times the song has been skipped and how many
times the song has been picked. The first novelty of our approach is to develop a
rough set and neural network hybrid system that learns users preferences in the
music player. While others have used previously implemented RS and NN engines
as third-part software, we implement the RS and NN engine by developing our
own software. That is, we do the hybridization at the code level. The expected
advantage is avoidance of the manual step between the Rough Set engine and
the NN, that was required on the previous approaches[3][4]. We use rough sets
core characteristics to guide NNs learning process in code.

In previous work, RS core characteristics were used to initialize the weight
of inputs to the NN [4]. We tried this approach and found that it does not of-
fer much advantage in improving the learning speed of the NN. However, in our
research, we are using the important attributes to guide weight training through-
out the training process not just at initialization to make sure the insignificant
attributes will not have any influence on the learning process. The novelty lies in
development of dynamic weight training because an attribute may become sig-
nificant as people use this system while earlier it was not significant. Conversely,
a significant attribute may no longer be significant.
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2 Construction of Multilayer Neural Network

As its name suggests, a multilayer neural network consists of multiple layers of
neurons. Normally, there is an input layer, hidden layers and an output layer.
The neurons in the hidden layer process inputs and give the output to every
neuron in the output layer.

There are many different learning algorithms for a multilayer neural network.
The most popular one is back-propagation [5][6], in which one of the important
steps is weight training.This step is to train the weight of each neuron and do
the weight correction. When we are calculating the weight correction, there is
a concept named learning rate. Learning rate a variable that defines the degree
of weight correction.[7]. The learning rates function is to adjust the weight to
a certain precision. If the learning rate is too large, the training of weights will
not be successful. More successful weight training was obtained with a smaller
learning rate.

The configuration of our NN is that there are 6 neurons in the hidden layer,
1 neuron in the output layer, and the learning rate is 0.1. The input neurons
are the attributes from user’s operations, for example, how many times the song
has been skipped and how many times the song has been picked. The result of
output neuron is the levels of song. The song level is a measurement for deciding
how much the user likes this song. For example, level 5 means this song is the
users favorite.

According to Zhang [11], one hidden layer neural network is sufficient to deal
with any complex system. The more neurons in the hidden layer, the more precise
the NN will be. But, at the same time, more neurons will cost more computer
resources. Referring to [3], they found out that 5 neurons in the hidden layer
gave better results in their problem. Because our NN needs to process more input
attributes than in [3], we increased the number of neurons in the hidden layer.
We make the NN good enough to solve the problem by increasing the hidden
layer neurons, but also does not cost too much computer resource.

3 Rough Sets

Rough Set Theory (RST) [8] provides an idea to deal with imprecision in data.
In order to understand RST, we need to know about the following concepts [9].

Information system framework: Adopting common notation in the field, we
assume U to consist of objects in the universe, and A to consist of features of
those objects. Then, I = (U,A) is an information system. For every α ∈ A, there
are a : U ⇒ Va. The Va is the set of values that attribute a may assume.

Equivalence relation: For every P ⊂ A, there is an equivalence relation
IND(P ). It is called the P-indiscernibility relation, defined as follows:

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)} (1)

Reduct and Core: For any attribute a ∈ A, a is dispensable in the set A if
IND(A) = IND(A − a). If we eliminate all dispensable attributes from A, we
get P as the reduct set of A, denoted by RED(A) (using notation in [4]).
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RED(A) = {R : R ⊂ A, IND(R) = IND(A)} (2)

The intersection of all the reducts of A is called the core. [4]

CORE(A) = ∩RED(A) (3)

All attributes in the core are indispensable for approximating X. X denotes
an object set to be approximated where X ⊆ U . They cannot be removed from
A without changing the original classification.

4 Hybridization

The way to hybridize NN and RS is that we use the ability of Rough Set to core
the conditional attributes and find out the significant ones. Then, we use the
core to help NN training. The whole process is illustrated as Figure. 1.

Fig. 1. The process by which the hybrid engine runs

Step 1: We discretize the decision table by using equal frequency binning
discretization method.[10]

Step 2: We put the data into RS engine. Firstly, we core the conditional
attributes. Secondly, we input the coring to NN engine to help initialize the
weights of NN engine. By using the Rough Set Engine, we core the decision
table and give a set from RS engine to NN engine. The set will be like ca[6] =
{0, 1, 1, 1, 0, 1}.The set of zeros and ones mean there a 6 conditional attributes.
Besides the first and the fifth elements in the list both of which is 0, the attributes
are all significant attributes indicated by 1 in the set. We initialized the weight
as 0 when the attribute is insignificant.
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Step 3: NN engine uses the data from discretization and the input from RS
engine to train itself. The result from RS engine will help NN to initialize weights
and also guide the training process. In the training process, we will assign the
learning rate of insignificant attributes to be 0. It means that we will not do
any weight corrections for insignificant attributes. So, from the beginning of the
training process to the end, the insignificant attributes will not influence the
whole system.

5 Evaluation Result and Discussions

By correctness of NN, we mean the NN will make a good prediction after training.
A good prediction is defined as small error between desired prediction and actual
prediction. Two methods will be described for assessing quality of the NN hybrid
Engine. The first method was intended to show the precision of prediction by
using trained NN with the help of RST. In fact, the precision of prediction did
not improve with addition with RST. The second method was to show that the
training process is more stable when using the hybrid engine than when using
only the NN engine. Stablility means that the number of iterations used to train
is about the same for every training run.

Table 1. Evaluation of hybrid NN for different simulation sizes

Serial
number

Times of
Simulation Process

The absolute error value of prediction

No error 1 2 3 4

1 10 26(52%) 19(38%) 5(10%) 0 0

2 20 36(72%) 12(24%) 2(4%) 0 0

3 30 27(54%) 23(46%) 0 0 0

4 40 44(88%) 5(10%) 1(2%) 0 0

5 50 39(78%) 11(22%) 0 0 0

6 60 42(84%) 8(16%) 0 0 0

7 70 46(92%) 4(8%) 0 0 0

8 80 45(90%) 5(10%) 0 0 0

9 90 42(84%) 8(16%) 0 0 0

10 100 46(92%) 4(8%) 0 0 0

Method 1: Check the accuracy of hybird NNs prediction by using different
numbers of shuffle playlists used in the simulation

Step 1: The system generates data from 100 playlists by simulation.
Step 2: By using the simulated data, we train the NN and record after train-

ing, the weights and threshold values into the database. Every neurons has it
own weights for each input and one theshold value. For example, if the neuron
has 11 inputs, there will be 11 weights and 1 threshold value.

Step 3: The system removes the older simulated data, and repeats the sim-
ulation process with difference number of iteration in the simulation process.



410 H. Zuo and J. Johnson

Step 4: The trained NN is used to predict the level of songs by using the new
data from step 3.

The absolute error between predicted value and desired value are analyzed in
Table 1. This table is based on 50 songs. The numbers shown in third to seventh
columns is the number of songs out of 50 and the percentage. For example,
in first row and third column, the number is 26, so that is 52% of the songs.
The absolute error value of prediction = |Predicted value−Desired value|.

From Table 1, we can see that the NN engine predicts with fewer errors, with
increasing number of iterations of the simulation process. For example, in row
7, there are 46 songs out of 50 with no error when we have simulation times of
70. When the sample data are small, the accuracy of NNs prediction is variable
as shown in rows 1, 2 and 3. When the sample size is small, the pattern is not
clear. In comtrast, considering rows 5 to 10 with larger sample size, the pattern
in the data is more clear.

Referring to Table 1 again, columns 4, 5, 6 and 7 indicate how many errors
occurred as absolute error value increased. Recall that song level is a measure
of how much the user likes this song. For example, if the level of a song is 5, but
the prediction is 1, then the error will be 4. Errors of magnitude 4 are shown in
column 7. In the table, we can see that no errors of such magnitude occurred.

We are now discussing the second method to evaluate hybrid engine. By using
Rough Sets we core the data, which means we come to know which condition
attributes are core attributes. None of the core attributes are redundant meaning
that any additional attribute will provide no additional classification power. The
core data are applied to NN to make it converge more quickly.

Method 2: Comparison of NN hybrid RS engine and NN engine by itself
with fixed size simulation data

Step 1: The system does the simulation process with fixed size 100 times
playlists. By ”100 times”, we mean that the simulation process generates 100
playlists.

Step 2: By using these simulation data, we train the two engines (the hybrid
engine and the NN by itself) and record how many iterations each of them needs
for convergence in the form of one row in Table 2.

Step 3: Go back to step 2 15 times. Now Table 2 has been generated.
Table 2 indicates that NN hybrid RS stabilizes with less iterations than NN

by itself. This can be explained as follows: In NN engine, weights are initialized
randomly. That is the reason why NN engine is unstable. When the randomly
initialized weights are so far from what we really need, NN engine will take
a long time to converge. However, with NN hybrid RS engine, the RS engine
will control the initialization and weight training process of NN by using core
characteristics.

In NN hybrid RS engine, the weight of any unnecessary condition attributes
will be initialized to 0, if it is the first time to run the engine. The learning
rates of the weight of these condition attributes are also set to 0. It means that
no changes to such weights are made when the engine does weight training.
This means that unnecessary condition attributes will have no impact on the
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Table 2. Comparison of NN hybrid RS and NN with fixed size simulation data

Serial
number

Times of
Simulation Process

ANN hybrid RS ANN
Number of
Iteration

Errors Number of
Iteration

Errors

1 100 27 0.0000003 59 0.000009

2 100 25 0.0000001 38 0.000010

3 100 18 0.0000000 2486 0.000010

4 100 26 0.0000001 44 0.000009

5 100 22 0.0000005 28 0.000008

6 100 26 0.0000001 93 0.000010

7 100 23 0.0000000 45 0.000010

8 100 35 0.0000008 75 0.000008

9 100 40 0.0000002 46 0.000006

10 100 24 0.0000007 2 0.000005

11 100 23 0.0000009 126 0.000010

12 100 31 0.0000006 3852 0.000010

13 100 25 0.0000001 37 0.000003

14 100 31 0.0000000 236 0.000010

15 100 25 0.0000002 1275 0.000010

weight training process. The chance that the system needs to converge with worse
initial weights is reduced with fewer attributes. It will improve the stability of
the system. The stability can influent the performance of the APP. The hybrid
engine is going to be active when the APP is working. The stability of hybrid
engine will ensure the stability of the APP.

6 Conclusions

In this project, we built a hybrid engine to learn user preferences for music.
The engine is based on a multilayer neural net to make the learning process
more effective. Rough Set (RS) is a method to analysis data characterized by
imprecision, inconsistency and incompleteness. RS was used during the learning
process to help train the weights of the neural net. We evaluated the engine
by using simulation data. The simulation data were generated based on specific
rules, and the hybrid engine was able to learn the patterns input to data by
those rules. The hybrid engine was designed to be portable, so that it can be
used not only in this project, but also to solve other real life problems. The
engine provides an effective way to run artificial neural network and rough set
engines separately or in combination.

This project reveals a new way for predicting users favored playlists. It is not
like iTunes of Apple Company. We do not have a big database and big server
to analyze all customers data and draw the conclusions. In contrast, we focus
on analysis of each specific user. Each APP has its own database. The APP
needs to learn the user habits based only on this particular users operations.
Consequently, every user has his own specific ANN for predicting their favorite
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songs. Each hybrid engine will be custom tailored for each user. The more a
user uses the APP, the more the APP will fit him or her. Our APP has been
accepted and published in APP Store, and people are currently using it. There
is a function in our APP to collect feedback from users. The future work is to
let users decide whether this engine is good based on their experience with the
APP, and we can improve the APP by considering their feedback.

In artificial neural network hybrid rough set domain, we have described im-
plementation details of the hybridization. Elsewhere, the authors are using some
third-party software to combine RS and ANN. However, we implement the RS
and ANN engine in its entirety in objective C, so we can do the hybridization
at the coding level. We use rough sets core characteristics to guide NNs learning
process in the code. The result shows that this hybrid approach improves the
stability of training the NN when compare with using NN by itself. However,
the accuracy of prediction depends mainly on the NN and not on the Rough Set
component of hybrid engine.

To summarise the findings, the hybrid engine predicts with fewer errors, with
increasing number of iterations of the simulation process. When the number of
iterations of the simulation process is greater, the pattern in the data will be
more clear. Generally, the hybrid engine in which insignificant attributes are not
considered stabilizes with fewer iterations than NN by itself in which weights of
all attributes are initialized randomly.
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