
Tamper-Resistant LikeJacking Protection�

Martin Johns and Sebastian Lekies

SAP Security Research
Germany

http://www.websand.eu

Abstract. The ClickJacking variant LikeJacking specifically targets
Web widgets that offer seamless integration of third party services, such
as social sharing facilities. The standard defense against ClickJacking
is preventing framing completely or allowing framing only in trusted
contexts. These measures cannot be taken in the case of LikeJacking,
due to the widgets’ inherent requirement to be available to arbitrary
Web applications. In this paper, we report on advances in implement-
ing LikeJacking protection that takes the specific needs of such widgets
into account and is compatible with current browsers. Our technique is
based on three pillars: A JavaScript-driven visibility check, a secure in-
browser communication protocol, and a reliable method to validate the
integrity of essential DOM properties and APIs. To study our protec-
tion mechanism’s performance characteristics and interoperability with
productive Web code, we applied it to 635 real-world Web pages. The
evaluation’s results show that our method performs well even for large,
non-trivial DOM structures and is applicable without requiring changes
for the majority of the social sharing widgets used by the tested Web
applications.

1 Introduction

The days, in which a single application provider provided the code, as well as,
the content of a single Web application are long gone. Nowadays, mixing services
by multiple parties in the context of a single Web document is the norm and
not any longer the exception [23]. A major driving force of this development
are seamless sharing widgets, such as like buttons provided by social networks
like Facebook or Google Plus. These widgets allow one-click interaction with the
network without leaving the context of the page which hosts the widget. Potential
uses for such widgets are not reduced to social sharing but are increasingly
adopted by unrelated services. For instance, the micropayment service Flattr
offers similar widgets1 to initiate payments directed to the widget’s hosting page.

While significantly lowering the barrier to interact with the widget provider’s
services, such widgets also open the door for abuse: In the recent past, a variant
of the ClickJacking [1, 7, 12] attack, aptly named LikeJacking, appears in the

� This work was in parts supported by the EU Project Web- Sand (FP7-256964).
1 Flattr tools: http://developers.flattr.net/tools/

S.J. Stolfo, A. Stavrou, and C.V. Wright (Eds.): RAID 2013, LNCS 8145, pp. 265–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://developers.flattr.net/tools/

266 M. Johns and S. Lekies

wild repeatedly [21, 28] and has received considerable attention [12, 30]. As we
will discuss in Section 3.1, preventing LikeJacking attacks is non-trivial and,
unlike the X-Frames-Option-header [20] in the case of general ClickJacking, no
applicable, browser-based security measure exist.

Up to now, there is no reliable countermeasure against LikeJacking available,
forcing service operators either to expose their users to the risk or to break
the widget’s seamless interaction model [30]. For this reason, in this paper, we
investigate a protection approach that is specifically targeted at LikeJacking
attacks, to mitigate this currently unsolved security problem.

Contributions: In this paper, we make the following contributions:

– We propose a novel LikeJacking protection methodology that relies only on
JavaScript capabilities already present in today’s Web browsers, and hence,
can be adopted immediately. The proposed protection mechanism is based on
JavaScript-based checking of visibility conditions (see Sec. 4) and a secure
communication protocol between the protection script and the embedded
widget (see Sec. 5).

– Furthermore, we present a methodology to reliably check the integrity of an
existing DOM tree instance and the corresponding DOM APIs (see Sec. 6).
This methodology effectively enables a JavaScript to validate its embedding
DOM, even in the context of untrusted Web documents. Furthermore, we
document how this technique can be implemented in a cross-browser fash-
ion and document that the process performs well even for large DOM tree
structures (see Sec. 7.2).

– Finally, as part of the protection measure’s evaluation, we report on a prac-
tical study, which examines how popular Web sites handle social sharing
widgets in respect to visibility properties (see Sec. 7.2).

2 Technical Background

2.1 Social Sharing Widgets

In the beginning of the Web, the content of a single HTML document was static
and originated from exactly one source: the hosting server. This changed soon
during the evolution of the Web. Nowadays, Web sites often include a multi-
tude of services from many different third parties [23]. Due to the Same-Origin
Policy, however, interaction and integration of such third party services is not
straightforward. The technical methods of choice, for this purpose are script in-
cludes and iframe elements, which are nowadays omnipresent in the Web [16].
Nevertheless, when visiting a Web site, a non-technical user is not able to recog-
nize all the iframe elements as many Web sites use this technology to seamlessly
integrate third part content. Thereby, CSS style declarations are used to style
the iframe elements in a way that the content of the iframe appeals to be part
of the embedding page. Besides advertisement, this technique is increasingly
used to provide seamless interaction capabilities between different Web appli-
cations. One such integration feature that received special attention lately are

Tamper-Resistant LikeJacking Protection 267

Social Sharing widgets. These widgets can be used to share arbitrary content
with your friends on your favorite social networks. Thereby, the social network
provides the sharing functionality in the form of a simple Web document that
can be embedded via an iframe into the page. As the social network’s cookies
are attached to all requests initiated by and within the iframe, the iframes UI
controls and scripts act in the name of the user towards the social network. One
important requirement for such a scenario is that the user is encouraged to use
the widget as both, the social network and the embedding page, have an interest
in the user’s social interaction. Therefore, the functionality should be as easy as
possible and ultimately only consist of one single click.

2.2 Click- and LikeJacking

The underlying security problem of Clickjacking was first discovered by Ruder-
man in 2002 [25]. In the Mozilla bug tracking system he noted that transparent
iframes can lead to security problems. However, it took another 6 years until the
term Clickjacking was coined by Hansen and Grossman [7].

The term ClickJacking denotes a class of attacks, that aim to trick users
into interacting with cross-domain Web UIs without their knowledge. In gen-
eral, ClickJacking utilizes iframes which are hidden to the user, using varying
techniques. Instead the user is presented a completely different UI which is posi-
tioned by the attacker either over or under the iframe. Hence, when attempting
to interact with the attacker’s fake UI, the user is actually clicking elements in
the hidden iframe. In particular, the following attack implementations have been
discussed and demonstrated:

Hiding the iframe via CSS: Several CSS properties, such as opacity or mask
can be used to render the target iframe completely transparent. This allows
it to position the attacker’s crafted GUI below the iframe. When the user
tries to click the fake elements, his click is received by the overlaying iframe.

Obstructing the iframe with overlaying elements: Alternatively to an in-
visible iframe and underlying fake GUI, also the opposite scenario is possible:
The adversary can also place his GUI elements on top of the iframe, thus,
completely or partially obstructing it. In such situation, he could either cover
everything but the button, that he wants the victim to click, or he could cover
it completely and set the overlay’s pointer-events-property to none, which
causes the clicks received by the overlay to be seamlessly passed on to the
underlying DOM elements, i.e., the target iframe.

Moving the iframe under the mouse pointer: Finally, the attacker could
render the iframe outside of the screen’s visible regions. Then, when he
anticipates a click from the user, e.g., in the context of a game, he can
quickly position the iframe under the user’s mouse.

2.3 Countermeasure

The currently established countermease against Clickjacking is frame busting.
The goal of frame busting is to forbid an untrusted site to frame a security sen-
sitive Web page. This can be achieved by including a small snippet of JavaScript

268 M. Johns and S. Lekies

into the security sensitive page. The script checks wether the page is framed and
if so it redirects the top browser window away from the untrusted site towards
the security sensitive site effectively busting out of the frame. As shown by Ryd-
stedt et al. [26] many problems exist with practical implementations that allow
an attacker to circumvent the protective measures.

The X-Frame-Options response header also follows the idea of forbidding
framing to third-party Web sites [20]. The mechanism is not implemented in
JavaScript, but browser itself prevents the untrusted framing. Furthermore, if
there is an existing trust relationship between the involved sites, a Web document
can selectively allow being framed by some-origin pages or specifically whitelisted
sites, using the corresponding values for the header [20].

3 LikeJacking Protection via Visibility Proofs

3.1 Problem Statement

As discussed above, all currently available ClickJacking countermeasures require
a pre-existing trust relationship between the widget and the including domain.
On the most basic and best-supported level, this trust relationship is limited
to the widget’s ’own’ domain, using the X-Frame-Option header’s same-origin
directive. In the foreseeable future, as soon as the header’s Allow-from option
receives wider support, the widget can define a whitelist of domains that are
permitted to include the widget’s hosting frame.

However, in situations, in which a widget is designed to be included in arbi-
trary domains, as it is the case with social sharing widgets, the whitelisting ap-
proach does not work anymore. As it stands today, the widget is at the mercy of
the including page: It has to allow being framed generally and has only very lim-
ited means to obtain information on the actual framing context via its referrer
information, which is known to be unreliable [3, 14].

In [12] Huang et al. propose a browser provided mechanism to ensure that
visibility conditions of specified Web UI elements are ensured. Huang’s core
technique is currently under standardization by the W3C as a potential exten-
sion of the Content Security Policy (CSP) mechanism [19]. If this technique
would receive broad browser support in the future, it could be used as a suiting
mitigation strategy. Unfortunately, it is unknown if, when, and to which degree
the technique will actually be implemented in the Web browsers. Similar tech-
niques, which are discussed now for years, still have no broad browser support.
For instance, the highly useful Allow-from directive for the X-Frame-Options-
header, is still not fully supported by all browser, and up to now, there is no
definite commitment that Internet Explorer will implement CSP. Hence, it is
reasonable to assume, that native browser supported security measures will take
a considerable time.

Thus, for the time being, browser-provided means do not offer the needed flex-
ibility and security properties for the outlined Web widget use-cases. However,
as motivated in the beginning of this paper, LikeJacking is a real threat today.
For this reason, we investigated a solution that can be built with the means that

Tamper-Resistant LikeJacking Protection 269

Web browser offer today. In the remainder of this paper we propose a solution
that satisfies the following criteria:

Visibility proof: The Web widget receives validation that its UI was visible to
the user during the user’s interaction with the widget.

Legacy browser compatibility: The aim of the proposed technology is to
provide protection today that is compatible with at least a significant major-
ity of the currently deployed Web browsers. Thus, relying on future browser
features is out of scope for this paper.

Tamper resistance: Even under the assumption, that the widget is included in
an actively malicious page, the protection and validation mechanism should
either hold, or in unrecoverable cases, reliably detect potentially malicious
situation, so that the widget can react accordingly.

No disruption: In case of legitimate usage of the widget, the hosting page
should remain as unaffected as possible.

Based on these requirements, several implementation characteristics can be
deducted immediately: For one, it follows directly from the legacy browser com-
patibility requirement that the measure will rely on JavaScript to enforce the
desired properties. Furthermore, as the visibility of the widget is governed by
the hosting document, the solution’s script will have be executed, at least par-
tially, in the context the hosting page. Finally, based on these implications, the
solution has to anticipate potential JavaScript-driven attacks from the hosting
page, to fulfill the tamper resistance goals.

3.2 The Big Picture

In this section, we give a high level overview on our protection approach. The
emphasis is on its general functionality, without going into deep technical detail.

The core of our methodology is a JavaScript library that is included in the
hosting Web document (see Fig. 1). The script ensures that the widget’s prede-
fined visibility conditions are met. This is done through the utilization of DOM
APIs, which provide access to the widget’s rendering conditions, such as position,
size or CSS properties. The specifics of this process are discussed in Section 4.

The widget itself is included in the hosting page using a standard iframe-
element. However, all user interaction of the widget is disabled until it has been
verified that the frame is clearly visible to the user.

If the JavaScript library can verify, that the visibility requirements are indeed
met, the script signals the widget, that it is safe to enable user interaction (see
Sec. 5). From this point on, clicks received by widget are handled seamlessly. To
prevent a malicious site to alter the widget’s rendering after the initial visibility
check, the validation is repeated in a randomized pattern.

3.3 Security Considerations and Resulting Technical Challenges

Our system relies on running a script in the scope of a Web document that
is controlled by an untrusted third party. We do not have control over when

270 M. Johns and S. Lekies

Fig. 1. Overview of the protection system

or how our JavaScript is included in the page. Thus, a potentially malicious
party has the opportunity to apply changes to the DOM’s global object and the
corresponding DOM APIs, for instance via wrapping the APIs or creating new
DOM properties, that shadow the native implementations (see Sec 6.2). Hence,
under the assumption, that the integrating party (from now on “the attacker”)
is actively malicious, the resulting technical challenges are as follows:

(C1) No reliance on the elements in the global JavaScript scope: We
cannot control when our script is included. Hence, we do not know which
changes to the global scope have been conducted by the attacker.

(C1) No assumptions about the integrity of global DOM objects and
methods: Due to JavaScript’s highly dynamic characteristics, the at-
tacker can overwrite all global properties, functions, and objects within
the scope of the Web document, with only few notable exceptions, such as
the location DOM object. For this reason, our mechanism cannot make
any assumptions regarding the state or behavior of these objects. Instead,
it has to ensure their integrity before utilization.

(C1) Careful handling of confidential data: All JavaScript in a Web doc-
ument is executed in a shared global space. This means that all unscoped
objects, functions, and values can be accessed by any JavaScript running
in the context of the document. In case data values exist that have to
be kept secret from the attacker, precautions have to be taken to avoid
information leakage.

In Section 6, we discuss how our solution ensures the integrity of the required
DOM APIs as well as how sensitive information are kept out of the attacker’s
reach.

3.4 A Defensive UI Interaction Strategy to Prevent LikeJacking

Based on the reasoning above, we now define our proposed UI interaction strat-
egy for Web widgets:

Tamper-Resistant LikeJacking Protection 271

The widget allows seamless user interaction only when the following conditions
are satisfied:
1. The predefined visibility conditions have been successfully checked.
2. The integrity of the required DOM APIs, which are needed to execute the

visibility check, has been verified.
3. Both condition above have to be fulfilled for at least a pre-defined timespan

before the actual user interaction happens (e.g., 500 ms), to avoid quick prop-
erty changes through the adversary immediately before the user interaction.

If one of these conditions has not been met, the widget either prevents user
interaction or executes a secondary verification step through safe UI, such as
confirmation pop-ups, Captchas, or similar measures.

In certain situations, the hosting page has legitimate reasons to temporarily
violate the visibility conditions. For instance the widget could be contained in an
initially hidden portion of the site, which is only visible after explicit user inter-
action, e.g., via hovering the mouse over a menu. For such cases, the protection
mechanism provides an API to signal the widget, that its visibility condition has
changed. This allows the protection script to re-execute the checking algorithm
and, in case of a positive result, re-enabling direct user interaction.

4 Verifying of Visibility Conditions

In general there are four different conditions, that could lead to a DOM element
not being visible to the user: Either CSS properties have been set, that cause
the element to be invisible, obstruction DOM elements are rendered in front of
the element, the element’s rendering dimensions are reduced to a nearly invisible
size, or the element’s position is outside the current viewport’s boundaries.

In the following sections, we discuss how these conditions can be reliably
detected.

4.1 CSS-Based Visibility Prevention

Several CSS properties exist, that influence the visibility of DOM elements.
See Table 1 for a comprehensive overview. For each of the properties, unam-
biguous visibility conditions can be defined, for instance, the condition that an
element’s opacity value has to be above a certain threshold. Checking these
properties via JavaScript is possible via the window.getComputedStyle() API,
which computes an element’s final CSS property values that result after apply-
ing all matching CSS rules. While some properties are inherited directly (in our
case mainly the visibility property), most properties have to be checked both
for the element itself as well as for its direct DOM ancestor chain. With the
exception of opacity, all checked CSS values are absolute, i.e., the element’s
visibility is determined through a set of enumerable options. For instance in the
case of the visibility property, the possible values are visible, hidden, or
collapse. As an exception, the opacity property value is a composite property,

272 M. Johns and S. Lekies

Table 1. Relevant DOM and CSS properties (excluding vendor prefixed variants)

CSS Property Check condition Appl. elements Method

visibility value element only getComputedStyle()

display value DOM chain getComputedStyle()

mask value DOM chain getComputedStyle()

opacity threshold DOM chain getComputedStyle()

positiona value offset chain DOM properties
dimensiona minimum DOM chain DOM properties

a: Values influenced by CSS and DOM position, calculated via DOM properties

that has to be calculated via multiplying the individual opacity values present
in the element’s DOM ancestor chain. If a diversion of the predefined condition
for one of these CSS properties could be identified, a potential attack is flagged
and communicated to the widget.

4.2 Obstructing Overlays

CSS allows the positioning of DOM elements both in a relative and an abso-
lute fashion. This permits Web developers to create overlays in which one DOM
element is rendered on top other elements. This allows the adversary to (par-
tially) obstructed the widget with opaque overlays. Furthermore, through setting
the overlay’s pointer-events CSS property to none, the overlay will pass all
received user interaction to the underlying element, i.e., to the widget. This ef-
fectively enables a ClickJacking condition which leaves the widget’s own CSS
properties untouched.

To detect such situations, all intersecting DOM elements have to be identified.
To do so, the checking algorithm iterates over the embedding DOM tree’s nodes
and calculates the nodes’ position and dimensions. For all (partially) overlapping
elements, the pointer-event CSS property is obtained. If overlapping elements
with disabled pointer-events could be found, a potential attack is flagged.
Likewise, in the case where significant portions of the widget are obstructed
by standard elements. At the first glance, this process exposes potential for
a performance issue. However, due to the efficient DOM implementations of
today’s browsers, this process scales very well even for non-trivial DOM trees
with more than several thousand nodes (see Sec. 7.2 for details).

4.3 Element Size and Position

Side effects of the DOM rendering process can also influence an element’s vis-
ibility: For one, the rendered dimensions of an element are of relevance. E.g.,
through setting both the rendering height and width to zero the element can
effectively be hidden. To avoid such conditions, the widget can define minimum
value for width and height. To ensure, that the desired minimum dimensions
are met, the effective size of an element has to be computed. An elements size
depends on two factors: The element’s own dimensions, determined through

Tamper-Resistant LikeJacking Protection 273

the DOM properties offsetWidth and offsetHeight, and the dimensions of
its DOM ancestors, under the condition, that on of these ancestors has set its
overflow CSS property to hidden. Thus, via walking through the widgets DOM
ancestor chain, its effective size can be obtained.

Furthermore, the position of an element can be outside of the currently dis-
played viewport, hence, effectively hiding it from the user. In general, such a
situation is not necessarily an indication that the page actively attempts to con-
ceal the element. As most pages are bigger than the available screen estate,
parts of the Web page are rendered legitimately outside of the current viewport.
This especially holds true for page height, i.e., page regions below the currently
viewed content. Hence, we have to take further measures to tell apart benign
from malicious situations.

4.4 Position Guarding

As outlined in Sec. 2.2, one of the ClickJacking variants moves the click target
quickly under the victims mouse pointer, just before a click is about to happen.
With visibility checks at isolated, discrete points in time, this attack variant
is hard to detect reliably. Hence, for position-changing based attack scenarios,
we utilize an additional indicator: After the other visibility verification steps
have concluded correctly, the script injects an absolutely positioned, transparent
DOM overlay of it own, completely covering the widget as well as a small area
surrounding it (see Fig. 1).

The overlay has the purpose to register intended interaction with the wid-
get beforehand. This is achieved with a mouse-over event handler. Whenever
the user targets the widget with his mouse pointer, he automatically enters
the protection overlay. This causes the execution of the overlay’s eventhandler.
The eventhandler now conducts three steps: First, based on the received mouse

event, it verifies that its own position within the DOM layout has not changed.
Then it checks that the widget’s visibility and position have not been tampered
with. If these two tests terminated positively, the overlay temporarily disable its
pointer-events, to allow interaction with the widget. Furthermore, the exact
time of this event is recorded for the final verification step (see Sec. 5.3).

4.5 Unknown Attack Variants

The presented visibility checking algorithms have been designed based on docu-
mented attack methods as well as on a systematical analysis of relevant DOM-
mechanisms. However, it is possible, that attack variants exist which are not
yet covered by the outlined checks. Especially, the versatility and power of CSS
has the potential of further, non-obvious methods to influence the visibility of
DOM elements. However, due to the nature of such attack variants, they will in
any case leave traces in the involved elements’ DOM or CSS properties. Thus, it
can be expected that adding checks for these indicators will be straight forward.
Furthermore, as the overlay-checking step (see Sec. 4.2) already requires probing

274 M. Johns and S. Lekies

properties of all DOM elements, newly discovered characteristics that need to
be validated, should at worst add a linear factor to the performance overhead.

5 Trusted Communication between the Protection Script
and the Widget

As motivated in Section 3.4, initially the widget disables all direct user inter-
action, until the visibility verification script in the hosting page sends the sig-
nal, that all required conditions have been met. In this section, we outline this
communication channel’s implementation. As the protection script runs in an
untrusted context, specific measures have to be taken to ensure message in-
tegrity and authenticity. For this purpose, we rely on two language features of
JavaScript: The PostMessage-API and local variable scoping.

5.1 PostMessage

The PostMessage API is a mechanism through which two browser documents
are capable of communicating across domain boundaries in a secure manner [27].
A PostMessage can be sent by calling the method postMessage(message,

targetOrigin) of the document object that is supposed to receive the mes-
sage. While the message attribute takes a string message, the targetOrigin

represents the origin of the receiving document.
In order to receive such a message, the receiving page has to register an

event handler function for the “message” event which is triggered whenever a
PostMessage arrives. Particularly interesting for our protection mechanism are
the security guarantees offered by this API:

1. Confidentiality: The browser guarantees that a PostMessage is only delivered
to the intended recipient, if the targetOrigin specified during the method
call matches the recipient window’s origin. If confidentiality is not required,
the sender may specify a wildcard (*) as targetOrigin.

2. Authenticity: When receiving a message via the event handler function, the
browser additionally passes some metadata to the receiving page. This data
includes the origin of the sender. Hence, the PostMessage API can be used
to verify the authenticity of the sending page.

Effectively, this implies that whenever a widget receives a PostMessage from
it’s embedding page, it is able to obtain reliable information about its embedding
context.

5.2 Information Hiding via Closure Scoping

In general, the protection scripts runs in the origin of the adversary’s page.
Hence, according to the JavaScript’s Same-origin Policy, his scripts have un-
mitigated access to the shared global object space. Thus, all potentially secret

Tamper-Resistant LikeJacking Protection 275

Listing 1 Anonymous function creating a closure scoped shared secret

// Anonymous function without reference in the global object

(function (){

// Constructor for the checker object

var VisiCon = function (s){

var secret = s; // not visible outside of the object

[...]

}

// Store the secret upon initialization in the closure

window.VisiChecker = new VisiCon ([[... shared secret ...]]);

...

})();

information, such as shared secrets between the protection script and the widget
have to kept out of reach for the adversary’s code. As Crockford has docu-
mented [5], this can be done with JavaScripts closure scoping. All information
stored in closures, such as the VisiCon object in Lst. 1, are not accessible from
the outside. Furthermore, as the encapsulating anonymous function leaves no
reference in the global scope, its source code cannot be accessed via toString()
and, hence, the secret value is effectively kept out of reach for the adversary.

5.3 Resulting Communication Protocol

The protection script is implemented in the form of an anonymous function as
depicted above (see Lst. 1). Encapsulated in this function is a secret value, which
was provided by the script’s host and is shared with the widget. This value will
be used to prove the script’s authenticity to the widget (see Fig. 1).

Upon initialization, the protection script retrieves the widget’s iFrame element
from the DOM and conducts the visibility verification process. After successful
completion of visibility (see Sec. 4) and DOM integrity (see Sec. 6) checks, the
script sends a postMessage to the widget with the signal, that it is safe to
enable user interaction. Included in this message is the shared secret, to proof
the messages authenticity. This approach is secure, as the PostMessage-API
guarantees that only scripts running in the widget’s origin can read the message
and the shared secret is kept in a closure with no connection to the global object.

From this point on, the protection script re-executes the visibility and in-
tegrity checking process at randomized times, to detect if the widget’s visibility
or position have been actively tampered with after the initial positive validation.

Finally, a concluding PostMessage handshake is conducted when the widget
receives actual user interaction, e.g., through clicking: Before acting on the click,
the widget queries the protection script, to ensure that the visibility and integrity
properties have not been violated in the meantime. As the widget’s position
guard (see Sec. 4.4) must have been triggered right before the interaction with the
widget occurred, this information is fresh and reliable. In case the guard has not

276 M. Johns and S. Lekies

been triggered, this is a clear indication that the widget has been moved since the
last periodic check, which in turn is a clear sign of potentially malicious actions.
Only in case that the guard has been triggered and the visibility conditions are
intact, the protection script answers the widget’s enquiry. In turn, the widget
only directly acts on the click, if this answer was received.

6 Validating DOM Integrity

6.1 Redefinition of Existing Properties and APIs

JavaScript is a highly dynamic language, which allows the redefinition of al-
ready existing elements and methods. This can be done in two fashions: For one
an element can be redefined through direct assignment. Alternatively, Object.
defineProperty can be utilized to change properties of existing objects. The
latter method cannot only redefine the behavior of methods, but also of object
properties, through the definition of the internal [[Get]], [[Set]], and [[Value]]
properties. In addition, setting its internal property [[Configurable]] to false

prevents deletion and further changes.

6.2 Resulting Potential DOM Integrity Attacks

Redefinition of existing methods and properties is not restricted to objects that
have been created through script code. Also the Web browser’s native APIs and
objects can be changed this way. It is possible to overwrite global APIs, such
as alert(), with custom functions. It has been shown in the past, how this
technique can be used to detect [2] and mitigate [8, 17, 24] XSS attacks.

However, in our case, the adversary could potentially use this technique to ob-
fuscate LikeJacking attempts. As discussed in Sections 4 and 5 our system relies
on several native DOM APIs, such as window.getComputedStyle() and prop-
erties of DOM elements, such as parent or offsetWidth. Through redefining
these DOM properties to return false information, the attacker can effectively
undermine the visibility check’s correctness.

Challenge: Validating DOM Integrity. To ensure the correctness of the visi-
bility checking algorithm, we have to conduct two steps: For one, we need to
compile a complete list of all native APIs and DOM properties which are used
by the process, including the applicable checking scope (see Table 2). Secondly,
for each element of this list, a reliable methodology has to be determined, which
validates that the method or property has not been redefined by the adversary.

6.3 Built-In Objects and the Semantics of the delete Operator

To handle potential DOM tampering attacks, JavaScript’s delete operator plays
a central role. In [17] Magazinius et al. noted, that redefined DOM APIs revert
back to their original state if they are deleted. The reason for this lies in the
method how native DOM elements and APIs are exposed to the JavaScript:

Tamper-Resistant LikeJacking Protection 277

Table 2. List of required DOM APIs and properties

Name Type Checking scope

getComputedStyle DOM method window

getElementById, getElementsByTagName DOM method document

defineProperty DOM method all DOM nodes1

addEventListener DOM method window & position guard
contentDocument, postMessage DOM property widget iframe
parentNode, offsetParent DOM property all DOM nodes
offsetLeft, offsetTop DOM property all DOM nodes
offsetHeight, offsetWidth DOM property all DOM nodes

1 : Google Chrome only

The actual implementation of these properties are within the built-in host ob-
jects, which are immutable. These built-ins serve as the prototype-objects for
the native DOM objects, such as window, Object, or document. The DOM-space
instances of these objects merely provide references to the native implementa-
tions. The delete operator removes a property from an object. If this operation
succeeds, it removes the property from the object entirely. However, if a prop-
erty with the same name exists on the object’s prototype chain, the object will
inherit that property from the prototype, which in the case of host objects is
immutable [22]. Thus, redefining native DOM APIs creates a new property in
the native object’s current DOM-space instance, which effectively shadows the
native prototype. Through deletion of this shadowing property, the prototype’s
implementation reappears (please refer to [32] for further information on this
topic). However, deleting properties is potentially destructive. It is known that
redefinition or wrapping of native API can be used for legitimate reasons, e.g.,
to provide the developer with enhanced capabilities. Thus, whenever possible,
our mechanism attempts to detect but not to undo changes to the essential APIs
and properties (see Sec. 6.4). If such changes could be detected, the mechanism
concludes that the DOM integrity can’t be validated and instructs the widget
to disable seamless interaction (according to the strategy defined in Sec. 3.4).

6.4 Integrity of Native DOM APIs

As explained above, native DOM APIs cannot be deleted and a redefinition
merely creates a DOM-space reference with the same name. Thus, a straightfor-
ward check for redefined native APIs works like this (see also Lst. 2):

1. Store a reference to the checked API in a local variable. In the tampering
case, this variable will point to the DOM-space implementation.

2. delete the API and check the outcome. If the operation returned true

continue to step 4.
3. If the operation returned false, the deletion failed. As deleting unchanged

references to host-APIs always succeeds, the failing of the operation is a re-
liable indicator, that the corresponding property of the hosting object was

278 M. Johns and S. Lekies

Listing 2 Tamper checking DOM APIs (simplified sketch)

// Keep a copy for reference

var copy = window.getComputedStyle ;

// deletion of unchanged host APIs always returns ’true ’

if (delete window.getComputedStyle){

// Check if the function has changed

if (window.getComputedStyle == copy)

[... all is ok ...]

else

error("tampered!");

} else { // delete failed

// Redefined property with [[Configurable]] set to ’false’

error("tampered !");

}

redefined with defineProperty, while setting the internal [[Configurable]]
property to false (see Sec. 6.1). Hence, the API has been redefined. Termi-
nate.

4. Compare the API to the local copy. If both point to the same implementa-
tion, the API’s integrity is validated. Terminate positively.

5. If they differ, the API has been overwritten. Restore the local copy to the
host object, in case the redefinition has legitimate reasons (non-disruptive
approach) and terminate the integrity validation with negative result.

We practically validated this algorithm with Internet Explorer 9, Firefox 19, and
Safari 5.

A subtle bug in Google Chrome: The behavior described above is universally
implemented in all browsers, with one exception: Current versions of Google
Chrome (in our tests version 26) allow destructive deletion of some native DOM
APIs, mainly the ones attached to Object, such as getOwnPropertyDescriptor.
However, for affected APIs, Chrome APIs can be verified by applying the same
test to the API’s respective toString() method, as the Function prototype
exposes the correct behavior. This means, Chrome DOMAPIs can be checked via
applying the method discussed above to the APIs toString() method, instead
to the APIs themselves.

6.5 Native DOM Property Integrity

While all browsers act (mostly) identical in respect to the redefinition of native
DOM APIs, they expose differences when it comes to the properties of DOM
elements, such as parentNode or offsetHeight.

Firefox & Internet Explorer 9 treat DOM properties in the exact same fashion
as DOM APIs (see Sec. 6.4). Hence, for these browsers, the same algorithm can
be applied.

Tamper-Resistant LikeJacking Protection 279

Number of DOM nodes Performance
X-axis: Number of DOM nodes, Y-axis: Percentage of sites X-axis: Time in ms, Y-axis: Percentage of sites

Fig. 2. Results of the performance evaluation

Google Chrome’s native DOM properties are immutable. This means, direct
overwriting or redefining via defineProperty has no effect on the property. The
property’s value remains untouched by attempts to change it. Unfortunately,
Chrome allows the irreversible deletion of DOM properties. Furthermore, after
such deletion, a new property with the same name can be added to the hosting
object again, now under full control of the attacker. However, the new property
has the same characteristic as all ’normal’ JavaScript properties, namely its in-
ternal [[Configurable]] property acts as specified: If it is set to true, the property
can be redefined, if it is set to false a redefining step fails with an error mes-
sage. Both cases differ noticeably from the legitimate behavior and, thus, can be
utilized for a reliable test.

Safari & Internet Explorer 8 are strict about DOM integrity and do not allow
direct overwriting or deleting of DOM properties. This also applies to using the
defineProperty method. Thus, in the case of these two browsers, nothing has
to be done, as malicious undermining of the DOM integrity is impossible.

7 Evaluation

7.1 Security Evaluation

In this section we discuss, based on the attack description in Sec 2.2, how our
measure is able to defend the widget. Please note: This security evaluation only
covers attack variants, which have been previously documented. In respect to
yet to-be-discovered attacks, please refer to Sec. 4.5.

Hiding the iframe via CSS: The visibility checking process identifies all po-
tential conditions that would render the widget invisible to the user (see Sec 4.1)
and, thus, notifies the widget about the potentially malicious settings.

280 M. Johns and S. Lekies

Obstructing the iframe with Overlaying Elements: Our mechanism finds
all DOM elements that overlap with the widget (see Sec 4.2). Therefore, potential
obstructing elements can be identified and acted upon.

Moving the iframe under the Mouse Pointer: The position guard overlay
(see Sec. 4.4) enforces that the relative position of the widget in the page does not
change after the visibility check has concluded. Therefore, this attack method is
effectively disarmed.

Furthermore, the correct functioning of the visibility checking process is en-
sured through the system’s DOM integrity checking methodology even in the
context of an actively malicious embedding page (see Sec 6).

In this context, it has to be stressed, that the boundaries between Click/-
LikeJacking and pure social engineering are fluid. Under suiting circumstances
related attacks might be possible without resorting to overlays or other visibil-
ity influencing techniques, i.e., through hiding a visible element in plain sight
via surrounding it with many similar looking elements. In such situations, the
proposed protection method is powerless.

7.2 Functional and Performance Evaluation

To examine our approach’s performance and interoperability characteristics, we
conducted a practical evaluation. For this purpose, we selected a set of 635 sites
out of the Alexa Top 1000, based on the characteristic that the sites included at
least one JavaScript library directly from Facebook, as such a script-include is a
necessary precondition to integrate Facebook’s “like button”. Furthermore, we
implemented our visibility- and tamper-checking algorithms in a fashion, that
it becomes active automatically after the page finished its rendering process.
This means for every page, which includes our measure, the script automat-
ically identifies all included social sharing widget (from the Facebook, Goole
and Twitter) and validates their respective visibility state. Finally, we created
a small program that causes a browser to successively visit the test sites and a
userscript, which injects our script in every page this browser loads. For this,
we used the following browser extensions: Greasemonkey2 for Firefox 19, Nin-
jaKit3 for Safari 5, and IE7Pro4 for Internet Explorer 9. Google Chrome has
native support for userscripts and, hence, did not require a dedicated browser
extension. All experiments were conducted on a MacBook Pro (Os X 10.7.2,
Core i7, 2,2 GHz, 8GB RAM). The Internet Explorer evaluation was done using
a Windows 7 virtual machine, running in VMWare Fusion 5. For all sites, the
DOM integrity validation was performed and for all encountered widgets, also
the visibility check.

One of the evaluation’s goals was to examine to which degree real-world Web
code is compatible with our protection approach. For no site out of the test
bed, the DOM integrity check failed. Furthermore, as it can be seen in Table 4

2 Greasemonkey: https://addons.mozilla.org/de/firefox/addon/greasemonkey/
3 NinjaKit: https://github.com/os0x/NinjaKit
4 IE/Pro: http://www.ie7pro.com/

https://addons.mozilla.org/de/firefox/addon/greasemonkey/
https://github.com/os0x/NinjaKit
http://www.ie7pro.com/

Tamper-Resistant LikeJacking Protection 281

Table 3. Browser performance measurements

Browser Min5 Max5 Average5 Median5

Firefox1 1 135 15.0 13
Google Chrome2 3 117 21.0 18
Safari3 1 62 3.0 3
Internet Explorer4 1 141 52.0 40

1x: Firefox 19.0.2 / OsX 10.7, 2: Chrome 26.0.1410.43 / OsX 10.7,
3: Safari 5.1.2 / OsX 10.7, 4: IE 9.0.8112 / Win7 (VMWare),

5: All times in milliseconds

for the vast majority of the widgets (1537 out of 1648), the visibility could be
verified. For the remaining 111 widgets, manual analysis in respect to providing
interoperability would be required.

Furthermore, as documented in Table 3 and Figure 2, our protection mecha-
nism only causes negligible performance costs, with a general median overhead
of less then 40ms and worst case scenarios well below 200ms, even for large,
non-trivial DOM structures with up to 3000 nodes.

8 Related Work

Further Attack Variants: Besides the basic attack, which utilizes invisible
iFrames, several different forms of Clickjacking attacks were discovered. For one,
Bordi and Kotowicz demonstrated different methods to conduct a so called Cur-
sorjacking attack [4,15]. Thereby, the real mouse cursor is hidden and fake cursor
is presented to the user at a different position. When interacting with the Web
site the user only recognizes the fake cursor. When clicking the mouse, the click
event does not occur at the position of the visible fake cursor but at the position
of the hidden cursor. Therefore, the user is tricked into clicking an element that
he not intended to click.

Adding protection against such attacks to our countermeasure is straight for-
ward: The CSS styling of the mouse pointer can be added to the forbidden
visibility conditions.

Furthermore, Clickjacking attacks are not limited to invisible iFrames. Za-
lewski and Huang showed that it is also possible to use popup windows instead
of frames [11,31]. While Zalewski’s approach utilizes the JavaScript history API
and a timing attack, Huang came up with the so called Double Clickjacking
attack. Thereby, a Web site opens a popup window, behind the actual browser
window. Then the Web site lures the user into double clicking on the visible
Web site. When the first click hits to page the popup window is brought to the
front and therefore, the second click hits the page that was loaded within the
popup window. After a few millisecond the Web site closes the popup window
and therefore the user does not recognizes the attack.

Our mechanism is secure against Huang’s double-click attack: As the position
guard overlay (see Sec. 4.4) does not receive the required mouse-over event, it
does not change its pointer-events and, hence, catches the click before it can

282 M. Johns and S. Lekies

Table 4. Compatibility testing with deployed widgets

Widget provider Sites1 Total2 Visible Hidden CSS3 DOM4 Obstructed5

Facebook 391 837 779 (93%) 58 (7%) 34 8 16
Google+ 167 277 255 (92%) 22 (8%) 4 13 5
Twitter 207 534 503 (94%) 31 (6%) 22 1 8

1: Number of sites that include at least one widget of the provider (out of 635) 2: Total number of found widgets

Reasons for failed visibility check: 3: CSS properties (see Sec 4.1),4: DOM properties (see Sec 4.3),
5: Obstructing overlays (see Sec 4.2)

reach the widget. Also, even if the mouse is slightly moved between the clicks,
the entering position of the mouse pointer will be in the middle of the overlay
and not at the borders, which is a clear indicator for suspicious behavior.

Server-Side Countermeasures: Besides the general ClickJacking-focused ap-
proaches discussed in Sec 2.3, some mechanism have been proposed that also take
Likejacking into account. When the first Likejacking attacks were conducted,
Facebook implemented some countermeasures to detect ”malicious likes” [30].
When ever a malicious situation is detected, the user is asked to confirm the ac-
tion, instead of seamlessly processing the ”like request”. Unfortunately, precise
details on the implementation are not available and the problem still exists in
the wild.

Another approach was proposed by Brad Hill [9]. He suggested to utilize user
interface randomization as an anti-clickjacking strategy. Thereby, a Web widget
renders its buttons in different location each time it is loaded.Therefore, the at-
tacker cannot be sure in which position the button is being placed and is only
able to use a trial and error approach to conduct the attack. By analyzing the
first click success rate, a Widget provider would be able to detect Likejacking
campaigns very soon, as in the legitimate use case the first click success rate is
significantly higher than in the trial and error Clickjacking attack. However, ran-
domizing the user interface decreases user experience and might distract user’s
from using a widget. Furthermore, the method is not applicable to more complex
widgets.

Client-Side Countermeasures: The first client-side countermeasures was the
NoScript ClearClick Firefox plug-in [18]. ClearClick detects a Clickjacking at-
tack by creating two screenshots and comparing the results. One screenshot is
taken from the plugin object or the framed page the user attempts to click on.
The second screenshot shows how the page/object is embedded into the page. If
the two screenshots differ, the object’s visibility is somehow tampered and there-
fore ClearClick shows a warning to the user. Furthermore, ClickIDS, a related,
experimental browser extension, was presented in [1].

In 2012 Brad Hill suggested to introduce a new type of control that requires
more user interaction than just a click (e.g. a Swipe, Scrub, or holding the
mouse for a certain amount of time, etc) [10]. While the user interacts with
the control, the browser forces the corresponding markup to become completely
visible. While doing so, the browser could even dim or hide other elements so

Tamper-Resistant LikeJacking Protection 283

that these elements do not overlap or hide the security sensitive control. However,
until now this idea has not been implemented by any major browser.

Besides these mechanisms a few other client-side mechanisms were proposed to
stop Clickjacking attacks in the form of alternative browser designs (e.g Gazelle
[29], the OP Web browser [6] or the secure Web browser [13]). For the time
being, none of these proposals have been adopted by the major browsers.

9 Conclusion

In this paper, we presented a novel methodology to protect Web widgets against
LikeJacking attacks. Our approach does not require browser modifications and is
fully interoperable with today’s JavaScript capabilities. Using a practical evalu-
ation of 635 site, we demonstrated our technique’s compatibility with productive
Web code and showed that the approach’s performance scales well, while causing
negligible overhead.

Outlook: Because of the closeness of LikeJacking to social engineering (see Sec-
tion 7.1) and the highly flexible nature of CSS, the visibility validation step of
our approach has to be regarded as its most fragile component. However, when
approaching the topic from a wider angle, it becomes apparent that LikeJacking
is only one instance in a lager problem space:

The underlying challenge occurs every time, when a third party service re-
quires reliable information on the Web execution context in which it is included.
Hence, the more significant contribution of this paper is the general methodol-
ogy, that allows third party components to trustworthy collect evidence on the
state of the integrator page and securely communicate the result, with visibility
validation being only one example for such an evidence collecting process.

References

1. Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., Kruegel, C.: A solution for the
automated detection of clickjacking attacks. In: AsiaCCS (2010)

2. Barnett, R.: Detecting Successful XSS Testing with JS Overrides. Blog post, Trust-
wave SpiderLabs (November 2012), http://blog.spiderlabs.com/2012/11/
detecting-successful-xss-testing-with-js-overrides.html (last accessed
April 7, 2013)

3. Barth, A., Jackson, C., Mitchell, J.C.: Robust Defenses for Cross-Site Request
Forgery. In: CCS 2009 (2009)

4. Bordi, E.: Proof of concept - cursorjacking (noscript),
http://static.vulnerability.fr/noscript-cursorjacking.html

5. Crockford, D.: Private Members in JavaScript (2001),
http://www.crockford.com/javascript/private.html (Janauary 11, 2006)

6. Grier, C., Tang, S., King, S.T.: Secure Web Browsing with the OP Web Browser.
In: IEEE Symposium on Security and Privacy (2008)

7. Hansen, R., Grossman, J.: Clickjacking (August 2008),
http://www.sectheory.com/clickjacking.htm

http://blog.spiderlabs.com/2012/11/detecting-successful-xss-testing-with-js-overrides.html
http://blog.spiderlabs.com/2012/11/detecting-successful-xss-testing-with-js-overrides.html
http://static.vulnerability.fr/noscript-cursorjacking.html
http://www.crockford.com/javascript/private.html
http://www.sectheory.com/clickjacking.htm

284 M. Johns and S. Lekies

8. Heiderich, M., Frosch, T., Holz, T.: IceShield: Detection and mitigation of mali-
cious websites with a frozen DOM. In: Sommer, R., Balzarotti, D., Maier, G. (eds.)
RAID 2011. LNCS, vol. 6961, pp. 281–300. Springer, Heidelberg (2011)

9. Hill, B.: Adaptive user interface randomization as an anti-clickjacking strategy
(May 2012)

10. Hill, B.: Anti-clickjacking protected interactive elements (January 2012)
11. Huang, L.-S., Jackson, C.: Clickjacking attacks unresolved. White paper, CyLab

(July 2011)
12. Huang, L.-S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:

attacks and defenses. In: USENIX Security (2012)
13. Ioannidis, S., Bellovin, S.M.: Building a secure web browser. In: USENIX Technical

Conference (2001)
14. Johns, M., Winter, J.: RequestRodeo: Client Side Protection against Session Rid-

ing. In: OWASP Europe 2006, refereed papers track (May 2006)
15. Kotowicz, K.: Cursorjacking again (January 2012),

http://blog.kotowicz.net/2012/01/cursorjacking-again.html

16. Lekies, S., Heiderich, M., Appelt, D., Holz, T., Johns, M.: On the fragility and
limitations of current browser-provided clickjacking protection schemes. In: WOOT
2012 (2012)

17. Magazinius, J., Phung, P.H., Sands, D.: Safe wrappers and sane policies for self
protecting javaScript. In: Aura, T., Järvinen, K., Nyberg, K. (eds.) NordSec 2010.
LNCS, vol. 7127, pp. 239–255. Springer, Heidelberg (2012)

18. Maone, G.: Noscript clearclick (January 2012),
http://noscript.net/faq#clearclick

19. Maone, G., Huang, D.L.-S., Gondrom, T., Hill, B.: User Interface Safety Di-
rectives for Content Security Policy. W3C Working Draft 20 (November 2012),
http://www.w3.org/TR/UISafety/

20. Microsoft. IE8 Security Part VII: ClickJacking Defenses (2009)
21. Mustaca, S.: Old Facebook likejacking scam in use again, Avira Security Blog

(February 2013),
http://techblog.avira.com/2013/02/11/old-facebook-likejacking-

scam-in-use-again-shocking-at-14-she-did-that-in-the-public-school/en/

22. Mozilla Developer Network. delete (February 2013),
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/

Operators/delete

23. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You Are What You Include: Large-scale Evaluation of
Remote JavaScript Inclusions. In: CCS 2012 (2012)

24. Phung, P.H., Sands, D., Chudnov, A.: Lightweight self-protecting javascript. In:
ASIACCS 2009 (2009)

25. Ruderman, J.: Bug 154957 - iframe content background defaults to transparent
(June 2002), https://bugzilla.mozilla.org/showbug.cgi?id=154957

26. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study
of clickjacking vulnerabilities at popular sites. In: IEEE Oakland Web 2.0 Security
and Privacy, W2SP 2010 (2010)

27. Shepherd, E.: window.postmessage (October 2011),
https://developer.mozilla.org/en/DOM/window.postMessage

http://blog.kotowicz.net/2012/01/cursorjacking-again.html
http://noscript.net/faq#clearclick
http://www.w3.org/TR/UISafety/
http://techblog.avira.com/2013/02/11/old-facebook-likejacking-scam-in-use-again-shocking-at-14-she-did-that-in-the-public-school/en/
http://techblog.avira.com/2013/02/11/old-facebook-likejacking-scam-in-use-again-shocking-at-14-she-did-that-in-the-public-school/en/
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/delete
https://bugzilla.mozilla.org/showbug.cgi?id=154957
https://developer.mozilla.org/en/DOM/window.postMessage

Tamper-Resistant LikeJacking Protection 285

28. SophosLabs. Clickjacking (May 2010),
http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/

(last accessed July 4, 2013)
29. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choud-hury, P., Venter, H.: The

Multi-Principal OS Construction of the Gazelle Web Browser. In: USENIX Security
Symposium (2009)

30. Wisniewski, C.: Facebook adds speed bump to slow down likejackers (March 2011)
31. Zalewski, M.: X-frame-options is worth less than you think. Website (December

2011), http://lcamtuf.coredump.cx/clickit/
32. Zaytsev, J.: Understanding delete (January 2010),

http://perfectionkills.com/understanding-delete/

http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
http://lcamtuf.coredump.cx/clickit/
http://perfectionkills.com/understanding-delete/

	Tamper-Resistant LikeJacking Protection
	1 Introduction
	2 Technical Background
	2.1 Social Sharing Widgets
	2.2 Click- and LikeJacking
	2.3 Countermeasure

	3 LikeJacking Protection via Visibility Proofs
	3.1 Problem Statement
	3.2 The Big Picture
	3.3 Security Considerations and Resulting Technical Challenges
	3.4 A Defensive UI Interaction Strategy to Prevent LikeJacking

	4 Verifying of Visibility Conditions
	4.1 CSS-Based Visibility Prevention
	4.2 Obstructing Overlays
	4.3 Element Size and Position
	4.4 Position Guarding
	4.5 Unknown Attack Variants

	5 Trusted Communication between the Protection Script and the Widget
	5.1 PostMessage
	5.2 Information Hiding via Closure Scoping
	5.3 Resulting Communication Protocol

	6 Validating DOM Integrity
	6.1 Redefinition of Existing Properties and APIs
	6.2 Resulting Potential DOM Integrity Attacks
	6.3 Built-In Objects and the Semantics of the delete Operator
	6.4 Integrity of Native DOM APIs
	6.5 Native DOM Property Integrity

	7 Evaluation
	7.1 Security Evaluation
	7.2 Functional and Performance Evaluation

	8 Related Work
	9 Conclusion
	References

