Chapter 5
Molecular Information Fusion in Ondex

Jan Taubert and Jacob Kohler

Abstract Current biological knowledge is buried in hundreds of proprietary and
public life-science databases available on the World Wide Web (WWW) and
millions of scientific publications. Gaining access to this knowledge can prove
difficult as each database may provide different tools to query or show the data and
may differ in their structure and user interface or uses a different interpretation of
biological knowledge than others. Systems approaches to biological research require
that existing biological knowledge (data) is made available to support on the one
hand the analysis of experimental results and on the other hand the construction and
enrichment of models. Data integration methods are being developed to address
these issues by providing a consolidated view of molecular information fused
together from multiple databases. However, a key challenge for data integration
is the identification of links between closely related entries in different life
sciences databases when there is no direct information that provides a reliable
cross reference. Here we describe and evaluate three data integration methods to
address this challenge in the context of a graph-based data integration framework
(the Ondex system). We give a quantitative evaluation of their performance in two
different situations: the integration and analysis of different metabolic pathways
resources and the mapping of equivalent elements between the Gene Ontology and
a nomenclature describing enzyme function.
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5.1 Introduction

Over the last decade, biological research has changed completely. The reductionism
approach of studying only a few biological entities at a time in the past is being
replaced by the study of the biological system as a whole today. Systems Biology
[1] seeks to understand how complex biological systems work by looking at all
parts of biological systems and how they interact with each other and form the
complete whole. Systems Biology can be seen as a cycle (see Fig. 5.1) consisting of
the following steps:

* Having a testable hypothesis about a biological system

* Conducting experimental validation of hypothesis

» Capturing and analysis of experimental results (usually ‘omics’ data)

* Gain new insights (data) about a biological system from analysis results
» Refine model about a biological system to derive new hypothesis

This process requires that existing biological knowledge (data) is made available
to support on the one hand the analysis of experimental results and on the other hand
the construction and enrichment of models for Systems Biology.

Effective integration of biological knowledge from databases scattered around
the internet and other information resources (e.g. experimental data) is recognised as
a prerequisite for many aspects of Systems Biology research and has been shown to
be advantageous in a wide range of use cases such as the analysis and interpretation
of ‘omics’ data [2], biomarker discovery [3] and the analysis of metabolic pathways
for drug discovery [4]. However, systems for data integration have to overcome
several challenges. For example, biological data sources may contain similar or
overlapping coverage, and the user of such systems is faced with the challenge of
generating a consensus data set or selecting the ‘best’ data source. Furthermore,
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Fig. 5.1 Systems Biology cycle of experiment, analysis, insights, model and hypothesis together
with requirements for large data for analysis of experimental results and model development
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there are many technical challenges to data integration, like different access methods
to databases, different data formats, different naming conventions and erroneous or
missing data.

To address these challenges and enable effective integration of data in support
of Systems Biology research, the Ondex system [2, 5-7] which is presented in
this chapter was created. The Ondex system provides an integrated view across
biological data sources with the aim to enable the user to gain a better understanding
of biology from integrated knowledge. Ondex has been supported by BBSRC (http://
www.bbsrc.ac.uk/) as part of the systems approaches to biological research initiative
(SABR) and is now mainly being developed at Rothamsted Research, Manchester
University and Newcastle University. The first Ondex prototype was developed at
University of Bielefeld.

This book chapter is a summary and extension to previous work published in
[6, 8]. It adds a new dimension to previous work by presenting integration results
across time and using Homo sapiens as selected organism for metabolic pathway
resources. We will start out by surveying different life-science data integration
systems. This overview is followed by establishing a selection of challenges data
integration systems are faced with and dissecting how well current systems are
dealing with them. We then give a brief motivation and introduction for the Ondex
system. This is followed by presenting data integration and transformation methods
motivated by the stated challenges. The performance of the data integration methods
is then quantitatively evaluated in two different situations: the integration and
analysis of different metabolic pathways resources and the mapping of equivalent
elements between the Gene Ontology and a nomenclature describing enzyme
function. A brief discussion is given at the end of this book chapter.

5.1.1 Survey of Current Data Integration Systems

Several data integration systems for use in biology and related domains are in
use today. Some of them use a generic approach to answer a wide range of
biological questions. Others are more limited in their scope and application domain.
These systems are based on principles such as link integration and hypertext
navigation, data warehouses, view integration and mediator systems, workflows and
mashups [9].

Software tools that solve aspects of the data integration problem are being devel-
oped for some time. The early approaches, which produced popular software such as
SRS [10], use indexing methods to link documents or database entries from different
databases and provide a range of text and sequence-based search and retrieval
methods for users to assemble related data sets. The methods used by SRS (and
related tools) address what has been described as the technical integration challenge.

More recently, data integration approaches are developed that ‘drill down’ into
the data and seek to link objects at a more detailed level of description. Many of
these approaches exploit the intuitively attractive representation of data as graphs


http://www.bbsrc.ac.uk/
http://www.bbsrc.ac.uk/

134 J. Taubert and J. Kohler

or networks with nodes representing things and edges representing how they are
related. For example, a metabolic pathway could be represented by a set of nodes
identifying the metabolites linked by edges representing enzymatic reactions. Data
integration systems that exploit graph-based methods include PathSys [11] or
BN++ [12] and the Ondex system [13]. Both BN++ and Ondex are available
as open source software.

The Visual Knowledge and BioCAD [14] software tools provide good examples
for how semantic networks can be used for representing biological knowledge. The
definition of the integration data structure of Ondex has been inspired by this use of
semantic networks in the biology domain.

Biozon [15] is a data warehouse which includes additional derived information,
such as sequence similarity or function prediction, between data entries. STRING
[16] shows that multiple information sources can be combined to provide evidence
for the relationship between proteins. Similar to Biozon and STRING, Ondex
facilitates the information fusion of other derived information between data entities.
Such information has been successfully used to improve genome annotation of
Arabidopsis thaliana in a use case of Ondex [17].

BNDB with BN++ is the most similar system to Ondex in terms of system
design and methodology. The NeAT [18] toolkit highlights how graph analysis
applied to biological networks can help to reveal new insights. Furthermore it is
a good example of providing such functionality via a web page.

Concluding from the presented systems and common practice in Systems Biol-
ogy [5, 19], the representation of biological data as graphs or networks is a preferred
choice. The complexity of the graphs or networks varies from tool to tool, for
example, NeAT works with simple node and edge lists, whereas BNDB/BN++ and
Ondex use a semantic-enriched graph model. Some tools like Biozon or STRING
focus on aspects of providing a ready integrated knowledge base to the users. On
the other hand, tools like Ondex, BNDB/BN++ or PathSys provide the user with
means to assemble integrated data sets on his/her own. Visual Knowledge/BioCAD
or NeAT emphasise on the biological pathways and networks analysis.

Graphical user interaction is realised in a variety of ways. Knowledge base-
focused projects like Biozon or STRING tend to use a web-based interface backed
by a relational database. Other data integration toolkits like BNDB/BN++ or
Ondex offer a database driven backend with a dedicated front-end application and
possible web service-based access. NeAT or Visual Knowledge/BioCAD loads and
integrates data in an ad hoc way as part of their analysis workflows.

5.1.2 Challenges for Data Integration

Biological knowledge such as protein interactions (Fig. 5.2a), metabolic pathways
(Fig. 5.2b) or biological ontologies (Fig. 5.2¢) can be interpreted or understood
as a network or graph. Biological databases are, however, usually implemented
using table centric data structures, which do not readily allow the utilisation of
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Fig. 5.2 Examples of biological knowledge as graphs: (a) protein interactions (Reproduced
with permission from Jeong et al. [20] © Macmillan Magazines Ltd.), (b) metabolic pathways
(Reprinted from Ogata et al. [21] with permission from Elsevier), (c¢) biological ontologies
(Reprinted from Zhu et al. [22] under CC BY 2.0 licence © BioMed Central Ltd)



136 J. Taubert and J. Kohler

Table 5.1 Summarising outlined challenges for data integration systems

Challenge Summary

First challenge Representing biological data intuitively as a graph or network

Second challenge  Overcoming the syntactic and semantic heterogeneities between data sources
Third challenge Provide a semantical consistent view on integrated information

Fourth challenge ~ Keep track of provenance during integration process

Fifth challenge Domain-independent approach to data integration

Sixth challenge Create a robust, usable and maintainable framework for data integration

graph analysis methods. Ondex uses a graph-based data structure which has been
developed with an emphasis on providing integration of knowledge necessary for
Systems Biology. Such a graph-based data structure should allow for the integration
of heterogeneous data into a semantically consistent graph model and therefore
support graph-based analysis algorithms and visualisation.

Biological data integration has to face the two problems of syntactic and semantic
heterogeneity [23]. Syntactic heterogeneity is given by data being presented in
different formats or as free text, containing spelling mistakes, wrong formatting or
even missing data. Semantic heterogeneity is present in the different interpretations
of data formats, symbols and names:

* Ambiguity of synonyms (exact/related), for example, Na(+)/K(+)-ATPase vs.
just ATPase.

e Domain dependence of synonyms, for example, gene names in different
organisms.

 Silent errors, like a typo in ENZYME Nomenclature is still valid entry (1.1.1.1
vs. 1.1.1.11).

* Unification references to other data sources can be ambiguous, for example,
references to multiple splicing variants of a gene assigned to a protein.

* What is a gene, what is a protein and what is a transcript? Biological meaning is
subject to interpretation and might vary.

To overcome syntactic and semantic heterogeneity in the data sources, knowl-
edge modelling has to be adaptable for the respective domain of knowledge so
that heterogeneous data sources can be transformed into a semantical consistent
view. During this process it may be necessary to identify equivalent or redundant
information in the data. Novel integration methods will have to be introduced to
address this need. To establish trust in the integrated data, it is necessary to keep
track of provenance during the whole data integration process.

Although this work has been mainly motivated by data from the life sciences,
data integration is challenging in other data intensive sciences too. The integration
methods should address this by being mostly domain independent. An example of
a different application domain would be social networks. The methods presented
in this chapter have been implemented as the core of the Ondex framework [2, 5].
One key aspect of the work on Ondex is to create a robust, usable and maintainable
framework for data integration (Table 5.1).
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Table 5.2 Challenges addressed by previous and current work

Second:
First: data  addressing Third: Sixth: robust,
intuitively ~ syntactic and semantical Fourth: Fifth: usable,
as graph or semantic consistent track domain maintainable
network conflicts view provenance independent framework
Visual Yes No Yes No No Yes
Knowledge
and BioCAD
Biozon No No Yes Yes No Yes
BNDB/BN++  Yes Partially Yes No Yes Yes
STRING Yes No Yes Yes No Yes
NeAT Yes No No No Yes No

5.1.3 Comparison with Related Work

None of the previous presented data integration systems do address all the above-
mentioned challenges as shown in Table 5.2.

The most important aspect not completely addressed by previous or related
work is the second challenge of addressing syntactic and semantic heterogeneities
between data sources in a systematic way. Knowledge base systems like STRING
or Biozon use their own predefined database schema and load data from other data
sources into this schema. During this process the mapping of source data to data
objects in the system is hardwired and difficult to change. Overlapping or conflicting
data between data sources usually does not get resolved. More complex systems like
BNDB/BN-++ provide adapters or parsers for different data sources and let the user
of the system decide which selection of data source to integrate. Systems like NeAT
or Visual Knowledge/BioCAD rely on the data to be in the correct format involving
a larger amount of manual curation and work to be done upfront.

5.2 Motivation

Software designed for data integration in the life sciences has to address two
classes of problem. It must provide a general solution to the technical (syntactic)
heterogeneity, which arises from the different data formats, access methods and
protocols used by different databases. More significantly, it must address the
semantic heterogeneities arising from a number of sources in life-science databases.
The most challenging source of semantic heterogeneity comes from the diversity
and inconsistency among naming conventions for genes, gene functions, biological
processes and structures among different species (or even within species). In
recent years, significant progress in documenting the semantic equivalence of
terms used in the naming of biological concepts and parts has been made in the
development of a range of biological ontology databases which are coordinated
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Fig. 5.3 Data integration in Ondex consists of three steps: (1) import and conversion of data
sources into the data structure of Ondex (Data Input, left), (2) linking of equivalent or related
entities of the different data sources and transformation into a semantical consistent graph
(Transformation & Integration, middle), (3) knowledge extraction using the front-end application
or web interface (Visualisation & Analysis, right)

under the umbrella of organisations such as the Open Biomedical Ontologies
Foundry (http://www.obofoundry.org). However, the majority of biological terms
still remain uncharacterised and therefore require automated methods to define
equivalence relationships between them.

The integration of data in Ondex generally follows three conceptual stages as
illustrated in Fig. 5.3: (1) normalising into the Ondex data structure in order to
overcome predominantly technical heterogeneities between data exchange formats,
(2) identifying equivalent and related entities among the imported data to overcome
semantic heterogeneities at the entry level and (3) the data analysis, information
filtering and knowledge extraction.

In order to make the Ondex system as extensible as possible, the second
stage (middle bottom part in Fig. 5.3) has been separated both conceptually and
practically. The motivations for doing this are to preserve original relationships and
metadata from the original data source, make this integration step easily extensible
with new methods, implement multiple methods for recognising equivalent data
concepts to enhance the quality of integrated data and support reasoning methods
that make use of the information generated in this step to improve the quality of
integrated data.

The hypothesis here is that multiple methods for semantic data integration are
necessary because of ambiguities and inconsistencies in the source data that will
require different treatment depending on the source databases. In many cases, exact
linking between concepts through unique names will not always be possible and
therefore mappings will need to be made using inexact methods. Unless these inex-
act methods can be used reliably, the quality of the integrated data will be degraded.
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To calibrate the presented data integration methods with well-structured data, the
mapping of equivalent elements from the ontologies and nomenclatures extracted
from the ENZYME [24] and GO [25] databases is used. To evaluate mapping
methods in a more challenging integration task, the creation of an integrated
data set from two important biological pathway resources, the Reactome [26] and
HumanCyc [27] databases, is presented.

5.3 Methods

5.3.1 Data Import and Export

Following Fig. 5.3, the first step loads and indexes data from different sources.
Ondex provides several options for loading data into the internal data warehouse,
and a range of parsers have been written for commonly used data sources and
exchange formats. In addition users can convert their data into an Ondex-specific
XML or RDF dialect for which generic parsers are provided.

The role of all parsers is to load data from different data sources into the data
structure used in the Ondex framework. In simple terms, this data structure can
be seen as a graph, in which concepts are the nodes and relations are the edges.
By analogy with the use of ontologies for knowledge representation in computer
science, concepts are used to represent real-world objects [28]. Relations are used
to represent the different ways in which concepts are connected to each other.
Furthermore, concepts and relations may have additional properties and optional
characteristics attached to them.

During the import process, names for concepts are lexicographically normalised
by replacing non-alphanumeric characters with white spaces so that only numbers
and letters are kept in the name. In addition, consistency checks are performed to
identify, for example, empty or malformed concept names.

5.3.2 Data Integration Methods and Algorithms

The second step (following Fig. 5.3) links equivalent and related concepts and
therefore creates relations between concepts from different data sources. Different
combinations of mapping methods can be used to create links between equivalent
or related concepts. Rather than immediately merging elements that are found to be
equivalent, the mapping methods create a new equivalence relation between such
concepts. After enough trust has been established in the results of the mapping
methods by inspecting of these equivalence relations, then the information on
similar elements can be fused, which is also known as molecular information
fusion.



140 J. Taubert and J. Kohler

Each mapping method can be configured to create a score value reflecting the
belief in a particular mapping and information about the parameters used. These
scores are assigned as edge weights to the graph and form the foundation for the
statistical analysis presented later. Additionally information on edges enables the
user to track evidence for why two concepts were mapped by a particular mapping
method.

Several constraints must be fulfilled before a mapping method creates a new
link between two concepts. Under the assumption that the integrated data sources
already contain all appropriate links between their own entries, new links are only
created between different data sources. Biological databases often provide an NCBI
taxonomy identifier for species information associated with their entries. If such
identifiers are found in the graph, the mapping method ensures, in most cases, that
relations are only created within the same species. In addition to species restriction,
a mapping method takes the concept class of a concept into account. Only equal
concept classes or specialisations of a concept class are considered to be included
in a mapping pair.

5.3.2.1 Accession-Based Mapping

Most of the well-structured and managed public repositories of life-science data use
accession coding systems to uniquely identify individual database entries. These
codes are persistent over database versions. Cross references between databases of
obviously related data (e.g. protein and DNA sequences) can generally be found
using accession codes, and these can be easily exploited to link related concepts.
Such concept accessions may not always present a one-to-one relationship between
entries of different databases. For example, a GenBank accession found in the
HumanCyc database is only unique for the coding region on the genome and not
for the expressed proteins, which may exist in multiple splice variants. References
presenting one-to-many relationships are call ambiguous. Concept accessions are
indexed for better performance during information retrieval. Accession-based map-
ping by default uses only non-ambiguous concept accessions to create links between
equivalent concepts, i.e. concepts that share the same references to other databases
in a one-to-one relationship. This behaviour can be changed using a parameter.

Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and
a set of relations R(O) € C(0) x C(0O). Every concept ¢ € C(0O) has a concept class
cc(c) € CC(0), adata source identifier ds(c) € DS(O) and a list of concept accessions
ca(c) ={(cai x ... x cay)|caj € CA(O)}. Each concept accession ca € CA(O) is a
triple ca = (ds,acc,ambiguous), where ds is the identifier of the data source from
which the accession code acc is derived and ambiguous is either true or false. The
bijective function id assigns a consecutive number n € N to concepts and relations
in O separately starting with 1.
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ignore <« true or false (default)
function AccessionBasedMapping (O, ignore) {
for all i€ [1..|Cc(0)|] do
for allje[i..|C(0)|] do
if dxe€cal(c;) Ax€ecalcy) A(—x. ambiguousVignore) do
if ds(c;) #ds(cj) Acc(ci) =cc(cj) do
O.createRelation(c;, cy)

Runtime Analysis

Assuming that the test if the two lists ca(c;) and ca(c;) have at least one concept
accession in common takes linear time with respect to the length of the lists, for
example, by using hashing strategies or ordered lists, and the average number of
concept accessions on concepts is [, then the total runtime of accession-based
mapping is T(n) = 1 (n® +n) * peq € O (n*) where n is the number of concepts
in the Ondex data structure.

5.3.2.2 Synonym Mapping

Entries in biological data sources often have one or more human-readable names,
for example, gene names. Depending on the data source, some of these names
will be exact synonyms such as the chemical name of a metabolite; others only
related synonyms such as a general term for enzymatic function. Exact synonyms
are especially flagged during the import process. Related synonyms are added to
concepts as additional concept names. Concept names are preprocessed to strip all
non-letter characters and stem special word cases before inserting them into the
full-text index. Concept names are indexed for better performance and potentially
fuzzy searches during information retrieval using the Apache Lucene (http://lucene.
apache.org/) full-text indexing system. Fuzzy searches as supported by Lucene can
be useful to overcome spelling mistakes, for example, PKM2 might be written as
PK-M2 [29]. The default method for synonym mapping creates a link between two
concepts if two or more concept names are matching (bidirectional best hits) to be
able to cope with ambiguity of names. As a simple example of such ambiguity, the
term ‘mouse’ shows that consideration of only one synonym is usually not enough
for the disambiguation of the word, i.e. ‘mouse’ can mean computer mouse or the
rodent Mus musculus. The threshold for the number of synonyms to be considered
a match and an option to use only exact synonyms are parameters in the synonym
mapping method.
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Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and a
set of relations R(O) C C(0O) x C(0O). Every concept ¢ € C(O) has a concept class
cc(c) € CC(0), a data source identifier ds(c) € DS(O) and a list of concept names
cn(c) ={(cny x ... x cn,)|cn; € CN(O)}. Each concept name cn € CN(O) is a tuple
cn = (name, exact), where name is the actual name of the concept and exact is
either true or false. The bijective function id assigns a consecutive number n € N
to concepts and relations in O separately starting with 1.

num < 1..N(default: 2)
exact <« true (default) or false
function SynonymMapping (O, num, exact) {

for all ie[1..|C(0)|] do

for allje[i..|C(0O)|] do

len(ci) N en(c;)| = numA

3 xe cn ()N cn (cj)|x. exact v — exact)
if ds(c;) #ds(cj) Acc(c;) =cc(cy) do
O.createRelation(c;, cy)

if

Runtime Analysis

Assuming that the intersection of cn(c;) and cn(c;) can be found in linear time with
respect to the size of the lists by using hashing strategies or ordered lists and the
average number of concept names per concept is [, then the total runtime of
synonym mapping is 7'(n) = 3 (n? + n) * fies € O (n?) where n is the number
of concepts in the Ondex data structure.

5.3.2.3 StructAlign Mapping

In some cases, two or more synonyms for a concept are not available in the data to
be integrated. To disambiguate the meaning of a synonym shared by two concepts,
the StructAlign mapping algorithm considers the graph neighbourhood of such
concepts. A breadth-first search for a given depth (>1) starting at each of the two
concepts under consideration yields the respective reachability list for each concept.
StructAlign processes these reachability lists and searches for synonym matches of
concepts at each depth of the graph neighbourhood. If at any depth one or more pairs
of concepts which share synonyms are found, StructAlign creates a link between the
two concepts under consideration.



5 Molecular Information Fusion in Ondex 143

Pseudocode

Let O denote the Ondex data structure consisting of a set of concepts C(O) and
a set of relations R(O) C C(0O) x C(0). Every concept c € C(O) has two additional
attributes assigned: (a) a concept class cc(c) € CC(O) characterising the type of real-
world entity represented by the concept (e.g. a gene) and (b) a data source identifier
ds(c) € DS(O) stating the data source (e.g. HumanCyc) the concept was extracted
from. Every relation » € R(O) is a tuple r = (f, ¢) with f the ‘from’-concept and ¢
the ‘to’-concept of the relation. To improve performance the algorithm is making
use of indexing structures for concept names and the unique identifier returned by
the bijective function id which assigns a consecutive number n € N to concepts and
relations in O separately starting with 1.

index <- searchable index of concept names for concepts
cutoff < maximal depth of graph neighbourhood search
function StructAlign (O, index, cutoff) {
matches <- new map of concepts to sets of concepts
// search for concept name hits
for all ceC(0) do
for all necn(c)|n. exact do
hits <« index.search (n.name)
for allc ehits with ds(c) #ds(c’)Acc(c) =cc(c) do
matches [c] .add (c’)

connectivity<-new map of concepts to sets of concept
// calculate direct neighbourhood
for all reR(0) with r= (f,t) do
if ds(f) =ds(t)Af#t do
connectivity[f] .add (t)
connectivity[t] .add (f)
reachability < clone (connectivity)
// modified breadth first search with depth cutoff
for all i€ [1l.. cutoff] do
for all (x, (y1...¥a)) €reachability do
for all je[l..n] do
reachability[x] .addAll (connectivity[yil)
// look at neighbourhood of bidirectional matches
for all (a, (by...by)), (bi, (c1 ... cp)) €Ematches|ac
(cp ... cp) do
na < reachability[al
nb <« reachability [b;]
for all xena do
if dyematches[x]|y € nbdo
O.createRelation (a,b;)
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Runtime Analysis

Assuming the search for a concept name in the list of concept names takes
logarithmic time with respect to the length of the list (e.g. using a self-balancing
binary search tree [30]) and operations to manipulate maps and sets take constant
time using hashing strategies, the runtime analysis is: Let ¢ be the number of
concepts, [, the average number of concept names associated with a concept, r
be the number of relations, u, the average number of relations per concept in the
Ondex data structure and A a time constant for operations on maps and sets. The
worst-case runtime of the StructAlign algorithm is then:

1. Search for concept name matches
Ti(c,r) = ¢ % ey *log(c * fey) k¢ % A
2. Calculation of direct neighbourhood
Tr(c,r)=r=2x%xA
3. Modified breadth-first search with depth cut-off
T;5 (c,r) = cutoff x ¢ * Uy x A
4. Finding bidirectional matches in neighbourhood, log(c) search time for 3y

T4(c,r)=c2*c*A
T(c,r)=T1+T2+T3+T4
T (c,r)=c* ey xlog(c * tep) kcx A4+r1rx2% A

+cutoff x ¢ x y * A+c*xcx A

Within a fully connected graph, the number of relations is r = c « (¢ — 1)/2 and
ur=c—1.

T(c) = C*,chn*10g(C*p,C,,)*c2+c*(C_1) ‘A
+ cutoff xc % (c — 1)+ c**xc¢

T(c) = (c? * pen * 10g (¢ * fen) + (1 + cutoff) * ¢ * (c — 1) + ¢*) x A
T(c) € O (c?)



5 Molecular Information Fusion in Ondex 145
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Here the average number of concept names per concept is [, < ¢. Hence the
algorithm has a worst-case runtime of O(c?). Although the expected runtime on
sparse graphs is O(c?) as the number of neighbours reachable for a certain depth in
a sparse graph is much smaller than the number of total concepts in the graph.

Worked Example for StructAlign

Figure 5.4 shows a simple example graph of metabolites (circles) and enzymes
(rectangles) originating from two data sources DB1 (left) and DB2 (right). All
concepts except for concept 2 have two synonyms (exact one listed first). The
‘consumes’ relation (vertical arrows) is present in both data sources DB1 and DB2.

StructAlign starts to consider the first pair of concepts, here concepts 1 and
3, which share at least one exact synonym (H+/K4ATPase) and are of the same
concept class (enzyme). The reachability list of concept 1 includes concept 2 and
the reachability list of concept 3 includes concept 4. The undirected breadth-first
search of StructAlign will find concepts 2 and 4 both being present at depth 1. As
concepts 2 and 4 share at least one exact synonym (ATP) and are of the same concept
class (metabolite), StructAlign collected enough evidence to create a new relation
(horizontal arrows) between concepts 1 and 3. In the next step, StructAlign proceeds
to the next pair of concepts 2 and 4 between DB1 and DB2, which share at least one
exact synonym and will map them as being equivalent (horizontal arrows) because
of the name match present between concepts 1 and 3.
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5.3.2.4 Other Data Integration Methods

In addition to the mapping methods presented afore and evaluated in this study,
the following selection of mapping methods shows how other information can be
incorporated to deduce new relationships between concepts. This functionality is
similar to that seen in Biozon [15]. A more complete list of data integration methods
can be found on the Ondex web page (http://www.ondex.org).

Transitive Mapping

Transitive relationships between concepts are inferred from existing relations. For
example, if concept A is identified to be equivalent to concept B and concept B is
known to be equivalent to concept C, then a new equivalent relationship between
concept A and concept C is created by this mapping method.

Sequence Similarity Mapping

The computation of the similarity of gene or protein sequences is achieved by
exporting the sequence data into a FASTA [31] file and performing the matching
using BLAST [32] or TimeLogic Decypher (http://www.timelogic.com). The results
are used to create relations between concepts representing the genes or proteins. The
BLAST bit score and e-Value is assigned as attributes on these relations.

External2go Mapping

The GO consortium provides reference lists of GO terms that map terms to other
classification systems, for example, EC [24] enzymes or PFAM domains. The
external2go mapping parses these lists and creates relations between entries of the
GO database and entries of the other classification system.

These few examples together with the methods listed on the web page illustrate
the wide range of information which is utilised by mapping methods in Ondex
including simple name matches, sequence similarity search, orthology prediction,
graph-pattern matching and even complex text mining-based information retrieval.
Furthermore it is not difficult to add new mapping methods to Ondex.

5.3.3 Data Transformation Methods

After similar or equivalent concepts have been identified by mapping methods, the
relation collapse functionality is used to merge or fuse such clusters of similar
concepts connected by equivalence relations into one single concept. During
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Fig. 5.5 Clustering of concepts, /-2; start new cluster, 3—4; expand existing cluster, 5—-6; merge
two existing clusters

this collapsing process, the molecular information of each original concept gets
transferred onto the newly created fused concept, henceforth called molecular
information fusion.

The collapsing of concepts consists of three main operations:

— Finding cluster of similar concepts
— Creating single collapsed concept
— Removing original concepts

Clustering of concepts, which is illustrated in Fig. 5.5, starts with iteration over
all equivalence relations. For each such relation, it is determined if at least one of
the two concepts connected by this relation is already a member of a cluster. If this
is not the case, the relation and the two concepts are considered as the first element
of a new cluster (steps 1 and 2). If one of the two concepts is already an element of
an existing cluster, then the relation is added to this cluster (steps 3 and 4). If the
two concepts are elements of two different clusters, these clusters are merged (steps
5 and 6).

The algorithm works with four temporary sets: nodes_open, nodes_closed,
edges_open and edges_closed. The ‘open’ sets contain all known elements yet
to explore. The ‘closed’ sets contain all already processed elements. The routine
iterates over all concepts in the Ondex graph. For each concept all its adjacent
relations are explored. If an equivalence relation is found, it is added to the
edges_open set. The concept is then moved to nodes_closed, and the algorithm
proceeds to explore all adjacent concepts of the elements of edges_open and
moves them to edges_closed. In this fashion the algorithm switches between ‘node
exploration’ and ‘edge exploration’ until no further elements to be processed are
found. To avoid visiting elements which have already been analysed again, they
are stored in a binary search tree so that they can be quickly re-identified. Hence
each initial concept of the iteration is checked against this data structure before
processing it.
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The actual collapse process, which is done for every identified cluster of
concepts, consists of the following steps:

* A collapse core node is created in the Ondex graph. If many nodes are collapsed
into a single node, all properties of the collapsed nodes are assigned to the single
representative.

* The edges going to nodes outside the current concept cluster are passed over to
the collapse core node.

» All concepts of the current concept cluster are removed from the Ondex graph.

Runtime Analysis

The ‘contains’ and ‘add’ operations on the set data types in this algorithm have a
runtime of O(log(n)) using tree-based set data types. Let c be the number of the
concepts in the Ondex graph and let ., be the average cluster size. Then the worst-
case runtime of the concept clustering algorithm is

0 = (C * Ueg * 10g (/‘Lcs))

Hence the overall complexity of the algorithm is linear logarithmic.

5.3.4 Evaluation Methods

The mapping algorithms presented here can be configured using different param-
eters. According to the selection of the parameters, these methods yield different
mapping results. To evaluate their behaviour, two different test scenarios were used:
the mapping of equivalent elements in ontologies and the integration and analysis
of metabolic pathways.

The evaluation of a mapping method requires the identification of a reference
data set, sometimes also referred to as a ‘gold standard’, describing the links
that really exist between data and that can be compared with those which are
computed. Unfortunately, it is rare that any objective definition of a ‘gold standard’
can be found when working on biological data sets, and so inevitably most such
evaluations require the development of expertly curated data sets. Since these are
time consuming to produce, they generally only cover relatively small data subsets,
and therefore the evaluation of precision and recall is inevitably somewhat limited.

In the next section, the results of mapping together two ontologies, namely, the
Enzyme Commission (EC) nomenclature [24] and Gene Ontology (GO) [25], are
presented. In this case, the Gene Ontology project provides a manually curated
mapping to the ENZYME Nomenclature called ec2go. Therefore, ec2go has been
selected as the first gold standard. The cross references between the two ontologies
contained in the integrated data were also considered as the second gold standard
for this scenario.
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The following section also presents the results from the evaluation of a mapping
created between the two metabolic pathway databases Reactome and HumanCyc.
Unfortunately, a manually curated reference set is not available for this scenario.
Therefore, it was necessary to rely on the cross references between the two databases
that can be calculated through accession-based mapping as the nearest equivalent of
a gold standard for this scenario.

5.4 Results

The mapping algorithms were evaluated using the standard measures of precision
(Pr), recall (Re) and F;-score [33]:

tp tp 2 x Pr«xRe

Pr=—2%t  Re=—%*_ F =
' tp+ fp ¢ tp+ fn ! Pr+Re

The accession-based mapping algorithm (Acc) was used with default parameters,
i.e. only using non-ambiguous accessions. This choice has been made to obtain a
‘gold-standard’ through accession-based mapping, i.e. increasing the confidence in
the relations created. When evaluating the synonym mapping (Syn) and StructAlign
(Struct) algorithms, parameters were varied to examine the effect of the number of
synonyms that must match for a mapping to occur. This is indicated by the number
in brackets after the algorithm abbreviation (e.g. Struct(1)). A second variant of each
algorithm in which related synonyms of concepts were used to find a mapping was
also evaluated. The use of this algorithmic variant is indicated by an asterisk suffix
on the algorithm abbreviation (e.g. Syn(1)*).

5.4.1 Mapping Methods: ENZYME Nomenclature
vs. Gene Ontology

The goal of this evaluation was to maximise the projection of the Enzyme
Commission (EC) nomenclature onto the Gene Ontology. This would assign every
EC term one or more GO terms. This evaluation has been carried out twice, once in
January 2008 and a second time in the January 2013. The comparison of both results
highlights the improvements made to the mapping between the two ontologies
during this period.

For the first evaluation in 2008, ec2go (revision 1.67, downloaded 2008/01/21)
and gene_ontology_edit.obo (revision 5.661, downloaded 2008/01/21) obtained
from ftp://ftp.geneontology.org were used. Additionally enzclass.txt (last update
2007/06/19) and enzyme.dat (release of 2008/01/15) were downloaded from ftp://
ftp.expasy.org.
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Table 5.3 Mapping results for ENZYME Nomenclature to Gene Ontology in 2008

TP, FP TP, FP Pr, Re [%] Pr, Re [%] Fi-score F;-score
Method ec2go Acc ec2go Acc ec2go Acc
Ec2go 8063, 0 8049, 14 100.00, 100.00  99.83, 84.82 100.00 91.71
Acc 8049, 1441 9490, 0 84.82, 99.83 100.00, 100.00  91.71 100.00

Syn(1) 7460, 934 7462, 932 88.87,92.52 88.90, 78.63 90.66 83.45
Syn(1)* 7605, 2581 7606, 2580  74.66, 94.32 74.67, 80.15 83.35 77.31
Syn(2)* 4734,374 4738, 370 92.68, 58.71 92.76, 49.93 71.89 64.91
Syn(3)* 2815, 117 2816, 116 96.01, 34.91 96.04, 29.67 51.21 45.34
Struct(1) 1707, 63 1712, 58 96.44, 21.17 96.72, 18.04 34.72 30.41
Struct(1)* 1761, 279 1766, 274 86.32,21.84 86.57, 18.61 34.86 30.63
Struct(2) 7460, 934 7462, 932 88.87,92.52 88.90, 78.63 90.66 83.45
Struct(2)* 7605, 2581 7606, 2580  74.66, 94.32 74.67, 80.15 83.35 77.31
Struct(3) 7460, 934 7462, 932 88.87,92.52 88.90, 78.63 90.66 83.45
Struct(3)* 7605, 2581 7606, 2580  74.66, 94.32 74.67, 80.15 83.35 77.31

Ec2go imported mapping list (Ist gold standard), Acc accession-based mapping (2nd gold
standard), Syn synonym mapping, Struct StructAlign, * allow related synonyms, TP true positives,
FP false positives, Pr precision, Re recall, F;-score. Synonym mapping was parameterised with
a number that states how many of the names had to match to create a link between concepts.
StructAlign was parameterised with the depth of the graph neighbourhood

For the second evaluation in 2013, ec2go (revision 1.487, downloaded
2012/12/22) and gene_ontology _edit.obo (daily built, downloaded 2012/12/22) have
been retrieved, together with enzclass.txt (release of 2012/11/28) and enzyme.dat
(release of 2012/11/28).

The data files were parsed into the Ondex data structure and the mapping
algorithms applied using the Ondex pipeline. To determine the optimal parameters
for this particular application case, different combination of the mapping algorithms
with the variants and parameter options as described above have been systematically
tested. Table 5.3 summarises the mapping results and compares the performances
with the ‘gold standards’ data sets from ec2go and by accession mapping (Acc)
generated during our analysis in 2008. Table 5.4 shows the same information for
analysis results produced in 2013.

The first two rows of Tables 5.3 and 5.4 show the performance of the ‘gold
standard’ methods tested against themselves. As can be seen by reviewing the Fi-
scores in the subsequent rows of Tables 5.3 and 5.4, the most accurate synonym
mapping requires the use of just one synonym. It does not help to search for
further related synonyms (Syn(1,2,3)*). The explanation for this is that the EC
nomenclature does not distinguish between exact and related synonyms. Therefore,
concepts belonging to the EC nomenclature have only one preferred concept name
(exact synonym) arbitrarily chosen to be the first synonym listed in the original data
sources. A large number of entries in the EC nomenclature only have one synonym
described, which explains the low recall of Syn(2)* and Syn(3)*.

The use of the more complex StructAlign algorithm, which uses the local graph
topology to identify related concepts, has low recall when only a single synonym is
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Table 5.4 Mapping results for ENZYME Nomenclature to Gene Ontology in 2013

TP, FP TP, FP Pr, Re [%] Pr, Re [%] Fi-score F;-score
Method ec2go Acc ec2go Acc ec2go Acc
Ec2go 8120, 0 8117, 3 100.00, 100.00  99.96, 77.57  100.00 87.35
Acc 8117,2347 10464, 0 77.57,99.96  100.00, 100.00  87.35 100.00

Syn(1) 6954, 498 7024, 428 93.32, 85.64 94.26, 67.13 89.31 78.41
Syn(1)* 7413,2181  7538,2056  77.27,91.29 78.57,72.04 83.70 75.16
Syn(2)* 4673, 537 4748, 462 89.69, 57.55 91.13, 45.37 70.11 60.58
Syn(3)* 2841, 189 2886, 144 93.76, 34.99 95.25, 27.58 50.96 42.77
Struct(l) 1449, 77 1466, 60 94.95, 17.84 96.07, 14.01 30.04 24.45
Struct(1)* 1541, 293 1562, 272 84.02, 18.98 85.17, 14.93 30.96 25.40
Struct(2) 7041, 605 7116, 530 92.09, 86.71 93.07, 68.00 89.32 78.59
Struct(2)*  7413,2273  7538,2148  76.53,91.29 77.82,72.04 83.26 74.82
Struct(3) 7041, 605 7116, 530 92.09, 86.71 93.07, 68.00 89.32 78.59
Struct(3)*  7413,2273  7538,2148  76.53,91.29 77.82,72.04 83.26 74.82

Ec2go imported mapping list (Ist gold standard), Acc accession-based mapping (2nd gold
standard), Syn synonym mapping, Struct StructAlign, * allow related synonyms, TP true positives,
FP false positives, Pr precision, Re recall, F;-score. Synonym mapping was parameterised with
a number that states how many of the names had to match to create a link between concepts.
StructAlign was parameterised with the depth of the graph neighbourhood

required to match and a depth cut-off of 1 is used (Struct(1) and Struct(1)*). This
almost certainly results from differences in graph topology between EC nomencla-
ture and Gene Ontology. The Gene Ontology has a more granular hierarchy, i.e.
there is more than one hierarchy level between two GO terms mapped to EC terms,
whereas the EC terms are only one hierarchy level apart. As the StructAlign depth
cut-off search parameters are increased, more of the graph context is explored and
accordingly the F;-scores improved.

Across both tables, the highest F;-scores come from Syn(1), Struct(2) and
Struct(3), respectively. Including the related synonyms into the search (the *
algorithm variants) did not improve precision. Neither did extending the graph
neighbourhood search depth from Struct(2) to Struct(3) as all the neighbourhood
matches had already been found within search depth 2.

During the integration of data from these data sets for this evaluation in
2008, some inconsistencies in the ec2go mapping list have been observed. The
identification of such data quality issues is often a useful side effect of developing
integrated data sets. The inconsistencies identified are listed in Table 5.5 and were
revealed during the import of the ec2go data file after preloading the Gene Ontology
and EC nomenclature into Ondex.

Presumably most of the problems are due to the previously disjoint development
of both ontologies, i.e. GO references that were transferred or EC entries being
deleted or vice versa. A few of the inconsistencies were possible typo errors. It
remains a possibility that other ‘silent’ inconsistencies are still in ec2go that these
integration methods would not find.
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Table 5.5 Inconsistencies in ec2go in 2008

Accession Mapping Reason for failure

GO:0016654  1.6.4.- Enzyme class does not exist, transferred entries
GO:0019110  1.18.99.- Enzyme class does not exist, transferred entries
GO:0018514  1.3.1.61 Enzyme class does not exist, deleted entry
2.74.21 GO0:0050517 GO term obsolete

GO:0047210 2.4.1.112 Enzyme class does not exist, deleted entry
1.1.1.146 GO0:0033237 GO term obsolete

GO:0016777  2.7.5.- Enzyme class does not exist, transferred entries
GO:0004712  2.7.112.1 Enzyme class does not exist, possible typo
2.7.1.151 GO:0050516 GO term obsolete

Every inconsistency was checked by hand against gene_ontology_edit.obo, enz-
class.txt and enzyme.dat

A more recent analysis of data files used in 2013 revealed that the above
presented inconsistencies have been corrected. The only inconsistencies identified
in the newer data were:

* 1.3.5.6 to GO:0052889 (GO term is biological process, not molecular function)
e 2.5.1.46 to GO:0050983 (GO term is biological process, not molecular function)
e 2.1.1.35 to GO:0009021 (GO term obsolete)

5.4.2 Mapping Methods: Reactome vs. HumanCyc

The Reactome and HumanCyc pathway resources are both valuable for biologists
interested in metabolic pathway analysis. Due to the different philosophies behind
these two databases [34], however, they do have differences in their contents.
Biomedical scientists wishing to work with biochemical pathway information would
therefore benefit from a combined view of Reactome and HumanCyc and so this
makes a realistic test. These two databases were chosen for this evaluation, because
both pathway databases annotate metabolites and proteins in the pathways with stan-
dardised ChEBI [35] and UniProt [36] accessions, respectively. It is therefore pos-
sible to evaluate the precision, recall and F;-score of the different mapping methods
using accession-based mapping between these accession codes as a ‘gold standard’.

For this evaluation the BioPAX [37] representations of the Reactome database
(release 43 from 2012/12/10) obtained from http://www.reactome.org/download
and the HumanCyc database (release 16.5 from 2012/11/06) obtained from http://
humancyc.org/download.shtml were used. The Reactome database contained 1,387
metabolites and 4,650 proteins. The HumanCyc database contained 1,983 metabo-
lites and 2,690 proteins. The evaluation results from the mapping between metabo-
lites from these two databases are summarised in Table 5.6.

Accession-based mapping between metabolites found 856 out of 1,387 possible
mappings. A closer look reveals that ChEBI identifiers are not always assigned
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Table 5.6 Mapping results od
for Reactome and HumanCyc Metho TP FP Pr{%] Re[%] F-score

databases — metabolites Acc 856 0 100.00 100.00 100.00
Syn(1) 218 530 29.14 25.47 27.18
Syn(1)* 468 1598 22.65 54.67 32.03
Syn(2)* 144 420 25.53 16.82 20.28
Syn(3)* 40 184 17.86 4.67 7.41
Struct(2) 238 606 28.20 27.80 28.00
Struct(2)* 430 1506 22.21 50.23 30.80
Struct(3) 238 606 28.20 27.80 28.00
Struct(3)* 430 1506 22.21 50.23 30.80

Acc accession-based mapping (gold standard), Syn synonym
mapping, Struct StructAlign, * allow related synonyms, TP
true positives, FP false positives, Pr precision, Re recall, F1-
score. Synonym mapping was parameterised with a number
that states how many of the names had to match to create a
link between concepts. StructAlign was parameterised with
the depth of the graph neighbourhood

Table 5.7 Mapping results

Method TP FP Pr [% Re [% Fi-
for Reactome and HumanCyc Sl r %] ¢ [%] 50

databases — proteins Acc 2826 0 100.00 100.00  100.00
Syn(1) 10 28 2632 035 070
Syn(1)* 514 226 69.46 1819  28.83
Syn(2)* 14 0 10000 050  0.99
Struct(2) 46 36 5610  1.63 3.6
Stuct(2)* 288 112 7200  10.19  17.85
Struct(3) 46 36 5610  1.63  3.16

Struct(3)* 288 112 72.00 10.19 17.85

Acc accession-based mapping (gold standard), Syn synonym
mapping, Struct StructAlign, * allow related synonyms, TP
true positives, FP false positives, Pr precision, Re recall, F1-
score. Synonym mapping was parameterised with a number
that states how many of the names had to match to create a
link between concepts. StructAlign was parameterised with
the depth of the graph neighbourhood

to metabolite entries, most notably in HumanCyc. Therefore, the accession-based
mapping does miss possible links and cannot be used naively as a gold standard
for this particular application case. In this evaluation, accession-based mapping
underestimates possible mappings, which leads to low precision for synonym
mapping and StructAlign. A random set of the false-positive mappings returned
by Syn(2)* and Struct(3) has been manually reviewed, and this revealed that a large
number of the mappings made sense and metabolites shared very similar chemical
names. Subject to further investigation, this example shows that relying only on
accession-based data for integration might miss out some important links between
data sources.

The evaluation results from the mapping between proteins from Reactome and
HumanCyc are summarised in Table 5.7.
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The accession-based mapping between proteins uses the UniProt accessions
available in both Reactome and HumanCyec. Entries from HumanCyc can be labelled
with two or more UniProt accessions representing multiple proteins involved in the
same enzymatic function, whereas Reactome entries usually only have one UniProt
accession. This results in one-to-many hits between Reactome and HumanCyc
explaining why a total of 2,826 instead of only 2,690 mappings were found. This
is a good example of how the differences in the semantics between biological data
sources make it difficult to define a gold standard for evaluating integration methods.

The key finding from this evaluation based on mapping protein names is that
due to different protein naming conventions in each of the two databases, name-
based mapping methods cannot perform well. Manual inspection of a subset of
false-negative mappings and their protein names reveals that HumanCyc is using
longer names describing enzymatic functions (e.g. cytidine deaminase, cytidine
aminohydrolase), whereas Reactome uses short gene names (e.g. CDA, CDD).

5.4.2.1 Visualising Results

Data integration involving large data sets can create very large networks that
are densely connected. To reduce the complexity of such networks for the user,
information filtering, network analysis and visualisation (see Fig. 5.3, step 3)
are provided in a front-end application for Ondex [2]. The combination of data
integration and graph analysis and visualisation has been shown to be valuable for
a range of data integration projects in different domains, including microarray data
analysis [2], support of scientific database curation [38, 39] and assessing the quality
of terms and definitions in ontologies such as the Gene Ontology [40].

A particularly useful feature in the Ondex front-end is to visualise an overview
of the types of data that have been imported into Ondex. This overview is called
the Ondex meta-graph. It is generated as a network based on the data structure used
in Ondex, which contains a type system for concepts and relations. Concepts are
characterised using a class hierarchy and relations have an associated type. This
information about concept classes and relation types is visualised as a graph with
which the user can interact to specify semantic constraints — such as changing the
visibility of concepts and relations in the visualisation and analysis of the integration
data structure.

As an illustration, the integration of Reactome and HumanCyc for this evaluation
results in more than 61,000 concepts and 113,000 relations. The mapping methods
were run with optimal parameters identified in the previous section. After filtering
down to a specific pathway using methods available in the Ondex front-end, it was
possible to extract information from the integrated data as presented in Fig. 5.6.

Figure 5.6a displays parts of the MAP kinase cascade pathway from HumanCyc
(nodes and edges in black) mapped to the corresponding entries from Reactome
(indicated by bidirectional edges to blue nodes). It is now possible to visualise the
differences between the two integrated pathways. Reactome contains more protein
entities about a specific enzymatic function (e.g. proteins similar to phospho-MEK).
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Fig. 5.6 (a) MAP kinase cascade pathway from HumanCyc with entities from Reactome. Equiv-
alence relations are coloured by method (red = accession, blue = synonym, green = StructAlign)
and thickness by StructAlign score. (b) Meta-graph providing an overview of the integrated data;
node colour and shape distinguish classes; edge colour distinguishes different relation types (color

figure online)
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HumanCyc provides a larger pathway composed of more proteins than the pathway
in Reactome, as the pathway concept maps to two different Reactome entries (stars,
RAF/MAP kinase cascade).

The meta-graph is shown in Fig. 5.6b. This visualisation shows that the integrated
data set consists of pathways (Pathway), reactions (Reaction) which are part of
these pathways, metabolites (Compound) consumed or produced by the reactions,
enzymes (Enzyme) catalysing the reactions and several combinations of proteins
(Protein) and protein complexes (Protein complex) constituting the enzymes. The
meta-graph provides the user with a useful high-level overview of the conceptual
schema for this integrated data.

The last step to complete the molecular information fusion of the data presented
in Fig. 5.6a would be to select the best equivalence relations and use the relation
collapse data transformation to merge similar concept nodes together. To reduce
the number of false-positive mappings, one would choose only such equivalence
relations which are found by a combination of data integration methods (different
edge colours) and at the same time carry a high confidence score (edge thickness)
assigned by the data integration methods.

5.5 Discussion

Alternative methods for creating cross references (mappings) between information
in different but related data sources have been presented. This is an essential com-
ponent in the integration of data having different technical and semantic structures.
Two realistic evaluation cases were used to quantify the performance of a range
of different methods for mapping between the concept names and synonyms used
in these databases. A quantitative evaluation of these methods shows that a graph-
based algorithm (StructAlign) and mapping through synonyms can perform as well
as using accession codes. In the particular application case of linking chemical
compound names between pathway databases, the StructAlign and synonym-
based algorithms outperformed the most direct mapping through accession codes
by identifying more elements that were indirectly linked. Manual inspection of
the false-positive mappings showed that both StructAlign and synonym mapping
methods can be used where accession codes are not available to provide links
between equivalent data source concepts. The combination of all three mapping
methods yields the most complete projection between different data sources. This is
an important result, because it is not always possible to find suitable accession code
systems that provide the direct cross references between databases once you move
outside the closely related data sources that deal with biological sequences and their
functional annotations.

A similar approach to StructAlign called ‘SubTree Match’ has been described
in [41] for aligning ontologies. This work extends this idea into a more general
approach for data integration for biological networks and, furthermore, presents a
formal evaluation in terms of precision and recall.
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A particular challenge in this evaluation has been to identify suitable ‘gold
standard’ data sets against which to assess the success of the algorithms developed.
The results presented here are therefore not definitive, but represent the best
quantitative comparison that could be achieved in the circumstances. Therefore,
these results represent a pragmatic evaluation of the relative performance of the
different approaches to concept name matching for data integration of life-science
data sources.
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WWW Link List (In Order of First Occurrence)

Name of
resource

Brief description

WWW link

Ondex system

Data integration, visualisation and analysis
framework for life-science data

http://www.ondex.org

BBSRC Biotechnology and Biological Sciences http://www.bbsrc.ac.uk
Research Council in the United Kingdom

SRS Sequence Retrieval System for biological data  http://www.instem.com/

solutions/srs.html

PathSys Graph-based system for creating a combined http://biologicalnetworks.net/
database of biological pathways, gene PathSys/
regulatory networks and protein interaction
maps

BN++ and Biological data warehouse combined with http://www.bina.unipax.info/

BiNA biological network analyser

BioCAD Integrated software for biosystem reverse http://biosoft.kaist.ac.kr/
engineering

Biozon Unified biological knowledge resource with http://www.biozon.org
emphasis on protein and DNA
characterisation and classification

STRING Database of known and predicted protein http://string-db.org/
interactions

NeAT Network Analysis Tools http://rsat.bigre.ulb.ac.be/

rsat/index_neat.html

OBO Open Biomedical Ontologies Foundry http://www.obofoundry.org

ENZYME (EC) Nomenclature Committee of the International  http://www.chem.qmul.ac.
Union of Biochemistry and Molecular uk/iubmb/enzyme/

Biology

(continued)
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http://www.instem.com/solutions/srs.html
http://biologicalnetworks.net/PathSys/
http://biologicalnetworks.net/PathSys/
http://www.bina.unipax.info/
http://biosoft.kaist.ac.kr/
http://www.biozon.org
http://string-db.org/
http://rsat.bigre.ulb.ac.be/rsat/index_neat.html
http://rsat.bigre.ulb.ac.be/rsat/index_neat.html
http://www.obofoundry.org
http://www.chem.qmul.ac.uk/iubmb/enzyme/
http://www.chem.qmul.ac.uk/iubmb/enzyme/
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(continued)
Name of
resource Brief description WWW link
GO The Gene Ontology http://www.geneontology.
org/
Reactome Curated knowledgebase of biological pathways http://www.reactome.org
in humans
HumanCyc Encyclopedia of Homo sapiens Genes and http://humancyc.org/
Metabolism
NCBI Taxon- Provides a taxonomy browser, taxonomy http://www.ncbi.nlm.nih.gov/
omy resources and other information taxonomy
GenBank GenBank is the NIH genetic sequence database http://www.ncbi.nlm.nih.gov/
genbank/
Apache Open source full-text indexing system http://lucene.apache.org
Lucene
BLAST The Basic Local Alignment Search Tool http://blast.ncbi.nlm.nih.gov
Decypher Hardware accelerated sequence aligner http://www.timelogic.com
PFAM Large collection of protein families http://pfam.sanger.ac.uk
Ec2go Mapping file from EC to GO http://www.geneontology.
org/external2go/ec2go
ChEBI Chemical Entities of Biological Interest http://www.ebi.ac.uk/chebi
UniProt Universal Protein Resource is a catalog of http://www.uniprot.org
information on proteins
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