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Abstract Biomedical databases are a major resource of knowledge for research in
the life sciences. The biomedical knowledge is stored in a network of thousands of
databases, repositories and ontologies. These data repositories differ substantially in
granularity of data, storage formats, database systems, supported data models and
interfaces. In order to make full use of available data resources, the high number
of heterogeneous query methods and frontends requires high bioinformatic skills.
Consequently, the manual inspection of database entries and citations is a time-
consuming task for which methods from computer science should be applied.

Concepts and algorithms from information retrieval (IR) play a central role
in facing those challenges. While originally developed to manage and query less
structured data, information retrieval techniques become increasingly important for
the integration of life science data repositories and associated information. This
chapter provides an overview of IR concepts and their current applications in life
sciences. Enriched by a high number of selected references to pursuing literature,
the following sections will successively build a practical guide for biologists and
bioinformaticians.
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3.1 Motivation: Information Systems in Life Sciences

The progress in molecular biology, ranging from experimental data acquisition on
individual genes and proteins, over postgenomic technologies, such as RNA-seq,
phenotyping, proteomics, systems biology and integrative bioinformatics aims to
capture the big picture of entire biological systems [55]. As a consequence of
this revolution, the amount of data in the life sciences has exploded. The wave of
new technologies, for example, in genomics, is enabling data to be generated at
unprecedented scales [85]. As of February 2013, NCBI GenBank provides access
to 162,886,727 sequences, and PubMed comprises over 22 million citations for
biomedical literature from MEDLINE, life science journals and online books. The
number of public available databases passed recently the high water mark of 1,512
[32]. This data deluge must now be harnessed and exploited.

Another aspect is the continuous developments in information procurement,
preparation and processing as shown in Fig. 3.1. Over the past years, information
processing techniques evolved from library research and individual data archives to
web-based systems using intercontinental high-speed network links for an ad hoc
data exchange, cloud computing and distributed databases. This continuous and
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Fig. 3.1 The development of information processing in life sciences adapted from [101]
(Reprinted by permission from Macmillan Publishers Ltd, copyright 2002) – Classic database
management systems and the domain-specific modelling of project databases are replaced by
integrative technologies, i.e. data warehouses, data networks and information retrieval
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ongoing shift is attended by the use of database management systems (DBMS)
which are applied to the management of increasingly complex data structures
and voluminous content [98]. The key concepts in bioinformatics with regard
to data handling are a consistent classification and unambiguous definition of
the modelled biological objects in the databases, the raising use of ontologies,
connected with methods of knowledge processing, information extraction and data
mining [82, 97].

The consequences of this development are new requirements for information
retrieval methods. Typically, life scientists and bioinformaticians formulate their
queries rather vaguely. This does not necessarily happen due to inexperience or
ignorance but because their search is often explorative with no clear idea of the
expected answer. Vague queries though pose a problem on current databases and
information systems as these queries cannot be semantically interpreted, without
comprehensive semantic document tagging or the use of controlled vocabulary.
Much more specific problems such as data distribution and isolation, structural
heterogeneity, less metadata, interfaces query languages and deep (invisible) web
are further examples of the underlying challenges.

In this context, information retrieval (IR) is getting increased importance as
technology to face heterogeneities in data representation, storage and organisation
towards an efficient information access. The methods for representation and organ-
isation of information items should be designed in accordance to provide users
an easy access to the information of their interest [8]. The first step towards this
formulated aims is a raising need to find, extract, merge and synthesise information
from multiple, disparate sources [56]. In particular, the convergence of biology,
computer science and information technology will accelerate this multidisciplinary
endeavour. The basic needs for IR are summarised in [58]:

1. On-demand access and retrieval of the most up-to-date biological data and the
ability to perform complex queries across multiple heterogeneous databases to
find the most relevant information

2. Access to the best-of-breed analytical tools and algorithms for extraction of
useful information from the massive volume and diversity of biological data

3. A robust information integration infrastructure that connects various computa-
tional steps involving database queries, computational algorithms and application
software

Information retrieval in life science databases exhibits some fundamental dif-
ferences from the way people search in the web or in a general-purpose digital
library. First of all, links play a central role for data integration. Not only a
single article to a specific entity is of relevance, but all linked articles may be
relevant. However, articles just mentioning the entity of relevance may be irrelevant.
Second, life science databases are organised in a domain-centric manner, usually
concentrating around specific entity types (e.g. metabolomics). It is easy to extract
all domain information related to one entity. In contrast, it is very difficult to
collect comprehensive, cross-domain information on an entity if the knowledge is
spread across entities of different domains, e.g. genome structure-focused databases
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versus metabolite or pathway-centric ones. A similar picture of heterogeneity can
be observed in data access and querying. Methods spread among Boolean queries;
predefined queries in web information systems, also known as canned queries;
semantic web; keyword-based retrieval in text documents; relevance ranking; and
recommender systems are commonly used in life science dry labs.

In this chapter, we will subsequently introduce relevant concepts for information
retrieval in the life sciences. It is organised as follows: The Sect. 3.2 provides an
overview of basic concepts for data storage, metadata formats and query interfaces,
as well as data integration. The Sect. 3.3 then introduces the theoretical foundations,
the core concepts of information retrieval and the specific implementation in
life sciences. Here, the focus is on characteristics of information retrieval in the
life sciences, exploratory information retrieval, recommender systems, human–
computer interfaces and semantic aspects with an emphasis on model databases and
data networks. The life science search engine LAILAPS is presented as example for
an exploratory IR system. The last section contains a comprehensive summary of
this chapter.

3.2 Information Systems and Databases

In general, the term information system (IS) describes a somehow connected
compound of information [89]. In computer science, an information system aims,
manages and provides information to support all necessary processes and work-
flows, especially in companies. Usually, an information system consists of different
applications, which are interacting with a database management system (DBMS).
Information systems are a main focus in business information technology.

In computer science, a database (DB) is a well-structured and functionally
associated set of data [29]. A database is managed by a special software – the
so-called database management system (DBMS). Together, DB and DBMS form
a database system (DBS). The majority of database systems are using the relational
database model [18].

In life sciences, the term database is often used as a synonym for the term
information system. Since the data volume in life sciences is growing rapidly [82],
e.g. due to high-throughput technologies (see also Sect. 3.1), the importance of
information systems in this area of research is increasing continuously. Often
information systems in life sciences use a data basis that is not organised in database
management systems [17], but flat files, markup files, HTML or XML files instead.
Moreover, the systems are specific to only one data domain. A third characteristic of
information systems in life sciences is that they provide different means of access,
e.g. web interfaces, web services or static HTML pages, and provide different
data exchange formats. The resulting challenges will be described in the following
sections.
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3.2.1 Data Domains

A data domain comprises all data of a specific area, e.g. the domain of the sequence
data or the domain of the phenotypic data. Even though data domains can be
analysed separately, a combined analysis of multiple data domains, e.g. genotype–
phenotype correlations, provides a much higher chance for success. Subsequently,
some examples of data domain are listed. Without the intention of providing a
comprehensive classification of life science data domains, this list will give an
impression about their wide range and diversity.

• Sequence data: In biology, this term refers to sequences of nucleotides
(DNA sequence) or sequences of amino acids (amino acid sequence/protein
sequence), which are the result of a sequencing. Here, sequencing means the
determination of all sub-elements. Several sequencing technologies have been
developed. Examples are “classical” techniques, such as Sanger sequencing
(chain-termination method) [84], Maxam–Gilbert sequencing [73] or EST-based
sequencing [2], and next-generation sequencing (NGS) techniques, such as 454
pyrosequencing [72] or Illumina (Solexa) sequencing [11].

• Variation and marker data: In genetics, a marker is a piece of DNA with a known
location in the genome, which has different expressions in different organisms.
Examples are restriction fragment length polymorphism (RFLP) markers [13] or
single nucleotide polymorphism (SNP) markers [103]. Today, large amounts of
marker data can be obtained by high-throughput technologies.

• Expression data: Gene expression means the transformation of DNA information
into structures or functions of cells, e.g. the synthesis of enzymes. Depending
on different criteria, such as special tissues or compartments, developmental
stages or environmental effects, varying amounts of gene products are produced
(expressed). With array technologies [86] or by help of RNA-seq, a multitude of
product concentrations can be analysed simultaneously (expression profiling).

• Metabolic network data: Metabolic networks (pathways) are sequences of
biochemical reactions. They can be different depending on the organism, devel-
opmental stages, subcellular loci, etc. Data about these networks is an important
basis for the understanding of biological subjects at a systems level [104].

• Phenotypic data: The phenotype of an organism comprises all characteristics
(traits) which can be observed directly and indirectly. It covers a large variety of
traits. Besides traits that are mostly determined genetically (e.g. the hair colour),
there are also many traits which depend on environmental effects, such as biotic
or abiotic stresses.

• Passport data: Not often used in the “classical” bioinformatics, but for the
management of plant genetic resources (PGR) in the so-called gene banks,
passport data is indispensable. Passport data contains information, which is used
to uniquely identify genotypes.
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• Literature data: In science, the structured management of literature references
is of high importance. Central databases, such as NCBI PubMed1 or DBLP,2

collect millions of references from thousands of journals, proceedings, etc. and
provide this data to the scientific community. Such information is often used for
text mining approaches.

3.2.2 Data Interfaces and Query Methods

Data is only useful if it can be found on request. Consequently, appropriate query
mechanisms are a prerequisite to reusing existing knowledge in databases. In this
respect, queries should be independent from the physical data format, and it should
be possible to extract data by specific criteria or to perform database operations,
respectively. For performing database operations, query languages can be used,
which are based on a data model. Here, it can be distinguished between procedural
and declarative query languages. The former case can be implemented using
sequential programming or nesting of database operators, whereas in the latter case
only the structure of the results needs to be defined. In other words, only the “what”
will be specified, but not the “how”.

Data interfaces are necessary for linking applications and data management.
These interfaces can be implemented as so-called application programming inter-
faces (APIs). Common communication interfaces for linking applications and
databases are:

• (Local) File-based access: A simple method to access data is the use of files
from a local file system. This also includes network file systems, e.g. NFS,
and file access via data transfer protocols, e.g. FTP. For the data access, the
whole file must be parsed. Since the data format is known, data elements can
be extracted and then be transferred into data structures. Several parsers have
been implemented and are available via APIs (see Sect. 3.2.3).

• Remote procedure call (RPC): Another possibility for accessing data is the
call of distant (or remote) methods. These comprise protocols such as REST,3

SOAP,4 DCOM [16], .NET or CORBA [93]. These methods provide extended
functionality, ranging from simple method calls to distributed object networks,
web services or persistence frameworks. An essential feature of these standards
is the independence of programming languages.

• DBMS query APIs: A combination of data query languages and APIs enables
remote data access, similarly to DBMS functionality. The technology behind

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://dblp.uni-trier.de/
3http://www.ics.uci.edu/�fielding/pubs/dissertation/rest arch style.htm
4http://www.w3.org/TR/soap/

http://www.ncbi.nlm.nih.gov/pubmed/
http://dblp.uni-trier.de/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/TR/soap/
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Fig. 3.2 Abstract schema to data storage and format layer in life sciences

either embeds special database access commands into the programming language
or integrates the data query language with function calls using APIs. Here
already existing programming language-specific APIs and DBMS-specific APIs
can be reused. Moreover, DBMS abstracting architectures, such as JDBC [94] or
ODBC [33], are available.

3.2.3 Data Formats

A data format is a well-defined structure to persistently store data in one or more
files. File-based data formats are widely used for the exchange and presentation of
data in life sciences [1]. The actual data format is dependent on the storage level
and the required access patterns. As shown in Fig. 3.2, it is useful to distinguish
different storage layers, which are backend, data exchange and data presentation.
The backend layer has a particular emphasis on effective persistence and efficient
access structures. In contrast, the data exchange layer is focused on supporting a
platform-independent format enriched with structural and semantic metadata. The
presentation layer is optimised for an optimal layout and should be flexible to
support different HCI technologies and devices.

Whether the data backend is a DBMS or it is based on flat file techniques, data
independence can be assumed. Thus, data formats used here shall not be dealt with
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in detail. For data presentation, HTML is widely used as a data format. While
the content of HTML pages can also be extracted using parsers, however, HTML
only plays a minor role for data exchange. This is because HTML is mainly used
to present and structure elements and the focus is more on the visual layout of
data. This hampers the machine-based processing. A more suitable format for data
exchange is the Extensible Markup Language (XML).

In addition, the use of domain-specific, not necessarily formal, defined text flat
files plays an important role. Popular databases use such formats, e.g. EMBL [52].
Another example is the FASTA format [79] which was originally developed for
a bioinformatics tool for sequence comparisons. Today, it is a de facto standard
for sequence data exchange. A third example is the so-called two-letter code for
databases from the European Bioinformatics Institute (EBI) which uses attribute–
value pairs.

In the case of flat files, only an indispensable format description enables the
development of parsers. Such a description should contain the following elements:

• Allowed constructs: All allowed words are specified as combinations of valid
characters.

• Syntax description: The syntax specifies rules for constructing valid combina-
tions, sequences and structures of the constructs described above.

• Data schema semantics: Here, rules for mapping the data format structures into
elements and relationships of data schemata are specified.

For molecular biological databases, formal and informal descriptions of the
format are common practice for both, allowed constructs and syntax description.
In contrast, data schema semantics are only rarely described. An example is the
UniProt database [9] which provides an XML schema for the mapping of UniProt’s
XML format onto hierarchical structures of XML databases.

Informal descriptions allow to develop parsers manually by interpreting the given
rules, but they are not suitable to generate parsers automatically. For automatic
parser generation, however, a formal format description is indispensable. Formal
descriptions enable machine processing. Examples for appropriate notations from
computer science and bioinformatics are the Document Type Definition (DTD) for
XML or the Abstract Syntax Notation One (ASN.1). ASN.1 is, for example, used
at the National Center for Biotechnology Information (NCBI) for the specification
of data types. The UniProt consortium uses XML/DTD to format flat files, e.g. the
data exchange format of the UniProt database.

Especially for molecular biological databases, XML plays an important role in
data formatting. The following list contains several XML-based data formats [1]:

• Biopolymer Markup Language (BioML) [31]: BioML was developed for mod-
elling the hierarchical structures of organisms.

• Chemical Markup Language (CML) [75]: CML aims at managing different
chemical information in connection with additional information, e.g. publica-
tions.
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• KEGG Markup Language (KGML)5: KGML contains a DTD for the representa-
tion of metabolic pathways including metabolites and enzymes.

• Systems Biology Markup Language (SBML) [47]: SBML is a markup language
for the representation of computational models in biology. It contains structures
for describing subcellular loci (compartments), biochemical reactions and chem-
ical entities involved. Parameters can be declared both globally (for all reactions)
and locally (for a single reaction only). Furthermore, units and mathematical
rules can be specified.

• Taxonomic Markup Language [34]: The Taxonomic Markup Language contains
a DTD for the description of taxonomic relationships between organisms.

Apart from the above mentioned, many more XML-based data formats exist,
e.g. CellML (Cell Markup Language) [20] or MAGE-ML (MicroArray and Gene
Expression Markup Elements).6 The ongoing development of standard formats
for model representation is internationally being coordinated by the COMBINE
initiative.7

3.2.4 Metadata

Not only business companies are losing hundreds of billions of US dollars per
year due to bad data quality [27], this also holds true for other areas, including
the research sector. For a meaningful use of data – not only in running projects,
but also beyond – a high data quality is indispensable. Reaching this aim can be
supported by the substantial use of metadata. Metadata is additional information
provided together with the generated data. One major advantage of the availability
of metadata is that they help to perform promising data analysis using data from
different life science domains. Metadata is (structured) data describing a resource,
an entity, an object or other data. It is used to retrieve, use and maintain a resource, an
entity, etc. Unfortunately, often the acquisition of (primary) data and its subsequent
processing are not well documented. For example, additional information, such
as genotype, development and growth conditions, environmental conditions, tissue
or treatment of biological objects, is missing at all or is described using different
vocabularies. Further relevant information includes statistical methods or software
tools and the parameters applied onto the data. Frequently, this lack of metadata
leads to extra costs or additional personnel expenditures when aiming to reuse
data or reproduce a result, e.g. when being forced to perform the same experiment
multiple times.

5http://www.kegg.jp/kegg/xml/
6http://www.mged.org/Workgroups/MAGE/
7The computational modelling in biology network, COMBINE, http://co.mbine.org/.

http://www.kegg.jp/kegg/xml/
http://www.mged.org/Workgroups/MAGE/
http://co.mbine.org/
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The problems described above can be downsized by a complete and well-
structured documentation of all steps starting with the acquisition of raw data and
ending with the publication of results. Thus, the annotation of data with metadata
is one important factor for its interpretation, reusability and structuring. This is
reflected by manifold metadata schemata that are used in life sciences, mostly under
the umbrella of the Minimum Reporting Guidelines for Biological and Biomedical
Investigations (MIBBI) project [99]. Reporting guidelines define the minimum
information necessary to be provided with a biological or biomedical experiment.
The textual description of these information guidelines is often complemented by
a data format encoding exactly that information in XML format (see Sect. 3.2.3)
and providing mechanisms to link these XML elements with metadata in external
resources, such as bio-ontologies, or technical information (e.g. file creators or
modification dates for files). In general, it can be subdivided into semantic or
technical metadata.

3.2.4.1 Semantic Metadata

Semantic metadata is closely connected to the scientific data domains and comprises
an own universe of several hundreds of metadata schemata. For instance, in systems
biology, a review summarises 30 different standards for metadata and data exchange
formats [14]. Ontologies belong to semantic metadata. In computer science, an
ontology is a definition of classes (concepts, objects) and their relationships
(attributes, roles) [40]. It is well defined and contains the vocabulary of a data
domain, thus improving the interoperability between systems or the communication
between human beings.

Due to the growing amount of data in life sciences, it gets more and more
important to put this data into relation. Therefore, ontologies are increasingly
used [10]. Examples for life science ontologies are:

• Gene Ontology (GO) [6]: Molecular functions, biological processes and cellular
components

• Trait Ontology (TO) [50]: Phenotypic traits of plants
• Plant Ontology (PO) [7]: Anatomy and developmental stages of plants
• MGED Ontology (MO) [105]: Annotation of microarray experiments

The BioPortal [106] maintains and integrates bio-ontologies that adhere to the
requirements of the OBO foundry for open biological, high-quality ontologies [96].
Ontologies in the BioPortal can be browsed visually, and they contain cross-links
to other OBO ontologies, enabling extensive exploration of biological knowledge,
as well as thorough annotation of data. An annotation is a piece of meta-
information accompanying a data set. It describes or explains the subject or content
it refers to.
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3.2.4.2 Technical and Administrative Metadata

Technical and administrative metadata cover aspects of management and processing
of digital scientific resources. The collection and storage of structured technical
metadata is an important prerequisite for the automatic management and processing
of life science data sets. Technical metadata comprise aspects of how to access files,
i.e. information about the system requirements for use in terms of hardware and
software as well as the unique identification and documentation of the file format in
which the resource exists. Each data set should have a unique, persistent identifier,
which is identified regardless of its location.

For example, in life sciences, there is a deficiency of generally accepted conven-
tions for referencing data records. Proprietary identifiers, such as so-called accession
numbers, are designed as a unique combination of alphanumeric characters. For
example, the proprietary identifier Q8W413 in the UniProt database [69] refers to
the protein beta-fructofuranosidase.8 The enzyme 3.2.1.269 points
to the same entry but is interpreted as standard nomenclature for enzymes. In
The Arabidopsis Information Resource (TAIR), the locus tag At2g3619010 is
an identifier for the coding gene of the same protein in the plant Arabidopsis
thaliana (prefix At). Furthermore, the gene synonym AtFruct6 is an example for
a semantically enriched acronym of a gene: At denotes Arabidopsis thaliana and
Fruct beta-fructofuranosidase.

To overcome this problem, tools have been designed that resolve identifiers
and approaches to standardise technical metadata. Known resolver systems are,
for example, identifiers.org [51] and the UniProt database identifier mapping.11

Popular schemata for technical metadata are the Dublin Core Metadata Element
Set (DCMES),12 accepted as ISO standard 15836, as well as the closely related
DataCite Metadata Schema.13 DCMES was developed by scientists and librarians
to homogeneously describe digital objects using 15 mandatory elements. The
DataCite schema is less strict and comprises only 5 mandatory and 12 optional
elements. However, the most popular way of primary data annotation remains to be
semantically enriched file names.

8http://www.uniprot.org/uniprot/Q8W413
9http://www.expasy.org/enzyme/3.2.1.26
10http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G36190
11http://www.uniprot.org/?tab=mapping
12http://dublincore.org/documents/dces
13http://schema.datacite.org/meta/kernel-2.2/index.html

http://www.uniprot.org/uniprot/Q8W413
http://www.expasy.org/enzyme/3.2.1.26
http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G36190
http://www.uniprot.org/?tab=mapping
http://dublincore.org/documents/dces
http://schema.datacite.org/meta/kernel-2.2/index.html
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3.2.5 Database Integration

In general, data integration is a service combining contents of multiple, often
heterogeneous, data sources, thus enabling to gain new insights [107]. In contrast
to the integration of information systems in business companies, data integration
in life sciences mainly focuses on combining data of heterogeneous sources, e.g.
from the World Wide Web. According to [87], heterogeneity can be classified
as (i) heterogeneity on systems level (different system properties of the sources,
e.g. optimiser strategies), (ii) heterogeneity on data model level (use of different
database models, e.g. relational or object-oriented model), (iii) heterogeneity on
schema level (e.g. different representation of similar data) and (iv) heterogeneity on
data level (e.g. different data for similar database objects).

Research in life sciences typically distinguishes two integration approaches [21]:

1. Virtual (or logical) data integration:
This type of integration is often used for web-based data sources. Here, an
integration system sends a query to several data sources and combines the results
into a report at runtime. Since no data is stored locally, the results are always up
to date, but the query performance is usually lower than with the materialised
integration.

2. Materialised (or physical) data integration:
Following this approach, data sources are queried for new data at regular
intervals, and this data is stored locally. The integration system then queries the
local data only, which has a higher performance than querying distributed sources
as with the virtual integration. However, the timeliness of the locally stored data
depends on the update intervals.

In the recent past, typical approaches using the virtual integration were multi-
database systems (MDBS) and mediator-based systems. Multi-database systems
extract data from several separate database systems and present this data using a
homogeneous view [83]. In contrast to these systems, which focus on data stored
in database systems, mediator-based systems [108] aim at integrating data stored
outside of databases, e.g. HTML or flat files. The latter approach is widely used in
bioinformatics. Examples for virtual integration in life sciences are Entrez [90], the
Sequence Retrieval System (SRS) [30] and the Distributed Annotation System [26].

The typical approach using materialised integration is the data warehouse (DWH)
approach which gained popularity in the end of the 1980s [23]. In contrast to OnLine
Transactional Processing (OLTP) systems, which are designed for management of
operative data (no historical data), data warehouses aim at providing non-volatile,
aggregated and time-dependent data for analyse purposes, e.g. decision support.
For setting up a data warehouse, data from different sources is extracted into a
so-called staging area, transformed and then integrated into the data warehouse.
Data marts are department-specific or application-specific and complement DWH,
aiming at answering particular questions. Here, the two contradictory approaches
of Inmon [49] (top-down approach) and Kimball [54] (bottom-up approach)
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are distinguished. According to Inmon, all necessary data is stored in the data
warehouse. Data marts are then derived from the data warehouse. In contrast,
Kimball regards the creation of data marts as the beginning of the warehousing
process. Thus, the data warehouse is a virtual collection of all data marts. Examples
for materialised integration in life sciences are Atlas [92], BioMart [53, 95] or
BioWarehouse [63].

The need for data integration in life sciences is increasing continuously [36]. So
far, the aim of data integration was to provide a homogeneous view onto the inte-
grated data. Recently, a paradigm change can be observed. As described in [19], it
gets more and more accepted that different users need different kinds of data integra-
tion, because the semantics of data depends on its context. This change in thinking
grounds in the fact that the number of scientific questions asked on the available data
increased tremendously (e.g. due to high-throughput technologies). Consequently,
extended possibilities of retrieving relevant information are necessary.

3.3 Information Retrieval

The increasing popularity of information retrieval as a method to handle semi-
structured data and to formulate fuzzy queries correlates with the growth of data
that is available online. This development is also reflected in milestones such as
the triumphant throughout of PubMed as the world’s most important biomedical
literature search engine since 1996 [100].

Because of heterogeneity in both, the schema and the system, it is hardly possible
to use structured query languages, i.e. SQL or OQL, to access the above-mentioned
distributed data. In contrast, the tendency is to apply search engines or information
systems to acquire speedily and precisely the information needed [24, 60, 68]. This
promising technology is effective for knowledge and data published in journal
articles or in its condensed form as hundreds of life science databases [32, 38].

Search engine technology provides efficient and intuitive IR methods to find
relevant data in a collection of distributed, heterogeneously structured and modelled
data repositories. Desktop search engines14 like Windows Search or Strigi are
popular at the scientists’ desktops. Frameworks like Apache Solr15 allow to embed
full text search and relevance ranking into data repositories, as well as faceted
search. The increasing availability and performance of this technology support the
trend to replace classic query forms and Boolean query languages by keyword-based
search and relevance filtering. This replacement gets increasingly important in life
science information systems and is also implemented in primary data repositories,
e.g. the DataCite Metadata Search.

14http://en.wikipedia.org/wiki/List of search engines#Desktop search engines
15http://lucene.apache.org/solr/

http://en.wikipedia.org/wiki/List_of_search_engines#Desktop_search_engines
http://lucene.apache.org/solr/
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Instead of referring to relevance ranking, in the following, the term ranked
retrieval will be used, which expresses the necessity to provide an order for results
from a data retrieval process. The interpretation of the term order is one central
concept of ranked retrieval. Mathematically, it is a partially ordered set R, where R

includes the result of a data retrieval query. Furthermore, for R a binary relation <

indicates that, for certain pairs of elements in the set, one of the elements precedes
the other. In the context of ranked retrieval, the relation r1 < r2 j r1; r2 2 R may have
different definitions. The definition of this order relation is the focus of the ranking.

The order of query results becomes particularly important when a query com-
prises a high number of results. The user should have the possibility to structure and
filter data, which are usually displayed as list of data records. If the data records
comprise many fields with a high number of individual values, the result listing
comprises data excerpts or even a list of access numbers, i.e. IDs. In that case, it is
of particular importance to provide a useful order.

Empirically, the word “useful” could have very different meanings. This meaning
is hardly dependent on the user’s pertinence. There are cases when the order is
defined by ordinal numbers, like publication date or serial numbers. Another order
criteria is the lexicographic order. But numeric or lexicographic ordering is not
necessarily a sufficient ranking criterion. Thus, defining relevance functions to
determine the relevance of a data item and mapping it to an orderable p-value is
one of the major challenges in IR.

In the following sections, two major categories of relevance ranking in life
sciences will be discussed. The first category is the explorative information retrieval
with the focus on an explorative and unbiased retrieval of data over a maximum set
of databases, where the relevance ranking is mainly based on popularity and struc-
ture in the data itself. The second category, semantic information retrieval, is based
on the presence of a model in a predefined network of data records that matches best
to a very focused query. The model uses word associations and property lists.

3.3.1 Explorative Information Retrieval

Explorative information retrieval is a concept which bases on the idea of exploratory
search [70] and represents the activities performed by researchers who are either:

• Unfamiliar with the domain of their goal
• Unsure about the ways to achieve their goals or
• Even unsure about their goals in the first place

In Fig. 3.3, the three major types of search are summarised as lookup, learn,
investigate and classified into the activities lookup search and exploratory search.

Following this argumentation, explorative IR combines diverse methods of
information retrieval, i.e. domain-specific text indexing, relevance feedback, rele-
vance prediction or recommender systems, with human-computer interaction (HCI)
in order to help users exploring data rather than performing lookup searches.
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Fig. 3.3 Common search activities in web search, which are labelled as lookup–learn–investigate
in [70] (©2006 Association for Computing Machinery, Inc. Reprinted by permission)

An up-to-date overview about the research activities on explorative IR can be found
at http://en.wikipedia.org/wiki/Exploratory search. Studies as the one described in
Marti Hearst’s book on Search User Interfaces [43] show that search behaviour
evolves over time and is strongly influenced by the presence and capabilities
of search engines. The main search engine experience of users is still contact
with relevance-ranked search. To our experience, current prevalent strategy in bio
information retrieval is ranked or Boolean search, combined with metadata-driven
browsing and recommendation for exploration of data sets. However, new types of
interfaces that emphasise exploratory search are also up-and-coming.

3.3.1.1 Relevance Ranking

“Just head for Google or Entrez and get the related web page or database entry.” This
is being said among biologists who search information about a certain object [24].
However, issues like finding reliable information about the function of a protein,
or identifying the protein that is involved in a certain activity of the cell cycle, are
much more challenging tasks. One has to choose (or screen) more than 1,512 life
science databases and billions of database records [32].

Intuitively, the first choice for information acquisition are web search engines.
Web site ranking techniques order query hits by relevance. However, trying to apply
ranking methods that were developed to rank natural language text or WWW sites
to life science content and databases is questionable [81]. For example, the top-
ranked Google hit for arginase is a Wikipedia page. This is because the page is
referenced by a high number of web pages or Google assigned a manual defined
priority rank. Here, the hypothesis is: A high hyperlink in-degree of a page means
high popularity and high popularity means high relevance [61].

http://en.wikipedia.org/wiki/Exploratory_search
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In order to find scientifically relevant database entries, scientists need strong
scientific evidence in relation to the specific research field. A dentist has other
relevance criteria than a plant biologist or a patent agent. The intuitive and
commonly used way at the scientist’s desktop is query refinement. Criteria like who
published in which journal, for which organism, evidence scores and surrounding
keywords are of major importance. Even complete search guides are published, e.g.
for dentists [22].

Other ranking algorithms use term frequency – inverse document frequency (TF–
IDF) as ranking criteria. Apache Lucene16 is a popular implementation of this
concept and is frequently used in bioinformatics, like LuceGene from the GMOD
project [77], which is used for the EBI search frontend EB-eye. The TF-IDF
approach works well but misses the semantic context between the database entries
and the query.

Another approach is probabilistic relevance ranking [48], where probabilistic
values for the relevance of database fields and word combinations have to be
predefined. In combination with a user feedback system, the probabilistic approach
shows promising ranking performance [4].

Semantic search engines use methods from natural language processing, seman-
tic tagging and dictionaries to predict the semantically most similar database entries.
Such conceptual search strategies, implemented in GoPubMed [25] or ProMiner
[41], are frequently used algorithms in text mining projects.

After choosing a ranking algorithm for a search engine, the next task is to define
possible ranking criteria. Conventional search engines use several ranking criteria.
Andrade and Silva consider the similarity between the result entry and the search
query itself as a top-ranking criterion [5]. The importance of linkage in ranking has
been put forward by PageRank, its variations and ranking extensions [81], which
now constitute a mature field.

Greifeneder [39] proposes several possible relevance criteria, including the
absolute or relative frequencies of the keyword(s) of the search query, the scope
or the actuality of the web page constituting the query result.

Schöch also mentioned the shortness of a URL and the order and the proximity
of the search query terms as a criterion [88]. Both Greifeneder and Schöch suggest
to check the entries for their popularity [39, 88]. This idea is based on centrality
computation, which is an important research area in network analysis. One popular
example for this usage is the PageRank algorithm of Google [15, 61].

3.3.1.2 Recommender Systems

In its most common formulation, the recommendation problem is reduced to the
problem of estimating ratings for the items that have not been seen by a user and
would be of interest. Intuitively, this estimation is usually based on the ratings given

16http://lucene.apache.org

http://lucene.apache.org
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Fig. 3.4 Recommender systems used in the EBI’s EB-eye IR system [37] (left) and NCBI PubMed
literature search (right) – cross database search data or abstracts for the term “breast cancer” result
in more than 486,000 hits in EBI databases and more than 255,000 in PubMed abstracts. The
queries were executed at 2013/01/25. In PubMed, “Related searches” and “Titles with your search
terms” suggest references using collaborative filtering. EB-eye makes intensive use of facets, which
may be applied to incrementally refine the query and related documents using vector space model

by this user to other items and on some other information [3]. In recommender
systems, the utility of a data record is usually represented by a rating, which indicates
how a particular user liked a particular data set. An example of a user-item rating is
PubMed’s “Related searches” and “Titles with your search terms” (see Fig. 3.4).

Recommendation in life science IR can be divided into the phases query
expansion and related documents prediction.

The first phase is query expansion. It describes the process of adding terms to
or deleting terms from the original query. Here, a recommender system should
anticipate from users strategies to find a pearl – the citation pearl growing strategy
and the building blocks strategy [28]. In case of the building blocks strategy, the user
divides the information retrieval problem into different concepts and assigns one or
more reference terms to each concept. This is embedded into an incremental process
of refinements until the most relevant document is selected by the user as local
optimum. The citation pearl growing strategy uses intermediate query result, which
is retrieved by a broad query, and interactively pick terms to expand the original
query. The concepts can be implemented in automatic query expansion systems
which make use of thesauri, ontologies and synonym lists and, in the case of pearl
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picking, use top-ranked query results, for example, by collaborative user rating, and
pick the relatively most frequent terms in the top documents to expand the query. An
add-on is the syntactic expansion of single terms. This is done by computing edit
distances to words in a dictionary, phonetic or word stem expansions. A popular
implementation of these concepts is the facets. EBI’s EB-eye IR system [37] and
the information retrieval portal GoPubMed [25], which use the Gene Ontology [6]
as thesaurus, are examples of successful application of facets in bioinformatics.
Section 3.3.1.3 include some more elaborations to HCI, in particular facets.

The second phase is related documents prediction (also known as “more like
this” or “page like this”). Based on a query result with relevance-ordered database
records, the task of the recommender system now is to extend the result set
with related documents. These related documents are not necessarily part of the
core result set. There are five major methods proposed to predict such neighbour
documents:

1. Shared terminology: Significant number of shared words; distance scoring using
vector space model.

2. Part-of data cluster: Data records are part of the same data partition, i.e. synthetic
genes and same species.

3. Cross references: Identifiers or explicit hyperlinks build data networks; distance
scoring is used to predict neighbours [74].

4. Collaborative filtering: Follow users, who already (successfully) refined queries;
filter user by client clustering, i.e. origin domain, country and user profile.

5. Content-based recommendation: Suggest data records, which were selected in
past in a close query session/time context.

The above methods are rarely implemented in life science IR systems. Some of
them apply shared terminology, cross references and part-of clusters, e.g. PubMed
or EB-eye.

3.3.1.3 Human–Computer Interfaces

Marti Hearst gives in her book a literature-based overview about challenges in
information retrieval interface design [43]. One interesting observation that she
makes and that is easily verified is that even after 15 years of HCI in web search,
general-purpose web search interfaces are still based on a one-line entry of search
terms coupled with some query suggestions.

However, in the past 10 years, a new search paradigm emerged, called Hierar-
chical Faceted Search (HFS) [42]. This search paradigm is especially convincing
for small, hand-picked data sets, i.e. the classic Nobel Prize Winners example
available.17 However, it has shown viability also for huge data sets such as search
results in online stores.

17http://flamenco.berkeley.edu/demos.html

http://flamenco.berkeley.edu/demos.html
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The goal of HFS is to enable users to explore data sets. It does so by guiding
the user, as well as efficiently communicating progress of the search and a position
within the collection. HFS is an improvement on classical hierarchical search. How
this works can simply be illustrated using a search for car by brand, size class, and
engine type. Each car has a given brand, a size class and engine type. They are facets
describing the car.

Classifying a given set of cars into one hierarchy, one would have to choose
which facet to put first. For example, should be browsed by engine type or rather by
size class first? Once the hierarchy is chosen, every user will have to go down the
predefined path to browse the cars collection.

The base innovation in HFS is to avoid this decision; instead it is accepted that
each item in the cars collection has multiple facets. Each facet corresponds to a
hierarchy of subsets, and each car is member of one subset for each of its facets.
The faceted search interface enables the user to choose the important facets and to
choose to which subsets a query result has to belong at the same time. For example,
users want a small car, they do not care about the engine type and it must be a
Chevrolet. They thus picked one subset of the size facet and one for the brand facet.

To get a feeling of the amazingly simple and intuitive browsing that can be
achieved this way, try the flamenco Nobel Prize Winners demo. Please note how
details play a big role in faceted search, for example, the display of query result
sizes before the query in order to give a preview of what can be expected when
clicking on a given facet.

While this example shows the advantages of faceted search, there are some
inconveniences that keep faceted search from wider use for large data collections:

• Too many facets and too large fan-out of facet hierarchies: In free data collec-
tions, there is a huge amount of potential facets. It is impossible to show all of
them on a screen.

• Absence of high-quality facet hierarchies: Annotated by hand, one can design
high-quality facets; however, automatic classification in high-quality facets is
hard.

GoPubMed (see example at Fig. 3.5) exemplifies strengths and challenges of
faceted search for biologists: On the one hand, the interface enables browsing via
facets, using the well-developed taxonomies that biology has to offer; on the other
hand, browsing uses a lot of its intuitivity with the huge fan-out of bio-ontologies.
GoPubMed counters this via emphasised display of top concepts and the possibility
for logged-in users to define favourite terms. Other possibilities of countering the
fan-out problem are subject of ongoing research. However, some systems recently
started to include elements of faceted search in addition to classic search, e.g. the
“browse targets” functionality in ChEMBL,18 or autocompletion with display of
result size previews in SABIO-RK.19

18https://www.ebi.ac.uk/chembl/malaria/target/browser/classification
19http://sabio.h-its.org

https://www.ebi.ac.uk/chembl/malaria/target/browser/classification
http://sabio.h-its.org
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Fig. 3.5 GoPubMed example search. Notice how care is taken to limit the fan-out of trees, keeping
it down to only 20 children of the “Knowledge Base” tree. However, already 20 entries have to
be read one by one. Logged-in users could counter this by using bookmarked terms for future
searches, thus creating search trails

3.3.1.4 The Explorative IR System LAILAPS

LAILAPS stands for “Life Science Application for Information Retrieval and
Lightweight API for Portable Search Engines” and as metaphor for the Greek
mythological dog who never failed to catch the prey what he was hunting. In IR
semantics, the aim is to provide a tool that supports the information discovery
in the world’s life science databases. This bold goal must meet continuously
changing requirements. Some are gained from over 10 years experience in dozens
of data management, database integration and analysis projects. The result is the
development of the LAILAPS IR system. This project has been running for 6 years
and combines state-of-the-art methods and concepts from the computer sciences,
life sciences and bioinformatics. Empirically collected user requirements from
bioinformaticians, IT-skilled biologists as well as less experienced students are
used to design an intuitive user interface and feedback system. The first LAILAPS
version was released in 2007 as an project that was coordinated by an European plant
science company. Motivated by insufficient relevance ranking and the high number
of unsorted query results from database query systems, the aim was to implement a
search engine for protein databases with a user-specific relevance ranking model.

The approach was to import major public protein databases – i.e. UniProt,
PIR and KEGG – into an in an EAV schema, decompose and tokenise the text,
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Table 3.1 LAILAPS feature set to score database entries

Feature class Description

Attribute Attribute in which the query term was found
Database Database origin of the entry
Frequency Frequency of all query terms in the entry and attribute
Co-occurrence Expresses how close and in which order the query term were found
Keyword Rating of keyword semantics sorrounding the query hits
Organism Organism to which the entry relates to
Raw data length Length of the raw data, which is embedded in the database entry
Text position Portion of the attribute covered by the query term
Synonym Information if the hit was produced by an automatic synonym expansion

compute a reverse text index and compute scores for data entities. The concept
of the LAILAPS query system is to support lists of search terms and phrases.
A search result is a relevance-ranked list of database entries. Each entry is displayed
in form of an rich snipped that summarised the content in one text line. The basis
of the relevance ranking is a set of nine classes of features, which are shown in
Table 3.1. The quantification of these features is computed for each result record as
static entry properties or as from the properties of the text index search itself. The
parameterisation of the relevance prediction algorithm is based on user feedback.
The user may explicitly rate the page quality or the web browser tracks the user
actions and estimates the page quality. This reference data is used to train user-
specific neural networks, which predict from feature scores the page relevance. The
initial training has been performed with a set of 1,089 manually relevance-rated
protein entries that results from 19 queries [60]. A 80=20 cross validation shows
a precision between 0.62 and 0.81, a recall of 1.00 and an f -score between 0.76
and 0.90.

The screenshots in Fig. 3.6 display the major components of the LAILAPS web
application. A portlet version is available to embed LAILAPS into a custom web
page.

Since 2011, the LAILAPS development is focused to support the explorative IR
in a genomic context. Here, LAILAPS is used to bridge genomic metadata, like
functional annotation to genes or other regions at a genome. The concept is:

1. Compile a domain specific list of data hubs, which acts as information retrieval
core.

2. Text search and relevance ranking.
3. Reverse identifier lookup.

The implementation of this concept for the genomic data domain underlines the
flexibility of LAILAPS concept. Here, the world’s major resources of genomic data
annotation are compiled in a list of eight major databases: Trait Ontology, Pfam,
Gramene, Plant Ontology, SwissProt, TrEMBL, Gene Ontology and PDB. Those
are indexed and linked back to the genomics data, i.e. the Genebank Informa-
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Fig. 3.6 The LAILAPS search engine for integrated search in transPLANT genomics data
network. Part (1) shows the entry point of the search engine. In screenshot (2), a result of a keyword
search for “barke”, a genotype of barley, is shown. The result contains relevance-ranked hits in
indexed genome annotation data hubs (UniProt, Gene Ontology, PFAM, etc.) and related linked
genomic resources, i.e. Ensembl, GnpIS, CR-EST. In screenshot (3), the integrated data browser
and feedback system, which act as input for the incremental training of the relevance predicting
neural network

tion System (GBIS) of the German ex-situ Genbank,20 EBI integrated genomics
information system Ensembl,21 and the INRA integrated genomics information
system GNpIS22 by the French INRA institute. The results of search queries
are relevance-ordered links to genomic data. LAILAPS is part of the transPlant
consortium to build a transnational plant genomic infrastructure and supported by
the European Commission within its 7th Framework Programme, under the thematic
area “Infrastructures”. The implementation of this IR infrastructure is available at
http://lailaps.ipk-gatersleben.de.

20http://gbis.ipk-gatersleben.de/gbis i/home.jsf
21http://www.ensembl.org
22http://urgi.versailles.inra.fr/gnpis

http://lailaps.ipk-gatersleben.de
http://gbis.ipk-gatersleben.de/gbis_i/home.jsf
http://www.ensembl.org
http://urgi.versailles.inra.fr/gnpis
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3.3.2 Semantic Information Retrieval

The focus of this book chapter has so far been on the integration and retrieval of
large-scale bioinformatics data. Another type of data that needs to be integrated are
computational simulation models. During the past decades, modelling and simula-
tion techniques have been used to answer biological questions. A consequence is the
development of computational models, often in the area of systems biology. Systems
biology is the study of complex biological systems by means of computational
approaches and methods. A computational model of a biological system then
represents aspects of that system, using, for example, mathematical equations. The
number of available models has grown steadily over the last decade, and so has the
models’ complexity [44]. Models are being shared and reused in standard formats
[102], so-called model representation formats (see Sect. 3.3.2.1). The increasing
number of models is stored and managed in model repositories such as BioModels
Database or PMR2 (see Sect. 3.3.2.2). To handle the models’ increasing complexity,
semantic annotation has been established as a tool to describe a model’s nature.
The novel research field of semantic systems biology investigates how to use these
annotations to improve model management tasks such as model retrieval, model
combination or version control. Section 3.3.2.3 focuses on annotation-based model
retrieval and ranking.

3.3.2.1 Model Representation Formats and Standards

To reuse existing model code, the code itself must, first, be made available in model
databases. Second, it must be encoded in exchangeable standard formats, which
can then be interpreted by software tools. BioModels Database [66] is one example
of an open model repository that freely distributes models in standard formats.
Frequently used model representation formats are all XML based; examples are the
aforementioned Systems Biology Markup Language (SBML [47]), CellML [20] or
NeuroML [35] for models of neuroscientific investigations. These standard formats
encode the necessary information to rebuild the model structure and underlying
mechanisms in a software environment, e.g. for simulation studies.

Together with the model, a whole plethora of meta-information is provided,
including the reference publication, the model authors, the semantics of the encoded
entities, the model curation state, the underlying mathematics or the graphical
representation of the model. Often, meta-information is encoded in bio-ontologies
[12] (e.g. Gene Ontology, GO [6], the Systems Biology Ontology (SBO) [65] or the
NCBI Taxonomy23) and linked to model entities through semantic annotations.

Model annotations mostly refer to technical and administrative information
(see Sect. 3.2.4.2), while annotations of model components point to background

23http://www.ncbi.nlm.nih.gov/Taxonomy/

http://www.ncbi.nlm.nih.gov/Taxonomy/
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knowledge from biology or chemistry. The annotation information may either be
contained in the model or it may be stored in an external file (see Sect. 3.2.4.1). As
well as the model encoding itself, the annotation would best be provided in a stan-
dardised form, e.g. using the Resource Description Framework (RDF) [62]. RDF
can be interpreted by a computer, and therefore RDF-encoded meta-information can
automise tasks such as mode search, comparison, merging or clustering [44,57,91].
The ontology terms are in addition highly linked and therefore allow to infer further
knowledge about the model.

Semantic annotations in RDF should follow the recommendation for model
annotations, called MIRIAM guidelines [64]. The MIRIAM guidelines describe
which additional information should be provided together with the model code and
how it should be encoded. The SBML standard follows these recommendations
and stores annotations as triplets of model entities, qualifiers and URIs pointing
to an ontology entry (a so-called identifier [59]). For example, the XML element
species represents an entity taking part in a biochemical reaction. The relation
between the annotated XML element, e.g. the species, and the ontology refer-
ence, e.g. a GO identifier, is expressed also using standardised qualifiers.24 The
strongest relation is build up by the IS qualifier, i.e. the XML element IS exactly
what is described in the ontology entry pointed to by the URI. Several weaker
qualifiers exist, e.g. isVersionOf.

The meta-information encoded in model annotations is a major resource for
information retrieval tasks. One prominent example is improved model search. For
example, a user searching for models dealing with caffeine may express this search
by typing caffeine or C8H10N4O2, or 1,3,7-trimethylpurine-2,6-
dione. A retrieval system is capable of finding the URIs pointing to ontology
entries dealing with caffeine and relating them back to models that contain
these URIs in their annotations. The basis is the creation of an index of terms
from available ontology information. Researchers may use these terms, which best
describe the nature of a particular molecule, to perform keyword-based searches.
Keywords are more intuitive than cryptic model URIs or computer-generated entity
names. If a model is properly annotated with ontology information about caffeine,
then the IR-based search will also cover synonyms and external descriptions.
Consequently, it is possible to retrieve models based on keywords that do not
necessarily occur in the model code itself.

3.3.2.2 Exemplary Model Databases and Repositories

Models in exchangeable standard formats need also be stored and made publicly
available to the modelling community to foster reuse. A number of databases and
repositories have been established over the past years. The following is a brief
review of selected model repositories [102].

24http://www.ebi.ac.uk/miriam/main/mdb?section=qualifiers

http://www.ebi.ac.uk/miriam/main/mdb?section=qualifiers
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One distributor of freely available SBML models is BioModels Database [66]. To
date it contains 436 curated and 497 non-curated models25 and several thousands of
automatically generated pathway models.26 The majority of models in BioModels
Database are concerned with signal transduction and metabolic processes. All
models of the curated branch are guaranteed to be valid SBML and to reproduce the
results described in the accompanying paper. Internally, metadata is extracted and
stored in a MySQL database. Metadata includes information about the submission
and modification dates of a model file, authors’ information, references and anno-
tations encoded as the aforementioned MIRIAM identifiers. Additionally, Apache
Lucene is used to index a subset of model elements and metadata. BioModels
Database supports browsing and searching for models. One way to browse is
the list of available models (sorted by BioModels Database ID (BMID), model
name, publication ID or date of last modification). Another way is to use a tree-
structured browser that is based on GO terms. When searching for a model, a
so-called multistep search is performed [66]. The system works in three sequential
steps. Given a search term, first, the metadata, publications and the annotations
stored in the MySQL database are queried. The result of this search is a set of
BMIDs. Secondly, the stored SBML XML files are queried, using the previously
generated indexes and parsing information such as the SBML notes tag. The
returned BMIDs are added to the result set. If the search included query terms from
external resources, then, thirdly, supplementary information is searched, using either
information available in the local MySQL database or web services. For the specific
case of searching for a term in a taxonomy, the taxonomy tree is also traversed for
neighbour terms, and model IDs associated with that term are added to the result
set. The output is generated by using the BMIDs to query the MySQL database for
the formerly extracted metadata that is necessary for display on the web site. Search
results are returned in an unordered result set.

The Physiome Model Repository (PMR2, [109]) is an online repository for
CellML models at different stages of curation. The Plone-based Content Manage-
ment System contains models of a wide range of different biological processes,
including signal transduction pathways, metabolic pathways, electrophysiology,
immunology, cell cycle, muscle contraction and mechanical models [67]. PMR2
intends to foster the processes of model curation and annotation so that ideally all
models replicate the results in the published paper and the search for models and
elements within models is facilitated. Models in the CellML Model Repository
are browsed by different (physiological) categories, including cell cycle, signal
transduction or metabolism. A CMS-wide full-text search allows for simple free
text search. A search by particular model features (e.g. specifically by author
or publication year) is not possible. Search results are returned in an unordered
result set.

25Twenty-fourth release of BioModels Database, December 2012.
26http://code.google.com/p/path2models/

http://code.google.com/p/path2models/
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ModelDB [45] is a format-independent database for curated models related
to computational neuroscience. It provides authors a repository for the storage
of models, in particular in preparation for submission in neuroscience journals.
ModelDB accepts models in any language for any environment [45]. It keeps the
originally submitted model files, that is, the complete code specifying the attributes
of the original biological system represented in the model, including interface
and control code to run the model in the associated simulation environment, and
a non-standardised readme text file explaining briefly how to use the provided
computer code. Additionally, ModelDB stores model meta-information, including
a concise statement of the model purpose, how to use it and a complete citation
of the reference publication [45]. The underlying database management system
is Oracle 10. as an instance of the Entity–Attribute–Value/Classes–Relationship
framework (EAV/CR, [71]) for data representation. The search functionality in
ModelDB relies on the meta-information entered by the model submitter. Search
by author name or accession number (ModelDB ID) is supported. The complete list
of models can be returned sorted by the model name or by the author. Additionally,
some predefined queries regarding different criteria such as cell type or simulators
are available. However, the queries do not incorporate the model files themselves;
as such a search on the model code is not possible. The meta-information is not
standardised, but consists of partially predefined strings and partially manually
entered data. Third-party knowledge is not incorporated in the search process; the
submitted models are not annotated.

JWS Online Model Database is part of the JWS Online Simulator [78], a web-
based simulator for biochemical kinetic models. The model repository serves as
the maintainer for a number of kinetic models that can be interactively run online. It
supports the search for SBML models by a limited number of characteristics, includ-
ing the author, publication title and journal, organism or model type. A web-based
tool offers a searchable categorisation of models in the repository, distinguishing,
for example, between cell cycle models and metabolism. A full-text search is not
supported. Search results are returned ordered by author name. As there does not
exist a publication on the technical background of the model repository, further
information about the backend of the provided interface cannot be provided.

3.3.2.3 Model Retrieval and Ranking

A common shortcoming of all above mentioned model repositories is their limited
ability to retrieve and rank models. A query containing domain-specific keywords
retrieves an unordered set of models. Thus, it is up to the user to browse the
results and inspect the models manually. The keywords searched for are not
necessarily present in a model itself; however, they might be related to a model
by an annotation. Progress in model search has been made with recently developed
IR methods for ranked model retrieval [44]. We elucidate here how a keyword-
based model search retrieves ranked results using the aforementioned model from
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Fig. 3.7 This figure shows what model information is stored into the model and semantic index.
Additionally, the search is expanded to retrieve models according to their biological content

BioModels Database.27 This SBML-encoded model contains five compartments,
five species, five rate rules and one assignment rule. Even though the model
is all about caffeine (see example from Sect. 3.3.2.1), related keywords like
C8H10N4O2, 1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione
or guaranine will not retrieve the model at all. This problem is solved by
incorporating a model annotation. Figure 3.7 shows an excerpt of the example
model. The model index holds information directly encoded in the model, i.e. the
model’s name, species or compartment names and also URIs used to annotate model
entities. The semantic index in addition stores all URIs and links back to models.
Here the textual content behind each URI is resolved and indexed.

The model retrieval is then performed using multiple steps. First, the specific
query is sent to the model index. If no models or only models matching poorly on
the query are retrieved, the search can be refined using the semantic index. Here, the
keywords are used to identify matching URIs used to annotate models. As URIs link
back to their corresponding models, it is possible to retrieve models using keywords
not encoded in the model itself. Such a query expansion is shown in Fig. 3.7 where
the term caffeine is used to add URIs to the original query. After all matching
models are retrieved, a score is computed for each match. The score mostly relies
on the concept of term frequency and inverse document frequency (see Sect. 3.3 for
explanation). However, also the importance of certain model components is taken
into account, e.g. a species is more important than a parameter value. In case of

27http://www.ebi.ac.uk/biomodels-main/BIOMD0000000241

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000241
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URIs, also the relation between URI and annotated entity denoted by the qualifier is
taken into account. A deeper explanation is given in [44]. The described approach
can be tested on BioModels Database.

Additional possibilities for model search emerge if the networks spanned by
several ontologies are integrated. Here, the so-called cross-links can be established
and evaluated. One approach is the Bio2RDF28 project which makes use of the vast
information encoded in life science databases. The basic idea is to convert and to
link the database contents with semantic web technologies [76]. After converting
and linking, each database provides a SPARQL point [80]. The SPARQL point
allows to create sophisticated queries on multiple data providers who also offer
a SPARQL point. As a result, a number of RDF-triples matching the query are
retrieved. Bio2RDF heavily uses semantic web technologies, allowing for automatic
traversal through the network. An integrated network of ontologies can be used with
OWL-based reasoning methods to identify model similarities (e.g. [46]).

In the ranked retrieval approach, which is closely related to a hierarchical faceted
search from Sect. 3.3.1.3, the starting point when querying such a network of
ontologies is one particular ontology entry, e.g. xanthine. If a user is interested in
models revealing information about xanthine and its derivatives, a URI pointing
to the xanthine entry is fed into the system. Thus, the descendants are retrieved
and added up, along with inter-ontology links for the specific entry, to form a
query. Finally, the query is sent to the model index, and a ranked list of models
is retrieved.

3.4 Summary

Due to the increasing demands for data management in the life sciences, information
retrieval is no longer just a buzzword. It has instead become a core concept in
bioinformatics and related research fields. However, while project proposals still
continue to ask for more storage in their budget plans, the aim should be to develop
methods for more efficient use of storage. The mere drop of files to the largest
possible secondary storage devices, i.e. hard drives or cloud storage solutions,
could mean a dead end. Current practice is the storage of working files using a
sophisticated naming system for files in combination with Microsoft Excel sheets to
link some metadata. This is particularly true for many wet lab desks, and it may be
suitable for personal- or even-group level data maintenance. The drawbacks of this
system, however, become obvious in its publication process. Highly personalised
data representation makes the data only discoverable by insiders, computer scientists
or skilled bioinformaticians. The data of interest first needs to be transferred into
well-modelled, granular structured and well-interfaced database systems before
being reused. A main argument for data reuse is that the distribution of knowledge
and later processing by computational analysis is essential to all scientific work.

28http://bio2rdf.org/

http://bio2rdf.org/
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In order to meet the demands expressed above, this chapter gave an overview of
core methods and technologies for modern information management in life sciences.
The first focus was on databases and information systems. In this context, the change
from flat file data exchange to relational database modelling over static database
integration approaches to flexible data networks using semantic technologies has
been described. Particularly exciting is the vision of a holistic view of a universe of
thousands of single yet integrated, well-structured databases. This is, in fact, the
real value of the data collected so far. It is not in the form of daily reinvented
project-related scripts. The development of such scripts demands time and expert
knowledge, and sometimes magic parameters and access paths are used. In contrast,
reusable frameworks such as open templates for a workflow-driven data analysis
should be preferred. The objective here is a sufficient standardisation and semantic
enrichment of the data.

Obviously, the creation of reusable frameworks is a laborious and costly process.
However, the overall gain for science will be even bigger. Therefore, lab staff needs
to be motivated to use lab information systems and to maintain their protocols,
observations and files in database systems. It continues at the scientist’s level, where
the data streams should be consolidated and properly semantically tagged, long-
term citable stored and linked in a scientific publication as supplemental material,
preferable in the already established domain databases. Finally, bioinformaticians
should place emphasis on the code and interface quality. Besides coding, scripting
and data analysis under time pressure, the potential lies in well-documented, object-
oriented developed and well-tested software as well as in the use of standard data
access protocols and interfaces. This enables the global scientific community to
extract all possible knowledge from the existing data.

In addition to the granular and integrated access to globally distributed data,
the selective access to information and their extraction is very important. Not the
mere of data volume matters. The high number of, on the first view separated, but
from a different perspective overlapping, data domains is often the most important
cost factor for information retrieval. It could be argued that the actual core of the
information retrieval is to find data and ultimately obtain information. This concern
is mainly reflected in the section information retrieval. The section has been written
with a focus on techniques and actual systems. Here, two most interesting aspects
were described in summary – the exploratory and the semantic retrieval.

The focus of the first is on relevance ranking in a set of data query results
and recommender systems to improve the query sensitivity and to filter the most
important data items in respect to the user’s needs. The second focus is on semantic
information retrieval, such as the use of metadata or semantic networks and, finally,
semantically interpreted data queries.

In this chapter, no evaluations of or recommendations for specific methods or
systems were made. This is due to the fact that such evaluations strongly depend
on actual applications, which are existing in a wide variety in life sciences. Instead,
an extensive list of references of relevant sources in primary literature as well as of
web sources was added, which should be seen as a starting point of own detailed
studies of the readers.
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WWW Link List

Resource Brief description WWW link

PubMed PubMed comprises citations for biomedical
literature

http://www.ncbi.nlm.
nih.gov/pubmed

DBLP The Computer Science Bibliography provides
bibliographic information on major computer
science journals and proceedings

http://dblp.uni-trier.de

SOAP The Simple Object Access Protocol is a protocol
specification for exchanging structured
information in computer networks

http://www.w3.org/TR/
soap

REST Representational State Transfer is a style of
software architecture for distributed systems
such as the World Wide Web

http://www.ics.uci.
edu/�fielding/pubs/
dissertation/rest arch
style.htm

KGML KEGG Markup Language (KGML) is an
exchange format of the KEGG pathway maps

http://www.kegg.jp/
kegg/xml

MAGE MicroArray and Gene Expression MAGE aims
to provide a standard for the representation of
microarray expression data

http://www.mged.org/
Workgroups/MAGE

COMBINE COMBINE (Computational Modeling in Biology
Network) is an initiative to coordinate the
development of the various community
standards and formats for computational
models

http://co.mbine.org

UniProt UniProt provides a comprehensive, high-quality
and freely accessible resource of protein
sequence and functional information

http://www.uniprot.org/
uniprot

ENZYME The Enzyme nomenclature database (ENZYME)
is a repository of information relative to the
nomenclature of enzymes

http://www.expasy.org/
enzyme

TAIR The Arabidopsis Information Resource (TAIR)
maintains a database of genetic and molecular
biology data for the model plant Arabidopsis
thaliana

http://www.arabidopsis.
org

DCES The Dublin Core Metadata Element Set (DCES)
is a vocabulary of 15 properties for use in
resource description

http://dublincore.org/
documents/dces
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(continued)

Resource Brief description WWW link

MDS The DataCite Metadata Store (MDS) is a
service for data publishers to mint DOIs and
register associated metadata

http://mds.datacite.org/

Wikipedia List of
Search Engines

List of search engines, including web search
engines, selection-based search engines,
metasearch engines, desktop search tools and
web portals and vertical market web sites
that have a search facility for online
databases

http://en.wikipedia.org/
wiki/List of search
engines

Apache Solr SolrTM is the popular, blazing fast open-source
enterprise search platform from the Apache
LuceneTM project

http://lucene.apache.org/
solr

Explorative IR Wikipedia overview about the research
activities on explorative information retrieval

http://en.wikipedia.org/
wiki/Exploratory search

Apache Lucene The Apache LuceneTM project develops
open-source search software

http://lucene.apache.org

Flamenco Flamenco search interface framework has the
primary design goal of allowing users to
move through large information spaces in a
flexible manner

http://flamenco.berkeley.
edu

Malaria Data Tar-
get Classification
Hierarchy

Example of faceted search in Malaria Data in
addition to classic search

https://www.ebi.ac.uk/
chembl/malaria/target/
browser/classification

SABIO-RK SABIO-RK is a curated database that contains
information about biochemical reactions and
their kinetic rate equations with parameters
and experimental conditions

http://sabio.h-its.org

LAILAPS LAILAPS (Life Science Application for
Information Retrieval and Lightweight API
for Portable Search Engines) aims to support
the information discovery in the world’s life
science databases

http://lailaps.ipk-
gatersleben.de

Ensembl The Ensembl project produces genome
databases for vertebrates and other
eukaryotic species and makes this
information freely available online

http://www.ensembl.org

GBIS/I Query portal to retrieve information from the
German federal ex situ seed collection

http://gbis.ipk-
gatersleben.de/gbis i/
home.jsf

GnPIS Genetic and Genomic Information System is a
tool aiming to provide simple and fast access
to the data located in all URGI (plant and
fungi data integration) databases

http://urgi.versailles.inra.
fr/gnpis

NCBI Taxonomy The Taxonomy Database is a curated
classification and nomenclature for all of the
organisms in the public sequence databases

http://www.ncbi.nlm.nih.
gov/Taxonomy
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(continued)

Resource Brief description WWW link

BioModels.net
qualifiers

The qualifier of an annotation should reflect the
relationships between the biological objects
represented by the model element and the
annotation

http://biomodels.net/
qualifiers

path2models The purpose of the project is to systematically
generate mathematical models corresponding
to the entire KEGG pathways and submit them
to BioModels Database

http://code.google.com/
p/path2models

BioModels
Database

BioModels Database is a repository hosting
computational models of biological systems

http://www.ebi.ac.uk/
biomodels-main

Bio2RDF Integration of ontology networks into biomodel
search

http://bio2rdf.org/

Identifiers.org Identifiers.org is a system providing resolvable
persistent URIs used to identify data

http://identifiers.org

SPARQL Query
Language

SPARQL can be used to express queries across
diverse data sources, whether the data is stored
natively as RDF or viewed as RDF via
middleware

http://www.w3.org/TR/
rdf-sparql-query
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Augustin
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