Chapter 12
Parallel Computing for Gene Networks
Reverse Engineering

Jaroslaw Zola

Abstract Gene networks provide a mathematical representation of gene inter-
actions that govern biological processes in every living organism. Given a gene
expression data, the goal of network inference is to reconstruct the underlying
regulatory network. The problem is challenging owing to the convoluted nature of
biological interactions and imperfection of experimental data. In many cases, the
resulting computational models are too complex to execute on a sequential computer
and require scalable parallel approaches. In this chapter, we describe network
inference methods based on information theory and show a parallel algorithm that
enables whole-genome networks reconstruction.

12.1 Introduction

Biological processes in every living organism are governed by complex interactions
between thousands of genes, gene products, and other molecules. Genes that are
encoded in the DNA are transcribed and translated to form multiple copies of
gene products including proteins and various types of RNAs. These gene products
coordinate to execute cellular processes or to regulate the expression of other genes
depending on the signals carried by, e.g., small molecules. Gene regulatory networks
are an attempt to develop a system-level model of these complex interactions, using
observations of gene expression.

Gene regulatory networks are typically expressed as graphs with vertices rep-
resenting genes and edges representing regulatory interactions between genes (see
Fig. 12.1). The functioning of a gene regulatory network in an organism determines
the expression levels of various genes to help carry out a biological process.
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Fig. 12.1 Example gene regulatory network. Here nodes represent genes, T-edges denote reg-
ulation in which a source gene inhibits expression of the target gene, and arrow edges denote
regulation in which a source gene induces expression of the target gene

Network inference, or reverse engineering, is the problem of predicting the under-
lying network from multiple observations of gene expressions (outputs of the
network). To infer a network, one relies on experimental data from high-throughput
technologies such as microarrays, or short-read sequencing, which measure a
snapshot of all gene expression levels under a particular condition or in a time series.
The problem of gene network inference is challenging for several reasons:

Functioning of any complex organism involves thousands of genes, and usually
it is impossible to limit analysis to only a subset of them. In fact, in many cases,
the opposite situation takes place — gene networks are used to limit the number
of genes that should be target of a biological analysis.

Despite the rapid progress in high-throughput biotechnology, the number of
available expression measurements often falls significantly short of what is
required by the underlying computational methods. At the same time, expression
data is inherently noisy and significantly influenced by experiment-specific
attributes. Consequently in many cases the number of genes in the network
significantly outnumbers the number of available expression measurements.
Finally, our understanding of regulatory mechanisms (e.g., posttranscriptional
effects) is still limited, leading to many simplifications in the existing models of
regulation.

Due to its importance, gene network inference is an intensely studied problem for

which many techniques have been developed. Relevance networks [3, 7], Gaussian
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graphical models [6, 19], information theory-based methods [2, 9, 25], Bayesian
networks [10, 24] and dynamic models [12] are just some examples of the existing
approaches. At the same time, two key problems remain with the current methods.
The first one is the quality of reconstructed networks. In a recent comprehensive
study of 29 network inference methods, Marbach et al. concluded that many do
poorly on an absolute basis and 11 do no better than random guessing [15]. The
second challenge is computational complexity of the methods and their ability
to encompass data from organisms with thousands of genes and large number of
expression observations. The computational cost of network inference grows at
least as square of the number of the genes and at least linearly with the number of
experiments analyzed. Furthermore, statistical methods used to assess significance
of the inference, such as bootstrapping, add an extra layer of computational
complexity.

To overcome the above limitations and to improve accuracy of network inference
while scaling to large expression data, parallel methods for gene networks reverse
engineering have been recently proposed [18, 21, 25]. Thanks to the emergence
of inexpensive multi and many core processors, and almost ubiquitous adoption
of parallel computing, these methods become a solution of choice when large or
complex expression data has to be analyzed. More importantly, parallel methods
can be used to reconstruct genome-level interactions without sacrificing accuracy,
which is where sequential methods fall short.

In this chapter, we focus on application of parallel computing for reverse
engineering of gene regulatory networks. First, we explain how the sequential
inference process works and then we show how it can be scaled to large distributed
memory systems. We base our presentation on information-theoretic methods, a
popular class of inference algorithms. Finally, we discuss how to validate inference
algorithms in silico, and we demonstrate applicability of parallel methods in
reconstructing genome-level regulatory networks.

12.2 Network Inference Using Information Theory

In this section, we introduce a more formal statement of the network reconstruction
problem, and we present an inference procedure based on information theory. We
explain concepts of mutual information and data processing inequality and show
how mutual information can be estimated and its significance assessed. We start
however with a brief description of a general network inference process.

12.2.1 From Experiment to Network

The goal of network inference is to provide a qualitative, and if possible quantitative,
explanation of the observed expression data. The quality of the reconstructed



340 J. Zola

quality control
normalization reverse engineering

Gene Expression Expression Inferred
Measurements Profile Network

Fig. 12.2 Typical process of reconstructing gene regulatory network

network and its information content are affected not only by the inference method
but also by the input data. Gene expression can be measured using several methods,
for instance, quantitative PCR, microarrays, or more recently RNA-seq. However,
irrespective of which method we select to measure genes expression, three important
questions must be answered: first, what should be the set of experimental conditions,
how the expression data should be preprocessed to obtain an expression profile
suitable for network inference, and finally, which inference method should be used
taking into account the two above.

Figure 12.2 illustrates an example inference process. We start with the data
acquisition. This step is determined by the underlying scientific hypothesis, which
in turn involves careful design of the biological experiment. Note that the data
gathered in the experiment can be, and usually is, extended with data deposited
in the public repositories, such as Gene Expression Omnibus (GEO) [17]. In
general, in this stage, we want to ensure that the collected expression data is
sufficient to obtain accurate predictions in the inference process. The following
step is to convert the aggregated data into an expression profile. The choice of
method depends purely on the experimental platform. For example, processing
microarrays will typically require sophisticated signal-calling procedures, followed
by filtering and normalization, while RNA-seq will most likely depend on reads
mapping and reads counting to obtain a digital expression. This stage is crucial
to minimize noise impact, to eliminate low-quality data, and to render different
experiments comparable. Only when the expression profile is ready a network
can be reconstructed. As we already mentioned, multiple inference methods exist
and which method should be used depends on many factors, including size of the
expression data and type of queries that the inferred network is meant to answer. In
this chapter, however, we consider an information-theoretic approach and its parallel
realization.
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12.2.2 Problem Formulation

Let us consider the following situation. We performed a set of m experiments,
e.g., microarray tests, and obtained expression measurements for n genes. We
will represent these genes as a set G = {gi,82,...,8u}, Where g; is a gene.
Furthermore, we will assume that the expression measurements have been post-
processed and normalized accordingly and taking into account properties of the
underlying technology. Collectively, we can represent such expression data as a
profile matrix Y,x,,, where Y [i, j] is an expression of gene g; in experiment j.
The core assumption of virtually all network inference methods is to represent
expression of a gene g; as a random variable X; € X, X = {Xy,..., X,,}, with
marginal probability py, derived from some unknown joint probability characteriz-
ing the entire system. This random variable is described by a vector of observations
(Xi1,...,Xim), where x; ; = Y[i, j]. In this form, the network inference problem
becomes that of finding a model that best explains the data in Y. The problem can be
approached using a variety of methods, including Bayesian networks and Gaussian
graphical models. However, one class of methods that have been widely adopted
due to their effectiveness uses the concept of mutual information [2, 9, 25]. These
methods operate under the assumption that correlation of expression implies co-
regulation. Although not always true, the assumption is broadly accepted, especially
when analyzing microarray data.

Inference methods based on information theory usually proceed in two phases.
First, correlations between pairs of genes are detected. If expression of two genes
shows strong correlation, we can assume that they are interacting in the regulatory
processes and hence should be connected in the network. Unfortunately, looking
solely into pairwise correlations is insufficient to capture more complex regulatory
patterns. Consider a scenario where gene g, regulates gene g,, which in turn
regulates g,. If we analyze expression of all three genes, it is very likely that g,
and g, will be significantly correlated, even though they should not be directly
connected in the network. To account for such situations, in the second phase,
information-theoretic strategies perform additional check to detect and remove
indirect interactions.

12.2.2.1 Mutual Information

Let us now focus on how correlation between expression profile of two genes is
established. Recall that we represent expression of each gene as a random variable.
Although we are given observations of that variable, we do not know its actual
distribution. Moreover, the expression observations are delivered from inherently
noisy experiments and thus are not perfect. Consequently, to establish whether two
expression profiles are correlated, we have to account for potentially complex, e.g.,
nonlinear, patterns of correlations. This can be achieved using the concept of mutual
information [4].
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Mutual information is arguably the best measure of correlation between two
random variables. It is defined based on the entropy in the following way:

I(X,,Xj):H(X,)+H(XJ)—H(X,,XJ), (121)

where entropy H is given as

H(X) == px(x)log(px (x)), (12.2)

px defines the probability distribution of X, and Y is replaced by integral if X
is continuous. Intuitively, mutual information Z(X;; X ;) quantifies information that
both variables provide about each other. If two variables are correlated, then their
joint entropy is smaller than the sum of their individual entropies, and hence greater
is their mutual information. Note that from Egs. (12.1) and (12.2), we can write
mutual information as

Px;x; (Xi, Xj)
(X Y:) = x (i, xi)1 _ ], 12.3
( ) ZZPX'X/(X ) Og(PXi(Xi)PX,-(xj)) (123

Xi X J
which is equivalent of the Kullback-Leibler divergence between distribution of
X; and X; when both variables are dependent (i.e., py, X/.) and when they are
1ndependen.t G.e., Pxx; = Dx; Px;)- . . . '

Mutual information is a symmetric, nonnegative function and is equal to zero
if and only if two random variables are independent. Consequently, to connect two
genes in the reconstructed network, we have to check if mutual information between
their expression profiles is greater than zero.

12.2.2.2 Data Processing Inequality

Having defined a correlation measure, we are left with the task of identifying
indirect interactions between genes. One popular approach to address this problem,
which first has been introduced in the ARACNe method [2], is to rely on the data
processing inequality principle, or DPI for short. Briefly, DPI states that if three
random variables X;, X;, X form a Markov chain in that order (i.e., conditional
probability of X depends only on X; and is independent of X;), then Z(X;; X;) <
Z(X;; X;), which implies also that Z(X;; Xx) < Z(X;; Xx). In other words, Xj
cannot provide more information about X; than X; provides about X;. The DPI
reasoning can be used to detect indirect interactions between genes: each time
the pair (X;, X) satisfies both inequalities, the corresponding connection between
genes g; and g; can be removed from the network. Note that the above procedure
is based on the assumption that DPI implies independence of X; and X given X;.
This is not always true: in some situations the inequalities may hold even though
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X; and X} are dependent (consider for example, binary variables, where X; and X ;
are uniform and X is a XOR function of X; and X ;). Nevertheless, DPI has been
shown to perform very well in practice.

12.2.2.3 Inference Algorithm

So far we defined two information-theoretic concepts that can be used to infer gene
regulatory networks — mutual information and DPI. Algorithm 12.1 shows how the
two are combined into a working solution.

We represent the network using adjacency matrix D. Although gene regulatory
networks are usually very sparse, initially we have to compute mutual information
between all (’;) pairs of genes (line 1). Then, we remove edges between genes
that are not significantly correlated (lines 2—4) and proceed with the DPI phase
(lines 5-9).

Algorithm 12.1 Network inference using information theory

Input: Expression profile Y, x,,, mutual information threshold Z°
Output: Adjacency matrix D, x,
: DIi, j] = Estimate Z(X;; X ;) from (Y[i,], Y [j,])
if D[i, j] < Z° then
D[i,j1=0
end if
: for all (i, k) do
if3js.t. D[i,k] < D[i, jland D[i, k] < D[j, k] then
D[i,k]=0
end if
end for

VRN R LN

The main component of the algorithm is estimation of mutual information
from the expression data. Observe that although in Eq. (12.3) we express mutual
information through probability distributions, we do not know the distribution that
governs gene expression. Consequently, we have to estimate mutual information
from observations provided by the expression profile matrix Y. Fortunately, because
mutual information is a widely used concept, there are several estimators available.
Here, we will describe the B-spline-based estimator that has been proposed by Daub
et al. for analyzing expression data [5].

The estimator works by discretizing observations into b categories, but with the
assumption that given observation can be assigned simultaneously to k categories
with different weights. The weights are obtained using B-spline functions of order
k, defined over b uniformly spaced knot points. Note that knot points define bins
(categories) to which each continuous observation can be assigned. Let B}(’ be a B-
spline function of order k defined over b knot points. For a continuous observation,
this function returns a vector of size b with k nonnegative weights that indicate
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to which bins the observation should be assigned. Given two random variables X;
and X; with m observations, we can discretize them into variables 4 and B with
probabilities:

1 m
_ Z Bk(x, 1) (12.4)
m 1=1
and
1 m
DAB = " Z (le;(xi,l) X Bil;(xj,l)) ) (12.5)
I=1

where in our case x; ; = Y[i, j]. By plugging the resulting probabilities directly
into entropy calculations, we can compute marginal and joint entropy for A and
B and then approximate Z(X;; X;) ~ Z(A; B). A nice property of the B-spline
estimator is that it can be very efficiently implemented, and its complexity is of
order O(m).

The last element of the inference algorithm is the choice of the threshold value
70 to decide when correlation is significant. Recall that two random variables are
independent only if their mutual information is equal zero. However, because we
are estimating mutual information, it would be unrealistic to expect precise results.
Therefore, it is a common practice to assume that mutual information lower than the
carefully chosen cutoff Z° implies independence. There are different ways Z° can
be selected, and we describe one particular solution next.

12.2.2.4 Testing Significance of Mutual Information

As we already mentioned, using mutual information requires deciding when
its estimate implies independence. This can be regarded as assessing statistical
significance of the quantity Z(X;; X ) itself. This assessment can be done through
permutation testing.

Let n(X;) = w((xi1,Xi2,---,X;m)) denote a permutation of the vector of
m observations of X;. If there exists dependency between X; and X;, it is
expected that Z(X;; X;) is significantly higher than Z(w(X;); X;). The permu-
tation testing method involves computing Z(x(X;); X;) for all m! permutations
of (x;1,Xi2,...,Ximm) and accepting the dependency between X; and X; to be
statistically significant only if Z(X;; X;) > Z(w(X;); X;) for at least a fraction
(1 — €) of the m! permutations tested, for some small constant € > 0. As testing all
m! permutations is computationally prohibitive for large m, a large sampling of the
permutation space is considered adequate in practice.

Ideally, permutation testing should be conducted for assessing the significance of
each pair Z(X;; X;) using a large number of random permutations. Clearly, this is
computationally prohibitive. However, we proposed a simple solution to overcome
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this limitation, by using only a few random permutations per pair, while collectively
obtaining statistically meaningful results for all pairs [25].

Mutual information has the property of being invariant under homeomorphic
transformations:

I(Xi: Xj) = Z(f(Xi): (X)), (12.6)
for any homeomorphisms f and 4. Consider replacing the vector of observations for
Xi,ie., (x;1,Xi2,...,Xim) with the vector (rank(x; 1), rank(x;»), ..., rank(x; ;)),
where rank(x;;) denotes the rank of x;; in the set {x; 1, X;2,..., Xim}; i.€., we

replace each observation with its rank in the set of all observations. The transfor-
mation, which is termed rank transformation, while not continuous, is considered
a good approximation to homeomorphism [13]. In our case, instead of computing
mutual information of pairs of gene expression vectors directly, we equivalently
compute the mutual information of their rank transformed counterparts. With this
change, each observation vector is now a permutation of {1,2,...,m}. Therefore,
a permutation 7 (X;) corresponds to some permutation of the observation vector
of any other random variable X ;. More formally, consider applying permutation
testing to a specific pair (X;, X;) by computing Z(sr(X;); X;) for some randomly
chosen permutation 7. For any other pair (X, X;), 37’, 7" such that #(X;) =
7'(X;) and 7(X;) = " (7’ (Xx)). Since 7 is a random permutation, so is 7" and
Z(w(X;); X;) is a valid permutation test for assessing the statistical significance of
Z(Xi; X;) as well. Thus, each permutation test is a valid test for all (g) pairs of
observations.

Using the above procedure, we can easily find the threshold value Z°. When
estimating mutual information for each rank transformed pair (X;, X ;), we perform
additional ¢ permutation tests. Then, Z° is the rth largest value among all values
generated by the permutation test, where r = (1 —¢€) - g - (’;) and € is a small
constant describing the significance level.

12.3 Parallel Method for Networks Inference

In the previous section, we explained how concepts from information theory and
statistics can be used for reverse engineering gene regulatory networks. Although
the resulting method is considered to be very accurate, it becomes limited for
reconstructing genome-level networks with thousands of genes. This is because the
whole-genome gene network reconstruction is both compute and memory intensive.
Memory consumption arises from the ©(nm) size of input data and from the @ (n?)
dense initial network generated in the first phase of the reconstruction algorithm.
Computational cost is dominated by the O(n?) computations of mutual information,
where the complexity of a mutual information estimator is at least O(m), but
it can be O(m?) for, e.g., Gaussian kernel estimator. As a result, large-scale
network construction is out of the scope of sequential methods, and scalable parallel
approach becomes necessary.
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Let p denote the number of processors in a parallel computer. Recall that we
represent the network using the standard adjacency matrix D,x,. To store the
matrix in the distributed memory, we use row-wise data distribution where each
processor stores up to [%] consecutive rows of the expression profile Y and the
same number of rows of the corresponding gene network adjacency matrix D. To
begin, each processor reads and parses its block of input data and then applies rank
transformation. The algorithm proceeds in three phases: in the first phase, mutual
information is computed for each of the (;) pairs of genes and ¢ randomly chosen
permutations per pair. Note that the total number of permutations used in the test
isQ =gq- (;), allowing a small constant value of ¢ for large n. In the second
phase, the threshold value Z° is computed. In the final phase, indirect interactions
are detected using DPI and removed.

12.3.1 Computing Mutual Information

Without loss of generality, we can assume that n is a multiple of p. To compute
mutual information between all pairs of genes, we first partition D into p X p

blocks of submatrices D; ; (0 < i, j < p), each of % X % size. Then we proceed

in [pTH] iterations. In each iteration, a processor is assigned a submatrix. Its task
is to compute mutual information for each position in the submatrix, along with
mutual information of ¢ random permutations for each position. Observe that to
do so, it requires the expression profile vectors of all genes representing rows
or columns in the submatrix. For blocks on the main diagonal, the same genes
represent both rows and columns. For other blocks, the row genes and column
genes are distinct. Because the matrix D is symmetric, we need to compute only
half of it, i.e., as D; ; = D;i only one of them needs to be computed. We call

a set of w submatrices containing only one of D;; or D;; for each pair
(i, ), to be the complete set of unique submatrices. The assignment of submatrices
to processors is as follows: in iteration i, processor with rank j is assigned the
submatrix D (;+i) mod p (see Fig.12.3 for an illustration). It is easy to argue that
this scheme computes all unique submatrices.
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The assignment of submatrices to processors creates the same workload with
the following exceptions: in iteration 0, the submatrices assigned are diagonal, for
which we only need the lower (or upper) triangular part. As all processors are
dealing with diagonal submatrices in the same iteration, it simply means that this
iteration will take roughly half the compute time as others. The other exception may
occur during the last iteration. To see this, consider that the processors collectively
compute p submatrices in each iteration. The total number of unique submatrices is
w. The following two cases are possible:

p+1-| _ p+1

1. pis odd. In this case, the number of iterations is [ . The total number

of submatrices computed is £°27 (p +1D which is the same as the total number of
unique submatrices. Since the algorlthm guarantees that all unique submatrices
are computed, each unique submatrix is computed only once.

2. p is even. In this case, the number of iterations is [”TH = % + 1, causing the
total number of submatrices computed to be p - (% + 1), which is % more than
the number of unique submatrices. It is easy to show that this occurs because in
the last iteration, half the processors are assigned submatrices that are transpose
counterparts of the submatrices assigned to the other half (marked with darker

color in Fig. 12.3).

When p is even, we can optimize the computational cost by recognizing this
exception during the last iteration and having each processor compute only half
of the submatrix assigned to it, so that the processor which has the transpose
counterpart computes the other half. Note that this will save half an iteration,
significant only if p is small. For large p, we can ignore this cost and run the last
iteration similar to others.

Let us now compute the parallel runtime of the above method assuming a simple
point-to-point communication model with latency 7 and bandwidth 1 (adequate for
most distributed memory parallel systems). Under this model, the first phase takes

2
0] (%) compute time and O (pt + unm) time for communication. Thus, we

can scale p linearly with » while maintaining parallel compute time as the dominant
factor in runtime.

12.3.2 Computing T°

Having computed the adjacency matrix D, we have to now remove edges that are not

statistically significant, i.e., their mutual information is lower than Z°. Recall that the

threshold is computed by finding the element with rank r = (1—¢€)-g- ( ) among the

q - (2) mutual information values computed as part of permutation testing. As each
2

processor stores at most % results of the permutation test, we can find the threshold

using a parallel selection algorithm. However, € is a very small positive constant
close to zero, and hence, the threshold value is close to the largest value in the sorted
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order of the computed mutual information values. Hence, we can proceed as follows:
X 2
each processor sorts its & (%) values and selects the r largest values. Then, a

parallel reduction operation is applied using the r largest values in each processor
as input. The reduction operator performs linear merging of two samples of size r
and retains the r largest elements. Once the rth globally largest value is found and
broadcast, each processor eliminates edges from its local adjacency matrix that are

below the threshold. This phase takes O (qnz% + rlog p) parallel compute time

and O ((r + pr)log p) parallel communication time. Assuming € < %, we can
expect linear scaling.

12.3.3 Removing Indirect Interactions

In the final phase of the algorithm, we have to apply DPI to prune indirect
interactions. To decide if a given edge DI[i, j] should be removed, we have to
compare it with all values DJi, k] and D[}, k]. Consequently, complete information
about rows i and j is needed. Because matrix D is stored row-wise, we have to
stream row j to the processor responsible for row i. Moreover, because matrix
D is symmetric, it is sufficient to analyze its upper (or lower) triangular part.
We can achieve this in p — 1 communication rounds, where in round i only
processors with ranks 0, 1, ..., p — i participate in communication and processing.

The parallel runtime of this phase is O (% +p + an). While this worst case

analysis indicates this to be the most compute-intensive phase of the algorithm, it
is not so. This is because DPI requires no significant computation and just single
memory write, and it needs to be applied only to current existing edges in the
network, and the network is expected to be significantly sparse.

12.3.4 Testing Parallel Scalability

The parallel approach described in the previous sections has been implemented in
the software package TINGe [1,25]. TINGe is a C++ software based on the Message
Passing Interface (MPI) that can be executed on large distributed memory machines.
It implements several low-level optimizations to exploit SIMD instructions of
modern processors during mutual information computations and uses MPI 1/O
routines to handle large input and output data. TINGe employs the B-spline-based
mutual information estimator.

To demonstrate scalability of the parallel inference method, we executed TINGe
on the IBM Blue Gene/L system with p = 1,024 processors and analyzed four
different expression profiles with varying number of genes (n = 2,048 and n =
4,096) and varying number of observations (m = 911 and m = 2,996). We tested
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Table 12.1 TINGC runtime m =911 m = 2.996
in seconds for different
number of genes 7 and P n=2048 n=4,09% n=2048 n=4,09
different number of 32 382 1,525 1,489 5,932
expression observations m 64 193 766 752 2,986
128 98 385 378 1,495
256 50 196 193 762
512 27 101 101 386
1,024 17 55 56 203
o [oR
=] =}
el kel
(9] (0]
[} (]
Q. Q.
[%2] (%]
0 # T T T 0 # T T T
32 256 512 1024 32 256 512 1024
Processors Processors

Fig. 12.4 Relative speedup of TINGe as a function of number of processors for the data sets with
911 observations (left) and 2,996 observations (right)

how runtime changes with the number of processors and what is the relative speedup
of the software. Results are summarized in Table 12.1 and Fig. 12.4.

Note that scalability is a crucial characteristic of any parallel software. If a
parallel application is scalable, we can decrease its runtime proportionally by
executing it on the larger number of processors, and we can solve larger problems.
On the other hand, software that scales poorly is of little use as it does not benefit
from the parallel hardware.

As we can see, TINGe maintains almost linear scalability up to 1,024 processors,
that is, with the increasing number of processors, its runtime decreases linearly. The
runtime grows as square function of the number of genes n and linearly with the
number of observations m. This is what we expected taking into account the O (m)
complexity of the B-spline-based mutual information estimator and the fact that
computations are dominated by the first phase, i.e., computing mutual information
between all pairs of genes.

12.4 Example Applications

So far we described a parallel information theory-based method for gene network
inference. We also demonstrated that the method scales very well on distributed
memory parallel systems and hence can be used to process large expression data.
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One remaining question that has to be addressed is the accuracy and applicability of
the method. In this section, we show how to assess quality of network inference
methods. Then, we analyze performance of TINGe, and we explain how it has
been used to reconstruct a genome-level regulatory network of the model plant
Arabidopsis thaliana.

12.4.1 Assessing Quality of Network Inference Methods

Computational methods for regulatory networks reverse engineering are necessarily
error-prone, owing to simplifications in the underlying models. This is not surprising
taking into account our limited understanding of regulatory processes. When
designing a new inference method, we would like to meet three main quality
criteria: sensitivity, specificity, and precision. Let TP denote the number of true
positives, i.e., the number of correctly predicted gene interactions (network edges);
FP be the number of false positives, i.e., incorrectly predicted edges; TN be the
number of correctly avoided edges; and, finally, FN be the number of incorrectly
avoided interactions. Then, sensitivity relates to the ability of the method to identify
positive results Sensitivity = TPTFN, and it is a fraction of correct interactions
predicted. Likewise, specificity relates to the ability of the method to identify
negative results Specificity = %), and it is a fraction of missing edges correctly

classified. Finally, precision describes predictive power of the method Precision =
TP
TP+FP ) . . . . . .
Having defined quality criteria, the question is how can we assess performance

of a particular method. Naturally, performing a biological experiment to confirm
predictions in the inferred network is the most desired approach. However, in
most cases, it is infeasible because of the cost and technical limitations (not all
interactions can be easily validated). To address this challenge, several researchers
proposed methods to perform quality assessment using a synthetic data [12, 14, 20,
23]. The basic idea of the approach is illustrated in Fig. 12.5.

The process starts with two input components — some known network structure
and a model of expression dynamics, which usually involves a set of differential
equations describing how regulators affect expression of the target gene [23]. The
input network is sampled to obtain a benchmark synthetic network. By combining
the synthetic network and the expression model, we can generate a synthetic gene
expression profile that next can be used as an input to the tested inference method.
Observe that the above process guarantees that we know both expression data and
the network from which this data has been derived. Consequently, we can easily
assess the quality of the inference method by comparing our prediction with the
synthetic network. This approach is very flexible — different models of regulation
and different sampling strategies can be used to generate synthetic data, and hence
to capture various properties of the real-life biological systems. There are several
tools that implement such strategy (see, for example, GNW [20], SynTReN [23],




12 Parallel Computing for Gene Networks Reverse Engineering 351

expression dynamics

model
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Fig. 12.5 Quality assessment of a network inference method using synthetic data

Table 12.2 Quality of ARACNe and TINGe using a 250-gene synthetic
network with two different sets of expression profiles

m = 500 m = 900

ARACNe TINGe ARACNe TINGe
Time (s) 473 24 1,866 40
Specificity 0.99 0.99 0.99 0.99
Sensitivity 0.42 0.42 0.44 0.44
Precision 0.52 0.52 0.56 0.57
TP 181 180 190 187
N 30,535 30,538 30,553 30,562
FP 166 163 148 139
FN 243 244 234 237

or COPASI [12]). These tools provide a functionality to create benchmark data sets
with desired number of genes and observations and can be readily used to assess
quality of inference methods.

We used SynTReN to assess quality of two mutual information-based inference
methods: ARACNe and TINGe. Both tools use the same underlying inference algo-
rithm; however, ARACNe uses different methods to estimate mutual information
and to establish the threshold Z°. We generated two synthetic regulatory networks,
each consisting of n = 250 genes, but differing in the number of expression
observations (m = 500 and m = 900, respectively). Table 12.2 shows that both
methods preserve very good precision and sensitivity, while TINGe outperforms
ARACNEe in terms of the runtime. Increasing the number of observations improves
performance of both methods, which is expected as we gain more information with
more observations.

While synthetic data provides a convenient way to assess quality of inference
methods, we should keep in mind that it is not an ultimate quality indicator. This
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is because the way synthetic data is generated is model dependent, and hence, it is
subject to similar limitations as inference methods. Nevertheless, if a given inference
method performs well when tested with synthetic data, it is very likely that it will
perform well in practice. On the contrary, methods that perform poorly will fail
when analyzing real-life data.

12.4.2 Reconstructing Whole-Genome Network of Arabidopsis

Arabidopsis thaliana is the model plant to study plants’ biology and hence is
of great practical importance. Its genome contains estimated 27,000 genes, and
hence, constructing genome-level regulatory network becomes challenging both
computationally and in terms of assembling a sufficiently reach expression profile.
Consequently, reconstructing Arabidopsis network demonstrates applicability and
necessity of parallel inference methods.

We used TINGe to reconstruct the gene regulatory network of Arabidopsis [1].
We started reconstruction by obtaining a total of 3,546 nonredundant Affymetrix
ATH1 microarray observations, grouped into 197 experiments. Here, each experi-
ment contained several gene expression measurements related to the same biological
process or condition. The data was aggregated from the main Arabidopsis repos-
itories at NASC [16], GEO [17], ArrayExpress [8], and AtGenExpress [22]. It
covers different plant development stages and various treatment experiments, and
collectively it provides a broad overview of expression profiles in Arabidopsis.

To accommodate for the variability in this highly diverse collection, we devel-
oped the following pipeline to obtain the final expression profile. We first removed
microarrays which did not pass a rigorous quality control (e.g., exhibited prob-
lems, with RNA hybridization). For this we depended on several existing quality
indicators offered by the Affymetrix platform. The screening process returned
3,137 microarrays that were subject to normalization: we transformed expression
measures into log, space and changed to Y[i, j] = S[i,j] — S;, where S[i, j]
represents log,-transformed expression of gene i in observation j and S; is the
average expression of gene i across all the microarray chips in the experiment
containing chip j. Finally, the resulting expression was quantile normalized, and to
guarantee that the expression profile of every gene covers a wide range of expression
levels, expression profiles with interquartile range of expression lower than 0.65
were removed. As a result, we obtained the final expression matrix with m = 3,137
observations and n = 15,495 genes.

Using this data, TINGe constructed a whole-genome network in 30 min on
the IBM Blue Gene/L with p = 2,048 processors. I/O operations took 1 min,
finding threshold value Z° required 1 s, and application of DPI ran in 16s. Analysis
of this network enabled several important insights into biological processes in
plants, for instance, the carotenoid biosynthesis. More importantly, this experiment
demonstrates that thanks to application of parallel computing, mutual information
methods can be used to reconstruct genome-level regulatory networks.
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12.5 Final Remarks

The problem of gene regulatory networks inference is one of many in the broad area
of computational systems biology. In this chapter, we covered information-theoretic
approach to the network inference, together with its scalable parallel implemen-
tation. We also demonstrated how application of parallel computing can be used
to reconstruct some of the largest gene regulatory networks. Recently, several
other parallel reverse engineering methods have been proposed [11, 18,21]. These
methods use different criteria to model gene interactions, e.g. based on Bayesian
networks, or different approaches to parallelization, e.g., with GPU accelerators.
In spite of that parallel processing only recently attracted attention of systems
biology researchers. Together with the rapid progress in high-throughput biological
technologies, we can expect accumulation of massive and diverse expression data,
which will enable more complex and realistic models of regulation. Clearly, these
models will require large computational power offered by parallel systems.
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