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Abstract. Clustering based on sparse representation is an important
technique in machine learning and data mining fields. However, it is time-
consuming because it constructs l1-graph by solving l1-minimization with
all other samples as dictionary for each sample. This paper is focused on
improving the efficiency of clustering based on sparse representation.
Specifically, the Spectral Clustering Algorithm Based on Local Sparse
Representation (SCAL) is proposed. For a given sample the algorithm
solves l1-minimization with the local k nearest neighborhood as dictio-
nary, constructs the similarity matrix by calculating sparsity induced
similarity (SIS) of the sparse coefficients solution, and then uses spectral
clustering with the similarity matrix to cluster the samples. Experiments
using face recognition data sets ORL and Extended Yale B demonstrate
that the proposed SCAL can get better clustering performance and less
time consumption.

Keywords: Spectral Clustering, Weight Matrix, Sparse Representation,
k − nn.

1 Introduction

Spectral clustering algorithm, as one kind of important clustering algorithms,
searches for clusters in the full feature space, and it is equivalent to graph min-
cut problem based on a graph structure constructed from the original samples in
vector space. It has been increasingly and widely developed and applied in recent
years, such as financial time series [1], cluster analysis of spam images[2], cancer
diagnosis and treatment[3]. Compared with the traditional clustering methods,
spectral clustering has the advantage to cluster the arbitrary shape of samples
space and finds the global optimal solution [4].

In recent years, sparse representation, the algorithmic problem of comput-
ing sparse linear representation with respect to an over-complete dictionary of
base elements, has attracted a great attention in machine learning and pattern
recognition [5]. Semi-supervised learning by sparse representation [6] assumes
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that each sample can be reconstructed by the sparse linear combination of other
samples and constructs a l1 graph by solving l1 minimization problems.

The basic idea of unsupervised spectral clustering based on sparse represen-
tation (SCSR)[7] solves the sparse decomposition of each sample in the form of
the linear combination of other samples; constructs the weight matrix between
data samples using the sparse coefficients solution; then the weight matrix of
this graph is used as the weight matrix for spectral clustering to get the cluster
result. In SCSR, finding sparse representation is fast in theory if the sparsest
solution is found(i.e. few non-zero coefficients)[5]. In practice, however, when the
number of samples is large, the computational time cost of solving the sparse
representation from all other instances is too expensive.

To overcome the time consumption deficiency of finding sparse representa-
tion, we propose to solve the sparse representation problem in a local domain to
obtain an approximate solution and then to construct a local graph for spectral
clustering, called spectral clustering algorithm based on local sparse represen-
tation (SCAL). Experiments conducted on real datasets demonstrated that the
proposed SCAL algorithm can reduce the computational complexity.

The rest of the paper is organized as follows: in Section 2, we review an re-
lated work of spectral clustering based on sparse representation, followed by our
proposed algorithm in Section 3. Section 4 demonstrates the detailed experiment
results, and our work is concluded in Section 5.

2 Spectral Clustering Based on Sparse Representation

Sparse representation means to represent a sample as a linear combination
of a few atoms of a given dictionary. Mathematically, given sample set X=
[x1, x2, ..., xN ] ∈ RM×N ,where N is the total number of samples and M is the
number of fatures of each sample; a dictionary D ∈ RM×K , where K is the
numeber of atoms in D, the sparse representation problem can be stated as :

α̂ = argmin
α

||α||0 s.t.xi = Dα (1)

Where ||α||0 is the l0 pseudo-norm of the coefficient vector α ∈ RK ,which counts
the number of nonzero entries in a vector. However, finding the sparsest solu-
tion of (1) is NP-hard. So Wright et al. [8] proposed to solve the following
l1-minimization problem instead:

α̂ = argmin
α

||α||1 s.t.xi = Dα (2)

Where ||α||1 is the l1 norm of the coefficient vector α, which is simply the sum of
the absolute values of the columns. In the noisy case the equality constraint must
be relaxed as well. An alternative then is to solve the unconstrained problem,

α̂ = argmin
α

||xi −Dα||22 + λ||α||1 (3)

Where λ is a parameter that balances the tradeoff between reconstruction error
and sparsity.
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Spectral Clustering Based on Sparse Representation is depended on a ba-
sic assumption that any data sample in the data set can be well represented
by the linear combination of a small number samples from the same cluster.
Nevertheless, for each sample, unsupervised clustering does not have any pri-
ori information which samples are in the same cluster, To successfully identify
the potential small set to reconstruct each sample,John Wright and Yi Ma etc.
[9] used equation (2) to represent each sample in form of the linear combi-
nation of other samples in the dataset. For each sample xi, i∈ 1,2,...,N, set
Xi=X\xi=[x1,x2,...,xi−1, xi+1,...,xN ], then the reconstruction weight αi for xi

can be calculated by solving the following l1-minimization problem:

α̂i = argmin
αi

||xi −Xiαi||22 + λ||αi||1 (4)

Theoretically, the computational complexity to obtain the sparse represen-
tation is approximately to O(t2(N-1)) for each sample, where t is the number
of non-zero entries in reconstruction coefficients and N-1 is the number of sam-
ples in dictionary Xi. In practice, due to there are many very small non-zero
reconstruction coefficients in the obtained solution, the computation complexity
to find the sparse reconstruction coefficients tend to be about O(N3) for each
sample as t tends to be N.

According to the coefficient vector α, a sparse weight graph G can be con-
structed using different methods to characterize the relationship between sam-
ples. The commonly used weight matrix construction approaches are as follows.

Direct Construction[9]: Wij = |αi
j |, if i > j, and Wij=|αi

j−1| if i < j,where αi
j

is the coefficient corresponding to the jth sample basis function in representation
of sample xi.

Symmetric Weight (CSR)[10]: on the basis of Direct Construction, if αi
j �= 0,

set the weight Wij=|αi
j|, 1 ≤ i, j ≤ N, and then W=(WT+W)/2.

Sparsity Induced Similarity (SIS)[11]: The similarity between xi and xj ,
1 ≤ i, j ≤ N, i �= j is defined as

Wij =
max{αj

i , 0}
N∑

k=1,k �=i

max{αk
i , 0}

This matrix is not necessarily symmetric, to ensure symmetric, the final similar-
ity between xi and xj is defined as Wij = (Wij +Wji)/2, and set Wii = 0.

In the concrete realization of the process, the similarity matrix W is con-
structed differently in different algorithms. When we get the weight matrix W,
we can use the basic framework of spectral clustering[12] to cluster the dataset
into K clusters.

3 The Proposed Algorithm: SCAL

In this section, we propose to solve the sparse decomposition problem in a local
domain to obtain an approximate solution, this method solves the same problem
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in the local neighborhood of each sample to improve the efficiency. Furthermore,
in order to better reflect the relationship between samples, we use Sparsity In-
duced Similarity (SIS) of sparse coefficients to induce the weights of the directed
l1-graph.

Firstly, k-nn rules is used to find the k neighbors for each sample xi from
Xi=X\xi=[x1,x2,...,xi−1, xi+1,...,xN ] , and defining N id ∈ RN×k as the location
index of the nearest k neighbors in the original data X. Notice that the k nearest
neighbors are measured by the traditional Euclidean distance.

Then, l1-norm minimization is bulit to slove the sparse representation problem
in a local domain to obtain sparse coefficients for each sample xi

∧
α i = arg min

αi

||Xk(xi)αi − xi||22 + λ||αi||1 (5)

Xk(xi) denotes the data matrix of the k nearest neighbors of xi. So, we can get

sparse coefficients αi∈Rk as the best reconstruction coefficients to represent the
sample xi. Hence the coefficient matrix is noted as A=[α1, . . . , αN ] ∈ Rk×N .

Due to the size of coefficient matrix A is k×N, it should be transformed to a
N×N matrix W before calculating the similarity of two samples. The transfor-
mation function is described as follows:

Wij =

{
Ari if j = N idir i, r ∈ {1, . . . , k}
0 otherwise

(6)

Then we use Sparsity Induced Similarity (SIS) to define the similarity between
xi and xj :

Sij =

⎧
⎨

⎩

max{Wij ,0}
N∑

j=1
max{Wij ,0}

if i �= j

0 otherwise

(7)

Note that this matrix is not necessarily symmetric, it can be converted to be a
symmetric matrix , that is: Sij = (Sij + Sji)/2.

After getting the weight matrix S, it can be seen as the input weight matrix
of the basic framework of spectral clustering to group the sample sets X into
K clusters. When the number of local neighborhood k is set N-1, our proposed
method is the equal to SCSR. In manifold learning the local linearity is used to
capture the local geometric structure[13] and each data point on the manifold
can be locally approximated by a linear combination of its nearby points[14].
Especially the local nonnegative linear reconstructing coefficients are used to
discover the natural class structure[15]. So the advocated algorithm in this paper
is at least theoretically possible.

In our algorithm, the system of liner equations in (5) is over-determined. The
computational complexity to obtain the sparse representation is about O(t2k) for
each sample, where k is the number of the neighbors of the sample, t is the number
of non-zero entries in reconstruction coefficients, and t ≤ k. Compared with the
original spectral clustering based on sparse representation, the computational
cost will be saved remarkably when k�N.
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4 Experiments

We conduct experiments on face recognition data sets ORL and Extended Yale
B to evaluate the effectiveness of the proposed algorithm SCAL. 400 and 600
images are randomly selected from ORL data set and Extended Yale B data
set respectively where each class contains the same number of images, and each
image is manually cropped and normalized to the size of 32-by-32 pixels in our
experiments. The cluster number (K) of two data sets are 40 and 10 respec-
tively. Two spectral clustering algorithms based on sparse representation with
all other samples as dictionary in [10](denoted as CSR) and [11] (denoted as
SIS) are compared with the proposed SCAL. The difference of CSR and SIS is
the different similarity construction described in the above section.

In our experiment, we use the approach and open source tool in [16] to solve
the l1-norm constraint least square minimization problem1 in Equation(5), since
it is a specialized interior-point method for solving large scale problem. The
regularization parameter λ and the relative target duality gap tolerance ε for
the two data sets is set with the highest clustering accuracy[17], described in
Table 1.

Table 1. The regularization parameter λ and the relative target duality gap tolerance
ε in 2 data sets respectively

parameters ORL Extended Yale B

λ 0.05 0.001

ε 1 0.005

4.1 Clustering Accuracy

In this subsection, we adopt an external criterion which measures the degree
of correspondence between the clusters obtained from our clustering algorithms
and the true classes. The clustering accuracy r [17] is defined as

r =

K∑

i=1

ai

N

Where ai is the number of instances occurring in both cluster i and its corre-
sponding class, K is the cluster number and N is the number of instances in the
data set.

In ORL and Extended Yale B, all the samples are resized into 32×32 pix-
els. For two datasets we computed the clustering accuracy with different local
neighbor number as following figures. Each step in the K-means of spectral clus-
tering is repeated for fifty times to reduce the random influence, and the average
clustering accuracy results are given in Fig.1.

1 We use the solver for l1 constraint minimization l1ls.m which is downloaded from
(http://www.stanford.edu/~boyd/l1_ls/).

http://www.stanford.edu/~boyd/l1_ls/
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(a) ORL data set

0 100 200 300 400 500 600
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Local Nearnigborhood Size k  lambda = 0.001£¬reltol =0.005

A
v
e

ra
g

e
 C

lu
s
te

ri
n

g
 A

c
c
u

ra
c
y

Accuracy on Extended Yale B

 

 

SCAL
SIS
CSR

(b) Extended Yale B data set

Fig. 1. Clustering accuracy on ORL data set and Extended Yale B data set

As can be seen from these figures, when the number of local neighbors is
much small, the clustering accuracy of SCAL is evidently higher than other two
algorithms. It’s because local neighbors with appropriate number can well reflect
the local geometric structure of data points. When the number of local neighbors
become bigger, the clustering accuracy of SCAL approximates to that of SIS[11]
using sparsity induced similarity to character the similarity of two data points.
Moreover, it can get the best clustering accuracy in SCAL under small number
of local neighbors. The clustering accuracy and the corresponding number of
local neighbors are represented in Table 2.

Table 2. The clustering accuracy and the corresponding number k of local neighbors

Data Sets Symmetric Weight SIS Local Sparse
Representation

k

ORL 0.7073 0.7147 0.7599 20

Extended
Yale B

0.8320 0.8500 0.9096 100

4.2 Computation Time on Two Datasets

Considering the same condition described in Subsection 4.1, we record the com-
putational time of SCAL and compared CSR and SIS to solve the sparse repre-
sentation problem on two data sets. The computational times are presented in
Fig.2.

As shown in fig.2., the smaller the number of local neighbors is, the faster it is
to resolve the sparse representation. The results validate that the computation
time of SCAL can approximate to the CSR and SIS when the number of local
neighbors increases.
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(a) ORL data set
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Fig. 2. The computation time on ORL data set and Extended Yale B data set

5 Concluding Remarks

In this paper we propose spectral clustering algorithm based on local sparse
representation (SCAL) to solve the problem of high computational complexity
to find sparse representation in SCSR. In SCAL, the sparse representation is
resolved in the local neighborhood of each sample, and the similarity matrix is
constructed by calculating sparsity induced similarity of the sparse coefficients
solution, using spectral clustering with this matrix as input weight matrix. Ex-
periments on face recognition data sets ORL and Extended Yale B demonstrate
that the proposed algorithm can reduce the computation complexity and the
clustering accuracy is higher when the number of local neighbors is small.
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