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Abstract. Solving multi-objective problems usually results in a set of
Perto-optimal solutions, or a Pareto front. Assessing the quality of these
solutions, however, and comparing the performance of different multi-
objective optimisers is still not very well understood. Current trends ei-
ther model the outcome of the optimiser as a probability density function
in the objective space, or defines an indicator that quantify the overall
performance of the optimiser. Here an approach based on the concept
of mutual information is proposed. The approach models the probability
density function of the optimisers’ output and use that to define an in-
dicator, namely the amount of shared information among the compared
Pareto fronts. The strength of the new approach is not only in better
assessment of performance but also the interpretability of the results it
provides.

1 Introduction

Many real-world applications often involve optimisation of multiple, competing
objectives in large search spaces [1]. It is therefore an important task to effectively
and simultaneously address multiple optimisation objectives by identifying a
set of well-distributed Pareto optimal solutions that yield good values for each
objective. Population-based metaheuristics (e.g. Genetic Algorithms) have been
developed to facilitate an efficient search in multi-dimensional solution spaces,
the feasible regions within which are determined by a set of (often non-linear)
constraints. However, instead of obtaining infinite number of Pareto optimal
solutions, which is a time consuming and resource demanding task, it is often
preferable to search for a set of representative solutions that closely approximate
the true Pareto front being uniformly distributed along its length [2,3].

As with single objective optimisation, two factors are important when as-
sessing a multiobjective optimiser: the quality of the found solutions, and the
time spent to find them. However the stochastic nature of evolutionary algo-
rithms results in the relation between time and quality not fixed, but rather
represented by a probability distribution function. In addition having a set of
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solutions (Pareto front) instead of a single outcome of the multiobjective opti-
misation process makes quantifying the quality of these solutions much harder.
This is added to having multiple runs and the necessity to statistically quantify
the behaviour of the optimiser over these runs increases the difficult of quality
assessment [5].

This paper introduces a novel approach for performance assessment of mut-
liobjective optimizers. First a simple mutual-information based method is pre-
sented and discussed. A more robust approach is then proposed which looks at
PFs as images. To validate and test this method, five problems are tested using
three popular multi-objective optimizers and the results are tested using three
popular indicators.

2 Background and Related Work

2.1 Multi-objective Optimisation Problems

Solving a multi-objective optimisation problem is challenging because an im-
provement in one objective often happens at the expense of deterioration in
other objective(s). The optimisation challenge therefore is to find the entire set
of trade-off solutions that satisfy all conflicting objectives.

Let F (X) ∈ Δ ⊂ Rm be a vector of objectives: F (X) = {f1(X), . . . , fm(X)},
where X = {x1, x2, . . . , xn} ∈ Ω ⊂ Rn is the vector of decision variables, n is the
dimension of solution space, and m ≥ 2 is the number of objectives. The search
space (also called the solution space) refers to the space of decision variables,
whereas the objective space is the space where the objective vectors lie. When
minimizing F (X), for example, a domination relationship is defined between the
solutions as follows: let X,Y ∈ Ω, X ≺ Y if and only if fi(X) ≤ fi(Y ) for all
i = {1, 2, .....,m}, and there is at least one j for which fj(X) < fj(Y ). X∗ is a
Pareto optimal solution if there is no other solution S ∈ Ω such that S ≺ X∗.
Therefore the Pareto optimality of a solution guarantees that any enhancement
of one objective would results in the worsening of at least one other objective.
The Pareto optimal set is the set of all non-dominated solutions. The image of
the Pareto optimal set in the objective space (i.e. F (X∗)) is called the Pareto
Front (PF).

2.2 Measuring Quality of Multi-objective Optimizers

Multiobjective evolutionary algorithms are stochastic in nature, due to the ran-
dom element in the algorithms, i.e. running the algorithm twice would most
likely produce a different set of results. For this reason the optimizer should be
run several times and the probability density function is then empirically esti-
mated. Comparing two optimizers would then mean comparing their probability
density functions which then implicate the issue of statistical hypothesis testing
[6].

In the literature, there are two main approaches to assess the quality of pro-
duced PFs. The most common one is the indicator approach where a PF is
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mapped, using a defined function, to a real number then a standard statistical
hypothesis test is applied on the indicator values. The second approach is usu-
ally referred to as the attainment function method in which for each objective
vector there is a probability p that the produced approximation set contains an
objective vector that dominates z. The attainment function then gives a proba-
bility estimate of z to be attained in one optimization run with a statistical test
procedure to count for all the runs [7].

A comprehensive survey on quality indicators can be found in [5]. However,
here we list three recommended indicators in [5] for their theoretical advantage.
The indicators are based on different aspects of the data and therefore using
them all will provide more ,hopefully complementary, information than using
just one.

The inverted generational distance The inverted generational distance, IIGD,
[8] measures the uniformity of distribution of the obtained solutions in terms of
dispersion and extension. The average distance is calculated for each point of the
actual PF (PFTrue), denoted as A, and the nearest point of the approximated PF

(PFapprox), denoted as B: IIGD(A,B) =
(
∑

a∈A

(min
b∈B

‖F (a)−F (b)‖2))1/2

|A| The indicator

usually gives a fair evaluation of the produced PF, however it can be prune to
outliers due to the use of the distance measure.

Hypervolume The hypervolume indicator, Ihv, [9] measures the volume of the
objective space that is dominated by a PF approximation (A). Ihv uses a ref-
erence point v∗ which denotes an upper bound over all objectives. v∗ is de-
fined as the worst objective values found in A (i.e. v∗ is dominated by all so-
lutions in A). Using the Lebesgue measure (Λ), Ihv is defined as: Ihv(A) =

Λ
(⋃

a∈A{x |a ≺ x ≺ v∗|}
)
. The advantage of hypervolume is that it is concep-

tually intuitive, but it can be computationally costly and it requires a reference
point which may affect the ordering of pairs in incomparable sets.

ε Indicator The ε indicator, Iε, [10] measures the minimum distance which a PF
approximation (A) has to be translated in the objective space to dominate the
actual PF B. The ε-Indicator is defined as:Iε(A,B) = minε∈R{∀b ∈ B, ∃b′i − ε ≤
bi, ∀1 ≤ i ≤ n}. This is a fast indicator to compute and has an intuitive meaning:
how much do I need to translate/scale the set A so that it covers the reference
set?. However, the choice of reference set can dramatically affect the results.

Using quality indicators is an attractive approach of quality assessment due
to its simplicity. It has , however, some shortcomings: 1) each indicator looks at
the performance from only one perspective, e.g. spread, diversity, or dominance,
which may skew the conclusions drawn. 2) In the case of incomparable PFs
an indicator will actually give an inaccurate result. 3) For indicators that use
distance functions, outliers can cause a real problem in disturbing the calculation
of the indicator. 4) Quality indicators do not take the statistics of the data in
the objective space into account.
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The approach we take in this paper models the output of the optimizer di-
rectly as an empirical probability density function and then calculates the mutual
information between the approximated PF and the theoretical one.

3 Methods

3.1 Mutual Information

Intuitively speaking, mutual information measures how much information are
shared between two random variables X , Y . In other words how much knowl-
edge of one variable reduces the uncertainly about the other. Formally, mutual

information is defined as follows: I(X,Y ) =
∑

Y

∑
X p(x, y)log p(x,y)

p(x)p(y) , where

p(x, y) is the joint probability distribution function of X and Y , and p(x) and
p(y) are the marginal probability distribution functions of X and Y respec-
tively with summation replaced by an integral in the case of continuous random
variables. If the two variables are dependent then I(X,Y ) measures the shared
information between the two variables and it would be positive. If on the other
hand, they are independent then I(X,Y ) = 0.

To complete the calculation of MI, the joint and marginal probabilities should
be calculated. To estimate the joint probability distribution/density function a
two dimensional histogram is used [11].

The mutual information as defined so far is not normalized, i.e. it can take
any positive value. Here we use a normalized version as defined in [12]:

U(X,Y ) = 2
I(X,Y )

H(X) +H(Y )
(1)

where H(X), H(Y ) are the marginal entropies of X and Y respectively.
The way mutual information is applied would differ depending on the indepen-

dence assumptions among the objectives. The definition in Sec3.1 is only valid
for univariate random variables, so if we work on the assumption that the objec-
tives are all independent then mutual information can be measured separately
between the approximated PF and the true PF, one objective at a time and then
the mutual information indicator is defined as: MI(A,B) =

∑n
i=1 αiU(Ai, Bi),

where A is the approximated PF, B is the true PF, Ai is the values of objective
i from the PF A, n is the number of objectives, and α is the weight vector where
αi ≤ 0 and

∑n
i=1 α = 1. The result of this indicator quantifies how much the

approximated PF reduces uncertainty about the true PF. The higher MI then
the better approximation A is to the true PF.

This is a simple and reliable measure that can be applied to any MOP regard-
less of the shape of the PF. It does not require a reference point and does not
depend on one aspect of the data like spread or diversity. Another major draw-
back of this indicator is that the histogram estimation would allow two unequal
PFs to produce the same MI if they have similar histograms, as demonstrated in
Figure 1a. To circumvent this problem a novel method for mutual-information
based indicator is proposed in the next section.
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(a) (b)

Fig. 1. (a) An example of two unequal PFs with the same histogram. The blue PF (A)
is the true PF for ZDT1 and the red PF (B) is a shifted copy of the blue PF. MI(A,A)
= MI(A,B) = 1. (b) The blue dots belong to a hypothetical true PF. The red dots
belong to a hypothetical approximated PF. The dots within the circle belong to the
approximated PF and are considered outliers.

(a) ZDT1 (b) ZDT2

(c) ZDT3 (d) ZDT4

Fig. 2. Results for ZDT1-4 using the three algorithm and the four quality indicators.
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3.2 Processing Pareto Fronts as Images

The main idea here is to create a pixel-based image for each PF, and then
calculate mutual information among these newly created images. In order for
these images to be comparable they should all have the same resolution per
dimension, have the same origin and the same image size.

Given iA: the image of the approximated PF A and iB: the image of the true
PF B then a new indicator is defined as: IMI(A,B) = U(iA, iB).

The highest resolution possible for the images is the minimum difference be-
tween two adjacent points of all the PF of interest which might be a very high
resolution that the generated images would be extremely large to be practical
for processing, so the resolution can be reduced in order to generate images of
reasonable size. There must be a careful balance here as low resolution images
could lead to a large lose of information affecting the quality of the measure
itself. Following are the steps to create the PF images. 1) rescale all PFs so they
all have the same origin 2) calculate the ratio between the required resolution
and the maximum objective value among all PFs which is necessary to project
from objective space to the image pixel space. 3) each point in PF is transated
to a pixel of value 1 in the resulted image and the rest are zeros.

Going back to the problem of unequal PFs with equal histograms. If we used
the new measure as an indicator in Fig.1a then IMI(A,A) = 1 and IMI(A,B) =
0.0018 which clearly shows that the problem is resolved.

3.3 Handling Outliers

One of the main features of any quality indicator is its ability to handle outliers
in the approximated PF. Outliers can cause a bias in the quality measure cal-
culation especially if a distance measure is used. Some measures try to reduce
this effect, for example IIGD is calculated by starting from the true PF and
then trying to find the closest points in the approximated PF. Although this
minimizes the effect of outliers, it still does not provide a fair comparison as it
will give the same value for an approximated PF with or without the outliers.

Figure 1b demonstrates this effect . In this example we created a hypothet-
ical true PF and approximated PF that contains some outliers. To check the
robustness of the quality indicators we calculate the value of the indicator using
the approximated PF with and without the outliers. The results show that IMI

and Ihv are robust to the outliers and are able to distinguish them (Ihv=0.2284
and 0.2332 without and with the indicators respectively and IMI =0.0008 and
0.0007) while the other two indicators could not (IIGD=0.0145 for both cases
and Iε=0.3911 for both cases as well).

4 Experiments

It is usually tricky to evaluate the evaluation metric. Here we tackle this issue
indirectly by comparing the results of three other quality measures and discuss
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how each, and IMI , handle different cases of evaluation. To test the newly de-
veloped measure 5 standard two-dimensional MOPs are used: ZDT1-ZDT4, and
ZDT6 [13]. The selected test problems cover diverse MOPs with convex, concave,
connected and disconnected PFs. These problems were frequently used to verify
the performance of several algorithms in the field of multi-objective optimisation.

The test MOPs are solved using three popular multi-objective optimisation
methods: NSGAII [14], SPEAII [15], IBEA [16].

For each MOP the three methods were run 30 times using a population of 300
individual and lasted for 250 generations. The quality of the approximated PFs
from the five MOPs is measured using four indicators: IIGD, Iε, Ihv, and IMI .
For IMI calculation a resolution is set to 1000X1000.

5 Results and Discussion

To demonstrate the results of the approximated PF using the three methods
and tested by the four indicators, for each MOP four plots are generated each
for each indicator. Each of these plots contains a box plot representation of the
values of one indicator applied on the 30 runs for each of the three methods,
Figures 2a - 2d with results of ZDT6 not presented due to limited space.

Looking carefully at the figures, the different indicators draw a rather vague,
and somehow confusing, picture about the performance of the different methods.
Although most of the differences among the different methods are statistically
significant they do not always go in the same direction for different indicators.
This is a known issue in the quality assessment of mutliobjective optimizers
via indicators [5]. This is interpreted as different indicators provide different
information regarding the approximated PF so one can chose the optimizer based
on what is more relevant to the application.

The IMI indicator seems to be giving a slightly different view from the rest
of the indicators. For instance, it is the only indicator to show no significant
difference in some cases which actually reflects more what we see from visual
inspection of the approximated PFs. It also usually shows less variance among
the different runs and fewer outliers which can be credited to its probabilistic
nature.

By definition mutual information is only applied on univariate random vari-
ables and hence an independence assumption is imposed among the objectives.
If the objectives are dependent, which would be the case in most problems, then
the previous definition of mutual information is not accurate. However, by trans-
forming the PF to an image all the dependency information are preserved and
hence the indicator IMI can be seen as a multivariant approach.

Because the mutual information function uses estimated probability density
functions/ distributions, it is less affected by outliers and can produce a much
more robust results than the indicators that use distance functions.
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