
H. Yin et al. (Eds.): IDEAL 2013, LNCS 8206, pp. 409–416, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Accelerating BIRCH for Clustering Large Scale
Streaming Data Using CUDA Dynamic Parallelism

Jianqiang Dong, Fei Wang, and Bo Yuan

Intelligent Computing Lab, Division of Informatics
Graduate School at Shenzhen, Tsinghua University

Shenzhen 518055, P.R. China
513712287@qq.com, wangfeifast@gmail.com,

yuanb@sz.tsinghua.edu.cn

Abstract. In this big data era, the capability of mining and analyzing large scale
datasets is imperative. As data are becoming more abundant than ever before,
data driven methods are playing a critical role in areas such as decision support
and business intelligence. In this paper, we demonstrate how state-of-the-art
GPUs and the Dynamic Parallelism feature of the latest CUDA platform can
bring significant benefits to BIRCH, one of the most well-known clustering
techniques for streaming data. Experiment results show that, on a number of
benchmark problems, the GPU accelerated BIRCH can be made up to 154 times
faster than the CPU version with good scalability and high accuracy. Our work
suggests that massively parallel GPU computing is a promising and effective
solution to the challenges of big data.

Keywords: GPU, CUDA, Dynamic Parallelism, BIRCH, Big Data, Clustering.

1 Introduction

In the era of big data, modern organizations in almost all industries are facing
increasingly growing amount of heterogeneous data at unprecedented speed. Each
day, around 2.5 quintillion bytes of data1 are created such as sensor data, posts in
social networks, digital images/videos, web search results, telecommunication records
and financial transactions. The scale of the data available creates significant
challenges for traditional techniques to effectively store, transfer, visualize and
analyze the data within a reasonable amount of time.

Despite of the large number of existing data mining algorithms for tasks such as
classification, clustering and frequent pattern analysis, there are two major issues that
must be carefully addressed before they can be properly applied in the scenario of big
data. Firstly, many algorithms assume that all data are stored in the main memory,
which can be readily accessed. However, for real-world problems, the size of the data
can easily exceed the memory capacity and, when multiple access to the dataset is
required, the I/O cost may severely compromise the efficiency of the algorithm. To
solve this issue, various data stream mining techniques have been proposed, which

1 http://www-01.ibm.com/software/data/bigdata/

410 J. Dong, F. Wang, and B. Yuan

only require reading the data once. They are particularly suitable for situations where
the entire dataset is too large to fit into the main memory or the data come in a
continuous manner.

Secondly, most data mining algorithms are designed without explicitly taking
parallel computing into account, although they may have inherent potential for
parallelism. It is often assumed that each computing step is to be executed
sequentially and no special efforts are devoted to harnessing the power of advanced
multi-core and many-core computing devices that are becoming increasingly popular
in the past decade. As a result, even with seemingly decent computational complexity
in theory, the real running time of these algorithms on non-trivial datasets can be
prohibitively intolerable. In fact, this issue is creating a large gap between academic
research in data mining and industrial applications.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [1, 2] is
one of the most well-known hierarchical clustering algorithms for large scale data,
which can incrementally cluster incoming data and requires only a single scan of the
dataset in most cases. To make BIRCH more applicable on real-world problems, in
this paper, we will investigate how to effectively accelerate BIRCH using parallel
computing techniques.

In addition to CPU-based parallel computing architecture such as MPI2 and
OpenMP3, in recent years, GPU (Graphics Processing Unit) computing is quickly
becoming a new powerhouse for providing high performance computing capability at
dramatically reduced cost and many GPU-based data mining algorithms have been
proposed [3, 4]. Modern GPUs feature thousands of cores and support tens of
thousands concurrent threads (many-core computing), making them specifically
suitable for massively data parallel computing tasks. In many application areas such
as fluid dynamics, financial engineering, life science and signal processing,
researchers can often obtain 10~100× speedups on computing intensive problems by
using standard workstations equipped with advanced GPU computing cards. In
nowadays, the peak performance of high-end GPUs is over one TFLOPS (double-
precision floating point) and the average cost to achieve one GFLOPS is already less
than one dollar with GPU computing4.

In the rest part of this paper, Section 2 gives a brief review on clustering algorithms
for large scale data, especially the BIRCH algorithm. Section 3 introduces CUDA5
(Compute Unified Device Architecture) and the Dynamic Parallelism technique,
which bring incredible convenience to GPU computing with measurable performance
improvement. The parallel implementation of BIRCH is detailed in Section 4 along
with the experiment specification. The main experiment results are presented in
Section 5 and this paper is concluded in Section 6 with some discussions and
directions for future work.

2 http://www.mcs.anl.gov/research/projects/mpi/
3 http://www.openmp.org/
4 http://en.wikipedia.org/wiki/FLOPS#Cost_of_computing/
5 https://developer.nvidia.com/cuda-toolkit/

 Accelerating BIRCH for Clustering Large Scale Streaming Data 411

2 Clustering Big Data

Clustering is one of the most important unsupervised learning methods in pattern
recognition and data mining [5]. There are mainly two categories of clustering
methods: hierarchical clustering such as agglomerative clustering and partition-based
clustering such as K-means. For data stream mining [6-8], CluStream [9] is an
important hierarchical clustering algorithm, which uses many micro clusters to form a
better macro cluster. In the meantime, the extended K-Means algorithm and
STREAM [10] are two good examples of partition-based methods.

In BIRCH, a key concept is called clustering feature (CF), which is a triple holding
the necessary information (e.g., linear sum and square sum) of all data points
belonging to a certain cluster. The main procedure of BIRCH involves constructing a
height balanced tree called CF-Tree. A parent node in the CF-Tree stores the
summary of a large cluster while each child node maintains the information of its own
small cluster. There are two major parameters in BIRCH named B and T. B is the
branching factor of the CF-Tree, indicating the maximum number of children of the
parent node. T is the threshold used to determine whether a new coming data point
can be absorbed by an existing cluster.

In recent years, a few GPU implementations of hierarchical clustering algorithms
have been proposed. For example, a speedup of more than 100 times was achieved on
the agglomerative clustering algorithm [11, 12]. In the meantime, MPI and the Thrust
library6 have been used to accelerate BIRCH on various tasks such as text clustering
problems [13, 14]. However, as Thrust can only parallelize certain components in
BIRCH and it takes extra time to transfer data between host (CPU) and device (GPU),
the overall speedup was only around 6 times.

3 GPU Computing

CUDA is a GPU programming environment developed by NVIDIA in 2007 and is the
most widely used platform for GPU programming. The latest CUDA version is 5.5,
which is the best match to GPUs with compute capability 3.5 such as Tesla K20 and
GeForce GTX TITIAN. Please refer to CUDA C Computing Guide7 and CUDA C
Best Practices Guide8 for a comprehensive review.

With the increasing popularity of CUDA, more and more computing libraries have
been developed, such as Thrust, cuRAND9 and so on. Thrust is a CUDA STL
programming model, which can handle the data on GPU in a C++ STL way, and
consists of many commonly used algorithms such as sorting and reduction. cuRAND
is a CUDA random number library, which can generate various kinds of random
number in a very efficient way.

6 https://developer.nvidia.com/thrust/
7 http://docs.nvidia.com/cuda/cuda-c-programming-guide/
8 http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
9 https://developer.nvidia.com/curand

412 J. Dong, F. Wang, and B. Yuan

CUDA Dynamic Parallelism10 and Kepler Compute Architecture11 together create
the state-of-the-art GPU computing environment, making GPU computing much more
efficient and easier to code compared to the last generation GPU architecture.
Dynamic Parallelism offers exciting new capabilities by providing a mechanism for
calling kernel functions from another kernel function so that GPU programs can be
made more flexible and easier to synchronize. Fig. 1 shows an illustration of kernel
launching in GPU.

Fig. 1. Kernel launching with (right) and without dynamic parallelism (left)

4 Methodology

4.1 Standard BIRCH

The main operations in BIRCH include the construction of the CF Tree and assigning
data points to a nearby CF value. In Table 1, each data point has to go through step 3
and step 4. Most data points are allocated into an existing cluster (step 5.1) while
some data points create a new CF (step 5.2), and only very few data points result in
the splitting of the CF tree and creating a new CF (step 5.3).

Table 1. The framework of BIRCH

10 http://docs.nvidia.com/cuda/cuda-dynamic-parallelism/

index.html
11 http://www.nvidia.com/object/nvidia-kepler.html

Step BIRCH
1 Initialize the data source.
2 For each data sample.
3 While (not leaf)
3.1 Find the nearest CF.
3.2 Go down to the nearest CF sub-tree.
4 Find the nearest CF in the leaf node.
5 Compute the distance t between the data point and the nearest CF
5.1 If t<=T then absorb.
5.2 If t>T and Leaf node is not full, then add new CF.
5.3 Else split the leaf node to allocate the new nodes.

 Accelerating BIRCH for Clustering Large Scale Streaming Data 413

4.2 GPU Accelerated BIRCH

In the proposed GPU based BIRCH (GBIRCH), a master kernel is launched first.
Next, several slave kernels are launched using CUDA Dynamic Parallelism, with each
slave kernel dealing with a subset of the data samples in the GPU memory. The slave
kernel is terminated after its associated data samples have all been processed. Tables
2-4 present the pseudo code of the master kernel, the slave kernel, and the refinery
kernel.

Table 2. Master kernel

Slave kernels are responsible for most of the computing tasks in BIRCH. Each
slave kernel fetches some data records from the master kernel and computes the
distances and finds the nearest CF Leaf. If the data record can be absorbed by an
existing cluster, the slave kernel does the job individually. If a new CF is to be added
to the CF tree, or the CF tree needs to be split, the data will be transferred back to the
master kernel. In this way, the parallel slave kernels can always keep working on the
same and well organized CF tree.

Table 3. Slave kernel

The refinery kernel keeps the CF tree accurate and well organized. Step 1 happens

more frequently than other steps and is parallelized. Steps 2~4 are used to split the CF
tree and no two threads can work on the CF tree at the same time (locking is required
to ensure mutual exclusion).

Step GBIRCH_Master
1 Set up the data source and partition the data.
2 Build up the CF Tree.
3 For each data block
3.1 Call GBIRCH_Slave.
4 Call GBIRCH_Refinary.
5 Output the data point with its cluster information.
6 Repeat steps 3~5, until all the data are processed.

Step GBIRCH_Slave Memory Allocation
1 Get data from GBIRCH_Master. Global to Shared
2 For each data sample
3 While (not leaf) Global to Shared
3.1 Find the nearest CF. Shared and Register
3.2 Go down to the nearest CF sub-tree. Global to Shared
4 Find the nearest CF in the leaf node. Shared and Register
5 Compute t. On a single thread
5.1 If t<=T, absorb the data sample.
5.2 If t>T and Leaf is not full, add a new CF.
5.3 Else save data point and submit to GBIRCH_Master.

414 J. Dong, F. Wang, and B. Yuan

Table 4. Refinery kernel

Step GBIRCH_Refinery
1 Test the new CF Leaf from GBIRCH_Slave. If the CF parent is full,

then add to split candidate.
2 Each thread begins to split with a candidate, and lock the CF tree when

it is used in this process.
3 Roll up to split the higher level nodes, until reaching Root.
4 Repeat steps 2~3, until all the candidates are split.

In the CF tree, each node uses an array to store the CF values of its children and

keeps parentID, childID and the number of children. In our work, the branching value
was between 16~128. A smaller value may severely reduce the potential for
parallelism while a larger value may result in a CF tree that is not deep enough to
produce fine clustering granularity.

4.3 Benchmark Datasets

In the experiments, we used both synthetic and real datasets and all six datasets are
widely used in data mining research. The first three datasets (DS1, DS2, DS3) were
used in the original work on BIRCH [1, 2]. Each dataset consists of many centroids
(from 100 to 1 million), and each centroid has 100 to 1 million data points. KDD CUP
is a well-recognized annual international knowledge discovery and data mining
competition. We used KDD CUP 98 data12 (191,781 samples, 481 attributes), KDD
CUP 99 dataset13 (4,898,431 samples, 42 attributes) and KDD CUP 2012 data14
(149,639,105 samples, 12 attributes) in our experiments.

5 Experiment Results

The software environment was: CUDA 5.0, Visual Studio 2010 and Windows 7. The
hardware configuration was: Intel Core i5-2320 (CPU), 8GB RAM and NVIDIA
Tesla K20 (Kepler Architecture GPU).

On the six datasets, the maximum speedup value of GBIRCH was 154.29 on KDD
CUP 2012 data set (Table 5). In general, the results were better on larger datasets as
the CF tree construction process is difficult to be executed in parallel on GPU (as the
dataset gets larger, more time is spent on the absorbing process rather than the
construction of the CF tree).

We also tested the scalability of GBIRCH using DS3. In Table 6, it is clear that as
the number of records increases (the dimension was fixed to 2), the advantage of
GBIRCH over BIRCH became more evident and as the dimension increased, the
relative performance of GBIRCH was kept reasonably stable. Finally, the accuracy of
GBIRCH was evaluated by measuring the percentage of data points that were

12 http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html
13 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
14 http://www.kddcup2012.org/c/kddcup2012-track2/data

 Accelerating BIRCH for Clustering Large Scale Streaming Data 415

assigned to the same cluster as in the CPU version. Table 7 shows that the impact of
parallelization on the accuracy of BIRCH is trivial.

Table 5. Comparison of running time (ms)

Dataset CPU GPU Speedup
DS1 498691 3983 125.20
DS2 502145 4486 111.93
DS3 501168 4296 116.66
KDD CUP 98 21318 2796 7.62
KDD CUP 99 632264 8512 74.28
KDD CUP 2012 3268765 21186 154.29

Table 6. Scalability test with regard to the number of records and dimensionality (ms)

of Data CPU GPU Speedup Dim CPU GPU Speedup
1,000,000 12401 1602 7.74 2 12401 1602 7.74
4,000,000 49820 1692 19.44 5 19185 2448 7.84
12,000,000 150543 2088 72.10 10 28129 3918 7.18
40,000,000 501168 4296 116.66 25 55224 8202 6.73

Table 7. Accuracy of GBIRCH

Dataset Total Number Correct Number Accuracy

KDD CUP 98 191,781 191,781 100%
KDD CUP 99 4,898,431 4,897,012 99.9%
KDD CUP 2012 149,639,105 148,527,097 99.3%

6 Conclusions

The major motivation of this paper was to investigate an important question in the era
of big data: how to effectively handle the challenges from clustering large scale data.
In our work, we chose BIRCH, a well-known clustering technique for streaming data,
as an example to show how advanced GPUs and CUDA platform with the latest
Dynamic Parallelism capability can significantly reduce the time required for
clustering large datasets. Experiment results demonstrated that, with a careful parallel
implementation of the major procedures in BIRCH and the help of Dynamic
Parallelism as well as the smart use of GPU memory, GBIRCH achieved encouraging
speedups from 7 to 154 times over the original BIRCH on six benchmark datasets. In
the meantime, GBIRCH also featured satisfactory scalability with regard to the size
and dimensionality of the dataset.

There are a number of possible directions for future work. For example, we can
implement the GPU versions of other popular data stream clustering algorithms such
as CluStream or CURE [15]. The performance of GPU accelerated clustering
algorithms on other data types such as text and XML or on high dimensional datasets
is also worth investigation.

416 J. Dong, F. Wang, and B. Yuan

Acknowledgement. This work was supported by the National Natural Science
Foundation of China (No. 60905030) and NVIDIA CUDA Teaching Center Program.

References

1. Zhang, T., Raghu, R., Miron, L.: BIRCH: An Efficient Data Clustering Method for Very
Large Databases. ACM SIGMOD Record 25(2), 103–114 (1996)

2. Zhang, T., Raghu, R., Miron, L.: BIRCH: A New Data Clustering Algorithm and Its
Applications. Data Mining and Knowledge Discovery 1(2), 141–182 (1997)

3. Fang, W., Lau, K., Lu, M., et al.: Parallel Data Mining on Graphics Processors. Technical
Report HKUST-CS08-07 (2008)

4. Bai, H., He, L., Ouyang, D., Li, Z., Li, H.: K-Means on Commodity GPUs with CUDA. In:
2009 WRI World Congress on Computer Science and Information Engineering, pp. 651–655
(2009)

5. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing
Surveys 31(3), 264–323 (1999)

6. Mahdiraji, A.R.: Clustering Data Stream: A Survey of Algorithms. International Journal of
Knowledge-Based and Intelligent Engineering Systems 13(2), 39–44 (2009)

7. Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Kogan, J., et al. (eds.)
Grouping Multidimensional Data, pp. 25–71. Springer (2006)

8. Barbará, D.: Requirements for Clustering Data Streams. ACM SIGKDD Explorations
Newsletter 3(2), 23–27 (2002)

9. Aggarwal, C.C., Han, J., Wang, J., Yu, P.: A Framework for Clustering Evolving Data
Streams. In: 29th International Conference on Very Large Data Bases, pp. 81–92 (2003)

10. O’Callaghan, L., Meyerson, A., Motwani, R., Mishra, N., Guha, S.: Streaming-Data
Algorithms for High-Quality Clustering. In: 18th International Conference on Data
Engineering, pp. 685–694 (2002)

11. Shalom, S.A., Dash, M.: Efficient Partitioning Based Hierarchical Agglomerative
Clustering Using Graphics Accelerations with CUDA. International Journal of Artificial
Intelligence & Applications 4(2), 13–33 (2013)

12. Shalom, S.A., Dash, M., Tue, M., Wilson, N.: Hierarchical Agglomerative Clustering
Using Graphics Processor with Compute Unified Device Architecture. In: 2009
International Conference on Signal Processing Systems, pp. 556–561 (2009)

13. Garg, A., Mangla, A., Gupta, N., Bhatnagar, V.: PBIRCH: A Scalable Parallel Clustering
Algorithm for Incremental Data. In: 10th IEEE International Database Engineering and
Applications Symposium, pp. 315–316 (2006)

14. Bagga, A., Toshniwal, D.: Parallelization of Hierarchical Text Clustering on Multi-core
CUDA Architecture. International Journal of Computer Science and Electrical
Engineering 1, 72–76 (2012)

15. Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for Large
Databases. In: 1998 ACM International Conference on Management of Data, pp. 73–84
(1998)

	Accelerating BIRCH for Clustering Large Scale Streaming Data Using CUDA Dynamic Parallelism
	1 Introduction
	2 Clustering Big Data
	3 GPU Computing
	4 Methodology
	4.1 Standard BIRCH
	4.2 GPU Accelerated BIRCH
	4.3 Benchmark Datasets

	5 Experiment Results
	6 Conclusions
	References

