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Abstract. With the development of sparse coding and compressive sensing, 
image Super-resolution (SR) reconstruction attracts extensive attentions. In this 
paper, we mainly focus on recovering super-resolution version given only one 
single low-resolution (LR) image. The proposed method is combined with the 
example-based algorithm, which also exploits the relationship between the low 
image patches and the high image patches. Firstly, the proposed method applies 
guided filter, the first-order and second-order derivatives to extract multiple 
features from LR images, which superior to using only one feature space. Then, 
the effective dictionary is constructed by a novel algorithm called Relaxation  
K-SVD (R-KSVD). R-KSVD relaxes the constraints of Orthogonal Matching 
Pursuit method (R-OMP) in training dictionary for K-SVD algorithm. Finally, a 
new approach is presented to estimating better HR residual image in the Back 
Projection. Experimental results demonstrate the superiority of our algorithm in 
both visual fidelity and numerical measures. 
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1 Introduction 

Image super-resolution (SR) is currently an increasing active area of research in 
image processing. The SR problem aims to recover a high-resolution (HR) image 
from one or more low-resolution (LR) images. It is an inverse problem only under 
reasonable assumptions and prior knowledge conditions. Existing SR reconstruction 
algorithms [1-4] mainly include reconstruct-based methods and example-based 
methods. Reconstruct-based methods degrade rapidly if the magnification factor is too 
large or if there are not enough LR inputs to constrain the solution [1]. Example-based 
methods alleviate the difficulty above, which generate a dictionary or other mapping 
form to identify the relationship between LR and HR images. Then the corresponding 
HR images can be reconstructed via this relationship. 
                                                           
* Corresponding authors. 
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However, in terms of SR problem from only one single LR image, those traditional 
methods demonstrate poor performances. To alleviate it, numerous single-image 
super-resolution algorithms [6], [13], [14] are proposed, which generate a visually 
pleasing HR image only from a given LR input image. Comparing with the traditional 
example-based algorithm, those algorithms learn the dictionary based on the image 
self-similarity property. They avoid the influence of extra database while maintaining 
comparable super-resolution image quality. 

Motivated by Glasner [6] method, we propose a novel SR approach. At first, we 
render the dataset by the input LR image according to the self-similarity property. 
Then, the effective dictionary is constructed by a novel algorithm called Relaxation 
K-SVD (R-KSVD). Furthermore, in order to obtain better HR residual image, we 
improve the Back Projection algorithm. Simulational results demonstrate the 
superiority of the proposed algorithm in both visual fidelity and numerical measures.  

This paper is organized as follows: section 2 gives a brief introduction of SR 
problem. A novel learning dictionary algorithm (R-KSVD) is presented in section 3. 
Section 4 discusses how to estimate better HR residual image in the Back Projection. 
The experimental results are shown in Section 5. Finally, the conclusions are provided 
in Section 6. 

2 Super-Resolution from One Single Image 

Super-resolution remains extremely ill-posed because of many high-resolution images 
X satisfying the above reconstruction constraint. Only under reasonable assumptions 

and prior knowledge conditions, the SR problem is an inverse problem. We regularize 
the problem via the sparse representation prior on small patches x  of X . The 
patches x  of the HR image X can be represented as a sparse linear combination in a 

HR sparse dictionary
N K

h
D R
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hx D α≈ for some 
K

Rα ∈  with 
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Lα    (1)

where K represents the number of atoms in the dictionary, L  is the sparsity 
constraint parameter. 

Next, we will recover the HR image patch from the LR image patch. Here, the 
coupled dictionaries are learned by R-KSVD. We generate the image patch 
pairs { },h i

P yx=  from one single LR image as like Glasner [6], here applies guided 

filter, the first-order and second-order derivatives to extract features{ }i
y , and { }h i

x  

are the corresponding HR image patches. We combine these two objectives together 
to keep the consistent of two dictionaries, and then learn the coupled dictionaries by 
forcing the LR and HR sparse representations to operate the same codes, which can be 
formulated as follows:  
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where, M  and N  are the dimensions of the low-resolution image features and 
high-resolution image patches in vector form. Equation (2) can be rewritten as  
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We can reconstruct the HR image by hX D α≈ .  

3 R-KSVD Algorithm 

Recently, numerous algorithms of dictionary learning mainly focus on training an 
over-complete dictionary in a single feature space. Many methods follow an iterative 
scheme that alternates between updates of α and D . In the first phase it optimizes 
for α while keeping D fixed, and in the second phase D is updated using the 
computed coefficient matrix α . The iteration repeats until some stopping criterion is 
satisfied. A wide range of dictionary learning algorithms have been developed in the 
field of SR [11-12]. K-SVD algorithm is very popular for its high efficiency in 
dictionary learning, which updates the coefficient matrix α by OMP in the first 
phase [10].  

The main idea of the OMP algorithm is choosing the column of D by greedy 
iterative method, which makes the chosen column and the present redundant vector 
related to the greatest extent, and then subtracts the related part from measurement 
vector. The OMP repeats the procedure above until convergence condition meets. In 
terms of the greatest extent, the OMP algorithm may not obtain the optimal solution. 

We propose a novel approach of updating coefficient matrix named R-OMP, which 
relaxes constrain of choosing the column of D . At first, we define the relaxation 
factor a . Our method randomly chooses one column of D from the candidate 
columns, which their values of the greatest extent are beyond a  in training process. 
That is to say, we find slightly smaller values than the maximum value of the inner 

product of residual e  and the columns of sensing matrix jd , and then randomly 

choose one. This paper proposes a novel dictionary learning algorithm, which apply  
R-OMP to update coefficient matrix α while keeping D fixed. The algorithm called 
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Relaxation K-SVD (R-KSVD). The complete algorithm is described in Table 1. When 
we use K-SVD algorithm to obtain the dictionary, there are two schemes to control the 
precision of the algorithm. One is to constrain the representation error, and the other is 
to constrain the number of nonzero entries in the sparse representation coefficients. In 
R-KSVD method, we use the latter scheme because it is required in the R-OMP. 

Table 1. The R-KSVD algorithm 

 

4 Back Projection Algorithm 

In this section, the traditional Iterative Back Projection (IBP) approach is presented. 
This method is the backbone of the proposed algorithm. Though simple IBP method 
can minimize the restoration error significantly in iterative manner and give reasonable 
performance, it projected the error back without any edge guidance. In this paper, we 
apply guided filter to estimating better HR residual image in the Back Projection.  

Our IBP procedure starts with the input LR image Y .The initial HR image (0)X  

can be recovered from the input LR image by the proposed SR algorithm. The 

simulated LR image ( )nY  is evaluated by the SR result, as shown in equation (5). 

Input: sampling vector y , the sparsity constraint parameter L , the relaxation factor 

a ; 

Output: the sparse matrix α ∗
, effective dictionary D ; 

Initialization: initial dictionary 0D , the residual 0e y= , index 

set 0 , 1tφΔ = = ; 

R-KSVD algorithm is mainly two steps: 

a. The sparse approximation step: given D , we estimate α , using a sparse 

approximation algorithm by R-OMP; 
R-OMP: execute steps 1 to 5 until convergence: 
Step 1: find slightly smaller values (the value beyond a magnification of the 
maximum value)than the maximum value of the inner product of residual e  and the 

columns of sensing matrix jd , and then randomly choose one column from the 

candidates, the corresponding foot mark is θ  ; 
Step 2: renew the index set 1 { }t t θ−Δ = Δ  , the sensing matrix 

1[ , ]t t jD D d−= ; 

Step 3: solve 
2

m int ty Dα α∗ = − ∗ by least-square method; 

Step 4: renew the residual 

, 1;t t te y D t tα ∗= − = +  

Step 5: if t L> , stop the iteration, else do step 1. 

b. The dictionary update step: use SVD to jointly re-estimate each atom and its 
nonzero coefficients to minimize the cost function (3).  
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The final HR image is estimated by guided filter for edge preserving and back 
projecting the error between simulated LR image and the input LR image. The 
iteration repeats until some stopping criterion is achieved. 

The estimated HR image after n  iterations is given by: 
a) The recovered X should be consistent with the input imageY . The simulated LR 
image ( )nY  can be viewed as a blurred and down sampled version of the HR ( )nX :  

( ) ( )n nY DHX=  (5)

where H represents a blurring filter, and D the down sampling operator. 

b) Computing the error from LR images as  

( ) ( )( )n n SE Y Y U= −  (6)

where, SU is up-sampling by factor S , Y is initial input LR image, ( )nY is simulated 

LR image of the nth iteration, ( )nE is error estimation. 

c) Updating the HR image  

( )( ) ( 1) nn nX X E−= +  
( ) ( ) ( )( , , , )n n nX guidedfilter X X r γ=  

(7)

(8)

where, r is a radius of a square window, γ is the regularization parameter, ( )nX  is 

HR image of the nth iteration. The iteration repeats until some stopping criterion is 
achieved. The illustration of the complete method is described in Fig 1.  
 

 

Fig. 1. The process of back projection: firstly, we up-sample the input image by the proposed 
SR algorithm as the original HR image; then we calculate the error between the input image 
and the simulated LR image, and add it to the HR image; finally, we obtain the further HR 
image by guided filter. It repeats the procedure above until iterations meets. 
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5 Experimental Results 

In simulations, we magnify the low-resolution test image by a factor 4 in image 
super-resolution experiments. By experimental results, it is fit to define the relaxation 
factor as 0.9a = . We define the square window of a radius 2r =  and regularization 
parameter 0.01γ = as commonly used in the literature [8], and set sparse 

parameter 0.1λ = as Yang. [15]. Firstly, we extract the features of low-resolution 
image by guided filter, the first-order and second-order derivatives. Then the image 
database from different scales and directions is generated [6]. We use 2 2×  low-
resolution image patches with overlap of one pixel between adjacent image patches in 
the low-resolution images. Totally 1024  dictionary atoms are learned with each atom 
of size 2 2× . 

We apply our method to the luminance channel for color images, because humans 
are more sensitive to luminance space in visual sense. We interpolate the color layers 
(Cb, Cr) using bicubic (Bic) interpolation. Numerous natural low-resolution images 
are simulated, but we only show five images in Fig 2.We apply different algorithms 
including nearest neighbor (NN) interpolation, bicubic interpolation, Glasner 
algorithm [6] and our proposed algorithm to reconstruct the HR image. The 
experimental results are compared from two aspects, RMSE and visual effect. From 
the Table 2 and Fig 3, we can conclude that our algorithm is superior to the other 
algorithms in both visual fidelity and numerical measures. What's more the proposed 
SR method reduces the run time to some extent. 
 

 
 

Fig. 2. Five low-resolution test images. From left to right: building; raccoon; girl; visual chart; 
flower 

Table 2. Comparison results of the RMSE, and Run time cost of the different algorithms 

RMSE building raccoon girl visual chart flower 

NN 23.1935 10.3028 6.4315 38.5656 4.2923 

Bic 19.106 8.9977 5.2137 29.4436 3.1928 

Glasner [6] 18.2757 8.8952 4.9755 19.4362 2.9632 

Our algorithm 18.1713 8.3894 4.8242 19.3914 2.9015 

Time cost(s)      

Glasner [6] 776.73 2634.59 1875.23 779.43 1472.96 

Our algorithm 763.66 2134.69 1400.26 755.05 1302.54 
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Fig. 3. SR results of building, raccoon, girl, visual chart, flower. (a) a LR image; (b) NN result; 
(c)Bic result;(d)Glasner result;(e)our result;(f)original image. 

6 Conclusions 

In this paper, we propose a new method for image super-resolution from only one LR 
input image. Our algorithm reduces the reconstruction error significantly and avoids 
the influence of extra database while maintaining comparable image quality. 
Experimental results demonstrate the superiority of the presented method. In the 
future, we will consider how to extract more effective features and how to reduce the 
computation time in further.  
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