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Abstract. Accurate and rapid fault detection based on the data from
industry process is very important for the process control. This paper
introduces a new multivariate statistical process control approach for
fault detection using kernel method based manifold learning algorithm
combining T 2 statistic. The proposed approach is effective in the fault
detection, which has two stages. Stage I: a kernel method based lo-
cally linear embedding is employed to extract the nonlinear features,
preserve local structure and reduce dimensionality of the multivariate
input data, and a new low-dimensional embedding method is developed
to solve the ”out-of-sample” problem. Stage II: the fault detection is
performed by T 2 statistic with control limits derived from the eigen-
analysis of the kernel matrix in the Hilbert feature space. In this study,
the method is applied for the fault detection of the benchmark Tennessee
Eastman (TE) challenge process. The proposed method has been com-
pared with conventional methods in terms of performances such as de-
tection accuracy, detection delay and false alarm rate. It is demonstrated
that the proposed method outperformed the others in fault detection on
TE process.

Keywords: Manifold learning, Kernel method, Fault detection, TE
process.

1 Introduction

Generally, process monitoring consists of measuring and controlling several
process variables simultaneously[1], which is increasing difficult to detect and
diagnose the fault states if multiple process variables exhibit outliers or devi-
ations at the same time. To overcome this disadvantage, multivariate quality
control methods has been employed by monitoring the interactions of several
process variables and determining hidden factors using dimensionality reduc-
tion methods[2], such as principal component analysis (PCA), dynamic principal
component analysis (DPCA), Fisher Discriminant Analysis (FDA) and partial
least squares (PLS)[3][4]. Subsequently, applying multivariate statistics to the
low-dimensional data representations produced by these methods, faults can be
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detected with greater accurate. However, for some complex situations in indus-
trial field with particularly nonlinear characteristics, there are poor performances
due to the assumption that the process data are linear for these methods.

This shortcoming of linear methods has led to the development of nonlinear
methods. Then a series of nonlinear PCA method based on neural networks has
been developed[5][6]. However, it is difficult to determine structure of neural
network and neural network training consumes a lot of time. Another method
is based on kernel method, for example, kernel PCA (KPCA)[7] and one-class
support vector machines (1-class SVM)[20]. Although these methods can deal
with the nonlinear problem, they all do not consider the potential structure of
the input data.

For nonlinear dimensionality reduction, Manifold learning is a perfect tool
which can discover and retain the structure of high dimensional data sets for a
better understanding of the data. Several different manifold learning algorithms
have been developed to perform dimensionality reduction, such as Isomap[9], lo-
cally linear embedding (LLE)[10], Laplacian eigenmaps (LE)[11], and Maximum
Variance Unfolding (MVU)[12], etc.

The LLE algorithm is considered one of effective manifold learning algorithms
for dimensionality reduction, and has been used to solve various problems in
information processing, pattern recognition and data mining[13][14]. LLE algo-
rithm computes a different local quantity, and calculates the best coefficients to
approximate each point by a weighted linear combination of its neighbors, and
then tries to find a set of low-dimensional points, which can be linearly approx-
imated by its neighbors with the same coefficients that have been determined
from high-dimensional points. However, LLE may fail to deliver good perfor-
mance when the data structure is nonlinear. Moreover, it faces the difficulty of
how to implement the map on new testing data points.

Because the the sensor data collected from process is typically nonlinear, high-
dimensional and generally correlated, it is necessary to develop a new method to
tackle the fore-mentioned drawbacks of traditional methods. Recently, there has
been great interest in developing low dimensional representations through kernel
based methods[15][16][17]. These methods can efficiently discover the nonlinear
structure of data and evaluate the map on out-of-sample data. In this paper,
the proposed method includes two stages. Firstly, we present a kernel method
based LLE algorithm (KLLE) to reduce the dimensionality of the input data
and obtain a low-dimensional embedding data. In the second stage, we adopt
Hotelling’s T 2 statistic chart[1] in the embedding data to determine the control
limit and detect the fault state. This method can not only deal with the nonlinear
problem, but also preserve the potential structure in the input data points.

The remainder of the paper is organized as follows. Section 2 presents ker-
nel method based manifold learning. In Section 3, we introduces T 2 statistic in
Hilbert feature space for fault detection. We experimentally evaluate the per-
formance of our proposed method using TE process data in section 4. Section 5
concludes this paper.
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2 Kernel Method Based Manifold Learning

2.1 Kernel Method Based LLE

Let X = {x1, x2, · · · , xn} be a given data set of n points in R
m, sampled

from a d−dimensional manifold (d ≤ m). LLE constructs a dataset Y =
{y1, y2, · · · , yn} ⊆ R

d. There are the details of LLE in[10]. With the kernel trick,
suppose that the input spaceX is mapped into a Hilbert feature space H through
a nonlinear mapping function φ : Rm → H[15]. In Hilbert feature space H, the
nearest neighborhood of φ(xi) is {φ(xj

i ), j = 1, · · · , l}, where l is the number of
nearest neighbors of φ(xi). As in LLE, it is worth to note that the Euclidean
distance between two data points in the Hilbert feature space can be computed
according to

‖ φ(xi)− φ(xj) ‖2= k(xi, xi) + k(xj , xj)− 2k(xi, xj). (1)

Then, in Hilbert feature space, the first step in LLE is to determine the neighbor
set for φ(xi) and to learn the local linear structure of the neighbor set by solving

min ‖ φ(xi)−
l∑

j=1

wijφ(x
j
i ) ‖2, (2)

The weights wij can be computed by minimize Equation 2 with the constraints∑l
j=1 wij = 1. We can get the following Lagrange formulation

L(Wi) = WT
i CiWi − λ(WT

i e− 1), (3)

where Ci is the local kernel matrix of φ(xi) in H, and

Ci(j, k) = (φ(xi)− φ(xj
i ))

T (φ(xi)− φ(xk
i ))

= k(xi, xi)− k(xi, x
k
i )− k(xi, x

j
i ) + k(xj

i , x
k
i ). (4)

Equation 3 which is subjected toWT
i e = 1 (e is a one dimension vector consisting

of ones) has the closed form solution Wi = C−1
i e/(eTC−1

i e) [18]. Ci is a positive
definite matrix, the eigen-decomposition of Ci is of form Ci = UTΛU , then

Wi = (UTΛ−1Ue)/(eTUTΛ−1Ue). (5)

Hence, the reconstruction weightsW are computed by C’s eigenvalues and eigen-
vectors.

2.2 KLLE Embedding

In Hilbert feature space, we suppose that the embedding Y can be given by
Y = Γ Tφ(X), where Γ is a linear transformation matrix and yi = Γ Tφ(xi) ∈ R

d.
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Now, we turn to the problem of finding a transformation matrix Γ in Hilbert
feature space H. The best low-dimensional embedding Y can be computed by

∑

i

‖ yi −
∑

j

wijyj ‖2 =‖ Y (I −W ) ‖2

= tr[Γ Tφ(X)M̃φ(X)TΓ ], (6)

where Y = [y1, y2, · · · , yn] = Γ Tφ(X) and M̃ = (I − W )(I − W )T . Since each
column of Γ should lie in the span of φ(x1), φ(x2), · · · , φ(xn), we can write

Γ =
[∑

i

a1(i)φ(xi),
∑

i

a2(i)φ(xi), · · · ,
∑

i

ad(i)φ(xi)
]
= φ(X)A, (7)

where ak(i), k = 1, · · · , d, denotes the ith entry of the coefficient vector ak, and
A = [a1, a2, · · · , ad] ∈ R

n×d. Substituting Equation 7 to Equation 6, we can
obtain

min
Γ

∑

i

‖ yi −
∑

j

wijyj ‖2= min
A

tr(ATKM̃KA), (8)

where K = φ(X)Tφ(X) is a (n× n) symmetric kernel matrix whose entries are
K(i, j) = k(xi, xj). Similarly, 1

nY Y T = I becomes to 1
nA

TKKA = I.
Finally, the constrained minimization problem above is converted to the fol-

lowing generalized eigenvalue problem

KM̃Ka = λKKa. (9)

And the matrix A is determined by the eigenvectors corresponding to the bottom
d nonzero eigenvalues of Equation 9. Once A is obtained, for any data point x in
high dimensional space R

m, it can be mapped to a low dimensional space point
y ∈ R

d by

y = Γ Tφ(x) = AT [k(x1, x), k(x2, x), · · · , k(xn, x)]
T , (10)

and we can obtain another form as follow

yj =

n∑

i

aijk(xi, x), j = 1, · · · , d, (11)

where yj is the jth entry of embedding coordinate y.

3 T 2 Statistic for Fault Detection

Using the KLLE, we can collect the embedding coordinates Y =
[y1, y2, · · · , yn]T ∈ R

n×d. A measure of the variation within the KLLE is given
by Hotelling’s T 2 statistic[2]. T 2 is the sum of the normalized squared scores,
and is defined as

T 2 = Y Λ−1Y T , (12)
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where Λ−1 is the diagonal matrix of the inverse of the eigenvalues associated with
the embedding coordinates obtained by the generalized eigen decomposition of
Equation 9.

Given a level of significance α, appropriate threshold value for the T 2 statistic
can be determined automatically by applying the probability distributions. In
this study, the control threshold for T 2 is obtained using the F−distribution

T 2
d,n,α ∼ d(n− 1)

n− d
Fd,n−d,α, (13)

where n is the number of samples and d is the number of embedding dimensions.

4 Experiments and Results

4.1 Tennessee Eastman Process and Data Acquisition

The Tennessee Eastman (TE) plant-wide industrial process control problem was
proposed by Downs and Vogel, described in detail in[19][3]. The dataset includes
all the manipulated and measured variables, except the agitation speed of the
reactor’s stirrer for a total of m = 52 observation variables(The agitation speed
was not included because it was not manipulated).

The simulation time for each run is 96 hours. The first 48 hours are operated
under normal operating conditions, the fault is induced after 48 hours. A sam-
pling interval of 3 minutes is used to collect the simulated data for the training
(normal state) and testing data (fault state). The total number of observations
generated for each run is 1920 samples. The normal operating training data con-
sists of 960 samples. When no faults induced, we can obtain other 960 normal
state samples as validation data. The control threshold of T 2 statistic can be set
based on this validation data in the next section. In the following section, the
performance of KLLE is compared with PCA, DPCA, KPCA and 1-class SVM
for TE process.

4.2 Fault Detection of the TE Process

We compared the fault detection performance of kernel based LLE (KLLE) mon-
itoring method with that of PCA[3], DPCA[4], KPCA and 1-class SVM[8] based
monitoring method. Fault detection performance was evaluated by detection ac-
curacy and false alarm rate of each method. In accordance with the works by
Mahadevan et al.[8] and Chiang et al.[3], the fault is indicated only when six
consecutive statistic values exceed the threshold and the detection delay of a
monitoring chart is defined as the time gap between the introducing of fault and
the statistic value exceeding its upper control threshold for the first time. Since
it is unfair to compare detection accuracy and detection delays of all methods
when they have different false alarm rate, in computing above indices, the control
threshold for each monitoring statistic in each method was adjusted to the 10th
highest value of the normal operating validation data. In this way, the adjusted
threshold corresponds to the 99% confidence limit.
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Table 1. The detection accuracy for the testing data

Model Fault1 Fault2 Fault4 Fault5 Fault6 Fault7 Fault8 Fault10 Fault11

PCA+T 2 99.1 97.3 - 23.5 98.9 91.3 96.3 33.3 20.5
DPCA+T 2 99.4 98.1 - 24.2 98.7 84.1 97.2 42.0 19.9
KPCA+T 2 100 99.3 83.7 29.8 100 100 97.6 80.8 81.3
1-class SVM 99.8 98.6 99.6 100 100 100 97.9 87.6 69.8
KLLE+T 2 100 99.6 96.2 100 100 100 99.4 96.6 87.5

Model Fault12 Fault13 Fault14 Fault16 Fault17 Fault18 Fault19 Fault20 Fault21

PCA+T 2 97.9 94.0 84.3 16.7 75.1 88.7 - 29.7 26.4
DPCA+T 2 99.0 95.1 93.9 21.7 76.0 88.9 - 35.6 35.6
KPCA+T 2 98.4 95.5 100 77.6 95.2 91.3 75.7 72.2 81.7
1-class SVM 99.9 95.5 100 89.8 95.3 90.0 83.9 90.0 52.8
KLLE+T 2 98.8 97.5 100 89.9 87.9 92.9 84.4 96.6 81.9

”-” denotes that the fault cannot be detected.

According to Chiang et al.[3] and Russell et al.[4] detection accuracies for
faults 3, 4, 9, 15 and 19 were very low because there was no observable change
in their means, variances or the higher moments. Hence it has been considered
that these faults are unobservable and cannot be detected by any traditional
statistical technologies. In the work of Mahadevan et al.[8], 1-class SVM method
was also not able to detect faults 3, 9 and 15 efficiently, but can detect faults 4
and 19. Therefore, in this paper, our comparative experiments have not included
faults 3, 9 and 15, although we can monitor all faults in TE process by the
proposed method.

The fault detection accuracies are calculated and tabulated in Table 1. The
maximum fault detection value obtained for each of the faults has been high-
lighted in bold face. As expected, DPCA statistic have performed better than
that of PCA for most faults, this indicates the potential advantage of taking
serial correlation into account by DPCA when developing fault detecting proce-
dures. However, the fault detection accuracies of PCA and KPCA are still low,
and the average of detection accuracies of PCA and DPCA over all faults are
only 67.1% and 69.3% respectively, because they are linear method which cannot
capture and model the nonlinear of TE process.

Table 2. The average of detection accuracy (ADA), detection delays (ADD) and false
alarm rate (AFAR)

Model ADA(%) ADD AFAR(%)

PCA+T 2 67.1 102.0 1.60
DPCA+T 2 69.3 84.4 0.99
KPCA+T 2 87.0 26.2 1.47
1-class SVM 91.7 32.8 1.36
KLLE+T 2 94.9 1.4 1.25

Obviously, the fault detection accuracies based on KPCA, 1-class SVM and
KLLE are much higher than PCA and DPCA due to their nonlinearity via
kernel method. For some faults such as fault 1, 2, 6, 7 and 14, these kernel based
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method have similar detection accuracy, but 1-class SVM and KLLE are better
than KPCA for most fault states demonstrated by average detection accuracy in
Table 2. It is also observed that KLLE performs better than 1-class SVM for most
of the faults except fault 4, 12 and 17, and the average of detection accuracies
of 1-class SVM and KLLE are up to 91.7% and 94.9% in Table 2 respectively. In
the case of fault 5, KLLE easily distinguishes the faulty data from the normal
operating data. However, KPCA monitoring chart cannot detect it.

The false alarm rate of all the methods are summarized in Table 2. It can
be seen that the DPCA method is much better than the rest of the models.
Nevertheless, the false alarm rates of all the methods are well within acceptable
limits. However, it should be noted that KLLE performs much better than other
methods in its reduced detection delay and increased fault detection accuracy.

Mentioned above, the faults 3, 9 and 15 are unobservable from the testing
data according to PCA, DPCA, KPCA and 1-class SVM. Although these three
fault states have no observed change in the mean, the variance and the higher
order variance, they can induce the change of data structure captured by KLLE.
Therefore, it is encouraging that these three faults can be successfully detected
by our proposed method. The detection accuracies of the faults 3, 9 and 15 are
77.7%, 90.7% and 73.0%, and the false alarm rates are 2.50%, 1.35% and 1.88%
respectively.

From the results above, it is obviously shown that KLLE performs excellently
on fault detection. Two facts demonstrate this capability. On the one hand, in
nonlinear structures data set, KLLE preserves intrinsic properties more than the
PCA, DPCA and KPCA. On the other hand, KLLE preserves the data structure
more than 1-class SVM, and we also found that the time consumption of KLLE
is smaller than 1-class SVM.

5 Conclusion

The application of machine learning to data mining and analysis in area of TE
process is rapidly gaining interest in the community. In this paper, we presented
a new effective approach to detect all the fault states in TE process. Different
from conventional monitoring methods, KLLE can not only capture and model
the nonlinearity, but also preserve the potential structure in the data. Moreover,
the proposed method can get a implicit mapping relation between the original
data space and the low-dimensional feature space by using kernel trick and lin-
ear projection, which make it possible to monitor online. For the fault detection
of TE process, KLLE performed much better than other conventional moni-
toring methods such as PCA, DPCA, KPCA and 1-class SVM. Compared with
these technologies, the proposed method could detect the fault with an increased
detection accuracy and a considerable reduction in detection delay, and could
generalize well to all the faults of TE process. Meanwhile, the false alarm rates
were also within the acceptable limits, thus making it more useful and feasible
for industrial online application.
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